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PREFACE

MANUAL OBJECTIVES

This manual explains how the VAX/VMS executive works. In doing so, it
describes the data structures maintained and manipulated by VMS,
discusses the mechanisms that transfer control between user processes
and VMS and within VMS itself, and describes some of the features of
the VAX hardware as they are used by VMS.

This description includes all the major components of the executive
including system initialization and the operation of all system
services. It does not include a general discussion of the 1I/0
subsystem because that subject is already described in the VAX/VMS
Guide to Writing a Device Driver. However, the details of some
VAX/VMS device drivers, as well as the operations of I/O related
system services, are included in this manual.

INTENDED AUDIENCE

This manual is intended for system programmers and other users of
VAX/VMS who wish to understand the internal workings of the executive.
A thorough knowledge of VAX-11 MACRO programming is assumed. Readers
with a systems level background on other operating systems who have a
working knowledge of VAX and VMS concepts can gain some understanding
of how the VAX/VMS operating system works. The writing level of this
manual assumes that the reader 1is familiar with VMS programming,
particularly with the use of system services. Knowledge of VMS
concepts and the VAX architecture is also assumed.

In explaining the operation of a subsystem of the executive, the
emphasis is on the data structures manipulated by that component,
rather than on detailed flow diagrams of major routines. The detailed
description of data structures should enable system managers to make
more intelligent decisions when configuring systems for space or time
critical applications. The application designer will also benefit by
being able to realize the effects (in speed or in memory consumption)
of different design and implementation decisions.

NOTE

This manual 1is different from the
reference manuals that make up the rest
of the VAX/VMS documentation set in that
it describes internal operations and
data structures. While it 1is unlikely
that any component described 1in this
manual will be drastically changed with
any major release of VAX/VMS, there is
no guarantee that any data structure or
subroutine interface described here will
remain the same from release to release.
Privileged application programs that
rely on details contained in this manual
must be tested again with each new
version of VAX/VMS.
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STRUCTURE OF THIS DOCUMENT

This manual is broken up into eight parts, with each part describing a
different function of the operating system.

The first chapter (Part I) presents an overview of VAX/VMS
and reviews those concepts that are crucial to 1later
understanding of the workings of the system.

Part II describes the different techniques that are used to
pass control between user programs and VMS. Individual
chapters describe exceptions, system service dispatching, the
use of software interrupts, asynchronous system traps (ASTs),
and hardware interrupt dispatching. The fault reporting
mechanisms used by VMS are also discussed. These include
error logging, machine checks, and BUGCHECKs, the system's
way of reporting internal inconsistencies.

The next section (Part III) describes the scheduler-related
system support. Interprocess communication, including
communication between processors using the MA780 multiport
memory is discussed. A description of timer support and
system timekeeping concludes this section.

Memory management is discussed in the next section (Part IV).
The data structures that are used by both the pager and the
swapper are discussed first. The operation of the pager in
response to typical page faults is then described. Many of
the code paths through the pager are designed to deal with
rare but troublesome cases. These routines are not in
general discussed.

VMS also provides control over the paging and swapping
environment in the form of system services related to memory
management. These services are complicated enough to warrant
their own chapter. The operation of the swapper concludes
the description of memory management.

The next section (Part V) describes another major component
of VMS, the 1I/0 subsystem. This section assumes that the
reader is familiar with the first five chapters of VAX/VMS
Guide to Writing a Device Driver. The operation of device
drivers, including a complete discussion from start to finish
of a QIO request is presented there. This manual builds on
that discussion by describing the details of VMS device
drivers and explaining how the I/0 related system services
work.

The creation and deletion of a process involves a significant
portion of VMS and forms the subject of Part VI. The
activation and termination of an image in the context of a
process are also described. Because the initiation and
termination of images in an interactive or batch environment
is such a common variation to the situation just described, a
separate chapter is devoted to the behavior of interactive
and batch jobs.

Part VII deals with system initialization. Many of the data
structures and even some of the code used by VMS cannot be
created until the system has been configured with a set of
SYSBOOT parameters. This section of the manual describes the
operation of the bootstrap programs (VMB and SYSBOOT) that
initialize VMS and also the first code in VMS (in module
INIT) that executes. Because the power down and powerfail
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recovery procedures are related to the bootstrap sequence,
they are described in this section.

The final section of the manual (Part VIII) discusses
miscellaneous topics that are not conveniently pigeonholed in
any conventional breakdown of operating systems. The

techniques wused by VMS for synchronization and dynamic
storage allocation and deallocation are described first. The
implementation of logical names, a powerful tool for both the
system and for users is explained next. The remaining system
services that do not fit into any of the previous section
headings are discussed in the final chapter.

The manual includes six appendices that will be especially
useful for those readers who wish to pursue this material by
reading the microfiche listings of VMS.

— The first appendix includes helpful hints for reading the
listings and indicates how the maps of the executive and
other components can be used while doing this. The
system dump analyzer (SDA) 1is also a valuable tool in
examining those structures that are not built wuntil the
system is initialized. A description of the structure
definition language (MDL) that is used to define the
executive data structures in a language independent
fashion is also included.

— There are three important pointer areas used by VMS to
locate dynamically constructed data blocks. These
pointer areas are part of the static executive data that
is a part of the executive image The detailed contents of
the static data areas are listed in Appendix B.

- The symbol naming conventions that were adhered to when
VMS was originally written make it easy to read the
source code. These symbol naming conventions are 1listed
in Appendix C.

- Most of the operations of VMS can be easily understood
once the contents of the various data structures are
known. Many of these structures are described throughout
the manual. Most of the structures used by VMS, except
those related to device drivers and the file system, are
described in Appendix D. The data structures related to
device drivers are described in VAX/VMS Guide to Writing
a Device Driver. The data structures that are specific
to the file system are not listed anywhere at this time.

- Appendix E shows how the size of each piece of system
virtual address space depends on the values of SYSBOOT
parameters. (This calculation also relates the size of
the process header to the values of several SYSBOOT
parameters.) After all these sizes have been calculated,
the amount of physical memory used by VMS as a function
of SYSBOOT parameters is also presented.

- Appendix F mentions two changes to the executive that are
made by applying the Version 2.2 binary update to VMS.
These two changes are applied by patching the executive
image SYS.EXE. This appendix 1is the only place where
this functionality is currently described.
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ASSOCIATED DOCUMENTS

Several documents in the VAX/VMS document set should be read before
attempting to read this manual. The following manuals are the most
important prerequisite reading for this manual.

® VAX/VMS System Services Reference Manual

e VAX-11 Software Installation Guide

e Chapter 6 of the VAX-11l Run-Time Library Reference Manual

e VAX/VMS Real-Time User's Guide

e Chapters 12 and 13 of the VAX/VMS System Manager's Guide

The concepts of VAX and VMS are discussed in

e VAX/VMS Summary Description and Glossary

and in

e VAX Software Handbook

Each of these two documents also provides a glossary of the terms used
to describe the VAX architecture and the VMS operating system.

The following documents will be helpful references while vyou are
reading this manual.

® VAX/VMS Guide to Writing a Device Driver

e VAX-11 Architecture Handbook

e VAX Hardware Handbook

An excellent description of the VAX architecture, as well as a
discussion of some of the design decisions made for the first
implementation, the VAX-11/780, can be found in

Computer Programming and Architecture -- The VAX-11
Digital Press, 1980

This book also contains a bibliography of some of the literature
dealing with operating system design.

CONVENTIONS USED IN THIS DOCUMENT

In all pictures of memory that appear in this manual, the lowest
virtual address appears at the top of the page and addresses increase
toward the bottom of the page. This means that the direction of stack
growth is toward the top of the page.

In figures that display more detail such as bytes within longwords,
addresses also increase from right to 1left. That is, the lowest
addressed byte (or bit) in a longword is on the right hand side of a
figure and the most significant byte (or bit) is on the left hand
side.

The word "system" or "VMS" is used to describe the entire software
package that 1is a part of a VAX-11 system. This includes privileged
processes, utilities, and other support software as well as the
executive itself.
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The word "executive" refers to those parts of VMS that reside in
system virtual address space. This includes the contents of the file
SYS.EXE, device drivers, and other code and data structures loaded at
initialization time, including RMS and the system message file,

When either "process control block™ or "PCB" 1is wused without a
modifier, it refers to the software structure used by the scheduler.
The data structure that contains copies of the general registers (that
the hardware 1locates through the PR$ PCBB register) is always called
the "hardware PCB". -

When referring to access modes, the term "inner access modes" means
those access modes with more privilege. The term "outer access modes"
means those access modes with less privilege. Thus, the innermost
access mode is kernel and the outermost access mode is user.

The term "SYSBOOT parameter" is used to describe any of the adjustable
parameters that are used by the secondary bootstrap program SYSBOOT to
configure the system. The adjustable parameters include both the
dynamic parameters that can be changed on the running system and the
static parameters that require a reboot in order for their values to
change. These parameters are referred to by their parameter names
rather than by the global locations where their values are stored.
Appendix B relates the SYSBOOT parameter names to their corresponding
global locations.

The terms "byte index", "word index", "longword index", and so on,
refer to a method of access that uses the VAX-11 context indexing
addressing capability. That is, the index value will be multiplied by
one, two, four, or eight (depending on whether a byte, word, longword,
or quadword is being referenced) as part of operand evaluation in
order to calculate the effective address of the operand.

In general, the component called INIT refers to a module of that name
in the executive and not the volume initialization utility. When that
utility program is being referenced, it will be clearly specified.

There are three conventions that are observed for lists that appear in
this manual.

@ In lists such as this one, where there 1is no order or
hierarchy, 1list elements are indicated by leading bullets
(e). Sublists without hierarchy are indicated by dashes (-).

e Lists that indicate an ordered set of operations are numbered
(or lettered).

e Numbered lists with the numbers enclosed 1in parentheses

indicate a correspondence between individual list elements
and numbered items in a figure.
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PART I

INTRODUCTION

For the fashion of Minas Tirith was such that
it was built on seven levels, each delved
into a hill, and about each was set a wall,
and in each wall was a gate.

The Return of the King,
Being the Third Part of
The Lord of the Rings
J.R.R. Tolkien




CHAPTER 1

SYSTEM OVERVIEW

This chapter introduces the basic concepts that are used to describe
the VAX/VMS operating system. Special attention is paid to the
hardware features of the VAX architecture that are either exploited by
VMS or exist solely to support an operating system. In addition, some
of the design goals that guided the implementation of VMS are
discussed.

1.1 PROCESS, JOB, AND IMAGE

The fundamental unit in VAX/VMS, the entity that is selected for
execution by the scheduler, 1is the process. If a process creates
subprocesses, the <collection of the <creator process, all the
subprocesses created by 1it, and all subprocesses created by its
descendants, is called a job. The programs that a process executes in
order to accomplish meaningful work are called images.

1.1.1 Process

A process is fully described by hardware context, software context;
and a virtual address space description. This information is stored
in several data structures located in different places in the process
address space. The data structures that contain the various pieces of
process context are pictured in Figure 1-1.

l.1.1.1 Hardware Context - The hardware context consists of copies of
the general purpose registers, the four per-process stack pointers,
the program counter (PC), the processor status longword (PSL), and the
process-specific processor registers including the memory management
registers and the AST level register. The hardware context resides in
a data structure called the hardware process control block that is
used primarily when a process is removed from or selected for
execution.

Another part of process context that is related to hardware 1is the
existence of four per-process stacks, one for each of the four access
modes. Any code that executes on behalf of a process uses one of that
process's four stacks.
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1.1.1.2 Software Context - Software context consists of all the data
required by various parts of the operating system to make scheduling
and other decisions about a process. This data includes the process
software priority, its current scheduling state, process privileges,
quotas and limits, and miscellaneous information such as process name
and process ID.

The information about a process that must be in memory at all times is
stored in a data structure called the software process control block
(PCB). This data includes the software priority of the process, its
unique process identification (PID), and the particular scheduling
state that the process is in at a given point in time. Some process
quotas and 1limits are stored in the software PCB. (The quotas and
limits that are shared among all processes in the same job are stored
in a shared data structure called the job information block.)

The information about a process that does not have to be permanently
resident (swappable process context) is contained in a data structure
called the process header. This information is only needed when the
process 1is resident and consists mainly of information used by memory
management when page faults occur. The data in the process header is
also used by the swapper when the process is removed from memory
(outswapped) or brought back into memory (inswapped). The hardware
PCB, which contains the hardware context of a process, is a part of
the process header. Information in the process header is available to
suitably privileged code whenever the process is resident (is in the
balance set). All other references to the process header must be made
in the context of the process whose process header is being examined.

Other process-specific information is stored in the Pl portion of the
process virtual address space (the control region). This data
includes exception dispatching information, RMS data tables, and
information about the image that is currently executing. Information
that is stored. in Pl space is only accessible when the ©process 1is
executing (is the current process) because Pl space 1is process
specific.

1.1.1.3 Virtual Address Space Description - The virtual address space
of a process is described by the process P0 and Pl page tables, stored
in the high address end of the process header. The process virtual
address space is altered when an image is initially activated, during
image execution through selected system services, and when an image
terminates. The process page tables reside in system virtual address
space and are in turn described by entries in the system page table.
Unlike the other portions of the process header, the process page
tables are themselves pageable, and are faulted into the process
working set only when they are needed.

1.1.2 Image

The programs that execute in the context of a process are called
images. Images wusually reside in files that are produced by one of
the VAX/VMS linkers. When the user initiates image execution (as part
of process creation or through a DCL or MCR command in an interactive
or batch job), a component of the executive called the image activator
sets up the process page tables to point to the appropriate sections
of the image file. VMS uses the same paging mechanism that implements
its virtual memory support to read image pages into memory as they are
needed.
1-3
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1.1.3 Job

The collection of subprocesses that has a common root process is
called a job. The concept of a job exists solely for the purpose of
sharing resources. Some quotas and limits, so-called pooled quotas,
are shared among all processes in the same job. The current values of
these quotas are contained in a data structure called a job
information block (Figure 1-1) that is shared by all processes in the
same job.

1.2 FUNCTIONALITY PROVIDED BY VAX/VMS

Any operating system provides services at many 1levels so that user
applications may execute easily and effectively. The functionality
provided by VAX/VMS is pictured in Figure 1-2. The figure is designed
to show the layered design of the VAX/VMS operating system. 1In
general, components in a given layer can make use of the facilities in
all inner layers.

1.2.1 Operating System Kernel

The main topic of this manual is the operating system kernel; the I/0
subsystem, memory management, the scheduler, and the VAX/VMS system
services that support and complement these components. The approach
that is used in discussing these three components and other
miscellaneous parts of the operating system kernel focuses on the data
structures that are manipulated by a given component. By discussing
what each major data structure represents, and how that structure is
altered by different sequences of events in the system, we will
describe the detailed operations of each major piece of the executive.

1.2.1.1 I/O Subsystem - The I/O subsystem consists of device drivers
and their associated data structures, device independent routines
within the executive, and several system services, the most important
of which is the $QI0 request, the eventual I/0 request that is issued
by all outer layers of the system. The I/0 subsystem is described in
great detail from the point of view of adding a device driver to VMS
in the VAX/VMS Guide to Writing a Device Driver. Chapters 15 and 16
of this manual describe features of the I/0O subsystem that are not
described there.

1.2.1.2 Memory Management - The main components of the memory
management subsystem are the page fault handler, which implements the
virtual memory support of VAX/VMS, and the swapper, which allows the
system to more fully utilize the amount of physical memory that is
available. The data structures used and manipulated by the pager and
swapper include the PFN data base and the page tables of each process.
The PFN data base describes each page of physical memory that is
available for paging and swapping. Virtual address space descriptions
of each currently resident process are contained in their respective
page tables.

System services are available to allow a user (or the system on behalf
of the user) to create or delete specific portions of virtual address
space or map a file into a specified virtual address range.
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1.2.1.3 Scheduling and Process Control - The third major component of
the kernel is the scheduler, which selects processes for execution and
removes processes from execution that can no longer execute. The
scheduler also handles clock servicing and includes timer related
system services. System services are available to allow a process (or
programmer) to create or delete other processes. Other services
provide one process the ability to control the execution of another.

1.2.1.4 Miscellaneous Services - One area of the operating system
kernel that is not pictured in Figure 1-2 involves the many
miscellaneous services that are available in the operating system
kernel. Some of these services, such as logical name creation or
string formatting, are available to the user in the form of system
services. Others, such as pool manipulation routines and
synchronization techniques, are only used by the kernel and privileged
utilities.

1.2.2 Data Management

VAX/VMS provides data management facilities at two levels. The record
structure that exists within a file 1is interpreted by the VAX-11
Record Management Services (RMS), which exists in a layer just outside
the kernel. RMS exists as a series of procedures located in system
space, so it is in some ways just 1like the rest of the operating
system kernel. Most of the procedures in RMS execute in executive
access mode, providing a thin wall of protection between RMS and the
kernel itself.

The placement of files on mass storage volumes is controlled by one of
the disk or tape ACPs (Ancillary Control Process). ACPs are
implemented as separate processes because many of their operations
must be serialized to avoid synchronous access conflicts. These
processes interact with the kernel both through the system service
interface and also by using some of the utility routines that are not
accessible to the general user.

1.2.3 User Interface

The interface that is presented to the user (as distinct from the
application programmer who is using system services and Run-Time
Library procedures) is one of the command language interpreters (CLI).
Some of the services performed by a CLI call RMS or the system
services directly. Others result in the execution of an external
image. These images are generally no different from user-written
applications in that their only interface to the executive is through
the system services and RMS calls.

Some functions available to the user are performed by images that use
undocumented interfaces into the kernel. These images usually require
privileges in order to execute, and are also linked with the system
symbol table SYS$SYSTEM:SYS.STB.
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1.2.3.1 Images Installed with Privilege - Some of the informational
utilities and disk and tape volume manipulation utilities require that
selected portions of protected data structures be read or written in a
controlled fashion. Images that require privilege to perform their
function can be installed (made known to VMS) by the system manager so
that they can perform their function in an ordinarily nonprivileged
process environment. Images that fit this description are DISPLAY,
VMOUNT (the volume mount utility), SET, and SHOW. Table 1-1 lists all
those images that are 1installed with privilege in a typical VMS
system.

1.2.3.2 Other Privileged Images - Other images that perform
privileged functions are not installed with privilege because their
functions are less controlled and could destroy the system if executed
by naive or malicious users. These images can only be executed by
privileged users. Examples of these images include SYSGEN (for
loading device drivers), INSTALL (which makes images privileged or
shareable !), or the images invoked by a CLI to manipulate print or
batch queues. Images that require privilege to execute but are not
installed with privilege in a typical VAX/VMS system are also listed
in Table 1-1.

Table 1-1

System Processes and Privileged Images

System Processes

Linked with

Image Name SYS.STB Description

CCP.EXE Yes Image for NETACP

F11AACP.EXE Yes Files-11 ACP for Structure Level 1
F11BACP. EXE Yes Files-11 ACP for Structure Level 2
MTAAACP. EXE Yes Magnetic Tape ACP

REMACP. EXE Yes Remote Terminal ACP

ERRFMT, EXE Yes Error Log Buffer Format Process
INPSMB.EXE Yes Card Reader Input Symbiont

JOBCTL. EXE Yes Job Controller/Symbiont Manager
OPCOM. EXE Yes Operator Communication Facility
PRTSMB. EXE Yes Print Symbiont

Images Installed with Privilege
(in a typical VMS system)

Linked with

Image Name SYS.STB Description

DISMOUNT. EXE Yes Volume Dismount Utility

DISPLAY. EXE Yes System Statistics Utility

INIT.EXE Yes Volume Initialization Utility

LOGINOUT. EXE Yes Login/Logout Image

MAIL.EXE Mail Utility

REQUEST. EXE Operator Request Facility

SET.EXE Yes SET Command Processor

SETPO0.EXE Yes SET Command Processor

SHOW.EXE Yes SHOW Command Processor

SUBMIT.EXE Batch and Print Job Submission
Facility

VMOUNT. EXE Yes Volume Mount Utility
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Table 1-1 (cont.)

System Processes and Privileged Images

Images That Require Privilege
That Are Typically Not Installed

Linked with

Image Name SYS.STB Description

INFO. EXE (*) Yes Process Information Utility

INSTALL.EXE Yes Known Image Installation Utility

NCP.EXE Yes Network Control Program

OPCCRASH, EXE Yes System Shutdown Facility

QUEMAN. EXE Yes Queue Manipulation Command Processor

REPLY. EXE Message Broadcasting Facility

RMSSHARE. EXE Yes File Sharing Utility

RTPAD. EXE Remote Terminal Command Interface

RUNDET. EXE RUN Process Command Processor

SDA.EXE System Dump Analyzer

SYSGEN, EXE Yes System Generation and Configuration
Utility

TALK.EXE (*) Interterminal Communication Utility

USERS. EXE (*) Yes Interactive Users Display

(*) These images are not supported by DIGITAL.

Images Whose Operations Are Protected by System UIC or Volume Ownership

Linked with

Image Name SYS.STB Description
BAD. EXE Bad Block Locator
DSC1l.EXE Disk Save and Compress Utility
for Structure Level 1
DSC2. EXE Disk Save and Compress Utility
for Structure Level 2
DISKQUOTA. EXE Yes Disk Quota Utility
VFY1l.EXE File Structure Verification Utility
for Structure Level 1
VFY2.EXE File Structure Verification Utility

for Structure Level 2

Miscellaneous Images Linked

with SYS$SYSTEM:SYS.STB

Linked with

Image Name SYS.STB Description

DCL.EXE Yes DCL Command Interpreter

MCR. EXE Yes MCR Command Interpreter

RMS. EXE Yes Record Management Services Image
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1.2.3.3 1Images That Link with SYS$SYSTEM:SYS.STB - Table 1-1 also
lists those components that are linked with the system symbol table
(SYSSSYSTEM:SYS.STB). These images access known locations in the
system image (SYS.EXE) through global symbols and must be relinked
each time the system itself is relinked. User applications or special
components such as device drivers that include SYS.STB when they are
linked must be relinked whenever a new version of the symbol table is
released, usually at each major release of VAX/VMS.

1.2.4 1Interface between Kernel Subsystems

The coupling between the three major subsystems pictured in Figure 1-2
is somewhat misleading 1in that there is actually little interaction
between the three components. In addition, each of the three
components has its own section of executive data structures that it is
responsible for. When one of the other pieces of the system wishes to
access such data structures, it does so through some controlled
interface. Figure 1-3 shows the small amount of interaction that
occurs between the three major subsystems in the operating system
kernel.

Lock/Unlock Physical
Pages for
Direct I/O

Memory

Management 1/0 Subsystem

* Regular /O
Requests

* Page Fault Handler

Page Fault Read
Inswap/Outswap
PFN Modified Page Write 1o

+ Physical Page

Manager ¢ Page |/O

Data Base

Pager Data
Structures

e Swap 1/0

¢ Swapper

Wait for 1/0 Request
1/0 Request
Complete

Wake Up
Swapper

Page Fault Wait
Page Fault Read Complete

Free Page Wait

Physical Page Available Scheduling
Inswap Complete Queues

Outswap Complete

Process and Time Management

® Wait Code (Block Execution)
* Make Processes Computable

Figure 1-3 1Interaction Between Components of VMS Kernel
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1.2.4.1 1I/0O Subsystem Requests - The I/0 subsystem makes a request to
memory management to lock down specified pages for a direct I1/0
request. The pager or swapper 1is notified directly when the 1I/0
request that just completed was initiated by either one of them.

I/0 requests can result in the requesting process being placed in a
wait state, wuntil the request completes. This requires that the
scheduler be notified. 1In addition, I/O completion can also cause a
process to change its scheduling state. Again, the scheduler would be
called.

1.2.4.2 Memory Management Requests - Both the pager and swapper
require input and output operations in order to fulfill their
functions. Neither calls $QIO0 directly because many of the protection
checks that $QI0O makes are unnecessary and would slow down page I/0
and swap I/0. Instead, they use special entry points into the 1I/0
system that allow prebuilt I/O requests to be queued directly to a
driver.

If a process incurs a page fault that results in a read from disk, or
if a process requires physical memory and none is available, the
process is put into one of the memory management wait states by the
scheduler. When the ©page read completes or physical memory becomes
available, the process is made computable again.

1.2.4.3 Scheduler Requests - The scheduler actively interacts very
little with the rest of the system. It serves a more passive role
when cooperation with memory management or the I/0 subsystem is
required. One exception to this passive role is that the scheduler
awakens the swapper when a process that is not currently memory
resident becomes computable.

1.3 HARDWARE IMPLEMENTATION OF OPERATING SYSTEM KERNEL

The method of implementing the many services provided by VAX/VMS
illustrates the close connection between the hardware design and the
operating system. Many of the general features of the VAX
architecture are used to advantage by VAX/VMS. Other features of the
architecture exist entirely to support an operating system.

1.3.1 VAX Architecture Features Exploited by VMS

Several features of the VAX architecture that are available to all
users are used for specific purposes by VMS.

e The general purpose calling mechanism 1is the primary path
into VMS from all outer layers of the system. Because all
system services are procedures, they are available to all
native mode languages.

e As mentioned above, the memory management protection scheme
is wused to protect code and data used by more privileged
access modes from modification by 1less privileged modes.
Read-only portions of the executive are protected in the same
manner.
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e There is implicit protection built into special instructions
that may only be executed from kernel mode. Because only the
executive (and suitably privileged process—based code)
executes in kernel mode, such instructions as MTPR, LDPCTX,
and HALT are protected from execution by nonprivileged users.

e The operating system uses interrupt priority level (IPL) for
several purposes. At its most elementary 1level, IPL is
elevated so that certain 1interrupts are blocked. For
example, clock interrupts must be blocked while the system
time (stored in a quadword) is checked because this checking
takes more than one instruction. Clock interrupts are
blocked to prevent the system time from being updated while
it is being checked.

e IPL is also used as a synchronization tool. For example, any
routine that accesses a system-wide data structure must raise
IPL to 7 (called 1IPL$ SYNCH). The assignment of wvarious
hardware and software interrupts to specific IPL values
establishes an order of importance to the hardware and
software interrupt services that VMS performs.

e Several other features of the VAX architecture are used by
specific components of VMS and are described in later
chapters. They include

- the change mode instructions (CHME and CHMK) that are the
only means available for decreasing access mode (to
greater privilege) (Figure 1-4),

- the inclusion of many protection checks and pending
interrupt checks in the single instruction that is the
common interrupt exit path, REI,

- software interrupts, and

- hardware context and the single instructions (SVPCTX and
LDPCTX) that save and restore it.

1.3.2 VAX-11 Instruction Set

While the VAX-11 instruction set, data types, and addressing modes
were designed to be somewhat compatible with the PDP-11, several
features that were missing in the PDP-11 were added to the VAX
architecture. True context indexing allows array elements to be
addressed by element number, with the hardware accounting for the size
(byte, word, 1longword, or quadword) of each element. Short literal
addressing was added in recognition of the fact that the majority of
literals that appear in a program are small numbers. Variable length
bit fields and character data types were added to serve the needs of
several classes of users, including operating system designers.

The instruction set includes many instructions that are useful to any
designer and occur often in the VMS executive. The queue instructions
allow the construction of doubly linked lists as a common dynamic data
structure. Character string instructions are useful when dealing with
any data structure that can be treated as an array of bytes. Bit
field instructions allow efficient operations on flags and masks.
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Access mode fields in the PSL are not directly accessible to the programmer or
to the operating system.

The only way to reach a The only way to reach a
MORE privileged access LESS privileged access
mode is through one of mode is through the REI
the CHMXx instructions. / instruction.

The boundaries between the access modes are nearly identical to the layer
boundaries pictured in Figure 1-2.
® Nearly all of the system services execute in kernel mode.
® RMS and some system services execute in executive mode.
® Command Language Interpreters normally execute In supervisor mode.
o Utilities, application programs, Run-Time Library procedures, and so on
normally execute in user mode. Privileged utilities sometimes execute in
kernel or executive mode.

Figure 1-4 Methods for Altering Access Mode

One of the most important features of the VAX architecture 1is the
calling standard. Any procedure that adheres to this standard can be
called from any native 1language, an advantage for any large
application that wishes to make use of the features of a wide range of
languages. VMS adheres to this standard in 1its interfaces to the
outside world through the system service interface, RMS entry points,
and the Run-Time Library procedures. All system services and RMS
routines are written as procedures that can be accessed by issuing a
CALLx to absolute 1location SYS$service 1in system virtual address
space. Run-Time Library procedures are included in a user's image
instead of being located in system space.

1.3.3 Implementation of VMS Kernel Routines

In the previous section, we divided the VMS kernel into three
functional pieces and the system service interface to the rest of the
world. An alternative method of partitioning the operating system
kernel 1is according to the method used to gain access to each part.
Three classes of routines within the kernel are procedure-based code,
exception service routines, and interrupt service routines. Other
system-wide functions, the swapping and modified page writing
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performed by the swapper, are implemented as a separate process that
resides in system space. Figure 1-5 shows the various entry paths
into the operating system kernel.

Hardware Interrupts

External Device
j (IPL = 20..23)

Device Driver
Fork Processing
Software Interrupts

(iPL = 8..11)

Translation - not - Valid
Fault
(Page Fault)

(Exception, not Interrupt)

Memory
Management | 1/0 Subsystem
e Page Fault ® Device Drivers
Handler e Post-

processing
routines

4= 1/0 Postprocessing
Software Interrupt

(IPL = 4)
Process and Time Management
o Rescheduling Interrupt
Service Routine
e Clock and Timer Service
Rescheduling AST Delivery

Software interrupt Software Interrupt
(IPL = 3) . (IPL = 2)

Hardware Clock Software Timer
interrupt Interrupt
(IPL = 24) (IPL=7)

Figure 1-5 Paths into Components of VMS Kernel

1.3.3.1 Process Context and System State - The first section of this
chapter described the pieces of the system that are used to describe a
process. Process context includes a complete address space
description, quotas, privileges, scheduling data, and so on. Any
portion of the system that executes in the context of a process can
count on all of these process attributes being available.

There is a portion of the kernel, however, that operates outside the
context of a specific process. The largest class of routines that
fall into this category are interrupt service routines, invoked in
response to external events with no regard for the currently executing
process. Portions of the initialization sequence also fall into this
category. 1In any case, there are no process features such as a kernel
stack or a page fault handler available when these routines are
executing.
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Because of the lack of a process, this system state or interrupt state
can be characterized by the following limited context.

e All stack operations take place on the system-wide interrupt
stack.

e The primary description of system or interrupt state |is
contained in the processor status longword (PSL). This will
indicate that the interrupt stack is being used, that the
current access mode 1is kernel mode, and that the IPL is
higher than IPL 2.

e The system control block, the data structure that controls
the dispatching of interrupts and exceptions, can be thought
of as the secondary structure that describes system state.

e Code that executes in this so-called system context can only
refer to system virtual addresses. In particular, there is
no Pl space available. This requires that the system-wide
interrupt stack be located in system space.

e No page faults are allowed. The page fault handler generates
a fatal bugcheck if a page fault occurs and the IPL is above
IPL 2.

e No exceptions are allowed. Exceptions, like page faults, are
associated with a process. The exception dispatcher
generates a fatal bugcheck if an exception occurs above IPL 2
or while the processor is executing on the interrupt stack.

e ASTs, asynchronous events that allow a process to. receive
notification when external events have occurred, are not
allowed. (The AST delivery interrupt is delivered when IPL
drops below IPL 2, an indication that the processor is
leaving interrupt state.)

e No system services are allowed in system state. (In fact,
system services cannot even be called from process context at
IPL 2. System services can only be called at IPL 0.)

1.3.3.2 Process-Based Routines - Procedure-based code (the system
services) and exception service routines usually execute in the
context of the current process (on the kernel stack when in kernel
mode) .

1.3.3.2.1 System Services - The system services are implemented as
procedures. This makes them available to all native mode languages.
In addition, the fact that they are procedures means that there is a
call frame on the stack. Thus, errors detected by a utility
subroutine used by a system service can return an error simply by
putting the error status into RO and issuing a RET instruction. All
superfluous information 1is cleaned off the stack by the RET
instruction. The system service dispatchers, actually the dispatchers
for the CHMK and CHME exceptions, are exception service routines.

System services must be called from process context. They are not
available from interrupt service routines or other code (such as
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portions of the initialization sequence) that executes outside the
context of a ©process. One reason for this 1is that the various
services assume that there is a process whose privileges can be
checked and whose quotas can be charged as part of the normal
operation of the service. Some system services reference locations in
Pl space, a portion of address space only available while executing in
process context. System services also make assumptions about IPL and
synchronization that would be violated if they were called from other
than process-based code executing at IPL 0.

1.3.3.2.2 Page Fault Handler - The pager is an exception service
routine that is invoked in response to a translation-not-valid fault.
The pager thus satisfies page faults in the context of the process
that incurred the fault. Because page faults are associated with a
process, the system cannot tolerate page faults that occur in
interrupt service routines or other routines that execute outside the
context of a process. The actual restriction imposed by the pager is
even more stringent. Page faults are not allowed above IPL 2. This
restriction applies to process-based code executing at elevated IPL as
well as to interrupt service code.

1.3.3.3 1Interrupt Service Routines - By their asynchronous nature,
interrupts execute without the support of process context (on the
system-wide interrupt stack).

e 1I/0 requests are initiated through the $QI0 system service,
which can be 1issued directly by the user or by some
intermediary such as RMS on the user's behalf. Once an I/0
request has been placed in a device queue, it remains there
until the driver is triggered, usually by an interrupt
generated in the external device.

Two classes of software interrupt service routines exist
solely to support the 1I/0 subsystem. The fork 1level
interrupts allow device drivers to lower IPL in a controlled
fashion. Final processing of I/0 requests is also done in a
software interrupt service routine.

e The timer functions in VMS include support in both the
hardware clock interrupt service routine and a software
interrupt service routine that actually services individual
timer requests.

e Another software interrupt performs the rescheduling
function, where one process 1is removed from execution and
another selected and placed into execution.

1.3.3.4 Special Processes - Swapper and Null - The swapper and the
null process are different from any other processes that exist in a
VAX/VMS system. The differences lie not in their operations, which
are completely normal, but in their limited context.
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The limited context of either of these processes is due, in part, to
the fact that these two processes exist as part of the system image
SYS.EXE. They do not have to be created with the Create Process
system service. Specifically, their PCBs and process headers are
assembled (in module PDAT) and linked into the system image. Other
characteristics of these two processes are listed here.

e Their process headers are static. There is no working set
list and no process section table. This implies that neither
process supports page faults. All code executed by either
process must be locked into memory in some way. In fact, the
code of both of these processes is part of the nonpaged
executive.

e Both processes execute entirely in kernel mode. This
eliminates the need for stacks for the other three access
modes.

e Neither process has a Pl space. The kernel stack for either
process is located in system space.

e The null process does not have a PO space either. The
swapper uses an array allocated from nonpaged pool as its PO
page table for a special portion of process creation, the
part that takes place in the context of the swapper process.

Despite their limited contexts, both of these processes behave 1in a
normal fashion 1in every other way. The swapper and the null process
are selected for execution by the scheduler Jjust 1like any other
process in the system. The swapper spends 1its idle time in the
hibernate state until some component in the system recognizes a need
for one of the swapper functions, at which time it is awakened. The
null process is always computable, but set to the lowest priority in
the system (priority 0). All CPU time not used by any other process
in the system will be used by the null process.

1.3.3.5 Special Subroutines - There are several utility subroutines
within VMS related to scheduling and resource allocation that are
called from both process-based code such as system services and from
software interrupt service routines. These subroutines are
constrained to execute with the limited context of interrupt or system
state.

1.3.4 Memory Management and Access Modes

The address translation mechanism is described in the VAX Hardware
Handbook. Two side effects of this operation are of special interest
to VMS. When a page is not valid, a translation-not-valid exception
is generated that transfers control to an exception service routine
that can take whatever steps are required to make the page valid.
This exception transfers control from a hardware mechanism, address
translation, to a software exception service routine, the page fault
handler, and allows VMS to gain control on address translation
failures in order to implement its dynamic mapping of wvpages while a
program is executing.
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Before the address translation mechanism checks the wvalid bit, a
protection check 1is made to determine whether the requested access
will be granted. The check uses the current access mode 1in the PSL
(PSL<25:24>), a protection code that is defined for each virtual page,
and the type of access (read, modify, or write) to make its decision.
This protection <check allows VMS to make read-only portions of the
executive inaccessible to anyone (all access modes) for writing,
preventing corruption of operating system code. In addition,
privileged data structures can be protected from even read access by
nonprivileged users, preserving operating system security.

1.3.5 Exceptions, Interrupts, and REI
Before mentioning other features of the exception and interrupt

mechanisms wused by VMS, it would be helpful to compare and contrast
these two mechanisms.

1.3.5.1 Comparison of Exceptions and Interrupts - The following 1list
summarizes some of the characteristics of exceptions and interrupts.

e Interrupts occur asynchronously to the currently executing

instruction stream. They are actually serviced between
individual instructions or at well defined points within the
execution of a given instruction. Exceptions occur

synchronously as a direct effect of the -execution of the
current instruction.

e Both mechanisms pass control to service routines whose
addresses are stored in the system control block. These
routines perform exception-specific or interrupt-specific
processing.

e Exceptions are generally a part of the currently executing
process. Their servicing is an extension of the instruction
stream that is currently executing on behalf of that process.
Interrupts are system-wide events that cannot rely on support
of a process in their service routines.

e A consequence of this 1last 1item is that the system-wide
interrupt stack is usually used to store the PC and PSL that
represent the machine state that was interrupted. Exceptions
are usually serviced on the per-process kernel stack. Which
stack to use is actually determined by control bits in the
system control block entries for each exception or interrupt.

e Interrupts cause a PC/PSL pair to be pushed onto the stack.
Exceptions often cause exception-specific parameters to be
stored along with a PC/PSL pair.

e Interrupts cause the IPL to change. Exceptions wusually do
not have an IPL change associated with them. (Machine checks
and kernel-stack-not-valid exceptions elevate IPL to 31.)

e A corollary of this previous step is that interrupts can be
blocked by elevating IPL to a value at or above the IPL
associated with the interrupt that is to be blocked.
Exceptions, on the other hand, cannot be blocked. However,
some exceptions can be disabled (by clearing associated bits
in the PSW).
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e When an interrupt or exception occurs, a new PSL is formed
that summarizes the new IPL, the current access mode (almost
always kernel), whether the interrupt stack is in use, and so
on, One difference between exceptions and interrupts, a
difference that reflects the fact that interrupts are not
related to the interrupted instruction stream, is that the
previous access mode field in the new PSL is set to Kkernel
for interrupts while the previous mode field for exceptions
reflects the access mode in which the exception occurred.

1.3.5.2 Other Uses of Exceptions and Interrupts - In addition to the
translation-not-valid fault used by memory management software, VMS
also uses the change-mode-to-kernel and change-mode-to-executive
exceptions as entry paths to the executive. System services that must
execute in a more privileged access mode use either the CHMK or CHME
instruction to gain access rights (Figure 1-4). VMS handles most
other exceptions by passing them through a common exception dispatcher
described in Chapter 2.

Hardware interrupts temporarily suspend code that 1is executing in
order that an interrupt-specific routine can service the interrupt.
Interrupts have an IPL associated with them. The internal processor
priority level (IPL) is raised when the interrupt is recognized. High
level interrupt service routines thus prevent the recognition of lower
level interrupts. Lower level interrupt service routines can be
interrupted by subsequent higher 1level interrupts. Kernel mode
routines can also block interrupts at certain levels by manually
raising the IPL.

The VAX architecture also defines a series of software interrupt
levels that can be used for a variety of purposes. VMS uses them for
scheduling, I/0O completion routines, and for synchronizing access to
certain classes of data structures.

1.3.5.3 The REI Instruction - The REI instruction is the common exit
path for interrupts and exceptions. Many protection and privilege
checks are incorporated into this instruction. Because most fields in
the processor status longword are not accessible to the programmer,
the REI instruction provides the only means for changing access mode
to a 1less privileged mode (Figure 1-4). It is also the only way to
reach compatibility mode.

Although the IPL field of the PSL is accessible through the PR$_IPL
processor register, execution of an REI is a common way that IPL is
lowered during normal execution. Because a change in IPL can alter
the deliverability of pending interrupts, many hardware and especially
software interrupts are delivered after an REI instruction is
executed.

1.3.6 Process Structure

The VAX architecture also defines a data structure called a hardware
process control block that contains copies of all a process's general
registers when the process is not active. When a process is selected
for execution, the contents of this block are copied into the actual
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registers inside the processor with a single instruction, LDPCTX. The
corresponding instruction that saves the contents of the general
registers when the process is removed from execution is SVPCTX.

1.4 OTHER SYSTEM CONCEPTS

We began this chapter by discussing the most important concepts in
VMS, process and image. There are several other fundamental ideas
that should be at 1least mentioned before we begin a detailed

description of VMS internals. Some of these ideas are briefly
described here.

1.4.1 Resource Control

VAX/VMS protects 1itself and other processes in the system from
careless or malicious users with hardware and software protection
mechanisms, software privileges, and software quotas and limits,.

l.4.1.1 Hardware Protection - The memory management protection
mechanism that is related to access mode is used to prevent
unauthorized users from modifying (or even reading) privileged data
structures. Access mode protection is also used to keep program code
and read-only data structures, within either the executive or a user
program, from being modified by programming errors.

A more subtle but perhaps more important aspect of protection provided
by the memory management architecture is that the process address
space of one process (PO space and Pl space) is not accessible to code
running in the context of another process. When such accessibility is
desired to share common routines or data, VMS provides a controlled
access through global sections. Another dimension to accessibility is
that system virtual address space 1is available to all processes
(although page-by-page protection may deny read or write access to
specific system virtual pages for certain access modes).

1.4.1.2 Process Privileges - Many operations that are performed by
system services could destroy operating system code or data or corrupt
existing files if performed carelessly. Other services allow a
process to adversely affect features in other processes in the system.
VMS requires that processes wishing to execute these potentially
damaging operations be suitably privileged. Process privileges are
assigned when a process is created, either by the creator, or through
the user's record in the authorization file.

These privileges are described in the VAX/VMS System Manager's Guide
and in the VAX/VMS System Services Reference Manual. The privileges
themselves are specific bits in a quadword that 1is stored in the
beginning of the process header. (The locations and manipulations of
the several process privilege masks that VMS maintains are discussed
in Chapter 18.) When a VMS service that requires privilege is called,
the service checks to see whether the associated bit in the process
privilege mask is set.
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1.4.1.3 Quotas and Limits - VMS also controls allocation of its
system wide resources such as nonpaged dynamic memory and page file
space through the use of quotas and limits. These process attributes
are also assigned when the process is created. By restricting such
items as the number of concurrent I/O requests or pending ASTs, VMS
exercises control over the resource drain that a single process can
exert on system resources such as nonpaged dynamic memory. In
general, a process cannot perform certain operations (such as queue an
AST) unless it has sufficient quota (nonzero PCB$W ASTCNT in this
case). The locations and values of the various quotas and limits used
by VMS are described in Chapter 17.

1.4.1.4 User Identification Code (UIC) - VMS uses user identification
code (UIC) for two different protection purposes. If a process wishes
to perform some control operation (Suspend, Wake, Delete, and so on)
on another process, it requires WORLD privilege in order to affect any
process in the system. A process with GROUP privilege can only affect
other processes with the same group number. A process with neither
WORLD nor GROUP privilege can only affect subprocesses that it has
created. (This means that a process with neither GROUP nor WORLD
privilege cannot affect any other process in the system, even if it
has the same UIC, unless the target process was created by the process
in question.)

The UIC is also the parameter that determines whether a user can read
from or write to a given file. The owner of a file can determine how
much access to his files he grants to himself, to other processes in
the same group, and to arbitrary processes in the system.

The same UIC protection that exists for files is also used for other
data structures in the system. Both logical names and global sections
exist in two varieties, group names and sections or system names and
sections. The group variety is only available to other processes in
the same group. Common event flags, flags that can be shared among
several processes, are restricted to processes in the same group.

1.4.2 Other System Primitives

Several other simple tools used by VMS are mentioned freely throughout
this manual but are not described until the final section, in Chapters
24 through 26.

1.4.2.1 Synchronization - Any multiprogramming system must take
measures to prevent simultaneous access to system data structures.
VMS uses two simple synchronization techniques. By elevating IPL, a
subset of interrupts can be blocked, allowing unrestricted access to
system wide data structures. The most common synchronization IPL used
by VMS is IPL 7, called IPL$_SYNCH.

For some data structures, elevated IPL is either an unnecessary tool
or a potential system degradation. For example, processes executing
above IPL 3 cannot be rescheduled (removed from execution). Once a
process gains control of a data structure protected by elevated IPL,
it will not allow another process to execute until it gives up its
ownership. In addition, page faults are not allowed above IPL 2 and
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so any data structure that exists in pageable address space cannot be
synchronized with elevated IPL.

VMS requires a second synchronization tool to allow synchronized
access to pageable data structures. This tool must also allow a
process to be removed from execution while it maintains ownership of
the structure in question. The synchronization tool that fulfills
these requirements is called a mutual exclusion semaphore (MUTEX) .
Synchronization, including the use of mutexes, is discussed in Chapter
24.

1.4.2.2 Dynamic Memory Allocation - The system maintains three
dynamic memory areas from which blocks of memory can be allocated and
deallocated. Nonpaged pool contains those system-wide structures that
might be manipulated by (hardware or software) interrupt service
routines or process-based code executing above IPL 2. Paged ©pool
contains system-wide structures that do not have to be kept memory
resident. The process allocation region, a portion of the process Pl
space, is wused for pageable data structures that will not be shared
among several processes. Dynamic memory allocation and deallocation
are discussed in detail in Chapter 25.

1.4.2.3 Logical Names - The system uses logical names for many
purposes, including a transparent way of implementing a
device-independent I/0 system. The use of logical names as a
programming tool is discussed in the VAX/VMS System Services Reference
Manual. The internal operations of the logical name system services,
as well as the internal organization of the logical name tables, are
described in Chapter 26.

1.5 LAYOUT OF VIRTUAL ADDRESS SPACE

This section shows the approximate contents of the three different
parts of virtual address space.

1.5.1 System Virtual Address Space

The layout of system virtual address space system virtual address
space layout 1is pictured in Figure 1-6. Details such as No-Access
guard pages at either end of the interrupt stack are omitted to avoid
cluttering the diagram. Table E-2 in Appendix E lists a more complete
layout of system space, including these guard pages, system pages
allocated by disk drivers, and other details.

This figure was produced from two lists provided by the system dump
analyzer (the system page table and the contents of all global data
areas in system space) and from the system map SYSSSYSTEM:SYS.MAP.
The relations between the variable size pieces of system space and
their associated SYSBOOT parameters are given in Appendix E.
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Figure 1-6 Layout of System Virtual Address Space

1.5.2 The Control Region (Pl Space)

Figure 1-7 shows the layout of Pl space. This figure was produced
mainly from information contained in module SHELL, which contains a
prototype of a Pl page table that 1is wused whenever a process is
created. An SDA listing of process page tables was used to determine
the order and size of the portions of Pl space not defined in SHELL.
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Some of the pieces of Pl space are created dynamically when the
process is created. These include a Pl map of process header pages, a
command language interpreter if one is being used, and a symbol table
for that CLI.

The two pieces of Pl space at the lowest virtual addresses (the user
stack and the image I/O segment) are created dynamically each time an
image executes and are deleted as part of image rundown. Appendix E
contains a description of the sizes of the different pieces of Pl
space. Table E-4 in Appendix E shows a complete layout of Pl space,
including details such as memory management page protection and the
name of the system component that maps a given portion.

1.5.3 The Program Region (PO Space)

Figure 1-8 shows a typical layout of PO space for both a native mode
image (produced by the VAX-11l Linker) and a compatibility mode image
(produced by the RSX-11M task builder). This figure 1is much more
conceptual than the previous two illustrations because P0 space does
not contain pieces of the executive like Pl space and system space do.

The figure does show the default order of PO space in the absence of
explicit instructions to the linker. The order in which virtual space
is allocated is also shown.

By default, the first page of PO space (0 to 1FF) is not
mapped (protection set to No Access). This enables easy
detection of two common programming errors, using zero or a
small number as the address of a data location or using such
a small number as the destination of a control transfer.

(A link time request or a system service call can alter the
protection of virtual page zero. Note also that page zero is
accessible to compatibility mode images.)

(1) Any previously linked shared image that 1is not position
independent (PIC) is placed at its previously specified base
address.

(2) Parts of the user image that are not PIC are added next,
beginning at address 200 (hex).

(3) 1If there is any room between the two pieces already placed in
PO space, this room is filled first with previously linked
PIC code and data

(4) .«+. and then with PIC code and data that are part of the
user image.

(5) 1If the Run-Time Library (PIC and shared) is required and not
overridden (with a /NOSYSSHR qualifier to the LINK command),
this becomes the last piece of the image.

(6) If the debugger or the traceback facility is required, these
images are added at execution time (even if /DEBUG was
selected at link time) by procedure SYS$IMGSTA. This mapping
is described in detail in Chapter 18.
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PART II

CONTROL MECHANISMS

"Would you tell me, please, which way I ought
to go from here?"

"That depends a good deal on where you want
to get to," said the Cat.

Alice's Adventures in Wonderland
Lewis Carroll




CHAPTER 2

CONDITION HANDLING

One of the design goals of the VAX architecture was a generalized
uniform condition handling facility for both hardware detected
exceptions and software generated conditions. 1In addition to making
this facility available to users, VAX/VMS uses many of the features of
the condition handling facility for its own purposes.

2.1 OVERVIEW OF THE CONDITION HANDLING FACILITY

The generalized condition handling facility that is included as part
of the VAX architecture provides users and the system with a powerful
tool in handling exceptional conditions that arise during normal
program execution. In addition, software detected conditions (not
necessarily indicating an error) can be passed to VMS to allow them to
be handled in exactly the same manner as hardware detected exceptions.

The options that are available to user programs to allow them to use
the features of the VAX-11 condition handling facility are described
in the VAX/VMS System Services Reference Manual and the VAX-1l1
Run-Time Library Reference Manual. This chapter discusses how the
tools described in those two manuals actually implement their
features.

2.1.1 Goals of VAX-1ll1l Condition Handling Facility

Some of the goals of the VAX-11 condition handling facility reflect
goals of the VAX-11 procedure calling standard. Other goals reflect
the desire to place an easy-to-use general purpose mechanism into the
operating system so that application programs and other layered
products such as compilers can use this mechanism rather than
inventing their own application-specific tools. Some of the explicit
and implicit goals of the VAX-11 condition handling facility are the
following.

1. The condition handling facility should be included in the
base machine architecture so that it is available as a part
of the base machine and not as part of some software
component. The space reserved for condition handler
addresses in the first 1longword of the call frame
accomplishes this.
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2. By including the handler specification as a part of the call
frame, signal handling 1is an integral part of a procedure,
rather than a global facility within a process. This
contributes to the general goal of modular procedures. This
also allows condition handlers to be nested, where inner
handlers can either service a detected exception or pass it
along to some outer handler in the calling hierarchy.

3. Some languages such as BASIC and PL/I have signalling and
error handling as part of the language specification. These
languages can use the general mechanism rather than inventing
their own procedures.

4. There should be little or no cost to procedures that do not
establish handlers. Further, procedures that do establish
handlers should incur little overhead for establishing themn,
with the expense 1in time being incurred when an error
actually occurs.

5. As far as the user or application programmer is concerned,
there should be no difference in the appearance of exceptions
initially detected by the hardware and signals generated by
software.

2.1.2 Features of VAX-11l Condition Handling Facility

Some of the features of the VAX-11l condition handling facility show
how these goals were attained. Others reflect the general desire to
produce an easy-to-use but general condition handling mechanism.
Features of the VAX-11 condition handling facility include the
following.

1. A condition handler has three options available to it. The
handler <can fix the condition (continuing). The handler may
not be capable of fixing the condition so it passes the
condition on to the next handler in the calling hierarchy
(resignalling). The handler can alter the flow of control
(unwinding the call stack).

2. Because condition handlers are themselves procedures, they
have their own call frame with its own slot for a condition
handler address. This gives handlers the ability to
establish their own handlers to field errors that they might
cause.

3. The goals related to cost in space and time were realized by
using only a single 1longword per procedure activation for
handler address storage. There 1is no cost in time for
procedures that do not establish handlers. Procedures that
do establish handlers can do so with a single MOVAx
instruction. No time is spent looking for condition handlers
until a signal is actually generated.

4. The mechanism is designed to work even if a condition handler
is written in a 1language that does not produce reentrant
code. Thus, if a condition handler written in FORTRAN
generated an error, that error would not be reported to the
same handler.
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In fact, the special actions that are taken in response to
multiply active signals has a second benefit, namely that no
condition handler has to worry about errors that it
generates, because a handler would never be called in
response to its own signals.

5. Uniform exception dispatching for hardware and software
exceptions is accomplished by providing parallel mechanisms
for the two forms of exceptions. Software detected
exceptions are generated by calling a procedure 1in the
Run-Time Library. Hardware exceptions transfer control to an
exception dispatcher in the executive. While the initial
execution of these two mechanisms differs slightly to reflect
their differing initial conditions, they eventually execute
nearly identical instruction sequences so that the
information reported to condition handlers is independent of
the initial detection mechanism.

6. By making condition handling a part of a procedure, high
level 1languages have the capability to establish handlers
that can examine a given signal and determine whether the
signal was generated as a part of that language's support
library. If so, the handler can attempt to fix the error in
the manner defined by the language. If not, the handler
passes the signal along to procedures further up the call
stack.

2.2 GENERATION OF EXCEPTIONS

One way of classifying the conditions that occur in a running VAX/VMS
system 1is to separate those conditions that originate in the VAX-11
hardware from those that are initiated by software. The primary
differences between the two sets of initial conditions are the initial
state of the stack that contains the exception parameters and the
location of the routine that performs the dispatching. The initial
execution of the two dispatchers reflects these differing initial
conditions.

2.2.1 Exceptions That Originate in the Hardware

When an exception is detected by the hardware, the exception PC and
PSL (and possible exception-specific parameters) are pushed onto the
appropriate stack. The appropriate stack is determined by the access
mode in which the exception occurred and whether the CPU was
previously executing on the interrupt stack.

e If the exception occurred in any mode other than kernel and
the exception was not a CHMU, CHMS, or CHME exception, the
kernel stack is used. (The interrupt stack 1is not a
consideration in this case because it is impossible to be on
the interrupt stack in other than kernel mode.)

e If the exception occurred in kernel mode and the kernel stack
was in use, the kernel stack is also used as the exception
stack.
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e If the exception occurred in kernel mode and the interrupt
stack was in use, the interrupt stack is used as the
exception stack. VMS does not expect exceptions to occur
when it is operating on the interrupt stack. If an exception
should occur on the interrupt stack, the exception dispatcher
generates a VMS-requested system crash called a bugcheck
(Chapter 7) with a BUGS$_INVEXCEPTN code.

The actual stack (interrupt or Kkernel) that is wused to service an
exception or interrupt is determined by the low-order two bits in the
SCB entry and whether the interrupt stack 1is already in use. The
rules Jjust formulated reflect the behavior of VMS, where exceptions
are associated with a process and serviced on that process's kernel
stack (because the low-order two bits in the SCB entry are zero). The
interrupt stack is only used if it was already in use when the
exception occurred. Note that two serious aborts (machine check and
kernel stack not valid), exceptions that also change IPL to 31, are
serviced on the interrupt stack by VMS.

After all of the exception information has been pushed onto the stack,
control 1is then passed to an exception-specific service routine whose
address is stored in the System Control Block (Figure 2-1). The use
of the first twenty locations of this table are listed in Table 2-1.
Most of the exceptions that are listed in this table are handled in a
uniform way by VMS. The actions that VMS takes in response to these
exceptions will be the subject of most of this chapter. Some of the
exceptions, however, result in special action on the part of VMS.
These exceptions are discussed in the paragraphs that follow and are
indicated in Table 2-1 by an asterisk.

PRS_SCBB
e o

The System Control Block
Base Register (SCBB)
Processor Faults (12) contains the physical
address of the page
aligned System Control
Software Interrupts (16) Block (SCB)

Exceptions (20)

Clock and Console (16)

External Adapter
Interrupts ——) :: EXE$GL_SCB

The system virtual address
of the SCB is stored
in global location EXE$GL_SCB

The VAX-11/750 system control block is
two pages long. The second page is
used for directly vectored UNIBUS de-
vice interrupts.

System Control Block The VAX-11/780 system control block is
one page long.

Figure 2-1 System Control Block



Table 2-1

Use of First 20 Locations in System Control Block

Byte Offset Exception Name Extra Type (Abort, | Notes on VMS Comments
from SCB Base Parameters Fault,Trap) | Dispatching
0 Unused
4 Machine Check Note 1 Note 1 Note 1 (Chapter 7)
8 Kernel Stack not Valid 0 Abort Note 2 IPL=31, Interrupt Stack
12 Powerfail 0 Interrupt Note 3 IPL=30

(Chapter 23)

16 Reserved/Privileged Instruction 0 Fault

20 Customer Reserved Instruction 0 Fault XFC Instruction
24 Reserved Operand 0 Abort/Fault

28 Reserved Addressing Mode 0 Fault

32 Access Violation 2 Fault

36 Translation not Vvalid 2 Fault Note 4 (Chapter 12)

(1) The machine check exception indicates a processor detected internal error. Machine checks in executive
and kernel mode cause bugchecks. Machine checks in supervisor and user mode are reported through the
normal exception dispatch method.

(2) The exception service routine for the kernel stack not valid abort issues a bugcheck.

(3) Powerfail causes an interrupt that passes control to the powerfail handler.

(4) The translation-not-valid fault is the entry path into the paging facility in VMS.

(5) If executive debugging (XDELTA) is selected at SYSBOOT time, the exception vectors for BPT and trace
pending are altered to point into XDELTA fault handlers (Chapter 22).

(6) The change-mode-to-kernel and change-mode-to-executive traps are the entry paths into system service and
RMS procedures.

(continued on next page)
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Table 2-1 (cont.)

Use of First 20 Locations in System Control Block

Byte Offset Exception Name Extra Type (Abort, | Notes on VMS Comments
from SCB Base Parameters Fault,Trap) | Dispatching
40 Trace Pending 0 Fault Note 5
44 BPT Instruction 0 Fault Note 5
48 Compatibility Mode 1 Abort/Fault
52 Arithmetic 1 Fault/Trap VMS modifies code
(Table 2-3)
56 Unused
60 Unused
64 CHMK 1 Trap Note 6 Uses Kernel Stack
(Chapter 3)
68 CHME 1 Trap Note 6 Uses Executive Stack
(Chapter 3)
72 CHMS 1 Trap Uses Supervisor Stack
76 CHMU 1 Trap Uses User Stack

ONITANVH NOILIANOD
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2.2.1.1 Exceptions That VMS Treats in a Special Way - Although VMS
provides uniform handling of most exceptions generated by users,
several possible exceptions are used as entry points into privileged
system procedures. Other exceptions can only be acted upon by the
executive. It makes no sense to pass information about these
exceptions along to users.

1. The machine check exception is a processor-specific condition
that may or may not be recoverable. The machine check
exception service routine is discussed in Chapter 7.

2. A kernel-stack-not-valid exception indicates that the kernel
stack was not valid while the processor was pushing
information onto the stack during the initiation of an
exception or interrupt. The exception service routine for
this exception generates a fatal bugcheck with a
BUGS_KRNLSTAKNV code.

3. The powerfail entry point that appears as one of the first 20
entries in the SCB 1is not an exception. Because a power
fluctuation occurs asynchronously with respect to the
currently executing instruction stream, it is actually an
interrupt. The fact that powerfail is an interrupt, with an
associated 1IPL, implies that the powerfail interrupt can be
blocked simply by raising IPL to 30 or 31. The steps that
VMS takes in response to power failure as well as on power
recovery are described in Chapter 23.

4., The translation-not-valid exception 1is a signal that a
reference was made to a virtual address that is not currently
mapped to physical memory. The page fault handler that is
invoked 1in response to this exception is discussed in detail
in Chapter 12.

5. The change-mode-to-kernel and change-mode-to-executive
exceptions are the mechanisms used by the VMS system services
and by RMS to reach a more privileged access mode. The
dispatching scheme for system services and RMS calls is
described in Chapter 3.

The last two exceptions in the list (the two change mode exceptions)
are paths into the operating system that allow nonprivileged users to
reach a privileged access mode in a controlled fashion.

2.2.1.2 Other Hardware Exceptions - The rest of the exceptions
detected by hardware are handled uniformly by their exception service
routines. These exceptions are all reported to <condition handlers
established by the user or by the system, rather than resulting in
special system action such as occurs following a change-mode-to-kernel
exception or a translation-not-valid fault (page fault).

When a hardware-detected exception occurs, the PSL and PC at the time
of the exception are pushed onto the stack. The usual stack that is
used is the kernel stack but the CHMx exceptions use the stack of the
destination mode. For example, a CHMS exception pushes the PC and PSL
of the exception onto the supervisor stack. Note that a CHMx
instruction issued from an inner access mode in an attempt to reach a
less privileged (outer) access mode will not have the desired effect.
The mode indicated by the instruction is minimized with the current
access mode to determine the actual access mode that will be used.
For example, a CHMS instruction issued from kernel mode will generate

2-7
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an exception through the correct SCB vector (the one for CHMS) but the
final access mode will still be kernel. In other words, as
illustrated in Figure 1-4, the CHMx instructions can only reach equal
or more privileged access modes.

The PC that is pushed depends on the nature of the exception, that is,
whether the exception is a fault, a trap, or an abort.

e Exceptions that are faults (Table 2-1) cause the PC of the
faulting instruction to be pushed. When faults are dismissed
with an REI instruction, the faulting instruction will
execute again.

® Exceptions that are traps (Table 2-1) push the PC of the next
instruction onto the destination stack. 1Instructions that
cause traps do not reexecute when the exception is dismissed
with an REI instruction.

e A third class of exception, an abort, causes a PC 1in the
middle of the instruction to be pushed onto the stack. This
implies that aborts are not restartable. Some aborts also
raise IPL to 31, blocking all other activity on the system.
IPL is usually not affected when exceptions occur, one of the
features that distinguishes them from interrupts. Exceptions
that are aborts include kernel stack not valid, some machine
check codes, and some reserved operand exceptions.

For all exceptions that will eventually be reported to condition
handlers, the hardware has pushed a PC/PSL pair onto the destination
stack. 1In addition, from zero to two exception-specific parameters
are pushed onto the destination stack (Table 2-1). Finally, the
hardware passes control to the exception service routine whose address
VMS placed into the SCB when the system was initialized.

2.2.1.3 1Initial Action of Exception Service Routines - These
exception service routines all perform approximately the same action.
The exception name (of the form SS$ exception-name) and the total
number of exception parameters (from the exception name to the saved
PSL inclusive) are pushed onto the stack so that the destination stack
now contains a list, called the signal array, that resembles a VAX-11
argument list used by the CALLx instructions (Figure 2-2). The
exceptions that VMS handles in this uniform way, including their names
and total number of signal array elements, are listed in Table 2-2.

After VMS has built this array, control 1is passed to a general
exception dispatcher that must locate any condition handlers that have
been established in the access mode of the exception. The search
method and the 1list of information passed to condition handlers is
described in Section 2.3 below.

All hardware exceptions (except for CHME, CHMS, and CHMU) are
initially reported on the kernel stack (assuming the processor is not
already on the interrupt stack). In addition, the hardware exception
reporting mechanism assumes that the kernel stack is valid. The
decision to use the kernel stack was made to avoid the case of
attempting to report an exception on, let us say, the user stack, only
to find that the user stack is corrupted in some way (invalid or
otherwise inaccessible), resulting in another exception. If a
kernel-stack-not-valid exception 1is generated while reporting an
exception, VMS causes a fatal bugcheck to occur.

2-8
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R
\ Pushed N is the number of longwords from
by software SS$__exception-name to the exception
S$S$__exception-name J PSL. It ranges from 3 to 5.
\
L From 0 to 2
: — exception-specific p~ LF.
parameters (Table 2-1)
3 Pushed Arguments are pushed onto the kernel
Exception PC by hardware stack e_xcept for CHMS and C_HMU
exceptions where the sypervisor or
user stack is used.
Exception PSL
P

Figure 2-2 Signal Array Built by Hardware and Exception Routines

However, the exception must eventually be reported back to the access
mode in which the exception occurred. Before the dispatcher begins
its search, it creates space on the stack of the mode in which the
exception occurred. The exception parameter lists are then copied to
that stack where they will become the argument list that is passed to
condition handlers.

2.2.1.4 More Special Cases in Exception Dispatching - Although the
procedure described above 1is a reasonable approximation to the
operation of the exception service routines in VMS, there are detailed
differences that occur in the dispatching of several exceptions that
deserve special mention. These special cases are listed here.

1. User Stack Overflow is detected by the hardware as an access
violation at the 1low address end of Pl space. The access

violation fault handler tests whether the inaccessible
virtual address is at the low end of Pl space. If it is, the
stack is expanded and the exception dismissed. User and

system condition handlers would only be notified about such
an exception if the stack expansion were unsuccessful.

2. There are ten possible arithmetic exceptions that can occur.
They are distinguished in the hardware by different exception
parameters. However, the exception service routine does not
simply push a generic exception name onto the stack,
resulting in a four parameter signal array. Rather, the
exception parameter is used by the exception service routine
to fashion a unique exception name for each of the possible
arithmetic exceptions. The exception parameters and their
associated signal names are listed in Table 2-3.
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Table 2-2

Exceptions That Use the Dispatcher in Module EXCEPTION

Exception Name Name in Notes on VMS Size of Extra Parameters
Signal Array Dispatching Signal Array in Signal Array
(Section 2.2.1.4) (Note 1)
Access Violation S§S$_ACCVIO Item 1 5 Signal (2) Reason Mask
Signal (3) Inaccessible Virtual Address
Arithmetic Exception (Table 2-3) Item 2 3 Note 2
AST Delivery Stack Fault SS$ ASTFLT Item 3a. 7 Signal (2) = SP Value at Fault
(Software exception) - Signal (3) = AST Parameter of failed AST

(Note 3)
Signal (4) = PC at AST delivery interrupt
Signal (5) = PSL at AST delivery interrupt

Signal (6) PC to which AST would have
been delivered
Signal (7) = PSL at which AST would have

been delivered

(1)

(2)

(3)

Additional Parameters in the signal array are represented in the following way.

Signal (0) = N Number of additional longwords in signal array

Signal (1) Exception name

Signal (2) First additional parameter
Signal (3) Second additional parameter
Signal (N-1) Exception PC

Signal (N) Exception PSL

The arithmetic exception has no extra parameters, despite the fact that the hardware pushes an exception code
onto the kernel stack. VMS modifies this hardware code into an exception-specific exception name (Table 2-3).

Signal (1) = 8 * code + SS$_ARTRES

The AST delivery code exchanges the interrupt PC/PSL pair and the PC/PSL to which the AST would have been
delivered.

(continued on next page)
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Table 2-2

(cont.)

Exceptions That Use the Dispatcher in Module EXCEPTION

Exception Name

Name in
Signal Array

Notes on VMS
Dispatching

Size of
Signal Array

Extra Parameters
in Signal Array

(Section 2.2.1.4) (Note 1)
BPT Instruction S§5$_BREAK 3
Change Mode to Supervisor SS$_CMODSUPR Item 4 4 Signal (2) = Change mode code
Change Mode to User S§S$_CMODUSER Item 4 4 Signal (2) = Change mode code
Compatibility Mode SS$_COMPAT Item 4 4 Signal (2) = Compatibility exception code
Debug Signal S§s$_DEBUG Item 3 3
(Software exception)
Machine Check S§S$_MCHECK 3 Note 4
Customer Reserved Instruction Ss$_OPCCUS 3
Reserved/Privileged Instruction | S§$_OPCDEC Item 5 3
Page Fault Read Error SS$_PAGRDERR Item 3b. 5 Signal (2) = Reason Mask
(Software exception) Signal (3) = Inaccessible Virtual Address
Reserved Addressing Mode SS$_RADRMOD 3
Reserved Operand SS$_ROPRAND 3
System Service Failure 5S§_SSFAIL Item 3c. 4 Signal (2) = System service final status
(Software exception)
Trace Pending §S8$_TBIT 3

(4) Machine check exceptions that are reported to a process do not have any extra parameters in the
check parameters have been examined, written to the error log, and discarded by the machine check

The machine
handler (Chapter 7).

signal array.
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There are three exceptions that are listed in Table 2-2 that
are detected by software rather than by hardware. However,
these conditions are not generated by LIBSSIGNAL. Rather,

they are detected by the executive and control is passed to
the same routines that are used for dispatching
hardware-detected exceptions. The reason why they dispatch
through the executive is that they are typically detected in
kernel mode but must be reported back to some other access
mode. The code to accomplish this access mode switch |is
contained 1in EXCEPTION. LIBSSIGNAL has no corresponding
functionality. The three exceptions that fall into this
category are system service failure exceptions, page fault
read errors, and insufficient stack space while attempting to
deliver an AST.

Table 2-3

Signal Names for Arithmetic Exceptions

Exception Type Code Pushed | Resulting Exception Notes
By Hardware Reported by VMS

Traps
Integer Overflow 1 SS$_INTOVF Note 1
Integer Divide by Zero 2 SSs$_INTDIV
Floating Overflow 3 S5$_FLTOVF Note 3
Floating/Decimal 4 SS$_FLTDIV Note 3

Divide by Zero

Floating Underflow 5 $S$_FLTUND Notes 2,3
Decimal Overflow 6 S8$_DECOVF Note 1
Subscript Range 7 SS$_SUBRNG

Faults
Floating Overflow 8 SS$_FLTOVF_F Note 3
Floating Divide by Zero 9 SS$ FLTDIV_F Note 3
Floating Underflow 10 SS$_FLTUND F Note 3

(1)

(2)

(3)

Integer overflow enable and decimal overflow enable bits in
the PSW can be altered either directly or through the
procedure entry mask.

The floating underflow enable bit in the PSW can only be
altered directly. There is no corresponding bit in the
procedure entry mask.

On the VAX-11/750, these three floating point exceptions are
faults. On the VAX-11/780, they are traps.



CONDITION HANDLING

e The SS$_SSFAIL exception is reported when a process has
enabled system service failure exceptions and a system
service returns unsuccessfully with a status of either
STS$K_ERROR or STS$K SEVERE.

e The SS$_PAGRDERR exception is reported when a process
incurs a page fault for a page on which a read error
occurred in response to a previous page fault.

e The SS$ ASTFLT exception is reported when an inaccessible
stack is detected while attempting to deliver an AST to a
process.

A fourth software detected exception is listed in Table 2-2
although it does not have a global entry point in module
EXCEPTION. The signal SS$ DEBUG is generated by either the
DCL or MCR command 1language interpreter in response to a
DEBUG command while an image exists in an interrupted state.
The DEBUG command processor pushes the PC and PSL of the
interrupted image, the exception name (SS$_DEBUG), and the
size of the signal array (3) onto the supervisor stack and
jumps to EXESREFLECT, a global entry address in module
EXCEPTION.

The reason that a CLI uses this mechanism for the DEBUG
signal rather than simply calling LIBSSIGNAL is that the
DEBUG command is issued while in supervisor mode but the
exception has to be reported back to user mode. This
involves moving the exception parameters from one stack to
another, functionality that does not exist in LIB$SIGNAL but
does exist in EXCEPTION because most hardware-detected
exceptions are reported on the kernel stack.

The exception dispatching for the CHMS and CHMU exceptions
and for compatibility mode exceptions can be short circuited
by use of the Declare Change Mode or Compatibility Mode
Handler system service.

When this system service is executed, one of three 1longword
locations 1in the Pl pointer page (Appendix B) is loaded with
the address of the handler passed as a parameter to the
system service.

When the dispatcher for the change-mode-to-supervisor or
change-mode-to-user exception finds nonzero contents in the
associated longword in Pl space, it transfers control to the
routine whose address 1is stored in that location with the
exception stack (supervisor or wuser) 1in exactly the same
state it was in following the exception. That is, the change
mode code is on the top of the stack, and the exception PC
and exception PSL occupy the next two longwords.

The dispatcher for compatibility mode exceptions transfers
control to the user-declared compatibility mode handler (if
one was declared) with the user stack in the same state it
was before the compatibility mode exception occurred. That
is, no parameters are passed to the compatibility mode
handler on the user stack. The compatibility mode code, the
exception PC and PSL, and the contents of RO through R6 are
saved in the first ten longwords of the compatibility mode
context page in Pl space at global 1location CTL$SAL CMCNTX
(Appendix B).
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5. The Reserved Instruction fault 1is generated whenever an
unrecognized opcode 1is detected by the instruction decoder.
The same exception is generated when a privileged instruction
is executed from other than kernel mode.

VMS uses this fault as a path into the operating system crash
code called the bugcheck mechanism. Opcode FF, followed by
FE or FD, tells the reserved instruction exception service
routine that the exception is actually a bugcheck. Control
is passed to the bugcheck routine that 1is described in
Chapter 7.

2.2.2 Exceptions Detected by Software

One of the goals of the design of the VAX architecture was to have a

common condition handling facility for both hardware-~ and
software-detected conditions. The dispatching for conditions that are
initially detected by the hardware (and for four special

software-detected exceptions) is performed by the routines in the
executive module EXCEPTION. The Run-Time Library procedure called
LIB$SIGNAL provides a similar capability to any user of a VAX/VMS
system.

2.2.2.1 Passing Status from a Procedure - There are usually two
methods available for a procedure to indicate to its caller whether it
completed successfully. One method is to indicate a return status in
RO. The other is the signalling mechanism. The signalling mechanism
involves a call to the VAX-11 Run-Time Library procedure LIB$SIGNAL to
initiate a sequence of events exactly 1like those that occur in
response to a hardware-detected exception. One of the choices that
must be made when designing a modular procedure is the method for
reporting exceptional conditions back to the caller.

There are two reasons why signalling may be chosen over completion
status. In some procedures such as the mathematics procedures in the
Run-Time Library, RO is already used for another purpose, namely the
return of a function value, and is therefore unavailable for error
return status. In this case, the procedure must use the signalling
mechanism to indicate exceptional conditions, such as an attempt to
take the square root of a negative number.

The second common use of signalling occurs in an application that |is
using an indeterminate number of procedure calls to perform some
action, such as a recursive procedure that parses a command line,
where the use of a return status is often cumbersome and difficult to
code. 1In this case, the VAX-1ll signalling mechanism provides a
graceful way to not only indicate that an error has occurred but also
return control (through SYSSUNWIND) to a known alternate return point
in the calling hierarchy.

2.2.2.2 1Initial Operation of LIB$SIGNAL - When the procedure that
detects an error wishes to signal it, the procedure calls LIBS$SSIGNAL
with the name of the exception and whatever additional parameters it
wishes to pass to the condition handlers that have been established by
the user and by the system. The state of the stack following a call
to LIBS$SIGNAL is pictured in Figure 2-3.
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Before LIBSSIGNAL begins its search for condition handlers, it removes
the call frame (and possibly the argument list) from the stack. This
causes the stack to appear almost exactly the same to LIB$SIGNAL as it
does to EXCEPTION following a hardware exception (Figure 2-3).

This procedure uses an identical search mechanism to the one wused by
EXCEPTION to locate condition handlers. The only difference between
this procedure and the code contained in the executive 1is that no
stack switch 1is required here. The search for condition handlers
takes place on the stack of the caller of LIB$SIGNAL.

2.3 UNIFORM EXCEPTION DISPATCHING

At this point, the differences between hardware and software
exceptions are no longer Iimportant. The operation of exception
dispatching will be discussed in general terms and explicit mention of
EXCEPTION or LIBSSIGNAL will only be made where they depart from each
other in their operation.

Before the search for a condition handler begins, the exception
dispatcher must build a second data structure on the stack that will
be used to report the exception. The address of this structure,
called the mechanism array, along with the address of the table
containing the exception arguments will be the two arguments that are
passed to any condition handlers that are called by the dispatcher
(Figure 2-4).

2.3.1 Establishing a Condition Handler

VMS provides two different methods for establishing condition
handlers.

e One method uses the call stack associated with each access
mode. Each call frame includes a longword to contain the
address of a condition handler associated with that frame.

e The second method uses software exception vectors, set aside
in the control region (Pl space) for each of the four access
modes. Vectored handlers do not possess the modular
properties associated with call frame handlers and are
intended primarily for debuggers and performance monitors.

Call frame handlers are established by placing the address of the
handler in the first 1longword of the currently active call frame.
This is accomplished in assembly language with a single instruction
MOVAB new-handler, (FP)
Because the frame pointer is generally not available to high level
language programmers, the Run-Time Library procedure LIBSESTABLISH can
be called in the following way
old-handler = LIBS$SESTABLISH (new-handler)

to accomplish the same result.
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Exception PSL

Condition handlers are removed by clearing the first longword of the
current call frame. The instruction

CLRL (FP)

accomplishes +this in assembly 1language. The Run-Time Library
counterpart to LIBSESTABLISH is LIBSREVERT.

Exception vector handlers are established and removed with the Set
Exception Vector system service, which simply loads the address of the
specified handler into the specified exception vector, located in the
pointer page in Pl space.
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2.3.2 The Search for a Condition Handler

At this point in the dispatch sequence, the signal and mechanism
arrays have been set up on the stack of the access mode that the
exception will be reported to. The establisher frame argument in the
mechanism array (Figure 2-4) will be used by the search procedure to
indicate how far along the search has gone. The depth argument in the
mechanism array not only serves as useful information to condition
handlers that wish to unwind but also allows the search procedure to
distinguish call frame handlers (nonnegative depth) from exception
vector handlers (negative depth).

2.3.2.1 Primary and Secondary Exception Vectors - The search for a
condition handler begins with the primary exception vector of the
access mode in which the exception occurred. If the vector contains
the address of a condition handler (any nonzero contents), the handler
is called with a depth argument of -2 (third longword in mechanism
array, Figure 2-4). 1If that handler resignals or if none exists, the
same step is performed for the secondary exception vector, where the
depth argument is now -1.

2.3.2.2 Call Frame Condition Handlers - If the search is to continue
(no handler yet passed back a status of SS$ CONTINUE), the contents of
the current call frame are examined next. TIf the first longword in
the current call frame is nonzero, that handler is called next. If no
handler is found there or if that handler resignals, the previous call
frame is examined by using the saved frame pointer in the current call
frame (Figure 2-5).

The search continues until some handler passes back a status code of
SS$ CONTINUE or until a saved frame pointer of zero 1is found
(indicating the end of the call frame chain). When the exception
dispatcher receives a return status of SS$ CONTINUE (any code with the
low bit of RO set will do), the stack is cleaned off, RO and Rl are
restored from the mechanism array, and the exception is dismissed by
issuing an REI, using the saved PC and PSL that form the last two
elements of the signal array.

Note that LIBSSIGNAL passes control back to its caller with an REI
because it discarded the <call frame that was set up when it was
called. That is, LIB$SIGNAL modifies its stack to look just like the
stack used by EXCEPTION (Figure 2-3).

2.3.2.3 Last Chance Condition Handler - In the event that all
handlers resignal, the search terminates when a saved frame pointer of
zero is located. The exception dispatcher then calls the handler
whose address 1is stored 1in the last chance exception vector with a
depth argument of -3, (This handler is also called in the event that
any errors occur while searching the stack for the existence of
condition handlers.) The usual handler found in the last chance vector
is the so-called catch all condition handler established as part of
image initiation. The action of this system-supplied handler is
described at the end of this chapter.
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If the last chance handler returns to the dispatcher (its status is
ignored) or if the 1last chance vector is empty, the exception
dispatcher indicates that no handler was found. This notification is
performed by a procedure called EXESEXCMSG (Chapter 27) in the
executive. Its two input parameters are an ASCIZ string containing
message text, and the argument list that was passed to any condition
handlers. Following the call to EXE$SEXCMSG (Chapter 27), the image is
terminated with a status indicating either that no handler was found
or that a bad stack was detected while searching for a condition
handler.

2.3.3 Multiply Active Signals

If an exception occurs in a condition handler or 1in some procedure
called by a condition handler, a situation called multiply active
signals is reached. 1In order to avoid an infinite loop of exceptions,
the procedure that searches for condition handlers modifies its search
algorithm so that those frames searched while servicing the first
condition are skipped while servicing the second condition.

In order for this skipping to work correctly, the hardware exception
dispatcher (module EXCEPTION) and the software exception dispatcher
must each know when the other is currently servicing an exception.
This 1is accomplished by requiring both dispatchers to call condition
handlers through a common call site located in the system service
vector area.

2.3.3.1 Common Call Site for Condition Handlers - Before the dispatch
to the handler occurs, the stack is set up to contain the signal and
mechanism arrays and the handler argument 1list (Figure 2-4),. The
handler address is loaded into Rl by the handler search procedure and
control is passed to the common dispatch site with the instruction

JSB @#SYSSCALL HANDL

The code located at SYSSCALL HANDL simply calls the procedure whose
address is stored in Rl and returns to its caller with an RSB.

SYSSCALL_HANDL: :
CALLG  4(SP), (R1)
RSB

The call instruction leaves the return address SYSSCALL HANDL + 4, the
address of the RSB instruction, in its call frame. Thus, the unique
identifying characteristic of a condition handler 1is the address
SYSSCALL HANDL + 4 in the saved PC of its call frame. This signature
is not only used by the search procedure but also by the Unwind system
service, as described below.
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Example of Multiply Active Signals - The modified search
can best be illustrated through an example. Figure 2-5

shows the stack after procedure C, called from B called from A, has

generated

signal S. We are assuming that the primary and secondary

condition handlers (if they exist) resignalled. Condition handler CH
also resignalled.

(1)
(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

Procedure A calls procedure B who calls procedure C.
Procedure C generates signal S.

The search procedure modifies the depth argument and
establisher frame argument.

If we assume that handler CH resignals, then the depth
argument is 1 when BH is called.

The call frame for handler BH is located (at lower virtual
addresses) on top of the signal and mechanism arrays for
signal S (Figure 2-6). (The only intervening items are the
saved registers and stack alignment bytes indicated by the
register save mask in the upper byte of the second longword
of the call frame for handler BH.) The saved frame pointer in
the call frame for BH points to the frame for procedure C.

Handler BH now calls procedure X who «calls procedure Y
(Figure 2-6).

Procedure Y generates signal T. The desired sequence of
frames to be examined is: frame Y, frame X, frame BH, and
then frame A. Frames B and C should be skipped because they
were examined while servicing condition S.

The search procedure proceeds in 1its normal fashion. The
primary and secondary vectors are examined first (no skipping
here). Then frames Y, X, and BH are examined, resulting in
handlers YH, XH, and BHH being called in turn. Let us assume
that all these handlers resignal. After handler BHH returns
to the dispatcher with a code of SS$ RESIGNAL, the search
procedure notes that this 1is the frame of a condition
handler, because its saved PC is SYSSCALL HANDL + 4
(Figure 2-6). -

The skipping is accomplished by 1locating the frame that
established this handler. The address of 'that frame is
located in the mechanism array for signal S.

To locate the mechanism array for signal S, the value of SP
before the call to BH must be calculated, using the register
save mask and stack alignment bits in the call frame.

One extra longword, the return PC from the JSB to
SYS$CALL HANDL, must be skipped to locate the argument list
(and thus the mechanism array) for signal S.
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(10) Because the frame pointed to by the mechanism array element
has already been searched, the next frame examined by the
search procedure is the frame pointed to by the saved frame
pointer in the call frame of procedure B, which in this case
is the frame for procedure A. The depths that are passed to
handlers as a result of the modified search are 0 for YH, 1
for XH, 2 for BHH, and 3 for AH.

(11) The frame for the search procedure or for any of the handlers
YH, XH, BHH, and AH when they are called will be located on
top of the signal and mechanism arrays for signal T (at lower
virtual addresses). (One example is shown in Figure 2-8,
which illustrates the operation of the SUNWIND system
service.)

2.4 CONDITION HANDLER ACTION
Condition handlers have several options available to them.

e They can fix the exception and allow execution to continue at
the interrupted point in the program.

e They can pass the exception along to another handler by
resignalling.

e They can also allow execution to resume at any arbitrary
place in the calling hierarchy by unwinding a number of
frames from the call stack.

2.4.1 Continue or Resignal

A handler first determines the nature of the exception by examining
the signal name in the signal array (Figure 2-4). If the handler
determines that it is not capable of resolving the current exception
for whatever reason, it informs the exception dispatcher that the
search for a handler must go on. This is called resignalling and is
performed by passing a return status code of SS$_RESIGNAL back to the
dispatcher. (Recall that condition handlers are function procedures
that return a status to their caller in RO.)

On the other hand, if the condition handler is able to resolve the
exception (in some unspecified way), it indicates to the dispatcher
that the program that was interrupted when the exception occurred can
continue. This is done by passing the return status code of
SS$_CONTINUE back to the caller.

When the dispatcher detects this return status code, it removes the
argument 1list and mechanism array from the stack (Figure 2-4),
restoring RO and Rl in the process. It then removes all of the signal
array except the exception PC and PSL from the stack. Finally, these
are removed with the REI instruction that dismisses the exception and
passes control back to the program that was interrupted when the
exception occurred.

If the exception that occurred was a hardware fault (such as an access
violation), the instruction that caused the exception will be repeated
because the PC of that instruction was pushed onto the stack when the
exception occurred. If the exception was a hardware trap (such as
integer overflow), the next instruction in the instruction stream will

2-23
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be the first to execute. In the event that a condition handler
continues from an exception that was initiated through a call to
LIBSSIGNAL, the first instruction to execute will be the instruction
following the CALLX instruction.

2.4.2 Unwinding the Call Stack

Another powerful tool available to condition handlers allows them to
alter the flow of control when an exception occurs. This tool is
called unwinding and allows the condition handler to pass control back
to a previous level in the <calling hierarchy by throwing away a
specified (or default) number of call frames.

The Unwind Call Stack system service 1is called with two optional
arguments, the first of which indicates the number of frames to remove
from the call stack and the second of which gives an alternate return
PC to which control will be returned.

The Unwind system service does not actually remove frames from the
stack. Rather, 1t changes the return PC in the specified number of
frames to point to a special routine in the executive that will be
entered as each procedure exits with a RET instruction. The effect of
calling Unwind is pictured in Figure 2-7. If the alternate PC
argument has also been passed to Unwind, the return PC in the next
call frame is altered to the specified argument (Figure 2-7).

As each procedure issues a RET instruction, control is passed to the
executive routine that examines the current frame for the existence of
a condition handler. If such a handler exists, it is called with the
exception name SS$_UNWIND. When the condition handler returns to the
unwind routine, a RET is issued by the unwind routine on behalf of the
procedure to discard the current call frame. This sequence goes on
until the specified number of call frames have been discarded. This
technique of calling handlers as a part of the unwind sequence allows
handlers that previously resignalled an exception to regain control
and perform procedure-specific cleanup.

2.4.3 Example of Unwinding the Call Stack

An example of an unwind sequence is illustrated here with the help of
Figure 2-7. The situation begins with a sequence exactly like the one
pictured in Figure 2-5. Procedure A calls procedure B who calls
procedure C. Procedure C generates signal S. The primary and
secondary handlers (if they exist) simply resignal. Handlers CH and
BH, located next by the search procedure, also resignal.
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Finally, handler AH is called. AH decides to unwind the call stack
back to 1its establisher frame. (This is not the default case.) To
accomplish this, AH must call SYSSUNWIND with a depth argument equal
to the value contained in the mechanism array. In this example, the
depth argument is 2. After the call to SYSSUNWIND, which executes in
the access mode of its caller, but before the frame modification
occurs, the stack has the form pictured on the 1left hand side of
Figure 2-7. The operation of frame modification by the SUNWIND system
service now proceeds as follows.

(1) Unwind looks back down the call stack until it 1locates a
condition handler. Recall that a condition handler is
identified by a saved PC of SYSSCALL HANDL + 4. If handler
AH had called another procedure in this example, nothing
would have happened to that procedure's call frame. The
first call frame modified by Unwind is the frame of the first
handler that it encounters, which in this example is the
frame for AH.

(2) Unwind does not modify its own frame. When it issues a RET,
control is passed back to handler AH.

(3) The first frame that Unwind modifies 1is the frame of the
first condition handler that it encounters by tracing back
the call stack. It replaces the return address found there
with the address of a routine (STARTUNWIND) internal to
itself.

When handler AH issues its RET, control will not go back to
the exception dispatcher. Instead, the 1instructions
beginning at STARTUNWIND execute. Note that not returning to
the exception dispatcher means that control will never get
back to procedure C, because its return PC is stored 1in the
mechanism array and would be restored by the REI instruction
issued by the exception dispatcher.

(4) Unwind continues to modify the saved PC longwords in
successive frames on the call stack until the number of
frames specified (or implied) in the SYSSUNWIND argument list
have been modified. All frames except the first have their
saved PC replaced with address LOOPUNWIND, another 1label in
the internal unwind routine (Figure 2-7). It is this routine
that checks whether the current frame has a handler
established and, 1if so, calls that handler with the signal
name S5$_UNWIND  to allow the handler to perform
procedure-specific cleanup.

If a handler called in this way calls SYSSUNWIND (with the
signal array containing SS$ UNWIND as the signal name), an
error status of SS$ UNWINDING is returned, indicating that an
unwind is already in progress.

(5) If the alternate PC argument was also supplied to SYSSUNWIND,
the call frame into which this argument would be inserted is
the next frame beyond the last frame specified (or implied)
in the first SYSSUNWIND argument. In this case, if an
alternate PC argument were present, it would be placed 1into
the call frame for procedure A.
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Now that all the frames have been modified, the actual unwinding
occurs. The sequence of steps is approximately the following.

1. Unwind returns control to handler AH.

2. Handler AH does whatever else it needs to do to service the
condition. When it has completed its work, it returns to the
code beginning at 1label STARTUNWIND in module SYSUNWIND.
(Because none of the unwind routines check return status, it
does not matter what status is passed back by AH as it
returns.)

3. The routine beginning at STARTUNWIND first restores RO and Rl
from the mechanism array. It then performs the following
three steps.

a. If a handler is established for this frame, the handler
is called with the signal name SS$ UNWIND.

b. If either RO or Rl is specified 1in the register save
mask, the wunwind routine replaces the value of that
register in the register save area of the call frame with
the current contents of the register.

c. Control is returned to whatever address is specified in
the saved PC 1longword of the current call frame by
issuing a RET.

4. The RET issued in step 3c discards the <call frame for
procedure C, passing control to LOOPUNWIND where the three
steps 3a through 3c are again executed.

5. The RET that discards the call frame for procedure B passes
control back to the point in procedure A following the call
to procedure B (if we assume no alternate PC argument) where
execution will resume.

In effect, STARTUNWIND and LOOPUNWIND simulate returns from each
nested procedure that 1is being unwound. These procedures never
receive control again. However, the outermost procedure receives
control as if all of the nested procedures had returned normally.

2.4.4 Potential Infinite Loop

There 1is one possible pitfall that can happen with this
implementation. In the previous section, we pointed out that the
exception dispatcher takes care (when multiple signals are active) not
to search frames for the second condition that were examined on the
first pass. 1If a condition handler generates an exception, it is not
called 1in response to its own signal (unless it establishes itself to
handle its own signals!).

However, Unwind cannot perform such a check. It must call each
condition handler that it encounters as it removes frames from the
stack. Thus, a poorly written condition handler (one that generates
an exception) could result in an infinite loop of exceptions if a
handler higher up in the calling hierarchy unwinds the frame in which
this poorly written handler is declared. This has no effect on the
system but effectively destroys the process in which this handler
exists.
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2.4.5 Unwinding Multiply Active Signals

There is a slight change to the Unwind system service when multiple
signals are active. While modifying saved PCs in call frames, Unwind
counts the number of frames that have been modified until the
requested number has been reached. The only change that occurs with
multiply active signals is that the 1loop stops counting while the
skipped frames are being modified.

The example of multiply active signals pictured in Figures 2-5 and 2-6
can be wused to 1illustrate this. Recall that procedure A called
procedure B who called procedure C who signalled S. Handler CH
resignalled. Handler BH called procedure X who called procedure Y who
signalled T. Handlers YH, XH, and BHH all resignalled. Finally,
handler AH was called for signal T with a depth of 3.

If AH calls SYSSUNWIND, the top of the stack 1is as pictured in
Figure 2-8, with the continuations of this figure in Figure 2-6. Let
us further assume that the depth argument passed to SYSSUNWIND is 3,
taken from the mechanism array (meaning unwind to the establisher of
AH) and the alternate PC argument is not present.

The end result of the operation of Unwind in this case is as follows.

1. Unwind looks back down the call stack wuntil it locates a
condition handler, which in this case is AH. The saved PC is
modified to STARTUNWIND.

2. The saved PC longwords in frames Y and X are altered to
contain address LOOPUNWIND. Note that we have now altered
three frames.

3. Because the next frame on the stack, BH, indicates a
condition handler (saved PC of SYSSCALL HANDL + 4), its
associated mechanism array is located (by climbing over saved
registers, stack alignment bytes, and a saved PC from the JSB
instruction). The saved PCs in all frames up to the frame
pointed to by the mechanism array are modified (but not
counted toward the number specified in the argument passed to
SYSSUNWIND) to contain address LOOPUNWIND. This causes
frames BH and C to get their saved PCs altered in the
example.

4. The saved PC in the frame for procedure B is not altered so
that when the unwind takes place, control will return to the
call site of procedure B in procedure A,

2.5 DEFAULT (VMS-SUPPLIED) CONDITION HANDLERS

Although the wuse of condition handlers 1is totally general and
completely in the hands of the user, some actions will always occur as
the result of default condition handlers that are established by VMS
as a part of process creation or image activation.

The discussions of process creation in Chapter 17 and image initiation
in Chapter 18 point out exactly when and how each of the handlers
described in this section is established. The action of each of these
handlers, once they are invoked, is briefly described here.
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SYSSUNWIND’s handler &
Call frame for
system service
SYSSUNWIND
(EXESUNWIND Saved AP
executes in
access mode
of caller) Saved FP @
Return PC in AH
AHH (if established) <4—
Call frame for
condition R.S.M.
handler AH Direction of
stack growth
Saved FP
Return PC in
exception dispatcher
r
Saved registers and
stack alignment
bytes indicated To frame for
by register save A procedure Y
A mask R.S.M. in AN ; o
) call frame AH in Figure 2-6
Return PC from JSB
.
2
Signal and .
mechanism arrays Signal array -
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Mechanism array (
~ ~o
To signal
array
in Figure 2-6
Figure 2-8 Modified Unwind with Multiply Active Signals
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2.5.1 Traceback Handler Established by Image Startup

When an image includes either the debugger or the traceback handler,
another frame 1is put on the user stack before the image itself is
called (Chapter 18). The code that executes before calling the image
places the address of a condition handler into this frame so that
subsequent conditions that are not handled by an intervening condition
handler will be picked up by this traceback handler.

This handler first checks whether the exception that occurred was
SS$ DEBUG. If so, it maps the debugger into P0 space (if not already
mapped) and passes control to it. This condition is signalled by a
CLI in response to a DEBUG command. This feature allows an image that
was not linked or run with debugger support to be interrupted and have
that support added.

For all other exceptions, if the severity level is warning, error, or
severe error, the handler maps the traceback facility into the top of
P0 space and passes control to it. The traceback facility passes
information about the exception to SYSSOUTPUT and terminates the
image.

If the severity level is other than the three listed in the previous
paragraph, the traceback condition handler resignals the condition,
which usually means that the condition is being passed on to the catch
all coudition handler.

2.5.2 Catch All Condition Handler

The address of this handler is placed in an initial call frame on the
user stack and 1in the last chance exception vector for user mode by
either PROCSTRT when the process is created or by a command language
interpreter before an image is called. This handler is always called
if no other handlers exist or if all other handlers resignal. Because
the address of the handler is duplicated in the last chance vector, it
will also be called in the event of some error while 1looking through
the user stack.

The first step that this handler takes 1is to call SYSSPUTMSG
(Chapter 27). If the handler was called through the last chance
exception vector (depth argument in mechanism array is -3), or if the
severity 1level of the exception name in the signal array indicates
severe (exception-name<2:0> GEQU 4), then SYS$SEXCMSG (Chapter 27) is
called to print a summary message and the 1image is terminated.
Otherwise, the image is continued.

2.5.3 Handlers Used by Other Access Modes

In addition to the handlers that VMS supplies to handle exceptions
that occur in user mode, it also sets up handlers that will determine
system behavior if an exception occurs in one of the other three
access modes.
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2.5.3.1 Exceptions in Kernel or Executive Mode - In response to an
exception in kernel mode, the -exception dispatcher makes special
checks to determine whether the processor was operating on the
interrupt stack when the exception occurred or whether IPL was above
IPLS ASTDEL (IPL 2). Either of these items could 1indicate that the
exception is not associated with a process. In any case, if either of
these conditions holds, an Invalid Exception fatal bugcheck
(BUGS _INVEXCEPTN) is generated. Routines which fall into the category
that forbids exceptions include interrupt service routines, device
drivers (except for their FDT routines), and process-based code that
happens to be executing above IPL$ ASTDEL (such as portions of certain
system services). -

If a kernel mode exception is associated with process-based code for
which exceptions are allowed (IPL is less than or equal to 2 and the
exception occurred on the kernel stack), then exception dispatching
proceeds in its usual manner. The primary exception vectors for both
kernel and executive modes are initialized in module SHELL
(Chapter 17) to «contain the addresses of routines that generate a
bugcheck code of Unexpected System Service Exception. The difference
between the bugchecks for the two access modes is that the bugcheck
generated by the kernel mode primary exception handler is fatal while
the corresponding bugcheck generated by the executive mode primary
exception vector is not. Fatal bugchecks cause the system to crash.
Nonfatal bugchecks result 1in error 1log entries. The bugcheck
operation is described in Chapter 7.

This means that if an exception ever occurs while the system 1is in
either kernel or executive mode, the system will bugcheck because the
primary exception vector's handler is found first. Routines that
execute in executive mode include RMS, parts of the executive, and any
user-written procedure that is entered through either a user-written
system service dispatcher or through the Change Mode to Executive
system service. Routines that execute in kernel mode (that can cause
this bugcheck and not the 1Invalid Exception bugcheck because they
execute at IPL 0 or IPL 2) include portions of all system services,
many exception service routines, device driver FDT routines, including
those that are written by users, and procedures that are called by the
either a user-written system service dispatcher or by the Change Mode
to Kernel system service.

2.5.3.2 Condition Handler Used by DCL or MCR - The DCL and MCR
command language interpreters establish nearly identical condition
handlers at the beginning of their command loops to field exceptions
that occur in supervisor mode.

The first step that the condition handler takes is to alter the entry
point contained in the supervisor mode termination handler control
block from its normal contents to a procedure that simply returns
successfully. This step causes supervisor mode exceptions (exceptions
encountered while the CLI 1is executing), to result 1in process
deletion. (As we will see in Chapter 20, the means by which a CLI
prevents process deletion following 1image exit 1is through the
supervisor mode termination handler that has just been eliminated.)

2-31



CONDITION HANDLING

The only other step taken by the supervisor mode condition handler is
to call the catch all handler directly, with a depth argument of -3.
As we saw in the description of the catch all handler, when it is
called through the last chance vector (determined by a depth argument
of -3), it forces image exit. Thus, an exception incurred while
executing in supervisor mode results in process deletion, after some
messages have been sent to SYSSOUTPUT (and possibly SYS$SERROR).



CHAPTER 3

SYSTEM SERVICE DISPATCHING

Many of the operations that VMS performs on behalf of the user are
implemented as procedures called system services. These procedures
are linked as part of the executive, reside in system space, have
global entry point names of the form EXESservice, and typically
execute in kernel or executive access mode so that they can read or
write data structures protected from access by less privileged access
modes. Some services are invoked directly by application programs.
Others are called on behalf of the user by components such as RMS.
This chapter describes how control is passed from a wuser program to
the procedures in the executive that execute service-specific code.

3.1 SYSTEM SERVICE VECTORS

The lowest three pages of system virtual address space (addresses
80000000 to 800005FF) are reserved for entry points to the system
services and to RMS service routines. The global entry point name of
each system service vector 1is SYS$service, as distinguished from
EXESservice, the global name of the procedure in the executive image
that performs the actual work of the system service.

As new services are added to future releases of VAX/VMS, the vector
area will grow to make room for new entry points. 1In addition, the
absolute 1locations of the SYS$service entry points of existing
services will remain fixed forever, so that existing user programs
will not have to be relinked at each new release of VMS.

Each service entry point contains eight bytes of code and data called
a system service vector. Each vector consists of a global entry point
named SYS$service, a register save mask, a single instruction that
transfers control eventually to a service-specific procedure in the
executive, and an instruction (usually a RET) that passes control back
to the caller. Most of the system services execute in kernel mode and
the vectors for these services contain a CHMK instruction. A few
services and all of the RMS service vectors contain a CHME
instruction. Some services such as the text formatting services
execute in the access mode of the caller and dispatch directly to the
service-specific code in VMS with a JMP instruction. Figure 3-1
illustrates the three sets of instructions found in the system service
vector area. Table 3-1 lists the VMS system services that use each of
the three illustrated methods of initial dispatch.
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Vector contents for services that change mode to kernel

SYSS$service:: ;Entry point for services that
; execute in kernel mode

This mask is identical to the

-WORD entry-mask ;
; mask found at location
;

EXES$service
CHMK #service-specific-code
RET ;sReturn to caller
.BLKB 1 ;Spare byte to make vector

; eight bytes long

Vector contents for services that change mode to executive

SYS$service:: ;Entry point for services that
; execute in executive mode

This mask is identical to the

«WORD entry-mask ;
; mask found at location
H

EXES$service
CHME #service-specific-code
RET ;Return to caller
.BLKB 1 ;Spare byte to make vector

; eight bytes long

iMost vectors for RMS service calls replace these last two
; bytes with a branch to an RMS synchronization routine.

Vector contents for services that do not change mode

SYSS$service:: ;Entry point for services that
; execute in the access mode
; of the caller

.WORD entry-mask ;This mask is identical to the
; mask found at location
; EXESservice

JMP Q#EXESservice + 2 :Transfer control to

first instruction after the
entry mask at EXESservice

~e w

Figure 3-1 Contents of the System Service Vectors
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Table 3-1

System Services and RMS Services That Use

Each Form of System Service Vector

These system services initially execute in kernel mode.

ADJSTK CRELOG DELMBX GETPTI SETAST SETSFM
ADJWSL CREMBX DELPRC HIBER SETEF SETSWM
ALLOC CREPRC DELTVA LCKPAG SETEXV SNDERR
ASCEFC CRETVA DERLMB LKWSET SETIME SUSPND
ASSIGN CRMPSC DGBLSC MGBLSC SETIMR TRNLOG
BRDCST DACEFC DLCEFC PURGWS SETPFM ULKPAG
CANCEL DALLOC EXIT Q10 SETPRA ULWSET
CANEXH DASSGN EXPREG QIOW SETPRI UPDSEC
CANTIM DCLAST FORCEX READEF SETPRN WAITFR
CANWAK DCLCMH GETCHN RESUME SETPRT WAKE
CLREF DCLEXH GETDEV RUNDWN SETPRYV WFLAND
CMKRNL DELLOG GETJPI SCHDWK SETRWM WFLOR
CNTREG

These system services initially execute in executive mode.

CMEXEC
GETMSG

GETTIM
IMGACT

NUMTIM

SNDSMB

SNDACC

SNDOPR

These system services execute in the access mode of the caller.

ASCTIM
BINTIM

EXCMSG
FAO

FAOL

IMGSTA

PUTMSG

UNWIND

These RMS services branch to a synchronization routine
before returning to the caller.

CLOSE EXTEND PARSE SPACE
CONNECT FIND PUT TRUNCATE
CREATE FLUSH READ UPDATE
DELETE FREE RELEASE WAIT
DISCONNECT GET REMOVE WRITE
DISPLAY MODIFY RENAME

ENTER NXTVOL REWIND

ERASE OPEN SEARCH

The vectors for these RMS services contain RET instructions

rather than a branch to an RMS synchronization routine.

RMSRUNDWN

SETDDIR

SETDFPROT

SSVEXC
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3.2 CHANGE MODE INSTRUCTIONS

When a change mode instruction is executed, an exception is generated
that pushes the PSL, the PC of the next instruction, and the code that
is the single operand of the change mode instruction onto the stack
indicated in the instruction. (As already pointed out in the previous
chapter, the actual access mode is the minimum of the access mode
indicated by the instruction and the current access mode contained in
the PSL.) For example, the execution of a CHME #5 instruction will
push a PSL, the PC of the instruction following the CHME instruction,
and a 5 onto the executive stack. Control 1is then passed to the
exception service routine whose address is located in the appropriate
entry in the system control block (SCB).

3.2.1 CHMK, CHME

At initialization time, VMS fills in the SCB entries for CHMK and CHME
with the addresses of change mode dispatchers that pass control to the
procedures that perform service-specific code. The action of these
two dispatchers is discussed in the next section.

3.2.2 CHMS, CHMU

The SCB entries for CHMS and CHMU are filled in with the addresses of
exception service routines that usually pass control to the general
exception dispatcher described in the previous chapter. 1In this case,
a CHMS or CHMU exception would be reported to a process through the
normal signal and mechanism arrays. The particular exception names
are SS$_CMODSUPR and SS$_CMODUSER respectively.

However, a user can short circuit the normal exception dispatching in
the case of either of these exceptions by using the $DCLCMH system
service to establish a per-process change-mode-to-supervisor or
change-mode-to-user exception handler. This service fills location
CTLSGL CMSUPR or CTL$GL CMUSER in the Pl pointer page with the address
of the wuser-written <change mode dispatcher. The exception service
routines for the CHMS and CHMU exceptions check these 1locations for
nonzero contents and dispatch accordingly.

The DCL and MCR command language interpreters use this service to
create a special change-mode-to-supervisor handler. This handler is
used when it is necessary to get to supervisor mode from user mode
when an image is interrupted with a CTRL/Y. The use of the
change-mode-to-supervisor handler is discussed in Chapter 20. The job
controller uses a change-mode-to-user dispatcher for its processing of
error messages.

3.3 CHANGE MODE DISPATCHING IN VMS

The change mode dispatcher that receives control from the CHMK or CHME
instruction in the system service vector must dispatch to the
procedure indicated by the code that is found on the top of the stack.
In addition, because the service routines are written as procedures,
the dispatcher must construct a call frame on the stack. This could

be accomplished by using a CALLX instruction and a dispatch table of
service entry points.

3-4
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However, the call frame that must be built 1is 1identical for each
service. In addition, the registers that the service-specific
procedure will modify have already been saved because the register
save mask 1in the vector area (at global location SYS$service) is the
same as the register save mask at 1location EXES$service. So the
dispatcher avoids the overhead of the general purpose CALLx
instruction and builds its call frame by hand.

Further speed improvement is achieved in this commonly executed code
path by overlapping memory write operations (building the call frame)
with register-to-register operations and instruction stream
references. The actual dispatch to the service-specific procedure is
then accomplished with a CASEW instruction that uses the CHMx code as
its index 1into the case table. Figure 3-2 pictures the control flow
from the user program all the way to the service-specific procedure.
This flow 1is illustrated for both kernel and executive access modes.
Figure 3-3 shows the corresponding flow for those services that do not
change mode.

3.3.1 Operation of the Change Mode Dispatcher

The operation of the change mode dispatchers is almost 1identical for
kernel and executive modes. This section discusses the common points
of the dispatchers for kernel and executive modes. The next sections
point out the only differences between the dispatchers for the two
access modes. Figure 3-4 contains the code for these two dispatchers,
copied from the module CMODSSDSP. The instructions are not listed in
exactly the same order that they appear in the source module. Rather,
the instructions are shown in the order that they are found when all
the PSECTs have been sorted out at link time. Figure 3-5 contains the
error routines that are branched to from the checks made in
Figure 3-4.

The first instruction of the dispatcher pops the exception code,
unique for each service, from the stack into RO. The call frame is
built on the stack by the following four instructions.

Kernel Mode Dispatcher Executive Mode Dispatcher
PUSHAB B KSRVEXIT PUSHAB B"SRVEXIT

PUSHL FP PUSHL FP

PUSHL AP PUSHL AP

CLRQ -(SP) CLRQ -(SP)

While the call frame is being built, two checks are performed on the
argument 1list. The number of arguments actually passed (found in the
first byte of the argument list) is compared to a service-specific
entry 1in a prebuilt table to determine whether the required number of
arguments for this service have been passed. Read accessibility of
the argument list is checked (with the PROBER instruction generated by
the IFNORD macro). If either of these checks fails, control is passed
back to the caller with an error indication in RO.

Finally, a CASEW instruction is executed, using the unique code in RO
as an 1index into the case table. The case table has been set up at
assembly time to contain the addresses of the first instruction of
each service-specific routine. Because each service is written as a
procedure with a global entry point named EXE$service pointing to a
register save mask, the case table contains addresses of the form
EXES$service + 2. This is illustrated in Figure 3-4. If control is
passed to the end of the case table, then a CHMx instruction was
executed with an improper code and error processing described in the
next section is performed.
3-5
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These routines are the change mode dispatchers used by VMS to transfer
control to system services or RMS services. The two dispatchers are
nearly identical. Those entries containing *#***** jindicate places
where the two change mode dispatchers differ. Comments have been
removed and instructions appear in the order that they appear in the
executive image, not necessarily in the order that they appear in
module CMODSSDSP.

Change Mode to Kernel Dispatcher Change Mode to Executive Dispatcher
EXESCMODKRNL: : EXES$SCMODEXEC: :

POPL RO POPR $#"M<RO>

BEQL ASTEXIT dhkkkdk

PUSHAB B"KSRVEXIT PUSHAB B"SRVEXIT

MOVZBL RO,R1 MOVZBL RO,R1

PUSHL FP PUSHL FP

MOVZBL W”B KRNLARG[R1],Rl MOVZBL W"B EXECNARG[R1l],R1

PUSHL AP ~ PUSHL AP

MOVAL @#4 [R1],FP MOVAL e#4[R1],FP

CLRQ —-(SP) CLRQ -(SP)

IFNORD FP, (AP),ACCVIO IFNORD FP, (AP),EXACCVIO
prober #0,fp, (ap) prober #0,fp,(ap)
beql accvio beql exaccvio

MOVL SP,FP MOVL SP,FP

CMPB (aP) ,R1 CMPB (AP) ,R1

BLSSU KINSARG BLSSU EXINSARG

KERDSP: EXEDSP:

MOVL SCH$GL_CURPCB,R4 *kkkkk

CASEW RO, #1, #KCASMAX CASEW RO, #0, STECASMAX

offset to EXESservice + 2 offset to EXES$service + 2

hkkk kK JSB @QCTLSGL RMSBASE

ILLCHMK: ‘ -

BSBW CHECKARGLIST BSBW CHECKARGLIST

MOVL @#CTLSGL_USRCHMK,RI MOVL @#CTLSGL USRCHME,R1

BEQL 108 BEQL 10$ -

JSB (R1) JSB (R1)

10$: MOVL L”EXE$GL_pSRCHMK,Rl 10$: MOVL L"EXESGL USRCHME,R1
BEQL 20$ BEQL 208 -
JSB (R1) JSB (R1)

20S: NOP 208: BRW ILLSER
NOP

ILLSER:
MOVZWL #SS$ ILLSER,RO
RET -

Figure 3-4 Contents of the VMS Change Mode Dispatchers
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These routines are invoked if the argument

if an insuffi

list 'is inaccessible or

cient number of arguments was passed to the service.

EXACCVIO: ;From EXES$SCMODEXEC
BRW ACCVIO
EXINSARG:
CMPW RO, #RCASCTR ;0nly report INSARG for RMS and
; and built in functions
BGEQU EXEDSP ;Otherwise, get back in line
BRW INSARG ;Report error to caller
CHECKARGLIST: ;Check argument list for
; read accessibility
IFNORD #4, (AP) ,ACCVIO RET ;First check count
MOVZBL (AP),R1 - :Then get count
ASHL #4,R1,R1 ;Convert to byte count
IFNORD R1,4(AP),ACCVIO_RET ;Now check rest of list
RSB
ACCVIO:
MOVL SP,FP ;Set FP so that RET works

ACCVIO_RET:

KINSARG:

INSARG:

MOVZWL #SS5$_ACCVIO,RO

RET
CMPW RO, #KCASCTR ;Is this a recognized code?
BGEQU KERDSP ;No. Get back in line

MOVZWL #SSS$_INSFARG,RO
RET

This routine
RMS service
The alternate

is the common exit path for all system service

and

calls. The usual exit path is the REI instruction.

exit path is to report a SS$SSFAIL exception.

SRVEXIT:
BLBC RO, SSFAIL
SRVREI:
REI
SSFAIL:
BITL #7,R0 ;Check for mere warning
BEQL SRVREI ;If so, do not generate
; exception
BRW SSFAILMAIN ;Go to SSFAIL logic
KSRVEXIT: ;Kernel mode exit path
BLBC RO, 10$ ;Branch if abnormal completion
REI
108$: SETIPL #0 ;Do not use elevated IPL on
; error path.
BRB SSFAIL ;check for SSFAIL exception
SSFAILMAIN:
MOVL SCHSGL CURPCB,R1
TSTW PCBSW_MTXCNT ;Check for ownership of a mutex
BNEQ 208 ;1f so, BUGCHECK

EXTZV #PSLSV CURMOD, #PSL$S_CURMOD, 4 (SP) ,-(SP)

ADDL #PCB$V_SSFEXC, (SP) ;Are system service
; failure exceptions enabled
; for caller's access mode

BBC (SP+) ,PCBSL_STS(R1),10% ;If not, dismiss the
; exception
BRW EXES$SSFAIL ;If so, pass control to the
; general exception dispatcher
10%: REI ;Return from service with
; error status
20$: BUG_CHECK MTXCNTNONZ , FATAL
Figure 3-5 Error Routines and Common Exit Path

for System Services and RMS Calls
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3.3.2 Change-Mode-to-Kernel Dispatcher

There are two steps performed by the change-mode-to-kernel dispatcher
that are not performed by the change-mode-to-executive dispatcher.
Before control is passed to those services that execute in kernel
mode, the address of the PCB for the current process (found at global
location SCHSGL _CURPCB) is placed into R4. The second difference is
that CHMK #0 is a special entry path into kernel mode that is used by
the AST delivery routine following the call to the AST procedure. If
the CHMK code removed from the stack is a zero, control is passed to a
routine called ASTEXIT. The action of this routine is described in
Chapter 5.

3.3.3 Change-Mode-to-Executive Dispatcher

The change-mode-to-executive dispatcher performs one step unique to
executive mode. If the CHME code is not a recognized system service,
the CASEW instruction passes control to the end of the case table. At
that point, the change-mode-to-executive dispatcher transfers control
to the RMS dispatcher to determine whether this was a valid RMS call
before dropping into the error processing described below.

3.3.4 RMS Dispatching

The RMS dispatcher, illustrated in Figure 3-6, consists of two
instructions. The CASEW instruction will dispatch to RMS
service-specific procedures for legitimate RMS service codes. These
procedures will exit with a RET back to SRVEXIT. If an illegal code
(that is, a code not recognized as an RMS service call) was issued,
the RSB instruction following the CASEW instruction will pass control
back to EXESCMODEXEC for normal error processing.

3.3.5 Return Path for System Services

When the service-specific procedure has completed 1its operation, it
places a status code in RO and 1issues a RET instruction. This
instruction returns control to the code at 1label (K)SRVEXIT 1in
Figure 3-5 because this address was put into the saved PC area of the
call frame built by the change mode dispatcher. The routine
(K)SRVEXIT first checks whether an error occurred. If no error
occurred or if the error was merely a warning (R0<2:0>=0), the CHMx
exception 1is dismissed with an REI instruction that passes control to
the instruction following the CHMx in the vector area. This
instruction is a RET which finally returns control to the user program
following the call to SYS$service (Figure 3-1).

One additional step is taken by routine KSRVEXIT, the exit routine for
services that execute in kernel mode. 1IPL is explicitly lowered to
zero. This step is unnecessary unless the process has enabled system
service failure exceptions because the REI instruction that dismisses
the CHMK exception will lower 1IPL. However, 1if a system service
failure exception 1is to be generated, the exception code must be
entered with IPL set to zero. (A similar check 1is not needed for
executive mode services because only kernel mode code can execute at
elevated IPL.)
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If an error or severe error occurred, a check is made to see whether
the ©process owns any mutex. If so, a fatal bugcheck is generated.
(Chapter 7 describes bugcheck processing. Mutexes are described in
Chapter 24.) If the mutex check succeeds, a check is made to determine
whether this process has enabled system service exceptions for the
calling access mode. If it has, control is passed to the exception
dispatcher at global label EXES$SSFAIL. The exception that will be
reported to the caller in the signal array is SS$_SSFAIL. Otherwise,
control is passed back to the caller with RO containing the error
status code.

3.3.6 Return Path for RMS Services

The return path for RMS services is slightly more complicated than the
return path for system services. The last two bytes of the vector
contain a branch (BRB) to an RMS synchronization routine (contained in
module CMODSSDSP). This routine first checks whether the caller of
the RMS service wishes to wait. This is the usual case but RMS does
allow asynchronous I/0 operations. (The return status code is set to
RMSS_STALL by RMS in the usual state, where the process must wait
until the RMS operation has completed.)

3.3.6.1 Wait State Associated with RMS Requests - If a stall is
indicated, the <caller 1is put into an event flag wait state, waiting
for the event flag associated with the I/0 request that RMS has just
issued. The crucial point in this implementation is that the caller
is waiting at the access mode associated with the original call to RMS
and not in executive access mode, thus allowing AST delivery for all
access modes at least as privileged as the caller of RMS. (In the
usual case where RMS is called from user mode, this allows both user
and supervisor ASTs as well as executive and kernel ASTs to be
delivered while waiting for the RMS operation to complete.)

When the original 1I/0 completes, RMS gains control first in an
executive mode AST that it associated with its $QIO0 request. If it
determines that the original request is complete, it sets final status
in the data structure (FAB or RAB) associated with the operation and
returns from its AST. The caller now drops through the event flag
wait in the synchronization routine (because the 1I/0 completion
routine set the event flag). The synchronization routine determines
that the RMS operation 1is complete (because the FAB or RAB status
field contains nonzero), and executes a RET, passing control back to
the point where the initial call to RMS was issued.

If the RMS executive mode AST determines that more I/0 is required to
complete the original request (such as occurs when reading a large
record from a sequential file with small internal buffers or when
operating on an ISAM file), RMS issues the next $Q0I0 and returns from
its AST. Because the previous I/0 completion set the associated event
flag, the process 1is now computable. However, the RMS operation is
not yet complete. For this reason, the RMS synchronization routine
(executing in the caller's access mode) checks the status field in the
RAB or FAB for zero, indicating that RMS has more to do. In this
case, the caller 1is again placed 1into the LEF state by the RMS
synchronization routine. 1In other words, at a primitive 1level, the
process is placed into a LEF state by RMS one or more times. However,
the actual indication that the RMS operation has completed is nonzero
contents in the status field of the FAB or RAB.

3-12
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3.3.6.2 RMS Error Detection - When the RMS synchronization routine
finally decides that RMS has completed its work, it checks the final
status. If this status indicates either success or warning, a RET is
executed. If either an error or a severe error occurred, a special
RMS call ($SSVEXC) is issued. This service simply reports the error
status through the normal VMS service exit path (SRVEXIT) that
determines whether the process has enabled system service failure
exceptions. Because RMS errors are reported through the system
service dispatcher, they are treated in exactly the same manner as
system service errors.

3.4 USER-WRITTEN SYSTEM SERVICE DISPATCHING

The VAX architecture reserves CHMx instructions with negative codes
for customer use. VMS system service dispatching acknowledges this in
its dispatch scheme and contains hooks that allow a privileged user to
write his own system services. The method for doing this is described
in the VAX/VMS Real-Time User's Guide. This section merely describes
how control is passed to user-written system services.

Figure 3-4 illustrates the error processing code that follows the case
table for the change-mode-to-kernel or change-mode-to-executive
dispatcher. The only differences between these two routines are the
names of the global pointers that are referenced.

3.4.1 Per-Process User-Written Dispatcher

If control is passed to the end of the case table, this indicates that
a CHMK or CHME instruction was executed with an invalid code. VMS
attempts to pass control to a user-written change mode dispatcher.
First, a 1location in Pl space (CTL$GL_USRCHMK or CTL$GL_USRCHME) is
checked to see whether a per-process dispatcher exists. Nonzero
contents of this 1location are interpreted as the address of a
user-written dispatcher and control is passed to it with the stack as
shown 1in Figure 3-7. The assumption being made by VMS at this point
is that a valid change mode code will result in the eventual transfer
of control to (K)SRVEXIT with a RET instruction. If the per-process
dispatcher rejects the code, it returns control to the code listed in
Figure 3-4 with an RSB instruction.

3.4.2 Privileged Shareable Images

The usual contents of CTLSGL_USRCHMK and CTLSGL USRCHME are addresses
within the two pages 1in Pl space set aside by VMS for user-written
system services and image-specific message processing. Kernel mode
and executive mode each have one half page (256 bytes) devoted to
system service dispatching. The initial content of the first byte of
each dispatch area (set up by PROCSTRT) is an RSB instruction. With
the dispatch scheme described in the previous section, there Iis
effectively no per-process change mode dispatching.
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Direction of
stack growth

return PC in CMODSSDSP <4+—SP

O (condition handler address) <+——FP

O (PSW/register save mask)

saved AP

saved FP

(K)SRVEXIT (return PC)

PC following CHMx instruction

PSL following CHMx instruction

Figure 3-7 State of the Stack Within a User-Written Dispatcher

However, if an image executes that was previously 1linked with a
privileged shareable image (linked with the /PROTECT and /SHAREABLE
options and installed with the /PROTECTED and /SHARED options), the
image activator replaces the RSB instruction with a JSB to the
user-written change mode dispatcher specified as a part of the
privileged shareable image (Figure 3-8). VMS allows multiple
privileged shareable images to be 1linked into the same executable
image. (There is a limit of 42 user-written dispatchers of each type.
How these dispatchers are collected into privileged shareable images
determines the number of privileged shareable images that can be
included in a single executable image.) An RSB instruction follows the
last JSB instruction 1in the dispatch area. The example pictured in
Figure 3-8 shows three privileged shareable images.

When the 1image activator (Chapter 18) encounters a privileged
shareable image as a part of the executable image it is activating, it
maps the section(s) containing the user-written system services in the
usual manner. However, it also uses information stored in the first
eight longwords of the image (a privileged library vector pictured in
Figure 3-9) to modify the Pl space dispatch area. For example, if a
privileged shareable image contained a change-mode-to-kernel
dispatcher, the image activator would insert a JSB instruction in P1
space that transferred control to the dispatcher specified by the
PLVSL KERNEL longword in the privileged library vector.
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,L -ENTRY mask J_, Entry Vectors
Ve ud CHMx #code Ve ud (1 per service)
RET
Vector Type \
System Version
—® Kernel Dispatcher
® Executive Dispatcher Privileged
> Library Vector
(1 per image)
Address Check /
Y RO,... .
Y CAESE Executive Dispatcher
RSB
Y RO,... .
—_— CA;SE Kernel Dispatcher
RSB
ENTRY mask
L ]
P . A Functional Routines
T . T (1 per service)
MOVZWL # status, RO
RET

Figure 3-9 Structure of Privileged Shareable Image

Once the image containing user-written system services 1is activated,
execution proceeds normally until one of the services is invoked.
Dispatching proceeds as follows (Figure 3-8).

(1) A CALLxXx instruction transfers control to a service-specific
entry mask in P0 space. The CHMx (CHMK or CHME) instruction
located there transfers control to the VMS change mode
dispatcher.

(2) Execution proceeds as if a VMS service was 1invoked except
that the change mode <code 1is not recognized by the VMS
dispatcher and control passes to the end of the case table
(Figure 3-4).

(3) The JSB instruction in CMODSSDSP passes control to the Pl
space dispatch area where another JSB instruction passes
control to the first dispatcher.

(4) The change mode code is rejected by the first dispatcher by
simply executing an RSB back to the Pl space vector where a
second JSB is executed.
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(5) The second dispatcher recognizes the change mode code as
valid and dispatches (probably with a CASEx instruction) to a
service~specific procedure that 1is also a part of the
privileged shareable image.

(6) When the service completes (successfully or unsuccessfully),
it loads a final status into RO and exits with a RET which
passes control to (K)SRVEXIT. At this point, user-written
system service dispatching merges with VMS system service
dispatching.

If each dispatcher rejected the change mode code (by executing an
RSB), control would eventually reach the RSB instruction in the Pl
space vector. This RSB instruction passes control back to the VMS
change mode dispatcher in CMODSSDSP where a system wide dispatcher is
checked for next.

3.4.3 System-Wide User-Written Dispatcher

If the Pl space location contains a =zero, or if no per-process
dispatchers are invoked, or if the 1last per-process user-written
dlspatcher returns to the routine in CMODSSDSP with an RSB, a location
in system space (EXESGL_USRCHMK or EXE$GL USRCHME) is checked for the
existence of a system-wide user-written dlspatcher. If none exists
(contents are zero, its usual contents in a VMS system), or if this
dispatcher passes control back with an RSB, an illegal system service
call (ss$ _ILLSER) 1is reported back to the user in RO. This scheme
assumes that user-written system services that complete successfully
will exit with a RET back to (K)SRVEXIT, where an REI instruction will
dismiss the CHMK or CHME exception.

3.5 RELATED SYSTEM SERVICES

There are four system services in VMS that are closely related to
system service dlspatchlng and the change mode instructions. The
$DCLCMH system service was described in Section 3.2.2. This section
describes the $SETSFM service and the change mode system services.

3.5.1 Set System Service Failure Exceptions System Service

The $SETSFM system service either enables or disables the generation
of exceptions when an error is detected by the system service common
exit path. The service itself simply sets (to enable) or clears (to
disable) the bit in the process status longword (at offset PCBSL_STS
in the software PCB) for the access mode from which the system service
was called.
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3.5.2 Change Mode System Services

The $CMKRNL and $CMEXEC system services provide a simple path for
privileged processes to execute code in kernel or executive mode.
These services check for the appropriate privilege (CMKRNL or CMEXEC)
and then dispatch (with a CALLG instruction) to the procedure whose
address is supplied as an argument to the service. (Note that |if
SCMKRNL is called from executive mode, no privilege check is made.)

The procedure that executes in kernel or executive mode must load a
return status code into RO. If not, the previous contents of RO will
be used to determine whether an error occurred.



CHAPTER 4

SOFTWARE INTERRUPTS

The software interrupt mechanism that is provided as an integral part
of the VAX architecture is relied on heavily by VAX/VMS for several
purposes. The scheduler is invoked as a software interrupt service
routine. Software interrupts provide device drivers a clean method
for lowering IPL. Several I/O completion routines run as software
interrupt service routines. This chapter first describes the general
software interrupt mechanism and then lists several uses of software
interrupts in VAX/VMS.

4.1 THE SOFTWARE INTERRUPT

A software interrupt is actually a hardware mechanism, similar to an
interrupt generated by an external device. It causes a PC/PSL pair to
be pushed onto an appropriate stack (usually the interrupt stack) and
passes control to an interrupt service routine whose address is stored
in the system control block. Like hardware interrupts, VMS interprets
software interrupts as system-wide events that are serviced
independently of the context of a specific process. The AST
interrupt, discussed briefly at the end of this chapter and in great
detail in Chapter 5, is the only variation from this assumption.

The big difference between software interrupts and hardware
interrupts, and the reason for the name, is that software interrupts
are generated by an explicit request from software. The typical

software 1interrupt request occurs as the result of a hardware
interrupt or within another software interrupt service routine.
However, there are examples within VMS of software interrupts being
issued from code executing in process context.

4.1.1 Hardware Mechanism of Software Interrupts

The VAX architecture provides 15 software interrupt levels, from
IPL 15 down to IPL 1. There are 15 entries in the system control
block (SCB) for addresses of software interrupt service routines, one
for each IPL 1level. A software routine (usually a hardware or
software interrupt service routine) requests a software interrupt at a
given 1IPL 1level by writing the desired IPL value into the privileged
register Software Interrupt Request Register (PR$_SIRR). Writing to
this register causes a bit in the Software Interrupt Summary Register
(PRS SISR) to be set. The bit in the SISR 1is cleared when the
interrupt 1is finally taken. The 1layout of these two processor
registers is pictured in Figure 4-1., All software interrupt requests
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in VMS use the SOFTINT macro to write the SIRR. The expansion of this
macro is

+.MACRO SOFTINT IPL

MTPR IPL,S“#PRS_SIRR

. ENDM SOFTINT

31 4 3 0

IGNORED REQUEST

PR$_SIRR Software Interrupt Request Register
(Write Only)

31 16 15 1 0
PENDING SOFTWARE INTERRUPTS M
MBZ 8
FIE4D)CyB1A;9;8:7,6;5;4,3;2;,1|2

PR$_SISR Software Interrupt Summary Register

(Read/Write)

Figure 4-1 Content of Software Interrupt Request Register
and Software Interrupt Summary Register

The usual situation in VMS is that the requested IPL 1level 1is less
than or equal to the current IPL (as determined by PSL<20:16>). 1In
this case, the interrupt is deferred until the IPL drops below the
requested level. The deferral of pending software interrupts based on
current IPL is exactly the way that pending hardware interrupts are
treated. This lowering of IPL usually occurs as the result of an REI
instruction but could also occur if privileged code directly altered
the current IPL by writing to the PR$ IPL register (with the SETIPL or
the ENBINT macros, described in Chapter 24).

If the requested IPL value is higher than the 1level at which the
processor is currently running, then the interrupt service routine
whose address is in the selected slot in the SCB is entered
immediately. (This 1is the same way that pending hardware interrupts
are treated.)

There are a few occurrences in VMS of a software interrupt request at
an IPL level greater than the processor is currently running at. For
example, device driver FDT routines may signal completion by calling
the routines EXESFINISHIO or EXESFINISHIOC. These routines execute at
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IPL 2 and terminate by requesting the I/0O postprocessing software
interrupt at IPL 4. 1In this case, the interrupt is taken immediately.
The file system ACP uses the same technique to signal I/0 completion
for requests in which it was involved.

4.1.2 Software Interrupt Service Routines

There are several features about the use of software interrupts in VMS
that are independent of the purposes of individual interrupt service
routines. Some of these are dictated by the particular way that
software interrupts are treated in the hardware.

Because the VAX architecture supplies no mechanism for determining how
many times a software interrupt has been requested before it is taken,

software must supply some protocol for determining this. VMS uses
queues (doubly 1linked 1lists manipulated by the INSQUE and REMQUE
instructions) for this purpose. In general, each queue element

represents a specific operation that must be performed. The use of
queues, particularly the use of the INSQUE and REMQUE instructions,
allows other optimizations to be made.

e In general, software interrupt requests are made by code that
is executing at elevated IPL, often by hardware interrupt
service routines. These software interrupt requests are
usually accompanied by the insertion of some type of queue
element into a work 1list with an INSQUE instruction.
Condition codes (in particular, the setting of the Z-bit)
indicate whether the queue was previously not empty (and by
implication whether the software interrupt request has
already been made). By using this information, VMS makes the
software interrupt request only once, avoiding the overhead
of the MTPR instruction for additional unnecessary software
interrupt requests.

e The software interrupt service routine can also use the
information provided by condition code settings, this time as
the result of executing a REMQUE instruction. That
instruction returns the V-bit set 1if the queue was enmpty
before the instruction began execution, an indication that
the work of this particular interrupt service routine is
complete.

® By coding software interrupt service routines so that they
keep removing work list elements from a queue until there is
no more work to do, it is possible to simply ignore erroneous
software interrupt requests. In fact, all of the software
interrupt service routines in VMS, including those that do
not use queues, work even in the event of spurious interrupts
requests.

4.2 SOFTWARE INTERRUPT LEVELS IN VAX/VMS
VMS uses the software interrupt mechanism for several purposes.

e Device drivers use fork processes so that they can execute at
an IPL below device IPL.
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e The software timer service routine performs timer operations
that would bog the system down (because I/0 device interrupts
are blocked) if they were performed at IPL 24, the level at
which the hardware clock interrupts.

e The need for I/O postprocessing can be flagged by device
driver interrupt service routines but the actual processing
deferred while another pending I/O request is started.

e Rescheduling, the removal of the current process from
execution and the selection of a new process for execution,
is implemented as a software interrupt service routine.

e The AST delivery interrupt is the only software interrupt
that is treated as a process-specific interrupt rather than a
system-wide event.

Table 4-1 lists all the software interrupt levels used by VAX/VMS.
Table 4-1
Software Interrupt Levels Used by VAX/VMS

IPL Use Stack
15-12 Unused Interrupt
11 IPL=11 Fork Dispatching Interrupt
10 IPL=10 Fork Dispatching Interrupt
9 IPL=9 Fork Dispatching Interrupt
8 IPL=8 Fork Dispatching Interrupt
7 Software Timer Service Routine Interrupt
6 IPL=6 Fork Dispatching Interrupt
5 Used to Enter XDELTA Interrupt
4 I/0 Postprocessing Interrupt
3 Rescheduling Interrupt Kernel

2 AST Delivery Interrupt Kernel

1 Unused -

4.2.1 Fork Processing

One use of software interrupts is found in the mechanism called fork
processing employed by device drivers. The interrupt nesting scheme
defined by the VAX architecture is not going to work correctly if an
interrupt service routine lowers IPL below the level at which the
interrupt occurred. However, device driver interrupt service

routines,

initially entered or invoked at device IPL (typically 20 to

23 decimal), often must perform lengthy processing that do not require
device interrupts to be blocked, the usual reason for maintaining high

4-4
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IPL. Some mechanism is required to allow device drivers to lower IPL
without destroying the interrupt nesting scheme.

Several IPL values (6, and 8 to 11) and their associated SCB slots are
used by device drivers to allow them to continue their execution at
lower IPL, as so-called fork processes, There are also six quadword
listheads associated with the fork 1IPLs. (Because IPL 7 software
interrupts are used by the software timer, this listhead is not used
by the fork processor but merely serves as a place saver so that
context indexed addressing can be used by the fork processor and the
fork dispatcher with the IPL value as an index.) The queue elements
that describe each individual operation that must be performed at
lower IPL are called fork blocks and are used to pass context between
driver interrupt service routines and the fork level software
interrupt service routines. A fork block (pictured in Figure 4-2) is
often part of a larger structure such as a unit control block.

Fork Queue Forward Link

Fork Queue Backward Link

Fork IPL] Type Size

Saved PC

Saved R3

Saved R4

Figure 4-2 Layout of Fork Block

When a driver wishes to lower its IPL (by creating a fork process), it
calls routine EXES$SFORK with R5 containing the address of the fork
block. That routine saves the driver context (R3, R4, and saved PC)
in the fork block, inserts the fork block into the appropriate fork
queue, and requests a software interrupt at the requested IPL 1level
(if the queue was previously enpty). The actual instructions in
routine EXESFORK that perform these functions are 1listed here to

illustrate how work queues and software interrupt requests are
managed.

EXE$FORK: :
MOVQ R3,FKBSL_FR3(R5)
POPL FKBS$L FPC (R5)
MOVZBL FKBS$B_FIPL(R5),R4
MOVAQ W SWISGL FQFL-<6*8>[R4],R3
INSQUE (R5),@4(R3)
BNEQ 10$
SOFTINT R4
108$: RSB
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The fork dispatcher, which is the software interrupt service routine
that executes 1in response to the requested interrupt, executes
approximately the following sequence of instructions that removes each
queue element in turn from the associated queue and processes it.
This processing continues until the queue is empty, at which time the
software interrupt is dismissed with an REI.

.ALIGN LONG
EXESFORKDSPTH: :
PUSHR #"M<RO,R1,R2,R3,R4,R5>
10$: MFPR #PRS$ IPL,RO
MOVAQ W SWISGL FQFL-<6*8>[R0],R1
REMQUE @(R1)+,R5

BVS 20$%
MOVQ FKBSL FR3(R5),R3
MOVL FKBSL_ FPC(R5),R1
JSB (R1)
BRB 10$
20S: POPR #"M<RO,R1,R2,R3,R4,R5>
REI

4.2.2 Software Timer

Most of the timer operations in VMS execute in response to a software
interrupt at IPL 7. These operations are described in detail in
Chapter 10. The use of software interrupts by the timer support
routines is described here.

When the hardware clock interrupt service routine (executing at
IPL 24) determines that further service is required (due to quantum
expiration or because the first element in the clock queue has come
due), it requests a software interrupt at IPL 7 (IPL$S TIMER). Unlike
the fork queue described in the previous section, queue elements are
not placed into the timer gqueue by an interrupt service routine.
Rather, they are usually placed there by one of the timer related
system services (such as $SETIMR or S$SCHDWK). The key to the timer
queue is that the queue elements are ordered by expiration time so
that only the first TQE has to be examined by the hardware clock
service routine.

The software interrupt service routine rechecks for quantum expiration
and takes action 1if necessary. After any required quantum end
processing has occurred, the software timer service routine examines
the timer queue for any timer requests that have expired. Any timer
queue element that has an expiration time earlier than the current
system time 1s then removed from the timer queue and serviced.
Because of the time ordering of the timer queue, this removal takes
place from the beginning of the list. When no more expired timer
queue elements remain (the expiration time of the first TQE in the
queue 1is later than the current system time), the software interrupt
is dismissed. Note that a second difference between this software
interrupt service routine and fork processing is that the software
timer service routine may leave timer queue elements (the ones that
have not yet expired) in the queue when it dismisses the interrupt.

4-6
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4.2.3 1/0 Postprocessing

When a device driver or FDT routine detects that a particular I/0
request is complete, it calls a routine that places the I/O request
packet (pointed to by R3) at the tail of the I/0 postprocessing queue
(located through global pointer IOCS$GL PSBL) and requests a software
interrupt at IPL 4 (IPL$ IOPOST) if the queue was previously empty.
The following set of instructions (from routine IOC$REQCOM in module
IOSUBNPAG) shows the similarities between the software interrupt
requests for fork processing and I/O postprocessing. (Other routines
that request an IPLS IOPOST software interrupt, $QIO completion code
and ACP routines, execute similar instructions.)

INSQUE (R3),@W"IOCSGL PSBL
BNEQ 10$
SOFTINT #IPLS IOPOST

108:

The I/O postprocessing software interrupt service routine removes each
IRP in turn from the beginning of the queue (located through global
pointer IOCSGL PSFL) and processes it. When the queue is empty, the
IPL 4 software interrupt is dismissed. The similarities between fork
processing and I/O postprocessing are also found in their respective
software interrupt service routines. The following instructions from
module IOCIOPOST illustrate these similarities.

IOCSIOPOST::

MOVQ R4,-(SP)
MOVQ R2,-(SP)
MOVQ RO, - (SP)
IOPOST: REMQUE @W"IOC$GL_PSFL,R5
BVC 10$
MOVQ (SP)+,R0
MOVQ (SP)+,R2
MOVQ (SP)+,R4
REI
10$: . ; Complete processing of this request
BRx IOPOST

4.2.4 Rescheduling Interrupt

The routine that removes a process from execution and selects the
highest priority process for execution 1is invoked as a software
interrupt service routine at IPL 3 (IPL$ _SCHED) by the routine that
makes a process computable. Whenever the state of a process becomes
computable and its priority is greater than or equal to the priority
of the current process, this software interrupt is requested. Because
several processes could all become computable at effectively the same

time, there could be multiple requests for this software interrupt
service routine.
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The rescheduling interrupt 1is not totally independent of process
context 1like the fork processing and I/O postprocessing interrupts.
The SCB entry for this interrupt (Table 4-1) indicates that it should
be serviced on the kernel stack. 1In fact, its first operation is to
remove the current process from execution with a SVPCTX instruction.
However, that instruction performs a stack switch from the kernel
stack to the interrupt stack so the rest of the rescheduling interrupt
service routine is performed in system context. The operation of the
scheduler, including a detailed description of the rescheduling
interrupt, is discussed in Chapter 8.

Unlike fork processing or I/0 postprocessing requests, there is no
need to count requests for the rescheduling interrupt because only one
process can be current at a given time. The software priorities of
the computable processes determine which of them is chosen for
execution. The scheduler will select the process with the highest
software priority. The rest of the processes will remain in the
computable state until some system event occurs that alters the
scheduling balance of the system and causes one of these processes to
be selected for execution. For example, if a higher priority process
were to become computable, an IPL 3 software interrupt would be
requested. (If the current process were to enter a wait state, a
different path 1is taken through the scheduler, one that bypasses the
software interrupt request and executes the <code contained 1in the
second half of the rescheduling interrupt service routine.)

4.2,5 AST Delivery Interrupt

The software interrupt that indicates that there is an AST to deliver
differs in several respects from the other software interrupts.

e The AST delivery interrupt 1is associated with a specific
process and is serviced on the kernel stack of that process.

e The interrupt request is made in two steps. Routines that
recognize that there 1is an AST that can be delivered to a
process indicate that by writing the access mode associated
with the AST into a per-process privileged register called
the AST level register (PR$_ASTLVL). The REI instruction
compares the contents of this register with the access mode
that it is restoring to determine whether to request an IPL 2
software interrupt.

e As this mechanism suggests, IPL 2 software interrupts have a
second dimension associated with them, namely access mode.

The use of ASTs in VMS is so important that they are described in a
separate chapter (Chapter 5).



CHAPTER 5

AST DELIVERY

Asynchronous system traps (ASTs) are a mechanism for signalling
asynchronous events to a process. Specifically, a procedure (or
routine) designated by either the process or the system executes in
the context of the process. ASTs are created in response to system
services such as $QIO, $SETIMR, and SDCLAST. Additionally,
unrequested ASTs occur as implicit results of other operations such as
I/0 completion, process suspension, and obtaining information about
another process with the $GETJPI system service. The reason that ASTs
are used for these operations is that it is necessary for a piece of
code to execute in the context of a specific process. ASTs fulfill
this need.

AST enqueuing is a system event that may result in a rescheduling
interrupt. AST delivery occurs in the context of the process that is
to actually receive the AST. This chapter discusses how ASTs are
enqueued and delivered to a process. Several examples of how ASTs are
used by VMS are also included.

5.1 HARDWARE ASSISTANCE TO AST DELIVERY
The delivery of ASTs is one example of the VAX hardware providing
assistance to VMS. Three hardware components or mechanisms contribute
to AST delivery:

e the REI instruction,

e the PR$ ASTLVL processor register, and

e the IPL 2 software interrupt.

The first two features are discussed 1in this section. The 1IPL 2
interrupt service routine, ASTDEL, is discussed in Section 5.3.

5.1.1 REI Instruction

The return from exception or interrupt routine instruction, REI,
provides the initial step in the delivery of an AST to a process.
Among the operations performed by the REI microcode are the following.

1. A check is made to determine which stack will be active after
the return. ©No ASTs are delivered if the interrupt stack is
active.
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2. The value in the AST level processor register, PR$ ASTLVL, is
compared with the access mode to which control is being
passed. If the "destination" access mode number is less than
the value in PR$_ASTLVL, no ASTs can be delivered.

3. If the interrupt stack is not going to be used and the access
mode number is greater than or equal to the PR$ ASTLVL value,
then an AST can be delivered. The REI instruction microcode
requests a software interrupt at IPL 2. (Note that the
requested IPL 2 interrupt will not actually be delivered
until the IPL drops below 2.) The IPL 2 software interrupt
service routine 1is found at global 1location SCH$ASTDEL
(Section 5.3).

5.1.2 ASTLVL Processor Register (PR$_ASTLVL)

The processor register, PR$S ASTLVL, is a per-process hardware register
indicating the deliverability of ASTs to the current process.
PRS ASTLVL is part of the hardware context of the process (loaded by
LDPCTX) and is recorded in the hardware process control block
(Chapter 8). PR$_ASTLVL can contain the following values:

0 A kernel mode AST is deliverable.

1 An executive mode AST is deliverable.
2 A supervisor mode AST is deliverable.
3 A user mode AST is deliverable.

4 No AST is deliverable.

Thus, if an AST is deliverable, PR$ ASTLVL contains the access mode
value for the mode in which the AST is to execute. The "null" value
of four is chosen so that the REI test, described above, will fail,
regardless of the "destination" access mode of the REI instruction.
If the access mode of the deliverable AST is at least as privileged as
the destination access mode of the REI instruction, the AST delivery
interrupt will be requested.

5.2 QUEUING AN AST TO A PROCESS

ASTs are queued to a process as the corresponding events (I/0
completion, timer expiration, and so on) occur. The AST queue is
maintained as a list structure of AST control blocks (ACBs) with the

listhead contained 1in the software process control block (PCB)
(Figure 5-1).

5.2.1 AST Control Block

The AST control block (ACB) defines the necessary information to
deliver an AST

e to the correct process and AST routine,
@ 1in the correct access mode, and

e with the appropriate parameter passed to the routine.
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The ACB is allocated from nonpaged dynamic memory (specifically, the
I/0 request packet lookaside list, described in Chapter 25) before the
queuing of an AST to a process is requested.

Figure 5-1 shows the format of an AST control block and the relevant
software PCB fields. ACBSL ASTQFL and ACB$L_ASTQBL link the ACB into
the AST queue for the process. The listhead of this queue 1is the
longword pair of fields, PCBSL_ASTQFL and PCBSL ASTQBL. The field
ACBSB_RMOD provides three types of information.

1. Bits 0 and 1 (ACBSV_RMOD) contain the value corresponding to
the access mode in which the AST routine is to execute.

2. Bit 6 (ACBSV_QUOTA) indicates whether the allocation of the
data structure is accounted for in the process AST quota,
PCBSW_ASTCNT.

3. Bit 7 (ACBSV _KAST) indicates the presence of a special kernel
mode AST (Sections 5.2.3 and 5.4).

Software Process Control Block (PCB)

]
ASTEN | ASTACT
ASTQFL
ASTOBL AST Control Block (ACB) ¥
ASTQFL
=) ASTQBL
RMOD | TYPE | SIZE
PID
AST
I ASTPRM
KAST
ASTCNT RMOD Bits:
765 210
~ ;]5
u SPARE MODE
QUOTA
KAST

Figure 5-1 AST Control Block and AST Queue in Software PCB

ACBSL_PID identifies which process is to receive the AST. ACBSL AST
and ACBSL_ASTPRM are the entry point of the designated AST routine and
the AST parameter, respectively. ACBSL KAST contains the entry point
of a system-requested special kernel mode AST routine if the
ACBSV_KAST bit of ACBSB_RMOD is set (item 3 above).
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ACBs are created by three types of action.

1. The process explicitly declares an AST. The S$DCLAST system
service simply allocates an ACB, fills in the ACB information
from its argument list, and requests the queuing of the ACB.
Two checks are made to ensure that

e the AST quota for the process 1is not exceeded by the
request, and

e the access mode in which the AST routine is to execute is
no more privileged than the access mode from which the
system service was called.

The ACBS$V_QUOTA bit is set to indicate that this AST is
counted against the process AST quota.

2. The process requests an AST to be associated with an event
such as the completion of an I/0 request ($QIO0O or Update
Section system service) or a timer request ($SETIMR system
service). System services such as these have arguments that
include an AST routine entry point and an AST parameter. The
delivery of an AST 1is accounted for in the PCBSW ASTCNT
field. The control block (ACB) is actually a reuse of the
I/0 request packet (IRP) or timer queue element (TQE) used in
the initial operation. (Compare the ACB format pictured in
Figure 5-1 with the TQE format shown in Chapter 10 and the
IRP layout shown in Appendix A of the VAX/VMS Guide to
Writing a Device Driver.

3. The system, or another process, can request an AST to execute
code in the context of the selected process. Examples of
this type of action include 1I/0 completion, S$GETJPI from
another process, Forced Exit system service, and working set
adjustment as part of the quantum end event (Chapter 8). AST
control blocks used in these situations are not deducted from
the AST quota of the target process because of their
involuntary nature.

5.2.2 Access Mode and AST Queuing

The ACB$V_RMOD bits of the ACB$B_RMOD field determine the insertion
position ~of an AST control block when it is queued to a process. The
AST queue is maintained as a first-in first-out (FIFO) list for each
access mode. ASTs of different access modes are placed into the queue
in ascending access mode order, that is, kernel mode ASTs first and
user mode ASTs last.

When the subroutine SCHS$SQAST (in module ASTDEL) is invoked, the
preallocated and preinitialized AST control block is inserted into the
AST queue of the appropriate process at IPL$ SYNCH. The following
steps are performed.

1. If the process is nonexistent, the ACB is deallocated and the
AST event is ignored. An error status code is returned.

2. If the AST queue is empty (the contents of PCBSL ASTQFL are

equal to its address), the ACB 1is inserted as the first
element in the AST queue.

5-4
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3. Otherwise, the queue elements (ACBs) are scanned until either
the end of the queue is reached or an ACB is found with an
access mode less privileged than the one being inserted (that
is, the ACBS$V_RMOD value is higher). The new AST control
block is inserted at this point. Thus, ASTs are first-in
first-out within an access mode and grouped by access mode in
decreasing amount of privilege. User mode ASTs are always
placed at the tail of the queue.

5.2.3 Special Kernel Mode ASTs

Special kernel mode ASTs represent a fifth type of AST. They are
maintained as a separate group in the AST queue. Special kernel mode
ASTs are indicated by the ACBSV _KAST bit of the ACBSB_RMOD field.
Insertion of a special kernel mode AST will occur after any previous
special kernel mode ASTs, but before any "normal" ASTs of any access
mode (including kernel). Thus, the organization of the AST queue is:

listhead - special -+ "normal" - exec- - super- -»= user
(PCB) kernel kernel utive visor

Section 5.4 discusses special kernel ASTs more fully and provides
several examples.

5.2.4 Computation of a New Value for ASTLVL

An AST can be enqueued to a process at any time, because the software
PCB and the AST control blocks are neither paged nor swapped. Each
time an AST control block is inserted into the queue, the assignment
of a value to ASTLVL (processor register and hardware PCB field) is
attempted. However, the process can be in any one of three possible
situations that determine to what degree the state of the AST queue
can be updated.

e If a process is outswapped, the ASTLVL cannot be updated
because the process header (including the hardware process
control block) is not available. When the process becomes
resident and computable at a later time, ASTLVL will be
calculated by the swapper (by invoking SCHSNEWLVL in module
ASTDEL) .

e If the process 1is memory resident but not currently
executing, the new value for ASTLVL will be recorded in the
hardware PCB field but not in the processor register.

e If the process is currently executing, the new ASTLVL value
will be stored in both the hardware PCB field and the
processor register, PR$ ASTLVL.

The ASTLVL value indicates the deliverability and access mode of the
first pending AST in the queue. There is no indication of the
deliverability of any other pending ASTs. ASTLVL is calculated in the
following steps.

1. 1If the first pending AST is a special kernel mode AST (see
also Sections 5.2.3 and 5.4), ASTLVL becomes 0.
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2. If the process already has an active AST at the same access
mode as the first pending AST, ASTLVL is set to 4. The
existence of an active AST in any access mode is indicated by
setting the corresponding bit in the PCBSB_ASTACT field
(Figure 5-1). Delivery of an AST sets this bit, and
completion of an AST clears it (Section 5.3).

3. If the process has disabled the delivery of any AST in the
access mode of the first pending AST, ASTLVL is also set
to 4. Disabling AST delivery for a particular access mode
requires clearing the corresponding bit of the PCB$B ASTEN
field (Figure 5-1). By default, all access modes are enabled
for AST delivery. The $SETAST system service sets or clears
the PCBSB ASTEN bit corresponding to the access mode of its
caller.

4. 1I1f, for the access mode of the first pending AST, there is no
active AST and the delivery of ASTs is enabled, then the
ASTLVL register is loaded with the value of that access mode
(a value from zero through three).

The value of ASTLVL produced by this algorithm will be examined each
time an REI instruction returns control to the process from interrupt
or exception service routines (such as the scheduler and the pager).
The role of the REI instruction was described in Section 5.1.

5.3 DELIVERING AN AST TO A PROCESS

An AST is delivered to a process when an REI instruction determines
(from the destination access mode and the PR$ ASTLVL register) that a
pending AST is deliverable (Sections 5.1 and 5.2). A software
interrupt is requested at IPL 2. The amount of time before the AST is
actually delivered is dependent upon the interrupt activity of the
system. When IPL finally drops below two, the AST delivery interrupt
service routine will be executed.

5.3.1 AST Delivery Interrupt

Routine SCHSASTDEL (in module ASTDEL) is the IPL 2 interrupt service
routine. Its function 1is to remove the first pending AST from the
queue and dispatch to the appropriate AST routine in the correct
access mode.

SCH$SASTDEL performs the following operations.

1. After raising the IPL to SYNCH, the first AST control block
is removed from the AST queue of the process. If the queue
was empty, the routine immediately exits with an REI
instruction.

2. The removed ACB is tested for a special kernel mode AST
(using ACBSV_KAST in ACBS$B_RMOD). If the AST is a special
kernel AST, a shortened sequence of steps occurs:

a. IPL is dropped from SYNCH to IPL$ ASTDEL (IPL 2).
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b. The special kernel mode routine is dispatched through a
JSB instruction with the ACB address in R5 and the PCB
address in R4.

C. On return from the special kernel mode routine, ASTLVL is
recomputed (Section 5.2.4), and the return to the process
occurs through an REI instruction from IPL 2.

If the AST removed from the queue is not a special kernel
mode AST, then a check is made to confirm that the mode of
the AST is at least as privileged as the destination of the
REI instruction that initiated AST delivery. This 1is
accomplished by checking the saved PSL on the kernel stack.
If the mode of the AST is not correct, the ACB is reinserted
at the head of the queue and the routine exits through the
REI instruction. Similar checks are made for already active
ASTs and for disabled access modes. The corresponding
ACBSB_ASTACT bit is unconditionally set.

If the AST is deliverable, then the following operations are
performed before dispatching to the AST routine.

a. If the ACB is accounted for in the PCBSW ASTCNT quota,
then the count is incremented to show delivery of the AST
and deallocation of the ACB to nonpaged pool.

b. ASTLVL is recomputed because the removal of the first ACB
alters the state of the AST queue.

C. A kernel mode AST does not require changing access mode,
and the appropriate stack 1is already active. For
executive, supervisor, and user mode ASTs, however, the
inactive stack pointer is obtained.

d. An argument list (described in the next section) is built
on the stack of the AST's access mode.

e. For ASTs for the outer three access modes, a PC/PSL pair
of longwords is pushed onto the kernel stack. The stored
PC is the location EXE$ASTDEL, the AST dispatcher. The
stored PSL contains the access mode in which the AST is
to be delivered in both its current mode and previous
mode fields.

f. The ACB is deallocated and returned to nonpaged dynamic
memory.

g. EXESASTDEL executes in the access mode of the AST. For
kernel mode, this merely requires dropping the IPL to
zero. For the other access modes, transfer of control
and change of access mode is accomplished through an REI
instruction, the only way to reach a less privileged
access mode (Figure 1-4). (The PC and PSL used by the
REI instruction are described above in item 4e.) A CALLG
instruction is executed, transferring control to the AST
procedure, with the argument pointer (AP) pointing to the
argument list.
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5.3.2 Argument List

User-written ASTs are procedures, which means that they can be written
in any language. If they are written in assembly language, they must
begin with an entry mask and return control to their caller (the AST
dispatcher) with a RET instruction.

Figure 5-2 shows the argument list passed to an AST procedure by the
interrupt service routine, ASTDEL. The AST parameter is obtained from
the ACB where it was initially stored by a system service such as
$QI0, S$SETIMR, or $DCLAST. The parameter was originally an argument
to that system service. The interpretation of the AST parameter is
the responsibility of the original <calling routine and the AST
procedure.

] 5 <€— AP

ASTPRM
SAVED RO
SAVED R1
SAVED PC
SAVED PSL

Figure 5-2 Argument List Passed to AST by Dispatcher

The general purpose registers, RO and Rl, are saved in the argument
list because the procedure calling convention does not preserve the
values of these registers. The asynchronous nature of ASTs implies
that the RO and Rl contents are unpredictable and cannot be destroyed.
The registers are saved and restored by the AST delivery mechanism.

The saved PC and PSL values are the register contents originally saved
when the IPL 2 interrupt was initiated by the hardware. The values
are normally the pair that was about to be used by the original REI
instruction requesting the AST delivery.

5.3.3 AST Exit Path

When the AST routine issues the RET instruction, control 1is returned
to the 1location EXESASTRET in the access mode of the AST. The call
frame, but not the argument list, was removed from the current stack
by the RET instruction. The argument list remains because a CALLG
rather than a CALLS instruction was used to execute the AST routine.
The following steps then occur.

1. The argument count and the AST parameter are removed from the
stack, leaving the RO, R1l, PC, and PSL values.

2. A
CHMK #ASTEXIT
instruction is executed, invoking the change-mode—-to-kernel
system service dispatcher (described 1in Chapter 3). The

service code of zero (ASTEXIT = 0) causes the normal kernel
mode dispatching mechanism to be bypassed.
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Instead, while in kernel mode,
e the IPL is raised to SYNCH,

e the appropriate PCB$B ASTACT bit is cleared to signal AST
completion, and

e the ASTLVL value is recomputed.

These fields can only be written from kernel mode. This is
why it is necessary for the AST dispatcher to reenter kernel
mode after the AST returns control to the dispatcher and
before the AST delivery interrupt is dismissed.

An REI instruction, still in module CMODSSDSP, drops the 1IPL
to zero, and returns the access mode to that of the AST.

Code, in the module ASTDEL, resumes at the previous access
mode and IPL 0 by

e restoring the saved RO and Rl values, and
e issuing another REI instruction.

This REI instruction returns control to the access mode and
location originally interrupted by AST delivery.

Note that the REI instructions in CMODSSDSP and ASTDEL may cause

another

IPL 2 interrupt to occur, depending upon the ASTLVL value and

the access mode transitions.

5.4 SPECIAL KERNEL ASTS

Special kernel mode ASTs are different from "normal" ASTs in several
major ways:

1.

The ASTs represent unsolicited or involuntary system actions
that must occur in the context of the process. These actions
are frequently requested when the process 1is not currently
executing.

The special kernel mode AST routines are dispatched at 1IPL 2
and execute at that 1level or higher. Synchronization is
provided by the interrupt mechanism itself, rather than
requiring additional PCB$B ASTACT and PCBSB ASTEN bits. Only
one special kernel mode AST can be active at any moment
because the AST delivery interrupt is blocked.

The special kernel mode AST routines are invoked by a JSB
instruction rather than a CALLG instruction. There is no
argument list (the PCB address is in R4 and the ACB address
is in R5).

The AST routine is responsible for the deallocation of the
ACB (to nonpaged pool) (For normal ASTs, this deallocation is
done by the AST delivery routine.)

The return from the AST routine (with an RSB instruction)
passes control to an REI instruction in module ASTDEL. This
instruction attempts to pass control to the originally
interrupted PC/PSL pair. IPL will drop from two to zero at
the same time.

5-9
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The next four sections briefly describe four examples of the special
kernel mode AST mechanism.

5.4.1 1I/0 Postprocessing in Process Context

Part of the sequence of completing an I/0 request involves the
delivery of a special kernel mode AST to the requesting process. 1I/0
postprocessing is described in the VAX/VMS Guide to Writing a Device
Driver. This request 1is made by the IPL 4 (I/O post processing)
interrupt service routine by queuing the former I/O request packet as
an ACB. The operations performed by the I/O completion AST routine
are those that must execute in process context, particularly those
that reference process virtual addresses. The primary operations
(executed at IPL 2) are the following.

1. For buffered read I/0 operations only, the data is moved from
the system buffer to the user buffer, and the system buffer
is deallocated to nonpaged dynamic memory.

2. The buffered or direct I1/0 count field of the process header
is incremented for accounting information.

3. If a user diagnostic buffer was specified, the diagnostic
information is moved from the system diagnostic buffer before
it is deallocated.

4. The channel control block (in the control region) is updated
to show I/0 completion. This may make the channel idle.

5. If an I/O status block (IOSB) was specified, the IOSB is
written from information in the I/0 request packet.

6. If an AST was specified with the $QIO request, then the
ACBSV QUOTA bit was set 1in the IRP. The AST procedure
address and the optional AST parameter were originally stored
in the IRP (now an ACB). The former IRP is queued to the
process again in the access mode of the requestor.

7. Otherwise, the IRP/ACB is deallocated to nonpaged dynamic
memory.

5.4.2 Process Suspension

When a $SUSPND system service request specifies a process other than
the requestor, the suspend mechanism requires a special kernel mode
AST to enter the context of the target process.

When the special kernel mode AST is delivered, the following actions
are performed.

1. The ACB is deallocated to nonpaged dynamic memory.

2. After raising IPL from ASTDEL (IPL 2) to SYNCH, the
PCBSV_RESPEN bit 1is cleared. 1If a resume was pending, then
the resume has precedence. That is, the AST routine exits
without suspending the process (after dropping IPL back to
ASTDEL) .
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3. If no resume was pending, then the process is placed into the
SUSP wait state. The process hardware context is saved with
a SVPCTX instruction (described in detail in Chapter 8). The
process quantum field in the process header is charged with a
voluntary wait interval (determined by the special system
parameter IOTA, described in Chapter 8). Control is passed
to the scheduler at SCH$SCHED to select the next process for
execution.

When the process finally executes again (after a S$RESUME system
service call), the PCB$V_SUSPEN bit is unconditionally cleared and the
process is made computable.

5.4.3 Process Deletion

The major portion of the steps involved in process deletion occur in a
special kernel mode AST routine queued in response to a $DELPRC system
service call. A detailed explanation of process deletion is provided
in Chapter 19. The wuse of the special kernel mode AST mechanism
provides the following benefits.

e Execution as the current process is accomplished by AST
delivery. Nearly all waiting processes are made computable
by AST delivery (Chapter 8). SDELPRC ensures the deletion of
a suspended process by issuing a $RESUME first.

Execution as the current process is required for process
virtual address translation and other operations that require
process context (particularly in obtaining the information
contained in the control region).

e The delivery of deletion ASTs cannot be prevented by the
$SSETAST system service. A process can only avoid deletion by
raising IPL to ASTDEL (IPL 2) or above to prevent all AST
deliveries. Because IPL can only be elevated while in kernel
mode, only privileged processes, or the system acting on
behalf of some process, can explicitly prevent process
deletion.

5.4.4 SGETJPI System Service

The $GETJPI system service is described in Chapter 27. When
information 1is requested for a process other than the requestor, the
target process must execute to establish process context. In

addition, if the target process is outswapped, the enqueuing of the
special kernel mode AST will make the process an 1inswap candidate.
This action brings in both the working set and the process header
(where much of the accounting information is maintained).

In general terms, the $GETJPI AST activity is as follows.
1. An ACB is constructed for a special kernel AST. A system

buffer is also allocated and a pointer to it is placed in the
ACB.
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2. When the special kernel mode AST routine executes in the
context of the target process, the requested information is
moved into the system buffer. (The requests had been encoded
in the ACB.) The ACB is then reset to deliver a special
kernel mode AST to the requesting process.

3. The second special kernel mode AST moves data from the system
buffer 1into a user buffer in the requesting process. Other
actions include

e deallocating the system buffer,
e setting an event flag, and

e delivering an AST in the access mode of the caller, if
requested.

If an AST is delivered, the ACB is used for the third time.
If no AST is delivered, then the ACB is deallocated.

5.4.5 Power Recovery ASTs

A final example of the use of special kernel ASTs occurs in the
implementation of power recovery ASTs, a tool that enables processes
to receive notification that a power failure and successful restart
have occurred. (Power failure and power recovery are described in
Chapter 23.)

When a successful power recovery occurs, all processes that have
established a power recovery AST are notified first with a special
kernel AST. This AST retrieves information from the Pl pointer page
that allows the user-requested AST to be delivered. The AST is
required because Pl space information is only available from process
context.

5.4.6 Other System Use of ASTs

Three other features within the executive are implemented through
ASTs, but these ASTs are not special kernel ASTs. The automatic
working set adjustment that takes place at quantum end (Chapters 8 and
13) and the CPU time limit expiration are both implemented with normal
kernel ASTs. The Force Exit system service (Chapters 9 and 18) causes
a user mode AST to be delivered to the target process

5.5 ATTENTION ASTS

Another category of AST use is the attention AST mechanism. Attention
ASTs are used in association with I/0 operation to notify one or more
processes or routines of a specific (and usually unsolicited) event in
a device.
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5.5.1 Set Attention Mechanism

In order to establish an attention AST for a particular device, the
user must issue a $QIO system service request with the I/0 function
I0S SETMODE (or IO$ SETCHAR for some devices). The kind of attention
AST requested is indicated by a function modifier.

The following steps are provided by the routine COMSSETATTNAST in
module COMDRVSUB. (This routine requires process context and so is
called only from device driver FDT routines.)

1. If the user AST routine address (the $QI0 Pl parameter) is
zero, the request 1is interpreted as a flush attention AST
list request (Section 5.5.3).

2. An expanded ACB (that is, an IRP) is allocated from nonpaged
dynamic memory. The ACB is deducted from the process quota,
PCBS$W_ASTCNT.

3. Information from the I/O request packet (such as the AST
routine entry point, AST parameter, device channel number,
and process ID) is moved into the ACB.

4, The ACB is linked to the unit control block (UCB) of the
associated device in a singly 1linked, 1last-in first-out
(LIFO) list.

5.5.2 Delivery of Attention ASTs

The occurrence of a situation for which attention ASTs have been
defined causes the delivery of all such attention ASTs. The mechanism
of delivery is implemented in the routine COMSDELATTNAST of module
COMDRVSUB. COMSDELATTNAST is wusually invoked by a device driver at
device IPL (IPL 20 through 23), after specifying which 1list of
attention AST fork blocks/ACBs is to be used.

Each ACB is originally formatted as a fork block with the AST fields
located at different offsets. (The first six longwords of the Unit
Control Block pictured in Appendix A of the VAX/VMS Guide to Writing a
Device Driver are the most common example of a fork block.) The
control block contains relevant additional information such as saved
PC, R3, and R4 values, the channel number for the device, and the IPL
value for processing the AST (IPL$S QUEUEAST = IPL 6). During fork
processing, the control block is reformatted into a standard ACB.

When COMSDELATTNAST begins execution, the CPU is usually executing at
device IPL. The queuing of ASTs is an operation using IPL$ SYNCH as a
synchronization mechanism (Chapter 24). Specifically, IPL must be
raised to SYNCH. To accomplish correct synchronization, the IPL 6
fork dispatcher is used.

The following steps summarize the delivery of attention ASTs.
1. At 1IPL 20 through 23, each attention AST fork control
block/ACB is removed from the appropriate list in the reverse
order of declaration. Each block is enqueued to the 1IPL 6
fork queue listhead.

2. The routine invokes the FORK system macro to notify the fork
dispatcher through the IPL 6 software interrupt.

5-13
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3. As the interrupt priority level of the CPU drops below six,
the fork interrupt 1is taken. The IPL$ QUEUEAST fork
dispatcher removes each fork control block from its queue and
passes the control block back to a location in COM$DELATTNAST
at IPL 6.

4. At IPL 6 the fork control block is then reformatted into an
ACB, representing an AST in the access mode of the original
requestor.

5. The ACB is then queued to the process through SCH$QAST (which
will immediately raise IPL to IPLS SYNCH).

5.5.3 Flushing an Attention AST List

The list of attention ASTs is flushed as the result of an explicit
user request, a cancel I/O request, or a deassign channel request for
the associated device.

An explicit user request to flush the attention AST list is performed
as the result of a set attention AST request with an AST routine
address of zero (Section 5.5.1). COMSSETATTNAST then branches to
COMSFLUSHATTNS.

Device drivers can request the flushing of the attention AST 1list by
either 1invoking COMSSETATTNAST with an AST routine address of zero or
by directly invoking COMS$FLUSHATTNS with the channel number of the
device in R6.

COMSFLUSHATTNS performs the following operations.

1. The IPL is raised to the hardware IPL of the device (IPL 20
through 23).

2. As each control block in the attention AST list is found, the
process ID of the process requesting the flushing operation
is compared with the process ID stored in the control block.
An AST control block is retained in the attention AST list if
the process IDs do not match.

3. If the process IDs match, then the channel numbers must
match. One channel number 1is passed in R6 from the flush
request, and the other is in the control block from the
declaration of the AST. If the channel numbers do not match,
then the control block is retained in the attention AST list.
Otherwise, the <control block is removed from the attention
AST list.

4. 1IPL is dropped from device interrupt 1level (IPL 20 through
23).

5. The ASTCNT quota is incremented to indicate deallocation of
the control block.
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6. The control block is deallocated to nonpaged dynamic memory.
This operation requires execution through the fork dispatcher
at IPLS QUEUEAST to ensure proper synchronization with IPL.
(Actual deallocation is done at IPL 11 as described in
Chapter 25.)

7. Processing continues until the entire attention AST list has
been scanned.

5.5.4 Examples in VAX/VMS

Two devices that commonly have attention ASTs associated with them are
terminals and mailboxes. Brief descriptions of the support for
attention ASTs in these device drivers concludes this chapter.

5.5.4.1 Terminal Driver and CTRL/Y Notification - The terminal
10$ SETMODE and I0$ SETCHAR functions may take TIOS$SM_CTRLCAST and
I0SM CTRLYAST function modifiers. When a CTRL/C is typed on a
terminal, the CTRL/C attention AST list is emptied by delivering each
CTRL/C AST associated with the terminal. If no CTRL/C attention AST
is declared, then the CTRL/C is interpreted as a CTRL/Y and the CTRL/Y
AST list is searched instead. If a CTRL/Y is typed, only the CTRL/Y
attention AST list is emptied.

Because the list is emptied each time a CTRL/Y or a CTRL/C is typed,
both CTRL/C and CTRL/Y attention ASTs must be reenabled each time they
are delivered to a process.

5.5.4.2 Mailbox Driver - The IO$M READATTN and IO$M_WRTATTN function
modifiers provide notification of mailbox requests from other
processes. I0$M WRTATTN provides notification of unsolicited input to
a mailbox. IOSM READATTN notifies' the enabling process when any
process issues a read to a mailbox when no message is available.

Multiple attention ASTs of each type may be declared by processes for
the same mailbox. When a condition corresponding to an attention AST
occurs in a mailbox, all ASTs of the appropriate type are delivered.
Only the first process to issue a responding I/0O request will be able
to complete the transfer of data signalled by the attention ASTs.

Read and write attention ASTs must be reenabled after delivery because
the entire attention AST list is delivered (and removed) after each
occurrence of the specified condition.



CHAPTER 6

HARDWARE INTERRUPTS

VMS is an interrupt-driven operating system. It contains a collection
of 1interrupt service routines that execute in response to hardware
interrupts from external devices and internal devices such as the
clock. VMS does not have a software-based central dispatching module
that receives notification of all system events (that is, interrupts)
and decides what to do next. Instead, VMS relies on a
hardware-controlled interrupt dispatching scheme that always forces
the highest priority interrupt on the system to be serviced first.

6.1 HARDWARE INTERRUPT DISPATCHING

The VAX architecture provides 16 hardware interrupt priority levels
(IPL), from IPL 31 down to IPL 16. The top 8 levels are for use by
urgent conditions including serious errors (such as machine check),
the system clock, and power failure. These conditions are discussed
in chapters 7, 10, and 23 respectively. The lower eight 1levels are
used by peripheral devices.

When a peripheral device generates an interrupt, that interrupt is
requested at a particular hardware IPL (fixed for a given device). As
in the case of software interrupts, if the requested IPL value is
higher than the level at which the processor is currently running (as
determined by PSL<20:16>), then the interrupt service routine whose
address is in the selected vector in the System Control Block (SCB) is
entered immediately. Otherwise, the interrupt servige 1is deferred
until IPL drops below the level associated with the interrupt.

When an interrupt is serviced, the current processor status must be
preserved so that the interrupted thread of execution (either
process—based code or an interrupt service routine executing at 1lower
IPL) can continue normally after the interrupt is dismissed. This is
accomplished (by the hardware) by automatically saving the PC and PSL
on the stack. These are later restored with an REI instruction that
dismisses the interrupt. Other elements of the process context, such
as general registers, must be saved and restored by the routine(s)
handling the interrupt. In order to reduce interrupt overhead, no
memory mapping information 1is changed when an interrupt occurs.
Therefore, the instructions and data referenced by an interrupt
service routine must be in system address space.
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Interrupt Dispatching

The following list outlines the primary sequence of events that occur
in interrupt dispatching.

1.

2.

An interrupt is requested.

The current instruction finishes or reaches a well defined
point where the instruction state is completely contained in
the general registers, PC, and PSL (which happens 1in the
string instructions). (Some instructions can also be
interrupted at well defined points such that, after the
interrupt dismissal, they are restarted, rather than
continued.)

The interrupt sequence is initiated by the hardware, pushing
the current PCs and PSL on the stack. VMS uses the interrupt
stack for all hardware interrupt servicing. This is
indicated by placing a 01 1in bits <1:0> of each hardware
interrupt vector in the system control block (Figure 6-1).

Most software interrupts are also serviced on the interrupt
stack. On the other hand, the per-process interrupt
associated with AST delivery and nearly all exceptions are
serviced on the per-process kernel stack.

31 1 0
Address of longword-aligned
interrupt service routine Code SCB vector

Code Meaning

00 Service event on kernel stack unless currently on interrupt stack; in which

case, use interrupt stack.
01 Service event on interrupt stack; if event is an exception, raise IPL to 31.
10 Service event in Writable Control Store (WCS), passing bits <15:2> to micro-

code; it WCS does not exist or is not loaded, the operation is UNDEFINED
(the VAX-11/750 and the VAX-11/780 will HALT).

11 Operation is UNDEFINED (the VAX~11/750 and the VAX-11/780 will HALT).

Figure 6-1 System Control Block Vector Format

A new PC is loaded (from the appropriate SCB vector), and a
new PSL is created (with PSL<20:16> containing the IPL
associated with the interrupt, and the previous access mode,
current access mode, CM, TP, FPD, DV, FU, IV, T, N, Z, and C
bits cleared by the hardware).

The interrupt service routine identified by the PC in the SCB
is executed, and eventually exits with an REI instruction
that dismisses the interrupt.

The PC and PSL are restored by the execution of the REI
instruction, and the interrupted thread of execution (process

or less important interrupt service routine) continues where
it left off.

6-2
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Unlike software interrupt dispatching, there is not a one-to-one
correspondence between hardware IPL and an interrupt service routine
vector in the SCB (Figure 6-2). The SCB contains the addresses of
several interrupt service routines for a given device IPL. Also,
there are no registers corresponding to the Software Interrupt Request
Register (PR$_SIRR) or Software Interrupt Summary Register (PR$ SISR).
The device must continue to request an interrupt until the ©processor
IPL drops low enough so that the interrupt is granted.

SCB (System Control Block)

0 - SCBB
L]
* (physical
°® address
i of start
¢ of SCB)
Various exceptions and
software interrupts
* (Figure 2-1)
offsets .
in .
SCB .
v :
10016 ™\
16 vectors,
IPL 20 one for
interrupts . ? each TR
. number
L]
14016
IPL 21
interrupts o > 16 vectors
L]
18016
. IPL 22 16 vectors
interrupts .
L]
L]
1C016
IPL 23 16 vectors
interrupts .
L]
L]

A second SCB page exists on
the VAX-11/750 for directly
vectored UNIBUS device interrupts

Figure 6-2 System Control Block Vectors for Hardware Interrupts
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6.1.2 System Control Block

The System Control Block (SCB) contains the vectors used to dispatch
(software and hardware) interrupts and exceptions. The starting
physical address of the SCB is found in the System Control Block Base
Register (PR$ SCBB). The size of the SCB varies depending on
processor type. The VAX-11/750 syste