
VAX PL/I Reference Manual
Order Number: M-H952C-TE

AA'

April 1987

This manual defines the VAX PL/I programming language, including the
keywords and the semantic and syntax rules of PL/I statements, attributes,
built-in functions, and other language elements.

Revision/Update Information: This revised manual supersedes the
VAX-11 PL/I Encyclopedic Reference,
Order Number AA-H952B-TE.

Operating System and Version: VMS Version 4.4 and higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX PL/I Version 3.0

First Printing, August 1980
Revised, November 1983
Revised, April 1987

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip­
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1980, 1983, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc­
ument requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASS BUS VMS
DECsystem-I 0 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~llti]lllJmlD DECwriter RSX

ZK3202

This document was prepared using an in-house documentation production
system. All page composition and make-up was performed by TEX, the
typesetting system developed by Donald E. Knuth at Stanford University. TEX
is a trademark of the American Mathematical Society.

Contents

PREFACE

1 PROGRAM STRUCTURE AND CONTENT
1.1 Blocks

1.1.1 Begin Blocks

1.1.2 Procedures

1.2 Statements

1.2.1 Statement Labels

1.2.2 Keywords

1.2.3 Punctuation

1.2.4 Identifiers

1.3 Data and Variables

1.4 Program Text

1.4.1 Program Format

1.4.2 Comments

2 DATA TYPES
2.1

2.2

Summary of Data Types

Arithmetic Data Types

2.2.1 Fixed-Point Binary Data

2.2.2 Fixed-Point Decimal Data

2.2.3

2.2.2.1

2.2.2.2

2.2.2.3

Fixed-Point Decimal Constants • 12

Fixed-Point Decimal Variables • 12

Using Fixed-Point Data in Expressions • 12

Floating-Point Data

2.2.3.1 Floating-Point Constants• 13

2.2.3.2 Floating-Point Variables• 14

2.2.3.3 Using Floating-Point Data in Expressions • 14

2.2.3.4 Floating-Point Data Formats• 14

xxv

1
1

2

2

3

3

4

4

5

6
7
7
7

9
9

10
11

11

13

iii

2.3

2.4

2.2.4 Pictured Data

2.2.4. 1 Pictured Variables • 15

2.2.4.2 Assigning Values to Pictured Variables• 16

2.2.4.3 Extracting Values from Pictured Data • 17

2.2.4.4 Picture Characters • 18

2.2.5 Precision and Scale of Arithmetic Data Types

Character-String Data

2.3.1 Character-String Constants

2.3.2 Character-String Variables

2.3.2. 1 Fixed-Length Character-String Variables• 26

2.3.2.2 Varying-Length Character-String Variables• 27

Bit-String Data

2.4.1 Bit-String Constants

2.4.2

2.4.3

2.4.4

2.4.5

Bit-String Variables

Alignment of Bit-String Data

Bit Strings and Integers

Replication Factor for String Constants

3 AGGREGATES
3.1

3.2

iv

Arrays

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

Structures

3.2.1

3.2.2

3.2.3

Array Declarations

References to Individual Elements

Initializing Arrays

Assigning Values to Array Variables

Order of Assignment and Output for Multidimensional
Arrays

Structure Declarations

Member Attributes

3.2.2.1 Using the LIKE Attribute• 44

3.2.2.2 Using the REFER Option• 45

3.2.2.3 Using the UNION Attribute• 49

Structure-Qualified References

15

23

24

25

25

27

28
29
30
31
32

35
35
36
37

38
39

40
41

42

44

50

3.2.4 Arrays of Structures 52

3.2.4.1 Arrays of Structures That Contain Arrays • 53

3.2.4.2 Connected and Unconnected Arrays• 54

4 DECLARATIONS 55
55

57
4.1

4.2

Declarations Outside of Procedures

Scope of Declarations

5 EXPRESSIONS AND ASSIGNMENTS 59
59
60
60
61

61

62

63
63
65

5.1

5.2

5.3

5.4

Assignment Statement

Operators and Operands

5.2.1 Operators

5.2.2 Operands

Expression Evaluation

Conversion of Operands and Expressions

5.4.1 Derived Data Types for Arithmetic Operations

5.4.2

5.4.3

Built-In Conversion Functions

Implicit Conversion During Assignment

6 PROCEDURES 67
67
68

6.1

6.2

Using Procedures

6.1.1 Statements for Procedures

6.1. 1.1 Specifying Entry Points • 71

6. 1. 1.2 Passing Arguments to Subroutines and Functions • 71

6.1.2

6.1.3
Functions and Function References 72

RETURNS Attribute and Option 73

6.1.4 Parameters and Arguments 75

6. 1.4. 1 Rules for Specifying Parameters • 76

6. 1.4.2 Argument Passing • 78

Calling External Procedures 80

v

6.2.1 Entry Data 82
6.2. 1. 1 Entry Constants • 82

6.2.1.2 Entry Variables• 83

6.2.2 Passing Arguments to Non-PL/I Procedures 84
6.2.2.1 Passing Arguments by Immediate Value• 84

6.2.2.2 Passing Arguments by Reference• 85

6.2.2.3 Passing Arguments by Descriptor • 86

7 PROGRAM CONTROL 89
7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8
7.9

DO Statement

7.1.1 Simple DO

7.1.2 DO WHILE

7.1.3 DO UNTIL
7 .1 .4 Controlled DO

7.1.5 DO REPEAT

BEGIN Statement

END Statement

IF Statement

SELECT Statement

GOTO Statement

7 .6.1 Label Array Constants

7 .6.2 Label Variables

LEAVE Statement

STOP Statement

Null Statement

ENCYCLOPEDIC REFERENCE

vi

89
90
90
91
92
94
95
96
97
98
99

100

101

102

103

103

A 107
A Format Item 107

Abbreviation 109

ABS Built-In Function 110

ABS Preprocessor Built-In Function 110

ACOS Built-In Function 111

%ACTIVATE Statement 111

ACTUALCOUNT Built-In Function 113

ADD Built-In Function 113

Addition 114

ADDR Built-In Function 115

ALIGNED Attribute 116

ALLOCATE Statement 116

ALLOCATION Built-In Function 118

AND Operator 119

AND THEN Operator 120

ANY Attribute 121

ANYCONDITION Condition Name 122

Area 122

AREA Attribute 123

AREA Condition Name 124

Argument 124

Arithmetic Data Types 125

Arithmetic Operators 125

Array 126

Arrays of Structures 137

ASCII Character Set 141

ASIN Built-In Function 141

%Assignment Statement 141

Assignment Statement 142

ATAN Built-In Function 145

ATAND Built-In Function 145

ATANH Built-In Function 146

Attribute 146

vii

AUTOMATIC Attribute 151

B 153
B Format Items 153
BASED Attribute 156
Based Variable 157
Begin Block 168
BEGIN Statement 169
BINARY Attribute 170
BINARY Built-In Function 171
BIT Attribute 171
BIT Built-In Function 172
Bit-String Data 173
Block 178
BOOL Built-In Function 182
BUILTIN Attribute 183
Built-In Function 185
Built-In Subroutine 193
BY Option 194
BYTE Built-In Function 195
BYTE Preprocessor Built-In Function 195

c 196
CALL Statement 196
CEIL Built-In Function 197
CHARACTER Attribute 198
CHARACTER Built-In Function 199
Character-String Data 200
CLOSE Statement 205
COLLATE Built-In Function 206
COLUMN Format Item 206
Comment 208

viii

Common Data Dictionary 209
Comparison Operator 210
Concatenation Operator 210
CONDITION Attribute 211
CONDITION Condition Name 211
Condition Handling 211
Constant 212
CONTROLLED Attribute 213
Controlled Variable 214
CONVERSION Condition Name 216
Conversion of Data 218
COPY Built-In Function 233
COPY Preprocessor Built-In Function 233
COS Built-In Function 234
COSD Built-In Function 234
COSH Built-In Function 235

D 236
Data and Data Types 236
DATE Built-In Function 242
DATE Preprocessor Built-In Function 242
DATETIME Built-In Function 243
DATETIME Preprocessor Built-In Function 243
DEC Multinational Character Set 244
%DEACTIVATE Statement 244
DECIMAL Attribute 245
DECIMAL Built-In Function 246
Declarations 247
%DECLARE Statement 248
DECLARE Statement 249
DECODE Built-In Function 255
DECODE Preprocessor Built-In Function 255
DEFINED Attribute 256

ix

Defined Variable 257
DELETE Statement 259
DESCRIPTOR Attribute 261
DESCRIPTOR Built-In Function 261
Diagnostic Messages 262
%DICTIONARY Statement 262
DIMENSION Attribute 265
DIMENSION Built-In Function 266
DIRECT Attribute 267
DISPLAY Built-In Subroutine 267
DIVIDE Built-In Function 268
Division 268
%DO Statement 269
DO-Group 270
DO Statement 271

E 282
E Format Item 282
EDIT Option 285
%ELSE Keyword 285
ELSE Keyword 286
Embedded Preprocessor 286
EMPTY Built-In Function 286
ENCODE Built-In Function 287
ENCODE Preprocessor Built-In Function 287
%END Statement 288
END Statement 288
ENDFILE Condition Name 289
ENDPAGE Condition Name 290
ENTRY Attribute 292
Entry Data 294
ENTRY Statement 297
ENVIRONMENT Attribute 298

x

%ERROR Statement 300
ERROR Preprocessor Built-In Function 301
Error and Condition Handling 301
ERROR Condition Name 302
EVERY Built-In Function 303
EXCLUSIVE OR Operator 303
EXP Built-In Function 304
Exponentiation 304
Expression 304
EXTEND Built-In Subroutine 309
Extent 310
EXTERNAL Attribute 310
External Procedure 311
External Variable 311

F 313
F Format Item 313
%FATAL Statement 316
File 317
FILE Attribute 319
File Data 319
File Description Attributes and Options 320
FILE Option 324
File Organization 324
FINISH Condition Name 328
FIXED Attribute 329
FIXED Built-In Function 330
Fixed-Point Binary Data 331
Fixed-Point Decimal Data 333
FIXEDOVERFLOW Condition Name 335
FLOAT Attribute 336
FLOAT Built-In Function 337
Floating-Point Data 338

xi

G

H

xii

FLOOR Built-In Function

FLUSH Built-In Subroutine

Format Item

Format-Specification List

FORMAT Statement

FREE Built-In Subroutine

FREE Statement

FROM Option

Function

GET Statement

GLOBALDEF Attribute

GLOBALREF Attribute

%GOTO Statement

GOTO Statement

HBOUND Built-In Function

HIGH Built-In Function

IDENT Option

Identifier

%IF Statement

IF Statement

%INCLUDE Statement

INDEX Built-In Function

INDEX Preprocessor Built-In Function

%INFORM Statement

INFORM Preprocessor Built-In Function

INITIAL Attribute

343
343
344
348
354
355
355
356
357

359
359
368
369
369
370

373
373
373

374
374
374
375
376
377
379
379

380
380
381

INPUT Attribute 384
Input/Output Processing 384
INT Built-In Function 385
INT Pseudovariable 387
Integer Data 389
INTERNAL Attribute 390
Internal Procedure 390
Internal Representation of PL/I Data 391
Internal Variable 399
INTO Option 399
Iteration Factor 400

K 401
Key 401
KEY Condition Name 401
KEV Option 402
KEYED Attribute 403
KEVFROM Option 403
KEYTO Option 404
Keyword 404

L 406
Label 406
LABEL Attribute 411
LBOUND Built-In Function 411
LEAVE Statement 411
Length Attribute 414
LENGTH Built-In Function 414
LENGTH Preprocessor Built-In Function 414
LIKE Attribute 414
LINE Format Item 415
LINE Option 416

xiii

LINE Preprocessor Built-In Function 417

LINENO Built-In Function 417

LINESIZE Option 417

LIST Attribute 418

LIST Option 419

%LIST Statement 419

List Processing 420

Locator Qualifier 422

LOG Built-In Function 424

LOG10 Built-In Function 424

LOG2 Built-In Function 424

Logical Operator 425

LOW Built-In Function 427

M 428
MAIN Option 428

Main Procedure 428

MAX Built-In Function 429

MAX Preprocessor Built-In Function 429

MAXLENGTH Built-In Function 429

MEMBER Attribute 430

MIN Built-In Function 430

MIN Preprocessor Built-In Function 430

MOD Built-In Function 431

MOD Preprocessor Built-In Function 431

Multiplication 433

MULTIPLY Built-In Function 434

xiv

N 436
NEXT_VOLUME Built-In Subroutine 436
%NOLIST Statement 436
NONRECURSIVE Option 437
NONVARVING Attribute 437
NORESCAN Option 438
NOT Operator 438
Nonlocal GOTO 439
%Null Statement 439
NULL Built-In Function 439
Null Statement 440

0 441
Offset 441
OFFSET Attribute 442
OFFSET Built-In Function 443
ON Conditions and ON-Units 443
ON Statement 451
ONARGSLIST Built-In Function 452
ONCHAR Built-In Function 453
ONCHAR Pseudovariable 453
ONCODE Built-In Function 453
ONFILE Built-In Function 454
ONKEV Built-In Function 454
ONSOURCE Built-In Function 455
ONSOURCE Pseudovariable 455
OPEN Statement 456
Opening a File 457
Operator 461
OPTIONAL Attribute 464
OPTIONS Option 464
OR Operator 465
OR ELSE Operator 466

xv

p

xvi

OTHERWISE Keyword

OUTPUT Attribute

OVERFLOW Condition Name

P Format Item

%PAGE Statement

PAGE Format Item

PAGE Option

PAGENO Built-In Function

PAGENO Pseudovariable

PAGESIZE Option

PARAMETER Attribute

Parameter Descriptor

Parameters and Arguments

Picture

PICTURE Attribute

Pointer

POINTER Attribute

POINTER Built-In Function

POSINT Built-In Function

POSINT Pseudovariable

POSITION Attribute

Precedence

PRECISION Attribute

Preprocessor

PRESENT Built-In Function

PRINT Attribute

Print File

Procedure

Procedure Block

%PROCEDURE Statement

PROCEDURE Statement

466
467
467

469
469
471
472
472
472
472
473
474
474
474
481
491
495
497
497
498
500
501
501
502
503
508
509
509
510
517
517
524

R

PROD Built-In Function

Program Structure

Pseudovariable

Punctuation Marks

PUT Statement

R Format Item

RANK Built-In Function

RANK Preprocessor Built-In Function

READ Statement

READONLY Attribute

RECORD Attribute

Record Input/Output

RECURSIVE Option

REFER Attribute

REFER Option

Reference

REFERENCE Attribute

REFERENCE Built-In Function

Relational Operator

RELEASE Built-In Subroutine

REPEAT Option

%REPLACE Statement

Replication Factor

RESCAN Option

RESIGNAL Built-In Subroutine

Restricted Expression

%RETURN Statement

RETURN Statement

RETURNS Attribute

RETURNS Option

REVERSE Built-In Function

526
526
528
529

532

542
542

543
543
544
549
549

550
552
553

553
558
563

563
564

566
566
567
567
569
569
570
570

570
571
571

573

xvii

s

xviii

REVERSE Preprocessor Built-In Function

REVERT Statement

REWIND Built-In Subroutine

REWRITE Statement

ROUND Built-In Function

%SBTTL Statement

Scale Attribute

Scope of Names

SEARCH Built-In Function

SEARCH Preprocessor Built-In Function

SELECT Statement

SEQUENTIAL Attribute

SET Option

SIGN Built-In Function

SIGN Preprocessor Built-In Function

SIGNAL Statement

SIN Built-In Function

SINO Built-In Function

SINH Built-In Function

SIZE Built-In Function

SKIP Format Item

SKIP Option

SOME Built-In Function

Space

SPACE_BLOCK Built-In Subroutine

SQRT Built-In Function

Statement

STATIC Attribute

STOP Statement

Storage Class

STORAGE Condition Name

573
574
574
575
578

580
580
580
582
583
583
585
589
590
590
590
590
591
591
592
592
595
595
596
596
596
597
597

605
605
605
609

Storage Sharing 609
STREAM Attribute 610
Stream Input/Output 611
STRING Built-In Function 621
String Handling 622
STRING Option 624
STRING Pseudovariable 625
STRINGRANGE Condition Name 626
Structure 627
STRUCTURE Attribute 633
Subroutine 633
SUBSCRIPTRANGE Condition Name 633
SUBSTR Built-In Function 634
SUBSTR Preprocessor Built-In Function 634
SUBSTR Pseudovariable 635
SUBTRACT Built-In Function 636
Subtraction 637
SUM Built-In Function 638
SYSIN Default File 638
SYSPRINT Default File 639

T 640
TAB Format Item 640
TAN Built-In Function 641
TAND Built-In Function 642
TANH Built-In Function 642
Terminal Input/Output 642
THEN Keyword 646
TIME Built-In Function 646
TIME Preprocessor Built-In Function 646
% TITLE Statement 647
TITLE Option 647
TO Option 648

xix

u

v

xx

TRANSLATE Built-In Function

TRANSLATE Preprocessor Built-In Function

TRIM Built-In Function

TRIM Preprocessor Built-In Function

TRUNC Built-In Function

TRUNCATE Attribute

UNALIGNED Attribute

UNDEFINEDFILE Condition Name

UNDERFLOW Condition Name

UNDERFLOW Option

UNION Attribute

Union

UNSPEC Built-In Function

UNSPEC Pseudovariable

UNTIL Option

UPDATE Attribute

User-Generated Diagnostic Messages

VALID Built-In Function

VALUE Attribute

VALUE Built-In Function

Variable

VARIABLE Attribute

VARIABLE Option

VARIANT Preprocessor Built-In Function

VARYING Attribute

VAXCONDITION Condition Name

VERIFY Built-In Function

VERIFY Preprocessor Built-In Function

648
648
650
650
652
653

654
654
654
656
657
657
658
660
661
662
663
664

666
666
667
668
669
670
670
671
672
673
673
673

w

x

z

%WARN Statement

WARN Preprocessor Built-In Function

WHEN Keyword

WHILE Option

WRITE Statement

X Format Item

ZERODIVIDE Condition Name

APPENDIX A ALPHABETIC SUMMARY OF KEYWORDS

APPENDIX B DEC MULTINATIONAL CHARACTER SET

APPENDIX C COMPATIBILITY WITH PL/I STANDARDS
C.1

C.2

Relation to the 1981 PL/I General-Purpose Subset

C.1 .1 Program Structure

C.1.2 Program Control

C.1.3

C.1.4

C.1.5

C.1.6

Storage Control

Input/Output

Attributes and Pictures

Built-In Functions and Pseudovariables

C.1 . 7 Expressions

198x PL/I General-Purpose Subset Features Supported

C.2.1 Lexical Constructs

C.2.2

C.2.3

Program Control

Storage Control

675
675
675
676
676
677

681
681

683
683

A-1

B-1

C-1
C-2

C-2

C-3

C-3

C-3

C-4

C-4

C-4

C-5

C-5

C-5

C-5

xxi

C.3

C.4

C.5

C.6

C.2.4

C.2.5

C.2.6

C.2.7

Input/Output

Attributes and Pictures

Program Control

Built-In Functions and Pseudovariables

C.2.8 Expressions

Full PL/I Features Supported

C.3.1 Program Structure

C.3.2

C.3.3

C.3.4

Program Control

Storage Control

Attributes and Pictures

C.3.5 Built-In Functions and Pseudovariables

C.3.6 Expressions

Nonstandard Features from Other Implementations

C.4.1 Preprocessor

C.4.2 LIKE Extension

C.4.3 Declarations

VAX PL/I-Specific Extensions

C.5.1 Procedure-Calling and Condition-Handling
Extensions

C.5.2 Support of VAX Record Management Services

C.5.3 Miscellaneous Extensions

Implementation-Defined Values and Features

APPENDIX D MIGRATION NOTES

xx ii

D.1

D.2

D.3

0.4

Keywords Not Supported

Miscellaneous Differences

Implicit Conversions

Printing a Hexadecimal Memory Dump

C-6

C-6

C-7

C-7
C-7

C-7

C-8

C-8

C-8

C-8

C-8

C-9
C-9
C-9
C-9

C-10

C-10

C-10

C-11

C"12

C-12

D-1
D-2

0-5

D-6

D-7

APPENDIX E
E.1

E.2

E.3

E.4

E.5

E.6

INDEX

FIGURES
A-1

A-2

A-3

B-1

B-2

B-3

B-4
B-5

D-1

D-2

E-1

F-1

G-1

L-1

L-2

0-1

P-1

P-2

P-3

P-4
P-5

S-1

VAX PL/I LANGUAGE SUMMARY
Statements

Attributes

Expressions and Data Conversions

Built-In Functions

Pseudovariables

Built-In Subroutines

Specifying Array Dimensions

Specifying Elements of an Array

Connected and Unconnected Arrays

Using the ALLOCATE Statement

Using the READ Statement with a Based Variable

Using the ADDR Built-In Function

Relationship of Block Activations

Example of the BOOL Built-In Function

An Overlay Defined Variable

Forms of the DO Statement

External Variables

Internal Representation of Fixed-Point Binary Data

Forms of the GET Statement

Creating a Linked List

Processing a Linked List

Search Path for ON-Units

Parameters and Arguments

Invoking an Internal Procedure

Invoking an External Procedure

Structure of a PL/I Program

Forms of the PUT Statement

Scope of Internal Names

E-1
E-1

E-8

E-10

E-13

E-20

E-21

128

131

140

163

165

168

180

184

258

272

312

333

360

421

422

450

475

512

513

527

533

583

xx iii

TABLES
5-1 Built-In Functions for Conversions Between Arithmetic and

Nonarithmetic Types 64

A-1 VAX PL/I Keyword Abbreviations 109

A-2 Alphabetic Summary of PL/I Attributes 148

B-1 Summary of PL/I Built-In Functions 187

B-2 Summary of PL/I Built-In Subroutines 194

C-1 Contexts in Which PL/I Converts Data 220

D-1 Implied Attributes for Computational Data 238

E-1 Derived Types 307

E-2 Converted Precision as a Function of Target and Source
Attributes 307

F-1 Summary of File Description Attributes 320

F-2 File Access Attributes 321

F-3 VAX Floating-Point Types 340

F-4 Floating-Point Types Used by PL/I 341

F-5 Summary of PL/I Format Items 344

0-1 Summary of ON Conditions 445

0-2 File Description Attributes Implied when a File is Opened 458

0-3 Operators 462

0-4 Precedence of Operators 464

P-1 ASCII Representation of Encoded-Sign Digits 487

P-2 Picture Characters 491

P-3 Summary of PL/I Preprocessor Built-In Functions 507

P-4 Punctuation Marks Recognized by PL/I 530
R-1 Attributes and Access Modes for Record Files 550

S-1 Summary of PL/I Preprocessor Statements 599

S-2 Summary of PL/I Statements 603

xx iv

Preface

• Acknowledgment
The VAX PL/I programming language is an implementation of the PL/I
General-Purpose Subset, ANSI X3.74-1981.

• How to Use This Manual
This manual provides VAX PL/I language reference information. The first
part of the manual consists of chapters on VAX PL/I language concepts.
The second part is an encyclopedia of VAX PL/I; it is arranged by topical
entry in alphabetic order. (You can use the running feet on the bottoms
of the pages to find an entry, as with a dictionary, without resorting
to the Table of Contents, when you are familiar with the entries.) You
can find the entry for each specific language element by looking up the
keyword (in all-capital letters) for that element (for example, VALUE Built­
In Function, SELECT Statement, REFER Option, and ENTRY Attribute).
In addition, there are entries for general topics. The general topics fall into
the following approximate categories:

• Arithmetic, relational, and logical operations (for example, Addition,
Exponentiation, and Precedence)

• I/O and other tasks (for example, Terminal Input and Output, List
Processing, and String Handling)

• Data and data types (for example, Bit-String Data, Conversion of Data,
and Entry Data)

• Language elements (for example, Argument, Controlled Variable,
Keyword, Logical Operator, and Subroutine)

• Miscellaneous topics (for example, File Organization, Program
Structure, and User-Generated Diagnostic Messages)

Each entry has cross-references to any related entries.

• Who Can Use This Manual
This manual is intended for use by all programmers who are designing
or implementing applications using VAX PL/I. They should already
understand the concepts of programming in PL/I and be familiar with the
keywords and topics that will be searched for information. This manual is
not, therefore, suitable for use as a strictly tutorial document.

xxv

xxvi

• •ere ta Find More lllformation
The companion document to this manual is the VAX PL/I User Manual.
The first part of the user manual contains an overview of the PL/I lan­
guage and its implementation for the VAX computer, and is recommended
for all programmers who are not familiar with PL/I or who need infor­
mation on the extensions made to PL/I for the VAX computer. The VAX
PL/I User Manual gives information on program development with the
VMS command language, the extensive I/O capabilities provided in VAX
PL/I, and programming techniques available to PL/I programs executing
under the exclusive control of the VMS operating system.

• Conventions Used in This Document

Enter string> Abed IRETI

DECLARE X FIXED;

x = 5;

option, ...

quotation mark
apostrophe

[OPTIONS (option, ...)]

A symbol with a 1- to 3-character abbrevi­
ation indicates that you press a key on the
terminal, for example, IRETI or Iese I.
The symbol ICTRL/xl indicates that you press
the key 0 x" while holding down the key
labeled CTRL, for example, CTRL/C.

In computer dialogues, the user's response
to a prompt is printed in red ink.

Vertical ellipses indicate that not all of the
text of a program or program output is
illustrated. Only relevant material is shown
in the example.

Horizontal ellipses indicate that additional
parameters, options, or values can optionally
be entered. When a comma precedes an
ellipsis, it indicates that successive items
must be separated by commas.

The term quotation mark is used only to
refer to the double quotation mark character
("). The term apostrophe is used to refer to
the single quotation mark character (').

Except in VMS file specifications, square
brackets indicate that a syntactic element is
optional and you need not specify it.

[LIST]
EDIT

Brackets surrounding two or more stacked
items indicate conflicting options, one of
which can optionally be chosen.

{ EXTERNAL }
INTERNAL

Braces surrounding two or more stacked
items indicate conflicting options, one of
which must be chosen.

FILE (file-reference) An uppercase word or phrase indicates a
keyword that must be entered as shown; a
lowercase word or phrase indicates an item
for which a variable value must be supplied.
This convention applies to format (syntax)
lines, not to code examples.

A A delta symbol is used in some contexts to
indicate a single ASCII space character.

• Technical Assumptions

All descriptions of the effects of executing statements and evaluating
expressions assume that the initial procedure activation of the program is
through an entry point with OPTIONS(MAIN).

It is further assumed that any non-PL/I procedures called by the program
follow all conventions of the PL/I run-time environment. Except as
explicitly noted, descriptions of 1/0 statements do not cover the effects
of VAX-specific options. For details on mixed-language programming and
VAX-specific options, see the VAX PL/I User Manual.

• Technical Changes
Technical changes made since VAX PL/I Version 2.0 are summarized
below. Specific information on each new feature is found in the individual
entries in this manual.

• New attributes:

CONDITION defines an identifier as a condition name.

DESCRIPTOR (VAX PL/I specific) requests that an argument be
passed to an external non-PL/I procedure by descriptor.

DIMENSION indicates that a variable is an array and defines the
number and extent of its dimensions.

LIST (VAX PL/I specific) specifies that a parameter can accept a
list of actual parameters, of arbitrary length.

MEMBER specifies that an item is a member of a structure.

xxvii

xxviii

NONVARYING specifies that the length of a string is nonvarying.

OPTIONAL (VAX PL/I specific) specifies in the declaration of a
formal parameter that the actual parameter need not be specified
in a call.

PARAMETER indicates that a variable will be assigned a value
when it is used as an argument to a procedure.

PRECISION specifies the number of digits in an arithmetic vari­
able and, with fixed-point data, the number of fractional digits.

REFERENCE (VAX PL/I specific) requests that an argument be
passed to an external non-PL/I procedure by reference.

STRUCTURE specifies that a variable is a structure variable.

TRUNCATE (VAX PL/I specific) specifies, in the declaration of a
formal parameter, that the actual parameter list can be truncated
at the point where this argument should occur.

UNALIGNED specifies nonalignment for a bit-string variable in
storage.

• New built-in functions:

ACTUALCOUNT returns the number of parameters a procedure
was called with.

DATETIME returns the system date and time in the form
CCYYMMDDHHMMSSXX.

DECODE converts a character string to an integer in a specified
radix.
EMPTY returns an empty area value for use in initializing areas.

ENCODE converts an integer to a character string that represents
the integer's value in a specified radix.

EVERY returns the result of a logical AND operation on the bits in
a bit string ('l'B if all bits are 'l 'B).

MAXLENGTH returns the maximum possible length of a varying
character string.
ONCHAR returns the character that caused a CONVERSION
condition to be raised. (ONCHAR is also a pseudovariable.)

ONSOURCE returns the file containing the ONCHAR char­
acter that caused a CONVERSION condition to be raised.
(ONSOURCE, like ONCHAR, is also a pseudovariable.)

PRESENT returns 'l'B if the parameter in question was specified
in a call.

PROD returns the arithmetic product of all the elements in an
array.

REFERENCE forces its argument to be passed by reference to a
non-PL/I procedure.
REVERSE reverses the characters or bits in a string.

SOME returns the result of a logical OR operation on the bits in a
bit string ('l'B if one or more of the bits are 'l'B).

SUBTRACT returns the value of x - y, with the specified precision
and scale factor.

SUM returns the arithmetic sum of all the elements in an array.

VALUE forces a parameter to be passed by value.

• Enhanced built-in functions:

DESCRIPTOR now overrides a parameter declaration.

INDEX, SEARCH, and VERIFY have a new optional parameter
specifying the starting position in a string.

HBOUND, LBOUND, and DIMENSION can now be specified
with only the array parameter; and if they are so specified, the
dimension parameter defaults to 1.

• New built-in subroutines:

- FREE unlocks all the locked records in a file.

- RELEASE unlocks a specified record in a file.

• New conditions:

AREA responds to an error detected during an operation on an
area.

CONDITION responds to programmer-defined conditions.

CONVERSION responds to a data conversion error from
CHARACTER to an arithmetic data type or bit string.

STORAGE responds to an error raised by LIB$GET_ VM (most
commonly occurring when virtual memory is exhausted).

STRINGRANGE responds to a substring reference beyond the
length of the string.

SUBSCRIPTRANGE responds to array references with out-of­
bound subscripts.

xx ix

xxx

• New operators:

AND THEN (&:) performs a Boolean truth operation similar to
AND (&) except that the second operand is evaluated if and
only if the first operand, which is always evaluated first, is true
('l'B); also unlike AND, the AND THEN operator does not do a
bit-by-bit operation when the two operands are bit strings.

EXCLUSIVE OR (dyadic or infix ") performs a bit-by-bit
EXCLUSIVE OR operation on two bit strings, or a Boolean
EXCLUSIVE OR truth operation on expressions in an IF statement.

OR ELSE (I:) performs a Boolean truth operation similar to OR
(I) except that the second operand is evaluated if and only if
the first operand, which is always evaluated first, is false ('O'B);
also unlike OR, the OR ELSE operator does not do a bit-by-bit
operation when the two operands are bit strings.

• Enhanced statement:

SELECT now has a second form that extends its usefulness: the
SELECT (expression) form.

• Miscellaneous:

A comma list is now allowed on the left-hand side of an assign­
ment statement, with the ALLOCATE and FREE statements, with
the OPEN and CLOSE statements, and with the ON and REVERT
statements.

The ANY CHARACTER(*) attribute (VAX PL/I specific) indi­
cates that a parameter can take either a character descriptor or a
character varying descriptor.

The /GJLOAT qualifier is no longer required for using H­
floating numbers.

The %GOTO preprocessor statement now allows movement either
forward or backward in a program's text.

The ALLOCATE and FREE statments have a new IN option that
takes a reference to an area, and language-supported storage
allocation in areas is available.

The ENTRY and PROCEDURE statements have a new
NONRECURSIVE option to indicate (for program documentation
purposes) that the procedure will not invoke itself.

The ON statement has two new options, SNAP and SYSTEM,
which invoke the debugger and invoke system handling of a
condition, respectively.

The UNION attribute is now propagated across LIKE declarations.

There is now debugger support for %REPLACE constants.

%REPLACE constants can now be used in preprocessor expres­
sions.

The maximum line size after preprocessor text expansion has been
increased from 255 to 32500 characters.

Optimization has been improved.

The LIKE attribute can reference a structure containing LIKE.

An array can have an asterisk (*) as an intialization iteration
factor; for example, DECLARE A(n) ((•)10) initializes all elements
of the array A with the value 10.

The %INCLUDE statement syntax has been extended to allow a
library name in addition to the module name.

Descending keys are now allowed in indexed files.

The MATCH_NEXT keyword is now a synonym for MATCH_
GREATER, and MATCH_NEXT_EQUAL is a synonym for
MATCH_GREATER_EQUAL.

The following technical changes are documented in the VAX PL/I User
Manual.

• Record-locking options

• USER_OPEN ENVIRONMENT option

• Miscellaneous ENVIRONMENT options (REVISION_DATE,
BACKUP_DATE, and OWNER-1D)

• Additional fields returned by the DISPLAY built-in subroutine

• Support for the VAX Source Code Analyzer (SCA)

• Additional definitions for the VMS Run-Time Library _and utility
routines in the system interface library PLI$STARLET (not explicitly
described in the VAX PL/I documentation)

xxxi

1.1 Blocks

Chapter 1

Program Structure and Content

This chapter introduces the following elements of a PL/I program:

• The blocks that make up a program and their effect during program
execution

• The statements that make up a block and the general format and
elements of a PL/I statement

• The PL/I data types

• The text of a PL/I program

Subsequent chapters discuss these topics in more detail. Complete ref­
erence information on these topics is given in alphabetic entries in the
encyclopedia section of this manual.

PL/I is a block-structured language: statements are grouped into blocks.
When control passes to a block, a block activation is created. A block
activation consists of the allocation of storage for some of the variables
declared within that block and information that connects that block to the
previous block.

There are two types of blocks: procedure blocks (usually called procedures)
and begin blocks. A procedure executes only as the result of a specific
request from another procedure or, in the case of the main procedure, as
the result of a RUN command. A begin block is always contained within
a procedure, and executes when control flows into it.

Program Structure and Content 1

1.1.1 Begin Blocks

A begin block is a sequence of statements headed by a BEGIN statement
and terminated by an END statement. In general, you can use a begin
block wherever a single PL/I statement would be valid. In some contexts,
such as an ON-unit, a begin block is the only way to perform several
statements instead of one. A primary use of begin blocks is to localize
variables. Because execution of a begin block causes a block activation,
automatic variables declared within the begin block are local to it, and
their storage disappears when the block completes execution.

Another way to allow your program to perform several statements in
place of one is to use a DO-group (see Chapter 7 and the alphabetic entry
"DO-Group"). You should choose it when possible because it does not
incur the overhead associated with block activation. Use a begin block
when there are declarations present or you require multiple statements in
an ON-unit.

1.1.2 Procedures

A procedure is a sequence of statements (perhaps including begin blocks
and other procedures) headed by a PROCEDURE statement and ter­
minated by an END statement. Unlike a begin block, which executes
when control reaches it, a procedure executes only when it is specifically
invoked. Invocation occurs in two ways:

• The DCL command RUN invokes the main procedure of a PL/I
program. This is either the procedure that has OPTIONS (MAIN) on
its PROCEDURE statement or the first procedure encountered by the
linker.

• Statements within a procedure can invoke other procedures. The
CALL statement invokes a procedure as a subroutine. A function
reference invokes a function, which is a procedure that returns a value
for use in the evaluation of an expression.

A PL/I program must have at least one procedure, the main procedure.
Any procedure, including the main procedure, can contain others; these
are called internal procedures. A procedure that is not contained within
any other is called an external procedure. The main procedure is therefore
always an external procedure.

Except for the main procedure, no procedure executes unless it is invoked
by a CALL statement or a function reference.

2 Program Structure and Content

1.2 Statements

A statement is the basic element of a PL/I procedure. Statements are used
to do the following:

• Define and identify the structure of the program and the data that it
acts upon (possibly including text from other files (see "%INCLUDE
Statement")

• Request specific actions to be performed on data

• Control the flow of execution in a program

The general format of a PL/I statement consists of an optional statement
label, the body of the statement, and a required terminator, the semicolon
(;).

In the encyclopedic section of this manual, each PL/I statement is de­
scribed in the alphabetic entry under the statement's name (such as
"DECLARE Statement"). For an alphabetic summary of all the VAX PL/I
statements, see Table S-2, under the entry "Statement."

1.2.1 Statement Labels

A statement label is optional. Its purpose is to identify a statement so that
the statement can be referred to elsewhere in the program, for example,
as the target of a GOTO statement. A label precedes its statement; it
consists of any valid identifier (see Section 1.2.3) terminated by a colon.
For example:

TARGET: A=A+B;
READ_LOOP: READ FILE (TEXT) INTO (TEMP);

No statement can have more than one label.

Program Structure and Content 3

1.2.2 Keywords

A keyword is a name that has a special meaning to PL/I when used in
a specific context. In context, keywords identify statements, attributes,
options, and other program elements. PL/I keywords are not reserved
words, so it is possible to use them in a program in other than their
keyword context.

PL/I has numerous keywords. A complete table of the VAX PL/I key­
words is in Appendix A, including brief identifications of their uses and
valid abbreviations for the keywords that can be abbreviated.

You can find many of the alphabetic entries in this manual under their
keywords (for example, "DECLARE Statement" and "AUTOMATIC
Attribute").

1.2.3 Punctuatien

PL/I recognizes punctuation marks in statements. The punctuation marks
serve the following two functions:

• They specify arithmetic or other operations to be performed on
expressions.

• They delimit and separate identifiers, keywords, and constants.

For example:

A = B + C;

In this statement, the equal sign (=), the addition operator (+), and the
semicolon (;) delimit the identifiers A, B, and C, as well as define the
operation to be performed. (Chapter 5 describes the effect of the various
operators in expressions.)

Whenever you use a punctuation mark in a PL/I statement, you can
precede or follow the character with any number of spaces (except in the
case of an operator consisting of two characters, like>= or**, which must
be entered without a space between the two characters). For example, the
following two statements are equivalent:

DECLARE (A, B) FIXED DECIMAL (7, 0)

DECL.ARE(A,B)FIIED DECIMAL(7,0);

4 Program Structure and Content

In the second statement, all nonessential spaces are omitted; the paren­
theses and commas are sufficient to distinguish elements in the statement.
The only space required in this statement is the space that separates the
two keywords FIXED and DECIMAL.

For a table of all the punctuation marks recognized by VAX PL/I, see
Table P-3, under the entry "Punctuation."

In addition to punctuation marks and spaces, PL/I accepts tabs and
line-end characters between identifiers, constants, and keywords.

The line-end character is a valid punctuation mark between items in a
PL/I statement except when it is embedded in a string constant, where it
is ignored. For example:

A = 'THIS IS A VERY LONG STRING THAT MUST BE CONTI
NUED ON MORE THAN ONE LINE IN THE SOURCE FILE' ;

This assignment statement gives the variable A the value of the specified
character-string constant, ignoring the line-end character. Note, however,
that any tabs or spaces preceding "NUED" in the example above would be
included in the string.

1.2.4 Identifiers

An identifier is a user-supplied name for a procedure, a statement label, or
a variable that represents a data item. The rules for forming identifiers are
as follows:

• An identifier can have from 1 to 31 characters.

• An identifier can consist of any of the following characters:

The alphabetic letters A through Z and a through z. PL/I converts
all lowercase letters to uppercase when it compiles a source
program. Thus, the identifiers abc, ABC, Abe, and so on, all refer
to the same object.

The numeric digits 0 through 9.

The underscore character (-).

The dollar sign character ($).

• An identifier cannot contain any blanks.

• An identifier must begin with an alphabetic letter, a dollar sign ($), or
an underscore (-). It cannot begin with a numeral.

Program Structure and Content 5

Some examples of valid identifiers are as follows:

STATE
total
FICA_PAID_YEAR_TO_DATE
ROUND1
SS$_UNWIND

1.3 Data and Variables

The statements in a PL/I program process data, generally in the form of
variables that take on different values as the result of program execution.
In VAX PL/I, you usually must declare variables in a DECLARE statement
before you can use them in other statements. Declaring a variable asso­
ciates an identifier with a set of attributes and with a region of storage.
Thus, when you declare a variable you must usually specify one or more
data type attributes to be associated with it. (The concept of attribute is
more basic to PL/I than the concept of data type.) Furthermore, you can
specify how the variable is to be allocated by supplying a storage class
attribute in the declaration.

A few examples of PL/I attributes are BIT, CHARACTER, BINARY,
DECIMAL, FILE, FLOAT, PRINT, UPDATE, and VALUE. For a complete
alphabetic list of the VAX PL/I attributes with their uses, see Table A-1
under the entry "Attribute."

An identifier can refer to a single variable (called a scalar variable) or to
a collection of related variables. Such a collection is called an aggregate.
There are two kinds of aggregate: the array, in which all members have
the same data type and are referenced by relative position; and the
structure, in which the members can have different data types and are
referenced in a hierarchical fashion.

The following chapters provide information on these topics:

• Chapter 2 describes the data types that you can specify for variables.

• Chapter 3 describes aggregates.

• Chapter 4 describes the DECLARE statement and the scope of a
declaration.

6 Program Structure and Content

1.4 Program Text

The text of a PL/I program consists of PL/I statements and comments.
This section discusses the format of program text and gives rules for
comments.

1.4. 1 Program Format

The source text of a PL/I program is freeform. As long as you terminate
every statement with a semicolon (;), individual statements can begin
in any column, be on additional lines, or be written with more than one
statement to a line.

Individual keywords or identifiers of a statement, however, must be
confined to one line. Only a character-string constant (which must be
enclosed in apostrophes) can be on more than one line.

PL/I programs are easier to read and to comprehend if you follow a
standard pattern in formatting. For example:

• Write source statements with no more than one statement per line.

• Use indention to show the nesting level of blocks and DO-groups.

1.4.2 Comments

A comment is an informational tool for documenting a PL/I program. To
insert a comment in a program, enclose it within the character pairs /•
and • /. For example:

/• This is a comment */

Wherever the starting characters (/*) appear in a program, the compiler
ignores all text until it encounters the ending characters (• /). Thus, a
comment can span several lines.

The rules for entering comments are as follows:

• A comment can appear anywhere that a space can appear:

Between any identifiers, keywords, or constants

Preceding or following punctuation marks that normally serve as
delimiters, for example, spaces, tabs, or commas

Program Structure and Content 7

• A comment can contain any character except the pair•/; comments
cannot be nested.

Following are some examples of comments:

A = B + C ; /* Add B and C */

/* ********* START OF SECOND PHASE ********* */

DECLARE/*COUNTER*/A FIXED BINARY (7);

I• This module performs the following steps:
1. Initializes all arrays and data structures.
2. Establishes default condition handlers.

Although complete comments cannot be nested, you can "comment out" a
statement such as the following:

DECLARE EOF BIT(1); /*end-of-file•/

To do this, precede the DECLARE with another /* pair, as follows:

I• DECLARE EOF BIT(1); /•end-of-file•/

The compiler will then ignore all text, including the DECLARE statement
and the second / *, until it reaches the * /.

8 Program Structure and Content

Chapter 2

Data Types

This chapter includes the following topics:

• A brief summary of the data types

• Arithmetic data types, which are used to represent numeric values

• Character-string data, which consists of sequences of ASCII characters

• Bit-string data, which consists of sequences of binary digits (bits)

2.1 Summary of Data Types

VAX PL/I supports the following computational data types:

• The arithmetic data types define values that can be used in arithmetic
computation. They are as follows:

Fixed-point (binary and decimal integers and fractions)

- Floating-point (binary and decimal)

- Pictured (fixed-point data stored in character form)

• Character-string data consists of a sequence of ASCII characters.

• Bit-string data consists of sequences of binary digits.

The data types listed below represent noncomputational program values
that are used within a PL/I program for control. They are described in
subsequent chapters and defined completely in alphabetic entries in the
encyclopedic section of this manual.

• Entry constants and variables are used to invoke procedures through
specified entry points.

Data Types 9

• Label variables and constants provide you with a flexible means of
control within a program.

• File variables and constants provide access to files.

• Pointers represent the location in memory of data, and are used to
access based variables in areas and data in system-allocated buffers.

• Areas are regions of storage in which based variables can be allocated
and freed. Offsets represent the location of a based variable in an
area.

2.2 Arithmetic Data Types

10 Data Types

Arithmetic data types are used for variables on which arithmetic calcula­
tions are to be performed. The arithmetic data types supported by VAX
PL/I are as follows:

• Fixed-point-for binary and decimal data with a fixed number of
fractional digits

• Floating-point-for calculations on very large or very small numbers,
with the decimal point (number of fractional digits) allowed to "float"

• Pictured-for fixed-point decimal data that is stored internally in
character form, with special formatting characters

When you declare an arithmetic variable, you do not always have to define
all its characteristics, or attributes; the PL/I compiler makes assumptions
about attributes that are not explicitly defined. For example:

DECLARE NUMBER FIXED;

The FIXED attribute implies the attributes BINARY(3 l,O). Thus, the
variable NUMBER has the attributes FIXED BINARY(31,0).

For a table giving the implied attributes for computational data, see Table
D-1 under the entry "Data and Data Types."

2.2. 1 Fixed-Point Binary Data

The attributes FIXED and BINARY are used to declare integer variables
and fractional variables in which the number of fractional digits is fixed
(that is, non-floating-point numbers). The BINARY attribute is implied by
FIXED.

For example, a fixed-point binary variable could be declared as follows:

DECLARE X FIXED BINARY(31,0);

The variable X is given the attributes FIXED, BINARY, and (31,0) in this
declaration. The precision is 31. The scale factor is 0, so the number is an
integer.

There is no representation in VAX PL/I for a fixed-point binary constant.
Instead, integer constants are represented as fixed decimal. However, fixed
decimal integer constants (and variables) are converted to fixed binary
when combined with fixed binary variables in expressions. For example:

I = 1+3;

In this example, if I is a fixed binary variable, the integer 3 is represented
as fixed decimal, but PL/I converts it to fixed binary when evaluating the
expression.

Fixed binary variables have a maximum precision of 31, and therefore
fixed binary integers can have values only in the range -2,147,483,648
through 2,147,483,647. An attempt to calculate a binary integer out­
side this range, in a context that requires an integer value, signals the
FIXEDOVERFLOW condition.

2.2.2 Fixed-Point Decimal Data

Fixed-point decimal data is used in calculations where exact decimal
values must be maintained, for example, in financial applications. Fixed­
point decimal data with a scale factor of zero can also be used whenever
integer data is required.

The following sections describe fixed-point constants and variables and
their use in expressions.

Data Types 11

2.2.2.1 Fixed-Point Decimal Constants

A fixed-point decimal constant can have between 1 and 31 of the decimal
digits 0 through 9 with an optional decimal point or sign, or both. If there
is no decimal point, PL/I assumes it to be immediately to the right of the
rightmost digit. Some examples of fixed-point decimal constants are as
follows:

12
4.66
12346.64
-2
.0004
01.

The precision of a fixed-point decimal value is the total number of digits
in the value. The scale factor is the number of digits to the right of the
decimal point, if any. The scale factor cannot be greater than the precision.

2.2.2.2 Fixed-Point Decimal Variables

The attributes FIXED and DECIMAL are used to declare fixed-point
decimal variables. The FIXED attribute is implied by DECIMAL.

If you do not specify the precision and the scale factor, the default values
are 10 and 0, respectively.

Following are two examples of fixed-point decimal declarations:

DECLARE PERCENTAGE FIXED DECIMAL (6,2);
DECLARE TONNAGE FIXED DECIMAL (9);

2.2.2.3 Using Fixed-Point Data in Expressions

12 Data Types

You cannot use fixed-point decimal data with a nonzero scale factor in
calculations with binary integer variables. If you must combine the two
types of data, use the DECIMAL built-in function (described in the entry
HDECIMAL Built-In Function") to convert the binary value to a scaled
decimal value before attempting an arithmetic operation. For example:

DECLARE I FIXED BINARY,
SUM FIXED DECIMAL (10,2);

SUM = SUM + DECIMAL (I);

2.2.3 Floating-Point Data

The floating-point data types provide a way to express very large and very
small numbers, for example, in scientific calculations. All floating-point
calculations are performed on values in one of the VAX binary floating­
point formats. In general, the precision of the result is determined by
the maximum precision of any operands in the operation. The numerical
result of an operation is rounded to the result precision; therefore, the
results of most operations are approximate.

The following sections describe floating-point constants and variables and
their use in expressions.

2.2.3.1 Floating-Point Constants

A floating-point constant can have one or more of the decimal digits 0
through 9 (with an optional decimal point), followed by the letter E and
from one to five decimal digits representing a power of 10. The floating­
point value and the integer exponent can both be signed. The first portion
of the value, to the left of the letter E, is called the mantissa. The value to
the right of the letter E is called the exponent.

Some examples of floating-point constants are as follows:

2E10
-3EB
32E-8
.45632E16

The decimal precision of each of these values is the number of digits in
the mantissa.

If you write a constant without the E and the exponent, it is considered to
be fixed-point decimal. However, you can use such constants anywhere in
expressions involving floating-point data.

Data Types 13

2.2.3.2 Floating-Point Variables

The keyword FLOAT identifies a floating-point variable in a declaration.

A floating-point value can be either binary or decimal. Because the inter­
nal representation of floating-point variables is binary, it is recommended
that you use FLOAT BINARY (which is the default) to declare variables,
unless you need the properties of FLOAT DECIMAL. (Note that the dif­
ference between FLOAT BINARY and FLOAT DECIMAL appears only
when a conversion to another type, such as character for doing 1/0, is
necessary.) In any event, you should declare all floating-point variables
using the same base.

You can optionally specify the precision for a floating-point variable in the
declaration. For example:

DECLARE I FLOAT BINARY(63);

2.2.3.3 Using Floating-Point Data in Expressions

You can use both integer and scaled decimal constants in floating-point
expressions. An arithmetic constant is always converted to the appropriate
internal representation for use in a floating-point operation. The target
type for the conversion depends on the context. For example:

\
DECLARE I FLOAT BINARY (63);
I = I + 1.3;

Here, the constant 1.3 is converted to floating point when the expression
is evaluated.

2.2.3.4 Floating-Point Data Formats

14 Data Types

VAX PL/I supports four types of floating-point values: F, D, G, and H.
The approximate ranges of the VAX floating-point formats are as follows:

Format Range

F 0.29 • 10-38 to 1.7 * 1038

D Same as F but with more precise mantissa

G 0.56 • 10-308 to 0.9 • 10308

H 0.84 • 10-4932 to 0.59 * 104932

For a table summarizing the range of precision for each floating-point
type, see Table F-3, under the entry "Floating-Point Data." For a table

showing how the PL/I compiler selects a floating-point type, see Table
F-4, under the same entry.

2.2.4 Pictured Data

Use pictured data when you want to manipulate a quantity arithmetically
and accept or display its value using a special format. Pictured variables
are especially useful in applications that require values to be shown with
special symbols, such as commas, dollar signs, or debit indicators (DB).

This section discusses the following topics:

• Pictured variables-variables declared with the PICTURE data at­
tribute

• Assigning values to pictured data-the process by which a value is
assigned to a pictured variable or written out with the P format item

• Extracting values from pictured data-the process by which a pictured
value is assigned to other variables or acquired with the P format item

• Picture characters-the special characters that make up a specification
in the PICTURE attribute and in the P format item

Although the formatting possible with pictured data is useful in many
applications, pictured data is much less efficient than fixed-point decimal
data in computations. Therefore, do not use pictured data unless you need
the formatting.

2.2.4.1 Pictured Variables

A pictured variable has the attributes of a fixed-point decimal variable,
but values assigned to it are stored internally as character strings. Such a
character string contains digits representing the variable's numeric value
as well as such special symbols as the dollar sign. When the value of a
pictured variable is written out by, for example, the PUT LIST statement,
the internally stored character string is placed in the output stream. The
value that appears on a line printer or terminal thus contains a fixed-point
decimal number that has been "edited" with the requested special symbols.

A picture specification (or picture) describes both the numeric attributes of
a pictured variable and its output format. A simple picture might look like
this in a DECLARE statement:

DECLARE CREDIT PICTURE '$99999V.99DB';

Data Types 1 5

This statement declares the variable CREDIT as a pictured variable. The
characters within the apostrophes describe its format: Each 9 stands for
any decimal digit; the dollar sign ($) indicates a leading dollar sign; the
V specifies the location of the decimal point; and the DB specifies how a
debit (a negative value) will be shown.

The two assignments

CREDIT = 12443.00;

and

CREDIT = -12443.00;

would look like this on output:

$12443.00

$12443.00DB

/• a positive value (credit) •/

/* a negative value (debit) •/

2.2.4.2 Assigning Values to Pictured Variables

16 Data Types

Assignment of a computational value to a pictured variable is performed
in the following two steps:

1. The value is converted to fixed decimal, with precision and scale as
specified by the picture.

2. The resulting fixed decimal value is edited into the pictured variable.

If PL/I cannot perform one of these steps in a meaningful fashion, an
error occurs. The following examples show two programming errors that
are common in assignments to pictured variables.

CREDIT = '$12443.00';

This example signals the ERROR condition, because the character string
contains a dollar sign and is therefore not convertible to fixed-point
decimal. The value assigned to CREDIT should be either '12443.00' or
simply 12443.00, both of which result in the same value assigned to
CREDIT.

If a negative value is assigned to a pictured variable, the picture must
include one of the sign picture characters (such as DB). For example:

CREDIT = -12443.00;

If the picture of CREDIT did not contain the DB characters, this assign­
ment would signal the FIXEDOVERFLOW condition, because the sign
would be lost.

In some circumstances (for example, with the READ statement), it is
possible to assign a value to a pictured variable that is not valid with
respect to the variable's picture specification. In such cases, the VALID
built-in function (see the entry "VALID Built-In Function") can be used to
validate the contents of the variable.

2.2.4.3 Extracting Values from Pictured Data

When you use a pictured value in an arithmetic context (such as as­
signment to an arithmetic variable), the picture is used to extract the
fixed-point decimal number from the character string that internally repre­
sents the pictured value. Extraction also occurs when you input a pictured
value with the GET EDIT statement and the P format item. If the contents
of the pictured variable or input item do not conform to the picture, an
error occurs.

For example:

DECLARE CREDIT PICTURE '$99999V.99DB';

In the picture for CREDIT, the 9 character specifies the position of a
decimal digit; because the picture contains seven of these, the fixed-point
decimal precision of CREDIT is 7. The V character separates the integral
and fractional digits; because there are two 9 characters to the right of
the V, the scale factor of CREDIT is 2. The V character is unique among
picture characters in that it specifies only a numeric property; it does not
cause a decimal point (or any other character) to appear in the internal
representation of CREDIT. Therefore, a period picture character (.) is
included after the V to ensure that the output value has a decimal point in
the correct place.

The period and dollar sign are always inserted in the internal representa­
tion and the output value regardless of CREDIT'S numeric value.

The picture character DB appears only when the value of CREDIT is
less than zero; otherwise, two spaces appear in the indicated positions.
The DB character also indicates that a value of CREDIT is numerically
negative, so that if CREDIT is later assigned to an arithmetic variable, the
variable will be given a negative value.

Data Types 17

2.2.4.4 Picture Characters

18 Data Types

An individual picture character, and its position in the picture, indicate the
interpretation of an associated position in the pictured value.

Any picture character that can appear more than once in a picture can be
preceded by an iteration factor, which must be a positive integer constant
enclosed in parentheses. For example:

'(4)9'

This picture is the same as the following one:

'9999'

The following paragraphs describe the picture characters.

Decimal Place Character (V)

The V character shows the position of the "assumed" decimal point, or, in
other words, the scale factor for the fixed-point decimal value. It does not
cause a decimal point to appear. (Use the period insertion character for
this purpose.) The following rules apply to the V character:

• Only one V character can appear in a picture.

• If a picture does not contain the V character, the Vis assumed to be at
the right end of the picture.

• If a fixed-point value assigned to a pictured variable has fewer integral
digits than are indicated by the picture characters to the left of the
V, then the integral value of the pictured variable is extended on the
left with zeros. If the assigned value has too many integral digits, the
value of the pictured variable is undefined and the FIXEDOVERFLOW
condition is signaled.

• If a fixed-point value assigned to a pictured variable has fewer frac­
tional digits than are indicated in the picture, then the fractional value
of the pictured variable is extended on the right with zeros. If the as­
signed value has too many fractional digits, then the excess fractional
digits are truncated on the right; no condition is signaled. Thus, if the
V character is the last character in the picture or is omitted, assigned
fixed-point values are truncated to integers.

The following example illustrates the effect of the V character:

DECLARE PRICE PICTURE '$$9V.99',
BAD_PRICE PICTURE '$$9.99';

PRICE = .98; /• Output as $0.98 •/
BAD_PRICE = .98; /* Output as $0.00 •I
PRICE = 98; /* Output as $98.00 •/
BAD_PRICE = 98; /• Output as $0.98 •/

In this example, note that the variable PRICE, which contains the V
character, represents the value properly. The variable BAD_pRICE, which
contains only the period insertion character, has an assumed V character
at the end of the picture, which causes the variable to misrepresent the
value.

Digit Characters (9, Z, *• V)

The characters 9, Z, and Y, and the asterisk character (•) mark the
positions occupied by decimal digits. The number of these characters
present in a picture specifies the number of digits, or precision, of the
fixed-point decimal value of the pictured variable.

• The position occupied by 9 always contains a decimal digit, whether
or not the digit is significant in the numeric interpretation of the
pictured value. Thus, leading zeros at positions occupied by a 9 are
output.

• The position occupied by Z contains a decimal digit only if the digit is
significant in the integral portion of the numeric interpretation; if the
digit is a leading zero, it is replaced by a space.

The Z character must not appear in the same picture with the
asterisk character (•). It must not appear to the right of the
characters 9, T, I, or R nor to the right of a drifting string.

If the Z character appears to the right of the V character, then
all digits to the right of the V must be indicated by Z characters.
Fractional zeros are then suppressed only if all fractional digits are
zero and all of the integral digits are suppressed; in that case, the
internal representation contains only spaces in the digit positions.

• The position occupied by the asterisk character (*) functions identi­
cally with the Z character, except that leading zeros are replaced by
asterisks instead of spaces.

• The position occupied by the Y character contains a decimal digit only
if the digit is not zero. All zeros in the indicated positions, whether
significant or not, are replaced by spaces.

Data Types 19

20 Data Types

Encoded-Sign Characters (T, I, R)

The characters T, I, and Rare encoded-sign characters that can be used
wherever 9 is valid. Each represents a digit that has the sign of the
pictured value encoded in the same position. Only one encoded-sign
character can be used in a picture.

An encoded-sign character cannot be used in a picture that contains one
of the following characters: S, +, -, CR, or DB (described below).

The meanings of the characters are as follows:

• The T character indicates that the position contains an encoded minus
sign if the numeric value is less than zero and an encoded plus sign if
the numeric value is greater than or equal to zero.

• The I character indicates an encoded plus sign if the numeric value
is greater than or equal to zero. Otherwise, the position contains an
ordinary digit.

• The R character indicates an encoded minus sign if the numeric value
is less than zero. Otherwise, the position contains an ordinary digit.

For a table showing the ASCII representation of encoded-sign digits, see
Table P-1, under the entry 0 Picture."

Drifting Characters ($, +, -, S)

The S character and the dollar sign ($), plus sign (+), and minus sign (-)
characters are drifting characters. The drifting characters can be used to
indicate digits, and they also indicate a symbol to be inserted when, for
example, a pictured value is written out by PUT LIST.

• The dollar sign ($) causes a dollar sign to be inserted.

• The plus sign (+) causes a plus sign to be inserted if the numeric
value is greater than or equal to zero.

• The minus sign (-) causes a minus sign to be inserted if the numeric
value is less than zero.

• The S character causes a plus sign to be inserted if the numeric value
is greater than or equal to zero, and a minus sign if the value is less
than zero.

If one of these characters is used alone in the picture, it marks the position
at which a special symbol or space is always inserted, and it has no effect
on the value's numeric interpretation. In this case, the character must
appear either before or after all characters that specify digit positions.

However, if a series of n of these characters appears, then the rightmost
n-1 of the characters in the series also specify digit positions. If the digit is
a leading zero, the leading zero is suppressed, and the leftmost character
"drifts" to the right; the character appears either in the position of the
last drifting character in the series or immediately to the left of the first
significant digit, whichever comes first.

Used this way, the n-1 drifting characters also define part of the numeric
precision of the pictured variable, because they describe at least some of
the positions occupied by decimal digits. For an example of this behavior
by a drifting character (the dollar sign), see the V decimal place character
above.

The following additional rules apply to drifting characters:

• A drifting string is a series of more than one of the same drifting
character. Only one drifting string can appear in the picture; any other
drifting characters can be used only singly and therefore designate
insertion characters, not digits.

• The Z and asterisk (•) cannot appear to the right of a drifting string.

• A digit position cannot be specified (for instance, with a 9) to the left
of a drifting string.

• A drifting string can contain the V character and one of the insertion
characters (defined below).

If the drifting string contains an insertion character, it is inserted
in the internal representation only if a significant digit appears to
its left. In the position of the insertion character, a space appears
if the leftmost significant digit is more than one position to the
right; the drifting symbol appears if the next position to the right
contains the leftmost significant digit.

If the drifting string contains a V character, all digit positions
to the right of the V (the fractional digits) must also be part of
the drifting string. In this case, insignificant fractional digits are
suppressed only when all integral and fractional digits are zeros:
they are replaced by spaces in the internal representation. If any
digit is not zero, all fractional digits appear as actual digits.

Any insertion characters immediately to the right of a drifting
string are considered part of it.

Data Types 21

22 Data Types

Insertion Characters

The insertion characters indicate that characters are inserted between digits
in the pictured value. The insertion characters are the comma (,), period
(.), slash (/), and the space (B). The B character indicates that a space is
always inserted at the indicated position.

The drifting characters also function as insertion characters when used
singly (that is, not as part of a drifting string).

Note that the period (.) does not imply a V decimal place character. See
the example in the description of the decimal place character, above.

The following rules describe insertion by the comma, period, and slash
insertion characters.

• If zero suppression occurs, the insertion character is inserted only in
these cases:

If a significant digit appears immediately to its left
- If the V character appears immediately to its left, and the fractional

part of the numeric value contains significant digits

• To guarantee that the decimal point is in the same position in both
the numeric and character interpretations, the V and period characters
must be adjacent. Note, however, that if the period precedes the V,
then it is suppressed if there are no significant integral digits, even
though all the fractional digits are significant. This property can make
fractions appear to be integers when the internal (character) value is
displayed. Consequently, the period should immediately follow the
V character; it will then be in the correct location and will appear
whenever any fractional digit is significant. The following example
illustrates correct and incorrect placement of the period:

DECLARE NUN PICTURE I zzzv. zz I •

B.AD_NUM PICTURE 'ZZZ.VZZ';
NUMz0.02; /• Output as .02 •/
B.AD_NUM=0.02; /• Output as 02 •/

• Other insertion characters, such as the comma, can be used to separate
the integral and fractional portions of a number. However, the comma
should not be used with GET LIST input, because in that context it
separates different data items in the input stream.

Credit (CR) and Debit (DB) Characters

These picture characters are always specified as the character pairs CR
and DB. If either pair is included, it appears if the numeric value is less
than zero. In each case, the associated positions contain two spaces if the
numeric value is greater than or equal to zero.

The characters are inserted with the same case as used in the picture. If
the lowercase form er is used in the picture, lowercase letters are inserted
in the pictured value; if the combination Cr is used, then Cr is inserted.

The credit and debit characters cannot be combined in one picture, nor
can they be used in the same picture as any other character that specifies
the sign of the value (S, plus sign (+), and minus sign (-) characters). In
addition, they must appear to the right of all picture characters specifying
digits.

2.2.5 Precision and Scale af Arithmetic Data Types

The PRECISION attribute applies to binary and decimal data; the precision
of a fixed-point data item is the total number of decimal or binary digits
used to represent a value. The precision of a floating-point data item is the
number of decimal or binary digits in the mantissa of the floating-point
representation. You can specify the precision in a declaration. You can
also specify the scale, which is the number of digits to the right of the
binary or decimal point, but only when the variable is fixed-point. There
is no scale factor for floating-point variables.

For example:

DECLARE x FIXED DECIMAL(10,3);

This indicates that the value of x has 10 decimal digits, and that 3 of those
are fractional.

The ranges of values you can specify for the precision for each arithmetic
data type, and the defaults applied if you do not specify a precision, are
summarized as follows:

Data Types 23

Data Type Scale Default
Attributes Precision Factor Precision

BINARY FIXED 1 <=p <= 31 <=p 31

BINARY FLOAT 1 <=p <= 113 24

DECIMAL FIXED 1 <=p <= 31 <=p 10

DECIMAL FLOAT 1 <=p <= 34 7

If no scale factor is specified for fixed-point data, the default is zero.

Positive scale factors for fixed binary numbers function the same as scale
factors for fixed decimal numbers. A negative scale factor indicates the
number of fractional bits that are shifted from the left to the right. For a
fixed-point binary number, the scale factor has the effect of multiplying or
dividing the number by a factor of 2.

Even though arithmetic operands can be of different arithmetic types,
all operations must actually be performed on objects of the same type.
Consequently, the compiler may convert operands to a derived type.
Therefore, when you declare a fixed binary number with a scale factor
and assign it a decimal value, the results may not be what you expect.
The reason is that the binary scale factor left-shifts the specified number
of bits to the right of the decimal point. During conversion to a decimal
representation, the difference between the resulting binary number and
its decimal representation is not the equivalent of dividing or multiplying
the decimal number by 10. Instead, the binary number is divided or
multiplied by 2 and then converted to its decimal representation.

In addition, excess fractional digits may be truncated, and no condition is
signaled. Any resulting loss of precision may be difficult to detect because
truncated fractional digits do not signal a condition.

2.3 Character-String Data

24 Data Types

A character string is a sequence of zero or more characters. The value
of a character-string variable can consist of any ASCII characters, to a
maximum length of 32767 characters. (The ASCII characters are the first
128 characters of the DEC Multinational Character Set, given in Appendix
B.)

This section discusses character-string constants and character-string
variables.

2.3.1 Character-String Constants

A character-string constant can consist of any characters in the DEC
Multinational Character Set (see Appendix B). When you use character­
string constants in a program, you must enclose the strings in apostrophes,
as shown in the following examples:

'Total is:'
'Enter your name and age'
'Error -- value is out of range'

To specify a string containing a literal apostrophe, use two apostrophes
within the string. For example:

'Life isn' 't fair'

When a character string that has embedded apostrophes is specified as
shown above, the final result contains only a single apostrophe.

Note that the quotation mark (") is not a legal delimiter for PL/I character
constants.

2.3.2 Character-String Variables

The CHARACTER keyword identifies a character-string variable in a
declaration. The addition of the VARYING keyword indicates a varying­
length character-string variable. An optional number in parentheses
specifies the length of the variable, that is, the number of bytes needed to
contain its value. The maximum is 32767. The length attribute specifies
either the length of all values of the variable (fixed-length strings) or the
maximum length of a value of the variable (varying-length strings). If the
length is not specified, PL/I uses the default length of one character, or
byte. The rules for specifying the length are as follows:

•

•

For a static variable declaration, the length must be an integer con­
stant.

In the declaration of a parameter or in a parameter or returns de­
scriptor, the length can be specified as an integer constant or as an
asterisk (*). The resulting string is fixed length unless VARYING is
also specified.

Data Types 25

• For an automatic, based, or defined variable, the length can be
specified as an integer constant or as an expression. In the case of
automatic or defined variables, the expression must not contain any
variables or functions that are declared in the same block, except for
parameters.

If specified, n must immediately follow the keyword CHARACTER and
must be enclosed in parentheses.

2.3.2.1 Fixed-Length Character-String Variables

2 6 Data Types

For a particular allocation of a fixed-length character-string variable, all
its values have the same length. When a program assigns a value to a
fixed-length character-string variable, however, the value is not always
exactly the same as the length defined for the variable. Depending on the
size of the value, PL/I does the following:

• If the value is smaller than the length of the character string, PL/I
pads the value with spaces on the right. For example:

DECLARE STRING CHARACTER (10);
STRING = 'ABCDEF';

The final value of the variable STRING is 'ABCDEF ',that is, the
characters ABCDEF followed by four space characters.

• If the value is larger than the length of the variable, PL/I truncates
the value on the right. For example:

DECLARE STRING CHARACTER (4);
STRING = 'ABCDEF ' ;

Here, the final value of STRING is 'ABCD', that is, the first four
characters of the value 'ABCDEF'.

2.3.2.2 Varying-Length Character-String Variables

In a varying character-string variable, the length is not fixed. The length
specified in the declaration of the variable defines the maximum length
of any value that can be assigned to the variable. Each time a value is
assigned, the current length changes. For example:

DECLARE NAME CHARACTER (20) VARYING;
NAME = 'COOPER';
NAME = 'RANDOM FACTOR';

The declaration of the variable NAME indicates that the maximum length
of any character-string value it can have is 20. The current length becomes
6 when NAME is assigned the value 'COOPER'; the length becomes 13
when NAME is assigned the value 'RANDOM FACTOR'; and so on.

When a varying character string is assigned a value with a length greater
than the maximum defined, the value is truncated on the right.

The initial length of an automatic varying-length character-string variable
is undefined unless the variable is initialized.

You can use the LENGTH built-in function to determine the current
length of any string, and the MAXLENGTH built-in function to determine
the maximum length (see the entries "LENGTH Built-In Function" and
"MAXLENGTH Built-In Function").

2.4 Bit-String Data

A bit string consists of a sequence of binary digits, or bits. It can be used
as a Boolean value, which has one of two states: true (if any bit is 1) or
false (if all bits are 0).

Like a fixed-length character string, a bit string has a fixed length de­
fined in the declaration or specified by the number of bits in a bit-string
constant. The maximum length of any bit string is 32767 bits. Bit-string
variables cannot be declared with the VARYING attribute.

Sophisticated applications that depend on the internal representation of
bit strings and other types of data may not be directly transportable from
other PL/I implementations to VAX PL/I. In VAX, bit strings are stored
in memory with the leftmost bit (as represented by PUT LIST) in the
lowest memory location and bits following the leftmost in successively
higher memory locations. This representation of a bit string by PUT LIST
is reversed with respect to a conventional picture of memory locations, in
which higher locations appear on the left, not on the right. For example:

Data Types 27

DECLARE ABIT BIT (10);
ABIT = '1011'8;

A memory diagram of the storage resulting from this assignment would
look like this:

... 0000001101 ...
HIGH MEMORY LOW MEMORY

<- LOCATIONS LOCATIONS - >
This is of no concern until you try to interpret non-bit-string data as a
bit string. For example, a fixed binary value is stored with the sign bit in
the highest memory location, the most significant bit in the next highest
location, and so on to the least significant bit in the lowest memory
location. Thus, a FIXED BINARY (7) variable with a value of 2 would
appear in memory as follows:

... 00000010 ...
HIGH MEMORY LOW MEMORY

<- LOCATIONS LOCATIONS ->
Should you treat this storage as a bit string (for example, by using it as the
argument of the UNSPEC built-in function in a PUT LIST statement), the
result would be as follows:

'01000000'8

If you are accustomed to using PL/I on computers other than VAX, this
result may not be what you expect.

The rest of this section discusses bit-string constants and variables, align­
ment of bit-string data, and the use of bit strings to represent integers.

2.4.1 Bit-String Constants

28 Data Types

To specify a bit-string constant, enclose the string in apostrophes and
follow the closing apostrophe with the letter B. For example:

'0101'8
'10101010'8
I 1 'B

The length of a bit-string constant is always the number of binary digits
specified; the B does not count in the length of the string. You can specify
a bit-string constant with a maximum of 1000 characters between the
apostrophes.

You can also specify a bit-string constant using the following syntax:

character-string'Bn

n
Is the number of bits in the range 1 through 4 to be represented by each
character in the string.

This format allows you to specify bit-string constants with bases other
than 2. For example:

'EF8'84
'117'83
'223'82

These constants specify the hexadecimal value EF8, the octal value 117,
and the base 4 value 223. All such constants are stored internally as bit
strings, not as integer representations of the value.

The valid characters for each type of bit-string constant are listed below:

• For B or Bl, only the characters 0 and 1 are valid.

• For B2, only the characters 0, 1, 2, and 3 are valid.

• For B3, only the characters 0, 1, 2, 3, 4, 5, 6, and 7 are valid.

• For B4, the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F
are valid. (The letters A through F can be either upper- or lowercase.)

Using the B format items, you can also acquire or output (with the GET
EDIT and PUT EDIT statements) bit-string data in binary, base 4, octal, or
hexadecimal format. See HB Format Item."

2.4.2 Bit-String Variables

Use the BIT attribute to declare a bit-string variable. You can optionally
specify the length of the variable in parentheses. The length can be from 0
to 32767; the default length is one bit. The rules for specifying the length
are as follows:

• If BIT is specified for a static variable declaration or in a returns
descriptor, the length must be an integer constant.

• If BIT is specified in the declaration of a parameter or in a parameter
descriptor, the length can be specified as an integer constant or as an
asterisk (*).

Data Types 29

• If BIT is specified for an automatic, based, or defined variable, the
length can be specified as an integer constant or as an expression. In
the case of automatic or defined variables, the expression must not
contain any variables or functions that are declared in the same block,
except for parameters.

If specified, the length must immediately follow the keyword BIT.

A program can assign to a bit-string variable a value larger or smaller than
the variable's defined length. In such cases, PL/I does the following:

• If the assigned string is shorter than the defined length, PL/I pads the
bit-string value with zeros in the direction of least significance. The
less significant bits are on the right, as the string is represented by
PUT LIST.

• If the assigned string is longer, PL/I truncates the least significant bits
from the bit-string value.

You can convert bit-string variables to other data types; however, there are
some precautions you must observe if you do so. Section 2.4.4 describes
how to convert bit-string variables.

2.4.3 Align .. ent of Bit-String Data

3 0 Data Types

PL/I distinguishes between aligned and unaligned bit-string variables.
(Bit-string constants are always unaligned.) A bit-string variable is
aligned only if it is declared with the ALIGNED attribute, as shown in
the following example:

DECLARE FLAGS BIT (8) ALIGNED;

PL/I allocates storage for an aligned bit-string variable on a byte bound­
ary and reserves an integral number of bytes to contain the variable.
Unaligned bit-string variables always occupy only as many bits as
are needed to contain them. They need not be on byte boundaries.
You can optionally specify the UNALIGNED attribute in a declaration;
UNALIGNED is the default for bit strings.

In general, operations involving unaligned bit-string variables are less
efficient than those involving aligned bit-string variables. Unaligned bit­
string variables are also invalid as the targets of the FROM and INTO
options of record 1/0 statements, and as the argument of the ADDR built­
in function. Moreover, most non-PL/I programs that accept bit-string
arguments require the strings to be aligned.

It is recommended, therefore, that you declare bit-string variables with the
ALIGNED attribute in most cases. Use unaligned bit-string variables when
bit strings must be packed as tightly as possible, for example, in arrays
and in structures.

See the entries uBit-String Data" and "ALIGNED Attribute."

2.4.4 Bit Strings and Integers

PL/I defines conversions between bit-string data and other data types,
and the VAX PL/I compiler carries out these conversions. However, the
conversions defined by PL/I are not always straightforward or intuitive;
the padding and truncation that take place during assignment of bit strings
of different lengths result in implicit multiplication or division of the bit
string's integer value. For example:

DECLARE BITSTR BIT (10) ;
BITSTR = 1;
PUT LIST (BITSTR);

The output is as follows:

'0001000000'8

Although the result may seem incorrect, it conforms to PL/I's rules for
conversion to bit strings. In this case, the fixed-decimal constant 1 is
converted to a FIXED BINARY(4) value, which is in tum converted to an
intermediate bit string of length 4:

'0001'B

Next, this intermediate bit string is assigned to the variable BITSTR.
Because BITSTR is of length 10, the intermediate bit string is padded on
the right with zeros, producing the result as output by PUT LIST. If you
now attempt to interpret the value of BITSTR as an integer (for example,
by using BITSTR as the argument of the BINARY built-in function), the
result would be 64, not 1.

Note also that extra execution time is required to reverse the order of
bits when the integer's value is computed. Using arithmetic variables to
represent integers is more efficient.

Because of the unexpected results and longer execution time, you should
avoid using bit strings to represent integers or other data types.

Data Types 31

2.4.5 Replicatien Facter fer String Censtants

32 Data Types

A replication factor is an unsigned integer constant that specifies the
number of times a simple string constant is replicated. A replication
factor permits repetition of character strings and bit strings in any context
where a simple string constant is permissible, including format items and
assignment, string, and arithmetic operations. The format of a replication
factor is as follows:

(r)' string'

r
An unsigned integer that represents the number of times that the string is
to be replicated.

string
A simple string constant to be replicated. The string is enclosed in apos­
trophes.

For example:

(4) 'season

This example replicates the string four times. The resulting character
constant looks like this:

season season season season

Another example of replication is as follows:

DECLARE (A) BIT (800);
A = (400) '2'B2;
PUT SKIP LIST ((A));

END;

In this example, A will be replicated to its maximum specified length of
800 characters.

The resulting character constant looks like this:

'10101010101010101010101010101010

10101010101010101010101010'8

A replication factor can be used in combination with the iteration factor in
INITIAL. For example, the following two statements are equivalent:

INITIAL ((10)('ABCABC'))

INITIAL ((10)((2)'ABC'))

The first statement uses an iteration factor exclusively; the second state­
ment combines an iteration factor of 10 with a replication factor of 2. Note
that an extra set of parentheses is required to separate the iteration factor
from the replication factor and the character string.

Data Types 33

3.1 Arrays

Chapter 3

Aggregates

Aggregates are groupings of variables. There are two types of aggregate:

• An array is an aggregate in which all items, called elements, have the
same data type. An individual element of an array is referred to by
an integer subscript that designates the element's position, or order, in
the array. Elements can be scalar data items or structures.

• A structure is an aggregate in which individual items, called members,
can have different data types. Individual members are referred to by
qualified references that give the names of the structure itself and of
the individual member.

Aggregates can also be formed from arrays whose elements are structures,
or from structures whose individual members are arrays.

Arrays provide an orderly way to manipulate related variables of the same
data type. An array variable is defined in terms of the number of elements
that the array contains and the organization of those elements. These
attributes of an array are called its dimensions.

Aggregates 35

3.1.1 Array Declarations

36 Aggregates

The declaration of an array specifies its dimensions, the bounds of each
dimension, and the attributes of the elements.

One bound pair is specified for each dimension of the array, to define
the number of elements in that dimension. The extent of an array is the
product of the numbers of elements in its dimensions. If omitted, the
lower bound is 1 by default.

You can use an asterisk (•) as the bound pair when you declare arrays as
parameters of a procedure; the asterisk indicates that the parameter can
accept array arguments with any number of elements. (If one dimension
is specified with an asterisk, all must be specified with asterisks.)

For example:

DECLARE SALARIES (100) FIXED DECIMAL (7,2);

This statement declares a 100-element array with the identifier SALARIES.
Each element is a fixed-point decimal number with a total of seven
digits, two of which are fractional. The following statement declares a
two-dimensional array of 64 integers:

DECLARE GAME_BOARD (8,8) FIXED BINARY (7);

The following statement declares a one-dimensional array of 12 character
strings:

DECLARE PM_HOURS(13:24) CHARACTER(2);

The elements of the array are numbered 13 through 24 instead of 1
through 12.

You can replace the identifier in a statement with a list of declarations,
thereby declaring several arrays with the same attributes. For example:

DECLARE (SALARIES,PAYMENTS)(100) FIXED DECIMAL(7,2);

This statement declares SALARIES and another array, PAYMENTS, with
the same dimensions and other attributes.

The following rules apply to specifying the dimensions of an array and the
bounds of a dimension:

• An array can have up to eight dimensions.

• The values you can specify for bounds are restricted as follows:

If the array has the STATIC attribute, you must specify all bounds
as restricted integer expressions. (See the entry "Restricted
Expression" for a definition.)

If the array has the AUTOMATIC, BASED, CONTROLLED, or
DEFINED attribute, you can specify the bounds as optionally
signed integer constants or as expressions that yield integer values
at run time. If the array has AUTOMATIC or DEFINED, the
expressions must not contain any variables or functions that are
declared in the same block, except for parameters.

If an array is a parameter, you can specify the bounds with
optionally signed integer constants or asterisks (•). If you specify
any bound as an asterisk, you must specify all bounds with
asterisks. An array parameter declared this way inherits the
dimensions of the corresponding argument.

• The value of the lower bound you specify must be less than the value
of the upper bound.

3.1.2 References to Individual Elements

You refer to an individual element in the array with subscripts. Because
an array's attributes are common to all of its elements, a subscripted
reference has the same properties as a reference to a scalar variable with
those attributes.

You must enclose subscripts in parentheses in a reference to an array
element. For example, in a one-dimensional array named ARRAY declared
with the bounds (1:10), the elements are numbered 1 through 10 and are
referred to as ARRAY(l), ARRAY(2), ARRAY(3), and so on. The lower and
upper bounds that you declare for a dimension determine the range of
subscripts you can specify for that dimension.

For multidimensional arrays, the subscript values represent an element's
position with respect to each dimension in the array. In subscripted
references for multidimensional arrays, the number of subscripts must
match the number of dimensions of the array and must be separated by
commas.

You can specify the subscript of an array element using any variables or
expressions having integer values, that is, values that can be expressed as
fixed binary or fixed decimal with a zero scale factor. For example:

Aggregates 3 7

DECLARE DAYS_IN_MONTH(12) FIXED BINARY;

DECLARE (COUNT, TOTAL) FIXED BINARY;
TOTAL = 0;
DO COUNT = 1 TO 12;

TOTAL= TOTAL+ DAYS_IN_MONTH(COUNT);
END;

Here, the variable COUNT is used as a control variable in a DO loop.
As the value of COUNT is incremented from 1 to 12, the value of the
corresponding element of the array DAYS-1N_MONTH is added to the
value of the variable TOTAL.

3. 1.3 Initializing Arrays

38 Aggregates

Specify the INITIAL attribute for an array to initialize its values in the
declaration. For example:

DECLARE MONTHS (12) CHARACTER (9) VARYING
INITIAL ('January', 'February', 'March', 'April',

'May ' , 'June' , ' July' , 'August ' ,
'September'. 'October'. 'November', 'December');

Each element of the array MONTHS is assigned a value according to the
order of the character-string constants in the initial list: MONTH(l) is
assigned the value 'January'; MONTH(2) is assigned the value 'February';
and so on.

If the array being initialized is multidimensional, the initial values are
assigned in row-major order (see Section 3.1.5).

To assign identical initial values to some or all elements of an array, you
can use an iteration factor with the INITIAL attribute. For example:

DECLARE TEST_AVGS (30,4) FIXED DECIMAL (6,2)
STATIC INITIAL ((120) 60);

This statement declares the array TEST_AVGS with 120 elements, each of
which is given an initial value of 50.

You can use the asterisk (•)iteration factor to initialize all the elements of
an array to the same value.

Although VAX PL/I supports the initialization of automatic arrays with
the INITIAL attribute, it is not always the most efficient way (in terms of
program compilation and execution) to initialize array elements, for the
following reasons:

• When you initialize elements in an array that has the AUTOMATIC,
BASED, or CONTROLLED attribute, the compiler does not check that
all elements are initialized until run time. Thus, you do not receive
any compile-time checking of initialization, even if you used constants
to specify the array bounds and iteration factors.

• Your programs will run more efficiently if you initialize automatic
arrays with assignment statements rather than the INITIAL attribute.

However, if the array is not modified by your program, you can in­
crease program efficiency by declaring the array with the STATIC and
READONL Y attributes and using the INITIAL attribute to initialize its
elements. In this case, the compiler checks that you have initialized all the
elements and that they are valid.

See "INITIAL Attribute" for more information.

3.1.4 Assigning Values to Array Variables

You can specify an array variable as the target of an assignment statement
in the following cases:

array-variable= expression;

This is valid where the expression yields a scalar value. Every element
of the array is assigned the resulting value. The array variable must be a
connected array whose elements are scalar.

Note that the arithmetic operators, such as the plus sign (+) and the
minus sign (-), cannot have arrays as operands. An assignment of the
following form is invalid:

ARRAYC = ARRAYA + ARRAYB;

array-variable-1 = array-variable-2;

This is valid where the specified array variables have identical data type
attributes and dimensions. Each element in array-variable-1 is assigned
the value of the corresponding element in array-variable-2. In this type
of assignment, both arrays must be connected. The actual storage they
occupy must not overlap, unless the arrays are identical.

All other specifications of an array variable as the target of an assignment
statement are invalid.

Aggregates 3 9

When you specify an array variable name in the input-target list of a GET
LIST or GET EDIT statement, elements of the array are assigned values
from the data items in the input stream. For example:

DECLARE VERBS (6) CHARACTER (16) VARYING;
GET LIST (VERBS);

When this GET LIST statement executes, it accepts data from the default
input stream. Each input field delimited by blanks, tabs, or commas is
considered a separate string. The values of these strings are assigned
to elements of the array VERBS in the order VERBS(l), VERBS(2), ...
VERBS(6). If a multidimensional array appears in an input-target list,
input data items are assigned to the array elements in row-major order
(see Section 3.1.5).

An array can also appear, with similar effects, in the output-source list of
a PUT statement.

3. 1.5 Order of Assignment and Output for Multidimensional Arrays

40 Aggregates

When a multidimensional array is initialized, or when it is assigned values
without references to specific elements, PL/I assigns the values in row­
major order. In row-major order, the rightmost subscript varies the most
rapidly. For example, an array can be declared as follows:

DECLARE TESTS (2,2,3);

If TESTS is specified in a GET statement or in a declaration with the
INITIAL attribute, values are assigned to the elements in the following
order:

TESTS (l,1,1)
TESTS (1,1,2)
TESTS (1,1,3)
TESTS (1,2,1)
TESTS (1,2,2)
TESTS (1,2,3)
TESTS (2,1,1)
TESTS (2,1,2)
TESTS (2,1,3)
TESTS (2,2, 1)
TESTS (2,2,2)
TESTS (2,2,3)

When an array is output with a PUT statement, PL/I uses the same order
to output the array elements. For example:

PUT LIST (TESTS);

This PUT statement outputs the contents of TESTS in the order shown
above.

3.2 Structures

A structure is a data aggregate consisting of one or more members. The
members can be scalar data items, arrays of scalar data items, structures,
or arrays of structures, and different members can have different data
types. Structures are useful when you want to group related data items
having different data types.

A structure declaration defines a structure variable by means of level
numbers. For example:

DECLARE 1 TRANSACTION,
2 PART_NUMBER,

3 FACTORY CHARACTER (3),
3 ITEM CHARACTER (6),

2 IN_STOCK BIT (1);

The level number 1 indicates that TRANSACTION is a structure variable.
TRANSACTION is the name of the entire, or Hmajor," structure. The
relationship of the higher numbers (2 and 3) indicates that the associated
identifiers are the names of members of the structure TRANSACTION or
its "minor" structure, P ART_NUMBER. The following example can help to
clarify the terminology:

DCL 1 S,
2 x.

3 Y FIXED;

s
Is a "major structure", not a "member".

x
Is a "minor structure" and a "major member" because it comes under S
and also contains Y.

y
Is a "minor member" and not a Hstructure".

Aggregates 41

3.2. 1 Structure Declarations

42 Aggregates

The declaration of a structure defines its organization and the names
of members at each level in the structure. The major structure name is
declared as structure level 1; minor members must be declared with level
numbers greater than 1. For example:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST CHARACTER(BO) VARYING,
3 FIRST CHARACTER(BO) VARYING,

2 SALARY FIXED DECIMAL(7,2);

This statement declares a structure named PAYROLL. You can access the
last name with a qualified reference:

PAYROLL.NAME.LAST = 'ROOSEVELT';

Alternatively, because the last and first names have the same attributes,
you can declare the same structure as follows:

DECLARE 1 PAYROLL,
2 NAME,

3 (LAST.FIRST) CHARACTER(SO) VARYING,
2 SALARY FIXED DECIMAL(7,2);

The following additional rules apply to the specification of level numbers:

• Level numbers must be specified with decimal integer constants.

• A level number must be separated from its associated variable name
by at least one space or tab character.

• Level numbers after level 1 can have any integer value, as long as
each level number is equal to or greater than the level number of the
preceding level. (There can be only one level 1.)

• Each identifier in the structure must be separated from the declaration
of the previous identifier by a comma.

• Substructures at the same logical level of nesting do not have to have
the same level number.

• The deepest possible logical level is 15.

• The largest possible level number constant is 32767.

Within a structure, only members at the lowest level of each substructure
can be declared with data type attributes. Additional rules for specifying
attributes for the various components of a structure are as follows:

• Only the following attributes are valid for the major structure:

AUTOMATIC

BASED

CONTROLLED

DEFINED

EXTERNAL

GLOBALDEF

GLOBALREF

INTERNAL

READONLY

STATIC

STRUCTURE

UNION

• The major structure, a minor structure, or any member of the structure
can be dimensioned: that is, there can be arrays of structures and
structures whose members are arrays.

• Member names cannot have any of the attributes a major structure can
have, except for INTERNAL.

• If a structure has the STATIC attribute, the extents of all members
(lengths for character- and bit-string variables, dimensions for array
variables, and area extents) must be specified with optionally signed
decimal integer constants.

You can initialize a structure by giving the INITIAL attribute to its mem­
bers. Not all members need to be initialized. For example:

DECLARE 1 COUNTS,
2 FIRST FIXED BIN(16) INITIAL(O),
2 SECOND FIXED BIN(16),
2 THIRD (6) FIXED BIN(16) INITIAL (6(1));

The first and third members of the structure COUNTS are initialized.

You cannot specify the INITIAL attribute, however, for a major or a minor
structure.

Aggregates 43

3.2.2 Me•ber Attributes

VAX PL/I supports three umember attributes," so named because they
apply specifically to the declaration of structure members rather than to
the structure as a whole. The member attributes are as follows:

• The LIKE attribute
• The REFER option

• The UNION attribute

Each is discussed in detail in the following sections.

3.2.2.1 Using the LIKE Attribute

44 Aggregates

The LIKE attribute copies the member declarations in a major or minor
structure declaration into another structure variable. It copies the logical
structuring and member declarations from the major or minor structure
to the target variable, but does not copy any storage class attributes or
dimensioning (except for dimensioning that is applied to members).

An identifier names the variable to which the declarations in the reference
are copied. The reference is the name of a major or minor structure
known to the current block. The identifier must be preceded by a level
number. Any attributes that can be used with a structure variable at that
level can be used with the identifier; for example, a major structure can
specify a storage class and dimensions, and a minor structure can specify
dimensions.

The following example illustrates the LIKE attribute:

DECLARE 1 RES_DATA BASED (RPTR),
2 DATE CHARACTER(8),
2 HOTEL_CODE CHARACTER(3),
2 PARTY_NAME,

3 LAST CHARACTER(20),
3 FIRST CHARACTER(10)

2 STAY FIXED BIN(7),
1 NEW_RESER LIKE RES_DATA,

GET LIST (NEW_RESER.DATE,NEW_RESER.HOTEL_CODE);

RES_DATA • NEW_RESER;

In this example, the declaration of NEW-RESER uses the LIKE attribute
to create a set of member declarations that duplicate those in RES_DATA.
The declaration of NEW-RESER is equivalent to the following:

DECLARE 1 NEW_RESER,
2 DATE CHARACTER(S),
2 HOTEL_CODE CHARACTER(3),
2 PARTY_NAME,

3 LAST CHARACTER{20),
3 FIRST CHARACTER(10),

2 STAY FIXED BINARY(7);

After the members of NEW-RESER are assigned data and that data is
validated, the entire contents of NEW-RESER are assigned to RES-DATA.
This assignment is possible because the two structures are identical, which
results from the use of the LIKE attribute.

3.2.2.2 Using the REFER Option

Use the REFER option to create self-defining based structures. In a based
structure, the value of one member is used to determine the size of the
storage space allocated for another member of the same structure. The
REFER option can be used in a DECLARE statement to specify array
bounds, the length of a string, or the size of an area. For details, see
"REFER Option."

An example of a structure declaration containing the REFER option is as
follows:

DECLARE 1 STRUCTURES BASED(P),
2 I FIXED BINARY(31),
2 A CHARACTER(20 REFER(!));

For the compiler to allocate storage for a based structure, the structure
must have a known size. In the example, the initial length for A is taken
from the refer element, 20. However, the REFER option permits the size
of the structure to change at run time as the value of the refer object (I)
changes. After allocation, the length of A is determined by I.

You can have multiple REFER options within a structure.

The following example and diagrams illustrate storage mapping with the
REFER option.

Aggregates 45

46 Aggregates

DECLARE 1 S BASED (POINTER),
2 I FIXED BINARY(16),
2 J FIXED BINARY(15),
2 A CHARACTER ((X•2+2) REFER(!)),
2 B(2) CHARACTER (Y REFER(J));

ALLOCATE S;
x • 5;
y = 10;

S.A • 1 ABCDEFGHIJKL 1 ;

S.B(1) = '0123456789';
S.B(2) • 'NOW IS THE';

END;

When this structure is allocated, the refer elements (X•2+2) and Y are
evaluated and used to determine the length of the associated string. The
evaluated refer element value (X•2+2) is assigned to the refer object I and
Y is assigned to J. Thereafter, the sizes of strings A and Bare determined
by the value of the refer objects I and J.

Storage for the above structure would look like this:

S.I

S.J

S.A

S.8(1)

S.8(2)

8

D

F

H

J

L

1

3

5

7

9

0

s
T

E

12

10

A

c
E

G

I

K

0

2

4

6

8

N

w

I

H

ZK-1303-83

Aggregates 4 7

48 Aggregates

If the refer object I were assigned the value 6 and the refer object J were
assigned the value 4, the resulting storage would be remapped as this:

S.I

S.J

S.A

S.8(1)

S.8(2)

8

D

F

H

J

L

1

6

4

A

c
E

G

I

K

0

ZK-1304-83

Note that VAX PL/I does not restrict the use of the REFER option within
structure declarations: therefore, exercise caution in its use. If you change
a value that causes the size of one or more structure members to de­
crease, then some storage at the end of the allocated storage will become
inaccessible for future reference.

If the scalar variable (the refer object) does not satisfy the following
criteria, the results are undefined:

• It must not be assigned a value that is less than zero or greater than
the refer element value used for structure allocation.

• It must have the value used for allocation, if the structure is freed.

The following rules apply to structures containing the REFER option:

• A structure containing the REFER option cannot be the target of a
LIKE reference.

• When a based structure is allocated, the order in which the refer
elements are selected for evaluation is undefined.

• When a based structure is allocated, the order in which the refer
objects are selected for initialization is undefined.

3.2.2.3 Using the UNION Attribute

A union is a variation of a structure in which all immediate members
occupy the same storage. The UNION attribute (which must be associ­
ated with a level number in a structure declaration) declares a union. All
immediate members of the union-that is, all members having a level
number one higher-occupy the same storage. A reference to one mem­
ber of a union refers to storage occupied by all members of the union.
Therefore, a union provides a convenient way to look at a large entity
{such as a character string or a bit mask) as a series of smaller entities
(such as component character strings or individual flag bits).

A variable declared with the UNION attribute must be a major or minor
structure. All members of a union must have a constant size. For format
and details, see 0 UNION Attribute. n

The UNION attribute is not part of the PL/I General-Purpose Subset; it is
provided in VAX PL/I to give users convenient access to data as it is inter­
nally represented. Potential applications of unions might depend on the
internal representation of data, and would therefore not be transportable
to other implementations of PL/I.

The following example illustrates unions:

DECLARE 1 CUSTOMER_INFO,

2 PHONE_DATA UNION,
3 PHONE_NUMBER CHARACTER (13),
3 COMPONENTS,

4 LEFT_PAREN CHARACTER (1),
4 AREA_CODE CHARACTER (3),
4 RIGHT_PAREN CHARACTER (1),
4 EXCHANGE CHARACTER (3),
4 HYPHEN CHARACTER (1) ,
4 SPECIFIC_NUMBER CHARACTER (4),

2 ADDRESS_DATA,

The UNION attribute associated with the declaration of PHONE_
DATA signifies that PHONE_DATA's immediate members (PHONE_
NUMBER and COMPONENTS) occupy the same storage. Any modi­
fication of PHONE__NUMBER also modifies one or more members of
COMPONENTS; conversely, modification of a member of COMPONENTS
also modifies PHONE--NUMBER. Note, however, that the UNION
attribute does not apply to the members of COMPONENTS because

Aggregates 49

they are not immediate members of PHONE_DATA. The members
of COMPONENTS occupy separate storage in the normal fashion for
structure members.

Unions provide capabilities similar to those provided by defined variables.
However, the rules governing defined variables are more restrictive than
those governing unions. The following example demonstrates a use of a
union that would not be possible with a defined variable:

DECLARE 1 I UNION,
2 FLOAT_NUM FLOAT BINARY (24),
2 BREAKDOWN,

3 FRAC_1 BIT (7),
3 EXPONENT BIT (8),
3 SIGN BIT (1).
3 FRAC_2 BIT (16);

The union X has two immediate members, FLOAT-NUM (a floating-point
variable) and BREAKDOWN. The members of BREAKDOWN are bit­
string variables that overlay the storage occupied by FLOAT-NUM and
provide access to the individual components of its internal representation.
Assignment to FLOAT-NUM modifies the members of BREAKDOWN,
and vice versa. For example:

EXPONENT = 'O'B;
SIGN = '1'B;

FLOAT_NUM = FLOAT_NUM + 1;

The first two assignment statements set the exponent and sign fields
of FLOAT-NUM to the reserved operand combination; the expression
FLOAT-NUM + 1 causes a reserved operand exception to occur.

Note that, unlike the character-string example that precedes it, this exam­
ple depends on the VAX internal representation of data.

3.2.3 Structure-Qualified References

50 Aggregates

To refer to a structure in a program, you use the major structure name,
minor structure names, and individual member names. Member names
need not be unique even within the same structure. To refer to the name
of a member or minor structure, you must ensure only that the reference
uniquely identifies it. You can qualify the variable name by preceding it
with the name or names of higher-level (lower-numbered) variables in
the structure; names in this format, called a qualified reference, must be
separated by periods (.).

The following sample structure definition illustrates the rules for identify­
ing names of variables within structures:

DECLARE 1 STATE,
2 NAME CHARACTER (20),
2 POPULATION FIXED (10),
2 CAPITAL,

3 NAME CHARACTER (30),
3 POPULATION FIXED (10,0),

2 SYMBOLS,
3 FLOWER CHARACTER (20),
3 BIRD CHARACTER (20);

The rules for selecting and specifying variable names for structures are as
follows:

• The name of the major structure is subject to the rules for the scope of
variables in a program.

• The name of any minor structure or member in a structure can be
qualified by the names of higher-level members in the structure.
The variable names must be specified from left to right in order of
increasing level numbers, separated by periods. The members of the
previous sample, completely qualified, are as follows:

STATE.NAME
STATE.POPULATION
STATE.CAPITAL.POPULATION
STATE.CAPITAL.NAME
STATE.SYMBOLS.FLOWER
STATE.SYMBOLS.BIRD

• Names of minor structures or members within structures do not have
to be qualified if they are unique within the scope of the name. The
following names in the sample structure can be referred to without
qualification (so long as there are no other variables with these
names):

CAPITAL
SYMBOLS
FLOWER
BIRD

• Intermediate qualification names can be omitted if the reference
remains unambiguous. The following references to members in the
sample structure are valid:

STATE.FLOWER
STATE.BIRD

Aggregates 51

If a name is ambiguous, the compiler cannot resolve the reference and
issues a message. In the example, the names POPULATION and NAME
are ambiguous.

You can specify the name of a major or minor structure in an assignment
statement only if the source expression and the target variable are identical
in size and structure, and all corresponding members have the same data
types.

3.2.4 Arrays of Structures

52 Aggregates

An array of structures is an array whose elements are structures. Each
structure has identical logical levels, minor structure names, and member
names and attributes.

For example, a structure STATE can be declared an array:

DECLARE 1 STATE (50),
2 NAME CHARACTER (20) VARYING,
2 POPULATION FIXED (31),
2 CAPITAL,

3 NAME CHARACTER (30) VARYING,
3 POPULATION FIXED (31),

2 SYMBOLS,
3 FLOWER CHARACTER (20),
3 BIRD CHARACTER (20);

A member of a structure that is an array inherits the dimensions of the
structure. For example, the member CAPITAL.NAME of the structure
STATE inherits the dimension 50. You must use a subscript whenever you
refer to the variable CAPITAL.NAME, as in the following example:

PUT LIST (CAPITAL.NAME(!)) ;

A subscript for a member of a structure that is an array element can
appear following any name within a qualified reference. For example, all
of these references are equivalent:

STATE(10).CAPITAL.NAME
STATE.CAPITAL(10).NAME
STATE.CAPITAL.NAME(10)

3.2.4.1 Arrays of Structures That Contain Arrays

A structure that is defined with a dimension can have members that are
arrays. For example:

DECLARE 1 STATE (50),
2 AVERAGE_TEMPS(12) FIXED DECIMAL (5,2),

In this example, the elements of the array STATE are structures. At the
second level of the hierarchy of each structure, AVERAGE_TEMPS is an
array of 12 elements. Because AVERAGE_TEMPS inherits the dimension
of STATE, any of AVERAGE_TEMPS's elements must be referred to by
two subscripts:

1. The first subscript references an element in STATE.

2. The second subscript references an element in AVERAGE_TEMPS.

These subscripts can appear following any name in the qualified reference.
For example:

STATE(3).AVERAGE_TEMPS(4)
STATE.AVERAGE_TEMPS(3,4)

These references are equivalent.

Note the following rules for specifying subscripts for members of struc­
tures containing arrays:

• The number of subscripts specified for any member must include any
dimensions inherited from a major or minor structure declaration, as
well as those specified for the member itself.

• The subscripts that refer to a member of a structure in an array do not
have to follow immediately the name to which they apply. However,
the order of subscripts must be preserved.

• The total number of dimensions, including the inherited dimensions,
must not exceed eight.

Aggregates 53

3.2.4.2 Connected and Unconnected Arrays

54 Aggregates

A connected array is one whose elements occupy consecutive locations in
storage. For example:

DECLARE NEWSPAPERS (10) CHARACTER (30);

In storage, the 10 elements of the array NEWSPAPERS occupy 10 consec­
utive 30-byte units. Thus, NEWSPAPERS is a connected array.

A connected array is valid as the target of an assignment statement, as
long as the source expression is a similarly dimensioned array or a single
scalar value.

In an unconnected array, the elements do not occupy consecutive storage
locations. An unconnected array is not valid in an assignment statement
or as the source or target of a record I/O statement. A structure with
the dimension attribute always results in unconnected arrays. When
a structure is dimensioned, each member of the structure inherits the
dimensions of the structure and becomes, in effect, an array. For example:

DECLARE 1 STATE (50),
2 NAME CHARACTER (20) VARYING,
2 POPULATION FIXED (31);

The members NAME and POPULATION of the major structure STATE
inherit the dimension 50 from the major structure. When PL/I allocates
storage for a structure or a dimensioned structure, each member is allo­
cated consecutive storage locations; thus the elements of the arrays NAME
and POPULATION are not connected.

See Figure A-3 for an illustration of the storage of connected and uncon­
nected arrays.

Chapter 4

Declarations

Before you can use a variable in a PL/I program, you must declare it with
the DECLARE statement. When you declare a variable, you give it one of
the fundamental data types by specifying its attributes; you can assign it
to a storage class; and you can make it an array or structure variable.

Simple declarations define a single variable name. Multiple declarations
define two or more variable names. Factored declarations define two or
more variable names with the same attributes. For the formats of the
various kinds of declarations, see uDECLARE Statement."

This chapter discusses declarations outside of procedures, initializing the
values of variables in declarations, and the scope of declarations.

4.1 Declarations Outside of Procedures

In PL/I, a variable can be declared outside of any procedure. Any variable
so declared will be visible within all procedures contained by the module;
that is, the scope of the variable will be all procedures in the module.
The format for declarations outside of procedures is the same as for
other declarations except that variables can have any storage class except
AUTOMATIC. If a storage class is not specified, STATIC is supplied.

The following example illustrates the use of this type of declaration.

Declarations 55

56 Declarations

DECLARE A STATIC FIXED BINARY(31);

FIRST: PROCEDURE;
DECLARE B FIXED BINARY(31);

END FIRST;

SECOND: PROCEDURE;
DECLARE C FIXED BINARY(31);

END SECOND;

In this example, variable A is visible in both the FIRST and SECOND
procedures, but variables B and C are visible only in their containing
procedures.

You can use the INITIAL attribute to provide an initial value for a declared
variable. The value can be a string or arithmetic constant, or a scalar
reference or expression, and can be specified with an iteration factor or a
replication factor, or both.

Following are some examples:

DECLARE RATE FIXED DECIMAL (2,2) STATIC INITIAL (.04);
DECLARE EOF BIT STATIC INITIAL ('1'B);
DECLARE BELL_CHAR BINARY STATIC INITIAL ('07'84);
DECLARE OUTPUT_MESSAGE CHARACTER{20) STATIC

INITIAL {'GOOD MORNING');
DECLARE {A INITIAL {'A'), B INITIAL ('B'),

C INITIAL { 'C')) STATIC CHARACTER;
DECLARE QUEUE_END POINTER STATIC INITIAL(NULL{));
DECLARE 1 LIST BASED,

2 VALUE FIXED BINARY,
2 NEXT POINTER INIT{NULL{));

DECLARE TABLE {30,3) BINARY STATIC INITIAL { {90) 10);

The last example uses an iteration factor to initialize all elements of the
array TABLE with the value 10.

For more information, see "INITIAL Attribute."

4.2 Scope of Declarations

The scope of a declaration is the region of the program in which the
declared name is known. A declaration of a name is known in the
following regions:

• The block in which it is declared

• Any blocks contained within the declaring block, so long as the name
is not redeclared in the contained block

• Any procedures contained in the program, if the name is declared
outside of all procedures

Two or more declarations of the same name are not allowed in a single
block (unless one or more of the declarations are of structure members).
Two declarations of the same name in different blocks denote distinct
objects unless both specify the EXTERNAL attribute. All EXTERNAL
declarations of a particular name denote the same variable or constant,
and all must agree as to its properties. Note that EXTERNAL is supplied
by default for declarations of ENTRY and FILE constants. It must be
specified explicitly for variables.

See Figure S-1 for an illustration of the scope of internal names.

Declarations can appear outside of procedures and, if contained within
the same block, have meaning throughout all procedures contained in the
block. However, if there are multiple blocks, declarations outside of pro­
cedures must have the EXTERNAL attribute if they are to be recognized
by all blocks and procedures in the program.

For example:

File A.PLI

DECLARE X FIXED EXTERNAL STATIC;

A: PROCEDURE OPTIONS(MAIN);

DECLARE B ENTRY;

END A;

Declarations 5 7

58 Declarations

File B.PLI

B: PROCEDURE;

END B;

In this example, the variable X has meaning in both procedures. Because
the two procedures are in two different files, X must be declared with the
EXTERNAL attribute. If X is declared with the INTERNAL attribute, X is
recognized only in the first procedure.

Chapter 5

Expressions and Assignments

An expression is a representation of a value or of the computation of a
value, and an assignment gives the value contained in an expression to a
variable. Together, expressions and assignments form the mechanism for
performing computation.

This chapter describes the following topics:

• The assignment statement
• Operators and operands, the elements of an expression
• The manner in which expression evaluation takes place

• Conversion of the data types of operands during expression evaluation
and assignment

5.1 Assignment Statement

The assignment statement gives a value to a specified variable. The
assignment operator in PL/I is the equal sign (=). The target of the
assignment is on the left of the equal sign; the target receives the value of
the expression on the right. For the format and detailed information, see
"Assignment Statement" in the encyclopedic section of the manual.

Following are examples of assignment statements:

A= 1;
A • B + A;
SUM = A + 3;
STRING= 'word';

Expressions and Assignments 59

5.2 Operators and Operands

An operator is a symbol that requests a unique operation. Operands are
the expressions on which operations are performed.

5.2.1 Operators

A prefix operator precedes a single operand. The prefix operators are the
unary plus (+), the unary minus (-), and the logical NOT (•).

• The plus sign can prefix an arithmetic value or variable. However, it
does not change the sign of the operand.

• A minus sign reverses the sign of an arithmetic operand.

• The logical NOT (·) prefix operator performs a logical NOT operation
on a bit-string operand; the bit value is complemented.

Following are some examples of expressions containing prefix operators:

A = +55;
B = -88;
BITC = "BITB;

An infix operator appears between two operands, and indicates the oper­
ation to be performed on them. PL/I has infix operators for arithmetic,
logical, and relational (comparison) operations, and for string concate­
nations. Following are some examples of expressions containing infix
operators:

RESULT = A I B;
IF NAME = FIRST_NAME I I LAST_NAME THEN GOTO NAMEOK;

An expression can contain both prefix and infix operators. For example:

A = -55 * +88;

You can apply prefix and infix operators to expressions by using parenthe­
ses for grouping.

For a table giving the categories of operators and the operator symbols,
see Table 0-3, under the entry "Operator."

60 Expressions and Assignments

5.2.2 Operands

Because all operators must yield scalar values, operands cannot be arrays
or structures. The data type that you can use for an operand in a specific
operation depends on the operator:

• Arithmetic operators must have arithmetic operands; if the operands
are of different arithmetic types, they are converted before the op­
eration to a single type, called the derived data type. Section 5.4.1
describes this process.

• Logical operators must have bit-string operands.
• Relational operators must have two operands of the same type. (Note,

however, that comparisons are allowed between offsets and pointers.)
• The operators greater than (>), less than (<), not greater than

(· >), not less than (• <), greater than or equal to (> =), and less
than or equal to (< =) are valid only with computational operands.

• The concatenation operator must have two bit-string operands or two
character-string operands.

5.3 Expression Evaluation

In a PL/I program, you can use expressions in the following ways:

• To indicate constant values or scalar variables. For example:

A = 66;
NAME = I HECTOR I ;

B = A;

• To perform algebraic or logical calculations on variables or constants.
For example:

B = A + 10;
C = A + B * 40;
B = "A;
COMMON = A II B;

• To compare the values of two or more expressions and obtain a
Boolean result. For example:

IF A < B THEN C = 10;
IF NAME = SAVED_NAME THEN GOTO REPEAT;

Expressions and Assignments 61

• To concatenate character- or bit-string values. For example:

NAME = FIRST_NAMEI ILAST_NAME;

All expressions except simple constants and references consist of an
operator and one or more operands. Each operator requires operands
of specific types (either arithmetic, character-string, or bit-string) and
produces a result of a specific type. The operands can be constants,
variable references, function references, or other expressions, as long as
they are objects of the type required by the operator.

Built-in functions can also be considered operators in this sense, and their
arguments, operands.

All VAX PL/I expressions and functions have scalar results.

Expressions are evaluated according to the precedence of operators. For a
table giving the precedence of PL/I operators, see Table 0-4, under the
entry "Operator."

5.4 Conversion of Operands and Expressions

Data conversion in PL/I takes place in many contexts, not all of them
obvious ones. Program results that seem improper may in fact be caused
by data conversion at some point in the program's execution. This section
discusses the following topics:

• How arithmetic operands of different types are converted to a single
derived type during expression evaluation.

• How you can control conversions precisely by using conversion
built-in functions designed for that purpose.

• Contexts in which VAX PL/I automatically converts data from one
type to another-for example, in input and output by the GET and
PUT statements.

62 Expressions and Assignments

5.4.1 Derived Data Types for Arithmetic Operations

Even though arithmetic operands can be of different arithmetic types,
all operations will be performed on objects of the same type. Any set of
operands of different arithmetic types has an associated derived type, as
follows:

• If any operand has the attribute BINARY, the derived base is BINARY.
Otherwise, the derived base is DECIMAL.

• If any operand has the attribute FLOAT, the derived scale is FLOAT.
Otherwise, the derived scale is FIXED.

All arithmetic operations except exponentiation are performed in the
derived type of the two operands. Exponential operations are performed
in a data type that is based on the derived type of the operands. All
operations, including exponentiation, have results of the same type as that
in which they are performed.

The result of an arithmetic operation can be assigned to a target variable
of any computational type. The result is converted to the target type,
following the rules in Section 5.4.3. Such conversion may, however, result
in a warning message from the compiler.

5.4.2 Built-In Conversion Functions

The built-in conversion functions can take arguments that are either arith­
metic or string expressions. They are often used to convert an operand to
the type required in a certain context-for instance, to convert a bit string
to an arithmetic value for use as an arithmetic operand.

For the purpose of these functions, and in a few other contexts, de­
rived arithmetic attributes are also defined for bit- and character-string
expressions:

• The derived type of a bit string is fixed-point binary; its converted
precision is 31, with a scale factor of 0.

• The derived type of a character string is fixed-point decimal; its
converted precision is 31, with a scale factor of 0.

Expressions and Assignments 63

PL/I uses these derived attributes to determine the precision of values
returned by the conversion functions if no precision is specified in the
functions' argument lists. Note that the value of a string argument must
also be convertible to the result type; for instance, '1.333' is convertible to
arithmetic, but 'XYZ' is not.

Table 5-1 indicates which built-in functions you should use for each con­
version between an arithmetic and a nonarithmetic type. In addition, you
can use the BINARY, DECIMAL, FIXED, and FLOAT built-in conversion
functions to control conversions between two arithmetic types.

Table 5-1: Built-In Functions for Conversions Between
Arithmetic and Nonarithmetic Types

Conversion Function

Arithmetic to bit BIT

Arithmetic to character CHARACTER

Bit to arithmetic BINARY

Bit to character CHARACTER

Character to bit BIT

Character to decimal DECIMAL

Character to float FLOAT

Character to binary BINARY

Character to binary DECODE

Decimal to character ENCODE

For more information, see the individual entries on the built-in functions
in the encyclopedic section of this manual.

64 Expressions and Assignments

5.4.3 Implicit Canvenian During Assign•ent

During assignment, VAX PL/I automatically converts the derived data
type of an expression to the data type of a target, if necessary. In as­
signments, conversions are defined between the noncomputational types
POINTER and OFFSET, and between any two computational types. The
rules for assignments apply to the following:

• Assignment statements.
• Arguments passed to a procedure.
• Values specified in a RETURN statement.
• An argument converted by the built-in function FIXED, FLOAT,

BINARY, DECIMAL, BIT, or CHARACTER.
• Conversions to and from character strings performed by the PUT and

GET statements, respectively.

However, a conversion during assignment results in an error if PL/I
cannot perform it in a meaningful way. For example, you can assign the
string '123.4' to a fixed decimal variable; you cannot, however, assign
the string 'ABCD' to the same variable. Similarly, an assignment of
an arithmetic type to a fixed variable results in the FIXEDOVERFLOW
condition if integral digits are lost.

Although VAX PL/I performs conversions in assignment statements, such
conversions may represent programming errors and are in violation of
the PL/I G subset standard. Therefore, the compiler issues a warning
message that an implicit conversion is taking place. These messages do
not terminate the compilation and may not indicate errors; they simply
alert you to the fact that your program converts one data type to another
in a way that may cause a problem when the program is run. You can
prevent such warning messages in two ways:

• Use the built-in conversion functions to convert data types explicitly.
This method is recommended. Section 5.4.2 summarizes the functions.

• Use the /NOWARNINGS qualifier to the PLI command to suppress
diagnostic warning messages. (The compiler will continue to print
messages of greater severity.) However, you run the risk of missing
important diagnostic information.

Expressions and Assignments 65

For example:

DECLARE (A,B) FIXED DECIMAL (6,2);
A = '123.46'; /• Warning message •/
B • FIXED('123.46' ,6,2); /•No warning •/

Both assignment statements assign the same value to their targets; how­
ever, the first statement causes a warning message from the compiler,
while the second statement does not.

66 Expressions and Assignments

Chapter 6

Procedures

A procedure is the basic executable program unit in PL/I. It consists
of a sequence of statements, headed by a PROCEDURE statement and
terminated by an END statement, that define an executable set of program
instructions.

This chapter discusses the following topics:

• The general concepts of procedures and the statements for defining
and invoking procedures and obtaining return values from them

• External procedures (procedures that are not contained within another
block)

6. 1 Using Procedures

Two types of procedures can be invoked by another procedure during its
execution:

• Subroutines, which must be invoked with a CALL statement.
Subroutines return values to the invoking procedure only by means
of their parameter lists; they must not include an expression in their
RETURN statements and must not include a RETURNS option on
their PROCEDURE or ENTRY statements.

• Functions, which must be invoked by a function reference. A function
reference can appear anywhere a scalar value can appear in a PL/I
statement. A function returns to the invoking procedure a single
value that becomes the value of the function reference in the invoking
procedure. Functions can also return values through their parameter
lists. Functions must include a RETURNS option to describe the

Procedures 6 7

attributes of the returned value and must specify an expression in
their RETURN statements.

Each type of procedure can be passed data from the invoking procedure
by means of an argument list.

8.1.1 Statements for Procedures

68 Procedures

The PROCEDURE statement defines the beginning of a procedure block
and specifies the parameters, if any, of the procedure. If the procedure
is invoked as a function, the PROCEDURE statement also specifies the
data type attributes of the value that the function returns to its point of
invocation. The PROCEDURE statement can denote the beginning of
either an internal or an external subroutine or function.

For example:

PAYROLL: PROCEDURE OPTIONS(MAIN);

This PROCEDURE statement specifies that the entry name PAYROLL is
the name of a program's main procedure.

The ENTRY statement defines an alternative entry point to a procedure.

An ENTRY statement is not allowed in a begin block, ON-unit, SELECT­
group, or DO group except for a simple DO.

Additional rules governing the declaration of multiple entry points are as
follows:

• A particular parameter need not be specified in all of a procedure's
entry points (including the point defined by the PROCEDURE state­
ment). However, a reference to the parameter is valid only if the
procedure was invoked through one of the entries specifying the
parameter.

• In a procedure with multiple entry points, a RETURN statement
must be compatible with the entry point by which the procedure
was invoked. If the entry point does not have a RETURNS option,
the RETURN statement must not specify a return value (and, in
addition, the entry point must be invoked as a subroutine-that is,
with the CALL statement). If the entry point does have a RETURNS
option, the RETURN statement must specify a value that is valid for
conversion to the data type specified in the RETURNS option.

• An ENTRY statement is not executable. If control reaches it sequen­
tially, control passes on to the next statement.

The following example shows a procedure with two alternate entry points:

QUEUES: PROCEDURE(ELEMENT,QUEUE_HEAD);

ADD_ELEMENT: ENTRY(ELEMENT);

REMOVE_ELEMENT: ENTRY(ELEMENT);

This procedure can be entered by CALL statements that reference
QUEUES, ADD-ELEMENT, or REMOVE-ELEMENT. If it is invoked
at QUEUES, it must be passed two parameters. At either of the entries
ADD-ELEMENT or REMOVE_ELEMENT, it must be passed only one
parameter. When it is entered at either alternate entry point, the entire
block beginning at QUEUES is activated, but execution begins with the
first executable statement following the entry point.

You should avoid unnecessary use of ENTRY statements, because their
effect is detrimental to the overall optimization of the program.

The CALL statement invokes a subroutine. It transfers control to an entry
point of a procedure and optionally passes arguments to the procedure.

Unless OPTIONS(VARIABLE) is specified in the declaration of an ex­
ternal entry name, the number of arguments must match the num-
ber of parameters in the parameter list of the invoked entry name.
OPTIONS(VARIABLE) is valid only for use with non-PL/I procedures.
Arguments must be enclosed in parentheses, and multiple arguments
separated by commas.

The following example illustrates a main procedure, CALLER, and a
call to an internal subroutine, PUT_OUTPUT. PUT_OUTPUT has two
parameters, INSTRING and OUTFILE, that correspond to the arguments
LINE and DEVICE specified in the CALL statement.

Procedures 69

70 Procedures

CALLER: PROCEDURE OPTIONS(MAIN);

CALL PUT_OUTPUT(LINE,DEVICE);

PUT_OUTPUT: PROCEDURE(INSTRING,OUTFILE);

END PUT_OUTPUT;
END CALLER;

You can terminate subroutines and functions with the following state­
ments:

• A RETURN statement-A RETURN statement provides a normal
termination for a subroutine or function. For a function, a RETURN
statement must specify a return value.

• A STOP statement-A STOP statement normally ends the entire
program execution. It does not pass a return value. (The STOP
statement signals the FINISH condition, thereby allowing a FINISH
ON-unit to execute before the program terminates.)

• An END statement-If an END statement closes the procedure block
of a subroutine before a RETURN or STOP statement is executed,
it has the same effect as RETURN. A function cannot be terminated
without a RETURN statement.

• A nonlocal GOTO statement-A GOTO statement that transfers
control to a label outside the current block terminates a subroutine
or a function. The label specified on the GOTO statement must be
known within the block that contains the GOTO statement, and the
block containing the specified label must be active when the GOTO
statement is executed.

6. 1.1. 1 Specifying Entry Points

The entry points of a procedure are the points at which it can be invoked.
The PROCEDURE statement specifies one entry point. You can specify
additional entry points with ENTRY statements within the procedure
block. ENTRY statements are allowed anywhere except within a begin
block, an ON-unit, or a DO group (except a simple, noniterative DO
group).

The labels used on PROCEDURE and ENTRY statements declare those
names as entry constants. The scope of the declarations is internal if the
PROCEDURE and ENTRY statements appear in internal procedures, and
external if they appear in external procedures.

You declare an entry name in the block containing the procedure to which
the entry point belongs. For example:

P: PROCEDURE;

Q: PROCEDURE;
DECLARE E FIXED BINARY;
E: ENTRY;

END Q;

The entry names E and Q are declared in procedure P. Within procedure
Q, E is declared as a fixed-point binary variable. This does not conflict
with the declaration of E as an entry in procedure P.

You can invoke an entry point by using the appropriate entry constant
as the reference in a CALL statement or function reference. Invoking an
entry point enters a procedure at the specified point and activates the
procedure block that contains the entry point.

6.1.1.2 Passing Arguments to Subroutines and Functions

You specify arguments for a subroutine or function by enclosing the argu­
ments in parentheses after the procedure or entry point name. Arguments
correspond to parameters specified on the PROCEDURE or ENTRY state­
ment of the invoked procedure. For example, you can write a procedure
call as follows:

CALL COMPUTER (A,B,C);

The variables A, B, and C are arguments to be passed to the procedure
COMPUTER, which might have a parameter list like this:

COMPUTER: PROCEDURE ex. Y, Z);
DECLARE (X,Y,Z) FLOAT;

Procedures 71

The parameters X, Y, and Z, specified in the PROCEDURE statement
for the subroutine COMPUTER, are the parameters of the subroutine.
PL/I establishes the equivalence of the arguments A, B, and C with the
parameters X, Y, and Z.

1.1.2 F•nctians and Function References

72 Procedures

A function is a procedure that returns a scalar value and that receives
control when its name is referenced in an expression. There are two types
of functions:

• PL/I built-in functions
• User-written functions

The built-in functions, which are available in all programs and generally
need not be declared, are described in individual entries under their
names, and are summarized in Table B-1, under the entry "Built-In
Function".

A user-written function must have the following elements:

• The RETURNS option on the PROCEDURE statement
• A value on the RETURN statement; the value must be of a data type

that is valid for conversion to the one specified on the RETURNS
option

For example:

ADDER: PROCEDURE (X,Y) RETURNS (FLOAT);
DECLARE (X,Y) FLOAT;

RETURN (X+Y);
END;

The function ADDER has two parameters, X and Y. They are floating­
point binary variables declared within the function. When the function
is invoked by a function reference, it must be passed two arguments to
correspond to these parameters. It returns a floating-point binary value
representing the sum of the arguments. The function ADDER can be
referenced as follows:

TOTAL= ADDER(5,6);

The arguments in the reference to ADDER are converted to FLOAT.

If a function has no parameters, you must specify a null argument list;
otherwise, the compiler treats the reference as a reference to an entry
constant. Specify a null argument list as follows:

GETDATE = TIME_STAMP();

This assignment statement contains a reference to the function TIME_
STAMP, which has no parameters.

This rule applies to PL/I built-in functions as well; however, if you declare
a PL/I built-in function explicitly with the BUILTIN attribute, you need
not specify the empty argument list. For example:

DECLARE P POINTER,
NULL BUILTIN;

P = NULL;

This example assigns a null pointer value to P. Without the declaration of
NULL as a built-in function, the assignment statement would have been
as follows:

P =NULL();

6.1.3 RETURNS Attribute and Option

The RETURNS option must be specified on the PROCEDURE or ENTRY
statement if the corresponding entry point is invoked as a function. The
RETURNS attribute is specified with the ENTRY attribute, to give the data
type of a value returned by an external function.

The data types you can specify for a returns descriptor are restricted to
scalar elements of either computational or noncomputational types. Areas
are not allowed.

The extent of a character-string value can be specified as an asterisk (•), to
indicate that the string can have any length. Otherwise, you must specify
extents using unsigned decimal integer constants.

The RETURNS option and RETURNS attribute must not be used for
procedures that are invoked by the CALL statement.

Procedures 7 3

7 4 Procedures

The attributes specified in a returns descriptor of a RETURNS attribute
must correspond to those specified in the RETURNS option of the
PROCEDURE statement or ENTRY statements in the corresponding
procedure. For example:

CALLER: PROCEDURE OPTIONS (MAIN);
DECUBE COMPUTER ENTRY (FIXED BINARY)

BETURNS (FIXED BINARY); /• BETURNS attribute•/
DECUBE TOT.AL FIXED BINARY;

TOTAL• COMPUTER (A+B);

The first DECLARE statement declares an entry constant named
COMPUTER, which will be used in a function reference to invoke an
external procedure. The function reference must supply a fixed-point
binary argument. The invoked function returns a fixed-point binary value,
which then becomes the value of the function reference.

The function COMPUTER contains the following lines:

COMPUTER:PROCEDURE (X)
RETUBNS (FIXED BINARY); /•RETURNS option•/
DECLARE ex. VALUE) FIXED BINARY;

RETURN (VALUE);

In the PROCEDURE statement, COMPUTER is declared as an external
entry constant, and the RETURNS option specifies that the procedure
returns a fixed-point binary value to the point of invocation. The RETURN
statement specifies that the value of the variable VALUE is returned by
COMPUTER. If the data type of the returned value does not match the
one specified in the RETURNS option, PL/I converts the value to the
correct data type.

6.1.4 Parameters and Arguments

A parameter is a variable that occurs in the parameter list of a
PROCEDURE or ENTRY statement. When the entry point is invoked,
each parameter in the list is associated with an argument variable. Within
the procedure invocation, any reference to the parameter is equivalent to a
reference to the associated argument variable.

If the invoked entry point is external to the invoking procedure, the
attributes of the parameters must be described in parameter descriptors,
which are part of the declaration of the external entry point.

Each entry point in a procedure must have a parameter list if that entry
point is to be invoked with an argument list. Multiple entry points in a
procedure do not need to have identical parameters, but a reference to a
parameter is valid only if the procedure was invoked through an entry
point that specified that parameter.

An argument is an expression or variable reference denoting a value to be
passed to the invoked procedure. A procedure must be invoked with the
same number of arguments as it has parameters; the maximum number
is 253. The argument variable associated with a parameter, or Nactual
argument," can be a variable written in the argument list or a dummy
argument. The compiler creates a dummy argument when the specified
argument is a constant or expression existing only for the duration of the
procedure invocation. Therefore, references in the invoked procedure to
the parameter associated with a dummy argument do not modify any
storage in the invoking procedure.

An argument list consists of zero or more arguments specified in the
invocation of a procedure, built-in function, or built-in subroutine. In the
case of built-in functions, arguments are expressions that supply values
to the built-in function, and the argument types must be those required
by it. In the case of user-defined procedures, arguments correspond to
parameters defined on the PROCEDURE or ENTRY statement of the
invoked procedure.

Procedures 7 5

6.1.4. 1 Rules for Specifying Parameters

76 Procedures

The general rules listed below for specifying parameters are followed by
specific rules that pertain only to certain data types.

• You must declare a parameter explicitly in a DECLARE statement (to
give it a data type) within the invoked procedure. This declaration
must not be part of a structure.

• You cannot declare a parameter with any of these attributes:

AUTOMATIC

BASED

CONTROLLED

DEFINED

EXTERNAL

GLOBALDEF

GLOBALREF

INITIAL

READONLY

STATIC

• A maximum of 253 parameters can be specified for an entry point.

• The parameters of an external entry must be explicitly specified by
parameter descriptors in the declaration of the entry constant. The
parameters of a procedure that is invoked through an entry variable
must be specified by parameter descriptors in the ENTRY attribute of
the variable's declaration. You cannot declare an internal entry (and
its parameters) in the containing procedure.

• Each parameter must have a corresponding argument at the time
of the procedure's invocation. PL/I matches the data type of the
parameter with the data type of the corresponding argument and
creates a dummy argument if they do not match.

Array Parameters

If the name of an array variable is passed as an argument, the corre­
sponding parameter descriptor or parameter declaration must specify the
same number of dimensions as the argument variable. You can declare
the bounds of a dimension for an array parameter using asterisks (•) or
optionally signed integer constants. If the bounds are specified with inte­
ger constants, they must match exactly the bounds of the corresponding
argument. An asterisk indicates that the bounds of a dimension are not
known. (If one dimension contains an asterisk, all the dimensions must
contain asterisks.) For example:

DECLARE SUMUP ENTRY((•) FIXED BINARY);

This declaration indicates that SUMUP's argument is a one-dimensional
array of fixed-point binary integers that can have any number of elements.
Any one-dimensional array of fixed-point binary integers can be passed to
this procedure.

All the data type attributes of the array argument and parameter must
match.

Arrays are always passed by reference. They cannot be passed by dummy
argument.

Structure Parameters

If the name of a structure variable is passed as an argument, the corre­
sponding parameter descriptor or declaration must be identical, in terms
of structure levels, members' sizes, and members' data types. The level
numbers do not have to be identical, but the levels must be logically
equivalent. You can specify array bounds and string lengths with asterisks
or with optionally signed integer constants. The following example shows
the parameter descriptor for a structure variable:

DECLARE SEND_REC ENTRY (1,
2 FIXED BINARY(31),
2 CHARACTER(40) VARYING,
2 PICTURE '999V09');

The written argument in the invocation of the external procedure SEND_
REC must have the same structure, and its members must have the same
data types.

Structures are always passed by reference. They cannot be passed by
dummy argument.

Character-String Parameters

If a character-string variable is passed as an argument, the corresponding
parameter descriptor or parameter declaration can specify the length using
an asterisk ("') or an optionally signed nonnegative integer constant. For
example:

COPYSTRING: PROCEDURE (INSTRING,COUNT);
DECLARE INSTRING (CHARACTER(•));

The asterisk in the declaration of this parameter indicates that the string
can have any length. The string is fixed length unless VARYING is also
included in the declaration.

Procedures 77

Entry, File, and Label Constant Parameters

Entry, file, and label constants can be passed as arguments. The actual
parameter is a variable.

6. 1.4.2 Argument Passing

7 8 Procedures

This section describes how PL/I passes an argument to procedures written
in PL/I.

Number of Arguments

The number of arguments in the argument list must equal the number of
parameters of the invoked entry point. The compiler checks that the count
matches as follows:

• For an internal procedure, the compiler checks the number of argu­
ments in the argument list against the number of parameters on the
PROCEDURE or ENTRY statement for the internal procedure.

• For an external procedure, the compiler checks that the number of
parameter descriptors in the ENTRY declaration list matches the
number of arguments in the procedure invocation.

Actual Arguments

When a PL/I procedure is invoked, each of its parameters is associated
with a variable determined by the corresponding written argument of the
procedure call. This variable is the actual argument for this procedure
invocation. It can be one of the following:

• A reference to the written argument

• A dummy argument

The data type of the actual argument is the same as that of the corre­
sponding parameter. When a written argument is a variable reference,
PL/I matches the variable against the corresponding parameter's data type
according to the rules given under the heading 0 Argument Matching,"
below. If they match, the actual argument is the variable denoted by the
written argument. That is, the parameter denotes the same storage as the
written variable reference. If they do not match, the compiler creates a
dummy argument and assigns to it the value of the written argument.

Dummy Arguments

A dummy argument is a unique variable allocated by the compiler, which
exists only for the duration of the procedure invocation.

When the written argument is a constant or an expression, the actual ar­
gument is always a dummy argument. The value of the written argument
is assigned to the dummy argument before the call. The data type of the
written argument must be valid for assignment to the data type of the
dummy argument.

Aggregate Arguments

An array, structure, or area argument must be a variable reference that
matches the corresponding parameter. It cannot be a reference to an
unconnected array. A dummy argument is never created for an array,
structure, or area.

Argument Matching

A written argument that is a variable reference is passed by reference
only if the argument and the corresponding parameter have identical data
types:

• For an internal procedure, the attributes of the argument must match
those specified in the declaration of the parameter.

• For an external procedure or a procedure invoked through an ENTRY
variable, the attributes specified in the ENTRY attribute parameter
descriptor must match those of the arguments.

When the compiler detects that a scalar variable argument does not
match the data type of the corresponding parameter, it issues a warning
message, creates a dummy argument, and associates the address of the
dummy argument with the corresponding parameter. You can suppress
the warning message and force the creation of a dummy argument if you
enclose the argument in parentheses. For example, if a parameter requires
a character varying string and an argument is a character nonvarying
variable, you would enclose the variable in parentheses.

For string lengths and array bounds, an asterisk (•) in the parameter
matches any expression. An integer constant matches only an integer
constant with the same value.

Procedures 7 9

Conversion of Arguments

When the data type of a written argument is suitable for conversion to
the data type of the corresponding parameter descriptor, PL/I performs
the conversion of the argument to a dummy argument using the rules
described in Section 5.4.3.

6.2 Calling External Procedures

80 Procedures

An external procedure is one whose text is not contained in any other
block. The source text of an external procedure can be compiled sepa­
rately from that of a calling procedure. The differences between internal
and external procedures are as follows:

• Before an external procedure can be invoked (except through an entry
variable), its name must be declared within the procedure that invokes
it. The DECLARE statement for the external entry name must also
provide a list of parameter descriptors that give the data types of the
parameters that the procedure requires, if any, as well as a RETURNS
attribute for a function procedure.

You cannot explicitly declare internal procedures. The procedure
name is implicitly declared by its occurrence in the PROCEDURE or
ENTRY statement.

• External procedures can reference the same variable only if it is
declared with the EXTERNAL attribute in all of them.

An internal procedure, on the other hand, can reference internal
variables declared in any procedure in which it is contained.

• Any procedure can call an external procedure.

An internal procedure can be called only by the procedure that
contains it or by other procedures at the same level of nesting within
the containing procedure. The only exception is invocation through an
entry variable.

The following example illustrates the use of an external procedure:

WINDUP: PROCEDURE;

DECLARE PITCH EXTERNAL ENTRY (CHARACTER(16) VARYING,
FIXED BINARY(7));

CALL PITCH (PLAYER_NAME,NUMBER_OF_OUTS);

The procedure WINDUP declares the procedure PITCH with the
EXTERNAL and ENTRY attributes. The text of PITCH is in another
source program that is separately compiled. When the object module that
contains WINDUP is linked, the linker must be able to locate the object
module that contains PITCH. You can accomplish this by including both
object modules in the LINK command line, or by placing PITCH in an
object module library and including the library in the LINK command
line.

When a CALL statement or function reference invokes an entry point
in an external procedure, the entry constant must be declared with the
ENTRY attribute, as in the example above. Such a declaration must also
describe the parameters for that entry point, if any. For example:

DECLARE PITCH ENTRY (CHARACTER(•), FIXED BINARY(16));

The identifier PITCH is declared as an entry constant. When the pro­
cedure containing this declaration is linked to other procedures, one of
them must define an entry point named PITCH as the label either of a
PROCEDURE statement or an ENTRY statement. If the linker cannot
locate an external entry point, it issues a warning message.

The parameter descriptors define the data types of the parameters for the
entry point PITCH. Arguments of these types must be supplied when
PITCH is invoked.

If PITCH is to invoke a function, the DECLARE statement must also
include a RETURNS attribute describing the attributes of the returned
value, as follows:

DECLARE PITCH ENTRY (CHARACTER(•), FIXED BINARY(16))
RETURNS(FIXED);

Within the scope of this DECLARE statement, the entry constant PITCH
must be used in a function reference. The function reference will invoke
the external entry point, and a returned fixed-point binary value will
become the value of the function reference.

~rocedures 81

A PL/I program can invoke an external procedure that is not written
in PL/I. A common instance is the use of a VMS system service by
a PL/I program to obtain some system function not available directly
through PL/I. Or, a PL/I program can invoke an external procedure
written in another language that provides an application-specific function.
Such instances are possible because of the VAX Procedure Calling and
Condition Handling Standard, which includes a set of conventions for
passing arguments among procedures.

6.2.1 Entry Data

Entry constants and variables invoke procedures through specified entry
points. An entry value specifies an entry point and a block activation of a
procedure.

No conversions are defined between entry data and other data types. An
entry variable can be assigned only the value of an entry constant or the
value of another entry variable. The only valid operations for entry data
are comparisons for equality (=) and inequality ("=); two entry values are
equal if they refer to the same entry point in the same block activation.

6.2.1.1 Entry Constants

82 Procedures

You declare entry constants implicitly when you write labels on
PROCEDURE or ENTRY statements.

Internal entry constants are declared by writing labels on PROCEDURE or
ENTRY statements whose procedure blocks are nested in another block.
An internal entry constant can be used anywhere within the containing
block to invoke its procedure block. You cannot explicitly declare an
internal entry constant in the containing block.

You declare external entry constants by writing labels on PROCEDURE or
ENTRY statements that belong to external procedures, and by explicitly
declaring the name with the ENTRY attribute in the calling procedure.
You can use an external entry constant to invoke its procedure block
from any program location within its scope, which is either the scope
of its declaration (as a label in the external procedure) or the scope of a
DECLARE statement for the constant (in the calling procedure).

The declaration of an external entry constant gives the compiler the
information it needs to invoke a separately compiled procedure. The dec­
laration must agree with the actual entry point: it must contain parameter
descriptors for any parameters specified at the entry point; and, if the
entry constant is to be used in a function reference, the declaration must
have a returns descriptor describing the returned value.

The following example declares the external entry constant COPYSTRING:

DECLARE COPYSTRING ENTRY (CHARACTER (40) VARYING,
FIXED BINARY(7))

RETURNS (CHARACTER(•));

This entry has two parameters: a varying-length character string with a
maximum length of 40 and a fixed-point binary value. The RETURNS
attribute indicates that COPYSTRING is invoked as a function and that it
returns a character string with any length. COPYSTRING might look like
this:

COPYSTRING: PROCEDURE (INSTRING, ITERATIONS)
RETURNS (CHARACTER (•));

DECLARE INSTRING CHARACTER (40) VARYING,
ITERATIONS FIXED BINARY (7),
OUTSTRING CHARACTER (40);

RETURN (OUTSTRING);
END;

6.2.1.2 Entry Variables

Entry variables are variables (including parameters) that take entry values.
If you specify the VARIABLE attribute with the ENTRY attribute in a
DECLARE statement, or if the declared identifier occurs in a parameter
list, the declared identifier is an entry variable. You can assign an entry
constant to an entry variable, or you can assign to it the value of another
entry variable.

When you use an entry variable to invoke a procedure, its declaration
must agree with the definition of the entry point: the parameter descrip­
tor for the entry variable must match the parameter descriptor on the
declaration of the entry constant.

The scope of an entry variable name can be either INTERNAL or
EXTERNAL. If you specify neither, the default is INTERNAL.

Procedures 83

You can use an entry variable to represent different entry points during
the execution of the PL/I program. For example:

DECLARE E ENTRY (FIXED BINARY (7)) VARIABLE,
(A,B) ENTRY (FIXED BINARY (7));

E = A;
CALL E (10);

The entry constant A is assigned to the entry variable E. The CALL
statement results in the invocation of the external entry point A.

6.2.2 Passing Arguments to Non-PL/I Procedures

There are three ways that a PL/I procedure can pass an argument to a
non-PL/I procedure:

• By immediate value. The actual value of the argument is passed.

• By reference. The address in storage of the argument is passed.

• By descriptor. The address in storage of a data structure describing the
argument is passed.

The following sections describe the requirements for each of these
argument-passing mechanisms.

6.2.2.1 Passing Arguments by Immediate Value

84 Procedures

To pass an argument by immediate value, use the VALUE attribute in
a parameter description. The following declaration of the external entry
VHF illustrates a declaration for an external routine that receives its
parameter by immediate value.

DECLARE VHF ENTRY (FIXED BINARY(31) VALUE);

You can also define PL/I procedures that receive arguments by immediate
value. To do this, you must specify the VALUE attribute in the declara­
tion of the parameter. For example, the corresponding definition of the
procedure VHF would be as follows:

VHF: PROCEDURE (LENGTH);

DECLARE LENGTH FIXED BINARY(31) VALUE;

Arguments that can be passed by immediate value are limited to the
following data types, which can be expressed in 32 bits:

• FIXED BINARY(m), where m <= 31

• FLOAT BINARY(n), where n <= 24

• BIT(o) ALIGNED, where o <= 32

• ENTRY

• OFFSET

• POINTER

VAX PL/I supports the passing of external procedures, but not internal
procedures, as entry value parameters. To pass an internal procedure, use
an entry parameter.

When you specify the VALUE attribute in a parameter descriptor, you can
specify the ANY attribute instead of declaring any data type attributes.
For example, the declaration of SYS$SETEF can appear as follows:

DECLARE SYS$SETEF ENTRY (ANY VALUE);

At the time of the procedure's invocation, PL/I converts the written
argument as needed to create a longword dummy argument.

You can use the VALUE built-in function to force an argument to be
passed by immediate value to a non-PL/I procedure, regardless of the
declaration of the formal parameter. (See the entry 0 VALUE Built-In
Function".)

6.2.2.2 Passing Arguments by Reference

By default, PL/I passes all arguments by reference except character strings
and arrays with nonconstant extents. The parameter descriptor for an
argument to be passed by reference need specify only the data type of the
parameter.

For example, the Read Event Flags (SYS$READEF) system service requires
that its first argument be passed by immediate value and its second by
reference. You could declare this procedure as follows:

DECLARE SYS$READEF ENTRY (FIXED BINARY(31) VALUE,
BIT (32) ALIGNED);

When the procedure is invoked, the second argument must be a variable
declared as BIT(32) ALIGNED. PL/I passes the argument by reference.

Procedures 85

An argument of any data type can be passed by reference. Bit-string
variables, however, must have the ALIGNED attribute.

The data types in the parameter descriptors of all output arguments must
match the data types of the written arguments. For convenience, you
can specify ANY in the parameter descriptor. To describe an argument
to be passed by reference, you can specify the ANY attribute without the
VALUE attribute. When you specify ANY for an argument to be passed
by reference, you cannot specify data type attributes. Note that if you
specify the VALUE attribute in conjunction with the ANY attribute, PL/I
passes the argument by immediate value.

The ANY attribute is especially useful when you must specify a data
structure as an argument. You need not declare the structure within the
parameter descriptor, only the ANY attribute.

When an argument is passed by reference, PL/I passes the address of the
actual argument. This address can be interpreted as a pointer value; you
can explicitly specify a pointer value as an argument for data to be passed
by reference. For example:

DECLARE SYS$READEF (ANY VALUE, POINTER VALUE),
FLAGS BIT(32) ALIGNED;

CALL SYS$READEF (4, ADDR(FLAGS));

At this procedure invocation, PL/I places the pointer value returned by
the ADDR built-in function directly in the argument list.

6.2.2.3 Passing Arguments by Descriptor

86 Procedures

A descriptor is a structure that describes the data type, extents, and
address of a data item. When passing an argument by descriptor, PL/I
creates the descriptor and places its address in the argument list for the
called procedure.

PL/I passes arguments by descriptor when a parameter descriptor specifies
the following:

• A character string with an asterisk length or an array with asterisk
extents

• An unaligned bit string or an array or structure consisting entirely of
unaligned bit strings

• A structure containing any strings or arrays with asterisk extents

• ANY without VALUE, and the corresponding written argument is
specified with the DESCRIPTOR built-in function

For example, PL/I passes by descriptor the arguments associated with the
following parameter descriptors:

DECLARE UNSTRING ENTRY (CHARACTER(•)),
TESTBITS ENTRY (BIT(3)),
MODEST ENTRY (1,

2 CHARACTER(•),
2,

3 BIT(3),
3 BIT(3));

When you declare a non-PL/I procedure that requires a character­
string descriptor for an argument, specify the parameter descriptor as
CHARACTER(•). For example, the Set Process Name (SYS$SETPRN)
system service requires the address of a character-string descriptor as an
argument. You can declare this service as follows:

DECLARE SYS.SETPRN ENTRY (CHARACTER(•));

When a parameter is declared as CHARACTER(•), its written argument
can be one of the following:

• A character-string constant or expression.

• A fixed-length character-string variable.
• A varying character-string variable or a variable declared as

CHARACTER(•)VARYING.

For any of those arguments, PL/I constructs a character-string descriptor
and passes its address.

To force an argument to be passed by descriptor, use the DESCRIPTOR
built-in function. For example:

DECLARE P ENTRY (ANY);
DECLARE (X,Y) FIXED DECIMAL (7,2);

CALL P(DESCRIPTDR (X));
CALL P(Y);

Here, Xis passed by descriptor as specified by the DESCRIPTOR built-in
function. Y is passed by reference. (See the entry #DESCRIPTOR Built-In
Function.")

Procedures 8 7

Chapter 7

Program Control

The statements described in this chapter allow your program to repeat
sequences of operations, to transfer control or select operations based on
the result of a test, and to terminate. They are the DO, BEGIN, END, IF,
SELECT, GOTO, LEAVE, STOP, and null statements.

7 .1 DO Statement

The DO statement defines the beginning of a sequence of statements to
be executed in a group. The group ends with the nonexecutable statement
END. DO-groups have several formats, which are described individually
in this section:

• Simple DO

• DO WHILE

• DO UNTIL

• Controlled DO

• DO REPEAT

Program Control 89

7.1.1 Simple DO

A simple DO statement is noniterative. The statements that appear
between the DO statement and its corresponding END statement are
executed once, after which control passes to the next executable statement
in the program.

For example:

IF A < B THEN DO;
PUT LIST ('More data needed');
GET LIST (VALUE);
A= A +VALUE;
END;

The most common use of the simple DO statement is as the action of the
THEN clause of an IF statement, as shown above, or of an ELSE option.

7.1.2 DO WHILE

90 Program Control

A DO WHILE statement executes a group of statements as long as a
particular condition is satisfied. When the condition is not true, the group
is not executed and control passes to the next executable statement in
the program, after the END statement that terminates the group. A test
expression is evaluated before each execution of the DO-group. It must
have a true value in order for the DO-group to be executed even once.

The following examples illustrate the use of the DO WHILE statement.

DD WHILE (A< B);

END;

This DO-group executes as long as the value of the variable A is less than
the value of the variable B.

DO WHILE (LIST->NEXT -. NULL());

END;

This DO-group executes while a forward pointer in a linked list has a
value.

DECLARE EDF BIT(1) INITIAL('O'B);

ON ENDFILE(INFILE) EDF = '1'B;

DO WHILE (•EDF);
READ FILE(INFILE) INTO(INREC);

END;

This DO-group reads records from the file INFILE until the end of the
file is reached. At the beginning of each iteration of the DO-group, the
expression ·EoF is evaluated; the expression is true until the ENDFILE
ON-unit sets the value of EOF to 'l'B.

7.1.3 DO UNTIL

A DO UNTIL statement executes a group of statements until a particular
condition is satisfied. That is, while the condition is false, the group is
repeated.

The DO WHILE and the DO UNTIL statements differ in that the WHILE
option tests the value of the test expression at the beginning of the DO­
group, whereas the UNTIL option tests the value of the test expression at
the end of the DO-group. Therefore, a DO-group with the UNTIL option
will always be executed at least once, but a DO-group with the WHILE
option may never be executed.

The following examples illustrate the use of the DO UNTIL statement.

DO UNTIL (K<ALPHA);

END;

This DO-group is executed at least once and then repeats as long as the
value of the variable K is greater than or equal to the value of the variable
ALPHA.

Program Control 91

DO UNTIL (LIST ->NEXT = NULL(}}

END;

This DO-group is executed until a forward pointer in a linked list has a
null value.

DECLARE STR BIT (8) CONTROLLED;

.ALLOCATE STR; /• 1st allocation •/

.ALLOCATE STR; /• nth allocation •/

DO UNTIL (.ALLOCATION(STR)-0);
PUT SKIP LIST (STR};
FREE STR;
END;

END;

This DO-group frees bit strings from storage until all generations have
been released. Because the UNTIL option is always executed at least once,
at least one generation must be allocated; otherwise, the ERROR condition
is raised. At the end of each repetition of the DO-group, the status of the
generations is checked with the ALLOCATION built-in function. A null
string terminates the execution of the group and passes control to the next
executable statement after the first END statement.

7.1.4 Ceatrolled DO

92 Program Control

A controlled DO statement identifies a variable whose value controls
the execution of the DO-group, and defines the conditions under which
the control variable is to be modified and tested. When the value of the
control variable exceeds the specified end value, control passes out of
the DO-group. A WHILE or UNTIL clause can also be included. The
WHILE expression is evaluated before each iteration, including the first,
but after assignment to the control variable. The UNTIL expression is
evaluated after each iteration, including the first, but before assignment to
the control variable.

A controlled DO statement that does not specify a TO or BY option results
in a single iteration of the following DO-group. Because there is no TO or
BY expression to change the value of the variable, the DO-group will not
be executed again.

The following examples illustrate the controlled DO statement.

DO I = 2 TO 100 BY 2;

END;

This DO-group executes 50 times, with values for I of 2, 4, 6, and so on.

DO I = LBOUND(ARRAY,1) TO HBOUND(ARRAY,1);

END;

This DO-group executes as many times as there are elements in the array
variable ARRAY, using the subscript values of the array's elements.

DO I= 1 BY 1 WHILE (X < 'Y);

END;

This DO-group continues executing with successively higher values for I
until the value of the variable X equals or is greater than the value of the
variable Y.

DO I= 1 BY -1 UNTIL (X < Y);

END;

This DO-group continues executing with successively lower values for I
while the value of the variable X is equal to or greater than the value of
the variable Y.

Program Control 93

7.1.5 DO REPEAT

94 Program Control

The DO REPEAT statement executes a DO-group repetitively for different
values of a variable. The variable is assigned a start value that is used on
the first iteration of the group. The REPEAT expression is evaluated before
each subsequent iteration, and its result is assigned to the variable. A
WHILE clause can be included; if it is, the WHILE expression is evaluated
before each iteration, including the first, but after assignment to the
variable. An UNTIL clause can also be included; the UNTIL expression is
evaluated after each iteration.

If the WHILE and UNTIL options are omitted, the DO REPEAT statement
specifies no means for terminating the group; the execution of the group
then must be terminated by a statement or condition occurring within the
group, such as a GOTO statement, a LEAVE statement, or an ENDFILE
condition.

The following examples illustrate the use of the DO REPEAT statement.

DO LETTER•'!' REPEAT (BYTE(I));

Here, the group will be repeated with an initial LETTER value of 'A' and
with subsequent values assigned by the built-in function BYTE(!). The
variable I can be assigned new values within the group. The group will
iterate endlessly unless terminated by a statement or condition within the
group.

DO I• 1 REPEAT (I+ 2) WHILE (I<• 100);

DO I = 1 TO 100 BY 2;

The first of these two examples is a DO REPEAT statement, and the
second is a controlled DO statement. The two statements would have the
same effect.

DO P = LIST_HEAD REPEAT (P->LIST.NEXT)
WHILE (P -. NULL());

This example illustrates the manipulation of lists, which is the most
common use of DO REPEAT. The pointer Pis initialized with the value
of the pointer variable LIST.JiEAD. The DO-group is executed with this
value of P. The REPEAT option specifies that, each time control reaches
the DO statement after the first execution of the DO-group, P is to be set
to the value of LIST .NEXT in the structure currently pointed to by P.

WHILE and UNTIL can be used in combination to check the status of a
DO-group both before and after execution.

7 .2 BEGIN Statement

The BEGIN statement denotes the start of a begin block. A begin block is
a sequence of statements headed by a BEGIN statement and terminated
by an END statement. A begin block can be used wherever a single
executable statement is valid, for instance, in an ON-unit. The statements
in a begin block can be any PL/I statements, and begin blocks can contain
DO-groups, DECLARE statements, procedures, and other (nested) begin
blocks.

A begin block provides a convenient way to localize variables. Variables
declared as internal within a begin block are not allocated storage until
the block is activated. When the block terminates, storage for internal
automatic variables is released. A begin block terminates in the following
situations:

• When its corresponding END statement is encountered. Control
continues with the next executable statement in the program.

• When it executes a nonlocal GOTO to transfer control to a previous
block.

• When it executes a RETURN statement.

A begin block differs from a DO-group chiefly in its ability to localize
variables. Variables declared within DO-groups are not localized to the
group (unless the group contains a begin block or procedure that declares
internal variables). Begin blocks are preferable when you want to restrict
the scope of variables. Furthermore, there are some cases (such as ON­
units) in which DO-groups cannot be used. Otherwise, DO-groups are
often more efficient, because they do not have the overhead associated
with block activation. In general, you should use a DO-group instead of a
begin block unless there are declarations present or you require multiple
statements in an ON-unit.

A begin block can designate a series of statements to be executed depend­
ing on the success or failure of a test in an IF statement. For example:

IF A = B THEN BEGIN

END;

Program Control 95

A begin block also provides the only way to denote a series of statements
to be executed when an ON condition is signaled. For example:

ON ERROR BEGIN;
[statement ...]
END;

7 .3 END Statement

96 Program Control

The END statement marks the end of the block or group headed by the
most recent BEGIN, DO, SELECT, or PROCEDURE statement.

Note that a procedure invoked as a function must execute a RETURN
statement before it encounters the END statement marking the end of the
procedure.

When the END statement is encountered, one of the following actions is
performed, depending on the type of block or group that it terminates:

• When an END statement denotes the end of a procedure, the proce­
dure is terminated. The storage allocated for the block is released, and
all automatic variables are made inaccessible. If the current procedure
is the main or only procedure, the program terminates. Otherwise,
control returns to the statement following the CALL statement that
invoked the procedure.

• When an END statement denotes the end of a begin block, the block
is terminated. Storage allocated for the block is released, and all
automatic variables are made inaccessible. Control passes to the next
executable statement.

• When an END statement denotes the end of a DO-group, control
returns either to· the DO statement that heads the group or to the next
executable statement following the END statement. If the DO-group
is headed by a simple DO, that is, one that causes the DO-group to be
executed only once, control passes to the next executable statement.
Otherwise, control returns to the head of the DO-group, where the
control variable or expression is tested.

7 .4 IF Statement

The IF statement tests an expression and performs the action specified
after the keyword THEN if the result of the test is true. If it is not true,
the action following THEN is not executed, and control goes to the ELSE
clause, if it exists, or to the next executable statement.

The following examples illustrate the use of the IF statement.

IF A < B THEN BEGIN;

The begin block after this statement is executed if the value of the variable
A is less than the value of the variable B.

IF -sucCESS THEN
CALL PRINT_ERROR;

ELSE
CALL PRINT_SUCCESS;

The IF statement defines action to be taken if the variable SUCCESS has
a false value (the THEN clause) and an action to be taken otherwise (the
ELSE clause).

IF ABC
THEN IF XYZ

THEN GOTO GBH;
ELSE GOTO THESTORE;

ELSE GOTO HOME;

You can nest IF statements; that is, the action specified in a THEN or an
ELSE clause can be another IF statement. An ELSE clause is matched with
the nearest preceding IF /THEN that is not itself matched with a preceding
ELSE. Here, the first ELSE clause is executed if ABC is true and XYZ is
false. The second ELSE clause is executed if ABC is false.

IF ABC
THEN IF XYZ THEN GOTO HOME;

ELSE;
ELSE GOTO THESTORE;

In some cases, proper matching of IF and ELSE may require a null
statement as the target of an ELSE. Here, the ELSE GOTO THESTORE
statement is executed if ABC is false.

Program Control 9 7

7 .5 SELECT Statement

98 Program Control

The SELECT statement tests a series of expressions and performs a
specified action depending on the result of the test. The statement has
two forms: in the first form, the expressions are tested for truth or falsity;
in the second form, the expressions are tested to see whether any or all
have the same value as another, specified expression (here called the
"select-expression"). Any of the expressions can be, but need not be,
constants. An optional OTHERWISE clause is available to name an action
to be performed if none of the preceding expressions have satisfied the
condition specified.

The two forms of the SELECT statement and the OTHERWISE clause are
described in detail in the entry "SELECT Statement".

The following examples illustrate the use of the SELECT statement.

SELECT;

END;

WHEN ANY (A=10,A•20,A•SO) B•B+1;
WHEN (A=50) B=B+2;
WHEN (A•60) B•B+3;
WHEN (A=70) B=B+4;
WHEN (A=SO) B=B+6;
WHEN (A=90) B=B+6;
WHEN ALL (A>90,A<500) B•B+10;
OTHERWISE B=B+C;

The SELECT statement defines the action to be taken (B=B+l) if the
variable A has any of the values specified in the WHEN ANY clause;
failing that, the succeeding WHEN clauses are evaluated until one of them
is found to be true, causing the specified action to be taken; failing that,
the WHEN ALL clause is tested, causing its action to be taken if A is
both greater than 90 and less than 500. If none of the WHEN clauses'
conditions is true, the action specified in the OTHERWISE clause (B=B+C)
is executed.

SELECT(A);

END;

WHEN (50) C=C+1;
WHEN ANY (60,61,62,B+C) C•C+2;
WHEN ALL (70,D) C=C+3;
OTHERWISE C•C+D;

This example is a SELECT statement with a select-expression specified
after the keyword SELECT.

The SELECT statement defines the action to be taken if the select­
expression (A in the example) evaluates to any (or all) of the values of
the expressions following a WHEN clause. The first action (the assign­
ment statement C=C+l) will be executed if A has a current value of 50.
In that case, none of the subsequent WHEN clauses will be evaluated.
The second WHEN clause includes the ANY keyword, and so the second
action will be executed if A evaluates to or equals 60 or 61 or 62 or the
sum of B and C. If neither the first nor the second action is executed,
the third WHEN clause's expressions are tested. The third WHEN clause
includes the ALL keyword, so the third action will be executed only if A
equals both 70 and D. If none of the WHEN clauses causes an action to
be executed, then the action in the OTHERWISE clause (the assignment
statement C=C+D) will be executed.

1.& GOTO Statement

The GOTO statement causes control to be transferred to a labeled state­
ment in the current or any outer procedure. A label denotes a statement
in the program and a block activation. The specified label cannot be the
label of an ENTRY, FORMAT, or PROCEDURE statement.

If the specified label value is not in the current block, the GOTO statement
is considered nonlocal. The following can occur:

• The current block, and any blocks intervening between it and the
block containing the label value, are released. This rule applies to
procedure blocks and begin blocks.

• If a GOTO statement transfers control out of a procedure that is
invoked in a function reference, the statement containing the function
reference is not evaluated further.

A label consists of any valid identifier terminated by a colon. A name
occurring as a statement label is implicitly declared as a label constant,
with the attributes LABEL and constant. Label constants cannot be
explicitly declared.

The following restrictions apply to the use of labels and label data:

• No statement can have more than one label. However, an executable
statement can be preceded by any number of labeled null statements,
which have the same effect as would multiple labels.

• Operations on label values are restricted to the operators= and "=, for
testing equality or inequality. Two values are equal if they refer to the
same statement in the same block activation.

Program Control 99

• Any statement in a PL/I program can be labeled except the following:

A DECLARE statement
A statement beginning an ON-unit, THEN clause, ELSE clause,
WHEN clause, or OTHERWISE clause

• Labels on PROCEDURE, ENTRY, and FORMAT statements are not
considered statement labels and cannot be used as the targets of
GOTO statements.

• An identifier occurring as a label in a block cannot be declared in that
block (except as a structure member) or occur in the block's parameter
list.

• Any reference to a label value after its block activation terminates is
an error with unpredictable results.

The following example demonstrates the use of the GOTO statement:

ON ERROR GOTO ERROR_MESSAGE;

The GOTO statement provides a transfer address for the current procedure
when the ERROR condition is signaled.

The following subsections describe label array constants, which allow you
to write labels with constant subscripts, and label variables, which can be
assigned values and then used in GOTO statements to provide flexibility.

7 .6.1 label Array Constants

Any label constant except the label of a PROCEDURE or FORMAT
statement can have a single subscript. You must specify subscripts with
integer constants or constant identifiers, which must appear in parentheses
following the label name. For example:

PART(1):

PART(2):

100 Program Control

When labels are written this way, the unsubscripted label name represents
the implicit declaration of a label array constant. In this example, the
array is named PART and is treated as if it were declared within the block
containing the subscripted labels. Elements of this array can be referenced
in GOTO statements that specify a subscript. For example:

GOTO PART(!);

I is a variable whose value represents the subscript of the element of
PART that is the label to be given control.

7 .8.2 Label Variables

When an identifier is explicitly declared with the LABEL attribute, it
acquires the VARIABLE attribute by default. Such a variable can be used
to denote different label values during the execution of the program. The
following examples demonstrate the use of label variables.

DECLARE PROCESS LABEL;

IF CODE THEN
PROCESS = BILLING;

ELSE
PROCESS = CHARGE;

GOTO PROCESS;

When the GOTO statement evaluates the reference to the label PROCESS,
the result is the current value of the variable. The GOTO statement
transfers control to either of the labels BILLING or CHARGE, depending
on the current value of the Boolean variable CODE.

XlU:PLACE REMOVE_TEXT BY 2;

DECLARE PROCESS(6) LABEL VARIABLE;

GOTO PROCESS(REMOVE_TEXT);

The GOTO statement evaluates the label reference and transfers control
to the label constant corresponding to the second element of the array
PROCESS. PROCESS consists of label variables.

Program Control 101

7. 7 LEAVE Statement

The LEAVE statement causes control to be transferred out of the immedi­
ately containing DO-group or out of the containing DO-group whose label
is specified with the statement. The label reference can be a label constant
or a subscripted label constant for which the subscript is specified with an
integer constant. The label reference cannot be a label variable, nor can it
be a subscripted label constant for which the subscript is specified with a
variable.

When it is executed, a LEAVE statement with no label reference causes
control to be transferred to the first statement following the END state­
ment that terminates the immediately containing DO-group. If the LEAVE
statement has a label, control is passed to the first executable statement
following the end statement for the corresponding label indicated in
the LEAVE statement. Thus, the LEA VE statement provides an alter­
native means of terminating execution of a DO-group. In the case of a
LEA VE statement with a label reference, several nested DO-groups can be
terminated as control is transferred outside the referenced DO-group.

The following restrictions apply to the use of the LEAVE statement:

• A LEA VE statement must be contained within a DO-group.
• A LEAVE statement must be in the same block as the DO statement to

which it refers.

• A LEAVE statement label reference must refer to a label on a DO
statement that heads a DO-group containing the LEA VE statement.
The LEAVE statement must be in the same block as the labeled DO
statement.

• The label reference specified with a LEA VE statement must be a label
constant or a subscripted label constant with an integer constant
subscript.

The following example shows a LEAVE statement with a label reference:

102 Program Control

LOOP1: DO WHILE (MORE);

LOOP2: DO I = 1 TO 12;

IF QUAN(!) > 150 THEN LEAVE LOOP1;
END; /* loop 2 */

END; /* loop 1 */

In this example, the LEAVE statement transfers control to the first state­
ment beyond the last END statement.

7 .8 STOP Statement

The STOP statement terminates execution of a program, regardless of the
current block activation, signals the FINISH condition, and closes all open
files. If the main procedure has the RETURNS attribute, no return value is
obtainable.

7 .9 Null Statement

The null statement performs no action. Its format is as follows:

The null statement usually serves as the target statement of a THEN or
ELSE clause in an IF statement, as the target of a WHEN or OTHERWISE
clause in a SELECT statement, or as an action in an ON-unit. The follow­
ing examples illustrate these uses.

IF A < B THEN GOTO COMPUTE;
ELSE ;

In this example, no action takes place if A is greater than or equal to B;
execution continues at the statement following ELSE ;. A construction of
this type may be necessary when IF statements are nested (see Section
7.4).

Program Control 103

SELECT;

END;

WHEN (condition A,B,C) GOTO FILE_READ;
WHEN (condition D,E} GOTO UPDATE;
OTHERWISE;

In this example, control is passed to the next executable statement after
END if conditions A, B, C, D, and E are not true.

ON ENDPAGE(SYSPRINT);

In this example, no action takes place upon execution of the ON-unit; the
I/O operation that caused the ENDPAGE condition continues.

The null statement can also be used to declare two labels for the same
executable statement, as in the following example:

LABEL1:
LABEL2: statement ...

1 04 Program Control

Encyclopedic Reference

A

A Format Item

The A format item describes the representation of a character string in the
input or output stream. The form of the A format item is as follows:

A [(w)]

w
A nonnegative integer or an integer expression that specifies the width in
characters of the field in the stream. If it is not included (PUT EDIT only),
the field width equals the length of the converted output source.

For a general discussion of format items, see uFormat Item."

• Input with GET EDIT
The value w must be included when the A format item is used with GET
EDIT. If w has a positive value, a character-string value comprising the
next w characters in the input stream is acquired and assigned to the input
variable. If w is zero, no operation is performed on the input stream, and
a null character string is assigned to the input variable.

The acquired character string is converted, if necessary, to the data
type of the input target, following the PL/I data conversion rules (see
uconversion of Data"). Apostrophes should enclose the stream data only
if the apostrophes are intended to be acquired as part of the data.

• Output with PUT EDIT
The output source associated with an A format item is converted, if
necessary, to a string of characters. The result is assigned to a string of
w characters, which are placed in the output stream. If w is omitted,
the length of the output string equals the length of the converted output
source. If w is zero, the A format item and the associated output source
are skipped.

A Format Item 107

Output strings are not surrounded automatically by apostrophes. The
converted output source is truncated or appended with trailing spaces,
according to the value of w. The conversion of a computational data item
to a character string is performed following the PL/I data conversion rules
(see "Conversion of Data").

•Examples
The tables below show the relationship between the internal and external
representations of characters that are read or written with the A format
item.

Input Examples

The input stream shown in the following table is a field of characters
beginning at the current position in the stream and continuing to the right.
The target type is the type of the variable to which the input value is
assigned.

Format Item Input Stream Target Type Target Value
A(10) 44SBRUBBERY6 ••• CHAR(10) AASHRUBBER

A(6) 44SHRUBBERY6 ••• CHAR(10) AASHRUA644

A(6) 66SBRUBBERY6 •.. CHAR(10) VAR 66SBRU

A(10) 661. 23466646 •.. DECIMAl.(4,1) 001.2

A(6) 641. 23466666 •.• DECIMAL(4,2) 01.20

A(6) 661. 23466666 ••• DECIMAL(4,2) 01.23

Output Examples

The output source value shown in the table that follows is either a
constant or the value of a variable that is written with the associated
format item.

1 08 A Format Item

Output Source Value Format Item Output Value

'STRING' A(10) STRINGAAAA

'STRING' A STRING

1.2346 A(2) AA

1.2346 A AA1.2346

-1.2346 A(4) A-1.

-1.2346 A A-1.2346

II A(10) AAAAAAAAAA

A [no output]

0 A(3) AAA

0 A AAAO

-12346 A(6) AA-123

-12346 A AA-12346

Abbreviation

A number of the VAX PL/I keywords can be abbreviated. These abbrevi­
ations are in Table A-1.

Table A-1: VAX PL/I Keyword Abbreviations
Keyword Abbreviation Keyword Abbreviation

ALLOCATE ALLOC INTERNAL INT

ALLOCATION ALLOCN NONVARYING NONVAR

AUTOMATIC AUTO OTHERWISE OTHER

BINARY BIN OVERFLOW OFL

CHARACTER CHAR PARAMETER PARM

COLUMN COL PICTURE PIC

CONDITION COND POINTER PTR

CONTROLLED CTL POSITION POS

CONVERSION CONY PRECISION PREC

DECIMAL DEC PROCEDURE PROC

Abbreviation 1 09

Table A-1 (Cont.): VAX PL/I Keyword Abbreviations
Keyword Abbreviation Keyword Abbreviation

DECLARE DCL SEQUENTIAL SEQL

DEFINED DEF STRING RANGE STRG

DESCRIPTOR DESC SUBSCRIPTRANGE SUBRG

DIMENSION DIM UNALIGNED UNAL

ENVIRONMENT ENV UNDEFINED FILE UNDF

EXTERNAL EXT UNDERFLOW UFL

FIXEDOVERFLOW FOFL VALUE VAL

GOTO GOTO VARYING VAR

INITIAL INIT ZERO DIVIDE ZDIV

For a summary of all the VAX PL/I keywords, see Appendix A. This sum­
mary briefly identifies each keyword's use (for example, as an attribute,
statement, or built-in function) and also gives abbreviations.

ABS Built-In Function
ABS Preprocessor Built-In Function

The ABS built-in function returns the absolute value of an arithmetic
expression x. Its format is as follows:

ABS(x)

• Exa•ples
A • 3.667;
Y • ABS(A); /• Y • +3.667 •/

A = -3.567;
Y • ABS(A); /• Y • +3.667 •/

ROOT• SQRT (ABS(TEMP));

The last example shows a common use for the ABS built-in function:
to ensure that an expression has a positive value before it is used as an
argument to the square root (SQRT) built-in function.

11 0 ABS Preprocessor Built -In Function

ACOS Built-In Function

The ACOS built-in function returns a floating-point value that is the arc
(inverse) cosine of an arithmetic expression x. The arc cosine is computed
in floating point. The returned value is an angle w such that

0 <= w <= 7f

The absolute value of x, after its conversion to floating point, must be less
than or equal to 1. The format of the function is as follows:

ACOS(x)

%ACTIVATE Statement

The %ACTIVATE statement makes preprocessor variable and procedure
identifiers eligible for replacement. If the compiler encounters the named
identifier after executing a %ACTIVATE statement, it initiates variable
replacement. The format of the %ACTIVATE statement is as follows:

% { ACTIVATE } element [RESCAN]
ACT NORESCAN ' '

element
The name of a previously declared preprocessor identifier and/or a list of
identifiers, where the identifiers are separated by commas and the list is
enclosed in parentheses.

RESCAN or NORESCAN
Specifies that the preprocessor is to continue or discontinue checking the
text for secondary value replacement.

The RESCAN option specifies that preprocessor scanning continue until
all possible identifier replacements are completed. RESCAN is the default
option.

The NORESCAN option specifies that replacement be done only once; the
resulting text is not rescanned for possible further replacement.

%ACTIVATE Statement 111

An identifier is activated by either a %ACTIVATE statement or a
%DECLARE statement. When an activated identifier is encountered
by the compiler, in unquoted nonpreprocessor statements, the variable
name or procedure reference is replaced by its value. Replacement con­
tinues throughout the rest of the source program unless replacement is
stopped with the %DEACTIVATE statement.

You can activate several variables with a single statement. For example:

%DECLARE (A,B,C) FIXED;
%ACTIVATE (A,B), C NORESCAN;

Because RESCAN is the default action, this statement activates A and B
with the RESCAN option. C is activated, but is not rescanned.

If an identifier that is not a preprocessor variable or procedure is the
target of a %ACTIVATE statement, a warning message is issued and the
identifier is implicitly declared as a preprocessor variable with the FIXED
attribute. Thereafter, the identifier variable is eligible for replacement
when activated.

For example:

DECLARE (A,B,C) FIXED;
%DECLARE (A,B) FIXED;
%ACTIVATE (A,B);

u = 1;
XS"' (A+ A);

C = A + B;
PUT SKIP LIST (C);

In this example, the activated preprocessor variables A and B are assigned
values by the preprocessor. Notice that variables A and Bare also declared
as nonpreprocessor variables; this establishes them as variables within the
nonpreprocessor program.

In the following example, the variable B is deactivated by the
%DEACTIVATE statement (see 0 %DEACTIVATE Statement").

%DEACTIVATE B;
B • 900;
C = A + B;
PUT SKIP LIST (C);
END;

112 %ACTIVATE Statement

I• c = 001 •/

Because the preprocessor variable B is deactivated, the preprocessor
assignment statement %B =(A+ A) is not in effect and the value of Bis
taken from the run-time assignment of B = 900. However, the value of A
remains 1.

For additional preprocessor information, see 0 Preprocessor."

ACTUALCOUNT Built-In Function

The ACTUALCOUNT built-in function allows you to determine how
many parameters the current procedure was called with. The function
returns a FIXED BINARY(31) result.

The format of an assignment statement using the function is as follows:

variable= ACTUALCOUNT();

ADD Built-In Function

The ADD built-in function returns the sum of two arithmetic expressions x
and y, with a specified precision p and an optionally specified scale factor
q. The format of the function is as follows:

ADD(x, y ,p[,q])

p
An unsigned integer constant greater than zero and less than or equal to
the maximum precision of the result type (31 for fixed-point data, 34 for
floating-point decimal data, and 113 for floating-point binary data).

q
An integer constant less than or equal to the specified precision. The scale
factor can be optionally signed when used in fixed-point binary addition.
The scale factor for fixed-point binary must be in the range -31 top. The
scale factor for fixed-point decimal data must be in the range 0 top. If
you omit q, the default value is zero. You should not use a scale factor for
floating-point arithmetic.

ADD Built-In Function 113

Addition

114 Addition

Expressions x and y are converted to their derived type before the addition
is performed; see "Expression."

For example:

.ADDBIF: PROCEDURE OPTIONS (MAIN);

DECLARE I FIXED DECIMAL (8,3),
Y FIXED DECIMAL (8,3),
Z FIXED DECIMAL (9,3);

1•9600.374;
Y=2278.897;
Z •ADD (X,Y,9,3);

PUT SKIP LIST ('TOTAL =1 ,Z);

END;

This program returns the following:

TOTAL = 11779.271

The plus sign character (+), when used as an infix operator, indicates an
addition operation between two operands in an expression; the result is
the sum of the operands. Both operands must be arithmetic or picture
data.

The plus sign can also be used as a prefix operator. See "Operator."

• Conversion Df Operan•s
If both operands have the same base, precision, and scale, so has the
result. The PL/I compiler converts operands of different data types as
follows:

• If one operand has the FLOAT attribute and the other has the FIXED
attribute, the fixed-point operand is converted to floating point before
the operation is performed.

• If one operand has the DECIMAL attribute and the other has BINARY,
the decimal operand is converted to binary before the operation is
performed.

For an explanation of the precision of the value resulting from the conver­
sion of an operand, see "Expression."

• Precision of the Result
The precision of the resulting sum is based on the precision (or converted
precision) of the two operands. For example, the heading "Floating-Point
Operands" below means that the operands were of floating-point types
originally or that one was converted to floating point.

Floating-Point Operands
The result takes the greater precision of the two operands.

Fixed-Point Operands
If (p,q) and (r,s) represent the converted precisions and scale factors of the
two operands, the resulting precision is

min(31, max(p - q, r - s) + max(q, s) + 1)

The resulting scale factor is
max(q, s)

ADDR Built-In Function

The ADDR built-in function returns a pointer to storage denoted by a
specified variable. The variable reference must be addressable. The format
of the function is as follows:

ADDR(reference)

If the reference is to a parameter (or any element or member of a param­
eter), the pointer value obtained must not be used after return from the
parameter's procedure invocation. (This could occur, for example, if the
pointer were saved in a static variable or returned as a function value.)

See "Based Variable" for a general discussion of pointer values.

ADOR Built-In Function 115

ALIGNED Attribute

The ALIGNED attribute controls the storage boundary of bit-string data in
storage.

You can specify the ALIGNED attribute in conjunction with the BIT
attribute in a DECLARE statement to request alignment of a bit-string
variable on a byte boundary. (See "Bit-String Data.") If you specify
ALIGNED for an array of bit-string variables, each element of the array is
aligned.

You can specify ALIGNED in the declaration of a nonvarying character­
string variable. However, all character strings are byte-aligned on VAX
machines; thus, the specification of ALIGNED is superfluous and is not
recommended. (See "Character-String Data.")

• Restrictions
The ALIGNED attribute conflicts with the VARYING attribute and is
invalid with all data type attributes other than BIT and CHARACTER. You
must specify either BIT or CHARACTER with the ALIGNED attribute.

ALLOCATE Statement

The ALLOCATE statement obtains storage for a based or controlled
variable and sets (with based variables) a locator variable equal to the
address of the allocated storage. The format of the ALLOCATE statement
is as follows:

{ ALLOCATE } ALLOC allocate-item, ... ;

allocate-item

variable-reference [SET (locator-reference)] [IN (area-reference)]

variable-reference
A based or controlled variable for which storage is to be allocated. The
variable can be any scalar value, array, area, or major structure variable; it
must be declared with the BASED or CONTROLLED attribute.

116 ALLOCATE Statement

SET(locator-reference}
The specification of a pointer or offset variable (for based variables)
that is assigned the value of the location of the allocated storage. If the
SET option is omitted, the based variable must have been declared with
BASED(locator-reference); the variable designated by that locator reference
is assigned the location of the allocated storage.

You cannot use the SET option to allocate controlled variables.

IN(area-reference}
The specification of an area reference (for based variables) in which the
storage is to be allocated. If the IN option is omitted, the SET option (or
implied SET option if the locator variable is an offset) must be an offset
declared with OFFSET(area-reference).

You cannot use the IN option to allocate controlled variables.

•Examples
DECLARE STATE CllARACTER(100) BASED (STATE_POINTER),

STATE_POINTER POINTER;

ALLOCATE STATE;

This ALLOCATE statement allocates storage for the variable STATE and
sets the pointer STATE_pOINTER to the location of the allocated storage.

The ALLOCATE statement obtains the amount of storage needed to
accommodate the current extent of the specified variable. If, for example,
a character-string variable is declared with an expression for its length,
the ALLOCATE statement evaluates the current value of the expression to
determine the amount of storage to be allocated. For example:

DECLARE BUFFER CHARACTER (BUFLEN) BASED,
BUF_PTR POINTER;

BUFLEN • 80;
ALLOCATE BUFFER SET (BUF_PTR);

Here, the value of BUFLEN is evaluated when the ALLOCATE statement
is executed. The ALLOCATE statement allocates 80 bytes of storage for
the variable BUFFER and sets the pointer variable BUf_pTR to its location.

For an additional example of the ALLOCATE statement and a description
of based variables, see "Based Variable."

ALLOCATE Statement 117

The ALLOCATE statement is also used to allocate storage for controlled
variables. A controlled variable is one whose actual storage is allocated
and freed dynamically in "generations," only the most recent of which is
accessible to the program. Unlike based variables, a controlled variable
cannot be used in a pointer-qualified reference. For general information
and examples, see "Controlled Variable."

If the variable being allocated has been declared with initial values, these
values are assigned to the variable after allocation.

For more information on allocation and deallocation of variables inside
areas, see the VAX PL/I User Manual.

ALLOCATION Built-In Function

The ALLOCATION built-in function returns a fixed-point binary integer
that is the number of extant generations of a specified controlled variable.
(See "Controlled Variable"). If no generations of the specified variable
exist, the function returns zero. The format of the function is as follows:

{ ALLOCATION } (reference)
ALLOCN

reference
The name of a controlled variable.

• Examples
DECLARE INPUT CllARACTEB(10) CONTROLLED,

A CllARACTER(3) VARYING;

DO UllTIL (INPUT• 'QUIT');
ALLOCATE INPUT;
GET LIST(INPUT);

END;
A• ALLOCATION(INPUT);
PUT SKIP LIST('Generations = 'A);

This example uses the ALLOCATION built-in function to return the
number of generations of the controlled variable INPUT. The example
illustrates how input in an interactive program can be stored on a stack for
future use.

118 ALLOCATION Built-In Function

ALLO: PROCEDURE OPTIONS (MAIN);
DECLARE STR CHARACTER (10) CONTROLLED;

ALLOCATE STR;
STR=' FIRST I ;

ALLOCATE STR;
STR• I SECOND I ;

ALLOCATE STR;
STR= I THIRD I ;

DO WHILE (ALLOCATION(STR)-=0);
PUT SKIP LIST (STR);
FREE STR;

END;
END;

This example shows how the ALLOCATION built-in function can be used
to count generations of controlled variables and therefore control the loop.
Strings are freed while generations still exist, but when all generations
have been freed, the value of ALLOCATION is zero and the process ends,
thus avoiding a fatal run-time error.

AND Operator

The ampersand (&) character is the logical AND 1 operator in PL/I. In a
logical AND operation, two bit-string operands are compared bit by bit.
If two corresponding bits are 1, the corresponding bit in the result is l;
otherwise, the result is 0.

The result of a logical AND operation is a bit-string value. All relational
expressions result in bit strings of length 1; they can therefore be used
as operands in an AND operation. If the two operands have different
lengths, the shorter operand is converted to the length of the longer
operand, and the greater length is the length of the result.

• Examples
DECLARE (BITA, BITB, BITC) BIT (4);
BITA = '0011'B;
BITB = '1111 'B;
BITC = BITA t BITB;

The resulting value of BITC is '0011 'B.

The AND operator can test whether two or more expressions are both true
in an IF statement. For example:

IF (LINENO(PRINT_FILE) < 60) t
(MORE_DATA = YES) THEN ...

AND Operator 119

See also "AND THEN Operator," "Bit-String Data," "Logical Operator,"
and "Operator."

AND THEN Operator

The ampersand-colon token (&:) is the AND THEN operator in PL/I. The
AND THEN operator causes the first operand to be evaluated; if it is false,
the result returned is 'O'B. The second operand will never be evaluated if
the first operand is false. If and only if the first operand is true, the second
operand is evaluated. If both are true, the result returned is true ('1 'B);
otherwise, the result is false ('O'B).

The AND THEN operator performs a Boolean truth evaluation, not a
bit-by-bit operation, even when the two operands are bit strings. For
example, 'OOOOl'B &: 'lOOOO'B yields 'l'B (not 'OOOOO'B, which would be
the result of an AND operation on these two bit strings). The reason is
that each operand is a non-zero bit value, and therefore each evalutes to
'l'B.

The AND THEN operator yields the same result as the AND operator (&)
when expressions are tested in an IF statement (as in the last example in
the "AND Operator" entry). The difference is that the AND operator can
have its operands evaluated in either order.

The AND THEN operator is useful in compound test expressions in which
the second test should occur only if the first test was successful. For
example:

IF (P -= NULL()) t: (P->X A= 4) THEN ...

This statement causes P-> X to be evaluated only if Pis not a null pointer.
If the AND operator were used instead of AND THEN, this expression
could cause an access violation (invalid pointer reference).

See also 0 AND Operator," "Logical Operator," and "Operator."

120 AND THEN Operator

ANY Attribute

The ANY attribute specifies that a parameter's corresponding argument
can be of any data type. This attribute is applicable only to the declaration
of entry names denoting non-PL/I procedures. The format of the ANY
attribute is as follows:

ANY CHARACTER(*) [
VALUE l
REFERENCE
DESCRIPTOR

For complete details on using the ANY attribute, see the VAX PL/I User
Manual.

• Restrictions
If you specify ANY for a parameter, you cannot specify any data type
attributes for that parameter except CHARACTER(•). If ANY is used
by itself, the parameter is passed by reference. If ANY is used with
VALUE, the parameter is passed by immediate value. If ANY is used
with CHARACTER(•), the parameter is passed by character descriptor.
Note that either CHARACTER or CHARACTER VARYING strings can be
passed to ANY CHAR(•) parameters without the creation of a dummy
argument.

The ANY attribute is valid only in a parameter descriptor.

•Example
DECLARE SYS$SETEF ENTRY (ANY VALUE);

This statement identifies the system service procedure SYS$SETEF and
indicates that the procedure accepts a single argument, which can be of
any data type, to be passed by value. (Note that all system services, RTL
routines, and utility routines for the VMS system have declarations in
PLI$STARLET, so this feature is rarely needed except to declare entry
points for some layered products.)

ANY Attribute 121

ANYCONDITION Condition Name

Area

122 Area

The ANYCONDITION keyword can be specified in an ON, REVERT, or
SIGNAL statement. It designates an ON-unit established for all signaled
conditions that are not handled by specific ON-units.

The ANYCONDITION keyword is not defined in the PL/I language. It is
provided specifically for use in the VMS operating system environment.
For complete details on VMS condition handling, see the VAX PL/I User
Manual.

For information on defining ON-units for PL/I-specific conditions and
PL/I default condition handling, see "ON Conditions and ON-Units" and
"ON Statement."

An area is a region of storage in which based variables can be allocated
and freed. You define an area by declaring a variable with the AREA
attribute. An area variable can belong to any storage class. Areas provide
the following programming capabilities:

• Based variables can be allocated within a specific area, and the entire
area can be assigned or transmitted in a single operation. The vari­
ables can be referred to by offset values within the area; the offset
values remain valid throughout assignment or transmission.

• You can control the allocation of storage for related variables by
placing them in the same area, thus improving the locality of refer­
ence. Also, you can use one operation to recover the storage for all
allocations within an area by freeing or initializing the area itself.

• You can use a structure containing an area to represent a disk file that
is mapped into a process's virtual memory space.

• Area Assignment
You can specify an area variable as the target of an assignment statement
only in the following case:

area-variable-1 = area-variable-2;

If the extent of the target area is not large enough to contain the allocated
storage in the source area, the AREA condition is raised. Note that you
can also use the EMPTY built-in function as the source of an assignment
statement.

All other specifications of an area variable as the target of an assign­
ment statement (for example, as a member of a structure in a structure
assignment) are invalid. You cannot use an area variable in an expression
containing operators.

• Reading and Writing Areas
An area can be the source or target of data transmission in READ and
WRITE record I/O statements. If the area is written by itself (not as a
member of a structure) only the currently allocated portion is transmitted
unless the SCALARVARYING ENVIRONMENT option was specified
when the file was opened.

AREA Attribute

The AREA attribute defines an area variable (see "Area"). Its format is as
follows:

AREA [(extent)]

extent
The size of the area in bytes. The extent must be a nonnegative integer.
The maximum size is 500 million bytes. The rules for specifying the extent
are as follows:

• If AREA is specified for a static variable declaration, extent must be a
restricted integer expression (see "Restricted Expression").

• If AREA is specified in the declaration of a parameter or in a parameter
descriptor, extent can be specified as an integer constant or as an
asterisk (•).

• If AREA is specified for an automatic or based variable, extent can
be specified as an integer constant or as an expression. For automatic
variables, the extent expression must not contain any variables or
functions declared in the same block, except for parameters.

• If no extent is specified for the area, a default of 1024 bytes is pro­
vided. DIGITAL recommends explicitly specifying a size, because the
default varies considerably between PL/I implementations.

• Restrictions
The AREA attribute is not allowed in a returns descriptor. The AREA
attribute conflicts with all other data type attributes.

AREA Attribute 123

AREA Condition Name

Argument

124 Argument

The AREA condition is raised when various operations fail in relation
to areas. For example, it is raised if the extent of an area is not large
enough to contain the variable or variables allocated to it, or if the area is
incorrectly formatted or is already active.

See the VAX PL/I User Manual for complete information on the AREA
condition.

An argument is an expression or variable reference denoting a value to be
used by a built-in function or a user-defined procedure or function. The
maximum number of arguments that can be passed to a procedure is 253.
For full details, see "Parameters and Arguments."

• Argument List
An argument list consists of zero or more arguments specified in the
invocation of a procedure, built-in function, or built-in subroutine.

With built-in functions, arguments are expressions that supply values to
the built-in function, and the argument types must be those required by
the specific function. In general, built-in functions can be considered op­
erators and their arguments can be considered operands. If two arithmetic
arguments for a built-in function are of different arithmetic types, they
are evaluated and converted to a common type, as are the operands of
an arithmetic expression. For further details, see "Built-In Function" and
0 Expression."

With user-defined procedures, arguments correspond to parameters de­
fined in the PROCEDURE or ENTRY statement of the invoked procedure.

• Argument Passing
In PL/I, a parameter of a procedure is always associated with a variable
passed to it by the calling procedure. This variable can be the original
argument corresponding to the parameter or a dummy argument created
by the compiler and assigned the original argument's value.

• Dummy Argument
A dummy argument is a variable that is allocated by the compiler to pass
an argument to an invoked procedure. The compiler creates a dummy
argument when an argument specified in a procedure reference is a
constant or an expression, when it is a variable with a data type different
from that required by the corresponding parameter, or when it is enclosed
in parentheses.

Aritl11netic Data Types

Arithmetic data types are used for variables on which arithmetic cal­
culations are to be performed. The following arithmetic data types are
supported by VAX PL/I:

• Fixed-point binary or decimal-for binary or decimal data with a
fixed number of fractional digits. (See uFixed-Point Binary Data" and
"Fixed-Point Decimal Data".)

• Floating-point binary or decimal-for calculations on very large or
very small numbers, with the decimal point (number of fractional
digits) allowed to ufloat." (See "Floating-Point Data".)

• Picture-for fixed-point decimal data that is stored internally in
character form, with special formatting characters. (See "Picture".)

Arithmetic Operators

The arithmetic operators perform calculations. Programs that accept
numeric input and produce numeric output use arithmetic operators to
construct expressions that perform the required calculations. The infix
arithmetic operators are as follows:

Operator Operation

+ Addition

Subtraction

• Multiplication

I Division

•• Exponentiation

Arithmetic Operators 125

Array

126 Array

In addition, there are two prefix operators: unary plus (+) and unary
minus (-). The unary plus is valid on any arithmetic operand, but it
performs no actual operation. The unary minus reverses the sign of any
arithmetic operand.

For detailed descriptions of the other operands, see "Addition," "Division,"
"Exponentiation," "Multiplication," and "Subtraction. 0

For any arithmetic operator, operands must be arithmetic; that is, they
must be constants, variables, or other expressions with the data type at­
tribute BINARY, DECIMAL, or PICTURE. Operands of different arithmetic
types are converted to a common type before the operation is performed
(see "Expression").

Arithmetic operators have a predefined precedence that governs the
order in which operations are performed. For further information, see
"Operator." All expressions can be enclosed in parentheses to override the
rules of precedence.

Arrays provide an orderly way to manipulate related variables of the same
data type. An array variable is defined in terms of its dimensions: the
number of variables, or elements, that it contains and the organization of
those elements.

The following subsections describe arrays in terms of scalar elements.
For information on arrays whose elements are structures, see "Arrays of
Structures."

• For•at of an Array Declaration
To declare an array, specify its dimensions in a DECLARE statement as
follows:

DECLARE identifier [DIMENSION] (bound-pair, ...) [attribute ...];

To declare two or more array variables that have the same dimensions and
bounds, use the following format:

DECLARE (declaration, ...) [DIMENSION] (bound-pair, ...)
[attribute ...];

declaration
A simple identifier, the declaration of another array, or the declaration
of a structure. (For further details on the syntax of declarations, see
"DECLARE Statement." See also "Arrays of Structures.")

identifier
A valid PL/I identifier to be used as the name of the array.

bound-pair
A specification of the number of elements in each dimension of the array.
A bound pair can consist of one of the following:

• Two expressions separated by a colon, giving the lower and upper
bounds for that dimension

• A single expression giving the upper bound only (the lower bound is
then 1 by default)

• An asterisk (*), used in the declaration of array parameters, and
indicating that the parameter can be matched to array arguments with
varying numbers of elements in that dimension

Bound pairs in series must be separated by commas, and the list of bound
pairs must be enclosed in parentheses. The list of bound pairs must
immediately follow the identifier or the optional keyword DIMENSION or
the list of declarations.

Figure A-1 shows several forms of bound pairs as used in declarations.
Note that all the examples in the figure would be identical in effect if the
optional keyword DIMENSION were added.

attribute
One or more data type attributes of the elements of the array. All at­
tributes you specify apply to each of the elements in the array.

Elements of an array can have any data type. If the array has the FILE or
ENTRY attribute, it must also have the VARIABLE attribute.

Array 127

Figure A-1: Specifying Array Dimensions

ARRAY-NAME (Bound)

A single value specifies

• That the array has a single dimension.
• That the dimension has 'bound' number of

elements; this is the extent of the dimension.
• That the value specified is the high bound.

that is, the largest numbered element. By
default, the low bound is 1.

ARRAY-NAME (Low-Bound:High-Bound)
A single range of values specifies
• That the array has a single dimension.

• That the number of elements in the
dimension is (high-bound)-(low-bound)+ 1.

• The index value assigned to the lowest­
numbered element and the index value
assigned to the highest-numbered element.

ARRAY-NAME (Bound1,Bound2, ...)
A list of values specifies

• That the array is multidimensional.
Each bound value represents a
dimension in the array.

• The extent of each dimension. Each
bound defines the number of elements
in a dimension.

• The high-bound value of each dimension.
The low-bound value of each dimension
defaults to 1.

EXAMPLES
DECLARE VERBS 161 CHARACTER 1121

DECLARE TEMPERATURES 1-60:1201

DECLARE TABLE 1101101 FIXED BINARY ;

DECLARE SETS 151515151 CHARACTER 1801

ARRAY-NAME (Low-Bound1 :High-Bound1 ,Low-Bound2:High-Bound2, ...)

A set of ranges specifies

• That the array is multidimensional.
Each range of values represents a
dimension in the array (ranges can
be intermixed with single-bound
specifications).

• The extent of each dimension.

• The low-bound and high-bound values of
each dimension.

ARRAY-NAME(•, ...)

Asterisk extents specify
• The number of dimensions in the array.

Each asterisk indicates a dimension.

• That the extent of each dimension will be
defined by the actual argument passed
to the procedure when it is invoked.

128 Array

DECLARE WINDOWS 11:10.-2:321 FIXED ;
DECLARE HISTORIES 110130:1020501 , ,,

ADOIT: PROCEDURE !ARRI;
DECLARE ARRl*i*I FIXED

ZK-1273-83

• Rules for Specifying Dimensions
The following rules apply to specifying the dimensions of an array and the
bounds of a dimension:

• An array can have up to eight dimensions.

• The values you can specify for bounds are restricted as follows:

If the array has the STATIC attribute, you must specify all bounds
as restricted integer expressions in the preprocessor declaration of
the array (see "Restricted Expression").

If the array has the AUTOMATIC, BASED, CONTROLLED, or
DEFINED attribute, you can specify the bounds as optionally
signed integer constants or as expressions that yield integer val­
ues at run time. If the array has the AUTOMATIC, DEFINED,
or UNION attribute, the expressions must not contain any vari­
ables or functions that are declared in the same block, except for
parameters.

If an array is a parameter, you can specify the bounds using op­
tionally signed integer constants or asterisks (•). If you specify
any bound with an asterisk, you must specify all bounds with
asterisks. An array parameter declared this way inherits the di­
mensions of the corresponding argument. Passing array variables
as arguments to a procedure is described below under "Passing
Arrays as Arguments."

• The value of the lower bound you specify must be less than or equal
to the value of the upper bound.

• References to Individual Elements
You refer to an individual element in the array by means of subscripts.
Because an array's attributes are common to all of its elements, a sub­
scripted reference has the same properties as a reference to a scalar
variable with those attributes.

Subscripts must be enclosed in parentheses in a reference to an array
element. For example, in a one-dimensional array named ARRAY declared
with the bounds (1:10), the elements are numbered 1 through 10 and are
referred to as ARRAY(l), ARRAY(2), ARRAY(3), and so on.

The lower and upper bounds that you declare for a dimension determine
the range of subscripts that you can specify for that dimension. If only an

Array 129

130 Array

upper bound is specified for a dimension, the lower bound (minimum sub­
script) for that dimension is 1. The number of elements in any dimension
of any array is

(upperbound) - (lowerbound) + 1

The total number of elements in the array, called its "extent," is the
product of the numbers of elements in all the dimensions of the array.

For multidimensional arrays, the subscript values represent an element's
position with respect to each dimension in the array. Figure A-2 illustrates
subscripts for elements of one-, two-, and three-dimensional arrays.

In subscripted references, the number of subscripts must match the
number of dimensions of the array, including any dimensions that are
inherited when an array results in the declaration of a dimensioned
structure (see "Arrays of Structures").

• Variable Subscripts
You can specify the subscript of an array element using any variables or
expressions having integer values, that is, values that can be expressed as
fixed binary or fixed decimal with a zero scale factor. For example:

DECLARE DAYS_IN_MONTH(12) FIXED BINARY;
DECLARE (COUNT, TOTAL) FIXED BINARY;
TOTAL = O;
DO COUNT = 1 TO 12;

TOTAL= TOTAL+ DAYS_IN_MONTH(COUNT);
END;

Here, the variable COUNT is used as a control variable in a DO-group.
As the value of COUNT is incremented from 1 to 12, the value of the
corresponding element of the array DAYS_IN_MONTH is added to the
value of the variable TOTAL.

• Initializing Arrays
The INITIAL attribute can be specified for arrays. For example:

DECLARE MONTHS (12) CHARACTER (9) VARYING
INITIAL ('January', 'February', 'March', 'April',

'May', 'June', 'July', 'August',
'September', 'October', 'November', 'December');

In this example, each element of the array MONTHS is assigned a value
according to the order of the character-string constants in the initial list:
MONTH(l) is assigned the value 'January'; MONTH(2) is assigned the
value 'February'; and so on.

Figure A-2: Specifying Elements of an Array

DECLARE ARRAY 1 (7):

ARRAY 1(2)

-- ARRAY 1(6)

DECLARE ARRAY 2 (5,5);

2 11 4 5

11
ARRAY 2(2,4)

3

4
ARRAY 2(4,2)

Ii

DECLARE ARRAY 3 (3.4.4):

3 ·- 2 3 4
7 /]

/ /
ARRAY 3(3,1,2)

/
i!

/ /
/

L /

1 - ARRAY 3(2.3,3)

/
2 /

-- ARRAY 3(1,3,4)
~ /

/
4 v

ZK-1274-83

Array 131

132 Array

If the array being initialized is multidimensional, the initial values are
assigned in row-major order.

For full details on the use of the INITIAL attribute, see "INITIAL
Attribute."

Although the VAX PL/I compiler supports the initialization of automatic
arrays with the INITIAL attribute, use of this attribute is not always the
most efficient way (in terms of program compilation and execution) to
initialize array elements. Note the following considerations:

• When you initialize elements in an array that has the AUTOMATIC
attribute, the compiler does not check that all elements are initialized
until run time (this is also true of the initialization of based and
controlled variables). Thus, you do not receive any compile-time
checking of initialization, even if you used constants to specify the
array bounds and iteration factors.

• Your programs will run more efficiently if you initialize automatic
arrays using assignment statements rather than using the INITIAL
attribute.

• If the array is not modified in your program, you can increase program
efficiency even more by declaring the array with the STATIC and
READONL Y attributes and by using the INITIAL attribute to initialize
its elements. In this case, the compiler will check at compile time that
you have initialized all the elements and will check their validity.

• Iteration Factors
When more than one successive element of an array is to be assigned the
same value with the INITIAL attribute, you can specify an iteration factor.
An iteration factor indicates the number of times that a specified value is
to be used in the assignment of values to elements of an array. You can
specify an iteration factor in one of the following formats:

(iteration-factor) arithmetic-constant
(iteration-factor) scalar-reference
(iteration-factor) (scalar-expression)
(iteration-factor) *

iteration-factor
An unsigned decimal constant indicating the number of times the specified
value is to be used in the assignment of an array element. The iteration
factor can be zero.

arithmetic-constant
Any arithmetic constant whose data type is valid for conversion to the
data type of the array.

scalar-reference
A reference to any scalar variable or to the NULL built-in function.

scalar-expression
Any arithmetic or string expression or string constant. The expression or
constant must be enclosed in parentheses.

*
Symbol used to indicate that the corresponding array element is not to be
assigned an initial value.

Any of these forms can be used for arrays that have the AUTOMATIC
attribute. For arrays with the STATIC attribute, only constants and the
NULL built-in function can be used.

For example, the following declaration of the array SCORES initializes all
elements of the array to 1:

DECLARE SCORES (100) FIXED STATIC INITIAL ((100)1);

The next declaration initializes the first 50 elements to 1 and the last 50
elements to -1:

DECLARE SCORES(100) FIXED STATIC INITIAL((60)1,(60)-1);

The declaration in the next example initializes all 10 elements of an array
of character strings to the 26-character value in apostrophes. Note that the
string constant is enclosed in parentheses; this is required syntax.

DECLARE ALPHABETS (10) CllARACTER(26) STATIC
INITIAL((10)('ABCDEFGHIJKLMNOPQRSTUVWXYZ'));

Array 133

134 Array

• Array Variables in Assignment Statements
You can specify an array variable as the target of an assignment statement
in the following cases:

array-variable = expression;

where the expression yields a scalar value. Every element of the array
is assigned the resulting value. The array variable must be a connected
array whose elements are scalar. (See the subsection "Connected Arrays"
in "Arrays of Structures.")

Note that the arithmetic operators, such as the addition (+) and the
subtraction (-) operators, cannot have arrays as operands. An assignment
of the following form is invalid:

ARRAYC = ARRAYA + ARRAYB;

array-variable-1 = array-variable-2;

where the specified array variables have identical data type attributes and
dimensions. Each element in array-variable-1 is assigned the value of the
corresponding element in array-variable-2.

In this type of assignment, both arrays must be connected. The actual
storage occupied by the arrays must not overlap, unless the arrays are
identical.

All other specifications of an array variable as the target of an assignment
statement are invalid.

• Using GET and PUT Statements with Array Variables
When you specify an array variable name in the input-target list of a GET
LIST or GET EDIT statement, elements of the array are assigned values
from the data items in the input stream. For example:

DECLARE VERBS (6) CHARACTER (15) VARYING; GET LIST (VERBS);

When this GET LIST statement is executed, it accepts data from the
default input stream. Each input field delimited by a blank, tab, or comma
is considered a separate string. The values of these strings are assigned
to elements of the array VERBS in the order VERBS(l), VERBS(2), ...
VERBS(6). If a multidimensional array appears in an input-target list,
input data items are assigned to the array elements in row-major order.

An array can also appear, with similar effects, in the output-source list
of a PUT statement. See "GET Statement" and "PUT Statement" for
information on using these statements with arrays.

• Order of Assignment and Output for Multidimensional Arrays

When a multidimensional array is initialized without references to specific
elements, PL/I assigns the values in row-major order. In row-major order,
the rightmost subscript varies the most rapidly. For example, an array can
be declared as follows:

DECLARE TESTS (2,2,3);

If TESTS is specified in a GET statement or in a declaration with the
INITIAL attribute, values are assigned to the elements in the following
order:

TESTS (1,1,1)
TESTS (l,1,2)
TESTS (1,1,3)
TESTS (1,2,1)
TESTS (1,2,2)
TESTS (1,2,3)
TESTS (2,1,1)
TESTS (2, 1,2)
TESTS (2,1,3)
TESTS (2,2,1)
TESTS (2,2,2)
TESTS (2,2,3)

When an array is output with a PUT statement, PL/I uses the same order
to output the array elements. For example:

PUT LIST (TESTS);

This PUT statement outputs the contents of TESTS in the order shown
above.

• Passing Arrays as Arguments
An array variable can be passed as an argument to another procedure.
Within the invoked procedure, the corresponding parameter must be
declared with the same number of dimensions. The rules for specifying
the bounds in a parameter descriptor for an array parameter are as follows:

• If you specify the bounds with integer constants, they must match
exactly the bounds of the corresponding argument.

Array 135

136 Array

• You can specify all bounds as asterisks (•). Then, the bounds of the
array are determined from the bounds of the corresponding argument
when the procedure is actually invoked. If any bound is specified as
an asterisk, all bounds must be specified as asterisks.

For example:

DECLARE SCAN ENTRY ((6,6,6) FIXED,(•) FIXED),
MATRIX (6,6,6) FIXED,
OUTPUT (20) FIXED;

CALL SCAN (MATRIX.OUTPUT);

The procedure SCAN receives two arrays as arguments. The first is a
three-dimensional array whose bounds are known. The second is a one­
dimensional array whose bounds are not known. The procedure SCAN
can declare these parameters as follows:

SCAN: PROCEDURE (IN,OUT);
DECLARE IN (•,•,•) FIXED,

OUT (•) FIXED;

An array whose storage is unconnected cannot be passed as an argument,
nor can an array whose elements are label constants. Arrays are always
passed by reference and cannot be passed by a dummy argument.

For full information on arguments and argument passing, see "Parameters
and Arguments."

• Array-Handling Functiens
PL/I provides the following built-in functions that return information
about the dimensions of an array:

• DIMENSION returns the number of elements in a given dimension.
• HBOUND returns the value of the upper bound of the array in a given

dimension.
• LBOUND returns the value of the lower bound of the array in a given

dimension.

For the first dimension of an array X, the relationship of these functions
can be expressed as follows:

DIMENSJON(X,I) = HBOUND(X,I)-LBOUND(X,1) + 1

The procedure that follows uses the HBOUND and LBOUND built-in
functions:

.lDDIT: PROCEDURE (I);
DECLARE I (•) FIXED BIN.ARY,

(COUNT,!) FIXED BIN.ARY;

COUNT • O;
DO I = LBOUND (l,1) TO HBOUND(l,1);

COUNT = COUNT + 1;
I(I) • COUNT;
END;

RETURN;
END;

This procedure receives a one-dimensioned array as a parameter and
initializes the elements of the array with integral values beginning with 1.

For more information, see the entries for these built-in functions, as well
as those for "Function" and "Procedure."

Arrays of Structures

An array of structures is an array whose elements are structures. Each
structure has identical logical levels, minor structure names, and member
names and attributes.

For example, a structure STATE can be declared an array:

DECLARE 1 STATE (50),
2 NAME CHARACTER (20) VARYING,
2 POPUL1TION FIXED (31),
2 CAPITAL,

3 NAME CHARACTER (30) VARYING,
3 POPUL1TION FIXED (31)

2 SYMBOLS,
3 FLOWER CHARACTER (20),
3 BIRD CHARACTER (20);

A member of a structure that is an array inherits the dimensions of the
structure. Thus, in this example, the member CAPITAL.NAME of the
structure STATE inherits the dimension 50. You must use a subscript
whenever you refer to the variable CAPITAL.NAME, as in the following
example:

PUT LIST (CAPITAL.NAME(!));

Arrays of Structures 137

A subscript for a member of a structure that is an array element can
appear after any name within a qualified reference. For example, all of the
following references are equivalent:

STATE(10).CAPITAL.NAME
STATE.CAPITAL(10).NAME
STATE.CAPITAL.NAME(10)

• Arrays of Structures That Contain Arrays
A structure that is defined with a dimension can have members that are
arrays. For example:

DECLARE 1 STATE (50),
2 AVERAGE_TEMPS(12) FIXED DECIMAL {5,2),

In this example, the elements of the array STATE are structures. At the
second level of the hierarchy of each structure is an array of 12 elements.
Because this member of the structure inherits the dimension of the major
structure, any of these elements must be referred to by two subscripts: the
first subscript references an element in the array STATE, and the second
subscript references an element in the array AVERAGE-TEMPS.

These subscripts can appear after any name in the qualified reference. For
example, the following references are equivalent:

STATE{3).AVERAGE_TEMPS{4)
STATE.AVERAGE_TEMPS{3,4)

Note the following rules for specifying subscripts for members of struc­
tures containing arrays:

• The number of subscripts specified for any member must include any
dimensions inherited froin a major or minor structure declaration, as
well as those specified for the member itself.

• The subscripts that refer to a member of a structure in an array do not
have to immediately follow the name to which they apply. However,
the order of subscripts must be preserved.

• The total number of dimensions, including the inherited dimensions,
must not exceed eight.

For information on structure declarations, see 0 Structure."

138 Arrays of Structures

• Cennected Arrays
A connected array is an array whose elements occupy consecutive loca­
tions in storage. For example:

DECLARE NEWSPAPERS (10) CHARACTER (30);

In storage, the 10 elements of the array NEWSPAPERS occupy 10 con­
secutive 30-byte units. Thus, the array NEWSPAPERS is a connected
array.

A connected array is valid as the target of an assignment statement, as
long as the source expression is a similarly dimensioned array or is a
single scalar value.

An unconnected array is an array whose elements do not occupy con­
secutive storage locations. A structure with the DIMENSION attribute
always results in unconnected arrays. When a structure is dimensioned,
each member of the structure inherits the dimensions of the structure and
becomes, in effect, an array. For example:

DECLARE 1 STATE (60),
2 NAME CHARACTER (20) VARYING,
2 POPULATION FIXED (31);

In this example, the members NAME and POPULATION of the major
structure STATE inherit the dimension 50 from the major structure. When
PL/I allocates storage for a structure or a dimensioned structure, each
member is allocated consecutive storage locations; thus, the elements of
the arrays NAME and POPULATION are not connected.

Figure A-3 illustrates the storage of connected and unconnected arrays.

Arrays of Structures 139

Figure A-3: Connected and Unconnected Arrays

CONNECTED:

DECLARE 1 ST ATE,
2 NAME (50) CHAR(20),
2 POP (50) FIXED(10);

The members NAME and POP of the
structure STATE are dimensioned. The
elements of each array occupy
consecutive storage locations.

UNCONNECTED:

DECLARE 1 ST ATE (50),
2 NAME CHAR(20),
2 POP FIXED(1 O);

The array STATE is dimensioned. Its
members NAME and POP inherit the
dimension: each of these variables
is an array of 50 elements, but the
elements do not occupy consecutive
storage locations.

140 Arrays of Structures

name(1)

name(2)

name(3)

• •
~ •

name(50)

pop(1)
pop(2)
pop(3)

• .,,1,, . d T popf50) J

name(1)

pop(1)

pop(2)

I

~
I
I

pop(49) I
l

pop(50)

;:~

l
name(2)

name(3)

~

name(50)

ZK-1275-83

ASCII Character Set

The American Standard Code for Information Interchange (ASCII) is a set
of 8-bit numeric values that represent the alphabet, numerals, punctuation,
and symbols used in text and in communications protocol.

The ASCII character set constitutes the first 128 characters of the DEC
Multinational Character Set. See the table in Appendix B for the elements
of the set.

Note that in VAX PL/I, you can use the non-ASCII characters in the DEC
Multinational Character Set only in string constants and for data with
input or output statements.

ASIN Built-In Function

The ASIN built-in function returns a floating-point value that is the arc
(inverse) sine of an arithmetic expression x. The arc sine is computed in
floating point. The returned value is an angle w such that

-7r/2 <= w <= 7r/2

The absolute value of x, after its conversion to floating point, must be less
than or equal to 1. The format of the function is as follows:

ASIN(x)

%Assignment Statement

The preprocessor assignment statement gives a value to a specified pre­
processor variable. The format of the assignment statement is as follows:

%target= expression;

target
The name of the preprocessor variable to be assigned a value. It must be
an unsubscripted reference to a preprocessor variable.

expression
Any valid preprocessor expression.

%Assignment Statement 141

For arithmetic operations, only decimal integer arithmetic of precision
(10,0) is performed. Each operand and all results are converted, if nec­
essary, to a fixed decimal value of precision (10,0). Fractional digits are
truncated.

Assignment Statement

The assignment statement gives a value to a specified variable. The format
of the assignment statement is as follows:

target, ... =expression;

target
A reference to a variable to be assigned the expression's value. If there are
two or more targets, they are separated by commas. A target can be any
of the following:

• A reference to a scalar variable or scalar array element

• A reference to a pseudovariable (for example, SUBSTR)

• A reference to a major or minor structure name or any member of a
structure

• A reference to an array variable

expression
Any valid expression.

PL/I evaluates the targets and the expression in any order. Thus, a
program should not depend on the evaluation of the targets before the
expression.

PL/I performs the following steps for assignment. Note that the only
certain things about the order of steps performed are that step 1 precedes
step 3 and that step 4 is performed last.

1. The expression is evaluated, producing a value to be assigned to
the targets. An expression can consist of many subexpressions and
operations, each of which must be evaluated. See "Expression" for a
complete description.

2. Each target is evaluated. If a target contains a pseudovariable, any
expressions in the argument list are evaluated.

3. If the data type of the result does not match the data type of a target
variable, the resulting value is converted to the data type of the target,

142 Assignment Statement

if possible. The compiler issues a WARNING message to alert you to
the implicit conversion.

4. The value of the expression is assigned to the targets.

Some general rules regarding the types of data you can specify in as­
signment statements are given below. For the complete rules for data
conversion in assignments, see "Conversion of Data."

•Area Data
Only the current extent of an area is moved from the source area to a
target. If the target area is not large enough to hold the extent, the AREA
condition is raised. Note that the assignment is performed in such a way
that all offsets in the source area are valid in the target area after the
assignment. Areas cannot be assigned as members of structures.

• Arithmetic Data
PL/I converts an arithmetic expression to the type of its target if their
types are different. If the target is a character- or bit-string variable, PL/I
converts the arithmetic expression to its character- or bit-string equivalent.

A character-string expression can be converted to the data type of an
arithmetic target only if the string consists solely of characters that have
numeric equivalents.

•Arrays
You can specify an array variable as the target of an assignment statement
in only the following ways:

• array-variable = expression;

where expression yields a scalar value. Every element of the array is
assigned the resulting value.

• array-variable-1 = array-variable-2;

where the specified array variables have identical data type attributes
and dimensions. Each element in array-variable-1 is assigned the
value of the corresponding element in array-variable-2.

The storage occupied by the two arrays must not overlap.

Any array variable specified in an assignment statement must occupy
connected storage. All other specifications of an array variable as a target
of an assignment statement are invalid.

Assignment Statement 143

• Bit Data
When a target of an assignment is a bit-string variable, the resulting
expression is truncated or padded with trailing zeros to match the length
of the target.

• Character Data
When a target of an assignment is a fixed-length character string, the
resulting expression is truncated on the right or padded with trailing
spaces to match the length of the target. If a target is a varying-length
character string, the resulting expression is truncated on the right if it
exceeds the maximum length of the target.

When one character-string variable is assigned to another, the storage
occupied by the two variables cannot overlap.

•Entry Data
If the specified expression is an entry constant, an entry variable, or a
function reference that returns an entry value, the target variable must be
an entry variable.

• Label Data
If the specified expression is a label constant, a label variable, or a function
reference that returns a label value, the target variable must be a label
variable.

• Pointer and Offset Data
If the specified expression is a pointer or offset, or a function reference
that returns a pointer or offset, the target variable must be a pointer or
offset variable.

• Structures
You can specify the name of a major or minor structure as a target of an
assignment statement only if the source expression is an identical structure
with members in the same hierarchy and with identical sizes and data
type attributes. The storage occupied by the two structures must not
overlap.

Any structure variable specified in an assignment statement must occupy
connected storage.

144 Assignment Statement

ATAN Built-In Function

The ATAN built-in function returns a floating-point value that is the arc
tangent of an arithmetic expression y or an arc tangent computed from two
arithmetic expressions y and x. The arc tangent is computed in floating
point. If two arguments are supplied, they must both have nonzero values
after they have been converted to floating point.

The format of the function is as follows:

AT AN(y[,x])

• Returned Values
The returned value represents an angle in radians.

If x is omitted, the returned value v equals arc tangent(s), such that

-7r/2 < v < 7r/2

where s is the value of expression y after its conversion to floating point.

If x is present, the returned value v equals arc tangent(s/r), such that if
s >= 0, then 0 <= v <= 7r, and if s < 0, then -7r < v < 0, where s and r
are, respectively, the values of expressions y and x after their conversion
to floating point.

ATAND Built-In Function

The ATAND built-in function returns a floating-point value that is the arc
tangent of a single arithmetic expression y or an arc tangent computed
from two arithmetic expressions y and x. The arc tangent is computed
in floating point. If two arguments are supplied, they must both have
nonzero values after their conversion to floating point.

The format of the function is as follows:

AT AND(y[,x])

• Returned Value
The floating-point value returned, which represents an angle in degrees,
equals

AT AN(y, x) * 180/7r

ATAND Built-In Function 145

AT ANH Built-In Function

Attribute

146 A !tribute

The ATANH built-in function returns a floating-point value that is the
inverse hyperbolic tangent of an arithmetic expression x. After its conver­
sion to floating point, the absolute value of the argument x must be less
than 1.

The format of the function is as follows:

ATANH(x)

Attributes define and describe the characteristics of data used in a PL/I
program. Each data item in a PL/I program has a set of attributes as­
sociated with it. Attributes can be specified in any of the following
contexts:

• In a DECLARE statement for an identifier. These attributes are
specified either by keyword or by syntax. For example:

DECLARE SIGNAL CHARACTER (20);

In this declaration, the keyword attribute CHARACTER is associated
with the identifier SIGNAL. The length attribute of the variable is
specified in parentheses following the CHARACTER keyword. In this
manual, keyword attributes are shown in format lines in uppercase
letters. Attributes given by syntax are shown in lowercase letters.

• In an OPEN statement to describe a particular file. During the opening
of a file, these -attributes are merged with file description attributes
specified in the declaration of the file.

• Within the ENTRY attribute to describe the parameters of an exter­
nal procedure. These attributes must match the attributes given to
corresponding parameters specified in the PROCEDURE or ENTRY
statements of the invoked subroutine or function.

• Within the RETURNS attribute of a PROCEDURE or ENTRY state­
ment to describe the value returned by a function.

Attributes can also be implied by the presence of other attributes. For
example, if the RETURNS attribute is specified for an identifier, the
compiler supplies the ENTRY attribute by default.

The entry for each attribute in this manual gives its syntax and ab­
breviation (if any) and describes related and conflicting attributes. See
Table A-2 at the end of this entry for a concise alphabetic summary of
PL/I attributes.

• C.mputational Data Type Attributes
The attributes that define arithmetic and string data are as follows:

CHARACTER [(length)] [VARYING]
NONVARYING

BIT [(length)] [ALIGNED]
UNALIGNED

{ FLOAT } { BINARY } [[PRECISION] (precision
FIXED DECIMAL (,scale-factor])]

PICTURE 'picture'

These attributes can be specified for all elements of an array and for
individual members of a structure.

• Noncomputational Data Type Attributes
The following attributes apply to program data that is not used for com­
putation:

AREA
CONDITION
ENTRY [VARIABLE]
FILE [VARIABLE]
LABEL
OFFSET
POINTER

• Non-Data Type Attributes
The following attributes can be applied to data declarations:

ALIGNED
DIMENSION
UNALIGNED

Attribute 14 7

Table A-2: Alphabetic Summary of PL/I Attributes
Attribute

ALIGNED

ANY

AREA [(extent)]

{ AUTOMATIC }
AUTO

BASED ((pointer-reference)]

{ BINARY } ((precision[,scale-factor])]
BIN

BIT ((length)]

BUILTIN

{ CHARACTER } [(length))
CHAR

{ CONDITION } (condition-name)
COND

{ CONTROLLED }
CTL

{ DECIMAL } [(precision[,scale-factor])]
DEC

{ DEFINED } (variable-reference)
DEF

{ DESCRIPTOR }
DESC

{ DIMENSION }
DIM

DIRECT

(bound-pair, ...)

ENTRY (descriptor, ...)

{ ENVIRONMENT } (option, ...)
. ENV

{ ~~ERNAL }

FILE

148 Attribute

Use

Requests alignment of bit-string variables in storage

Indicates that a parameter (of an external procedure
not written in PL/I) can have any data type

Defines an area of storage for the allocation of based
variables

Requests dynamic allocation of storage for a variable

Indicates that a variable's storage is located by a
pointer

Defines a binary base for arithmetic data

Defines bit-string data

Defines a built-in function name

Defines character-string data

Defines an identifier as a condition name

Defines a variable whose storage is allocated and
freed in successive and fixed-sequence generations

Defines a decimal base for arithmetic data

Indicates that a variable will share the storage
allocated for another variable

Requests that an argument be passed to an external
non-PL/I procedure by descriptor

Indicates that a variable is an array, and defines the
number and extent of its dimensions

Specifies that a file will be accessed only randomly

Describes an external procedure and its parameters

Specifies system-dependent information about a file

Identifies the name of a variable whose storage is
referenced or defined in other procedures

Identifies a PL/I file constant or file variable

Table A-2 (Cont.): Alphabetic Summary of PL/I Attributes
Attribute

FIXED [(precision[,scale-factor])]

FLOAT [(precision)]

GLOBALDEF [{psect-name)]

GLOBALREF

{ INITIAL } (value, ...)
INIT

INPUT

{ INTERNAL }
INT

KEYED

LABEL

LIKE structure-reference

LIST

MEMBER

{ NONVARYING }
NONVAR

OFFSET ((area-reference)]

OPTIONAL

OPTIONS (option, ...)

OUTPUT

{ PARAMETER }
PARM

{ PICTURE } 'picture'
PIC

{ POINTER }
PTR

Use

Defines a fixed-point arithmetic variable

Defines a floating-point arithmetic variable

Defines an external variable and optionally specifies
the program section in which the variable will reside

Defines an external variable whose value is defined in
an external procedure

Provides initial values for variables

Specifies that a file will be used for input

Limits the scope of a variable to the block in which it
is defined

Specifies that a file can be accessed randomly by key

Defines a label variable

Copies the declaration of a structure to another
structure variable

Specifies that a parameter can accept a list of actual
parameters, of arbitrary length

Specifies that an item is a member of a structure

Specifies that the length of a string is nonvarying

Defines an offset variable

Specifies, in the declaration of a formal parameter,
that the actual parameter need not be specified in a
call

Specifies attribute options

Specifies that a file will be used for output

Indicates that a variable will be assigned a value
when it is used as an argument to a procedure

Specifies the format of numeric data stored in charac­
ter form

Defines a pointer variable

Attribute 149

Table A-2 (Cont.): Alphabetic Summary of PL/I Attributes
Attribute

{ POSITION } (expression)
POS

{ PRECISION } [(precision[,scale­
PREC

PRINT

READONLY

RECORD

REFER refer-item

{ REFERENCE }
REF

factor))]

RETURNS (returns-descriptor)

{ SEQUENTIAL }
SEQL

STATIC

STREAM

STRUCTURE

TRUNCATE

{ UNALIGNED }
UNAL

150 Attribute

Use

Specifies the position within a variable at which a
defined variable begins

Specifies the number of digits in an arithmetic
variable and, with fixed-point data, the number of
fractional digits

Specifies that a file is to be formatted for printing

Specifies that a static variable's value does not change
during program execution

Specifies that a file will be accessed by record 1/0
statements

Defines dynamically self-defining structures

Requests that an argument be passed to an external
non-PL/I procedure by reference

Specifies that an external entry is a function and
describes the value returned by it

Specifies that a file can be accessed sequentially

Requests static allocation of storage

Specifies that a file will be accessed by stream 1/0'
statements

Specifies that a variable is a structure variable

Specifies, in a declaration of a formal parameter, that
the actual parameter list can be truncated at the point
where this argument should occur

Specifies nonalignment for bit-string variables in
storage

Table A-2 (Cont.): Alphabetic Summary of PL/I Attributes
Attribute

UNION

UPDATE

{ VALUE }
VAL

VARIABLE

{ VARYING }
VAR

Use

Indicates that a variable will share the storage
allocated for another variable

Specifies that records in a file can be rewritten or
deleted

Requests either that a global symbol be accessed by
value rather than by reference, or that an argument
be passed to a procedure by immediate value

Defines variable entry and file data

Defines a varying-length character string

AUTOMATIC Attribute

The AUTOMATIC attribute specifies, for one or more variables, that
PL/I is to allocate storage only for the duration of a block. An automatic
variable is not allocated storage until the block that declares it is activated.
The storage is released when the block is deactivated. The format of the
AUTOMATIC attribute is as follows:

{ AUTOMATIC }
AUTO

AUTOMATIC explicitly defines the storage class of a variable, array, or
major structure in a DECLARE statement. Because AUTOMATIC is the
default for internal variables, you need not specify it.

• Restrictions
The AUTOMATIC attribute conflicts with the following attributes (the
specification of which implies that storage allocation is not to be auto­
matic):

AUTOMATIC Attribute 151

BASED

CONTROLLED

DEFINED

EXTERNAL

GLOBALDEF

GLOBALREF

PARAMETER

READONLY

STATIC

The AUTOMATIC attribute cannot be applied to minor structures, mem­
bers of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

For a discussion of PL/I storage allocation, see 0 Storage Class. 0

152 AUTOMATIC Attribute

B

B Format Items

The B format items B, Bl, B2, B3, and B4-describe representations of
bit strings in an input or output stream. Note that the B can be typed
lowercase. The form of the B format items is as follows:

B[m) [(w)]

m
The integer l, 2, 3, or 4, specifying the radix factor. B and Bl have the
same meaning. When the radix factor is omitted or is l, the bit string is
represented by the characters 0 and 1 in the stream. When the radix factor
is 2, the bit string is represented by the characters 0, l, 2, and 3. When
the radix factor is 3, the bit string is represented by the characters 0, 1, 2,
3, 4, 5, 6, and 7. When the radix factor is 4, the bit string is represented
by the characters 0 through 9 and A through F.

w
A nonnegative integer or integer expression that specifies the width in
characters of the field in the stream.

The interpretation of the B format items on input and output is described
below. For a general discussion of format items, see '"Format Item."

• Input with GET EDIT
The value w must be included when the B format items are used with
GET EDIT. If w equals zero, no operation is performed on the input
stream, and a null string is assigned to the input variable. The number of
characters specified by w is acquired. The input characters are converted
to an intermediate bit string of length w•m. If the input target is not a
bit-string variable, then this intermediate bit string is converted to the type
of the input target, following the PL/I conversion rules (for details, see
"Conversion of Data").

B Format Items 153

The string of characters in the stream can be preceded or followed by
spaces, which are ignored. All characters in the input field (except any
leading and trailing spaces) must be those implied by the radix factor;
otherwise, an ERROR condition is signaled. Consequently, input strings
should not be enclosed in apostrophes and should not include the suffix
Bm.

• Output with PUT EDIT
The output source is converted, if necessary, to a bit string, following the
PL/I rules for converting data to bit strings (see "Conversion of Data"). If
the length of the resulting bit string is not a multiple of the radix factor
(m), the bit string is padded with zeros on the right to make its length the
next higher multiple.

The bit string is then converted to a character representation appropriate
to the radix factor and placed in the output stream. The character rep­
resentation is left-justified in the field specified by w and is truncated or
padded with spaces on the right if necessary. If w is not included, the
output string has the same length as the converted output source. If w is
zero, the B format item and its associated output source are skipped.

• Exa•ples
BFORMAT_IM: PROCEDURE OPTIONS(MAIN);
/• This program prints incorrect values for an integer •/
DECLARE I FIXED BINARY(31);
DECLARE BFORM STREAM OUTPUT PRINT FILE;
I = 6;
OPEN FILE(BFORM) TITLE(1BFORMIM.OUT 1);

PUT SKIP FILE(BFORM) EDIT ('Decimal:',!) (A,X,F(2));
PUT SKIP FILE(BFORM) EDIT ('Binary:',!) (A,X,B);
PUT SKIP FILE(BFORM) EDIT ('Base 4: 1 ,I) (A,X,B2);
PUT SKIP FILE(BFORM) EDIT ('Octal:' ,I) (A,X,B3);
PUT SKIP FILE(BFORM) EDIT ('Hexadecimal:',!) (A,X,B4);
END BFORMAT_IM;

This program produces the following output:

Decimal: 6
Binary: 000000000000000101
Base 4: 0000000000000022
Octal: 00000000024
Hexadecimal: OOOOOOOA

154 B Format Items

The base 4, octal, and hexadecimal representations of I are incorrect
because the precision of I (31) is not a multiple of 2, 3, or 4. For the 82
and 84 format items, an extra zero bit was appended to the intermediate
bit string, in effect multiplying the value of the string by 2. For 83, two
extra bits were appended to make the string 33 bits long and thus divisible
into an exact number of 3-bit segments. To avoid this problem, the
precision of the output source must be a number that is evenly divisible
by any radix factor with which it is to be written out, as in the following
example:

BFORMAT_IM: PROCEDURE OPTIONS(MAIN);
/* This program prints correct values for an integer */
DECLARE I FIXED BIN.ARY(24); /• 24 is a multiple of 2•3•4 */
DECLARE BFORM STREAM OUTPUT PRINT FILE;
I = 6;
OPEN FILE(BFORM) TITLE('BFORMXM6.0UT');
PUT SKIP FILE(BFORM) EDIT ('Decimal:' ,I) (A,X,F(2));
PUT SKIP FILE(BFORM) EDIT ('Binary:',!) (A,X,B);
PUT SKIP FILE(BFORM) EDIT ('Base 4:' ,I) (A,X,B2);
PUT SKIP FILE(BFORM) EDIT ('Octal:',!) (A,X,B3);
PUT SKIP FILE(BFORM) EDIT ('Hexadecimal:' ,I) (A,X,B4);
END BFORMAT_XM;

This version of the program produces the following output:

Decimal: 6
Binary: 000000000000000000000101
Base 4: 000000000011
Octal: 00000006
Hexadecimal: 000006

The output values are correct representations of I because the precision
(24) is evenly divisible by 2, 3, or 4.

The tables below show the relationship between the internal and external
representations of characters that are read or written with the 8 format
item.

Input Examples

The "input stream" shown in the following table is a field of characters
beginning at the current position in the stream and continuing to the right.
The target type is the type of the variable to which the input value is
assigned.

DECL IT AA ~.)AX H:352C

1 1R·" v· -PL/ l ref er ence mani..1 al ... ~ ~··... .~

B Format Items 155

Format Target
Item Input Stream Type Target Value

5(12) 111000111110 ... 5IT(12) '111000111110'5

5(12) AAAAAA110011 ... 5IT(12) ' 110011000000' 5

52(6) 123123 ... 5IT(12) '011011011011'5

53(4) 1775 ... 5IT(12) '001111111101 '5

54(3) 1FA ... 5IT(12) '000111111010'5

Output Examples

The output source value shown in the following table is either a constant
or the value of a variable that is written out with the associated format
item.

Output Source Value Format Item Output Value

4095 5 111111111111

4095 5(11) 11111111111

4095 82 333333

4096 53 7777

4096 84 FFF

BASED Attribute

The BASED attribute defines a based variable, that is, a variable whose
actual storage will be denoted by a pointer or offset reference. For general
information, see "Based Variable." The format of the BASED attribute is as
follows:

BASED [(reference)]

reference
A reference to a pointer or offset variable or pointer-valued function. If
the reference is to an offset variable, that variable must be declared with
a base area. Each time a reference is made to a based variable without an
explicit pointer or offset qualifier, the reference is evaluated to obtain the
pointer or offset value.

156 BASED Attribute

• Restrictions
The following attributes conflict with the BASED attribute:

AUTOMATIC PARAMETER

CONTROLLED

DEFINED

EXTERNAL

GLOBALDEF

GLOBALREF

READONLY

STATIC

VALUE

The BASED attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

Based Variable

A based variable is a variable that describes storage that will be accessed
through a pointer or offset value. PL/I does not automatically allocate any
storage for a based variable. Instead, you must explicitly allocate storage.

This entry gives the rules governing references to based variables and
the use of pointer values. It also presents examples of dynamic storage
allocation, of the use of READ SET, and of the use of the ADDR built-in
function.

• References to Based Variables
A reference to a based variable (except in an ALLOCATE statement)
must specify a pointer or offset reference designating the storage to be
accessed by the reference. You can specify this qualifying pointer or offset
reference implicitly, by giving it the BASED attribute, or explicitly, by
prefixing the based variable reference with a locator qualifier. A complete
based variable reference (with the locator qualifier) has the following form:

qualifying-reference -> base-reference

Whether explicit or implicit, the qualifying reference must be a reference to
a pointer variable, a pointer-valued function, or an offset variable declared
with a base area. The qualifying reference is evaluated each time the
complete reference is evaluated and must yield a valid pQinter value (see
"Pointer Values" below). If the qualifying reference is to an offset variable,
the offset value is converted to a pointer using the base area specified in

8a$ed Variable 157

the offset variable's declaration. (For more details on offsets and areas,
see the VAX PL/I User Manual and the entries 0 0ffsetn and H Arean in this
manual.)

You can use both implicit and explicit qualification with the same based
variable; the explicit qualifier overrides the implicit one. For example:

DECLARE X FIXED BIN BASED(P);
P = ADDR(A);
X = ADDR(B)->X;

In the second assignment statement, the reference to X on the left side
of the assignment has the implicit qualifier P, which is the address of
the variable A. The reference to X on the right side is explicitly qualified
with the address of another variable, B. This assigns the value of B to the
variable A.

• Pointer Values
In VAX PL/I, you can obtain a valid pointer value in any of the following
ways:

• Through the SET option of the ALLOCATE statement

• From a user-provided storage allocation routine
• Through the SET option of the READ statement
• Through application of the ADDR built-in function to an addressable

variable (see "Variable")

• Through conversion of an offset value to a pointer value

A pointer value is valid only as long as the storage to which it applies
remains allocated. Moreover, a pointer obtained by the application of
ADDR to a parameter is valid only as long as the parameter's procedure
invocation exists, even though the storage to which the pointer points can
exist longer.

The NULL built-in function returns a null pointer value that can be
assigned to pointer and offset variables, but the null value is not valid as
the pointer value qualifying a based variable reference.

You can assign an arbitrary value to a pointer variable using the UNSPEC
built-in function or based variables. Such a value is invalid even if it
denotes allocated storage, and use of such values causes unpredictable
program behavior and errors that are difficult to diagnose. For example,
the following program attempts to use pointer arithmetic to 0 aliasn two
variables X and Y:

158 Based Variable

ALIAS: PROCEDURE OPTIONS(MAIN);

DECLARE INDEX FIXED BINARY(31),
P POINTER BASED(ADDR(INDEX));

DECLARE (X,Y) FLOAT BINARY(24) STATIC, /• 4 bytes apart (?) */
(A,B) FLOAT BINARY(24) BASED;

X = 1EO; Y = 2EO;
P = ADDR(X); /*INDEX holds the address of X •/
P->A = Y + 1; /* Expect X = Y+1 */
INDEX = INDEX + 4; /* INDEX now holds address of Y (?) •/
P->B = Y + 1; /• Expect Y = Y + 1 •/
PUT SKIP LIST('P->A: I ,P->A, 'P->B: I ,P->B);
END ALIAS;

The program can produce incorrect results in at least two ways:

• It can be assumed that the programmer knows, perhaps from a storage
map, that X and Y occupy adjacent storage and that Y can be accessed
by the incrementing of INDEX. However, this is not necessarily true
for any two variables, and the program does rely on the assumption.

• If common subexpressions are eliminated during the compiler's opti­
mization of this program, incorrect results will occur. The optimization
results in the following:

T • Y + 1;
P->A = T;
P->B = T;

The expected result of the program is to give B a value equal to the
original value of Y plus 2. However, the assignment to B yields an
incorrect result because the assignment to A modified Y, and the
compiler had no way to discover that Y was an aliased variable.

• Data Type Matching for Based Variables
In most applications, the data type of a based variable reference is identical
to the data type under which the accessed storage is allocated. (For a
discussion of identical data types, see "Data and Data Types.") However,
it is not required that the data types be identical. In standard PL/I, it is
sufficient that the data types match as for overlay defining or that they
are left-to-right equivalent. Moreover, in VAX PL/I the data types can
be quite different, although the program will then depend on the VAX
internal representation of data.

Based Variable 159

Matching by Overlay Defining
Matching by overlay assigning is in effect if the based variable reference
and the variable for which the storage was originally allocated are both
suitable for character-string or bit-string overlay defining. (See "Defined
Variable" and 0 Union" for a discussion of string overlay defining.) The
only further restriction is that the size n (in characters or bits) of the based
variable must be less than or equal to the size in characters or bits of
the original variable. The based variable reference accesses the first n
characters or bits of the storage.

Matching by Left-to-Right Equivalence
Matching by left-to-right equivalence applies to structured variables
that are identical only up to a certain point. To test for left-to-right
equivalence, examine the declaration of the based variable, and consider
only the portion on the left that includes the referenced member and all of
the level-2 substructures containing the referenced member (if the member
is not itself at level 2). lf the original variable's declaration has a similar
left part with an identical data type, then the based variable reference and
the original reference match. For example:

DECLARE 1 S1 BASED (P),
2 x.

3 (A,B) FIXED BIN,
2 Y,

3 C CHAR(10),
3 D(6) FLOAT;

DECLARE 1 S2 BASED(P);
2 x.

3 (A,B) FIXED BIN,
2 Y,

3 c CllAR(10),
3 E BIT(32);

ALLOCATE S1;

S2.A • 3; I• valid left-to-right match •/

S2.C • 'I'; /•INVALID•/

In the first assignment, 52.A is a valid reference because 51 and 52 match
through the level-2 structure X. In the second assignment, 52.C is invalid
in standard PL/I because the level-2 structures 52.Y and 51.Y do not
match. However, the reference to 52.C does work in VAX PL/I.

This sort of matching is useful in connection with data structures and files,
where the first part of a record contains a value indicating the precise
structure of the remainder of the record.

160 Based Variable

Nonmatching Based Variable References
In VAX PL/I, the base variable in a based variable reference need not
match the variable for which the storage was originally allocated. The
only requirement is that the size of the based variable in bits be less
than or equal to the size of the original variable in bits. However, use
of such nonmatching references requires knowledge of the VAX internal
representation of data, and you should not expect the resulting code to be
transportable to other PL/I implementations. For example:

DECLARE X FLOAT BINARY(24);
DECLARE 1 S BASED(ADDR(X)),

2 FRAC_1 BIT(7),
2 EXP BIT(S),
2 SIGN BIT(1),
2 FRAC_2 BIT(16);

EXP = 'O'B; /• set exponent to 0 •I
SIGN= '1'8; /• set sign negative•/
x = x + 1;

The declaration of S describes the internal representation of a VAX single­
precision floating-point number. The first two assignments set the sign
and exponent fields to the reserved operand combination. The assignment
to X causes a reserved operand exception.

• Based Variables and Dynamic Storage Allocation

These subsections discuss the dynamic allocation of storage by the
ALLOCATE statement and the READ SET statement.

Using the ALLOCATE Statement
Each time it is executed, the ALLOCATE statement allocates storage for
a based variable and, optionally, sets a pointer or offset variable to the
location of the storage in memory. The storage allocated can also be
assigned values if the variable is declared with the INITIAL attribute.

For example:

DECLARE LIST (10) FIXED BINARY BASED,
(LIST_PTR_A, LIST_PTR_B) POINTER;

ALLOCATE LIST SET (LIST_PTR_A);
ALLOCATE LIST SET (LIST_PTR_B);

In this example, the array LIST is declared with the BASED attribute; how­
ever, the declaration does not reserve storage for this variable. Instead,
the ALLOCATE statements allocate storage for the variable and set the
pointers LIST_pTR_A and LIST_pTR_B to the storage locations. LIST_
PTR_A and LIST_pTR_B must both be declared with the POINTER
attribute.

Based Variable 161

In references, the different allocations of LIST can then be distinguished
(unless the pointers are assigned new values) by locator qualifiers that
identify the specific allocation of LIST. For example:

LIST_PTR_A -> LIST(1) • 10;
LIST_PTR_B -> LIST(1) • 16;

The phrase LIST_pTR--A-> is a locator qualifier; it specifies the pointer
that locates an allocation of storage for the variable. In this example, the
first element of the storage pointed to by LIST_pTR--A is assigned the
value 10. The first element of the storage pointed to by LIST_pTR_B is
assigned the value 15.

Figure B-1 illustrates this example.

162 Based Variable

Figure B-1: Using the ALLOCATE Statement

DECLARE LIST (10) FIXED BINARY BASED; No storage is allocated for the array LIST.

DECLARE (LIST_PTILA,LIST_PTR_B) POINTER;

ALLOCATE LIST SET (LIST_PTFLA) :

ALLOCATE LIST SET (LIST_PTR_B) ;

LIST_PTFLA - LIST(1) 10;
UST_PTR_B - LIST(1) 15 ;

LIST_PTR_A LIST_PTR_B

I
LIST PTR_A -

l J 10

LIST_PTR_B

[J 15

Automatic storage is
allocated for the pointer
variables.

The ALLOCATE statement
allocates storage for
the array LIST in
dynamic memory.

This generation of storage
is pointed to by
LISLPTR_A.

The ALLOCATE statement obtains
another allocation of storage
for the array LIST.

This allocation of storage is
pointed to by the pointer
LIST _PTR_B.

Locator-qualified references
to LIST indicate the specific
allocation that is to be
modified.

Any extent expressions in the based variable declaration are evaluated
each time the variable is allocated or referenced. Therefore, based vari­
ables can be used for data aggregates whose size depends on input data.
Here is an example of dynamically allocating a matrix that will be accessed
by several external procedures:

Based Variable 163

DECLARE 1 MATRIX_CONTROL_BLOCK STATIC EXTERNAL,
2 MATRIX_POINTER POINTER,
2 (ROW_SIZE,COL_SIZE) FIXED BINARY;

DECLARE 1 MATRIX(ROW_SIZE,COL_SIZE)
BASED(MATRIX_POINTER);

GET LIST(ROW_SIZE,COL_SIZE);
ALLOCATE MATRIX;

The SET Option of the READ Statement
When you use the READ statement with a based variable, you do not
have to define storage areas within your program to buffer records for
I/O operations. If you specify the SET option on the READ statement,
the READ statement places an input record in a system buffer and sets a
pointer variable to the location of that buffer. For example:

DECLARE REC_PTR POINTER,
INFILE FILE RECORD INPUT SEQUENTIAL;

DECLARE 1 RECORD_LAYOUT BASED (REC_PTR),
2 NAME CHARACTER (15),
2 AMOUNT PICTURE '999V99 I •

2 BALANCE FIXED DECIMAL (6,2);

READ FILE (INFILE) SET (REC_PTR);

REWRITE FILE (INFILE);

In this example, the structure defined to describe the records in a file
is declared with the BASED attribute; the declaration does not reserve
storage for this structure. When the READ statement is executed, the
record is actually read into a system buffer, and the pointer REC_pTR is
set to its location.

When the SET option is used with the READ statement, a subsequently
executed REWRITE statement need not specify the record to be rewritten.
PL/I rewrites the record indicated by the pointer variable specified in the
READ statement.

Figure B-2 illustrates this example.

164 Based Variable

Figure B-2: Using the READ Statement with a Based Variable

DECLARE REC PTR POINTER :

DECLARE 1 RECORD LAYOUT BASED (REC PTR).
2 NAME CHARACTER (15).
2 AMOUNT PICTURE'99V99'.
2 BALANCE FIXED DECIMAL (6.2):

READ FILE (INFILE) SET (REC PTR) :

REWRITE FILE (INFILE) :

•Examples

REC PTR

REC PTR

A longword of storage is
allocated for the pointer.

No storage is allocated for the structure.

---.... RECORD LAYOUT t -1 ·~ "" "' locates the internal
- - buffer into which the

record is read and ; I -·~ ·~ '""' " REC PTR

ZK-1277-83

The program DEFINED uses based variables and the READ SET statement
to process a file of personnel data (PERSONNEL.DAT). The file has two
types of valid records: a pay record and a health record. The different
record types are identified by a I-character code in the first position.
Both record types are declared as based structures (PAY-RECORD and
HEAL TH-RECORD), one of which is selected based on the record type
character ('P' for pay, 'E' for health). Any record that does not begin with
one of these characters is invalid and is written out as a reference to the
based character variable INVALID-RECORD.

DEFINED: PROCEDURE OPTIONS(MAIN);

DECLARE P POINTER; /• pointer to structures •/

DECLARE 1 PAY_RECORD BASED(P),
2 RECORD_TYPE CHWCTER(1),
2 NAME CHWCTER(20),

/• the two structures differ in this member: •/
2 GROSS_PAY PICTURE '999999V.99';

DECLARE 1 HEALTll_RECORD BASED(P),
2 RECORD_TYPE CHWCTER(1),
2 NAME CllARACTER(20),
2 EliM_DATE CHWCTER(9);

DECLARE INVALID_RECORD CHWCTER(30) BASED(P);

Based Variable 165

DECLARE PERSONNEL RECORD FILE;
DECLARE PERSOUT STREAM OUTPUT PRINT FILE;

/• used to control DO group: •/
Xl\EPLACE NOTENDFILE BY '1'B;

ON ENDFILE(PERSONNEL) BEGIN;
PUT FILE(PERSOUT) SKIP LIST

('All processing complete.');
STOP; /• program stops here •/
END;

OPEN FILE(PERSONNEL) INPUT TITLE('PERSONNEL.DAT');

DO WHILE(NOTENDFILE);
/• terminated by ENDFILE ON-unit •/

READ FILE(PERSONNEL) SET(P);
/• P is the location of the
record acquired by the READ statement •/

IF P->PAY_RECORD.RECORD_TYPE = 'P' THEN
PUT FILE(PERSOUT) SKIP LIST
('Name=' ,P->PAY_RECORD.NAME,
'Gross pay=' ,P->GROSS_PAY);

ELSE /* either a health record or an invalid record •/
DO;
IF P->HEALTH_RECORD.RECORD_TYPE = 'E' THEN
PUT FILE(PERSOUT) SKIP LIST
('Name=' ,P->HEALTH_RECORD.NAME,
'Exam date:' ,P->EXAM_DATE);
ELSE /• invalid record type •/
PUT FILE(PERSOUT) SKIP LIST

('Invalid record:' ,P->INVALID_RECORD);
END;

END; /• repeat DO group until ENDFILE is signaled •/

END DEFINED;

For example, if the file PERSONNEL.DAT contains the following records:

PMary A. Ford 125000.55
EMary A. Ford 22July 80
t12345678901234567890pppppp.pp

then the output file (PERSOUT.DAT) will contain the following output:

Name= Mary A. Ford Gross pay=
Name= Mary A. Ford Exam date:
Invalid record: t12345678901234567890pppppp.pp
All processing complete.

166 Based Variable

125000.55
22July 80

Notice the other features of the program:

• The references to based variables have a locator qualifier (P->) for
clarity. However, because all were declared with P as their pointer
reference, the locator qualifier could have been omitted.

• References to the structure members RECORD_TYPE and NAME
must be fully qualified with the name of their containing structures
(PAY_RECORD and HEALTH_RECORD) because both structures
have members with these names. In contrast, GROss_p AY and
EXAM-DATE are unique to their structures and need not be fully
qualified.

Note that the UNION attribute can frequently be used for overlaid records
such as those in this program. For example:

1 RECORD BASED(P),
2 RECORD_TYPE CHARACTER(!),
2 NAME CRARACTER(20),
2 VARIANTS UNION,

3 GROSS_PAY PICTURE '999999V.99',
3 EXAM_DATE CRARACTER(9);

This can be used in place of PAY-RECORD and HEALTH_RECORD in
the program. However, note that the UNION attribute is not available in
many other PL/I implementations.

• Using the ADDR Built-In Function
The ADDR built-in function returns the storage location of a variable.
It can be used to associate the storage occupied by a variable with the
description of a based variable. For example:

DECLARE A FIXED BINARY BASED (I),
B FIXED BINARY,
I POINTER;

I= ADDR (B);
A = 15;

In this example, the variable A is declared as a based variable, with
the pointer X designated as its pointer. The variable Bis an automatic
variable; PL/I allocates storage for B when the block is activated. When
the ADDR built-in function is referenced, it returns the storage location
of the variable B, and the assignment statement gives this value to the
pointer X. This assignment associates the variable A with the storage
occupied by B. Because A is based on X and X points to B, an assignment
statement that gives a value to A actually modifies the storage occupied
by the variable B.

Based Variable 167

Figure B-3 illustrates this example.

Figure B-3: Using the ADDR Built-In Function

DECLARE A CHARACTER (1000) BASED(X); No storage is allocated for A.

DECLARE B CHARACTER (1000); B ~I _____ ~I B is allocated a thousand bytes of storage.

DECLARE X POINTER ; X ~I _____ ~I X is allocated a longword of storage.

X ADDR (B);
A · 'STRING.;

Begin Block

168 Begin Block

I--_. I I The value of X is B's memory location.
~----~ B ._ __ st-rin_g __ _, A reference to A is resolved as a

. reference to B.

x

ZK-1278-83

• Based Variables and List Processing

Data structures in which the elements have complex interactions or in
which the elements can be added or deleted are normally described
with based variables. The simplest such structure is a linked list. For an
example, see "List Processing."

A begin block is a sequence of statements headed with a BEGIN statement
and terminated by an END statement. In general, a begin block can be
used wherever a single executable statement is valid, for instance, in an
ON-unit.

A begin block can contain any PL/I statements. It can contain DO-groups,
SELECT-groups, DECLARE statements, and procedures, as well as other
(nested) begin blocks.

A begin block provides a convenient way to localize variables. Internal
variables that are declared within a begin block are not allocated storage
until the begin block is activated; they have by default the AUTOMATIC
attribute. When the begin block terminates, storage for internal automatic
variables is released. A begin block is terminated under the following
conditions:

• Its corresponding END statement is executed. Control continues with
the next executable statement in the program.

• It executes a nonlocal GOTO to transfer control to a previous block.

A begin block differs from a DO-group chiefly in its ability to localize
variables. Variables declared within DO-groups are not localized to the
group (unless the group contains a begin block or procedure that declares
internal variables). Begin blocks are preferable when you want to restrict
the scope of variables, and there are some cases (such as ON-units)
in which DO-groups cannot be used. Otherwise, DO-groups are often
more efficient than begin blocks, because they do not have the overhead
associated with block activation.

For more information, see "Block."

A begin block can designate a series of statements to be executed depend­
ing on the success or failure of a test in an IF statement. For example:

IF A = B THEN BEGIN;

END;

A begin block also provides the only way to denote a series of statements
to be executed when an ON condition is signaled. For example:

ON ERROR BEGIN; [statement ...] END;

For further information, see "ON Conditions and ON-Units."

BEGIN Statement

The BEGIN statement denotes the start of a begin block. The format of
the BEGIN statement is as follows:

BEGIN;

A begin block must be terminated with an END statement.

BEGIN Statement 169

BINARY Attribute

The BINARY attribute specifies that an arithmetic variable has a binary
base. The format of the BINARY attribute is as follows:

{ BINARY }
BIN

When you specify the BINARY attribute for an identifer, you can also
specify one of the following attributes to define the scale and precision of
the data:

FIXED [(precision(,scale])]
FLOAT ((precision)]

FIXED indicates a fixed-point binary value and FLOAT indicates a floating­
point binary value.

For a fixed-point binary value, the precision specifies the number of bits
representing an integer and must be in the range 1 through 31. For a
fixed-point binary value, the scale factor represents the number of bits to
the right of the binary point and must be in the range -31 through 31.
The scale factor must be less than or equal to the specified precision. See
"Scale Attributen for more information.

For a floating-point value, the precision specifies the number of bits
representing the mantissa of a floating-point number and must be in the
range 1 through 113. The maximum floating-point binary precision is
always 113. The default values applied to the BINARY attribute are as
follows.

Attributes Specified

BINARY

BINARY FIXED

BINARY FLOAT

• Restrictions

Defaults Supplied

FIXED (31,0)

(31,0)

(24)

The BINARY attribute directly conflicts with the DECIMAL attribute and
with any other data type attribute.

170 BINARY Attribute

BINARY Built-In Function

The BINARY built-in function converts an arithmetic or string expression
x to its binary representation, with an optionally specified precision p and
scale factor q. The returned value is either fixed- or floating-point binary,
depending on whether x is a fixed- or floating-point expression.

The format of the function is as follows:

{ ::~ARY } (x[,p[,q]])

The precision p, if specified, must be an integer constant greater than zero
and less than or equal to the maximum precision of the result type (31 if
fixed-point binary and 113 if floating-point binary). The precision p must
be specified if xis a fixed-point value with fractional digits.

The scale factor q, if specified, must be an integer constant less than or
equal to the specified precision and in the range -31 to 31.

• Returned Value
The result type is fixed- or floating-point binary, depending on whether
the argument xis a fixed- or floating-point expression. (If the argument is
a bit- or character-string expression, the result type is fixed-point binary.)

The argument xis converted to the result type, giving a value v, following
the PL/I rules for conversion (see "Conversion of Data").

The returned value is the value v, with precision p, and scale factor q.
If p is omitted (integer and floating-point arguments only), the precision
of the returned value is the converted precision of x (see "Expression").
FIXEDOVERFLOW, OVERFLOW, or UNDERFLOW is signaled if appro­
priate.

BIT Attribute

The BIT attribute identifies a variable as a bit-string variable. The format
of the BIT attribute is as follows:

BIT[(length)]

BIT Attribute 171

length
The number of bits in the variable. If you do not specify a length, the
default length is one bit. The length must be in the range 0 through
32767.

The rules for specifying the length are as follows:

• If the attribute is specified for a static variable declaration or in a
returns descriptor, length must be a restricted integer expression (see
"Restricted Expressionn).

• If the attribute is specified in the declaration of a parameter or in a
parameter descriptor, length can be specified as a restricted integer
expression or as an asterisk ("').

• If the attribute is specified for an automatic, based, controlled, or
defined variable, length can be specified as an expression. In the case
of automatic or defined variables, the expression must not contain any
variables or functions that are declared in the same block, except for
parameters.

If specified, the length in parentheses must follow the keyword BIT.

If you give a variable the BIT attribute, you can also specify the ALIGNED
attribute to request alignment of the variable on a byte boundary in
storage.

• Restrictions
The BIT attribute directly conflicts with the CHARACTER and VARYING
attributes and with any other data type attribute.

BIT Built-In Function

The BIT built-in function converts an arithmetic or string expression x to a
bit string of an optionally specified length. If x is a string expression,
it must consist of Os and ls. If the length is specified, it must be a
nonnegative integer. If the length is omitted, the returned value has a
length determined by the PL/I rules for conversion to bit strings (see
"Conversion of Data").

The format of the function is as follows:

BIT(x[,length])

172 BIT Built-In Function

Bit-String Data

A bit string consists of a sequence of binary digits, or bits. A bit string can
be used as a Boolean value. That is, the string can have the value true, if
any bit is l, or false, if all bits are 0.

Like a fixed-length character string, a bit string has a fixed length de­
fined in the declaration or specified by the number of bits in a bit-string
constant; bit-string variables cannot be declared with the VARYING
attribute.

This discussion of bit-string data is divided into the following parts:

• Constants
• Variables
• Alignment

• Internal representation

• Bit-String Constants
To specify a bit-string constant, enclose the string in apostrophes and
follow the closing apostrophe with the letter B. Some examples of bit­
string constants are as follows:

'0101'8
'10101010'8
'1'8

The length of a bit-string constant is always the number of binary digits
specified; the B does not count in the length of the string. The maximum
length of any bit string is 32767 bits. A bit-string constant can be specified
with a maximum of 1000 characters between the apostrophes.

You can also specify a bit-string constant using the following syntax:

'character-string'8n

Here, n specifies the number of bits to be represented by each character in
the specified string. This format allows you to specify bit-string constants
that have bases other than base 2. For example:

Bit-String Data 17 3

'EF8'84
'117'83
'223'82

These constants specify the hexadecimal value EF8, the octal value 117,
and the base 4 value 223.

All such constants are stored internally as bit strings. See "Internal
Representation of Bit Data/ below.

Following are the characters that are valid for each type of bit-string
constant:

• For B or Bl, only the characters 0 and 1 are valid.
• For B2, only the characters 0, l, 2, and 3 are valid.

• For B3, only the characters 0, 1, 2, 3, 4, 5, 6, and 7 are valid.
• For B4, the characters 0, l, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F

are valid. (The letters A to F can be either upper- or lowercase.)

Using the B format items, you can also acquire or output bit-string data in
binary, base 4, octal, or hexadecimal format. See "B Format Items."

• Bit-String Variables
Use the keyword BIT to declare a bit-string variable. The format is as
follows:

DECLARE variable-name BIT [(length));

When a program assigns a value to a bit-string variable, the value can be
larger or smaller than the defined length of the variable. In such cases,
PL/I does the following:

• If the assigned string is shorter than the defined target length, PL/I
pads the bit-string value in the direction of least significance with
zeros. The "less significant" bits are those shown on the right, as the
string is represented by PUT LIST.

• If the assigned string is longer than the target, PL/I truncates the least
significant bits from the bit-string value.

174 Bit-String Data

If you do not specify a length for a bit-string variable, PL/I uses the
default length of one bit.

NOTE

Avoid using bit strings to represent integers. The truncation or
padding that occurs in assignments between strings of different
lengths results in an implicit division or multiplication of the
numeric interpretation of the string; these implicit operations
can introduce subtle errors in computations.

• Alignment of Bit-String Data
PL/I distinguishes between aligned and unaligned bit-string variables.
(Bit-string constants are always unaligned.) A bit-string variable is
aligned only if it is declared with the ALIGNED attribute, as shown in
the following example:

DECLARE FLAGS BIT (8) .ALIGNED;

PL/I allocates storage for an aligned bit-string variable on a byte boundary
and reserves an integral number of bytes to contain the variable.

Unaligned bit-string variables always occupy only as many bits as are
needed to contain them. They need not be on byte boundaries.

In general, operations involving unaligned bit-string variables are less
efficient than operations involving aligned bit-string variables. Unaligned
bit-string variables are invalid as the targets of the FROM and INTO
options of record I/0 statements and as the arguments of the ADDR built­
in function. Moreover, most non-PL/I programs that accept bit-string
arguments require that the strings be aligned.

Alignment affects argument passing. If a procedure declares a parameter
as an aligned bit string, and if the corresponding argument that is passed
to it is an unaligned bit-string variable, or vice versa, the actual argument
will be a dummy variable. For example:

DECLARE GETSTRING ENTRY (BIT(•) .ALIGNED);
DECLARE STRING BIT (8);
CALL GETSTRING (STRING);

In this example, PL/I constructs a dummy variable to pass the argument
STRING to the called procedure GETSTRING, rather than passing the
actual argument by reference.

Bit-String Data 17 5

It is recommended that you declare bit-string variables using the
ALIGNED attribute in most cases. Use unaligned bit-string variables
when bit strings must be packed as tightly as possible, for example, in
arrays and in structures.

• Internal Representation of Bit Data
In this discussion, the term "most significant bW means the leftmost bit
in an external representation of a string, as, for example, when the string
is output by the PUT LIST statement. The "least significant bit" is the
rightmost bit in the external representation.

The notion of significance has no meaning for bit strings unless they are
used to store integers. VAX PL/I permits the use of bit strings for this
purpose, and it has defined rules for conversions between bit strings and
other data types (see "Conversion of Data.") Nevertheless, the use of PL/I
bit-string data to store integers is not recommended, for two reasons:

• In assignments involving two bit strings of different lengths, the
source string is padded or truncated as required to make a string of
the length of the target.

• As shown in the following discussions, the "significance" of bits results
in bit strings being stored in the reverse order from actual numeric
data. Consequently, conversion of bit strings to arithmetic data is
expensive in terms of execution speed, except in the special case of a
1-bit string.

It is recommended instead that you use the UNSPEC built-in function and
UNSPEC pseudovariable when you must store integers in a compact form.
Otherwise, use the data types FIXED BINARY and FIXED DECIMAL for
integer arithmetic.

The way that PL/I allocates storage for a bit-string variable depends on
whether the variable is declared with the ALIGNED attribute.

Unaligned Bit Strings
An unaligned bit string is stored beginning at an arbitrary bit location in
storage; this location is the location of the most significant bit. The subse­
quent, less significant, bits are stored in progressively higher locations in
memory, as shown here:

176 Bit-String Data

most significant bit

•••

least significant bit

ZK-1280-83

The following programming sequence illustrates how a value for an
unaligned bit-string variable is stored:

DECLARE ABIT BIT (10);
ABIT " '1011'8;

After the assignment, the variable appears in storage like this:

most significant bit

... 0 0 0 0 0

least significant bit

ZK-1279-83

Aligned Bit Strings
PL/I allocates storage for an aligned bit-string variable on a byte boundary
and allocates an integral number of bytes. The number of bytes to be
allocated is calculated as follows:

ceil(n/8}

where n is the length specified for the bit string.

Beginning at bit 0 (the lowest memory location) of the lowest allocated
byte, the bit string is stored like unaligned bit-string data; that is, the
beginning bit is used to hold the most significant bit in the string. Less
significant bits are stored in progressively higher memory locations.
Unused bits are set to zero each time the bit-string variable is assigned a
value.

Bit-String Data 177

Block

178 Block

The representation is as follows:

most significant bit
Byte B yte

,,...
:::'!:

~
least significant bit

ZK-1281-83

The following programming sequence illustrates how values are stored for
aligned bit strings:

DECLARE ABIT BIT (10) ALIGNED;
ABIT = '10011'B;

In this example, the variable ABIT is aligned. When it is assigned the
value 10011, the value is stored as follows:

most significant bit
Byte 1 Byte 0

r_ :-!.._ ' . . . 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 . . .
.....

~ Unused
least significant bit

ZK-1282-83

A block is a sequence of PL/I statements. There are two types of blocks:

• Procedure blocks. A procedure block begins with a PROCEDURE
statement and terminates with an END statement. A procedure is the
basic program unit of PL/I; it also defines the scope of names declared
within it.

• Begin blocks. A begin block begins with a BEGIN statement and
terminates with an END statement. A begin block delimits a portion
of a program and defines the scope of names declared within it.

Blocks control the scope of names, the allocation of storage for automatic
variables, and the search for ON-units to respond to a particular condition.
(See also " Scope of Names.")

• Containment
A block A is said to be contained in another block B if all of A's source
text, from label (if any) to END statement inclusive, is between B's BEGIN
or PROCEDURE statement and B's END statement. If there is no block
C contained in B and containing A, A is also said to be immediately
contained in B. For example:

B: PROCEDURE OPTIONS(MAIN);
A: PROCEDURE;

CALL Q;
END A;

Q: PROCEDURE;

END Q;
BEGIN;

CALL A;
END; /• of begin block •/

END B;

The procedures A and Q and the begin block all are immediately con­
tained in B.

If block A is contained in block B, then A and B are also said to be nested.
The maximum nesting level is 64.

• Block Activation
A block is activated when program execution flows into it. Then, all
automatic variables declared in the block become active. When control
leaves the block, the variables become undefined and inaccessible.

A procedure block can be entered only by a CALL statement or a function
reference. If an internal procedure is declared within a source program,
control flows around the internal procedure during the normal sequence
of execution.

A begin block is entered when it is encountered during the normal flow of
execution.

Block 179

• Relationship of Block Activations
During the execution of a program, many blocks can be simultaneously
active. Two different relationships can be defined among block activations;
they are illustrated in Figure B-4.

Figure B-4: Relationship of Block Activations

A

180 Block

Begin
Block

p

Dynamic
Descendent
Chains

Q

A: PROCEDURE OPTIONS (MAIN) ;

P: PROCEDURE;
CALL Q; .

•
END P;

Q: PROCEDURE; •
•
•

END Q;

BEGIN;
CALL P;
END; /* of begin block *I

END A;

ZK-1283-83

One relationship is "immediate dynamic descendence." A block activation
is the immediate dynamic descendent of the block that invoked it. At
a given time, the chain of immediate dynamic descendents includes
all existing block activations, starting with the activation of the main
procedure and terminating in the current block activation. For example,
in Figure B-4, the begin block is the immediate dynamic descendent of
procedure A; the complete chain is A, begin block, P, Q. This chain is used
for finding the applicable ON-unit when a condition is signaled. (See also
"ON Conditions and ON-Units.")

The other relationship applies to activations of nested blocks; an activation
of a block X that is a begin block or internal procedure has an "immediate
parent activation." The immediate parent activation of X is an activation of
the block that immediately contains X. The chain of immediate parent acti­
vations extends back to an activation of the external procedure containing
X. In Figure B-4, the parent chain for each of the begin block, procedure
P, and procedure Q leads directly back to the activation of A, because
each of these blocks is immediately contained in A. This chain is used in
interpreting references. (See also "Reference.")

When a block is activated, its immediate parent activation is determined
as follows:

• If the block is an external procedure, it has no parent activation.

• If the block is a begin block, its immediate parent activation is the
activation that invoked it. Therefore, the begin block is the immediate
dynamic descendent of its immediate parent.

• If the block is an internal procedure invoked in block activation A by a
reference to an entry constant declared in block B, then the immediate
parent of the new block activation is the activation of B in the parent
chain starting at A.

• If the block is an internal procedure invoked by an entry variable, the
parent activation is taken from the entry value. It was originally set
when the complete entry value was generated by the assignment of an
entry constant to an entry variable. (See "Entry Data.")

• Block Termination
When a block terminates normally, that is, when an END statement or a
RETURN statement is executed, the current block is released and control
goes to the preceding block activation. If a nonlocal GOTO statement is
executed that transfers control out of the current block, the current block
and any blocks between it and the block containing the label that is the
target of the GOTO statement are released.

Block 181

For more information, see 0 Begin Block," 0 Procedure," "Procedure Block,"
and 0 Scope of Names."

BOOL Built-In Function

The BOOL built-in function performs a Boolean operation on two bit­
string arguments and returns the result as a bit string with the length of
the longer argument. Its format is as follows:

BOOL(string-1 ,string-2,operation-string)

string-1
A bit-string expression of any length.

string-2
A bit-string expression of any length.

operation-string
A bit-string expression that is converted to length 4. Each bit in the
operation string specifies the result of comparing two corresponding bits
in string-I and string-2. Specify bit positions in the operation string from
left to right to define the operation, as in the following truth table:

String-1 Bit String-2 Bit Result of Boolean Operation

0 0 Bit 1 of operation string

0 1 Bit 2 of operation string

1 0 Bit 3 of operation string

1 1 Bit 4 of operation string

Thus, an AND operation, for instance, would be specified by the
operation-string 'OOOI 'B.

If string-I and string-2 are of different lengths, the shorter is extended on
the right with zeros to the length of the longer.

182 BOOL Built-In Function

•Example
X = '101010'B;
Y = '110011'B;
CHECK= BOOL (X,Y, '0110'B);

The operation string is '01 lO'B, which defines an EXCLUSIVE OR opera­
tion. The operation is performed as follows on the corresponding bits in
the strings X and Y: The leftmost bit in X is 1 and the leftmost bit in Y is
1. The truth table above specifies that when the two corresponding bits
in the two strings are both 1, then bit 4 of the operation string will be the
result; in this case, bit 4 of the operation string '01 lO'B is 0. Thus, 0 is the
first bit of the value to be returned. The second bit of X is 0 and of Y is
1. The truth table specifies that when the bit in the first string is 0 and in
the second string is 1, the result will be bit 2 of the operation string. Here,
bit 2 of the operation string '01 lO'B is 1, and so 1 is the second bit of the
value to be returned. The operation continues in this manner with each
two corresponding bits in the strings. The value returned is 'OllOOl'B.

Figure B-5 illustrates this example.

BUil TiN Attribute

The BUIL TIN attribute indicates that the name declared is the name of a
PL/I built-in function. Within the block in which the name is declared,
all references to the name will be interpreted as references to the built-in
function or pseudovariable of that name.

You use the BUILTIN attribute when you want to refer to a built-in
function within a block in which the function's name has been used to
declare a variable.

You also use the BUILTIN attribute when you want to invoke a built-in
function that takes no arguments (such as the DATE function) and you do
not want to include a null argument list.

• Restriction
When you specify the BUIL TIN attribute, you cannot specify any other
attributes.

BUil TIN Attribute 183

Figure B-5: Example of the BOOL Built-In Function

101010 (arg x)
110011 (arg y) operation defined: 0110

If f cesult defined by M 2 1
result defined by bit 4 = 0

result defined by bit 1 = 0
result defined by bit 3 = 1

• Exa•ples
OUTER: PROCEDURE;

result defined by bit 2 = 1
result defined by bit 4 = 0
value returned by the }
BOOL built-in function 011001

ZK-1284-83

DECLARE MAX FIXED BINARY STATIC INITIAL (10);

INNER: PROCEDURE;
DECLARE MAX BUILTIN;

TEST• MAX(A,B);

END INNER;
END OUTER;

184 BUil TIN Attribute

The keyword MAX is used here as a variable name. In the internal
procedure INNER, the MAX built-in function is invoked. Because the
scope of the name MAX includes the internal procedure, the function must
be redeclared with BUIL TIN.

You can also use the BUILTIN attribute to declare PL/I built-in functions
that have no arguments, if you want to invoke them without the empty
argument list. For example:

DECLARE DATE BUILTIN;
PUT LIST(DATE);

Without the declaration, the PUT LIST statement would have to include
an empty argument list for DATE:

PUT LIST(DATE(}};

Built-In Function

Built-in functions are procedures provided by the PL/I language. You can
use them wherever an expression is valid.

• Built-In Function Argu111ents
Built-in functions are similar to operators, and their arguments are similar
to operands. Built-in function arguments, if arithmetic, are converted to
their derived type before the function reference is evaluated. See also
0 Expression." All evaluations of built-in functions are performed in the
result type. The arguments are converted again from the derived type to
the result type if necessary. The precision of the result is the greater of the
precisions of the two arguments.

For instance, all the mathematical functions listed in Table B-1 return
floating-point values; their arguments are converted to floating point
(binary or decimal, depending on the base of the argument) before the
operation is performed.

•Example
Like all mathematical functions, ATAN returns a floating-point result and
is therefore computed in floating point. The base of the result is the same
as the base of the converted arguments. For example:

DCL J FIXED BINARY(8}; FT= ATAN(J,2};

Built-In Function 185

Here the derived type of J and 2 is fixed-point binary. The converted
precision of 2 is min(ceil(l/3.32) + 1, 31), or 2. The result type is FLOAT
BINARY(8). Both arguments are then converted to FLOAT BINARY(8),
and the ATAN operation is performed.

• Restrictions
Note the following restrictions on built-in function arguments:

• All arguments of all built-in functions except the array-handling, stor­
age, file-control, and STRING functions must be scalars of arithmetic,
string, or pictured data types, as specified for the individual function.

• A reference to a built-in function that takes no arguments must still
contain the pair of enclosing parentheses [example: NULL()] unless
the function's name has been declared with the BUILTIN attribute.

• Conditions Signaled
Built-in functions, like other operations, can signal conditions. The
mathematical functions, which are computed in floating point, can sig­
nal OVERFLOW and UNDERFLOW under the appropriate conditions.
Functions that are computed in fixed point can signal FIXEDOVERFLOW.
In general, string and other functions signal ERROR if a result cannot be
computed. See also the descriptions of individual conditions and built-in
functions.

•Summary
The built-in functions are summarized in Table B-1, according to the
following categories:

• Arithmetic built-in functions provide information about the properties
of arithmetic values, or perform common arithmetic calculations.

• Mathematical built-in functions perform standard mathematical calcu­
lations in floating point.

• String-handling built-in functions process character-string and bit­
string values.

• Conversion built-in functions convert data from one data type to
another.

• Condition-handling built-in functions provide information about
interrupts caused by signaled conditions.

• Array-handling built-in functions provide information about arrays.

• Storage control built-in functions return values concerning based
variables.

186 Built-In Function

• Timekeeping built-in functions return the system date and time of day.

• File-control built-in functions return the current line number and page
number of a file.

• Preprocessor built-in functions are used only at compile time by the
embedded preprocessor.

• Miscellaneous built-in functions check the validity of data, aid jn
argument passing, and perform other convenient operations

Table B-1: Summary of PL/I Built-In Functions
Category

Arithmetic

Mathematical

Function Reference

ABS(x)

ADD(x,y,p[,q])

CEIL(x)

DIVIDE(x,y,p[,q])

FLOOR(x)

MAX(x,y)

MIN(x,y)

MOD(x,y)

MULTIPLY(x,y,p[,q])

PRECISION(x,p[,q])

ROUND(x,k)

SIGN(x)

SUBTRACT(x, y,p[,q])

TRUNC(x)

ACOS(x)

ASIN(x)

Value Returned

Absolute value of x

Value of x+y, with precision p and scale
factor q

Smallest integer greater than or equal to
x

Value of x divided by y, with precision
p and scale factor q

Largest integer that is less than or equal
to x

Larger of the values x and y

Smaller of the values x and y

Value of x modulo y

Value of x•y, with precision p and scale
factor q

Value of expression x, with precision p
and scale factor q

Value of x rounded to k digits

-1, 0, or 1 to indicate the sign of x

Value of x-y, with precision p and scale
factor q

Integer portion of x

Arc cosine of x (angle, in radians, whose
cosine is x)

Arc sine of x (angle, in radians, whose
sine is x)

Built-In Function 187

Table B-1 (Cont.): Summary of PL/I Built-In Functions
Category

String-Handling

188 Built-In Function

Function Reference

ATAN(x)

ATAN(x,y)

ATAND(x)

ATAND(x,y)

ATANH(x)

COS(x)

COSD(x)

COSH(x)

EXP(x)

LOG(x)

LOGlO(x)

LOG2(x)

SIN(x)

SIND(x)

SINH(x)

SQRT(x)

TAN(x)

TAND(x)

TANH(x)

BOOL(x,y,z)

COLLATE()

COPY(s,c)

EVERY(s)

Value Returned

Arc tangent of x (the angle, in radians,
whose tangent is x)

Arc tangent of x (the angle, in radians,
whose sine is x and whose cosine is y)

Arc tangent of x (the angle, in degrees,
whose tangent is x)

Arc tangent of x (the angle, in degrees,
whose sine is x and whose cosine is y)

Hyperbolic arc tangent of x

Cosine of radian angle x

Cosine of degree angle x

Hyperbolic cosine of x

Base of the natural logarithm, e, to the
power x

Logarithm of x to the base e

Logarithm of x to the base 10

Logarithm of x to the base 2

Sine of the radian angle x

Sine of the degree angle x

Hyperbolic sine of x

Square root of x

Tangent of the radian angle x

Tangent of the degree angle x

Hyperbolic tangent of x

Result of Boolean operation z performed
on x and y

ASCII character set

c copies of specified string, s

Boolean value indicating whether every
bit in bit string s is '1 'B

Table B-1 (Cont.): Summary of PL/I Built-In Functions
Category

Conversion

Function Reference

HIGH(c)

INDEX(s,c[,p])

LENGTH(s)

LOW(c)

MAXLENGTH(s)

REVERSE(s)

SEARCH(s,c[,p])

SOME(s)

STRING(s)

SUBSTR(s,i[,j])

TRANS LA TE(s,c[,d])

TRIM(s[,e,f])

VERIFY(s,c[,p])

BINARY(x[,p[,q]])

BIT(s[,l])

Value Returned

String of length c of repeated occur­
rences of the highest character in the
collating sequence

Position of the character string c within
the string s, starting at position p

Number of characters or bits in the
strings

String of length c of repeated occur­
rences of the lowest character in the
collating sequence

Maximum length of varying string s

Reverse of the source character string or
bit string

Position of the first character in s,
starting at position p, that is found in c

Boolean value indicating whether at
least one bit in bit string sis 'l'B

Concatenation of values in array or
structure s

Part of string s beginning at i for j
characters

String s with substitutions defined in c
and d -

String s with all characters in e removed
from the left, and all characters in f
removed from the right

Position of the first character in s,
starting at position p, which is not
found inc

Binary value of x with precision p and
scale factor q

Value of s converted to a bit string of
length l

Built-In Function 189

Table B-1 (Cont.): Summary of PL/I Built-In Functions
Category

Condition-Handling

190 Built-In Function

Function Reference

BYTE(x)

CHARACTER(s[,l])

DECIMAL(x[,p[,q]])

DECODE(c,r)

ENCODE(i,r)

FIXED(x,p[,q])

FLOAT(x,p)

INT(x[,p(,l]])

POSINT(x[,p[,l]])

RANK(c)

UNSPEC(x[,p[,l]])

ONARGSLIST()

ON CHAR()

ONCODE()

ONFILE()

ONKEY()

Value Returned

ASCII character represented by the
integer x

Value of s converted to a character
string of length 1

Decimal value of x

Fixed binary value of the character string
c converted to a base r number

Character string representing the base r
number that is equivalent to the fixed
binary expression i

Fixed arithmetic value of x

Floating arithmetic value of x

Signed integer value of variable x,
located at position p with length 1

Unsigned integer value of variable x,
located at position p with length l

Integer representation of the ASCII
character c

Internal coded form of x, located at
position p with length 1

Pointer to argument lists of exception
condition

Character that caused the CONVERSION
condition to be raised

Error code of the most recent run-time
error

Name of file constant for which the
most recent END FILE, ENDP AGE, KEY,
or UNDEFINEDFILE condition was
signaled

Value of key that caused KEY condition

Table B-1 (Cont.): Summary of PL/I Built-In Functions
Category

Array-Handling

Storage

Timekeeping

File Control

Preprocessor

Function Reference

ONSOURCE()

DIMENSION(x[,n))

HBOUND(x(,n))

LBOUND(x(,n))

PROD(x)

SUM(x)

ADDR(x)

ALLOCATION(x)

EMPTY()

NULL()

OFFSET(p,a)

POINTER(o,a)

SIZE(x)

DATE()

DATETIME()

TIME()

LINENO(x)

PAGENO(x)

ABS(x)

BYTE(x)

COPY(s,c)

Value Returned

Field containing the ONCHAR character
when the CONVERSION condition was
raised

Extent of the nth dimension of x

Higher bound of the nth dimension of x

Lower bound of the nth dimension of x

Arithmetic product of all the elements in
x

Arithmetic sum of all the elements in x

Pointer identifying the storage refer­
enced by x

Number of existing generations for
controlled variable x

An empty area value

A null pointer value

An offset into the location in area a
pointed to by pointer p

A pointer to the location at offset o
within area a

Number of bytes allocated to variable x

System date in the form YYMMDD

System date and time in the form
CCYYMMDDHHMMSSXX

System time of day in the form
HHMMSSXX

Line number of the print file identified
by x

Page number of the print file identified
by x

Absolute value of x

ASCII character represented by integer x

c copies of specified string s

Built-In Function 191

Table B-1 (Cont.): Summary of PL/I Built-In Functions
Category

192 Built-In Function

Function Reference

DATE()

DATETIME()

DECODE(c,r)

ENCODE(i,r)

ERROR()

INDEX(s,c[,p])

INFORM()

LENGTH(s)

LINE()

MAX(x,y)

MIN(x,y)

MOD(x,y)

RANK(c)

REVERSE(s)

SEARCH(s,c[,p])

SIGN(x)

SUBSTR(s,i[,j])

TIME()

Value Returned

Compilation date in the form YYMMDD

System date and time in the form
CCYYMMDDHHMMSSXX

Fixed binary value of the character string
c converted to a baser number

Character string representing the base r
number that is equivalent to the fixed
binary expression i

Count of user-generated diagnostic error
messages

Position of the character string c within
the string s, starting at position p

Count of user-generated diagnostic
informational messages

Number of characters or bits in the
string s

Line number in source program that
contains the end of the specified prepro­
cessor statement

Larger of the values x and y

Smaller of the values x and y

Value of x modulo y

Integer representation of the ASCII
character c

Reverse of the source character string or
bit string

Position of the first character in s,
starting at position p, that is found in c

-1,0, or 1 to indicate the sign of x

Part of string s beginning at i for j
characters

Compilation time of the day in the form
HHMMSSXX

Table B-1 (Cont.): Summary of PL/I Built-In Functions
Category Function Reference

TRANSLATE(s,c[,d])

TRIM(s[,e,f])

VARIANT()

VERIFY(s,c[,p])

WARN()

Miscellaneous ACTUALCOUNT()

DESCRIPTOR(x)

PRESENT(p)

REFERENCE(x)

VALID(p)

VALUE(x)

Value Returned

String s with substitutions defined in c
and d

String s with all characters in e removed
from the left and all characters in f
removed from the right

String result representing the value
of /VARIANT of the PLI command
qualifier

Position of the first character in s,
starting at position p, which is not
found inc

Count of user-generated diagnostic
warning messages

Number of parameters the current
procedure was called with

Forces its argument to be passed by
descriptor to a non-PL/I procedure

Boolean value indicating whether
parameter p was specified in a call

Forces its argument to be passed by
reference to a non-PL/I procedure

Boolean value, indicating whether
the pictured variable p has a value
consistent with its picture specification

Forces its argument to be passed by
value to a non-PL/I procedure

l•ilt-ln S•bro•tine
Built-in subroutines are VAX PL/I-specific routines that provide various
added capabilities. These routines can be used in a CALL statement. All
arguments are evaluated as for normal subroutines.

Built-In Subroutine 193

BY Option

194 BY Option

The built-in subroutines are summarized in Table 8-2, according to the
following functional categories:

• Condition-handling built-in subroutines assist in performing condition­
related operations.

• File-control built-in subroutines perform file operations not supported
by the standard PL/I language.

• Record-locking built-in subroutines allow extended record-locking
control in conjunction with the OPTIONS clause of the READ state­
ment.

The built-in subroutines are described in detail in the VAX PL/I User
Manual.

Table B-2: Summary of PL/I Built-In Subroutines
Category

Condition-handling

File-control

Record-locking

Routine Reference

RESIGNAL()

DISPLAY(f,i)

Action

Allows more processing of a
signal

Returns information on file f
into i

EXTEND(f,b) Extends file f by b blocks

FLUSH(f) Forces all buffers for file f to be
flushed

NEXT_ VOLUME(f) Performs magnetic tape volume
processing on file f

REWIND(f) Resets file f to the beginning

SP ACE_BLOCK(f,b) Positions file f forward or
backward b blocks

FREE(f)

RELEASE(f,r)

Frees all locks for file f

Releases locked record r in file
f

The BY option defines a value by which a control variable in a DO
statement specification is modified. For example:

DO I= 10 BY 10 WHILE {X < Y) UNTIL {X = 90);

The DO-group following this statement is executed with values for I of 10,
20, and so on, until the specification in the WHILE option is no longer true
or the UNTIL option is true. If no BY option is specified in a controlled
DO statement, the default value of 1 is used. See "DO Statement."

BYTE Built-In function
BYTE Preprocessor Built-In function

The BYTE built-in function returns the ASCII character whose ASCII code
is the integer x; x must not be negative. The returned value is a character
equivalent to BYTE(y), where y equals x modulo 256. The format of the
function is as follows:

BYTE(x)

• Example
DECLARE CHAR CHARACTER(!);
CHAR= BYTE(65); /•CHAR= 'A' •/
CHAR= BYTE(32); /•CHAR= (space) •/

BYTE Preprocessor Built-In Function 195

c
CALL Statement

The CALL statement transfers control to an entry point of a procedure and
optionally passes arguments to the procedure. The format of the CALL
statement is as follows:

CALL entry-name [(argument, ...)];

entry-name
The name of an external or internal procedure that does not have the
RETURNS attribute, or the name of an alternate entry point to a proce­
dure. The entry name can also be an entry variable or a reference to a
function that returns an entry value.

argument, ...
The argument list to be passed to the called procedure. If specified, the ar­
guments must correspond to the parameters specified in the PROCEDURE
or ENTRY statement that identifies the entry name of the called procedure.

Unless you specify OPTIONS(VARIABLE) in the declaration of an ex­
ternal entry name, the number of arguments must match the num-
ber of parameters in the parameter list of the invoked entry name.
OPTIONS(VARIABLE) is valid only for use with non-PL/I procedures.

You must enclose arguments in parentheses. Multiple arguments must be
separated by commas.

You can use the CALL statement to call an internal or external procedure.
The following example illustrates a main procedure, CALLER, and a
call to an internal procedure, PUT_OUTPUT. PUT_OUTPUT has two
parameters, INSTRING and OUTFILE, that correspond to the arguments
LINE and DEVICE specified in the CALL statement.

196 CALL Statement

CALLER: PROCEDURE OPTIONS(MAIN);

CALL PUT_OUTPUT(LINE,DEVICE);

PUT_OUTPUT:PROCEDURE(INSTRING,OUTFILE);

END PUT_OUTPUT;
END CALLER;

For more information, see 0 Entry Data," HParameters and Arguments,"
HProcedure," HProcedure Block," and HPROCEDURE Statement"; and the
VAX PL/I User Manual.

CEIL Built-In Function

The CEIL function returns the smallest integer that is greater than or equal
to an arithmetic expression x. Its format is as follows:

CEIL(x)

• Returned Value
If x is a floating-point expression, a floating-point value is returned with
the same precision as x. If xis a fixed-point expression, the returned value
is a fixed-point value of the same base as x and with

precision= min(31,p- q + 1)

scale/ actor= 0

where p and q are the precision and scale factor of x.

• Examples
A = 4.3;
Y = CEIL(A); I• Y = 5 •/

A = -4.3;
Y = CEIL(A); I• Y = -4 •/

CEIL Built-In Function 197

CHARACTER Attribute

The CHARACTER attribute identifies a variable as a character-string
variable. The format of the CHARACTER attribute is as follows:

{ CHARACTER } [(length)]
CHAR

length
The number of characters in a fixed-length string or the maximum length
of a varying-length string. If not specified, a length of 1 is assumed. The
length must be in the range 0 through 32767 characters.

The rules for specifying the length are as follows:

• If the attribute is specified for a static variable declaration or in a
returns descriptor, length must be a restricted integer expression
(defined in the entry 0 Restricted Expression").

• If the attribute is specified in the declaration of a parameter or in a
parameter descriptor, length can be specified as a restricted integer
expression or as an asterisk (•).

• If the attribute is specified for an automatic, based, or defined variable,
length can be specified as an expression. In the case of automatic or
defined variables, the expression must not contain any variables or
functions that are declared in the same block, except for parameters.

If specified, the length must immediately follow the keyword
CHARACTER, and it must be enclosed in parentheses.

If you give a variable the CHARACTER attribute, you can also specify the
attribute VARYING or NONVARYING.

• Restriction
The CHARACTER attribute directly conflicts with the BIT attribute and
with any other data type attribute.

198 CHARACTER Attribute

CHARACTER Built-In Function

The CHARACTER built-in function converts an arithmetic or string
expression x to a character string of an optionally specified length. If
the length is specified, it must be a nonnegative integer. If the length is
omitted, the length of the returned value is determined by the PL/I rules
for conversion to character strings (see uconversion of Data"). The format
of the function is as follows:

{ CHARACTER } (x[,length])
CHAR

• Example
CHAR: PROCEDURE OPTIONS(MAIN);

DECLARE EXPRES FIXED DECIMAL(7,6);
DECLARE OUTPUT PRINT FILE;

EXPRES = 12.34667;

OPEN FILE(OUTPUT) TITLE('CHAR2.0UT');

PUT SKIP FILE(OUTPUT)
LIST('No length argument: ',CHARACTER(EXPRES));

PUT SKIP FILE(OUTPUT)
LIST('Length = 4: ',CHARACTER(EXPRES,4));

END CHAR;

The program CHAR produces the following output:

No length argument: 12.34667
Length s 4: 12

In the first PUT LIST statement, CHARACTER has only one argument, so
the entire string is written out. The string '12.34567' is actually preceded
by two spaces; this is the case with any nonnegative number converted
to a character string (see "Conversion of Data"). In the second PUT LIST
statement, CHARACTER has a length argument of 4, so the first four
characters of the converted string are written out as 'ul2'.

CHARACTER Built-In Function 199

Character-String Data

A character string is a sequence of characters. The value of a character­
string variable is a sequence of ASCII characters. A character-string
constant is a sequence of DEC Multinational Character Set characters, and
can include non-ASCII characters. The first 128 characters of the DEC
Multinational Character Set are the ASCII characters. (See Appendix B for
the entire character set.)

The maximum length of a character-string value is 32767 bytes.

Every character-string variable has a length attribute that specifies ei­
ther the length of all values of the variable (fixed-length strings) or the
maximum length of a value of the variable (varying-length strings).

This discussion of character-string data is divided into the following parts:

• Constants

• Replication of string constants

• Variables

• Varying character strings

• Alignment of character strings

• Internal representation

• Character-String Constants
When you use character-string constants in a program, you must enclose
the character strings in apostrophes, as shown in the following examples:

'Total is:'
'Enter your name and age'
'Error - value is out of range'

To specify a string containing a literal apostrophe, use two apostrophes
within the string. For example:

'Life isn' 't fair'

The final result contains only a single apostrophe.

200 Character-String Data

• Replication of String Constants
You can use a replication factor to replicate character-string and bit­
string constants in any context of the program. A replication factor is
an unsigned integer constant that specifies the number of times a simple
string constant is replicated to produce a resulting string constant.

For example:

(4) 'season ' ·

In this example, the string is repeated four times. The character constant
resulting from this specification looks like this:

season season season season

You can use a replication factor in combination with the iteration factor in
INITIAL. For example, the following two statements are equivalent:

INITIAL ((10}('ABCABC'})

INITIAL ((10}((2} 1 ABC 1 })

The first example uses an iteration factor exclusively, but the second
example combines an iteration factor of 10 with a replication factor of 2.
Note that an extra set of parentheses is required to separate the iteration
factor from the replication factor and the character string.

• Character-String Variables
The CHARACTER keyword identifies a variable as a character-string
variable in a declaration. The format for specifying a fixed-length
character-string variable is as follows:

DECLARE variable-name CHARACTER [(n)];

where n is the length of the variable, that is, the number of bytes needed
to contain the value of the variable. If not specified, PL/I uses the default
length of one character (one byte).

Fixed-Length Character-String Variables
When a program assigns a value to a fixed-length character-string variable,
the value is not always exactly the same as the length defined for the
variable. Depending on the size of the value, PL/I does the following:

• If the value is smaller than the length of the character string, PL/I
pads the string with spaces on the right. For example:

Character-String Data 201

DECLARE STRING CHARACTER (10);
STRING = I ABCDEF I ;

The final value of the variable STRING in this example is
'ABCDEFuu', that is, the characters ABCDEF followed by four
space characters.

• If the value is larger than the length of the variable, PL/I truncates
the string on the right. For example:

DECLARE STRING CHARACTER (4);
STRING = I ABCDEF I ;

The final value of the variable STRING in this example is 'ABCD', that
is, the first four characters of the value 'ABCDEF'.

Initializing Character-String Variables
You can use the INITIAL attribute to supply an initial value for the
variable. For example:

DECLARE MESSAGE CHARACTER (20)
INITIAL('Begin entering text');

If the initial value for a variable is longer than the length, the value is
truncated. If the initial value is shorter than the specified length, the string
is padded with spaces on the right.

• Varying Character Strings
When you define a character-string variable, you can also specify the
VARYING attribute. A varying character-string variable is a variable
whose length is not fixed. The length specified in the declaration of the
variable defines the maximum length of any value that can be assigned
to the variable. Each time a value is assigned to the variable, the current
length can change. For example:

DECLARE NAME CHARACTER (20) VARYING;
NAME "' I COOPER I ;

NAME .. I RANDOM FACTOR I ;

The declaration of the variable NAME indicates that the maximum length
of any character-string value it can have is 20. Although the maximum
length of NAME is 20, the current length becomes 6 when NAME is
assigned the value COOPER; the length becomes 13 when NAME is
assigned the value RANDOM FACTOR; and so on.

When a varying character string is assigned a value with a length greater
than the maximum defined, the value is truncated on the right.

202 Character-String Data

The initial length of a based, controlled, or automatic varying-length
character-string variable is undefined. A static variable is initially a null
string with a length of zero.

You can use the LENGTH built-in function to determine the current length
of any string. See "LENGTH Built-In Function."

You can use the MAXLENGTH built-in function to determine the max­
imum length of a varying character string. See "MAXLENGTH Built-In
Function."

• Alignment of Character Strings

The PL/I language makes a distinction between aligned and unaligned
(fixed-length) character-string variables. (No such distinction is made for
varying character strings or for character-string constants.) A character­
string variable is aligned if it is declared with the ALIGNED attribute.

In VAX PL/I, this distinction affects only argument passing. If a procedure
declares a parameter as ALIGNED CHARACTER, and if the corresponding
argument is an unaligned character-string variable or vice versa, the actual
argument will be a dummy variable. For example:

DECLARE GETSTRING ENTRY (CHARACTER{•) ALIGNED);
DECLARE STRING CHARACTER (8);
CALL GETSTRING (STRING);

PL/I constructs a dummy variable here to pass the unaligned string
variable STRING to the called procedure GETSTRING, rather than passing
the actual argument by reference. (See "Argument Passing.")

Note that all character strings on the VAX hardware are aligned on byte
boundaries. Thus, it is recommended that you do not use the ALIGNED
attribute to declare character-string variables.

• Internal Representation of Character Data

PL/I stores fixed-length character-string data from right to left, giving each
character a byte of storage, as follows:

Character-String Data 203

Byte Byte Byte Byte

c4 c3 c2 c1

cB c7 c6 cs

ZK-1285-83

For example, a character string whose value is 'CHARLIE ALPHA' is
stored as follows:

Byte Byte Byte Byte

R A H c

!::,. E I L

H p L A

• • • A

ZK-1286-83

204 Character-String Data

Varying-length strings are stored in a number of bytes equal to n+2, where
n is the declared maximum length. The two additional bytes contain the
current length of the value in bytes in the first two byte addresses.

CLOSE Statement

The CLOSE statement dissociates PL/I files from the physical files with
which they were associated when opened. The format of the CLOSE
statement is as follows:

CLOSE FILE(file-reference) [ENVIRONMENT{option,. ..)]
(,FILE(file-reference) [ENVIRONMENT(option, ...)]] ... ;

file-reference
A file to be closed. If the file is already closed, the CLOSE statement has
no effect.

ENVIRONMENT(option, ... }
One or more of the following ENVIRONMENT options, separated by
commas:

BATCH
DELETE
REVISION _DATE
REWIND_ON _CLOSE
SPOOL
TRUNCATE

No other ENVIRONMENT options are valid. All ENVIRONMENT options
are described in detail in the VAX PL/I User Manual.

•Examples
CLOSE FILE(INFILE) ENVIRONMENT(SPOOL);

This CLOSE statement closes the file constant INFILE and submits it for
printing on the default spooler queue.

CLOSE FILE(A) ENV(DELETE), FILE(B) ENV(REVISION_DATE(X));

CLOSE Statement 205

This CLOSE statement closes two files specified in a comma list, each with
a different ENVIRONMENT option.

DECLARE STATE_FILE FILE KEYED;

OPEN FILE(STATE_FILE) DIRECT UPDATE;

CLOSE FILE(STATE_FILE);
OPEN FILE(STATE_FILE) INPUT SEQUENTIAL;

The file STATEJILE is declared with the KEYED attribute. The first
OPEN statement that specifies this file is given the DIRECT and UPDATE
attributes and opened for updating; the file can be accessed only by key.

The CLOSE statement doses the file. The second OPEN statement
specifies the INPUT and SEQUENTIAL attributes; the file can now be
accessed sequentially.

COLLA TE Built-In Function

The COLLATE built-in function returns a 256-character string consisting
of the ASCII character set in ascending order. Its format is as follows:

COLLATE()

COLUMN Format Item

The COLUMN format item sets a stream file to a specific character position
within a line. In other words, COLUMN determines the position at which
the next data will be output or from which the next data will be input.
The COLUMN format item refers to an absolute character position in a
line; for information on how to refer to a relative position, see "X Format
Item."

The form of the COLUMN format item is as follows:

{ COLUMN } (w)
COL

206 COLUMN Format Item

w
A nonnegative integer or expression that identifies the wth position from
the beginning of the current line. The value of the converted expression
must be zero or positive. If the value of the converted expression is zero,
a value of 1 is assumed.

If the file is already at the specified position, no operation is performed. If
the file is already beyond the specified position, the format item is applied
to the next line.

The interpretation of the COLUMN format item on input and output is
given below. For a general discussion of format items, see "Format Item."

• Input with GET EDIT
The file is positioned at the column specified by w. Characters between
the beginning of the line and this column are ignored. If the file is already
positioned beyond the specified column, the remainder of the line is
skipped and the format item is applied to the next line.

• Output with PUT EDIT
The file is positioned at the column specified by w. Within the current
line, positions between the wth column and the position of the last output
data are filled with spaces.

If the file is already positioned beyond the specified column, the format
item is applied to the next line. If w exceeds the line size, a value of 1 is
assumed. See also "LINESIZE Option."

• Examples
COL: PROCEDURE OPTIONS(MAIN);

DECLARE IN STREAM INPUT FILE;
DECLARE OUT STREAM OUTPUT FILE;
DECLARE LETTER CHARACTER(1);

PUT FILE(OUT) SKIP
EDIT('123466789012346678901234667890') (A);

PUT FILE(OUT) SKIP
EDIT('COL1', 'COL28') (A,COL(28),A);

GET FILE(IN) EDIT (LETTER) (A(1));
PUT FILE(OUT) SKIP(2)

LIST('Letter in column 1: ',LETTER);

COLUMN Format Item 207

Comment

208 Comment

GET FILE(IN)
EDIT (LETTER) (COL(26),A(1));

PUT FILE(OUT) SKIP
LIST ('Letter in column 26:',LETTER);

END COL;

If the stream input file IN.DAT contains the following text:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

then the program COL writes the following output to the stream output
file OUT.DAT:

123466789012346678901234667890
COL1 COL28

'Letter in col1µ1J1 1:' 1A1

'Letter in column 26:' 'Y'

A comment is an informational tool for documenting a PL/I program. To
insert a comment in a program, enclose the comment within the character
pairs slash-asterisk (/*) and asterisk-slash (* /). For example:

/•This is a comment •I

Wherever the characters /* appear in a program, the compiler ignores
all text until it encounters the characters * /. Thus, a comment can span
several lines.

The rules for entering comments are as follows:

• A comment can appear anywhere a space can appear:
Between any identifiers, keywords, and constants. In this context,
a comment separates tokens, or discrete text items, in a statement.

Preceding or following any other punctuation marks that normally
delimit tokens, for example, spaces, tabs, or commas.

• A comment can contain any character except the pair * /; comments
cannot be nested.

Some examples of comments are as follows:

A = B + C; I• Add B and C •/

/• ••••••••• START OF SECOND PHASE ••••••••• •/

DECLARE/•COUNTER•/A FIXED BINARY (7);

/• This module performs the following steps:
* 1. Initializes all arrays and data structures.
* 2. Establishes default condition handlers.

*

Although complete comments cannot be nested, you can "comment out" a
statement such as the following:

DECLARE EOF BIT(1}; /*end-of-file*/

You can make this statement a comment by preceding the DECLARE
keyword with another/*. The compiler will then ignore all text, including
the DECLARE statement, until it reaches the * /. For example:

/•DECLARE EOF BIT(1); /•end-of-file•/

Common Data Dictionary

The VAX Common Data Dictionary (COD) is a set of shareable data def­
initions (language-independent structure declarations) that are defined
by a system manager or data administrator. The COD provides a central
storage repository that can be shared and that is protected from unautho­
rized access. The definitions stored in the COD help the system manager
coordinate an effective data management system.

The advantages to using the COD are as follows:

• Record declarations are language independent.

• A single, centrally defined and stored declaration helps guarantee the
accuracy and reliability of data.

NOTE

The COD is a layered product, and not all systems that use
PL/I use the COD. If you are not certain if COD is installed on
your system, see your system manager.

COD data definitions are organized in a hierarchical dictionary in much
the same way that files are organized in directories and subdirectories.
For example, a dictionary for defining personnel data might have separate
directories for each classification of employee. Subdirectories pertaining to
employees who are salespeople might include data definitions for records
such as salary and commission history or personnel record.

Common Data Dictionary 209

COD entries are stored in an internal form that is independent of any
higher level language; descriptions of data definitions are entered into the
dictionary in a unique, general-purpose language called Common Data
Dictionary Language (COOL). Then the COOL compiler converts the data
descriptions to an internal form. When a PL/I program that uses the COD
is compiled, COD data definitions are drawn into the program (provided
the data attributes are consistent). Program listings include COD data
definitions in the same language as the application program (in this case,
PL/I).

You can include COD records in PL/I programs with the %DICTIONARY
statement. See 0 %DICTIONARY Statement." See the VAX PL/I User
Manual for an explanation of COD usage in a PL/I program.

Comparison Operator

See 0 Relational Operator."

Concatenation Operator

The concatenation operator produces a single string from two strings
specified as operands. The concatenation operator is two vertical bars
(11).

The operands must both be character strings or both be bit strings. (If not,
the appropriate conversion is performed, and you get a warning message
about the conversion. See 0 Expression" for information on the various
conversions.) The result of the operation is a string of the same type as
the operands.

•Examples
CONCAT: PROCEDURE OPTIONS(MAIN);
DECLARE OUTFILE STREAM OUTPUT PRINT FILE;

PUT FILE(OUTFILE) SKIP LIST('ABC'I I 'DEF');
PUT FILE(OUTFILE) SKIP LIST('001'811'110'8);
PUT FILE(OUTFILE) SKIP LIST((3)'001'811'07'83);

END CONCAT;

The program CONCAT writes the following output to the file
OUTFILE.DAT:

21 0 Concatenation Operator

ABCDEF
'001110'8
'001001001000111'8

Note that the exclamation point can be used in place of the vertical bar,
for compatibility with other PL/I implementations.

CONDITION Attribute

The CONDITION attribute can optionally be used in a declaration to
specify that the variable name is a condition name. You can abbreviate
CONDITION to COND. You can specify INTERNAL or EXTERNAL scope
attributes with the CONDITION attribute. The default scope is external.

See °Condition Handling," 0 Error and Condition Handling," and HON
Conditions and ON-Units."

CONDITION Condition Name

The CONDITION condition name is used for ON-units to handle
programmer-defined conditions. The value returned by the ONCODE
built-in function is PLl$_CONDITION. The format of the CONDITION
condition name is as follows:

CONDITION (cond-name)

cond_name
A name declared with the CONDITION attribute.

Condition Handling

A PL/I condition is any occurrence that causes the interruption of a
program and a signal. When a condition is signaled, PL/I initiates a
search for a user-written program unit called an ON-unit to handle the
condition. See "ON Conditions and ON-Units" and 0 Error and Condition
Handling."

Condition Handling 211

Constant

212 Constant

A constant is a data item whose value cannot change during the execution
of a PL/I program. The converse of a constant is a variable, that is, a data
item to which various values can be assigned during the execution of a
program.

VAX PL/I allows the following kinds of constants:

• Literal constants, which are actual numbers and strings written in
the source program. Literal constant types are restricted to character
strings (see "Character-String Data"), bit strings, and fixed- or floating­
point decimal numbers. Unscaled fixed decimal numbers can be
written with or without a decimal point. Arithmetic constants can be
signed. String constants can be replicated. (See "Replication Factor.")

• Label constants, which are established when you use a label in the
source program. Label constants cannot be declared in a DECLARE
statement.

• Declared constants (file and entry constants), which generally are
established with DECLARE statements. The default file constants
SYSIN and SYSPRINT need not be declared.

• Constant identifiers, which are identifiers assigned literal constant
values with the %REPLACE statement. Constant identifiers are
restricted to the same types as literal constants. See "%REPLACE
Statement."

PL/I also has the computational types FIXED BINARY, FLOAT BINARY,
and PICTURE, but there are no literal constants or constant identifiers
associated with these types. Binary variables usually receive values when
decimal constants or other binary variables are assigned to them; then
PL/I converts the assigned value to binary. Pictured variables usually
receive values when fixed-point decimal constants are assigned to them.
For further details, see "Conversion of Data."

•Examples
446
-446.
16.2
129E-3

/• a fixed-point decimal constant •/
I• a fixed-point decimal constant •/
/• a fixed-point decimal constant •/
/• floating-point decimal constant •/

'00101111'8 /•a bit-string constant•/
'This is a string' /• a character-string constant •/

DECLARE E ENTRY; /• an entry constant •/
DECLARE F FILE; /• a file constant •/

STARTUP: I• a label constant •/

XJlEPLACE Pl BY 3.14159

STATUS = 25;

C = 3E10;

CONTROLLED Attribute

/• a fixed-point decimal
constant identifier •/

I• assignment of a fixed
decimal constant to a
variable •/

I• assignment of a floating
decimal constant to a
variable •/

The CONTROLLED attribute causes a variable's actual storage to be
allocated and freed dynamically in Ngenerations," only the most recent of
which is accessible to the program. For general information and examples,
see NControlled Variable." The format of the CONTROLLED attribute is as
follows:

{ CONTROLLED }
CTL

• Restrictions
The following attributes conflict with the CONTROLLED attribute:

AUTOMATIC
BASED
DEFINED
GLOBALDEF
GLOBALREF
READONLY
STATIC
VALUE
PARAMETER

The CONTROLLED attribute cannot be applied to minor structures,
members of structures, parameters, or descriptions in an ENTRY or
RETURNS attribute.

CONTROLLEO Attribute 213

Controlled Variable
The declaration of a controlled variable describes storage that will be
allocated dynamically during program execution. A controlled variable has
no storage assigned to it until an ALLOCATE statement allocates storage
for it. This is called a generation of the variable. Further ALLOCATE
statements allocate more generations. At any time in the program's
execution, a reference to a controlled variable is a reference to the most
recent generation of that variable, that is, the generation created by the
most recent ALLOCATE statement.

The FREE statement frees the most recent generation of CJ controlled
variable. If an attempt is made to free a controlled variable for which no
generation exists (or to refer to such a variable), PL/I signals the ERROR
condition.

The following example illustrates the use of controlled variables:

CONT: PROCEDURE OPTIONS (MAIN);

DECLARE STR CHARACTER (10) CONTROLLED;

END;

ALLOCATE STR;
STR • 'First';
ALLOCATE STR;
STR • 'Second' ;
ALLOCATE STR;
STR = 'Third';
PUT SKIP LIST (STR);
FREE STR;
PUT SKIP LIST (STR);
FREE STR;
PUT SKIP LIST (STR);
FREE STR.;

The output of this program is

Third
Second
First

Because only the most recent generation of a controlled variable is avail­
able to a program, controlled variables provide an easy way to implement
a stack. The ALLOCATE statement is equivalent to a push operation, and
the FREE statement is equivalent to a pop operation. To test for an empty
stack, use the ALLOCATION built-in function, which returns the number
of generations of a variable. For example:

214 Controlled Variable

DECLARE NEXT_MOVE CHARACTER(5) CONTROLLED,
DIRECTIONS(4) CHARACTER(5) INITIAL(
'North' , 1 East', 1 South 1 , 1 West 1),

D FIXED BINARY (7);

ALLOCATE NEXT_MOVE; /• Part of a loop that stores •/
NEXT_MOVE = DIRECTIONS(D); /•moves in reverse order•/

DO WHILE /• Print moves in correct order •/

END;

(ALLOCATION(NEXT_MOVE) -= 0);
PUT SKIP LIST ('Go ', NEXT_MOVE);
FREE NEXT_MOVE;

A controlled variable can be used as the argument of the ADDR built-in
function. If no generation of the variable exists, ADDR returns the null
pointer. If a generation does exist, ADDR returns a pointer to it. Thus,
ADDR can be used to preserve a pointer to a generation of a controlled
variable that later becomes "hidden" under more generations, as in the
following example:

DECLARE STOPS CHARACTER (20) VARYING CONTROLLED,
MIDPOINT CHARACTER (20) VARYING BASED (P),
P POINTER;

ALLOCATE STOPS;
STOPS = CURRENT_LOC;
IF I= 5 THEN P = ADDR(STOPS);

PUT SKIP LIST
'End reached! Halfway point was', MIDPOINT);

At a certain point during the execution of this program, the ADDR built­
in function captures the address of the current generation of STOPS
and assigns it to P. Later, after more generations of STOPS have been
allocated, MIDPOINT (which is based on P) has the value of that same
intermediate generation of STOPS.

Note, however, that the value of P and therefore of MIDPOINT is valid
only if the intermediate generation of STOPS to which P points is al­
located. As soon as that generation is freed, the value of P becomes
invalid and it must not be used in a pointer-qualified reference until it is
reassigned.

Controlled Variable 215

A controlled variable cannot be used in a pointer-qualified reference. In
the previous example, this reference would be illegal.

P->STOPS

CONVERSION Condition Name

The CONVERSION condition name can be specified in an ON, SIGNAL,
or REVERT statement to designate a CONVERSION condition or ON-unit.

PL/I signals the CONVERSION condition when the source character data
in a conversion to bit-string or arithmetic data contains characters that
are not valid in the specified context. In particular, the CONVERSION
condition is raised when a character string is being converted and one of
the following conditions is true:

• The target of the conversion is an arithmetic type, and the source
string does not contain a valid, optionally signed arithmetic constant.

• The target of the conversion is a picture, and the source string does
not conform to the picture specification.

• The target of the conversion is a bit string, and a character other than
0 or 1 appears in the source string.

The CONVERSION condition can be raised either by a non-1/0 con­
version, such as an explicit conversion using a built-in function or an
implicit conversion generated by the compiler, or by an If O conver-
sion in a GET statement. For example, A= BIT('1014') would cause the
CONVERSION condition to be raised, because 4 is not a valid binary
digit. Likewise, a GET statement with an arithmetic target would also
cause the CONVERSION condition to be raised if the characters '12K45'
appeared in the input field, because 'K' is not a valid numeric character.

You can use the ONSOURCE and ONCHAR built-in functions and
pseudovariables inside an ON CONVERSION ON-unit. The ONSOURCE
built-in function returns the source string that caused the CONVERSION
condition to be raised. The ONCHAR built-in function returns the specific
character that caused the conversion to fail. You can use the ONSOURCE
pseudovariable to change the value of the conversion. Likewise, you can
use the ONCHAR pseudovariable to modify only the single character in
error.

216 CONVERSION Condition Name

If the CONVERSION condition was raised during a conversion required
by the GET statement, the ONFILE built-in function returns the name of
the file constant inside the CONVERSION ON-unit. If the CONVERSION
condition was not raised during a conversion required by the GET state­
ment, the ONFILE built-in function returns a null string.

A normal return from a CONVERSION condition will cause the conver­
sion to be reattempted if the ONSOURCE or ONCHAR pseudovariables
have had values assigned to them. If the ONSOURCE value has not been
modified, the ERROR condition is raised instead.

For example:

'* * Sample program that displays a 'quick-fix' CONVERSION
* ON-unit. At the end of this program, TARGET! contains
* the value 14016, and TARGET2 contains the value '11100'B.
* Note that SOURCE1 and SOURCE2 are not modified.

*' MAIN: PROCEDURE OPTIONS(MAIN);

DCL SOURCE! CHARACTER(&) VARYING INITIAL('14$16');
DCL SOURCE2 CHARACTER(&) VARYING INITIAL('11100');

DCL TARGET1 FIXED BINARY(31);
DCL TARGET2 BIT(6) ALIGNED;

'* * Sample 'quick-fix' CONVERSION ON-unit that replaces
* erroneous lowercase L's with i's, and all other
* erroneous characters with O's.
•/
ON CONVERSION BEGIN;

PUT SKIP EDIT('"' ,ONSOURCE(), 111 111 ,0NCHAR(), 1• 1)((6)A);

IF ONCHAR() : 'l'
THEN

ONCHARO '1';
ELSE

ONCHAR() '0';

END; /• ON */

I•
* Note that the CONVERSION condition is raised for all
* 3 of the following statements.
*/
TARGET! : SOURCE1;
TARGET1 : SOURCE1;
TARGET2 : SOURCE2;

PUT SKIP(2) EDIT(SOURCE1,SOURCE2)(A,X,A);
PUT SKIP EDIT(TARGET1,TARGET2)(F(8),X,B(6));

END MAIN;

CONVERSION Condition Name 217

The output from this program is as follows:

"14$15" "$"
"14$15" "$"
"11100" "l"

14$15 11100
14015 11100

The first occurrence of the ONCHAR built-in function value in the
ONSOURCE built-in function value is not necessarily the character in
error. For example, if the statement A= FIXED('++12310') were executed,
the CONVERSION condition would be raised with the ONCHAR value
being the second plus sign in the string.

The target of the conversion is undefined when the CONVERSION
condition is raised.

The retry attempted on a normal return is for the single field that was in
error. Attempts to assign a string containing, for example, a comma list of
values will not be used for successive data items in a GET statement.

The actual value modified by the ONSOURCE and ONCHAR pseu­
dovariables is a temporary value that is discarded once the conversion
is complete, or the control flow cannot return to the point of the error.
This means that invalid data stored in a character string variable will
cause the CONVERSION condition to be raised each time the value is
converted, not just the first time the conversion is attempted, regardless of
modifications to the ONSOURCE and ONCHAR pseudovariables inside
the CONVERSION ON-unit.

Conversion of Data

Conversion is the changing of a data item from one data type to an­
other. This entry describes the conversions performed in assignments.
Conversions are also performed on operands in arithmetic expressions; see
"Expression" for details of operand conversions.

In assignments, conversions are defined between the noncomputational
types POINTER and OFFSET, and between any two computational types.
The rules for assignments apply to the following:

• Assignment statements

• Arguments passed to a procedure

• Values specified in a RETURN statement

218 Conversion of Data

• An argument converted by the built-in function BINARY, BIT,
CHARACTER, DECIMAL, DECODE, ENCODE, FIXED, or FLOAT

• Conversions to and from character strings performed by the PUT and
GET statements, respectively

If an attempt is made to assign a value to a target for which there is no
defined conversion, the compiler generates a diagnostic message. For
example:

F = '133.45';

If F is a variable with the attributes FIXED DECIMAL (5,2), then the state­
ment assigns the numeric value 133.45 to F, as expected, although the
compiler issues a WARNING message about the implicit conversion, stat­
ing that the constant '133.45' has been converted to a FIXED DECIMAL
target. The warning does not prevent you from linking and running the
program. However, note the following example:

F = 'ABCD';

This statement results not only in a compiler WARNING message, but
if you go on to link and run the program, you receive a CONVERSION
condition, which will normally be fatal unless it is handled with an ON
CONVERSION ON-unit.

Table C-1 illustrates the contexts in which PL/I performs conversions.
The table also lists the built-in conversion functions, such as BINARY and
CHARACTER, which you can use when you want to explicitly indicate
a conversion and to specify such characteristics as the precision or string
length of the converted result.

The rest of this section defines the rules and results of the following types
of conversion:

• Assignments to arithmetic variables

From any arithmetic data type to any other arithmetic data type

From pictured to any arithmetic type

From bit-string to any arithmetic data type

From character-string to any arithmetic data type

• Assignments to bit-string variables
From any arithmetic data type to bit-string

From pictured to bit-string

From character-string to bit-string

Conversion of Data 21 9

• Assignments to character-string variables

From any arithmetic data type to character-string

From pictured to character-string

From bit-string to character-string

• Assignments to pictured variables

- From any computational type to pictured

• Conversions between offsets and pointers

Table C-1: Contexts in Which PL/I Converts Data
Context Conversion Performed

target= expression;

entry-name
RETURNS (attribute ...);

RETURN (value);

x+y
x-y
x. y
x/y
x••y
xlly
x&y
xly
x&:y
xl:y
x·y
x > y
x < y
x=y
x· = y

220 Conversion of Data

In an assignment statement, the given
expression is converted to the data type
of the target.

In a RETURN statement, the specified
value is converted to the data type
specified by the RETURNS option on the
PROCEDURE or ENTRY statement.

In any expression, if operands do not
have the required data type, they are
converted to a common data type before
the operation. For most operators, the
data types of all operands must be
identical. A warning message is issued in
the case of a concatenation conversion.
(See #Expression.")

Table C-1 (Cont.): Contexts in Which PL/I Converts Data
Context

BINARY (expression)
BIT (expression)
CHARACTER (expression)
DECIMAL (expression)
FIXED (expression)
FLOAT (expression)
OFFSET (variable)
POINTER (variable)

PUT LIST (item, ...);

GET LIST (item, ...);

PAGESIZE (expression)
LINESIZE (expression)
SKIP (expression)
LINE (expression)
COLUMN (expression)
format items A, B, E, F, and X
TAB (expression)

DO control-variable ...

parameter

INITIAL attribute

Conversion Performed

PL/I provides built-in functions that
perform specific conversions.

Items in a PUT LIST statement are
converted to character-string data.

Character-string input data is converted
to the data type of the target item.

Values specified for various options to
PL/I statements must be converted to
integer values.

Values are converted to the attributes of
the control variable.

Actual parameters are converted to the
type of the formal parameter, if necessary
(see #Parameters and Arguments" for
more information).

Initial values are converted to the type of
the variable being initialized.

• Assignmellts te Arithmetic Variallles
Expressions of any computational type can be assigned to arithmetic
variables. The conversion rules for each source type are described in the
following sections.

Conversion of Data 221

Arithmetic to Arithmetic Conversions

A source expression of any arithmetic type can be assigned to a target
variable of any arithmetic type. Note the following qualifications:

• If the target is a variable of type FIXED BINARY or FIXED DECIMAL,
then the FIXEDOVERFLOW condition is signaled when the source
value has a larger number of integral digits than are specified in the
precision of the target. If the target is a fixed-point binary variable,
FIXEDOVERFLOW is signaled if the source value exceeds the storage
allocated for the target, which can be larger than the target's declared
precision (see "Fixed-Point Binary Data").

• If the target is a variable of type FIXED DECIMAL(p,q) or FIXED
BINARY(p,q) and the source value has more than q fractional digits,
then the excess fractional digits of the source are truncated, and no
condition is signaled. If the source has fewer than q fractional digits,
the source value is padded on the right with zeros.

• If the target value is floating point and the absolute source value is too
large to be represented by a VAX floating-point type (see "Floating­
Point Data"), then the OVERFLOW condition is signaled, and the
value of the target is undefined. If the absolute source value is too
small to be represented, the value zero is assigned to the target, and,
if enabled, the UNDERFLOW condition is signaled.

Conversions to Fixed Point: In the following examples, the speci­
fied source values are converted to FIXED DECIMAL(4, 1):

Source Value

25.505

-2.562

101

5365

Converted Value

25.5

-2.5

101.0

FIXEDOVERFLOW - value undefined

Conversions to Floating Point: Let p be the precision of the
floating-point target. If the source value is an integer that can be
represented exactly in p digits, then the source value is converted to
floating-point binary with no loss of accuracy.

222 Conversion of Data

Otherwise, the source value is converted to floating-point binary with
rounding to precision p. For example, the constant 479 will be converted
to FLOAT BINARY(24) without loss of accuracy, while the constant
16777217, which cannot be represented exactly in 24 bits, will be rounded
during conversion.

Conversions from FIXED BINARY to Other Data Types:
Conversions from FIXED BINARY to other data types follow the rules
outlined below. Notice that these rules assume both precision and scale.

Precisions of the source and target are (p,q) and (pl,ql), respectively. The
precision of the result is (p2,q2).

Target

FIXED DECIMAL(pl,ql)

FIXED BINARY(pl,ql)

FLOAT DECIMAL(pl)

FLOAT BINARY(pl)

PICTURE

CHARACTER

BIT

Result

p2=1+CEIL(pl/3.32) and q2=CEIL(ql/3.32).

Precision and scale of the source are main­
tained during conversion; therefore, padding
or truncation can occur. If nonzero bits are
lost on the left, the result is undefined.

p2=CEIL(pl/3.32). The exponent indicates
any fractional value.

p2=pl. The exponent indicates any fractional
value.

The target must imply FIXED DECIMAL.

The binary precision (p,q) is converted
to the decimal precision (pl,ql), where
pl=l+CEIL(p/3.32) and ql=CEIL(q/3.32).
Then the rules for conversion from FIXED
DECIMAL to CHARACTER are in effect.

The binary precision (p,q) is converted to
a bit string where MIN(31,p-q). Then the
intermediate bit string is converted to BIT(n).
If (p-q) is negative or zero, the result is a null
bit string.

If the scale factor is negative, substitute the FLOOR value for CEIL in the
above calculations.

Conversion of Data 223

Pictured to Arithmetic Conversions: In VAX PL/I all pictured
values have the associated attributes FIXED DECIMAL{p,q), where p is the
total number of characters in the picture specification that specify decimal
digits, and q is the total number of these digits that occur to the right of
the V character. If the picture specification does not include a V character,
then q is zero. This associated fixed-point decimal value is assigned to the
target, following the PL/I rules for arithmetic to arithmetic conversion.

Bit-String to Arithmetic Conversions: When a bit-string value is
assigned to an arithmetic variable, PL/I treats the bit string as a fixed-point
binary value. A string of type BIT(n) is converted to FIXED BINARY(m,0},
where m = min(n, 31).

If the converted value is greater than or equal to 231 , then
FIXEDOVERFLOW is signaled. The leftmost bit in the bit string (as output
by PUT LIST) is the most significant bit in the fixed-point binary value,
not its sign. If the bit string is null, the fixed-point binary value is zero.

The intermediate fixed-point binary value is then converted to the target
arithmetic type.

Note that bit strings are stored internally with the leftmost ~it in the
lowest address. The conversion to an arithmetic type must reverse the
bits from this representation; therefore, you should avoid this conversion
when performance is a consideration.

Examples

CONVTB: PROCEDURE OPTIONS(MAIN);

DECLARE STATUS FIXED BINARY(8);
DECLARE STATUS_D FIXED DECIMAL(10);
DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE('CONVTB.OUT');
ON FIIEDOVERFLOW PUT SKIP FILE(OUT)

LIST('Fixedoverflow:');

STATUS= '1001101'8;
PUT SKIP FILE(OUT) LIST(STATUS);

STATUS_D = '001101'B;
PUT SKIP FILE(OUT) LIST(STATUS_D);

STATUS = '1232'82;
PUT SKIP FILE(OUT) LIST(STATUS);

STATUS = 'FF'84;
PUT SKIP FILE(OUT) LIST(STATUS);

224 Conversion of Data

STATUS_D = '10111111111111111111111111111111'5;
PUT SKIP FILE(OUT) LIST(STATUS_D);

END CONVTB;

Note that because the program CONVTB performs implicit conversions,
the compiler issues WARNING messages. (Linking and running are
accomplished successfully because the conversions are valid.)

The program CONVTB produces the following output:

77
13

110
255

Fixedover:flow:
13

The leftmost bit of all the bit-string constants is treated as the most
significant numeric bit, not as a sign. For instance, the hexadecimal
constant 'FF'B4 is converted to 255 instead of -127. The last assignment
to STATUS_D signals the FIXEDOVERFLOW condition because the bit­
string constant, when represented as a binary integer, is greater than 231 •

The resulting value of STATUS_D is undefined.

Character-String to Arithmetic Conversions: When a character
string is assigned to an arithmetic value, PL/I creates an intermediate
numeric value based on the characters in the string. The type of this
intermediate value is the same as that of an ordinary arithmetic constant
comprising the same characters; for example, 342.122£-12 and '342.122£-
12' are both floating-point decimal.

The character string can contain any series of characters that describes a
valid arithmetic constant. That is, the character string can contain any of
the numeric digits 0 through 9, a plus (+) or minus (-) sign, a decimal
point (.), and the letter E. If the character string contains any invalid
characters, the ERROR condition is signaled. See the following examples.

If the implied data type of the character string does not match the data
type of the arithmetic target, PL/I converts the intermediate value to
the data type of the target, following the PL/I rules for arithmetic to
arithmetic conversions. In conversions to fixed point, FIXEDOVERFLOW
is signaled if the character string specifies too many integral digits. Excess
fractional digits are truncated without signaling a condition.

If the source character string is null or contains all spaces, the resulting
arithmetic value is zero.

Conversion of Data 225

Examples

DECLARE SPEED FIXED DECIMAL (9,4);

SPEED= '23344.3882';
I• atring converted to 23344.3882 •/

SPEED= '32423.23SD';
I• ERROR condition •/

SPEED• '4324324.3933';
I• FIXEDOVERFLOW condition •/

SPEED= '1.33336';
I• atring converted to 1.3333 •/

• Assignments ta Bit-String Variables
In the conversion of any data type to a bit string, PL/I first converts the
source data item to an intermediate bit-string value. Then, based on the
length of the target string, it does the following:

• If the length of the target bit-string value is greater than the length of
the intermediate string, the target bit string (as represented by PUT
LIST) is padded with zeros on the right.

• If the length of the target bit-string value is less than the length of the
intermediate string, the intermediate bit string (as represented by PUT
LIST) is truncated on the right.

The next sections describe how PL/I arrives at the intermediate bit-string
value for each data type.

Arithmetic to Bit-String Assignments: In converting an arith­
metic value sv to a bit-string value, PL/I performs the following steps:

1. Let v = abs(sv).

2. Determine a precision pas follows:

Source

FIXED BINARY(r,s)

FLOAT BINARY(r)

FIXED DECIMAL(r,s)

FLOAT DECIMAL(r)

Precision p

min(31,r-s)

min(31,r)

min(31,ceil((r-s)•3.32))

min(31,ceil(r•3.32))

3. If p=O (for example, when r=s), the intermediate string is a null bit
string. Otherwise, the value v is converted to an integer n of type
FIXED BINARY(p,O). If n >= 2p, the FIXEDOVERFLOW condition is

226 Conversion of Data

signaled; otherwise, the intermediate bit string is of length p, and each
of its bits represents a binary digit of n.

Bit strings are stored internally with the leftmost bit in the lowest address.
The conversion must reverse the bits from this representation and should
therefore be avoided when performance is a consideration. Note also that
during the conversion, the sign of the arithmetic value and any fractional
digits are lost.

Examples

CONVB: PROCEDURE OPTIONS(MAIN);

DECLARE NEW_STRING BIT(10);
DECLARE LONGSTRING BIT(16);
DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE('CONVB1.0UT');

NEW_STRING = 36;
PUT FILE(OUT) SKIP

LIST('36 converted to BIT(10): ',NEW_STRING);

NEW_STRING = -36;
PUT FILE(OUT) SKIP

LIST('-36 converted to BIT(10):' ,NEW_STRING);

NEW_STRING = 23.12;
PUT FILE(OUT) SKIP

LIST('23.12 converted to BIT(10): ',NEW_STRING);

NEW_STRING = .2312;
PUT FILE(OUT) SKIP

LIST('.2312 converted to BIT(10): ',NEW_STRING);

NEW_STRING = 8001;
PUT FILE(OUT) SKIP

LIST('8001 converted to BIT(10):' ,NEW_STRING);

LONGSTRING = 8001;
PUT FILE(OUT) SKIP

LIST('8001 converted to BIT(16):' ,LONGSTRING);

END CONVB;

Note that because the program CONVB performs implicit conversions,
the compiler issues WARNING messages. (Linking and running are
accomplished successfully because the conversions are valid.)

Conversion of Data 227

The program CONVB produces the following output:

36 converted to 8IT(10):
-36 converted to BIT(10):
23.12 converted to 8IT(10):
•.2312 converted to 8IT(10):
8001 converted to 8IT(10):
8001 converted to 8IT(16):

'0100011000'8
'0100011000'8
'0010111000'8
'0000000000'8
'0111110100'8
'0111110100000100'8

The values 35 and -35 produce the same bit string because the sign
is lost in the conversion. In the first assignment, 35, which is FIXED
DECIMAL{2,0), is converted to FIXED BINARY{7,0) and then to a 7-bit
string ('OlOOOll'B). Three additional bits are appended to this intermediate
bit string when it is assigned to NEW-5TRING. Notice that the low-order
bit of 8001 is lost when the constant is assigned to a BIT(lO) variable.

Pictured to Bit-String Conversions: If the source value is pic­
tured, its associated fixed-point decimal value is extracted. The fixed-point
decimal value is then converted to a bit string, following the previous
rules for arithmetic to bit-string conversion.

Character-String to Bit-String Conversions: PL/I can convert a
character string of Os and ls to a bit string. Any character in the character
string other than 0 or 1, including spaces, will signal the ERROR condition.

PL/I converts each 0 or 1 character in the character string to a 0 or a 1
bit in the corresponding position (as represented by PUT LIST) in the
intermediate bit string.

If the source is a null character string, the intermediate string is a null bit
string.

Examples

DECLARE NEW_STRING BIT(4);

NEW_STRING • '0010';
/• NEW_STRING = '0010'8 •/

NEW_STRING = '11';
I• NEW_STRING • '1100'8 •/

NEW_STRING = 'AS110';
/• ERROR condition •/

• Assignments to Character-String Variables
In the conversion of any data type to a character string, PL/I first converts
the source value to an intermediate character-string value. Then it does
one of the following:

228 Conversion of Data

• If the length of the intermediate string is zero, a null string is assigned
to the target.

• If the target is a parameter or return value with an asterisk extent
(as in RETURNS CHAR(•)), the intermediate string is assigned to the
target.

• If the target is of type CHARACTER, and the intermediate string is
shorter than the maximum length of the target, the target is assigned
the value of the intermediate string without trailing spaces if the target
has the VARYING attribute. If the target does not have the VARYING
attribute, the string is padded with trailing spaces.

• If the maximum length of the target character string is less than the
length of the intermediate string, the intermediate string is truncated.

The rules for how PL/I arrives at the intermediate string for conversion of
each data type are described below. Examples illustrate the intermediate
value as well as the resulting value.

Arithmetic to Character-String Conversions: The manner in
which PL/I converts an arithmetic data item depends on the data type of
the item, as described below.

Conversion from Fixed-Point Binary or Decimal: If the data item source
value is of type FIXED BINARY(pl,ql), PL/I first converts it to type FIXED
DECIMAL(p2,q2), where

p2=min(ceil(pl/3.32)+1,31)

q2 = max(O, min(ceil(ql/3.32), 31))

PL/I converts a value with attributes FIXED DECIMAL(p,q) to an in­
termediate string of length p+3. The numeric value is right-justified in
the string. If the value is negative, a minus sign immediately precedes
the value. If q is greater than zero, the value contains a decimal point
followed by q digits. When p equals q, a 0 character precedes the deci­
mal point. When q equals zero, a value of zero is represented by the 0
character.

Alternatively, the format of the intermediate string can be described by
picture specifications, as follows:

1. If q=O, the intermediate string is the string created by the following
picture specification:

'BB(p)-9'

Conversion of Data 229

That is, the first two characters of the string are spaces. The last p
characters in the string are the digit characters representing the integer;
leading zeros are replaced by spaces except in the last position. If the
integer is negative, a minus sign immediately precedes the first digit;
if the number is not negative, this position contains a space. At least
one digit always appears in the last position in the string.

2. If p=q, the intermediate string is the string created by the following
picture specification:

'-9V. (q)9'

That is, the first three characters are (in order) an optional minus
sign if the fraction is negative, the digit 0, and a decimal point. If
the number is not negative, the first character is a space. The last q
characters in the string are the fractional digits of the number.

3. If p > q, the intermediate string is the string created by the following
picture specification:

'B(p-q)-9V. (q)9'

That is, the first character is always a space; the last q characters are
the fractional digits of the number and are preceded by a decimal
point; the decimal point is always preceded by at least one digit,
which can be zero; all integral digits appear before the decimal point,
and leading zeros are replaced by spaces; a minus sign precedes the
first integral digit if the number is negative; if the number is not
negative, then the minus sign is replaced by a space.

Examples

DECLARE STRING_1 CHARACTER (8),
STRING_2 CHARACTER (4);

STRING_1 = 283472.;
/• intermediate string= 'AAA283472',
STRING_1 = 'AAA28347' •/

STRING_2 = 283472.;
/• intermediate string= 'AAA283472',
STRING_2 = 'AAA2' •/

STRING_2 = -283472.;
/• intermediate string= 'AA-283472',
STRING_2 = 'AA-2' •/

STRING_2 = -.003344;

230 Conversion of Data

/*intermediate string= '-0.003344',
STRING_2 = '-0.0' •I

STRING_2 = -283.472;
/•intermediate string= 'A-283.472',
STRING_2 = 'A-28' •/

STRING_2 = 283.472;
/•intermediate string= 'AA283.472',
STRING_2 = 'AA28' •/

Conversion from Floating-Point Binary or Decimal: If the data item
source value is of type FLOAT BINARY(pl), it is converted to FLOAT
DECIMAL(p2), where

p2 = min(ceil(pl/3.32), 34)

For a value of type FLOAT DECIMAL(p), where p is less than or equal
to 34, the intermediate string is of length p+6; this allows extra characters
for the sign of the number, the decimal point, the letter E, the sign of the
exponent, and the 2-digit exponent.

NOTE

If the value is a G-floating-point number, three characters are
allocated to the exponent, and the length of the string is p+7.
If the value is an H-floating-point number, four characters are
allocated to the exponent, and the length of the string is p+8.
(See HFloating-Point Data. 0

)

If the number is negative, the first character is a minus sign; otherwise,
the first character is a space. The subsequent characters are a single
digit (which can be 0), a decimal point, p-1 fractional digits, the letter E,
the sign of the exponent (always+ or-), and the exponent digits. The
exponent field is of fixed length, and the zero exponent is shown as all
zeros in the exponent field.

Examples

CONCH: PROCEDURE OPTIONS(MAIN);

DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE('CONCH.OUT');

PUT SKIP FILE(OUT) EDIT('''' ,26E26,'' '') (A);
PUT SKIP FILE(OUT) EDIT('''' ,-26E26,' '' ') (A);
PUT SKIP FILE(OUT) EDIT('''' ,1.233325E-6,''' ') (A);
PUT SKIP FILE(OUT) EDIT(' ''',-1.233326E-6, ''' ') (A);

END CONCH;

The program CONCH produces the following output:

Conversion of Data 231

I 2.6E+26'
'-2.6E+26'
I 1. 233326E-06 I
'-1. 233326E-05'

The PUT statement converts its output sources to character strings, follow­
ing the rules described in this section. (The output strings are surrounded
with apostrophes to make the spaces distinguishable.) In each case, the
width of the quoted output field (that is, the length of the converted
character string) is the precision of the floating-point constant plus 6.

Pictured to Character-String Conversion: If the source value
is pictured, its internal, character-string representation is used without
conversion as the intermediate character string.

Bit-String to Character-String Conversion: When PL/I converts
a bit string to a character string, it converts each bit in the bit string (as
represented by PUT LIST) to a 0 or 1 character in the corresponding
position of the intermediate character string.

If the bit string is a null string, the intermediate character string is also a
null string.

Examples

DECLARE STRING_1 CHARACTER (4),
STRING_2 CHARACTER (8};

STRING_1 = '1010'8;
I• STRING_1 = '1010' •/

STRING_2 = '1010'8;
I• STRING_2 = '1010AAAA' •/

STRING_1 = '010011'8;
I• STRING_1 = '0100' •/

• Assignments to Pictured Variables
A source expression of any computational type can be assigned to a
pictured variable. The target pictured variable has a precision (p), which
is defined as the number of characters in the picture specification that
specify decimal digits. The target also has a scale factor (q), which is
defined as the number of picture characters that specify digits and occur
to the right of the V character in the picture specification. If the picture
specification contains no V character, or if all digit-specification characters
are to the left of V, then q is zero.

232 Conversion of Data

The source expression is converted to a fixed-point decimal value v of
precision (p,q), following the PL/I rules for the source data type. This
value is then edited to a character string s, as specified by the picture
specification (see also "Picture"), and the values is assigned to the pictured
target.

When the value v is being edited to the string s, the ERROR condition
is signaled if the value of v is less than zero and the picture specification
does not contain one of the characters S, +, -, T, I, R, CR, or DB. The value
of s is then undefined. FIXEDOVERFLOW is also signaled if the value v
has more integral digits than are specified by the picture specification of
the target.

• Conversions Between Offsets and Pointers
Offset variables are given values by assignment from existing offset values
or from conversion of pointer values. Pointer variables are given values
by assignment from existing pointer values or from conversion of offset
values.

The OFFSET built-in function converts a pointer value to an offset value.
The POINTER built-in function converts an offset value to a pointer.

PL/I also automatically converts a pointer value to an offset value, and
vice versa, in an assignment statement. The following assignments are
valid:

pointer-variable = pointer-value;
offset-variable= offset-value;
pointer-variable= offset-variable;
offset-variable= pointer-value;

In the third and fourth assignments above, the offset variable must have
been declared with an area reference. See also "Offset," "OFFSET Built-In
Function," "Pointer," and "POINTER Built-In Function."

COPY Built-In Function
COPY Preprocessor Built-In Function

The COPY built-in function copies a given string a specified number of
times and concatenates the result into a single string. Its format is as
follows:

COPY(string,count)

COPY Preprocessor Built-In Function 233

string
Any bit- or character-string expression. If the expression is a bit string, the
result is a bit string. Otherwise, the result is a character string.

count
Any expression that yields a nonnegative integer. The specified count
controls the number of copies of the string that are concatenated, as
follows:

Value of
Count

0

1

n

•Example
COPY('12' ,3)

String Returned

A null string

The string argument

Concatenated copies of the string argument

This function reference returns the character-string value '121212'.

COS Built-In Function
The COS function returns a floating-point value that is the cosine of an
arithmetic expression x, where x represents an angle in radians. The
cosine is computed in floating point. The format of the function is as
follows:

COS(x)

COSD Built-In Function
The COSD built-in function returns a floating-point value that is the
cosine of an arithmetic expression x, where x is an angle in degrees. The
cosine is computed in floating point. The format of the function is as
follows:

COSD(x)

234 COSD Built-In Function

COSH Built-In function

The COSH built-in function returns a floating-point value that is the
hyperbolic cosine of an arithmetic expression x. The hyperbolic cosine is
computed in floating point. The format of the function is as follows:

COSH(x)

COSH Built-In Function 235

D

Data and Data Types

All programs process information, or data. The way you choose to
represent different items of data in a program depends on how the
program will use or manipulate the data.

The data type of a variable or a constant reflects the kind of information
that is being processed. For example, names and addresses within a
personnel record are character-string data; weekly salaries and taxes and
cumulative totals of salaries and taxes are arithmetic data.

Variables that represent single elements or items of data are called scalar
variables. Variables can also be grouped into aggregates. There are two
types of aggregates:

• An array is an aggregate in which all items, called elements, have the
same data type. Individual elements of an array are referred to by
subscripts that represent the position, or order, of the elements in the
array. Elements can be scalar data items or structures. (See" Array.")

• A structure is an aggregate in which individual items, called members,
can have different data types. Individual members are referred to with
qualified references that give, in general, the names of the structure
itself and of the individual member. (See "Structure.")

Aggregates can also be formed from arrays whose elements are structures,
or from structures whose individual members are arrays.

• Su••ary of Data Types
Data types are either computational (with values used in computations) or
noncomputational. VAX PL/I supports the following computational data
types:

• The arithmetic data types define values that can be used in arithmetic
computation. There are two arithmetic data types:

Fixed-point (for binary and decimal integers and fractions)

236 Data and Data Types

- Floating-point (binary and decimal)

See °Fixed-Point Binary Data," "Fixed-Point Decimal Data," and
0 Floating-Point Data."

• Picture data represents fixed-point decimal values that are stored as
character strings; the strings contain the characters representing the
numeric value, formatted with special symbols. In computations and
other expressions, a data item of this type (that is, a 0 pictured value")
can be used wherever an arithmetic value is valid.

See 0 Picture."

• Character-string data consists of a sequence of ASCII characters. VAX
PL/I supports two character-string data types:
- Fixed-length character strings

- Variable-length character strings

See °Character-String Data."

• Bit-string data consists of sequences of binary digits. VAX PL/I
supports two bit-string data types:

- Aligned bit strings

- Unaligned bit strings

See 0 Bit-String Data."

The following data types represent noncomputational program values that
are used within a PL/I program for control:

Areas

Entry data

File data

Label data

Offsets

Pointers

The following sections discuss declarations and default attributes, includ­
ing the default attributes of constants, for computational data types. For
similar information on the noncomputational types, see 0 Area," "Entry
Data," 0 File," "Label," "Offset," and 0 Pointer."

Data and Data Types 237

• Declarations
All variables in a PL/I program must be declared. With the exception of
entry-point names, statement labels, built-in functions, and the default file
constants SYSIN and SYSPRINT, all names referenced must be declared
explicitly. You declare a name and its data type attributes in a DECLARE
statement. For example:

DECLARE AVERAGE FIXED DECIMAL;
DECLARE NAME CHARACTER (20);

The keywords DECIMAL, FIXED, and CHARACTER describe characteris­
tics, or attributes, of the variables AVERAGE and NAME. (See "DECLARE
Statement.")

• Default Attributes
It is not always necessary to define all the characteristics, or attributes, of
a variable; the PL/I compiler makes assumptions about attributes that are
not explicitly defined. For example:

DECLARE NUMBER FIXED;

The FIXED attribute implies the attributes BINARY(31,0). Thus, the
variable NUMBER has the attributes FIXED BINARY(31,0).

Table D-1 shows the default attributes implied by each computational
data attribute.

Table D-1: Implied Attributes for Computational Data
Specified

FIXED
FLOAT
BINARY
DECIMAL

FIXED BINARY
FLOAT BINARY
FIXED DECIMAL
FIXED DECIMAL(p)
FLOAT DECIMAL

BIT [ALIGNED]
CHARACTER [VARYING]

PICTURE 'picture'

238 Data and Data Types

Implied

BINARY(31,0)
BINARY(24)
FIXED(31,0)
FIXED(lO,O)

(31,0)
(24)
(10,0)
(p,O)
(7)

(1)
(1)

See "Picture"

Attributes of Constants
Constants have attributes implied by the characters used to specify them.

• A series of characters enclosed in apostrophes is assumed to be a
string constant:

If the letter B is appended after the closing apostrophe, the
constant is a bit-string constant, for example, '00010101'B. If
the integer 2, 3, or 4 is appended to the letter B, the constant
is a bit-string constant with the base 4, 8, or 16, respectively.
For example, 'l 7777'B3 is an octal constant that is represented
internally as a string of 13 bits. (B can be typed lowercase.)

If the constant does not have the letter B appended, it is a
character-string constant even when it contains only the char­
acters 0 and 1. (However, a character string of Os and ls can be
converted by a simple assignment to a bit string.)

• If the constant is an integer, it has the attributes FIXED DECIMAL(n,0),
where n is the number of digits in the integer. For example, the
constant 1777 is a constant of type FIXED DECIMAL(4,0).

• Constants with an appended or embedded decimal point, but with no
following exponent, are of type FIXED DECIMAL(p,q), where p is the
total number of digits and q is the number of digits to the right of the
decimal point.

• If a fixed-point decimal constant has the following appended charac­
ters:

E [~] digit ...

then it is of type FLOAT DECIMAL(p), where pis the total number of
digits in the fixed-point constant (that is, the total number to the left
of the letter E).

Note that PL/I has no constants with the attributes FIXED BINARY,
FLOAT BINARY, or PICTURE. However, this presents no problems in pro­
gramming because constants of any computational type can be assigned
to variables of any computational type and are converted automatically to
the target type (see "Conversion of Data"' for details).

You usually give values to binary variables by assigning decimal constants
to them. For example:

I = 1;

This converts the decimal integer 1 and assigns the converted value to a
fixed-point binary variable I.

Data and Data Types 239

F = 1.333E-12;

This converts the floating-point decimal constant l.333E-12 and assigns
the converted value to a floating-point binary variable F.

Picture variables are usually given values by assigning fixed-point decimal
constants. For example: ·

PAY_PIC = 123.44;

This assigns the fixed-point decimal value 123.44 to a picture variable
PAY_pJc. The value of PAY_p1c is a upictured value," stored internally
as a character string containing the characters 1, 2, 3, 4, and 4, along with
any special formatting symbols defined for PAY_pIC (see "Picture").

Arithmetic Operands
The implied data types of constants are important primarily because of
PL/I's rules for converting operands in an arithmetic operation. (Bit­
string and character-string operations must have bit- and character-string
operands, respectively.) All operations, including arithmetic operations,
must be performed in a single data type, and automatic conversions are
performed on arithmetic operands to make this possible. For example:

DECLARE X FLOAT DECIMAL (49);
x = x + 1.3;

In this example, the fixed-point decimal constant 1.3 is converted to
floating-point decimal before the addition is performed. For the detailed
definition of operand conversion, see 0 Expression." The rules for operand
conversion are as follows:

• If either operand is binary, the operation is performed in binary.

• If either operand is floating point, the operation is performed in
floating point.

These rules apply both to the declared attributes of variable operands and
to the implied attributes of constant operands. Operands are converted
as required to follow these rules; each converted oper<md then has the
type (for instance, floating-point decimal) in which the operation will
be performed, but it also has an individual precision based on its own
attributes. These 0 converted precisions" (which include scale factors in
fixed-point operations) are used to determine the precision of the result of
the operation.

240 Data and Data Types

• Identical Data Types
In PL/I, the notion of identical data types is used in the rules for passing
arguments by reference and for based, controlled, defined, or external
variables. For two nonstructure variables to have identical data types, the
following attributes must agree. That is, if one variable has the attribute,
the other must also have it after the application of default rules:

ALIGNED DIMENSION OFFSET

AREA ENTRY picture

array bounds FILE PICTURE

BINARY FIXED POINTER

BIT FLOAT precision

CHARACTER LABEL PRECISION

DECIMAL length VARYING

Two pictured variables must have identical pictures after the expansion of
iteration factors.

In addition, the following values must be equal:

• Precisions and scale factors for arithmetic data
• String lengths and area sizes
• Number of dimensions for arrays and bounds in each dimension

Two structure variables have identical data types if they have the same
number of immediate members and if corresponding members have
identical data types.

In general, you can specify string lengths, area sizes, and array bounds
with expressions or with asterisks for parameters. The values used to
determine whether two variables have identical data types are obtained as
follows:

• For static variables, the values must be constants.
• For automatic and defined variables, the expressions are evaluated

when the block that contains such a variable's declaration is activated.
The resulting values are used for all references to the variable within
that block activation.

Data and Data Types 241

• For parameters, the declaration specifies any extents either with
constants or with asterisks. In the case of asterisks, the extent in
a particular procedure invocation is determined by the argument
passed to the parameter. The extent remains the same throughout the
procedure invocation.

• For based or controlled variables, extent expressions are evaluated
each time the variable is referenced.

• Example
/* Example of extent determination */

DATAT: PROCEDURE (PTR1);

DECLARE N FIXED, S CHARACTER(N) BASED(PTR1);
DECLARE PTR1 POINTER;

N = 10;

CALL P(S);

P: PROCEDURE(A);

DECLARE A CHARACTER(*), B CHARACTER(N);
N = 20;
PUT LIST(LENGTH(A),LENGTH(B),LENGTH(S));
END P;

END DATAT;

The PUT statement writes out

10 10 20

The assignment to N inside the procedure P affects the extent of S, but
not the extents of A or B, which were "frozen" when P was invoked.

DATE Built-In Function
DATE Preprocessor Built-In Function

The DATE built-in function returns a 6-character string in the form
yymmdd, where

yy ls the current year (00-99)

mm Is the current month (01-12)

dd Is the current day of the month (01-31)

242 DATE Preprocessor Built-In Function

Its format is as follows:

DATE()

The date returned is the run-time date. However, if DATE is used as a
preprocessor built-in function, the date returned is the compile-time date.

DATETIME Built-In Function
DATETIME Preprocessor Built-In Function

The DATETIME built-in function returns a 16-character string in the form
ccyymmddhhmmssxx, where

cc Is the current century (00-99)

yy Is the current year (00-99)

mm Is the current month (01-12)

dd Is the current day of the month (01-31)

hh Is the current hour (00-23)

mm Is the minutes (00-59)

ss Is the seconds (00-59)

xx Is the hundredths of seconds (00-99)

The format of the function is as follows:

DATETIME()

The date and time returned is the run-time date and time. However, if
DATETIME is used as a preprocessor built-in function, the date and time
returned is the compile-time date and time.

Note that the DATETIME function is identical to the century concatenated
with DATE() and TIME().

DATETIME Preprocessor Built-In Function 243

DEC Multinational Character Set

The DEC Multinational Character Set is a set of 8-bit numeric values
representing the alphabet, numerals, punctuation, and other symbols.
The first 128 characters of the set (with decimal values from 0 through
127) are the American Standard Code for Information Interchange (ASCII)
characters. The remaining characters (with values from 128 through 255)
are non-ASCII characters and can be used in VAX PL/I only in string
constants and data with 1/0 statements.

See Appendix B for a table showing the characters in the set.

%DEACTIVATE Statement

The %DEACTIVATE statement makes preprocessor variable and pro­
cedure identifiers ineligible for replacement. After a variable or proce­
dure has been deactivated, it will not be replaced during preprocessing.
Replacement of a deactivated variable or procedure occurs again only after
it is reactivated with the %ACTIVATE statement.

The format for the %DEACTIVATE statement is as follows:

% { DEACTIVATE } I
DEA CT e ement, ... ;

element
The name of a preprocessor identifier, or a list of identifiers that is en­
closed in parentheses. Deactivated elements must have been previously
declared preprocessor variables.

For example:

TESTF:PROCEDURE OPTIONS (MAIN);
DECLARE Y FIXED DECIMAL;
y = 10;
%DECLARE Y FIXED;
xY • 3;
PUT SKIP LIST(Y);
%DEACTIVATE Y;
PUT SKIP LIST(Y);
END;

I• initial value: Y = 10 •/

/* replacement value: Y = 3 •/
/* output: Y = 3 •/

/• output: Y = 10 •/

In this example, % Y, when activated, replaces all the occurrences of the
variable Y by the value assigned to % Y, until % Y is deactivated by the
%DEACTIVATE statement. The identifier %Y is implicitly activated when
it is declared as a preprocessor identifier.

244 %DEACTIVATE Statement

It is possible to deactivate several variables with a single statement. For
example:

%DEACTIVATE (A,B,C,D.E,F);

For an example of %ACTIVATE and %DEACTIVATE, see u 0/oACTIVATE
Statement." For additional information on the preprocessor, see
HPreprocessor."

DECIMAL Attribute

The DECIMAL attribute specifies that an arithmetic variable has a decimal
base. The format of the DECIMAL attribute is as follows:

{ DECIMAL }
DEC

When you specify the DECIMAL attribute for a variable, you can also
specify the following attributes to define the scale factor and precision of
the data:

FIXED (precision[,scale-factor])
FLOAT (precision)

where FIXED indicates a fixed-point value, and FLOAT indicates a
floating-point decimal value. The precision specifies the number of
decimal digits that represent values of the variable. The precision of a
fixed-point decimal value is the total number of integral and fractional dig­
its. The precision of a floating-point decimal value is the total number of
digits in the mantissa. The precision for a fixed-point decimal value must
be in the range 1 through 31; the scale factor, if specified, must be greater
than or equal to zero and less than or equal to the specified precision. The
precision for a floating-point decimal value must be in the range 1 through
34.

The default values applied to the DECIMAL attribute are as follows:

DECIMAL Attribute 245

Attributes Specified

DECIMAL

DECIMAL FIXED

DECIMAL FIXED (n)

DECIMAL FLOAT

Defaults Supplied

FIXED (10,0)

(10,0)

(n,0)

(7)

See "Fixed-Point Decimal Data" and "Floating-Point Data."

• Restrictions
The DECIMAL attribute conflicts with the BINARY attribute and with any
other data type attribute.

DECIMAL Built-In Function

The DECIMAL built-in function converts an arithmetic or string expression
x to a decimal value of an optionally specified precision p and scale factor
q.

P and q, if specified, must be integer constants. P must be greater than
zero and less than or equal to the maximum precision for the result type
(31 for fixed-point, 34 for floating-point). If q is specified, x must be a
fixed-point expression and p must also be specified; if q is omitted or has
a negative value, the scale factor of the result is zero.

The format of the function is as follows:

{ ~~glMAL } (x[,p[,q]])

• Returned Value
The result type is fixed-point or floating-point decimal, depending on
whether x is a fixed- or floating-point expression. (If x is a bit- or
character-string expression, the result type is fixed-point decimal.)

The expression x is converted to a value v of the result type, following the
PL/I rules (see "Conversion of Data"). The returned value is v with pre­
cision p and scale factor q. If p and q are omitted, they are the converted
precision and scale factor of x (see "Expression"). FIXEDOVERFLOW,
UNDERFLOW, or OVERFLOW is signaled if appropriate.

246 DECIMAL Built-In Function

Declaratio•s
The declaration of a name in a PL/I program consists of a user-specified
identifier and the attributes of the name. The attributes describe the
following:

• The data type of the name, that is, whether it is a computational data
item such as a number or a string, or noncomputational program data

• The storage class to which the name belongs, that is, whether the
compiler allocates storage for it, and how the storage is allocated

• The scope of the name, that is, whether the name is known only
within the block in which it is declared and its contained blocks, or
whether it is known in external blocks

A name is declared either explicitly in a DECLARE statement or implicitly
by its appearance in a particular context. Only two types of names can
be declared implicitly: entry constants and label constants. You must
explicitly declare all other names. For example:

ClLC: PROCEDURE:

This statement is an implicit declaration of the name CALC as an entry
constant.

In a PL/I source program, the DECLARE statements that provide the
declarations of names to be used in a given block can appear anywhere in
that block. However, it is good practice to place all the declarations for a
block at the beginning of the block, and follow the declarations with the
executable statements of the program. For example:

ClLC: PROCEDURE (X,Y);
DECLARE (X,Y) FLOAT,

COPYSTRING ENTRY (CllARACTER(•)),
MESSAGE_TEXT CllARACTER(40);

See "Attribute," "Data and Data Types," and 0 DECLARE Statement."

Declarations 247

%DECLARE Statement

The %DECLARE statement establishes an identifier as a preprocessor
variable, specifies the data type of the variable, and activates the identifier
for replacement. %DECLARE can occur anywhere in a PL/I source
program.

The format of the %DECLARE statement is as follows:

% { ~~~LARE } element [~l~!~ACTER J ;
BIT

element
The name of a preprocessor identifier or a list of identifiers, which are
separated by commas and enclosed in parentheses. You can give elements
the attribute BIT, FIXED, or CHARACTER, but you cannot specify pre~
cision or length. The compiler supplies the variables with the following
implied attributes:

Specified Attribute

BIT

FIXED

CHARACTER

Implied Attributes

(31) INITIAL ((3l)'O'B)

DECIMAL (10,0) INITIAL (0)

VARYING (32767) INITIAL (' ')

If no data type is specified, FIXED is assumed.

When a variable is declared in a preprocessor statement, it is activated for;
replacement and rescanning. The scope of a preprocessor variable is all
of the text following the declaration of the variable, unless the variable is
declared inside a preprocessor procedure. Using %DECLARE inside of a
preprocessor procedure has the effect of declaring a iocal variable.

For example:

%DECLARE HOUR FIXED:

248 %DECLARE Statement

In this example, HOUR is declared as a preprocessor variable identifier
with the FIXED attribute. The compiler supplies the default values that
make this declaration the equivalent of the following:

DECLARE HOUR FIXED DECIMAL (10,0) INITIAL (O);

NOTE

In preprocessor declarations, the attribute FIXED implies FIXED
DECIMAL. In nonpreprocessor declarations, FIXED implies
FIXED BINARY.

Factored declarations are permitted and follow the same usage rules as
nonpreprocessor declarations. For example:

Xl>ECLARE (A,B) CHARACTER, C BIT;

Both A and B are declared with the CHARACTER attribute. The compiler
supplies default values that make this declaration the equivalent of the
following:

Xl>ECLARE (A,B) CHARACTER VARYING(32767) INITIAL(''),
C BIT(31)INITIAL((31)'0'B);

For more information on the preprocessor, see 0 Preprocessor."

DECLARE Statement

The DECLARE statement specifies the attributes associated with names.
The format of the DECLARE statement is as follows:

{ ~~~LARE } [level] declaration [,[level] declaration, ...];

declaration
One or more declarations consisting of identifiers and attributes. A
declaration has the following format:

[level) declaration-item

A declaration-item has the following format:

{ identifier } . .
(d I . .) [(bound-pair, ...)] [attribute ...]

ec arat1on-1tem, ...

DECLARE Statement 249

The format of the DECLARE statement varies according to the number
and nature of the items being declared. The DECLARE statement can list
a single identifier, optionally specifying a level, bound-pair list, and other
attributes for that identifier. Alternatively, the statement can include, in
parentheses, a list of declarations to which the level and all subsequent
attributes apply. The declarations in the second case can be simple
identifiers or can include attributes that are specific to individual identifieJS
(see "Factored Declarations" below).

Bound pairs are used to specify the dimensions of arrays. If bound paiJS
are present, they must be in parentheses and must immediately follow the
identifier or the list of declarations.

Levels are used to specify the relationship of members of structures; if a
level is present in the declaration, it must be written first.

The various formats are described individually, below. See also "Array"
and "Structure."

• Si•ple Declarati••
A simple declaration defines a single name and describes its attributes.
The format of a simple declaration is as follows:

DECLARE identifier [attribute ...] ;

identifier
A 1- to 31-character user-supplied name. The name must be unique
within the current block.

An identifier can consist of any of the alphanumeric characters A through
Z, a through z, 0 through 9, dollar signs ($), and underscores (_), but
must begin with an alphabetic letter, dollar sign, or underscore. See also
"Identifier."'

attribute
One or more attributes of the name. Attribute keywords must be separated
by spaces. They can appear in any order.

See "Attribute" for a list of the valid attribute keywords and their mean­
ings.

250 DECLARE Statement

Following are some examples of simple declarations:

DECLARE COUNTER FIXED BINARY (7};
DECLARE TEXT_STRING CHARACTER (80} VARYING;
DECLARE INFILE FILE;

Names that are not given specific attributes in a DECLARE statement or
that are referenced without being declared are given the default attributes
BINARY FIXED (31,0) AUTOMATIC.

Note that the compiler issues a warning message whenever it gives these
default attributes to a name.

• Declaratiens Outside et Precedures
You can declare a variable outside of any procedure. Any variable so
declared will be visible within all procedures contained by the module.
The format for declarations outside of procedures is the same as for other
declarations, except that the storage class cannot be AUTOMATIC. If a
storage class is not specified, STATIC is supplied.

The following example illustrates the use of this type of declaration:

DECLARE A STATIC FIXED BINARY(31};

FIRST: PROCEDURE;
DECLARE B FIXED BINARY(31};

END FIRST;

SECOND: PROCEDURE;
DECLARE C FIXED BINARY(31};

END SECOND;

In this example, variable A is visible in both the FIRST and SECOND
procedures, but variables B and C are visible only in their containing
procedures.

DECLARE Statement 251

• Multiple Declarations
Multiple declarations define two or more names and their individual
attributes. This format of the DECLARE statement is as follows:

DECLARE identifier (attribute ...] (,identifier (attribute ...]] ... ;

When you specify more than one set of names and their attributes,
separate each name and attribute set from the preceding set with a
comma. A semicolon must follow the last name.

Following is an example of multiple declarations:

DECLARE COUNTER FIXED BINARY (7),
TEXT_STRING CHARACTER (80) VARYING,
Y FILE;

This DECLARE statement defines the variables COUNTER, TEXT_
STRING, and Y. The attributes for each variable follow the name of
the variable.

• Factored Declarations
When two or more names have the same attribute, you can combine
the declarations into a single, factored declaration. This format of the
DECLARE statement is as follows:

DECLARE (identifier[,identifier, ...]) (attribute ...];

When you use this format, you must place names that share common
attributes within parentheses, and separate them with commas. The
attributes that follow the parenthetical list of names are applied to all the
named identifiers.

Following are some examples of factored declarations:

DECLARE {COUNTER, RATE, INDEX) FIXED BINARY (7) INITIAL (O);
DECLARE (INPUT_MESSAGE, OUTPUT_MESSAGE, PROMPT)

CHARACTER (80) VARYING;

In these declarations, the variables COUNTER, RATE, and INDEX share
the attributes FIXED BINARY (7) and are given the initial value of zero.
The variables INPUT-MESSAGE, OUTPUT-MESSAGE, and PROMPT
share the attributes CHARACTER (80) VARYING.

You can also specify, within the parentheses, attributes that are unique to
specific variable names, using the following format:

DECLARE (identifier attribute ... , identifier [attribute ...], ...) attribute ...

252 DECLARE Statement

For example:

DECLARE (INFILE INPUT RECORD,
OUTFILE OUTPUT STREAM) FILE;

The DECLARE statement declares INFILE as a RECORD INPUT file and
OUTFILE as an OUTPUT STREAM file.

The parentheses can be nested. For example:

DECLARE { {INFILE INPUT, OUTFILE OUTPUT) RECORD,
SYSFILE STREAM) FILE;

The DECLARE statement declares INFILE as a RECORD INPUT file,
OUTFILE as a RECORD OUTPUT file, and SYSFILE as a STREAM INPUT
file (STREAM implies INPUT).

• Array Declaratiens
The declaration of an array specifies the dimensions of the array and the
bounds of each dimension. This format of a DECLARE statement is as
follows:

{ identifier } . .
DECLARE (d I .) (bound-pair, ...) [attribute ...]; ec arat1on, ...

where each bound pair has the following format:

{ ~ower-bound:]upper-bound }

One bound pair is specified for each dimension of the array. The number
of elements per dimension is defined by the bound pair. The extent of
an array is the product of the numbers of elements in its dimensions. If
the lower bound is omitted, the lower bound for that dimension is 1 by
default.

The asterisk (*) can be used as the bound pair when arrays are declared as
parameters of a procedure. The asterisk indicates that the parameter can
accept array arguments with any number of elements. (If one dimension
is specified with an asterisk, all must be specified with asterisks.)

For example:

DECLARE S.AL.ARIES(100) FIXED DECIMAL(7,2);

This statement declares a 100-element array with the identifier SALARIES.
Each element is a fixed-point decimal number with a total of seven
digits, two of which are fractional. The identifier in the statement can

DECLARE Statement 253

be replaced with a list of declarations, to declare several objects with the
same attributes. For instance:

DECLARE (SALARIES.PAYMENTS) (100) FIXED DECIMAL(7,2);

This declares SALARIES and another array, PAYMENTS, with the same
dimensions and other attributes.

For further details on how to specify the bounds of an array, and for
examples of array declarations, see "Array."

• Structure Declarations
The declaration of a structure defines the organization of the structure
and the names of members at each level in the structure. This format of a
DECLARE statement is as follows:

{ DECLARE } level declaration [,level declaration, ...];
DCL

declaration
One or more declarations consisting of identifiers and attributes. A
declaration has the following format:

level declaration-item

A declaration-item has the following format:

{ identifier } . .
(d I . .) [(bound-pair, ...)] [attribute ...]

ec arat1on-1tem, ...

Each declaration specifies a member of the structure and must be preceded
by a level number. As shown, a single variable can be declared at a par­
ticular level; or the level can contain one or more complete declarations,
including declarations of arrays or other structures. The major structure
name is declared as structure level 1; minor members must be declared
with level numbers greater than 1. For example:

DECLARE 1 PAYROLL,
2 NAME.

3 LAST CHARACTER(SO) VARYING,
3 FIRST CHARACTER(SO) VARYING,

2 SALARY FIXED DECIMAL(7,2);

This statement declares a structure named PAYROLL. The last name can
be accessed with a qualified reference:

PAYROLL.NAME.LAST = 'ROOSEVELT';

254 DECLARE Statement

Alternatively, because the last and first names have the same attributes,
the same structure can be declared as follows:

DECLARE 1 PAYROLL,
2 NAME,

3 (LAST.FIRST) CHARACTER(SO) VARYING,
2 SALARY FIXED DECIMAL(7,2);

For details and examples of structure declarations, see 0 Structure."

DECODE Built-In Function
DECODE Preprocessor Built-In Function

The DECODE built-in function converts a character string representing
a number to a fixed binary number. It takes two arguments: a character
string and an integer expression specifying the radix of the number that
is to be returned. It converts the string to an unsigned, baser integer,
where r is the specified radix. The function returns a FIXED BINARY(31,0)
number representing the base ten equivalent of the string.

The syntax of the function is as follows:

·oecODE(character-expression,radix-expression)

The syntax of an assignment statement using the DECODE function is as
follows:

fixed-binary-variable = DECODE(character-expression,
radix-expression);

character-expression
A character-string constant or variable whose component characters can
be any of the digits from 'O' through '9', from 'a' through 'f', and from 'A'
through 'F'. The digits must be within the range of digits valid for the base
specified in the radix-expression.

radix-expression ·
An expression evaluating to any integer from 2 through 16.

DECODE Preprocessor Built-In Function 255

• Exa•ple
DECLARE (X,Y) FIXED BINARY:
x - DECODE(I 1010' ,2):
Y • DECODE('fO', 16);

The fixed binary variables X and Y are given the values 10 and 240,
respectively.

DEFINED Attribute

The DEFINED attribute indicates that PL/I is not to allocate storage for
the variable, but is to map the description of the variable onto the storage
of a base variable. The DEFINED attribute provides a way to access the
same data using different names. Its format is as follows:

{ DEFINED } (variable-reference)
DEF

variable-reference
A reference to a base variable that has storage associated with it. The
base variable must not have the BASED, CONTROLLED, or DEFINED
attribute. The base variable and the declared variable must satisfy the
rules given under "'Defined Variable.*

The DEFINED attribute can optionally specify a position within the base
variable at which the definition begins. For example:

DECLARE ZONE CllARACTER{10)
DEFINED(ZIP) POSITION(4);

For more information, see •posITION Attribute"' and "'Defined Variable ...

• Restrictiens
The following attributes conflict with the DEFINED attribute:

AUTOMATIC BASED CONTROLLED

EXTERNAL GLOBALDEF GLOBALREF

INITIAL

STATIC

256 DEFINED Attribute

PARAMETER

UNION

READONLY

VALUE

The DEFINED attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

For additional information on defined variables, see "Defined Variable."

Defined Variable

A defined variable is one for which no storage is allocated. Instead, the
variable shares the storage of a specified base variable. A defined variable
is declared with the DEFINED attribute, which also specifies the base
variable. Any reference to the defined variable is a reference to part or all
of the storage of the base variable. For example:

DECLARE A(10) FIXED, B FIXED DEFINED(A(I));

The variable B is a defined variable, with A as its base reference. A
reference to B is a reference to the element of A denoted by the current
value of I.

The extents of a defined variable are determined at the time of block
activation, but the base reference (and the position, if the POSITION
attribute is also specified) is interpreted each time the defined variable is
referenced.

For example:

DECLARE A(10) FIXED, B FIXED DEFINED(A(I));
DO I • 1 TO 10;
B = I;
END;

The DO group assigns I to A(I) for I= 1,2, ... 10.

The base reference of a defined variable cannot be a reference to a based
variable or to another defined variable.

A defined variable and its base reference must satisfy one of the following
criteria:

• They must have identical data types (see 0 Data and Data Types").

• They must both be suitable for character-string overlay defining.

• They must both be suitable for bit-string overlay defining.

If the defined variable is specified with the POSITION attribute, then both
the defined variable and the base reference must be suitable for bit- or
character-string overlay defining.

Defined Variable 257

Generally, a variable is suitable for overlay defining if it consists entirely
of characters or bits, and these characters or bits are packed into adjacent
storage without gaps. Precise rules are given below. Such a variable
can be treated as a string (see also "STRING Built-In Function" and
"STRING Pseudovariable") or can be interpreted as a set of different types
of aggregates. For example, Figure 0-1 shows a SO-byte region of storage
treated either as a 10-element array (A) of 5-character strings or as a
5-element array (B) of 10-character strings.

Figure D-1: An Overlay Defined Variable

DECLARE A (10) CHARACTER (5); A(1) l
DECLARE 8 (5) CHARACTER (10) DEFINED(A);

A(1) ~ 'AAAAA';
A(2) ~ '88888';
PUT LIST (8(1));

Result: AAAAABBBBB A(10) l

AAAAA

88888
}

The declaration of A reserves
8(1) storage for a 10-element array

of 5-b yte character strings.

} 8(5)

The declaration of B defines
B's storage as equivalent ·to
A's. Any reference to B .,.,;11
access the same storage as
that allocated for A.

ZK-130~·83

If the defined variable and its base reference have identical data types, a
reference to the defined variable is equivalent to the base reference. In the
case of overlay defining, the defined variable maps onto part of the base
reference's storage as follows:

1. If the POSITION attribute was specified, let position be its value at
the moment of reference; otherwise, let position equal 1.

2. Let m be the total number of characters (or bits) specified by the data
type of the defined variable. (Note that for pictured data, mis the
total number of characters in the picture specification, exclusive of the
V character.)

258 Defined Variable

3. A reference to the defined variable accesses m characters (or bits) of
the base reference, beginning with the character or bit specified by
position. The reference must lie entirely within the base reference;
that is, position and m must satisify the following formula:

1 <=position<= position+ m <= n + 1

where n is the total number of characters or bits in the base reference.

• Rules for Overlay Defining
A variable V is suitable for character-string overlay defining if V is not an
unconnected array and if one of the following criteria is satisfied:

• V has the CHARACTER attribute, but not ALIGNED or VARYING.

• V has the PICTURE attribute.

• Vis a structure, and each of V's members and submembers that is not
a structure satisfies one of the first two criteria.

A variable V is suitable for bit-string overlay defining if V is not an
unconnected array and if one of the following criteria is satisfied:

• V has the BIT attribute but not ALIGNED.

• Vis a structure, and each of V's members or submembers that is not a
structure satisfies the first criterion.

DELETE Statement

The DELETE statement deletes a record from a file. This record can be the
current record (see "Record Input/Output"}, the record specified by the
KEY option, or the record specified by the RECORD-1D option. The file
must have the UPDATE attribute.

The format of the DELETE statement is as follows:

DELETE FILE(file-reference) [KEY (expression)] [OPTIONS(option, ...)];

file-reference
A reference to the file from which the specified record is to be deleted.
If the file is not currently opened, PL/I opens the file with the implied
attributes RECORD and UPDATE; these attributes are merged with the
attributes specified in the file's declaration.

DELETE Statement 259

KEY (expression)
An option specifying that the record to be deleted will be located by the
key specified in the expression. The file must have the KEYED attribute.

The nature of the key depends on the file's organization, as follows:

• If it is a relative file, the key is a fixed binary value indicating the
relative record number of the record to be deleted.

• If it is an indexed sequential file, the key is contained in the record; its
position in the record and its data type are as determined when the
file was created.

The value of the specified expression is converted to the data type of the
key. If no record with the specified key exists in the file, or if the value
specified is not valid for conversion to the data type of the key, the KEY
condition is signaled.

OPT/ONS(option, ...)
An option giving one or more of the DELETE statement options listed
below:

FAST-DELETE
INDEX-NUMBER (expression)
MATCH_GREATER
MATCH-GREATER-EQUAL
MATCH-NEXT
MATCH_NEXT_EQUAL
RECORD-1D (expression)

Multiple options must be separated by commas.

The MATCH_GREATER, MATCH_GREATER_EQUAL, MATCH-NEXT,
and MATCH-NEXT-EQUAL options of the DELETE statement, if set,
remain set only for the current statement; they are then reset to FALSE.
(MATCH-GREATER and MATCH_GREATER_EQUAL are obsolete
synonyms for MATCH-NEXT and MATCH-NEXT-EQUAL.)

These options are described fully in the VAX PL/I User Manual.

• File Positioning
The next record is set to denote the record following the deleted record.
The current record is undefined.

Note that a keyed DELETE statement cannot be followed by a sequential
operation; you must specify a key.

260 DELETE Statement

•Examples
The program BAD-RECORD, below, deletes an erroneous record in an
indexed sequential file containing data about states. The primary key in
the file is the name of a state.

BAD_RECORD: PROCEDURE OPTIONS(MAIN);

DECLARE STATE_FILE FILE KEYED UPDATE;
OPEN FILE(STATE_FILE) TITLE('STATEDATA.DAT');
DELETE FILE(STATE_FILE) KEY('Arklanaaa');
CLOSE FILE(STATE_FILE);

RETURN;
END;

The file is opened with the UPDATE attribute, and the OPEN statement
gives the file specification of the file from which the record is to be
deleted.

DESCRIPTOR Attribute

The DESCRIPTOR attribute forces a parameter to be passed by descriptor
to a non-PL/I procedure. Its format is as follows:

{ DESCRIPTOR }
DESC

You can use the DESCRIPTOR attribute only in parameter descriptors.

DESCRIPTOR Built-In Function

The DESCRIPTOR built-in function forces its argument to be passed by
descriptor to a non-PL/I procedure. A reference to the built-in function
must occur only as an argument in such a context and has no other use.
The format of the function is as follows:

{ DESCRIPTOR } (expression)
DESC

DESCRIPTOR Built-In Function 261

expression
The argument to be passed by descriptor. Its data type must be computa­
tional but cannot be pictured. It can be an array variable.

For a full discussion of argument passing to non-PL/I procedures, see the
VAX PL/I User Manual and the entry "ANY Attribute" in this manual.

Diagnostic Messages

Diagnostic messages are produced by the PL/I compiler to inform you of
programming errors detected by the compiler and to warn you of certain
exceptional conditions, such as the compiler's assignment of type and
precision to an undeclared variable.

The VAX PL/I embedded preprocessor permits you to generate diagnostic
messages for compile-time programming errors and information. See
0 User-Generated Diagnostic Messages."

For full details on diagnostic messages, see the VAX PL/I User Manual.

%DICTIONARY Statement

The %DICTIONARY statement causes VAX Common Data Dictionary
(CDD) data definitions to be incorporated into the current PL/I source file
during compilation. The statement can occur anywhere in a PL/I source
file. The format of the %DICTIONARY statement is as follows:

%DICTIONARY cdd-path;

cdd-path
Any preprocessor expression. It is evaluated and converted to a
CHARACTER string if necessary. The resulting character string is in­
terpreted as the full or relative path name of a CDD object. The resultant
path name must conform to all rules for forming VAX CDD path names.
See the Common Data Dictionary Utilities Manual for details.

262 %DICTIONARY Statement

For example, assume that you have a record with the following path
name:

CDDSTOP.SALES.JONES.SALARY

You can then specify a relative path name as follows:

%DICTIONARY I SALARY I ;

Or you can specify an absolute path name as follows:

%DICTIONARY 1 _CDD$TOP.SALES.JONES.SALARY 1 ;

The compiler extracts the record definition from the COD and inserts the
PL/I structure declaration corresponding to the record description in the
PL/I program.

If the %DICTIONARY statement is not embedded in a PL/I language
statement, then the resulting structure is declared with the logical level 1
and the BASED storage attribute is furnished. The logical member levels
are incremented from 2. For example:

DECLARE PRICE FIXED BINARY(31);
%DICTIONARY 'ACCOUNTS';

This would result in a declaration of the following form:

DECLARE PRICE FIXED BINARY(31);
DECLARE 1 ACCOUNTS BASED,

2 NUMBER,
3 LEDGER CHARACTER(3),
3 SUBACCOUNT CHARACTER(6),

2 DATE CHARACTER(12),

Notice that in the above example, ACCOUNTS is a relative dictionary
path name.

If the %DICTIONARY statement is embedded in a PL/I language state­
ment, as in a structure declaration, then the resulting structure is declared
with no logical level and no storage attribute. Logical member numbers
are supplied and incremented from 100. For example:

DECLARE 1 COMMON_INTERFACES STATIC EXTERNAL,
%DICTIONARY I ACCOUNTS I ; •

%DICTIONARY I ADDRESSES I ; ;

Notice the syntax in the above %DICTIONARY example. The
%DICTIONARY statement is terminated with the preprocessor termi­
nator semicolon before the normal PL/I line punctuation. The normal

%DICTIONARY Statement 263

PL/I punctuation must also be included so that the final structure dec­
laration will contain proper PL/I punctuation. The previous declaration
would result in a declaration of the following form:

DECLARE 1 COMMON_INTERFACES STATIC EXTERNAL,
100 ACCOUNTS,

101 NUMBER,-
102 LEDGER CHARACTER(3),
102 SUBACCOUNT CHARACTER (6),

101 DATE CHARACTER(12),

100 ADDRESSES,

The CDD supports data types that are not native to PL/I. If a data
definition contains an unsupported data type, PL/I makes the unsupported
data type accessible by declaring it as data type BITJIELD or data type
BYTEJIELD. PL/I does not attempt to approximate a data type that
is not supported by PL/I. For example, an FJLOATING_COMPLEX
number is declared BYTEJIELD(8), not (2)FLOAT(24).

Note, however, that use of these two data types is limited. Data declared
with the BITJIELD or BYTEJIELD data type can be manipulated
only with the PL/I built-in functions ADDR, INT, POSINT, SIZE, and
UNSPEC. A variable declared with either of these data types can be
passed as a parameter provided the parameter is declared as ANY. Thus,
references to data declared as BITJIELD or BYTEJIELD are limited to
contexts in which the interpretation of a data type is not applied to the
reference.

PL/I ignores CDD features that are not supported by PL/I, but issues
error messages when the features conflict with PL/I.

When you extract a record definition from the CDD, you can choose
to include this translated record in the program listing by using the
/LIST /SHOW=DICTIONARY qualifiers in the PLI command line. Even
if you choose not to list the extracted record, the names, data types, and
offsets of the CDD record definition are displayed in the program listing
allocation map.

CDD data definitions can contain explanatory text in the CDDL
DESCRIPTION IS clause. This text is included in the PL/I listing com­
ments, if /LIST /SHOW=DICTIONARY is specified. For example, you
could use CDDL comments to indicate the data type of each structure and

264 %DICTIONARY Statement

member. The punctuation for CDDL comments is the same as for other
PL/I programs: the slash-asterisk (/*) and the asterisk-slash (• /).

DIMENSION Attribute

The DIMENSION attribute defines a variable as an array. It specifies the
number of dimensions of the array and the bounds of each dimension.
The format of the DIMENSION attribute is as follows:

[DIMENSION]
DIM

(bound-pair, ...)

bound-pair
One or two expressions that indicate the number of elements in a single
dimension of the array. You must specify the list of bound pairs imme­
diately following the name of the identifier in the array declaration if
the optional keyword DIMENSION or DIM is omitted; otherwise, you
must specify the list of bound pairs immediately following the keyword
DIMENSION or DIM. See the following examples.

The maximum number of dimensions allowed is eight.

A bound pair can be specified as follows:

• [lowerbound:]upperbound

This format of a bound pair specifies the minimum and maximum sub­
scripts that can be used for the dimension. The number of elements is
therefore,

(upperbound - lowerbound) + 1

If the lower bound is omitted, it is assumed to be 1. . "'
This format of a bound pair, when used to define a parameter for a
procedure or function, indicates that the bounds are to be determined
from the associated argument. If one bound pair is specified as an
asterisk, all bound pairs must be specified as asterisks.

DIMENSION Attribute 265

The following two declarations are exactly equivalent:

DCL A(10) FIXED BIN;

DCL A FIXED BIN DIMENSION(10);

The following two declarations are also equivalent:

DCL B(1:5,1:5) FLOAT DEC;

DCL B DIM(1:5,1:5) FLOAT DEC;

For the complete rules for specifying dimensions and bounds, see "Array."

DIMENSION Built-In Function

The DIMENSION built-in function returns a fixed-point binary integer
that is the number of elements in an array dimension. Its format is as
follows:

{ DIMENSION } (reference[,dimension])
DIM

reference
A reference to an array variable.

dimension
An integer constant specifying the dimension of the array for which
the extent is to be determined. If the dimension is not specified, the
dimension parameter defaults to 1. Thus, DIMENSION(A) is equivalent to
DIMENSION(A,l).

•Example
!NIT: PROCEDURE (ARRAY);
DECLARE ARRAY(•) FIXED,

I FIXED;

DO I= 1 TD DIM(ARRAY);
ARRAY(!) = I;
END;

This procedure is passed a one-dimensional array of an unknown extent.
The DIMENSION built-in function is used as the end value in a controlled
DO statement. This DO-group assigns integral values to each element
of the array ARRAY so that the first element has the value l, the second
element has the value 2, and so on to the last element of the array.

266 DIMENSION Built-In Function

(Because the array is one-dimensional, the optional second parameter is
omitted and defaults to 1.)

DIRECT Attribute

The DIRECT file description attribute indicates that a file will be accessed
only in a nonsequential manner, that is, by key or by relative record
number.

The DIRECT attribute implies the RECORD and KEYED attributes.

Specify the DIRECT attribute on a DECLARE statement for a file constant
or on an OPEN statement to access the file. A file declared with the
DIRECT attribute must be one of the following:

• A relative file

• An indexed sequential file

• A sequential disk file with fixed-length records

• A sequential file opened with ENVIRONMENT(BLOCK--10)

See °Filen and "Record Input/Output."

To be able to access a file both randomly and sequentially, use
the SEQUENTIAL attribute instead of DIRECT (see "SEQUENTIAL
Attribute").

• Restrictions
The DIRECT attribute conflicts with the SEQUENTIAL, STREAM, and
PRINT attributes.

DISPLAY Built-In Subroutine

The DISPLAY built-in subroutine returns information on a file. See the
VAX PL/I User Manual for more information.

DISPLAY Built-In Subroutine 267

DIVIDE Built-In Function

Division

268 Division

The DIVIDE built-in function divides an arithmetic expression x by an
arithmetic expression y and returns the quotient with a specified precision
p and an optionally specified scale factor q. The scale factor q must be an
integer following these rules:

• If either x or y is fixed binary, q must be in the range -31 through 31.

• If both x and y are fixed decimal, q must not be negative.

• If either x or y is floating point, q must be zero.

• If q is omitted, it is assumed to be zero.

The expressions x and y are converted to their derived types before the
division is performed (see "Expression"). If y is zero after this conversion,
the ZERODIVIDE condition is signaled. The quotient has the derived type
of the two arguments.

The format of the function is as follows:

DIVIDE(x, y ,p(,q])

The slash sign character (/) indicates a division operation in an expres­
sion; the result is the quotient of the first operand divided by the second
operand. Both operands must be arithmetic or picture data.

• Precision of the Result
Before the division is performed, the two operands are converted to their
derived type (see "Expression"). Each converted operand has an individual
converted precision, and the two precisions are used to determine the
precision of the result.

Floating-Point Operands
The floating-point result has the maximum of the converted precisions of
the operands.

Fixed-Point Operands
The resulting precision is 31. (If the quotient exceeds the precision of the
result, the least significant digits of the quotient are truncated.) If (p,q)
and (r,s) represent the converted precisions and scale factors of the two
operands, the resulting scale factor is 31 - p + q - s.

• Restrictions
The divisor (the second operand) must not be zero. If the divisor equals
zero, the ZERODIVIDE condition is signaled; if no ON-unit exists to
handle this condition, the program terminates.

For division of fixed-point decimal operands, the precisions of the
operands must be such that the result does not have a negative scale
factor.

Another way to perform division is to use the DIVIDE built-in function,
which allows you to control precisely the precision of the result. See
0 Divide Built-In Function."

%00 Statement

The %DO statement begins a preprocessor DO-group, a sequence of
statements terminating with the %END statement. The preprocessor
DO-group must be a simple DO-group and is noniterative, but it can be
usefully combined with an %IF statement.

The format of the %DO statement is as follows:

%00;

%END;

You can include both preprocessor and nonpreprocessor text in a prepro­
cessor DO-group. For example:

I• declare T •/ %DECLARE T CHARACTER;
%ACTIVATE T NORESCAN; /• activate T for replacement •/

1IF VARIANT(}= 'NONE';
1TBEN
%DO;
1T = '''unknown variant'''; I• assign string to T •/
1WARN T; I• output unknown variant

warning at compile time •/
INIT_MESSAGE = INIT_MESSAGEll' with 'I IT; /•assign

UND;

value of T to nonpreprocessor
variable •/

%00 Statement 269

DO-Group

270 DO-Group

This preprocessor DO-group performs several steps. First, a string constant
is assigned to T. Then the value of T is used in a preprocessor user­
generated diagnostic message. This message is issued at compile time to
warn the programmer that the program is compiled with an unknown
variant. Finally, the value of Tis concatenated with a nonpreprocessor
string constant. INIT-MESSAGE, including the value of T, is part of the
run-time image.

For more information on the preprocessor, see "Preprocessor."

A DO-group is a sequence of PL/I statements delimited by a DO state­
ment and its corresponding END statement. The statements in a DO­
group are executed as the result of an unconditional DO statement or as
the result of the successful test of a conditional DO.

For example:

IF A > B THEN DO;

END;

The statements that occur between the DO and the END are a DO­
group. After all statements are executed in this unconditional DO-group,
execution continues with the next executable statement following the END
statement.

Normally, all the statements in the group are executed. However, control
can be transferred out of a DO-group in the following ways:

• By execution of a GOTO statement that transfers control outside of
the DO-group. The GOTO statement can be present in the DO-group
itself, in a procedure invoked from within the DO-group, or in an
ON-unit executed while the DO-group is active.

• By execution of a LEAVE statement that transfers control to a la-
bel outside of the containing DO-group or to the next executable
statement following the END statement that terminates the DO-group.

• By execution of a RETURN or STOP statement that terminates the
current procedure or program.

You can nest DO-groups to a maximum level of 64.

DO Statement

The DO statement begins a sequence of statements to be executed in a
group; the group ends with the nonexecutable statement END. DO-groups
have several formats. These formats are summarized in Figure D-2 and
described individually below under the following subheadings:

• Simple DO
• DO WHILE

• DO UNTIL
• Controlled DO

• DO REPEAT

•Simple DO
A simple DO statement is a noniterative DO. The format of a simple DO
statement is as follows:

DO;

END;

The statements that appear between the DO statement and its corre­
sponding END statement are executed once. After all statements in the
group are executed, control passes to the next executable statement in the
program.

Examples

IF A < B THEN DO;
PUT LIST ('More data needed');
GET LIST (VALUE);
A • A + VALUE;
EHD;

The simple DO statement is commonly used as the action of the THEN
clause of an IF statement, as shown above, or of an ELSE option.

DO Statement 271

Figure D-2: Forms of the DO Statement

DO;

END;

The statements in a simple, noniterative DO-group are executed a sin­
gle time.

DO WHILE (test-exp) ;

END;

The statements in the DO-group following a DO WHILE are executed in
a loop as long as the condition specified in the test expression-is satis­
fied.

DO UNTIL (test-exp) ;

END;

The statements in the DO-group following a DO UNTIL are executed in
a loop as long as the condition specified in the test expression is false.

DO control-variable = start-value TO end-value [WHILE (test-exp)] [UNTIL (test-exp)];

END;

Each time the statements in the DO-group are executed, the specified
control variable has a different value. When the DO statement is evalu­
ated at the start of each execution, the control variable is incremented
by 1. When its value exceeds the specified end value. control passes
out of the DO-group.

Optional WHILE and/or UNTIL clauses further control execution of a
DO-group.

DO control-variable = start-value BY modify-value [WHILE (test-exp)] [UNTIL (test-exp)];

The value bf the control variable is modified by a specified positive or
negative value; for each iteration of the DO-group, it has a different

END;
value. The DO-loop is terminated by a statement within the loop or, if
the optional WHILE clause is specified, when the test expression yields
a false value.

DO control-variable = start-value TO end-value BY modify-value [WHILE (test-exp)] [UNTIL (test-exp)];

The DO statement can specify a range of values to use for the control

END;

variable as well as a value by which it is to be modified.

Optional WHILE and/or UNTIL clauses further control execution of a
DO-group.

DO control-variable= start-value REPEAT expression [WHILE (test-exp)] [UNTIL (test-exp)];

The repetition of the statements in the DO-group is controlled by the
expression in the REPEAT option. This expression defines how the
control variable is to be modified.

272 DO Statement

The WHILE and /or UNTIL clauses provide conditions that terminate
execution of the DO-group.

ZK-1295-83

• DOWHILE
A DO WHILE statement causes a group of statements to be executed as
long as a particular condition is satisfied. When the condition is not true,
the group is not executed. The format of the DO WHILE statement is as
follows:

DO WHILE (test-expression);

END;

test-expression
Any expression that yields a scalar value. If any bit of the value is a l,
then the test expression is true; otherwise, the test expression is false. The
test expression must be enclosed in parentheses. (Comparison operations
yield a value with the type BIT(l).)

This expression is evaluated before each execution of the DO-group.
It must have a true value in order for the DO-group to be executed.
Otherwise, control passes outside of the DO-group to the next executable
statement following the END statement that terminates the group.

Examples

DO WHILE {A< B);

This DO-group is executed as long as the value of the variable A is less
than the value of the variable B.

DO WHILE (LIST->NEIT ·=NULL());

This DO-group is executed until a forward pointer in a linked list has a
null value. (See "List Processing.")

DECLARE EDF BIT(1) INITIAL('O'B);

ON ENDFILE{INFILE) EDF= '1'B;
READ FILE(INFILE) INTO(INREC);
DO WHILE (•EDF);

READ FILE(INFILE) INTO(INREC);
END;

DD Statement 273

This DO-group reads records from the file INFILE until the end of the
file is reached. At the beginning of each iteration of the DO-group, the
expression AEOF is evaluated; the expression is 'l'B until the ENDFILE
ON-unit sets the value of EOF to 'l 'B.

•DO UNTIL
A DO UNTIL statement causes a group of statements to be executed until
a particular condition is satisfied. That is, while the condition is false, the
group is repeated. The format of the DO UNTIL statement is as follows:

DO UNTIL (test-expression);

END;

test-expression
Any expression that yields a scalar value. If any bit of the value is 1, then
the test-expression is true; otherwise the test expression is false. The test
expression must be enclosed in parentheses. (Comparison operations yield
a value having the type BIT(l).)

This expression is evaluated after each execution of the DO-group. It must
have a false value for the DO-group to be repeated. Otherwise, control
passes to the next executable statement following the END statement
that terminates the DO-group. The test expression must be enclosed in
parentheses.

274 DO Statement

NOTE

Both the WHILE and UNTIL options check the status of test
expressions, but they differ in that the WHILE option tests the
value of the test expression at the beginning of the DO-group,
and UNTIL tests the value of the test expression at the end of
the DO-group. Therefore, a DO-group with the UNTIL option
and no WHILE option will always be executed at least once, but
a DO-group with the WHILE option may never be executed.

Examples

DO UNTIL (A=O);

This DO-group is executed at least once and continues as long as the value
of A is not equal to zero.

DO UNTIL (K<ALPHA);

This DO-group is executed as long as the value of the variable K is greater
than or equal to the value of the variable ALPHA.

DECLARE STR BIT (8) CONTROLLED;

DO UNTIL (ALLOCATION(STR)=O);
PUT SKIP LIST (STR);
FREE STR;
END;

This DO-group frees bit strings from storage until all generations have
been released. Because the UNTIL option is always executed at least once,
at least one generation must be allocated; otherwise the ERROR condition
is signaled. At the end of each repetition of the DO-group, the number
of remaining generations is checked with the ALLOCATION built-in
function. When no generations remain, execution of the group terminates
and control passes to the next executable statement after the first END
statement.

• Controlled DO
A controlled DO statement identifies a variable whose value controls the
execution of the DO-group and defines the conditions under which the
control variable is to be modified and tested. The format of the controlled
DO statement is as follows:

DO control-variable = start-value

[TO end-value [BY modify-value] J
BY modify-value

[WHILE (test-expression)]
[UNTIL (test-expression)]

END;

DO Statement 275

control-variable
A reference to a variable whose current value as compared to the end
value specified in the TO option determines whether the DO-group is
executed. If none of the options are specified, the DO-group is executed
a single time regardless of the value of the control variable. The control
variable must be of an arithmetic data type.

start-value
An expression specifying the initial value to be given to the control
variable. Evaluation of this expression must yield an arithmetic value.

end-value
An expression giving the value to be compared with the control variable
during successive iterations. Evaluation of this expression must yield an
arithmetic value.

modify-value
An expression giving a value by which the control value is to be modified.
Evaluation of this expression must yield an arithmetic value. If the BY
option is not specified, the modify value is 1 by default.

WHILE (test-expression}
An option specifying a condition that further controls the execution of
the DO-group. The condition must be true at the beginning of each
DO-group execution for the DO-group to be executed. The specified test
expression must yield a scalar value. If any bit in the value is a l, then
the test expression is true; otherwise, the test expression is false. The test
expression must be enclosed in parentheses.

UNTIL (test-expression}
An option specifying a condition that further controls the execution
of the DO-group. The condition must be false at the end of a DO­
group execution for the next DO-group to be executed. The specified test
expression must yield a scalar value. If any bit in the value is a l, then
the test expression is true; otherwise, the test expression is false. The test
expression must be enclosed in parentheses.

276 00 Statement

The controlled DO-group is executed by the following steps:

1. The following measures are taken to prevent the allocation of a new
control variable during the execution of the DO-group:

• If the control variable is based, its pointer qualifier is evaluated
and a temporary reference of the control variable type is cre­
ated. The temporary reference is used as the control variable in
subsequent steps.

• If the control variable is subscripted, its subscripts are evaluated
and a temporary reference of the control variable type is cre­
ated. The temporary reference is used as the control variable in
subsequent steps.

• If the control variable is neither based nor subscripted, its refer­
ence is used in subsequent steps.

2. The start value expression is evaluated and assigned to the control
variable. The expressions specified in the TO and (if specified) BY
options are evaluated, and their values are stored. These expressions
can contain references to the object referenced by the control variable.
If they do, the original reference, not the temporary reference, is used
in evaluation of the expressions.

3. If the TO option is present, the value of the control variable is com­
pared with the end value specified in the TO option. Otherwise, this
step is skipped. Execution of the DO-group terminates if either of the
following is true:

• The modify value is greater than zero and the control variable is
greater than the end value.

• The modify value is less than zero and the control variable is less
than the end value.

If this step terminates the DO-group on the first iteration, the control
variable has a final value assigned by the start value. If the group is
terminated on a subsequent iteration, the control variable has a final
value assigned by step 6.

4. If a WHILE option is present, its test expression is evaluated. If it does
not produce a true value, the execution of the DO-group terminates.

5. The body of the DO-group is executed. The execution of the DO­
group can be terminated during this step by the execution of a STOP
or RETURN statement or by the execution of a GOTO or LEAVE
statement that transfers control out of the DO-group.

00 Statement 2 77

The body of the DO-group can also contain statements that change
the values of the control variable, modify value, end value, or test
expression. Changing the modify value or the end value in the body
of the loop will not affect the number of times the loop is iterated.
However, changing the value of the control variable or the test
expression can affect the number of iterations.

6. If an UNTIL option is present, its test expression is evaluated. If it
produces a true value, the execution of the DO-group terminates.

7. Unless none of the options are specified, the value of the control
variable is modified as follows:

control variable = control variable + modify value;

8. Execution continues at step 3 unless none of the options are specified,
in which case control passes to the next executable statement in the
program.

Examples

DO I = 2 TO 100 BY 2;

This DO-group is executed 50 times, with values for I of 2, 4, 6, and so
on.

DO I= LBOUND(ARRAY,1) TO HBOUND(ARRAY,1);

This DO-group is executed as many times as there are elements in the
array variable ARRAY, using the subscript values of the array's elements
for the values of I.

DO I= 1 BY 1 WHILE (X < Y);

This DO-group continues to be executed with successively higher values
for I while the value of X is less than the value of Y.

DO I= 1 BY 1 WHILE (X < Y) UNTIL (X = 12);

This DO-group resembles the DO-group in the preceding example, except
that the DO-group continues to be executed while the value of X is less
than the value of Y or until the value of X is equal to 12.

A controlled DO statement that does not specify a TO or BY option results
in a single iteration of the following DO-group. For example:

DO X = 1 WHILE (A);

2 7 8 0 0 Statement

Even if A is true, this DO-group executes a single time only. Because
there is no expression to change the value of X, the DO-group will not be
executed again.

DO I ,. 1;

This DO-group executes a single time only, regardless of the value of X.

•DO REPEAT
The DO REPEAT statement executes a DO-group repetitively for different
values of a variable. The variable is assigned a start value that is used
on the first iteration of the group. The REPEAT expression is evaluated
before each subsequent iteration, and its result is assigned to the variable.
A WHILE clause can also be included; if it is, the WHILE expression is
evaluated before each iteration, including the first. The format of the DO
REPEAT statement is as follows:

DO variable = start-value REPEAT expression
[WHILE (test-expression)] [UNTIL (test-expression)];

END;

variable
A reference to a variable. The variable can be any scalar variable.

start-value
An expression specifying the initial value to be given to the variable.
The evaluation of this expression must yield a value that is valid for
assignment to the variable.

expression
An expression giving the value to be assigned to the variable on reitera­
tions of the DO REPEAT group. The expression is evaluated before each
reiteration. Evaluation of this expression must yield a result that is valid
for assignment to the variable.

WHILE (test-expression)
An option specifying a condition that controls the termination of the DO
REPEAT group. The DO REPEAT group continues while the condition
is true. The specified test expression must yield a scalar value. If any
bit of the value is l, then the test expression is true; otherwise, the test
expression is false. The test expression must be enclosed in parentheses.

DO Statement 279

This expression is evaluated each time control reaches the DO statement;
the test expression must have a true value in order for the DO-group to
be executed. Otherwise, control passes to the next executable statement
following the END statement that terminates the DO-group.

UNTIL (test-expression)
An option specifying a condition that further controls the termination
of the DO REPEAT group. The DO REPEAT group continues until the
condition is true. The specified test expression must yield a scalar value. If
any bit in the value is 1, then the test expression is true; otherwise, the test
expression is false. The test expression must be enclosed in parentheses.

This expression is evaluated after the first execution of the DO-group; the
test expression must have a true value in order for the DO-group to be
executed a second time. Otherwise, control passes to the next executable
statement following the END statement that terminates the DO-group.

NOTE

If the WHILE and UNTIL options are omitted, the DO REPEAT
statement specifies no means for terminating the group; the
execution of the group must be terminated by a statement or
condition occurring within the group.

A DO REPEAT group is executed by the following steps:

1. The following measures are taken to prevent the allocation of a new
variable during the execution of the DO-group:

• If the variable is based, its pointer qualifier is evaluated and a
temporary reference of the variable type is created. The temporary
reference is used as the variable in subsequent steps.

• If the variable is subscripted, its subscripts are evaluated and a
temporary reference of the variable type is created. The temporary
reference is used as the variable in subsequent steps.

• If the variable is neither based nor subscripted, its reference is
used in subsequent steps.

2. The start value expression is evaluated and assigned to the variable.
3. If a WHILE option is present, its test expression is evaluated. If it does

not produce a true value, the execution of the DO-group terminates. If
the test expression is not present, execution continues.

280 DO Statement

4. The body of the DO-group is executed. The execution of the DO­
group may be terminated during this step by the execution of a STOP
or RETURN statement or by the execution of a GOTO or LEAVE
statement that transfers control outside the DO-group. Statements in
the group can also modify the values of the control variable, REPEAT
expression, and test expression.

5. If an UNTIL option is present, its test expression is evaluated. If it
produces a true value, the execution of the DO-group terminates. If
the test expression is not present, execution continues.

6. The REPEAT expression is evaluated and its value is assigned to the
variable.

7. Execution continues at step 3.

Examples

DO LETTER='!' REPEAT (BYTE(I));

This example will repeat the group with an initial LETTER value of 'A'
and with subsequent values assigned by the built-in function BYTE(I). The
variable I can be assigned new values within the group. The group will
iterate endlessly unless terminated by a statement or condition within the
group.

DO I= 1 REPEAT (I+ 2) WHILE (I<= 100);

This example has the same effect as the following controlled DO state­
ment:

DO I = 1 TO 100 BY 2;

The most common use of the DO REPEAT statement is in the manipula­
tion of lists. For example:

DO P = LIST_HEAD REPEAT (P->LIST.NEXT)
WHILE (P -=NULL());

In this example, the pointer P is initialized with the value of the pointer
variable LIST__HEAD. The DO-group is then executed with this value of
P. The REPEAT option specifies that each time control reaches the DO
statement after the first execution of the DO-group, P is to be set to the
value of LIST.NEXT in the structure currently pointed to by P. For an
expanded example of this technique, see "List Processing."

DO Statement 281

E

E Format Item

The E format item describes the representation of a fixed- or floating-point
value as a decimal floating-point number in a stream.

The form of the item is as follows:

E(w(,d])

w
A nonnegative integer or expression that specifies the total width in
characters of the field in the stream.

d
An optional nonnegative integer or expression that specifies the number of
fractional digits in the stream representation.

If d is omitted on output, all fractional digits are written out. If d is
omitted on input, it is assumed to be zero (no fractional digits). If the
input value contains a decimal point, the value of d is ignored.

For a general discussion of format items, see "Format Item."

• Input with GET EDIT
Used with GET EDIT, the E format item acquires a character-string value
representing a floating-point decimal value and assigns it, with necessary
conversions, to an input target of any computational type. If w is zero, no
operation is performed on the input stream, and a null character string is
converted and assigned to the input target.

For input, floating-point values can be represented in the stream in the
following forms:

282 E Format Item

Form

mantissa

sign mantissa

sign mantissa sign exponent

sign mantissa E exponent

sign mantissa E sign exponent

Example

124333

-123.333

-123.333-12

-123.333E12

-123.343E-12

The mantissa is a fixed-point decimal constant, the sign is a plus (+) or
minus (-) symbol, and the exponent is a decimal integer. A zero exponent
is assumed if both the letter E and the exponent are omitted.

If, on input, the mantissa includes a decimal point, it overrides the specifi­
cation of d. If no decimal point is included, then d specifies the number of
fractional digits.

The value of w should be only large enough to include the mantissa, the
optional decimal point in the mantissa, the signs on the exponent and
mantissa, the optional letter E, and the exponent. If the field width is too
narrow, the stream representation is truncated on the right; if the field
width is too wide, excess characters are acquired on the right and may
contain invalid input.

Spaces can precede or follow the value in the stream and are ignored.
If the entire field contains spaces, zero is assigned to the input target. If
the stream representation is not one of the acceptable forms, an ERROR
condition is signaled.

• Output with PUT EDIT
Used in a PUT EDIT statement, the E format item converts an output
source of any computational type to the following form for representation
in the stream:

[-] digit . [fractional-digits] E sign exponent

Typical representations are as follows:

1.E+07

3.33E-10

-2.7186E+OO

If d is omitted from the format item, then d = s - 1, where s is the
precision of the output source expressed in decimal. The decimal value is
rounded before being written out.

E Format Item 283

The exponent is ordinarily a 2-digit decimal integer and is always signed.
The exponent is adjusted so that the first digit of the mantissa is not zero,
except that the value 0 is represented as

0.0000 ... E+OO

with a number of zeros to the right of the decimal point equal to the
specified number of fractional digits.

To account for negative values with fractional digits, the specified width
integer should be 6 greater than the number of digits to be represented
in the mantissa: one character for the preceding minus sign, one for the
decimal point in the mantissa, one for the letter E, one for the sign of the
exponent, and two for the exponent itself. (For values of type G-float or
H-float, the value of w should be 7 or 8 greater than the number of digits,
respectively.)

If the number's representation is shorter than the specified field, the
representation is right-justified in the field and the number is extended on
the left with spaces.

If the field specified by w is too narrow, an ERROR condition is signaled.

• Examples
The tables below show the relationship between the internal and external
representations of numbers that are read or written with the E format
item.

Input Examples
The "input stream,, shown in this table is a field of characters beginning at
the current position in the stream and continuing to the right. The target
type is the type of the variable to which the input value is assigned.

Format Input
Item Stream Target Type Target Value

E(6,0) 124333 ... DECIMAL(10,2) 124333.00

E(6,0) -123333 ... DECIMAL(10,2) -12333.00

E(S) -123.333 ... DECIMAL(S,6) -123.33300

E(11) -123.333-12 ... FLOAT DEC(7) -1. 233330E-10

E(11,3) -123343E-12 ... FLOAT DEC(16) -1.23342999813768E-07

284 E Format Item

EDIT Option

Output Examples
The output source value shown in the table is either a constant or the
value of a variable that is written out with the associated format item.

Output Source Value Format Item Output Value

-12234 E(11) -1.2234E+04

-12234 E(U,2) i\6-1.22E+04

-12.234 E(U, 1) U6-1.2E+01

-1.23468E3 E(12) -1.23468E+03

-1.23468E3 E(12,2) i\66-1. 23E+03

The EDIT option is used with the GET and PUT statements to perform
edit-directed stream input or output.

The EDIT option allows you to include a format-specification list that
matches the list of input targets (GET statement) or output sources (PUT
statement). When used with the GET statement, the EDIT option and
format-specification list control the interpretation of ASCII characters
being input from a stream file. When used with the PUT statement, the
two items control the representation of program data as ASCII characters
in a stream output file.

For further details, see "GET Statement" and 0 PUT Statement."

%ELSE Keyword

The %ELSE clause can be specified in a o/oIF statement to define the
action to be taken if a given preprocessor expression is false. For further
information on the embedded preprocessor, see 0 Preprocessor."

%ELSE Keyword 285

ELSE Keyword

The ELSE clause can be specified in an IF statement to define the action to
be taken if a given expression is false. For example:

IF ·sucCESS THEN
CALL PRINT_ERROR;

ELSE
CALL PRINT_SUCCESS;

The action following the keyword ELSE can be null. For more informa­
tion, see 0 1F Statement."

Embedded Preprocessor

See 0 Preprocessor."

EMPTY Built-In Function

The EMPTY built-in function returns an empty area value for use in
initializing areas. Its format is as follows:

EMPTY()

The EMPTY built-in function is useful in initializing the contents of an
area. It is normally much faster than the FREE statement is in freeing all
the variables in an area (freeing all the area's storage). Note that an area
value must be assigned to an area before the area is used.

Following is an example of the use of the EMPTY built-in function in an
assignment statement:

A= EMPTY();

Following is an example of its use in a declaration:

DECLARE A AREA(1024) STATIC INITIAL(EMPTY());

See 0 Area," 0 Area Attribute," "Area Condition Name," and the VAX PL/I
User Manual for more information on areas.

286 EMPTY Built-In Function

ENCODE Built-In Function
ENCODE Preprocessor Built-In Function

The ENCODE built-in function converts a decimal integer to a character
string. It converts the decimal integer (stored as a FIXED BINARY(31,0)
number) to a baser number, where r is the radix you specify, and returns
the resulting number as a character string. The function takes two argu­
ments: a decimal integer and a radix; the radix is an integer in the range 2
through 16.

The syntax of the function is as follows:

ENCODE(integer-expression ,radix-expression);

The syntax of an assignment statement using the ENCODE function is as
follows:

character-variable = ENCODE(integer-expression ,radix-expression);

character-variable
A character-string variable, either fixed or varying. Its length must be
greater than or equal to the number of digits in the number resulting from
the conversion of the decimal integer to a number in the specified radix. If
the maximum length is too short, the value returned is truncated from the
right.

integer-expression
An expression evaluating to a fixed binary number representing a decimal
integer. Whether signed or not, this integer is treated by the function as
unsigned.

radix-expression
An expression that evaluates to any integer from 2 through 16.

•Example
DECLARE (X,Y) CHARACTER(5) VARYING;
X = ENCODE(53,8);
Y = ENCODE(10,2);

The character-string variable X is assigned the value '65', which is the
character equivalent of the octal number 65, which is the equivalent of
the decimal number 53. The character-string variable Y is assigned the
value '1010', which is the character equivalent of the binary number 1010,
which is the equivalent of the decimal number 10.

ENCODE Preprocessor Built-In Function 287

%END Statement

The %END statement terminates a preprocessor procedure or DO-group.
The format of the %END statement is as follows:

%END;

Preprocessing then continues with the next executable preprocessor
statement. See "Preprocessor."

END Statement

The END statement terminates a block or a group that is headed by the
most recent BEGIN, DO, SELECT, or PROCEDURE statement. The format
of the END statement is as follows:

END [label-reference];

label-reference
A reference to the unsubscripted label on the PROCEDURE, BEGIN,
SELECT, or DO statement for which the specified END statement is the
termination. A label is not required. If specified, the label reference must
match only one label, which is the label of the most recent BEGIN, DO,
SELECT, or PROCEDURE statement that is not already matched with an
END statement. If the label reference is omitted, the most recent statement
is matched by default.

The END statement performs one of the following actions, depending on
the type of block or group that it terminates:

• When an END statement denotes the end of a procedure, the cur­
rent procedure is terminated. The storage allocated for the block is
released, and all automatic variables are made inaccessible. If the
current procedure is the main, or only, procedure, the program ter­
minates. Otherwise, control returns to the point following the CALL
statement or function reference that invoked the procedure.

• When an END statement denotes the end of a BEGIN block, the
storage allocated for the block is released, and all automatic variables
are made inaccessible. Control passes to the next executable statement
following the END statement.

288 END Statement

• When an END statement denotes the end of a DO-group, control
returns either to the DO statement that heads the group or to the next
outer statement. If the DO-group is headed by a noniterative DO, that
is, a DO-group that is executed only once, control passes to the next
executable statement. Otherwise, control returns to the head of the
DO-group, where the control variable or expression is tested.

• When an END statement denotes the end of a SELECT-group, the
SELECT-group is terminated and control passes to the next executable
statement following the end statement.

ENDFILE Condition Name

The ENDFILE condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate an end-of-file condition or ON-unit for a
specific file.

PL/I signals the ENDFILE condition when a GET or READ statement
attempts an input operation on a file or device after the last data item has
been input. The format of the ENDFILE condition name is as follows:

ENDFILE (file-reference)

file-reference
The name of a file constant or file variable for which the ENDFILE ON­
unit is established. If the name of a file variable is specified, the variable
must be resolved to the name of a file constant when the condition is
signaled.

An ENDFILE ON-unit can be established for any input file. For any
particular file, the meaning of the end-of-file condition depends on the
type of device. For example, end-of-file is signaled for a terminal device
when the CTRL/Z character is read.

For a stream file, an end-of-file condition is signaled whenever a GET
statement attempts to access an empty file or attempts to access a file
whose last input field has been read.

ENDFILE Condition Name 289

For a record file, an end-of-file condition is signaled when a READ
statement is executed with the file at the end-of-file position or when a
read is attempted beyond the last record in the file. For example:

ON ENDFILE (RECEIPTS) EDF • '1'B;
EDF = 'O'B;
OPEN FILE (RECEIPTS) RECORD SEQUENTIAL;
READ FILE (RECEIPTS) INTO (RECORD);
DO WHILE c-EOF);

READ FILE (RECEIPTS) INTO (RECORD); '
END;

In this example, the ON statement establishes the default action to be
taken when the last record in the input file has been processed: the flag
EOF is set to 'l'B.

An ON-unit established to handle end-of-file conditions can reference the
ONFILE built-in function to determine the name of the file constant for
which the condition was signaled.

• ON-Unit Ce11pletien
If the ON-unit for the ENDFILE condition does not transfer control
elsewhere in the program, control returns to the statement following the
GET or READ statement that caused the condition to be signaled.

When the ENDFILE condition is signaled, it remains in effect until the
file is closed. Subsequent GET or READ statements for the file cause the
ENDFILE condition to be signaled repeatedly.

For more information, see HON Conditions and ON-Units" and 0 0N
Statement."

ENDPAGE Condition Name

The ENDP AGE condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate an end-of-page condition or ON-unit for
a specific print file. The format of the ENDPAGE condition name is as
follows:

ENDPAGE (file-reference)

290 ENOPAGE Condition Name

file-reference
The name of the file constant or file variable for which the ENDP AGE
ON-unit is to be established. If the name of a file variable is specified,
the variable must be resolved to the name of a file constant when the
condition is signaled. The file must have the PRINT attribute.

The maximum number of lines that can be output on a single page is set
by the P AGESIZE option of the OPEN statement. The maximum number
of lines allowed on a single page is 32767. If not specified, PL/I uses the
default page size (see NPAGESIZE Option").

PL/I signals the ENDPAGE condition when a PUT statement attempts
to output a line beyond the last line specified for an output page. When
the ENDPAGE condition is signaled, the current line number associated
with the file is the page size plus 1. An ENDPAGE ON-unit allows you
to provide special processing before output continues on a new page. For
example:

ON ENDPAGE {PRINTFILE) BEGIN;
PUT FILE {PRINTFILE) PAGE;
PUT FILE {PRINTFILE) LIST{HEADER_LINE);
PUT FILE {PRINTFILE) SKIP{2);
END;

The ON-unit for the ENDPAGE condition for the file PRINTFILE outputs
a page eject and a header line for the new output page.

To cause PL/I to ignore the ENDPAGE condition when a large amount of
output is written to a terminal, you can use the following ON-unit, that
contains only the null statement:

ON ENDFILE{SYSPRINT);

An ON-unit established to handle end-of-page conditions can reference
the ONFILE built-in function to determine the name of the file constant
for which the condition was signaled.

• ON-Unit Completion
If the ON-unit does not transfer control elsewhere in the program, the
line number is set to 1 and the program continues execution of the
PUT statement. If the ENDPAGE condition was signaled during data
transmission, the data is written on the new current line. If the ENDPAGE
condition was caused by a LINE or a SKIP option on the PUT statement,
then the action specified by these options is ignored on return.

ENDPAGE Condition Name 291

An ENDP AGE condition can occur only once per page of output. If the
ON-unit specified does not specify a new page, then execution and output
continue. The current line number can increase indefinitely; PL/I does not
signal the ENDPAGE condition again. However, if a LINE option on a
PUT statement specifies a line number that is less than that of the current
line, a new page is output and the current line is set to 1.

• Default PL/I Actian
If the ENDP AGE condition is signaled during file processing, PL/I starts
output on a new page and continues processing. If the ENDP AGE condi­
tion is signaled as a result of a SIGNAL statement, the statement following
the SIGNAL statement is executed and no page is output by default.

ENTRY Attribute

The ENTRY attribute declares a constant or variable whose value is an
entry point and describes the attributes of the parameters (if any) that
are declared for the entry point. The format of the ENTRY attribute is as
follows:

ENTRY [(parameter-descriptor, ...))
[OPTIONS (VARIABLE)]
[RETURNS (returns-descriptor))

parameter-descriptor
A set of attributes describing a parameter of the entry. (See also
0 Procedure.") Attributes describing a single parameter must be separated
by spaces; sets of attributes (each set describing a different parameter)
must be separated by commas. Parameter descriptors are not allowed if
the ENTRY attribute is within a RETURNS descriptor (see 0 RETURNS
Attribute and Option" for more information on RETURNS descriptors).

The following rules apply to the specification of a parameter descriptor for
an array or structure:

• If the parameter is an array, you must specify the dimensions first;
otherwise, you can specify the attributes in any order.

• If the parameter is a structure, the level number must precede the
attributes for each member.

• You must specify extents for a parameter using only integer constants,
restricted integer expressions, or asterisks (*).

292 ENTRY Attribute

• You cannot specify storage class attributes.

OPTIONS (VARIABLE)
An option indicating that the specified external procedure can be invoked
with a variable number of arguments. At least one parameter descriptor
must be specified following the ENTRY keyword if OPTIONS(VARIABLE)
is specified.

This option is provided for use in calling non-PL/I procedures. For
complete details on using OPTIONS (VARIABLE), see the VAX PL/I User
Manual.

RETURNS (returns-descriptor)
For an entry that is invoked as a function reference, an option giving the
data type attributes of the function value returned. (See also "RETURNS
Attribute and Option. n) For entry points that are invoked by function
references, the RETURNS attribute is required; for procedures that are
invoked by CALL statements, the RETURNS attribute is invalid.

The ENTRY attribute without the VARIABLE attribute implies the
EXTERNAL attribute (and implies that the declared item is a constant),
unless the ENTRY attribute is used to declare a parameter.

You must declare all external entry constants with the ENTRY attribute.
When you declare an external entry constant, you must also specify the
RETURNS attribute if the constant will be used to invoke a function. The
RETURNS attribute indicates that the entry point is invoked via a function
reference and defines the data type of the value it returns.

• Restrictions
You cannot declare internal entry constants with the ENTRY attribute
in the procedure to which they are internal. Internal entry constants
are declared implicitly by the labels on the PROCEDURE or ENTRY
statements of an internal procedure.

The ENTRY attribute conflicts with all other data type attributes.

•Example
DECLARE COPYSTRING ENTRY (CHARACTER (40) VARYING,

FIXED BINARY(7))
RETURNS (CHARACTER(•));

This declaration describes the external entry COPYSTRING. This entry
has two parameters: a varying-length character string with a maximum
length of 40 and a fixed-point binary value. The RETURNS attribute

ENTRY Attribute 293

Entry Data

294 Entry Data

indicates that COPYSTRING is invoked as a function and that it returns a
character string of any length.

Entry constants and variables are used to invoke procedures through
specified entry points. An entry value specifies an entry point and a block
activation of a procedure.

• Entry Constants
You declare entry constants by using labels on PROCEDURE or ENTRY
statements.

You declare internal entry constants by using labels on PROCEDURE or
ENTRY statements whose procedure blocks are nested in another block.
You can use an internal entry constant anywhere within its scope to
invoke its procedure block.

You declare external entry constants either by using labels on
PROCEDURE or ENTRY statements that belong to external procedures, or
by explicitly declaring the constant names with the ENTRY attribute. You
can use an external entry constant to invoke its procedure block from any
program location that is within its scope. Its scope is either the scope of
its declaration (as a label) or the scope of a DECLARE statement for the
constant.

In DECLARE statements, you declare external entry constants with the
ENTRY attribute. The declaration must agree with the actual entry
point. That is, the declaration of the external entry constant must contain
parameter descriptors for any parameters specified at the entry point, and,
if the entry constant is to be used in a function reference, the declaration
must have a returns descriptor describing the returned value. For the
syntax and rules governing parameter descriptors, see 0 ENTRY Attribute."
For the syntax and rules governing returns descriptors, see 0 RETURNS
Attribute and Option."

• Entry Values
Whenever a reference to an entry constant is interpreted, the result is an
entry value. An entry value is the entry point of a procedure, and it serves
to activate the block in which the entry point is declared (that is, the block
in which the entry point's name appears as the label of a PROCEDURE
or ENTRY statement). This block activation is the current block activation
if the entry point belongs to the current block. If the entry point belongs
to a containing block, the activation is on the chain of parent activations
that ends at the current block activation. (For additional details on block
activations, see "Block.")

No conversions are defined between entry data and other data types. An
entry variable can be assigned only the value of an entry constant or the
value of another entry variable. The only operations that are valid for
entry data are comparisons for equality (=) and inequality ("=). Two entry
values are equal if they refer to the same entry point in the same block
activation.

VAX PL/I supports the passing of external procedures, but not internal
procedures, as entry value parameters. To pass an internal procedure, use
an entry parameter.

• Entry Variables
Entry variables are variables (including parameters) that take entry values.
If the VARIABLE attribute is specified with the ENTRY attribute in a
DECLARE statement, the declared identifier is an entry variable. You
can assign to an entry variable either another entry variable or an entry
constant.

When an entry variable is used to invoke a procedure, its declaration must
agree with the definition of the entry point. If the value you assign to an
entry variable specifies an entry point with parameters, the parameters
must be described with parameter descriptors in the declaration of the
variable. If the assigned value specifies an entry point that is invoked as a
function, then the declaration of the entry variable must have a RETURNS
attribute that describes the data type of the returned value.

The scope of an entry variable name can be either internal or external. If
neither the EXTERNAL nor the INTERNAL attribute is specified with the
entry variable, the default is internal. (See also "Scope of Names.")

Entry Data 295

296 Entry Data

The entry variable can be used to represent different entry points during
the execution of the PL/I program. For example:

DECLARE E ENTRY VARIABLE,
(A,B) ENTRY;

E =A;
CALL E;

The entry constant A is assigned to the entry variable E. The CALL
statement results in the invocation of the external entry point A.

You can also declare arrays of entry variables. The following example
shows an array of external functions:

DECLARE EXTRACT(10) ENTRY (FIXED.FIXED) VARIABLE RETURNS (FLOAT),

GETVAL FLOAT;

GETVAL = EXTRACT(3)(1,3);

This assignment statement references the third element of the array
EXTRACT. When the statement is executed, this array element must
contain a valid entry value.

NOTE

Exercise caution using static entry variables. The value of a
static entry variable is valid only as long as the block in which
that value was declared is active.

The following figure illustrates the internal representation of variable entry
data.

31

address of procedure mask for
this entry point

parent frame pointer

0

ZK-1287-83

ENTRY Statement

The ENTRY statement defines an alternate entry point to a procedure. Its
format is as follows:

entry-name: ENTRY [(parameter, ...)]

[RECURSIVE]
NONRECURSIVE

[RETURNS (returns-descriptor)];

entry-name
A 1- to 31-character label for the entry point. Specifying the entry name
declares the name as an entry constant. The scope of the name is external
if the ENTRY statement is contained in an external procedure, and is
internal if it is contained in an internal procedure.

parameter, ...
One or more parameters that the procedure requires at this entry point.
Each parameter specifies the name of a variable declared in the block to
which this ENTRY statement belongs. The parameters must correspond,
one to one, with arguments specified for the procedure when it is invoked
via the ENTRY statement.

For more information, see "Parameters and Arguments."

RECURSIVE or NONRECURSIVE
An option that indicates (for program documentation) that the proce­
dure will or will not be invoked recursively, that is, activated while it
is currently active. In standard PL/I, the RECURSIVE option must be
specified for a procedure to be invoked recursively. However, in VAX
PL/I, any procedure can be invoked recursively, and the RECURSIVE and
NONRECURSIVE options are ignored by the compiler.

RETURNS (returns-descriptor}
For an entry that is invoked as a function reference, an option giving the
data type attributes of the function value returned. (See also 0 RETURNS
Attribute and Option.0

) For entry points that are invoked by function
references, the RETURNS option is required; for procedures that are
invoked by CALL statements, the RETURNS option is invalid.

ENTRY Statement 297

• Restrictions
An ENTRY statement is not allowed in a begin block, in an ON-unit, or in
a DO group except for a simple DO.

For more information on entry data, see "Entry Data." For more informa­
tion on entry points, see "Procedure."

ENVIRONMENT Attribute

The ENVIRONMENT file description attribute is used in DECLARE,
OPEN, and CLOSE statements to specify options that define file charac­
teristics specific to the VMS file system and options that request special
processing not available in the standard PL/I language.

The format of the ENVIRONMENT attribute is as follows:

{ ENVIRONMENT } ENV (option, ...)

option, ...
One or more keyword options, separated by commas.

• ENVIRONMENT Attribute Optiens
The options to the ENVIRONMENT attribute, listed alphabetically below,
are described in detail in the VAX PL/I User Manual.

Limitations on Use of Options

All ENVIRONMENT options can be specified in OPEN statements. All
ENVIRONMENT options except those that require variable references can
be specified in DECLARE statements. Certain disposition options (noted
in the list) can be specified in CLOSE statements.

Specifying Values for Options

Some ENVIRONMENT options require you to specify a value. In a
DECLARE statement, you must use a literal constant to supply the value
required. In OPEN and CLOSE statements, however, you can use ex­
pressions (including but not limited to literal constants) to supply the
values.

298 ENVIRONMENT Attribute

Any option that does not require a value can optionally be specified with
a Boolean expression that indicates whether the option is to be enabled (if
true) or disabled (if false). For example:

DECLARE IFDELETE BIT(1);

OPEN FILE (XYZ) ENVIRONMENT(DELETE(IFDELETE));

This DELETE option specifies a Boolean variable whose value can be
true or false at run time. Boolean values must be specified as constants
in DECLARE statements. Boolean values can be specified as expressions
(including constants) in OPEN statements and CLOSE statements.

Summary of Options

The items with asterisks (*) are options that can be specified in a CLOSE
statement.

APPEND
BACKUP_DATE(variable-reference)
BATCH•
BLOCK_BOUNDARYJORMAT
BLOCK-10
BLOCK_SIZE(expression)
BUCKET_SIZE(expression)
CARRIAGE-RETURNJORMAT
CONTIGUOUS
CONTIGUOUS_BEST_TRY
CREATION _DATE(variable-reference)
CURRENT_pQSITION
DEF AUL T_FILE_NAME(character-expression)
DEFERRED_WRITE
DELETE•
EXPIRATION _DATE(variable-reference)
EXTENSION _SIZE(expression)
FILE-1D(variable-reference)
FILE-1D_ TO(variable-reference)
FILE-5IZE(expression)
FIXED-CONTROL -5IZE(expression)
FIXED_CONTROL-5IZE_TO(variable-reference)
FIXED_LENGTH-RECORDS
GROUP_pROTECTION(character-expression)
IGNORE_LINE_MARKS
INDEX_NUMBER(expression)
INDEXED

ENVIRONMENT Attribute 299

INITIAL _FILL
MAXIMUM-RECORD_NUMBER(expression)
MAXIMUM_RECORD_SIZE(expression)
MUL TIBLOCK_COUNT(expression)
MUL TIBUFFER_COUNT(expression)
NO_SHARE
OWNER_GROUP(expression)
OWNER-1D(expression)
OWNER_MEMBER(expression)
OWNER_pROTECTION(character-expression)
PRINTERJORMAT
READ-AHEAD
READ-CHECK
RECORD_ID_ACCESS
RETRIEVAL _poINTERS(expression)
REVISION _DATE(variable-reference)•
REWIND_ON_CLOSE•
REWIND-ON_OPEN
SCALARVARYING
SHARED_READ
SHARED_ WRITE
SPOOL•
SUPERSEDE
SYSTEM_pROTECTION(character-expression)
TEMPORARY
TRUNCATE
USER_OPEN(entry-name)
WORLD_pROTECTION(character-expression)
WRITE-BEHIND
WRITE_CHECK

%ERROR Statement

The %ERROR statement provides a diagnostic error message during
program compilation. The format of the %ERROR statement is as follows:

%ERROR preprocessor-expression;

300 %ERROR Statement

preprocessor-expression
A maximum of 64 characters giving the text of the error message to be
displayed. Messages of more than 64 characters are truncated.

• Returned Message
The message displayed by %ERROR is as follows:

%PLIG-E-USERDIAG, preprocessor-expression

Compilation errors that result in the display of the %ERROR statement
increment the informational diagnostic count displayed in the compilation
summary, and inhibit production of an object file.

For further information on preprocessor diagnostic messages, see "User­
Generated Diagnostic Messages."

ERROR Preprocessor Built-In Function

The ERROR preprocessor built-in function returns the number of pre­
processor diagnostic error messages issued during compilation up to that
particular point in the source program. The format for the ERROR built-in
function is as follows:

ERROR();

The function returns a fixed-point result representing the number of
compile-time warning messages that were issued up until the point at
which the built-in function was encountered.

Error and Condition Handling

All error conditions that occur during the execution of PL/I run-time
procedures cause the program to be interrupted and a signal to be sent
that indicates the type of error, or condition, that occurred.

When an error is signaled, PL/I attempts to locate a user-written pro­
gram unit, called an ON-unit, to handle the condition. An ON-unit is
established for a specific condition by means of an ON statement. If no
ON-unit exists for a specific condition, PL/I performs a default action,
which in most cases results in the termination of the program.

Error and Condition Handling 301

PL/I conditions have language keywords or ON condition names. For
example, the keyword ENDFILE is the name of the condition that is
signaled when an end-of-file is encountered during an input operation.
Thus, a program could handle an end-of-file condition for a given file as
follows:

DECLARE INFILE FILE RECORD INPUT;

ON ENDFILE (INFILE) GOTO LAST;

OPEN FILE (INFILE);

For details on condition handling, see HON Conditions and ON-Units." For
additional information on end-of-file handling, see "ENDFILE Condition
Name."

ERROR Condition Na111e

The ERROR condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate an error condition or ON-unit.

PL/I signals the ERROR condition in the following contexts:

• When a condition occurs for which the default PL/I action is to signal
ERROR

• When the SIGNAL ERROR statement signals the condition

• When there is a default PL/I ON-unit and a condition is signaled for
which there is no corresponding ON-unit

When any condition is signaled for which no specific ON-unit is estab­
lished, the default PL/I action for all conditions except ENDPAGE is to
signal the ERROR condition.

When any ON-unit is executed, the ON-unit can reference the built-in
function ONCODE. This function returns the numeric condition value
associated with the specific error that signaled the condition.

• ON-Unit Completion
If an ERROR ON-unit does not handle the condition, the program is
terminated at the completion of the ON-unit.

For more information, see HON Conditions and ON-Units0 and 0 0N
Statement." For more details on condition handling in the VMS environ­
ment, see the VAX PL/I User Manual.

302 ERROR Condition Name

EVERY Built-In Function

The EVERY built-in function determines whether every bit in a bit string is
'l'B. In other words, it performs a logical AND operation on the elements
of the bit string. The format of an assignment statement using the EVERY
built-in function is as follows:

bit-flag= EVERY(bit-string)

The function returns the value 'l 'B if all bits in the bit-string argument are
'l 'B. It returns 'O'B if one or more bits in the argument are 'O'B or if the
argument is the null bit string.

EXCLUSIVE OR Operator

The EXCLUSIVE OR operator (infix or dyadic A) causes a bit-by-bit
comparison of two bit-string operands. If the two operands are not of
equal length, the shorter is padded with Os until it is the same length as
the other, and this length is also the length of the result. If either of two
corresponding bits is 1 and the other is 0, the result is 1. If both are l, or
if both are 0, the result is 0.

All relational expressions result in bit strings of length 1, and they can
therefore be used as operands in an EXCLUSIVE OR operation.

The result of the EXCLUSIVE OR operation is a bit-string value. For
example:

DECLARE (BITA, BITB, BITC) BIT (4);
BITA = '0011'B;
BITB = '1011 'B;
BITC • BITA - BITB;

The resulting value of BITC is 'lOOO'B.

The EXCLUSIVE OR operator can be used to test whether one and only
one of the expressions in an IF statement is true. For example:

IF (A> 0) - (B > 0) THEN ...

See also "Logical Operator" and "OR Operator."

EXCLUSIVE OR Operator 303

EXP Built-In Function

The EXP built-in function returns a floating-point value that is the base e
to the power of an arithmetic expression x. The computation is performed
in floating point. The format of the function is as follows:

EXP(x)

Exponentiation

Expression

304 Expression

Double asterisks (••) indicate exponentiation in an expression; the result
is the value of the first operand raised to the power of the second operand.
Both operands must have arithmetic data types.

• Cenversien at Operands
If the second operand is not a decimal integer constant, both operands are
converted to FLOAT BINARY.

• Precisien at the Result
If the operation is expressed as X**Y, and if y is a positive integer constant,
the following rules apply to the result precision based on the data type of
x and the value of y:

• Where xis FIXED (p,q) and ((p + 1) * y - 1) <= 31, the result has the
fixed precision (p + 1) * y - 1, and the scale factor q * y.

• In all other cases, the operands are converted to floating point as
described above. The result is a floating-point binary value whose
precision is the maximum precision of the converted operands.

An expression is a representation of a value or of the computation of
a value. In a PL/I program, you can use expressions for the following
purposes:

• To indicate constant values or scalar variables, as in the following
statements:

J. = 66;
NJ.ME • I HECTOR I ;

B " J.;

• To perform algebraic or logical calculations on variables or constants,
as in the following statements:

B = A + 10;
C = A + B * 40;
B = -A;
COMMON • A t B;

• To compare the values of two or more expressions and obtain a
Boolean result, as in the following statements:

IF A < B THEN C = 10;
IF NAME = SAVED_NAME THEN GOTO REPEAT;

• To concatenate character- or bit-string values, as in the following
statement:

NAME• FIRST_NAMEllLAST_NAME;

All expressions except simple constants and references consist of an
operator and one or more operands. Each operator requires operands
of specific types (either arithmetic, character string, or bit string) and
produces a result of a specific type. The operands can be constants,
variable references, function references, or other expressions, as long as
they are objects of the type required by the operator.

Built-in functions can also be considered operators in this sense, and their
arguments, operands.

All PL/I expressions and functions have scalar results.

Arithmetic expressions must have arithmetic operands. See N Arithmetic
Operators," "Addition," "Subtraction," NMultiplication," "Division," and
HExponentiation."

Logical expressions must have bit-string operands, and all logical expres­
sions have bit-string results. See "Logical Operator."

Relational, or comparative, expressions must have two operands of
the same type. All relational expressions have Boolean results of type
BIT(l), where 'O'B signifies "false" and 'l'B signifies "true." See "Relational
Operator."

Concatenation expressions must have two string operands of the same
type (bit or character). The result is a string of the operands' type. See
"Concatenation Operator."

Expression 305

306 Expression

• Expression Evaluation and Precedence of Operations
The following rules, when applicable, determine the order in which
expressions are evaluated. When none of these rules apply, expressions
can be evaluated in any order (not necessarily from left to right).

• Some PL/I operators take precedence over others used in the same
expression. Operations with higher priority are evaluated first, and
their results are used as single operands. The rules of precedence
usually guarantee an algebraically correct result without the use
of parentheses. All built-in functions are of equal priority. See
"Operator" for a table listing the priorities of PL/I operators.

• Any expression can be enclosed in parentheses to override the usual
rules of precedence. Expressions at the deepest level of nested paren­
theses are always evaluated first, and their results are used as single
operands.

• Exponential operations of the form A* *B **Care evaluated from right
to left.

• The run-time evaluation of a logical expression can be terminated as
soon as its result is known. For instance:

A t USER_FUNCTION(ALPHA,BETA)

Evaluation of this expression can be terminated without the USER_
FUNCTION reference being evaluated if the evaluation of A results
in a "false" Boolean value. (However, the evaluation of A might not
occur first, because the order of evaluations is not guaranteed in AND
operations. To ensure that the first operand is evaluated first, use &:,
which is the AND THEN operator, instead of &. See 0 AND Operator"
and 0 AND THEN Operator.")

• If a function referenced in an expression executes a nonlocal GOTO
statement, the expression is not evaluated further.

• Conversion of Operands in Arithmetic Operations
This section applies only to arithmetic operations, which must always have
arithmetic operands. (However, see also "Built-In Conversion Functions,"
below.)

Even though arithmetic operands can be of different arithmetic types, all
operations must actually be performed on objects of the same type. Any
set of operands of different arithmetic types has an associated derived
type, as follows:

• If any operand has the attribute BINARY, the derived base is BINARY.
Otherwise, the derived base is DECIMAL.

• If any operand has the attribute FLOAT, the derived scale is FLOAT.
Otherwise, the derived scale is FIXED.

Table E-1 gives the derived data type for two arithmetic operands of
different types. (Note that the types derived from FIXED DECIMAL in
Table E-1 are also derived when one operand is pictured.)

Table E-1: Derived Types
Type of Operand 1 Type of Operand 2 Derived Type

FIXED BINARY FLOAT BINARY FLOAT BINARY

FIXED BINARY FLOAT DECIMAL FLOAT BINARY

FIXED DECIMAL FLOAT DECIMAL FLOAT DECIMAL

FIXED DECIMAL FLOAT BINARY FLOAT BINARY

FIXED BINARY FIXED DECIMAL FIXED BINARY

Table E-2 gives the precision resulting from the conversion of an operand
to its derived type. The values p and q are known as the converted
precision of an operand and are based on the values p and q of the source
operand.

Table E-2: Converted Precision as a Function of Target and Source
Attributes

Target
Data Decimal Fixed Binary Float Decimal Float
Type Binary Fixed Source1 Source1 Source1 Source1

Binary p min(ceil(p•3.32)+1,31) not applicable not applicable
scale factor:q scale factor: not applicable not applicable

Fixed min(ceil(q•3.32),31)

Decimal min(ceil(p/3.32)+1,31) p not applicable not applicable
Fixed scale factor: scale factor:q not applicable not applicable

max(O,min(ceil(q•3.32),31))

1 The constant 3.32 is an approximation of log2(10), the number of bits required to represent a decimal digit.

Expression 307

Table E-2 (Cont.): Converted Precision as a Function of Target and Source
Attributes

Target
Data
Type

Decimal Fixed
Binary Fixed Source1 Source1

Binary Float
Source1

Decimal Float
Source1

Binary min(p,113) min(ceil(p•3.32),113) p min(ceil(p•3.32),113)

Float

Decimal min(ceil(p/3.32),34)
Float

min(p,34) min(ceil(p/3.32),34) p

1 The constant 3.32 is an approximation of log2(10), the number of bits required to represent a decimal digit.

308 Expression

All arithmetic operations except exponentiation are performed in the
derived type of the two operands. Note that the two converted operands,
although they have the same derived base and scale, might have different
values for p and q, as shown by Table E-2. Exponential operations are
performed in a data type that is based on the derived type of the operands;
for details, see uExponentiation."

All operations, including exponentiation, have results of the same type as
the type in which the operations are performed. The precision and scale
factor of the result differ depending on the operation being performed.
For details, see n Addition," 0 Subtraction, n °Multiplication," 0 Division,"
"Exponentiation," 0 Built-In Function," or the entry on an individual built-in
function.

When the result of an arithmetic operation is assigned to a target vari­
able, the target variable can be of any computational type. The result is
converted to the target type, following the rules given in uconversion of
Data."

• Canversian af Operands in Nanarithmetic Operations
As operations must be performed on operands of the same type, the
following conversions are performed when operands do not match in
nonarithmetic operations:

• PICTURE is converted to CHARACTER.

• DECIMAL is converted to CHARACTER.

• FIXED BINARY is converted to BIT.

• If either operand is CHARACTER, after other conversions have been
performed, the noncharacter operand is converted to CHARACTER.

A warning message is issued about a conversion in a concatenation
expression, except for picture to character.

• Built-In Conversion Functions
The built-in conversion functions FLOAT, FIXED, BINARY, and DECIMAL
can take arguments that are either arithmetic or string expressions. These
functions are often used to convert an operand to the type required in a
certain context-for instance, to convert a bit string to an arithmetic value
for use as an arithmetic operand.

For the purpose of these functions, and for use in a few other contexts,
derived arithmetic attributes are defined for bit- and character-string
expressions: the derived type of a bit string is fixed-point binary, and the
derived type of a character string is fixed-point decimal. The converted
precision of both of these derived types is 31.

These derived attributes are used to determine the precision of values
returned by the conversion functions if no precision is specified in the
functions' argument lists. The value of a string argument must also be
convertible to the result type; for instance, 'l.333' is convertible to an
arithmetic type, but 'XYZ' is not. For more information, see nconversion
of Data" and the entries on the FLOAT, FIXED, BINARY, and DECIMAL
built-in functions.

EXTEND Built-In Subroutine

The EXTEND built-in subroutine allows a file to be extended by a specified
number of blocks. See the VAX PL/I User Manual for more information.

EXTEND Built-In Subroutine 309

Extent

An extent gives a length or dimension of a variable. The rules for specify­
ing extents apply to the length of a character-string or bit-string variable,
the size of an area, and the dimensions of an array. The length of a char­
acter string or a bit string is the number of characters or bits of its value.
The dimensions of an array are expressed in terms of bounds. The rules
for specifying extents are as follows:

• If an extent is specified in a static variable declaration, the extent must
be specified as an integer constant or as a restricted integer expression
(see 0 Restricted Expression").

• If an extent is specified in the declaration of a parameter, in a parame­
ter descriptor, or in a returns descriptor, you can specify the extent as
an integer constant, as a restricted integer expression, or as an asterisk
(•). If one dimension of an array is specified with an asterisk, all
dimensions must be specified with asterisks.

• If the extent is specified for an automatic, based, controlled, or defined
variable, you can specify it as an integer constant or as an expression.

• The maximum value that can be specified for an extent is 229bytes.

EXTERNAL Attribute

The EXTERNAL attribute declares an external name, that is, a name whose
value can be known to blocks outside the block in which it is declared.

The format of the EXTERNAL attribute is as follows:

{ EXTERNAL }
EXT

The EXTERNAL attribute is implied by the FILE, GLOBALDEF, and
GLOBALREF attributes. EXTERNAL is also implied by declarations of
entry constants (declarations that contain the ENTRY attribute but not the
VARIABLE attribute). For variables, the EXTERNAL attribute implies the
STATIC attribute.

310 EXTERNAL Attribute

• Restrictions
The EXTERNAL attribute directly conflicts with the AUTOMATIC, BASED,
and DEFINED attributes.

The EXTERNAL attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

The EXTERNAL attribute is invalid for variables that are the parameters of
a procedure.

If a variable is declared as EXTERNAL STATIC INITIAL, all blocks that
declare the variable must initialize the variable with the same value.

External Procedure
An external procedure is one whose text is not contained within another
procedure. An external procedure must be explicitly declared with the
ENTRY attribute before it can be invoked or referenced.

See "Procedure."

External Variable
An external variable provides a way for external procedures to share
common data. All declarations that refer to an external variable must also
declare the variable with the attribute EXTERNAL and with identical data
type attributes. Figure E-1 illustrates how procedures can use external
variables.

The VMS Linker allows more control than does PL/I over the definition
and allocation of external variables. With the GLOBALDEF attribute, you
can define the allocation and initialization of an external variable in a
single module. Other PL/I modules can then declare the variable with the
GLOBALREF attribute and with no INITIAL attribute.

Further control is provided by the VALUE attribute, which can be used
in conjunction with GLOBALDEF and GLOBALREF. A variable declared
in this way is actually a constant whose value is used immediately in
instructions generated by the compiler.

For more information, see "GLOBALDEF Attribute," "GLOBALREF
Attribute," and "VALUE Attribute." For more information on the use
of the linker, see the VAX PL/I User Manual.

External Variable 311

Figure E-1: External Variables

Block activation created when
the mam program is executed

APPLIC

Storage for static and static [lT
external variables ~ r~--F-LA_G_s_~-

312 External Variable

APPLIC PROCEDURE OPTIONS(MAIN):
DECLARE FLAGS BIT(64) ALIGNED EXTERNAL:

CALL READY;
END:

READY: PROCEDURE:
DECLARE FLAGS BIT (64) ALIGNED EXTERNAL:

READY

t

A reference to FLAGS m either procedure
is resolved to the same storage
locat1on when these procedures are linked.

Block activation created when
READY IS mvoked

ZK-1288-83

F

F Format Item

The F format item describes the representation of a fixed- or floating-point
value as a decimal fixed-point number in a stream.

The form of the item is as follows:

F(w[,d])

w
A nonnegative integer or expression that specifies the total width in
characters of the field in the stream.

d
A nonnegative integer or expression with a value less than or equal to 31
that specifies the number of fractional digits in the stream representation.

The interpretation of the F format item on input and output is given
below. For a general discussion of format items, see "Format Item."

• Input with GET EDIT
Used with GET EDIT, the F format item acquires a fixed-point decimal
value from the next w characters in the stream and assigns it to an input
target of any computational type. Fixed-point decimal values can be
represented in the stream in the following forms:

number
sign number

The number is a fixed-point decimal constant, and the sign is a plus (+) or
minus (-) symbol.

F Format Item 313

The following are valid representations:

124333
-123333
-123.333

An ERROR condition is signaled if the field is not blank and does not
contain a valid representation; otherwise, the fixed-point decimal number
is extracted from the field and is assigned to the input target, with any
necessary conversions. A decimal point included in the number overrides
the specification of d. If no decimal point is included, d specifies the
number of fractional digits. If d is omitted, it is assumed to be zero.

The value w should be only large enough to include the number, the
optional decimal point in the number, and the optional sign. If w is too
small, the stream representation is truncated on the right. If w is too large,
extra characters, which might include invalid syntax, are acquired.

If w is zero, a null character string is converted and assigned to the input
target, and no operation is performed on the stream.

Spaces can precede or follow the number in the stream and are ignored. If
the entire string contains spaces or is a null string, the fixed-point decimal
constant 0 is converted and assigned to the input target.

• Output with PUT EDIT
Used in a PUT EDIT statement, the F format item converts an output
source of any computational type to one of the following forms for
representation in the stream:

integer
integer. fractional-digits
-integer. fractional-digits

Typical representations are as follows:

3234
0.23432
3.33
-3234.33

The decimal value is rounded before being written out. If d is omitted
from the format item, the decimal point is not shown, and only the
integral part of the number is shown.

314 F Format Item

If d is larger than the number of fractional digits to be output, trailing
zeros are appended to the output number. All leading zeros to the left of
the decimal point are suppressed unless the integral part of the number is
zero, in which case one zero appears to the left of the decimal point.

To account for negative values with fractional digits, the specified width
integer should be 2 greater than the number of digits to be represented:
one character for the preceding minus sign and one for the decimal point
in the number.

If the number's representation is shorter than the specified field, the
representation is right-justified in the field, and the number is extended on
the left with spaces.

If the field is too narrow to represent the integral portion of the output
number, an ERROR condition is signaled.

•Examples
The tables below show the relationship between the internal and external
representations of numbers that are read or written with the F format item.

Input Examples
The 0 input stream" shown in this table is a field of characters beginning at
the current position in the stream and continuing to the right. The target
type is the type of the variable to which the input value is assigned.

Format Item Input Stream Target Type Target Value

F(10,2) -123466. 78 ... DECIMAL(10,2) -123466.78

F(10,4) -1234.66789 ... DECIMAL(10,2) -1234.66

F(8,6) - . 123466789 ... DECIMAL(6,6) -0.12346

F(10) 1234.66789 ... FLOAT DEC(7) 1.234668E+03

Output Examples
The output source value shown in this table is either a constant or the
value of a variable that is written out with the associated format item.

F Format Item 315

Output Source Value Format Item Output Value

-12.234 F(3,0) -12

-12.234 F(6,2) -12.23

-12.234 F(7,3) -12.234

-1.23466E3 F(8) 444-1235

-1.23466E3 F(8,2) -1234.66

'1000'83 F(4) 4612

'1000000000000000'8 F(6) 32768

'100000'83 F(6) 32768

'ABCEDF'B4 F(10) 4411269616

%FATAL Statement

The %FATAL statement provides a diagnostic fatal message during pro­
gram compilation. The format of the %FATAL statement is as follows:

%FAT AL preprocessor-expression;

preprocessor-expression
The text of the fatal message you want displayed. The text is a character
string with a maximum length of 64 characters. It is truncated if necessary.

• Returned Message
The message displayed by %FATAL is as follows:

XPLIG-F-USERDIAG, preprocessor-expression

Compilation errors that result in a fatal error terminate compilation after
the message is displayed.

For further information on preprocessor diagnostic messages, see "User­
Generated Diagnostic Messages."

316 %FATAL Statement

File

A PL/I file is a source of input data or a target for output data. All 1/0
operations must specify the name of the PL/I file on which the operation
is to be performed; the name of a PL/I file is declared in a DECLARE
statement. When a file is opened, it must also be associated with an
external, or physical, file or device.

PL/I provides two distinct types of 1/0 processing, each of which handles
input and output data in a different manner, and each of which has a
unique set of 1/0 statements. These types of 1/0 are as follows:

• Stream (the GET and PUT statements)
• Record (the READ, WRITE, DELETE, and REWRITE statements)

When a file is read or written with stream 1/0, the data is treated as
if it formed a continuous stream. Individual fields of data within the
stream are delimited by commas, spaces, and record boundaries. A stream
1/0 statement specifies one or more fields to be processed in a single
operation.

When a file is read or written with record 1/0, however, a single record is
processed upon the execution of an 1/0 statement.

The following subsections discuss 1/0 concepts that apply to both
stream and record 1/0. Additional details on each of these forms of
1/0 can be found under the entries "Stream Input/Output" and "Record
Input/Output."

• File Declarations
A file declaration specifies an identifier, the FILE attribute, and one or
more file description attributes that describe the type of 1/0 operation that
will be used to process the file.

A file is denoted in an 1/0 statement by the FILE option as follows:

FILE(file-reference)

File 317

31'8 File

file-reference
The name specified in the file's declaration. For example:

DECURE INFILE FILE SEQUENTIAL INPUT;
OPEN FILE(INFILE);

Here, INFILE is the name of a file constant. A file constant is an identifier
declared with the FILE attribute and without the VARIABLE attribute.
Except for the default file constants SYSIN and SYSPRINT, all files must
be declared before they can be opened and used.

By default, all file constants have the EXTERNAL attribute. Any external
procedure that declares the identifier with the FILE attribute and without
the INTERNAL attribute can access the same file constant and, therefore,
the same physical file.

• File Variables
In PL/I, you can also refer to files using file variables and file-valued
functions. For example:

DECURE ANYFILE FILE VARI.ABLE;

ANYFILE a INFILE;
OPEN FILE(ANYFILE);

If INFILE is declared as in this example, the OPEN statement opens the
file INFILE.

A file variable can also be given a value by receiving a file constant passed
as an argument or by receiving a file constant as the value of a function.
For example:

GETFILE: PROCEDURE (PRINTFILE);
DECLARE PRINTFILE FILE VARI.ABLE;

This file variable is given a value when the procedure GETFILE is invoked.

FILE Attribute

File Data

The FILE attribute declares a file constant or file variable.

The FILE attribute is implied by any of the following file description
attributes:

DIRECT

ENVIRONMENT

INPUT

KEYED

OUTPUT

PRINT

RECORD

SEQUENTIAL

STREAM

UPDATE

If the VARIABLE attribute is not specified, the FILE attribute declares a
file constant. If the INTERNAL attribute is not specified, the file has the
EXTERNAL attribute by default. All external declarations of a file constant
are associated with the same file.

• Restrictions
The FILE attribute conflicts with all other data type attributes. If the FILE
attribute is used to declare a variable or parameter, no file description
attributes may be specified. If the VARIABLE attribute is not specified, no
storage class attributes are allowed.

A PL/I file, or file constant, is represented by a file control block. A file
control block is an internal data structure maintained by PL/I.

A file variable is represented internally as a longword that contains
a pointer to a file control block. The value of the file variable, when
evaluated, is the address of the file control block for the file with which
the variable is currently associated.

No conversions are defined between file data and other data types. A file
variable can be assigned only the value of a file constant or the value of
another file variable. The only operations that are valid for file data are
comparisons for equality (=) and inequality (A=).

File Data 319

File Description Attributes and Options

The operations that can be performed on an open file depend on both the
attributes of the file and the physical organization of the file or device that
is associated with the PL/I file constant.

You can specify attributes for a file constant in its declaration or its open­
ing. The file description attributes specified in the DECLARE statement
for a file are permanent attributes. The file description attributes used
in a particular opening of a file are obtained by temporarily merging the
permanent attributes and attributes specified at the opening. For example:

DECLARE TAPEIO FILE RECORD;
OPEN FILE(TAPEIO) OUTPUT;

Here the DECLARE statement specifies that a permanent attribute of the
file is RECORD; that is, it will be processed with record 1/0 statements.
The OPEN statement temporarily adds the attribute OUTPUT to the file's
description.

See "Opening a File" for the rules governing the merging of attributes dur­
ing file opening. Implications of using a specific file description attribute
are given under the entry for that attribute.

The file description attributes are summarized in Table F-1. These at­
tributes can be specified on DECLARE and OPEN statements.

Table F-1: Summary of File Description Attributes
Attribute

DIRECT

INPUT

KEYED

OUTPUT

PRINT

RECORD

SEQUENTIAL

STREAM

UPDATE

Description

Records in the file will be accessed randomly.

The file is an input file and will only be read.

Records in the file will be accessed by key.

The file is an output file and will only be written.

The file will be output on a printer or terminal.

The file will be accessed with record 1/0 statements.

Records in the file will be accessed sequentially.

The file will be accessed with stream 1/0 statements.

The file will be accessed for both reading and writing, and
records can be rewritten and deleted.

320 File Description Attributes and Options

• File Access Modes
Most file description attributes relate to the way in which a file will
be used, for example, whether it will be an input or an output file, or
whether it will be used for record or stream 1/0. Table F-2 shows the
valid combinations of access modes for files and the relationship of each
combination to the file organizations supported by VAX PL/I.

Table F-2: File Access Attributes

Attributes
Specified

PRINT

STREAM
INPUT

Attributes
Implied

STREAM
OUTPUT

Valid Devices
and File
Organizations

Any output device
or file except
indexed

Any input device
or file except
indexed

Usage

Individual data values are written with
PUT statements that convert the values
to character strings and automatically
format the strings into lines, or records.
A PUT statement can fill part or all of
one or more lines. Data conversion and
alignment within lines can use the default
processing provided by the PUT LIST form
of the PUT statement or can be explicitly
controlled by format specifications in the
PUT EDIT form of the PUT statement.
The output fields can be aligned to specific
tab positions.

The P AGESIZE and LINESIZE options
can be specified to control the formatting
of lines on pages. The ENDP AGE condi­
tion is signaled when the end-of-page is
reached.

Individual data items are read by GET
statements. A single GET statement
can process all or part of one or more
lines or records. The format of an input
field can be determined by the default
processing provided by the GET LIST form
of the GET statement or can be explicitly
controlled by format specifications in the
GET EDIT form of the GET statement.

File Description Attributes and Options 321

Table F-2 (Cont.): File Access Attributes
Valid Devices

Attributes Attributes and File
Specified Implied Organizations Usage

STREAM Any output device This form of stream output is similar to
OUTPUT or file except that provided when PRINT is specified,

indexed except that tab positioning and page
formatting are not provided. Moreover,
when string values are written with the
PUT LIST form of the PUT statement,
they are enclosed in apostrophes. Files
that are created with these attributes can
be read back in with GET LIST statements
when the file is opened with the STREAM
and INPUT attributes.

SEQUENTIAL RECORD Any output device Records can be added to the end of the
OUTPUT or file except file with WRITE statements. Each WRITE

indexed statement adds a single record to the file.

SEQUENTIAL RECORD Any input device Records in the file are read with READ
INPUT or file statements. Each statement reads a single

record.

SEQUENTIAL RECORD Relative, READ statements read a file's records in
UPDATE indexed, order. PL/I maintains the current record,

sequential disk1 which is the record just read. This record
can be replaced in a REWRITE2 statement.
In a relative or indexed sequential file, the
current record can also be deleted with
a DELETE statement. Each statement
processes a single record.

DIRECT KEYED Relative, WRITE statements insert records into the
OUTPUT RECORD indexed, file at positions specified by keys. Each

sequential disk1 statement inserts a single record.

DIRECT KEYED Relative, READ statements specify records to be
INPUT RECORD indexed, read randomly by key. Each statement

sequential disk1 reads a single record.

1 The file must have fixed-length records.

2The record being rewritten must have the same length as the record read.

322 File Description Attributes and Options

Table F-2 (Cont.): File Access Attributes
Valid Devices

Attributes Attributes and File
Specified Implied Organizations Usage

DIRECT KEYED Relative, READ, WRITE, and REWRITE statements
UPDATE RECORD indexed, specify records randomly by key. In a

sequential disk 1 relative or indexed file, records can also be
deleted by key.

KEYED RECORD Relative, WRITE statements insert records into the
SEQUENTIAL indexed, file at positions specified by keys. Each
OUTPUT sequential disk1 statement inserts a single record. This

mode is identical to DIRECT OUTPUT.

KEYED RECORD Relative, READ statements access records in the file
SEQUENTIAL indexed, randomly by key or sequentially.
INPUT sequential disk1

KEYED RECORD Relative, Any record I/O operation is allowed
SEQUENTIAL indexed, except a WRITE statement that does not
UPDATE sequential disk1 specify a key or a DELETE statement for

a sequential disk file with fixed-length
records.

1 The file must have fixed-length records.

• Associating a PL/I File with a VMS File
The TITLE option of the OPEN statement specifies the name of the VMS
file or device that is associated with the file. The name given in the TITLE
option can be a VMS logical name or file specification, or it can be a PL/I
variable whose value represents a VMS logical name or file specification.
For example:

OPEN FILE (TAPEIO) TITLE('MT:');

This TITLE option specifies a magnetic tape device. See "TITLE Option."
See the VAX PL/I User Manual for additional information on file naming
and logical names.

File Description Attributes and Options 323

FILE Option

• ENVIRONMENT Options
The ENVIRONMENT attribute can be used to specify properties of a file
that are unique within the context of the VMS operating system. For
example, you use the ENVIRONMENT attribute to specify the format of
records in a file, the maximum record number for a relative file, and so
on. You need to specify the ENVIRONMENT attribute only when you
wish to take. advantage of some special feature of the VMS file system, for
example, if you want to define the number of buffers to be used on I/O
operations, or if the defaults applied to new files when they are created
are not satisfactory.

For a list of these options, see NENVIRONMENT Attribute." See the VAX
PL/I User Manual for complete details on the meanings of the options.

The FILE option is specified in a stream or record I/O statement to
designate the file upon which an operation is to be performed. The
FILE option is required on all I/O operations, except the GET and PUT
statements, that access the default file constants SYSIN and SYSPRINT.
The FILE option has the following format:

FILE (file-reference)

file-reference
A reference to an identifier declared as a file constant, a scalar reference to
a variable with the FILE attribute, or a function that returns a file value.

File Organization

A file organization defines the manner in which the data in a record
file is arranged. VAX Record Management Services (RMS) supports the
following kinds of file organization:

• Sequential-contains records that are arranged in serial order
• Relative-contains numbered records that can be accessed by specify­

ing the number

• Indexed sequential-contains records that have one or more key fields
and indexes that provide access to the records by key specification

324 File Organization

Operations on these files are normally performed with record 1/0 state­
ments. Stream 1/0 statements can be used for any of these files in which
all of the data is ASCII. Operations on files of each type are described
individually below. For a general discussion of the access modes that can
be applied to each file organization, see NFile Description Attributes and
Options."

For complete details and examples of using various file organizations in
VAX PL/I, see the VAX PL/I User Manual.

• Sequential Files
In VAX PL/I, the term Nsequential file" applies to the physical organization
of the records in the file, and not to the manner in which the records are
accessed. The records can contain ASCII or non-ASCII data and can be
accessed with record or stream I/O statements.

The records in a sequential file can have any of the following record
formats:

• Variable length

• Fixed length
• Variable length with a fixed-length control area

In a sequential file with variable-length records, records may or may not
be of the same length. This is the default record format for sequential files.
You can optionally specify the maximum length of a record by using the
ENVIRONMENT option MAX.IMUM-RECORD_SIZE. In the following
example, a file VAR__FILE is created with variable-length records having a
maximum length of 80 characters:

DECLARE VAR_FILE FILE RECORD OUTPUT
ENVIRONMENT (MAIIMUM_RECORD_SIZE(80));

To create a sequential file with fixed-length records, you must specify the
ENVIRONMENT options FIXED-LENGTH-RECORDS and MAXIMUM_
RECORD_SIZE. A sequential disk file with fixed-length records can be
accessed randomly; the key is the relative record number of the record in
the file, with the first record in the file being relative record number 1.

When a file with fixed-length records is created with the SEQUENTIAL
OUTPUT attributes, records can be written randomly if the file is closed
and reopened with the KEYED and UPDATE attributes; you can write the
records either sequentially or randomly using the KEYFROM option to
specify the relative record number of each record to be written.

File Organization 325

Note, however, that when a WRITE statement writes record n, RMS
allocates all records in the file up to record n, but does not have a way to
determine whether the record is empty (as is the case for relative files).
To output a record that is 0 empty" in a file, you must use a REWRITE
statement rather than a WRITE statement.

For example:

OPEN FILE(SEQFILE) KEYED OUTPUT /• create sequential file •/
ENV(FIXED_LENGTH_RECORDS,

MAXIMUM_RECORD_SIZE(BO));
WRITE FILE(SEQFILE) FROM(SEQREC) KEYFROM(100); /•record 100 •/
REWRITE FILE(SEQFILE) FROM(SEQREC) KEYFROM(6); /•record 6 •/

To create a file of variable-length records with a fixed-length control area,
use the ENVIRONMENT option FIXED-CONTROL _SIZE and specify
the length in bytes of the control area. Note that this length becomes a
permanent attribute of the file and cannot be changed. If you also specify
the maximum record length, this maximum applies to the data portion of
a record and does not include the fixed-length control area. For example:

DECLARE VFC_FILE FILE RECORD ENVIRONMENT (
MAXIMUM_RECORD_SIZE (260),
FIXED_CONTROL_SIZE (2));

For further discussion of the record formats, see the VAX PL/I User
Manual.

• Relative Files
A relative file contains a set of numbered records with numbers between 1
and a maximum record number. A relative file has a fixed-length slot for
each possible record number; not all slots need be filled at any one time.
The size of each slot is set to the length of the maximum record size when
the file is created.

Each record in the file has a unique number. Inserting and deleting
records does not change the numbers of the other records.

You can access records randomly or sequentially. Random access of a
given record is performed by specifying the record number as a key in the
KEY or KEYFROM option of a record I/O statement.

When a relative file is created, you can specify the maximum number of
records that can be written to the file with the ENVIRONMENT option
MAXIMUM-RECORD_NUMBER. If no maximum number is specified,
there is no maximum; that is, the file can be of any size and the record
numbers are not checked when new records are added.

326 File Organization

When you create a relative file by opening it with the attributes KEYED
OUTPUT, you must specify the KEYFROM option on each WRITE state­
ment that outputs a record to the file, even if you are writing the records
sequentially.

To write records sequentially to a relative file without specifying a
KEYFROM option on each WRITE, you must create the file by open-
ing it with the KEYED OUTPUT attributes, close the file, and then reopen
it with the SEQUENTIAL and UPDATE attributes. Then, you can use
WRITE statements to write records to the file sequentially and omit the
KEYFROM option.

For example:

OPEN FILE(RELFILE) KEYED OUTPUT; /* create relative file •/
CLOSE FILE(RELFILE); /•close it•/
OPEN FILE(RELFILE) SEQL UPDATE; /• reopen with UPDATE •/
WRITE FILE(RELFILE) FROM(MYREC); /•write record 1 •/

• Indexed Sequential Files
An indexed sequential file contains records that have a specifically defined
structure and indexes. The structure of all records in the file is defined in
terms of one or more key fields, each of which has a position in the record
and a data type; no two records can have the same primary key. The key
fields are determined when the file is created.

The file has an index for each key field. You can access records in the file
randomly by specifying a KEY or KEYFROM option that gives the value of
a key. For example:

READ FILE(F) KEY('ABC') INTO (X);

This READ statement reads the record from the file F that has the charac­
ter string ABC in the key field of the record.

In an 1/0 operation, PL/I automatically converts a key value specified in
an 1/0 statement to the data type of the key value in the record.

When records in a file have more than one key field or index, there are a
primary index and a number of alternate indexes. In the alternate indexes,
but not the primary, duplicate instances of the same key are allowed.
For example, in a key of names and addresses, a zip code field could be
defined as an alternate key. Many records could have the same value in
the zip code key field.

File Organization 327

The keys are numbered; the primary index is always numbered 0. To
specify the index by which the record is to be located, you specify the
INDEX_NUMBER option. For example:

READ FILE(F) KEY(12) INTO(X)
OPTIONS (INDEX_NUMBER(2));

Here, the READ statement uses the index numbered 2; the record with a
key of 12 in this alternate index field is transferred into the variable X.

The INDEX-NUMBER option is necessary only to change indexes during
file processing. By default, each operation uses the same index that was
used for the most recent operation on the file. When a file is initially
opened or when a WRITE statement specifies a KEYFROM option, the
index number is set to the primary index, 0.

To access an indexed sequentiar file in PL/I, you can specify random or
sequential access, or both. When an indexed sequential file is accessed
sequentially, records are read based on the key values of the current index
number.

If an index with alternate keys contains duplicate key values in the alter­
nate keys, a random READ or DELETE operation accesses the first such
record with the specified key. (You can then use sequential processing to
access the records with duplicate keys.) Records are always inserted into
an indexed sequential file based on the value of the primary key; thus,
records that have duplicate alternate keys are inserted without respect to
the values of the alternate keys.

FINISH Condition Name

The FINISH condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate a FINISH condition or a FINISH ON-unit.

PL/I signals the FINISH condition in the following contexts:

• When any procedure in the program executes the STOP statement

• When a procedure that specifies OPTIONS(MAIN) executes a
RETURN statement, or, if the procedure does not execute a RETURN
statement, when its corresponding END statement is executed

• When a program exits as a result of a call to the system proce­
dure SYS$EXIT or SYS$FORCEX (Force Exit), or as a result of an
interruption by an external CTRL key function

• When the SIGNAL FINISH statement signals the condition

328 FINISH Condition Name

The ways in which a PL/I program can be caused to exit in the VMS
environment are described in the VAX PL/I User Manual.

• ON-Unit Completion
If a FINISH ON-unit that executes as a result of a SIGNAL FINISH
statement does not execute a nonlocal GOTO statement, control returns to
the statement following SIGNAL FINISH. If the FINISH ON-unit executes
as a result of any of the other three causes listed above, the program
terminates.

For more information, see HON Conditions and ON-UnitsH and HON
Statement."

FIXED Attribute

The FIXED attribute indicates that the variable so declared is an arithmetic
value with a fixed number of fractional digits. Such variables are called
fixed-point (as opposed to floating-point) variables because the decimal
point is fixed relative to the representation of the value.

When you specify the FIXED attribute in a DECLARE statement, you can
specify either the BINARY or the DECIMAL attribute to indicate a binary
or decimal fixed-point variable. You can specify the precision, which is
the number of decimal or binary digits used to represent values of the
variable. With fixed-point data, you can also specify a scale factor that
indicates how much of the precision is to be used for fractional digits. For
example, the attributes FIXED BINARY(31,5) define a variable that takes
fixed-point binary values of up to a maximum of 31 bits, 5 of which are
fractional. The attributes FIXED DECIMAL(l0,2) define a variable that
takes fixed-point decimal values of up to 10 decimal digits, 2 of which
are fractional. PL/I supplies default attributes for attributes that you do
not specify (as shown in the table below and tables in other entries on
attributes).

Ordinarily, you use fixed-point binary data to represent integers.
However, you can also use fixed-point decimal data, which can repre­
sent larger absolute values. The precision of a fixed-point binary variable
must be in the range 1 through 31. See HFixed-Point Binary Data."

You use fixed-point data whenever arithmetic values must be precise to a
specified number of fractional digits. For a fixed-point decimal value, the
precision must be in the range 1 through 31 (decimal digits). The scale
factor, if specified, must be greater than or equal to zero and less than or
equal to the specified precision.

FIXED Attribute 329

Fixed-point binary data follows the same precision rules as fixed-point
decimal data, but the scale factor can be in the range -31 through 31.

If the scale factor is omitted, zero is used (that is, an integer variable is
declared). See #Fixed-Point Decimal Data."

The default values given for unspecified related attributes follow:

Attributes Specified

FIXED

FIXED BINARY

FIXED DECIMAL

• Restrictiens

Defaults Supplied

BINARY (31,0)

(31,0)

(10,0)

The FIXED attribute directly conflicts with all data type attributes except
BINARY and DECIMAL.

FIXED Built-In Function

The FIXED built-in function converts an arithmetic or string expression
x to a fixed-point arithmetic value with a specified precision p and,
optionally, a scale factor q.

The format of the function is as follows:

FIXED(x,p[,q])

p
The number of bits used to represent the arithmetic value. The precision
must be greater than zero and less than or equal to 31.

q
An integer in the range 0 through 31 for decimal data, and in the range
-31 through 31 for binary data. If q is omitted, it is assumed to be zero.
The scale factor q must be less than or equal to the specified precision.

330 FIXED Built-In Function

• Returned Value
The result type is fixed-point binary or decimal, depending on whether
x is binary or decimal. (If x is a bit string, the result type is fixed-point
binary; if xis a character string, the result type is fixed-point decimal.)

The expression x is converted to a value v of the result type, following
the PL/I rules (see HConversion of Data"). The returned value is v with
precision p and scale factor q. If q is omitted, the returned value has
the converted precision of x and a scale factor of zero (see "Expression").
FIXEDOVERFLOW is signaled if appropriate.

Fixed-Point Binary Data

The attributes FIXED BINARY are used to declare binary data in PL/I. The
BINARY attribute is implied by FIXED. The format of a declaration of a
single fixed-point binary variable is as follows:

DECLARE identifier FIXED [BINARY] [(precision[,scale-factor])];

identifier
The name used to refer to the variable.

precision
An integer in the range 1 through 31, giving the number of bits used to
represent values of the variable. If you do not supply the precision, the
default is 31. Depending on the precision you specify, either 8 bits (a
byte), 16 bits (a word), or 32 bits (a longword) are allocated; the high­
order bit represents the sign of a value. See "Precision Attribute" for
further details.

scale-factor
An integer in the range -31 through 31, giving the number of bits used to
represent the fractional values of the variable. If you do not supply a scale
factor, the default is zero. The scale factor must be less than or equal to
the specified precision. See "Scale Attribute" for further details.

Fixed-Point Binary Data 331

Because fixed binary variables have a maximum precision of 31, fixed
binary integers can have values only in the range -2,147,483,648 through
2,147,483,647. An attempt to calculate a binary integer outside this range,
in a context that requires an integer value, signals the FIXEDOVERFLOW
condition.

There is no form for a fixed-point binary constant, although constants of
other computational types are convertible to fixed-point binary. A fixed­
point binary variable usually receives given values by being assigned to
an expression of another computational type or another fixed-point binary
variable. See uConstant" and "Conversion of Data."

Figure F-1 shows the internal representation of fixed-point binary data.
Storage for fixed-point binary variables is always allocated in a byte, word,
or longword. For any fixed-point binary value:

• If pis in the range 1 through 7, a byte is allocated.
• If p is in the range 8 through 15, a word is allocated.
• If p is in the range 16 through 31, a longword is allocated.

The binary digits of the stored value go from right to left in order of
increasing significance; for example, bit 6 of a FIXED BINARY(7) value is
the most significant bit, and bit 0 is the least signficant.

In all cases, the high-order bit (7, 15, or 31) represents the sign.

332 Fixed-Point Binary Data

Figure F-1: Internal Representation of Fixed-Point Binary
Data

sign

7 0

For a fixed binary value,
Byte

PL/I allocates as much
space as is required to sign
contain the value based

1sj on the number of bits 14 0
needed.

Word

f9" 0

I Longword

30129

ZK-1301-83

Fixed-Point Decimal Data

Fixed-point decimal data is used in calculations where exact decimal
values must be maintained, for example, in financial applications. You
can also use fixed-point decimal data with a scale factor of zero wherever
integer data is required.

This discussion is divided into the following parts:

• Constants
• Variables
• Use in expressions

• Internal representation

Fixed-Point Decimal Data 333

• Fixed-Point Decimal Constants
A fixed-point decimal constant can have one or more of the decimal digits
0 through 9 with an optional decimal point and optional sign. ff there
is no decimal point, PL/I assumes that the decimal point is immediately
to the right of the rightmost digit. Following are some examples of
fixed-point decimal constants:

12
4.66
12346.64
-2
.0004
01.

The precision (p) of a fixed-point decimal value is the total number of
digits in the value. The scale factor (q) is the number of digits to the right
of the decimal point, if any.

• Fixed-Point Decimal Variables
The format of a declaration of a single fixed-point decimal variable is as
follows:

DECLARE identifier [FIXED] DECIMAL [(p[,q])];

identifier
The name to be used for the variable.

p
An integer constant giving the total number of decimal digits used to
represent values of the variable. The maximum precision is 31, and the
value must be in the range 1 through 31.

q
An integer constant giving the number of fractional digits in values of the
variable. The value must be in the range 0 through p.

If you omit p and q, the default values are 10 for p and 0 for q.

Following are some examples of fixed-point decimal declarations:

DECLARE PERCENTAGE FIXED DECIMAL (6,2);
DECLARE TONNAGE FIXED DECIMAL (9);

334 Fixed-Point Decimal Data

• Use in Expressions
You cannot use fixed-point decimal data with a nonzero scale factor in
calculations with binary integer variables. If you must use the two types
of data together, use the DECIMAL built-in function to convert the binary
value to a scaled decimal value before attempting an arithmetic operation.
For example:

DECLARE I FIXED BINARY,
SUM FIXED DECIMAL (10,2);

SUM= SUM+ DECIMAL (I);

• Internal Representation of Fixed-Point Decimal Data

Fixed-point decimal data is stored in packed decimal format. Each digit is
stored in a half-byte, as illustrated in the following figure. Bits 0 through
3 of the last half-byte contain a value indicating the sign. Normally, the
hexadecimal value 'C' indicates a positive value and the hexadecimal value
'D' indicates a negative value.

7 4 3 0

digit1 digit2

digit3 digit4

... sign

ZK-1289-83

FIXEDOVERFLOW Condition Name

The FIXEDOVERFLOW condition name (which can be abbreviated to
FOFL) can be specified in an ON, SIGNAL, or REVERT statement to
designate a fixed overflow condition or ON-unit.

PL/I signals the FIXEDOVERFLOW condition in the following circum­
stances:

• When the result of an arithmetic operation on a fixed-point decimal
or binary integer value exceeds the maximum precision of the VAX
hardware. The maximum precision allowed for a fixed-point decimal
or binary value is 31.

FIXEDOVERFLOW Condition Name 335

• When the source value of a fixed-point expression exceeds
the precision of the target variable. For example, PL/I signals
FIXEDOVERFLOW when a value that is not in the range -128 through
127 is assigned to a fixed-point binary variable with a precision of 7
bits. Similarly, the condition is signaled if a value assigned to a pic­
ture variable has more integral digits than are specified by the picture
specification.

The value resulting from an operation that causes this condition is unde­
fined.

• Value of ONCODE
There are two VAX hardware exceptions that result in the
FIXEDOVERFLOW condition. These are 55$-DECOVF (for a fixed-point
decimal overflow) and SS$--1NTOVF (for a fixed-point binary integer
overflow). An ON-unit that receives control when FIXEDOVERFLOW is
signaled can reference the ONCODE built-in function to determine which
condition is actually signaled.

To define an ON-unit to respond specifically to either of these errors, use
the VAXCONDITION condition name. For details on using the ONCODE
built-in function and VAXCONDITION, see the VAX PL/I User Manual.

• ON-Unit Completion
If the ON-unit does not transfer control elsewhere in the program, control
returns to the point at which the condition was signaled.

For more information, see 0 0N Conditions and ON-Units" and NON
Statement."

FLOAT Attribute

The FLOAT attribute indicates that a variable is a floating-point arithmetic
item.

When you specify the FLOAT attribute in a DECLARE statement, you
can specify either the BINARY or the DECIMAL attribute, and you can
specify the precision. For a floating-point binary variable, the precision
can be in the range 1 through 113; for a floating-point decimal variable,
the precision can be in the range 1 through 34.

336 FLOAT Attribute

The default values given for unspecified related attributes are as follows:

Attributes Specified

FLOAT

FLOAT BINARY

FLOAT DECIMAL

• Restrictions

Defaults Supplied

BINARY (24)

(24)

(7)

The FLOAT attribute directly conflicts with all data type attributes except
BINARY and DECIMAL.

FLOAT Built-In Function

The FLOAT built-in function converts a string or arithmetic expression x
to floating point, with a specified precision p. The precision p must be
an integer constant that is greater than zero and less than or equal to the
maximum precision of the result type (34 for floating-point decimal, 113
for floating-point binary).

If x is a character string, it can contain any series of characters that
describes a valid arithmetic constant. That is, the character string can
contain any of the numeric digits 0 through 9, a plus (+)or minus (-)
sign, a decimal point (.), and the letter E. If the character string contains
any invalid characters, the CONVERSION condition is signaled.

The format of the function is as follows:

FLOAT(x,p)

• Returned Value
The result type is floating-point binary or decimal, depending on whether
x is a binary or decimal expression. (If x is a bit-string expression, the
result type is floating-point binary; if x is a character-string expression, the
result type is floating-point decimal.)

The expression x is converted to a value of the result type, following the
PL/I conversion rules (see "Conversion of Data"), and of the specified
precision; UNDERFLOW or OVERFLOW is signaled if appropriate.

FLOAT Built-In Function 337

Floating-Point Data

The floating-point data types provide a way to express very large and very
small numbers, for example, in scientific calculations.

All floating-point calculations are performed on values in one of the VAX
binary floating-point formats. In general, the precision of the result is
determined by the maximum precision of any operands in the operation.
The numerical result of an operation is rounded to the result precision, so
the results of most operations are approximate.

This discussion of floating-point data is divided into the following parts:

• Constants
• Variables
• Use in expressions
• GJLOAT and HJLOAT support
• Floating-point data formats
• Internal representation of floating-point data

•Constants
A floating-point constant can have one or more of the decimal digits 0
through 9 with an optional decimal point, followed by the letter E and
one to five decimal digits representing a power of 10. The floating-point
value and the integer exponent can both be signed. The first portion of
the value, to the left of the letter E, is called the mantissa.

Following are some examples of floating-point constants:

2E10
-SES
32E-8
.45632E16

The decimal precision of each of these values is the number of digits in
the mantissa.

In VAX PL/I, all floating-point constants are decimal.

338 Floating-Point Data

•Variables
The keyword FLOAT identifies a floating-point variable in a declaration.
To declare a single floating-point binary variable, specify a DECLARE
statement as follows:

DECLARE identifier FLOAT [BINARY] ((p)];

identifier
The name to be used for the variable.

p
The precision of the variable, that is, the number of digits to be maintained
in the mantissa. The precision must be an integer constant in the range
1 through 113. If you do not specify a precision, PL/I uses the default
precision of 24.

To declare a decimal floating-point variable, use the following format:

DECLARE identifier FLOAT DECIMAL ((p)];

identifier
The name to be used for the variable.

p
The decimal precision, which must be an integer constant in the range 1
through 34. If you omit the precision, the default precision is 7.

Following are some examples of floating-point variables:

DECLARES FLOAT BINARY (16);
DECLARE I FLOAT DECIMAL (30);

Note that you can use either BINARY or DECIMAL to declare a floating­
point value. Because the internal representation of floating-point variables
is binary, it is recommended that you use FLOAT BINARY (which is
the default) to declare variables, unless you need the properties of FLOAT
DECIMAL. (Note that the difference between FLOAT BINARY and FLOAT
DECIMAL appears only when a conversion to another type, such as
character for doing I/O, is necessary.) In any event, you should declare
all floating-point variables using the same base.

Floating-Point Data 339

• Using Floating-Point Data in Expressions

You can use both integer and scaled decimal constants freely in floating­
point expressions because an arithmetic constant is always converted
to the appropriate internal representation for use in a floating-point
operation. The target type for the conversion depends on the context. In
the following example the constant 1.3 is converted to floating point when
the expression is evaluated:

DECLARE X FLOAT BINARY (63);
x = x + 1.3;

Such a conversion is normally done during compilation, although in some
cases the constant is maintained in decimal until run time.

• Floating-Point Data Formats
VAX PL/I supports four types of floating-point values. Table F-3 summa­
rizes the ranges of precision for each type.

Table F-3: VAX Floating-Point Types
Sign Exponent Fractional

Floating-Point Type1 Bits Bits Bits

F (single precision) 1 8 24

D (double precision) 1 8 53

G (double precision) 1 11 53

H (quadruple precision) 1 15 113

1 G- and H-floating computations can be performed with software emulation on some older processors.
In addition, floating-point hardware is optional on most MicroVAX systems. Refer to the appropriate
processor manual for more information.

The PL/I compiler selects the appropriate VAX floating-point type based
on the precision you specify and, when you want the G-floating-point
type, on a compile-time qualifier on the PLI command. The types are
selected as shown in Table F-4.

340 Floating-Point Data

Table F-4: Floating-Point Types Used by PL/I
Range of p
(DECIMAL)

1 <= p <= 7

8 <= p <= 15

16 <= p <= 34

Range of p
(BINARY)

1 <= p <= 24

25 <= p <= 53

54 <= p <= 113

Floating-Point
Type

F

Dor G1

H

1 D is used if possible unless you request G at compile time with the /G-FLOAT qualifier.

• Internal Representation af Floating-Paint Data
In all VAX floating-point formats, the value 0 is indicated when the sign
bit and all exponent bits are set to zero. In effect, this allows for the
representation of a value with a 24-bit fraction and an 8-bit exponent in
single precision, even though only 23 bits in the format are allocated for
the fraction.

The double-precision and G-floating formats as used by PL/I have the
same fractional precision; G-floating format allows an extra three bits
for the exponent. Notice that the double-precision format has 56 bits
available for the fraction, although only 53 bits are used by PL/I. If you
specify a floating-point binary precision in the range 54 to 56, and you
do not use the G_FLOAT compiler qualifier, the number is represented in
double-precision format. (If the G_FLOAT qualifier is used, numbers with
this range of precision are represented by the H-floating format.)

This small reduction in the precision of double-precision numbers is nec­
essary to keep the compiler from selecting H-floating format on machines
that lack the necessary hardware. The intent is to preserve the size of
a structure containing double-precision data regardless of whether the
G_FLOAT qualifier is used.

Floating-Point Data 341

7 6 0

exponent mantissa

mantissa

ZK-1297-83

15

fusign

4 7 6 0

I exponent l mantissa

mantissa

mantissa

mantissa

ZK-1298-83

sign

15 fu 4 3 0

I exponent }mantissa

mantissa

mantissa

mantissa

ZK-1299-83

sign

15 fu 0

l exponent

mantissa

mantissa

mantissa

mantissa

mantissa

mantissa

mantissa

ZK-1300-83

342 Floating-Point Data

FLOOR Built-In Function

The FLOOR built-in function returns the largest integer that is less than or
equal to an arithmetic expression x. Its format is as follows:

FLOOR(x)

• Returned Value
If x is a floating-point expression, the returned value is a floating-point
value. If xis a fixed-point expression, the returned value is a fixed-point
value with the same base as x and with the following attributes:

precision= min(31,p- q + 1)

and
scale/actor= 0

where p and q are the precision and scale factor of x.

For example:

FLOOK_DEMO: PROC OPTIONS(MAIN);
PUT LIST (FLOOR(3));
PUT LIST (FLOOR(-3.323));
PUT LIST (FLOOR(3.466E9));

END;

This program returns the following values:

3 -4 3.466E+09

FLUSH Built-In Subroutine

The FLUSH built-in subroutine is used to force all RMS buffers to be
written to the 1/0 device before the program will proceed. See the VAX
PL/I User Manual for more information.

FLUSH Built-In Subroutine 343

Format Item

In PL/I, formatted input and output data is transferred with the GET EDIT
and PUT EDIT statements, which include a format specification made up
of format items.

PL/I format items are categorized as follows:

• The data format items, A, B, E, F, and P, are used for input or output
of data in various formats. A and B are used for character- and
bit-string formats, respectively. E and F are used for floating- and
fixed-point formats, respectively. Pis used for input or output of data
in a specified picture format. All data format items can be used with
either the FILE or the STRING option in edit-directed statements.

• The remote format item, R, is used to specify the label of a FORMAT
statement, which contains a remote list of format items.

• The control format items, SKIP, LINE, PAGE, TAB, COLUMN, and X,
are used to control the position in the input or output stream at which
data is placed or from which it is· acquired. Of the control format
items, only X can be used with the STRING option in edit-directed
statements.

Arguments for all format items, except picture (P) and remote (R), can be
integer expressions.

The PL/I format items are summarized in Table F-5, and their general
uses are discussed in this entry. Each format item also has its own entry
in this manual; for example, see 0 A Format Item."

Table F-6: Summary of PL/I Format Items
Format Item

A[(w)]

B[(w)]

344 Format Item

Use

With GET EDIT, reads w characters from the input stream; with PUT
EDIT, converts the value to be output to a w-character string and
outputs the resulting string.

With GET EDIT, reads w binary digits (Os and ls) from the input
stream; with PUT EDIT, the corresponding value converts to a
character string of length w, containing Os and ls, and writes it to
the output stream. The B format item is equivalent to Bl.

Table F-5 (Cont.): Summary of PL/I Format Items
Format Item Use

Bl((w)] With GET EDIT, reads a character string of length w composed
of the characters 0 and 1 from the input stream; with PUT EDIT,
the corresponding value converts to a character string of length w,
containing Os and ls, and writes it to the output stream.

B2((w)] With GET EDIT, reads a character string of length w composed of
the characters 0, 1, 2, and 3 from the input stream and converts it
to a bit string; with PUT EDIT, converts w 2-bit fields within the
corresponding value to one of the characters 0, 1, 2, or 3, and writes
the w-character string to the output stream.

B3((w)] With GET EDIT, reads a character string of length w composed of
the characters 0, 1, 2, 3, 4, 5, 6, 7 from the input stream and converts
it to a bit string; with PUT EDIT, converts w 3-bit fields within the
corresponding value to a string of the characters 0, 1, 2, 3, 4, 5, 6, or
7, and writes the w-character string to the output stream.

B4((w)] With GET EDIT, reads a character string of length w composed of
the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, or F from
the input stream; with PUT EDIT, converts w 4-bit fields within the
corresponding value to a string of the characters 0 through F, and
writes the w-character string to the output stream.

COLUMN(position) With GET EDIT, specifies the position at which reading of data is to
proceed; with PUT EDIT, outputs spaces up to the specified column
position. Can be used with files only.

E(w[,d]) With GET EDIT, converts a field of w characters from the input
stream to a floating-point number; with PUT EDIT, converts a value
to a w-character floating-point representation with d fractional digits
in the mantissa, and writes the w-character string to the output
stream.

F(w(,d]) With GET EDIT, converts a field of w characters from the input
stream to a fixed-point value; with PUT EDIT, converts a value to
a w-character fixed-point representation with d fractional digits, and
writes the w-character string to the output stream.

LINE(number) Valid for print files only. Specifies a line number, relative to the top
of the page, at which output is to continue.

Format Item 345

Table F-5 (Cont.): Summary of PL/I Format Items
Format Item

P'picture'

PAGE

R(label)

SKIP[(linecount))

TAB((n))

X[(n)]

346 Format Item

Use

With GET EDIT, acquires a character string from stream whose
length is specified by the picture specification, and signals ERROR
if the string is not a pictured value; with PUT EDIT, converts an
expression to a pictured value as specified by the picture, and writes
the pictured value to the output stream.

Valid for print files only. Specifies that output is to be continued at
the top of the next page.

Indicates that format items are to be acquired from the FORMAT
statement at the specified label.

With GET EDIT, continues reading after linecount lines; with PUT
EDIT, outputs linecount blank lines and continues output. Can be
used with files only.

Valid for print files only. Continues output at the nth tab stop
relative to the current position.

With GET EDIT, ignores n characters in the input stream; with PUT
EDIT, places n spaces in the output stream. Can be used with either
files or character strings.

• Data Format Items
The data format items refer to a field of characters in the stream. Each
data format item specifies the field width in characters and either the
manner in which the field is used to represent a value (output) or the
manner in which the characters in the field are to be interpreted (input).
Because the representation or interpretation is under control of the format
items, certain symbols used in the stream with GET LIST and PUT LIST
are not used with GET EDIT or PUT EDIT:

• Strings input by the GET EDIT statement should not be enclosed in
apostrophes unless the apostrophes are intended to be part of the
string. Strings output by PUT EDIT are not enclosed in apostrophes.

• Bit strings input by the GET EDIT statement should not be enclosed
in apostrophes, nor should they be followed by the radix factor B, Bl,
B2, B3, or B4. These factors are not added by the PUT EDIT statement
on output.

• The comma and space characters are not interpreted as data separators
on input. On output, values are not automatically separated by spaces.

The following guidelines apply to errors and mismatches that occur
between the actual data values and the fields specified by data format
items:

• On input, the ERROR condition is signaled if the field of characters
cannot be interpreted as required by the format item.

• On output, strings are left-justified in the specified field, and numeric
data is right-justified. Truncation occurs if the field is too narrow to
contain the necessary characters; strings are truncated on the right and
numeric data on the left.

• Format Specifications
In the GET EDIT, PUT EDIT, and FORMAT statements, format items are
used singly or in combination to create format specifications. The syntax
of a format specification is as follows:

{
format-item }
iteration-factor format-item
iteration-factor(format-specification, ...)

The iteration factor is an integer or an integer expression that repeats
the following format item or the following list of format specifications.
Expressions must be enclosed in parentheses. If an integer iteration factor
precedes a single format item that is not in parentheses, the iteration factor
and the format item must be separated by a space. For example:

PUT EDIT (A) (F(5,2));

This statement specifies a 5-character field containing decimal digits, two
of which are fractional. Used by itself as a format specification, this item
specifies one such field. To specify two such fields, precede the item with
the iteration factor 2:

PUT EDIT (A,B) (2 F(5,2));

An iteration factor can also repeat an entire list of format specifications:

PUT EDIT ((A(I) DO I = 1 TO 10)) /• 10 array elements •/
(2(F(5,2),2(F(7,2),E(8)))); /• 10 format items •/

Expanded into individual format items, this specification looks like this:

F(5,2),F(7,2),E(8),F(7,2),E(8),F(5,2),F(7,2),E(8),F(7,2),E(8)

Format Item 34 7

If an expression is used as the iteration factor, it must be enclosed in
parentheses, but does not require spaces. For example:

PUT EDIT (A) ((Z•4)F(5,2));

In general, data listed in the GET EDIT or PUT EDIT statement is matched
to the expanded list of data format items, from left to right, until the
end of the input-target or output-source list is reached. Matching occurs
only between 1/0 data and data format items; control format items are
executed only if they are encountered while the matching is in progress.
See also "Format-Specification List."

Format-Specification List

Format-specification lists are used in GET EDIT, PUT EDIT, and FORMAT
statements to control the conversion of data between the program and
the input or output stream and to precisely control positioning within
the input or output stream. This entry describes the syntax of format­
specification lists and the manner in which a format list is processed to
acquire or transmit data.

• Rules for Use
This section briefly describes rules and constraints for format-specification
lists. For a general discussion of format items, see "Format Item." Each
format item is defined in detail, for both input and output, in an individual
entry (for instance, the entry "F Format Item").

• A GET EDIT or PUT EDIT statement must include one and only
one format-specification list and also one and only one list of input
targets or output sources. The input-target or output-source list must
immediately follow the keyword EDIT and must be immediately
followed by the format-specification list.

• The same set of data format items is used for input and output. The F
and E format items are used for I/O in fixed-point and floating-point
formats, respectively. The A and B format items are used for I/O in
character-string and bit-string formats, respectively. The P format item
is used for both input and output of data, with the format specified by
a picture contained in the format item.

• Of the control format items, only X can be used when the input or
output stream is a character string.

• Unlike the statement options PAGE, LINE, and SKIP, the format items
PAGE, LINE, and SKIP are executed in the order in which they occur.

348 Format-Specification List

• How Edit-Directed Operations Are Perfor•ed
This section describes the manner in which format items are matched to
input targets or output sources. See also "Examples" at the end of this
entry.

All edit-directed input statements include the following syntax:

EDIT (input-target •...) (format-specification, ...)

All edit-directed output statements include the following syntax:

EDIT (output-source, ...) (format-specification, ...)

format-specification
One of the following:

• A single control or data format item.

• A construct containing an iteration factor followed by one or more
format items (for an explanation of iteration factors, see °Format
Item").

• An R format item, which specifies the label of a FORMAT statement.
In effect, the entire format-specification list in the FORMAT statement
is acquired and inserted at the position of the R format item.

Except for picture (P) and remote (R) format items, arguments to format
items can be integer expressions.

input-target
One of the following:

• A variable reference, which can be to a scalar or aggregate variable of
any computational data type

• A construct with the following syntax:

(input-target, ... DO reference=expression[TO expression]
[BY expression] [WHILE(expression)][UNTIL(expression)])

• A construct with the following syntax:

(input-target, ... DO reference=expression[REPEAT
expression] [WHILE (expression)][UNTIL(expression)])

Format-Specification List 349

output-source
One of the following:

• Any expression with a computational value, including references to
scalar or aggregate variables of any computational type

• A construct containing a DO specification, as shown for input targets

When PL/I performs an edit-directed operation, it examines the list of
input targets or output sources, beginning with the first in the list. If the
target or source is an array or structure or contains a DO specification, it
is expanded to form a list of individual data items; an array is expanded
in row-major order, a structure is expanded in the order of its declaration,
and items preceding a DO specification are expanded according to the DO
specification.

Within a single target or source, items at the innermost level of parenthe­
ses are processed first.

Given a list of one or more data items contained in the first target or
source, PL/I processes the data items from left to right. Beginning with
the leftmost data item, and for each subsequent item, PL/I executes format
items until the data item has been either assigned a value from the input
stream, or converted to a character representation and placed in the output
stream. Control format items are therefore executed in the order in which
they occur in the format-specification list. With the first target or source,
the execution of format items begins with the leftmost format item in
the format-specification list. If the end of the format-specification list is
reached, PL/I returns to the leftmost format item and continues.

When all items contained in the first target or source have been processed,
PL/I operates on the next target or source. The target or source is eval­
uated, and PL/I then examines the format-specification list, beginning
where the previous operation stopped.

This processing continues until all data items in the input-target or output­
source list have been processed, at which point the edit-directed statement
terminates. If this occurs while PL/I is in the middle of the list of format
items, the format items to the right are not executed.

•Examples
The following examples show typical edit-directed operations. All cases
shown are for input (GET EDIT), but the operations for PUT EDIT are
similar. The simple cases, shown first, are with input targets that are
scalar variable references. The next cases shown are with aggregate (array
and structure) references. The last cases shown are with DO specifications.

350 Format-Specification List

Scalar Variables
The following examples have input targets that are scalar variables:

GET EDIT (A,B,C,D) (A(12),F(6,2),F(6,2),A(14));

This statement acquires four values from the input stream: a 12-character
string, a 5-digit fixed-point decimal number, a 6-digit fixed-point decimal
number, and a 14-character string, and assigns these values, with any
necessary conversions, to the target variables A, B, C, and D, respectively.
(For details of the conversions to the targets' types, see "Conversion of
Data.")

GET EDIT (A,B,C,D) (A(12));

This statement acquires four 12-character strings and assigns them (with
conversions, if necessary) to the targets A, B, C, and D.

GET EDIT (A,B,C,D) (A(12), 2 F(6,2), A(14));

This statement acquires a 12-character string, two fixed-point decimal
numbers, and a 14-character string, in that order, and assigns them to A,
B, C, and D. (You can use embedded spaces in format lists, as elsewhere,
for clarity; the space between "2" and °F(5,2)" is required.)

GET EDIT (A,B,C,D,E) (2(A(12),A(14)), A(20));

This statement acquires, in order, a 12-character string, a 14-character
string, another 12-character string, another 14-character string, and a 20-
character string, and assigns the strings, in that order, to A, B, C, D, and
E.
GET EDIT (A,B,C,D,E) (2(A(12),A(14)), SKIP, A(20));

This statement performs the same operation· as in the previous example,
but acquires the 20-character string from the next line.

Aggregates
The following examples have input targets that are references to array and
structure variables:

GET EDIT (A) (2(A(12),A(14)), A(20));

A is an array of five elements or a structure with five scalar members. This
statement expands A to a list of individual data items. Then it acquires,
in order, a 12-character string, a 14-character string, another 12-character
string, another 14-character string, and a 20-character string, and assigns
the strings, in that order, to the elements A(l) through A(S) (if an array)
or to the five members of structure A in the order in which the members
are declared.

Format-Specification List 351

GET EDIT (A,B) (2(A(12),A(14)). A(20));

Both A and B are aggregates with five elements or members. For A, this
statement performs the same operation as in the previous example, and
then repeats the operation for B, using the same format list each time.
Because there are five format items specified, and the aggregates both
have five elements or members, strings of the same length are acquired for
corresponding elements of A and B.

GET EDIT (NAME) (SKIP,A(20),SKIP,A(80));

NAME is a structure declared as follows:

DECLARE 1 NAME
2 FIRST CHARACTER(20) VARYING,
2 LAST CHARACTER(80) VARYING;

This statement skips to the next line and acquires a 20-character string. It
assigns the string to NAME.FIRST. This statement skips to the next line
and acquires an 80-character string. This statement assigns that string to
NAME.LAST.

GET EDIT (A,B) (2(A(12),A(14)), SKIP, A(20));

Both A and B are 4-element arrays. From the current line, this statement
executes A(l2), A(l4), A(12), and A(14), in that order, and assigns the
results to A(l) through A(4). This statement then skips to the next line
and executes A(20), A(12), A(14), and A(l2), in that order, and assigns the
results to B(l) through B(4); the list of data items is now exhausted, so this
statement does not execute SKIP a second time.

DO Specifications
The following examples have input targets that include DO specifications.
The DO specifications control the assignment of input values to variables
that are arrays and based structures.

GET EDIT ((B(I) DO I=10 TO 4 BY -2) , B(1))
(2(A(12),A(14)), A(20));

B is a 10-element array. Notice that the parentheses surrounding the
first input target are in addition to the parentheses surrounding the
entire input-target list. This statement executes the format items A(12),
A(14), A(12), and A(14), in that order, and assigns the resulting strings
to elements B(lO), B(8), B(6), and B(4), respectively. This statement then
executes A(20) and assigns the result to B(l).

352 Format-Specification List

GET EDIT (((A(I,J) DO J=1 TO 10) DO I=1 TO 20))
(F(6) ,F(6));

A is a two-dimensional array of 20 rows and 10 columns. Two hundred
decimal integers are acquired and assigned to the array elements in the
order A(l,1), A(l,2), ... ,A(20,10). Elements with odd-numbered columns
receive 5-digit integers, and those with even-numbered columns, 6-digit
integers. Because the DO specifications specify row-major order, the same
operation is performed by the next example.

GET EDIT (A) (F(6),F(6));

Because row-major order is the default, nested DO specifications are used
to change the order in which values are assigned.

The example has the same effect as the following DO-group:

DO I = 1 TO 20;
DO J = 1 TO 10;

GET EDIT(A(I,J}) {F(6},F(6});
END;

END;

Compared with a DO construct in the input-target list, however, the use
of nested DO groups is much less efficient in execution speed. In addition,
the identical effect is not generally true for all stream I/O statements. For
instance:

GET SKIP EDIT(input-target, ...) (format-specification, ...);

This statement has different effects in the two cases. If it occurs in a pair
of nested DO groups, as shown previously, the SKIP option is executed on
each iteration of the innermost DO group. If instead the DO specifications
are in the input-target list, the SKIP option is executed only once, before
any other input processing is performed.

GET EDIT ((CURRENT->PERSON. NAME
DO CURRENT • FIRST
REPEAT CURRENT->PERSON.NEXT
WHILE {CURRENT -. NULL} })

(A{80));

CURRENT and FIRST are pointers, and PERSON is a based structure
declared as follows:

Format-Specification List 353

DECLARE/• Based structure for list elements: •/
1 PERSON BASED,

2 NEXT POINTER, /• Pointer to next element: •/
2 NAME CHARACTER(80) VARYING;

DECLARE /• NULL function and pointers to first and
current list elements: •/

NULL BUILTIN,
(FIRST.CURRENT) POINTER;

The GET EDIT statement acquires 80-character strings from the input
stream and assigns each to a list member PERSON .NAME. On the first
input operation, the string is assigned to FIRST-> PERSON.NAME. On
subsequent iterations of the DO specification, the pointer to the next
element, PERSON.NEXT, is assigned to CURRENT before the input
operation. Before each input operation, including the first, the WHILE
clause tests to determine whether the end of the queued list has been
reached (indicated by the null pointer).

The DO REPEAT construct is often used in this type of application. You
should provide a WHILE or UNTIL clause in this or any DO REPEAT con­
struct to be sure that the operation has a defined termination. However,
the WHILE or UNTIL clause is not required.

FORMAT Statement

The FORMAT statement describes a remote format-specification list to be
used by GET EDIT or PUT EDIT statements. The FORMAT statement and
remote (R) format item are useful when the same format specification is
used by a large number of GET EDIT or PUT EDIT statements, or both.
In this case, a change to the format specification can be made in the single
FORMAT statement, rather than in each GET or PUT statement.

The form of the FORMAT statement is as follows:

label: FORMAT (format-specification, ...);

label
A valid PL/I label. A label is required and is specified in the GET EDIT
or PUT EDIT statement that contains an R format item in its format­
specification list.

format-specification
A list of one or more format items that match corresponding input targets
in a GET EDIT statement, or output sources in a PUT EDIT statement. For
further information, see °Format-Specification List" and 0 Format Item."

354 FORMAT Statement

FREE Built-In Subroutine

The FREE built-in subroutine is used to free all locks associated with a
given file. This built-in subroutine is normally used in conjunction with
the extended VMS record-locking options of the READ statement. See the
VAX PL/I User Manual for more information.

FREE Statement

The FREE statement releases the storage that was allocated for a based or
controlled variable. The format of the FREE statement is as follows:

FREE free-item, ... ;

free-item

variable-reference [IN(area-reference)]

variable-reference
A reference to the based or controed variable whose storage is to be
released.

If you do not explicitly free the storage acquired by the variable, the
storage is not freed until the program terminates.

If you free a variable that is explicitly associated with a pointer, the pointer
variable becomes invalid and must not be used to reference storage.

IN(area-reference)
The specification of an area reference (for based variables) in which the
storage is to be freed. If the IN option is omitted, the variable reference
must be either implicitly or explicitly based on an offset variable with a
base area.

You cannot use the IN option in conjunction with controlled variables.

FREE Statement 355

• Examples
FREE LIST;
FREE P->INREC;

These statements release the storage acquired for the based variable LIST
and for the allocation of INREC pointed to by the pointer P.

ALLOCATE STATE SET (STATE_PTR);

FREE STATE;

This FREE statement releases the storage for the based variable STATE
and makes the value of STATEJTR undefined.

FROM Option

The FROM option is specified on a REWRITE or WRITE statement to
designate the variable whose contents are to be written to a record file.
This option has the following format:

FROM (variable-reference)

variable-reference
A reference to a variable whose contents are to be written to the record
file.

For example:

WRITE FILE (STATE_FILE) FROM (STATE_BUFFER);

This WRITE statement performs a sequential output operation to the file
STATEJILE. The contents of the variable STATE_BUFFER are used to
create a new record at the end of the file.

See "REWRITE Statement" and "WRITE Statement."

356 FROM Option

function

A function is a procedure that returns a scalar value. A function receives
control when its name is referenced in the context of an expression. There
are two types of functions:

• PL/I built-in functions

• User-written functions

The PL/I built-in functions are available in all programs and gener­
ally need not be declared. (See also uBuilt-In Function" and UBUILTIN
Attribute.")

A user-written function must do the following:

• Contain the RETURNS option on the PROCEDURE statement.

• Specify a value on the RETURN statement that terminates the pro­
cedure. The value specified must be of a data type that is valid for
conversion to the data type specified on the RETURNS option.

For example:

ADDER: PROCEDURE (I,Y) RETURNS (FLOAT);
DECLARE (I,Y) FLOAT;

RETURN (I+Y);
END;

This function has two parameters, X and Y. They are floating-point binary
variables declared within the function. When invoked by a. function
reference, this function must be passed two arguments to correspond to
these parameters. It returns a floating-point binary value representing the
sum of the arguments it is passed.

• Function Reference
The format of a function reference is as follows:

entry-name ([argument, ...])

entry-name
The name of an entry constant or variable used to invoke the function.
(See "Procedure" and "Entry Data.")

Function 3 5 7

358 Function

argument, ...
One or more arguments to be passed to the function. If specified, the ar­
guments must correspond to the parameters specified in the PROCEDURE
or ENTRY statement that identifies the entry name of the function.

Arguments must be enclosed in parentheses. Multiple arguments must be
separated by commas.

For example, you can invoke the function ADDER, discussed previously,
as follows:

TOT.AL= ADDER(5,6);

Arguments for a function must be separated by commas. An argument
can be an expression of any data type.

If a function has no parameters, you must specify a null argument list;
otherwise, the compiler treats the reference as a reference to an entry
constant. Specify a null argument list as follows:

GETDATE • TIME_STAMP();

This assignment statement contains a reference to TIME_STAMP, a func­
tion that has no parameters. This rule applies to PL/I built-in functions as
well; however, if you declare a PL/I built-in function explicitly with the
BUIL TIN attribute, you need not specify the empty argument list.

For more information, see "Built-In Function" and "Procedure."

G

GET Statement

The GET statement acquires data from an input stream, which is either
a stream file or a character-string expression. The input file can be a file
declared with the STREAM attribute or the default file SYSIN, usually
associated with the user's default input device. (See also "Terminal
Input/Output.")

This entry describes the syntax and options of GET statements. For a
detailed description of the execution of a GET statement, see "Stream
Input/Output."

The GET statement has several forms; they are summarized in Figure G-1.

GET Statement 359

Figure G-1: Forms of the GET Statement

GET EDIT (input-targea , ...) (format-specification,. ..)

[
FILE(file-reference)*]

[SKIP[(expression)]]*
[OPTIONS(option,. ..)]*

STRING(expression)*

GET LIST (input-targe1*,. ..)

[

FILE(file-reference)*]
[SKI P[(expression)]] *
[OPTIONS(option,. ..)]*

STRING(expression)*

GET [FILE(file-reference)]* SKIP [(expression)] ;

Options*
NO_ECHO
NO_FILTER
PROMPT(expression)
PURGE_ TYPE_AHEAD

*Syntax elements common to two or more forms

ZK-031-81

•GET EDIT
The GET EDIT statement acquires fields of character-string data from an
input stream, which can be a stream file or a character-string expression.
The stream file can be a declared file or the default file SYS IN. GET EDIT
converts the character strings under control of a format specification and
assigns the resulting values to a specified list of input targets (variables). It
also allows input of characters from selected positions in the input stream.

360 GET Statement

The form of the GET EDIT statement is as follows:

GET EDIT (input-target, ...) (format-specification, ...)

I FILE(file-reference) I
[SKIP[(expression)]]
[OPTIONS(option, ...)]

[STRING(expression)]
,

input-target
The names of one or more variables to be assigned values from the input
stream. Multiple input targets must be separated by commas.

An input target has one of the following forms:

reference

The reference is to a scalar or aggregate variable of any computational
type. If the reference is to an array, data is assigned to array elements
in row-major order. If the reference is to a structure, data is assigned to
structure members in the order of their declaration.

(input-target, ... DO reference=expression [TO expression]
[BY expression] [WHILE(expression)] [UNTIL(expression)])

The input target can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding this form of input target are in addition to the parentheses
surrounding the entire input list.

(input-target, ... DO reference=expression
[REPEAT expression] [WHILE (expression)] [UNTIL(expression)])

The input target can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding this form of input target are in addition to the parentheses
surrounding the entire input list.

For a discussion of the matching of format items to input targets and of
the use of DO specifications, see 0 Format-Specification List."

GET Statement 361

format-specification
A list of format items to control the conversion of data items in the input
list. You can use data format items, control format items, or remote
format items. For each variable name in the input-target list, there is
a corresponding data format item in the format-specification list that
specifies the width of the field and controls the data conversion. See
"Format-Specification List" and 0 Format Item."

FILE(file-reference)
An option specifying that the input stream is a file; the reference is to
a declared file variable or constant. If neither the FILE option nor the
STRING option is specified, PL/I assumes the file SYSIN. This file is
associated with the default system input file SYS$INPUT.

If a file is specified and is not currently open, PL/I opens it with the
attributes STREAM and INPUT. The UNDEFINEDFILE condition is
signaled if the file cannot be opened.

STRING(expression)
An option specifying that the input stream is a character-string expression.
The STRING option cannot be used with the FILE, OPTIONS, or SKIP
option.

SKIP [(expression)]
An option that advances the input file a specified number of lines before
processing the input list. This option can be used only with the implied or
explicit FILE option. If the expression is specified, it indicates the number
of lines to be advanced; if it is omitted, the default is to skip to the next
line. The SKIP option is always executed first, before any other input or
positioning of the input file, regardless of its position in the statement.

OPTIONS (option, ...)
An option that specifies one or more of the following options. This option
can be used only with the default or explicit FILE option; it cannot be used
with the STRING option. Multiple options must be separated by commas.

NO_ECHO
NOJILTER
PROMPT (string-expression)
PURGE_TYPE_AHEAD

The options are described fully in the VAX PL/I User Manual.

362 GET Statement

• Examples
GET EDIT {FIRST,MID_INITIAL,LAST)

{A{12),A{1),A{20));

This statement reads the next three character strings from the default
stream input file (SYSIN) and assigns the strings to FIRST, MID-1NITIAL,
and LAST, respectively.

GET EDIT {SOCIAL_SECURITY) {A{12))
FILE {SOCIAL) SKIP (12);

This statement opens the stream file SOCIAL if the file was closed,
advances 12 lines, reads the first 12 characters of the line, and assigns the
characters to the variable SOCIAL_SECURITY.

GET EDIT {N, {A(I) DO I=1 TO N))
{F{4),SKIP,100 F{10,6));

where the dimension of A is less than or equal to 100. This reads the
value of N from the input stream using the format item F(4). The process
then skips to the next line (record). It reads N elements into the array A,
using the format item F(l0,5) for each element.

GET EDIT {NAME.FIRST.NAME.LAST)
(A{10),X{3),A{20))
STRING{'Philip A. Rothberg I);

This statement assigns 'Philipuu' to the structure member NAME.FIRST,
skips the middle initial, period, and space, and assigns
'Rothberg4646AAAAAAAA' to NAME.LAST.

For more examples, see "Format-Specification List."

•GET LIST
The GET LIST statement acquires character-string data from an input
stream, which can be a stream file or a character-string expression. The
stream file can be a declared file or the default file SYSIN. The acquired
character strings are assigned to input targets named in the GET LIST
statement, after being converted automatically to the targets' data types.

Use the GET LIST statement to read "unformatted" data from a stream
file or character string. Because GET LIST does not require that data be
aligned in specific columns, it is useful for acquiring input from a terminal.

The form of the GET LIST statement is as follows:

GET Statement 363

GET LIST (input-target, ...)

[

FILE(file-reference) l
[SKIP[(expression)]]
[OPTIONS(option, ...)]

STRING(expression)

input-target, ...
The names of one or more variables to be assigned values from the input
stream. Multiple input targets must be separated by commas.

An input target has one of the following forms:

reference

The reference is to a scalar or aggregate variable of any computational
type. If the reference is to an array, data is assigned to array elements
in row-major order. If the reference is to a structure, data is assigned to
structure members in the order of their declaration.

(input-target,... DO reference=expression[TO expression]
[BY expression] [WHILE(expression)][UNTIL(expression)])

The input target can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding this form of input target are in addition to the parentheses
surrounding the entire input list.

(input-target,... DO reference=expression [REPEAT expression]
[WHILE (expression))[UNTIL(expression)])

The input target can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding this form of input target are in addition to the parentheses
surrounding the entire input list.

The DO specifications described for GET EDIT in the entry uFormat­
Specification List" are also applicable to GET LIST in most respects.

FILE(file-reference}
An option specifying that the input stream is a file; the reference is to
a declared file variable or constant. If neither the FILE option nor the
STRING option is specified, PL/I assumes the file SYSIN. This file is
associated with the default system input file SYS$INPUT.

364 GET Statement

If a file is specified and is not currently open, PL/I opens it with the
attributes STREAM and INPUT. The UNDEFINED FILE condition is
signaled if the file cannot be opened.

STRING(expression}
An option specifying that the input stream is a character-string expression.
The STRING option cannot be used with the FILE option, nor can it be
used with the OPTIONS or SKIP option.

Note that, as with list-directed input from a file, input fields must be
separated by a space or comma. (See 0 Examples" below.)

SKIP [(expression}]
An option that advances the input file a specified number of lines before
processing the input list. It can be used only with the implied or explicit
FILE option. If the expression is specified, it indicates the number of lines
to advance; if it is omitted, the default is to skip to the next line. The SKIP
option is always executed first, before any other input or positioning of
the input file, and regardless of its position in the statement.

OPTIONS (option, ... J
An option specifies one or more of the following options. You can use this
option only with the default or explicit FILE option; you cannot use it with
the STRING option. Multiple options must be separated by commas.

NO-ECHO
NOJILTER
PROMPT (string-expression)
PURGE_ TYPE-AHEAD

The options are described fully in the VAX PL/I User Manual.

• Specifying Input Data
The items to be read into the input targets are separated by a space or a
single comma. Multiple spaces are treated as a single space, and a comma
can be surrounded by spaces. The following rules apply:

• No items can be split across lines unless the split occurs inside a
quoted string.

• Character strings do not have to be enclosed in apostrophes unless
they contain a space or comma or are written on more than one line.
When a character string is enclosed in apostrophes, n apostrophes

GET Statement 365

within the string are written as n+ 1 apostrophes; for instance, the
word isn't would be specified as follows:

isn' 't

• When a line begins with a comma or when two commas appear in the
line without intervening nonspace characters, the item in the input­
target list corresponding to that item is not updated. The target retains
whatever value it contained before GET LIST was executed.

• Every input field, including the last input field in a line, must be
terminated by a space or a comma. On input from a terminal, a space
is appended to the last input field when a carriage return is typed
(unless ENVIRONMENT(IGNORE_LINE_MARKS) is used or the
carriage return is inside a quoted string).

• Input fields are also terminated by the end-of-file (FILE option) or
end-of-string (STRING option), unless the end is encountered inside a
quoted string.

• If an input request from GET LIST encounters a null record, the
null character string (' ') is assigned, with appropriate conversion,
to the corresponding input target. A null input record means a null
record in a file or, if the input is from a terminal, a carriage return
with no other input. See "Terminal Input/Output" for examples. If
ENVIRONMENT(IGNORE_LINE_MARKS) is used for the input file,
record terminators such as the carriage return are ignored, and the
GET LIST statement waits until the input request is satisfied.

• The ERROR condition is signaled whenever a data item in the stream
cannot be converted to the data type of the corresponding item in the
input-target list.

• The ENDFILE condition is signaled if the end of the file is encountered
during file input. The ERROR condition is signaled if the expression
in the STRING option does not contain enough characters to complete
processing of the input-target list.

•Examples
GETS: PROCEDURE OPTIONS(MAIN);

DECLARE NAME CHARACTER(SO) VARYING;
DECLARE AGE FIXED;
DECLARE (WEIGHT.HEIGHT) FIXED DECIMAL(6,2);
DECLARE SALARY PICTURE •••••••v.•••;
DECLARE DOSAGE FLOAT;

DECLARE INFILE STREAM INPUT FILE;
DECLARE OUTFILE PRINT FILE;

366 GET Statement

GET FILE(INFILE)
LIST(NAME,AGE,WEIGHT,HEIGHT,SALARY,DOSAGE);

PUT FILE(OUTFILE)
LIST(NAME,AGE,WEIGHT,HEIGHT,SALARY,DOSAGE);

END GETS;

If the file INFILE.DAT contains the following data:

'Thomas R. Dooley' ,33,160.60,6.87,16000.60,6E-6,

then the program GETS writes the following output to OUTFILE.DAT:

Thomas R. Dooley 33 160.60 5.87 $16000.60 4.0999999E-06

In the input file (INFILE.DAT), the string 'Thomas R. Dooley' is sur­
rounded by apostrophes so that the spaces between words will not be
interpreted as field separators.

GSTR: PROCEDURE OPTIONS(MAIN);

DECLARE STREXP CllARACTER(SO) VARYING;
DECLARE (A,B,C,D,E) FIXED;
DECLARE OUTFILE STREAM OUTPUT FILE;

OPEN FILE(OUTFILE) TITLE('GSTR.OUT');

STREXP = '1,2,3,4,6';
GET STRING(STREXP) LIST(A,B,C,D,E);
PUT FILE(OUTFILE) LIST(A,B,C,D,E);

END GSTR;

The program GSTR writes the following output to GSTR.OUT:

1 2 3 4 5

For other examples, see "Terminal InputfOutput.0

•GET SKIP
The GET SKIP statement positions the input file at the start of a new line.
The format of this GET statement is as follows:

GET [FILE(file-reference)] SKIP [(expression)] ;

file-reference
The name of the file to be advanced one or more lines. If no file is
specified, PL/I assumes the default file SYSIN. This file is associated with
the default system input file SYS$INPUT.

If a file is specified and is not currently opened, PL/I opens it with the
attributes STREAM and INPUT.

GET Statement 367

expression
An integer expression giving the number of lines to be advanced; the
default is one line.

GLOBALDEF Attribute

The GLOBALDEF attribute declares an external variable or an external file
constant. It can optionally control the program section in which the data
is allocated.

The format of the GLOBALDEF attribute is as follows:

GLOBALDEF [(psect-name)]

psect-name
The name of a program section. A program section name can have up
to 31 characters, which can consist of the alphanumeric characters, dollar
signs ($), and underscores (-). The first character cannot be numeric (0
through 9).

If you do not specify a program section name, PL/I places the definition
for the name in the default program section associated with the variable.

The GLOBALDEF attribute implies the EXTERNAL attribute. The
GLOBALDEF attribute also implies STATIC except when used for file
constants.

For complete details on using the GLOBALDEF attribute to declare global
external symbols, see the VAX PL/I User Manual.

• Restrictions
The GLOBALDEF attribute conflicts with the GLOBALREF and
INTERNAL attributes. GLOBALDEF cannot be used with ENTRY con­
stants.

Only one procedure in a program can declare a particular external variable
with the GLOBALDEF attribute.

368 GLOBALDEF Attribute

GLOBALREF Attribute

The GLOBALREF attribute indicates that the declared name is a global
symbol defined in an external procedure.

The GLOBALREF attribute implies the EXTERNAL attribute. The cor­
responding name must be declared in another procedure with the
GLOBALDEF attribute or, if the external procedure is written in another
programming language, with its equivalent in that language.

For complete details on using the GLOBALREF attribute to declare global
external symbols, see the VAX PL/I User Manual.

• Restrictions
The GLOBALREF attribute conflicts with the INITIAL, GLOBALDEF, and
INTERNAL attributes. If GLOBALREF is specified with the FILE attribute,
you cannot specify any other file description attributes.

%GOTO Statement

The %GOTO statement causes the preprocessor to interrupt its sequential
processing of source text and continue processing at the point specified in
the %GOTO statement. A %GOTO is useful for avoiding large segments
of text in the source program. The format of the %GOTO statement is as
follows:

%GOTO label-reference;

label-reference
A label of a preprocessor statement. The label reference determines the
point to which the compiler processing will be transferred.

Nonlocal %GOTOs are not permitted. In other words, if a %GOTO is
used within a preprocessor procedure, control must not be passed out of
the containing procedure. Also, a %GOTO must not transfer control into
a preprocessor procedure.

The following example illustrates transfers (forward and backward) and
the use of %GOTO:

%GOTO Statement 369

XTEXT:PROCEDURE RETURNS(CHARACTER);

XCHANG_TEXT: DO;

X!F WARN() = 5
%THEN

%GOTO CHANG_TEXT;

%ELSE;
1.GOTO INSERT_TEXT;

Y.INSERT_TEXT: DO;

Y.END;

Depending on the status of the %IF statement in this example, program
compilation takes one of two courses. Control is transferred either forward
to the statement labeled INSERT_TEXT or backward to the statement
labeled CHANG-TEXT. The compiled program will then include one
of the two blocks, but not both. Notice also in this example that the
preprocessor built-in function WARN is used to determine preprocessor
action, which makes the program self-diagnostic.

If program text is not compiled because the %GOTO statement transferred
control over it, the compiler still checks the basic syntax of all statements.
Therefore, comment delimiters and parentheses must balance, apostrophes
must be paired correctly, and all statements must end with a semicolon.

For more information, see "Preprocessor."

GOTO Statement

The GOTO statement causes control to be transferred to a labeled state­
ment in the current procedure or in any outer procedure. The format of
the GOTO statement is as follows:

370 GOTO Statement

{ GOTO } label-reference ;
GOTO

label-reference
A label constant or an expression that, when evaluated, yields a label
value. A label value denotes a statement in the program and a block
activation. (See "Label.")

The specified label cannot be the label of an ENTRY, FORMAT, or
PROCEDURE statement. The label reference specified in a GOTO
statement can be any of the following:

• An unsubscripted label constant. For example:

GOTO ALPHA;

ALPHA:

• A subscripted label constant, for which the subscript is specified with
an integer constant or a variable expression. For example:

GOTO PROCESS(1);

PROCESS(1):

• A label variable that, when evaluated, yields a label value. For
example:

DECLARE PROCESS LABEL VARIABLE;

PROCESS = BILLING;

GOTO PROCESS;

• A subscripted label variable that, when evaluated, yields a label value.
For example:

DECLARE X(6) LABEL;
X(1) = NEXT;

GOTO X(1);

In the case of a label variable, the resulting label value must designate an
existing block activation. (Similarly, a label constant must designate an
existing block activation.) If the designated block activation is the current
block activation, the GOTO statement causes a local GOTO. No special
processing occurs.

GOTO Statement 371

• Nonlocal GOTO
If the specified label value is not in the current block, the GOTO statement
is considered a nonlocal GOTO. The following can occur:

• The current block, and any blocks intervening between it and the
block containing the label value, are released. This rule applies both
to procedure blocks and to begin blocks.

• If a GOTO statement transfers control out of a procedure that is
invoked in a function reference, the statement containing the function
reference is not evaluated further.

See also "Procedure".

• Examples
ON ERROR GOTO ERROR_MESSAGE;

The GOTO statement provides a transfer address for the current procedure
when the ERROR condition is signaled.

DECLARE PROCESS(6) LABEL VARIABLE;

GOTO PROCESS(2);

The GOTO statement evaluates the label reference and transfers control
to the label constant corresponding to the second element of the array
PROCESS. PROCESS consists of label variables.

For more information, see "Label."

372 GOTO Statement

H

HBOUND Built-In Function

The HBOUND built-in function returns a fixed-point binary integer that is
the upper bound of an array dimension. Its format is as follows:

HBOUND(reference[,dimension])

reference
A reference to an array variable.

dimension
An integer constant indicating a dimension of the specified array. If the
dimension is not specified, the dimension parameter defaults to 1. Thus,
HBOUND(A) is equivalent to HBOUND(A,1).

See "Array" for an example.

HIGH Built-In Function

The HIGH built-in function returns a string of specified length that
consists of repeated appearances of the highest character in the collating
sequence. Its format is as follows:

HIGH(length)

length
The specified length of the returned string. The maximum length of the
returned string is 32767 characters.

• Returned String
The string returned is of the length specified. The rank of the highest
character that can appear in the collating sequence for VAX PL/I is
ASCII 255.

HIGH Built-In Function 373

I

IDENT Option

Identifier

374 Identifier

The IDENT option, used with the PROCEDURE statement, places an
identifying character string in the upper left corner of the listing file and
in the object file, thus marking the module's "version"'for the linker. The
option format is as follows:

OPTIONS(IDENT(string)[,option, ...])

string
A character-string constant giving the identifying label for the listing.
Only the first 31 characters of the string are placed in the object module.

option
Other procedure options.

An identifier is a user-supplied name for a procedure, a statement label, or
a variable that represents a data item. The rules for forming identifiers are
as follows:

• An identifier can have from 1 to 31 characters.

• An identifier can consist of any of the following characters:

The alphabetic letters A through Z and a through z. PL/I converts
all lowercase letters to uppercase when it compiles a source
program. Thus, the identifiers abc, ABC, Abe, and so on, all refer
to the same identifier.

The numeric digits 0 through 9.

The underscore character (-).

The dollar sign character ($).

• An identifier cannot contain any blanks.

• An identifier must begin with an alphabetic letter, a dollar sign ($), or
an underscore (_).

Following are some examples of valid identifiers:

STATE
total
FICA_PAID_YEAR_TO_DATE
ROUND1
SSS_UNWIND

%IF Statement

The %IF statement controls the flow of program compilation according to
the scalar bit value of a preprocessor expression. The %IF statement tests
the preprocessor expression and performs the specified action if the result
of the test is true. The format of the %IF statement is as follows:

%IF test-expression %THEN action [%ELSE action];

test-expression
Any valid preprocessor expression that yields a scalar bit value. If any bit
of the value is l, then the expression is true; otherwise, the expression is
false.

action
A single, unlabeled preprocessor statement, %DO-group, %GOTO state­
ment, or a preprocessor null statement. The specified action must not be
an %END statement.

The %IF statement evaluates the preprocessor test expression. If the ex­
pression is true, the action specified following the keyword % THEN is
compiled. Otherwise, the action, if any, following the %ELSE keyword is
compiled. In either case, compilation resumes at the first executable state­
ment following the termination of the %IF statement, unless a %GOTO in
one of the action clauses causes compilation to resume elsewhere.

If an action is not compiled because the alternative action was com-
piled instead, the compiler still checks the basic syntax of all statements.
Therefore, comment delimiters and parentheses must balance, apostrophes
must be paired correctly, and all statements must end with a semicolon.

For more information on the preprocessor, see uPreprocessor.n

%IF Statement 375

IF Statement

The IF statement tests an expression and performs a specified action if the
result of the test is true. The format of the IF statement is as follows:

IF test-expression THEN action [ELSE action];

test-expression
Any valid expression that yields a scalar bit-string value. If any bit of the
value is l, then the test expression is true; otherwise, the test expression is
false.

action
Any of the following:

• Any unlabeled statement except a DECLARE, END, ENTRY,
FORMAT, or PROCEDURE statement

• An unlabeled DO-group or begin block

The IF statement evaluates the test expression. If the expression is true,
the action specified following the keyword THEN is executed. Otherwise,
the action, if any, specified following the ELSE keyword is executed.

• Examples
IF A < B THEN BEGIN;

The begin block following this statement is executed if the value of the
variable A is less than the value of the variable B.

IF -sucCESS
THEN

CALL PRINT_ERROR;
ELSE

CALL PRINT_SUCCESS;

The IF statement defines the action to be taken if the variable SUCCESS
has a false value (the THEN clause) and the action to be taken otherwise
(the ELSE clause).

For details on the syntax of specifying expressions, see "Expression. 0

3 7 6 IF Statement

• Nested IF Statements
The action specified in a THEN or an ELSE clause can be another IF
statement.

An ELSE clause is matched with the nearest preceding IF /THEN that is
not itself matched with a preceding ELSE. For example:

IF ABC
THEN

IF XYZ
THEN

GOTO GBH;
ELSE

GOTO THESTORE;
ELSE

GOTO HOME;

In this example, the first ELSE clause is executed if ABC is true and XYZ is
false. The second ELSE clause is executed if ABC is false.

In some cases, proper matching of IF and ELSE can require a null state­
ment (a semicolon) as the target of an ELSE. For example:

IF ABC
THEN

IF IYZ
THEN

GOTO HOME;
ELSE;

ELSE
GOTO THESTORE;

In this example, the ELSE GOTO THESTORE statement is executed if
ABC is false.

%INCLUDE Statement

The %INCLUDE statement incorporates text from other files into the cur­
rent source file during compilation. It can occur anywhere in a PL/I source
file; it need not be part of a procedure. The format of the %INCLUDE
statement is as follows:

{
'file-spec' }

%INCLUDE module-name ;
'library-name(module-name)'

%INCLUDE Statement 377

file-spec
A file specification enclosed in apostrophes. The specification is subject to
logical name translation and the application of default values by the VMS
operating system.

module-name
The 1- to 31-character name of a text module in a library of included files
and/or other text modules.

library-name
The library containing the specified text module. Enclose the library
and module in apostrophes. If you do not specify the library in the
%INCLUDE statement, and if the text module is not in PLI$STARLET or
in the text library pointed to by PLI$LIBRARY, you must specify the name
of the library containing the module in the PLI compilation command.

When you include a text file or a text module from a library, you can
choose to include this INCLUDE file in the program's listing by using the
/LIST /SHOW=INCLUDE qualifiers in the PLI command line. Included
text is noted in the listing with an "I" in the column to the right of the line
numbers.

For details on the specification of files and libraries to be included in a
PL/I compilation, see the VAX PL/I User Manual.

• Examples
7.INCLUDE 'SUM.PL!';

This statement copies the contents of the file SUM.PU into the current file
during compilation.

7.INCLUDE SYSTEM_PROCEDURES;

This statement includes a module from a text module library. The library
containing the module SYSTEM_pRQCEDURES must be present in the
command that compiles this program, or the logical name PLI$LIBRARY
can point to the library that contains it.

7.INCLUDE 'PROJECT_LIBRARY(MY_MODULE)';

This statement includes module MY_MODULE from the text library
PROJECT_LIBRARY.TLB in the default directory.

• Restrictions
%INCLUDE statements can be nested up to a maximum of four levels.

378 %INCLUDE Statement

INDEX Built-In Function
INDEX Preprocessor Built-In Function

The INDEX built-in function returns a fixed-point binary integer that
indicates the position of the leftmost occurrence of a specified substring
within a string. If the substring is not found, or if the length of either
argument is zero, the INDEX function returns zero. This function is
case-sensitive.

The format of the function is as follows:

INDEX(string ,substring[,starting-position])

string
The string to be searched for the given substring. It can be either a
character-string or a bit-string expression.

substring
The substring to be located. It must have the same string data type as the
string argument.

starting-position
A positive integer in the range 1 to n+l, where n is the length of the
string. It specifies the leftmost position from which the search is to begin.
(By default, the search begins at the left end of the string.)

•Examples

1. DECLARE RESULT FIXED BINARY(31);
RESULT = INDEX (I ABCDEF I • I DEF I) ;

RESULT is given the value 4 because the substring 'DEF' begins at the
fourth position in 'ABCDEF'.

2. RESULT ,. INDEX('SHARP FORTUNE', 'R');

RESULT is given the value 4 because the leftmost occurrence of 'R' is
at the fourth position in 'SHARP FORTUNE'.

3. RESULT = INDEX('SHARP FORTUNE', 'R' ,6);

The optional starting-position parameter specifies that the search
begins at the fifth position of 'SHARP FORTUNE'. Thus, RESULT
is given the value 9: the first R is ignored, so the first recognized
occurrence of 'R' is found in the ninth position.

INDEX Preprocessor Built-In Function 379

4. NEW_STRING = '316-64-3169';
IF INDEX(NEW_STRING,'-')=4 THEN

PUT LIST('SOCIAL SECURITY NUMBER');

The INDEX function is used to determine whether or not a string is
a Social Security number. The function finds the location of the first
hyphen in the string.

%INFORM Statement

The %INFORM statement specifies a user-written diagnostic informational
message to be displayed during program compilation. The format of the
%INFORM statement is as follows:

%INFORM preprocessor-expression;

preprocessor-expression
The text of the informational message displayed. The text is a character
string of up to 64 characters. The string is truncated if necessary.

• Returned Message
The format of the message to be displayed by %INFORM is as follows:

%PLIG-l-USERDIAG, preprocessor-expression

The %INFORM statement increments the informational diagnostic count
displayed in the compilation summary.

For further information on preprocessor diagnostic messages, see "User­
Generated Diagnostic Messages."

INFORM Preprocessor Built-In Function

The INFORM preprocessor built-in function returns the number of diag­
nostic informational messages issued during compilation up to that point
in the source program. The format for the INFORM built-in function is as
follows:

INFORM();

The function returns a FIXED result representing the number of compile­
time warning messages that were issued up until the INFORM built-in
function was encountered.

380 INFORM Preprocessor Built-In Function

INITIAL Attribute

The INITIAL attribute provides an initial value for a declared variable.
The format of the INITIAL attribute is as follows:

{ INITIAL } { (initial-element[,initial-element ...]) }
INIT ((•) valid-expression)

initial-element
A construct that supplies a value for the initialized variable. The value
must be valid for assignment to the initialized variable. If the initialized
variable is an array, a list of initial elements separated by commas is used
to initialize individual elements. The number of initial elements must be
1 for a scalar variable and must not exceed the number of elements of an
array variable. Each initial element must have one of the following forms:

• string-constant
• (replication-factor) string-constant
• (iteration-factor) (string-constant)

• (iteration-factor) ((replication-factor) string-constant)
• [(iteration-factor)] arithmetic-constant
• [(iteration-factor)] scalar-reference

• [(iteration-factor)] (scalar-expression)

• [(iteration-factor)] *
The iteration factors are nonnegative integer-valued expressions that
specify the number of successive array elements to be initialized with the
following value.

An asterisk following the iteration factor specifies that the corresponding
array elements are to be skipped during the initialization.

You can use a replication factor in combination with an iteration factor in
initializing a string constant. For example, the following two statements
are equivalent:

INITIAL ((10)(1 ABCABC'))

INITIAL ((10)((2)'ABC'))

The first statement uses an iteration factor exclusively; the second state­
ment combines an iteration factor of 10 with a replication factor of 2.

INITIAL Attribute 381

Note that a string constant must be parenthesized if it is used with an
iteration factor, because this set of parentheses prevents the iteration factor
from being interpreted as a string replication factor. The initial value

INITIAL ((10)'ABC')

is interpreted as a string replication factor, not an iteration factor, and
cannot be used to initialize a whole array. (See 0 Replication Factor.")

(*) valid-expression
A construct that initializes all elements of an array to the same value
by means of the asterisk iteration factor. The expression must evaluate
to a value that is valid for assignment to the initialized array. If the
expression is a string constant, it must be parenthesized so that the
asterisk iteration factor is not interpreted as a string replication factor. The
possible expressions are as follows:

• (string-constant)
• ((replication-factor) string-constant)
• arithmetic-constant

• scalar-reference
• (scalar-expression)

• *

An asterisk following the asterisk iteration factor results in no initializa­
tions being performed.

•Examples
Following are some examples of declarations including the INITIAL
attribute:

DECLARE RATE FIXED DECIMAL (2,2) STATIC INITIAL (.04);

DECLARE SWITCH BINARY STATIC INITIAL ('1'B);

DECLARE BELL_CHAR BIN.ARY STATIC INITIAL ('07'B4);

DECLARE OUTPUT_MESSAGE CHARACTER(20) STATIC
INITIAL ('GOOD MORNING');

DECLARE (A INITIAL ('A'), B INITIAL (1 B1),

C INITIAL ('C')) STATIC CHARACTER;

DECLARE QUEUE_END POINTER STATIC INITIAL(NULL());

DECLARE X(10,6) FIXED BIN(31) INITIAL((•) -2); /*Initializes all 60
elements to -2 •/

382 INITIAL Attribute

DECLARE 1 A(10),
2 B(10),

3 C(10) FIXED BIN(31) INITIAL ((•) 4); /•Initializes all
1000 elements

DECLARE A(10) FIXED INIT ((6) 1,(6) 2);

to 4

I• Initializes the first
5 elements to 1 and
the second 5 elements
to 2 •/

Note that the following declaration is not valid, because the asterisk
iteration factor cannot be used to initialize part of an array; it can only be
used to initialize all elements of the array to the same value.

DECLARE A(10) FIXED INIT ((5) 1,(•)2);

• Restrictions

/• Invalid use of asterisk
iteration factor •/

You cannot specify the INITIAL attribute for a structure variable. You
must individually initialize the members of the structure.

You cannot specify the INITIAL attribute for a variable or member of a
structure that has any of the following attributes:

DEFINED
ENTRY
FILE
LABEL
PARAMETER
UNION

You cannot specify the INITIAL attribute for a member of a structure
unless the entire structure has the STATIC, AUTOMATIC, BASED, or
CONTROLLED attribute.

If the initialized variable is STATIC, only constants, restricted expressions,
(see "Restricted Expression") and references to the NULL or EMPTY built­
in functions are allowed. These initial values can be used with a constant
iteration factor.

Variables and functions (except for parameters) occurring in an initial
element (for automatic variables) must not be declared in the same block
as the variable being initialized.

INITIAL Attribute 383

INPUT Attribute

The INPUT file description attribute indicates that the associated file is to
be an input file; that is, the file represents an external source of data.

Specify the INPUT attribute on a DECLARE statement for a file constant
or on an OPEN statement to access the file for reading.

You can specify the INPUT attribute with either the STREAM or the
RECORD attribute. For a stream file, INPUT indicates that the file will be
accessed with GET statements. For a record file, INPUT indicates that the
file will be accessed only with READ statements.

For example:

DECLARE INFILE RECORD INPUT;

OPEN FILE(INFILE);
READ FILE(INFILE) INTO(RECORD_BUFFER);

These statements declare, open, and access the first record in the input file
INFILE.

For a description of the attributes that can be applied to files and the
effects of combinations of those attributes, see uFile Description Attributes
and Options."

The INPUT attribute can be supplied by default for a file, depending on
the context of its opening. See "Opening a File."

• Restrictions
The INPUT attribute conflicts with the OUTPUT, UPDATE, and PRINT
attributes and with any data type attribute other than FILE.

Input/Output Processing

The VAX PL/I compiler's I/O routines are independent of I/O routines for
compilers of other VMS languages. Thus, it is not possible for a routine
written in PL/I to share an input or output device with a routine written
in a different language.

PL/I provides extensive facilities for transmitting data between variables
in a PL/I program and RMS files or communication devices such as
terminals. There are two basic types of I/O in PL/I:

• Stream I/0, where the external data (which can be an RMS file or a
device) is treated as a stream of ASCII characters divided into fields

384 Input/Output Processing

delimited by spaces, tabs, or commas, or by other field specifications.
Stream I/O is performed by the GET and PUT statements. These
statements also perform conversion between the internal representa­
tion of data and the ASCII representation of the data.

• Record IJO, where an operation transmits an entire record. Record
1/0 is performed by the READ, WRITE, DELETE, and REWRITE
statements. These statements can be used to process files with the
sequential, relative, and indexed sequential file organizations.

Each of these types of I/O is described individually in this manual (see
"Stream Input/Output" and "Record Input/Output"). For an overview of
how to declare and reference files in PL/I, see the entry "File."

INT Built-In Function

The INT built-in function treats specified storage as a signed integer, and
returns the value of the integer. Its format is as follows:

INT(expression(,position(,length]])

expression
A scalar expression or reference to connected storage. This reference
cannot be an array, structure, or named constant. If position and length
are not specified, the length of the referenced storage must not exceed 32
bits. If it exceeds 32 bits, a FATAL run-time error results.

position
A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to l, signifying the first bit of storage
denoted by the expression. If specified, position must satisfy the following
condition:

1 <=position<= size(expression)

where size(expression) is the length in bits of the storage denoted by
expression. A position equal to size(expression) implies a zero-length
field.

length
An integer value in the range 0 through 32 that specifies the length of
the field. If omitted, length is the number of bits from the bit denoted

INT Built-In Function 385

by position through the end of the storage denoted by expression. If
specified, length must satisfy the following condition:

0 <=length<= size(expression) - position

where size(expression) is the length in bits of the storage denoted by
expression.

• Returned Value
The value returned by INT is of the type FIXED BINARY (31). If the field
has a length of zero, INT returns zero.

•Examples
The following example shows the use of the INT built-in function to
interpret the storage occupied by a bit string as an integer:

B16 = 10000000000001101'8;

I .. BIN(B16);
I= INT(B16);

B64 = I 5076ABCDOOOOOOOO I B4;

I= INT(B64,1,32);
I= INT(B64,33);
I = INT(B64);

I• 16-bit string •/

I• I • 13 •/
I• I = -20480 •/

I• 64-bit string •/

I• First 32 bits; I = -1277858294 •/
I• Second 32 bits; I = 0 •I
/• Field too large, run-time error •/

Notice that, unlike the BIN built-in function, the INT built-in function
performs no conversion. It simply treats the contents of the designated
storage as a signed integer. Therefore, the value returned by INT depends
on the data type (and therefore the internal representation) of the variable
occupying the storage. For example:

INTEXM: PROCEDURE OPTIONS (MAIN);

DECLARED FIXED DECIMAL (3,2),
C CHARACTER (4),
F FLOAT;

D = 2.54;
c = '2.64';
F = 2.64;

PUT SKIP LIST (INT(D),
INT(C),
INT (F));

END;

The output of this example is as follows:

19493 875900466 -1889779422

386 INT Built-In Function

INT Pseudovariable

The INT pseudovariable assigns a signed integer value to specified storage.
Its format is as follows:

INT(reference[,position[,length]]) = expression;

reference
A reference to connected storage. This reference must not be an array,
structure, or named constant. If position and length are not specified, the
length of the referenced storage must not exceed 32 bits. If it exceeds 32
bits, a FATAL run-time error results.

position
A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to l, signifying the first bit of the
storage denoted by reference. If specified, position must satisfy the
following condition:

1 <=position<= size(reference)

. where size(reference) is the length in bits of the storage denoted by
reference. A position equal to size(reference) implies a zero-length field.

length
An integer value in the range 0 through 32 that specifies the length of
the field. If omitted, length is the number of bits from the bit denoted by
position through the end of the storage denoted by reference. If specified,
length must satisfy the following condition:

0 <= length <= size(ref erence) - position

where size(reference) is the length in bits of the storage denoted by
reference.

The INT pseudovariable is valid only in an assignment statement. You
cannot use it as the target of an input statement or in other instances
where pseudovariables are normally acceptable.

The expression to be assigned to the pseudovariable is first converted
to the data type FIXED BINARY (31); then, the internal representation
of the resulting integer value is assigned to the storage specified by the
arguments to INT. If the representation of the value is too large for
assignment to the storage, the most significant bits of the integer are
removed and no error is signaled.

INT Pseudovariable 387

•Examples
DECLARE F FLOAT INITIAL (123.46);

INT(F,8,8) = 26; /*Alter the exponent */
PUT SKIP LIST (F); /*New value•/

In this example, the INT pseudovariable is used to modify the exponent
field of a floating-point variable. This example prints the following value:

9.5102418E-32

Proper interpretation of this result requires understanding of the internal
representation of floating-point numbers.

The next example demonstrates how the INT pseudovariable treats cases
in which the value is too large for the specified storage:

INTOVER: PROCEDURE OPTIONS (MAIN);

DECLARE 116 FIXED BINARY (16),
131 FIXED BINARY (31);

ON FIXEDOVERFLOW PUT SKIP LIST ('FIXEDOVERFLOW signaled');

131 = -876643; /* Too big for 116 */

116 = 131; /* Arithmetic assignment */
INT(I16) = 131; /* No error signaled */
PUT SKIP LIST (116);

END;

This example produces the following output:

FIXEDOVERFLOW signaled
-24676

The arithmetic assignment to 115 signals FIXEDOVERFLOW because
the value of 131 is outside the range of a FIXED BINARY (15) variable.
However, the assignment using the INT pseudovariable does not signal
an error; it just copies the low-order 16 bits of the value of I31 into the
storage for 115.

388 INT Pseudovariable

Integer Data

Integer data is used for values that can be expressed in integers: counters,
array subscripts, record numbers, and so on.

• Constants
An integer constant can contain one or more of the decimal digits 0
through 9 and, optionally, a sign. Some examples of integer constants are
as follows:

1
245
-88

All integer constants have fixed decimal values.

• Variables
Integer variables can be declared as fixed-point binary or fixed-point
decimal with a zero scale factor.

The format of a declaration of a fixed binary integer variable is as follows:

DECLARE identifier FIXED [BINARY] [(p)];

identifier
The name to be used for the variable.

p
An integer constant representing the precision, that is, the number of
binary digits used to represent values of the variable. The precision must
be in the range I through 31. If you do not specify a precision, PL/I uses
the default precision of 31.

Because fixed binary variables have a maximum precision of 31, fixed bi­
nary integers can have values only in the range of -2,147,483,648 through
2,147,483,647. An attempt to calculate a binary integer outside this range
in a context that requires an integer value signals the FIXEDOVERFLOW
condition.

Specify a fixed-point decimal integer variable as follows:

DECLARE identifier [FIXED] DECIMAL [(p)];

Integer Data 389

identifier
The name to be used for the variable.

p
The precision of the variable in decimal digits. The maximum precision
you can specify for a fixed-point decimal variable is 31. If you omit the
precision, 10 is the default.

For the internal representation and other details of binary and decimal
integers, see "Fixed-Point Binary Data" and "Fixed-Point Decimal Data."

INTERNAL Attribute

The INTERNAL attribute limits the scope of an identifier to the block in
which the identifier is declared and its dynamic descendents. The format
of the INTERNAL attribute is as follows:

{ INTERNAL }
INT

You need use the INTERNAL attribute only to explicitly declare the
scope of a file constant as internal. File constants, by default, have the
EXTERNAL attribute. All other variables are internal by default.

• Restrictions
The INTERNAL attribute directly conflicts with the EXTERNAL,
GLOBALDEF, and GLOBALREF attributes.

Internal Procedure

An internal procedure is a procedure contained within another procedure.
The name of the internal procedure is declared by its use as the label of
the PROCEDURE statement.

See "Procedure."

390 Internal Procedure

Internal Representation of Pl/I Data

This entry describes the internal representations used by VAX PL/I
for PL/I data types. For additional information, refer to the entries on
individual data types; for examples, see "Bit-String Data."

• Internal Representatian af Bit Data

The way that PL/I allocates storage for a bit-string variable depends on
whether the variable is declared with the ALIGNED attribute.

In this discussion, the term "most significant bit" means the leftmost bit in
an external representation of the string, as, for example, when the string
is output by the PUT LIST statement. The 0 least significant bit" is the
rightmost bit in the external representation.

Unaligned Bit Strings
An unaligned bit string is stored beginning at an arbitrary bit location in
storage; this location marks the most significant bit. The subsequent, less
significant, bits are stored in progressively higher locations in memory, as
shown here:

most significant bit

...

least significant bit

ZK-1280-83

The following programming sequence illustrates how a value for an
unaligned bit-string variable is stored:

DECLARE ABIT BIT (10);
ABIT • '1011 'B;

After the assignment, the variable appears in storage as follows:

Internal Representation of PL/I Data 391

most significant bit

• • • 0 0 0 0 0

least significant bit

ZK-1279-83

Aligned Bit Strings
PL/I allocates an integral number of bytes for an aligned bit-string vari­
able, beginning on a byte boundary. The number of bytes to be allocated
is calculated as follows:

ceil(n/8)

Here, n is the length specified for the bit string.

Beginning at bit 0 (the lowest memory location) of the lowest allocated
byte, the bit string is stored like unaligned bit-string data; that is, the
beginning bit is used to hold the most significant bit in the string. Less
significant bits are stored in progressively higher memory locations.
Unused bits are set to zero each time the bit-string variable is assigned a
value.

The representation is as follows:

most significant bit
Byte Byte

.,...
Y..

~
least significant bit

ZK-1281-83

392 Internal Representation of PL/I Data

The following programming sequence illustrates how values are stored for
aligned bit strings:

DECLARE ABIT BIT (10) ALIGNED;
ABIT = '10011'B;

In this example, the variable ABIT is aligned. When it is assigned the
value 10011, its storage appears as follows:

most significant bit
Byte 1 Byte 0

••• 000000000001 0 0 1

Unused
least significant bit

ZK-1282-83

• Internal Representation of Character Data
PL/I stores fixed-length character-string data from right to left, with each
character occupying a byte of storage, as shown here:

Byte Byte Byte Byte

c4 c3 c2 c1

cB c7 c6 cs

ZK-1285-83

For example, a character string whose value is 'CHARLIE11ALPHA'
appears as follows in storage:

Internal Representation of PL/I Data 393

Byte Byte Byte Byte

R A H c

6. E I L

H p L A

• • • A

ZK-1286-83

Varying-length strings are stored in a number of bytes equal to n+2, where
n is the declared maximum length. The two additional bytes contain, in
the first two byte addresses, the current length of the value (in bytes).

• Internal Representation of Variable Entry Data
The following figure illustrates the internal representation of variable entry
data.

394 Internal Representation of PL/I Data

31

address of procedure mask for
this entry point

parent frame pointer

0

ZK-1287-83

• lntemal Representation of File Data
A PL/I file or file constant is represented internally by a file control block.
A file control block is an internal data structure maintained by PL/I.

A file variable is represented internally as a longword that contains
a pointer to a file control block. The value of the file variable, when
evaluated, is the address of the file control block for the file with which
the variable is currently associated.

• Internal Representation of Fixed-Point Binary Data
The following figure illustrates the internal representation of fixed-point
binary data.

Internal Representation of PL/I Data 395

sign

7 6 0

Byte
For a fixed binary value,
PL/I allocates as much
space as is required to sign
contain the value based
on the number of bits 1sj 14 0
needed.

Word

fgn 0

I
Longword

30129

ZK-1301-83

Storage for fixed-point binary variables is always allocated in a byte, word,
or longword. For any fixed-point binary value:

• If the value is in the range 1 through 7, a byte is allocated.

• If the value is in the range 8 through 15, a word is allocated.

• If the value is in the range 16 through 31, a longword is allocated.

The binary digits of the stored value go from right to left in order of
increasing significance; for example, bit 6 of a FIXED BINARY(7) value is
the most significant bit and bit 0 is the least significant.

In all cases, the high-order bit (7, 15, or 31) is used for the sign.

• Internal Representation of Fixed~Point Decimal Data
Fixed decimal data is stored in packed decimal format. Each digit is stored
in a half-byte, as illustrated below. The last half-byte contains, in bits 0
through 3, a value indicating the sign. Normally, the hexadecimal value
C indicates a positive value and the hexadecimal value D indicates a
negative value.

The following figure illustrates the internal representation of fixed-point
decimal data.

396 Internal Representation of PL/I Oata

7 4 3 0

digit1 digit2

digit3 digit4

... sign

ZK-1289-83

• Internal Representation of Floating-Point Data
In all VAX floating-point formats, the value 0 is indicated by a zero sign
bit and all-zero exponent bits. Thus, for example, a value with a 24-bit
fraction and an 8-bit exponent can be represented in single-precision
format, even though only 23 bits in the format are allocated for the
fraction.

The double-precision and G-floating formats, as used by PL/I, have the
same fractional precision; G-floating format allows an extra three bits
for the exponent. Notice that the double-precision format has 56 bits
available for the fraction, although only 53 bits are used by PL/I. If you
specify a floating-point binary precision in the range 54 to 56, and you
do not use the GJLOAT compiler qualifier, the number is represented in
double-precision format. (If the GJLOAT qualifier is used, numbers with
this range of precision are represented by the H-floating format.) This
small reduction in the precision of double-precision numbers is necessary
so that the compiler does not select H-floating format on machines that
lack the necessary hardware. The intent is that the size of a structure
containing double-precision data is preserved regardless of whether the
GJLOAT qualifier is used.

The following figure illustrates the internal representation of floating-point
data.

Internal Representation of PL/I Data 397

7 6 0

exponent mantissa

mantissa

ZK-1297-83

fuign

5 7 6 0

1 exponent I mantissa

mantissa

mantissa

mantissa

ZK-1298-83

sign

15 fu 4 3 0

I exponent I mantissa

mantissa

mantissa

mantissa

ZK-1299-83

sign

15 £ 0

I exponent

mantissa

mantissa

mantissa

mantissa

mantissa

mantissa

mantissa

ZK-1300-83

398 Internal Representation of Pl/I Data

• Internal Representation of Variable Label Data
The following figure illustrates the internal representation of variable label
data.

31 0

address of label

parent frame pointer

ZK-1290-83

• Internal Representation of Painter Data
A pointer occupies a longword (32 bits) of storage and represents a virtual
memory address.

Internal Variable

INTO Option

An internal variable is a variable that is known only within the block in
which it is defined and within all contained blocks. By default, PL/I gives
all variables the internal attribute.

See NBlockn and "Scope of Names. n

The INTO option is specified in a READ statement to designate a variable
into which the contents of a record from a record file are to be copied.
This option is specified in the format as follows:

INTO (variable-reference)

variable-reference
A reference to a variable into which the contents of the record are to be
copied.

For example:

READ FILE (INFILE) INTO (RECORD_BUFFER);

INTO Option 399

This READ statement reads the next sequential record in the file INFILE
and copies the contents of the record into the variable RECORD_BUFFER.

See 0 READ Statement."

Iteration Factor

An iteration factor is a syntactical method of requesting a specific operation
or function more than once. In most cases, an iteration factor is an integer
constant that specifies the number of times a particular item is to be
repeated.

Iteration factors are allowed in the following contexts:

• Format-specification lists (see °Format-Specification Lisn
• Initialization of array elements (see 0 INITIAL Attribute" and 0 Array")
• Picture character specifications (see 0 Picture0

)

400 Iteration Factor

Key

K

A key is a value that identifies a specific record in a relative file, in a
sequential disk file with fixed-length records, or in an indexed sequential
file. The nature of the key depends on the file's organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key is a fixed binary value indicating the relative number
of the record.

• If the file is an indexed sequential file, the key specifies a key that is
contained within a record. The data type of the key and its location
within the record are as specified when the file was created.

See individual entries for the READ, WRITE, DELETE, and REWRITE
statements for details on how these statements interpret and use keys. For
details on defining key fields for the creation of an indexed sequential file,
see the VAX PL/I User Manual.

KEY Condition Name

The KEY condition name can be specified in an ON, SIGNAL, or REVERT
statement to designate a key error condition or ON-unit for a specific file.

The format of the KEY condition name is as follows:

KEY (file-reference)

'file-reference
A reference to the file constant or file variable for which the ON-unit is to
be established. If the name of a file variable is specified, the variable must
be resolved to the name of a file constant when the condition is signaled.

KEY Condition Name 401

KEY Option

402 KEY Option

PL/I signals the KEY condition during an operation on a keyed file when
an error occurs in processing a key. Some examples of errors for which
PL/I signals the KEY condition follow:

• The record indicated by the specified key cannot be found.
• The key specification requires conversion from one data type to

another and the conversion is not valid.

• The key is not correctly specified.
• The key of a relative file exceeds the maximum record number speci­

fied when the file was created.

An ON-unit established to handle the KEY condition can obtain informa­
tion about the condition by invoking the following built-in functions:

• The ONFILE built-in function returns the name of the file being
processed when the condition was signaled.

• The ONCODE built-in function returns the specific condition value
associated with the error.

• The ONKEY built-in function returns the key value that caused the
condition to be signaled.

• ON-Unit Campletion
If the ON-unit does not execute a nonlocal GOTO, control returns to
the statement immediately following the statement that caused the KEY
condition.

For more information, see "ON Conditions and ON-Units" and 0 0N
Statement. 0

The KEY option can be specified in a READ, REWRITE, or DELETE
statement to indicate a specific record in a file that is opened with the
KEYED attribute. This option is specified in the format as follows:

KEY (expression)

expression
An expression giving the key value that identifies the record of interest.

For example:

DELETE FILE (CUST_ACCT} KEY (NAME};

This DELETE statement deletes the record in the file CUST-.ACCT that
has the key value represented by the variable NAME.

KEYED Attribute

The KEYED file description attribute indicates that records in the specified
file can be accessed randomly. The KEYED attribute implies the RECORD
attribute.

Specify KEYED in a DECLARE statement to identify a file or in an OPEN
statement to open the file. For a description of the attributes that can be
applied to files and the effects of combinations of these attributes, see 0 File
Description Attributes and Options."

• Restrictions
The KEYED attribute conflicts with the STREAM attribute and with any
data type attributes other than FILE.

KEYFROM Option

The KEYFROM option can be specified in a WRITE statement to write a
record to a file opened with the KEYED attribute. The KEYFROM option
designates the key associated with the record. This option is specified in
the format as follows:

KEYFROM (expression)

expression
An expression giving the key value that indicates the record of interest.
The specified value must have one of the computational data types.

KEYFROM Option 403

For example:

WRITE FILE (EMPLOYEE_REC) FROM (EMP_DATA)
KEYFROM (EMPLOYEE_NUMBER);

This WRITE statement writes a record to the file EMPLOYEE_REC by
specifying the KEYFROM option.

See 0 WRITE Statement."

KEYTO Option

Keyword

404 Keyword

The KEYTO option can be specified in a READ statement to obtain the
key associated with a record that was read sequentially. This option is
specified in the format as follows:

KEYTO (variable-reference)

variable-reference
A reference to a computational variable to be assigned the value of the
key.

For example:

READ FILE (STATE_FILE) INTO (STATE_BUFFER)
KEYTO (SAVE_NAME);

This READ statement reads the next sequential record in the file STATE_
FILE into the variable STATE_BUFFER. The key associated with the
record that is read is copied into the variable SAVE_NAME.

See 0 READ Statement."

A keyword is a name that has a special meaning to PL/I when used in
a specific context. In PL/I, keywords identify the language elements,
including the following:

• Statements-for example, DECLARE, END, or READ
• Attributes-for example, DECIMAL, CHARACTER, or FILE
• Options-for example, KEYFROM, SKIP, or REPEAT

PL/I recognizes keywords when they appear in the correct context. You
can also use keywords as identifiers. For example:

DECLARE DECLARE FIXED BINARY (6);

In this statement, PL/I interprets the first occurrence of DECLARE as the
keyword DECLARE because of its position in the statement. It interprets
the second occurrence of DECLARE as an identifier because of its position.

• Abhreviating Keywerds
You can abbreviate some PL/I keywords. For the valid abbreviations
of PL/I keywords, see" Abbreviation,0 Appendix A, or the entry for an
individual keyword.

Keyword 405

label

406 Label

L

A label identifies a statement so that it can be referred to elsewhere in
the program, for example, as the target of a GOTO statement. A label
precedes a statement and consists of any valid identifier terminated by a
colon. Some examples are as follows:

TARGET: A = A + B;
READ_LOOP: READ FILE (TEXT) INTO (TEMP);

These statements contain the implicit declarations of the names TARGET
and READ_LOOP as label constants.

No statement can have more than one label. A statement can, however,
be preceded by any number of labeled null statements. For example:

A· .
B: DO I = 1 TO 6;

Other statements in the program can refer to the DO statement in this
example by specifying either label A or label B.

A name occurring as a statement label is implicitly declared as a label
constant. It has the attributes LABEL and constant. You cannot explicitly
declare label constants.

• Label Array Constants
Any label constant except the label of a PROCEDURE or FORMAT
statement can have a single subscript. Subscripts must be specified with
integer constants; a subscript must appear in parentheses following the
label name. For example:

PART(1):

PART(2):

When labels are written this way, the unscripted label name represents
the implicit declaration of a label array constant. In this example, the
array is named PART and is treated as if it were declared within the block
containing the subscripted labels. Elements of this array can be referenced
in GOTO statements that specify a subscript, for example:

GOTO PART(!);

where I is a variable whose value represents the subscript of the element
of PART that is the label to be given control.

Within a single block, you cannot use the same subscript value in two
different subscripted references with the same name. For example:

PART(1):

This label array constant can be used only once in a block. However, the
subscript values are not constrained to be in any particular order or to be
consecutive. For example, you can use the array constants PART(l) and
PART(3) without using PART(2).

If a name is used as a label array constant in two or more different blocks,
each declaration of the name is treated as an internal declaration. For
example:

LIST(2): RETURN;
BEGIN;

GOTO LIST (ELEMENT);
LIST(1):;
LIST(3):
END;

In this example, the value of ELEMENT cannot cause control to pass
to the RETURN statement labeled LIST(2) in the containing block. The
subscripted LIST labels in the begin block restrict the scope of the name to
that block. (See "Scope of Names" for a further illustration of the scope of
internal names.)

Label 407

408 Label

• Label Values
Whenever a reference to a label constant is interpreted, the result is a label
value. A label value has two components:

• The first component designates the statement identified by the label
constant.

• The second component designates an activation of the block in which
the label was declared (that is, to which the labeled statement be­
longs). If the label belongs to the current block, this block activation is
the current block activation. If the label belongs to a containing block,
the activation is found on the chain of parent block activations ending
with the current block. (For additional details on block activations, see
"Block.")

The GOTO statement with a label reference transfers control to the
designated statement in the designated block activation. If the target
block activation is different from the block activation in which the GOTO
statement is executed, then the GOTO is nonlocal. For example:

DECLARE LV LABEL; /• LABEL variable •/

LV = L;

BEGIN;

GOTO LV;
END;

L: RETURN;

I• assigns a bound label value to LV •/

I• nonlocal GOTO •/

Operations on label values are restricted to the operators= and A=, for
testing the equality or inequality of two values. Two values are equal if
they refer to the same statement in the same block activation.

Any reference to a label value after its block activation ceases to exist is an
error with unpredictable results.

• Preprocessor Labels
You can use labels on preprocessor statements. As with other labels
in PL/I, they are used as the target of program control statements. A
preprocessor label must be an unsubscripted label constant. The format
for a preprocessor label is as follows:

%label: preprocessor-statement;

A percent sign (%) is required before the label. The percent sign alerts
the compiler that all subsequent text, until the line is terminated with
a semicolon, is preprocessor text. Therefore, no other percent signs
are required on that line. For complete descriptions of preprocessor
statements, see the individual entries.

• Label Variables
When an identifier is explicitly declared with the LABEL attribute, it
acquires the VARIABLE attribute by default. Such a variable can be used
to denote different label values during the execution of the program. For
example:

DECLARE PROCESS LABEL;

IF CODE THEN
PROCESS = BILLING;

ELSE
PROCESS = CHARGE;

GOTO PROCESS;

When the GOTO statement evaluates the reference to the label PROCESS,
the result is the current value of the variable. The GOTO statement
transfers control to either of the labels BILLING or CHARGE, depending
on the current value of the Boolean variable CODE.

You can also give values to label variables by passing label values as ar­
guments or by returning a label value as the value of a function (although
the latter method can lead to programming errors that are difficult to
diagnose). For example:

Label 409

410 Label

CALL COMPUTER{ERROR_EXIT, YVAL, XVAL);

ERROR_EXIT:

In this example, the actual argument that is passed for ERROR-EXIT is a
dummy argument whose value consists of the following:

• The location in memory of the statement labeled ERROR-EXIT
• A pointer to the stack frame for the block in which the CALL state­

ment is executed

• Restrictions
Any statement in a PL/I program can be labeled except the following:

• A DECLARE statement
• A statement beginning an ON-unit or THEN, ELSE, WHEN, or

OTHERWISE clauses

Labels on PROCEDURE, ENTRY, and FORMAT statements are not
considered statement labels and cannot be used as the targets of GOTO
statements.

An identifier occurring as a label in a block cannot be declared in that
block (except as a structure member), and cannot occur in a parameter list
of that block.

• Internal Representation of Variable Label Data
The following figure illustrates the internal representation of variable label
data:

31 0

address of label

parent frame pointer

ZK-1290-83

LABEL Attribute

The LABEL attribute declares a label variable; it indicates that values given
to the variable will be statement labels.

• Restrictions

You cannot specify the LABEL attribute with any other data type attribute,
the INITIAL attribute, or any file description attributes.

LBOUND Built-In Function

The LBOUND built-in function returns a fixed-point binary integer that is
the lower bound of an array dimension. Its format is as follows:

LBOUND(reference[,dimension])

reference
A reference to an array variable.

dimension
An integer constant indicating the dimension of the specified array. If the
dimension is not specified, the dimension parameter defaults to 1. Thus,
LBOUND(A) is equivalent to LBOUND(A,l).

See "Array" for an example.

LEAVE Statement

The LEAVE statement causes control to be transferred out of the immedi­
ately containing DO-group or out of the containing DO-group whose label
is specified with the statement. The format of the LEAVE statement is as
follows:

LEA VE [label-reference];

label-reference
A reference to a label on a DO statement that heads a containing DO­
group. The label reference can be a label constant or a subscripted label
constant for which the subscript is specified with an integer constant. The
label reference cannot be a label variable, nor can it be a subscripted label
constant for which the subscript is specified with a variable.

LEAVE Statement 411

On execution, a LEA VE statement with no label reference causes control
to be transferred to the first statement following the END statement that
terminates the immediately containing DO-group. If the LEAVE statement
has a label, control is passed to the first executable statement following
the end statement for the corresponding label indicated in the LEAVE
statement. Thus, the LEAVE statement provides an alternative means of
terminating execution of a DO-group. In the case of a LEAVE statement
with a label reference, several nested DO-groups can be terminated as
control transfers outside the referenced DO-group.

• Restrictions
The following restrictions apply to the use of the LEAVE statement:

• A LEAVE statement must be contained within a DO-group.

• A LEAVE statement must be in the same block as the DO statement to
which it refers.

• If a LEAVE statement has a label reference, it must refer to a label
on a DO statement that heads a DO-group that contains the LEAVE
statement. The LEAVE statement must be in the same block as the
labeled DO statement.

• The label reference specified with a LEA VE statement must be a label
constant or a subscripted label constant with an integer constant
subscript.

• Examples
The following example shows a LEAVE statement without a label refer­
ence:

DO I ~ 1 TO 100;

IF COMMAND = 'QUIT' THEN LEAVE;

END;
PUT LIST ('Job finished');

In this example, the LEAVE statement transfers control directly to the PUT
statement if the condition in the IF statement is satisfied.

412 LEAVE Statement

The next example shows a LEA VE statement with a label reference:

LDDP1: DO WHILE (MORE);

LODP2: DO I = 1 TO 12;

IF QUAN(!) > 160 THEN LEAVE LOOP1;
END; /• Loop 2 •/

END; /• Loop 1 •/

In this example, the LEA VE statement transfers control to the first state­
ment beyond the END statement that terminates LOOP!.

The following examples show some invalid uses of the LEA VE statement:

LEAVE;

DD;

END;

BEGIN;
LEAVE;

END;

I• LEAVE statement must be in •/
/• DD-group •/

/• LEAVE statement must be in •/
/• same block as DD statement •/

ON ENDFILE(SYSIN) LEAVE; /• ON-unit is separate block •/

DECLARE LABVAR LABEL VARIABLE;
LABVAR = LOOP;
LOOP: DO I = 1 TO 10;

LEAVE LABVAR; /• Label reference cannot be a variable •/
END;

LAB(1): DO;
LAB(2): DO;

I • 1;

END;

LEAVE LABCI);
END;

I• Subscript must be a constant •/

LEAVE Statement 413

Length Attribute

The length attribute is applied to character-string and bit-string data.
The length of a string is the number of characters or bits in the string,
or the maximum length of the string if the string has the CHARACTER
VARYING attributes.

For the rules for specifying the length of a character- or bit-string variable,
see "Extent."

LENGTH Built-In Function
LENGTH Preprocessor Built-In Function

The LENGTH built-in function returns a fixed-point binary integer that is
the number of characters or the number of bits in a specified character- or
bit-string expression. If the string is a varying-length character string, the
function returns its current length. (To determine the maximum length of
a varying-length character string, use the MAXLENGTH built-in function.)

The format of the function is as follows:

LENGTH(string)

See also "MAXLENGTH Built-In Function."

LIKE Attribute

The LIKE attribute copies the member declarations contained within a
major or minor structure declaration into the structure variable to which it
is applied. The format of the LIKE attribute is as follows:

level-number identifier [attributes] LIKE reference

level-number
The level number to which the declarations in the reference are copied.

identifier
The variable to which the declarations in the reference are to be copied.
The identifier must be preceded by a level number.

414 LIKE Attribute

attributes
Storage class or dimensions appropriate for the level number. You can
specify a storage class and dimensions with a major structure, or you can
specify dimensions with a minor structure.

reference
The name of a major or minor structure that is known in the current block.

The LIKE attribute causes the structuring and member declarations of its
reference to be copied, but not the name, storage class, or dimensioning
(if any) of the reference. The exception to this rule is that the UNION
attribute is propagated in a LIKE declaration. While logical structuring is
copied, the level numbers themselves are not copied.

You can use the LIKE attribute on a structure already containing the LIKE
attribute.

LINE Format Item

The LINE format item sets a print file to a specific line. It can be used
only with print files and the PUT EDIT statement. If necessary, blank
lines are inserted between the current file position and the specified line,
and subsequent output begins on the specified line.

The LINE format item identifies an absolute line position on the current
output page; to specify a line position relative to the current line, see
0 SKIP Format Item."

The form of the LINE format item is as follows:

LINE(w)

w
An integer, or an expression, that specifies a line on the current page,
where line 1 is the first line. The maximum value for a print file's line
number is 32767. If a program generates a value in excess of 32767, a
run-time error occurs.

LINE Format Item 415

LINE Option

416 LINE Option

When the LINE format item is executed, the current line is determined.
The current line is 1 if the file is at the beginning of a new page.
Otherwise, the current line is n+ l, where n is the number of complete
lines already on the page. The position in the file is then changed as
follows:

• If line w is the current line, and the file is either at the beginning of
a new line or at the beginning of a new page, then no operation is
performed.

• If line w is beyond the current line and is less than or equal to the
current page size, then the file is positioned at line w, and the lines
between the current line and line w are filled with blank lines. (See
also HPAGESIZE Option.")

• If line w is at or before the current line, the current line is not beyond
the current page size, and the file is not at the beginning of a line
or page, then the remainder of the page (the portion between the
current line and the current page size) is filled with blank lines, and
the ENDP AGE condition is signaled. The same actions occur when
the current line is less than or equal to the page size and w is greater
than the page size.

• Otherwise (for instance, when w is zero), the file is positioned at the
beginning of a new page, and the page number is incremented by 1.

The LINE option is used with the PUT statement to output data to a
specific line in a print file. The output file is positioned at the beginning
of the specified line.

The LINE option refers to an absolute line position relative to the begin­
ning of the current page. To refer to a line position relative to the current
line, use the SKIP option.

For further information on the LINE and SKIP options, see "PUT
Statement."

LINE Preprocessor Built-In Function

The LINE preprocessor built-in function returns the line number of the
source program text containing the end of the preprocessor statement that
calls the LINE built-in function.

The format of the function within a preprocessor expression is as follows:

LINE()

For information on preprocessor expressions, see #Preprocessor."

LINENO Built-In Function

The LINENO built-in function returns a FIXED BINARY(lS) integer that
is the current line number of the referenced print file. Its format is as
follows:

LINENO(reference)

If the referenced print file is closed, the returned value is the last value
from the previous opening. If the file was never opened, the returned
value is zero.

LINESIZE Option

The LINESIZE option specifies the maximum number of characters that
can be output in a single line when the PUT statement writes data to a file
with the STREAM and OUTPUT attributes. The format of the LINESIZE
option is as follows:

LINESIZE(expression)

expression
A fixed-point binary expression in the range 1 to 32767, giving the number
of characters per line.

LINESIZE Option 417

The value specified in the LINESIZE option is used as the output line
length for all subsequent output operations on the stream file, and it
overrides the system default line size.

The default line size is as follows:

• If the output is to a physical record-oriented device, such as a line
printer or terminal, the default line size is the width of the device.

• If the output is to a print file, the default line size is 132.

• If the output is to a nonrecord device (magnetic tape), the default line
size is 510.

The line size is used by output operations to determine whether output
will be placed on the current line or on the next line.

LIST Attribute

The LIST attribute is used in the declaration of a formal parameter to
indicate that the parameter can accept a list of actual parameters, of
arbitrary length. This list must contain at least one argument. To allow
a list of zero or more arguments, you must declare the formal parameter
with both the TRUNCATE attribute and the LIST attribute.

The LIST attribute is valid only on formal parameters of external pro­
cedures. It is not supported for PL/I procedures. (To simulate list
parameters in PL/I, use asterisk-extent arrays.)

The LIST attribute can be used only for the last formal parameter in an
argument list.

For example:

DCL NUMBER FIXED BINARY;
DCL LIST_PROC1 ENTRY (FIXED BINARY.FIXED BINARY LIST);
DCL LIST_PROC2 ENTRY (FIXED BINARY.FIXED BINARY LIST TRUNCATE);

CALL LIST_PROC1 (NUMBER.NUMBER);
CALL LIST_PROC1 (NUMBER,NUMBER,NUMBER);

CALL LIST_PROC2 (NUMBER);
CALL LIST_PROC2 (NUMBER,NUMBER,NUMBER,NUMBER);

418 LIST Attribute

LIST Option

The LIST option is used with the GET and PUT statements to perform
list-directed input or output to a stream file or character-string expression.

When the LIST option is used with the GET statement, strings of ASCII
characters are acquired from the stream file and assigned to a list of input
targets (variables). Conversions to the data types of the input targets,
if necessary, are performed automatically. If the end of the input file is
encountered, the ENDFILE condition is signaled. For additional details,
see "GET Statement" and 0 Stream Input/Output."

When the LIST option is used with the PUT statement, a list of output
sources (expressions) is evaluated and converted automatically to strings
of ASCII characters, which are then written out. If the output file is a
print file, character strings are not enclosed in apostrophes, and all output
items are separated by tabs. All output data is appended at the current
end-of-file. For additional details, see "PUT Statement" and "Stream
Input/Output."

%LIST Statement

The %LIST statement enables the selective listing display of INCLUDE file
contents, extracted Common Data Dictionary (COD) record descriptions,
machine code, and source code. The %LIST statement has a number of
forms, each of which enables or disables listing control for specific portions
of the source text. The format of the %LIST statement is as follows:

l %LIST_ALL; l
%LIST_DICTIONARY;
%LIST_INCLUDE;
%LIST _MACHINE;
%LIST_SOURCE;

You must compile the program with the appropriate value specified for
the /SHOW qualifier before the above statements can be effective.

The %LIST form of each statement enables the appearance of the specified
information starting with the listing line following the %LIST statement.
If you previously specified %NOLIST, the %LIST statement has the effect
of reenabling the display.

%LIST Statement 419

The text displayed with each form of %LIST statement is summarized as
follows:

• %LIST-ALL displays all of the following information.

• %LIST_DICTIONARY displays the PL/I translation of an included
Common Data Dictionary record.

• %LISLJNCLUDE displays the contents of INCLUDE files and mod­
ules in the program listing.

• %LIST-MACHINE displays the machine code generated during
compilation.

• %LIST_SOURCE displays source program statements in the program
listing.

To disable a %LIST statement, specify %NOLIST at the appropriate line
in the source text.

%LIST statements cannot be nested.

See also No/oNOLIST Statement."

List Processing

Linked lists or queues are processed in PL/I by using based variables and
pointers or offsets. The principal language facilities are

• The BASED, POINTER, AREA, and OFFSET attributes
• The ADDR, NULL, POINTER, and OFFSET built-in functions

• The ALLOCATE and FREE statements, and the DO REPEAT form of
the DO statement

• The locator qualifier (->)

Each of these elements is described under its own entry in this manual.
This section provides examples of simple procedures that create and
process a linked list.

Figure L-1 illustrates a simple program that reads data from a terminal
and constructs a linked list from the data.

420 List Processing

Figure L-1 : Creating a Linked List

MAKE_LIST: PROCEDURE;

DECLARE (FIRST, CURRENT, SAVE) POINTER;
DECLARE 1 LIST BASED,

2 NEXT POINTER,
2 DATA CHARACTER(120) VARYING;

DECLARE PRINT_LIST ENTRY{POINTER, FIXED BINARY);

/• Declare a bit variable to test for and of stream input •/
/• and sat an ON-unit to finish processing •/
DECLARE EOF BIT{1) STATIC INITIAL{'O'B);
ON ENDFILE(SYSIN) EOF = '1'B;

FIRST = NULL{) ;

ALLOCATE LIST SET(CURRENT);
GET LIST {CURRENT->DATA);
DO WHILE (-EOF);

IF FIRST = NULL THEN
FIRST = CURRENT;

ELSE
SAVE->NEXT • NULL;

CURRENT->NEXT = NULL;
SAVE = CURRENT;

I• initialize queue head •/

I• set storage •/
/• get data •/

I• first time through queue •/
/• sat queue head •/
/• all other times •/
I• set forward pointer •/

/• set forward pointer •/
/• save pointer to this allocation •/

ALLOCATE LIST SET(CURRENT); /•set storage•/
GET LIST (CURRENT->DATA); /•get data •/
END;

CALL PRINT_LIST(FIRST,120);
RETURN;

END MAKE_LIST;

Figure L-2 illustrates the use of pointers to step through a linked list and
to print the data in each list element. The example in this figure uses the
REPEAT option of the DO statement to modify the value of the pointer
used to access each element in the list. This example can also be applied
to a linked list within an area. Based variables in an area are referenced
by offset values that indicate the locations of the variables with respect to
the beginning of the area.

List Processing 421

Figure L-2: Processing a Linked List

PRINT_LIST: PROCEDURE (QUEUE_HEAD, DATA_LENGTH);

DECLARE QUEUE_HEAD POINTER, /* start queue */
DATA_LENGTH FIXED BINARY(31); /*length of data•/

DECLARE 1 LIST BASED(P), /• structure of queue elements •/
2 NEXT POINTER,
2 DATA CHARACTER(DATA_LENGTH);

DECLARE P POINTER;

/* Start output at queue head, repeat with next pointers •/

DO P = QUEUE_HEAD REPEAT P->LIST.NEXT

/* until end of list (null) encountered •/

WHILE (P -=NULL());
PUT SKIP LIST(P->LIST.DATA);

END;

RETURN;
END PRINT_LIST;

Locator Qualifier

A locator qualifier is an operator that specifies the storage associated
with a based variable. The locator qualifier consists of the following two
symbols:

->
No blanks are allowed between the minus sign (-) and the greater than
symbol (>).
The format for specifying a locator-qualified reference to a variable is as
follows:

locator -> based-variable

locator
One of the following:

• The name of a pointer whose current value represents the storage
associated with a variable

422 Locator Qualifier

• The name of an offset variable that was declared with an area ref­
erence and whose current value represents the storage of a based
variable within the area

• Any other pointer-valued expression, such as a reference to the
POINTER or ADDR built-in function

based-variable
The name of the based variable whose storage is to be referenced.

You must use a locator qualifier when you refer to a based variable for
which more than one allocation of storage may exist. For example:

DECLARE NAMES (10) CHARACTER (20) BASED,
(CLASS_PTR, GRADE_PTR) POINTER;

ALLOCATE NAMES SET (CLASS_PTR);
ALLOCATE NAMES SET (GRADE_PTR);

Any reference to the array NAMES in this example must specify the
pointer associated with the storage allocated for the variable, as follows:

CLASS_PTR -> NAMES(1) = 'SMITH';
CLASS_PTR -> NAMES(2) = 'JONES';

These assignment statements refer to the storage allocated for the array
NAMES that is pointed to by the pointer CLASSJTR. The assignments
set the first two elements of the array to the strings SMITH and JONES.

You must also use a locator qualifier to associate a based variable with the
storage of another variable. For example:

DECLARE DATA CHARACTER(10) BASED,
DP POINTER,
LINE CHARACTER(10);

LINE• 'string';
DP= ADDR(LINE);
PUT LIST(DP->DATA);

The locator qualifier in this PUT statement associates the based variable
DATA with the storage occupied by the variable LINE and pointed to by
the pointer DP. For more information, see "Based Variable," "Offset," and
"Pointer."

Locator Qualifier 423

LOG Built-In Function

The LOG built-in function returns a floating-point value that is the base
e (natural) logarithm of an arithmetic expression x. The computation is
performed in floating point. The expression x must be greater than zero
after its conversion to floating point.

The format of the function is as follows:

LOG(x)

LOG 10 Built-In Function

The LOGlO built-in function returns a floating-point value that is the base
10 logarithm of arithmetic expression x. The computation is performed
in floating point. The expression x must be greater than zero after its
conversion to floating point.

The format of the function is as follows:

LOG10(x)

LOG2 Built-In Function

The LOG2 built-in function returns a floating-point value that is the base
2 logarithm of an arithmetic expression x. The computation is performed
in floating point. The expression x must be greater than zero after its
conversion to floating point.

The format of the function is as follows:

LOG2(x)

424 LOG2 Built-In Function

Logical Operator

The logical operators perform logical operations on one or two operands.
The operands of the logical operators must be bit-string expressions,
except that the operand of the NOT operator can be a bit-string expression
or a single relational operator. All relational expressions result in bit-string
values of length l, and they can therefore be used as operands in logical
operations.

Except when the NOT operator is used as the prefix of a relational opera­
tor, the result of a logical operation is always a bit string.

Except for AND THEN and OR ELSE, logical operations are performed on
their operands bit by bit. If bit-string operands are not the same length,
PL/I extends the smaller of the operands on the right (that is, in the
direction of the least significance) with zeros to match the length of the
larger operand. This length is always the length of the result.

There are five infix operators and one prefix operator:

Prefix Operator

• (circumflex)

Infix Operator

& (ampersand)

I (vertical bar) or ! (excla­
mation point)

Operation

Logical NOT. In a logical NOT operation, the value
of the operand is complemented; that is, a 1 bit
becomes a 0 and a 0 bit becomes a 1. The value of
a relational expression is also complemented; that
is ·(A < B) is equivalent to (A > = B).

Operation

Logical AND. In a logical AND operation, two
operands are compared. If both corresponding bits
are 1, the result is 1; otherwise, the result is 0.

Logical OR. In a logical OR operation, two
operands are compared. If either or both of two
corresponding bits are 1, the result is l; otherwise
the result is 0. (The I and the ! characters can be
used interchangeably.)

Logical Operator 425

Infix Operator Operation

&: (ampersand and colon) Logical AND THEN. The operation is like AND
except that the second operand is evaluated

• (circumflex)

only if the first operand is true, and except that
AND THEN does not do bit-by-bit operations on
bit-string operands.

Logical EXCLUSIVE OR. Two operands are com­
pared, and the result is 1 if one of the correspond­
ing bits is 1 and the other is 0.

I: (vertical bar and colon) Logical OR ELSE. The operation is like OR except
that the second operand is evaluated only if the
first operand is false, and except that OR ELSE
does not do a bit-by-bit operation on bit-string
operands.

You can define additional operations on bit strings with the BOOL built-in
function.

Logical expressions cannot be completely evaluated in some cases. If the
result of the total expression can be determined from the value of one or
more individual operands, the evaluation can be terminated. For example:

A t B t C t D t E

In this expression, evaluation can stop when any operand or the result of
any operation is a bit string containing all zeros.

• Examples
DECLARE (BITA,BITB,BITC) BIT(4);
BITA • '0001 'B;
BITB • '1001'8;
BITC • ABITA; I• 8ITC equals '1110'8 •/

BITC = BITA I BITB; I• BITC equals '1001'8 •/

8ITC = 8ITA t 8ITB; I• BITC equals '0001'8 •/

BITC = A(BITA t BITB); /• BITC equals '1110'8 •/

BITC = A(BITA > BITB); I• BITC equals '1000'8 (true) •I

In the last assignment statement, the relational expression yields 'l'B;
when this value is assigned to BITC, a BIT(4) variable, the value is padded
with zeros and becomes 'lOOO'B.

426 Logical Operator

LOW Built-In Function

The LOW built-in function returns a string of specified length that consists
of repeated appearances of the lowest character in the collating sequence.
Its format is as follows:

LOW(length)

length
The specified length of the returned string. The maximum length permit­
ted is 32767 characters.

• Returned String
The string returned is of the length specified. The rank of the lowest
character that can appear in the collating sequence for VAX PL/I is ASCII
0.

LOW Built-In Function 427

M

MAIN Option

The MAIN option can be specified with the OPTIONS keyword on the
PROCEDURE statement. It indicates that the specified entry name is the
primary invocation point of the program. It is specified as follows:

entry-name: PROCEDURE OPTIONS (MAIN);

One, and only one, procedure in a program can specify the MAIN option.
If no procedure specifies the MAIN option, the invocation point of the
program is the first procedure in the image. (For details on binding
procedures into an executable program image, see the VAX PL/I User
Manual.)

VAX PL/I provides a default ON-unit for the procedure declared with the
MAIN option. See "ON Conditions and ON-Units."

Main Procedure

The main procedure in a program is the procedure declared with the
MAIN option. Execution of a PL/I program begins with the main proce­
dure.

See also "MAIN Option" and "Procedure."

428 Main Procedure

MAX Built-In Function
MAX Preprocessor Built-In Function

The MAX built-in function returns the larger of two arithmetic expressions
x and y. The format of the function is as follows:

MAX(x,y)

• Returned Value
The expressions x and y are converted to their derived type before the op­
eration is performed (for a discussion of derived types, see "Expression".)
If the derived type is floating point, the value returned is also floating
point, with the larger precision of the two converted arguments. If the
derived type is fixed point, the returned value is a fixed-point value with
the base of the derived type and with the following attributes:

precision= min(31, max(px - qx, py - qy) + max(qx, qy))

and
scale/actor= max(qx,qy)

where px,qx and py,qy are the converted precisions and scale factors of x
and y, respectively.

The MAX built-in function is also a preprocessor built-in function; how­
ever, the preprocessor does not permit scale factors.

MAXLENGTH Built-In Function

The MAXLENGTH built-in function returns a fixed binary number repre­
senting the maximum possible length of a varying-length character string.
Its format is as follows:

MAXLENGTH (string)

string
A reference to a character string or a bit string. If it is anything other
than a varying-length character string, the MAXLENGTH function returns
a result identical to the result that would be returned by the LENGTH
built-in function.

MAXLENGTH Built-In Function 429

For example:

MAXLENGTH_EXAMPLE: PROCEDURE OPTIONS(MAIN);
DCL CHAR_VAR CHARACTER(10) VARYING;
CHAR_ VAR = 'String';
CALL SAMPLE(CHAR_VAR);

END MAXLENGTH_EXAMPLE;
SAMPLE: PROCEDURE(STRING);

DCL STRING CHAR(*) VARYING;
PUT LIST(LENGTH(STRING),MAXLENGTH(STRING));

END SAMPLE;

The program returns the following:

6 10

Also see "LENGTH Built-In Function."

MEMBER Attribute

The MEMBER attribute can optionally be specified in the declaration of a
structure member (minor structure).

The MEMBER attribute cannot be used with a major structure (that is,
a structure variable with level 1). See "Structure" for information on
structures and members.

MIN Built-In Function
MIN Preprocessor Built-In Function

The MIN built-in function returns the smaller of two arithmetic expres­
sions x and y. Its format is as follows:

MIN(x,y)

• Returned Value
The expressions x and y are converted to their derived type before the op­
eration is performed (for a discussion of derived types, see "Expression".)
If the derived type is floating point, the value returned is also floating
point, with the larger precision of the two converted arguments. If the
derived type is fixed point, the returned value is a fixed-point value with
the base of derived type and with the following attributes:

precision = min(31, max(px - qx, py - qy) +max(qx, qy))

430 MIN Preprocessor Built-In Function

scale/actor= max(qx,qy)

where px,qx and py,qy are the converted precisions and scale factors of x
and y.

The MIN built-in function is also a preprocessor built-in function; how­
ever, the preprocessor does not permit scale factors.

MOD Built-In Function
MOD Preprocessor Built-In Function

The MOD built-in function returns, for an arithmetic expression x ·and
nonnegative arithmetic expression y, the valuer that equals x modulo y.
That is, r is the smallest positive value that must be subtracted from x to
make the remainder exactly divisible by y.

The format of the function is as follows:

MOD(x,y)

• Returned Value
The expressions x and y are converted to their derived type before the
operation is performed (see "Expression" for a discussion of derived
types).

If the derived type is unscaled fixed point, then the precision of the result
is the precision of the second operand.

If the derived type is floating point, the returned value is an approximation
in floating point, with the larger of the precisions of the two converted
arguments.

The value returned is as follows:

u - w * floor(u/w)

U and ware the arguments x and y, respectively, after conversion to their
derived type. If w is zero, u is converted to the precision described below,
which can signal FIXEDOVERFLOW.

MOD Preprocessor Built-In Function 431

If x and y are fixed-point expressions, a fixed-point value is returned with
the following attributes:

precision= min(3I,pw - qw + max(qu, qw))

and
scale/ actor= max(qu, qw)

where qu is the scale factor of u, pw is the precision of w, and qw is
the scale factor of w. The FIXEDOVERFLOW condition is signaled if the
following is true:

pw- qw + max(qu,qw) > 31

The MOD built-in function is also a preprocessor built-in function; how­
ever, the preprocessor does not permit scale factors.

•Examples
MODEX: PROCEDURE OPTIONS(MAIN);

DECLARE OUTMOD PRINT FILE;

ON FIXEDOVERFLOW PUT FILE(OUTMOD)
SKIP LIST('FIIEDOVERFLOW signaled');

PUT FILE(OUTMOD) SKIP LIST(MOD(28,128));
PUT FILE(OUTMOD) SKIP LIST(MOD(130,128));
PUT FILE(OUTMOD) SKIP LIST(MOD(-28,128));
PUT FILE(OUTMOD) SKIP LIST(MOD(4.6,.768));
PUT FILE(OUTMOD) SKIP LIST(MOD(-4.6,.768));
PUT FILE(OUTMOD) SKIP LIST(MOD(1.6E-3,-1.4E-3));
PUT FILE(OUTMOD) SKIP LIST(MOD(28,0));

END MODEX;

The program MODEX writes the following output to OUTMOD.DAT:

28
2

100
0.710
0.048

-1.3E-03

FIXEDOVERFLOW signaled 8

432 MOD Preprocessor Built-In Function

The last PUT statement attempts to take MOD(28,0). The constants 28
and 0 are both fixed-point decimal expressions, with precisions (2,0) and
(1,0), respectively. Therefore, the attributes of the returned value are
determined to be FIXED DECIMAL, with the following attributes:

precision = min(31, 1 - 0 + max(O, O}) = 1

and
scale/actor= max(O, 0) = 0

Although 28 modulo 0 is 28, MOD(28,0) signals FIXEDOVERFLOW
because 28 cannot be represented in the result precision. (The value of the
function is therefore undefined.)

Multiplication
The asterisk character (•) indicates a multiplication operation in an
expression; the result is the product of the operands. Both operands must
be arithmetic or picture data.

• Conversion of Operands
If both operands have the same base, precision, and scale factor, so has
the result of the operation. The compiler converts operands of different
data types as follows:

• If one operand has the FLOAT attribute and the other has the FIXED
attribute, the fixed-point operand is converted to floating point before
the operation is performed.

• If one operand is DECIMAL and the other is BINARY, the decimal
operand is converted to binary.

The precision of the values resulting from conversion of operands is
described under "Expression."

Multiplication 433

• Precision of the Result
For floating-point and fixed-point operands, the precision of the result is
determined as follows:

Floating-Point Operands
The result has the maximum of the converted precisions of the operands.

Fixed-Point Operands
If (p,q) and (r,s) represent the converted precisions and scale factors of
the two operands, the resulting precision and scale factor are as follows:

precision= min(31,p + r + 1)

and
scale factor= q + s

MULTIPLY Built-In Function

The MULTIPLY built-in function multiplies two arithmetic expressions x
and y, and returns the product of the two values with a specified precision
p and an optionally specified scale factor q.

The format of the function is as follows:

MULTIPLY(x,y,p[,q])

p
An integer constant greater than zero and less than or equal to the
maximum precision of the result type (31 for fixed-point binary data, 31
for fixed-point decimal data, 34 for floating-point decimal data, and 113
for floating-point binary data).

q
An integer in the range -31 through p when used with fixed-point binary
multiplication. The scale factor for fixed-point decimal multiplication has
a range 0 through p. A scale factor is not to be used with floating-point
arithmetic. If no scale factor is designated, q defaults to zero.

434 MULTIPLY Built-In Function

Expressions x and y are converted to their derived type before the multi­
plication is performed. See "Expression."

For example:

MULT: PROCEDURE OPTIONS (MAIN);

DECLARE !_RATE FIXED DECIMAL(31,4),
PRINCIPAL FIXED DECIMAL(31,2),
OWED FIXED DECIMAL(31,6);

!_RATE= .1514;

PRINCIPAL = 27688.25;

OWED= MULTIPLY (I_RATE,PRINCIPAL,31,6);

PUT SKIP LIST ('INTEREST OWED=' ,OWED);

END;

Interest rates are calculated to six decimal places and the following string
is returned:

INTEREST OWED = 4192.001050

MULTIPLY Built-In Function 435

N

NEXT_VOLUME Built-In Subroutine

The NEXT_ VOLUME built-in subroutine can be used to process additional
magnetic tape volumes for a file. See the VAX PL/I User Manual for more
information.

%NOLIST Statement

The %NOLIST statement disables the selective listing display of INCLUDE
file contents, extracted Common Data Dictionary (CDD) record descrip­
tions, machine code, and source code. The %NOLIST statement has
a number of forms; each enables or disables listing control for specific
portions of the source text. The format of the %NOLIST statement is as
follows:

l %NOLIST_ALL;)
%NOLIST _DICTIONARY;
%NOLIST_INCLUDE;
%NOLIST _MACHINE;
%NOLIST _SOURCE;

You must compile the program with the /SHOW qualifier before any of
these statements can be effective.

The %NOLIST form of each statement disables the appearance of the
specified information starting with the listing line following the %NOLIST
statement. If you previously specified %LIST, the %NOLIST statement
has the effect of disabling the display.

The following summarizes the text suppressed with each form of
%NOLIST statement:

• %NOLIST_ALL does not display any of the following information.

436 %NOLIST Statement

• %NOLIST_DICTIONARY does not display the PL/I translation of an
included Common Data Dictionary record.

• %NOLIST-1NCLUDE does not display the contents of INCLUDE files
and modules in the program listing.

• %NOLIST_MACHINE does not display the machine code generated
during compilation.

• %NOLIST_SOURCE does not display source program statements in
the program listing.

To cancel the effect of any of the %NOLIST statements, specify %LIST at
the appropriate line in the source text.

See also "%LIST Statement".

NONRECURSIVE Option

The NONRECURSIVE option can be specified on a PROCEDURE or
ENTRY statement to indicate (for program documentation) that the
procedure will not invoke itself. For example:

TEST: PROCEDURE(T1, T2, T3) NONRECURSIVE;

The NONRECURSIVE option can be specified to inform the compiler
that the procedure is not recursive, which is the default. Note that all
procedures in VAX PL/I can be invoked recursively regardless of the
NONRECURSIVE or RECURSIVE options, and both options are currently
ignored by the compiler. For more information, see "Procedure."

NONVARYING Attribute

The NONVARYING attribute keyword explicitly states that a bit-string or
character-string variable has a fixed length, not a varying length. Because
NONVARYING is the default for bit and character strings, it need not be
specified.

The keyword NONVARYING can be abbreviated to NONVAR.

See "VARYING Attribute", "CHARACTER Attribute", and "Character­
String Data."

NONVARYING Attribute 437

NORESCAN Option

The NORESCAN option of the %ACTIVATE preprocessor statement stops
the rescanning of the text which replaces preprocessor variable identifiers
when they are replaced. When the values of the variable identifiers are
replaced during compilation, the new text remains the same.

The format for the NORESCAN option is as follows:

% { ACTIVATE } element [RESCAN]
ACT NORESCAN I '

RESCAN is the default option of the %ACTIVATE statement. For further
details on the NORESCAN option, see #%ACTIVATE Statement."

NOT Operator

The logical NOT operator in PL/I is the circumflex character (A), used as a
prefix operator. In a logical NOT operation, the value of a bit is reversed.
If a bit is 1, the result is 0; if a bit is 0, the result is 1.

The NOT operator can be used on expressions that yield bit-string values
(bit-string, relational, and logical expressions). It can also be used to
negate the meanings of the relational operators (<, > , =). For example:

IF A -> B THEN ...
I• equivalent to IF A<= B THEN ... •/

The result of a logical NOT operation on a bit-string expression is a
bit-string value. For example:

DECLARE (BITA, BITB) BIT (4);
BITA = '0011'B;
BITB = -BITA;

The resulting value of BITB is 1100.

The NOT operator can test the falsity of an expression in an IF statement.
For example:

IF -(MORE_DATA) THEN ...

See #Logical Operator" and "Operator."

438 NOT Operator

Nonlocal GOTO

See "GOTO Statement."

%Null Statement

The %Null statement performs no action. Its format is as follows:

%;

The most common use for the %Null statement is as the target statement
of a % THEN or %ELSE clause in an %IF statement. For example:

X!F
ERROR() > 0;

);THEN
);GOTO FIIIT;

);ELSE
X;

In this example, no action is taken if the program does not generate a
user-diagnostic error message. If the %GOTO does not change the flow of
compilation, control passes to the next executable preprocessor statement
in the source text.

NULL Built-In Function

The NULL built-in function returns a null pointer value. Its format is as
follows:

NULL()

•Example
IF NEIT_POINTER = NULL() THEN CALL FINISH;

The IF statement checks whether the pointer variable NEXTJOINTER is
null; if so, the CALL statement is executed.

The NULL built-in function can be used for offset variables as well as
pointer variables, because the compiler automatically performs conversions
between pointer and offset values.

For more information, see "Based Variable," "List Processing," and
"Pointer."

NULL Built-In Function 439

Null Statement

The null statement performs no action. Its format is as follows:

The most common uses for the null statement are as the target statement
of a THEN or ELSE clause in an IF statement or a WHEN or OTHERWISE
clause in a SELECT statement, or as an action in an ON-unit. For example:

ON ENDPAGE(SYSPRINT);

The null statement can also be used to declare two labels for the same
executable statement, as in the following example:

LABEL1: ; LABEL2: statement ...

440 Null Statement

Offset

0

An offset is a value indicating the location of a based variable within
an area relative to the beginning of the area. An offset variable must be
declared with the OFFSET attribute.

When an area is transmitted or assigned, the offset values associated with
variables within the area remain valid.

• Offset Assignment
Offset variables are assigned values from existing offset values or from
converted pointer values. The OFFSET built-in function converts a pointer
value to an offset value. PL/I also automatically converts a pointer
value to an offset value, and vice versa, in an assignment statement. The
following assignments are valid:

pointer-variable = pointer-value;

offset-variable = offset-value;

pointer-variable= offset-variable;

offset-variable= pointer-value;

In the second method, any area references are ignored in the assignment;
therefore, the offset value and variable can refer to different areas. In
the last two methods, offset variable must have been declared with an
area reference. Note that the POINTER and OFFSET built-in functions
are available for use in the last two methods if the offset value was not
declared with a base area.

Offset 441

• Offset Variables in Expressions
Expressions containing offset variables are restricted to the following
operators:

Operator Meaning

Equal

Not equal

For more information on offset values, see 0 Area." For specific details on
how to allocate variables within areas, see 0 ALLOCATE Statement."

OFFSET Attribute

The OFFSET attribute declares a variable that will be used to reference a
based variable within an area. Its format is as follows:

OFFSET [(area-reference)]

area-reference
The name of a variable with the AREA attribute. The value of the offset
variable will be interpreted as an offset within the specified area.

•Example
DECLARE MAP_SPACE AREA (40960},

MAP_START OFFSET (MAP_SPACE},
MAP_LIST(100} CHARACTER(80} BASED (MAP_START};

These declarations define an area named MAP_SPACE, an offset value
that will contain offset values within that area, and a based variable whose
storage is located by the value of the offset variable MAP_START.

• Restrictions
The area reference must be omitted if the OFFSET attribute is specified
within a returns descriptor, parameter declaration, or a parameter descrip­
tor. The OFFSET attribute conflicts with all other data type attributes.

442 OFFSET Attribute

OFFSET Built-In Function

The OFFSET built-in function converts a pointer to an offset relative to a
designated area. If the pointer is null, the result is null. The format of the
function is as follows:

OFFSET (pointer ,area)

pointer
A reference to a pointer variable whose current value either represents the
location of a based variable within the specified area or is null.

area
A reference to a variable declared with the AREA attribute. If the specified
pointer is not null, it must designate a storage location within this area.

• Example
DECLARE MAP_SPACE AREA (2048),

START OFFSET (MAP_SPACE),
QUEUE_HEAD POINTER;

START= OFFSET (QUEUE_HEAD,MAP_SPACE);

The offset variable START is associated with the area MAP_SPACE. The
OFFSET built-in function converts the value of the pointer to an offset
value.

ON Conditions and ON-Units

An ON condition is any one of several named conditions whose occur­
rence during the execution of a program interrupts the program. When
a condition occurs or is signaled, a statement or sequence of statements,
called an ON-unit, is executed, unless the SYSTEM option is specified in
the ON statement, causing the default system condition handling to be
executed.

This entry discusses the following topics:

• Summary of ON Conditions

• Default PL/I ON-Unit

• Establishment of ON-Units

• Contents of an ON-Unit

ON Conditions and ON-Units 443

• Search for ON-Units

• Completion of ON-Units

• Summary of ON Conditions
Most, but not all, ON conditions are associated with errors. The types
of conditions for which you can establish ON-units are grouped in the
following categories.

• Conditions that occur during I/0 operations:
ENDFILE, to take action when the end-of-file occurs while a file is
being read

ENDP AGE, to take action when the last line on a page is printed
KEY, to take action when an error occurs when a record is ac­
cessed by key

UNDEFINEDFILE, to respond to any file-specific errors that can
occur during the opening of a file

• Conditions that indicate arithmetic conditions related to hardware
violations:

FIXEDOVERFLOW, to respond when integer or fixed-point values
become too large to be expressed
OVERFLOW, to respond when floating-point values become too
large to be expressed
UNDERFLOW, to respond when floating-point values become too
small to be expressed

ZERODIVIDE, to respond when the divisor in a division operation
has a value of zero

• Other conditions:
/

AREA, to respond when an error has been detected during perfor-
mance of an operation on an area (various subconditions can be
determined through use of the ONCODE built-in function)
CONDITION, to respond to programmer-defined conditions
CONVERSION, to respond to data conversion errors from
CHARACTER to any arithmetic data type or bit string
STORAGE, to respond when an error has been detected during
allocation of a controlled variable or a based variable other than in
an area
STRINGRANGE, to respond to substring references that are
beyond the length of the string

444 ON Conditions and ON-Units

- SUBSCRIPTRANGE, to respond to array references with out-of­
bound subscripts

• General classes of exceptional conditions:

ANYCONDITION, to respond to all conditions for which no
specific ON-unit is established in the current block

ERROR, to respond to language-specific and run-time-specific
errors

FINISH, to respond when a STOP statement is executed

VAXCONDITION, to respond to condition values that are specific
to the operating system

Each condition is described individually in this manual under its own
entry.

Table 0-1: Summary of ON Conditions
Condition Name

ANY CONDITION

AREA

CONDITION

CONVERSION

END FILE

ENDPAGE

ERROR

FINISH

FIXEDOVERFLOW

KEY

OVERFLOW

Function

Handles any condition not specifically handled by
another ON-unit

Handles a condition that occurs during an operation
on an area

Handles programmer-defined conditions

Handles data conversion errors

Handles end-of-file for a specified file

Handles end-of-page for a specified file with PRINT
attribute

Handles miscellaneous error conditions and conditions
for which no specific ON-unit exists

Handles program exit when the main procedure
executes a RETURN statement, when any block
executes a STOP statement, or when the program exits
due to an error that is not handled by an ON-unit

Handles fixed-point decimal and integer overflow
exception conditions

Handles any error involving the key during keyed
access to a specified file

Handles floating-point overflow exception conditions

ON Conditions and ON-Units 445

Table 0-1 (Cont.): Summary of ON Conditions
Condition Name

STORAGE

STRINGRANGE

SUBSCRIPTRANGE

UNDEFINEDFILE

UNDERFLOW

VAXCONDITION

ZERO DIVIDE

Function

Handles a condition that occurs during allocation of a
controlled variable or a based variable other than in an
area

Handles out-of-bound substring references

Handles out-of-bound array references

Handles any errors in opening a specified file

Handles floating-point underflow exception conditions

Handles a specifically signaled condition value

Handles divide-by-zero exception conditions

• Default PL/I ON-Unit
PL/I defines a default ON-unit for the procedure that is designated as the
main procedure. This default ON-unit performs the following actions:

• If the signal is the ENDPAGE condition, the default PL/I handler
executes a PUT PAGE for the file, and then continues the program at
the point at which ENDP AGE was signaled.

• If the signal is the ERROR condition and the severity is fatal, the
default handler signals the FINISH condition. Then, one of the
following occurs:

If a FINISH ON-unit is found, it is given a chance to execute. If
it executes a nonlocal GOTO or if it signals another condition,
program execution continues.

If no FINISH ON-unit is found or if a FINISH ON-unit completes
execution by handling the condition, then PL/I resignals the con­
dition to the default VMS condition handler. This handler prints a
message, displays a traceback, and terminates the program.

• If the signal is any condition other than ENDP AGE or ERROR with a
fatal severity, the default PL/I handler signals the ERROR condition
with the severity of the original condition. Then, one of the following
occurs:

If an ERROR ON-unit is found, it is executed. If it completes
execution by handling the condition, the program continues.

446 ON Conditions and ON-Units

If an ERROR ON-unit is not found, the default PL/I handler
resignals the condition. If this resignal results in return of control
to the system, the default VMS condition handler prints a message
and a traceback. If the error is a fatal error, the default handler
terminates the program; if the error is nonfatal, the program
continues.

• Establishment of ON-Units
An ON-unit is established for a specific ON condition or conditions
following the execution of an ON statement that specifies the condition
name(s). For example:

ON ENDFILE (ACCOUNTS) GOTO CLOSE_FILES;

This ON statement defines an ON-unit for an ENDFILE (end-of-file)
condition in the file specified by the name ACCOUNTS. The ON-unit
consists of a single statement, a GOTO statement.

After an ON-unit is established by an ON statement for a condition,
it remains in effect for the activation of the current block and all its
dynamically descendent blocks, unless one of the following occurs:

• Another ON statement is specified for the same condition in a de­
scendent block. The ON-unit established within the descendent block
remains in effect as long as the descendent block is active.

• A REVERT statement is executed for the specified condition. A
REVERT statement nullifies the most recent ON-unit for the specified
condition.

• Another ON statement is specified for the same condition within the
current block. Within the same block, an ON statement for a specific
condition cancels the previous ON-unit.

• The block or procedure within which the ON-unit is established
terminates. When a block exits, any ON-units it has established are
canceled.

• Contents of an ON-Unit
An ON-unit can consist of a single simple statement, a group of statements
in a begin block, or a null statement.

ON Conditions and ON-Units 44 7

Simple Statements in ON-Units
The following ON statement specifies a single statement in the ON-unit:

ON ERROR GOTO WRITE_ERROR_MESSAGE;

This ON statement specifies a GOTO statement that transfers control
to the label WRITE-ERROR_MESSAGE in the event of the ERROR
condition.

A simple statement must not be labeled and must not be any of the
following:

DECLARE

DO

END

ENTRY

FORMAT

IF

ON

PROCEDURE

Begin Blocks in ON-Units

RETURN

SELECT

An ON-unit can also consist of a sequence of statements in a begin block.
For example:

ON ENDFILE (SYSIN) BEGIN;
CLOSE FILE (TEMP);
CALL PRINT_STATISTICS(TEMP);
END;

This ON-unit consists of CLOSE and CALL statements that request special
processing when the end-of-file condition occurs during reading of the
default system input file, SYSIN.

If a BEGIN statement is specified for the ON-unit, the BEGIN statement
must not be labeled. The begin block can contain any statement except a
RETURN statement.

Null Statements in ON-Units
A null statement specified for an ON-unit indicates that no processing is
to occur when the condition occurs. Program execution continues as if the
condition had been handled. For example:

ON ENDPAGE(SYSPRINT);

This ON-unit causes PL/I to continue output on a terminal regardless of
the number of lines that have been output.

448 ON Conditions and ON-Units

• Search Path for ON-Units

When a condition is signaled during the execution of a PL/I procedure,
PL/I searches for an ON-unit to respond to the condition (unless you
have used the SYSTEM option in an ON statement for the condition; the
SYSTEM option causes the system default action to be executed regardless
of the existence of any ON-unit). PL/I first searches the current block,
that is, the block in which the condition occurred. If no ON-unit exists in
this block for the specific condition, it searches the block that activated the
current block (its "parent"), and then the block that activated that block,
and so on.

PL/I executes the first ON-unit it finds, if any, that can handle the
specified condition. If no ON-unit for the specific condition is found,
default PL/I condition handling is performed.

Figure 0-1 illustrates a program with ON-units established at several
levels of block activation and shows the sequence in which the ON-units
are located.

For more information on blocks and block activation, see "Block." For a
more detailed explanation of the search for ON-units and a description
of how PL/I ON-units relate to condition-handling routines that can be
written in other programming languages, see the VAX PL/I User Manual.

ON Conditions and ON-Units 449

Figure 0-1: Search Path for ON-Units

A

A: PROCEDURE OPTIONS (MAIN) ;

ON FIXEDOVERFLOW BEGIN; .
~

END;
CALL B;

B: PROCEDURE ;

ON UNDEFINEDFILE (PRINTFILE) OPEN
FILE(PRINTFILE) TITLE('SYS$0UTPUT');

B

CALL C;

c

• Completion of ON-Units

C: rROCEDURE ; /Fixed overflow signaled

RETURN; /
END;

ON-unit

ON-unit established
in procedure A for
FIXEDOVERFLOW condition

ZK-1291~83

PL/I executes an ON-unit as if the unit were a procedure with no param­
eters; that is, it creates a block activation for the ON-unit and links it to
the block in which the condition occurred. The ON-unit can complete its
execution in any of the following ways:

• If the ON-unit executes a nonlocal GOTO statement, or if it invokes
a subroutine or function that executes a nonlocal GOTO, program
control is transferred to that statement and continues sequentially at
that point in the program.

• If the ON-unit executes a STOP statement, then the FINISH condition
is signaled. If no FINISH ON-unit exists, the program is terminated.

450 ON Conditions and ON-Units

• An ON-unit can use the RESIGNAL built-in subroutine to request that
PL/I continue to search for an ON-unit to handle a specific condition.
For a description of this built-in subroutine and an explanation of the
effects of a nonlocal GOTO and resignaling in the VMS environment,
see the VAX PL/I User Manual.

• When any ON-unit (except for ERROR or FINISH) completes normally
as a result of image exit, control returns either to the statement that
caused the condition or to the statement immediately following the
statement that caused the condition.

Descriptions of each ON condition in this manual indicate the action that
PL/I takes on completion of an ON-unit associated with the condition.

ON Statement

The ON statement defines the action to be taken when a specific condition
or conditions are signaled during the execution of a program. The ON
statement is an executable statement. It must be executed before the
statement that signals the specified condition. The format of the ON
statement is as follows:

ON d. . [SNAP] { on-unit } con 1t1on-name,... SYSTEM;

condition-name, ...
The name or names of the specific conditions for which an ON-unit or
the SYSTEM option is specified. There is a keyword name associated with
each condition. Successive keyword names must be separated by commas.
The conditions are summarized in Table 0-1; each condition is described
in an individual entry in this manual.

SNAP
An option that invokes the debugger and causes a traceback of all active
routines to be displayed when the condition is raised. If you use the
SNAP option, you should specify the /DEBUG qualifier on both the PU
command and the LINK command in order to have all the debugger
symbol table information accessible.

If you want to run a program containing the SNAP option in a batch job,
and cause the program to resume execution after any display of traceback

ON Statement 451

information, you can define DBG$INIT to point to a debug initialization
file that contains the following line:

WHILE PC -= 0 DO(GO)

on-unit
The action to be taken when the specified condition or conditions are
signaled. An ON-unit can be any single, unlabeled statement ex-
cept DECLARE, DO, END, ENTRY, FORMAT, IF, ON, PROCEDURE,
RETURN, or SELECT. It can also be an unlabeled begin block. It can be
a null statement (a semicolon alone), which causes program execution to
continue as if the condition had been handled.

If no ON-unit is established for a particular condition, the default PL/I
ON-unit, if any, is executed.

SYSTEM
An option that invokes the default system condition handling for the
specified condition, overriding any existing ON-unit for the condition.

For information on ON-units and the default PL/I ON-unit, see "ON
Conditions and ON-Units."

ONARGSLIST Built-In Function

The ONARGSLIST built-in function returns a pointer to the location
in memory of the argument list for an exception condition. If the
ONARGSLIST built-in function is referenced in any context outside of
an ON-unit, it returns a null pointer. Its format is as follows:

ONARGSLIST()

See the VAX PL/I User Manual for the format of the argument list and the
information available to an ON-unit from the argument list.

452 ONARGSLIST Built-In Function

ONCHAR Built-In Function

The ONCHAR built-in function returns the character that caused a
CONVERSION condition to be raised. If there is no active CONVERSION
condition, the return value is a single space.

The format of the function is as follows:

ONCHAR()

The ONCHAR value is actually a single character substring of
the ONSOURCE built-in function value, unless there is no active
CONVERSION condition.

See "CONVERSION Condition Name" for more information.

ONCHAR Pseudovariable

The ONCHAR pseudovariable can be used to replace the single character
in the ONSOURCE value that caused a CONVERSION condition to be
raised. An attempt to assign a value to the ONCHAR pseudovariable
when there is no active CONVERSION condition would be an error,
causing the ERROR condition to be raised.

The format of the pseudovariable is as follows:

ONCHAR()

See "CONVERSION Condition Name" for more information.

ONCODE Built-In Function

The ONCODE built-in function returns a fixed-point binary integer that is
the status value of the most recent run-time error that signaled the current
ON condition. You can use the function in any ON-unit to determine the
specific error that caused the condition. If the function is used within any
context outside an ON-unit, it returns a zero. Its format is as follows:

ONCODE()

For details on the condition values returned by ONCODE and examples of
using the ONCODE built-in function, see the VAX PL/I User Manual.

ONCOOE Built-In Function 453

ONFILE Built-In Function

The ONFILE built-in function returns the name of the file constant for
which the current file-related condition was signaled. Its format is as
follows:

ONFILE()

This built-in function can be used in an ON-unit established for any of the
following conditions:

• An ON-unit for the KEY, ENDFILE, ENDPAGE, and UNDEFINEDFILE
conditions

• A VAXCONDITION ON-unit established for I/O errors that can occur
during file processing

• An ERROR ON-unit that receives control as a result of the default
PL/I action for file-related errors, which is to signal the ERROR
condition

• A CONVERSION ON-unit that was entered because of an error that
occurred during conversion of data in a GET statement

• Returned Value
The returned value is a varying-length character string. The ONFILE
function returns a null string if referenced outside an ON-unit, within an
ON-unit that is executed as a result of a SIGNAL statement, or within a
CONVERSION ON-unit that was not entered because of a conversion in a
GET statement.

ONKEY Built-In Function

The ONKEY built-in function returns the key value that caused the KEY
condition to be signaled during an I/O operation to a file that is being
accessed by key. Its format is as follows:

ONKEY()

This built-in function can be used in an ON-unit established for these
conditions:

• KEY, ENDFILE, or UNDEFINEDFILE

454 ONKEY Built-In Function

• An ERROR ON-unit that receives control as a result of the default
PL/I action for the KEY condition, which is to signal the ERROR
condition

• Returned Value
The returned key value is a varying-length character string. The ONKEY
built-in function returns a null string if referenced outside an ON-unit or
within an ON-unit executed as a result of the SIGNAL statement.

ONSOURCE Built-In Function

The ONSOURCE built-in function returns the source string that was
being converted when the CONVERSION condition was raised. If no
CONVERSION condition is active, the return value is a null string.

The format of the function is as follows:

ONSOURCE()

See "CONVERSION Condition Name" for more information.

ONSOURCE Pseudovariable

The ONSOURCE pseudovariable can be used to replace the entire
ONSOURCE value that caused a CONVERSION condition to be raised.
An attempt to assign a value to the ONSOURCE pseudovariable when
there is no active CONVERSION condition is an error, causing the ERROR
condition to be raised.

The format of the pseudovariable is as follows:

ONSOURCE()

The ONSOURCE value is a fixed-length string value. An assignment of a
longer string is truncated, and an assignment of a shorter string is padded
with blanks on the right to the necessary length.

See "CONVERSION Condition Name" for more information.

ONSDURGE Pseudovariable 455

OPEN Statement

The OPEN statement explicitly opens one or more PL/I files with a speci­
fied set of attributes that describe the file and the method for accessing it.
The format of the OPEN statement is as follows:

OPEN FILE(file-reference) [file-description-attribute ...]
[,FILE(file-reference) [file-description-attribute ...]] ... ;

file-reference
A reference to the file to be opened. If the file is already open, the OPEN
statement has no effect.

file-description-attribute
The attributes of the file. The attributes specified are merged with the
permanent attributes of the file specified in its declaration, if any. Then,
default rules are applied to the union of these sets of attributes to complete
the set of attributes in effect for this opening.

The attributes and options you can specify with the OPEN statement are
as follows:

DIRECT

ENVIRONMENT(option, ...)

INPUT

KEYED

LINESIZE(expression)

OUTPUT

PAGESIZE(expression)

PRINT

RECORD

SEQUENTIAL

STREAM

TITLE(expression)

UPDATE

Each of these attributes is described in its own entry. For a summary of
the valid combinations of these attributes and their meanings, see "File
Description Attributes and Options." Merging of attributes and default
attributes supplied are described under "Opening a File."

456 OPEN Statement

•Examples
DECLARE INFILE FILE;

STATE_FILE FILE KEYED;

OPEN FILE (INFILE),
FILE (STATE_FILE) UPDATE;

CLOSE FILE (STATE_FILE);
OPEN FILE (STATE_FILE) INPUT SEQUENTIAL;

The DECLARE and OPEN statements for INFILE do not specify any file
description attributes; PL/I applies the default attributes STREAM and
INPUT. If any statement other than GET is used to process this file, the
ERROR condition is signaled.

The file STATEJILE is declared with the KEYED attribute. With the first
OPEN statement that specifies this file, it is given the UPDATE attribute
and opened for updating; that is, READ, WRITE, REWRITE, and DELETE
statements can be used to operate on records in the file. The KEYED
attribute implies the SEQUENTIAL attribute; thus, records in the file can
be accessed sequentially or by key.

The second OPEN statement specifies the INPUT and SEQUENTIAL
attributes. During this opening, the file can be accessed by sequential
and keyed READ statements; REWRITE, DELETE, and WRITE statements
cannot be used.

DECLARE COPYFILE FILE OUTPUT;
OPEN FILE(COPYFILE) TITLE('COPYFILE.DAT');

The file constant COPYFILE is opened for output. Each time this program
is run, it creates a new version of the file COPYFILE.DAT.

Opening a File

A file is opened explicitly by an OPEN statement or implicitly by a READ,
WRITE, REWRITE, DELETE, PUT, or GET statement issued for a file that
is not open. In either case, opening a file in PL/I has the following effects:

• Any permanent attributes specified in a DECLARE statement of a
file constant are merged with the attributes specified in the OPEN
statement, if any, or with the attributes implied by the context of the
opening. (For example, if no attributes are specified for a file in its
declaration, and the first reference to the file is a GET statement, PL/I
opens the file with the INPUT and STREAM attributes.) The rules

Opening a File 45 7

that PL/I follows in applying default attributes are described below,
under "Establishing the Attributes."

• The merged attributes apply to the file for the duration of this opening
only. When the file is dosed, only its permanent attributes remain in
effect.

• The file specification of the file is determined, using the value of the
TITLE option.

• If the file already exists, it is located and its attributes are checked for
compatibility with the attributes specified or implied by the OPEN
statement.

• If the file does not exist, and if the attempted access does not require
that the file exist, PL/I creates a new file using the attributes specified
or implied to determine the file's organization.

• If the file is opened successfully, the file is positioned.

Each of these steps is described in more detail below. If an error occurs
during the opening of a file, the UNDEFINEDFILE condition is signaled.
(See "UNDEFINED FILE Condition Name.")

• Establishing the File's Attributes
The description attributes specified when a file is opened are merged with
the file's permanent attributes. Duplicate specification of an attribute is
allowed only for an attribute that does not specify a value.

An incomplete set of attributes is augmented with implied attributes.
Table 0-2 summarizes the attributes that can be added to an incomplete
set.

Table 0-2: File Description Attributes Implied when a File is
Opened

Attribute

DIRECT

KEYED

PRINT

SEQUENTIAL

UPDATE

Implied Attributes

RECORD KEYED

RECORD

STREAM OUTPUT

RECORD

RECORD

If the set of attributes is still not complete, PL/I uses the following steps
to complete the set:

458 Opening a File

1. If neither STREAM nor RECORD is present, STREAM is supplied.

2. If neither INPUT, nor OUTPUT, nor UPDATE is present, INPUT is
supplied.

3. If RECORD is specified, but neither SEQUENTIAL nor DIRECT is
present, SEQUENTIAL is supplied.

4. If the file is associated with the external file constant SYSPRINT, and
the attributes STREAM and OUTPUT are present but the attribute
PRINT is not, PRINT is supplied.

5. If the set contains the LINESIZE option, it must contain STREAM
and OUTPUT. If it contains these attributes and does not contain
LINESIZE, the default system line size value is supplied.

6. If the set contains the PAGESIZE option, it must contain PRINT. If
PRINT is present but P AGESIZE is not, the default system page size is
supplied.

7. If the set does not contain TITLE, a default option TITLE(name) is
supplied, where name is the name of the file constant associated with
the file.

The completed set of attributes applies only for the current opening of the
file. The file's permanent attributes, specified in the declaration of the file,
are not changed.

• Determining the File Specification
PL/I uses the value of the TITLE option to determine the file specification,
that is, the actual name of the file or device on which the I/O is to be
performed. The determination of the file specification depends on the
following system-specific functions:

1. The value of the TITLE option can be a logical name, or a portion
of it can contain a logical name. In either case, the logical name is
translated. If the resulting name is a logical name, that name is also
translated, to a maximum of 10 translations.

2. After logical name translation, VAX PL/I applies any default
values specified in the DEFAULTJILE_NAME option of the
ENVIRONMENT attribute list.

3. If the file specification is still not complete, system defaults are applied
to the incomplete portions of the file specification. Defaults are
provided for node, device, directory, file type, and version number. If
a file name is not specified, PL/I uses the default name supplied in
the TITLE option.

Opening a File 459

The rules for logical name translation and for the application of system
defaults are described in detail in the VAX PL/I User Manual.

• Accessing an Existing File
A file opening accesses an existing file if the file specified by the TITLE
option actually exists and if the following attributes are present:

• The file is opened for INPUT or UPDATE.

• The file is opened with the OUTPUT attribute and with the
ENVIRONMENT(APPEND) option.

Whenever PL/I accesses an existing file, the file's organization is checked
for compatibility with the PL/I attributes specified. If any incompatibilities
exist, the UNDEFINEDFILE condition is signaled.

• Creating a File
A file opening creates a new file if the following are all true:

• The OUTPUT attribute is specified.

• The TITLE option, after logical name translation and the application of
system defaults, specifies a mass storage device, for example, a disk or
a tape.

• The ENVIRONMENT(APPEND) option is not specified.

You can specify the organization and record format of a new file with
ENVIRONMENT options. If no ENVIRONMENT options are given, the
new file's organization is determined as follows:

• If the KEYED attribute is present, PL/I creates a relative file with a
maximum record size of 512 bytes and a maximum record number of
0.

• If the PRINT attribute is present, PL/I creates a sequential stream
file with variable-length records, no maximum record length, and a
fixed-control field used by PL/I to store carriage-control information.

• If neither KEYED nor PRINT is specified, PL/I creates a sequential file
with variable-length records and no maximum record size.

When a file is opened with the RECORD and OUTPUT attributes, only
WRITE statements can be used to access the file. If the file has the KEYED
attribute as well, the WRITE statements must include the KEYFROM
option.

460 Opening a File

Operator

• File Positioning
When PL/I opens a file, the initial positioning of the file depends
on the type of file (record or stream), the access mode, and certain
ENVIRONMENT options.

For a definition of the file-positioning information for record files, see
#Record Input/Output." For a definition of file-positioning information for
stream files, see ustream Input/Output."

An operator is a symbol that requests a unique operation. It can be a
prefix operator or an infix operator.

• Prefix Operator
A prefix operator precedes a single operand. The prefix operators are the
unary plus (+), the unary minus (-), and the logical NOT (A).

• The plus sign can prefix an arithmetic value or variable. However, it
does not change the sign of the operand.

• A minus sign reverses the sign of an arithmetic operand.
• The A prefix operator performs a logical NOT operation on a bit-string

operand.

Following are some examples of expressions containing prefix operators:

A = +66;
B = -88;
BITC = -BITB;

• Infix Operator
An infix (or dyadic) operator appears between two operands. It indicates
the operation to be performed on the operands. PL/I has infix operators
for arithmetic operations, logical operations, relational (comparison)
operations, and string concatenations. Following are some examples of
expressions containing infix operators:

RESULT = A I B;

IF NAME= FIRST_NAME II LAST_NAME THEN GOTO NAME_OK;

Operator 461

462 Operator

An expression can contain both prefix and infix operators. For example:

A = -55 * +88;

Prefix and infix operators can be applied to expressions contained in
parentheses.

•Operands
The expressions on which an operation is performed are called operands.
All operators must yield scalar values. Therefore, operands cannot be
arrays or structures. The data type that you can use for an operand in a
specific operation depends on the operator.

• Arithmetic operators must have arithmetic operands.

• Logical operators must have bit-string operands.

• Relational operators must have two operands of the same type (arith­
metic, bit string, or character string).

• The concatenation operator must have two bit-string operands or two
character-string operands.

If arithmetic operands are of different arithmetic types, they are converted
to a single type before the operation is performed. Similarly, operands of
different types in nonarithmetic operations are converted to a single type.
See "Expression" and "Conversion of Data."

The categories of operators and the operator characters are listed in
Table 0-3.

Table 0-3: Operators
Category

Arithmetic
operators

Symbol

+

I
*
**

Operation

Addition or prefix plus
Subtraction or prefix minus
Division
Multiplication
Exponentiation

Table 0-3 (Cont.):
Category

Relational
(or comparison)
operators

Bit-string
(or logical)
operators

Concatenation
operator

Operators
Symbol

>
<

">
. <
. =
>=
<=
· (prefix)
&
I
&:
I:
· (infix)

II

NOTE

Operation

Greater than
Less than
Equal to
Not greater than
Not less than
Not equal to
Greater than or equal to
Less than or equal to

Logical NOT
Logical AND
Logical OR
Logical AND THEN
Logical OR ELSE
Logical EXCLUSIVE OR

String concatenation

For any of the operators, the tilde character (-) can be used
instead of the circumflex character (• }, and the exclamation
point (!) can be used instead of the vertical bar (I).

• Precedence of Operations
A PL/I expression can consist of many subexpressions and operands.
When an expression contains more than one operator, PL/I uses a defined
set of rules to determine which operation to perform first, second, and
so on. If the expression contains parentheses, PL/I evaluates expressions
within the parentheses (according to the rules of priority) first and then
uses the resulting value as a single operand. Unparenthesized operations
of equal priority are performed from left to right.

Table 0-4 gives the priority of PL/I operators. In Table 0-4, low num­
bers indicate high priority. For example, the exponentiation operator ("'"')
has the highest priority (1), so it is performed first, and the OR ELSE
operator (I:) has the lowest priority (9), so it is performed last.

Operator 463

Table 0-4: Precedence of Operators
Operator Priority Operator Priority

** < 5

+ (prefix) 1 -> 5

- (prefix) 1 - < 5

• (prefix) 1 =
A = 5 '

* 2 <= 5

I 2 >= 5

+ (infix) 3 & 6

- (infix) 3 I, · (infix) 7

11 4 &: 8

> 5 I: 9

OPTIONAL Attribute

The OPTIONAL attribute indicates that an actual parameter need not be
specified in a call. If the actual parameter is not specified, a placeholder
for it must be specified, and PL/I will pass a longword zero as the actual
parameter in that position.

For example:

DCL E ENTRY (FIXED.FIXED OPTIONAL);
CALL E(1,2);
CALL E(1.);

OPTIONS Option

The OPTIONS option specifies special processing in certain PL/I state­
ments. OPTIONS (MAIN) is necessary in the PROCEDURE statement
if the procedure is the main part of a program. Other than MAIN, the
lower-level options that can follow OPTIONS are implementation-specific
and not part of the standard PL/I language.

The statements that have the OPTIONS option are as follows:

• The DECLARE statement with the ENTRY attribute

• The I/O statements DELETE, GET, PUT, READ, REWRITE, and
WRITE

464 OPTIONS Option

• The PROCEDURE statement

The format of the OPTIONS option is as follows:

OPTIONS (option, ...)

For a list of the valid options, see the entry for the individual statement or
attribute.

For example:

APPLIC: PROCEDURE OPTIONS (MAIN, IDENT('APPLIC'));

This is a PROCEDURE statement with the OPTIONS option. The
OPTIONS option itself has two options here: MAIN and IDENT.

OR Operator

The vertical bar character (I) represents the logical OR operation in PL/I.
In a logical OR operation, two bit-string operands are compared bit by
bit. If the two operands are of different lengths, the shorter operand is
converted to the length of the longer operand, and this is the length of
the result. If either of two corresponding bits is 1, the resulting bit is 1;
otherwise, the resulting bit is 0.

All relational expressions result in bit strings of length l, and they can
therefore be used as operands in an OR operation.

The result of the OR operation is a bit-string value. For example:

DECLARE (BITA, BITB, BITC) BIT (4);
BITA,. '0011'8;
8ITB = '1111'8;
BITC = 8ITA I 8ITB ;

The resulting value of BITC is '1111 'B.

The OR operator can test whether one of the expressions in an IF state­
ment is true. For example:

IF (LINENO(PRINT_FILE) < 60) I
(MORE_DATA = YES) THEN ...

You can use the exclamation point (!) in place of the vertical bar, for
compatibility with other PL/I implementations.

See also "Logical Operator," "EXCLUSIVE OR Operator," and "OR ELSE
Operator."

OR Operator 465

OR ELSE Operator

The vertical bar and colon characters (I:) together are the OR ELSE
operator in PL/I. The OR ELSE operator causes the first operand to
be evaluated. If it is true, the result returned is 'l'B. If and only if the
first operand is false, the second operand is evaluated. If either or both
operands are true, the result returned is 'l 'B; otherwise, the result is 'O'B.

The OR ELSE operator performs a Boolean truth evaluation, not a bit-by­
bit operation, even when the two operands are bit strings. For example,
'00001'8 I: '10000'8 yields 'l'B (not '10001'8, which would be the result
of an OR operation on these two bit strings). The reason is that each
operand is a nonzero bit value, and therefore each evalutes to 'l'B.

The OR ELSE operator yields the same result as the OR operator (I) when
expressions are tested in an IF statement (as in the last example in the
"OR Operator" entry). The difference is that the OR operator can have its
operands evaluated in any order.

The OR ELSE operator is useful in compound test expressions in which
the second test should occur only if the first test failed. For example:

IF (A=O) I: (B/A > 1) THEN ...

This results in the second expression (B/ A > 1) being evaluated only
if the first expression is false. Thus, the OR ELSE operator prevents an
attempt to divide by zero.

See also "OR Operator," "Logical Operator," and "Operator."

OTHERWISE Keyword

The OTHERWISE clause is optionally specified in a SELECT statement to
define the action to be taken if none of the preceding conditions in the
statement is satisfied. The action following the OTHERWISE keyword can
be a null statement. See "SELECT Statement."

OTHERWISE can be abbreviated to OTHER.

466 OTHERWISE Keyword

OUTPUT Attribute

The OUTPUT file description attribute indicates that data is to be written
to, and not read from, the associated external device or file.

Specify the OUTPUT attribute on a DECLARE statement for a file constant
or on an OPEN statement to access the file for writing. You can specify
the OUTPUT attribute with either the STREAM or the RECORD attribute.
For a stream file, OUTPUT indicates that the file will be accessed with
PUT statements. For a record file, OUTPUT indicates that the file will be
accessed with only WRITE statements.

For example:

DECLARE OUTFILE RECORD OUTPUT;

OPEN FILE(OUTFILE);
WRITE FILE(OUTFILE) FROM(RECORD_BUFFER);

These statements declare, open, and write a record to the output file
OUTFILE.

For a description of the attributes that can be applied to files and the
effects of combinations of these attributes, see "File Description Attributes
and Options."

The OUTPUT attribute can be supplied by default for a file, depending on
the context of its opening. See 0 0pening a File."

• Restrictiens
The OUTPUT attribute conflicts with the INPUT and UPDATE attributes
and with any data type attributes other than FILE.

OVERFLOW Condition Name

The OVERFLOW condition name can be specified in an ON, REVERT,
or SIGNAL statement to designate an ON condition or ON-unit for
floating-point overflow conditions. OVERFLOW can be abbreviated to
OFL.

The exponent of a floating-point value is adjusted, if possible, to represent
the value with the specified precision. That is, the precision is maximized
and the exponent is minimized. The maximum precision allowed for a
binary floating-point value is 113; the maximum precision of a decimal
floating-point value is 34. PL/I signals the OVERFLOW condition when

OVERFLOW Condition Name 467

the result of an arithmetic operation on a floating-point value exceeds the
maximum exponent size allowed by the VAX hardware.

The value resulting from an operation that causes this condition is unde­
fined.

• ON-Unit Completion
Control returns to the point of the interruption.

For more information, see "ON Conditions and ON-Units" and "ON
Statement."

468 OVERFLOW Condition Name

p

P Format Item

The picture format item (P) describes a field of characters in the input or
output stream. The field can be an input field acquired with GET EDIT or
an output field transmitted by PUT EDIT. With GET EDIT, the P format
item acquires a pictured value from the input stream. With PUT EDIT, the
P format item edits an output source to a specified picture format.

The form of the P format item is as follows:

P 'picture'

'picture'
A picture of the same syntax as for the PICTURE data attribute. The
syntax is summarized in "PICTURE Attribute." The field width is the total
number of characters, exclusive of V, in the picture. For full details, see
"Picture."

The interpretation of the P format item, for input and output, is given
below. For a general discussion of format items, see "Format Item."

• Input with GET EDIT
Used with the GET EDIT statement, the P format item acquires a pictured
value (a field of characters) from the stream file, extracts its fixed-point
decimal value, and assigns the value to an input target of any compu­
tational type. The picture describes a field of w characters, where w is
the total number of picture characters in the picture, exclusive of the V
character.

A string of w characters is acquired from the input stream and validated
against the picture specified in the format item. The string is valid if it
corresponds to an internal representation that would be created by the
specified picture if the picture were used to declare a variable of type
PICTURE. If the string is valid, its fixed-point decimal value is extracted
and assigned to the input target. If necessary, the value is converted to

P Format Item 469

the type of the input target, following the usual rules (see uconversion of
Data"). If the string is not valid, the ERROR condition is signaled.

When no decimal point appears in the input stream item, the scale factor
of the item is assumed to be the number of digit positions specified to the
right of the V character in the picture. If no V character appears, the scale
factor is zero.

• Output with PUT EDIT
Used with the PUT EDIT statement, the P format item outputs a source of
any computational type in the specified format. If necessary, the output
source is first converted to a fixed-point decimal value, following the PL/I
conversion rules (see uconversion of Data"). The fixed-point decimal
value is then edited by the picture sp~cified in the format item. The P
format item therefore describes an output field of w characters, where w is
the total number of characters in the picture, exclusive of the V character.
If the output source is a pictured value, then its extracted fixed-point
decimal value must be capable of being edited by the picture specified in
the P format item. Otherwise, the ERROR condition is signaled.

•Examples
The tables below show the relationship between the internal and external
representations of numbers that are read or written with the P format
item.

Input Examples
The input stream shown in this table is a field of characters beginning at
the current position in the stream and continuing to the right. The target
type is the type of the variable to which the input value is assigned.

Format Item Input Stream Target Type Target Value

P '$$$,$$$,$$9V.99DB' $10,987,664.00DB ... DECIMAL(10,2) -10987664.00

P '$$$,$$$,$$9V.99DB' AAAAAAAA$10.99AA ... DECIMAL(10,2) 10.99

P •ssssv.sssss• AA--1.12345 ... DECIMAL(8,5) -1.12346

P •ssssv.sssss• +100. 12345 ... DECIMAL(8,5) 100.12346

P •ssssv.sssss• 6100 .12345 ... DECIMAL(8,5) [ERROR]

p I SSSSV, SSSSS I +1001. 2346 ... DECIMAL(S,6) [ERROR]

The last two cases signal the ERROR condition. In the first case, the input
field has a space instead of a plus symbol or minus symbol in the first
position. In the second case, the input field has four digits to the left of

470 P Format Item

the period, and the P format item specifies a maximum of three. The P
format item in both cases uses "drifting strings" of S characters, and, if
used to declare a picture variable, the specification could create several
different character representations. However, the specification could not
have created the last two input fields shown, and they are therefore
invalid values, as described under "Input with GET EDIT" above.

Note that in the second line in the table, the characters "$10.99" must
be surrounded with the number of spaces shown. The drifting dollar
signs and the comma insertion characters always specify either digits, the
characters themselves, or spaces. Similarly, the characters "DB" in the
picture specification specify either these characters or the same number of
spaces. If the pictured input value did not contain these spaces, it would
be invalid.

Output Examples
The output source value shown in this table is either a constant or the
value of a variable that is written out with the associated format item.

Output Source Value Format Item Output Value

-12234 P '$$$$$$DB' $12234DB

-12234 P 'SSSSSSV.SS' -12234.00

-12.234 P 'T9V.999' J2.234

-1.23456E3 P '-9999V.99' -1234.56

-1.23456E3 P '+ZZZ9V.99' 111234.56

%PAGE Statement

The %PAGE statement provides listing pagination without inserting
form-feed characters into the source text.

The format of %PAGE is as follows:

%PAGE;

The first source record following the record that contains the %PAGE
statement is printed on the first line of the next page of the source listing.

%PAGE Statement 471

PAGE Format Item

The PAGE format item is used with print files to begin a new page.

The form of the PAGE format item is as follows:

PAGE

Subsequent output begins on line 1 of the next page, and the current page
number for the print file is incremented by 1 (see also "PAGENO Built-In
Function" and "Print File").

PAGE Option

The PAGE option is used with the PUT statement to advance a print file
to the top of the next page before beginning output. The output file must
be a print file, that is, it must be declared with the PRINT attribute.

For further information, see "PUT Statement," "PRINT Attribute," and
"Print File."

PAGENO Built-In Function

The PAGENO built-in function returns a FIXED BINARY{lS) integer that
is the current page number in the referenced print file. The print file must
be open. The format of the function is as follows:

PAGENO(reference)

PAGENO Pseudovariable

The PAGENO pseudovariable refers to the page number of the referenced
print file. Assignment to the pseudovariable modifies the current page
number. See also "Pseudovariable" for general rules. The format of the
PAGENO pseudovariable in an assignment statement is as follows:

PAGENO(reference) =expression;

472 PAGENO Pseudovariable

reference
A reference to a file for which the page number is to be set. The file must
be open and must be a print file.

PAGENO(reference) is a FIXED BINARY(lS) variable; however, values
assigned to it must not be negative.

PAGESIZE Option

The P AGESIZE option is used in the OPEN statement to specify the
maximum number of lines that can be written to a print file without
signaling the ENDP AGE condition. The format of the P AGESIZE option is
as follows:

PAGESIZE(expression)

expression
A fixed-point binary expression in the range 1 through 32767, giving the
number of lines per page. If a program generates a value in excess of
32767, a run-time error occurs.

The value specified in the P AGESIZE option is used as the output page
length for all subsequent output operations on the print file, and overrides
the system default page size. The default page size is as follows:

• If the logical name SYS$LP_LINES is defined, the default page size is
the numeric value of SYS$LP_LINES minus 6.

• If SYS$LP_LINES is not defined, or if its value is less than 30 or
greater than 99, or if its value is not numeric, the default page size is
60.

During output operations, the ENDP AGE condition is signaled the first
time that the specified page size is exceeded.

• Restrictions

The P AGESIZE option is valid only for print files.

PAGESIZE Option 473

PARAMETER Attribute

A variable occurring in the parameter list of a PROCEDURE or ENTRY
statement has the PARAMETER attribute implicitly. The PARAMETER
keyword can optionally be used in the declaration of a variable name to
state explicitly that it is a parameter.

PARAMETER can be abbreviated PARM.

Following is an example of the use of the PARAMETER keyword:

TEST: PROC(A, B);
DCL A CHAR(•) PARAMETER;
DCL B FIXED BIN PARM;

For more information, see "Parameters and Arguments."

Parameter Descriptor

See "ENTRY Attribute."

Parameters and Arguments

A PL/I procedure can invoke other procedures and can transmit values
to and receive them from the invoked procedure. Values are transmitted
to an invoked procedure by means of arguments written in the procedure
invocation. Values are returned to the invoking procedure by means of
parameters and also, in the case of functions, by specifying a value in the
function's RETURN statement.

You can specify arguments for a subroutine (invoked by a CALL state­
ment) or for a function (invoked by a function reference). Subroutines and
functions return values by different means.

• A subroutine can return values only through a list of parameters. A
subroutine must not specify a return value in its RETURN statement,
and the declaration of an external entry point must not include the
RETURNS attribute if the entry point is to be invoked as a subroutine.
Instead, you can return values by assigning them, within the invoked
subroutine, to the variables listed as parameters. (See also "Argument
Passing" below.)

474 Parameters and Arguments

• A function can return values through its parameter list and, in ad­
dition, must return a single value that becomes the value of the
function reference in the invoking procedure; this value is specified
in the function's RETURN statement. The attributes of this returned
value are specified within the invoking procedure, in the function's
PROCEDURE or ENTRY statement, or in the declaration of the exter­
nal entry constant or entry variable used to invoke the function. (See
also NRETURN Statementn.)

Figure P-1 illustrates the relationship between arguments (specified on
a CALL statement or function reference) and parameters (specified on a
PROCEDURE statement).

Figure P-1: Parameters and Arguments

CALLER: PROCEDURE ;

DECLARE COMPUTER EXTERNAL ENTRY
(FIXED BINARY (7). CHARACTER (80) VARYING) ;

I/
CALL COMPUTER (5. 'ABC') ;

END CALLER; \\
COMPUTER: PROCEDURE (X. Y) ;

DECLARE X FIX~Y (0
DECLARE Y CHARACTER (80) VARYING ;

END COMPUTER ;

• Parameter List

The ENTRY attribute in a DECLARE statement
provides a parameter descriptor for each
parameter of the called procedure. A parameter
descriptor is a set of data type attributes.

In a CALL statement or a function reference.
arguments appear in parentheses following the
name of the procedure. Arguments can be variables.
expressions. aggregates, or (as in this example)
constants.

The data type of each argument is matched with
the corresponding parameter descriptor in the
declaration of the entry.

The PROCEDURE statement for the called procedure
specifies the parameters of the procedure. These
parameters correspond. in the order specified,
to the arguments specified in the CALL statement.

Each parameter specified in the PROCEDURE
statement must be declared within the procedure.

ZK-1292-83

A parameter is a variable that occurs in the parameter list of a
PROCEDURE or ENTRY statement. When the entry point is invoked,
each parameter in the parameter list is associated with an argument vari­
able. Within the procedure invocation, any reference to the parameter is
equivalent to a reference to the associated argument variable.

Parameters and Arguments 4 7 5

If the invoked entry point is external to the invoking procedure, the
attributes of the parameters must be described in parameter descriptors,
which are part of the declaration of the external entry point.

Procedures can have more than one entry point (see HProcedure"). Each
entry point that will be invoked with an argument list must have a
parameter list. Multiple entry points in a procedure do not need to
have identical parameters, but a reference to a parameter is valid only
if the procedure was invoked through an entry point that specified that
parameter.

• Argument List
An argument is an expression or variable reference denoting a value
to be passed to the invoked procedure. A procedure must be invoked
with the same number of arguments as it has parameters. The maximum
number of arguments that can be passed to a procedure is 253. The
argument variable associated with a parameter, or "actual argument," can
be a variable written in the argument list or a dummy argument created
by the compiler. A dummy argument is created when the specified
argument is a constant or expression and exists only for the duration of
the procedure invocation. Therefore, references in the invoked procedure
to the parameter associated with a dummy argument do not modify any
storage in the invoking procedure. (For additional details, see H Argument
Passing.")

An argument list consists of zero or more arguments specified in the invo­
cation of a procedure, built-in function, or built-in subroutine. Arguments
to a built-in function are expressions that supply values to the built-in
function, and the argument types must be those required by the function.
Arguments to user-defined procedures correspond to parameters defined
on the PROCEDURE or ENTRY statement of the invoked procedure.

Arguments in an argument list must be separated by commas, and the list
enclosed in parentheses. For example:

CALL XYZ(STRING, 5, INDEX(ABC, STRING));

The CALL statement in this example invokes the procedure XYZ with an
argument list consisting of three arguments:

• A variable named STRING

• An integer constant, 5

476 Parameters and Arguments

• A function reference (the INDEX built-in function is invoked with the
variable arguments ABC and STRING; the value returned by INDEX
is passed as the third argument to the procedure XYZ)

An empty argument list is required in the invocation of a user-defined
function with no parameters. An empty argument list can be used in the
invocation of a subroutine or built-in function that has no parameters.
Examples:

X = F(); /•user-defined procedure--argument list required•/
S =DATE(); /•built-in function--argument list optional•/
CALL P(); /• subroutine--argument list optional•/

• Rules for Specifying Parameters
The general rules listed below for specifying parameters are followed by
specific rules that pertain only to certain data types.

• A parameter must be declared explictly in a DECLARE statement (to
give it a data type) within the invoked procedure. This declaration
must not be part of a structure.

• A parameter must not be declared with any of the following attributes:

AUTOMATIC

BASED

CONTROLLED

DEFINED

EXTERNAL

GLOBALDEF

GLOBALREF

INITIAL

READONLY

STATIC

• A maximum of 253 parameters can be specified for an entry point.

• The parameters of an external entry must be explicitly specified by
parameter descriptors in the declaration of the entry constant. The
parameters of a procedure that is invoked through an ENTRY variable
must be specified by parameter descriptors in the ENTRY attribute of
the variable's declaration. The parameters of an internal entry must
not be declared. For details on entries and parameter descriptors, see
"Entry Data."

• Each parameter must have a corresponding argument at the time
of the procedure's invocation. PL/I matches the data type of the
parameter with the data type of the corresponding argument and
creates a dummy argument if they do not match. (See "Argument
Passing" below.)

Parameters and Arguments 4 77

Array Parameters
If the name of an array variable is passed as an argument, the correspond­
ing parameter descriptor or parameter declaration must specify the same
number of dimensions as the argument variable. You can specify the
bounds of a dimension using asterisks (*) or optionally signed integer
constants. If the bounds are specified with integer constants, they must
match exactly the bounds of the corresponding argument. An asterisk
indicates that the bounds of a dimension are not known. {If one dimen­
sion contains an asterisk, all the dimensions must contain asterisks.) For
example:

DECLARE SUMUP ENTRY((•) FIXED BINARY);

This declaration indicates that SUMUP's argument is a one-dimensional
array of fixed-point binary integers that can have any number of elements.
Any one-dimensional array of fixed-point binary integers can be passed to
this procedure.

All the data type attributes of the array argument and parameter must
match.

Structure Parameters
If the name of a structure variable is passed as an argument, the corre­
sponding parameter descriptor or declaration must be identical in terms of
structure levels, members' sizes, and members' data types. Array bounds
and string lengths can be specified with asterisks or with optionally signed
integer constants. The level numbers do not have to be identical. The
following example shows the parameter descriptor for a structure variable:

DECLARE SEND_REC ENTRY (1,
2 FIXED BINARY(31),
2 CHARACTER(40) VARYING,
2 PICTURE '999V99');

The written argument in the invocation of the external procedure SEND_
REC must have the same structure, and its members must have the same
data types.

Structures are always passed by reference. They cannot be passed by
dummy argument.

Character-String Parameters
If a character-string variable is passed as an argument, the corresponding
parameter descriptor or parameter declaration can specify the length with
an asterisk (*) or an optionally signed nonnegative integer constant. For
example:

4 7 8 Parameters and Arguments

COPYSTRING: PROCEDURE (INSTRING,COUNT);
DECLARE INSTRING CHARACTER(•);

The asterisk in the declaration of this parameter indicates that the string
can have any length.

Entry, File, and Label Constant Parameters
Entry, file, and label constants can be passed as arguments. The actual
argument is a variable.

• Argument Passing
The following paragraphs describe the precise rules that PL/I uses to
determine how to pass an argument.

There are different rules for passing arguments to procedures written in
PL/I and for passing arguments to procedures written in other languages.
This manual describes only the conventions for passing arguments to
procedures that are written in PL/I. For complete rules and details on
passing arguments to procedures written in other languages, see the VAX
PL/I User Manual.

Number of Arguments
The number of arguments in the argument list must equal the number of
parameters of the invoked entry point. The compiler checks that the count
matches as follows:

• For an internal procedure, the compiler checks the number of argu­
ments specified in the argument list against the number of parameters
specified on the PROCEDURE or ENTRY statement for the internal
procedure.

• For an external procedure, the compiler checks that the number of pa­
rameter descriptors in the parameter descriptor list of the ENTRY dec­
laration matches the number of arguments specified in the procedure
invocation. This argument checking can be overridden for an external
procedure declared with the LIST option or the TRUNCATE op-
tion; LIST is restricted to non-PL/I procedures, whereas TRUNCATE
is allowed with procedures written in PL/I. With the LIST option,
there can be more arguments than parameter descriptors. With the
TRUNCATE option, there can be fewer arguments than parameter
descriptors. See the VAX PL/I User Manual for information on how to
use these options.

Parameters and Arguments 4 7 9

Actual Arguments
When a PL/I procedure is invoked, each of its parameters is associated
with a variable determined by the corresponding written argument of the
procedure call. This is the actual argument for the procedure invocation.
This actual argument can be either a reference to the written argument or
a dummy argument.

The data type of the actual argument is the same as the data type of
the corresponding parameter. When a written argument is a variable
reference, PL/I matches the variable against the corresponding parameter's
data type according to the rules given under the heading "Argument
Matching," below. If it matches, the actual argument is the variable
denoted by the written argument. That is, the parameter denotes the same
storage as the written variable reference. If it does not match, the compiler
creates a dummy argument and assigns the value of the written argument
to the dummy argument.

Dummy Arguments
A dummy argument is a unique variable allocated by the compiler, and it
exists only for the duration of the procedure invocation.

When the written argument is a constant or an expression, the actual ar­
gument is always a dummy argument. The value of the written argument
is assigned to this dummy argument before the call. The data type of the
written argument must be valid for assignment to the data type of the
dummy argument.

Aggregate Arguments
An array, structure, or area argument must be a variable reference that
matches the corresponding parameter. It cannot be a reference to an
unconnected array. A dummy argument is never created for an array or
structure.

Argument Matching
A written argument that is a variable reference is passed by reference
only if the argument and the corresponding parameter have identical
data types. (For the definition of identical data types, see "Data and Data
Types.")

For an internal procedure, the attributes of the argument must match the
attributes specified in the declaration of the parameter. For an external
procedure or a procedure invoked through an ENTRY variable, the
attributes specified in the ENTRY attribute parameter descriptor must
match the attributes of the arguments.

480 Parameters and Arguments

Picture

When the compiler detects that a scalar variable argument does not
match the data type of the corresponding parameter, it issues a warning
message, creates a dummy argument, and associates the address of the
dummy argument with the corresponding parameter. You can suppress
the warning message and force the creation of a dummy argument if you
enclose the argument in parentheses. For example, if a parameter requires
a CHARACTER VARYING string and an argument is a CHARACTER
nonvarying variable, enclose the variable in parentheses.

For string lengths and array bounds, an asterisk ("') in the parameter
matches any size. An integer constant matches only an integer constant
with the same value.

Conversion of Arguments
When the data type of a written argument is suitable for conversion to
the data type of the corresponding parameter descriptor, PL/I performs
the conversion of the argument to a dummy argument using the rules
described under "Conversion of Data."

Pictured data is used when you want to manipulate a quantity arithmeti­
cally and then print or display its value using a special output format.
This entry discusses the following topics:

• Pictured variables-variables declared with the PICTURE data at­
tribute

• Editing by picture-the process by which a value is assigned to a
pictured variable or written out with the P format item

• Extracting values from pictured data-the process by which a pictured
value is assigned to other variables or acquired with the P format item

• Picture characters-the special characters that make up a picture
specification in the PICTURE attribute and in the P format item

"Picture Characters" below gives a detailed description of each picture
character. For a brief description of the characters and for the required
picture syntax, see "PICTURE Attribute." For a description of the P format
item, see "P Format Item."

Picture 481

482 Picture

• Pictured Variables
A pictured variable has the attributes of a fixed-point decimal variable,
but values assigned to it are stored internally as character strings. Such a
character string contains digits representing the variable's numeric value
as well as special symbols such as the dollar sign. When the value of a
pictured variable is written out, for example, by the PUT LIST statement,
the internally stored character string is placed in the output stream. The
value that appears on a line printer or terminal thus contains a fixed-point
decimal number that has been uedited" with the requested special symbols.

The formatting possible with pictured data is useful in many applications,
but pictured data is much less efficient than fixed-point decimal data for
strictly computational use.

The numeric attributes of a pictured variable and its output format are
both described in a picture specification, or simply, a picture. A simple
picture looks like this in a DECLARE statement:

DECLARE CREDIT PICTURE •sgggggv.99DB';

The variable CREDIT is declared as a pictured variable; its picture com­
prises the characters between the apostrophes.

The assignment CREDIT= 12443.00; stores the following data internally, as a
character string, where the delta (A) represents a space:

First character

$ 1 2 4 4 0

ZK-1293-83

The assignment CREDIT = -12443.00; stores the following data internally:

First character

$ 2 4 4 0 0 D B

ZK-1294-83

In situations that call for a character representation of a pictured data
item (such as output with PUT LIST), this internal representation is used,
including the nonnumeric characters. On output, the values assigned to
CREDIT would look like this:

$12443.00 /* a positive value (credit) •/

$12443.00DB /• a negative value (debit) •/

• Editing by Picture
Any computational value or expression can be assigned to a pictured
variable, as long as it meets these two qualifications:

• The value either is a fixed-point decimal value or can be converted to
a fixed-point decimal value (see also uconversion of Data").

• The fixed-point decimal value can be represented with the precision
and scale factor of the picture specified for the target pictured variable.

When a value is assigned to a pictured variable, the value is edited to
construct a character string that meets the picture specification. Editing
also occurs when a value is output with the PUT EDIT statement and the
P format item. Editing was performed in the previous examples in which
fixed-point decimal values were assigned to the pictured variable CREDIT.

Because a picture specifies a fixed-point decimal value, the
FIXEDOVERFLOW condition is signaled in the same circumstances as for
assignment of an expression to a FIXED DECIMAL variable.

In addition, two programming errors are common in assignments to
pictured variables:

CREDIT = '$12443.00';

This example signals the ERROR condition because the character string
contains a dollar sign and is therefore not convertible to fixed-point
decimal. The value assigned to CREDIT should be either '12443.00' or
simply 12443.00, both of which result in the same value assigned to
CREDIT.

If a negative value is assigned to a pictured variable, the picture must
include one of the sign picture characters (such as DB). If, for example, the
picture of CREDIT did not contain the DB characters, then the assignment
CREDIT= -12443.00; would signal the FIXEDOVERFLOW condition, because
the sign would be lost.

Picture 483

484 Picture

In some circumstances (for example, with the READ statement), it is
possible to assign a value to a pictured variable that is not valid with
respect to the variable's picture specification. In such cases, the VALID
built-in function can be used to validate the contents of the variable. See
NVALID Built-In Function."

• Extracting Values from Pictured Data
When a pictured value is used in an arithmetic context (for example,
when it is assigned to an arithmetic variable), the picture is used to extract
the fixed-point decimal number from the character string that is the
internal representation of the pictured value. Extraction also occurs when
a pictured value is input with the GET EDIT statement and the P format
item.

Assume that the following is the picture for CREDIT:

DECLARE CREDIT PicrpaE '$99999V.99DB';

The 9 character specifies the position of a decimal digit; because the
picture contains seven of these, the fixed-point decimal precision of
CREDIT is 7.

The V character separates the integral and fractional digits; because there
are two 9 characters to the right of the V, the scale factor of CREDIT is
2. The V character is unique among picture characters in that it specifies
only a numeric property; it does not cause a decimal point (or any other
character) to appear in the internal representation of CREDIT. Therefore, a
period picture character (.) should be included after the V to ensure that
the output value has a decimal point in the correct place.

The period and dollar sign are always inserted in the internal representa­
tion and the output value regardless of CREDIT's numeric value.

The picture character DB appears only when the value of CREDIT is
less than zero; otherwise, two spaces appear in the indicated positions.
The DB character also indicates that a value of CREDIT is numerically
negative, so that if CREDIT is later assigned to an arithmetic variable, the
variable will be given a negative value.

• Picture Characters
The picture is a string made up of special characters. (For a -full list of PL/I
picture characters, see Table P-2 in NPICTURE Attribute.") An individual
picture character and its position in the picture indicate the interpretation
of an associated position in the pictured value. All picture characters are
shown here in uppercase, although the lowercase equivalents can be used.

The picture characters fall into three categories:

• Characters that affect only the numeric interpretation of the value.
The decimal place character (V) is the only one in this category.

• Characters that affect both the numeric interpretation and character
representation of the value:

The digit characters (9, Z, •, Y)

- The encoded-sign characters (T, I, R)

- The drifting characters ($, +, -, S)

• Characters that affect only the character representation of the value:

The insertion characters (comma, period, slash, space)

The credit (CR) and debit (DB) characters

Any picture character that can appear more than once in a picture can be
preceded by an iteration factor. The iteration factor must be a positive
integer constant enclosed in parentheses. For example:

'(4)9'

This picture is the same as the following:

'9999'

Decimal Place Character (V)
The V character shows the position of the Hassumed" decimal point, or,
in other words, the scale factor for the fixed-point decimal value. The
V character has no effect on the internal representation of the pictured
value and does not cause a decimal point to appear in the internal repre­
sentation. (The period insertion character is used for this purpose-see
Hlnsertion Characters," below.) The following additional rules apply to the
V character:

• Only one V character can appear in a picture.

• If a picture does not contain the V character, a V character is assumed
to be at the right end of the picture. That is, the pictured value has a
scale factor of zero.

• When a fixed-point value is assigned to a pictured variable, the
integral portion of the assigned value is described by the picture
characters to the left of the V; the fractional portion of the assigned
value is described by the picture characters to the right of the V.

If the assigned value has fewer integral digits than are indicated
by the picture characters to the left, then the integral value of the
pictured variable is extended on the left with zeros. If the assigned

Picture 485

486 Picture

value has too many integral digits, the value of the pictured
variable is undefined and the FIXEDOVERFLOW condition is
signaled.
If the assigned value has fewer fractional digits than are indicated
in the picture, then the fractional value of the pictured variable
is extended on the right with zeros. If the assigned value has
too many fractional digits, then the excess fractional digits are
truncated on the right; no condition is signaled. Thus, if the V
character is the last character in the picture or is omitted, assigned
fixed-point values are truncated to integers.

Digit Characters (9, Z, *• YJ
All of these characters mark the positions occupied by decimal digits. The
number of these characters present in a picture specifies the number of
digits, or precision, of the fixed-point decimal value of the pictured vari­
able. These characters also describe the internal character representation
of the digits; they allow zeros in a number to be represented either by the
character 0 or by an alternative character. Specifically:

• The position occupied by 9 always contains a decimal digit, whether
or not the digit is significant in the numeric interpretation of the
pictured value.

• The position occupied by Z contains a decimal digit only if the digit is
significant in the integral portion of the numeric interpretation; if the
digit is an insignificant, or "leading," zero, it is replaced by a space in
the internal representation.

The Z character must not appear in the same picture with the
asterisk character (•). It must not appear to the right of the
characters 9, T, I, or R, nor to the right of a drifting string (see
"Drifting Characters" below).
If the Z character appears to the right of the V character, then
all digits to the right of the V must be indicated by Z characters.
Fractional zeros are then suppressed only if all fractional digits are
zero and all of the integral digits are suppressed; in that case, the
internal representation contains only spaces in the digit positions.

• The position occupied by the asterisk (•) character functions identi­
cally with the Z character, except that leading zeros are replaced in the
internal representation by asterisks instead of spaces. The asterisk (*)
character must not appear in the same picture as Z, nor to the right
of the characters 9, T, I, or R, nor to the right of a drifting string (see
"Drifting Characters" below).

• The position occupied by the Y character contains a decimal digit only
if the digit is not zero. All zeros in the indicated positions, whether
significant or not, are replaced by spaces in the internal representation.

Encoded-Sign Characters (T, I, R)
The characters T, I, and Rare digit characters that can be used wherever 9
is valid. One of these characters represents a digit that has the sign of the
pictured value encoded in the same position.

Only one of these characters can be used in a picture.

An encoded-sign character cannot be used in a picture that contains an S,
plus sign (+), minus sign (-), CR, or DB (described later in this section).

The meanings of the characters are as follows:

• The T character indicates that the position contains an encoded minus
sign if the numeric value is less than zero, and an encoded plus sign if
the numeric value is greater than or equal to zero. These encoded-sign
digits are represented internally and in output by the ASCII characters
shown in Table P-1.

• The I character indicates an encoded plus sign if the numeric value
is greater than or equal to zero. Otherwise, the position contains an
ordinary digit.

• The R character indicates an encoded minus sign if the numeric value
is less than zero. Otherwise, the position contains an ordinary digit.

Table P-1 shows the ASCII characters used to indicate digits with encoded
signs. In the table, the notation +digit represents the digit with an encoded
plus sign, and -digit represents the digit with an encoded minus sign.
The characters in Table P-1 are used in the internal representation of a
pictured value and must be used for input of an encoded-sign digit from a
stream file.

Table P-1: ASCII Representation of Encoded-Sign Digits
Digit ASCII Character Digit ASCII Character

+O -0

+1 A -1 J
+2 B -2 K

+3 c -3 L

Picture 487

488 Picture

Table P-1 (Cont.): ASCII Representation of Encoded-Sign
Digits

Digit ASCII Character Digit ASCII Character

+4 D -4 M

+5 E -5 N

+6 F -6 0

+7 G -7 p

+8 H -8 Q
+9 -9 R

Drifting Characters ($, +, -, SJ
The drifting characters can be used to indicate digits, and they also
indicate a symbol to be inserted in the internal representation. The
inserted symbol then appears when, for example, a pictured value is
written out by PUT LIST.

• The dollar sign ($) causes a dollar sign to be inserted.

• The plus sign (+) causes a plus sign to be inserted if the numeric
value is greater than or equal to zero.

• The minus sign (-) causes a minus sign to be inserted if the numeric
value is less than zero.

• The S character causes a plus sign to be inserted if the numeric value
is greater than or equal to zero, and a minus sign if the value is less
than zero.

If one of these characters is used alone in the picture, it marks the position
at which a special symbol or space is always inserted, and it has no effect
on the value's numeric interpretation. In this case, the character must
appear either before or after all characters that specify digit positions.

However, if a series of n of these characters appears, then the rightmost
n-1 of the characters in the series also specify digit positions. If the
digit is a leading zero, the leading zero is suppressed, and the leftmost
character "drifts" to the right; in the internal representation, the character
appears either in the position of the last drifting character in the series or
immediately to the left of the first significant digit, whichever comes first.
Used this way, the n-1 drifting characters also define part of the numeric
precision of the pictured variable, because they describe at least some of
the positions occupied by decimal digits. The following additional rules
apply to drifting characters:

• A drifting string is a series of more than one of the same drifting
character. If a drifting string appears in the picture, it must be the
only drifting string; the other drifting characters can be used only
singly and therefore designate insertion characters and not digits.

• The Z and asterisk characters cannot appear to the right of a drifting
string.

• A digit position cannot be specified (for instance, with a 9) to the left
of a drifting string.

• A drifting string can contain the V character and one of the insertion
characters (defined below). The following additional rules apply to
insertion characters that are embedded in a drifting string:

If the drifting string contains an insertion character, the insertion
character is inserted in the internal representation only if a sig­
nificant digit appears to its left. In the position of the insertion
character, a space appears if the leftmost significant digit is more
than one position to the right; the drifting symbol appears if the
next position to the right contains the leftmost significant digit.

If the drifting string contains a V character, all digit positions
to the right of the V (the fractional digits) must also be part of
the drifting string. In this case, insignificant fractional digits are
suppressed if and only if all integral and fractional digits are zeros;
if so, they are replaced by spaces in the internal representation. If
any digit is not zero, all fractional digits appear as actual digits.

Any insertion characters that are immediately to the right of a
drifting string are considered part of the drifting string.

Insertion Characters
The insertion characters indicate that characters are inserted in the internal
representation of the pictured value. They are inserted between digits.
The insertion characters are the comma (,), the period (.), the slash
(/), and the space (B). The B character indicates that a space is always
inserted at the indicated position.

The drifting characters also function as insertion characters when used
singly (that is, when not part of a drifting string).

The following rules describe the actual characters inserted by the comma,
period, and slash insertion characters.

• In general, the insertion character itself is inserted in the internal
representation of the pictured value. In particular, this is true if the
insertion character is the first character in the picture, or if all the

Picture 489

490 Picture

picture characters to its left are characters that do not specify decimal
digits.

• If zero suppression occurs, the insertion character is inserted only in
these cases:

A significant digit appears immediately to the left of the insertion
character.
The V character appears immediately to the left, and the fractional
part of the numeric value contains significant digits.

• If the position preceding the insertion character is occupied by an
asterisk or drifting string and the preceding position is taken by a
leading zero, then the preceding character also indicates the character
to be inserted in the position of the insertion character. If, however,
the preceding position is taken by a leading zero and does not have
an asterisk or drifting string, then the insertion character's position is a
space in the internal representation of the pictured value.

• To guarantee that the decimal point is in the same position in both
the numeric and character interpretations, the V and period characters
must be immediately adjacent. Note, however, that if the period
precedes the V, then it is suppressed if there are no significant integral
digits, even though all the fractional digits are significant. This
property can make fractions appear to be integers when the internal
(character) value is displayed. Consequently, the period should
immediately follow the V character; the period will then be in the
correct location and will appear whenever any fractional digit is
significant.

• Other insertion characters, such as the comma, can be used to separate
the integral and fractional portions of a number. However, the comma
should not be used with GET LIST input, because a comma is used in
that context to separate different data items in the input stream.

Credit (CR) and Debit (DB) Characters
These picture characters are always specified in the pairs CR and DB. If
either of these character pairs is included, the character pair appears in the
internal representation if the numeric value is less than zero. In each case,
the associated positions in the internal representation contain two spaces
if the numeric value is greater than or equal to zero.

The characters are always inserted with the same case used in the picture;
if the lowercase form er is used in the picture, lowercase letters are
inserted in the pictured value; if the combination Cr is used, then Cr is
inserted.

The credit and debit characters cannot be used in the same picture, nor can
they be used in the same picture with any other character that specifies
the sign of the value (that is, the S, the plus sign (+), the minus sign (-),
and the encoded-sign characters). In addition, they must appear to the
right of all picture characters that specify digits.

PICTURE Attribute
The PICTURE attribute is used to declare a pictured variable. Pictured
variables have fixed-point decimal attributes, but values of the variable are
stored internally as character strings. The character string contains decimal
digits representing the numeric value of the variable, plus special editing
symbols described in the picture.

The PICTURE attribute conflicts with the FIXED, FLOAT, DECIMAL, and
all other data type attributes.

The format of the PICTURE attribute is as follows:

{ PICTURE } 'picture'
PIC

picture
A string of picture characters that define the representation of the variable.

These characters are described in Table P-2. A brief description of picture
syntax and examples follow. For precise definitions of picture characters,
see "Picture."

Table P-2 shows the uppercase form of picture characters; lowercase
letters can also be used.

Table P-2: Picture Characters
Character

9

z
*
y

v

Meaning

Decimal digit, including leading zeros

Decimal digit with leading-zero suppression

Decimal digit with asterisk for leading zero

Decimal digit with space for any zero

Position of assumed decimal point

PICTURE Attribute 491

Table P-2 (Cont.): Picture Characters
Character

(n)

T

R

I
B

$

+

s
CR

DB

Meaning

Iteration factor for subsequent character

Position of digit and encoded plus sign or minus sign

Position of digit and encoded plus sign if number > = 0

Position of digit and encoded minus sign if number < 0

Position at which decimal point is inserted

Position at which comma is inserted

Position at which slash is inserted

Position at which space is inserted

Position(s) of (drifting) dollar sign

Position(s) of (drifting) plus sign if number > = 0

Position(s) of (drifting) minus sign if number < 0

Position(s) of (drifting) plus sign or minus sign

Positions at which 'CR' is inserted if number < 0

Positions at which 'DB' is inserted if number < 0

• Picture Syntax
After all its iterations are expanded and all its insertion characters are
removed, a picture must satisfy the following syntax rules (the notation
character, or ellipsis (. . . }, indicates a series of the same character, with
no embedded characters).

Picture:

'[left-part]center-part[right-part]'

Left-part:

{: }

492 PICTURE Attribute

Right-part:

Center-part:

9 ... [V[9 ...)]
V9 .. .
Z . . . [9 . . . [V[9 . . .]]]
Z ... [V[9 ...]]
[Z ...]VZ .. .
• . . . [9 . . . [V[9 . . .]]]
• ... [V[9 ...)]
[• ... JV• .. .
++ . . . [9 . . . [V[9 . . .]]]
++ ... [V[9 ...]]
- - . . . [9 . . . [V[9 . . .]]]
- - ... [V[9 ...)]
SS . . . [9 . . . [V[9 . . .]]]
SS ... [V[9 ...]]
$$... [9 ... [V[9 ...]]]
$$... [V[9 ...]]
+[+ ... JV+ .. .
-[- ... JV- .. .
S[S ...]VS .. .
$[$... JV$.. .

NOTE

The character Y, T, I, or R can appear wherever 9 is valid, with
the following restrictions. Only one character T, I, or R can
appear in a picture. A picture cannot contain T, I, or R if it also
contains S, +, -, CR, or DB.

PICTURE Attribute 493

•Examples

Valid Pictures
'S99V.99'

The picture specifies a signed fixed-point number with p=4, q=2. The sign
of the number is always included in its representation, in the first position.
A period is inserted at the position of the assumed decimal point.

'****99'

The picture specifies a 6-digit integer, with the first four leading zeros
replaced by asterisks.

'****Y.**'

The picture specifies a fixed-point number with p=6, q=2. The first four
leading zeros are replaced by asterisks in the integral portion. Both
fractional digits always appear unless all six digits are zero. A period is
inserted at the position of the assumed decimal point.

'ZZ99V.99'

The picture specifies a fixed-point number with p=6, q=2. The first two
digits in the integral portion are replaced with spaces if they are zeros.
Two digits always appear on either side of the decimal point.

'(4)SV.99'

The picture specifies a fixed-point number with p=S, q=2. (The iteration
factor 4 specifies a string of four S characters, one of which specifies a
sign and three of which specify digits.) A plus (+) or minus (-) symbol is
inserted to the immediate left of the first significant integral digit, or to the
left of the decimal point if no integral digit is significant. Any insignificant
integral digits are replaced with spaces or with the sign symbol.

'ZZZ,ZZZV.99'

The picture specifies a fixed-point number with p=8, q=2. If the integral
portion has four or more significant digits, a comma is inserted between
the third and fourth; otherwise, both the leading zeros and the comma are
suppressed. The decimal point always appears followed by two fractional
digits.

'ZZZ.ZZZV,99'

494 PICTURE Attribute

Pointer

The picture specifies a fixed-point number with p=8, q=2. If the integral
portion has four or more significant digits, a period is inserted between
the third and fourth; otherwise, both the leading zeros and the period are
suppressed. The decimal point (indicated by a comma) always appears
followed by two fractional digits.

'ZZZ/ZZZ/ZZZ'

The picture specifies a fixed-point number with p=9, q=O. A slash is
inserted between the 3-digit groups unless the digit preceding the slash is
a suppressed zero.

Invalid Pictures
'999ZZZZV.99'

The picture is invalid because a 9 occurs to the left of Z.

'$$$--99v.99'

The picture is invalid because it contains two drifting strings ('$$$' and '-
-').

'(4)-V.ZZZ'

The picture is invalid because fractional digits in this case must be pictured
either with a drifting minus sign or with 9s.

A pointer is a variable whose value represents the location in memory of
another variable or data item.

All pointers must be declared with the POINTER attribute before they can
be referenced in a BASED attribute or an ALLOCATE statement with the
SET option. For example:

DECLARE X POINTER,
BUFFER CHARACTER(80) BASED (X);

The variable X is given the POINTER attribute. Then it is used as the
target pointer in another declaration, which defines a buffer to be based
on X. Pointers are used to qualify references to based variables, that
is, variables for which storage is explicitly allocated at run time by the
ALLOCATE statement. For example:

Pointer 495

496 Pointer

DECLARE LIST_POINTER POINTER;
DECLARE 1 LIST_STRUCTURE BASED,

2 FORWARD_PTR POINTER,
2 MEMBER_NAME CHAR(20) VAR;

ALLOCATE LIST_STRUCTURE SET (LIST_POINTER);
LIST_POINTER -> LIST_STRUCTURE.MEMBER_NAME = 'newname';

When these statements are executed, the ALLOCATE statement allocates
storage for a variable LIST_STRUCTURE and sets the pointer LIST_
POINTER to the address in memory of the allocated storage. This dy­
namically created variable is called an allocation of the variable LIST_
STRUCTURE.

In the assignment statement, the locator qualifier(->) and the identifier
LISTJOINTER distinguish this allocation of LIST_STRUCTURE from
allocations created by other ALLOCATE statements, if any.

• Pointer Variables in Expressions
Expressions containing pointer variables are restricted to the following
relational operators:

Operator Meaning

Equal

Not equal

For example, to test whether a pointer is null, that is, to determine
whether it is currently pointing to valid storage, you can write the follow­
ing statement:

IF LIST_POINTER = NULL() THEN
DO;

The NULL built-in function always returns a null pointer value.

Pointer variables can be used in simple assignment statements that assign
a pointer value to a pointer variable. For example:

LIST_POINTER_1 = LIST_POINTER_2;

LIST_END =NULL();

A pointer variable can also be used as the source or target in an as­
signment statement involving an offset variable or offset value. See
"Offset."

• Internal Representation of Pointer Data
A pointer occupies a longword (32 bits) of storage and represents a virtual
memory address.

For more information, see u ALLOCATE Statement," uBased Variable,°
HFREE Statement," HList Processing," HLocator Qualifier," uoffset," and
"Storage Class."

POINTER Attribute

The POINTER attribute indicates that the associated variable will be used
to identify locations of data. The format of the POINTER attribute is as
follows:

{ POINTER }
PTR

• Restrictions
The POINTER attribute conflicts with all other data type attributes.

POINTER Built-In Function

The POINTER built-in function returns a pointer to the location identified
by the referenced offset and area. Its format is as follows:

{ :~~NTER } (offset,area)

offset
A reference to an offset variable whose current value either represents the
offset of a based variable within the specified area or is null.

area
A reference to a variable that is declared with the AREA attribute and
with which the specified offset value is associated.

• Returned Value
The returned value is of type POINTER. If the offset value is null, the
result is null.

POINTER Built-In Function 497

•Example
DECLARE MAP_SPACE AREA (2048),

START OFFSET {MAP_SPACE),
P POINTER;

P =POINTER {START,MAP_SPACE);

The POINTER built-in function converts the value of the offset variable
START (in the area MAP_SPACE) to a pointer value.

POSINT Built-In Function
The POSINT built-in function treats specified storage as an unsigned
integer, and returns the value of the integer. Its format is as follows:

POSINT(expression[,position[,length]])

expression
A scalar expression or reference to connected storage. This reference must
not be an array, structure, or named constant. If position and length are
not specified, the length of the referenced storage must not exceed 32 bits.
(If it exceeds 32 bits, a FATAL run-time error results.)

position
A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to l, signifying the first bit of the
storage denoted by the expression. If specified, position must satisfy the
following condition:

1 <=position<= size(expression)

Size(expression) is the length in bits of the storage denoted by expression.
A position equal to size(expression) implies a zero-length field.

length
An integer value in the range 0 through 32 that specifies the length of
the field. If omitted, length is the number of bits from the bit denoted
by position through the end of the storage denoted by expression. If
specified, length must satisfy the following condition:

0 <=length<= size(expression) - position

Size(expression) is the length in bits of the storage denoted by expression.

498 POSINT Built-In Function

• Returned Value
The value returned by POSINT is of the type FIXED BINARY (31). If the
field has a length of zero, POSINT returns zero.

Because the POSINT built-in function treats storage as if it contained an
unsigned integer, the value returned can be larger than the maximum
positive value that can be contained in the signed integer that is stored in
the same number of bits. For example, if the argument to POSINT is 32
bits long and has the high-order (sign) bit set, then the resulting value is
too large for assignment to a FIXED BIN (31) variable, the largest integer
available in PL/I. The result of such an operation is undefined.

• Example
The use of the POSINT built-in function is identical to the use of the INT
built-in function, except that POSINT treats its argument as an unsigned
integer. The following example illustrates this difference. For more
general examples, see HINT Built-In Function."

DECLARE (X15,Y15,I15,P15) FIXED BIN (15),
P31 FIXED BIN (31);

X15 = 585;
Y15 = -585;
!15 = INT(X15);
!15 = INT(Y15);
P15 = POSINT(X15);
P31 = POSINT(Y15);
P15 = POSINT(Y15);

'* I15 = 585 *' '* I15 = -585 *'
/* P15 = 585 */
/* P31 = 64951 */
/* ERROR signaled •/

In this example, POSINT first assigns the storage referenced by XlS to
P15. Because this storage is occupied by a positive integer and therefore
has the sign bit clear, POSINT behaves exactly like INT. However, when
POSINT is applied to storage occupied by a negative integer, it interprets
the set sign bit as representing part of the integer. When the resulting
value is assigned to a FIXED BIN (31) variable, it is seen to be larger than
the largest possible FIXED BIN (15) value, 32767. An attempt to assign
the same value to a FIXED BIN (15) variable results in PL/I signaling an
ERROR condition.

POSINT Built-In Function 499

POSINT Pseudavariable

The POSINT pseudovariable assigns an integer value to specified storage.
Unlike other pseudovariables, it can be used only in an assignment
statement. The format is as follows:

POSINT(expression 1 [,position[,length]]) = expression2;

expression 1
A reference to connected storage. This reference must not be an array,
structure, or named constant. If position and length are not specified, the
length of the referenced storage must not exceed 32 bits. (If it exceeds 32
bits, a FATAL run-time error results.)

position
A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to 1, signifying the first bit of the
storage denoted by expression. If specified, position must satisfy the
following condition:

1 <=position<= size(expression)

Size(expression) is the length in bits of the storage denoted by expression.
A position equal to size(expression) implies a zero-length field.

length
An integer value in the range 0 through 32 that specifies the length of
the field. If omitted, length is the number of bits from the bit denoted
by position through the end of the storage denoted by expression. If
specified, length must satisfy the following condition:

0 <=length<= size(expression) - position

Size(expression) is the length in bits of the storage denoted by expression.

expression2
Any expression that evaluates to an integer.

500 POSINT Pseudovariable

The POSINT pseudovariable is valid only in an assignment statement. It
cannot be used as the target of an input statement or in other instances
where pseudovariables are normally acceptable.

The expression to be assigned to the pseudovariable is first converted
to the data type FIXED BINARY (31); then, the internal representation
of the resulting integer value is assigned to the storage specified by the
arguments to POSINT. If the representation of the value is too large for
assignment to the storage, the most significant bits of the integer are
removed and no error is signaled.

The POSINT pseudovariable is identical in operation and use to the INT
pseudovariable. For examples, see "INT Pseudovariable."

POSITION Attribute

Precedence

The POSITION attribute specifies the character or bit position in a defined
variable's base at which the defined variable begins. Its format is as
follows:

{ POSITION } (expression)
POS

expression
An integer expression that specifies a position in the base. A value of 1
indicates the first character or bit.

• Restrictions
You can specify the POSITION attribute only in connection with
DEFINED and only when the defined variable satisfies the rules for
string overlay defining (see also "Defined Variable").

The precedence, or priority, of operators defines the order in which
expressions are evaluated when they contain more than one operator.

PL/I defines the precedence of arithmetic operators with respect to each
other and with respect to other types of operators. In general, the rules for
precedence produce "expected" results without the need for parenthesized
expressions. For details, see "Expression" and "Operator."

Precedence 501

PRECISION Attribute

The PRECISION attribute applies to binary and decimal data; the precision
of an item is ~he number of decimal or binary digits used to represent a
value. The precision of an arithmetic variable can be specified in any of
the following formats, depending on the numeric base of the data item:

BINARY [FIXED] [[PRECISION] (precision[,scale-factor])]
[BINARY] FLOAT [[PRECISION] (precision)]
DECIMAL [FIXED] [[PRECISION] (precision[,scale-factor])]
DECIMAL FLOAT [[PRECISION] (precision)]

The keyword PRECISION can be abbreviated to PREC, or it can be
omitted entirely. If the keyword is used, the precision (and optional scale
factor, if used) must immediately follow the keyword, which can be placed
before or after any other attributes in the declaration. If the keyword is
omitted, the precision (and scale factor, if used) must follow the other
attributes. For example, the following declarations are equivalent:

DCL A FIXED BIN{31);

DCL B FLOAT BIN(63);

DCL C FIXED DEC(6,2);

DCL A FIXED BIN PRECISION(31);

DCL B PREC(63) FLOAT BIN;

DCL C FIXED DEC PREC(6,2);

In each case, the precision is the number of bits or decimal digits used to
represent values of the variable. Only fixed-point data has a scale factor.
The scale factor specifies that all values of the fixed-point decimal variable
are "scaled" by the factor 10-q; and all values of the fixed-point binary
variable are "scaled" by the factor 2-q, where q is the specified scale factor;
in other words, all values have q fractional digits. The scale factor must
be less than or equal to the precision specified for the fixed-point variable,
and it must be greater than or equal to zero for fixed-point decimal data.
Fixed-point binary data can have a scale factor within the range -31
through 31. ·

The precision of a floating-point data item is the number of decimal or
binary digits in the mantissa of the floating-point representation.

502 PRECISION Attribute

• Restrictions

The ranges of values you can specify for the precision of each arithmetic
data type, and the defaults applied if you do not specify a precision, are
summarized as follows:

Data Type Scale Default
Attributes Precision Factor Precision

BINARY FIXED 1 <= p <= 31 p> =q> = -31 31

BINARY FLOAT 1 <= p <= 113 24

DECIMAL FIXED 1 <= p <= 31 p> = q> = 0 10

DECIMAL FLOAT 1 <= p <= 34 7

If no scale factor is specified with fixed-point data, the default is zero.

• Precision of Expressions

The precision of the result of an expression is determined by the precisions
and data types of the variables and constants used in the expression, and
by the rules governing the specific operation being performed by the
expression.

For the rules governing the conversion of operands in an expression,
see "Expression." The conversion of operands in an expression produces
converted operands of the same data type but with individual precisions.
These individual precisions are then used to determine the precision of the
result, which depends on the operation being performed. For example,
see "Subtraction."

See also "Scale Attribute."

Preprocessor

The VAX PL/I preprocessor permits you to alter a source program at
compile time. Preprocessor statements can be mixed with nonpreprocessor
statements in the source program, but preprocessor statements are exe­
cuted only at compile time. Any resulting source program changes are
then used for further compilation.

The preprocessor is embedded in the compiler, and so is also called the
"embedded preprocessor."

Preprocessor 503

During compilation, the preprocessor performs two types of preprocessing:

• It interprets preprocessor statements, including preprocessor expres­
sion evaluation.

• It replaces the value of preprocessor variables and procedures.

Preprocessor statements allow you to include text from alternative sources
(INCLUDE libraries and the VAX Common Data Dictionary), control the
course of compilation (%DO, %GOTO, %IF, and %PROCEDURE), issue
user-generated diagnostic messages, and selectively control listings and
formats. The preprocessor statements are summarized in Table P-3.

• Preprocessor Compilation Control
At compile time, preprocessor variables, procedures, and variable expres­
sions are evaluated in the order that they appear in the source text, and
the new values are substituted in the source program in the same order.
Thus, the course of compilation becomes conditional, and the resulting
executable program can have a variety of features. Note that preprocessor
variables must be declared and activated before replacement occurs.

For example:

PREP: PROCEDURE OPTIONS(MAIN);
%DECLARE HOUR FIXED;

504 Preprocessor

%HOUR= SUBSTR(TIME(),1,2);

Y.IF HOUR > 7 k HOUR < 18
%THEN

%FATAL 'Please compile this outside of prime time';
%DECLARE T CHARACTER;
%ACTIVATE T NORESCAN;
%T = '''Compiled on 'I IDATE() I I'''';

DECLARE INIT_MESSAGE CHARACTER(40) VARYING INITIAL(!);

XIF VARIANT() = I I I VARIANT() = 'NORMAL'
%THEN

%INFORM I NORMAL I ;

%ELSE
Y.IF VARIANT() = 'SPECIAL'
%THEN

%INFORM 'SPECIAL';
%ELSE

UND;

XIF VARIANT() = 'NONE'
Y.THEN Y.;
Y.ELSE

Y.DO;
Y.T • '''unknown variant''';
Y.WARN T;
INIT_MESSAGE = INIT_MESSAGEI I' with 'llT;
Y.END;

PUT LIST (INIT_MESSAGE);
END PREP;

This example illustrates several aspects of the preprocessor. First, the
programmer specified that this program must be compiled outside of prime
time. Second, the value of /VARIANT (as specified in the PLI command
line) is used by the VARIANT built-in function to determine which variant
is used in the program at compile time. Third, user-generated preprocessor
messages remind the programmer which value was given to VARIANT.

Notice the number of apostrophes around the string constant assigned
to T. Apostrophes are sufficient if the value of T is used only in a pre­
processor user-generated diagnostic message. However, the value of Tis
concatenated with nonpreprocessor text and assigned to INIT_MESSAGE.
During preprocessing, apostrophes are stripped off string constants. In
order to ensure that the run-time program also has apostrophes around
the string, additional apostrophes are needed.

• Preprocessor Statements
All preprocessor statements are preceded by a percent sign (%) and ter­
minated by a semicolon (;). All text that appears within these delimiters
is considered part of the preprocessor statement and is executed at compile
time. For example:

%DECLARE HOUR FIXED; /• declaration of a preprocessor
single variable •/

%DECLARE (A,B) CHARACTER; /* a factored preprocessor
declaration •/

Preprocessor 5 0 5

XHOUR = SUBSTR(TIME(),1,2); /•preprocessor assignment
statement using two built-in

:functions •/

XSTATE: PROCEDURE (I) RETURNS (BIT); /•preprocessor
procedure •/

Notice that a percent sign is required only at the beginning of the state­
ment. The percent sign alerts the compiler that until the line.is terminated
with a semicolon, all subsequent text is preprocessor text. Therefore, no
other percent signs are required on the line. However, when you include
Common Data Dictionary record definitions, you may need to include the
usual PL/I punctuation. See "%Dictionary Statement" for details.

Labels (preceded by a percent sign) are permitted on preprocessor state­
ments and required on preprocessor procedures. As with other labels,
preprocessor labels are used as the target of program control statements.

A preprocessor label must be an unsubscripted label constant. The format
for a preprocessor label is as follows:

%label: preprocessor-statement;

If program source is not compiled because of a %GOTO or %IF statement,
the compiler still checks the basic syntax of all statements. Therefore,
comment delimiters and parentheses must balance, apostrophes must be
paired correctly, and all statements must end with a semicolon.

See Table S-1 for a summary of the preprocessor statements.

• Prepracesser Built-In Functions
A number of PL/I built-in functions are available for use at compile time.
Preprocessor built-in functions work the same way as run-time PL/I
built-in functions.

The built-in functions are summarized in Table P-3 according to the
following functional categories:

•

•

•

•

506 Preprocessor

Arithmetic built-in functions provide information about the properties
of arithmetic values, or perform common arithmetic calculations.

String-handling built-in functions process character-string and bit­
string values.

Conversion built-in functions convert data from one data type to
another.

Timekeeping built-in functions return the system date and time of day .

• Miscellaneous built-in functions are specifically preprocessor built-in
functions.

Table P-3: Summary of PL/I Preprocessor Built-In Functions
Category

Arithmetic

String-Handling

Conversion

Timekeeping

Function Reference

ABS(x)

MAX(xl,x2)

MIN(xl,x2)

MOD(x,y)

SIGN(x)

COPY(s,c)

INDEX(s,c[,p))

LENGTH(s)

REVERSE(s)

SEARCH(s,c[,p))

SUBSTR(s,i[,j])

TRANSLATE(s,c[,d))

TRIM(s[,e,f])

VERIFY(s,c[,p))

BYTE(x)

DECODE(c,r)

ENCODE(i,r)

RANK(c)

DATE()

Value Returned

Absolute value of x

Larger of the values xl and x2

Smaller of the values xl and x2

Value of x modulo y

-1, 0, or 1 to indicate the sign of x

c copies of specified string s

Position of the character string c within the
string s, starting at position p

Number of characters or bits in the string s

Reverse of the source character string or bit
string

Position of the first character in s, starting at
position p, that is found in c

Part of string s beginning at i for j characters

String s with substitutions defined in c and d

String s with all characters in e removed from
the left and all characters in f removed from
the right

Position of the first character in s, starting at
position p, which is not found in c

ASCII character represented by the integer x

Fixed binary value of the character string c
converted to a base r number

Character string representing the base r
number that is equivalent to the fixed binary
expression i

Integer representation of the ASCII character
c

System date of compilation in the form
YYMMDD

Preprocessor 507

Table P-3 (Cont.): Summary of PL/I Preprocessor Built-In Functions
Category Function Reference

DATETIME()

TIME()

Miscellaneous ERROR()

INFORM()

LINE()

VARIANT()

WARN()

Value Returned

System date and time of compilation in the
form CCYYMMDDHHMMSSXX

System time of day of compilation in the
form HHMMSSXX

Count of user-generated diagnostic error
message

Count of user-generated diagnostic informa­
tional message

Line number in source program that contains
the end of a specified preprocessor statement

String result representing the value of the
/VARIANT PLI command qualifier

Count of user-generated diagnostic warning
message

PRESENT Built-In Function
The PRESENT built-in function allows you to determine whether a given
parameter was specified in a call. It can simplify the task of writing
procedures with optional parameters.

The PRESENT built-in function takes one argument, the parameter name.
It returns the bit value '1 'B if the parameter was specified and 'O'B if it was
not.

The format of an assignment statement including this function is as
follows:

bit-flag = PRESENT(parameter-name);

Note that the result returned by the PRESENT built-in function for an
optional parameter passed by value is unpredictable (if a zero is passed,
'O'B is returned). A warning is generated for this use.

508 PRESENT Built-In Function

PRINT Attribute

Print File

The PRINT attribute is used to declare a print file. The file SYSPRINT,
used as the default output by PUT statements, is a print file.

Print files are stream output files with special formatting characteristics
(see "Print File"). The PRINT attribute implies the OUTPUT and STREAM
attributes.

• Restrictions
The PRINT attribute conflicts with the INPUT, RECORD, UPDATE,
KEYED, SEQUENTIAL, and DIRECT attributes.

A print file is a stream output file that is intended for output on a terminal,
line printer, or other output device. You can declare any stream output file
to be a print file by using the PRINT attribute. The default stream output
file, SYSPRINT, is a print file.

The following list describes the special features of print files, as opposed
to ordinary stream output files (see also "Stream Input/Output"):

• Character strings are not enclosed in apostrophes on list-directed
output.

• List-directed output data items are separated by tabs instead of spaces.
Tab stops occur at 8-column increments beginning with column 1.
With the PUT EDIT statement and the TAB format item, you can
begin output at a specified tab stop.

• An internal record is kept of the current line in a print file. The
LINENO built-in function returns the current line number for a
specified file. This function allows you to keep track of the number of
lines being written to a file and to decide where page advances should
occur.

• Print files are divided into both lines and pages. An internal record
is kept of the number of lines per page. You can specify a page size
when the print file is created (see "PAGESIZE Option").

• During output of data to a print file, the ENDPAGE condition is
signaled when the output exceeds the page size.

Print File 509

Procedure

51 0 Procedure

• New pages are started by the PUT PAGE statement, the PAGE
format item, and certain other format items. Each of these operations
increments the current page number by 1. The P AGENO built-in
function returns the current page number from a print file. This
function allows you to keep track of the number of pages being
written to a file. You can set the current page number to a specific
value by assigning the value to the P AGENO pseudovariable.

• If the print file is a terminal, the output is written to the terminal at
the conclusion of each PUT statement.

• A print file is created with PRN-format carriage control. PRN format
is efficient for both terminals and line printers because blank lines do
not require individual records. (PRN format is discussed in the VAX
Record Management Services Reference Manual.)

• Print files usually cannot be read properly with GET LIST or GET
EDIT.

A procedure is the basic executable program unit in PL/I. It consists
of a sequence of statements, headed by a PROCEDURE statement and
terminated by an END statement, that define an executable set of pro­
gram instructions. Two types of procedures can be invoked by another
procedure during its execution:

• Subroutines, which must be invoked with a CALL statement.
Subroutines return values to the invoking procedure only by means
of their parameter lists; they cannot include an expression in their
RETURN statements and cannot include a RETURNS option on their
PROCEDURE or ENTRY statements.

• Functions, which must be invoked by a function reference. A function
reference can appear in place of a scalar value in any appropriate
context in a PL/I statement. A function returns to the invoking
procedure a single value that becomes the value of the function
reference in the invoking procedure. Functions can also return values
through their parameter lists. Functions must include a RETURNS
option to describe the attributes of the returned value and must
specify an expression in their RETURN statements.

Each type of procedure can be passed data or information from the
invoking procedure by means of an argument list.

A procedure can have multiple entry points, and it is permissible for some
entry points to be subroutine entry points and some to be function entry
points. When a procedure has multiple entry points, it is treated as a
subroutine or function in accordance with the entry point through which
it is invoked. Note that when a procedure is invoked as a function, any
RETURN statement executed in the procedure must specify a return value.

• External and Internal Procedures
An internal procedure is one whose text is contained within another block.
An external procedure is one whose text is not contained in any other
block.

The source text of an external procedure can be separately compiled.

The primary coding differences between internal and external procedures
follow:

• Before an external procedure can be invoked (except through an entry
variable), its name must be declared within the procedure that invokes
it. The DECLARE statement for the external entry name must also
provide a list of parameter descriptors that give the data type(s) of
the procedure's parameters, if any, and the DECLARE statement must
provide a RETURNS attribute if the procedure is a function.

Internal procedures cannot be explicitly declared. The procedure name
is implicitly declared by its occurrence in the PROCEDURE or ENTRY
statement of the internal procedure.

• External procedures can reference the same variable only if the
variable is declared with the EXTERNAL attribute in all procedures
that reference it.

An internal procedure, on the other hand, can reference internal
variables declared in any procedure in which it is contained.

• Any procedure can call an external procedure.

An internal procedure can be called only by the procedure that
contains it or by other procedures at the same level of nesting within
the containing procedure. The only exception is invocation through an
entry variable.

Figures P-2 and P-3 illustrate invoking internal and external procedures.

Procedure 511

512 Procedure

Figure P-2: Invoking an Internal Procedure

MAINP: PROCEDURE OPTIONS (MAIN);

COMPUTE: PROCEDURE;

ADD_NUMBERS: PROCEDURE;

END ADD_NUMBERS;

END COMPUTE;

PRINT_REPORT: PROCEDURE;

END PRINT_REPORT;

END MAINP;

In Figure P-2, the procedures COMPUTE and PRINT-REPORT are
internal to the procedure MAINP, and the procedure ADD-NUMBERS is
internal to the procedure COMPUTE. MAINP can invoke the procedures
COMPUTE and PRINT-REPORT, but not ADD-NUMBERS. COMPUTE
and PRINT-REPORT can invoke one another. ADD-NUMBERS can call
COMPUTE and PRINT-REPORT. (See also 0 Scope of Names. 0

)

In Figure P-3, the procedure WINDUP declares the procedure PITCH with
the EXTERNAL and ENTRY attributes. The text of the procedure PITCH
is in another source program that is separately compiled.

For information on compiling and linking together separately compiled
procedures, see the VAX PL/I User Manual.

Figure P-3: Invoking an External Procedure

WINDUP: PROCEDURE:

DECLARE PITCH EXTERNAL ENTRY (CHARACTER(16) VARYING,
FIXED BINARY(7));

CALL PITCH (PLAYER_NAME,NUMBER_OF_OUTS);

• Terminating Procedures
Subroutines and functions can be terminated with the following state­
ments:

• END statement

If an END statement closes the procedure block of a subroutine before
a RETURN or STOP statement is executed, the END statement has the
same effect as RETURN. A function cannot be terminated without a
RETURN statement.

• Nonlocal GOTO statement

A GOTO statement that transfers control to a label that is outside
the current block terminates a subroutine or a function. The label
specified on the GOTO statement must be known within the block
that contains the GOTO statement, and the block containing the
specified label must be active when the GOTO is executed.

• RETURN statement

A RETURN statement provides a normal termination for a subroutine
or function. For a function, a RETURN statement must specify a
return value.

• STOP statement

A STOP statement ends the entire program execution. It does not pass
a return value.

Procedure 513

514 Procedure

• Passing Arguments to Subroutines and Functions
You specify arguments for a subroutine or function by enclosing the
arguments in parentheses following the procedure or entry-point name.
Arguments correspond to parameters specified on the PROCEDURE or
ENTRY statement of the invoked procedure. For example, a procedure call
can be written as follows:

CALL COMPUTER (A,B,C);

The variables A, B, and C in this example are arguments to be passed to
the procedure COMPUTER. The procedure COMPUTER might have a
parameter list like this:

COMPUTER: PROCEDURE ex. Y. Z);
DECLARE (X,Y,Z) FLOAT;

The parameters X, Y, and Z, specified in the PROCEDURE statement for
the subroutine COMPUTER, are the parameters of the subroutine. PL/I
establishes the equivalence of the arguments A, B, and C to the parameters
X, Y, and Z.

For more information, see "Parameters and Arguments. 0

• Entry Points
The entry points of a procedure are the points at which it can be invoked.
One entry point is specified by the PROCEDURE statement that begins
the procedure block. Additional entry points can be specified with ENTRY
statements in the procedure block. ENTRY statements are allowed any­
where except within a begin block, an ON-unit, SELECT-group, or a
DO-group (except a simple, noniterative DO-group).

The labels used on PROCEDURE and ENTRY statements implicitly
declare entry constants. (See also 0 Entry Data0 and "ENTRY Statement. 0

)

The scope of these declarations is internal if the PROCEDURE and ENTRY
statements appear in internal procedures and external if they appear in
external procedures.

Note that the declaration of an entry name is made in the block containing
the procedure to which the entry point belongs. For example:

P: PROCEDURE;

Q: PROCEDURE
DECLARE E FIXED BINARY;
E: ENTRY;
END Q;

The entry names E and Q are declared in the procedure P. Within the
procedure Q, Eis declared as a fixed-point binary variable.

You can invoke an entry point by using the appropriate entry constant
as the reference in a CALL statement or function reference. Invoking an
entry point enters a procedure at the specified point and activates the
procedure block that contains the entry point.

If the CALL statement or function reference invokes an entry point in
an external procedure, the entry constant must be declared with the
ENTRY attribute, as in Figure P-3 above. The declaration of an external
constant must also describe the parameters for that entry point, if any. For
example:

DECLARE PITCH ENTRY (CHARACTER(•), FIXED BINARY(15));

The identifier PITCH is declared as an entry constant. When the pro­
cedure containing this declaration is linked to other procedures, one of
the external procedures must define an entry point named PITCH, either
as the label of a PROCEDURE statement or as the label of an ENTRY
statement.

The data type attributes in parentheses (known as "parameter descriptors")
are the data types of the parameters that are defined elsewhere for the
entry point PITCH. Arguments of these types must be supplied when
PITCH is invoked. See also "Parameters and Arguments" and "ENTRY
Attribute."

If PITCH is to be used to invoke a function, the DECLARE statement must
also include a RETURNS attribute to describe the attributes of the returned
value, as in the following example:

DECLARE PITCH ENTRY (CHARACTER(•), FIXED BINARY(15))
RETURNS(FIXED);

Within the scope of this DECLARE statement, the entry constant PITCH
must be used in a function reference. The function reference will invoke
the external entry point, and a returned fixed-point binary value will
become the value of the function reference.

• Multiple Entry Points
A procedure can be entered at more than one point. However, only one
entry point can be specified by a PROCEDURE statement; additional entry
points are declared with ENTRY statements.

Procedure 515

516 Procedure

The rules governing the declaration of multiple entry points follow:

• A particular parameter need not be specified in all of a procedure's
entry points (including the point defined by the PROCEDURE state­
ment). However, a reference to the parameter is valid only if the
procedure was invoked through one of the entries specifying the
parameter.

• In a procedure that has multiple entry points, a RETURN statement
must be compatible with the entry point by which the procedure was
invoked. If the entry point does not have a RETURNS option, the
RETURN statement must not specify a return value. (In addition, it
must be invoked as a "subroutine" -that is, with the CALL statement.)
If the entry point has a RETURNS option, the RETURN statement
must specify a return value that is valid for conversion to the data
type specified in the RETURNS option.

• An ENTRY statement is not executable. If control reaches it sequen­
tially, control immediately continues to the next statement.

The following example shows a procedure with two alternative entry
points:

QUEUES: PROCEDURE(ELEMENT,QUEUE_HEAD);

ADD_ELEMENT: ENTRY(ELEMENT);

llEMOVE_ELEMENT: ENTRY(ELEMENT);

This procedure can be entered by CALL statements that reference
QUEUES, ADD-ELEMENT, or REMOVE-ELEMENT. If invoked at
QUEUES, the procedure must be passed two parameters. If invoked at
either of the alternative entries ADD-ELEMENT or REMOVE_ELEMENT,
the procedure must be passed only one parameter.

When this procedure is entered at either alternative entry point, the entire
block beginning at QUEUES is activated, but execution begins with the
first executable statement following the entry point.

• Recursive Procedures
In VAX PL/I, you can invoke any procedure recursively-that is, by a
statement within itself or within a dynamically descendent block (see
also 0 Block"). A recursive invocation of a procedure is similar to any
invocation: a recursive invocation creates a new block activation, allocates
new storage for automatic variables, and so forth.

In standard PL/I, the RECURSIVE option must be used on a PROCEDURE
statement if the procedure is to be invoked recursively. In VAX PL/I, the
RECURSIVE or NONRECURSIVE option is needed only for program
documentation, because all procedures (regardless of the RECURSIVE or
NONRECURSIVE option) can be recursive.

Procedure Block

A procedure block defines a unit of a PL/I program. The block begins
with a PROCEDURE statement and ends with an END statement. The
OPTIONS(MAIN) option identifies the main procedure that is activated
when the program begins. A procedure block can be activated only by a
CALL statement or a function reference unless it is the main procedure.
The CALL statement or function reference can activate the procedure
block by invoking either the label of its PROCEDURE statement or the
label of an ENTRY statement within the procedure.

For information on procedure block activation, see 0 Block." For a defi­
nition and examples of procedures, see 0 Procedure" and 0 PROCEDURE
Statement."

%PROCEDURE Statement

A preprocessor procedure is a sequence of preprocessor statements headed
by a %PROCEDURE statement and terminated by a %END statement.
A preprocessor procedure executes only at compile time. Invocation is
similar to a function reference and occurs in two ways:

• Preprocessor statements can invoke preprocessor procedures. In
addition, preprocessor statements from within preprocessor procedures
can invoke other preprocessor procedures.

• Statements from the source program can invoke preprocessor proce­
dures.

%PROCEDURE Statement 517

The format of the %PROCEDURE statement is as follows:

%label: PROCEDURE [(parameter-identifier, ...))
[ST A TEMENT]

RETURNS (FIXED); {
CHARACTER }

BIT

[%)RETURN (preprocessor-expression);

[%]END;

label
An unsubscripted label constant. A preprocessor procedure is invoked by
the appearance of the label name on the %PROCEDURE statement and
terminated by the corresponding %END statement. The label name must
be active if invoked from a nonpreprocessor statement.

Preprocessor label names can be activated and deactivated, but cannot be
specified in a %DECLARE statement.

parameter-identifier
The name of a preprocessor identifier. Each identifier is a parameter of the
procedure.

RETURNS
A preprocessor procedure attribute. The RETURNS attribute defines the
data type to be returned to the point of invocation in the source code.
If you specify a data type that is inconsistent with the returned value, a
conversion error may result.

STATEMENT
A preprocessor procedure option. The STATEMENT option permits
the use of a keyword argument list followed by an optional positional
argument list in the preprocessor procedure invocation. The STATEMENT
option returns strings that can be used as PL/I statements at run time. For
further information, see "Using the STATEMENT Option" below.

518 %PROCEDURE Statement

preprocessor-expression
Value to be returned to the invoking source code. The preprocessor
expression must be specified. The preprocessor expression is converted
to the data type specified in the RETURNS option and is returned to the
point of invocation. Therefore, the expression must be capable of being
converted to CHARACTER(32767), FIXED(lO), or BIT(31).

The %PROCEDURE statement defines the beginning of a preprocessor
procedure block and specifies the parameters, if any, of the procedure.
Because the preprocessor procedure is always invoked as a function, the
%PROCEDURE statement must also specify (via the RETURNS option)
the data type attributes of the value that is returned to the point of
invocation.

For example:

tl_VAR = A_PROC();

In this statement, the preprocessor procedure A_pROC is invoked and
evaluated, and the result is returned and assigned to the preprocessor
variable A_ VAR.

As with other PL/I procedures, a parenthesized parameter list specifies the
parameters that the preprocessor procedure expects when it is invoked.
Each preprocessor parameter specifies the name of a variable declared in
the preprocessor procedure. The preprocessor parameters must correspond
one-to-one with arguments specified for the preprocessor procedure when
it is invoked, except when the STATEMENT option is used.

The value to be returned to the invoking source code is converted to
the data type specified in the RETURNS option. The return value re­
places the preprocessor procedure reference in the invoking source code.
Preprocessor procedures cannot return values through their parameter list.
The return value must be capable of being converted to one of the data
types CHARACTER, FIXED, or BIT. The maximum precision of the value
returned by the %RETURNS statement is BIT(31), CHARACTER(32767),
or FIXED(lO).

Preprocessor procedures cannot be nested. The scope of a preproces­
sor procedure is the procedure itself; that is, variables, labels, and any
%GOTO statements used inside of the procedure must be local.

A preprocessor procedure is invoked by the appearance of its entry-name
and list of arguments. If the reference occurs in a nonpreprocessor state­
ment, the entry name must be active before the preprocessor procedure
is invoked. If the entry name is activated with the RESCAN option, the

%PROCEDURE Statement 519

value of the preprocessor procedure is rescanned for further possible pre­
processor variable replacement and procedure invocation. You can invoke
preprocessor procedures recursively.

When a preprocessor procedure (with or without the STATEMENT option)
is invoked from a preprocessor statement, each argument is treated as
an expression and the result of executing the preprocessor procedure is
returned to the statement containing the invocation.

When a preprocessor procedure is invoked from nonpreprocessor source
text, the arguments are interpreted as character strings and are delimited
by the appearance of a comma or a right parenthesis occuring outside of
balanced parentheses. For example, the positional argument list (Q(E,0),
XYZ) has two arguments; the strings 'Q(E,D)' and 'XYZ'.

• Examples
XA1: PROCEDURE RETURNS(FIIED);

DECLARE (A,B,C) FIXED;

A = 2;
B • 10;
C = A + B;
RETURN(C);

END:

This example declares the preprocessor procedure Al and specifies that the
procedure return a fixed decimal result after the preprocessor statements
within the procedure have been executed.

The procedure returns the value 12 to the point of invocation. Note
that the leading percent signs, normally associated with preprocessor
statements, are not required within a preprocessor procedure.

520 %PROCEOURE Statement

PPFIB: PROCEDURE OPTIONS (MAIN);
DECLARE Y CHAR(14) INITIAL('Fibonacci Test'); t»
Y.DECLARE Y FIXED; 8
XF: PROCEDURE(X) RETURNS (FIXED); @)

DECLARE X FIXED;
IF (X <= 1)

THEN RETURN(1);
ELSE RETURN(F(X-1)+F(X-2));

END; /* End preprocessor procedure */
XY = F(10); 8
PUT SKIP LIST(Y);
XY = F(U); 0
PUT SKIP LIST(Y);
XY = F(12); Ci)
PUT SKIP LIST(Y);
XDEACTIVATE Y; 0
PUT SKIP LIST(Y); Cl)
END; /* End run-time procedure •/

This example uses a preprocessor procedure to return a Fibonacci number.
The recursive preprocessor procedure labeled %Fis invoked to return a
single value, a Fibonacci number, to the point of invocation. The following
notes correspond to the example:

t» The run-time variable Y is declared with the CHARACTER attribute
and initialized to Fibonacci Test.

8 The preprocessor variable Y is declared with the FIXED attribute,
which implies FIXED DECIMAL (10,0). This declaration automatically
activates the preprocessor variable Y.

8 The preprocessor procedure Fis defined. The percent sign for the
END statement is optional in a preprocessor procedure.

Note that this procedure is recursive.

8 The preprocessor procedure is called, passed the value 10, and the
10th number in the Fibonacci series is calculated. The resulting value
is assigned to the preprocessor variable Y.

Because the preprocessor variable Y is active by default, the compiler
replaces the occurrence of Y in the PUT statement with the new
preprocessor Y value.

0 Step 4 is repeated for the value 11.

0 Step 4 is repeated for the value 12.

0 The preprocessor variable Y is deactivated. No more scanning or
replacement occurs. The preprocessor variable Y retains its final
replacement value, 233.

Cl> The run-time value of Y (Fibonacci Test) is output.

%PROCEDURE Statement 521

The output from this program is as follows:

89
144
233
Fibonacci Test

• Using the STATEMENT Option
All preprocessor procedures (with or without the STATEMENT option)
return a value to the invoking source code; that is, they are function
procedures. Through the use of the STATEMENT option, the argument
list to a preprocessor procedure can be a keyword argument list. Keyword
argument lists are unique to preprocessor procedures and provide a
powerful tool for manipulating PL/I.

A keyword argument list ends with a semicolon rather than the right
parenthesis. In this way, the STATEMENT option permits you to use a
preprocessor procedure as if it were a statement. Consequently, prepro­
cessor procedures using the STATEMENT option permit you to extend the
PL/I language by simulating features that may not otherwise be available.

Preprocessor procedures can have one of two distinctly different types of
argument lists: positional or keyword. Positional argument lists (ending
with a right parenthesis) use parameters sequentially, as in a parenthesized
list. You can use positional argument lists in any preprocessor procedure.
Keyword argument lists (ending with a semicolon) use parameters in
any order, as long as each keyword matches the name of a parameter.
This permits the option of specifying the order in which parameters are
passed. You can use keyword argument lists only when the preproces­
sor procedure contains the STATEMENT option and is invoked from a
nonpreprocessor statement.

When a preprocessor procedure is invoked from a nonpreprocessor state­
ment, the STATEMENT option permits the use of a keyword argument
list that follows the optional positional argument list in a preprocessor
procedure invocation.

When you use keyword arguments in nonpreprocessor statements, the
keywords can be used in any order. The following reference examples
would produce a variety of results with positional arguments, because
values would be used sequentially. Keyword arguments produce con­
sistent results because keyword parameters are matched with keyword
arguments.

522 %PROCHJURE Statement

'&B: PROCEDURE (ALPHA, BETA, GAMMA) STATEMENT ... ;
DECLARE (ALPHA, BETA, GAMMA) FIXED;

END;

B(1,2,3);
B ALPHA{1) GAMMA(3) BETA{2);
B(1) GAMMA(3) BETA(2);
B (,2,3) ALPHA(1);

The next example shows a more common use of the STATEMENT option;
to generate PL/I source statements that define a unique run time feature.
The preprocessor procedure APPEND returns a string, which is incorpo­
rated into the source program at compile time. At run time, the returned
string is used as a PL/I function.

This preprocessor procedure permits a varying string to accumulate text up
to its maximum size without danger of undetected truncation. Normally,
strings that exceed their maximum size are truncated. The text returned by
the preprocessor procedure provides the run-time program with a way to
handle truncation. If the string would be truncated, a message is printed
and the FINISH condition is signaled.

Ul'PEND: PROCEDURE (string.to) STATEMENT RETURNS(CHARACTER}; 0
%DECLARE (string,to) CHARACTER; 8
UETURN C

'DO;'ll 8
'IF LENGTH('llstringl l')+LENGTH(' I ltol I')> SIZE(' lltol I ')-2'1 I
I THEN DO; I 11

'PUT SKIP LIST (''Buffer overflowed appending to 'I ltol I''');' I I
'SIGNAL FINISH;' II t»
'END;' I I

'ELSE 'lltoll' = 'lltoll'll'llstringll';'ll
'END;'

) ;
'XEND;

The following notes are keyed to this example:

0 The preprocessor procedure APPEND is defined with the parameters
'string' and 'to' and the STATEMENT option.

8 'String' and 'to' are declared as parameters within the preprocessor
procedure.

8 The %RETURN statement returns the value contained by the paren­
theses. This text then becomes part of the PL/I nonpreprocessor
source program.

%PROCEDURE Statement 523

Notice the punctuation within the character string returned by
%RETURN. At compile time, single quotes are stripped when the
text is incorporated into the run-time PL/I program. In addition,
the semicolon that delimits the invocation is not retained when the
replacement takes place. All customary PL/I punctuation must be
included in the character string.

e If the current varying string and the additional string together are
greater than the maximum length of the varying string, an informa­
tional message is printed and the FINISH condition is signaled.

The following invocations of the preprocessor procedure APPEND are
all equivalent:

APPEND STRING('New String'} TO (My_string};
APPEND TO(My_string} STRING('New String'};
APPEND('New String'} TO(My_string};

Notice that if you have a preprocessor procedure (A) with a label that
is the same as the name of a keyword argument in another preprocessor
procedure (B) with the STATEMENT option, then when B is invoked
the keyword argument is treated as a call to procedure A, and not as a
keyword parameter in B.

PROCEDURE Statement

The PROCEDURE statement defines the beginning of a procedure block
and specifies the parameters, if any, of the procedure. If the procedure is
invoked as a function, the PROCEDURE statement also specifies the data
type attributes of the value that the function is to return to its point of
invocation.

The PROCEDURE statement can denote the beginning of an internal or
external subroutine or function. The format of the PROCEDURE statement
is as follows:

entry-name: { PROCEDURE } [(parameter ...)]
PROC I

[OPTIONS (option, ...)]

[RECURSIVE]
NONRECURSIVE

[RETURNS (value-descriptor)];

524 PROCEDURE Statement

entry-name
A 1- to 31-character identifier denoting the entry label of the procedure.
The label cannot be subscripted. The PROCEDURE statement declares the
entry name as an entry constant. The scope of the name is INTERNAL if
the procedure is internal, and EXTERNAL if the procedure is external.

parameter, ...
One or more parameters (separated by commas) that the procedure expects
when it is activated. Each parameter specifies the name of a variable
declared in the procedure headed by this PROCEDURE statement. The
parameters must correspond, one-to-one, with arguments specified for
the procedure when it is invoked with a CALL statement or in a function
reference. See also HParameters and Arguments" for details.

OPTIONS (option, ... J
An option that specifies one or more options, separated by commas:

IDENT(string}
An option specifying a character-string constant giving the identifying
label for the listing and the module's version for the linker. Only the
first 31 characters of the string are placed in the object module.

MAIN
An option specifying that the named procedure is the initial procedure
in a program. The identifier of the procedure is the primary entry
point for the program. The MAIN option is not allowed on internal
procedures, and only one procedure in a program can have the MAIN
option.

UNDERFLOW
An option that requests that the run-time system signal underflow
conditions when they occur. By default, the run-time system does not
signal these conditions. See also "UNDERFLOW Condition Name."

RECURSIVE or NONRECURSIVE
An option that indicates (for program documentation) that the proce­
dure will or will not be invoked recursively, that is, activated while it
is currently active. In standard PL/I, the RECURSIVE option must be
specified for a procedure to be invoked recursively. However, in VAX
PL/I, any procedure can be invoked recursively, and the RECURSIVE and
NONRECURSIVE options are ignored by the compiler.

PROCEDURE Statement 525

RETURNS (returns-descriptor)
An option specifying that the procedure can be invoked only by a func­
tion reference, as well as specifying the attributes of the function value
returned. See "RETURNS Attribute and Option" for syntax and details.

RETURNS must be specified for functions. It is invalid for procedures that
are invoked by CALL statements.

For general information on procedures, see "Procedure."

PROO Built-In Function

The PROD built-in function takes an array as an argument and returns the
arithmetic product of all the elements in the array. The array must have
the FIXED or the FLOAT attribute. The format of an assignment statement
containing the PROD built-in function is as follows:

numeric-variable = PROD(array-variable);

The array can be a part of a structure, but cannot be part of a union. If
the array has the attributes FIXED(p,0), the result will have the attributes
FIXED(31,0). If the array has the attributes FLOAT(p), the result will also
have the attributes FLOAT(p). If the array has the attributes FIXED(p,q)
with q not equal to 0, the result will have the attributes FLOAT(p).

The result will have the same base attribute as the array, either DECIMAL
or BINARY.

Note that the PROD built-in function does not perform matrix multiplica­
tion of two arrays.

Program Structure

A PL/I program consists of a series of statements, which perform the
following tasks:

• Define the data to be used for program input and output

• Define the operations to be performed on the data during the execu­
tion of the program

• Control the environment within which the program executes

• Define the order of execution or control flow for a program

526 Program Structure

A statement comprises user-specified identifiers, constants, and PL/I
keywords, separated by blanks, comments, and punctuation marks.
Statements themselves can be organized into structural sequences of
groups or blocks. Figure P-4 illustrates the structure of a PL/I program.

Figure P-4: Structure of a PL/I Program

SAMPLE: PROCEDURE OPTIONSCMAINJ; A PROCEDURE is the basic executable program unit.

DECLARE IX0Y1Zl FIXED1
MESSAGE CHARACTERl801, The declarations of variables in a procedure are usu­

ally, but not necessarily, placed at the beginning of the
procedure.

CALC ENTRY I FLOAT I RETURNS I FLOAT I,
TOTAL FLOAT;

)-(::: 0;
PUT SKIP LISTIMESSAGEI; Executable statements are placed following variable

declarations.

FINISH: PROCEDURE; Internal procedures may be placed anywhere.
DECLARE TEXT 151 CHARACTERIZOJ;

Et·W FINISH;
END SAMPl_E;

All procedures must terminate with END statements.

ZK-1296-83

• Source Program Format
The source text of a PL/I program is freeform. As long as you terminate
every statement with a semicolon (;), individual statements can begin in
any column, spill over onto additional lines, or be written with more than
one statement to a line.

Individual keywords or identifiers of a statement cannot be split onto more
than one line, however. Only a character string constant (which must be
enclosed in apostrophes) can spill over onto more than one line.

PL/I programs are easier to read and comprehend if a standard formatting
pattern is followed. For example:

• Write source statements with no more than one statement per line
• Use indention to show the nesting level of blocks and DO-groups

For information on the punctuation marks used in PL/I statements, see
"Punctuation Marks." For information on blocks, see 0 Block."

Program Structure 527

Pseudovariable

VAX PL/I has the pseudovariables INT, ONSOURCE, ONCHAR,
PAGENO, POSINT, STRING, SUBSTR, and UNSPEC.

A pseudovariable can be used, in certain assignment contexts, in place of
an ordinary variable reference. For example:

SUBSTR(S,2,1) = 'A';

assigns the character 'A' to a I-character substring of S, beginning at the
second character of S.

A pseudovariable can be used wherever the following three conditions are
true: ·

• The syntax specifies a variable reference.
• The context is one that explicitly assigns a value to the variable.
• The context does not require the variable to be addressable.

The principal contexts in which pseudovariables are used are as follows:

• The left side of an assignment statement
• The input target of a GET statement

Note that a pseudovariable cannot be used in preprocessor statements or
in an argument list. In the following example, SUBSTR is not interpreted
as a pseudovariable:

CALL P(SUBSTR(S,2,1));

Here, SUBSTR is interpreted as a built-in function reference, rather than as
a pseudovariable. The actual argument passed to procedure Pis a dummy
argument containing the second character of string S.

528 Pseudovariable

Punctuation Marks

PL/I recognizes punctuation marks in statements. The punctuation marks
serve the following purposes:

• They specify arithmetic or relational operations to be performed on
expressions in a statement.

• They delimit and separate identifiers, keywords, and constants in PL/I
statements.

For example, in the following statement the equal sign (=) representing
the assignment statement, the addition operator (+), and the semicolon
(;) are valid punctuation:

A = B + C;

These punctuation marks separate the identifiers A, B, and C, and define
the operation to be performed.

Whenever you use a punctuation mark in a PL/I statement, you can
precede or follow the character with any number of spaces. For example,
the following two statements are equivalent:

DECLARE (A,B} FIXED DECIMAL (7,0);
DECLARE(A,B)FIXED DECIMAL(7,0);

In the second statement, the spaces preceding and following parenthet­
ical expressions are omitted; the parentheses themselves are sufficient
to distinguish elements in the statement. The only space required in
this statement is the space that separates the two keywords FIXED and
DECIMAL.

Table P-4 summarizes the punctuation marks that the PL/I compiler rec­
ognizes. Note that operators consisting of two characters (for example, ••
and >=)must be entered without intervening spaces in a PL/I program.

Punctuation Marks 529

Table P-4: Punctuation Marks Recognized by PL/I
Category

Arithmetic operators

Relational (or comparison)
operators

Logical operators

Concatenation operator

Separators

530 Punctuation Marks

Symbol

+

I
*

**
>

<

>=
<=

&

&:

I:

II

Meaning

Addition or prefix plus

Subtraction or prefix minus

Division

Multiplication

Exponentiation

Greater than

Less than

Equal to

Not greater than

Not less than

Not equal to

Greater than or equal to

Less than or equal to

Logical NOT (prefix) and

EXCLUSIVE OR (infix)

Logical AND

Logical AND THEN

Logical OR

Logical OR ELSE

String concatenation

Delimits elements in a list

Terminates a PL/I statement

Separates identifiers in a
structure name; specifies a
decimal point

Table P-4 (Cont.): Punctuation Marks Recognized by PL/I
Category Symbol

()

Locator qualifier ->

Meaning

Terminates a procedure name
or a statement label

Encloses lists and extents;
defines the order of evaluation
of expressions; separates
statement and option names
from specific keywords

Delimits character strings and
bit strings

Pointer resolution

Note that VAX PL/I recognizes the tilde (-) as equivalent to the circum­
flex (A), and the exclamation point (!) as equivalent to the vertical bar
(I).

• Spaces, Tabs, and Line-End Characters
In addition to punctuation marks, PL/I accepts spaces, tabs, and line-end
characters between identifiers, constants, and keywords.

The line-end character is a valid punctuation mark between items in a
PL/I statement except when it is embedded in a string constant. In a
string constant, the line-end character is ignored. For example:

A • 'THIS IS A VERY LONG STRING THAT MUST BE CONTI
NUED ON MORE THAN ONE LINE IN THE SOURCE FILE';

This assignment statement gives the variable A the value of the specified
character-string constant. (The line-end character in the constant is
ignored.)

Punctuation Marks 531

PUT Statement

The PUT statement transfers data from the program to the output stream.
The output stream can be either a stream file or a character-string variable.
The output file can be a declared file or the default file SYSPRINT.

This entry describes the syntax and options of PUT statements. For a
detailed description of the execution of a PUT statement, see 0 Stream
Input/Output. 0

The PUT statement has several forms. These forms are summarized in
Figure P-5 and described individually below.

•PUT EDIT
The PUT EDIT statement takes output sources (variables and expressions)
from the program, converts the results to characters under control of
a format specification, and places the resulting character strings in the
output stream. The output stream is either a stream file or a character­
string variable.

With PUT EDIT, the format of the output data is controlled by the pro­
gram.

The form of the PUT EDIT statement is as follows:

PUT EDIT (output-source, ...) (format-specification, ...)
FILE(file-reference)

[PAGE] [LINE(expression)]
[SKIP[(expression)]]

[OPTIONS(option, ...)]

STRING(reference)

output-source
A construct that specifies one or more expressions to be placed in the
output stream. Multiple output sources must be separated by commas.

An output source has the following forms:

expression

The expression is of any computational type, including a reference to a
scalar or aggregate variable. If the reference is to an array, data is output
from array elements in row-major order. If the reference is to a structure,
data is output from structure members in the order of their declaration.

532 PUT Statement

Figure P-5: Forms of the PUT Statement

PUT EDIT (output-source•, ...) (format-specification, ...)
FILE(file-reference)*

[PAGE]* [LINE(expression)]*
[SKIP[(expression)]J•
[OPTIONS(option)]*

STRING(reference)*

PUT [FILE (file-reference)*] LINE (expression) ;

PUT LIST (output-source, ...)*

FILE(file-reference)*
[PAGE]* [LINE(expression)]*
[SKIP[(expression)]J•
[OPTIONS(option)]*

STRING(reference)*

PUT [FILE(file-reference)*] PAGE;

PUT [FILE(file-reference)*] SKIP [(expression)] ;

Option•
CANCEL_CONTROL_O

•Syntax elements common to two or more forms

ZK-032-81

(output-source, ... DO reference=expression
[TO expression][BY expression][WHILE(expression)][UNTIL(expression)])

The output source can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding this form of output source are in addition to the parentheses
surrounding the entire output-source list.

PUT Statement 533

(output-source, ... DO reference=expression
[REPEAT expression][WHILE (expression)][UNTIL(expression)])

The output source can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding this form of output source are in addition to the parentheses
surrounding the entire output-source list.

For a discussion of the matching of format items to output sources and of
the use of DO specifications, see uFormat-Specification List."

format-specification
A list of format items to control the conversion of data items in the output
list. Format items can be data format items, control format items, or
remote format items. For each variable name in the output-source list,
there is a corresponding data format item in the format-specification
list that specifies the width of the output field and controls the data
conversion. (See uFormat-Specification Listu and °Format Item.")

FILE(file-reference}
An option that specifies that the output stream be a stream file; the
reference is to a declared file variable or constant. If neither the FILE
option nor the STRING option is specified, PL/I uses the default file
SYSPRINT; this print file is associated with the default system output
file SYS$0UTPUT, which in tum is generally associated with the user's
terminal.

If a file is specified, and it is not currently open, PL/I opens the file with
the attributes STREAM and OUTPUT.

PAGE
An option that advances the output file to a new page before any data is
transmitted. The PAGE option can be used only with implied or explicit
print files. The file is positioned at the beginning of the next page, and
the current page number is incremented by 1. The PAGE, LINE, and SKIP
options are always executed, in that order, before any other output or
file-positioning operations. The page size is either the default value or
the specific value that you have established for the file (see 0 PAGESIZE
Option"). The P AGESIZE option can be used only with print files.

LINE (expression}
An option that advances the output file to a specified line. You can use
the LINE option only with implied or explicit print files. The expression
. must yield an integer i. Blank lines are inserted in the output file such that
the next output data appears on the ith line of a page.

534 PUT Statement

If the file is currently positioned at the beginning of line i, no operation is
performed by the LINE option.

If the file is currently positioned before line i, and i is less than or equal to
the page size, then blank lines are inserted following the current line until
line i is reached.

If the file is currently positioned at or beyond line i, and the file is not
at the beginning of line i, then the remainder of the page (the portion
between the current line and the current page size) is filled with blank
lines. The ENDPAGE condition is signaled.

When the LINE option is used within an ENDPAGE ON-unit, it causes a
skip to the next page.

SKIP [(expression)]
An option that advances a specified number of lines from the current line.
You can use the SKIP option only with the implied or explicit FILE option.
The expression must yield an integer i, which must not be negative
and must be greater than zero except for print files. If the expression is
omitted, i equals 1.

If the file is not a print file, i-1 blank lines are inserted following the
current line, and subsequent output of data begins at the beginning of
(current line)+i.

If the file is a print file, i=O causes a return to the beginning of the current
line. If i is greater than zero, and either the current line exceeds the page
size or the page size is greater than or equal to the current line plus i, then
i-1 blank lines are inserted. Otherwise, the remainder of the current page
is filled with blank lines, and the ENDPAGE condition is signaled.

On output devices with the space-suppression feature, SKIP(O) can be used
to cause overprinting, underscoring, and so forth. For further information
on lines and pages in stream files, see "Stream Input/Output" and "Print
File."

OPTIONS (CANCEL_CONTROL_O)
A statement option that can be included only with the implied or explicit
FILE option. The option is described fully in the VAX PL/I User Manual.

STRING(reference)
An option that specifies that the output stream be the referenced character­
string variable. The STRING option cannot be used in the same statement
with FILE, OPTIONS, PAGE, LINE, or SKIP.

PUT Statement 535

•Examples
?UTE: PROCEDURE OPTIONS(MAIN);

DECLARE SOURCE FIXED DECIMAL(7,2);

DECLARE OUTFILE PRINT FILE;

OPEN FILE(OUTFILE) TITLE('PUTE.OUT');

SOURCE = 12345.67;

PUT SKIP FILE(OUTFILE) EDIT(SOURCE) (F(S,2));
PUT SKIP FILE(OUTFILE) EDIT(SOURCE) (E(13));
PUT SKIP FILE(OUTFILE) EDIT(SOURCE) (A);
PUT SKIP FILE(OUTFILE) EDIT('American: ',SOURCE)

(A,P'ZZ,ZZZV.ZZ');
PUT SKIP FILE(OUTFILE) EDIT('European: ',SOURCE)

(A,P'ZZ.ZZZV,ZZ');

END ?UTE;

The program PUTE writes the following output to PUTE.OUT:

12345.67
1.234567E+04
12345.67

American: 12,345.67
European: 12.345,67

•PUT LINE
The PUT LINE statement advances a print file to a specified line. Its
format is as follows:

PUT (FILE (file-reference)] LINE (expression);

file-reference
A reference to the file to which the statement applies. The file must be a
print file.

If the FILE option is not specified, PL/I uses the default file SYSPRINT.
This print file is associated with the default system output file
SYS$0UTPUT, which in turn is generally associated with the user's
terminal.

expression
An expression giving a line in the print file, relative to the top of the
current page. The expression must yield an integer i.

536 PUT Statement

If the file is currently positioned at the beginning of line i, no operation
is performed by the LINE option. If the file is currently positioned before
line i, and i is less than or equal to the page size, then blank lines are
inserted following the current line until line i is reached.

If the file is currently positioned at or beyond line i, and the file is not
at the beginning of line i, then the remainder of the page (the portion
between the current line and the current page size) is filled with blank
lines. The ENDP AGE condition is signaled.

When the PUT LINE statement is used within an ENDPAGE ON-unit, it
causes a skip to the next page.

•PUT LIST
The PUT LIST statement specifies a list of output sources (variables
and expressions) whose results are converted to character strings and
transmitted to the output stream. If the output file is a print file, the
output character strings are separated by tabs. Otherwise, the strings are
separated by spaces.

With PUT LIST, the conversion of the output sources and formatting of
the output data are automatic.

The form of the PUT LIST statement is as follows:

PUT LIST (output-source, ...)

output-source

FILE(file-reference)
[PAGE] [LINE(expression))

[SKIP[(expression)))
[OPTIONS(option, ...))

STRING(reference)

A construct that specifies one or more expressions to be placed in the
output stream. Multiple output sources must be separated by commas.

An output source has the following forms:

expression

The expression is of any computational type, including a reference to a
scalar or aggregate variable. If the reference is to an array, data is output
from array elements in row-major order. If the reference is to a structure,
data is output from structure members in the order of their declaration.

PUT Statement 537

(output-source, ... DO reference=expression
[TO expression][BY expression][WHILE(expression)][UNTIL(expression)])

The output source can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding this form of output source are in addition to the parentheses
surrounding the entire output-source list.

(output-source, ... DO reference=expression
[REPEAT expression][WHILE (expression)][UNTIL(expression)])

The output source can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding this form of output source are in addition to the parentheses
surrounding the entire output-source list.

FILE(file-reference)
An option that specifies that the output stream be a file; the reference
is to a declared file variable or constant. If neither the FILE option nor
the STRING option is specified, PL/I uses the default file SYSPRINT;
this print file is associated by default with the system output file
SYS$0UTPUT.

If a file is specified, and it is not currently open, PL/I opens the file with
the attributes STREAM and OUTPUT.

PAGE
An option that advances the output file to a new page before any data is
transmitted. You can use the PAGE option only with implied or explicit
print files. The file is positioned at the beginning of the next page, and
the current page number is incremented by 1. The PAGE, LINE, and SKIP
options are always executed, in that order, before any other output or
file-positioning operations. The page size is either the default value or
the specific value that you have established for the file (see 0 PAGESIZE
Option"). You can use the PAGESIZE option only with print files.

PL/I does not skip automatically to a new page; you must use the PAGE
option to perform this function.

LINE (expression)
An option that advances to a specified line in the output file. The LINE
option can be used only with implied or explicit print files. The expression
must yield an integer i.

If the file is currently positioned at the beginning of line i, no operation is
performed by the LINE option.

538 PUT Statement

If the file is currently positioned before line i, and i is less than or equal to
the page size, then blank lines are inserted following the current line until
line i is reached.

If the file is currently positioned at or beyond line i, and the file is not
at the beginning of line i, then the remainder of the page (the portion
between the current line and the current page size) is filled with blank
lines. The ENDPAGE condition is signaled.

When the LINE option is used within an ENDPAGE ON-unit, it causes a
skip to the next page.

SKIP [(expression}]
An option that advances a specified number of lines from the current line.
You can use the SKIP option only with the implied or explicit FILE option.
The expression must yield an integer i, which must not be negative
and must be greater than zero except for print files. If the expression is
omitted, i equals 1.

If the file is not a print file, i-1 blank lines are inserted following the
current line, and subsequent output of data begins at the beginning of
(current line)+i.

If the file is a print file, i=O causes a return to the beginning of the current
line. If i is greater than zero, and either the current line exceeds the page
size or the page size is greater than or equal to the current line plus i, then
i-1 blank lines are inserted. Otherwise, the remainder of the current page
is filled with blank lines, and the ENDPAGE condition is signaled.

On output devices with the space-suppression feature, SKIP(O) can be used
to cause overprinting, underscoring, and so forth. For further information
on lines and pages in stream files, see 0 Stream Input/Output" and 0 Print
File."

OPTIONS (CANCEL_CONTROL_O)
The only valid statement option for PUT statements is CANCEL_
CONTROL_O. The option is described fully in the VAX PL/I User
Manual.

STRING(reference)
An option that specifies that the output stream .be the referenced character­
string variable. The STRING option cannot be used in the same statement
with FILE, OPTIONS, PAGE, LINE, or SKIP.

PUT Statement 539

•Examples
PUTL: PROCEDURE OPTIONS(MAIN);

DECLARE I FIXED BINARY,
F FLOAT,
P PICTURE '99V.99',
S CHAR(10);

DECLARE INFILE STREAM INPUT FILE;
DECLARE OUTFILE PRINT FILE;

OPEN FILE(INFILE) TITLE('PUTL.IN');
OPEN FILE(OUTFILE) TITLE('PUTL.OUT');

GET FILE(INFILE) LIST (I,F,P,S);
PUT FILE(OUTFILE) SKIP LIST (I,F,P,S);

END PUTL;

Assume that the file PUTL.IN contains the following data:

2,3.64,22.33,'A string'

Then the program PUTL writes the following output to PUTL.OUT:

2 3.6400000E+OO 22.33 A string

For print files, each output item is written at the next tab position.
Floating-point values are represented in floating-point notation. Character
values are not enclosed in apostrophes.

•PUT PAGE

The PUT PAGE statement positions the output file at the start of a new
page. This statement is valid only for print files, that is, files that have
been opened with the PRINT attribute.

The form of the PUT PAGE statement is as follows:

PUT [FILE(file-reference)] PAGE;

file-reference
A reference to a print file that is to be advanced to the next output page.
If no file is specified, PL/I assumes the default file SYSPRINT. This file is
associated with the default system output file SYS$0UTPUT.

•Example
PUT FILE(REPORT) PAGE SKIP LINE(2);

The PUT statement advances the file REPORT to the beginning of the next
page, advances to line 2, and skips to the beginning of the next line (3).

540 PUT Statement

•PUT SKIP
The PUT SKIP statement positions the output file at the start of a new
line.

The form of the PUT SKIP statement is as follows:

PUT [FILE(file-reference)] SKIP [(expression)];

file-reference
A reference to the file to which the SKIP option applies. If no file is
specified, PL/I assumes the file SYSPRINT. This file is associated with the
default system output file SYS$0UTPUT.

If a file is specified, and it is not currently opened, PL/I opens the file
with the attributes STREAM and OUTPUT.

expression
An expression giving the number of lines to be advanced. The expression
must yield an integer i, which must not be negative and must be greater
than zero except for print files. If the expression is omitted, i equals 1.

If the file is not a print file, i-1 blank lines are inserted following the
current line, and subsequent output of data begins at the beginning of
(current line)+i.

If the file is a print file, i=O causes a return to the beginning of the current
line. If i is greater than zero, and either the current line exceeds the page
size or the page size is greater than or equal to the current line plus i, then
i-1 blank lines are inserted. Otherwise, the remainder of the current page
is filled with blank lines, and the ENDPAGE condition is signaled.

On output devices with the space-suppression feature, SKIP(O) can be used
to cause overprinting, underscoring, and so forth. For further information
on lines and pages in stream files, see "Stream Input/Output" and HPrint
File."

PUT Statement 541

R

R Format Item

The R (remote) format item specifies the label of a FORMAT statement
from which some or all of a format specification is obtained by a GET
EDIT or PUT EDIT statement.

The form of the R format item is as follows:

R (label)

label
The label of a FORMAT statement within the same block as the GET EDIT
or PUT EDIT statement. If the item occurs in a recursive procedure, the R
item and FORMAT statement must occur in the same recursion.

Although the FORMAT statement can contain another R format item, the
following restrictions apply:

• The FORMAT statement cannot designate its own label with an R
format item.

• The FORMAT statement cannot begin a chain of remote format items
that leads back to the original FORMAT statement.

•Examples
RFRM: PROCEDURE OPTIONS(MAIN);

DECLARE SYSIN STREAM INPUT FILE;
DECLARE SYSPRINT PRINT FILE;
DECLARE SALARY PICTURE '$$$$$$$$9V.99';
DECLARE (FIRST,MID,LAST) CHARACTER(SO) VARYING;
DECLARE 1 HIRING,

2 DATE CHARACTER(20) VARYING,
2 EXPERIENCE FIXED,
2 SALARY PICTURE 1 $$$$$$$$9V.99';

OPEN FILE(SYSIN) TITLE('RFRM.IN');
OPEN FILE(SYSPRINT) TITLE('RFRM.OUT');

542 R Format Item

GET EDIT(SALARY,FIRST,MID,LAST,DATE,EXPER.IENCE,HIRING.SALARY)
(F(8,2),R(PERSONNEL_FORMAT));

PUT SKIP LIST(LASTI I I. I I IFIRSTI I I I I IMIDI I': I.
'Hired ' 11DATE11 ' at ' 11 HIRING. SALARY) ;

PUT SKIP LIST{EXPERIENCE,' years prior experience');
PUT SKIP LIST{'Present salary: 'I ISALARY);

PERSONNEL_FORMAT: FORMAT{R(NAME),A{20),SKIP,F(2),X,F(8,2));
NAME: FORMAT(3(SKIP,A(80)));

END RFRM;

Assume the file RFRM.IN contains the following data:

25005.50
Thomasina
A.
Delacroix
6 July 1976

2 15003.65

The following output, with spacing as shown, will be written to the print
file RFRM.OUT:

Delacroix, Thomasina A. : Hired 6 July 1976 at $15003.65
2 years prior experience

Present salary: $25005.50

RANK Built-In Function
RANK Preprocessor Built-In Function

The RANK built-in function returns a fixed-point binary integer that is the
ASCII code for the designated character. The precision of the returned
value is 15. The format of the function is as follows:

RANK(character)

character
Any expression yielding a 1-character value.

RANK Preprocessor Built-In Function 543

•Examples
CODE= RANK('A')
CODE= RANK('a')
CODE= RANK('$')

/* CODE = 65 •/
/* CODE = 97 •/
/* CODE = 36 •/

The ASCII characters are the first 128 characters of the DEC Multinational
Character Set. See Appendix B for a table of these characters and their
corresponding numeric codes.

READ Statement

The READ statement reads a record from a file, either the next record or a
record specified by the KEY option. The file must have either the INPUT
or the UPDATE attribute.

•Format

READ FILE (file-reference)

{ INTO (variable-reference) }
SET (pointer-variable)

[KEY (expression) J
KEYTO (variable-reference)

[OPTIONS (option, ...)];

file-reference
The file from which the record is to be read. If the file is not currently
open, PL/I opens the file with the implied attributes RECORD and, if the
file does not have the UPDATE attribute, INPUT. The implied attributes
are merged with the attributes specified in the file's declaration. (See also
"Opening a File.")

INTO (variable-reference)
An option that specifies that the contents of the record are to be assigned
to the specified variable name. The variable must be an addressable
variable. The INTO and SET options are mutually exclusive.

544 READ Statement

If the variable has the VARYING attribute and the file does not have the
attribute ENVIRONMENT(SCALARVARYING), the entire record is treated
as a string value and assigned to the variable; if the record is larger than
the variable, it is truncated and the ERROR condition is signaled. If the
variable has the AREA attribute and the file does not have the attribute
ENVIRONMENT(SCALARVARYING), the entire record is treated as an
area value and assigned to the variable; if the extent of the area in the
record is larger than the variable, the AREA condition is signaled and the
target area is unmodified. For any other type of variable, the record is
copied into the variable's storage. If the record is not exactly the same size
as the target variable, as much of the record as will fit is copied into the
variable and the ERROR condition is signaled.

SET (pointer-variable)
An option that specifies that the record should be read into a buffer allo­
cated by PL/I and that the specified pointer variable should be assigned
the value of the location of the buffer in storage. The SET and INTO
options are mutually exclusive.

This buffer remains allocated until the next operation on the file but no
longer. Therefore, do not use either the pointer value or the buffer after
the next operation on the file. The only valid use of the buffer during a
subsequent I/0 operation is in a REWRITE statement. In this case, you
can rewrite the record from the buffer before the buffer is deallocated.

KEY (expression)
An option that specifies that the record to be read is to be located using
the key specified by the expression. The file must have the KEYED
attribute. The key value must have a computational data type. The KEY
and KEYTO options are mutually exclusive.

The nature of the key depends on the file's organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key is a fixed binary value indicating the relative record
number of the record to be read.

• If the file is an indexed sequential file, the key specifies a key that is
contained within a record. The data type of the key and its location
within the record are as specified when the file was created.

The value of the specified expression is converted to the data type of the
key. If no record with the specified key exists in the file, or if the value
specified is not valid for conversion to the data type of the key, the KEY
condition is signaled.

READ Statement 545

KEYTO (variable-reference)
An option that specifies that the key of the record being read is to be
assigned to the designated variable. The value of the key is converted
from the data type implied by the file's organization to the data type of
the variable. The variable must have a computational data type but cannot
be an unaligned bit string or an aggregate consisting entirely of unaligned
bit strings. The KEYTO and KEY options are mutually exclusive.

KEYTO is specified only for a file that has both the KEYED and
SEQUENTIAL attributes.

OPTIONS (option, ...)
An option that specifies one or more of the following READ statement
options, separated by commas:

FIXED_CONTROL_TO (variable-reference)
INDEX-NUMBER (expression)
LOCK_ON-READ
LOCK-ON-WRITE
MANUAL_UNLOCKING
MATCH-GREATER
MATCH-GREATER-EQUAL
MATCH-NEXT
MATCH-NEXT-EQUAL
NO LOCK
NONEXISTENT-RECORD
READ-REGARDLESS
RECORD-1D (variable-reference)
RECORD-1D_TO (variable-reference)
TIMEOUT_PERIOD (variable-reference)
WAITJOR-RECORD

All these options except INDEX-NUMBER remain in effect for the current
statement only.

These options are described fully in the VAX PL/I User Manual.

• File Positioning Following a READ Statement
If the file is accessed sequentially, the READ statement reads the file's
next record. If the next-record position is at the end-of-file, the ENDFILE
condition is signaled.

After a successful read operation, the file's current record position denotes
the record that was just read. The next-record position denotes the
following record or, if there is no following record, the end-of-file.

546 READ Statement

If any error other than an incorrect record size occurs, the current record
becomes undefined and the next record is the same as it was before the
read operation was attempted.

• Examples
COPY: PROCEDURE;
DECLARE INREC CHARACTER(SO) VARYING,

ENDED BIT(l) STATIC INIT('O'B),
(INFILE,OUTFILE) FILE;

OPEN FILE (INFILE) RECORD INPUT
TITLE('RECFILE.DAT');

OPEN FILE (OUTFILE) RECORD OUTPUT
TITLE(1 COPYFILE.DAT 1);

ON ENDFILE(INFILE) ENDED = 'i'B;

READ FILE(INFILE) INTO (INREC);
DO WHILE (-ENDED);

WRITE FILE (OUTFILE) FROM (INREC);
READ FILE (INFILE) INTO (INREC);
END;

CLOSE FILE(INFILE);
CLOSE FILE(OUTFILE);
RETURN;
END;

The program COPY reads a file with variable-length records into a char­
acter string with the VARYING attribute and writes the records to a new
output file.

It uses a DO-group to read the records in the file sequentially until the
end-of-file is reached. It uses the ON statement to establish the action to
be taken when the end-of-file occurs: it sets the bit ENDED to 'l'B so that
the DO-group will not be executed again.

The VARYING character-string variable INREC has a maximum length
of 80 characters. If any record in the file is more than 80 characters, the
ERROR condition is signaled. If no ERROR ON-unit exists, the program
exits.

DECLARE 1 STATE,
2 NAME CllARACTER(30),
2 CAPITAL,

3 NAME CHARACTER(20),

2 SYMBOLS,
3 FLOWER CHARACTER(30),
3 BIRD CHARACTER(30),

STATE_FILE FILE,

READ Statement 54 7

INPUT_NAME CHARACTER(30) VARYING;

OPEN FILE(STATE_FILE) KEYED;
PUT SKIP LIST('State?');
GET LIST(INPUT_NAME);
READ FILE(STATE_FILE) INTO(STATE) KEY(INPUT_NAME);
PUT SKIP LIST('The flower of' ,STATE.NAME,'is the' ,FLOWER);

This example shows the use of a keyed READ statement to access a record
in an indexed sequential file. The file STATEJILE is opened for keyed
access, and the READ statement specifies the key of interest in the KEY
option. The value for this option is determined at run time by a GET
statement. In the READ statement, the contents of a record from the file
STATEJILE are read into the structure STATE.

PRINT_DATA: PROCEDURE OPTIONS(MAIN);

DECLARE 1 EMPLOYEE BASED (EP),
2 NAME,

3 LAST CHAR(30),
3 FIRST CHAR(20),
3 MIDDLE_INIT CHAR(1),

2 DEPARTMENT CHAR(4),
2 SALARY FIIED DECIMAL (6,2),

EP POINTER,
EMP_FILE FILE;

DECLARE EDF BIT(1) STATIC INIT('O'B),
NUMBER FIIED BIN(31);

END;

ON ENDFILE(EMP_FILE) EDF= 'l'B;
OPEN FILE(EMP_FILE) INPUT SEQUENTIAL KEYED;

READ FILE(EMP_FILE) SET(EP) KEYTO(NUMBER);
DO WHILE (•EDF);

PUT SKIP LIST('EMPLOYEE',NUMBER,
NAME.FIRST,NAME.LAST,MIDDLE_INIT);

READ FILE(EMP~FILE) SET(EP) KEYTO(NUMBER);
END;

CLOSE FILE(EMP_FILE);

This program accesses a relative file sequentially with READ statements
and obtains the key value of each record, that is, the relative record
number. The records in the file EMPJILE are arranged according to
employee numbers. Each employee number corresponds to a relative
record number in the file. The READ statements read records into the
based structure EMPLOYEE and set the pointer EP to the location of
the allocated buffer. The READ statements specify the KEYTO option
to obtain the record number of each record. The procedure prints the

548 READ Statement

employee numbers and names. When the last record has been read, the
program closes the input file and exits.

READONLY Attribute

You can apply the READONLY attribute to any static computational
variable whose value does not change during program execution.

When you specify READONLY in conjunction with the declaration of a
static variable, the PL/I compiler allocates storage for the variable based
on the fact that its value does not change. A static variable with the
READONL Y attribute is given an initial value with the INITIAL attribute.

The READONL Y attribute is described in detail in the VAX PL/I User
Manual.

• Restrictions
You can apply the READONLY attribute only to static computational
variables. You must declare the variables with the EXTERNAL, STATIC,
GLOBALREF, or GLOBALDEF attribute.

The value of a variable with the READONL Y attribute cannot be modified.
An attempt to modify a variable declared with the READONLY attribute
will result in a run-time error.

The READONLY attribute conflicts with the ENTRY, FILE, LABEL,
POINTER, and VALUE attributes.

RECORD Attribute

The RECORD file description attribute indicates that data in an input or
output file consists of separate records and that the file will be processed
by record 1/0 statements.

The RECORD attribute is implied by the DIRECT, SEQUENTIAL, KEYED,
and UPDATE attributes.

You can specify this attribute in a DECLARE statement for a file constant
or in the OPEN statement that accesses the file. For a description of the
attributes that can be applied to files and the effects of combinations of
these attributes, see "File Description Attributes and Options."

RECORD Attribute 549

• Restrictions
The RECORD attribute conflicts with the STREAM and PRINT attributes.

Record Input/Output

Table R-1:

Attributes
Specified

SEQUENTIAL
OUTPUT

SEQUENTIAL
INPUT

SEQUENTIAL
UPDATE

DIRECT
OUTPUT

Record I/O is performed by the READ, WRITE, DELETE, and REWRITE
statements. In record IjO, each I/O statement processes an entire record.
(In stream I/O, more than one line or record can be processed by a single
statement; see "Stream Input/Output" for details.) Table R-1 summarizes
the PL/I file description attributes that apply to record I/O. For an
overview of how to declare and reference files in PL/I, see "File."

Attributes and Access Modes for Record Files
Valid Devices

Attributes and File
Implied Organizations Usage

RECORD Any output Records can be added to the end of the
device or file file with WRITE statements. Each WRITE
except indexed statement adds a single record to the file.

RECORD Any input Records in the file are read with READ
device or file statements. Each statement reads a single

record.

RECORD Relative, READ statements read a file's records in
indexed, order. PL/I maintains the current record,
sequential disk which is the record just read. This record

can be replaced in a REWRITE statement.1

In a relative or indexed sequential file,
the current record can also be deleted
with a DELETE statement. Each statement
processes a single record.

KEYED Relative, WRITE statements insert records into the
RECORD indexed, file at positions specified by keys. Each

sequential disk2 statement inserts a single record.

1 For a file with sequential organization, the record being written must have the same length as the one that was read.

2The file must have fixed-length records.

550 Record Input/Output

Table R-1 (Cont.): Attributes and Access Modes for Record Files

Attributes
Specified

DIRECT
INPUT

DIRECT
UPDATE

KEYED
SEQUENTIAL
OUTPUT

KEYED
SEQUENTIAL
INPUT

KEYED
SEQUENTIAL
UPDATE

Attributes
Implied

KEYED
RECORD

KEYED
RECORD

RECORD

RECORD

RECORD

Valid Devices
and File
Organizations

Relative,
indexed,
sequential disk2

Relative,
indexed,
sequential disk2

Relative,
indexed,
sequential disk2

Relative,
indexed,
sequential disk2

Relative,
indexed,
sequential disk1

Usage

READ statements specify records to be
read randomly by key. Each statement
reads a single record.

READ, WRITE, and REWRITE statements
specify records randomly by key. In a
relative or indexed file, records can also be
deleted by key.

WRITE statements insert records into the
file at positions specified by keys. Each
statement inserts a single record. This
mode is identical to DIRECT OUTPUT.

READ statements access records in the file
randomly by key or sequentially.

Any record IjO operation is allowed
except a WRITE statement that does not
specify a key or a DELETE statement for
a sequential disk file with fixed-length
records.

1 For a file with sequential organization, the record being written must have the same length as the one that was read.

2The file must have fixed-length records.

• Position lnfor•ation for a Record File
When a record file is open, PL/I maintains the following position informa­
tion:

• The next record, for files with the SEQUENTIAL INPUT or
SEQUENTIAL UPDATE attributes. The next record designates the
record that will be accessed by a READ statement that does not
specify the KEY option. The next record may contain the end-of-file.

• The current record, for a file with the UPDATE attribute. The current
record designates either of the following:

The record that will be modified by a REWRITE statement that
does not specify the KEY option

Record Input/Output 551

- The record that will be deleted by a DELETE statement that does
not specify the KEY option

The value of the current record may be undefined.

When a file is opened the current record is undefined and the next record
designates the first record in the file or, if the file is empty, the end-of-file.

After a sequential read operation, the current record designates the record
just read. The next record indicates the following record or, if there are no
more records, the end-of-file.

After a keyed 1/0 statement, that is, an 1/0 statement that specifies the
KEY or KEYFROM option, the current record and next record are set as
follows, where X is the record specified by key and X+ 1 is the next record
or, if there are no more records, the end-of-file:

Current Next
Statement Record Record

READ x X+l

WRITE x X+l

REWRITE x X+l

DELETE undefined x

RECURSIVE Option

The RECURSIVE option is specified on a PROCEDURE or ENTRY state­
ment to indicate (for program documentation) that the procedure will
invoke itself. For example:

HANOI: PROCEDURE (T1, T2, T3, RINGS)
RECURSIVE;

In standard PL/I, the RECURSIVE option is required for a recursive
procedure. However, in VAX PL/I any procedure can be invoked recur­
sively, and the RECURSIVE option is ignored by the compiler. For more
information, see "Procedure."

552 RECURSIVE Option

REFER Attribute

The REFER attribute defines dynamically self-defining structures.

See "REFER Option."

REFER Option

The REFER option is provided in PL/I to create self-defining BASED
structures. That is, the value of one member of a based structure is used
to determine the size of the storage space allocated for another member of
the same structure. The REFER option is used in a DECLARE statement
to specify array bounds, the length of a string, or the size of an area. The
format of the REFER option is as follows:

refer-element REFER (refer-object-reference)

refer-element
An expression that represents the value assigned to the refer object when
the structure is allocated. The refer element must satisfy the following
conditions:

• It must be an expression that produces a FIXED BINARY(31) value or
a value that can be converted to FIXED BINARY (31).

• It cannot reference storage in the structure containing the refer ele­
ment.

refer-object-reference
A reference to a scalar variable. The refer object reference must satisfy the
following conditions:

• It cannot be a subscripted variable reference.

• It cannot be locator qualified.

• It must reference a refer object that is a previous member of the
structure containing the REFER option.

refer-object
A scalar variable contained by the structure. The refer object must satisfy
the following conditions:

• It must be a previous member of the structure containing the REFER
option which references the refer object.

• It must be scalar; it cannot be dimensioned, or a dimensioned array.

REFER Option 553

• It must have a computational data type.

A structure declaration containing the REFER option has the following
components:

DECLARE 1 STRUCTURES BASED(P),
2 I FIXED BINARY(31),
2 A CHARACTER(20 REFER(!)),

I is the refer object, 20 is the refer element, and REFER(I) is the refer
object reference.

For the allocation of storage for a BASED structure, the structure must
have a known size. In the example, the initial length for A is taken from
the refer element, 20. However, the REFER option permits the size of the
structure to change at run time as the value of the refer object changes.
After allocation, the length of A is determined by the refer object, I.

Multiple REFER options are permitted within a structure.

The following example and diagrams illustrate storage mapping using the
REFER option.

DECLARE 1 S BASED (POINTER),
2·1 FIXED BINARY(15),
2 J FIXED BINARY(15),

x .. 5;

2 A CHARACTER ((X•2+2) REFER(!)),
2 B(2) CHARACTER (Y REFER(J));

y .. 10;
ALLOCATE S;

S.A " 'ABCDEFGBIJKL';
S.B(1)" '0123456789';
S.B(2)" 'NOW IS THE';

END;

When this structure is allocated, the refer elements, (X•2+2) and Y, are
evaluated and used to determine the length of the associated string. The
evaluated refer element value (X•2+2) is assigned to the refer object I, and
Y is assigned to J. Thereafter, the size of strings A and Bis determined by
the value of the refer objects I and J.

554 REFER Option

Storage for the above structure would look like this:

S.I

S.J

S.A

S.8(1)

S.8(2)

8

D

F

H

J

L

1

3

5

7

9

0

s
T

E

12

10

A

c
E

G

I

K

0

2

4

6

8

N

w

I

H

ZK-1303-83

Assume that the refer objects, I and J, were assigned the following values:

I ,. 6;
J = 4;

REFER Option 555

The resulting storage would remap to this:

S.1

S.J

S.A

S.8(1)

S.8(2)

8

D

F

H

J

L

1

6

4

A

c
E

G

I

K

0

ZK-1304-83

Note that VAX PL/I does not restrict the use of the REFER option within
structure declarations. Therefore, you should exercise caution in its use. If
you change a value that causes the size of one or more structure members
to decrease, then some storage at the end of the allocated storage becomes
inaccessible for future reference.

If the scalar variable (the refer object) does not satisfy the following
conditions, the results are undefined:

• It must not be assigned a value that is less than zero or greater than
the refer element value used for structure allocation.

• It must have the value used for allocation, if the structure is freed.

The following additional rules apply to structures containing the REFER
option:

• A structure containing the REFER option cannot be the target of a
LIKE reference.

• When a BASED structure is allocated, the order in which the refer
elements are selected for evaluation is undefined.

• When a BASED structure is allocated, the order in which the refer
objects are selected for initialization is undefined.

556 REFER Option

The following examples are illegal uses of the REFER option:

DECLARE 1 81 BASED (P),
2 N(2) FIXED BIN(16),
2 A CHAR(S) VARYING,
2 B CHAR(X REFER (N));

DECLARE (X,Y) FIXED BIN(31);
DECLARE P POINTER;

/• Illegal --- 'N' used in a context
that requires a scalar value •/

DECLARE 1 81 BASED (P),
2 A(N) CHAR(S) VARYING,
2 B CHAR(X REFER (N)),
2 N FIXED;

DECLARE (X,Y) FIXED BINARY(31);
DECLARE P POINTER;

/• Illegal --- 'B' contains a REFER option
and precedes the refer object •/

DECLARE 1 81 BASED (P),
2 A(N) CHAR(S) VARYING,
2 B CHAR(X REFER (N));

DECLARE (X,Y,N) FIXED BINARY(31);
DECLARE P POINTER;

I• Illegal --- 'B' contains a REFER option
and precedes the refer object •/

DECLARE A CHAR(X REFER(N));
DECLARE (X,N) FIXED BIN(31);

I• Illegal --- 'A' contains a REFER option,
but is not a member of a structure •/

REFER Option 557

Reference

558 Reference

In this manual, the term reference means a reference to a named constant
or variable. This entry gives the complete syntax for references and
explains in detail how a reference is interpreted. Because of the flexibility
of PL/I, this explanation is complex and is probably of interest to only
a few programmers. For information on how to write references to
accomplish a specific operation, see, for example, "Built-In Function,"
"Expression," and "Procedure."

The complete syntax of a reference is as follows:

[locator-qualifier) [structure-qualifier) ... identifier
[(subscript-list)] [(argument-list)]

The referenced identifier is the declared name of the constant or variable.

The locator qualifier has the following form:

reference->

reference
A reference to a pointer variable, a pointer-valued function, or an offset
variable that was declared with a base area. (See '"Based Variable" and
"Offset.")

The structure qualifier has the following form:

identifier [(subscript-list)]

identifier
The name of a structure declaration containing (at some level) a declara­
tion of the referenced identifier.

subscript list
A list of integer expressions separated by commas. The argument list
is either empty or is a list of expressions, separated by commas, that
determine the arguments of a procedure or built-in function. If, ignoring
structure qualifiers, only one of the subscript list or argument list is
included, the listed items are interpreted as subscripts or arguments
depending on the declaration of the referenced identifier.

• Complete Interpretation at a Reference
Complete interpretation of a reference follows this sequence of steps:

1. Determine the initial block, B, of interpretation. This is the block
in which the search for the referenced declaration starts. The initial
block, B, is always the block in which the reference textually occurs.
This is usually the current block, but it can be a parent block when
references from declarations are to be interpreted. For example:

P: PROC;
DCL X(N) FIXED BASED(R);

Q: PROC;
X(1)•0;

When the assignment statement X(l)=O is executed, the reference X(l)
is interpreted in the block Q. However, interpreting X(l) requires
interpreting the references N and R in X's declaration, and this is done
in block P, the block of X's declaration.

2. Find the referenced declaration, D, and the block to which it belongs.
This block becomes the block, B, for further interpretation. To find
the declaration, make a qualifying list containing any identifiers in the
structure qualifiers and the identifiers in the reference, taken in left­
to-right order. Search the declarations in block B for any declaration
whose complete list of qualifying names matches the reference's
qualifying list, as follows:
a. If the reference's qualifying list of names is the same as the decla­

ration's list, the reference completely matches the declaration. In
this case, the declaration is the reference's governing declaration;
no further searching of declarations is done.

b. If the reference's qualifying list is a sublist (in order) of the
declaration's, and the last occurring identifiers are the same,
then the reference is partially qualified. If the reference does not
completely match any declaration as in 2(a), and it does partially
match exactly one declaration in B, then that declaration is the
governing declaration. If the reference does not completely match
as in 2(a), and it partially matches two or more declarations in B,
then the reference is ambiguous, and the compiler issues an error
message.

Reference 559

560 Reference

c. If the reference does not match any declaration in B, Bis replaced
by its immediate parent block, and the search for matching
declarations is performed again. This process continues until
a match is found or there is no parent block (the outermost
block has been searched). In the latter case, if the identifier in
the reference is SYSIN or SYSPRINT, or the name of a built-in
function, the compiler creates an appropriate declaration in the
external procedure. Otherwise, it issues an error message.

For example, suppose the block being searched contains only the
following structure declaration:

DECLARE 1 STATE,
2 NAME CHAR(20) VAR,
2 POPULATION FIXED,
2 CAPITAL,

3 NAME CHAR(30) VAR,
3 POPULATION FIXED,

2 SYMBOLS,
3 FLOWER CHAR(20),
3 BIRD CHAR(20);

The references STATE, STATE.NAME, and STATE.CAPITAL.NAME
match completely. The references NAME and POPULATION are
ambiguous. The reference CAPITAL.NAME partially matches exactly
one declaration.

3. Find the block activation, BA, associated with the block B. If B is the
current block, BA is the current block activation. Otherwise, PL/I
locates BA by searching the chain of parent block activations that
ends at the current block. BA is used to determine the value of a
reference to an automatic variable, the actual argument associated
with a parameter, the extents of automatic or defined variables, and
the block-activation component of a label or entry value when a label
or entry constant is interpreted.

4. Evaluate the locator qualifier. If the reference contains a locator
qualifier, it is evaluated to obtain a pointer value. In this case, the
reference must be to a based variable or to a member of a based
structure. If the reference is to a based variable or to a member of
a based structure, and if the reference does not contain a locator
qualifier, the level-1 variable must have been declared with the
attribute BASED(reference), and that reference is evaluated as a locator
qualifier. Note that the pointer value obtained must satisfy the rules
given in "Based Variable.n

5. Evaluate the base reference and position. If the reference is to a
defined variable, the base reference and any POSITION attribute are
evaluated.

6. Determine all extents of the referenced variable. Any extents are given
in the declaration. Those that are not constant are determined as
follows:

a. If the variable is automatic or defined, the extents were evaluated
at the time of block activation and the resulting values saved at
that time. These saved values are used.

b. If the variable is a parameter, the extents were passed along with
the argument to which the parameter corresponds.

c. If the variable is a based variable, the extents are evaluated now.
This includes all extent expressions in the referenced declaration
and all array bounds of containing structures.

7. Interpret subscripts. This step depends on the total number of di­
mensions of the referenced declaration, D; that is, the number of
dimensions in D itself plus the number in each containing structure
declaration. The subscripts are evaluated as follows:

a. All subscripts in the structure qualifiers (if any) are gathered
together in one list (in order). If the reference itself contains both
a subscript list and an argument list [for example, S.Y(l,1,1)(7)],
those subscripts are added to the list. If the reference contains
a single list, which could be either subscripts or arguments, its
elements are treated as subscripts and added to the list unless
the number of subscripts already collected equals D's number of
dimensions. If the single list is not interpreted as a subscript list,
it is an argument list. Note that an empty argument list is never
interpreted as a subscript list.

b. The complete list of subscripts is now compared with the num­
ber of dimensions of D and with each declaration of an array of
structures containing D. The number of subscripts must be zero or
equal to the total number of dimensions of one of these declara­
tions. If it is not, the compiler issues an error message. The array
properties of the reference are then determined as follows:

• If the number of subscripts equals the total number of dimen­
sions of D, then it is not an array reference.

• If D is an array declaration and the number of subscripts
equals the inherited dimensionality of D (that is, D's total
dimensionality minus the dimensionality of D itself), then it is
a connected array reference.

• If the number of subscripts is less than the inherited dimen­
sionality of D, then it is an unconnected array reference.

Reference 561

562 Reference

For example, consider the following declaration:

DECLARE 1 S(6).
2 A(10,20),

3 X(60) FLOAT,
3 Y ENTRY(FIIED),
3 Z FLOAT,

2 B ENTRY(FLOAT,FLOAT);

Now consider the following series of references in relation to this
declaration:

S.A(1,1)

This reference is invalid, because the number of subscripts is too
large for S and too small for S.A.

S(1).A(1,1}.Y(3}
S.A.Y(1,1,1)(3)

These are equivalent. The value of S.A.Y(l,l,l) is an entry value.
The entry is invoked with the argument list (3).

S(1} .A(1, 1) .X

This is a reference to a connected one-dimensional floating-point
array whose bounds are (1:50).

S.A.1(3,10,20,2)

This is a reference to a floating-point variable that is an element of
the array S.A.X.

S(l) .A.I

This is a reference to an unconnected array. It is three­
dimensional, with bounds (1:10,1:20,1:50).

c. All subscript values must lie within the corresponding bounds.
If the compiler option CHECK is used, all subscript values are
checked either at compile time or at run time. If CHECK is not
in effect, some constant subscripts can still be checked at compile
time.

8. Invoke the procedure. If the reference contains an argument list or
was the reference in a CALL statement, the referenced procedure is
invoked with the specified arguments. (See also "Procedure.") In this
case, the reference must not be an array reference and must have data
type ENTRY. If the reference is to an entry variable, the procedure is
invoked using the current value of the variable. Note that the ENTRY
attribute and RETURNS attribute (if any) in the declaration D are used

to interpret the argument list and to determine if this is a function or a
procedure invocation.

REFERENCE Attribute

The REFERENCE attribute forces a parameter to be passed by reference.
Its format is as follows:

{ REFERENCE }
REF

By default, most parameters are passed by reference in PL/I. However,
the REFERENCE attribute is needed for passing an asterisk-extent array
or character string by reference, because asterisk-extent parameters are
passed by descriptor by default. For example:

DECLARE E ENTRY((•) FIXED BIN(31) REFERENCE, FIXED BIN(31));

This is a declaration of a non-PL/I entry point that takes an asterisk-extent
parameter by reference. The first parameter of the external procedure is
an arbitrarily large array of longwords, and the second parameter is the
size of the array. The external procedure should have some method of
determining the size of the array being passed.

Note that the REFERENCE attribute can only be used in parameter
descriptors.

Also see 0 Reference" and "REFERENCE Built-In Function."

REFERENCE Built-In Function

The REFERENCE built-in function is used to force a parameter to be
passed by reference, rather than by whatever mechanism is specified by
the declaration of the formal parameter.

The type of the argument specified with the REFERENCE built-in function
is used for the parameter; thus, the type of the parameter declaration is
ignored when the REFERENCE built-in function is used.

The format of the REFERENCE built-in function is as follows:

{ REFERENCE } (variable-reference)
REF

REFERENCE Built-In Function 563

variable-reference
The name of a scalar or aggregate variable.

See "Reference" and "REFERENCE Attribute."

Relational Operator

The relational, or comparison, operators test the relationship of two
operands; the result is always a Boolean value (that is, a bit string of
length 1). If the comparison is true, the resulting value is 'l'B; if the
comparison is false, the resulting value is 'O'B. The relational operators
are all infix operators. The following table describes all the relational
operators:

Operator

<
"<
<=

>=

>
">

Operation

Less than

Not less than

Less than or equal to

Equal to

Not equal to

Greater than or equal to

Greater than

Not greater than

Note that VAX PL/I recognizes the tilde symbol(-) as synonymous with
the circumflex (A).

Relational operators compare any of the following data types: arithmetic
(decimal or binary); bit-string; character-string; and entry, pointer, label, or
file data. Specific results of operations on each type of data are elaborated
below. The following general rules apply:

• All operands must be scalar.
• Both operands must be arithmetic, or they must have the same data

type.

• Aritlametic Comparisons
Arithmetic and picture operands are compared algebraically. If the
operands have a different base, scale, or precision, PL/I converts them ac­
cording to the rules for arithmetic operand conversion (see "Expression").

564 Relational Operator

• Bit-String Compari•ns
When two bit strings are compared, they are compared bit by bit from
the most significant bit to the least significant bit (as represented by PUT
LIST). If the operands have different lengths, PL/I extends the smaller
operand with zeros in the direction of the least significance. Null bit
strings are equal.

• Character-String Comparisons
When two character strings are compared, they are compared character by
character in a left-to-right order. The comparison is based on the ASCII
collating sequence. The ASCII characters are the first 128 characters of the
DEC Multinational Character Set, which is in Appendix B.

Note the following characteristics of the collating sequence:

• Uppercase letters are less than any lowercase letters.
• Numeric characters are less than any letters.

If the operands do not have the same length, PL/I extends the smaller
operand on the right with blanks for the comparison. Either or both of the
strings can have the attribute VARYING; PL/I uses the current length of a
varying character string when it makes the comparison.

• Comparing Nancomputational Data
Only the following operators are valid, or meaningful, for comparisons
of any of the noncomputational data types except areas (entry, file, label,
offset, and pointer):

Operator Operation

Equal

Not equal

The results of the comparisons provide the information indicated below
for each data type.

Entry Data
Two entry values are equal if they identify the same entry. point in the
same block activation of a procedure.

Relational Operator 565

File Data
Two values defined with the FILE attribute are equal if they identify the
same file constant.

Label Data
Two label values are equal if they identify the same statement in the same
block activation.

A label that identifies a null statement is not equal to the label of any
other statement.

Pointer Data
Two pointer values are equal if they identify the same storage location or
if they are both null.

Offset Data
Two offset values are equal if they identify the same storage location or if
they are both null.

RELEASE Buih-ln Subroutine

The RELEASE built-in subroutine allows a specific record in a file to be
unlocked. This built-in subroutine is normally used in conjunction with
the extended VMS record-locking options of the READ statement. See the
VAX PL/I User Manual for more information.

REPEAT Option

The REPEAT option is specified in a DO statement to specify values to
be assigned to the control variable. The input-target and output-source
lists of GET and PUT statements can also have a DO construct with the
REPEAT option. The REPEAT option is most often used to step though a
list that is linked by pointer or offset values. For example:

DO P = LIST_HEAD REPEAT P->LIST_ELEMENT.NEXT
WHILE (P -=NULL());

For more information, see 0 DO Statement," 0 GET Statement/ "List
Processing," and 0 PUT Statement."

566 REPEAT Option

%REPLACE Statement

The preprocessor %REPLACE statement specifies that an identifier is a
constant of a given value. It can be used anywhere within a procedure or
anywhere in a PL/I source file.

Beginning at the point at which a %REPLACE statement is encountered,
PL/I replaces all occurrences of the specified identifier with the specified
constant value, until the end of compilation.

The format of the %REPLACE statement is as follows:

%REPLACE identifier BY constant-value;

identifier
Any valid PL/I identifier. PL/I keywords are not valid identifiers in a
%REPLACE statement. The identifier must not be the name of a declared
preprocessor or program variable. VAX PL/I permits multiple %REPLACE
statements and %REPLACE statements that redefine the %REPLACE
identifier.

constant-value
Any valid character-string, bit-string, or arithmetic constant.

Integer constants that are given values by %REPLACE statements are
valid in constant expressions. For example:

%REPLACE PREFIX BY 8;

DECLARE BUFFER CHARACTER(80 +PREFIX);

When the program containing these lines is compiled, the variable
BUFFER is declared with a length of 88 characters.

Replication Factor

A replication factor is an unsigned integer constant that specifies the
number of times that a simple string constant is replicated. A replication
factor permits repetition of character strings and bit strings in any context
where a simple string constant is permissible, including format items and
assignment, string, and arithmetic operations. The format of a replication
factor is as follows:

(r)' string'

Replication Factor 567

r
An unsigned integer that represents the number of times that the string is
to be replicated.

string
A simple string constant to be replicated. The string is enclosed in apos­
trophes.

• Examples
For example:

(4)'aeason

This example replicates the string four times. The resulting character
constant looks like this:

season season season season

For example:

DECLARE (A) BIT (800);

END;

A • (400) '2'82;
PUT SKIP LIST ((A));

In this example, the constant will be replicated to a length of 800 charac­
ters.

The resulting character constant looks like this:

'10101010101010101010101010101010

10101010101010101010101010'8

A replication factor can be used in combination with an iteration factor in
INITIAL. For example, the following two statements are equivalent:

INITIAL ((10)('ABCABC'))

INITIAL ((10)((2) 1 ABC 1))

The first statement uses an iteration factor exclusively; the second state­
ment combines an iteration factor of 10 with a replication factor of 2.

568 Replication Factor

RESCAN Option

The RESCAN option of the %ACTIVATE statement specifies when the
value of the variable identifiers is replaced during compilation, the new
replacement text is scanned for further preprocessor identifiers that also
are replaced.

The format of the %ACTIVATE statement with the RESCAN option is as
follows:

% { ACTIVATE } element [RESCAN]
ACT NORESCAN I I

RESCAN is the default option of the %ACTIVATE statement. For further
details, see "%ACTIVATE Statement."

RESIGNAL Built-In Subroutine

The RESIGNAL built-in subroutine is used in an ON-unit to "pass" a
signaled condition so that the run-time system will attempt to locate
another ON-unit to handle the condition. RESIGNAL sets up the internal
mechanism for passing the signal. However, it does not by itself cause
an exit from the ON-unit that calls it. It returns to the next statement in
the ON-unit. Resignaling does not occur until execution of the ON-unit
completes. The format of a call to the RESIGNAL built-in subroutine is as
follows:

CALL RESIGNAL();

When an ON-unit has determined that it cannot or should not respond to
a condition, RESIGNAL permits the ON-unit to pass the signal along.

This subroutine is not provided in the standard PL/I language. It is
provided specifically for use in the VMS operating system environment.
For complete details on condition handling in the VMS system, see the
VAX PL/I User Manual.

RESIGNAL Built-In Subroutine 569

Restricted Expression

A restricted integer expression is one that yields only integral results and
has only integral operands. Such an expression can use only the addition
(+), subtraction (-), and multiplication (*) operators. In VAX PL/I, you
can use a restricted integer expression in certain contexts (such as in the
specification of array bounds) where an integer constant is ordinarily used.

%RETURN Statement

The %RETURN statement terminates execution of the current preprocessor
procedure. The format of the %RETURN statement is as follows:

[%]RETURN (preprocessor-expression);

preprocessor-expression
Value to be returned to the invoking procedure. The preprocessor expres­
sion must be specified. The preprocessor expression is converted to the
data type specified in the RETURNS option, and the value of the expres­
sion is returned to the point of invocation. Therefore, the expression must
be capable of being converted to CHARACTER (32767) VARYING, FIXED
(10), or BIT (31).

The value returned by a preprocessor procedure cannot contain preproces­
sor statements.

When the value of the evaluated preprocessor expression is passed back to
the point of invocation, control returns to the evaluation of the statement
that contained the reference to the preprocessor procedure.

Within a preprocessor procedure, the leading percent sign (%) is optional.

Multiple %RETURN statements are permitted in preprocessor procedures.
See u%PROCEDURE Statement" for more information.

RETURN Statement

The RETURN statement terminates execution of the current procedure.
The format of the RETURN statement is as follows:

RETURN [(return-value));

570 RETURN Statement

return-value
The value to be returned to the invoking procedure. If the current pro­
cedure was invoked by a function reference, a return value must be
specified. If the current procedure was invoked by a CALL statement, a
return value is invalid.

A return value can be any scalar arithmetic, bit-string, or character­
string expression; it can also be an entry, pointer, or label expression
or other noncomputational expression. The return value must be valid
for conversion to the data type specified in the RETURNS option of the
function.

The actual action taken by the RETURN statement depends on the context
of the procedure activation, as follows:

• If the current procedure is the main or only active procedure, the
RETURN statement terminates the program.

• If the current procedure was activated by a CALL statement, the next
executable statement in the calling procedure is executed.

• If the current procedure was activated by a function reference, control
returns to continue the evaluation of the statement that contained the
function reference.

• If the RETURN statement is executed in a begin block, control returns
from the containing procedure to the calling procedure.

• Restrictions
The RETURN statement must not be immediately contained in an ON-unit
or in a begin block that is immediately contained in an ON-unit.

RETURNS Attribute
RETURNS Option

The RETURNS option must be specified on the PROCEDURE or ENTRY
statement if the corresponding entry point is invoked as a function. (See
also "Procedure.") The RETURNS attribute is specified with the ENTRY
attribute to give the data type of a value returned by an external function.
The format of the option and attribute is as follows:

RETURNS (returns-descriptor ...)

RETURNS Option 571

returns-descriptor
One or more attributes that describe the value returned by the function
to its point of invocation. The returned value becomes the value of the
function reference in the invoking procedure. The attributes must be
separated by spaces, except for attributes (the precision, for example) that
are enclosed in parentheses.

• Restrictions
The data types you can specify for a returns descriptor are restricted to
scalar elements of either computational or noncomputational types. Areas
are not allowed.

The extent of a character-string value can be specified as an asterisk (•) to
indicate that the string can have any length. Otherwise, extents must be
specified with restricted expressions.

You cannot use the RETURNS option or RETURNS attribute for proce­
dures that are invoked by the CALL statement.

The attributes specified in a returns descriptor in a RETURNS attribute
must correspond to those specified in the RETURNS option of the
PROCEDURE statement or ENTRY statements in the corresponding
procedure. For example:

CALLER: PROCEDURE OPTIONS (MAIN);
DECLARE COMPUTER ENTRY (FIXED BINARY)

RETURNS (FIXED BINARY); /*RETURNS attribute*/
DECLARE TOTAL FIXED BINARY;

TOTAL= COMPUTER (A+B);

The first DECLARE statement declares an entry constant named
COMPUTER. COMPUTER will be used in a function reference to in­
voke an external procedure, and the function reference must supply a
fixed-point binary argument. The invoked function returns a fixed-point
binary value, which then becomes the value of the function reference.

The function COMPUTER contains the following:

COMPUTER: PROCEDURE (X) RETURNS (FIXED BINARY); /*RETURNS option*/
DECLARE ex. VALUE) FIXED BINARY;

RETURN (VALUE); I* RETURN statement *I

572 RETURNS Option

In the PROCEDURE statement, COMPUTER is declared as an external
entry constant, and the RETURNS option specifies that the procedure
return a fixed-point binary value to the point of invocation. The RETURN
statement specifies that the value of the variable VALUE be returned by
COMPUTER. If the data type of the returned value does not match the
data type specified in the RETURNS option, PL/I converts the value to
the correct data type according to the rules given under "Conversion of
Data."

REVERSE Built-In Function
REVERSE Preprocessor Built-In Function

The REVERSE built-in function reverses the characters or bits in a string.
It takes one argument, whfch is either a character string (fixed or varying)
or a bit string. It returns a string of the same type and size as its argument,
with all the characters (bytes) or bits reversed.

The syntax of the function is as follows:

REVERSE(string-expression);

The syntax of an assignment statement using the REVERSE function is as
follows:

string-variable= REVERSE(string-expression);

string-variable
A variable whose data type (either character or bit string) and length
match the type and length of the string-expression.

string-expression
An expression that evaluates to a character string or a bit string.

For example:

DECLARE X CllARACTER(4} VARYING,
Y BIT(8};

X = REVERSE('abc'}
Y s REVERSE('00010101'B}

The character-string variable Xis assigned the value 'cha'. The bit-string
variable Y is assigned the value '10101000'B.

REVERSE Preprocessor Built-In Function 573

REVERT Statement

The REVERT statement cancels an ON-unit established for a specified
condition or conditions in the current block. The format of the REVERT
statement is as follows:

REVERT condition-name, ... ;

condition-name, ...
The keyword name or names associated with the condition or conditions
for which the ON-unit is to be reverted. Successive names must be
separated by commas. The valid condition names are the same as for the
ON statement (see 0 0n Statement".)

If no ON-unit is established for.a specified condition for the current block,
the REVERT statement has no effect. When the REVERT statement is
executed for a specific condition for which an ON-unit exists, then one of
the following actions is taken:

• If a previous block activation specified an ON-unit for the indicated
condition, that ON-unit will be executed if the condition is signaled.

• If no previous block activation specified on ON-unit for the specified
condition, the default PL/I condition handling is reestablished.

For more information, see "ON Conditions and ON-Units" and "ON
Statement."

REWIND Built-In Subroutine

The REWIND built-in subroutine is used to position a file to the first
record. See the VAX PL/I User Manual for more information.

574 REWIND Built-In Subroutine

REWRITE Statement

The REWRITE statement replaces a record in a file. The record is either
the current record or the record specified by the KEY option. The file must
have the UPDATE attribute. The format of the REWRITE statement is as
follows:

REWRITE FILE (file-reference)
[FROM (variable-reference) [KEY (expression)]]
[OPTIONS (option, ...)];

file-reference
The file that contains the record to be replaced. If the file is not open,
it is opened with the implied attributes RECORD and UPDATE; these
attributes are merged with the attributes specified in the file's declaration.
(See also "Opening a File.")

FROM (variable-reference}
An option giving the variable whose value is to be used to rewrite the
specified record. The variable must be an addressable variable. (See
0 Variable. 0

)

If the FROM option is not specified, there must be a currently allocated
buffer from an immediately preceding READ statement that specifies the
SET option, and this file must have the SEQUENTIAL attribute. In this
case, the record is rewritten from the buffer containing the record that
was read. Note that if the file organization is sequential, the record being
rewritten must be the same length as the one read.

If the variable has the VARYING or the AREA attribute and the file
does not have the attribute ENVIRONMENT(SCALARVARYING), the
REWRITE statement writes only the current value of the varying string or
area into the specified record. In all other cases, the REWRITE statement
writes the variable's entire storage.

KEY (expression}
An option specifying that the record to be rewritten is to be located using
the key specified by expression. The file must have the KEYED attribute.
The expression must have a computational data type. The FROM option
must be specified.

REWRITE Statement 575

The nature of the key depends on the file's organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key is a fixed binary value indicating the relative record
number of the record to be rewritten.

• If the file is an indexed sequential file, the key specifies a key that is
contained within a record. The data type of the key and its location
within the record are as specified when the file was created. The
primary key field in the record cannot be modified.

The value of the specified expression is converted to the data type of the
key. If no record with the specified key exists, if the value specified is not
valid for conversion to the data type of the key, or if the primary key in a
record in an indexed sequential file has been modified, the KEY condition
is signaled.

OPTIONS (option, ...)
An option giving one or more of the following REWRITE statement
options. Multiple options must be separated by commas.

FIXEO_CONTROLJROM(variable-reference)
INDEX _NUMBER (expression)
MATCH-GREATER
MATCH-GREATER-EQUAL
MATCH__NEXT
MATCH__NEXT-EQUAL
RECORD-10 (expression)
RECORO_ID_TQ (variable-reference)

If the MATCH_GREATER, MATCH-.GREATER-EQUAL, MATCH_
NEXT, and MATCH__NEXT_EQUAL options of the REWRITE statement,
are set, they remain set only for the current statement. They are then reset
to FALSE. (MATCH_GREATER and MATCH_GREATER_EQUAL are
obsolete synonyms for MATCH__NEXT and MATCH__NEXT_EQUAL.)

These options are described fully in the VAX PL/I User Manual.

• File Positioning
The next record position is set to denote the record immediately following
the record that was rewritten or, if there is no following record, the
end-of-file.

The current record is set to designate the record just rewritten.

576 REWRITE Statement

• Exa•ples
The procedure NEW-SALARY, below, updates the salary field in a relative
file containing employee records. The procedure receives two input
parameters: the employee number and the new salary. The employee
number is the key value for the records in the relative file.

NEW_SALAIY: PROCEDURE (EMPLOYEE_NUMBER,PAY);

DECLARE EMPLOYEE_NUMBER FIXED DECIMAL(6,0),
PAY FIXED DECIMAL (8,2);

DECLARE 1 EMPLOYEE,
2 NAME,

3 LAST CllAR(30),
3 FIRST CBAR(20),
3 MIDDLE_INIT CllAR(1),

2 DEPARTMENT CllAR(4),
2 SALARY FIXED DECIMAL (8,2),

EMP_FILE FILE;

OPEN FILE(EMP_FILE) DIRECT UPDATE;
READ FILE(EMP_FILE) INTO(EMPLOYEE)

KEY (EMPLOYEE_NUMBER);
EMPLOYEE.SALARY = PAY;
REWRITE FILE(EMP_FILE) FROM(EMPLOYEE)

KEY(EMPLOYEE_NUMBER);
CLOSE FILE(EMP_FILE);
RETURN;
END;

In this example, the KEY option is specified in the READ statement that
obtains the record of interest and in the REWRITE statement that replaces
the record, with its new information, in the file. The FROM and KEY
options must both be specified on the REWRITE statement.

The sample program CHANGE-HEADER, below, changes the contents
of the first record in the sequentially organized file TITLE_pAGE. The file
consists of 80-byte, fixed-length records.

CllANGE_HEADER: PROCEDURE OPTIONS(MAIN);

DECLARE TITLE_PAGE FILE SEQUENTIAL UPDATE,
INREC CllARACTER(BO) BASED(P),
P POINTER:

OPEN FILE(TITLE_llAGE);
READ FILE(TITLE_PAGE) SET(P);

REWRITE Statement 577

INREC = 'Summary of Courses for Fall 1980';
REWRITE FILE(TITLE_PAGE);
CLOSE FILE{TITLE_PAGE);
RETURN;

END;

In this example, the READ statement specifies the SET option. The
input record is read into a buffer, INREC, that is a based character-string
variable. The assignment statement modifies the buffer, and the REWRITE
statement rewrites the record. Because the REWRITE statement does not
specify a FROM option, PL/I uses the contents of the buffer to rewrite the
current record in the file (that is, the record that was just read).

ROUND Built-In Function

The ROUND built-in function rounds a fixed-point decimal expression to
a specified number of decimal places. Its format is as follows:

ROUND(expression,position)

expression
An arithmetic expression that yields a fixed-point decimal value with a
nonzero scale factor; or a pictured value with fractional digits.

position
A nonnegative integer constant specifying the number of decimal places in
the rounded result.

• Returned Value
Where the arguments are an expression of type FIXED DECIMAL(p,q) and
position k, the returned value is the rounded value with the following
attributes:

precision= max(l, min(p - q + k + 1, 31))

and
scale! actor= k

The rounded value is as follows:

ROU N D(x, k) = sign(x) * (10-k) * floor(abs(x) * (lOk) + 0.5)

578 ROUND Built-In Function

•Examples
A = 1234.567;
Y = ROUND(A,1); I• y .. 1234.6 •I
Y = ROUND(A,O); I• y = 1235 •I
A = -1234.567;
Y = ROUND(A,2); I• y = -1234.57 •I

ROUND Built-In Function 579

%SBTIL Statement
The %SBTTL statement allows specification of an arbitrary compile-time
string for the listing subtitle line. PL/I uses the procedure IDENT, or
V002 if no IDENT was specified. If %SBTTL is used, the specified subtitle
appears to the right of IDENT or V002.

The format of the %5BTLL statement is as follows:

%SBTTL preprocessor-expression

preprocessor-expression
A character string with a maximum length of 30 characters. It is truncated
if necessary.

Scale Attribute
The precision p is the total number of bits or decimal digits used to
represent values of the variable. The scale attribute is the number of
fractional bits or digits contained within the specified precision. That is,
the scale factor q specifies that all values of the fixed-point variable are
"scaled" by the factor 2-q for binary data or 10-q for decimal data, where
q is the specified scale factor.

If no scale factor is specified with fixed-point data, the default is zero.

For fixed-point decimal data, the scale factor must be greater than or equal
to zero and less than or equal to the specified precision. For example:

DECLARE X FIXED DECIMAL(10,3);
x = 1.234;

This declaration indicates that the value of x contains a maximum of 10
decimal digits, but 3 of those are fractional. When a value is assigned to
the variable, its internal representation does not include the decimal point;

580 Scale Attribute

the above value for Xis stored as 1234, and the decimal point is inserted
when the number is output. The scale factor has the effect of multiplying
the internal representation of the decimal number by a factor of 10-q.

For fixed-point binary data, the scale factor must be within the range -31
through 31 and less than or equal to the specified precision. Positive scale
factors for fixed binary numbers function according to the same principles
as those for fixed decimal. That is, a positive scale factor is similar to
multiplying the internal representation binary number by a factor of 2-q.

A negative scale factor indicates that the number of fractional bits are
shifted in the opposite direction. In effect, this is similar to multiplying
the binary number by a factor of 2q. For example:

DECLARE (A,B) FIXED BINARY(31,-3),
(C,D) FIXED BINARY(31,3);

A = 128; /• output = 128 •/
B = 7; I• output '" 0 •/
C • 128; /• output = 128.0 •/
D = 7; /• output = 7.0 •I

PUT SKIP LIST (A,B,C,D);
END;

Internally, binary numbers undergo an implicit conversion and are rep­
resented as powers of 2. For instance, in the above example variable A
is first divided by 23 because it is declared with a scale factor of -3. The
stored number is 16. On output, the number 16 is multiplied by 23 and
the number is again 128. However, when variable B is first divided by 23,

the result is zero, which is the value of the stored number. Therefore, on
output, zero is multiplied by 23 and the output is zero.

Note that integer variables declared with a positive scale factor are output
as input, but are followed on the right with a decimal point and a zero.

Even though arithmetic operands can be of different arithmetic types,
all operations must actually be performed on objects of the same type.
Consequently, the compiler can convert operands to a derived type, as
above. Therefore, when you declare a fixed binary number with a scale
factor and assign it a decimal value, the results may not be as you expect
because the binary scale factor left-shifts the specified number of bits to
the right of the decimal point to the left. During conversion to a decimal
representation, the difference between the resulting binary number and
its decimal representation is not the equivalent of dividing or multiplying
the decimal number by 10. Instead, the binary number is first converted
to its internal representation and then this representation converted to its
decimal representation.

Scale Attribute 581

When excess fractional digits are truncated, no condition is signaled. If
there is any resulting loss of precision, it may be difficult to detect because
truncated fractional digits do not signal a condition.

For example:

A: PROCEDURE OPTIONS (MAIN);
DECLARE A FIXED BIN (31,3),

B DECIMAL (10,5),

A= .3;
B = 34.8;

C DECIMAL (10,5);

C = MULTIPLY(A,B,10,5);

PUT SKIP LIST (A,B,C);
END;

Before the multiplication is performed, the variables are converted to fixed
decimal, so that the operands share a common data type. However, after
conversion, variable A is output as 0.2 rather than 0.3. The output from
the above program is as follows:

0.2 34.80000 8.6875

If variable A were declared with the attributes FIXED DECIMAL(l0,5), the
output would have been as follows:

0.3 34.80000 10.44000

See also "Precision Attribute."

Scope of Names

The scope of a declaration of a name is that region of the program in
which the name has meaning. A name has meaning in the following
locations:

• The block in which it is declared
• Any blocks contained within the declaring block, as long as the name

is not redeclared in the contained block

• Any procedure contained in the program, if the name is declared
outside of a procedure

582 Scope of Names

Two declarations of the same name denote distinct objects unless both
specify the EXTERNAL attribute. All EXTERNAL declarations of a par­
ticular name denote the same variable or constant, and all must agree
as to the properties of the variable or constant. Note that EXTERNAL is
supplied by default for declarations of ENTRY and FILE constants. It must
be specified explicitly for variables.

Figure 5-1 illustrates the scope of internal names.

Figure S-1: Scope of Internal Names

Name Scope

DECLARE Z STATIC FIXED; z MAINP, ALPHA, BETA, and CALC

MAINP: PROCEDURE OPTIONS <MAIN);

DECLARE (X, y, VALUE) FIXED;

ALPHA: PROCEDURE;

6ETA: 6EG!N;
DECLARE VALUE FLOAT;

I GOTO ERROR;

END 6ETA;

ERROR:
END ALPHA;

CALC: PROCEDURE;
DECLARE <SUMtTOTAll FLOAT;

I
END CALC;

END MAINP;

SEARCH Built-In Function

MAINP

X, y
VALUE (MAINP)
ALPHA

BETA
VALUE (BETA)

ERROR

CALC
SUM, TOTAL

MAINP, ALPHA, BETA, and CALC

MAINP, ALPHA, BETA, and CALC
MAINP, ALPHA, and CALC
MAINP, BETA, and CALC

ALPHA
BETA

ALPHA, BETA

MAINP, ALPHA
CALC

ZK-1257-83

SEARCH Preprocessor Built-In Function

The SEARCH built-in function takes two character-string arguments and
attempts to locate the first character in the first string that is also present
in the second string. The search for a match is carried out from left to
right. If one character is matched, the function returns the position of that
character in the first string. This function is case sensitive.

SEARCH Preprocessor Built-In Function 583

Its format is as follows:

SEARCH(string-1,string-2[,starting-position])

string-1
A character-string expression. One character in the string is to be matched,
if possible, in the second string.

string-2
A character-string expression to be compared, character by character, with
each character in the first string, in order, until one matching character is
found.

starting-position
A positive integer in the range 1 to n+l, where n is the length of the first
string. It specifies the leftmost character in the first string from which the
search is to begin. If starting-position is specified, any characters to the
left of that position in the first string are ignored. (By default, the search
begins with the leftmost character in the first string.)

• Returned Value
The returned value is a positive integer representing the position in string-
1 of the first character that is also found in string-2. If no match is found,
the returned value is zero.

•Examples
DECLARE STR1 CBARACTER(20) VARYING,

STR2 CBARACTER(10) INITIAL (1.ABCDEFGHIJ'),
I FIXED DECIMAI.(2);

STR1 = I BARBARA I ;

I a SEARCH (STR1,STR2);

In this example, X is given the value 1 because the first character ('B') in
STRl ('BARBARA') is found in STR2 ('ABCDEFGHIJ').

STR1 = '12-GEORGE';
I= SEARCH (STR1,STR2);

Here, X is given the value 4. 'G' is in the fourth position in '12-
GEORGE' and is the first character in STRl that is also present in STR2
(' ABCDEFGHIJ').

I= SEARCH (STR1,STR2,6);

584 SEARCH Preprocessor Built-In Function

X is given the value 8. The starting-position parameter, 6, causes the
search to begin with the sixth character in '12-GEORGE', and thus the first
matching character is the second 'G', which is in the eighth position.

PUT LIST (SEARCH('ZZZBAD', 'ABCD'));

·The function returns the value 4 because the position of 'B' in 'ZZZBAD'
is 4, and 'B' is the leftmost matching character. Here, constants are used
instead of variables.

PUT LIST (SEARCH (I ABCD I • I ZZZBAD I)) ;

This statement is the same as the preceding one except that the parameters
are reversed. Now the value returned is 1 instead of 4 because 'A', the
first character in 'ABCD', is matched. Note that the order in which the
parameters are given is crucial. Note also that duplicate characters in the
second string never change the result.

PUT LIST (SEARCH(' TEST 123','0123468789'));

The function returns the value 9 because 'l', which is in the ninth position,
is the first character matched in the second string.

SELECT Statement

The SELECT statement tests a series of expressions and performs a
specified action depending on the result of the test. The statement has
two forms: in the first form, the expressions are tested for truth or falsity;
in the second form, the expressions are tested to see whether any or
all have the same value as another specified expression (here called the
"select-expression"). Any of the expressions can be, but need not be,
constants. An optional OTHERWISE clause is available to name an action
to be performed if none of the preceding expressions have satisfied the
condition specified.

The two forms of the SELECT statement and the OTHERWISE clause are
described in more detail below.

The general form of the SELECT statement is as follows:

SELECT [(select-expression)];

END;

[WHEN (ANYIALL] (expression, ...) [action];] ...
[{OTHERWISE I OTHER} [action];]

SELECT Statement 585

select-expression
An expression that can be evaluated to any type of value.

expression, ...
One or more expressions to be tested, evaluating to bit-string values, or,
if a select-expression is used, with values that will be compared to the
select-expression's value.

action
Any statement (including a null statement, another SELECT statement, a
DO-group, or a BEGIN-END block) except a DECLARE, END, ENTRY,
FORMAT, or PROCEDURE statement.

• The Twe Farms af the SELECT Statement
Depending on whether you use a select-expression or not, SELECT has
two different forms, which are explained in detail below.

SELECT Without a Select-Expression

The first form of the SELECT statement omits the select-expression. In
this form, the expressions in a WHEN clause are evaluated, and a specified
action is performed if the result of any test is true (or, if ALL is specified,
the results of all tests are true); an expression is "true"' if it evaluates to a
bit string containing any bit with the value of 'l 'B. In the usual case, the
test for truth results in a bit string containing one bit: '1 'B for true or 'O'B
for false.

When the keyword ANY (the default) appears in the WHEN clause, then
if any one of the expressions evaluates to true the corresponding action is
performed. No further expressions in that WHEN clause or in subsequent
WHEN clauses are evaluated (and thus the expressions need not have
unique values), and no subsequent actions are performed.

The WHEN clauses are checked in the order listed. However, the expres­
sions within one WHEN clause might be evaluated in any order, and not
all these expressions are necessarily evaluated.

If the keyword ALL appears in the WHEN clause, the action is performed
only if all expressions in that WHEN clause evaluate to true. Once one
action is performed, no subsequent WHEN clauses are evaluated and no
subsequent actions are performed. If any expression in the WHEN clause
does not result in a true value, no further expressions in that clause are
evaluated and the action is not performed.

586 SELECT Statement

Following is an example of the first form of SELECT:

SELECT;

END;

WHEN ANY (A=10,A=20,A=30) B=B+1;
WHEN (A=60) B=B+2;
WHEN (A=60) B=B+3;
WHEN (A=70) B=B+4;
WHEN (A=80) B=B+6;
WHEN (A=90) B=B+6;
WHEN ALL (A>90,A<600) B=B+10;
OTHERWISE B=B+C;

The SELECT statement defines the action to be taken if the variable A
has any of the values specified in the WHEN clauses (or, in the case of
the WHEN ALL clause, if A is both greater than 90 and less than 500). If
none of the WHEN clauses is true, the action specified in the OTHERWISE
clause (B=B+C) is performed.

SELECT With a Select-Expression

The second form of the SELECT statement has a select-expression after
the keyword SELECT. This form of the SELECT statement evaluates
expressions in the WHEN clauses and then compares their values to the
value of the select-expression (instead of testing the expressions for truth
or falsity, as in the first form of SELECT). It performs a specified action if
any expression has the same value as the select-expression (or, if ALL is
used, all expressions have the same value as the select-expression). In this
form of the SELECT statement, as in the previous form, the expressions
in a WHEN clause might be evaluated in any order, and not all the
expressions are necessarily evaluated.

Following is an example of the second form of SELECT:

SELECT(A);

END;

WHEN (60) C=C+1;
WHEN ANY (60,61,62,B+C) C=C+2;
WHEN ALL (70,D) C=C+3;
OTHERWISE C=C+D;

The SELECT statement defines the action to be taken if the select­
expression (A in the example) evaluates to any or all of the values of
the expressions following a WHEN clause. The first action (the assign­
ment statement C=C+l} will be performed if A has a current value of 50.
In that case, none of the subsequent WHEN clauses will be evaluated.
The second WHEN clause includes the ANY keyword, and so the second
action will be performed if A evaluates to or equals 60 or 61 or 62 or the
sum of B and C. If neither the first nor the second action is performed,

SELECT Statement 587

the third WHEN clause's expressions are tested. The third WHEN clause
includes the ALL keyword, so the third action will be performed only if A
equals both 70 and D. If none of the WHEN clauses causes an action to
be performed, then the action in the OTHERWISE clause (the assignment
statement C=C+D) will be performed.

• OTHERWISE Clause
If none of the WHEN clauses causes the corresponding action to be
performed, the action specified in the optional OTHERWISE clause is per­
formed; but if the OTHERWISE clause is omitted, an ERROR condition is
reported. OTHERWISE can be followed by a semicolon (a null statement)
to cause execution to continue and avoid an ERROR condition when you
do not want to specify an action after OTHERWISE. For example:

OTHERWISE;

After an action is performed following a WHEN or OTHERWISE clause,
control passes to the next executable statement following the END state­
ment that terminates the SELECT statement, unless normal flow is altered
within the action.

• Nested SELECT Statements
Note that the action specified in a WHEN or OTHERWISE clause can be
another SELECT statement, resulting in nested SELECT statements, as in
the following example:

SELECT;
WHEN (condition A)

SELECT;
WHEN (condition A1) statement 1;
WHEN (condition A2) statement 2;
END;

WHEN (condition B)
SELECT;

WHEN (condition Bi) statement 3;
WHEN (condition B2) statement 4;
OTHERWISE statement 6;
END;

OTHERWISE statement 6;
END;

In this example, statement 1 is executed when both condition A and
condition Al are true. Statement 2 is executed when both condition A and
condition A2 are true and Al is false. If A is true but neither Al nor A2
is true, an ERROR condition is reported because no OTHERWISE clause
exists within this SELECT statement.

588 SELECT Statement

If condition A is false, condition B is checked. If B is true but Bl and B2
are both false, statement 5 (in the corresponding OTHERWISE clause)
is executed. If conditions A and B are both false, statement 6 (in the
outermost OTHERWISE clause) is executed.

If you want to avoid the possibility that execution could be stopped by an
ERROR condition, which occurs in this example if condition A is true and
A 1 and A2 are false, you can put in an OTHERWISE clause with a null
statement (a semicolon) as its target, which would cause control to pass to
the first executable statement following the end of the outermost SELECT
statement.

An END statement must follow each SELECT statement.

SEQUENTIAL Attribute

The SEQUENTIAL file description attribute indicates that records in
the file will be accessed in a sequential manner. The format of the
SEQUENTIAL attribute is as follows:

{ SEQUENTIAL }
SEOL

If you specify SEQUENTIAL, the RECORD attribute is implied.

Specify the SEQUENTIAL attribute in a DECLARE statement for a file
constant or in the OPEN statement that accesses the file.

The SEQUENTIAL attribute can be applied to files with sequential,
relative, or indexed sequential file organizations.

• Restrictions
The SEQUENTIAL attribute conflicts with the DIRECT, STREAM, and
PRINT attributes.

SEQUENTIAL Attribute 589

SET Option

The SET option can be specified in an ALLOCATE or READ statement. In
an ALLOCATE statement, it sets a pointer variable to the memory location
of storage acquired for a based variable. In a READ statement, it sets a
pointer variable to the location of the input buffer.

•Examples
ALLOCATE X SET (P);
READ FILE (STATE) SET (READBUF);

See also "ALLOCATE Statement" and "READ Statement."

SIGN Built-In Function
SIGN Preprocessor Built-In Function

The SIGN built-in function returns 1, -1, or 0, indicating whether an
arithmetic expression is positive, negative, or zero, respectively. The
returned value is a fixed-point binary integer. The format of the function
is as follows:

SIGN(expression)

SIGNAL Statement

The SIGNAL statement causes a specified condition to be signaled. The
format of the SIGNAL statement is as follows:

SIGNAL condition-name;

condition-name
The name of the condition to be signaled. It must be one of the keywords
listed below. Each of these conditions is described under its own entry.

ANYCONDITION
AREA
CONDITION (cond-name)
CONVERSION
ENDFILE (file-reference)
ENDPAGE (file-reference)
ERROR
FINISH

590 SIGNAL Statement

FIXEDOVERFLOW
KEY (file-reference)
OVERFLOW
STORAGE
STRINGRANGE
SUBSCRIPTRANGE
UNDEFINED FILE (file-reference)
UNDERFLOW
VAXCONDITION (expression)
ZERO DIVIDE

Most conditions occur as a result of a hardware trap or fault, or as a result
of signaling by PL/I run-time procedures. You can use the SIGNAL state­
ment within a program as a general-purpose communication technique. In
particular, the CONDITION condition lets you signal unique user-defined
condition values.

For details on condition handling, see "ON Conditions and ON-Units."

SIN Built-In Function
The SIN built-in function returns a floating-point value that is the sine
of an arithmetic expression x, where x is an angle in radians. The sine is
computed in floating point. The format of the function is as follows:

SIN(x)

SINO Built-In Function
The SINO built-in function returns a floating-point value that is the sine
of an arithmetic expression x, where x represents an angle in degrees.
The sine is computed in floating point. The format of the function is as
follows:

SIND(x)

SINO Built-In Function 591

SINH Built-In Function

The SINH built-in function returns a floating-point value that is the
hyperbolic sine of an arithmetic expression x. The hyperbolic sine is
computed in floating point. The format of the function is as follows:

SINH(x)

SIZE Built-In Function

The SIZE built-in function returns a fixed-point binary integer that is the
number of bytes allocated to a referenced variable. Its format is as follows:

SIZE (reference)

reference
The name of a variable known to this block. The reference can be to a
scalar variable, an array or structure, or a structure member. The reference
cannot be to a constant or expression. Although references to individual
array elements are allowed, the returned value in this instance is the size
of the entire array, not the element.

• Returned Value
The returned value is the variable's allocated size in bytes. For bit strings
that do not exactly fill an integral number of bytes, the value is rounded
up to the next byte.

For varying character-string variables, note that the returned value is two
bytes greater than the declared length of the string. These extra two bytes
are allocated by PL/I to contain the current length of the string. (If you
want the value of the maximum length of a varying character string, use
the MAXLENGTH built-in function. If you want the value of the current
length of a varying character string, use the LENGTH built-in function.)

• Examples
The following example illustrates the use of the SIZE built-in function on
some scalar variables.

592 SIZE Built-In Function

DECLARES FIXED BINARY(31),
INT FIXED BINARY(15),
CHAR1 CHARACTER(5),
CHAR2 CHARACTER(5) VARYING,
BITSTRING BIT(10),
P POINTER;

S • SIZE(INT);
S = SIZE(CHAR1);
S = SIZE(CHAR2);
S = SIZE(BITSTRING);
S = SIZE(P);

'* s ., 2 •/
I• s = 6 •/
I• s = 7 •/
I• s = 2 •/
I• s = 4 •/

Note the difference between the allocated size for the fixed-length and
varying character strings. Note also that the returned value for the bit
string is rounded up to 2 bytes, the integral number of bytes required to
contain 10 bits.

DECLARE 1 STRUC,
2 CHARSTR CHARACTER(6),
2 BITSTR BIT(10),

ARRAY(6) FIXED BINARY(31),
S FIXED BINARY(31);

S = SIZE(STRUC);
S = SIZE(CHRSTR);
S = SIZE(ARRAY);
S = SIZE(ARRAY(2));

/• s = 7 •/
/• s = 6 •/
I• s = 20 •/
I• s • 20 •/

In this example, the SIZE built-in function is applied to a structure, to one
of its members, to an array, and to an element of the array. Note that a
reference to an array element returns the same value as a reference to the
entire array.

DECLARE 1 TARGET,
2 A BIT(9),
2 B BIT(10),
2 C BIT(1),

1 ALIGNED_TARGET,
2 A BIT(9) ALIGNED,
2 B BIT(10) ALIGNED,
2 C BIT(1) ALIGNED,

S FIXED BINARY(31);

S = SIZE(TARGET); I• S = 3 •/
S = SIZE(ALIGNED_TARGET); /• S = 6 •/

This example illustrates the difference in PL/I's storage of unaligned and
aligned bit strings. The structure TARGET consists of three bit strings
that are unaligned (the default storage mechanism). The three bit strings
occupy 20 consecutive bits in memory. Therefore, only three bytes are
required to hold the structure. The structure ALIGNEO_TARGET consists

SIZE Built-In Function 593

of the same three strings, except each is declared with the ALIGNED at­
tribute, forcing the structure to start on a byte boundary. In this structure,
A and B each require two bytes while C requires one byte, for a total of
five bytes. A similar situation exists with arrays of bit strings.

T: PROC OPTIONS(MAIN);

DCL P PTR;
DCL 1 S BASED(P),

2 I FIIED,
2 A(10 REFER(I)) FIIED;

ALLOCATE S;
PUT SKIP LIST(SIZE(S));
I • 6;
PUT SKIP LIST(SIZE(S));
END;

I• Returns 44 •/

I• Returns 24 •/

This example shows how the SIZE built-in function works on a structure
containing the REFER option. SIZE returns the current size.

DECLARE STR CHARACTER(10) VARYING;

CALL SUB(STR);

SUB: PROCEDURE(X);
DECLARE X CHARACTER(•) VARYING;

PUT SKIP LIST (SIZE(X));

Here, the SIZE built-in function is used to determine the size of a param­
eter that is passed to a procedure. This PUT statement prints the value
12.

CALL MACRO_ROUTINE(
ADDR(OUTSTRING),SIZE(OUTSTRING));

Here, the SIZE built-in function is used to supply an argument to a
procedure (possibly one written in another language) that requires the size
in bytes of a data structure.

594 SIZE Built-In Function

SKIP Format Item

SKIP Option

The SKIP format item sets a stream file to a new position relative to the
current line. It is used with input and output files.

The form of the SKIP format item is as follows:

SKIP [(w)]

w
An integer, or an expression, giving the number of lines to be skipped;
the expression must not convert to a negative integer and must be greater
than zero, except for print files. If w is omitted, a value of 1 is assumed.

If w is 1 or is omitted, the file is positioned at the beginning of the next
line. If w is greater than l, w-1 lines are skipped on input, but the
ENDFILE condition is signaled if the end of the file is encountered first.
On output, w-1 blank lines are inserted. In both cases, the new position
is the beginning of (current line)+w.

• Use with Print Files
If w is zero, the file is repositioned at the beginning of the current line,
allowing overprinting of the line. If w is greater than zero, and either the
current line exceeds the page size or the page size is greater than or equal
to the current line plus w, then w-1 blank lines are inserted. Otherwise,
the remainder of the page (the portion between the current line and
the page size) is filled with blank lines, and the ENDPAGE condition is
signaled.

The SKIP option is used with the GET and PUT statements to advance the
stream file to a new line before beginning a data transfer.

The SKIP option specifies a line number relative to the current line. In
some cases, this line number can be zero, which causes a return to the
beginning of the current line. With the PUT statement, the option SKIP(O)
allows overprinting of a line in a PRINT file.

For further information, see "GET Statement," "PUT Statement," and
"Stream Input/Output."

SKIP Option 595

SOME Built-In Function

Space

The SOME built-in function allows you to determine whether at least one
bit in a bit string is 'l 'B. In other words, it performs a logical OR operation
on the elements of the bit string. The format of an assignment statement
using the SOME built-in function is as follows:

bit-flag = SOME(bit-string)

The function returns the value 'l'B if one or more bits in the bit-string
argument are 'l'B. It returns 'O'B if every bit in the argument is 'O'B or if
the argument is the null bit string.

A space (or blank) character is used to separate elements in a PL/I
statement. You must use spaces to separate keywords and identifiers that
are not separated by other delimiters. For example:

DECLARE A FIXED BINARY;

Spaces are required between the keyword DECLARE and the identifier
A, between the identifier A and the keyword FIXED, and between the
keywords FIXED and BINARY.

You can insert spaces preceding or following any other type of delimiter
to improve the readability of the source text. For example:

A = B + C;

None of the spaces in this statement are required.

You cannot, however, insert spaces within identifiers, between two charac­
ters that function as one operator (for example > =), or in constants other
than character-string constants.

SPACE-BLOCK Built-In Subroutine

The SPACE_BLOCK built-in subroutine is used to position a block-mode
file. See the VAX PL/I User Manual for more information.

596 SPACE_BLOCK Built-In Subroutine

SORT Built-In Function

Statement

The SQRT built-in function returns a floating-point value that is the square
root of an arithmetic expression x. The square root is computed in floating
point. After its conversion to floating point, x must be greater than or
equal to zero.

The format of the function is as follows:

SQRT(x)

A statement is the basic element of a PL/I procedure. Statements perform
the following tasks:

• Define and identify the structure of the program and the data that it
acts upon

• Request specific action to be performed on data
• Control the flow of execution in a program

All PL/I statements are included in this manual under individual entries.
The description of each statement gives its syntax, abbreviation (if any),
and options.

Table S-1 and Table S-2 provide summaries of PL/I statements.

• State•ent For•ats
The general format of a PL/I statement consists of an optional statement
label, the body of the statement, and the required semicolon terminator.

The body of the statement consists of user-specified identifiers, literal
constants, or PL/I keywords. Each element must be properly separated,
either by special characters that punctuate the statement or by spaces or
comments.

Statement 597

598 Statement

• Statement Labels
A label identifies a statement so that it can be referred to elsewhere in
the program, for example, as the target of a GOTO statement. A label
precedes a statement; it consists of any valid identifier terminated by a
colon. Following are some examples:

TARGET: A = A + B;

READ_LOOP: READ FILE (TEXT) INTO (TEMP);

A statement cannot have more than one label.

For more information on labels and rules for specifying them, see 0 Label."

• Simple Statements
A simple statement contains only one action to be performed. There are
three types of simple statements:

• Keyword statements
• Assignment statements
• Null statements

Keyword Statements
Keyword statements are identified by the PL/I keyword that requests a
specific action. Following are some examples of keyword statements:

READ FILE (A) INTO (B);
GOTO LOOP;
DECLARE PRICE PICTURE ·•••oov.99 1 ;

In these examples, READ, GOTO, and DECLARE are keywords that
identify these statements to PL/I.

Assignment Statements
PL/I identifies an assignment statement by syntax: an assignment state­
ment consists of two identifiers separated by an equal sign (=).

TOTAL = TOTAL + PRICE;
COUNTER • O;

Null Statements
A null statement consists of only a semicolon; it indicates that PL/I is to
perform no operation. For example:

IF A < B THEN GOTO COMPUTE;
ELSE;

This IF statement illustrates a common use of the null statement: as the
target of an ELSE clause.

• Co•p•nd Statements
A compound statement contains more than one PL/I statement within the
statement body; it is terminated by the semicolon that terminates the final
statement. The PL/I compound statements are IF and ON. For example:

IF COMMAND = 'QUIT' THEN LEAVE;
ON ENDFILE (SYSUNPUT) GOTO FINISH;
IF (A + B) < (D + E) THEN C = A•D;

• Preprocessor Statements
VAX PL/I supports an embedded lexical preprocessor, which recognizes
a specific set of statements that are executed at compile time. These
statements cause the PL/I compiler to include additional text in the source
program or to change the values of constant identifiers at compile time.

Preprocessor statements are identified by a leading unquoted percent sign
(%) and are terminated by an unquoted semicolon (;), except for % THEN
and %IF statements. You can freely intermix preprocessor statements with
the rest of the source program statements.

Table 5-1 lists the preprocessor statements. For additional information on
the VAX PL/I preprocessor, see "Preprocessor."

Table S-1: Summary of PL/I Preprocessor Statements
Statement

%Assignment

%

%ACTIVATE

Use

Evaluates a preprocessor expression and
gives its value to a preprocessor identifier

Null statement, specifies no preprocessor
operation

Makes the value of declared preprocessor
variables eligible for replacement

Statement 599

600 Statement

Table S-1 (Cont.): Summary of PL/I Preprocessor Statements
Statement Use

%DEACTIVATE Makes the value of declared preprocessor
variables ineligible for replacement

%DECLARE Defines the preprocessor variable names and
identifiers to be used in a PL/I program and
specifies the data attributes associated with
them

%DICTIONARY Specifies data definitions to be included from
the VAX Common Data Dictionary (CDD)

%DO Denotes the beginning of a group of pre­
processor statements to be executed as a
unit

%END Denotes the end of a block or group of state­
ments that started with a %PROCEDURE or
a %DO statement

%ERROR Generates a user-defined diagnostic error
message

%FATAL Generates a user-defined fatal diagnostic
message

%GOTO Transfers control to a labeled preprocessor
statement

%IF Tests a preprocessor expression and estab­
lishes action to be performed based on the
results

%INCLUDE Copies the text of an external file into the
source file at compile time

%INFORM Generates a user-defined informational
diagnostic message

%[NO)LISL_ALL

%[NO]LIST_DICTIONARY

%[NOJLIST__INCLUDE

Does or does not include CDD records,
INCLUDE files, machine code, and source
statements in the listing from that point on

Does or does not include CDD records in
the listing from that point on

Does or does not include INCLUDE files in
the listing from that point on

Table S-1 (Cont.): Summary of PL/I Preprocessor Statements
Statement

o/o[NO]LIST-MACHINE

o/o[NO)LISLSOURCE

%PAGE

%PROCEDURE

%REPLACE

%RETURN

o/oSBTTL

%TITLE

%WARN

Use

Does or does not include machine code in
the listing from that point on

Does or does not include source code in the
listing from that point on

Provides listing pagination without form
feeds in the source text

Begins a preprocessor procedure

Assigns a constant value to an identifier at
compile time

Returns a value from execution of a prepro­
cessor procedure to the point of invocation

Allows specification of a listing subtitle line

Allows specification of a listing title line

Generates a user-defined warning diagnostic
message

• Begin Blecks and DO-Greups
A begin block is a group of statements begun by a BEGIN statement and
ended by an END statement:

BEGIN; •tatement ... END;

A begin block can generally be used wherever a single statement is valid­
for example, as an ON-unit. Begin blocks can also define variables that
are local, or internal, to the begin block. See also "Begin Block."

A DO-group is a group of statements begun by a DO statement and ended
by an END statement. For example:

DO WHILE{A<B) statement ..• END;

DO-groups "conditionalize," or provide control over, the execution of
statements in the group (whereas statements in a begin block are always
executed when the BEGIN statement is executed).

If the DO statement has a WHILE option (a "DO WHILE" statement), the
statements in the group are executed if and only if a specified expression
is true. When the closing END statement is reached, the entire group of
statements is reiterated if the WHILE expression is still true.

Statement 601

602 Statement

If the DO statement has an UNTIL option (a "DO UNTIL" statement), the
statements in the group are repeated if and only if a specified expression
is false. When the closing END statement is reached, the entire group of
statements is reiterated if the UNTIL expression is still false.

The DO statement can also have TO, BY, and REPEAT options that assign
new values to a control variable on successive iterations. These options
are used to reiterate the group a given number of times and to assign new
values to variables used in the group's statements. For details, see 0 DO
Statement" and ,,DO-Group."

• Summary af Statements by Function
The PL/I statements can be grouped by function into the following
categories.

Data Definition and Assignment Statements
The DECLARE statement defines variable names:

DECLARE identifier [attribute ...];

The assignment statement gives a value to a variable:

reference = expression;

Input/Output Statements
These statements identify files and data formats and perform input and
output operations:

CLOSE

DELETE

FORMAT

GET

OPEN

PUT

READ

REWRITE

WRITE

Program Structure Statements
These statements define the organization of the program into procedures,
blocks, and groups:

BEGIN ENTRY

DO PROCEDURE

END null

Flow Control Statements
These statements change or interrupt the normal sequential flow of
execution in a PL/I program:

CALL

GOTO

IF

LEAVE

ON

RETURN

REVERT

SELECT

SIGNAL

STOP

Storage Allocation Statements
These statements acquire and control the use of storage in a PL/I program:

ALLOCATE
FREE

Table S-2 gives a summary of the PL/I statements and their uses.

Table S-2:
Statement

Assignment

null

ALLOCATE

BEGIN

CALL

CLOSE

DECLARE

DELETE

DO

END

ENTRY

Summary of PL/I Statements
Use

Evaluates an expression and gives its value to an identifier

Specifies no operation

Allocates storage for a based or controlled variable

Denotes the beginning of a block of statements to be executed
as a unit

Transfers control to a subroutine or external procedure

Terminates association of a file control block with an input or
output file

Defines the variable names and identifiers to be used in a PL/I
program and specifies the data attributes associated with them

Removes an existing record from a file

Denotes the beginning of a group of statements to be executed
as a unit

Denotes the end of a block or group of statements begun with
a BEGIN, DO, or PROCEDURE statement

Specifies an alternative point at which a procedure can be
invoked

Statement 603

604 Statement

Table S-2 (Cont.): Summary of PL/I Statements
Statement

FORMAT

FREE

GET

GOTO

IF

LEAVE

ON

OPEN

PROCEDURE

PUT

READ

RETURN

REVERT

REWRITE

SELECT

SIGNAL

STOP

WRITE

Use

Specifies the format of data that is being read or written
with GET EDIT and PUT EDIT statements and defines the
conversion, if any, to be performed

Releases storage of a based or controlled variable

Obtains data from an external stream file or from a character­
string expression

Transfers control to a labeled statement

Tests an expression and establishes actions to be performed
based on the result of the test

Transfers control out of a DO-group

Establishes the action to be performed when a specified
condition is signaled

Establishes the association between a file control block and an
external file

Specifies the point of invocation for a program, subroutine, or
user-defined function

Transfers data to an external stream file or to a character-string
variable

Obtains a record from a file

Gives back control to the procedure from which the current
procedure was invoked

Cancels the effect of the most recently established ON-unit

Replaces a record in an existing file

Tests a series of expressions and establishes action to be
performed based on the result of the test

Causes a specific condition to be signaled

Halts the execution of the current program

Copies data from the program to an external record file

STATIC Attribute

The STATIC attribute specifies the way that PL/I is to allocate storage for
a variable. Static storage is allocated when an external procedure is loaded
into memory and is not released until the procedure terminates.

The STATIC attribute is implied by the EXTERNAL attribute. For more
information on STATIC and on other storage-class attributes, see "Storage
Class."

• Restrictions
The STATIC attribute directly conflicts with the BASED, CONTROLLED,
DEFINED, and parameter attributes. The STATIC attribute cannot be
applied to members of structures, parameters, or descriptions in an ENTRY
or RETURNS attribute.

STOP Statement

The STOP statement terminates execution of the program. The format of
the STOP statement is as follows:

STOP;

The STOP statement terminates the program regardless of the current
block activation. The STOP statement signals the FINISH condition and
closes all open files. If the main procedure has the RETURNS attribute, no
return value is obtainable.

Storage Class

The storage class to which a variable belongs determines whether PL/I
allocates storage for it at compile time or dynamically during the ex­
ecution of the program. This entry summarizes the characteristics of
storage classes of variables in PL/I programs. For more information on
the attributes that define the class to which a variable belongs, see the
individual entries for the attributes. For more information on how the
linker arranges variables in an executable image, see the VAX PL/I User
Manual. For information on specifying extent in declarations of variables
of the various storage classes, see "Extent."

Storage Class 605

• Automatic Storage
The default storage class attribute for PL/I variables is AUTOMATIC.
PL/I does not allocate storage for an automatic variable until the block
that declares the variable is activated. When the block is deactivated, the
storage is released. For example:

CALC: BEGIN;
DECLARE TEMP FIXED BINARY (31);

END;

Each time the block labeled CALC is activated, storage is allocated for
the variable TEMP. When the END statement is executed, the block is
deactivated, and all storage for TEMP and all other automatic variables is
released. The value of TEMP becomes undefined.

The storage requirements of an automatic variable are evaluated each time
the block is activated. Thus, you can specify an extent as follows:

DECLARE STRING_LENGTH FIXED;

COPY: BEGIN;
DECLARE TEXT CHARACTER(STRING_LENGTH);

When this begin block is activated, the extent of TEXT is evaluated.
The variable is allocated storage depending on the value of STRING_
LENGTH, which must have a valid value.

• Static Storage
A static variable is allocated storage when the program is activated,
and it exists for the duration of the program. A variable has the static
attribute if it is declared with any of the storage class attributes STATIC,
GLOBALDEF, or GLOBALREF. (Note that the EXTERNAL scope attribute
implies static storage for variables.)

If a block that declares a static variable is entered more than once during
the execution of the program, the value of the static variable remains
valid. For example:

UNIQUE_ID: PROCEDURE RETURNS (FIXED BINARY(31));
DECLARE ID STATIC INTERNAL FIXED INITIAL (0);

606 Storage Class

ID = ID + 1; /• Increment ID •/
RETURN (ID) ;
END;

The function UNIQUE-ID declares the variable ID with the STATIC
attribute and specifies an initial value of zero for it. The variable is
initialized to this value when the program is activated. The storage for
the variable is preserved, and the function returns a different integer value
each time it is referenced.

A variable that has the STATIC attribute can also have external scope: its
definition and value can be accessed by any other procedure that declares
it with the STATIC and EXTERNAL attributes. For more information, see
"External Variable."

• Based Variables
The BASED attribute defines a variable whose storage is accessed by
means of a pointer. When you declare a based variable, you provide PL/I
with a description of the data that will be accessed by the variable. The
actual data must be referenced by a pointer that contains the address of
the storage location of the data. For example:

DECLARE BUFFER CHARACTER(80) BASED (BUF_PTR),
LINE CHARACTER(80),
BUF_PTR POINTER;

BUF_PTR • ADDR(LINE);

The declaration of the variable BUFFER does not result in the allocation of
any storage for the variable. Rather, PL/I associates the declaration of the
variable with the pointer variable BUFJTR. During the execution of the
program, the value of the pointer variable is set to the location (address)
in storage of the variable LINE. In effect, the description of the variable
BUFFER is associated with the actual data value of the variable LINE.

You can associate a based variable with a storage location using the ADDR
built-in function, as in the preceding example; with the ALLOCATE
statement; with a locator-qualified reference to the based variable; with
the SET option of the READ statement; or by explicit allocation within an
area. For more information on processing based variables, see the entries
for those items or the entry "Based Variable."

• Centrelled Variables
The CONTROLLED attribute defines a variable whose storage is allocated
and freed dynamically in generations. Declaration of a controlled variable
provides PL/I with a description of the data that will be accessed by
the variable. Storage for the variable is allocated on a stack with the
ALLOCATE statement. Generations of the variable are used by the
program on a last-in/first-out basis. Variables are freed from storage with
the FREE statement. For example:

Storage Class 607

DECLARE STRING CHARACTER(10) CONTROLLED;

ALLOCATE STRING;
STRING = 'First';

ALLOCATE STRING;
STRING = 'Second';

ALLOCATE STRING;
STRING • 'Third' ;

DO WHILE (ALLOCATION(STRING) ··o);
PUT SKIP LIST (STRING);
FREE STRING;
END;

In this example the ALLOCATION built-in function is used as a counter
for the generations of controlled variables that are released by a DO-loop:
the function counts the variables as they are freed from the stack and used
by the program. After all controlled variables are freed, control passes out
of the DO-loop and to the next statement past the END statement, thus
reducing the possibility of errors with controlled variable generations. For
more information, see "Controlled Variable."

• Defined Variables
When you use the DEFINED attribute in the declaration of a variable,
PL/I associates the description of the variable in the declaration with the
storage allocated for the variable on which the declaration is defined. For
example:

DECLARE NAMES(10) CHARACTER(6) DEFINED (LIST),
LIST(10) CHARACTER(6);

In this example, the variable NAMES is a defined variable; its data
description is mapped to the storage occupied by the variable LIST.
Any reference to NAMES or to LIST is resolved to the same location in
memory.

With certain defined variables, the POSITION attribute can be used to
specify the position in the base variable at which the definition begins.
For more information, see "Defined Variable."

608 Storage Class

• Parameter Storage Class

A parameter variable is a variable that is declared in a procedure and that
receives a value when the procedure is invoked. For example:

FUNC: PROCEDURE (X);
DECLARE X FIXED BINARY;

In this example, X is implicitly declared a parameter variable because its
name appears in the parameter list of the PROCEDURE statement. PL/I
does not allocate storage for X, but rather uses storage associated with the
actual argument specified when the procedure is invoked.

For more information on parameters, see "Parameters and Arguments."

STORAGE Condition Name

The STORAGE condition is raised when an error has been detected during
allocation of a controlled variable or a based variable other than to an
area. The ONCODE value is the error returned by LIB$GET_ VM. The
most common cause is the exhaustion of virtual memory; another cause
might be an erroneous attempt to allocate a negative amount of storage.

Storage Sharing

. Variables that have any of the attributes BASED, DEFINED, UNION, or
PARAMETER can share physical storage locations with one or more other
variables.

A based variable is not allocated any storage when it is declared. Instead,
storage is either located by a locator-qualified reference to the variable or
allocated by the ALLOCATE statement. The BASED attribute thus allows
you to describe the characteristics of a variable, which can then be located
by a reference that qualifies the variable's name with any valid pointer
value. Based variables are useful when the program must control the
allocation of storage for several variables with identical attributes. The
creation and processing of a queued, or linked, list is a common case.
For full details on based variables and valid pointer values, see "Based
Variable."

Storage Sharing 609

A defined variable uses the storage of a previously declared variable,
which is referenced in the DEFINED attribute. The referenced variable is
known as the base of the defined variable. The base can be a character­
or bit-string variable, a technique called string overlay defining. When the
base is a string variable, the POSITION attribute can also be specified for
the defined variable, giving the position within the base variable's storage
at which the overlay defining begins. Defined variables are useful when
the program must refer to the same storage by different names. For full
details, see "Defined Variable."

Unions provide capabilities similar to those of defined variables, but the
rules governing unions' are less restrictive. A union is a variation of a
structure in which all immediate members occupy the same storage.

The UNION attribute, which is used only in conjunction with a level
number in a structure declaration, signifies that all immediate members
of the major or minor designated structure occupy the same storage.
Immediate members are those members having a level number one higher
than the major or minor structure with the union attribute. For more
details, see "Union."

Parameters of a procedure share storage with their associated arguments.
The associated argument is either a variable written in the argument list or
a dummy variable allocated by the compiler. When the written argument
is a variable, the sharing of storage by the parameter and argument allows
a procedure to "return" values to the invoking procedure by changing
the value of the parameter. For instance, a function can return values in
this manner, in addition to returning the value specified in its RETURN
statement. For details, see "Parameters and Arguments" and "Procedure."

STREAM Attribute

The STREAM file description attribute indicates that the file consists
of ASCII characters and that it will be processed using GET and PUT
statements.

The STREAM attribute is implied by the PRINT attribute. It is also
supplied by default for a file that is implicitly opened with a GET or PUT
statement.

Specify the STREAM attribute in a DECLARE statement for a file identifier
or m the OPEN statement that opens the file.

610 STREAM Attribute

• Restrictions
The STREAM attribute directly conflicts with the RECORD, KEYED,
DIRECT, SEQUENTIAL, and UPDATE attributes.

Stream Input/Output

Stream I/O is one of the two general kinds of I/O performed by PL/I (see
also "Record Input/Output.") Stream input and output are performed by
the statements GET and PUT, respectively. Both statements can perform
either list-directed or edit-directed operations.

In stream I/O, more than one record or line can be processed by a single
statement, and, conversely, multiple statements can process a single line
or record. In contrast, record I/O only processes one record of a file in
each READ or WRITE statement.

Successive GET statements acquire their input from the same line or
record until all the characters in the line have been read, unless the
program explicitly skips to the next line. When necessary, a single GET
statement will read multiple lines to satisfy its input-target list. A single
input data item cannot cross a line unless it is a character string enclosed
in apostrophes or unless the ENVIRONMENT option IGNORE-LINE_
MARKS is in effect for the input file. This option produces stream input
operations that match exactly with standard PL/I. However, the option
is usually not necessary; most programs produce the expected results
without it. (For more information on ENVIRONMENT, see the VAX PL/I
User Manual.)

Successive PUT statements write their output to the same line or record
until the line size is reached or until the program explicitly skips to a new
line. A single PUT statement will write as many records as necessary to
satisfy its output-source list. Any single data item that will not fit on the
current line is split across lines.

This entry describes the following aspects of stream IfO:

• "Input by the GET Statement" describes the execution of GET state­
ments (see also "GET Statement" and "Terminal Input/Output"}.

• "Output by the PUT Statement" describes the execution of PUT
statements (see also "PUT Statement," "Print File," and "Terminal
Input/ Output").

• "Processing and Positioning of Stream Files" describes the characteris­
tics and use of stream files with the GET and PUT statements.

Stream Input/Output 611

• "Processing and Positioning of Character Strings" describes the char­
acteristics and use of character-string expressions with GET STRING
and PUT STRING statements.

• "Examples" gives general examples that use stream I/O state­
ments (see also "GET Statement," "PUT Statement," "Terminal
Input/Output," and the entries for most format items).

• Input by the GET Statement
When a GET statement is executed, the first action is to evaluate the FILE
option, if there is one. For example:

GET FILE(INFILE) LIST(A);

PL/I looks for an existing file referenced by INFILE. Then the following
actions are taken:

• If INFILE is a reference to an existing file, and the file is not open,
the file is opened implicitly with the attributes STREAM and INPUT.
Note that if INFILE is declared as a STREAM INPUT file but was not
opened explicitly with the TITLE option, then INFILE is assumed to be
a logical name defined by the user or, if no logical name was defined,
an existing file named INFILE.DAT.

• If INFILE is not associated with a file, or if the associated file does
not exist, or if for any reason the associated file cannot be opened, the
UNDEFINEDFILE condition is signaled.

If the statement has a STRING option instead of a FILE option, the
reference in the STRING option is evaluated.

If the statement has neither a FILE option nor a STRING option, it is taken
to refer to the default file constant SYSIN. SYSIN is declared by default
with the STREAM INPUT attributes, and it is normally used for input
from a terminal. See also #Terminal Input/Output."

If the input stream is a file, the next action is to execute the SKIP option, if
there is one. For details, see #Processing and Positioning of Stream Files"
below, or the entry "GET Statement." The SKIP option cannot be used
with the STRING option. Note that a GET statement can perform a SKIP
operation even if it performs no data input. For example:

GET FILE(INFILE) SKIP(2);

This statement repositions the file referenced by INFILE to the second line
following the current line in the file.

612 Stream Input/Output

A GET statement that has the EDIT or LIST option performs input from
the stream to a list of input targets, which must be variables of computa­
tional data types. If the input target is an aggregate variable, then input
is assigned to each element of the aggregate; input values are assigned to
array elements in row-major order and to structure members in the order
of their declaration. An input target can also contain a DO construct that
further controls the assignment; for details, see "GET Statement." Because
a stream consists only of ASCII characters, and the input targets are not
necessarily character-string variables, an input field must be selected from
the input stream for each target and must be converted, if necessary, to
the type of the target.

In edit-directed (GET EDIT) statements, the selection and assignment of
the input field are controlled by a format item that corresponds to the
input target. In the default case, which applies to terminal input and to
input from most stream files, a data format item assumes that the end of
the input field has occurred if it encounters the end of a record in an input
file or the end of a line when the input is from a terminal.

For example, a common technique for reading lines of varying length
from a terminal is to deliberately use a format item that specifies a field
wider than the column width of the terminal. An example is shown in
the entry "X Format Item." If a carriage return is typed in response to
an input request for GET EDIT, or if the end of a record is immediately
encountered, the requested field width is filled with spaces and assigned to
the input target under the control of the corresponding format item. (Note
that all spaces will cause an error for B format items.) However, if the
input stream is a character-string expression (GET STRING), the ERROR
condition is signaled if the form.at item causes the end of the input string
to be reached in the middle of an input field. If the input stream is a file
declared or opened with ENVIRONMENT(IGNORE_LINE_MARKS),
the search for characters to complete the input field continues at the next
record.

Details on the matching of format items to input targets are given in
"Format-Specification List." The execution of individual format items
is described in individual entries-see, for example, "F Format Item."
IGNORE_LJNE_MARKS and other ENVIRONMENT options are de­
scribed in the VAX PL/I User Manual.

In list-directed (GET LIST) statements, an input field is acquired by
examining the input stream for the next character that is not a space
character. The following actions are taken depending on the character
found:

Stream Input/Output 613

• If the next nonspace character is an apostrophe, the input field is
assumed to contain a bit- or character-string constant, in the same for­
mat as that used to write a string constant in a program. The constant
is acquired and can span the end of a record or line. However, the
ERROR condition is signaled if the end of the file is i:eached before
the terminating apostrophe is found; if the input stream is a character­
string expression rather than a file, the ERROR condition is signaled
if the end of the string is reached. The apostrophes and B suffix are
removed from the constant, and any double apostrophe within a
character-string constant is changed to a single apostrophe. (If the
field contains a bit-string constant in base 4, octal, or hexadecimal
radix, its binary equivalent is found.) The resulting character- or bit­
string value is then assigned to the corresponding input target. If the
input target is not of the same data type, the input value is converted
according to the PL/I conversion rules (see "Conversion of Data").

• If the next nonspace character is a comma, and the previous operation
on the input file was by GET LIST, and the previous input field
was terminated by a space, carriage return, or end-of-record, the
scan continues. If the next nonspace character is a comma, and the
previous nonspace character was also a comma, the corresponding
input target is skipped; the input target retains whatever value it had
before the GET LIST statement.

• If the input line or record is empty (that is, a carriage return or end­
of-record is encountered immediately after the beginning of a line),
The null character string (") is assigned to the input target with
appropriate type conversion. However, if the input file was opened
with ENVIRONMENT(IGNORE_LINE_MARKS), the carriage return
or end-of-record is ignored.

• If the next nonspace character is neither a comma nor an apostrophe,
the input field is then assumed to begin with this character and to be
terminated by the next space, comma, carriage return or end-of-record
[if ENVIRONMENT(IGNORE_LINE_MARKS) was not used], end-of­
file (if the input stream is a file), or end-of-string (if the input stream
is a character string). All the characters in the field are acquired and
assigned, with appropriate type conversion, to the input target.

If the GET LIST statement attempts to read a file after its last input
field has been read, or if it attempts to read an empty file, the ENDFILE
condition is signaled. If the GET LIST statement attempts to read a
character string after its last field has been read, or if it attempts to read a
null string, the ERROR condition is signaled.

614 Stream Input/Output

• Output by the PUT Statement

When a PUT statement is executed, the first action is to evaluate the FILE
or STRING option, if there is one. If the statement has a file option, the
referenced file is either opened or created with the attributes STREAM and
OUTPUT, if it is not already open. For example:

PUT FILE(OUTFILE) LIST(A);

If the file referenced in this statement was not previously declared or
opened with the TITLE option, the reference is assumed to be a logical
name defined by the user or, if no logical name is defined, an existing
file named OUTFILE.DAT. If a STRING option is present instead, the
referenced character-string variable is assigned the null character string.

If neither the FILE option nor the STRING option is present, the output
stream is assumed to be the default file SYSPRINT.

If the output stream is a file, the next action is to execute any of the
options PAGE, LINE, and SKIP that occur in the statement, in that order.
The output stream must be a file if any of these options are included,
and it must be a print file if LINE or PAGE is included. Note that a PUT
statement can contain one or more of these options even if it performs no
data output. For example:

PUT FILE(OUT) PAGE LINE(20);

This statement skips to a new page in the file referenced by OUT (which
must be a print file), moves to line 20 of the file, and then terminates.

However, if the statement also has a LIST or EDIT option, it then writes
out a list of output sources, which must be variables, constants, or other
expressions of computational data types. If the output source is a reference
to an aggregate variable, all the variable's elements are written out; array
elements are written out in row-major order, and structure members are
written out in the order of their declaration. (For more information on
output sources, see "PUT Statement.") Because a stream consists only of
ASCII characters, each output source is converted to a character string
before being written out, as follows:

• If the PUT statement is list directed, the output source is converted
according to the PL/I rules for converting a computational value to a
character string (see "Conversion of Data").

• If the PUT statement is edit directed, the output source is converted as
specified by a corresponding format item. For details, see the entries
for individual format items or "Format Item."

Stream Input/Output 615

• If the output stream is a character-string variable or file with the
attributes STREAM and OUTPUT (but not PRINT), the statement is
list directed, and the output source is of type CHARACTER, the output
source value is surrounded by apostrophes, and any apostrophe within
the value is replaced by a double apostrophe.

• If the output source is of type BIT, and the statement is list directed,
the converted output source is surrounded by apostrophes, and the
letter 'B' is appended.

The converted output source is then written to the output stream, as
follows:

• If the statement is list directed and the output stream is a file with
the attributes STREAM and OUTPUT (but not PRINT), then the
converted output source is written beginning at the end of the file and
followed by a single space. If the output stream is a print file, the
converted output source is written out beginning at the end of the file,
after enough spaces have been written out to move to the next tab
stop. In either case, if the converted output source does not fit on the
remainder of the current -line, as much as possible is written on the
current line, and the rest is written on the next line. The ENDPAGE
condition can be signaled if the output stream is a print file. For more
information on print files, see "Print File."

• If the statement is edit directed, the exact number of characters
specified by the format item is written out, and no space follows. As
much output as possible is written on the remainder of the current
line, and it is continued, if necessary, on the next line. Any additional
positioning, such as on tab stops in a print file, is performed by control
format items.

• If the output stream is a character-string variable, the output process
is identical to that for a STREAM OUTPUT file except that the first
output source written out by a PUT statement is placed at the begin­
ning of the variable's storage, and any previous value in the variable
is erased. Note that the X format item, which can be used with PUT
STRING, performs positioning by writing out spaces, not by "skip­
ping" characters in the previous value of the variable. Note also that
list-directed output to a character variable, followed by list-directed
output of the variable itself, can result in a proliferation of apostrophes
in the value finally written to a file.

616 Stream Input/Output

• Processing and Positioning of Stream Files

A stream file is a file of ASCII text, divided into lines. For every stream
file used in a program, PL/I maintains the following information:

• The locations of the beginning and end of the file. On input opera­
tions, the ENDFILE condition is signaled on the first attempt to read
past the end of the file.

• For output files, the maximum number of ASCII characters in a line, or
the line size. The line size is either a default value or the specific value
you have established for the file (see "LINESIZE Option"). The line
size is used to determine when to skip to the next line (for example,
see 0 X Format Item"). On input, a single data item cannot cross a line
unless it is a character string enclosed in apostrophes or unless the file
was opened with ENVIRONMENT (IGNORE_LINE_MARKS). On
output, data items are continued on the next line.

• The current position in the file. Essentially, this is the point in the
file at which the last input or output operation stopped. It is the exact
character position (sometimes in the middle of a line) at which the
next output item is written or from which the next input item is read.

Input operations can begin at any position from the current position
onward. The default is the current position. To acquire data from a
different position, you can do the following:

• Use the SKIP option of the GET statement to advance by a specified
number of lines before reading data.

• Use control format items to move to a specified position before reading
data. With the GET statement, control format items are restricted to
SKIP (the same operation as the SKIP option), COLUMN (advance to
a specified character position), and X (advance by a specified number
of character positions from the current position). Note that the control
format items, unlike the SKIP option, are executed during, not before,
the input of data. See also "Format Item." The control format items
can signal the ENDFILE and ERROR conditions if the end-of-file is
encountered.

• Close and then reopen the file, which sets the current position to the
first character in the file.

Stream Input/Output 617

Because stream files are sequential files, output operations always place
data at the end of the file. You can do the following additional formatting
of output with any stream output file:

• Use the SKIP option of the PUT statement to skip lines following the
current position. If the current position is the beginning of a line, the
SKIP option inserts null lines in the file between the current position
and the position of the next output. The SKIP option can reposition
the file even though no data is output.

• Use the control format items to advance to a specified line or character
position, or to a new page. The control format items are COLUMN
(move to a specified character position), SKIP (the same effect as the
SKIP option), and X (skip a specified number of characters following
the current position). As with the input case, control format items are
executed only during the output of data; if only part of the format list
is used, the excess control format items are ignored.

If the output file is a print file (that is, has the attributes STREAM,
OUTPUT, and PRINT, or is the default file SYSPRINT), the following
additional information is maintained for the file:

• The current page number. The first output to a print file is written
to page 1. The current page number is incremented by the PAGE
option, the PAGE format item, and, in some circumstances, by the
LINE option and LINE format item. You can evaluate the current
page number for a specified print file with the PAGENO built-in
function. You can also set it to a new value by assigning a value to
the PAGENO pseudovariable.

• The page size. This is an integer that specifies the number of lines
on a page. The page size is either the default value or the specific
number that you have established for the print file (see 0 P AGESIZE
Option.") When the last line on a page is filled, the first attempt to
write (or position the file) beyond that position signals the ENDPAGE
condition. The ENDP AGE condition is signaled only on the first such
attempt; if no ON-unit is established for the condition, a PUT PAGE is
executed. For example, the ON-unit for the ENDPAGE condition can
write a trailer at the bottom of the current page, or a header at the top
of the next page, before printing a new page of data.

• The current line number. This is an integer specifying the line cur­
rently being used for output, relative to the top of the page. The first
line on the page is line 1. The LINENO built-in function can evalu­
ate the current line of a specified print file. The LINE option of the
PUT statement, and the LINE format item, can reposition the file to a
specified line.

618 Stream Input/Output

• Position of tab stops. Tab stops always occur at 8-column increments
on every line of a print file, beginning with column 1. The TAB format
item can reposition a print file to a specified tab stop relative to the
current position.

Terminals should always be declared as print files when used for output.
See 0 Terminal Input/Output."

• Processing and Positioning of Character Strings
If the input or output stream is a character string, the processing is similar
to the processing of files, but the positioning options are more limited:

• Input can begin either at the beginning of the string or at a specified
character position. The ERROR condition is signaled if the end of the
string is encountered. Only the X format item is used for positioning.

• The first output by a PUT statement always occurs at the beginning of
the string, and subsequent output by the same statement follows the
previous output. The ERROR condition is signaled if the maximum
length of the string is exceeded. Only the X format item is used for
positioning.

On input, the value of the character-string expression specified in the
STRING option must include commas or spaces to separate input fields, as
with any stream input. For an example, see 0 GET Statement."

• Examples
LOI: PROCEDURE OPTIONS(MAIN);

DECLARE (I,J) FIXED BINARY;

GET LIST(!);
GET LIST(J);

PUT SKIP LIST('!•' ,I);
PUT LIST('J=',J);

END LOI;

The input data for the two GET statements can appear on the same line:

3,4IRETI

Because the first PUT statement contains a SKIP option, the output begins
on a new line. The second PUT statement does not contain a SKIP option,
so the output appears on the same line as that of the first statement:

I= 3 J= 4

Stream Input/Output 619

For another example showing terminal input and output, see "Terminal
Input/Output."

PUTSTR: PROCEDURE OPTIONS(MAIN);

DECLARE SOURCE CHARACTER(SO) VARYING;

DECLARE OUTFILP PRINT FILE;

SOURCE= 'Old string';
PUT FILE(OUTFILP) LIST(SOURCE);
PUT FILE(OUTFILP) EDIT(SOURCE) (A);
PUT STRING(SOURCE) LIST('New string');
PUT FILE(OUTFILP) LIST(SOURCE);
PUT FILE(OUTFILP) EDIT(SOURCE) (A);

END PUTSTR;

The program PUTSTR writes the following output to the print file
OUTFILP.DAT:

Old string Old string 'New string' 'New string'

The last two strings are surrounded by apostrophes because the apostro­
phes were added by the PUT STRING statement.

PUTSTR: PROCEDURE OPTIONS(MAIN);

DECLARE SOURCE CHARACTER(80) VARYING;

DECLARE OUTFILS STREAM OUTPUT FILE;

SOURCE = 'Old string';
PUT FILE(OUTFILS) LIST(SOURCE);
PUT FILE(OUTFILS) EDIT(SOURCE) (X,A);
PUT STRING(SOURCE) LIST('New string');
PUT FILE(OUTFILS) LIST(SOURCE);
PUT FILE(OUTFILS) EDIT(SOURCE) (X,A);

END PUTSTR;

This version of PUTSTR writes the following output to the stream file
OUTFILS.DAT:

'0ldAstring'A60ldAstring'''New6string' 16 16A'NewAstring 16

Here, every PUT LIST has added a new pair of apostrophes to the output
value. First, the characters "Old string" are assigned to SOURCE. When
SOURCE is written out with PUT LIST, the characters are surrounded by
apostrophes (because OUTFILS is not a print file) and written out followed
by a space:

'Old string'A

620 Stream Input/Output

The following PUT EDIT statement writes out a space (because of the X
format item) followed by the characters in SOURCE:

t.Old string

Then, the PUT STRING statement writes the characters "New string"
to SOURCE; here, SOURCE behaves like a stream output file, and the
resulting value in SOURCE is as follows:

'New string'A

Now, when SOURCE is written out by another PUT LIST statement,
every apostrophe in SOURCE's value is replaced by two apostrophes, and
the resulting value is again surrounded by apostrophes and written out
followed by a space:

'''New string' 'A'A

When, instead, SOURCE is written out by PUT EDIT, no additional
apostrophes are added, and the output is as follows:

A'New string'A

The initial space was created by the X format item, and the terminating
space was already in the value of SOURCE.

STRING Built-In Function

The STRING built-in function concatenates the elements of an array or
structure and returns the result. Elements of a string array are concate­
nated in row-major order. Members of a structure are concatenated in the
order in which they were declared.

The format of the STRING built-in function is as follows:

STRING(reference)

reference
A reference to a variable that is suitable for bit-string or character-string
overlay defining. Briefly, a variable is suitable if it consists entirely of
characters or bits, and these characters or bits are packed into adjacent
storage locations, without gaps. For a precise definition, see "Defined
Variable."

STRING Built-In Function 621

• Returned Value

The string returned is of type CHARACTER or BIT, depending on whether
the reference is suitable for character- or bit-string overlay defining. The
length of the string is the total number of characters or bits in the base
reference.

•Examples
STRING_BIF_EXAMPLE: PROCEDURE;
DECLARE NEW_NAME CHARACTER(40);
DECLARE 1 FULL_NAME,

2 FIRST_NAME CHARACTER(10),
2 MIDDLE_INITIAL CHARACTER(3),
2 LAST_NAME CHARACTER(27);

FIRST_NAME = 'MABEL';
MIDDLE_INITIAL = 'S. ';
LAST_NAME = 'MERCER';
NEW_NAME = STRING(FULL_NAME);

/* NEW_NAME =
'MABELAAAAAS.AMERCERAAAAAAAAAAAAAAAAAAAAA'

where A is a space •/
END STRING_BIF_EXAMPLE;

String Handling

VAX PL/I provides the following facilities for handling strings. Each is
described in its own entry in this manual.

• The concatenation operator (11 or !!), which concatenates two strings

• The bit-string operators AND (&), OR (I or !), and EXCLUSIVE OR
(infix • or -), which perform logical operations on two bit-string
operands

• The bit-string operator NOT (prefix • or -), which complements the
bits in the string

• The built-in functions:

622 String Handling

BIT, which converts an expression to a bit string

BOOL, which specifies a "truth table" to be used in comparing two
bit strings and returns the resulting bit string

BYTE, which returns the ASCII character corresponding to a given
integer code

CHARACTER, which converts an expression to a character string

COLLATE, which returns a string of the ASCII characters in
collating sequence

COPY, which replicates a bit or character string and concatenates
the replications into a single string

DATE, which returns a character string giving the date

DECODE, which converts a character string to an integer in a
specified radix

ENCODE, which converts an integer to a character string that
represents the integer's value in a specified radix

EVERY, which returns the result of a logical AND operation on
the bits in a bit string ('l'B if all bits are 'l'B)

HIGH, which returns a string of repeated occurrences of the
highest character in a collating sequence

INDEX, which returns the position at which a specified substring
is found in a specified bit or character string

LENGTH, which returns the current length of a bit or character
string

LOW, which returns a string of repeated occurrences of the lowest
character in a collating sequence

MAXLENGTH, which returns the maximum possible length of a
varying character string

RANK, which returns the ASCII code for a given character

REVERSE, which returns the reverse of a bit string or character
string

SEARCH, which compares two strings and returns the string
position of the first string in the first character that appears in both
strings

SOME, which returns the result of a logical OR operation on the
bits in a bit string ('1' if one or more of the bits are 'l 'B)

STRING, which concatenates an array or structure of strings into a
single string

SUBSTR, which returns a specified portion of a bit or character
string

TIME, which returns a character string giving the current time of
day

TRANSLATE, which replaces occurrences of a specified character
with a new character

TRIM, which returns a string with specified characters removed
from the beginning or end

String Handling 623

UNSPEC, which returns, as a bit string, the internally coded form
of a scalar expression
VERIFY, which compares two character strings and returns the
position of a mismatched character

• Character- and bit-string assignments, such as the following:

NAME = 'HAROLD'
STATUS• '0001011'8

• Character- and bit-string relational expressions, such as the following:

IF I ARTHUR I < I HAROLD I THEN ...

• The GET STRING and PUT STRING statements, which transfer data
between character strings and program variables

• The replication factor, which duplicates a string x number of times
• The STRING pseudovariable, which assigns parts of a string to an

array or structure

• The SUBSTR pseudovariable, which replaces a specified substring with
a specified character-string expression

• The INT pseudovariable, which assigns a signed integer value to
specified storage

• The POSINT pseudovariable, which assigns an unsigned integer value
to specified storage

STRING Option

The STRING option is used with the GET and PUT statements to perform
data transfers from or to a character-string variable in the program instead
of to an external file.

The STRING option is used with either the LIST option or the EDIT
option, depending on whether type conversions are to be automatic or
under program control.

In most respects, stream I/Oto a character-string expression is performed
as if the string were a file with the attributes STREAM and, as appropriate,
INPUT or OUTPUT.

The GET STRING statement acquires a string from a character-string
variable and assigns it to one or more input targets. If more than one
input target is listed, the characters in the string should include any
punctuation (comma or space separators or apostrophes) that would be
required if the character string were in an external file.

624 STRING Option

The PUT STRING statement evaluates a list of output sources (expres­
sions), converts the results to characters if necessary, and assigns the
concatenated results to a character-string variable declared in the program.
The concatenated results include any punctuation (space separators or
apostrophes) that would result if the character string were being sent
to a STREAM OUTPUT file. For example, apostrophes are added to
character-string output, and every output value is followed by a space.

For further details, see uGET Statementn and uPUT Statement."

STRING Pseudovariable

The STRING pseudovariable interprets a suitable reference as a ref­
erence to a fixed-length string. By using it, you can modify an entire
aggregate with a single string assignment or assign the aggregate to a
pictured variable as if it were a character-string variable. The format of
the pseudovariable (in an assignment statement) is as follows:

STRING(reference) = expression;

reference
A reference to a variable that is suitable for character-string (or bit-string)
overlay defining. The length of the pseudovariable is equal to the total
number of characters (or bits) in the scalar or aggregate denoted by the
reference. This length must be less than or equal to the maximum length
for character-string (or bit-string) data.

Assignment to the STRING pseudovariable modifies the entire storage
denoted by the reference.

• Examples
STRING_PSD_EXAMPLE: PROCEDURE;
DECLARE 1 NAME,

2 FIRST CHARACTER(10),
2 MIDDLE_INITIAL CHARACTER(3)
2 LAST CHARACTER(10);

STRING(N.AME)='FRANKLIN D. ROOSEVELT';
/*NAME.FIRST - 'FRANKLIN D';

NAME.MIDDLE_INITIAL = ' R';
NAME.LAST= 'OOSEVELT '; */

STRING Pseudovariable 625

END STRING_PSD_EXAMPLE;

DECLARE 1 FLAGS,
2 (A,B,C) BIT(l);

STRING(FLAGS) = '0'8; /• sets all three flags false •/

DECLARE P PICTURE /Z.ZZZV,ZZDB';
GET EDIT (STRING(P)) (A(10));

/• assigns 10 characters from SYSIN to P,
without conversion •/

STRINGRANGE Condition Name

The STRINGRANGE condition is raised when a substring reference is
beyond the length of the string. The error is detected either by compiled
code or by a run-time library routine.

STRINGRANGE can be abbreviated STRG.

Any one of several subconditions can cause the STRINGRANGE condition
to be raised. You can use the ONCODE built-in function to determine
which one. Following are the possible values of the ONCODE built-in
function for the STRINGRANGE condition:

ONCODE value

PLl$_STRRANGE

PLI$_SUBSTR2

PLl$_SUBSTR3

PLI$_BIFSTAPOS

Raised by

SIGNAL STRINGRANGE

Out-of-range SUBSTR 2nd argument

Out-of-range SUBSTR 3rd argument

Out-of-range starting position for an INDEX,
SEARCH, or VERIFY built-in function

Note that STRINGRANGE is always enabled in RTL code (which is
currently used for more complex cases of INDEX, SEARCH, and VERIFY),
but in-line checking is only performed if /CHECK=BOUNDS is used to
compile the code in which the condition would be raised.

An example of the use of the STRINGRANGE condition and the
ONCODE built-in function follows.

626 STRINGRANGE Condition Name

Structure

%INCLUDE SPLIDEF;
ON STRINGRANGE BEGIN;

I•
• The THEN clause below will be executed for all
* SUBSTR starting-position range errors. All other
• STRINGRANGE errors will be resignaled. Note that
* SUBSTR is processed in-line, so the code must be
* compiled with /CHECK=BOUNDS for this ON-unit
* be effective.
•/

IF ONCODE() = PLIS_SUBSTR2
THEN

ELSE
CALL RESIGNAL();

END;

A structure is a data aggregate consisting of one or more members. The
members can be scalar data items, arrays of scalar data items, structures,
or arrays of structures; different members can have different data types.

A structure declaration defines a structure variable by means of level
numbers. For example:

DECLARE 1 TRANSACTION,
2 PART_NUMBER,

3 FACTORY CHARACTER (3),
3 ITEM CHARACTER (6) ;

The level number 1 indicates that TRANSACTION is a structure vari­
able. TRANSACTION is the name of the entire, or "major," structure.
The higher numbers 2 and 3 indicate that the associated identifiers are
the names of members of the structure TRANSACTION or its "minor"
structure, PART-NUMBER.

The following sections define the rules for specifying level numbers and
attributes for members in a structure.

• Level Nu•bers far Structures
You must precede each variable in the structure declaration with a level
number indicating the position of the variable in the structure. The
following rules apply:

• The level number of the major structure must be 1.

• Level numbers must be specified with decimal integer constants.

Structure 627

628 Structure

• A level number must be separated from its associated variable name
by at least one space or tab character.

• Level numbers. after level 1 can be any integer values, as long as
each level number is equal to or greater than the level number of the
preceding level. (There can be only one level 1.)

• Each identifier in the structure must be separated from the declaration
of the previous identifier by a comma.

• Substructures at the same logical level of nesting do not have to have
the same level number.

• The deepest possible logical level is 15.
• The largest possible level number constant is 32767.
• A substructure at level n contains all following items declared with

level numbers greater than n, up to but not including the next item
declared with a level number less than or eqqal to n.

• Attri•utes far Structure Varia•les
Within a structure, only members at the lowest level of each substructure
can be declared with data type attributes. Additional rules for specifying
attributes for the various components of a structure are listed below.

• Only the following attributes are valid for the major structure name:

AUTOMATIC GLOBALREF

BASED INTERNAL

CONTROLLED READONLY

DEFINED STATIC

EXTERNAL STRUCTURE

GLOBALDEF UNION

• The major structure, or a minor structure, or any member of the
structure can be dimensioned: that is, there can be arrays of structures
and structures whose members are arrays. See "Arrays of Structures."

• Member names cannot have any of the following attributes:

AUTOMATIC

BASED

CONTROLLED

DEFINED

EXTERNAL

GLOBALDEF

GLOBALREF

READONLY

STATIC

VALUE

UNION

• If a structure has the STATIC attribute, the extents of all members
(that is, lengths for character- and bit-string variables, dimensions for
array variables, and area extents) must be specified with optionally
signed decimal integer constants.

• Structure-Oualified References
To refer to a structure in a program, you use the major structure name,
minor structure names, and individual member names. Member names
need not be unique even within the same structure. To refer to names
of members or minor structures, you must ensure only that the reference
uniquely identifies the minor structure name or member. You can qualify
the variable name by preceding it with the names of higher-level variables
in the structure; names in this format, called a qualified reference, must be
separated by periods (.). 1

The following sample structure definition illustrates the rules for identify­
ing names of variables within structures:

DECLARE 1 STATE,
2 NAME CHARACTER (20),
2 POPULATION FIXED (10),
2 CAPITAL,

3 NAME CHARACTER (30),
3 POPULATION FIXED (10,0),

2 SYMBOLS,
3 FLOWER CHARACTER (20),
3 BIRD CHARACTER (20);

The rules for selecting and specifying variable names for structures are as
follows:

• The name of the major structure is subject to the rules for the scope of
variables in a program.

Structure 6 2 9

630 Structure

• The name of any minor structure or member in a structure can be
qualified by the names of higher-level members in the structure.
You must specify the variable names from left to right in order of
increasing level numbers, separated by periods. The members of the
sample structure, completely qualified, are as follows:

STATE.NAME
STATE.POPULATION
STATE.CAPITAL.NAME
STATE.CAPITAL.POPULATION
STATE.SYMBOLS.FLOWER
STATE.SYMBOLS.BIRD

• Names of minor structures or members within structures do not have
to be qualified if they are unique within the scope of the name. The
following names in the sample structure can be referred to without
qualification (as long as there are no other variables with these names):

CAPITAL
SYMBOLS
FLOWER
BIRD

• You can omit intermediate qualification names if the reference remains
unambiguous. The following references to members in the sample
structure are valid:

STATE.FLOWER
STATE.BIRD

If a name is ambiguous, the compiler cannot resolve the reference and
issues a message. In the sample structure definition above, the names
POPULATION and NAME are ambiguous.

• Using the LIKE Attribute
You can use the LIKE attribute to copy the declaration of a major or
minor structure to another structure variable. The LIKE attribute copies
the logical structuring and member declarations from the major or minor
structure to the target variable, but does not copy any storage class
attributes or dimensioning (except for dimensioning that is applied to
members; and it also copies the UNION attribute).

The format for using the LIKE attribute in declarations is as follows:

level-number identifier [attributes] LIKE reference

The identifier names the variable to which the declarations in the reference
are copied. The reference is the name of a major or minor structure
known to this block. Note that the identifier must be preceded by a level
number. Any attributes which are used with a structure variable at that
level can be used with the identifier; for example, a major structure can
specify a storage class and dimensions, and a minor structure can specify
dimensions.

The following example illustrates the LIKE attribute:

DECLARE 1 RES_DATA BASED {RPTR),
2 DATE CHAR{8),
2 HOTEL_CODE CHAR{3),
2 PARTY_NAME,

3 LAST CHAR{20),
3 FIRST CHAR{10),

2 STAY FIXED BIN{7),
1 NEW_RESER LIKE RES_DATA;

GET LIST {NEW_RESER.DATE,NEW_RESER.HOTEL_CODE);

RES_DATA = NEW_RESER;

In this example, the declaration of NEW_RESER includes the LIKE at­
tribute to create a set of member declarations that duplicate those in RES_
DATA. The declaration of NEW_RESER is equivalent to the following:

DECLARE 1 NEW_RESER,
2 DATE CHAR{8),
2 HOTEL_CODE CHAR{3),
2 PARTY_NAME,

3 LAST CHAR{20),
3 FIRST CHAR{10),

2 STAY FIXED BIN{7);

After the various members of NEW_RESER are assigned data and that
data is validated, the entire contents of NEW_RESER are assigned to
RES_DATA. This assignment is possible because the two structures are
identical, which is a result of using the LIKE attribute.

You can use the LIKE attribute to copy a minor structure to a major
structure and vice versa; neither the level numbers nor the logical levels
must match. For example:

DECLARE 1 SPOUSE_NAME LIKE PARTY_NAME;

Structure 631

632 Structure

Given the declarations in the preceding example, this declaration is
equivalent to the following:

DECLARE 1 SPOUSE_NAME,
2 LAST CHAR(20),
2 FIRST CHAR(10);

You can also apply dimensions or, for a major structure, storage class
attributes to a structure variable declared with the LIKE attribute:

DECLARE 1 KID_NAMES (10) LIKE PARTY_NAME;

or

DECLARE 1 DAILY_DATA,
2 DATE CHAR(S).
2 TODAYS_RESERS (NO_OF_RES) LIKE RES_DATA;

• Initializing Structures
You can initialize a structure by giving the INITIAL attribute to its mem­
bers. Not all members need be initialized. For example:

DECLARE 1 COUNTS,
2 FIRST FIXED BIN(15) INITIAL(O),
2 SECOND FIXED BIN(15),
2 THIRD (5) FIXED BIN(16) INITIAL (5(1));

The first and third members of the structure COUNTS are initialized.

The INITIAL attribute cannot be applied, however, to a major or a minor
structure name.

• Using Structure Variables in Expressions
You can specify the name of a major or minor structure in an assignment
statement only if the source expression and the target variable are identical
in size and structure, and all corresponding members have the same data
types.

• Passing Structure Variables as Arguments

A structure variable can be passed as an argument to another procedure.
The relative structuring of the structure variable specified as the argument
and the corresponding parameter must be the same. The level numbers
do not have to be identical. The following example shows the parameter
descriptor for a structure variable:

DECLARE SEND_REC ENTRY (1,
2 FIXED BINARY(31),
2 CHARACTER(40),
2 PICTURE '999V99');

The written argument in the invocation of the external procedure SEND_
REC must have the same structure, and its corresponding members must
have the same data types.

When structures are passed as arguments, they must match the corre­
sponding parameters. They cannot be passed by dummy argument. For
information on arguments and argument passing, see 0 Parameters and
Arguments."

STRUCTURE Attribute

Subroutine

The STRUCTURE attribute can optionally be specified in the declaration
of a structure. See 0 Structure" and "MEMBER Attribute" for information
on structures and members.

A subroutine is a procedure that is invoked by another procedure by
means of a CALL statement. The subroutine can be internal or external to
the procedure that calls it. See "Procedure."

SUBSCRIPTRANGE Condition Name

The SUBSCRIPTRANGE condition is raised in response to out-of­
bounds subscripts in references to arrays. The value returned by the
ONCODE built-in function for the SUBSCRIPTRANGE condition is
PLl$_SUBRANGE or PLl$_SUBRANGEn, where n is the number of the
subscript, in the range 1 through 8.

SUBSCRIPTRANGE Condition Name 633

SUBSTR Built-In Function
SUBSTR Preprocessor Built-In Function

The SUBSTR built-in function returns a specified substring from a string.
Its format is as follows:

SUBSTR(string ,position[,length])

string
A bit- or character-string expression.

position
An integer expression that indicates the position of the first bit or character
in the substring. The position must be greater than or equal to 1 and less
than or equal to LENGTH(string) + 1.

length
An integer expression that indicates the length of the substring to be
extracted. If not specified, length is as follows:

LENGTH(string) - position+ 1

In other words, if length is not specified, the substring is extracted begin­
ning at the indicated position and ending at the end of the string.

The length must satisfy the following condition:

0 <=length<= LENGTH(string) - position+ 1

If it does not, and the module was compiled with /CHECK=BOUNDS, the
STRINGRANGE condition is raised.

• Returned Value
The returned substring is of type BIT(length) or CHARACTER(length),
depending on the type of the string argument. If the length argument is
zero, the result is a null string.

634 SUBSTR Preprocessor Built-In Function

• Examples
DECLARE (NAME,LAST_NAME) CHARACTER(20),

START FIXED BINARY(31);

NAME= 'ISAK DINESEN';
/* NAME = 'ISAKADINESENAAAAAAAA' */

START = INDEX(NAME, I 1)+1;
I• START = 6 •I

LAST_NAME = SUBSTR(NAME,START);
/* default length = LENGTH(NAME)-START+1 =15 •/
/• LAST_NAME = 'DINESENAAAAAAAAAAAAA' •/

SUBSTR Pseudovariable

The SUBSTR pseudovariable refers to a substring of a specified string vari­
able reference. (See also "Pseudovariable" for general rules.) Assignment
to the pseudovariable modifies only the substring. The format of the
pseudovariable (in an assignment statement) is as follows:

SUBSTR(reference,position[,length]) =expression;

reference
A reference to a bit- or character-string variable. If the reference is to
a varying-length character string, the substring defined by the position
and length arguments must be within the current value of the string.
Assignment to the SUBSTR pseudovariable does not change the length of
a varying string.

position
An integer expression indicating the position of the first bit or character
in the substring. The position must be greater than or equal to 1 and less
than or equal to LENGTH(reference)+l.

length
An integer expression that indicates the length of the substring. If not
specified, length is as follows:

length= LENGTH(reference) - position+ 1

In other words, if length is not specified, the substring begins at the
indicated position and ends at the end of the string. The length must
satisfy the following condition:

0 <=length<= LENGTH(reference) - position+ 1

SUBSTR Pseudovariable 635

Note that the following two lines are equivalent:

SUBSTR(r,p,l) = v;

r = SUBSTR(r,1,p-1)1 lvl ISUBSTR(r,p+l);

• Examples
DECLARE (NAME,NEW_NAME) CHARACTER(20) VARYING;

NAME= 'ISAK DINESEN';
NEW_NAME = NAME;
SUBSTR(NEW_NAME,4) = 'AC NEWTON';
/* NEW_NAME = 'ISAAC#NEWTON' */

SUBTRACT Built-In Function

The SUBTRACT built-in function returns the difference of two arith­
metic expressions x and y, with a specified precision p and an optionally
specified scale factor q. The format of the function is as follows:

SUBTRACT(x, y ,p[,q])

p
An unsigned integer constant greater than zero and less than or equal to
the maximum precision of the result type (31 for fixed-point data, 34 for
floating-point decimal data, and 113 for floating-point binary data).

q
An integer constant less than or equal to the specified precision. The
scale factor can be optionally signed when used in fixed-point binary
subtraction. The scale factor for fixed-point binary must be in the range
-31 through p. The scale factor for fixed-point decimal data must be in
the range 0 through p. If you omit q, the default value is zero. Do not use
a scale factor for floating-point arithmetic.

Expressions x and y are converted to their derived type before the subtrac­
tion is performed; see "Expression."

636 SUBTRACT Built-In Function

Subtraction

For example:

SUBTRACTBIF: PROCEDURE OPTIONS (MAIN);

DECLARE X FIXED DECIMAL (8,3),
Y FIXED DECIMAL (8,3),
Z FIXED DECIMAL (9,3);

1=9500.374;
Y=2278.897;
Z =SUBTRACT (X,Y,9,3);

PUT SKIP LIST ('DIFFERENCE=' ,Z);

END;

This program returns

DIFFERENCE = 7221.477

The minus sign character (-) indicates a subtraction operation in an ex­
pression; the result is the difference between the operands. Both operands
must be arithmetic or picture data.

• Conversion of Operands
If both operands have the same base, precision, and scale factor, so has
the result of the operation. The PL/I compiler converts operands of
different data types as follows:

• If one operand has the FLOAT attribute and the other has the FIXED
attribute, the fixed-point operand is converted to floating point before
the operation is performed.

• If one operand is DECIMAL and the other is BINARY, the decimal
operand is converted to binary.

The precision of the values resulting from conversion of operands is
described under "Expression."

Subtraction 637

• Precision of the Result

Floating-Point Operands
The result has the maximum of the converted precisions of the operands.

Fixed-Point Operands
If (p,q) and (r,s) represent the converted precisions and scale factors of the
two operands, the resulting precision and scale factor are as follows:

precision= min(3I, max(p - q, r - s) + max(q, s) + 1)

and
scale/actor= max(q, s)

SUM Built-In Function

The SUM built-in function takes an array as an argument and returns the
arithmetic sum of all the elements in the array. The array must have the
FIXED or the FLOAT attribute. The format of an assignment statement
containing the SUM built-in function is as follows:

numeric-variable= SUM(array-variable);

The array can be a part of a structure, but cannot be a union. If the
array has the attributes FIXED(p,q), the result will have the attributes
FIXED(31,q). If the array has the attributes FLOAT(p), the result will also
have the attributes FLOAT(p).

The result will have the same base attribute as the array, either DECIMAL
or BINARY.

SYSIN Default File

SYSIN is the default input file for GET statements. SYSIN is normally
associated with a user's default input device (SYS$INPUT). For example:

GET LIST (A,B,C);

This GET statement does not include the FILE option. Thus, when the
program containing this line is executed, this statement reads data from
the file SYSIN.

For more information, see 0 GET Statement" and 0 Terminal Input/Output."
For information on the relationship between the PL/I file SYSIN and the
default input device, see the VAX PL/I User Manual.

638 SYSIN Default File

SYSPRINT Default File

SYSPRINT is the default output file for PUT statements. Unless it is
explicitly declared with other attributes, SYSPRINT has the attributes
STREAM OUTPUT PRINT. (If you declare an external file constant named
SYSPRINT with the STREAM and OUTPUT attributes, PRINT is added
by the compiler.) SYSPRINT is normally associated with a user's default
output device (SYS$0UTPUT). For example:

PUT LIST (A,B,C);

This PUT statement does not include the FILE option. Thus, when the
program containing this line is executed, this statement writes data to the
file SYS PRINT.

For more information, see "PUT Statement" and "Terminal Input/Output."
For information on the relationship between the PL/I file SYSPRINT and
the default output device, see the VAX PL/I User Manual.

SYSPRINT Default File 639

T

TAB Format Item

The TAB format item sets a print file to a specified tab stop. It is used
only for output to print files. Within a line, tab stops always occur every
eight columns, starting at column 1. The form of the TAB format item is
as follows:

TAB [(w)]

w
An integer, or an expression, that identifies the wth tab stop from the
current position; w must not be negative. If w equals zero, no operation is
performed. If w is omitted, a value of 1 is assumed.

When the TAB format item is executed, the current column (cc) is de­
termined. If the current position is the beginning of a line, page, or file,
then cc is zero. Otherwise, cc is the column in the current line at which
the next output character would appear. For example, if seven characters
have already been written on a line, then the cc is column 8; this is where
the next output would occur. The file is then repositioned in one of the
following ways:

• If there are at least w tab stops between (cc+l) and the end of the line,
then the file is moved to the wth tab stop from the current column,
and the intervening positions are filled with spaces. The end of the
line is at one column after the current line size, which is either the
default value or the specific value that you have established for the
file (see "LINESIZE Option").

• If there are fewer than w tab stops on the remainder of the current
line, the file is skipped to the beginning of the next line and positioned
at the first tab stop (column 1). If, before the skip operation, the
current line was the last line on the page, the ENDP AGE condition is
signaled, and the current line becomes (page size)+l. The page size is
either the default value or the specific value that you have established
for the file (see "PAGESIZE Option").

640 TAB Format Item

•Examples
TAB: PROCEDURE OPTIONS(MAIN);

DECLARE OUT STREAM OUTPUT PRINT FILE;

OPEN FILE(OUT) LINESIZE(60);

PUT FILE(OUT) SKIP
EDIT('123466789012346678901234667890') (A);

PUT FILE(OUT) SKIP EDIT('COL1' ,'?') (A,TAB(2),A);
PUT FILE(OUT) EDIT('!') (TAB(20),A);
PUT FILE(OUT) SKIP EDIT('•') (TAB(1),A);
PUT FILE(OUT) EDIT('abcdefg') (A); /•cc now= 17 •/
PUT FILE(OUT) EDIT('t') (TAB(6),A);

END TAB;

The program TAB writes the following output to the print file OUT.DAT:

123466789012346678901234667890
COL1 ?

•abcdef g

The question mark appears in column 17, which is the second tab stop
following the string 'COLl'. The exclamation point appears in column 1 of
the next line because there are fewer than 20 tab stops on the remainder
of the line. In the third PUT EDIT statement, the SKIP option first resets
the current column to zero. When the TAB format item is executed, it
must position the file to the first tab stop that is between column 1 (cc+l)
and the end of the line; therefore, the file is positioned, and the asterisk
appears, in column 9. Similarly, the fourth statement writes out the string
'abcdefg', after which the current column is 17, a tab stop. Because the
line size has been established as 60, there are only five tab stops between
cc+l and the end of the line: 25, 33, 41, 49, and 57. Therefore, the format
item TAB(6) in the last PUT EDIT statement causes a skip to the next line,
and the ampersand appears in column 1.

TAN Built-In Function
The TAN built-in function returns a floating-point value that is the tangent
of an arithmetic expression x, where x represents an angle in radians.
The tangent is computed in floating point. After its conversion to floating
point, x must not be an odd multiple of 7r /2.

The format of the function is as follows:

TAN(x)

TAN Built-In Function 641

TAND Built-In Function
The TAND built-in function returns a floating-point value that is the
tangent of an arithmetic expression x, where x represents an angle in
degrees. The tangent is computed in floating point. After its conversion to
floating point, x must not be an odd multiple of 90.

The format of the function is as follows:

TAND(x)

TANH Built-In Function

The TANH built-in function returns a floating-point value that is the
hyperbolic tangent of an arithmetic expression x. The hyperbolic tangent
is computed in floating point. The format of the function is as follows:

TANH(x)

Terminal Input/Output
In most applications, the terminal is treated as a stream file. You can
explicitly declare a stream file to be associated with a user's terminal.
The stream input and output statements, GET and PUT, use the default
PL/I files SYSIN (the terminal) and SYSPRINT, respectively, when no file
reference is included in the statement. For general information on stream
input and output, see "Stream Input/Output," "GET Statement," and "PUT
Statement."

In VAX PL/I, SYSIN is associated with the default system input file
SYS$INPUT, which in turn is usually assigned to the user's terminal.
The PL/I print file SYSPRINT is associated with the default system file
SYS$0UTPUT, which, in interactive mode, is also assigned to the user's
terminal. For further information, see the VAX PL/I User Manual.

The discussions and examples in this section use the GET and PUT
statements for terminal input and output. The statements use the default
files SYSIN and SYSPRINT instead of specific file references.

VAX PL/I also provides statement options that are useful in terminal input
and output. For full details on the GET and PUT options, see the VAX
PL/I User Manual.

642 Terminal Input/Output

• Simple Input from a Terminal
Simple input from a terminal is accomplished with the GET LIST state­
ment, which in its simple form has the following format:

GET LIST (input-target, ...);

Because this statement has no reference to a specific file, the default
file SYSIN (the terminal) is assumed. When this GET LIST statement is
executed in a program, the program pauses until enough values are typed
by the user to satisfy the input-target list.

The user must separate the values with the RETURN key, spaces, or
commas. The user must press the RETURN key to send the typed line to
the program. VAX PL/I always appends a space to the end of any input
line terminated by a RETURN unless the RETURN is inside a quoted
string. You can disable the appending of spaces by using the IGNORE_
LINE__MARKS ENVIRONMENT option; see the VAX PL/I User Manual.

In the context of simple terminal input, the input targets are usually simple
variable references. For example:

GET LIST (SALARY,CONTRIBUTION(42),PAYROLL.DEDUCTION);

This statement gets three character strings from the terminal. The strings
are converted automatically to the target data types and assigned to the
scalar variable SALARY, element 42 of the array CONTRIBUTION, and
member DEDUCTION of the structure PAYROLL. There are several
sequences with which the user can type the needed values, including the
following:

1ssoo,soo,1200IRETI

15500,SOOIRETI
1200IRETI

If y01,1 press RETURN in response to an input request from GET LIST,
the null character string " is assigned to the input target. If you press
RETURN in response to an input request from GET EDIT, the requested
field width is filled with spaces and assigned to the input target under
control of the corresponding format item. (Note that an all-space field
causes an error for B formats.)

For full details on input targets, see "GET LIST Statement."

Terminal Input/Output 643

• Simple Output to a Terminal
You can send data to a terminal with the PUT LIST statement. A simple
form of PUT LIST is as follows:

PUT LIST (output-source, ...);

The output sources in simple cases are expressions, including variable
references. The PUT LIST statement converts the results of the expressions
to the appropriate character representations and sends the character strings
to the terminal. For instance:

PUT LIST (A,B,C);

This statement converts the values of the variables A, B, and C to character
strings and sends the results to the terminal. In this simple case, the
displayed strings are separated by tabs.

The file SYSPRINT, used as the default output stream by PUT LIST,
is a print file, and the terminal has the characteristics of print files (see
NPrint File"). For example, the ENDP AGE condition is signaled when the
terminal's page size is exceeded.

• Examples
SIMPLE_INPUT: PROCEDURE OPTIONS (MAIN);

/• Simple input from user's terminal •/
DECLARE

BADGE_NUMBER FIXED DECIMAL (6),
SOCIAL_SECURITY_NUMBER CHARACTER(11);

GET LIST (BADGE_NUMBER,SOCIAL_SECURITY_NUMBER);

PUT LIST (BADGE_NUMBER,SOCIAL_SECURI'!'Y_NUMBER);

END SIMPLE_INPUT;

VAX PL/I does not display a prompt character on the terminal when a
program executes a GET or READ statement. Consequently, it is dif­
ficult to tell that a program is trying to read data unless the program
executes an output statement containing a prompting message. The pro­
gram SIMPLE__INPUT would be easier to use if the following statement
appeared immediately before GET LIST:

PUT SKIP
LIST('Enter badge number, social security number:•);

644 Terminal Input/Output

The cursor remains on the same line after the prompt is displayed, so the
input can be entered on the same line. The completed line might be as
follows:

Enter badge number, social security number:7,116-40-0482lRETI

The GET statement also has a PROMPT statement option that displays a
prompt on the user's terminal. See the VAX PL/I User Manual for details.

TIN: PROCEDURE OPTIONS(MAIN);

DECLARE STRING CHAR(10) VARYING,
I FIXED BINARY STATIC INITIAL(O),
A FLOAT BINARY;

DECLARE EDF BIT STATIC INITIAL('O'B);

ON ENDFILE(SYSIN) EDF• '1'B;

PUT SKIP LIST('Enter string, integer, float>');
GET LIST(STRING,I,A);
DO WHILE(AEOF); /•stop when CTRL/Z is typed•/

END;

PUT SKIP LIST(STRING,I,A);
PUT SKIP LIST('Enter string, integer, float>');
GET LIST(STRING,I,A);

END TIN;

Here, the user is prompted to enter three values from the default file
SYSIN. The three values are immediately written out to the default file
SYSPRINT. This sequence continues until the user answers the prompt
with a CTRL/Z, which signals the ENDFILE condition for SYSIN; the
program then terminates. A sample dialog with the program is as follows:

• R TINIRETI

Enter string, integer, float> JONES,27,3.75IRETI
JONES 27 3.7500000E+OO
Enter string, integer, float> JONES 27 3.75IRETI
JONES 27 3. 7500000E+OO
Enter string, integer, float> JONESIRETI
27~
3.is-~
JONES 27 3.7500000E+OO
Enter string, integer, float> DOOLEYIRETI
IRETI
3E-6IRETI
DOOLEY 0 3. 0000001E-06
Enter string, integer, float> ICTRL/ZI

•

Terminal Input/Output 645

Notice that input fields are separated by commas, spaces, or the RETURN
key. Notice also that entering a blank line after 'DOOLEY' causes the
program to set the value of I to zero.

• Other Topics
The following topics are of interest in terminal I/O applications:

• For using GET STRING and certain built-in functions for string
handling, see "GET Statement" and "String Handling."

• For using GET EDIT and PUT EDIT to control the format of input or
output data, see "GET Statement" and "PUT Statement." .

• For using PUT SKIP, PUT LINE, and PUT PAGE to create formatted
displays, see "PUT Statement."

• For using the OPTIONS keyword with GET and PUT to override
default operations, see the VAX PL/I User Manual.

THEN Keyword

The THEN clause is specified in an IF statement to define the action to be
taken if a given expression is true. For example:

IF (A < B) THEN BEGIN;

The action following the keyword THEN can be null.

TIME Built-In Function
TIME Preprocessor Built-In Function

The TIME built-in function returns an 8-character string representing the
current time of day in the following form:

hhmmssxx

hh
The current hour (00-23)

mm
The minutes (00-59)

SS
The seconds (00-59)

646 TIME Preprocessor Built-In Function

xx
Hundredths of seconds (00-99)

The format of the TIME built-in function is as follows:

TIME()

• Returned Value
If TIME is used as a preprocessor built-in function, the time returned is
the time when the program was compiled; otherwise the function returns
the time at run time.

% TITLE Statement

The % TITLE statement allows specification of an arbitrary compile-time
string for the listing title line. If % TITLE is used, the specified title appears
to the right of the customary title. (If no TITLE option is specified, PL/I
uses the name of the first level-1 procedure in the source program as the
title.)

The format of the % TITLE statement is as follows:

% TITLE preprocessor-expression

preprocessor-expression
A character string with a maximum length of 30 characters. It will be
truncated if necessary.

TITLE Option

The TITLE option is specified in an OPEN statement to designate the
external file specification of the file to be associated with the PL/I file.
The TITLE option is specified only on the OPEN statement for a file. Its
format is as follows:

TITLE(expression)

TITLE Option 647

TO Option

expression
A character-string expression of up to 128 characters, which represents an
external file specification for the file.

The file specification can be any valid VMS file specification, device name,
or logical name.

When the name given in the TITLE does not fully specify a VMS file or
device, VAX PL/I takes the following actions:

1. Performs logical name translation.

2. Applies default values given in the DEFAULTJILE_NAME option of
the ENVIRONMENT attribute.

3. Applies system defaults.

For complete details on how the file specification is interpreted, see the
VAX PL/I User Manual.

The TO option defines an end value for a controlled DO statement
specification. For example:

DO I ~ 1 TO 10;

The DO-group following this statement is executed until the value of I
exceeds 10. See "DO Statement."

TRANS LA TE Built-In Function
TRANS LA TE Preprocessor Built-In Function

Given a character-string argument, the TRANSLATE built-in function
replaces occurrences of an old character with a corresponding translation
character and returns the resulting string. Its format is as follows:

TRANS LA TE(original, translation[,old-chars))

648 TRANSLATE Preprocessor Built-In Function

original
A character-string expression in which specific characters are to be trans­
lated.

translation
A character-string expression giving replacement characters for corre­
sponding characters in old-chars.

old-chars
A character-string expression indicating which characters in the original
are to be replaced. If old-chars is not specified, the default is COLLATE().

If the translation is shorter than old-chars, the translation is padded on the
right with spaces to the length of old-chars before any translation occurs.
If the translation is longer than old-chars, its excess characters (on the
right) are ignored.

The following steps are performed for each character (beginning at the
left) in the original:

1. Let original(i) be the current character in the original string, and let
result(i) be the corresponding character in the resulting string.

2. Search old-chars for the leftmost occurrence of original(i).

3. If old-chars does not contain original(i), then let result(i) equal origi­
nal(i). Otherwise, let j equal the position of the leftmost occurrence of
original(i) in old-chars, and let result(i) equal translation(j).

4. Return to step 1.

• Returned Value
The string returned is of type CHARACTER(length), where length is the
length of the original string. If the original string is a null string, the
returned value is a null string.

•Examples
TRANSLATE_XM: PROCEDURE OPTIONS(MAIN);

DECLARE NEWSTRING CHARACTER(80) VARYING;
DECLARE TRANSLATION CHARACTER(128);
DECLARE I FIXED;
DECLARE COLLATE BUILTIN;

/• translate space to '0' : •/
NEWSTRING = TRANSLATE('1 2' ,'0',' ');
PUT SKIP LIST(NEWSTRING);

TRANSLATE Preprocessor Built-In Function 649

/•translate letter 'F' to 'E': •/
NEWSTRING = TRANSLATE('BFFLZFBUB', 'E' ,'F');
PUT SKIP LIST(NEWSTRING);

/• change case of letters in sentence •/
TRANSLATION = COLLATE;

DO I=66 TO 91; /* replace upper with lower •/
SUBSTR(TRANSLATION.I,1) = SUBSTR(COLLATE,I+32,1);
END;
DO I=98 TO 123; /• replace lower with upper •/
SUBSTR(TRANSLATION,I,1) = SUBSTR(COLLATE,I-32,1);
END;
NEWSTRING =
TRANSLATE('THE QUICK BROWN fox JUMPS OVER THE LAZY dog' ,TRANSLATION);

PUT SKIP LIST(NEWSTRING);

END TRANSLATE_XM;

The first reference translates the string '1 2' to '102'. The second reference
translates 'BFFLZFBUB' to 'BEELZEBUB'. The third reference produces the
following new sentence:

'the quick brown FOX jumps over the lazy DOG'

TRIM Built-In Function
TRIM Preprocessor Built-In Function

The TRIM built-in function accepts a character string as an argument
and returns a character string that consists of the input string with spec­
ified characters removed from the left and right. If you supply only
one argument, TRIM removes blanks from the left and right of the ar­
gument. If you supply second and third arguments, TRIM removes
characters specified by those arguments from the left and right of the
string, respectively.

The format of the TRIM built-in function is as follows:

TRIM (input-string,[beginning-chars,end-chars])

input-string
A character-string variable or constant. This argument supplies the string
from which characters are to be trimmed.

650 TRIM Preprocessor Built-In Function

beginning-chars
A character-string variable or constant. This argument specifies characters
to be trimmed from the left of the input string. If a character that is in
the first position in the input string is also present anywhere in beginning­
chars, that character is removed from the input string. This process is
repeated until a character is encountered on the left of the input string
that is not present in beginning-chars, or until the characters in the input
string are exhausted.

end-chars
A character-string variable or constant. This argument specifies characters
to be trimmed from the right of the input string. The process of removing
characters from the right is identical to that of removing characters from
the left, except that the character in the last position is examined.

The TRIM built-in function accepts either one or three arguments. Any of
the arguments can consist of a null string; specifically, if beginning-chars
or end-chars is null, no characters are removed from the corresponding
end of the input string.

When only one argument is supplied, TRIM removes blanks from both
ends of that argument. In other words, the following two expressions are
equivalent:

TRIM(S)

TRIM(S,' I. I ')

• Returned Value
The returned value is a character string with characters removed from the
ends.

•Examples
The following examples illustrate the use of the TRIM built-in function.

TRIM Preprocessor Built-In Function 651

Text

TRIM ('ABC')

TRIM(' ABC')

TRIM(I ABC I)

TRIM(I ABC I)

TRIM(' ABCDEF'. I I. 'E')

TRIM(' ABCDEF'. I I. 'FE')

TRIM(' ABCDEF I. 'ABC'. 'EDF')

TRIM('ABCDEF','CADB','FE')

TRIM(' ABCDEF I. 'ABC I. I EDF')

TRIM('AAAABCCXCCDDDDEFFFF 1 , 1AC 1 , 1DF 1)

TRUNC Built-In Function

Returned String

'ABC'

'ABC'

'ABC'

I ABCDEF'

I ABCD'

I ABCDEF I

II

1 BCCXCCDDDDE 1

The TRUNC built-in function changes all fractional digits in an arithmetic
expression x to zeros and returns the resulting integer value. Its format is
as follows:

TRUNC(x)

• Returned Value
If xis a floating-point expression, the returned value is a floating-point
value. If x is a fixed-point expression, the returned value is a fixed-point
value with the same base as x and with the following attributes:

precision= min(31,p- q + 1)

scale/actor= 0

Here, p and q are the precision and scale factor of x.

652 TRUNC Built-In Function

TRUNCATE Attribute

The TRUNCATE attribute is used in the declaration of a formal parameter
to indicate that the actual parameter list can be truncated at the point
where this argument should occur.

If you use the TRUNCATE attribute, you must specify every actual
parameter that follows the parameter with this attribute in the argument
list, unless it also has the TRUNCATE attribute.

For example:

DCL E ENTRY (FIXED OPTIONAL.FIXED TRUNCATE.FIXED OPTIONAL);
CALL E(1);
CALL E(1,2,);
CALL E(.2,);

The following call, however, would be invalid:

CALL E(1,2);

This call is invalid because the second parameter has the TRUNCATE
attribute, and therefore the third parameter must be specified, at least with
a placeholder.

TRUNCATE Attribute 653

u
UNALIGNED Attribute

The UNALIGNED attribute is used in conjunction with the BIT attribute
to specify that a bit-string variable should not be aligned on a byte
boundary. Because UNALIGNED is the default for bit strings, it need not
be specified.

The UNALIGNED attribute can be used in the declaration of character
strings. On a VAX machine, however, all tharacter strings are aligned on
byte boundaries; therefore, the UNALIGNED attribute has no effect on the
actual storage of a character string. The use of the UNALIGNED keyword
for character strings is thus superfluous and potentially misleading, and is
not recommended.

See "Character-String Data" and" ALIGNED Attribute."

• Restrictions
The UNALIGNED attribute conflicts with the VARYING attribute and
is invalid with all data type attributes other than BIT and CHARACTER
NONVARYING.

UNDEFINEDFILE Candition Name

The UNDEFINEDFILE condition name can be specified in an ON,
SIGNAL, or REVERT statement to designate an undefined file condi­
tion or ON-unit for a specific file. The format of the UNDEFINEDFILE
condition name is as follows:

{ UNDEFINEDFILE } (file-reference)
UNDF

654 UNDEFINEDFILE Condition Name

file-reference
A reference to a file constant or file variable for which the ON-unit is
established.

If the name of a file variable is specified, the variable must be resolved to
the name of a file constant when the condition is signaled.

PL/I signals the UNDEFINEDFILE condition when a file cannot
be opened. Following are some examples of errors that cause the
UNDEFINEDFILE condition:

• The value specified by the TITLE option is an invalid file specification.

• The file is opened for input or update and the specified file does not
exist.

• An existing file is accessed with PL/I file description attributes that are
inconsistent with the file's actual organization.

• Any system-detected file error prevents the file from being accessed.

The UNDEFINEDFILE condition lets you establish an ON-unit to provide
processing when a file cannot be opened, for example, to provide a default
file if no file is specified at run time.

X: PROCEDURE (FILENAME);
DECLARE FILENAME CHARACTER (128) VARYING;
DECLARE INPUT_FILE FILE INPUT;

ON UNDEFINEDFILE (INPUT_FILE)
OPEN FILE (INPUT_FILE)
TITLE ('SYS$INPUT');

OPEN FILE (INPUT_FILE) TITLE (FILENAME);

In this example, the procedure X expects a file specification string to be
passed as an argument. If no argument is passed, or if the argument is not
a valid file specification, the OPEN statement fails. The UNDEFINEDFILE
ON-unit provides a default OPEN statement with the file specification
SYS$INPUT.

An ON-unit established to handle the UNDEFINEDFILE condition can
obtain information about the condition by invoking the following built-in
functions:

• The ONFILE built-in function returns the name of the file being
processed when the condition was signaled.

• The ONCODE built-in function returns the specific status value
associated with the error.

UNDEFINEOFILE Condition Name 655

• ON-Unit Completion
The action taken on a normal return from the UNDEFINEDFILE condition
depends on whether the file was opened explicitly or implicitly.

If the UNDEFINEDFILE condition was signaled following an explicit
OPEN statement for a file, then the normal action following the ON­
unit execution is for the program to continue. If the ON-unit does not
transfer control elsewhere in the program, control returns to the statement
following the OPEN statement that caused the condition to be signaled.

If the UNDEFINEDFILE condition was signaled during an implicit open
attempt, the run-time system tests the state of the file. If the file is not
open, the ERROR condition is signaled. If the file was opened by the
ON-unit, execution of the 1/0 statement continues.

If an ON-unit receives control when an explicit OPEN results in the
UNDEFINEDFILE condition, and the ON-unit does not handle the con­
dition by opening the file or by transferring control elsewhere in the
program, control returns to the statement following the OPEN. Then,
if an attempt is made to access the file with an 1/0 statement, the
UNDEFINEDFILE condition is signaled again when PL/I attempts the
implicit open of the file. This time, PL/I signals the ERROR condition on
completion of the ON-unit.

For more information, see "ON Conditions and ON-Units" and "ON
Statement."

UNDERFLOW Condition Nante

The UNDERFLOW condition name can be specified in an ON, REVERT,
or SIGNAL statement to designate a floating-point underflow condition or
ON-unit.

PL/I signals the UNDERFLOW condition when the absolute value of the
result of an arithmetic operation on a floating-point value is smaller than
the minimum value that can be represented by the VAX hardware.

On completion of the ON-unit, control is returned to the point of the
interrupt. Continued execution is unpredictable.

This condition is signaled by PL/I only in procedures in which the
UNDERFLOW option is enabled. The option is enabled when you specify
UNDERFLOW in the procedure options. (See "Underflow Option.")

656 UNDERFLOW Condition Name

The value resulting from an operation that causes the UNDERFLOW con­
dition is undefined. (The value would be set to zero only if UNDERFLOW
were not specified in the procedure options.)

UNDERFLOW can be abbreviated UFL.

For more information, see HON Conditions and ON-Units" and HON
Statement. H

UNDERFLOW Option

The UNDERFLOW option in PROCEDURE statements causes the run-time
system to signal floating-point underflow conditions that occur during the
execution of the procedure. The resulting value is undefined; in the
absence of the UNDERFLOW option, the value would be set to zero. See
#UNDERFLOW Condition."

In a procedure named COMPUTE, for example, you would specify the
UNDERFLOW option as follows:

COMPUTE: PROCEDURE OPTIONS (UNDERFLOW);

The UNDERFLOW option affects the procedure in which it is specified.
You must specify it in each procedure for which underflow conditions are
to be signaled.

UNION Attribute

The UNION attribute, which can be used only in conjunction with a level
number in a structure declaration, signifies that all immediate members
of the major or minor structure so designated occupy the same storage.
Immediate members are those members having a level number 1 higher
than the major or minor structure with the UNION attribute. For example,
if the UNION attribute were associated with level n, then all members or
minor structures at level n+l up to the next member at level n would be
immediate members and would occupy the same storage.

The format for the UNION attribute is as follows:

level-number identifier [storage-class] UNION

UNION Attribute 657

Union

658 Union

level-number
The level number of the variable with which the declarations in the
reference share storage.

identifier
Names the variable with which the declarations in the reference share
storage. A variable declared with the UNION attribute must be a major or
minor structure. All members of a UNION must have a constant size.

storage-class
The storage class specified for the structure. You can specify the storage
class only on level 1.

A union is a variation of a structure in which all immediate members
occupy the same storage. The UNION attribute (which must be associ­
ated with a level number in a structure declaration) declares a union. All
immediate members of the union-that is, all members having a level
number one higher-occupy the same storage. A reference to one mem­
ber of a union refers to storage occupied by all members of the union.
Therefore, a union provides a convenient way to look at a large entity
(such as a character string or a bit mask) as a series of smaller entities
(such as component character strings or individual flag bits).

The following example illustrates unions:

DECLARE 1 CUSTOMER_INFO,
2 PHONE_DATA UNION,

3 PHONE_NUMBER CHARACTER (13),
3 COMPONENTS,

4 LEFT_PAREN CHARACTER (1),
4 AREA_CODE CHARACTER (3),
4 RIGHT_PAREN CHARACTER (1),
4 EXCHANGE CHARACTER (3),
4 HYPHEN CHARACTER (1) ,
4 SPECIFIC_NUMBER CHARACTER (4),

2 ADDRESS_DATA,

The UNION attribute associated with the declaration of PHONE_
DATA signifies that PHONE_DATA's immediate members (PHONE_
NUMBER and COMPONENTS) occupy the same storage. Any modi­
fication of PHONE__NUMBER also modifies one or more members of
COMPONENTS; conversely, modification of a member of COMPONENTS
also modifies PHONE__NUMBER. Note, however, that the UNION
attribute does not apply to the members of COMPONENTS, because
they are not immediate members of PHONE_DATA. The members
of COMPONENTS occupy separate storage in the normal fashion for
structure members.

Unions provide capabilities similar to those provided by defined variables
(see "Defined Variable"). However, the rules governing defined variables
are more restrictive than those governing unions. The following example
demonstrates a use of a union that would not be possible with a defined
variable:

DECLARE 1 X UNION,
2 FLOAT_NUM FLOAT BINARY (24),
2 BREAKDOWN,

3 FRAC_1 BIT (7),
3 EXPONENT BIT (8),
3 SIGN BIT (1) ,
3 FRAC_2 BIT (16);

The union X has two immediate members, FLOAT__NUM (a floating-point
variable) and BREAKDOWN. The members of BREAKDOWN are bit­
string variables that overlay the storage occupied by FLOAT__NUM and
provide access to the individual components of its internal representation.
Assignment to FLOAT__NUM modifies the members of BREAKDOWN,
and vice versa. For example:

EXPONENT = 'O'B;
SIGN = '1'B;

FLOAT_NUM • FLOAT_NUM + 1;

The first two assignment statements set the exponent and sign fields
of FLOAT__NUM to the reserved operand combination; the expression
FLOAT__NUM + 1 causes a reserved operand exception to occur.

Note that, unlike the character-string example that preceded it, the exam­
ple above depends on the VAX internal representation of data.

Union 659

UNSPEC Built-In Function

The UNSPEC built-in function returns a bit string representing the internal
coded value of the referenced variable, or a specified part of that variable.
The variable can be an aggregate or a scalar variable of any type. The
format of the function is as follows:

UNSPEC(reference[,position[,length]])

• Returned Value
The returned value is a bit string whose length is the number of bits
occupied by the referenced variable or by that part of the variable specified
by the optional parameters, position and length. The length of the bit
string must be less than or equal to the maximum length for bit-string
data. The returned bit string contains the contents of the storage of the
referenced variable (or the specified part of the variable), the first bit in
storage being the first bit in the returned value. The actual value is specific
to VAX PL/I and may differ from other PL/I implementations. Note that
if the referenced variable is a binary integer (FIXED BINARY), the first bit
in the returned value is the lowest binary digit.

•Example
DECLARE X CHARACTER(2), Y BIT(16);

X = 'AB';
Y = UNSPEC(X);

DECLARE I FIXED BINARY(16);
I = 2;
PUT LIST(UNSPEC(I));

As a result of the first UNSPEC reference, Y contains the ASCII codes
of 'A' and 'B'. The PUT LIST statement containing UNSPEC(I) prints the
following string:

'0100000000000000'8

660 UNSPEC Built-In Function

UNSPEC Pseudovariable

The UNSPEC pseudovariable interprets a reference to a scalar or aggregate
variable as a reference to a bit string. See also 0 Pseudovariable" for gen­
eral rules. The format of the pseudovariable (in an assignment statement)
is as follows:

UNSPEC(reference(,position(,length]]) = expression;

reference
A reference to a scalar or aggregate variable. The length of its storage in
bits must be less than or equal to the maximum length for bit-string data.

In an assignment of the form

UNSPEC(reference) = expression;

the value of the expression is converted to a bit string if necessary and
copied into the storage of the reference. The value is truncated or zero­
extended as necessary to match the length of the storage.

To prevent zero-extending a value that is shorter than the variable, you
can use the position parameter or both the position parameter and the
length parameter. Then only the specified bits in the variable will be
assigned a new value, and the other bits will remain as they were. Note
that a position parameter of 1 refers to the low-order bit of the variable's
storage, not the high-order bit.

•Examples
DECLARE X FIXED BINARY (16);
UNSPEC(X) = '110'B;

The use of the constant 'l lO'b, which appears to be 6 in binary, actually
assigns 3 to X. The two low-order bits of X (that is, X's first two bits of
storage) are set; all other bits of X are cleared.

UNSPEC(X,1,3) = '101'B;

The optional parameters position and length are specified, causing the first
three, low-order bits of the variable X to be assigned the value 'lOl'B; the
other bits are unaffected.

UNSPEC Pseudovariable 661

UNTIL Option

A DO UNTIL statement executes a group of statements at least once
and continues until a particular condition is true. While the condition is
false, the group is repeated. The format of the DO UNTIL statement is as
follows:

DO UNTIL (test-expression);

END;

test-expression
Any expression that yields a scalar bit-string value. If any bit of the value
is l, then the test expression is true; otherwise the test expression is false.
The test expression must be enclosed in parentheses.

The test expression is evaluated after each execution of the DO-group.
It must have a false value in order for the DO-group to be repeated.
Otherwise, control passes outside of the DO-group to the next executable
statement following the END statement that terminates the group.

•Examples
DO UNTIL (K<ALPHA)

The DO-group is executed at least once and then repeats as long as the
value of the variable K is greater than or equal to the value of the variable
ALPHA.

DO UNTIL (LIST ->NEXT = NULL())

The DO-group is executed until a forward pointer in a linked list has a
null value. (See "List Processing.")

662 UNTIL Option

DECLARE STR BIT (8) CONTROLLED;

ALLOCATION 1

ALLOCATION N

DO UNTIL (ALLOCATION(STR)=O);
PUT SKIP LIST ('STR');
FREE STR;
END;

END;

The DO-group frees bit strings from storage until all generations have
been released. In this example, at least one generation must be allocated;
otherwise the ERROR condition is raised. At the end of each repeti­
tion of the DO-group, the status of the generations is checked with the
ALLOCATION built-in function. A null string terminates the execution
of the group and passes control to the next executable statement after the
first END statement.

UPDATE Attribute

The UPDATE attribute is a file description attribute that indicates that
the associated file is to be used for both input and output. The UPDATE
attribute can be applied to relative files, indexed sequential files, and
sequential disk files with fixed-length records.

Specify the UPDATE attribute on a DECLARE statement for a file constant
or on an OPEN statement to access the file for update. The UPDATE
attribute implies the RECORD attribute.

For a description of the attributes that are applied to files and the effects
of combinations of these attributes, see "File Description Attributes and
Options."

The UPDATE attribute can be supplied by default for a file, depending on
the context of its opening. See "Opening a File."

UPDATE Attribute 663

• Restrictiens
The UPDATE attribute directly conflicts with the INPUT, OUTPUT,
STREAM, and PRINT attributes and with any data type attribute other
than FILE.

User-Generated Diagnostic Messages

The VAX PL/I embedded preprocessor provides four statements that per­
mit user-generated diagnostic capability: %INFORM, %WARN, %ERROR,
and %FATAL. Preprocessor diagnostic messages are compile-time mes­
sages, but you define the circumstances that invoke the message and the
text displayed. The format of all four statements is similar:

%INFORM preprocessor-expression;
% WARN preprocessor-expression;
%ERROR preprocessor-expression;
%FAT AL preprocessor-expression;

preprocessor-expression
The text of the diagnostic message to be displayed. The text is a character
string of up to 64 characters; strings are truncated if necessary.

The action of each statement is to generate a diagnostic message of the
appropriate severity level, with the preprocessor expression as the text of
the message.

• Examples
The first example shows how %INFORM can be used to return the value
of VARIANT.

XIF VARIANT() = I I I VARIANT() = 'NORMAL'
%THEN

%INFORM I NORMAL I ;

If the value of VARIANT is not specified at compile time or if the value is
'NORMAL', then the following informational message is issued:

XPLIG-I-USERDIAG, NORMAL

In this example, the %INFORM diagnostic message is used to let the
programmer know that compilation is continuing according to a Nnormal"
plan.

664 User-Generated Diagnostic Messages

DECLARE INIT_MESSAGE CHAR(40) VARYING INITIAL (T);

XIF VARIANT() 'NONE';
XTHEN X;
XELSE

XDO;
XT = '''unknown variant''';
XWARN T;
INIT_MESSAGE = 'Compiled with 'I IT;
XEND;

PUT SKIP LIST (INIT_MESSAGE);

In this example, an unknown variant is included at compile time. The
%WARN statement issues a compile-time warning diagnostic message and
saves the message so that when the program is run, the appropriate text is
output by the program.

The preprocessor built-in functions INFORM, WARN, and ERROR return
the number of user-generated diagnostics issued at any specified point
during compilation. Therefore, you can use user-generated diagnostics to
control the course of compilation. For example:

X!F WARN() > 6
XTHEN

%GOTO change_text;
XELSE;

This example specifies that compilation take a different course if there are
more than five warning messages at that point in program compilation. If
there are fewer than five warnings, then compilation proceeds along the
current path.

XIF ERROR() >= 1
%THEN

%FATAL 'Ending Compilation';

This example stops compilation if there is an error that would inhibit the
production of an object file.

User-generated diagnostic messages increment the count displayed in the
diagnostic summary.

See the individual entries for the preprocessor built-in functions.

User-Generated Diagnostic Messages 665

v
VALID Built-In Function

The VALID built-in function determines whether the argument x, a
pictured variable, has a value that is valid with respect to its picture
specification. A value is valid if it is any of the character strings that can
be created by the picture specification. The function returns 'O'B if x has
an invalid value and 'l 'B if it has a valid value. The function can be used
whenever a data item is read in with a record input (READ) statement,
to ensure that the input data is valid. The format of the function is as
follows:

VALID(x)

x
A reference to a variable declared with the PICTURE attribute.

Note that pictured data is always validated (and thus, the VALID function
is unnecessary) when it is read in with the GET EDIT statement and the P
format item; the CONVERSION condition is signaled if the data does not
conform to the picture given in the P format item. If GET LIST is used (or
GET EDIT with a format item other than P), the input value is converted
to conform to the pictured input target. (See "Conversion of Data" for
details.)

•Example
VALP: PROCEDURE OPTIONS(MAIN);

DECLARE INCOME PICTURE '$$$$$$V.$$';
DECLARE MASTER RECORD FILE;
DECLARE I FIXED;

DO I .. 1 TO 2;
READ FILE(MASTER) INTO(INCOME);
IF VALID(INCOME) THEN;

ELSE PUT SKIP LIST('Invalid input:' ,INCOME);
END;

END VALP;

666 VALID Built-In Function

Asume that the file MASTER.DAT contains the following data:

$16000.50
660000.50

The program VALP will write out the following:

Invalid input: 660000.60

The picture '$$$$$$V.$$' specifies a fixed-point decimal number of up
to seven digits, two of which are fractional. To be valid, a pictured
value must consist of nine characters: the first digit must be immediately
preceded by a dollar sign, the number must contain a period before the
fractional digits, and each position specified by a dollar sign must contain
either that sign, a digit, or a space. The second record in MASTER.DAT
can be assigned by the READ statement because it has the correct size;
however, the pictured value is invalid because it does not contain a dollar
sign.

VALUE Attribute

The VALUE attribute is provided for passing parameters by value rather
than by reference. For complete details on using the VALUE attribute, see
the VAX PL/I User Manual.

The format of the VALUE attribute is as follows:

{ VALUE } { GLOBALDEF[(psect-name)][INITIAL(value)] }
VAL GLOBALREF

The VALUE attribute serves two purposes:

• It specifies, for global external variables, that the variable has a
constant value that the compiler can use as an immediate value in
generating instructions for the VAX hardware. No storage is allocated
for the variable. For this use, VALUE must be specified in conjunction
with the GLOBALREF or GLOBALDEF attribute.

• It specifies, in a parameter descriptor in an ENTRY declaration, that
the corresponding argument is to be passed using the VAX-specific
convention for passing arguments by value. For this usage, VALUE
must be specified in conjunction with one of the following attributes:

ANY
FIXED BINARY(m) where mis less than or equal to 31
FLOAT BINARY(n) where n is less than or equal to 24

VALUE Attribute 667

BIT(o) ALIGNED where o is less than or equal to 32
ENTRY
OFFSET
POINTER

The VALUE attribute, when specified with the BIT attribute, implies the
ALIGNED attribute.

VALUE Built-In Function

The VALUE built-in function is used to force a parameter to be passed by
immediate value, rather than by whatever mechanism is specified by the
declaration of the formal parameter.

The syntax of the function is as follows:

{ VALUE } (expression)
VAL

expression
An expression or scalar variable that is valid to be passed by value. It
must fit into a longword (32 bits). The valid data types are as follows:

FIXED BINARY (m) where mis less than or equal to 31
FLOAT BINARY (n) where n is less than or equal to 24
BIT (o) ALIGNED where o is less than or equal to 32
ENTRY
OFFSET
POINTER

•Example
DECLARE FOO ENTRY (ANY) EXTERNAL;
DECLARE X FIXED BINARY (31);
x = 16;

CALL FOO(VALUE(X));

As with the REFERENCE and DESCRIPTOR built-in functions, VALUE
is not designed for use with other PL/I procedures; it is intended for use
only with routines written in languages other than PL/I.

For more detailed information, see HVALUE Attribute" and the VAX PL/I
User Manual on passing arguments by immediate value.

668 VALUE Built-In Function

Variable
A variable is a named data item that can be assigned various values in
the program. The converse of a variable is a constant, that is, a data item
whose value cannot be changed.

Normally, a variable's value will change during the execution of the
program. However, it is sometimes convenient to declare a static variable
whose value will never change. For example:

DECLARE MONTHS (12) CHARACTER (12) VARYING
STATIC INITIAL ('JANUARY', 'FEBRUARY', ...

'DECEMBER') ;

The term variable is used in this manual to mean any of the following:

• A name declared as a variable
• The storage associated with such a name
• A reference to all or part of the storage, as in MONTHS(2)

• Addressable Variable
A requirement in some contexts, such as in argument lists of certain built­
in functions, is that a variable be addressable. A variable is addressable if
it has the following properties:

• It is not suitable for bit-string overlay defining; that is, it does not
consist entirely of unaligned bit data. (See "Defined Variable" for a
definition of string overlay defining.)

• It is not an unconnected array. (See" Arrays of Structures.")
• It is not declared with the VALUE attribute. (See "VALUE Attribute.")

These rules ensure that the variable can occupy contiguous storage be­
ginning on a byte boundary. (Note that constants are not addressable in
PL/I.)

Variable 669

VARIABLE Attribute

The VARIABLE attribute indicates that the associated identifier is a vari­
able. VARIABLE is implied by all computational data type attributes and
by all noncomputational attributes except FILE and ENTRY.

If you specify the FILE or ENTRY attribute in a DECLARE statement
without the VARIABLE attribute, the defined object is assumed to be a file
or entry constant.

The VARIABLE attribute is implied by the LABEL attribute. You can
declare label constants only by using the label identifier in the program;
you cannot define a label constant in a DECLARE statement.

See "Entry Data," "File," and "Label " for descriptions of variables of these
data types.

• Restrictions
The VARIABLE attribute is not valid in a returns descriptor or in a param­
eter descriptor.

VARIABLE Option

The VARIABLE option specifies that an external procedure can be invoked
with argument lists of different lengths or that default arguments will not
be specified in the invocation of an external procedure. It is specified in
the declaration of an external entry as in the following example:

DECLARE SYS$FAO ENTRY (ANY) OPTIONS (VARIABLE);

This attribute is applicable only in the declaration of external procedures
that are not written in PL/I. For complete details on using OPTIONS
(VARIABLE), see the VAX PL/I User Manual.

• Restrictions
The VARIABLE option is valid only in conjunction with the ENTRY
attribute.

670 VARIABLE Option

VARIANT Preprocessor Built-In Function

The VARIANT preprocessor built-in function returns a string representing
the value of the /VARIANT qualifier in the PLI command that invoked
the compilation.

Its format in a preprocessor expression is as follows:

VARIANT()

The /VARIANT qualifier permits specification of compilation variants. The
value specified with /VARIANT is available to the VARIANT preprocessor
built-in function at compile time. The format of compilation variants is as
follows:

/VARIANT { [=alphanumeric-string] }
[="alphanumeric-string"]

For example, if a program is to be compiled with one of three differ­
ent INCLUDE files, you can use the /VARIANT command qualifier to
specify which file is to be included. In the following example, the file
SPECIAL.SRC is included in the program only if /VARIANT=SPECIAL
appears in the PU command line.

For example:

XIF VARIANT() = 'SPECIAL'
%THEN

%INCLUDE 'SPECIAL.SRC';
XIF VARIANT() = 'NONE'
%THEN;

No action is taken if /VARIANT=NONE appears on the PLI command
line.

If /VARIANT is not specified, or if it is specified without a value, the.
default value is /VARIANT ="".

For information on the format of the /VARIANT qualifier, see the VAX
PL/I User Manual.

VARIANT Preprocessor Built-In Function 671

VARYING Attribute

The VARYING attribute indicates that a character-string variable does not
have a fixed length, but that its length changes according to its current
value.

You must specify a length attribute in conjunction with VARYING (which
can be abbreviated to VAR), giving the maximum length allowed for
the variable. The current length is stored with the value and can be
determined at any time with the LENGTH built-in function. If you need
to determine the maximum declared length of a varying- length character
string, use the MAXLENGTH built-in function. (The SIZE built-in function
would return the maximum length plus 2; the reason is that the amount
of storage allocated for varying-length strings is two bytes longer than
the maximum length declared, the first two bytes containing the current
length of the string.)

The value of an uninitialized CHARACTER VARYING variable is unde­
fined.

Special rules apply to reading and writing record files into and from
variables that have the VARYING attribute. See the VAX PL/I User
Manual.

• Restrictions

The VARYING attribute directly conflicts with any data type attribute
other than CHARACTER.

•Examples
DECLARE STRING CHARACTER(SO) VARYING;

A variable named STRING is declared as a varying-length character string
with a maximum length of 80 characters.

S: PROCEDURE OPTIONS(MAIN);
DECLARE STRING CHARACTER(80) VARYING;

STRING = I PIE I ;

END;

PUT LIST (LENGTH(STRING));
PUT LIST (MAXLENGTH(STRING));
PUT LIST (SIZE(STRING));

The value returned by the built-in function LENGTH is 3, the length of
the current value of the string. The value returned by the built-in function
MAXLENGTH is 80, the maximum declared length. The value returned
by the built-in function SIZE is 82, the maximum declared length plus two
(for the two bytes that hold the value of the current length).

672 VARYING Attribute

VAXCONDITION Condition Name

The VAXCONDITION condition name can be specified in an ON,
RESIGNAL, REVERT, or SIGNAL statement. The VAXCONDITION
condition name provides a way to signal and handle operating­
system or programmer-specified condition values. The format of the
VAXCONDITION condition name is as follows:

V AXCONDITION (expression)

expression
An expression yielding a fixed binary value. The expression is evaluated
when the ON statement is executed, not when the condition is signaled.

The VAXCONDITION condition name is provided specifically for PL/I
procedures that interact with VMS operating system routines. For details
on using the V AXCONDITION condition name and the meanings of
system- and user-defined values that you can specify, see the VAX PL/I
User Manual.

VERIFY Built-In Function
VERIFY Preprocessor Built-In Function

The VERIFY built-in function compares a string with a character-set string
and verifies that all characters appearing in the string also appear in the
character-set string. The function returns the value zero if they all appear.
If not, the function returns a fixed-point binary integer that indicates
the position of the first character in the string that is not present in the
character-set string. The comparison is done character by character and
left to right, and as soon as one nonmatching character is found in the first
string, no more characters are compared. The function is case sensitive.

The format of the function is as follows:

VERIFY(string,character-set-string[,starting-position])

string
A character-string expression representing the string to be checked.

character-set-string
A character-string expression containing the set of characters with which
the characters in the first string are to be compared.

VERIFY Preprocessor Built-In Function 673

starting-position
A positive integer in the range 1 to n+l, where n is the length of the first
string. It specifies the leftmost position in the first string to be compared
with the character-set-string. (By default, the comparison starts at the left
end of the first string.)

• Examples

1. STRING= 'HOW MUCH IS 1 PLUS 2';
ALPHABET = 'abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ I ;

A= VERIFY(STRING.ALPHABET);

The value of the variable ALPHABET is a string containing the 26
lowercase letters, the 26 uppercase letters, and the space character.
The function returns a value of 13, indicating the position of the
character '1', which is the first nonalphabetic and nonspace character
in STRING.

2. A= VERIFY(STRING,' ');

This example finds the first nonspace character in a string by using the
space character as a test string. Note that constants can be used as the
string parameters.

3. NEWSTRING = 'ALL LETTERS';
A= VERIFY(NEWSTRING,ALPHABET);

VERIFY returns a value of zero because all characters in the string
NEWSTRING are present in the string ALPHABET.

4. NEWSTRING = '9 LETTERS';
A= VERIFY (NEWSTRING,ALPHABET,2);

The optional starting-position parameter specifies that the comparison
begins at position 2 in NEWSTRING. VERIFY returns a value of
zero because all characters beginning with the second character
in the string NEWSTRING are present in the string ALPHABET.
If the starting-position parameter had not been specified, VERIFY
would have returned a value of 1, because the first character ('9') in
NEWSTRING is not present in ALPHABET.

674 VERIFY Preprocessor Built-In Function

w
%WARN Statement

The %WARN statement provides a diagnostic warning message during
program compilation. The format of the %WARN statement is as follows:

%WARN preprocessor-expression;

preprocessor-expression
The text of the warning message to be displayed. The text is a character
string with a maximum length of 60 characters. It is truncated if necessary.

• Returned Message
The message displayed by % WARN is as follows:

%PLIG-W-USERDIAG, preprocessor-expression

The %WARN statement increments the warning diagnostic count dis­
played in the compilation summary.

For further information on preprocessor diagnostic messages, see "User­
Generated Diagnostic Messages."

WARN Preprocessor Built-In Function

The WARN preprocessor built-in function returns the number of diagnostic
warning messages issued during compilation up to that particular point
in the source program. The format for the WARN built-in function is as
follows:.

WARN();

The function returns a fixed result representing the number of compile­
time warning messages that were issued up to the point at which the
WARN built-in function was encountered.

WARN Preprocessor Built-In Function 675

WHEN Keyword

The WHEN clause is specified in a SELECT statement to define the action
to be taken if a given expression is true. For example:

SELECT;

END;

WHEN (A = 2) X = Y**A;
WHEN (A = 3) X = Y•A;
OTHERWISE X = Y;

An expression must follow the keyword WHEN, but the action can be
null. For example:

WHEN (A= 2);

For more information, see "SELECT Statement."

WHILE Option

The WHILE option can be specified in a DO statement to define a con­
dition that must be met for the DO-group to be executed. It has the
following format:

WHILE (expression)

expression
A bit-string expression of any length. If any bit in the expression is 1, the
expression is considered true.

For example:

DO WHILE (A< B);

The subsequent DO-group is executed while the value of the expression
A <Bis true.

For more information, see "DO Statement."

676 WHILE Option

WRITE Statement

The WRITE statement adds a record to a file, either at the end of a file
that has the SEQUENTIAL and OUTPUT attributes, or in a specified
key position in a file that has the KEYED and OUTPUT attributes or the
KEYED and UPDATE attributes. The format of the WRITE statement is as
follows:

WRITE FILE(file-reference) FROM (variable-reference)
[KEYFROM (expression)]
[OPTIONS (option, ...)];

file-reference
A reference to the file to which the record is to be written. If the file is
not currently open, the WRITE statement opens the file with the implied
attributes RECORD, OUTPUT, and SEQUENTIAL; these attributes are
merged with the attributes specified in the file's declaration. See also
"Opening a File."

variable-reference
A reference to the variable containing data for the output record. The
variable must be addressable.

If the variable has the VARYING or the AREA attribute and the file does
not have the attribute ENVIRONMENT(SCALARVARYING}, the WRITE
statement writes only the current value of the varying string or the area
into the specified record. In all other cases, the WRITE statement writes
the entire storage of the variable. If the contents of the variable do not
fit the specified record size, the WRITE statement outputs as much of the
variable as will fit, and the ERROR condition is signaled.

KEYFROM (expression)
An option specifying that the record to be written is to be positioned in
the file according to the key specified by the expression. The file must
have the KEYED attribute.

The nature of the key depends on the file's organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key value is a fixed binary value indicating the relative
record number of the record to be written.

WRITE Statement 677

• If the file is an indexed sequential file, the key specifies the record's
primary key. PL/I copies the key value specified into the correct key
field position (or positions, if segmented keys are used). PL/I also sets
the key number to the primary index.

The value of the specified expression is converted to the data type of the
key. If no record with the specified key exists, or if the specified key value
cannot be converted to the data type of the key, the KEY condition is
signaled.

OPTIONS (option, ...)
An option specifying one or more of the following WRITE statement
options, separated by commas:

FIXED_CONTROLJROM (variable-reference)
RECORD_ID_TQ (variable-reference)

These options are described fully in the VAX PL/I User Manual.

• File Positioning
If the file has the UPDATE attribute, the current record is set to designate
the record just written, and the next record is set to designate the record
following the record just written. If there is no such record following the
record just written, the next record is set to the end-of-file.

•Examples
TRUNC: PROCEDURE;
DECLARE INREC CHARACTER(80) VARYING,

OUTREC CHARACTER(80),

678 WRITE Statement

ENDED BIT(l) STATIC INIT('O'B).
(INFILE,OUTFILE) FILE;

OPEN FILE (INFILE) RECORD INPUT
TITLE('RECFILE.DAT');

OPEN FILE (OUTFILE) RECORD OUTPUT
TITLE('TRUNCFILE.DAT')
ENVIRONMENT(FIXED_LENGTH_RECORDS,

MAXIMUM_RECORD_SIZE(SO));

ON ENDFILE(INFILE) ENDED = '1'B;

READ FILE(INFILE) INTO (INREC);
DO WHILE (-ENDED);

OUTREC = INREC;
WRITE FILE (OUTFILE) FROM (OUTREC);
READ FILE (INFILE) INTO (INREC);
END;

CLOSE FILE(INFILE);
CLOSE FILE(OUTFILE);
RETURN;
END;

This program reads a file with variable-length records into a character
string with the VARYING attribute and creates a sequential output file in
which each record has a fixed length of 80 characters.

The ENVIRONMENT attribute for the file OUTFILE specifies the record
format and length of each fixed-length record.

When records are written to a file with fixed-length records, the variable
specified in the FROM option must have the same length as the records
in the target output file. Otherwise, the ERROR condition is signaled.
Thus, in this example, each record read from the input file is copied into a
fixed-length character-string variable for output.

Each time this program is executed, it creates a new version of the file
TRUNCFILE.DAT.

ADD_EMPLOYEE: PROCEDURE;

DECLARE 1 EMPLOYEE,
2 NAME,

3 LAST CHAR(30),
3 FIRST CHAR(20),
3 MIDDLE_INIT CHAR(1),

2 DEPARTMENT CHAR(4),
2 SALARY FIXED DECIMAL (6,2),

EMP_FILE FILE;

DECLARE MORE_INPUT BIT(1) STATIC INIT('1'B),
NUMBER FIXED DECIMAL (6,0);

OPEN FILE(EMP_FILE) DIRECT UPDATE;

DO WHILE (MORE_INPUT);
PUT SKIP LIST('Employee Number');
GET LIST (NUMBER);

PUT SKIP LIST
('Name (Last, First, Middle Initial)'):

GET LIST
(EMPLOYEE.NAME.LAST.EMPLOYEE.NAME.FIRST,

EMPLOYEE.NAME.MIDDLE_INIT);

WRITE Statement 679

PUT SKIP LIST('Department');
GET LIST (DEPARTMENT);

PUT SKIP LIST('Starting salary');
GET LIST(EMPLOYEE.SALARY);

WRITE FILE (EMP_FILE)
FROM (EMPLOYEE) KEYFROM(NUMBER);

PUT SKIP LIST('More?');
GET LIST(MORE_INPUT);
END;

CLOSE FILE(EMP_FILE);
RETURN;
END;

This procedure adds records to the existing relative file EMP_FILE. The file
is organized by employee numbers, and each record occupies the relative
record number in the file that corresponds to the employee number.

The file is opened with the DIRECT and UPDATE attributes, because
records to be written will be chosen by key number. Within the DO­
group, the program prompts for data for each new record that will be
written to the file. After the data is input, the WRITE statement specifies
the KEYFROM option to designate the relative record number. The
number itself is not a part of the record but will be used to retrieve the
record when the file is accessed for keyed input.

680 WRITE Statement

x
X Format Item

The X format item sets a stream file or character-string expression to a
column relative to the current position. It is the only control format item
that can be used with either the FILE or STRING option of GET EDIT and
PUT EDIT. The form of the X format item is as follows:

X [(w)]

w
An integer, or an expression, that specifies a number of consecutive
character positions in the stream; w must not yield a negative integer
value. If w yields zero, no operation is performed. If the w is omitted, its
value is assumed to be 1.

• Input with GET EDIT
On input, the next w columns after the current column are skipped.

• Output with PUT EDIT
On output, w spaces are inserted following the current column.

When the output stream is a file, and the end of the current line is
reached, the output of spaces continues on the next line until w spaces
have been output. The size of the current line is either the default value
or the specific value you have established for the file (see uLINESIZE
Option"). If the file is a print file, the ENDPAGE condition is signaled if
the page size is reached; on normal return from the ENDPAGE ON-unit,
output of spaces continues at the top of the next page until w spaces have
been output.

If the output stream is a character-string variable, w spaces are written to
the variable. The ERROR condition is signaled if the maximum length of
the string is exceeded.

X Format Item 681

•Examples
IFOR: PROCEDURE OPTIONS(MAIN);

DECLARE INLINE CHAR!CTER(80) VARYING;
DECLARE FIRSTWORD CHARACTER(80) VARYING;
DECLARE OUTFILE PRINT FILE;
DECLARE SPACEl FIXED;

GET EDIT(INLINE) (A(lOOO)) OPTIONS(PROMPT('Line>'));

SPACEl • IHDEX(INLINE,' '); /•position of first wordbrealt •/

FIRSTWORD = SUBSTR(INLINE,1,SPACEl-1);

PUT STRING(FIRSTWORD) EDIT (FIRSTWORD, '-FIRST WORD TYPED') (A,1(2),A);

PUT SKIP FILE(OUTFILE) LIST(FIRSTWORD);

END IFOR;

The GET EDIT statement in the program XFOR inputs a complete line
from a user's terminal, after issuing and receiving an answer to the prompt
'Line> '. Assume that the interaction is as follows:

Line> beautiful losers I RET I

The following output will be written to OUTFILE.DAT:

beautiful -FIRST WORD TYPED

The X format item has correctly inserted two spaces between 'beautiful'
and '-FIRST WORD TYPED'.

IFOR2: PROCEDURE OPTIONS(MAIN);

DECLARE INLINE CHAR!CTER(80) VARYING;
DECLARE OUTFILE2 PRINT FILE;

GET EDIT(INLINE) (X(10),A(1000))
OPTIONS(PROMPT('Line>'));

PUT SKIP FILE(OUTFILE2) LIST(INLINE);
END IFOR2;

In the program XFOR2, the GET EDIT statement skips the first 10 char­
acters typed after the prompt and then inputs the remainder of the line.
Assume that the interaction is as follows:

Line> ABCDEFGHIJKLMNOPQRSTUVWXYZ I RET I

The following output will be written to OUTFILE2.DAT:

KLMHOPQRSTUVWXYZ

The first 10 letters (A to J) have been ignored on input.

682 X Format Item

z
ZERODIVIDE Condition Name

The ZERODIVIDE condition name can be specified in an ON, REVERT, or
SIGNAL statement to designate a divide-by-zero condition or ON-unit.

PL/I signals the ZERODIVIDE condition when the divisor in a division
operation has a value of zero. The value resulting from such an operation
is undefined.

• ON-Unit Completion
Control returns to the point of the interruption.

For more information, see HON Conditions and ON-Units" and HON
Statement."

ZERODIVIDE Condition Name 683

Appendix A

Alphabetic Summary of Keywords

A summary of all of the VAX PL/I keywords follows. This alphabetic
summary includes both the options for the ENVIRONMENT attribute and
the options for I/O statements.

Keyword Abbreviation Use

A Format item

ABS Preprocessor built-in function,
Built-in function

ACOS Built-in function

%ACTIVATE Preprocessor statement

ACTUALCOUNT Built-in function

ADD Built-in function

ADDR Built-in function

ALIGNED Attribute

ALLOCATE ALLOC Statement

ALLOCATION ALLOCN Built-in function

ANY Attribute

ANYCONDITION Condition name

APPEND Environment option

AREA Data attribute, Condition name

ASIN Built-in function

ATAN Built-in function

Alphabetic Summary of Keywords A-1

Keyword Abbreviation Use

ATAND Built-in function

ATANH Built-in function

AUTOMATIC AUTO Attribute

B Format item

Bl Format item

B2 Format item

BJ Format item

B4 Format item

BACKUP_DATE Environment option

BASED Attribute

BATCH Environment option

BEGIN Statement

BINARY BIN Data attribute, Built-in function

BIT Data attribute, Built-in function

BLOCK_BOUNDARY_ Environment option
FORMAT

BLOCK_IO Environment option

BLOCK_SIZE Environment option

BOOL Built-in function

BUCKELSIZE Environment option

BUILTIN Attribute

BY DO option

BYTE Preprocessor built-in function,
Built-in function

CALL Statement

CANCEL _CONTROL_ PUT OPTIONS option
0

CARRIAGE-RETURN_ Environment option
FORMAT

CEIL Built-in function

CHARACTER CHAR Data attribute, Built-in function

A-2 Alphabetic Summary of Keywords

Keyword Abbreviation Use

CLOSE Statement

COLLATE Built-in function

COLUMN COL Format item

CONDITION COND Attribute, Condition name

CONTIGUOUS Environment option

CONTIGUOUS-BEST_ Environment option
TRY

CONTROLLED CTL Attribute

CONVERSION CONY Condition name

COPY Preprocessor built-in function,
Built-in function

cos Built-in function

COSD Built-in function

COSH Built-in function

CREATION-DATE Environment option

CURRENLPOSITION Environment option

DATE Preprocessor built-in function,
Built-in function

DATETIME Preprocessor built-in function,
Built-in function

%DEACTIVATE Preprocessor statement

DECIMAL DEC Data attribute, Built-in function

%DECLARE %DCL Preprocessor statement

DECLARE DCL Statement

DECODE Preprocessor built-in function,
Built-in function

DEFAULLFILE_NAME Environment option

DEFERRED_WRITE Environment option

DEFINED DEF Attribute

DELETE Statement, Environment option

DESCRIPTOR DESC Attribute, Built-in function

Alphabetic Summary of Keywords A-3

Keyword Abbreviation Use

%DICTIONARY Preprocessor statement

DIMENSION DIM Attribute, Built-in function

DIRECT File attribute, OPEN option

DISPLAY Built-in subroutine

DIVIDE Built-in function

%DO Preprocessor statement

DO Statement, GET and PUT I/O
specifier

E Format item

EDIT GET option, PUT option

%ELSE Keyword of the %IF statement

ELSE Keyword of the IF statement

EMPTY Built-in function

ENCODE Preprocessor built-in function,
Built-in function

%END Preprocessor statement

END Statement

ENDFILE Condition name

ENDPAGE Condition name

ENTRY Statement, Attribute

ENVIRONMENT ENV File attribute, OPEN option, CLOSE
option

%ERROR Preprocessor statement

ERROR Condition name, Preprocessor
built-in function

EVERY Built-in function

EXP Built-in function

EXPIRATION_DATE Environment option

EXTEND Built-in subroutine

EXTENSION _SIZE Environment option

EXTERNAL EXT Attribute

A-4 Alphabetic Summary of Keywords

Keyword Abbreviation Use

F Format item

FAST_DELETE DELETE OPTIONS option

%FATAL Preprocessor statement

FILE Attribute, Option of the GET, PUT,
READ, WRITE, DELETE, REWRITE,
OPEN, and CLOSE statements

FILE_ID Environment option

FILE_ID_TO Environment option

FILE_SIZE Environment option

FINISH Condition name

FIXED Data attribute, Built-in function

FIXEDOVERFLOW FOFL Condition name

FIXED-CONTROL_ REWRITE OPTIONS option, WRITE
FROM OPTIONS option

FIXED_CONTROL_SIZE Environment option

FIXED_CONTROL_ Environment option
SIZE_ TO

FIXED-CONTROL_ TO READ OPTIONS option

FIXED-LENGTH_ Environment option
RECORDS

FLOAT Data attribute, Built-in function

FLOOR Built-in function

FLUSH Built-in subroutine

FORMAT Statement

FREE Statement, Built-in subroutine

FROM WRITE option, REWRITE option

GET Statement

GLOBALDEF Attribute

GLOBALREF Attribute

%GOTO Preprocessor statement

GOTO GOTO Statement

Alphabetic Summary of Keywords A-5

Keyword

GROUP_pROTECTION

HBOUND

HIGH

ID ENT

%IF

IF

IGNORE_LINE_MARKS

IN

%INCLUDE

INDEX

INDEXED

INDEX_NUMBER

%INFORM

INFORM

INITIAL

INITIAL JILL

INPUT

INT

INTERNAL

INTO

KEY

KEYED

KEYFROM

KEYTO

LABEL

LBOUND

A-6 Alphabetic Summary of Keywords

Abbreviation Use

INIT

INT

Environment option

Built-in function

Built-in function

PROCEDURE OPTIONS option

Preprocessor statement

Statement

Environment option

ALLOCATE option, FREE option

Preprocessor statement

Preprocessor built-in function,
Built-in function

Environment option

DELETE OPTIONS option, READ
OPTIONS option, REWRITE
OPTIONS option, Environment
option

Preprocessor statement

Preprocessor built-in function

Attribute

Environment option

File attribute, OPEN option

Built-in function, Pseudovariable

Attribute

READ option

Condition name, READ option,
DELETE option, REWRITE option

File attribute, OPEN option

WRITE option

READ option

Attribute

Built-in function

Keyword

LEAVE

LENGTH

LIKE

LINE

LINE NO

LINE SIZE

%LIST

LIST

LOCK_ON _READ

LOCK_ON _WRITE

LOG

LOGlO

LOG2

LOW

MAIN

MANUAL _UNLOCKING

MATCH_GREATER

MATCH_GREATER_
EQUAL

MATCH_NEXT

MATCH_NEXT_EQUAL

MAX

Abbreviation Use

Statement

Preprocessor built-in function,
Built-in function

Attribute

PUT option, Preprocessor built-in
function, Format item

Built-in function

OPEN option

Preprocessor statement

Attribute, GET option, PUT option

READ OPTIONS option

READ OPTIONS option

Built-in function

Built-in function

Built-in function

Built-in function

PROCEDURE OPTIONS option

READ OPTIONS option

DELETE OPTIONS option, READ
OPTIONS option, REWRITE
OPTIONS option

DELETE OPTIONS option, READ
OPTIONS option, REWRITE
OPTIONS option

DELETE OPTIONS option, READ
OPTIONS option, REWRITE
OPTIONS option

DELETE OPTIONS option, READ
OPTIONS option, REWRITE
OPTIONS option

Preprocessor built-in function,
Built-in function

Alphabetic Summary of Keywords A-7

Keyword

MAXIMUM_RECORD_
NUMBER

MAXIMUM_RECORD_
SIZE

MAXLENGTH

MEMBER

MIN

MOD

MUL TIBLOCK_COUNT

MUL TIBUFFER_COUNT

MULTIPLY

NEXLVOLUME

%NOLIST

NO LOCK

NONEXISTENT_
RECORD

NONRECURSIVE

NONVARYING

NO RESCAN

NO_ECHO

NO_FILTER

NO_SHARE

NULL

OFFSET

ON

ONARGSLIST

ON CHAR

ON CODE

A-8 Alphabetic Summary of Keywords

Abbreviation Use

NONVAR

Environment option

Environment option

Built-in function

Attribute

Preprocessor built-in function,
Built-in function

Preprocessor built-in function,
Built-in function

Environment option

Environment option

Built-in function

Built-in subroutine

Preprocessor statement

READ OPTIONS option

READ OPTIONS option

PROCEDURE option, ENTRY option

Attribute

Option of the %ACTIVATE state­
ment

GET OPTIONS option

GET OPTIONS option

Environment option

Built-in function

Data attribute, Built-in function

Statement

Built-in function

Built-in function, Pseudovariable

Built-in function

Keyword Abbreviation Use

ONFILE Built-in function

ONKEY Built-in function

ONSOURCE Built-in function, Pseudovariable

OPEN Statement

OPTIONAL Attribute

OPTIONS File attribute, Option of the GET,
PUT, READ, WRITE, DELETE,
REWRITE, and PROCEDURE
statements

OTHERWISE OTHER Keyword of the SELECT statement

OUTPUT File attribute, OPEN option

OVERFLOW OFL Condition name

OWNER_GROUP Environment option

OWNER-1D Environment option

OWNER_MEMBER Environment option

OWNER_pROTECTION Environment option

p Format item

%PAGE Preprocessor statement

PAGE PUT option, Format item

PAGENO Built-in function, Pseudovariable

PAGESIZE OPEN option

PARAMETER PARM Attribute

PICTURE PIC Data attribute

POINTER PTR Data attribute, Built-in function

POSINT Built-in function, Pseudovariable

POSITION POS Attribute

PRECISION PREC Attribute

PRESENT Built-in function

PRINT File attribute, OPEN option

PRINTERJORMAT Environment option

%PROCEDURE %PROC Preprocessor statement

Alphabetic Summary of Keywords A-9

Keyword

PROCEDURE

PROD

PROMPT

PURGE_TYPE_AHEAD

PUT

R

RANK

READ

READONLY

READ-AHEAD

READ_ CHECK

READ_REGARDLESS

RECORD

RECORD_ID

RECORD_ID_ACCESS

RECORD_ID_ TO

RECURSIVE

REFER

REFERENCE

RELEASE

REPEAT

%REPLACE

RESCAN

RESIGNAL

RETRIEVAL JO INTERS

A-10 Alphabetic Summary of Keywords

Abbreviation Use

PROC Statement

Built-in function

GET OPTIONS option

GET OPTIONS option

Statement

Format item

Preprocessor built-in function,
Built-in function

Statement

Attribute

Environment option

Environment option

READ OPTIONS option

File attribute, OPEN option

DELETE OPTIONS option, READ
OPTIONS option, REWRITE
OPTIONS option

Environment option

READ OPTIONS option, REWRITE
OPTIONS option, WRITE OPTIONS
option

PROCEDURE option, ENTRY option

Attribute

Attribute, Built-in function

Built-in subroutine

DO option

Preprocessor statement

Option of the %ACTIVATE state­
ment

Built-in subroutine

Environment option

Keyword

%RETURN

RETURN

RETURNS

REVERSE

REVERT

REVISION-DATE

REWIND

REWIND-ON _CLOSE

REWIND_ON _OPEN

REWRITE

ROUND

%SBTTL

SCALARVARYING

SEARCH

SELECT

SEQUENTIAL

SET

SHARED-READ

SHARED_ WRITE

SIGN

SIGNAL

SIN

SIND

SINH

SIZE

SKIP

Abbreviation Use

SEQL

Preprocessor statement

Statement

Entry attribute, PROCEDURE
option, ENTRY option

Preprocessor built-in function,
Built-in function

Statement

Environment option

Built-in subroutine

Environment option

Environment option

Statement

Built-in function

Preprocessor statement

Environment option

Preprocessor built-in function,
Built-in function

Statement

File attribute, OPEN option

READ option, ALLOCATE option

Environment option

Environment option

Preprocessor built-in function,
Built-in function

Statement

Built-in function

Built-in function

Built-in function

Built-in function

GET option, PUT option, Format
item

Alphabetic Summary of Keywords A-11

Keyword

SNAP

SOME

SPACEBLOCK

SPOOL

SQRT

STATEMENT

STATIC

STOP

STORAGE

STREAM

STRING

STRINGRANGE

STRUCTURE

SUBSCRIPTRANGE

SUBSTR

SUBTRACT

SUM

SUPERSEDE

SYSIN

SYSPRINT

SYSTEM

SYSTEM-PROTECTION

TAB

TAN

TAND

TANH

TEMPORARY

%THEN

A-12 Alphabetic Summary of Keywords

Abbreviation Use

STRG

SUBRG

ON statement option

Built-in function

Built-in subroutine

Environment option

Built-in function

Option of the %PROCEDURE
statement

Attribute

Statement

Condition name

File attribute, OPEN option

GET option, PUT option, Built-in
function, Pseudovariable

Condition name

Attribute

Condition name

Preprocessor built-in function,
Built-in function, Pseudovariable

Built-in function

Built-in function

Environment option

Default input file

Default output file

ON statement option

Environment option

Format item

Built-in function

Built-in function

Built-in function

Environment option

Keyword of the %IF statement

Keyword Abbreviation Use

THEN Keyword of the IF statement

TIME Built-in function

TIMEOULPERIOD READ OPTIONS option

%TITLE Preprocessor statement

TITLE OPEN option

TO DO option

TRANSLATE Preprocessor built-in function,
Built-in function

TRIM Preprocessor built-in function,
Built-in function

TRUNC Built-in function

TRUNCATE Attribute, Environment option

UNALIGNED UNAL Attribute

UNDEFINED FI LE UNDF Condition name

UNDERFLOW UFL Condition name, PROCEDURE
OPTIONS option

UNION Attribute

UNSPEC Built-in function, Pseudovariable

UNTIL DO option

UPDATE File attribute, OPEN option

USER_OPEN Environment option

VALID Built-in function

VALUE VAL Attribute, Built-in function

VARIABLE Attribute, OPTIONS Option

VARIANT Preprocessor built-in function

VARYING VAR Attribute

VAXCONDITION Condition name

VERIFY Preprocessor built-in function,
Built-in function

WAILFOR-RECORD READ OPTIONS option

%WARN Preprocessor statement

Alphabetic Summary of Keywords A-13

Keyword Abbreviation Use

WARN Preprocessor built-in function

WHEN Keyword of the SELECT statement

WHILE DO option

WORLD_PROTECTION Environment option

WRITE Statement

WRITE_BEHIND Environment option

WRITE_CHECK Environment option

x Format item

ZERO DIVIDE ZDIV Condition name

A-14 Alphabetic Summary of Keywords

Appendix B

DEC Multinational Character Set

The DEC Multinational Character Set is a set of 8-bit numeric values
representing the alphabet, numerals, punctuation, and other symbols.
The first 128 characters of the set (with decimal values from 0 through
127) are the American Standard Code for Information Interchange (ASCII)
characters. The remaining characters (with values from 128 through 255)
are non-ASCII characters and can be used in VAX PL/I only in string
constants and data with I/O statements.

The following table shows the first half of the DEC Multinational
Character Set, which is the ASCII character set. The first half of each
of the numbered columns identifies the character as you would enter it
on a VT200 or VTlOO series terminal or as you would see it on a printer
(except for the nonprintable characters). The remaining half of each col­
umn identifies the character by the binary value of the byte; the value is
stated in three radixes-octal, decimal, and hexadecimal. For example,
the uppercase letter A has, under ASCII conventions, a storage value of
hexadecimal 41 (a bit configuration of 01000001), equivalent to 101 in
octal notation and 65 in decimal notation.

DEC Multinational Character Set B-1

COLUMN 0 1 2 3 4 5 6 7

h8 BITS 0 0 0 0 0 0 0 0
1>7 0 0 0 0 1 1 1 1

~ b6 .o 0 1 1 0 0 1 I
h5 0 1 0 1 0 1 u 1

ROW b4 b3 b2 bl

0 20 40 60 100 120

'
140 160

0 0 0 0 0 NUL 0 OLE 16 SP 32 0 48 @ 64 p 80 96 p 112
0 10 20 30 40 50 60 70

1 DC1 21 41 61 101 121 141 161

1 0 0 0 1 SOH 1 17 ! 33 1 49 A 65 Q 81 a 97 q 113
1

IXONI
11 21 31 41 51 61 71

2 22 42 62 102 122 142 162

2 0 0 1 0 STX 2 DC2 18 II
34 2 50 B 66 R 82 b 98 r I 14

2 12 22 32 42 52 62 72

J DC3 23 43 63 lOJ 12J 14J 16J

3 0 0 1 1 ETX J 19 # J5 3 51 c 67 s 8J c 99 s 115
3

IXOFFI
1J 2J JJ 43 5J 63 7J

4 24 44 64 104 124 144 164

4 0 1 0 0 EOT 4 DC4 20 $ 36 4 52 D 68 T 84 d 100 t 116
4 14 24 J4 44 54 S4 74

5 25 45 65 105 125 145 165

5 0 1 0 1 ENQ 5 NAK 21 % J7 5 5J E S9 u 85 e 101 u 117
5 15 25 J5 45 55 65 75

6 26 46 66 106 12S 146 166

6 0 1 1 0 ACK s SYN 22 & 38 6 54 F 70 v 86 f 102 v 118
6 16 26 36 46 56 66 76

7 27 , 47 67 107 127 147 167

7 0 1 1 1 BEL 7 ETB 2J 39 7 55 G 71 w 87 g lOJ w 119

7 17 27 37 47 57 67 77

10 30 50 70 110 130 150 170

8 1 0 0 0 BS 8 CAN 24 (40 8 56 H 72 x 88 h 104 x 120
8 18 28 J8 48 58 68 78

11 Jl
)

51 71 111 131 151 171

9 l 0 0 l HT 9 EM 25 41 9 57 I 73 y 89 i 105 y 121
9 19 29 J9 49 59 69 79

12 J2 52 72 112 1J2 152 172

10 1 0 1 0 LF 10 SUB 26 * 42 : 58 J 74 z 90 j 106 z 122
A lA 2A JA 4A 5A SA 7A

lJ JJ 5J 7J 113 13J 153

{
17J

11 1 0 1 1 VT 11 ESC 27 + 4J ; 59 K 75 [91 k 107 123

8 18 28 J8 48 58 SB 78

14 J4 54 74 114 1J4 154 174

12 1 1 0 0 FF 12 FS 28 44 < so L 7S ' 92 I 108 I 124
c lC ' 2C JC 4C 5C SC JC

15 J5 55 75 115 1J5 155

}
175

13 1 l 0 1 CR lJ GS 29 - 45 = 61 M 77] 9J m 109 125
D 1D 2D JD 4D 5D 6D 7D

lS J6 56 7S 11S
A 1J6 156 - 176

14 1 1 1 0 so 14 RS 30 46 > S2 N 78 94 n 110 126

E lE 2E JE 4E 5E SE 7E

17 J7 57 77 117 1J7 157 177

15 1 1 1 1 SI 15 us Jl I 47 ? 63 0 79 95 0 111 DEL 127
F 1F 2F JF 4F - 5F SF 7F

KEY
CHARACTEREillJJ OCTAL

27 DECIMAL

18 HEX

ZK-1752-84

B-2 DEC Multinational Character Set

The following table shows the second half of the DEC Multinational
Character Set (the non-ASCII characters, with decimal values 128 through
255). The first half of each of the numbered columns identifies the
character as you would see it on a VT200 series terminal or printer; these
characters cannot be output on a VT100 series terminal.

DEC Multinational Character Set B-3

8 9 10 11 12 13 14 15 COLUMN

1 1 1 1 1 1 1 1 b8
b7 BITS 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 b6
0 1 0 1 0 1 0 1 b5 t""-1

b4 b3 b2 b1 ROW

200 220

~
240 0 260

'
300 320

'
340 360

128 DCS 144 160 176 A 192 208 a 224 240 0 0 0 0 0
80 90 AO 80 co DO EO FO

201 221 241 261 , 301 - 321 341 - 361

PU1 i ± ,
241 1 129 14S 161 177 A 193 N 209 a 225 n 0 0 0 1

B1 91 A1 B1 Cl D1 E1 F1

202 222 242 2 262 A 302

'
322

A
342

'
362

130 PU2 146 c 162 17B A 194 0 210 a 226 0 242 0 0 1 0 2
S2 92 A2 82 C2 D2 E2 F2

203 223 243 3 263 - 303 , 323 - 343 , 363
131 STS 147 £ 163 179 A 195 0 211 a 227 0 243 0 0 1 1 3
S3 93 A3 B3 C3 D3 E3 F3

204 224 244 264 •• 304 A 324 344 A 364
IND 132 CCH 14B 164 1SO A 196 0 212 a 22S 0 244 0 1 0 0 4

S4 94 A4 B4 C4 D4 E4 F4

20S 22S 245 265 305 - 32S 345 - 365
NEL 133 MW 149 l 16S µ 1S1 A 197 0 213 a 229 0 245 0 1 0 1 5

SS 9S AS 85 cs D5 ES FS

206 226 246 266 306 •• 326 346 .. 366

SSA 134 SPA 1SO 166 ,-r 182 IE 19S 0 214 ae 230 0 246 0 1 1 0 6
S6 96 A6 86 C6 D6 E6 F6

207 227 247 267

~
307 327 347 367

ESA 13S EPA 151 § 167 . 183 199 <E 215 c; 231 oe 247 0 1 1 1 7
S7 97 A7 87 C7 D7 E7 F7

210 230 250 270

'
310 330

~
3SO 370

HTS 136 1S2 ~ 168 184 E 200 tJ 216 232 Ii 24S 1 0 0 0 8
SS 98 AB BS cs DS ES FB

211 231

©
2S1 1 271 , 311

'
331 3S1

'
371

HTJ 137 1S3 169 1S5 E 201 217
,

233 249 1 0 0 1 9 u e u
89 99 A9 B9 C9 D9 E9 F9

212 232 I 252 2 272 A 312 , 332 • 3S2 , 372

VTS 138 154 170 186 E 202 u 218 234 u 250 1 0 1 0 10
BA 9A AA BA CA DA EA FA

213 233 2S3 273 •• 313 A 333 353
A

373
PLO 139 CSI 1SS « 171 » 187 E 203 u 219 ¥ 235 u 2S1 1 0 1 1 11

8B 9S AB BB CB DB EB FB

214 234 254 274 ' 314 .. 334

'
354 374

PLU 140 ST 156 172 1/4 188 I 204 u 220 I 236 "Li 252 1 1 0 0 12
BC 9C AC BC cc DC EC FC

215 23S 2SS 275 , 315 •• 335 , 3S5 .. 375
RI 141 osc 157 173 V2 189 I 205 y 221 I 237 y 2S3 1 1 0 1 13

SD 90 AD BD CD DD ED FD

216 ~36 256 276 A 316 336
A 3S6 376

SS2 142 PM 15S 174 190 I 206 222 I 238 254 1 1 1 0 14
BE 9E AE BE CE DE EE FE

217 237 257 277 .. 317 337 3S7

~
377

SS3 143 APC 159 j, 191 207 Jl 223
..

239 2S5 1 1 1 1 15 17S I I
BF 9F AF BF CF DF EF FF

KEY
CHARACTERETIJ33 OCTAL

27 DECIMAL

18 HEX

ZK-1753-84

B-4 DEC Multinational Character Set

Appendix C

Compatibility with PL/I Standards

This appendix describes the relationship of VAX PL/I to the various PL/I
language standards that have recently been in force, that are currently in
force, or that will shortly be in force. The following topics are discussed in
this appendix:

• Section C.1 describes the features in the ANSI X3.74-1981 PL/I
General Purpose Subset. VAX PL/I has all of the features in this
standard.

• Section C.2 describes VAX PL/I in relation to the new ANSI X3.74-
198x PL/I General Purpose Subset. VAX PL/I has almost all of the
features described by this standard that are shared with the ANSI
X3.53-1976 full language standard. In addition, VAX PL/I has some
of the new features described by this language that are not in the
ANSI X3.74-1981 language.

• Section C.3 describes features from the ANSI X3.53-1976 PL/I (full
language) standard beyond those in ANSI X3.74-198x that are in­
cluded in VAX PL/I.

• Section C.4 describes miscellaneous features from other implemen­
tations that have been included in VAX PL/I and that are not in the
ANSI standards.

• Section C.5 describes VAX PL/I-specific extensions that have been
provided for VMS system integration.

• Section C.6 lists the implementation-defined values that a;e used in
VAX PL/I.

Compatibility with PL/I Standards C-1

In summary, VAX PL/I is a strict superset of the ANSI X3.74-1981 PL/I
General Purpose Subset. VAX PL/I contains many features from larger
or more recent PL/I standards and implementations. Most of the features
implemented in VAX PL/I that go beyond the language defined by ANSI
X3.74-1981 are contained in either the ANSI X3.53-1976 (full) PL/I
language standard or the new ANSI X3.74-198x PL/I General Purpose
Subset.

C.1 Relation to the 1981 PL/I General-Purpose Subset

The 1981 PL/I General-Purpose Subset (ANSI X3.74-1981) was designed
to be useful in scientific, commercial, and systems programming, especially
on small and medium-size computer systems. Among the primary goals
of the design of the subset were the following:

• To include features that were easy to learn and to use and to exclude
features that were difficult to learn or prone to error

• To provide a subset that would be easily portable from one computer
system to another

• To exclude features that were not often used and whose implementa­
tion greatly increased the complexity of the run-time support required
by the compiler

The essential elements of the subset are described below. These descrip­
tions are extracted from the ANSI X3.74-1981 standard.

C.1.1 Program Structure

The General-Purpose Subset includes a complete character set, with
comments, identifiers, decimal arithmetic constants, and simple string
constants.

Begin blocks and DO-groups are included in the subset. Each block or
group in the program must be terminated with an END statement.

C-2 Compatibility with PL/I Standards

C.1.2 Program Cantrel

The following program control statements are included in the subset:
CALL, RETURN, IF, DO, GOTO, null, STOP, ON, REVERT, and SIGNAL.

The DO statement options supported are TO, BY, WHILE, and REPEAT.

An IF statement can contain unlabeled THEN and ELSE clauses.

An ON statement can specify a single condition. The condition names
supported are ERROR, ENDFILE, ENDPAGE, FIXEDOVERFLOW, KEY,
OVERFLOW, UNDEFINEDFILE, UNDERFLOW, and ZERODIVIDE.

C.1.3 Storage Control

The subset includes the assignment statement and the assignment of
array and structure variables whose dimensions and data types match.
The subset also permits aggregate promotion, that is, the assignment of a
scalar expression to every element or member of an aggregate variable.

In the subset, only static variables can be initialized.

The ALLOCATE statement with the SET option and the FREE statement
are included in the subset.

C.1.4 Input/Output

The I/O statements are as follows:

• OPEN and CLOSE
• READ, WRITE, DELETE, and REWRITE for record I/O
• GET and PUT, with FILE, STRING, EDIT, LIST, PAGE, SKIP, and

LINE options for stream 1/0

The file attributes, specified in DECLARE or OPEN, are DIRECT,
ENVIRONMENT, INPUT, KEYED, OUTPUT, PRINT, RECORD,
SEQUENTIAL, STREAM, and UPDATE.

The FORMAT statement is included. The format items are E, F, P, A, B, X,
R, PAGE, SKIP, COLUMN, TAB, and LINE.

Compatibility with PL/I Standards C-3

C.1.5 Attributes and Pictures

The DECLARE statement is included in the subset. All names must be
declared, either by means of a DECLARE statement or by means of a label
prefix.

The attributes supported are as follows: ALIGNED, AUTOMATIC,
BASED, BINARY, BIT, BUILTIN, CHARACTER, DECIMAL, DEFINED,
DIRECT, ENTRY, ENVIRONMENT, EXTERNAL, FILE, FIXED, FLOAT,
INITIAL, INPUT, INTERNAL, KEYED, LABEL, OPTIONS, OUTPUT,
PICTURE, POINTER, PRINT, RECORD, RETURNS, SEQUENTIAL,
STATIC, STREAM, UPDATE, VARIABLE, and VARYING.

The picture characters included are CR, DB, S, V, Z, 9, -, +, $, and •. The
picture insertion characters (. , / B) are also included.

C.1.8 Built-In Functions and Pseudovariables

The built-in functions in the subset are as follows: ABS, ACOS,
ADDR, ASIN, ATAN, ATAND, ATANH, BINARY, BIT, BOOL, CEIL,
CHARACTER, COLLATE, COPY, COS, COSD, COSH, DATE, DECIMAL,
DIMENSION, DIVIDE, EXP, FIXED, FLOAT, FLOOR, HBOUND; INDEX,
LBOUND, LENGTH, LINENO, LOG, LOG2, LOGlO, MAX, MIN, MOD,
NULL, ONCODE, ONFILE, ONKEY, PAGENO, ROUND, SIGN, SIN,
SINO, SINH, SQRT, STRING, SUBSTR, TAN, TAND, TANH, TIME,
TRANSLATE, TRUNC, UNSPEC, VALID, and VERIFY.

The pseudovariables are PAGENO, STRING, SUBSTR, and UNSPEC.

C.1. 7 Expressions

The subset supports all infix and prefix operators, the locator qualifier,
parenthesized expressions, subscripts, and function references. Implicit
conversion from one data type to another is restricted to those contexts in
which the conversion is likely to produce the desired results.

C-4 Compatibility with PL/I Standards

C.2 198x PL/I General-Purpose Subset Features Supported

The 198x PL/I General-Purpose Subset (ANSI X3.74-198x) was designed
to extend the previous subset standard on the basis of experience with
subset implementations and the desire for more capabilities in subset­
conforming implementations.

The following sections describe features in this standard that have been
implemented to date in VAX PL/I.

C.2.1 lexical Constructs

The character pair/* is permitted within comments.

Both uppercase and lowercase characters are permitted in source programs.

No space is required after the P for picture constants.

C.2.2 Program Cantrel

RETURNS(CHAR(•)) is supported.

The statements following THEN and ELSE can be labeled.

The NONRECURSIVE procedure option is supported.

The SELECT statement is supported.

The LEA VE statement is supported.

The UNTIL clause for DO groups and clauses is supported.

C.2.3 Storage Cantrel

The IN option can be used for the ALLOCATE and FREE statements, and
language controlled allocation in areas is supported.

The SET option is optional for ALLOCATE if the based variable being
allocated was declared with a base pointer.

The ALLOCATE and FREE statements can specify a comma list of items.

String assignment can have the source and target overlapped.

Compatibility with PL/I Standards C-5

C.2.4 Input/Output

Expressions can be used in GET and PUT FORMAT lists.

You can use, as the source or target of a file I/O statement, a function
reference that performs I/O on the same file and then returns to the
original statement.

The OPEN and CLOSE statements can contain a list of file specifications.

The FROM option of the REWRITE statement can be omitted.

C.2.5 Attri•utes and Pictures

The INITIAL attribute is allowed with AUTOMATIC storage. The initial
items can contain asterisks to denote uninitialized values. The initial
values can be expressions. The NULL built-in function can be used in
both STATIC and AUTOMATIC INITIAL attributes. The initial iteration
factor can be an asterisk.

Restricted expressions can be used for static extents, parameter extents,
and returns descriptor extents.

The AREA and OFFSET data types are supported.

The REFER attribute can be used at the end of a structure.

The DIMENSION, PARAMETER, and NONVARYING keywords can be
specified.

The UNALIGNED attribute can be specified, but only for BIT and
CHARACTER variables.

SYSIN and SYSPRINT can be contextually declared as files.

The CONDITION attribute is supported.

The UNION attribute is supported.

C-6 Compatibility with PL/I Standards

C.2.6 Program Control

The AREA, CONDITION, CONVERSION, FINISH, and STORAGE
conditions are supported.

Multiple conditions can be specified for ON and REVERT.

The SNAP and SYSTEM options of the ON statement are supported.

C.2. 7 Buih-ln Functions and Pseudovariables

The following built-in functions are supported: ADD, DATETIME,
EMPTY, EVERY, HIGH, LOW, MAXLENGTH, MULTIPLY, OFFSET,
ONSOURCE, POINTER, PROD, REVERSE, SEARCH, SOME, SUBTRACT,
SUM, and TRIM.

The ONSOURCE pseudovariable is supported.

The DIMENSION, HBOUND, and LBOUND built-in functions have a
default of one for the second parameter if it is not specified.

The INDEX and VERIFY built-in functions have an optional starting
position parameter.

The UNSPEC built-in function and pseudovariable can be used on aggre­
gates.

C.2.8 Expressions

The operators AND THEN (short-circuiting AND, specified as&:) and OR
ELSE (short-circuiting OR, specified as I:) are supported.

EXCLUSIVE OR (infix or dyadic A) is supported.

C.3 Full PL/I Features Supported

The items discussed in this section are features that are explicitly excluded
from both the old subset standard (ANSI X3.74-1981) and the new subset
standard (ANSI X3.74-198x) but that have been implemented in VAX
PL/I. These features all exist in full PL/I.

Compatibility with PL/I Standards C-7

C.3. 1 Pragram Structure

The STRINGRANGE and SUBSCRIPTRANGE conditions are supported.

Replication factors for string constants are supported.

A comma list can be specified on the left-hand side of an assignment
statement.

C.3.2 Program Cantrel

The ENTRY statement is supported.

C.3.3 Sterage Central

CONTROLLED storage is supported.

C.3.4 Attributes and Pictures

The CONTROLLED, LIKE, MEMBER, POSITION, PRECISION, REFER,
and STRUCTURE attributes are supported. (The REFER attribute is
restricted to BASED and CONTROLLED variables.)

The picture characters Y, T, I, and Rare supported, and pictures can
include iteration factors.

Scaled fixed binary numbers are supported. They can have a scale factor
within the range -31 through 31.

C.3.5 B•ilt-ln F•nctians and Pseudevariables

The OFFSET and POINTER built-in functions are not restricted to ADDR.

The ALLOCATION and ONCHAR built-in functions are supported.

The ONCHAR pseudovariable is supported.

C-8 Compatibility with PL/I Standards

C.3.6 Expressiens

The expression in a WHILE or UNTIL clause or in an IF statement can be
a bit string of any length. When evaluated, the expression results in a true
value if any bit of the string expression is a 1 and in a false value if all bits
in the string expression are Os.

The control variable and the expressions in the TO, BY, and REPEAT
options of the DO statement are not restricted to integers and pointers.

C.4 Nonstandard Features fro• Other l•ple•entations

The features discussed in this section are not described in any ANSI PL/I
standard. They are, however, provided by some other implementations.

C.4.1 Preprecesser

VAX PL/I supports an embedded lexical preprocessor for compila­
tion control. The following preprocessor statements are included:
%ACTIVATE, %DEACTIVATE, %DECLARE, %DICTIONARY, %DO,
%END, %ERROR, %FATAL, %GOTO, %INFORM, %IF, %PAGE,
%PROCEDURE, %RETURN, %SBTTL, %TITLE, and %WARN.

An %IF statement can contain unlabeled % THEN and %ELSE clauses.

The following preprocessor built-in functions are included: ABS, BYTE,
COPY, DATE, DATETIME, DECODE, ENCODE, ERROR, INDEX,
INFORM, LENGTH, LINE, MAX, MIN, MOD, RANK, REVERSE,
SEARCH, SIGN, SUBSTR, TIME, TRANSLATE, TRIM, VARIANT,
VERIFY, and WARN.

C.4.2 LIKE Extensien

VAX PL/I allows LIKE of a structure containing LIKE.

Compatibility with PL/I Standards C-9

C.4.3 Declarations

Variables can be declared outside of procedures.

C.5 VAX PL/I-Specific Extensions

The extensions in the following sections are enhancements for PL/I
programs executing on a VMS operating system. These extensions are
provided for procedure calling, condition handling, support of VAX Record
Management Services, compilation control, and miscellaneous purposes.

C.5.1 Procedure-Calling and Condition-Handling Extensions

The following extensions to PL/I were made to allow VAX PL/I proce­
dures to call procedures written in any other programming language that
also supports the VAX calling standard.

• The ANY, VALUE, REFERENCE, and DESCRIPTOR attributes de­
scribe how data is to be passed to a called procedure.

• The OPTIONAL attribute indicates that a parameter need not be
specified in a call; and the TRUNCATE attribute indicates the point at
which an actual parameter list can be truncated.

• The LIST attribute can be used for the parameter descriptor in an
external entry declaration to denote that a list of parameters may be
specified.

• The ACTUALCOUNT built-in function returns the number of parame­
ters the current procedure was called with; and the PRESENT built-in
function determines whether a parameter was specified in a call.

• The VARIABLE option for the ENTRY attribute permits a PL/I pro­
cedure to call a non-PL/I procedure with an argument list of variable
length. It also permits a procedure to omit arguments in an argument
list.

• The VALUE, REFERENCE, and DESCRIPTOR built-in functions
can be used to pass an argument by the specified mechanism to a
non-PL/I procedure.

C-10 Compatibility with PL/I Standards

The following new attributes provide storage classes for PL/I variables.
These attributes permit PL/I programs to take advantage of features of the
VMS Linker and to combine PL/I procedures with other procedures that
use these storage classes.

• The GLOBALDEF and GLOBALREF attributes let you define and
access external global variables and optionally place all external global
definitions in the same program section.

• The READONL Y attribute can be applied to a static computational
variable whose value does not change.

• The VALUE attribute defines a variable that is, in effect, a constant
whose value is supplied by the linker. The value attribute can also be
used to allow a procedure to receive constants passed by immediate
value.

The following extensions to condition handling provide support for
condition handling in the VMS environment:

• The ANYCONDITION condition name can be used in an ON-unit to
handle any condition that is signaled that does not explicitly have an
ON-unit of its own.

• The VAXCONDITION condition name can be used in ON, SIGNAL,
and REVERT statements to process VMS-specific conditions.

• The RESIGNAL built-in subroutine permits an ON-unit to keep a
signal active.

• The ONARGSLIST built-in function provides an ON-unit with access
to the mechanism and signal arguments of an exception condition.

C.5.2 Suppert et VAX Recerd Management Services

The options of the ENVIRONMENT attribute provide support for many of
the features and control values of the VAX Record Management Services
(RMS). Additional extensions have been made to the PL/I language to
augment this support:

• The USER_OPEN ENVIRONMENT option allows access to the RMS
FAB and RAB control structures during a PL/I file open.

• The OPTIONS option is supported on the GET, PUT, READ, WRITE,
REWRITE, and DELETE statements.

• The following built-in subroutines provide file handling and control
functions: DISPLAY, EXTEND, FLUSH, NEXT_VOLUME, REWIND,
and SPACEBLOCK.

Compatibility with PL/I Standards C-11

C.5.3 Miscellaneous Extensions

VAX PL/I supports the VAX Common Data Dictionary. Data definitions
are included in source programs with the %DICTIONARY statement.

The following built-in functions are supported: BYTE, DECODE,
ENCODE, INT, POSINT, RANK, and SIZE.

C.6 Implementation-Defined Values and Features

The following values and features are implementation-defined:

• VAX PL/I supports the full 256-character DEC Multinational Character
Set (a superset of ASCII) for CHARACTER data (including character
string constants in PL/I source programs). All identifiers in a source
program are restricted to the ASCII character set.

• The default precisions for arithmetic data are as follows:

FIXED BINARY (31)
FIXED DECIMAL (10)
FLOAT BINARY (24)
FLOAT DECIMAL (7)

• The maximum record size for SEQUENTIAL files is 32767 bytes minus
the length of any fixed-length control area.

• The maximum key size is 255 bytes for character keys.

• The default value for the LINESIZE option is as follows:

If the output is to a physical record-oriented device, such as a line
printer or terminal, the default line size is the width of the device.

If the output is to a print file, the default line size is 132.

If the output is to a nonrecord device (magnetic tape), the default
line size is 510.

• The default value for the P AGESIZE option is as follows:

• If the logical name SYS$LP_LINES is defined, the default page
size is 6, the numeric value of SYS$LP_LINES.

• If SYS$LP_LINES is not defined, or if its value is less than 30 or
greater than 90, or if its value is not numeric, the default page size
is 60.

• The values for TAB positions are columns beginning with column 1
and every eight columns thereafter.

C-12 Compatibility with PL/I Standards

• The maximum length allowed for a file title is 128 characters.

• The maximum number of digits in editing fixed-point data is 34.
• The maximum numbers of digits for each combination of base and

scale are as follows:

FIXED BINARY-31
FIXED DECIMAL-31
FLOAT BINARY-113
FLOAT DECIMAL-34

• The maximum length of CHARACTER, CHARACTER VARYING, and
BIT strings is 32767.

• The default precision for integer values is 31.

• The maximum number of arguments that can be passed to an entry
point is 253.

• The second parameter of the F format item (the optional parameter
specifying the number of fractional digits in the stream representation)
must have a value less than or equal to 31.

Compatibility with PL/I Standards C-13

Appendix D

Migration Notes

This appendix contains notes and comments about migration issues.
In particular, it lists and describes keywords and functions of the PL/I
language that are available in other implementations of PL/I but are not
included in VAX PL/I.

The information in this appendix is not intended to represent either a
complete or a formal description of migration issues. The information is
presented informally, and has not been subjected to extensive testing and
verification.

The following topics are discussed in this appendix:

• Section 0.1 lists keywords that are not supported by VAX PL/I.
• Section 0.2 covers some of the miscellaneous differences between

VAX PL/I and other PL/I compilers.
• Section 0.3 provides an overview of implicit data conversions per­

formed by the PL/I compiler.
• Section 0.4 presents a program for a hexadecimal dump because

dump printing routines for other hardware architectures are not
transportable to VAX.

Migration Notes D-1

0.1 Keywords Not Supported

The following table summarizes PL/I keywords used in other imple­
mentations of PL/I that are not used in VAX PL/I. The table does not
include ENVIRONMENT keywords or implementation-specific language
extensions.

Keyword Abbreviation Use

AFTER Built-in function

ALL Built-in function

ANY Built-in function

ATTENTION ATTN Condition

BACKWARDS Attribute, Option of OPEN state-
ment

BEFORE Built-in function

BUFFERED BUF Attribute, Option of OPEN state-
ment

BY NAME Option of assignment statement

c Format item

CALL Option of INITIAL attribute

CASE Option of DO statement

CHECK Statement, Condition, Condition
prefix

COMPLETION CPLN Built-in function, Pseudovariable

COMPLEX CPLX Attribute, Built-in function,
Pseudovariable

CONJG Built-in function

CONNECTED CONN Attribute

CONSTANT Attribute

CONVERSION CONV Condition prefix

COPY Option of GET statement

COUNT Built-in function

CURRENTS TO RAGE CSTG Built-in function

0-2 Migration Notes

Keyword Abbreviation Use

DATA Stream I/O transmission mode

DATAFIELD Built-in function

DECAT Built-in function

DEFAULT DFT Statement

DELAY Statement

DESCRIPTORS Option of DEFAULT statement

DISPLAY Statement

DOT Built-in function

ERF Built-in function

ERFC Built-in function

EVENT Attribute, Option of several
statements

EXCLUSIVE EXCL Attribute

EXIT Statement

FETCH Statement

FORMAT Attribute

GENERIC Attribute

HALT Statement

IGNORE Option of READ statement

IMAG Built-in function, pseudovariable

IRREDUCIBLE IRRED Attribute

LIST Option of OPEN statement

LOCAL Attribute

LOCATE Statement

NAME Condition

NOCHECK Statement, Condition prefix

NOCONVERSION NOCONV Condition prefix

NOFIXEDOVERFLOW NO FOFL Condition prefix

NO LOCK Option of READ statement

NONE Option of DEFAULT statement

Migration Notes D-3

Keyword

NOOVERFLOW

NOSIZE

NOSTRINGRANGE

NOSTRINGSIZE

NOSUBSCRIPTRANGE

NOZERODIVIDE

ON COUNT

ONFIELD

ONLOC

ORDER

OVERFLOW

PENDING

POLY

PRIORITY

RANGE

REAL

RECORD

REDUCIBLE

REENTRANT

RELEASE

REORDER

REPEAT

REPLY

SAMEKEY

SIZE

SNAP

STATUS

0-4 Migration Notes

Abbreviation Use

NOSTRG

NOSTRZ

NOSUBRG

NOZDIV

OFL

RED

Condition prefix

Condition prefix

Condition prefix

Condition prefix

Condition prefix

Condition prefix

Built-in function

Built-in function

Built-in function

Option of BEGIN and
PROCEDURE statements

Condition prefix

Condition

Built-in function

Option of CALL statement, Built-in
function, Pseudovariable

Option of DEFAULT statement

Attribute, Built-in function,
Pseudovariable

Condition

Attribute

Option of OPTIONS option

Statement

Option of BEGIN and
PROCEDURE statements

Built-in function

Option of DISPLAY statement

Built-in function

Condition, Condition prefix

Option of PUT statement

Built-in function, Pseudovariable

Keyword Abbreviation Use

STORAGE STG Built-in function

STRINGRANGE STRG Condition prefix

STRINGSIZE STRZ Condition, Condition prefix

SUB Dummy variable of DEFINED
attribute

SUBSCRIPTRANGE SUBRG Condition prefix

SYSTEM Option of DECLARE statement

TAB Option of OPEN statement

TASK Attribute, Option of OPTIONS
option, Option of CALL statement

TRANSIENT Attribute, option of OPEN state-
ment

TRANSMIT Condition

UNBUFFERED UNBUF Attribute, Option of OPEN state-
ment

UNLOCK Statement

WAIT Statement

D.2 Miscellaneous Differences

The following list summarizes a number of minor differences between
VAX PL/I and other PL/I compilers that require you to modify your
source files to avoid compilation errors. In some cases, differences require
reprogramming.

• The at sign (@) and number sign (#) characters are not allowed in
identifiers; thus, you must change all identifiers that contain either of
these characters.

• You must explicitly declare all names (except internal procedure
and label constants). There is no "I through N rule" that provides
an implicit declaration of FIXED BINARY to undeclared names. In
fact, the VAX PL/I compiler defaults all undeclared names to FIXED
BINARY and issues a warning message to that effect.

Migration Notes 0-5

• If the attribute FLOAT is specified and neither of the attributes
BINARY or DECIMAL is specified with it, the VAX PL/I compiler
provides a default of BINARY. This should not present a problem;
however, if a precision was specified under the assumption that the
default floating-point base was DECIMAL, overflow conditions can
result if you do not correct the declaration.

• You cannot explicitly declare internal entry constants and subscripted
label constants: in VAX PL/I, these names are implicitly declared by
their appearance. You must remove the declarations from the source
file.

• You must reprogram ON-units for unsupported conditions. For
example, ON-units for SIZE, RECORD, and TRANSMIT should be
modified so that they are invoked for the ERROR condition, which is
the condition that is signaled in VAX PL/I for any of these errors.

• You cannot specify the ALIGNED and UNALIGNED attributes for a
structure in which string variables are to be aligned or unaligned. The
attribute must be specified in the declaration of each variable that is to
be aligned.

• You cannot pass parameters directly to main procedures from the
command stream. For examples of techniques for passing values or
data to a main procedure, see the VAX PL/I User Manual.

0.3 Implicit Conversions

The VAX PL/I compiler issues warning-level messages when it performs
implicit conversions between arithmetic and string data types and between
bit-string and character-string data types. It issues these messages for all
such conversions, not just those excluded by the PL/I General-Purpose
Subset.

You can avoid the messages by compiling your programs with the
/NOWARNINGS qualifier. Or you can edit your program, locate the oc­
currences of implied conversions, and change them to explicit conversions,
as follows:

• Arithmetic to character-string-use the CHARACTER built-in function.

• Arithmetic to bit-string-use the BIT built-in function. 1

• Bit-string to arithmetic-use the BINARY built-in function.

1 Note that this conversion is based on the way bit strings are printed by PUT LIST (the first bit of the
string is the high-order bit if the printed string is viewed as a binary integer) rather than being based on
the internal representation (the first bit of the string is then in the low-order digit position in memory).

D-6 Migration Notes

• Bit-string to character string-use the CHARACTER built-in function.

• Character-string to arithmetic-use the BINARY, DECIMAL, FIXED,
or FLOAT built-in function, according to the target data type.

• Character-string to bit string-use the BIT built-in function.

D.4 Printing a Hexadecimal Memory Dump

Dump printing routines written for other hardware architectures are not
transportable to VAX. Because the order in which bits are stored on VAX
machines is reversed on some other machines, these routines must be
entirely rewritten. The program HEXDUMP that follows illustrates one
technique for outputting the contents of memory in hexadecimal:

I•

•I

Thia procedure illustrates the dumping of VAX memory in
hexadecimal. The output format is consistent with other
VMS memory dump utilities.

HEXDUMP: PROCEDURE OPTIONS{MAIN);

DECLARE DUMP_LOCATION POINTER;
DECLARE {I,J) FIXED BINARY{31);

/• declare and initialize fake memory to dump •/

DECLARE MEMORY{0:255) FIXED BINARY{7);

DO I = 0 TO 127;
MEMORY{!) = I;
MEMORY{! + 128) • I - 128;
END;

/* dump the paeudomemory on the user's terminal •/

DO I = 0 TO 255 BY 16;
PUT SKIP;

DO J = 12 TO 0 BY -4;
DUMP_LOCATION = ADDR{MEMORY{I+J));
CALL OUTPUT_HEX{DUMP_LOCATION);
END;

PUT EDIT{' 1){A{1));
CALL OUTPUT_HEX{ADDR(I));
END;

STOP;

Migration Notes D-7

/• subroutine to output a hexadecimal longword •/

OUTPUT_HEX: PROCEDURE(ADDRESS);

DECLARE ADDRESS POINTER;
DECLARE F FIXED BIN(31) BASED(ADDRESS);

PUT EDIT(REVERSE(UNSPEC(F))) (B4(8));

END OUTPUT_HEX;

END HEXDUMP;

D-8 Migration Notes

Appendix E

VAX PL/I Language Summary

This appendix briefly describes VAX PL/I statements, attributes, expres­
sions, data conversions, built-in functions, pseudovariables, and built-in
subroutines. For more information on each of these topics, refer to the
individual entries in this manual.

E.1 Statements

%activate-statement

o/i { ACTIVATE } element [RESCAN
0 ACT NORESCAN] I " • ;

allocate-statement

{ ALLOCATE } ALLOC allocate-item, ... ;

allocate-item:

variable-reference [SET(locator-reference)][IN(area-reference)]

%assignment-statement

%target= expression;

assignment-statement

target, ... = expression;

begin-statement

BEGIN;

VAX PL/I Language Summary E-1

call-statement

CALL entry-name [(argument, ...)];

close-statement

CLOSE FILE(file-reference) [ENVIRONMENT(option, ...)]
[,FILE(file-reference) [ENVIRONMENT(option, ...)]] ...

%deactivate-statement

% { g~~~iIVATE } element, ... ;

element:

{ identifier }
(identifier, ...)

%declare-statement

[
FIXED

% { DECLARE } element CHARACTER
DCL BIT

] , ... ;
element:

{ identifier }
(identifier, ...)

declare-statement

{ g~iLARE } [level] declaration [,µevel] declaration, ...];

declaration:

[level] declaration-item

declaration-item:

{ identifier } . .
(d 1 ti. "t) [(bound-pair, ...)] [attribute ...] ec ara on-1 em, ...

delete-statement

DELETE FILE(file-reference) [KEY (expression)][OPTIONS(option, ...)]

%dictionary-statement

%DICTIONARY cdd-path;

E-2 VAX Pl/I Language Summary

%do-statement

%DO;

%END;

do-statement

[reference=expression]
[TO expression [BY expression]]

DO [REPEAT expression]
[WHILE(expression)]
[UNTIL(expression)];

%end-statement

%END;

end-statement

END [label-reference];

entry-statement

entry-name: ENTRY t (parameter, ...)]
RECURSIVE]
NONRECURSIVE

[RETURNS (returns-descriptor)];

%error-statement

%ERROR preprocessor-expression;

%fatal-statement

%FATAL preprocessor-expression;

format-statement

label:

FORMAT (format-specification, ...);

free-statement

FREE variable-reference [IN area-reference], ... ;

VAX PL/I Language Summary E-3

get-statement

GET EDIT (input-target, ...)(format-specification, ...)

[
FILE(file-reference) l

[SKIP[(expression)]]
[OPTIONS(option, ...)]

STRING(expression)

GET LIST (input-target, ...)

[
FILE(file-reference) l

[SKIP[(expression)]]
[OPTIONS(option, ...)]

STRING(expression)

GET [FILE(file-reference)] SKIP [(expression)];

%goto-statement

%GOTO label-reference;

goto-statement

{ GOTO } label-reference ·
GOTO I

%if-statement

%IF test-expression % THEN action [%ELSE action];

if-statement

IF test-expression THEN action [ELSE action];

%include-statement

%INCLUDE module-name {
'file-spec'

'library-name(module-name)'

%inform-statement

%INFORM preprocessor-expression;

leave-statement

LEAVE [label-reference];

E-4 VAX PL/I Language Summary

%[no]list-statement

%NOLIST__ALL; %NOLIST_DICTIONARY; %NOLIST_INCLUDE;
%NOLIST_MACHINE; %NOLIST_SOURCE;

%null-statement

%;

null-statement

on-statement

ON condition-name, ... [SNAP] { ~~-;;~~; }

open-statement

OPEN FILE(file-reference) [file-description-attribute ...]
[,FILE(file-reference) [file-description-attribute ...]] ...

%page-statement

%PAGE;

%procedure-statement

%label: { PR'?,~~URE } [(parameter-identifier, ...)][STATEMENT]

{
CHARACTER }

RETURNS (FIXED);
BIT

[%]RETURN (preprocessor-expression);

[%]END.

VAX PL/I Language Summary E-5

procedure-statement

{ PROCEDURE } entry-name: PROC [(parameter, ...)]

[OPTIONS (option, ...)]
[RECURSIVE]

NONRECURSIVE
[RETURNS (value-descriptor)];

put-statement

PUT EDIT (output-source, ...) (format-specification, ...)

I

FILE(file-reference)
[PAGE]
[LINE(expression)]
[SKIP[(expression)]]
[OPTIONS(option)]

STRING(reference)

PUT [FILE(file-reference)] LINE(expression);

PUT LIST (output-source, ...)

FILE(file-reference)
[PAGE]
[LINE(expression)]
[SKIP[(expression)]]
[OPTIONS(option)]

STRING(reference)
I

PUT [FILE(file-reference)] PAGE;

PUT [FILE(file-reference)] SKIP [(expression)];

read-statement

READ FILE (file-reference)

{ INTO (variable-reference) }
SET (pointer-variable)

[KEY (expression)]
KEYTO (variable-reference)

[OPTIONS (option, ...)];

E-6 VAX Pl/I language Summary

%replace-statement

%REPLACE identifier BY constant-value;

%return-statement

[%]RETURN (preprocessor-expression);

return-statement

RETURN [(return-value)];

revert-statement

REVERT condition-name, ... ;

rewrite-statement

REWRITE FILE (file-reference)
[FROM (variable-reference) [KEY (expression)]]
[OPTIONS (option, ...)];

%sbttl-statement

%SBTTL preprocessor-expression

select-statement

SELECT [(select-expression)];
[WHEN [ANYIALL] (expression, ...) [action];] ...
[{OTHERWISE I OTHER} [action];]

END;

signal-statement

SIGNAL condition-name;

stop-statement

STOP;

%title-statement

% TITLE preprocessor-expression

VAX Pl/I language Summary E-7

%warn-statement

% WARN preprocessor-expression;

write-statement

WRITE FILE(file-reference) FROM (variable-reference)
[KEYFROM (expression)]
[OPTIONS (option, ...)];

E.2 Attributes

Computational Data Type Attributes

The following attributes define arithmetic and string data:

CHARACTER [(length)] [~'6~~~~YING]
BIT [(length) J [~~~~~~ED]
{ FLOAT } { BINARY } [[PRECISION] (precision

FIXED DECIMAL [,scale-factor])]
PICTURE 'picture'

These attributes can be specified for all elements of an array and for
individual members of a structure.

Noncomputational Data Type Attributes

The following attributes apply to program data that is not used for com­
putation:

AREA
CONDITION
ENTRY [VARIABLE]
FILE [VARIABLE]
LABEL [VARIABLE]
OFFSET
POINTER

E-8 VAX PL/I Language Summary

Storage Class and Scope Attributes

The following attributes control the allocation and use of storage for a data
variable and define the scope of the variable:

AUTOMATIC [INITIAL(initial-element, ...)]
BASED [(pointer-reference)][INITIAL(initial-element, ...)]
CONTROLLED [INITIAL(initial-element, ...)]
DEFINED(variable-reference) [POSITION(expression)]
STATIC [READONLY] [INITIAL(initial-element, ...)]
PARAMETER

EXTERNAL [GLOBALDEF [(psect-name)] [~~~g~NLY] l
GLOBALREF

INTERNAL

, Member Attributes

The following attributes can be applied to the major or minor members of
a structure:

LIKE
MEMBER
REFER
STRUCTURE
UNION

File Description Attributes

The following attributes can be applied to file constants and used in OPEN
statements:

ENVIRONMENT(option, ...)

{
INPUT }

{ RECORD [KEYED] } OUTPUT [PRINT]
STREAM UPDATE

{ DIRECT }
SEQUENTIAL

Entry Name Attributes

The following attributes can be applied to identifiers of entry points:

ENTRY [VARIABLE] [OPTIONS (VARIABLE))
[RETURNS (returns-descriptor)]

BUILTIN

VAX PL/I Language Summary E-9

Non-Data Type Attributes

The following attributes can be applied to data declarations:

ALIGNED
DIMENSION
UNALIGNED

E.3 Expressions and Data Conversions

The following table lists the categories of operators, their symbols, and
their meanings.

Operators

Category

Arithmetic
operators

Relational
(or comparison)
operators

Bit-string
(or logical)
operators

Concatenation
operator

E-10 VAX PL/I language Summary

Symbol

+

I
*
**
>
<

.>

. <

>=
<=
· (prefix)
&
I
&:
I:
· (infix)

II

Operation

Addition or prefix plus
Subtraction or prefix minus
Division
Multiplication
Exponentiation

Greater than
Less than
Equal to
Not greater than
Not less than
Not equal to
Greater than or equal to
Less than or equal to

Logical NOT
Logical AND
Logical OR
Logical AND THEN
Logical OR ELSE
Logical EXCLUSIVE OR

String concatenation

NOTE

For any of the operators, the tilde character (-) can be used
instead of a circumflex (A), and an exclamation point (!) can be
used instead of a vertical bar (I).

The following table gives the priority of PL/I operators. Low numbers
indicate high priority. For example, the exponentiation operator ("'*) has
the highest priority (1), so it is performed first, and the OR ELSE operator
(I:) has the lowest priority (9), so it is performed last.

Precedence of Operators

Operator Priority Operator Priority

•• 1 < 5

+ (prefix) 1 .> 5

- (prefix) 1 . < 5

• (prefix) 1 = . = 5 ,

• 2 <= 5

I 2 >= 5

+ (infix) 3 & 6

- (infix) 3 I, • (infix) 7

II 4 &: 8

> 5 I: 9

The following table discusses the contexts in which PL/I performs data
conversion.

VAX PL/I Language Summary E-11

Contexts in Which PL/I Converts Data

Context

target = expression;

entry-name
RETURNS (attribute ...);

RETURN (value);

x+y
x-y
x•y
x/y
x••y
xlly
x&y
xly
x&:y
xl:y
x-y
x > y
x < y
x=y
x·=y

BINARY (expression)
BIT (expression)
CHARACTER (expression)
DECIMAL (expression)
FIXED (expression)
FLOAT (expression)
OFFSET (variable)
POINTER (variable)

PUT LIST (item, ...);

E-12 VAX PL/I Language Summary

Conversion Performed

In an assignment statement, the given
expression is converted to the data type
of the target.

In a RETURN statement, the specified
value is converted to the data type
specified by the RETURNS option on
the PROCEDURE or ENTRY statement.

In any expression, if operands do
not have the required data type,
they are converted to a common
data type before the operation. For
most operators, the data types of
all operands must be identical. A
warning message is issued in the case
of a concatenation conversion. (See
"Expression.")

PL/I provides built-in functions that
perform specific conversions.

Items in a PUT LIST statement are
converted to character-string data.

Context

GET LIST (item, ...);

PAGESIZE (expression)
LINESIZE (expression)
SKIP (expression)
LINE (expression)
COLUMN (expression)
format items A, B, E, F, and X
TAB (expression)

DO control-variable ...

parameter

INITIAL attribute

Conversion Performed

Character-string input data is converted
to the data type of the target item.

Values specified for various options to
PL/I statements must be converted to
integer values.

Values are converted to the attributes
of the control variable.

Actual parameters are converted to
the type of the formal parameter if
necessary.

Initial values are converted to the type
of the variable being initialized.

E.4 Built-In Functions

Category

Arithmetic

A built-in function reference can be used wherever a reference of the same
type is valid. The following table summarizes these functions.

Summary of PL/I Built-In Functions

Function Reference

ABS(x)

ADD(x,y,p[,q])

CEIL(x)

DIVIDE(x,y,p(,q])

FLOOR(x)

MAX(x,y)

Value Returned

Absolute value of x

Value of x+y, with precision p and scale
factor q

Smallest integer greater than or equal to x

Value of x divided by y, with precision p
and scale factor q

Largest integer that is less than or equal
to x

Larger of the values x and y

VAX PL/I Language Summary E-13

Category

Mathematical

Function Reference

MIN(x,y)

MOD(x,y)

MUL TIPL Y(x, y,p[,q])

PRECISION(x,p[,q])

ROUND(x,k)

SIGN(x)

SUBTRACT(x, y,p[,q))

TRUNC(x)

ACOS(x)

ASIN(x)

ATAN(x)

ATAN(x,y)

ATAND(x)

ATAND(x,y)

ATANH(x)

COS(x)

COSD(x)

COSH(x)

EXP(x)

LOG(x)

LOGlO(x)

LOG2(x)

SIN(x)

E-14 VAX Pl/I Language Summary

Value Returned

Smaller of the values x and y

Value of x modulo y

Value of x•y, with precision p and scale
factor q

Value of expression x, with precision p
and scale factor q

Value of x rounded to k digits

-1, 0, or 1 to indicate the sign of x

Value of x-y, with precision p and scale
factor q

Integer portion of x

Arc cosine of x (angle, in radians, whose
cosine is x)

Arc sine of x (angle, in radians, whose
sine is x)

Arc tangent of x (the angle, in radians,
whose tangent is x)

Arc tangent of x (the angle, in radians,
whose sine is x and whose cosine is y)

Arc tangent of x (the angle, in degrees,
whose tangent is x)

Arc tangent of x (the angle, in degrees,
whose sine is x and whose cosine is y)

Hyperbolic arc tangent of x

Cosine of radian angle x

Cosine of degree angle x

Hyperbolic cosine of x

Base of the natural logarithm, e, to the
power x

Logarithm of x to the base e

Logarithm of x to the base 10

Logarithm of x to the base 2

Sine of the radian angle x

Category

String-Handling

Function Reference

SIND(x)

SINH(x)

SQRT(x)

TAN(x)

TAND(x)

TANH(x)

BOOL(x,y,z)

COLLATE()

COPY(s,c)

EVERY(s)

HIGH(c)

INDEX(s,c[,p])

LENGTH(s)

LOW(c)

MAXLENGTH(s)

REVERSE(s)

SEARCH(s,c[,p])

SOME(s)

STRING(s)

SUBSTR(s,i[,j])

Value Returned

Sine of the degree angle x

Hyperbolic sine of x

Square root of x

Tangent of the radian angle x

Tangent of the degree angle x

Hyperbolic tangent of x

Result of Boolean operation z performed
on x and y

ASCII character set

c copies of specified string, s

Boolean value indicating whether every
bit in bit string s is '1 'B

String of length c of repeated occurrences
of the highest character in the collating
sequence

Position of the character string c within
the string s, starting at position p

Number of characters or bits in the string
s

String of length c of repeated occurrences
of the lowest character in the collating
sequence

Maximum length of varying string s

Reverse of the source character string or
bit string

Position of the first character in s, starting
at position p, that is found in c

Boolean value indicating whether at least
one bit in bit strings is 'l'B

Concatenation of values in array or
structure s

Part of string s beginning at i for j
characters

VAX PL/I Language Summary E-15

Category Function Reference Value Returned

TRANSLATE(s,c[,d]) String s with substitutions defined in c
and d

TRIM(s[,e,f]) String s with all characters in e removed
from the left, and all characters in f
removed from the right

VERIFY(s,c[,p]) Position of the first character in s, starting
at position p, which is not found in c

Conversion BINARY(x[,p[,q]]) Binary value of x with precision p and
scale factor q

BIT(s[,l]) Value of s converted to a bit string of
length I

BYTE(x) ASCII character represented by the integer
x

CHARACTER(s[,l]) Value of s converted to a character string
of length 1

DECIMAL(x[,p[,q]]) Decimal value of x

DECODE(c,r) Fixed binary value of the character string
c converted to a base r number

ENCODE(i,r) Character string representing the base r
number that is equivalent to the fixed
binary expression i

FIXED(x, p[,q]) Fixed arithmetic value of x

FLOAT(x,p) Floating arithmetic value of x

INT(x(,p(,l])) Signed integer value of variable x, located
at position p with length 1

POSINT(x[,p(,l]]) Unsigned integer value of variable x,
located at position p with length I

RANK(c) Integer representation of the ASCII
character c

UNSPEC(x[,p[,l]]) Internal coded form of x, located at
position p with length 1

Condition-Handling ONARGSLIST() Pointer to argument lists of exception
condition

E-16 VAX PL/I Language Summary

Category Function Reference Value Returned

ONCHAR() Character that caused the CONVERSION
condition to be raised

ONCODE() Error code of the most recent run-time
error

ONFILE() Name of file constant for which the most
recent END FILE, ENDP AGE, KEY, or
UNDEFINEDFILE condition was signaled

ONKEY() Value of key that caused KEY condition

ONSOURCE() Field containing the ONCHAR character
when the CONVERSION condition was
raised

Array-Handling DIMENSION(x(,n)) Extent of the nth dimension of x

HBOUND(x[,n)) Higher bound of the nth dimension of x

LBOUND(x[,n]) Lower bound of the nth dimension of x

PROD(x) Arithmetic product of all the elements in
x

SUM(x) Arithmetic sum of all the elements in x

Storage ADDR(x) Pointer identifying the storage referenced
by x

ALLOCATION(x) Number of existing generations for
controlled variable x

EMPTY() An empty area value

NULL() A null pointer value

OFFSET(p,a) An offset into the location in area a
pointed to by pointer p

POINTER(o,a) A pointer to the location at offset o within
area a

SIZE(x) Number of bytes allocated to variable x

Timekeeping DATE() System date in the form YYMMDD

DATETIME() System date and time in the form
CCYYMMDDHHMMSSXX

TIME() System time of day in the form
HHMMSSXX

VAX PL/I Language Summary E-17

Category

File Control

Preprocessor

Function Reference

LINENO(x)

PAGENO(x)

ABS(x)

BYTE(x)

COPY(s,c)

DATE()

ERROR()

INDEX(s,c[,p])

INFORM()

LENGTH(s)

LINE()

MAX(x,y)

MIN(x,y)

MOD(x,y)

RANK(c)

REVERSE(s)

SEARCH(s,c[,p])

SIGN(x)

SUBSTR(s,i[,j])

TIME()

E-18 VAX PL/I Language Summary

Value Returned

Line number of the print file identified by
x

Page number of the print file identified by
x

Absolute value of x

ASCII character represented by integer x

c copies of specified string s

Compilation date in the form YYMMDD

Count of user-generated diagnostic error
messages

Position of the character string c within
the string s, starting at position p

Count of user-generated diagnostic
informational messages

Number of characters or bits in the string
s

Line number in source program that con­
tains the end of the specified preprocessor
statement

Larger of the values x and y

Smaller of the values x and y

Value of x modulo y

Integer representation of the ASCII
character c

Reverse of the source character string or
bit string

Position of the first character in s, starting
at position p, that is found in c

-1, 0, or 1 to indicate the sign of x

Part of string s beginning at i for j
characters

Compilation time of the day in the form
HHMMSSXX

Category Function Reference

TRANSLATE(s,c(,d])

TRIM(s[,e,f])

VARIANT()

VERIFY(s,c[,p])

WARN()

Miscellaneous ACTUALCOUNT()

DESCRIPTOR(x)

PRESENT(p)

REFERENCE(x)

VALID(p)

VALUE(x)

Value Returned

String s with substitutions defined in c
and d

String s with all characters in e removed
from the left and all characters in f
removed from the right

String result representing the value of
/VARIANT of the PLI command qualifier

Position of the first character in s, starting
at position p, which is not found in c

Count of user-generated diagnostic
warning messages

Number of parameters the current proce­
dure was called with

Forces its argument to be passed by
descriptor to a non-PL/I procedure

Boolean value indicating whether parame­
ter p was specified in a call

Forces its argument to be passed by
reference to a non-PL/I procedure

Boolean value, indicating whether the
pictured variable p has a value consistent
with its picture specification

Forces its argument to be passed by value
to a non-PL/I procedure

VAX PL/I Language Summary E-19

E.5 Pseudovariables

VAX PL/I has the following pseudovariables:

INT
ONSOURCE
ON CHAR
PAGENO
POSINT
STRING
SUBS TR
UNSPEC

A pseudovariable can be used, in certain assignment contexts, in place of
an ordinary variable reference. For example:

SUBSTR(S,2,1) = 'A';

This assigns the character 'A' to a 1-character substring of S, beginning at
the second character of S.

A pseudovariable can be used wherever the following three conditions are
true:

• The syntax specifies a variable reference.

• A value is explicitly assigned to the variable.

• . The context does not require the variable to be addressable.

Pseudovariables are used most often in the following locations:

• The left side of an assignment statement

• The input target of a GET statement

Note that a pseudovariable cannot be used in preprocessor statements or
in an argument list. For example:

CALL P(SUBSTR(S,2,1));

Here, SUBSTR is interpreted as a built-in function reference, not as a
pseudovariable. The actual argument passed to procedure P is a dummy
argument containing the second character of string S.

E-20 VAX PL/I Language Summary

E.6 Built-In Subroutines

The following table summarizes the file-handling built-in subroutines.

Summary of File-Handling Built-In Subroutines

Subroutine

DISPLAY

EXTEND

FLUSH

FREE

NEXLVOLUME

RELEASE

REWIND

SPACEBLOCK

Function

Returns information about a file.

Allocates additional disk blocks for a file.

Requests the file system to write all buffers onto disk to
preserve the current status of a file.

Unlocks all the locked records in a file.

Begins processing the next volume in a multivolume tape
set.

Unlocks a specified record in a file.

Positions a file at its beginning or at a specific record.

Positions a file forward or backward a specified number of
blocks.

VAX PL/I also has the condition-handling subroutine RESIGNAL. This
subroutine allows an ON-unit to upass" on a condition signal and causes
the condition to be resignaled for handling by a different ON-unit.

VAX PL/I Language Summary E-21

A
ABS built-in function• 110
Absolute values

computing• 110
ABS preprocessor built-in function• 11 O, 507
Access mode• 321
ACOS built-in function• 111
%ACTIVATE statement• 111 , 599, E-1

NORESCAN option• 111, 437
RESCAN option• 111 , 569

Activation
block• 179

ACTUALCOUNT built-in function• 113
ADD built-in function• 113
Addition• 114
ADDR built-in function• 115

passing pointer value• 86
using• 167

Addressable variables• 669
A format item• 107. 344
Aggregates• 35

arrays• 35, 126
structures• 41, 627

ALIGNED attribute• 116
Alignment

bit-string• 116, 175
character-string• 116, 203
of bit strings• 30

ALLOCATE statement• 116, E-1
using• 161

ALLOCATION built-in function• 118
Alternate keys• 327
AND operator • 119

INDEX

AND THEN operator• 120
ANY attribute• 85, 86, 121
ANYCONDITION condition• 122
Apostrophes

in character strings• 25
APPEND

ENVIRONMENT option• 299
AREA attribute• 123
AREA condition• 124
Areas• 122

assignment statement• 122
Argument

list
maximum number of arguments• 75
null• 73

Argument-handling functions
summary• 193

Arguments•75, 476
aggregate • 79
arrays• 76
character strings• 77
conversion • 80, 481
dummy• 79, 480
list•75, 476

for exception condition• 452
maximum number of arguments• 4 76
null• 183, 358
relationship to parameter list• 4 75
variable length• 670

matching with parameter• 79, 480
maximum number in list• 75
of built-in functions• 185
passing• 78, 4 79

arrays• 135
by descriptor• 86, 261

lndex-1

Arguments
passing (cont'd.)

by immediate value• 84
by reference• 85, 563, 564
by value• 667
forcing passing by descriptor• 87
structure • 633
to PL/I procedure• 78, 480
to subroutines or functions• 71, 514

relationship to parameter• 75, 474
specifying pointer values• 86
structures• 77

Arithmetic
built-in functions

preprocessor• 507
data

converting from other types• 221
converting to bit-string• 226
converting to character-string• 229
relational expression • 564
specifying precision • 502

functions
summary• 187, E-13

operation
addition• 114
division• 268
exponentiation • 304
multiplication • 433

operations
determining sign of a number• 590
division • 268
rounding to nearest digit• 578
subtraction• 637
ZERODIVIDE signaled • 683

operator• 462, E-10
Arithmetic data • 10

specifying precision • 23
Arrays • 35, 126

assigning values with GET statement• 40
assignment statement• 39, 134
AUTOMATIC

initialization of• 130
concatenating with STRING • 621
connected• 54, 139
declaration• 253
declaring• 36, 126

as parameters• 76

2-lndex

dimensions
determining extent• 266
determining lower bound• 4 11
determining upper bound• 373
rules for specifying•36, 129, 265

elements
referring to• 37

extent of • 36
handling

summary of functions • 191 , E-17
initializing• 38
of structures• 52, 137

referring to elements • 52
unconnected arrays• 54

order of assignment and output • 40
order of assignment to • 135
passing

to non-PL/I procedures• 87
passing as arguments• 76, 85, 135

asterisk-extent• 563
by descriptor• 86

subscripts• 37, 129
unconnected• 54, 139

ASCII character set• 141, 244, B-1
obtaining integer value • 543
obtaining string of• 206

ASIN built-in function• 141
Assignment• 65

conversion during • 65
%Assignment statement• 141, 599
Assignment statement• 59, 142, E-1

and unconnected arrays • 54
conversion during

arithmetic data • 63
specifying area variables • 122
specifying array variables • 39, 134
structure• 52, 632

Asterisk (•)
as picture character• 19, 486
in array declaration• 36

AT AN built-in function• 145
AT AND built-in function• 145
AT ANH built-in function• 146
Attributes• 146, E-8

array variables• 127
computational data type • E-8
default arithmetic • 10
factors in declaration• 252

Attributes (cont'd.)

file description• 320, E-9
specifying on OPEN • 456

for entry points• E-9
length•414
matching parameter and argument• 79
matching parameters and arguments• 480
member•E-9
noncomputational data type • E-8
non-data-type • 14 7, E-10
of structure variables • 43
scope•E-9
specifying in DECLARE statement• 249
storage • E-9
structure variables• 628

Automatic
storage• 606

AUTOMATIC attribute• 151

B
BACKUP_DATE

ENVIRONMENT option• 299
BASED attribute • 156
Based variables• 156, 157, 607

data type matching• 159
free storage• 355
locator qualifier• 422
matching

left-to-right equivalence• 160
overlay defining • 160

nonmatching references • 161
obtaining storage • 116
offset within area • 44 1
qualifying references for• 15 7
READ statement • 164
REFER option • 45

BATCH
ENVIRONMENT option• 205, 299

Begin blocks•2, 95, 168, 169, 179
effect of RETURN statement • 5 71
in ON-unit • 448
terminating• 95, 96

BEGIN statement•95, 169, E-1
B format item• 344, 345

definition • 153

Binary
fixed-point data • 11, 331
floating-point data• 13, 338

BINARY attribute• 11, 170
in floating-point declarations• 14

BIT attribute• 29, 1 71
BIT built-in function • 172
Bit strings• 27, 173

alignment•30, 175
as integers• 176
concatenation • 210
constants• 28, 173

hexadecimal • 29
maximum length• 28
octa1•29
specifying base• 29

converting • 31
from other types to• 226
to arithmetic• 64, 224
to character • 64
to character-string • 232

declaring variables• 29
derived type and precision of• 63
in relational expressions • 565
internal representation• 176
length

maximum•27
specifying • 29

locating substrings• 379
operator•425, 463, E-10
overlay defining • 259
passing as arguments

by reference • 86
by value•85

specifying length • 3 10
storage in memory• 27
unaligned

passing as arguments• 86
restrictions on use • 30

variables•29, 174
Blank

See Space
Block • 1, 178

activation• 1, 179
parent• 181
procedure invocation • 71
relationships among • 180

lndex-3

Block (cont'd.)

begin block• 95, 168, 169
begin blocks• 178
containment • 179
dynamic descendents • 181
nesting• 179
procedure blocks• 178, 517
terminating• 96, 181, 288

BLOCK_BOUNDARY_FORMAT
ENVIRONMENT option• 299

BLOCK_IO
ENVIRONMENT option• 299

BLOCK_SIZE
ENVIRONMENT option• 299

BOOL built-in function• 182
Boolean

operation
defining with BOOL • 182

test• 376
value•27, 173

Bound pair
array•36

Bounds
of array dimensions

determining lower • 4 11
determining upper• 373
rules•36, 129
specifying• 127

B picture character• 22, 489
BUCKELSIZE

ENVIRONMENT option• 299
BUILTIN attribute•73, 183
Built-in function • 185

condition in • 186
conversion• 63, 309
defining with BUil TIN attribute• 183
preprocessor• 506
result type• 185

Built-in functions• E-13
Built-in subroutine• 193

RESIGNAL• 451
BY option of DO statement• 276
BYTE built-in function • 195
BYTE preprocessor built-in function• 195, 507

4-lndex

c
Calling a procedure

non-PL/1•84, 87, 121, 667, 670, C-10
CALL statement• 69, 196, E-2

calling non-PL/I procedures• 84
passing character strings• 87

to invoke a procedure • 2
CARRIAGE_RETURN_FORMAT

ENVIRONMENT option• 299
COD (VAX Common Data Dictionary)• 209

data types• 264
COD VAX Common Data Dictionary• 262
CEIL built-in function• 197
CHARACTER attribute• 25, 198
CHARACTER built-in function• 199
Characters

picture• 18, 484, 491
substituting with TRANSLATE • 648
used for punctuation in PL/I• 4, 529

Character set
ASCII • 14 1 , B-1

obtaining strings • 206
DEC Multinational Character Set• B-1

Character strings • 24
alignment • 203
comparing with VERIFY• 673
concatenation • 2 10
constants• 25, 200

continuing on more than one line• 5, 531
converting

from other types to • 228
to arithmetic• 64, 225
to bit•64
to bit-string • 228

data• 200
declaring • 198

as parameters• 77
derived type and precision of• 63
determining length • 4 14
fixed-length• 26
initializing • 202
in relational expression• 565
internal representation • 203
length

specifying• 25
locating substrings• 379

Character strings (cont'd.)

overlay defining• 259
passing as arguments• 77

by descriptor• 87
specifying length • 3 10
variables• 25, 201
varying-length• 27, 672

Circumflex n
prefix operator• 60

CLOSE statement• 205, E-2
COLLATE

built-in function• 206
COLUMN format item• 345

definition • 206
Comma(,) picture character• 22, 489
Comments• 7, 208

rules for entering • 7, 208
Common Data Dictionary

See COD
Comparison operator•462, 530, E-10
Compatibility with PL/I standards• C-1
Compiler messages• 262

%ERROR•300
%FATAL•316
%INFORM• 380
%WARN•675

Completion
ON-unit • 450

Computational data
summary of attributes• 14 7, E-8

Computational data type attributes• E-8
Concatenation

COPY
built-in function• 233

operator•210, 463, 530, E-10
required operands• 61

CONDITION attribute • 211
CONDITION condition • 211
Condition handling

See also ON-conditions and ON-units
functions

summary• 190, E-16
ON statement • 451

Conditions
decimal overflow• 335
ENDFILE • 289
ENDPAGE • 290

Conditions (cont'd.)

FIXEDOVERFLOW • 335
handling • 301
in built-in functions • 186
integer overflow• 335
KEY•401
OVERFLOW• 467
resignal • 569
signal•590
STRINGRANGE • 626
UNDEFINEDFILE • 654
UNDERFLOW• 656
VAX CONDITION• 673
ZERODIVIDE • 683

Connected array• 54, 139
Connected arrays

in assignment statement • 134
Constants • 212

bit-string• 28, 173
character-string• 25, 200
entry• 82, 294

external • 82
file• 318
fixed-point decimal • 12
floating-point• 13, 338
in argument list• 79, 480
integer• 11, 389
label• 99, 406
label array• 100, 406

Containment• 5 7, 179, 582
CONTIGUOUS

ENVIRONMENT option• 299
CONTIGUOUS_BESL TRY

ENVIRONMENT option• 299
CONTROLLED attribute • 213
Controlled DO statement• 92, 275
Controlled variables • 213

obtaining storage• 116
Conversion

ASCII to integer• 543
CONVERSION condition• 216
Conversions• 66, 216, 218

arithmetic to arithmetic • 222
arithmetic to bit-string• 226
arithmetic to character-string • 229
bit-string to arithmetic• 224
bit-string to character-string• 232
character-string to arithmetic• 225

lndex-5

Conversions (cont'd.)

character-string to bit-string• 228
integer to ASCII• 195
of argument• 80, 481
offset to pointer • 233
of operands • 63, 306
performed by VAX

PL/I• 0-6
pictured to arithmetic• 224
pictured to bit-string• 228
pictured to character-string• 228
pointer to offset• 233
summary of functions• 189. E-16
to arithmetic• 221
to bit-string• 172, 226
to character-string• 199, 228
to decimal• 246
to fixed point• 330
to floating point• 337
to picture • 232

Conversions to VAX PL/I• D-1
COPY built-in function• 233
COPY preprocessor built-in function• 233. 507
COS built-in function• 234
COSD built-in function• 234
COSH built-in function• 235
CREATION_DATE

ENVIRONMENT option• 299
Credit (CR) picture character• 23
CURRENLPOSITION

ENVIRONMENT option• 299
Current record• 551

D
Data•6

conversion•66, 216, 218
internal representation• 391

Data conversions• E-10
Data types• 9, 236

arguments
passed by descriptor • 86
passed by immediate value • 84
passed by reference • 85

arithmetic • 10

6-lndex

converting to nonarithmetic • 64
default attributes• 10

Data types
arithmetic (cont'd.)

default precision • 23
fixed-point binary• 11
precision of• 23

bit-string• 27, 173
character-string• 24, 200
computational• 9, 236
conversion between• 62
derived• 63
entry• 82, 294
file• 317
fixed-point binary• 11, 331
fixed-point decimal• 11, 333
floating-point • 13
for COD declarations• 264
identical• 24 1
nonarithmetic

converting to arithmetic• 64
noncomputational • 9, 23 7

in relational expression• 565
picture• 15, 481
pointer• 495
summary•9

DATE built-in function• 242
DATE preprocessor built-in function• 242, 507
DA TETIME built-in function• 243
DATETIME preprocessor built-in function• 243,

508
Day of month

obtaining current• 242, 243
%DEACTIVATE statement• 244, 599, E-2
Debit (DB) picture character• 23
Decimal

data
declaring • 245
FIXEDOVERFLOW • 335
fixed-point• 333
floating overflow• 467
floating-point• 338
floating underflow• 656

DECIMAL attribute• 245
in floating-point declarations• 14

DECIMAL built-in function • 246
Decimal data

fixed-point data• 11
floating-point data • 13

Decimal place
in picture• 18, 485

Declaration• 55, 238, 247
array• 36, 253
arrays• 126
initializing variables in• 56
more than one name in a DECLARE • 252
of variables with same attributes• 252
scope of• 57
simple•250
structure• 42, 254, 627

level numbers• 41
%DECLARE statement• 248, 600, E-2
DECLARE statement• 249, E-2

array declarations • 126
DEC Multinational Character Set• 244, B-1
DECODE built-in function• 255
DECODE preprocessor built-in function• 255, 507
DEFAUL LFILE_NAME

ENVIRONMENT option• 299, 459
Default attributes

arithmetic • 10
Defaults

PL/I ON-unit• 446
DEFERRED_ WRITE

ENVIRONMENT option• 299
DEFINED attribute• 256
Defined variables• 257, 608

specifying position in base • 501
DELETE

ENVIRONMENT option• 205, 299
Delete

records• 259
DELETE statement• 259, 317, E-2
Derived type• 63, 306

of bit and character strings • 63
Descendents

dynamic
of blocks • 181 , 44 7

Descriptor
argument passing • 86
data types created for • 86

DESCRIPTOR attribute• 261
DESCRIPTOR built-in function• 261

specifying in argument• 86
using •87

Diagnostic messages• 262
%ERROR•300

Diagnostic messages (cont'd.)

%FATAL•316
%INFORM• 380
user-generated • 664
%WARN•675

%DICTIONARY statement• 262, 600, E-2
DIMENSION attribute• 265
DIMENSION built-in function • 266
Dimensions

array of structures
rules•53

arrays of structures
rules• 138

rules for specifying• 36, 129
DIRECT attribute• 267, 320, 456
DISPLAY built-in subroutine• 194, 267
DIVIDE built-in function• 268
Division• 268

controlling precision • 268
ZERODIVIDE condition• 683

Documentation
program • 7, 208

DO-group• 270
nesting• 270
termination• 96, 288

Dollar ($) picture character• 20
Dollar sign ($)

picture character• 488
%DO statement• 269, 600, E-3
DO statement• 89, 271, E-3

controlled DO• 92, 275
logic•277

DO REPEAT• 94
example • 421
logic•280

DO UNTIL•91, 274, 662
DO WHILE• 90, 273
format•271
REPEAT option• 279
simple• 90, 271

Double-precision floating point
range of precision • 340

Drifting picture character• 20, 488
Dummy argument•79, 480

forcing creation of• 79
Dynamic descendents

of blocks • 181 , 44 7

lndex-7

E
EDIT option

GET statement• 360
PUT statement • 532

E format item • 345
definition • 282

Elements
array• 36, 253

referring to• 37
%ELSE keyword• 285
Embedded preprocessor

See Preprocessor• 503
Empty argument list• 73, 358
EMPTY built-in function• 508
ENCODE built-in function• 287
Encoded-sign picture characters • 20
ENCODE preprocessor built-in function• 287. 507
ENDFILE condition• 289

signaled• 546
ENDPAGE condition• 290

signaled • 4 7 3
%END statement• 288, 600, E-3
END statement•96, 288, 513, E-3

terminating subroutine or function • 70
Entry

constants• 82, 294
data•294

attributes • E-9
in relational expressions • 565
internal representation • 296
VARIABLE attribute• 670

data type• 82
points

alternate• 68, 29 7
ENTRY attribute• 292
invoking • 71
multiple• 68, 515
procedure• 71
specifying attributes of return value• 5 71
specifyinging attributes of return value• 73

values•295
variables• 83, 295

ENTRY attribute• 82, 292
declaring non-PL/I procedures• 84

Entry constants • 82
external • 82

8-lndex

Entry constants
external (cont'd.)

declaring • 82
ENTRY statement•68, 297, E-3

RETURNS option• 73
Entry variables • 83
ENVIRONMENT attribute• 298, 324, 456

CLOSE options• 205
ERROR condition • 302

determining error status value • 453
signaled• 545, 677

by default ON-unit • 446
in assignment to pictured variable • 16

Error handling
of file-related error• 454
ONCHAR built-in function• 452
ONCODE built-in function• 453
ON condition• 443
ONSOURCE built-in function • 455

Error messages• 262, 300
ERROR preprocessor built-in function • 301 , 508
Errors

arithmetic operations
dividing by zero • 683

at run-time
conversion • 65

compiler
implicit conversion• 63, 65

files
handling opening error• 654

handling • 301
handling VAX-specific conditions• 673

%ERROR statement• 300, 600, 664, E-3
Evaluation

of built-in functions• 185
of expression• 62, 306

EVERY built-in function• 303
Exclusive OR • 183
EXCLUSIVE OR operator• 303
EXP built-in function • 304
EXPIRATION_DATE

ENVIRONMENT option• 299
Exponent

floating-point data • 13
Exponentiation • 304
Expressions• 61, 304, E-10

area• 123
bit-string data• 565

Expressions (cont'd.)

character-string data• 565
conversion

of operands• 63, 306
converted precision• 306, 307
derived type• 63, 306
entry data • 565
evaluation• 62, 306
file data • 566
in argument list• 79, 480
label data • 566
logical• 425
noncomputational data • 565
offset variable in• 442, 566
pointer variable in• 496, 566
precedence of operations• 463, E-11
relational • 564
restricted • 569
restricted integer• 37
restricted integers• 570
using as subscripts• 37

EXTEND built-in subroutine• 194, 309
EXTENSION_SIZE

ENVIRONMENT option •299
Extensions to standard PL/I • C-10
Extents • 310

array•36, 130, 253
determining • 266
structure members • 43

External
procedures• 310, 311, 511
variable • 311

EXTERNAL attribute • 310
External procedures• 2, 80

F
FASLDELETE option

DELETE statement • 260
Fatal messages • 316
%FATAL statement•316, 600, 664, E-3
F format item • 345

definition • 3 13
Fields•317
File•317

access mode • 321
attributes• 320, 456

File
attributes (cont'd.)

DIRECT•267
INPUT•384
KEYED•403
merged at open • 458
OUTPUT•467
PRINT•509
RECORD•549
SEQUENTIAL• 589
STREAM•610
UPDATE•663

closing • 205
constant • 318
data

in relational expression • 566
VARIABLE attribute• 670

delete record• 259
determining current page number•472
indexed sequential• 327
internal representation • 319
key error • 401
opening • 45 7

error condition • 654
OPEN statement• 456
organization• 324
printing file • 509
read•544
record• 550
reference• 324
relative• 326
sequential• 325, 589
source

%INCLUDE text• 377
specifying line size• 417
specifying page size• 473
stream• 610
updating•575, 663
variable • 3 18
writing• 677

FILE_ID
ENVIRONMENT option• 299

FILE_ID_TO
ENVIRONMENT option• 299

FILLSIZE
ENVIRONMENT option• 299

FILE attribute • 319

lndex-9

Files
description attributes• E-9

File specifications
defining• 323
for error• 454
specifying in OPEN • 64 7

FINISH condition• 328
signaled

STOP statement • 70, 103
FIXED_CONTROL_FROM option

REWRITE statement• 5 76
WRITE statement• 678

FIXED_CONTROL _SIZE
ENVIRONMENT option• 299

FIXED_CONTROL _SIZE_ TO
ENVIRONMENT option• 299

FIXED_CONTROL option
READ statement• 546

FIXED_LENGTH_RECORDS
ENVIRONMENT option• 299

FIXED attribute• 11, 329
FIXED built-in function• 330
Fixed-length

character-strings • 201
FIXEDOVERFLOW condition• 335

signaled• 332, 389
assignment to pictured variable• 16, 18
exceeding maximum integer value • 11

Fixed-point data
binary • 11 , 331

conversion • 223
internal representation • 332
interpreting as bit string • 28

decimal • 11, 333
constant• 12, 334
internal representation • 335
precision • 12
range of precision• 334
scale factor• 12

declaring• 329
overflow condition • 335

FLOAT attribute• 336
FLOAT built-in function• 337
Floating-point data • 13, 338

constant• 13, 338
declare• 336
default precision • 340

10-lndex

Floating-point data (cont'd.)

internal representation• 341
OVERFLOW condition • 467
range of values • 14
UNDERFLOW condition• 656
using in expressions • 14

FLOOR built-in function• 343
FLUSH built-in subroutine• 194, 343
Format

of source program• 7, 527
Format items • 343

data•346
iteration factor• 34 7
list• 348, 354
repetition of• 34 7
summary• 344

Format specification • 34 7
list•348

FORMAT statement• 354, E-3
label restriction• 100, 406

FREE built-in subroutine• 194, 355
FREE statement• 355, E-3
FROM option

REWRITE statement• 575
WRITE statement• 677

Functions•67, 72, 357, 510
built-in• 185, E-13
external • 80

G

internal and external • 511
invoking procedure with • 2
invoking with no arguments• 73, 358
reference• 357
references to• 72
RETURN statement• 5 70
specifying attributes of return value• 73, 571
terminating • 70, 513
user-written

requirements• 72

GET statement • 317, 359, E-4
assigning values to array elements• 40
conversion of values• 65
execution of • 612
forms•359
GET EDIT• 360

GET statement (cont'd.)

GET LIST • 363
GET SKIP• 367
options• 362, 365

G-floating format
range of precision • 340

GLOBALDEF attribute • 311 , 368
GLOBALREF attribute • 311, 369
%GOTO statement•369, 600, E-4
GOTO statement• 99, 370, E-4

nonlocal GOTO• 70, 99, 372
terminating subroutine or function • 70
terminating subroutines or function • 513

GROUP _PROTECTION
ENVIRONMENT option• 299

Groups

H

terminating • 96
termination • 288

HBOUND built-in function• 373
H-floating format

range of precision • 340
HIGH built-in function• 373

Identical data types • 24 1
Identifiers• 5, 374

associating with variables • 6
rules for forming• 5, 374

IDENT option•374
PROCEDURE statement• 525

%IF statement• 375, 600, E-4
IF statement• 97. 376, E-4

nesting• 97, 377
IGNORE_LINE_MARKS

ENVIRONMENT option• 299
Immediate containment• 179
Implementation-defined values• C-12
%INCLUDE statement•377, 600, E-4

rules for file specifications• 378
INDEX _NUMBER

ENVIRONMENT option• 299
INDEX _NUMBER option• 328

DELETE statement• 260

INDEX_NUMBER option (cont'd.)

READ statement• 546
REWRITE statement• 576

INDEX built-in function• 379
INDEXED

ENVIRONMENT option• 299
Indexed sequential files• 324, 327

key
error handling • 401

KEYED attribute• 403
ONKEY built-in function • 454

Index numbers • 328
INDEX preprocessor built-in function• 507
Infix operator• 60, 461
Informational messages• 380
INFORM built-in function• 380
INFORM preprocessor built-in function• 380, 508
%INFORM statement• 380, 600, 664, E-4
INITIAL_FILL

ENVIRONMENT option• 300
INITIAL attribute• 56, 381

applying to arrays • 130
with arrays • 38
with structures • 43

Initialize
arrays• 130
structures• 632

Input
default • 638
records • 550

READ statement • 544
stream•612

GET statement • 359
Input/Output

area• 123
format list• 354
general discussion • 384
record files• 550
statements

DELETE•259
GET•359
PUT•532
READ•544
REWRITE• 575
WRITE•677

stream files• 611
terminal • 642

INPUT attribute• 320. 384, 456

lndex-11

Insertion of picture character• 22, 489
INT built-in function• 385
Integer constants

representation • 11
Integer data

overflow condition• 335
Integers• 389

fixed-point binary • 11
fixed-point decimal • 11
interpreting as bit strings• 28
maximum values • 11
restricted expressions • 5 70

Internal
procedures• 390, 511
representation

with UNSPEC • 660, 661
variables• 399

INTERNAL attribute• 390
Internal procedures • 2
Interrupts

handling with ON statement• 451
INT pseudovariable • 387
I picture character• 20
heration factor• 400

K

INITIAL attribute• 38, 382
initializing array• 132
picture• 18, 485
with format item • 34 7

KEY condition • 401
determining key that caused • 454
signaled• 260, 545, 576, 678

KEYED attribute• 320, 403, 456
KEYFROM option• 326

WRITE statement• 677
KEY option• 326

DELETE statement• 260
READ statement• 545
REWRITE statement • 5 75

Keys
alternate• 327
indexed sequential file• 327
primary• 327
relative files• 326

12-lndex

KEYTO option
READ statement • 546

Keywords•4, 404, A-1
not supported

• D-2, D-4
recognition from context • 4

L

LABEL attribute• 101, 411
Label constant

declaring implicitly• 99
Labels • 3, 99, 406

array constant• 100, 406
constant• 99, 406
data

in relational expression • 566
VARI ABLE attribute• 670

preprocessor• 409
restrictions • 4 10
subscripted• 100, 406
transferring control to • 99
value•408

operations • 408
variable • 101 , 409

declaring • 4 11
internal representation • 4 10

LBOUND built-in function• 411
LEA VE statement• 102, 411, E-4
Left-to-right equivalence

matching based variables by• 160
Length attribute • 4 14
LENGTH built-in function• 414

using• 27
Length of strings

determining • 4 14
LENGTH preprocessor built-in function• 414
Level numbers• 41, 627

rules for specifying • 42
LIKE attribute• 44, 414

using• 44, 630
Line end character• 5, 531
LINE format item• 345

definition • 4 15
LINENO built-in function• 417

Line numbers
of files

determining• 4 17
LINE option

PUT statement• 536
LINE preprocessor built-in function• 417, 508
Line size

default• 418
specifying • 4 1 7

LINESIZE option• 417, 456
LIST Attribute• 418
Listing control

statements• 419, 436, 600
LIST option

GET statement • 363
PUT statement• 537

List processing • 420
Lists

of declarations• 252
%LIST statement• 419, 600
Locator qualifiers• 15 7, 162, 422
LOG 10 built-in function • 424
LOG2 built-in function• 424
Logarithm

computing base 10•424
computing base 2 • 424
computing natural• 424

LOG built-in function• 424
Logical expressions• 425

evaluation• 426
Logical operations

NOT•60
Logical operator•425, 463, 530, E-10
LOW built-in function• 427
Lowercase and uppercase letters

in identifier• 5, 374

M
MAIN option• 428

PROCEDURE statement• 525
Main procedure • 2
Major structure• 4 1

restriction on INITIAL• 43
Major structures• 627

restriction on INITIAL• 632
Mantissa• 13

MATCH_GREATER_EQUAL option
DELETE statement• 260
REWRITE statement• 576

MATCH-GREATER option
DELETE statement• 260
REWRITE statement• 576

MATCH_NEXT_EQUAL option
DELETE statement• 260
READ statement• 546
REWRITE statement• 576

MATCH _NEXT option
DELETE statement• 260
READ statement • 546
REWRITE statement• 576

Matching
based variable references• 159
parameter and argument• 79, 480

Mathematical functions
evaluation of• 185
summary• 187, E-14

MAX built-in function• 429
MAXIMUM_RECORD_NUMBER

ENVIRONMENT option• 300, 326
MAXIMUM_RECORD_SIZE

ENVIRONMENT option• 300
MAXLENGTH built-in function• 429

using•27
MAX preprocessor built-in function • 428, 507
MEMBER attribute • 430
Member attributes• 44, E-9
Memory

locating
variables in • 11 5

Merging file attributes• 320
Messages

compiler
implicit conversion• 65
suppressing warning• 65

diagnostic• 262, 300, 316, 380, 675
Migration notes• D-1
MIN built-in function• 430
Minor structure • 4 1

restriction on INITIAL• 43
Minor structures• 627
MIN preprocessor built-in function• 430, 507
Minus sign (-)

prefix operator• 60

lndex-13

Minus sign (-)
picture character• 20, 488

MOD built-in function• 431
MOD preprocessor built-in function• 431, 507
Month

obtaining current• 242, 243
MUL TIBLOCK_COUNT

ENVIRONMENT option• 300
MUL TIBUFFER_COUNT

ENVIRONMENT option• 300
Multinational character set• 244, B-1
Multiple entry points• 68, 515
Multiplication• 433
MULTIPLY built-in function • 434

N
Names

declaration• 249
rules for identifiers• 5, 374
scope• 57, 582

Nesting
DO-group• 270
IF statement• 97, 377
%INCLUDE statement• 378
of blocks• 179
SELECT statements• 588

NEXT_VOLUME built-in subroutine• 194, 436
Next record• 551
Nine (9) picture character• 19, 486
%[NO]LIST statement• E-5
NO_SHARE

ENVIRONMENT option• 300
%NOLIST statement• 436, 600
Noncomputational data type attributes• E-8
Nonlocal GOT0•70, 99, 372, 439, 513
Nonmatching based variable references• 161
NONRECURSIVE option• 437

ENTRY statement• 297
PROCEDURE statement• 525

NONVARYING attribute• 437
NORESCAN option• 437
NOT operator•60, 438
/NOW ARNINGS qualifier• 65
Null argument list• 73, 358
NULL built-in function• 439
%Null statement• 439, 599, E-5

14-lndex

Null statement• 103, 440, E-5
as target of ELSE • 97
in ON-unit • 448
multiple labeled • 99

Numbers
level•41

0
OFFSET

attribute • 442
OFFSET built-in function• 443
Offsets • 44 1

converting to pointer• 233, 497
data

in relational expressions • 566
processing linked list • 421
specifying in locator qualifier• 423

ONARGSLIST built-in function• 452
ONCHAR built-in function• 452
ONCHAR pseudovariable • 453
ONCODE built-in function• 402, 453, 655
ON conditions • 443

ANYCONDITION • 122
ENDFILE • 289
ENDPAGE • 290
ERROR•302
FINISH•328
FIXEDOVERFLOW • 335
KEY•401
OVERFLOW• 467
UNDEFINEDFILE • 654
UNDERFLOW• 656
VAXCONDITION • 673
ZERODIVIDE • 683

ONFILE built-in function• 290, 291, 402, 454, 655
ONKEY built-in function• 402, 454
ONSOURCE built-in function• 455
ONSOURCE pseudovariable • 455
ON statement• 451, E-5
ON-units

argument list for exception• 452
completion • 450
default PL/I• 446
invalid statements in • 448
multiple statements in • 96
restoring default handling • 5 7 4

ON-units (cont'd.)

scope•447
to handle any condition • 122

Opening a file • 45 7
file positioning • 461

OPEN statement•320, 456, E-5
Operand

conversion of• 306
Operands• 61

conversion of• 62
Operation

addition • 114
Boolean

defining • 182
division• 268

Operations
arithmetic • 10, 125

data type of result • 63
required operands • 61

bit-string• 425
comparison

required operands • 61
concatenation

required operands • 61
exponentiation • 304
logical

AND• 119
AND THEN• 120
EXCLUSIVE OR operator• 303
NOT•438
OR•465
OR ELSE•466
required operands • 61

multiplication • 433
relational

required operands • 61
subtraction• 637

Operators • 60, 461
arithmetic • 125
comparison

See relational
concatenation • 210
infix•60
locator qualifier • 422
logical • 425
precedence• 463, E-11
prefix•60
relational • 564

OPTIONAL attribute• 464
OPTIONS (VARI ABLE)

in subroutine declaration • 69
OPTIONS option

OR

DELETE statement• 260
ENTRY attribute• 670
GET statement• 362, 365
PROCEDURE statement• 525
PUT statement• 535
READ statement• 546
REWRITE statement• 576
WRITE statement• 678

exclusive• 183
operator• 465

Order
of array assignment • 135

OR ELSE operator• 466
OTHERWISE clause• 98, 585
OTHERWISE keyword• 466
Output

default• 639
PUT statement • 532
records • 550
REWRITE statement• 575
stream• 615
to line printer• 509
to terminal• 509
WRITE statement• 677

OUTPUT attribute•320, 456, 467
Overflow

fixed-point data• 335
floating-point data• 467

OVERFLOW condition • 467
Overlay defining

match based variables by • 160
POSITION attribute • 501
rules for• 259

OWNER_GROUP
ENVIRONMENT option• 300

OWNER_ID
ENVIRONMENT option• 300

OWNER_MEMBER
ENVIRONMENT option• 300

OWNER_PROTECTION
ENVIRONMENT option• 300

lndex-15

p

Padding
bit-string• 226
character-string• 228

PAGE format item• 346
definition• 4 72

PA GENO built-in function• 4 7 2
PAGENO pseudovariable • 472
Page numbers

current• 472
PAGE option

PUT statement• 540
Pages

handling end-of-page condition• 290
Page size

default• 473
specifying •473

PAGESIZE option• 456, 4 73
%PAGE statement• 4 71, 601, E-5
PARAMETER attribute• 4 73
Parameter descriptors• 75

VALUE attribute in• 84
Parameters• 75, 474

arrays• 76
character strings• 77
declaring• 76
list

relationship to argument list• 4 75
specifying in PROCEDURE statement• 525

matching with argument• 79, 480
maximum number allowed• 76, 477
relationship to argument• 75, 474
rules for specifying• 76
storage for• 609
structures• 77, 4 78, 633

Parent activation • 181
Parentheses

enclosing procedure argument• 79, 481
Passing

arguments to PL/I procedure• 480
Period (.) picture character• 22, 489
P format item • 346

definition• 469
example • 536

Picture• 15
PICTURE attribute• 491

16-lndex

Picture characters • 18
asterisk (•) • 19
8•22
comma (,) • 22
credit (CR) • 23
debit (DB) • 23
dollar ($) • 20
encoded-sign• 20
1•20
minus (-) • 20
nine (9)• 19
period (.) • 22
plus(+)• 20
R•20
s•20
slash (/) • 22
T•20
v• 10
Y• 19
Z•19

Pictures• 481
asterisk (•) character• 486
B character• 489
character • 484
comma (,)character• 489
converting from other types• 232
converting to arithmetic• 224
converting to bit-string• 228
credit (CR) character• 490
debit (DB) character• 490
dollar ($) character• 488
drifting character• 488
editing by• 483
encoded-sign character• 487
example• 536
extracting value from• 484
format item• 469
I character• 487
input with READ• 666
insertion character• 489
iteration factor in• 485
minus (-) character• 488
nine (9) character• 486
period (.) character• 489
plus (+) character• 488
R character• 487
S character• 488

Pictures (cont'd.)

slash (/) character• 489
specification

summary of characters• 491
T character• 487
validating• 666
V character• 485
Y character • 486
Z character• 486

pictures
character • 18
drifting characters• 20
extracting value from• 1 7
insertion characters• 22

Picture specification • 15
PL/I keywords not supported

summary•D-2, D-4
PL/I standard

compatibility with• C-1
extensions to• C-10

Plus sign (+)
picture character• 20. 488
prefix operator • 60

POINTER attribute• 497
POINTER built-in function• 497
Pointers

converting to offset• 233, 443
data•495

in relational expression• 566
internal representation• 497

passing as actual arguments• 86
setting values

ADDR built-in function• 115
ALLOCATE statement• 116
SET option of READ• 545

valid values• 158
variable• 497

setting to null value• 439
POSINT built-In function• 498
POSINT pseudovariable • 500
Position (file)

following DELETE• 260
following READ• 546
following REWRITE• 576
following WRITE• 678
record files• 551
stream 1/0 • 617

Position (string)
stream 1/0 • 619

POSITION attribute• 501
Precedence of operations• 463, E-11
PRECISION

attribute• 23
Precision

arithmetic data types• 23
default• 23
fixed-point decimal• 12, 334
for floating-point data • 340
pictured variables

defined by drifting characters• 21
PRECISION attribute• 502
Prefix operator• 60, 461
Preprocessor • 503

assignment• 14 1
built-in functions• 506
label•409
statements• 599

%ACTIVATE• 111
%DEACTIVATE• 244
%DECLARE• 248
%D0•269
%END•288
%ERROR•300
%FATAL•316
%GOT0•369
%1F•375
%INFORM• 380
%Null•439
%PAGE•471
%PROCEDURE • 517
%RETURN• 517
%SBTTL•580
%TITLE•647
%WARN•675

Preprocessor variables • 503
PRESENT built-in function• 508
Primary keys• 327
PRINT attribute• 320, 456, 509
PRINTER_FORMA T

ENVIRONMENT option• 300
Printers

files
handling end-of-page condition • 290

output• 509

lndex-17

Print file• 509
declaring • 509

Priority of operations• 463, E-11
Procedures•2, 67, 510

blocks• 178, 517
declarations• 68, 524

outside of procedures• 55, 251
designating main• 428
entry points• 71
external• 2, 80, 311

declaring• 310
IDENT option• 374, 525
internal• 2, 390
internal and external • 511
invoking• 2

with CALL statement• 69, 196
with function reference• 72

main procedure• 2
parameters of• 75, 474
recursion• 517
returning from• 570
terminating• 70, 513

END statement• 96, 288
STOP statement • 103, 605

using• 67
%PROCEDURE statement• 51 7, 601, E-5

STATEMENT option• 522
PROCEDURE statement• 68, 524, E-6

label restriction• 100, 406
RETURNS option• 73
to define a procedure• 2

PROD built-in function• 526
Programs

controlling execution• 89
documenting • 7
elements of• 1
format of• 7
structure of• 526
terminating

with END statement• 96
with STOP statement• 103

Pseudovariables • 528, E-20
INT•387
ONCHAR•453
ONSOURCE•455
PAGEN0•472
SUBSTR•635
UNSPEC•661

18-lndex

Punctuation marks
meaning to PL/I• 4, 529

PUT option• 539
PUT statement• 317, 532, E-6

conversion of values• 65
execution of • 61 5
forms• 532
options• 535
PUT EDIT• 532
PUT LINE• 536
PUT LIST• 537
PUT PAGE• 540
PUT SKIP• 541
PUT STRING

example• 682

n
Qualifiers

locator• 422
Queue processing• 420

R
RANK built-in function• 543
RANK preprocessor built-in function• 507, 543
READ_AHEAD

ENVIRONMENT option • 300
READ_CHECK

ENVIRONMENT option • 300
READONL Y attribute• 549
READ statement• 317, 544, E-6

SET option • 164
with pictured data • 666

RECORD_ID_ACCESS
ENVIRONMENT option • 300

RECORD_ID_FROM option
READ statement• 546
REWRITE statement• 5 76

RECORD_ID_ TO option
READ statement• 546
REWRITE statement• 5 76
WRITE statement• 678

RECORD_ID option
DELETE statement• 260

RECORD attribute• 320, 456, 549
Record 1/0 and unconnected arrays• 54

Record management services (RMS)
extensions to standard • C-11

Records
delete• 259
files• 324, 550

delete record• 259
read• 544
READ with SET option• 164
updating• 575
writing records to• 677

1/0. 550
reading• 544
rewriting• 5 7 5
writing• 677

RECURSIVE option
ENTRY statement• 297
PROCEDURE statement• 525

Recursive procedures • 517
REFER attribute• 553
REFERENCE attribute• 563
REFERENCE built-in function• 564
References

interpretation of• 558
structure-qualified• 50
to based variable• 1 5 7, 422

REFER option• 44, 45, 553
Relational operator• 462, 530, 564, E-10
Relative files• 324, 326

ONKEY built-in function• 454
RELEASE built-in subroutine• 194, 566
REPEAT option

DO statement• 94, 279
Repetition of format item • 34 7
%REPLACE statement•567, 601, E-7
Replication factor•32, 201, 567
RESCAN option • 569
RESIGNAL built-in subroutine• 194, 451, 569
Restricted integer expression• 3 7, 5 70
RETRIEVAL _POINTERS

ENVIRONMENT option• 300
Returns

value• 571
RETURNS attribute• 7 3, 5 71

with ENTRY attribute• 293
Returns descriptor• 572
RETURNS option• 73, 571

ENTRY statement• 297
PROCEDURE statement• 526

%RETURN statement• 517, 601, E-7
RETURN statement• 570, E-7

conversion of values • 65
terminating procedures• 513
terminating subroutine or function • 70

Return values
specifying attributes of• 73

REVERSE built-in function• 573
REVERSE preprocessor built-in function• 507, 5 73
REVERT statement• 574, E-7
REVISION _DA TE

ENVIRONMENT option• 205, 300
REWIND_ON _CLOSE

ENVIRONMENT option• 205, 300
REWIND_ON_OPEN

ENVIRONMENT option• 300
REWIND built-in subroutine• 194, 574
REWRITE statement• 164, 317, 575, E-7
R format item• 346

definition• 542
RMS

extensions to the standard• C-11
ROUND built-in function• 578
Row-major order•40, 135
R picture character• 20

s
%SBTTL statement• 580, 601, E-7
SCALARV ARY ING

ENVIRONMENT option• 300, 545, 575, 677
Scale factor• 12, 24, 502, 582

binary• 23
decimal• 23, 580
default• 23, 580
non-zero scaled fixed binary• 580
of pictured variable • 18

Scope
attributes• E-9
INTERNAL attribute• 390
of entry variable• 83
of names•57, 582
of ON-unit• 449

SEARCH built-in function• 583
SEARCH preprocessor built-in function• 507, 583
Select-expression• 98, 585
SELECT statement•98, 585, E-7

lndex-19

Semicolon
using as null statement• 440

Semicolon (;)
using as null statement• 103

SEQUENTIAL attribute• 320, 456. 589
Sequential files• 324, 325, 589

fixed-length records• 326
variable-length records• 325
variable-length records with fixed-length control

area• 326
SET option

ALLOCATE statement• 116
example• 161

READ statement• 164, 545
SHARED_READ

ENVIRONMENT option• 300
SHARED_ WRITE

ENVIRONMENT option• 300
Sharing

storage• 609
SIGNAL statement• 590, E-7
SIGN built-in function• 590
SIGN preprocessor built-in function• 507, 590
SIN built-in function • 591
SINO built-in function• 591
Single-precision floating point

range of precision • 340
SINH built-in function• 592
SIZE built-in function• 592
SKIP format item• 346

definition• 595
SKIP option

GET statement• 367
PUT statement• 54 1

Slash (/) picture character• 22, 489
SOME built-in function• 596
Source program format• 7, 527
Space• 596
SPACE_BLOCK built-in subroutine• 194, 596
Space character• 5
S picture character• 20. 488
SPOOL

ENVIRONMENT option• 205, 300
SQRT built-in function• 597
Square root

obtaining• 597
ST A TEMENT option

of %PROCEDURE statement• 522

20-lndex

Statements• 3, 597
alphabetic summary• 603

preprocessor• 599
functional summary• 602
label•406
syntax of• E-1 to E-8

ST A TIC attribute • 605
implied• 310

Static storage• 606
Static variables

entry value• 296
STOP statement• 103, 605, E-7

terminating subroutine or function• 70
terminating subroutines or functions• 513

Storage
allocating

for a based variable• 116
for a controlled variable • 116
for an automatic variable• 151
for a static variable• 605

allocation of
at block activation• 1

attributes • E-9
automatic • 606
based• 607
based variables• 156
bit string• 2 7
built-in functions• 191, E-17
class• 605

extensions to the standard • C-11
controlled• 607
defined• 256, 608
example of allocation• 161
for parameters• 609
free•355
internal variables • 390
locating with ADDR • 167
setting null pointer• 439
sharing• 609
specifying READONL Y variable• 549
static•606

STORAGE condition • 609
Stream

1/0 processing• 611
STREAM attribute• 320, 456
Stream files• 610

GET statement• 359
PUT statement• 532

Stream input• 612
Stream output• 615
STRING built-in function• 621
String constants

replication• 201
String handling

comparing with VERIFY• 673
concatenation operator• 210
COPY

built-in function• 233
functions

summary• 188, E-15
HIGH built-in function• 373
LENGTH built-in function • 4 14
locating substrings• 379
LOW built-in function• 427
replication factor• 32, 567
STRING built-in function• 621
SUBSTR built-in function• 634
SUBSTR pseudovariable • 635
summary of features• 622
TRANSLATE built-in function• 648

String overlay defining
rules for• 259

STRINGRANGE condition • 626
Strings

in conversion functions• 63, 309
STRUCTURE attribute • 633
Structures• 41, 627

concatenating with STRING• 621
declaration• 254, 627
declaring• 42

as parameters• 77
level numbers • 4 1

dimensioned
unconnected arrays• 54

in an array• 52, 137
in assignment statements• 52
initializing• 43, 632
level numbers• 42, 627
major• 41, 627
minor•41, 627
passing as arguments• 77. 633

by descriptor• 86
referring to members • 50
structure-qualified reference• 50, 629

Subroutines• 67. 510

Subroutines (cont'd.)

CALL statement• 69, 196
external• 80
file-handling

summary• E-21
internal and external• 511
terminating• 70, 513

SUBSCRIPTRANGE condition• 633
Subscripts• 37

arrays• 129
array variables• 130
for arrays of structures• 138
label• 100, 406
refering to array of structures • 53
variable• 37

SUBSTR built-in function• 634
Substrings

locating in string• 379
obtaining• 634
overlay• 635

SUBSTR preprocessor built-in function• 507, 633
SUBSTR pseudovariable • 635
SUBTRACT built-in function• 636
Subtraction• 637
SUM built-in function• 638
Summary

PL/I language features• E-1 to E-21
SUPERSEDE

ENVIRONMENT option• 300
Symbols

global• 368, 369
SYSIN default file• 638, 642
SYSPRINT default file• 639, 642
SYSTEM_PROTECTION

ENVIRONMENT option• 300

T
Tab character • 5
TAB format item • 346

definition• 640
TAN built-in function• 641
T AND built-in function• 642
TANH built-in function• 642
Technical changes

version 2.0 • xxvii

lndex-21

TEMPORARY
ENVIRONMENT option• 300

Terminal
1/0. 509, 642

Termination
END statement• 96, 288
of procedures• 70, 513
of program execution

STOP statement• 103, 605
Text

including from other files• 377
TIME built-in function• 646
Time of day

obtaining• 243, 646
TIME preprocessor built-in function• 508, 646
TITLE option• 323, 456, 647
%TITLE statement•601, 647, E-7
T picture character• 20
Transfer control

GOTO statement• 370
LEAVE statement• 102, 411

TRANSLATE built-in function• 648
TRANSLATE preprocessor built-in function• 507,

648
TRIM built-in function• 650
TRIM preprocessor built-in function• 507, 650
TRUNCATE

ENVIRONMENT option• 205, 300
TRUNCATE attribute• 653
Truncation

of bit-string• 226
of character-string • 228
of decimal value• 652

TRUNC built-in function• 652
Types

derived • 306

u
UNALIGNED attribute• 654
Unconnected array• 54, 139
UNDEFINEDFILE condition• 654

signaled• 460
UNDERFLOW condition• 656
UNDERFLOW option• 657

PROCEDURE statement• 525
Union• 49, 658

22-lndex

UNION attribute• 657
UNSPEC built-in function • 660
UNSPEC pseudovariable • 661
UNTIL option• 91, 274, 662
UPDATE attribute• 320, 456, 663
Update file

rewriting record• 575
Update files

delete record• 259
Uppercase and lowercase letters

in identifier• 5, 37 4
USER_OPEN

ENVIRONMENT option• 300
User-generated diagnostic messages• 664

%ERROR•300
%FATAL•316
%INFORM• 380
%WARN•675

User-specified names• 374

v
VALID built-in function • 666

using• 17
VALUE attribute• 311, 667

parameter descriptor• 84
VALUE built-in function• 668
Values

implementation-defined standard• C-12
passing by argument• 66 7

VARIABLE attribute• 670
with ENTRY attribute • 83

VARI ABLE option
ENTRY attribute•293, 670

Variables• 6, 669
addressable • 669
assigning value to• 59, 142
automatic • 15 1
based• 156, 157, 607
bit-string• 29, 174
character-string• 25, 201
declaration • 249
declaring• 6, 55
defined• 25 7, 608
entry• 83, 295
external • 3 11
file• 318

Variables (cont'd.)

in begin blocks • 95
initializing• 56, 381
internal• 399
label • 10 1 , 409
localizing• 2, 95
pictured• 15

assigning values to• 16
extracting values from • 1 7

preprocessor• 503
static• 606
using as subscripts• 37

VARIANT preprocessor built-in function• 508,
671

/VARIANT qualifier• 671
VARY ING attribute • 6 7 2
VAX calling standard

extensions to PL/I• C-10
V AXCONDITION condition• 6 73
VAX PL/I

differences from full PL/I • D-5
VERIFY built-in function• 673
VERIFY preprocessor built-in function• 507, 673
V picture character• 18, 485

w
Warning (severity)

data conversion• 63, 65
Warning messages• 675
WARN preprocessor built-in function• 508, 675
%WARN statement•601, 664, 675, E-8
WHEN clause• 98, 585
WHEN keyword• 676
WHILE option

DO statement• 90, 273
WORLD_PROTECTION

ENVIRONMENT option• 300
WRITE_BEHIND

ENVIRONMENT option• 300
WRITE_CHECK

ENVIRONMENT option• 300
WRITE statement• 317, 677, E-8

x
X format item • 346

X format item (cont'd.)

definition• 681
XOR operation

defining with BOOL • 183

y

Year
obtaining current• 242, 243

Y picture character• 19, 486

z
ZERODIVIDE condition• 683
Z picture character • 19, 486

lndex-23

VAX PL/I Reference Manual
Al-H952C-TE

READER'S
COMMENTS

Note: This form is for document comments only.
DIGIT AL will use comments submitted on this form
at the company's discretion. If you require a written
reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your
comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Name _________________ Date-----------

Organization ----------------------------

Street ------------------------------

City ---------------State _____ Zip Code ___ _
or Country

----- Do Not Tear-Foid Here and Tape --------------------1]-----------------------
~n---na'!'D ~oe:::~:~e ~ ~ ~ 1f Mailed

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
The Manager, Office Program
ZK02-1/N20
110 SPIT BROOK ROAD
NASHUA, NH 03062 - 9990

111 11.11 ••• • 11 •• .. 1.11.1 •• 1.1 •• 1.1 •• 11 1.11

in the
United States

·---- Do Not Tear-Fold Here ---4

VAX PL/I Reference Manual
Al-H952C-TE

READER'S
COMMENTS

Note: This form is for document comments only.
DIGIT AL will use comments submitted on this form
at the company's discretion. If you require a written
reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your
comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user /reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Name _________________ Date-----------

Organization ----------------------------

Street ------------------------------

City ---------------State ______ Zip Code ___ _
or Country

----~~~~~d~~dTa .. --------------------1~------------~~=~-----

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
The Manager, Office Program
ZK02-1 /N20
110 SPIT BROOK ROAD
NASHUA,.NH 03062 - 9990

II I 11111II1II1111II1111l 1l I. I 11l1I11I11111111111I1 I I

in the
United States

·---- Do Not Tear-Fold Here --"

I
I

'
~

