VAXLISP/VMS
User’s Guide

Order Number: AA-Y921B-TE

May 1986

This document contains information required by a LISP language
programmer to interpret, compile, and debug VAX LISP programs.

Operating System and Version: VAX/VMS Version 4.2
Software Version: VAX LISP/VMS Version 2.0

digital equipment corporation
maynard, massachusetts

First Printing, June 1984
Revised, May 1986

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

© Digital Equipment Corporation 1984, 1986.
All Rights Reserved.

Printed in U.S.A.
A postage-paid READER’S COMMENTS form is included on the last page of
this document. Your comments will assist wus in preparing future

documentation.

The following are trademarks of Digital Equipment Corporation:

DEC UNIBUS PDP

DECUS VAX VMS

MicroVAX MicroVAX II MicroVMS
VAXstation VAXstation II AI VAXstation
DECnet ULTRIX ULTRIX-11
ULTRIX-32

ULTRIX-32m HHEHHEHTM

CONTENTS
PREFACE X111
Part I
VAX LISP/VMS SYSTEM CONCEPTS AND FACILITIES

CHAPTER 1 INTRODUCTION TO VAX LISP

OVERVIEW OF VAX LISP
DCL LISP Command
Interpreter
Compiler
Editor
Error Handler
Debugging Facilities
Pretty Printer
Call-Out Facility
Alien Structure Facility
Interrupt Function Facility
VAXstation Graphics Interface
VAX LISP/VMS Function, Macro, and Variable
Descriptions
HELP FACILITIES
DCL HELP
LISP HELP
VAX/VMS FILE SPECIFICATIONS
LOGICAL NAMES
ENTERING DCL COMMANDS

L[] °
[N

RPRRPRRRARRRPRRPRP
]] 1 1 i] i
OY UT UTUT U o DWW w o

PR R PR R R R R R R
© e e e e e e e e e e e
N e e T e o N S S e S S
e e s e e s e e e e e
P OOJOUTS W R PR

o

}—)
[Y TRy
1

==
QO JJdIII9O

R = = =

D W NN
N

(=

1

Do

CHAPTER USING VAX LISP

INVOKING LISP
EXITING LISP
ENTERING INPUT
DELETING AND EDITING INPUT
ENTERING THE DEBUGGER
USING CONTROL KEY CHARACTERS
CREATING PROGRAMS
LOADING FILES
COMPILING PROGRAMS
Compiling Individual Functions and Macros
Compiling Files
Advantages of Compiling LISP Expressions
Advantage of Not Compiling LISP Expressions
DCL LISP COMMAND QUALIFIERS
Five Ways to Use the DCL LISP Command
/COMPILE
/ERROR_ACTION
/[NOJINITIALIZE

OWWOWWYWWWO IO UTD WN

N e
cocococo-.
NI B wW N
Sw N

FPRNNDNNDNDNDNDNDNDNDDNDNDND
i

DR NDNDNDNDNDNDND N
]
o e

1
T WRNWWOWWSIIO Ut S W NN

[N 2N SR I S]
1

iii

CHAPTER

NN NN DNDNDDNDDNDDNDDNDND NN

w

WWWwWwwWwwwWwwwwwwwwwwwwwwwwwwwwwwwwwwww
e o e © o o e e s e 8 e e e s e s s e s © o e s s e 8 ° e e s o s o

WWWWWRNRNRODNNDMONDNONNODODONNDNDODNDDNN R R R R R R R

.10.
.10.
.10.
.10.
.10.
.10.
.10.
.10.
.10.
.10.
.10.
.11
11,
11,

YU WW W W
e o e

o . e s e e .
OY U1 o o D b b B D W ww Wi
s e o o o o e e e « e e

w w N

w N =

[\

w N -

UL W N

/INTERACTIVE
/INSTALL
/[NOJLIST
/[NOJMACHINE_CODE
/MEMORY
/[NO]JOPTIMIZE
/[NO]JOUTPUT_FILE
/REMOVE
/RESUME
/[NO]VERBOSE
/[NO]JWARNINGS
USING SUSPENDED SYSTEMS
Creating a Suspended System
Resuming a Suspended System

USING THE VAX LISP EDITOR

INTRODUCTION TO THE EDITOR
Editing Cycle
Invoking the Editor
Interacting with the Editor
Getting Help

Input Completion and Alternatives

Errors and Other Problems
Moving Work Back to LISP
Returning to the LISP Interpreter
Summary of Commands

EDITING OPERATIONS
Keypad
Inserting and Formatting Text

Inserting Ordinary Text

Typing and Formatting LISP Code

Inserting Nongraphic Characters
Moving the Cursor

Moving with the Keypad and Arrow Keys

Moving in LISP Code

Moving with the Pointer (VAXstation Only)

Modifying Text
Deleting Text
Undeleting Text
Cutting and Pasting Text
Changing Case
Substituting Text
Inserting a File or Buffer
Repeating an Operation
Summary of Commands
USING MULTIPLE BUFFERS AND WINDOWS

Introduction to Buffers and Windows
Creating New Buffers from Within the Editor

Working with Buffers
Saving Buffer Contents

iv

2-17
2-17
2-17
2-18
2-19
2-20
2-21
2-22
2-22
2-23
2-24
2-25
2-25
2-26

Fwwwwwww
i

== 1
O OWOOJOoOYW WL

wwwwww
i
[N
[N

CHAPTER

CHAPTER

w

o

WWWWwwwwwwwwwwwwwwwww
s e e e e o o & s s o o s s e

P S I~ = N S S S =S
e o o o o o o

crurTor oo ol U
e o o s s o

OO UITUTUTUTUITUTUITUTDS WWWwWwWw

o e
[ea N)
Y

o
(oA W o))
.

WwwwwwdhdhNonoek

BB W N
e e e

[N}

.
w N
.

w N -

[N

[N Y o Ul W W
e e e e . .

NN

S L
. e .

Sw N w N

N -

Ul

w N -

Deleting Buffers
Buffer Name Conflicts
Manipulating Windows
Moving Text Between Buffers
Summary of Commands
RECOVERING FROM PROBLEMS
CUSTOMIZING THE EDITOR
Binding Keys to Commands
Binding Within the Editor
Binding from the LISP Interpreter
Selecting a Key or Key Sequence
Key Binding Context and Shadowing
Keyboard Macros
Summary of Commands
USING THE EDITOR ON A VAXSTATION
Screen Appearance and Behavior
Editing with the Pointer
The Pointer Cursor
Selecting and Removing Windows
Moving the Text Insertion Cursor and Marking
Text
Cutting and Pasting
Invoking the DESCRIBE Function And Matching
Parentheses
Information About Pointer Effects
Binding Pointer Buttons to Commands

ERROR HANDLING

ERROR HANDLER
VAX LISP ERROR TYPES
Fatal Errors
Continuable Errors
Warnings
CREATING AN ERROR HANDLER
Defining an Error Handler
Function Name
Error-Signaling Function
Arguments
Binding the *UNIVERSAL-ERROR-HANDLER* Variable

DEBUGGING FACILITIES

CONTROL VARIABLES

CONTROL STACK

ACTIVE STACK FRAME

BREAK LOOP
Invoking the Break Loop
Exiting the Break Loop
Using the Break Loop

3-34
3-34
3-35
3-36
3-36
3-37
3-38
3-38
3-39
3-40
3-43
3-44
3-45
3-46
3-46
3-47
3-47
3-47
3-48

3-49
3-49
3-49

[S S s N S N S S N A = =N
1
~N OO UTUT S WN

i

G oo ot
i
Oy UT U D DWW

CHAPTER

(o)}

UtttV UTUTOTUTUITULT T UT VLT U Ul Oy o U

AT OO0y O O

e

.

ONNNNNdN NI JOo oo o000 oot ol gl gl ul ol

.

WWwWwwwwwihohohNND N e

.

o e
GO UL S BB DD WN -
. o e s e

B
oW

U WN

1=

SDUTUTUT U B S D WK -

U WwwwN e
o e

N

[N

.
w N -

°
U W

.
[N

Break Loop Variables
DEBUGGER
Invoking the Debugger
Exiting the Debugger
Using Debugger Commands
Arguments
Debugger Commands
Using the DEBUG-CALL Function
Sample Debugging Sessions
STEPPER
Invoking the Stepper
Exiting the Stepper
Stepper Output
Using Stepper Commands
Arguments
Stepper Commands
Using Stepper Variables
STEP-FORM
*STEP-ENVIRONMENT *
Example Use of Stepper Variables
Sample Stepper Sessions
TRACER
Enabling the Tracer
Disabling the Tracer
Tracer Output
Tracer Options
Invoking the Debugger
Adding Information to Tracer Output
Invoking the Stepper
Removing Information from Tracer Output
Defining When a Function or Macro Is Traced
Tracer Variables
TRACE-CALL
TRACE-VALUES
THE EDITOR

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

PRETTY PRINTING WITH DEFAULTS
HOW TO PRETTY-PRINT USING CONTROL VARIABLES
Explicitly Enabling Pretty Printing
Limiting Output by Lines
Controlling Margins
Conserving Space with Miser Mode
EXTENSIONS TO THE FORMAT FUNCTION
Using the WRITE FORMAT Directive
Controlling the Arrangement of Output
Controlling Where New Lines Begin
Controlling Indentation
Producing Prefixes and Suffixes
Using Tabs

vi

i 1 i

I OYOYOYOYOVYOYOYOYOY
1

1
o

|
Ul W 00 JuUuhd D wwi

O OV ON

CHAPTER

~I

AANOOYOYOYOYOYOY O OY O©

N N e e e e B B B B I B B B e N N e B e N e e o e N N N UEN N RN

WOWOOoJddJdJO U b Ww

.
UL W NP

CCUTEES L DLLELESDNEDEDWWWWWWWRNNNNOMNONONNDNDNNRER R R
e e e 6 4 s e e s e . NN e e e e e e e e e e e e e e e
OO U WN P

[N

OO -JOUuUTd WK

BW NP e
o .

[any

.1
.2
.3
.4

Directives for Handling Lists
DEFINING YOUR OWN FORMAT DIRECTIVES
DEFINING PRINT FUNCTIONS FOR LISTS
DEFINING GENERALIZED PRINT FUNCTIONS
ABBREVIATING PRINTED OUTPUT
Abbreviating Output Length
Abbreviating Output Depth
Abbreviating Output by Lines
USING MISER MODE
HANDLING IMPROPERLY FORMED ARGUMENT LISTS

VAX LISP/VMS IMPLEMENTATION NOTES

DATA REPRESENTATION
Numbers
Integers
Floating-Point Numbers
Characters
Arrays
Strings
PATHNAMES
Namestrings
Logical Names and Pathnames
When to Use Pathnames
Fields of a COMMON LISP Pathname
Field values of a VAX LISP Pathname
Three Ways to Create Pathnames
Comparing Similar Pathnames
Converting Pathnames into Namestrings
Functions That Use Pathnames

Using the *DEFAULT-PATHNAME-DEFAULTS* Variable

GARBAGE COLLECTOR
Frequency of Garbage Collection
Static Space
LISP Processing
Messages
Available Space
Garbage Collection Failure
INPUT AND OUTPUT
Newline Character
Terminal Input
End-of-File Operations
Record Length
File Organization
Functions
FILE-LENGTH Function
FILE-POSITION Function
OPEN Function
WRITE-CHAR Function

INTERRUPT FUNCTIONS AND KEYBOARD FUNCTIONS

COMPILER

vii

6-16
6-18
6-19
6-21
6-23
6-24
6-24
6-25
6-26
6-28

~ -

L B R N I RN AN N I |
[l I R e A R A |
N WOWOOO-I~JOOOUWwWNNN

.1 Compiler Restrictions 7-25
1.1 COMPILE Function 7-25
1.2 COMPILE-FILE Function 7-26
.2 Compiler Optimizations 7-26
FUNCTIONS AND MACROS 7-29

Part II

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

APROPOS Function 1
APROPOS-LIST Function 3
ATTACH Function 4
BIND-KEYBOARD-FUNCTION Function 6
BREAK Function 9
CANCEL-CHARACTER-TAG Tag 10
CHAR-NAME-TABLE Function 11
COMPILEDP Function 13
COMPILE-FILE Function 14
COMPILE-VERBOSE Variable 17
COMPILE-WARNINGS Variable 18
CONTINUE Function 20
DEBUG Function 21
DEBUG-CALL Function 22
DEBUG-PRINT-LENGTH Variable 23
DEBUG-PRINT-LEVEL Variable : 24
DEFAULT-DIRECTORY Function 25
DEFINE-FORMAT-DIRECTIVE Macro 27
DEFINE-GENERALIZED-PRINT-FUNCTION Macro 30
DEFINE-LIST-PRINT-FUNCTION Macro 32
DELETE-PACKAGE Function 34
DESCRIBE Function 35
DIRECTORY Function 37
DRIBBLE Function 40
ED Function 41
ERROR-ACTION Variable 43
EXIT Function 44
Format Directives Provided with VAX LISP 45
GC Function 48
GC-VERBOSE Variable 49
GENERALIZED-PRINT-FUNCTION-ENABLED-P Function 50
GET-DEVICE-INFORMATION Function 51
GET-FILE-INFORMATION Function 55
GET-GC-REAL-TIME Function 59
GET-GC-RUN-TIME Function 61
GET-INTERNAL-RUN-TIME Function 63
GET-KEYBOARD-FUNCTION Function 64
GET-PROCESS-INFORMATION Function 65
GET-TERMINAL-MODES Function 73
GET-VMS-MESSAGE Function 76
HASH-TABLE-REHASH-SIZE Function 77
HASH-TABLE-REHASH-THRESHOLD Function 78

viii

APPENDIX A

>y D

N = T T = = =

~S O U WP

HASH-TABLE-SIZE Function
HASH-TABLE-TEST Function

LOAD Function

_ONG-SITE-NAME Function
MACHINE-INSTANCE Function
MACHINE-VERSION Function
MAKE-ARRAY Function
MODULE-DIRECTORY Variable
POST-GC-MESSAGE Variable
PPRINT-DEFINITION Function
PPRINT-PLIST Function
PRE-GC-MESSAGE Variable
PRINT-LINES Variable
PRINT-MISER-WIDTH
PRINT-RIGHT-MARGIN Variable
PRINT-SIGNALED-ERROR Function
PRINT-SLOT-NAMES-AS-KEYWORDS Variable
REQUIRE Function

ROOM Function

SET-TERMINAL-MODES Function
SHORT-SITE-NAME Function

SPAWN Function

STEP Macro

STEP-ENVIRONMENT Variable
STEP-FORM Variable

SUSPEND Function
THROW-TO-COMMAND-LEVEL Function
TIME Macro

TOP-LEVEL-PROMPT Variable

TRACE Macro

TRACE-CALL Variable
TRACE-VALUES ‘Variable
TRANSLATE-LOGICAL-NAME Function
UNBIND-KEYBOARD-FUNCTION Function
UNCOMPILE Function
UNDEFINE-LIST-PRINT-FUNCTION Macro
UNIVERSAL-ERROR-HANDLER Function
UNIVERSAL-ERROR-HANDLER Variable
WARN Function
WITH-GENERALIZED-PRINT-FUNCTION Macro

PERFORMANCE HINTS

DATA STRUCTURES
Integers
Floating-Point Numbers
Ratios
Characters
Symbols
Lists and Vectors

Strings, General Vectors, and Bit Vectors

ix

79
80
81
83
84
85
86
88
89
90
92
95
96
97
98
100
102
103
105
108
111
112
115
116
117
118
121
122
123
124
135
136
137
139
140
141
142
143
144
145

i ? ? >
Ulds W W NN

>
S WP e

APPENDIX B

wwww
w NN

APPENDIX C
c.1
c.2
INDEX

FIGURES

o w
1
e

TABLES

NN JO TV OTUTE W WWWWhhNNDNE
]
WP EPLSWNDEPRPOSWRNDNE S WND P

[

Hash Tables
Functions
DECLARATIONS
PROGRAM STRUCTURE
COMPILER REQUIREMENTS

USING THE "EMACS" EDITOR STYLE

INTRODUCTION TO THE EDITOR
ACTIVATING THE "EMACS" STYLE
Activating "EMACS" as a Minor Style
Making "EMACS" the Major Style
"EMACS" STYLE KEY BINDINGS

EDITOR COMMANDS AND KEY BINDINGS

EDITOR COMMAND DESCRIPTIONS
EDITOR KEY BINDINGS

Numeric Keypad
Variables Governing Miser Mode

File Specification Defaults

Keys Used In Line Editing

Control Characters

DCL LISP Command Qualifiers

DCL LISP Command Qualifier Modes
General-Purpose Commands and Key Bindings
Editing Commands And Key Bindings
Commands For Manipulating Buffers And Windows
Characters Generated by Keys

Commands For Customizing The Editor
Error-Signaling Functions

Debugging Functions and Macros

Debugger Commands

Debugger Command Modifiers

Stepper Commands

Format Directives Provided by VAX LISP
VAX LISP Floating-Point Numbers
Floating-Point Constants

VAX LISP Pathname Fields

[? >

o
N O oY O

c-1
Cc-14

~J
1
o

W dOoO v W

-

NN

QOnNw

Summary of Implementation-Dependent Functions and

Macros 7-29
Format Directives Provided with VAX LISP 45
GET-DEVICE-INFORMATION Keywords 51
GET-FILE-INFORMATION Keywords 55
GET-PROCESS-INFORMATION Keywords 65
GET-TERMINAL-MODES Keywords 73
Data Type Headings 106
TRACE Options 125

Differences Between "EMACS" Key Bindings and

Default Bindings B-2
"EMACS" Style Key Bindings B-4
Editor Commands And Key Bindings c-2
Editor Key Bindings C-14

X1i

PREFACE

Manual Objectives

The VAX LISP/VMS User’s Guide is intended for use 1in developing and
debugging LISP programs and for use in compiling and executing LISP
programs on VAX/VMS systems. The VAX LISP language elements are
described in COMMON LISP: The Language.*

Intended Audience

This manual is designed for programmers who have a working knowledge
of LISP. Detailed knowledge of VAX/VMS is helpful but not essential;
familiarity with the Introduction to VAX/VMS is recommended. However,
some sections of this manual require more extensive understanding of
the operating system. In such sections, you are directed to the
appropriate manual(s) for additional information.

Structure of This Document

An outline of the organization and chapter content of this manual
follows:

PART I: VAX LISP/VMS SYSTEM CONCEPTS AND FACILITIES

Part I consists of seven chapters, which explain VAX LISP concepts and
describe the VAX LISP facilities.

e Chapter 1, Introduction to VAX LISP, provides an overview of
VAX LISP, explains how to use the help facilities, describes
VAX,/VMS file specifications and the 1logical name mechanism,
and provides hints on entering DCL commands. Chapter 1 also
describes where in the VAX LISP documentation you can find
information on each of the VAX LISP features.

* Guy L. Steele Jr., COMMON LISP: The Language, Digital Press (1984),
Burlington, Massachusetts.

xiii

PREFACE

e Chapter 2, Using VAX LISP, explains how to invoke and exit
from VAX LISP; use control key sequences; enter and delete
input; create and compile programs; load files; and |wuse
suspended systems. In addition, Chapter 2 describes the DCL
LISP command and its qualifiers.

® Chapter 3, Using the VAX LISP Editor, describes how to use the
Editor provided with VAX LISP to create and edit LISP code.

® Chapter 14, Error Handling, describes the VAX LISP
error-handling facility.

e Chapter 5, Debugging Facilities, explains how to use the VAX
LISP debugging facilities.

® Chapter 6, The Pretty Printer, explains how to wuse the VAX
LISP pretty printer.

@ Chapter 7, VAX LISP Implementation Notes, describes the
features of LISP that are defined by or are dependent on the
VAX implementation of COMMON LISP.
PART II: VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

Part II describes functions, macros, and variables specific to VAX
LISP and any COMMON LISP objects that have specific implementation

characteristics in VAX LISP. Each function or macro description
explains the function’s or macro’s use and shows its format,
applicable arguments, return value, and examples of |use. Each

variable description explains the variable’s use and provides examples
of its use.
Associated Documents
The following documents are relevant to VAX LISP/VMS programming:
® VAX LISP/VMS Installation Guide
e COMMON LISP: The Language
e VAX LISP/VMS Editor Programming Guide
® VAX LISP/VMS System Access Programming Guide
e VAX LISP/VMS Graphics Programming Guide
® Introduction to VAX/VMS

e VAX/VMS DCL Dictionary

xiv

PREFACE

® VAX/VMS System Services Reference Manual
® VAX/VMS I/0 User’s Reference Manual: Part I
@ VAX/VMS Run-Time Library Routines Reference Manual
@ VAX Architecture Handbook
For a complete list of VAX/VMS software documents, see the VAX/VMS
Information Directory and Index.
Conventions Used in This Document
The following conventions are used in this manual:
Convention Meaning

() Parentheses used in examples of LISP code indicate the
beginning and end of a LISP form. For example:

(SETQ NAME LISP)

[] Square brackets enclose elements that are optional.
For example:

[doc-string]

Square brackets do not indicate optional elements when
they are wused in the syntax of a directory name in a
VAX/VMS file specification. Here, the square bracket
characters must be included in the syntax.

UPPERCASE DCL commands and qualifiers and defined LISP
functions, macros, variables, and constants are printed
in uppercase characters; however, you can enter them in
uppercase, lowercase, or a combination of uppercase and
lowercase characters.

lowercase Lowercase italics in function and macro descriptions

italics and in text 1indicate arguments that you supply;
however, you can enter them in lowercase, uppercase, or
a combination of lowercase and uppercase characters.

.o In a DCL command description, a horizontal ellipsis
indicates that the element preceding the ellipsis can
be repeated. For example:

function-name ...
In LISP examples, a horizontal ellipsis indicates code

not pertinent to the example and not shown..

XV

Convention

{}

{ }*

&OPTIONAL

&REST

&KEY

PREFACE

Meaning

A vertical ellipsis indicates that all the information
that the system would display in response to the
particular function call is not shown; or, that all the
information a user is to enter is not shown.

In function and macro format specifications, braces
enclose elements that are considered to be one unit of
code. For example:

{keyword value}
In function and macro format specifications, braces
followed by an asterisk enclose elements that are

considered to be one unit of code, which can be
repeated zero or more times. For example:

{keyword value}*
In function and macro format specifications, the word
&OPTIONAL indicates that the arguments after it are
defined to be optional. For example:

PPRINT object &OPTIONAL package

Do not specify &OPTIONAL when you invoke a function or
macro whose definition includes &OPTIONAL.

In function and macro format specifications, the word
&REST indicates that an indefinite number of arguments
may appear. For example:

BREAK &0OPTIONAL format-string &REST args

Do not specify &REST when you invoke the function or
macro whose definition includes &REST.

In function and macro format specifications, the word
&KEY indicates that keyword arguments are accepted.
For example:

COMPILE-FILE input-pathname &KEY {keyword value}*

Do not specify &KEY when you invoke the function or
macro whose definition includes &KEY.

Xvi

Convention

<RET>

CTRL/x

Black print

Red print

PREFACE

Meaning

A symbol with a 1- to 3-character abbreviation
indicates that vyou press a key on the terminal. For
example:

<RET> or <ESC>

In examples, carriage returns are implied at the end of
each 1line. However, the <RET> symbol is used in some
examples to emphasize carriage returns.

CTRL/x indicates a control key sequence where you hold
down the CTRL key while you press another key. For
example:

CTRL/C or CTRL/Y

In examples, output lines and prompting characters that
the system displays are in black print. For example:

S LISP/COMPILE
$_File(s): MYPROG.LSP

In examples, user input is shown in red print. For
example:

$ LISP/COMPILE
S_File(s): MYPROG.LSP

xvii

e

PART |
VAX LISP/VMS SYSTEM CONCEPTS AND FACILITIES

CHAPTER 1
INTRODUCTION TO VAX LISP

LISP is a general purpose programming language. The language has been
used extensively in the field of artificial intelligence for research
and development of robotics, expert systems, natural-language
processing, game playing, and theorem proving. The LISP language is
characterized by:

e Computation with symbolic expressions and numbers

e Simple syntax

e Representation of data by symbolic expressions or multilevel
lists

e Representation of LISP programs as LISP data, which enables
data structures to execute as programs and programs to be
analyzed as data

e A function named EVAL, which is the language’s definition and
interpreter

e Automatic storage allocation and garbage collection

VAX LISP is implemented on both the VMS and the ULTRIX-32 operating
systems. VAX LISP as implemented on the VMS operating system is
formally named VAX LISP/VMS. VAX LISP as implemented on the ULTRIX
operating system 1is formally named VAX LISP/ULTRIX. Both VAX
LISP/ULTRIX and VAX LISP/VMS are the same language but with some
differences. For the differences, see the VAX LISP/VMS Release Notes.
These are on-line in the file SYSSHELP:LISPnnn.RELEASE_NOTES, where
nnn is the VAX LISP version number. For example,
LISP020.RELEASE_NOTES is the file containing the release notes for
Version 2.0.

This manual describes VAX LISP/VMS, but refers to VAX LISP/VMS as VAX
LISP, where practicable.

This chapter provides an overview of the VAX LISP language. The
overview is arranged so that it parallels the structure of this manual

1-1

INTRODUCTION TO VAX LISP

and the remaining VAX LISP documentation. In addition to the
overview, the chapter explains-how to get on-line help at the DCL and
the LISP language levels of operation and describes:

e VAX,/VMS file specifications

e Logical names

e Hints for entering DCL commands

1.1 OVERVIEW OF VAX LISP
The VAX LISP lanquage is an extended implementation of the COMMON LISP
language defined in COMMON LISP: The Language. In addition to the
features supported by COMMON LISP, VAX LISP provides the following
extensions:

e DCL (DIGITAL Command Language) LISP command

e Extensible editor

e Error handler

e Debugging facilities

e Extensible pretty printer

e Facility for calling out to external routines

e Facility for defining non-LISP data structures (alien
structures)

e Facility for defining interrupt functions (that is, functions
that execute asynchronously)

e Window and graphics support for the VAXstation II workstation
These extensions are described in Sections 1.1.1 through 1.1.9.
VAX LISP does not support complex numbers. However, you can
manipulate complex numbers by using the alien structure and call-out
facilities.
Some of the functions, macros, and facilities defined by COMMON LISP
are modified for the VAX LISP implementation. Chapter 7 provides
implementation-dependent information about the following topics:

e Data representation

e Pathnames

INTRODUCTION TO VAX LISP

® Garbage collector

e Input and output

@ Asynchronous functions
e Compiler

® Functions and macros

The implementation-dependent functions and macros mentioned in Common
LISP: The Language are defined in Part II.

1.1.1 DCL LISP Command
The DCL LISP command invokes VAX LISP from the VMS command level.
Depending on the qualifier you wuse with the LISP command, you can
start the LISP interpreter or the LISP compiler. Chapter 2 describes
the LISP command and the qualifiers you can use with it. Chapter 2
also explains how to:

® Invoke LISP

@ Exit LISP

® Create programs

@ Load files

@ Compile programs

e Use suspended systems

1.1.1.1 1Interpreter - The VAX LISP interpreter reads an expression,
evaluates the expression, and prints the results. You interact with
the interpreter in line-by-line input.

While in the interpreter, you can create LISP programs. You can also
use programs that are stored in files if you load the files into the
interpreter. Chapter 2 explains how to create LISP programs and how
to load files into the VAX LISP interpreter.

1.1.1.2 Compiler - The VAX LISP compiler is a LISP program that
translates LISP code from text to machine <code. Because of the
translation, compiled programs run faster than interpreted programs.

1-3

INTRODUCTION TO VAX LISP

You can use the compiler to compile a single function or macro or to
compile a LISP source file. If you are in the LISP interpreter, you
can compile a single function or macro with the COMPILE function (see
Chapter 2).

You can compile a source file either at the VMS command level or the
LISP 1level of operation. I1f you are at the VMS command level, you
must specify the LISP DCL command with the /COMPILE qualifier; if you
are in the LISP interpreter, you must invoke the COMPILE-FILE
function. Chapter 2 explains how to compile LISP programs that are
stored in files.

1.1.2 Editor

VAX LISP includes a screen-oriented editor. You can use it to edit
text files, and functions and macros that are defined in the LISP
system. The Editor provides specialized commands to help you edit
LISP code; they balance parentheses, properly indent text, and
evaluate LISP text. Chapter 3 describes how to wuse the Editor to
write and edit LISP code.

The Editor is written in LISP, so you can extend and customize it for
your needs. The Editor provides predefined commands and several
functions, macros, and data structures, which you can wuse to create
Editor commands. After you create an Editor command, you can bind it
to a key on your terminal keyboard. 1In this way, you can build up
alternative editing systems or complete applications based on the
Editor. See the VAX LISP Editor Programming Guide for more
information on programming the Editor.

1.1.3 Error Handler

VAX LISP contains an error handler, which is invoked when errors occur
during the evaluation of a LISP program. Chapter 4 describes the
error handler and explains how you can create your own error handler.

1.1.4 Debugging Facilities

VAX LISP provides several functions and macros that return or display
information you can use when you are debugging a program. VAX LISP
also provides four debugging facilities: the break 1loop, debugger,
stepper, and tracer.

The functions that return debugging information and the break loop,

stepper, and tracer facilities are defined in COMMON LISP and are
extended in VAX LISP. The break 1loop lets you interrupt the

1-4

INTRODUCTION TO VAX LISP

evaluation of a program, the stepper lets you use commands to step
through the evaluation of each form in a program, and the tracer lets
you examine the evaluation of a program.

The debugger is a VAX LISP facility. The facility provides commands
that let you examine and modify the information in the LISP system’s
control stack frames.

Chapter 5 explains how to use the debugging facilities.

1.1.5 Pretty Printer

VAX LISP provides a pretty printer facility. You can use the facility
to control the format in which LISP objects are printed. The pretty
printer can be helpful in making objects easier to understand by means
of indentation and spacing. You can use the pretty printer with the
existing defaults, control it with control variables, or extend it by
using special directives with the FORMAT function. Chapter 6 explains
how to use the pretty printer in each of these ways.

1.1.6 Call-Out Facility

VAX LISP includes a call-out facility, which lets you call programs
written in other VAX/VMS programming languages and programs that
include run-time library (RTL) routines and VMS and RMS system
services. Chapter 2 of the VAX LISP/VMS System Access Programming
Guide describes the call-out process and explains how to wuse the
call-out facility.

1.1.7 Alien Structure Facility

VAX LISP supplies an alien structure facility. It lets you define,
create, and access VAX data structures that are used to communicate
between the VAX LISP language and other VAX/VMS languages or system
services. Chapter 3 of the VAX LISP/VMS System Access Programming
Guide describes the alien structure facility and explains how to use
it.

1.1.8 Interrupt Function Facility

VAX LISP allows you to define functions that can execute at arbitrary
and unpredictable points in your program, usually as the result of an
event in the operating system. Such functions are called interrupt
functions, because they interrupt the normal flow of program

1-5

INTRODUCTION TO VAX LISP

execution. Chapter 4 of the VAX LISP/VMS System Access Programming
Guide describes how to define and use interrupt functions.

1.1.9 VAXstation Graphics Interface

VAX LISP/VMS provides access to the graphics capabilities of the
VAXstation 1II family of workstations. You can create windows on the
screen, draw lines and write text in the windows, track the
workstation’s pointing device and react to pointer buttons, and create
LISP streams to windows. The VAX LISP/VMS Graphics Programming Guide
describes this interface.

1.1.10 VAX LISP/VMS Function, Macro, and Variable Descriptions

VAX LISP/VMS contains many functions, macros, and variables that are
either not mentioned or are mentioned but not fully defined in the
COMMON LISP language. These functions, macros, and variables are
divided into the following categories:

e Implementation-dependent objects mentioned but not fully
defined in Common LISP: The Language

® VAX LISP objects that implement the parts of VAX LISP that are
described in this manual

e Editor-specific objects

@ System access-specific objects (pertaining to the call-out,
alien structure, interrupt function, and program
synchronization facilities)

® Graphics-specific objects

These LISP objects let you use the VAX LISP facilities and some VMS
facilities without exiting or calling out from the LISP system.

The LISP objects in the first two categories 1listed above are
described in Part II of this manual. Editor-specific objects are
described in Part III of the VAX LISP/VMS Editor Programming Guide.
System access-specific objects are described in Part II of the VAX
LISP/VMS System Access Programming Guide. Graphics-specific objects
are described in Part II of the VAX LISP/VMS Graphics Programming
Guide.

1-6

INTRODUCTION TO VAX LISP

1.2 HELP FACILITIES

When using VAX LISP, you can get help at both the DCL and the LISP
levels of operation.

1.2.1 DCL HELP

The VAX/VMS help facility lets you obtain on-line information about a
DCL command, its parameters, and 1its qualifiers. Invoke the help
facility by entering the HELP command. When the HELP command 1is
executed, the facility displays the information available.

To obtain information about VAX LISP, enter the following command:

$ HELP LISP

1.2.2 LISP HELP

VAX LISP provides two functions you can use to obtain help during a
LISP session: DESCRIBE and APROPOS. The DESCRIBE function displays
information about a specified LISP object. The type of information
the function displays depends on the object you specify as its
argument. You can use the APROPOS function to search through a
package for symbols whose print names contain a specified string. See
COMMON LISP: The Language for information about packages.
Descriptions of the DESCRIBE and APROPOS functions are provided in

Part II.

1.3 VAX/VMS FILE SPECIFICATIONS

A VAX/VMS file specification indicates the input file to be processed
or the output file to be produced. File specifications have the
following format:

node: :device:[directory]filename.filetype;version

A file specification has the following components:

1-7

INTRODUCTION TO VAX LISP

node
The name of a network node. The name can be either an integer or
a string and can include an access control string. The following
node name includes an access control string:
MIAMI"SMITH MYPASSWORD"::
This component applies only to systems that support DECnet-VAX.
device
The name of the device on which the file is stored or is to be
written.
directory
The name of the directory under which the file is cataloged. The
name must be a string. You can delimit the directory name with
either square brackets ([]) or angle brackets (< »>).
You can specify a sequence of directory names where each name
represents a directory level. For example:
[SMITH.EXAMPLES]
In the preceding directory specification, EXAMPLES represents a
subdirectory.
filename
The name of the file.
filetype
An abbreviation that usually describes the type of data in the
file.
version

An integer that specifies which version of the file 1is desired.
The version number is incremented by one each time you create a
new version of the file. You can use either a semicolon (;) or a
period (.) to separate the file type and version.

The punctuation marks (colons, brackets, period, and semicolon) in the
file specification format are required. The marks separate the
components of the file specification.

You do not have to supply all the components of a file specification

each time you compile a file, load an initialization file, or resume a
suspended system. The only component you must specify 1is the file

1-8

INTRODUCTION TO VAX LISP

name; the operating system supplies default values for the components
that you do not specify. Table 1-1 summarizes the default wvalues.
The special variable *DEFAULT-PATHNAME-DEFAULTS* contains the default
values for the node, device, and directory elements.

Table 1-1: File Specification Defaults

Optional Element Default Value
node Local network node
device User’s current default device
directory User’s current default directory
filename Input -- None
Output -- Same as input file; if no input file

is specified, there is no default

filetype Depends on usage:
FAS -- Fast-loading file (output from compiler)
LIS -- Error listing (output from compiler)
*LSC -- Editor checkpointing file
LSP -- Source file (input to LISP reader or

compiler)

SUS -- Suspended system

version Input -- Highest existing version number
Output -- If no existing version, 1

If existing version, highest version
number plus 1

The way the system fills in default values depends on the operation
being performed. For example, if you specify only a file name, the
compiler processes the source program if it finds a file with the
specified file name that is stored on the default device, is cataloged
under the default directory name, and has an LSP file type. If more
than one file meets these conditions, the compiler processes the file
with the highest version number. Suppose you pass the following file
specification to the compiler:
$ LISP/COMPILE DBA1:[SMITH]CIRCLE.LSP

The compiler searches directory SMITH on device DBAl, seeking the
highest version of CIRCLE.LSP. If you do not specify an output file,
the compiler generates the file CIRCLE.FAS, stores it in directory
SMITH on device DBAl, and assigns it a version number that is one
higher than any version of CIRCLE.FAS cataloged in directory SMITH on
device DBAl.

1-9

INTRODUCTION TO VAX LISP

1.4 LOGICAL NAMES

The VAX/VMS operating system provides a logical name mechanism that
allows programs to be device and file independent. Programs do not
have to specify the device on which a file resides or the name of the
file that contains data if you wuse logical names. Logical names
provide great flexibility, because you can associate them not only
with a device or a complete file specification but also with a
directory or another logical name.

For more information on logical names, see the Guide to Using DCL and
Command Procedures on VAX/VMS.

1.5 ENTERING DCL COMMANDS
This section lists hints for entering DCL commands.

@ You can abbreviate command and qualifier names to four
characters. You can wuse fewer than four characters if the
abbreviation is unambiguous.

@ You must precede each qualifier name with a slash (/).

e If you omit a required parameter (for example, a file
specification), the DCL command interpreter prompts you for
the parameter.

® You can enter a command on more than one line if you end each
continued line with a hyphen (-).

e You must press the RETURN key after you enter a command;
pressing the RETURN key passes the command to the system for
processing.

e You can delete the current command line by typing CTRL/U.

@ You can interrupt command execution by typing CTRL/Y. If you
do not enter a command that executes another image, you can
resume the interrupted command by entering the DCL CONTINUE
command. To stop processing completely after typing CTRL/Y,
enter the DCL STOP command.

CHAPTER 2
USING VAX LISP

This chapter describes the DCL LISP command

explains the following:

Invoking LISP
Exiting LISP
Entering input

Deleting input

Entering the debugger

Using control key characters

Creating programs

Loading files

Compiling programs

Using suspended systems

2.1 [INVOKING LISP

and

its

qualifiers and

You invoke an interactive VAX LISP session by typing the DCL command
When it is executed, a message identifying the VAX LISP system

LISP.

appears, and then the LISP prompt (Lisp>) is displayed.

S LISP

Welcome to VAX LISP, Version V2.0

Lisp>

For example:

USING VAX LISP

See Section 2.10 for descriptions of the qualifiers you can use with
the LISP command.

2.2 EXITING LISP

You can exit from LISP by using the LISP EXIT function. For example:

Lisp> (EXIT)
$

When you exit the LISP system, you are returned to the DCL level of
operation. If you have wused the Editor, modified buffers are not
saved on exiting LISP. See Chapter 3 for information on how to save
modified buffers before exiting LISP.

You cannot exit the LISP system by typing CTRL/Z, as you can with many
other interactive programs that run on VMS.

2.3 ENTERING INPUT

You enter input into the VAX LISP system a line at a time. Once you
move to a new line, you cannot go back to the previous line. However,
you can recover an input expression or an output value by wusing the
following 10 unique variables:

/ * + -
// *x ++
2 *xx e

These variables are described in COMMON LISP: The Language. The
following example illustrates the use of the plus sign (+) variable
that is bound to the expression most recently evaluated:

Lisp> (CDR '(A B C))
(B C)

Lisp> +

(CDR (QUOTE (A B C)))
Lisp>

2.4 DELETING AND EDITING INPUT

The DELETE key deletes characters to the left of the cursor on the
current line of input. CTRL/U deletes the current line of input.

If you are using a video terminal, you can wuse control characters,
function keys, and arrow keys on the terminal to edit the current line
of input.

2-2

USING VAX LISP

Table 2-1 lists the keys you can use to delete and edit input.

NOTE

You can use the BIND-KEYBOARD-FUNCTION function to
bind most of the control characters listed in Table
2-1 to a LISP function. Binding a control character
in this way cancels the effect listed for that control
character in Table 2-1.

Table 2-1: Keys Used In Line Editing

Key Effect

CTRL/A and Switches between overstrike and insert modes in the
F14x* current line.

CTRL/B and Recalls the last line entered.

Up Arrow

CTRL/D and Moves the cursor one character to the left.

Left Arrow
CTRL/E Moves the cursor to the end of the line.

CTRL/F and Moves the cursor one character to the right.
Right Arrow

CTRL/H and Moves the cursor to the beginning of the line.
BACKSPACE and
F12*

CTRL/J and Deletes the word to the left of the cursor.
LINEFEED and
F13%*

CTRL,/U Deletes characters from the cursor position back to
the beginning of the line.

* This key is available only on the LK201 keyboard.

2.5 ENTERING THE DEBUGGER

If you make an error during an interactive VAX LISP session, the error
automatically invokes the debugger, which replaces the LISP prompt
(Lisp>) with the debugger prompt (Debug 1>). For information on how
to use the VAX LISP debugger, see Chapter 5.

USING VAX LISP

Typing CTRL/C is a quick way to recover from an error without using
the VAX LISP debugger. If you want to recover from an error by
discarding the expression you typed and starting over, type CTRL/C.
CTRL/C returns you to the read-eval-print loop, which displays the
LISP prompt (Lisp>).

2.6 USING CONTROL KEY CHARACTERS

Table 2-2 lists the control characters you can use in VAX LISP.
CTRL/C is the only one whose listed function is specific to LISP. The
other control characters perform standard VMS functions.

NOTE

You can use the BIND-KEYBOARD-FUNCTION function to
bind most of the control characters listed in Table
2-2 to a LISP function. Binding a control character
in this way cancels the effect listed for that control
character in Table 2-2.

These control characters do not work in the VAX LISP
Editor.

Table 2-2: Control Characters

Control
Character Function

CTRL/C Returns you to the top-level loop from any other
command level. In LISP, CTRL/C 1invokes the
CLEAR-INPUT function on the *TERMINAL-IO* stream,
then performs a throw to the catcher established
for CANCEL-CHARACTER-TAG. If you want to recover
from an error by discarding the expression you
typed and starting over, type CTRL/C. (See
CANCEL-CHARACTER-TAG in Part II for an example of
changing the behavior of CTRL/C.)

CTRL/O Discards output being sent to the terminal until
you type another CTRL/O.

CTRL/Q Resumes terminal output that had been halted with
CTRL/S.

CTRL/R Redisplays what is on a line.

USING VAX LISP

Table 2-2 (cont.)

Control Character Function

CTRL/S Stops output to the terminal wuntil a CTRL/Q 1is
typed.
CTRL/T Displays process information. This is. useful

during a computation to watch the resources used.

CTRL/U Deletes the current input line. The prompt is not
echoed in LISP.

CTRL/X Deletes all input that has not yet been read from
the type-ahead buffer.

CTRL/Y Returns you to the DCL level of control and purges
the type-ahead buffer.

2.7 CREATING PROGRAMS

The most common way to create a LISP program 1is by wusing a text
editor. In this way, the program exists in a source file that can be
loaded into the LISP environment by the LISP LOAD function.

Although you can compose source programs with any text editor, the VAX
LISP Editor provides facilities that help you enter and edit LISP
source code. For example, the Editor helps you balance parentheses
and maintain proper indentation. Furthermore, this editor, being
integrated into the LISP environment, can be extended with features
that fit your own style of editing. See Chapter 3 for a description
of how to use the Editor.

Another way to create LISP programs is to define them wusing the
interpreter in an interactive LISP session. If you define functions
with the DEFUN macro or macros with the DEFMACRO macro, the
definitions become a part of the interpreted LISP environment. You
can then invoke your defined functions and macros. However, since
these definitions are not in a permanent text file, your work is
stored only temporarily and disappears when you exit VAX LISP.
Entering programs by typing to the interpreter is really useful only
for experimenting with small functions and macros.

2.8 LOADING FILES

Before you can use a file in interactive LISP, you must load the file
into the LISP system. The file can be compiled or interpreted;

2-5

USING VAX LISP

compiled files load more quickly. You can load a file into the LISP
system in three ways:

e Load the file by specifying the DCL LISP INITIALIZE qualifier.
For example:

S LISP/INITIALIZE=MYINIT.LSP
Welcome to VAX LISP, Version V2.0
Lisp>

The LISP prompt indicates the file has been successfully
loaded. If the file is not successfully loaded, an error
message indicating the reason appears on your terminal screen.
Include the /VERBOSE qualifier to cause the names of functions
loaded in an initialization file to be listed at the terminal.
For more information on the /VERBOSE qualifier, see Section
2.10.14.

e Load the file by using the LISP LOAD function when 1in an
interactive LISP session. For example:

Lisp> (LOAD "TESTPROG.LSP")

Loading contents of file DBAl:[JONES]TESTPROG.LSP;1
FACTORIAL
FACTORS-OF

Finished loading DBAl:[JONES]TESTPROG.LSP;1

The file name ("TESTPROG.LSP" in the example) can be a string,
symbol, stream, or pathname. FACTORIAL and FACTORS-OF are the
functions contained in the file TESTPROG.LSP. The final T
indicates that the file has been successfully loaded. For
more information on the LOAD function, see Part II.

@ Evaluate the contents of a buffer in the Editor when that
buffer contains a file. See Chapter 3 for more information on
this topic.

With the /INITIALIZE qualifier, you can load more than one file at a

time. With the LOAD function, however, you can specify only one file
at a time.

2.9 COMPILING PROGRAMS

You compile LISP programs by compiling the LISP expressions that make
up the programs. You can compile LISP expressions in two ways:
individually, by using the LISP COMPILE function; or in a file, by

2-6

USING VAX LISP

using either the LISP COMPILE-FILE function or the DCL LISP /COMPILE
gualifier.

2.9.1 Compiling Individual Functions and Macros

In LISP, the unit of compilation is normally either a function or a
macro. You can compile a function or a macro in a currently running
LISP session by wusing the COMPILE function. This function 1is
described in COMMON LISP: The Language.

You normally call a LISP function first in interpreted form to see if
the function works. Once it works as interpreted, you can test it in
compiled form without having to write the function to a file. Use the
COMPILE function for this purpose.

When you compile a function or a macro that is not in a file, the
consequent compiled definition exists only in the current LISP; the
definition is not in a file. However, you can use the VAX LISP
UNCOMPILE function to retrieve the interpreted definition. This
function, described in Part II, is wuseful when debugging programs.
Because the interpreted code shows you more of your function’s
evaluation than the compiled code, you can find the error more easily.
You can modify the function definition in the Editor to correct the
error and also save your corrected version of the function in a file.
See Chapter 3 for further information on using the Editor to write
interpreted functions to files.

2.9.2 Compiling Files

Any collection of LISP expressions can make up a program and can be
stored in a file. The compiler processes such a file by compiling the
LISP expressions in the file and writing each compiled result to an
output file.

You can compile VAX LISP files either at DCL 1level with the LISP
command and the /COMPILE qualifier or in interactive VAX LISP with the
LISP COMPILE-FILE function.

The /COMPILE qualifier is described 1in Section 2.10.2. The
COMPILE-FILE function is described in Part II. The following example
shows how the /COMPILE qualifier 1is wused to compile the file
MYPROG.LSP at the DCL level:

$ LISP/COMPILE MYPROG.LSP
$

This example produces an output file named MYPROG.FAS.

USING VAX LISP

The next example shows how the COMPILE-FILE function can be wused to
compile the file MYPROG.LSP from within the LISP system:

Lisp> (COMPILE-FILE "MYPROG.LSP")
Starting compilation of file DBAl:[JONES]MYPROG.LSP;1

FACTORIAL compiled.

Finished compilation of file DBAl:[JONES]MYPROG.LSP;1
0 Errors, 0 Warnings

"DBAl:[JONES]MYPROG.FAS;1"

Lisp>

Both methods of compiling LISP files are equivalent except 1in their
defaults. The COMPILE-FILE function automatically lists the name of
each function it compiles at the terminal, but the /COMPILE qualifier
does not. Both methods produce fast-loading files (type FAS) that run
more guickly than wuncompiled files. Fast-loading files are
automatically placed in the directory containing your source files.

The first method of compiling files, wusing the LISP /COMPILE
qualifier, has the advantage that you can compile several files in one
step. For example:

$ LISP/COMPILE FILE1.LSP, FILE2.LSP, FILE3.LSP

When you use the LISP COMPILE-FILE function, it takes several steps to
compile several files, since vyou can only compile one file in each
call to COMPILE-FILE.

The second method of compiling files, wusing the LISP COMPILE-FILE
function, has the advantage o0f enabling vyou to stay in LISP both
during compilation and afterwards. This method is convenient if you
are using the LISP Editor to create a file and you do not want to
leave the LISP environment. The method is also convenient if you are
compiling a single function and want to quickly check for errors and
correct them without leaving LISP. The method 1is necessary 1if the
compilation depends on changes you have made to the LISP environment;
that is, you have defined some macros or changed a package.

The COMPILE-FILE function returns a namestring corresponding to the
output file it generates. Therefore, immediately after using the

COMPILE-FILE function, you can 1load the resulting output file as
follows:

Lisp> (LOAD *)

2-8

USING VAX LISP

2.9.3 Advantages of Compiling LISP Expressions

You can use both compiled and wuncompiled (interpreted) files and
functions during a LISP session. Both compiled and uncompiled LISP
expressions have their advantages. The advantages of compiling a
file, a macro, or a function follow:

e Compiling a function or a macro is a good initial debugging
tool, since the compilation does static error checking, such
as checking the number of arguments to a function or a macro.
For example, consider the following function definition:

(DEFUN TEST (X)
(IF (> X 0)
(+ 1 X)
(TEST (TRY X) X)))

In the definition of the function TEST, the alternate
consequent (the false part) of the IF condition invokes TEST
with two arguments, (TRY X) and X, while the function
definition of TEST calls for only one argument. Despite this
error, TEST might work correctly as an interpreted
(uncompiled) function if the argument given is a positive
number, since it uses only the first consequent (the true
part); so you may not detect the error. But if you compiled
the function, the compiler would detect the error in the
second consequent and issue a warning.

e A compiled file not only loads much faster, but the compiled
code executes significantly faster than the corresponding
interpreted code.

2.9.4 Advantage of Not Compiling LISP Expressions

You can debug run-time errors in an interpreted function more easily
than you can debug them in a compiled file or function. For example,
if the debugger is invoked because an error occurred in an uncompiled
function, you can wuse the debugger to find out what code caused the
error. If the debugger is invoked because an error occurred in a
compiled function, the code surrounding the form that caused an error
to be signaled may not be accessible. The stepper facility 1is also
more informative with interpreted than with compiled functions. See
Chapter 5 for information on the debugger and the stepper.

2.10 DCL LISP COMMAND QUALIFIERS

The LISP command can be specified with several qualifiers according to
the standard VMS conventions. The format of the LISP command with

2-9

USING VAX LISP

qualifiers follows:

LISP[/qualifier...]
Some qualifiers have a corresponding negative form, /NOqualifier,
which negates the specified action. Other qualifiers accept values.
To specify a qualifier value, type the qualifier name followed by an
equal sign (=) and the value. For example:

/INITIALIZE=MYPROG.LSP

Qualifier values are surrounded by braces ({ }) when you can choose
only one value from a list. For example:

/ERROR_ACTION={EXIT or DEBUG}

To specify a 1list of qualifier values, enclose the values in
parentheses. For example:

/INITIALIZE=(MYPROG1.LSP,MYPROG2.LSP)

You can define DCL symbols to represent LISP command 1lines that vyou
use frequently. For example:

$ BIGLISP :== LISP/INITIALIZE=SYSSLOGIN:LISPINIT/MEMORY=10000

Following this command, the DCL symbol BIGLISP, when typed at the DCL
prompt, results in execution of the LISP command line shown.

Table 2-3 summarizes the qualifiers you can use with the LISP command.
Sections 2.10.2 through 2.10.15 describe each qualifier in detail.

Table 2-3: DCL LISP Command Qualifiers

Qualifier Function

/COMPILE Invokes the VAX LISP compiler to
compile one or more source files
(input arguments that default to
the file type LSP).

/ERROR_ACTION={EXIT or DEBUG} EXIT causes your program to exit
LISP when an error occurs. EXIT is
the default in batch mode jobs and
in compile mode (with the /COMPILE
qualifier). DEBUG invokes the VAX
LISP debugger when an error occurs.
DEBUG 1is the default in an
interactive LISP session.

2-10

USING VAX LISP

Table 2-3 (cont.)

Qualifier

Function

/INO]INITIALIZE=(file-spec,...)

/INTERACTIVE

/INSTALL=suspended-system-spec

/I[NOJLIST=[file-spec]

/[NO]JMACHINE_CODE

/MEMORY=number

/[NO]OPTIMIZE=(SPEED:n,SPACE:n,
SAFETY:n,COMPILATION_SPEED:n)

Causes the LISP system to 1load an
initialization file(s). The
default file type for an
initialization file is LSP or FAS.
NOINITIALIZE suppresses the loading
of initialization files.

Starts an interactive LISP session.
/INTERACTIVE is the default
qualifier for the LISP command.

Causes the read-only code in the
LISP suspended system to be
shareable. The default file type
for a suspended-system file is SUS.

Specifies that a 1listing file be
created during compilation. A
listing consists of the file name,
date of compilation, names of the
LISP expressions compiled (if the
/VERBOSE qualifier 1is specified),
and warning and error messages.
The default file type for a listing
file is LIS. /NOLIST suppresses a
listing file and 1is the default
except 1in batch mode. In such
jobs, /LIST is the default.

Includes VAX LISP machine «code 1in
the 1listing file. /NOMACHINE_CODE
suppresses a listing of the machine
code and is the default.

Specifies the amount of dynamic
virtual memory LISP allocates in
512-byte pages.

Tells the compiler that each
quality has the corresponding
value. SPEED is the speed at which
the object code runs, SPACE is the
space occupied or used by the code,
SAFETY 1is the run-time error
checking of the code, and
COMPILATION_SPEED is the speed of
the compilation process. n is an
integer in the range 0 to 3. The

2-11

USING VAX LISP

Table 2-3 (cont.)

Qualifier Function

value 0 1is the lowest priority
value; the value 3 is the highest.
The default value for n is 1. See
Chapter 7 for a description of
optimization declarations.

/[NOJOUTPUT_FILE=[file-spec] Causes the name of the compiled
file to be the specified name. The
default output file type is FAS.
/NOOUTPUT prevents compiled code
from being written to a file.
/OUTPUT_FILE is the default.

/REMOVE=suspended-system-spec Deletes global sections installed
with the /INSTALL qualifier.

/RESUME=file Resumes a suspended LISP system.
The default file type for a
suspended LISP system is SUS. See
Section 2.11 on Using Suspended
Systems.

/[NO]VERBOSE Lists on the output device and the
listing file, if any, the names of
functions and macros defined in a
file. /NOVERBOSE suppresses a
listing of function and macro names
defined in a file. /NOVERBOSE is
the default.

/[NO]JWARNINGS Specifies that the compiler 1is to
produce warning messages.
/NOWARNINGS suppresses warning
messages. /WARNINGS is the
default.

2.10.1 Five Ways to Use the DCL LISP Command

Depending on the qualifier modifying it, you can wuse the DCL LISP
command in one of the following five ways called modes:

e INTERACTIVE -- to invoke an interactive LISP session (the
default)
e COMPILE -- to compile LISP files

2-12

® RESUME
@ INSTALL
@ REMOVE

USING VAX LISP

to resume a suspended LISP system

to create a global section for the read-only
code in a LISP suspended system

to delete a global section created with the
/INSTALL qualifier

Table 2-4 lists the LISP command qualifiers that apply to each mode.
Without a qualifier, the DCL LISP command puts you in an interactive

session (the default).

Table 2-4: DCL LISP Command Qualifier Modes

Qualifier

Mode

/COMPILE
/ERROR_ACTION
/INOJINITIALIZE
/INTERACTIVE
/INSTALL
/[NO]LIST
/[NO]MACHINE_CODE
/MEMORY
/[NO]OPTIMIZE
/[NO]OUTPUT_FILE
/REMOVE

/RESUME

/[NO]VERBOSE

/[NO]WARNINGS

COMPILE

INTERACTIVE or COMPILE or RESUME
INTERACTIVE or COMPILE
INTERACTIVE

INSTALL

COMPILE

COMPILE

INTERACTIVE or COMPILE or RESUME
COMPILE

COMPILE

REMOVE

RESUME

INTERACTIVE or COMPILE

COMPILE

2.10.2 /COMPILE

The /COMPILE qualifier invokes the VAX LISP compiler to compile one or

more source files.
from each source file.

The compiler creates a fast-loading (FAS) file
Unlike other compilers, such as those for

2-13

USING VAX LISP

BASIC and COBOL, the LISP compiler does not generate VMS object
modules. Consequently, the LISP compiler does not have an object file
type. FAS is the default file type for a LISP compiled file. 1If the
/COMPILE qualifier is used with the /NOOUTPUT_FILE qualifier, the
compiler compiles the source file but does not put the compilation in
a file. That method is helpful if your purpose in compiling the file
is to check for errors. See Section 2.10.11 for more information on
the /[NO]JOUTPUT_FILE qualifier.

By default, the compiler gives your newly compiled file the same name
as your source file with a FAS file type, puts the new file in your
source file’s directory, and returns you to DCL command level when the
compiler is finished. If you want functions to be listed on your
output device as they are compiled, you must specify the /VERBOSE
qualifier (see Section 2.10.14). 1If you want to compile files with
the aid of initialization files, use the /INITIALIZE qualifier (see
Section 2.10.4). For information on how to locad files, see Section
2.8.

If you do not specify a file name with the /COMPILE qualifier, DCL
prompts you for a file name. If you use the qualifiers /[NOJLIST,
/[NO]MACHINE_CODE, /OPTIMIZE, /[NO]OUTPUT, /[NO]VERBOSE, and
/[NO]WARNINGS with the /COMPILE qualifier and you specify them before
the files to be compiled, the qualifiers apply to all the files to be
compiled. If you use the preceding qualifiers with the /COMPILE
qualifier, but you specify them after a file name, the qualifiers
apply only to the immediately preceding file. If you specify
qualifiers for all the files and a conflicting qualifier for a
particular file, the LISP system uses the qualifier specified for the
particular file.

Format
LISP/COMPILE file-spec[,...]
Example

$ LISP/COMPILE FACTORIAL.LSP
$

Mode

Compile

2.10.3 /ERROR_ACTION
The /ERROR_ACTION qualifier has two values: EXIT and DEBUG.

@ EXIT causes the evaluation of your program to stop and exits
LISP if a fatal or a continuable error occurs (for a complete

2-14

USING VAX LISP

description of errors and warnings, see Chapter 4). EXIT 1is
the default in batch mode and in compile mode, that is, with
the /COMPILE qualifier.

e DEBUG calls the VAX LISP debugger if an error occurs. Once
you are in the VAX LISP debugger, you can look at your error,
inspect the control stack, and continue your program from the
point at which it stopped. DEBUG is the default in an
interactive session. See Chapter 5 for more information on
the debugger.

You can use the /ERROR_ACTION qualifier when invoking an interactive
LISP session or when compiling files with the /COMPILE qualifier. The
/ERROR_ACTION qualifier is mainly wuseful for batch Jjobs. It is
equivalent to the VAX LISP *ERROR-ACTION* variable (see Part II).

Format

LISP/ERROR_ACTION=value
Example

$ LISP/CQMPILE/ERROR_ACTION=DEBUG MYPROG.LSP
Mode

Interactive, Compile, or Resume

2.10.4 /[NOJINITIALIZE

The /INITIALIZE qualifier causes the LISP system to load one or more
initialization files containing LISP source code or compiled code. An
initialization file’s purpose is to predefine functions you might want
to use in a LISP session. The default is to have no initialization
file.

If the initialization files contain calls to exiting functions or if
these files contain errors and the /ERROR_ACTION qualifier is set to
EXIT (/ERROR_ACTION=EXIT), the LISP system returns to the DCL level
without prompting for interactive input. If the initialization files
contain errors and the /ERROR_ACTION qualifier 1is set to DEBUG
(/ERROR_ACTION=DEBUG), the LISP system puts you into the debugger.
See Section 2.10.3 for more information on the /ERROR_ACTION
qualifier.

The /INITIALIZE qualifier uses the LISP LOAD function to default the
proper type, directory, and other parts of a file specification. For
example, you do not have to specify the file type if your
initialization file has a FAS or a LSP file type. If your directory
contains a file name with both a FAS and a LSP file type, the LISP

2-15

USING VAX LISP

system selects the most recently created file as the initialization
file. 1If only a LSP type file or only a FAS type file of a given name
and directory exists, the LISP system selects the type file that

exists.

Use the /VERBOSE qualifier (see Section 2.10.14) to display on the
terminal screen the names of any functions or macros in the

initialization file.
You can use the /INITIALIZE qualifier when invoking an interactive
LISP session or when compiling files with the /COMPILE qualifier. You

cannot use the /INITIALIZE qualifier with the /RESUME qualifier; if
you do so, the /INITIALIZE qualifier is disregarded.

Format

LISP/INITIALIZE=(file-spec,...)

or

LISP/COMPILE/INITIALIZE=(file-spec,...) file-spec
Example

$ LISP/INITIALIZE=MYINIT/VERBOSE

Welcome to VAX LISP, Version V2.0

Loading contents of file DBAl:[JONES]MYINIT.LSP;1
FACTORIAL
FACTORS-OF

Finished loading DBA1:[JONES]MYINIT.LSP;1

¥ we we wo we

In the preceding example, the file type defaults to LSP.
FACTORIAL and FACTORS-OF are functions that are loaded into the
LISP system from Jones’s initialization file. The form (SETF
TOP-LEVEL-PROMPT "x") in the initialization file changes the
Lisp> prompt to an asterisk (*). The *TOP-LEVEL-PROMPT* variable

is described in Part II.
The SETF form and the prompt variable are not listed on an output

device when the file is loaded, because the /VERBOSE qualifier
lists only functions and macros defined in the file.

Mode

Interactive or Compile

2-16

USING VAX LISP

2.10.5 /INTERACTIVE

The /INTERACTIVE qualifier, the default, starts an interactive LISP
session.

Mode

Interactive

2.10.6 /INSTALL

The /INSTALL qualifier causes the read-only code in a LISP suspended
system to be shareable, reducing the physical memory requirements in a
multiuser system. Making the code shareable enables several people to
simultaneously use the same read-only code. You need the SYSGBL
(system global pages) and the PRMGBL (permanent global section)
privileges to use the /INSTALL qualifier. A system manager generally
uses this qualifier once when installing VAX LISP on a multiuser
system. The default file type for a suspended system is SUS. For
more information on this qualifier, see the VAX LISP/VMS Installation
Guide.

Format

LISP/INSTALL=suspended-system-spec
Example

S LISP/INSTALL=LISPSSYSTEM:LISPSUS.SUS
Mode

Install

2.10.7 /[NOJLIST

The /LIST qualifier is meaningful only if it is specified with the
/COMPILE qualifier. The /LIST qualifier specifies that the compiler
generate a listing file during compilation. You must specify this
qualifier if you want a listing file. A listing includes the name of
the file compiled, the date it was compiled, warning or error messages
produced during compilation, and a summary of warning and error
messages. If you specify the /VERBOSE qualifier with the /LIST
qualifier, the 1listing also includes the names of the functions
compiled.

Specify the /LIST qualifier with a file name value only when you want
the 1listing file name to be different from the name of the source

2-17

USING VAX LISP

file. 1If you specify the /LIST qualifier without a file name, the
LISP system produces a listing file with a LIS file type and the same
name as the source file.

The /NOLIST qualifier suppresses a listing and is the default except
in batch mode. The /LIST qualifier is the default for batch mode
operations.

Format

LISP/COMPILE/LIST[=file-spec] file-spec
Example

$ LISP/COMPILE/LIST=FACTORIAL.LIS/VERBOSE MYPROG.LSP
Sample Listing File

Listing output for file DBA1l:[JONES.LIS]MYPROG.LSP;1
Compiled at 10:33:30 on Friday, 20 December 1985 by JONES
Lisp Version V2.0

Starting compilation of file "DBAl:[JONES.LIS]MYPROG.LSP;1".
FACTORIAL compiled.

Finished compilation of file "DBAl:[JONES.LIS]MYPROG.LSP;1".
0 Errors, 0 Warnings

Mode

Compile

2.10.8 /[NOJMACHINE_CODE

The /MACHINE_CODE qualifier is meaningful only if it is specified with
the /COMPILE qualifier. The /MACHINE_CODE qualifier requests the
compiler to put a listing of the VAX LISP machine code 1in a file
separate from the FAS file the compiler generates. The compiler also
puts anything usually included in a listing file in this file (see
Section 2.10.7 for a description of a listing file).

VAX LISP machine code is similar to a standard assembly language code.
However, compiling LISP source code does not generate object modules
that must be linked.

The /MACHINE_CODE qualifier has no effect on the production of machine
code; the qualifier produces only a machine-code listing file. The
machine-code listing file generated when vyou wuse the /MACHINE_CODE
qualifier has the same name as your source file and has a LIS file

2-18

USING VAX LISP

type (unless you also used the /LIST qualifier to specify a different
name) .

The /NOMACHINE_CODE qualifier, the default, suppresses a listing of
LISP machine code.

Format

LISP/COMPILE/MACHINE_CODE file-spec
Example

S LISP/COMPILE/MACHINE_CODE MYPROG.LSP
Mode '

Compile

2.10.9 /MEMORY

The /MEMORY qualifier lets you specify the amount of dynamic virtual
memory the LISP system allocates in 512-byte pages. This system
requires a minimum of 6000 pages of dynamic virtual memory to
function. This memory is 1in addition to the read-only and static
memory. Consequently, the default page size for the dynamic virtual
memory is 6000 pages. If you specify fewer than 6000 pages with the
/MEMORY qualifier, the system disregards the requested page size and
uses the default page size. You do not need the /MEMORY qualifier if
you intend to use no more than 6000 pages of dynamic memory.

To see how many pages of memory are available at any point while you
are in LISP, wuse the LISP ROOM function. If you discover that you
need more memory, save your work by creating a suspended system, and
exit LISP. Then reenter LISP with the /RESUME and the /MEMORY
qualifiers. Use the /MEMORY qualifier to specify a larger number of
pages than you had previously specified. For information on creating
a suspended system, see Section 2.11.1; for descriptions of the
/RESUME qualifier and the ROOM function, see Section 2.10.13 and Part
II, respectively.

Format
LISP/MEMORY=number-of-pages
or

LISP/COMPILE/MEMORY=number-of-pages file-spec

USING VAX LISP

Example
$ LISP/MEMORY=15000
Welcome to VAX LISP, Version V2.0
Lisp>

Mode

Interactive or Compile or Resume

2.10.10 /[NOJOPTIMIZE

The /OPTIMIZE qualifier lets you optimize the results of compilation
of your program according to the following qualities:

® SPEED (execution speed of the code)

e SPACE (space occupied by the code)

® SAFETY (run-time error checking of the code)

@ COMPILATION_SPEED (speed of the compilation process)

You can optimize your program by setting a priority value for each
quality. That wvalue must be an integer in the range of 0 to 3. The
value 0 means the quality has the lowest priority in relationship to
the other qualities; the wvalue 3 means the quality has the highest
priority in relationship to the other qualities. When you do not
specify the /OPTIMIZE qualifier, the qualities each take the default
value of 1. To suppress optimization, use the /NOOPTIMIZE form of
this qualifier. '

The /OPTIMIZE qualifier is meaningful only if it is specified with the

/COMPILE qualifier. The /OPTIMIZE qualifier affects only the
compiler, and does nothing to the interpreter, the debugger, or any
other VAX LISP facility. See Chapter 7, Appendix A, and COMMON

LISP: The Language for information on specifying optimization
declarations.

Format

LISP/COMPILE/OPTIMIZE=(quality:value[,...]) file-spec

USING VAX LISP

Example
$ LISP/COMPILE/OPTIMIZE=(SPEED:3,SAFETY:2) MYPROG.LSP
or
S LISP/COMPILE/OPTIMIZE=SPEED:3 MYPROG.LSP

Mode

Compile

2.10.11 /[NO]JOUTPUT_FILE

The /OUTPUT_FILE qualifier is meaningful only when it 1is specified
with the /COMPILE qualifier. The /OUTPUT_FILE qualifier tells the
compiler to write the compiled code to a specific file. If you
specify the /OUTPUT_FILE qualifier with a file name, the LISP system
puts the compiled code in a file with that specified name. Use the
/OUTPUT_FILE qualifier only when you want to change the name of the
compiled file so that the source file and the compiled file have
different names.

The /OUTPUT_FILE qualifier does not specify a 1listing file, only a
compiled file. See the /LIST qualifier (Section 2.10.7) for an
explanation of a listing file.

If this qualifier is not specified, the compiler produces a file with
the same name as the source file and a type of FAS.

The /NOOUTPUT_FILE qualifier prevents compiled code from being written
to a file. I1f you want only to check a file for errors, use this
qualifier with the /COMPILE qualifier.
Format

LISP/COMPILE/OUTPUT_FILE[=file-spec] file-spec

Example

$ LISP/COMPILE/QUTPUT_FILE=TEST.FAS FACTORIAL.LSP

Format
LISP/COMPILE/NOQUTPUT_FILE file-spec
Example

$ LISP/COMPILE/NOOUTPUT_FILE MYPROG.LSP

2-21

USING VAX LISP

Mode

Compile

2.10.12 /REMOVE

The /REMOVE qualifier deletes global sections installed by the
/INSTALL qualifier. You <can use the /REMOVE qualifier to remove
outdated code when you add a new version of LISP to the system. You
need the SYSGBL (system global pages) and the PRMGBL (permanent global

section) privileges to use /REMOVE because it removes key system
resources.

NOTE
If a new version of VAX LISP has been installed and
you want to remove the old suspended system (the SUS
file), be sure to specify an explicit version number
with the /REMOVE qualifier.
Format
LISP/REMOVE=suspended-system-spec
Example
S LISP/REMOVE=LISPSSYSTEM:LISPSUS.SUS;1

Mode

Remove

2.10.13 /RESUME

The /RESUME qualifier resumes a suspended LISP system where the
suspension occurred. See Section 2.11 for an explanation of suspended
systems. The /RESUME and the /INITIALIZE qualifiers cannot be wused
together.

Format

LISP/RESUME=file-spec

2-22

USING VAX LISP

Example

$ LISP/RESUME=MYPROG.SUS
T
Lisp>

Mode

Resume

2.10.14 /[NOJVERBOSE

The /VERBOSE qualifier lists on the output device and in the 1listing
file the names of the functions defined or loaded in an initialization
file, and the names of functions in a file as they are compiled. The
/VERBOSE qualifier applies only to files loaded with /INITIALIZE
qualifier or compiled with the /COMPILE qualifier.

The /NOVERBOSE qualifier (the default) prevents the names of functions

compiled with the /COMPILE qualifier or loaded with the /INITIALIZE
qualifier from being listed in a file or at the terminal.

Format
LISP/VERBOSE/INITIALIZE=file-speC
or
LISP/COMPILE/VERBOSE file-spec
Examples
1. S LISP/VERBOSE/INITIALIZE=MYINIT.LSP
Welcome to VAX LISP, Version Vv2.0
; Loading contents of file DBAl:[JONES]MYINIT.LSP;1
; FACTORIAL
; FACTORS-OF
; Finished loading DBAl:[JONES]MYINIT.LSP;1
Lisp>

FACTORIAL and FACTORS-OF are functions that are loaded into
the LISP system from Jones’s initialization file.

2. $ LISP/VERBOSE/COMPILE MYPROG.LSP

Starting compilation of file DBAl:[JONES]MYPROG.LSP;1

USING VAX LISP

MULT compiled.
SUB compiled.
DIV compiled.

Finished compilation of file DBAl:[JONES]MYPROG.LSP;1
0 Errors, 0 Warnings

$

MULT, SUB, and DIV are functions compiled in the file,
MYPROG.LSP. The compiled definitions of these functions are
written to the file, MYPROG.FAS.

Mode

Interactive or Compile

2.10.15 /[NO]JWARNINGS

The /WARNINGS qualifier specifies that the LISP system is to produce
warning messages. Warning messages are the default when you use the
/COMPILE qualifier.

A warning message indicates that the LISP system has detected
something that is likely to be wrong. If warnings are signaled while
a file is being compiled and the value o0f the *BREAK-ON-WARNINGS*
variable is NIL (the default), the compilation continues. But, if
errors are signaled, compilation of the expression causing the error
is not continued though the rest of the file is compiled. See Chapter
4 for more information on the differences between warnings and errors.

The /NOWARNINGS qualifier suppresses warning messages.

The following example of a warning message is the message the compiler
displays for the TEST function defined in Section 2.9.3.

$ LISP/COMPILE TEST.LSP

Warning in TEST
TEST earlier called with 2 args, wants at most 1.

$
Format
LISP/COMPILE/NOWARNINGS file—spec

Example

$ LISP/COMPILE/NOWARNINGS MYPROG.LSP

USING VAX LISP

Mode

Compile

2.11 USING SUSPENDED SYSTEMS

A suspended system is a binary file that is a copy of the LISP memory
in use during an interactive LISP session up to the point at which you
create the suspended system. The purpose of a suspended system is to
save the state of an interactive LISP session. You might want to do
this if your work is incomplete. By resuming LISP from a suspended
system, you can continue your work from the point at which you
stopped.

2.11.1 Creating a Suspended System

The VAX LISP SUSPEND function puts in a file the LISP memory in use
during an interactive LISP session, enabling you to resume the same
LISP session at a later time. The SUSPEND function does not stop the
current LISP session; you can continue to use the LISP session after
the SUSPEND function has put a copy of memory into a file. The
SUSPEND function also automatically invokes a garbage collection of
dynamic memory space. See Chapter 7 for information on garbage
collections.

In the following example, the file FILEX.SUS is created and a copy of
the memory in a LISP session is put into that file. The file name can
be a string, symbol, or pathname. See Chapter 7 and COMMON LISP: The
Language for a description of pathnames.

Lisp> (SUSPEND "FILEX.SUS")

; Starting garbage collection due to GC function.

; Finished garbage collection due to GC function.

; Starting garbage collection due to SUSPEND function.
; Finished garbage collection due to SUSPEND function.
NIL

Lisp>

After your file is created, the system returns to your interactive
LISP session. You can exit LISP when you see the LISP prompt. Your
suspended system file is placed either in your default directory or in
the directory vyou specified in the file specification. The file is
usable only in an interactive LISP session.

If you use the Editor before using the SUSPEND function, Editor
buffers that are associated with files are deleted in the resumed
system. Consequently, if you want to save any material in a buffer,
put that material in a file. For a description of the VAX LISP

2-25

USING VAX LISP

Editor, see Chapter 3. For a description of the SUSPEND function, see
Part II.

2.11.2 Resuming a Suspended System

To resume a suspended system, use the LISP command with the /RESUME
qualifier and the name of the file containing the suspended system.
Program execution continues from the point at which you <called the
SUSPEND function. See Section 2.10.13 for an explanation of the
/RESUME qualifier.

After it creates a suspended system, the SUSPEND function returns NIL
and execution continues with the LISP environment exactly as it was
before the call to SUSPEND. However, when execution resumes as a
result of using the /RESUME qualifier, the SUSPEND function returns T.
Therefore, a program can use the return value of SUSPEND to determine
if execution 1is resuming as the result of the /RESUME qualifier, and
take action if necessary. See the SUSPEND function in Part II for a
description of the effects of suspending a system.

2-26

CHAPTER 3
USING THE VAX LISP EDITOR

This chapter describes how to use the VAX LISP Editor to edit LISP
objects and files containing LISP code. This chapter provides all the
information you need to edit LISP and general text. If you want to

learn

more about the Editor, or wish to customize it in ways that are

not covered in this chapter, refer to the VAX LISP/VMS Editor
Programming Guide.

NOTE

This chapter assumes you are using the Editor in its
default form to edit LISP objects or LISP files. That
is, the Editor’s major style is "EDT Emulation" and
its minor style is "VAX LISP". 1If you are using or
wish to use the "EMACS" style provided with the
Editor, see Appendix B of this manual.

This chapter is divided as follows:

Section 3.1 introduces the Editor and explains how to start
it, how to get work into and out of it, and how to return to
the LISP interpreter.

Section 3.2 explains how to edit text, including special
features for editing LISP objects and code.

Section 3.3 shows how you can have more than one LISP object
or file available for editing at one time and explains how to
switch among the objects or files you are editing.

Section 3.4 explains how to recover from problems while vyou
are using the Editor.

Section 3.5 shows how you can customize the Editor to suit
your needs.

USING THE VAX LISP EDITOR

Each major section ends with a table of the commands and key bindings
that are covered in that section.

Note to VAXstation users: When you use the Editor on a
VAXstation, screen behavior 1is different, and you can use
the pointer to perform some editing operations. Throughout
this chapter, these differences are noted at appropriate
locations. Section 3.6 summarizes Editor behavior and use
on a VAXstation.

3.1 INTRODUCTION TO THE EDITOR

The VAX LISP Editor is a general-purpose text editor. It includes
some capabilities that make it particularly useful for editing LISP
code. For example, the Editor matches parentheses and indents lines
for you. It can also evaluate a LISP function definition or symbol
value that you are editing.

You use the Editor directly from the LISP environment. The Editor is
a part of LISP and cannot be used outside of LISP. You can move
freely between the Editor and the LISP interpreter. When you go from
the Editor to the interpreter, the Editor preserves the state of your
work until you return to it.

The Editor is designed to work only on a video terminal or a
VAXstation. It maintains the screen at all times to reflect the
contents of the LISP object or file. When you insert text in the
middle of lines or between lines, the Editor immediately adjusts the
screen to show your modification.

You communicate with the Editor by using commands. Many commands are
available. Keys or key sequences invoke the most useful commands, SO
you do not have to type the command names. Keys on the numeric keypad
invoke a set of commands that emulate the EDT keypad editor, making
the VAX LISP Editor similar to EDT.

The Editor allows you to have more than one LISP object or file
available for editing at one time. Each object or file resides in its
own buffer. Commands allow you to switch from one buffer to another,
and you can view more than one buffer at a time, or more than one
place in the same buffer.

The rest of this section describes the basics of wusing the Editor.
Section 3.1.6 contains a table of the commands presented in this
section.

3-2

USING THE VAX LISP EDITOR

3.1.1 Editing Cycle

An editing cycle starts when you are using the VAX LISP interpreter
and you want to create or modify a LISP object or a file containing
LISP code. The cycle is as follows:

e You start the Editor by calling the ED function, supplying as
an argument the name of the object or the file specification
of the file you wish to create or modify.

@ You use Editor commands to edit the object or file. Most
frequently used Editor commands are invoked by control
characters or keys on the numeric keypad.

e If you are editing a LISP object, you use a command to make
your edited version replace the function definition or value.
If you are editing a file, you use a command to write the new
or modified file out to the disk.

® You use a command to pause the Editor, returning you to the
LISP interpreter.

e In the LISP interpreter, you can now use the new function
definition or value of the object or you can load the new or
modified file.

e If further modifications are required, you can use the ED
function without arguments to return you to the Editor.
Resuming the Editor in this way brings you back to the Editor
state that existed when you paused the Editor.

This cycle can occur as many times and on as many objects or files as
needed.

3.1.2 Invoking the Editor

The ED function invokes the VAX LISP editor. The first time vyou
invoke the Editor during a LISP session, you should be sure to supply
an argument to the ED function. The argument identifies the object or
file you want to edit.

To edit a LISP object, give the object’s symbol as the argument. For
example, the following form edits the function definition of the
symbol SHIP-ACCESSOR:

Lisp> (ED ’'SHIP-ACCESSOR)

You can also edit the value of a LISP symbol, rather than its function
definition, by using the :TYPE keyword with the ED function, as shown
in this example:

USING THE VAX LISP EDITOR

Lisp> (ED ’SHIP-LIST :TYPE :VALUE)

To edit a file, give the file specification as the argument to the ED
function. For example:

Lisp> (ED "CLOCK.LSP")

The first time you use the ED function, the screen clears. Then,
after some initialization messages appear, the screen looks like this:

Function SHIP-ACCESSOR Forward EDT Emulation §"Wag LISP")

{New Function)

On a VAXstation: A new window appears; the window contains
the Editor display. The window is taller than a standard
24-1line screen, but otherwise the display is identical to
that seen on a video terminal.

Note the following points about this screen display:

e The label strip near the bottom of the screen tells you that
you are editing the function definition of SHIP-ACCESSOR, you
are using the major style called "EDT Emulation" and the minor
style called "VAX LISP", and your current movement direction
is forward. The movement direction is useful to you while you
are editing. You need not concern yourself with styles at
this point.

USING THE VAX LISP EDITOR

e The information area at the bottom of the screen tells you
that you are editing a new function definition. 1In general,
information area contains short informational messages about
Editor operations and errors.

e The cursor is positioned at the wupper 1left corner of the
screen. The cursor shows where new text will be inserted.

After you have used the Editor, you can pause it (see Section 3.1.5)
and return to the LISP interpreter. Later, you may want to resume
your editing. If you want to return to the Editor state you left,
simply call the ED function without arguments:

Lisp> (ED)

You can also supply an argument -- another LISP symbol or file -- when
you resume the Editor. The LISP symbol or file you specify does not
replace the symbol or file you were editing when you paused the
Editor. The old symbol or file is made inactive, although it is still
available for editing. See Section 3.3 for details.

If you use the ED function without arguments to start the Editor, you
see the following screen display:

Melecome to the YAX LISP Editor
Tupe PF2 (HELP) for Help

3-5

USING THE VAX LISP EDITOR

This means that the Editor is running but has nothing to edit. You
can return to the LISP interpreter by typing CTRL/X CTRL/Z. Or, you
can type CTRL/Z and enter an Editor command by name, as described in
Section 3.1.3.

NOTE

You can use the BIND-KEYBOARD-FUNCTION function to
bind a control character (such as CTRL/E) to the ED
function, allowing you to invoke or resume the Editor
asynchronously by typing the control character. If
you do this, do not specify a value greater than 1
with BIND-KEYBOARD-FUNCTION’s :LEVEL keyword. Using a
value greater than 1 may disrupt the Editor’s
operation.

3.1.3 Interacting with the Editor

You interact with the Editor through commands. Commands do the
following:

e Control the operation of the Editor: pause it, change from
one buffer to another, set operating characteristics, and so
on.

e Modify the LISP object or file that you are editing.

To enter a command to the Editor, you can type its name or type a key
or sequence of keys that causes the command to be executed. The two
ways are equivalent.

e To type a command by name, first type CTRL/Z, which causes a
prompt to appear just below the label strip:

L Function iHIP—ﬁCEESSUR Forward EDT Emulation ("VAR LISP") ——————-———1
Enter command name

Type the name of the command, then press RETURN. While you
are typing, you can use any of the editing keys described in
Section 3.2 to edit your input. You must supply the full name
of the command. (However, once you have typed part of the
command, the Editor can complete the name for you or display a
list of command names that start that way; see Section
3.1.3.2.)

e If a key or key sequence is bound to the command, you can
enter the command by typing that key or key sequence. Most

3-6

USING THE VAX LISP EDITOR

frequently used commands have keys or key sequences bound to
them. You can use the "List Key Bindings" command to see
which keys are currently bound to commands.

For example, to enter the "Pause Editor" command, you can type CTRL/Z,

type "Pause Editor" in response to the command prompt, and press
RETURN. Or, you can type CTRL/X CTRL/Z, which is bound to the "Pause
Editor" command. Both methods cause the Editor to pause and return

you to the LISP interpreter.

If you type CTRL/Z but then decide that you do not want to type a
command, or if vyou decide to cancel a command in the middle of its
execution, type CTRL/C. CTRL/C stops the current command and makes
the Editor ready to accept other commands.

Commands are introduced throughout this chapter. Appendix C conta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>