EK-1TVAXD-TM-001

VAX Diagnostic Design Guide

digital equipment corporation - maynard, massachusetts

First Edition, August 1979

Copyright © 1979, Digital Equipment Corporation
All Rights Reserved.

The material in this manual is for informational
purposes and is subject to change without notice..
Digital Equipment Corporation assumes no re-
sponsibility for any errors which may appear in
this manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

CHAPTER 1

o o o o @ o o
NN
e o e o o

NN wN -

e b
L]
N -

L] L]
L]

CHAPTER 2

. e o o o
° o
N =

NNNNDNDNDNDNONDN
.
U wdNoND -

L]
N

CHAPTER 3

= b
L]

L[] L] [] L] L[] (]

> > BwwwNh
*
N =

.
N

.
[
L]

w w WWwwwwww
L]
-

L]
—
L]

.
w

w W
[]
s
L]
SIS

CHAPTER 4

[
o o o o
.

N =

NN

CONTENTS

VAX DIAGNOSTIC ENGINEERING DESIGN PHILOSOPHY

DIAGNOSTIC USERS AND APPLICATIONS

DIAGNOSTIC USERS
Computer Design Engineers
Manufacturing Technicians
Field Service Engineers
DIAGNOSTIC APPLICATIONS
Local Operator Application
Automated Applications
APT
APT-RD

DIAGNOSTIC PROGRAM METRICS

FAULT DETECTION COVERAGE

FAULT ISOLATION AND TROUBLESHOOTING SUPPORT
Fault Isolation
Troubleshooting Support

DIAGNOSTIC PROGRAM SIZE

DIAGNOSTIC EXECUTION TIME

OPERATIONAL FUNCTIONALITY AND DOCUMENTATION
Test Mode Diagnostic Functionality
Troubleshooting and Repair
Diagnostic Functionality

VAX DIAGNOSTIC SYSTEM: STRUCTURE AND STRATEGY

VAX FAMILY DIAGNOSTIC STRATEGY
Console Environment
CPU Cluster Environment
System and User Environments
System Environment
User Environment
Guidelines for the Use of the System
and User Environments
System Environment Level 3
Diagnostics
System/User Environment Level 2
Diagnostics
System Exerciser Tests (Level 2R)

The VAX System Diagnostic Program (ESXBB)

DIAGNOSTIC DEVELOPMENT PROCESS

CONSULTATION PHASE
PLANNING PHASE
Diagnostic Project Plan
Diagnostic Functional Specification

iii

Page

R T R Wl S ey
[}
B WWRNNN -

| [I
(8] N BWWNDN -

CONTENTS (Cont)

4,.2.3 Diagnostic Program Design Specification
4.3 IMPLEMENTATION PHASE
4.3.1 Engineering Breadboard and Prototype
Support
4.3.2 Final Diagnostic Implementation
4.4 DIAGNOSTIC QA AND RELEASE PHASE
PART II SYSTEM-WIDE GUIDELINES
CHAPTER 5 DIAGNOSTIC SUPERVISOR BASICS

L]
[

SUPERVISOR FUNCTIONS FOR THE DIAGNOSTIC
ENGINEER AND THE USER
SUPERVISOR MACRO LIBRARY
Utility Macros
Supervisor Service Macros
VMS Service Macros
DIAGNOSTIC SUPERVISOR COMMANDS
Program/Test Sequence Control Commands
Scripting
Scripting Command
@ Command Processing
Buffer Allocation and Script Nesting
Interrupting the Script
Command File Format
Execution Control Functions
SUPERVISOR FUNCTIONAL DESCRIPTION

* o o o o
« o
wWN =

L[] [] [] . [] [2 L] .
. . e o L]
N W~

[SAC, RO BT, IS N, S RS, NS N, NS, N, N6, NS, wm
L]
BWWWWwWwwwwwro NN
WNNDNDNDNDDN -

6 DIAGNOSTIC PROGRAM STRUCTURE AND DESIGN

2]
5
o
=3
2]
-]

OVERALL PROGRAM STRUCTURE

PROGRAM HEADER MODULE
Program Header Section (Module Preface)
Module Declarations Section
Initialization Routine
Cleanup Routine
Summary Routine
Initialization, Cleanup, and
Summary Documentation

GLOBAL SUBROUTINES AND THE GLOBAL

SUBROUTINE MODULE

TEST ROUTINES AND TEST MODULES

GUIDELINES FOR LEVELS 1, 2, 2R, 3, 4
Guidelines for Writing Level 1 Programs
Guidelines for Writing Level 2 Programs
Guidelines for Writing Level 2R Programs
Guidelines for Writing Level 3 Diagnostic
Programs

o o o o o o
NN -
e e o o o
AN WN -

(o) W< W) We We e (o)} A OO OYOYOY O
L]

« o e o o o
(S G, O, E, I, - w

e o o o
o wWwN -

iv

U'!‘i"U'IU"U"U"U'I
BB B WWND NN -

CONTENTS (Cont)

6.5.5 Guidelines for Writing Level 4
Diagnostics
6.6 GUIDELINES FOR REGISTER TESTING

CHAPTER 7 UTILITY MACROS

CODING UTILITY MACROS
PROGRAM FORMAT UTILITY MACROS
Program Module Directive Macros
Subtitle Directives
Header Directive Macro
Dispatch Table Initialization
Data Section Directives
Device Register Storage Area Directives
Statistics Table Directives
Section Definition Table
Quadword Descriptor Directive
Initialization Code Directives
Cleanup Code Directives
Summary Code Directives
Interrupt Service Routine Directives
Test Routine Directives
Message Routine Directives
Numeric Error Header Information
Directive
PROGRAM CONTROL UTILITY MACROS
Pass Control Macros
Quick Flag Macros
Operator Flag Macros
Program Subtest Control Macros
Loop Control Macros
Escape Control Macro
Exit from Program Phase Macro
Break in Diagnostic Program Macro
Break on Complete Utility Macros
Branch on Error Utility Macros
Aborting the Test Sequence Macro
$DS_CLI COMMAND LINE INTERPRETER TREE MACRO
P-TABLE CONTROL MACROS
P-Table Descriptor Macros
DS_SINITIALIZE
$DS $DECIMAL
$DS_$OCTAL
$DS__SHEXADEC IMAL
$DS_$STRING
DS_SLITERAL
$DS_SFETCH
$DS__$STORE
$DS_SEND
Structure Definition Macros

L] L[] L] L] L] L] L] L[] [] L] L] L] o L] .
[] . [] [. . .] [[] L] [] []

H R MR EROOAAUTS WN -

* o o o . o
.
AU WN -

U LLLLLULLEGWWWLWWWWWWWWWW NNNDNOMNNONNNDNONDNDNODNDNNDNDN -

HHEWOYWOJAUTHEWN -

Lol -~

[} . L] L] [} [] L[]
DN = = b b e e e e e
L] . L] [} L]

o o o o
WROJAAUN D WN =

NSNNSNNSNNNCNNNNNSNNSNNNCGNNNNNaNNN NN NNNNNNNNNNNNNNaN

* * ° * L] L] L] L] . L] L] L] L L] L] L] L] L[]

|
VRV OOIJIAAD WD -

NANNNONONONONYQ
|

N
[
—

|

\1?-4
=
N =

7-13
7-13
7-13
7-14
7-15
7-16
7-16
7-18
7-19
7-19
7-20
7-29
7-21
7-21
7-23
7-23
7-23
7-24
7-24
7-24
7-24
7-25
7-25
7-25
7-25
7-25

7.5.2.1
7.5.2.2
7.5.2.3
7.5.3
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.6.8
7.6.9
7.6.10
7.6.11
7.6.12
7.6.13
7.6.14
7.6.15
7.6.16
7.6.17
7.6.18
7.6.19
7.6.20
CHAPTER 8
8.1
8.1.1
8.1.2
8.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.4
8.4.1
8.4.2
8.4.3
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.6
8.6.1
8.6.2
8.6.3

CONTENTS (Cont)

$DEF INI

$DEF

$DEFEND
P-Table Control Macro Examples

SYMBOL DEFINITION UTILITY MACROS

$DS_BITDEF
$DS™ CFDEF
$DS” CHCDEF
$DS_CHIDEF
$DS_CHMDEF
$DS_CHSDEF
$DS_CHDEF
$DS_CLIDEF
$DS DEVTYP
$DS” DSADEF
$DS DSDEF
$DS_DSSDEF
$DS ENVDEF
$DS ERRDEF
$DS” HDRDEF
$DS HPODEF
$DS” PARDEF
$DS_SCBDEF
$DS SECDEF
$DS_DEFDEL

SUPERVISOR SERVICE MACROS

CODING SUPERVISOR SERVICE MACROS
$DS_name G
$DS_name_S

RETURN STATUS CODES

PROGRAM CONTROL SERVICE MACROS
$DS_CNTRLC_x
$DS_INLOOP_x
$DS_SUMMARY_x
$DS_ENDPASS_x

CHANNEL SERVICE MACROS
$DS_CHANNEL_x
$DS_SETMAP_Xx
$DS_SHOWCHAN_x

MEMORY MANAGEMENT SERVICE MACROS
$DS_MMON_x
$DS_MMOFF_x
$DS_GETBUF_x
$DS_RELBUF_x

DEIAY SERVICE MACROS
$DS_WAITUS_x
$DS_WAITMS x
$DS_CANWAIT x

vi

I [
N WOWWOWOOIJJON BN -

ooooooooooolooooooooooo

©
!
-

L] e o * o [] [}
WNNDODNDNDDN -
L] [} [} * L]
F SN

[]] [
™ W

HPEYWOUWOVWYWWYWODWOOMONOMININNINNNIINN

00 00 00 00 GO 00 0O 00 0O 0O 0O CO O 0O CO 0O CO CO0 00 QO OO0 00 €O 0O CO O
¢ L] L] L] L]
AU WN -

L] L[] L[] L] L] L] L] L] L] L] L2 L] . L] L] L]

Q
b
0]
)
(]
2

« o
[W

L] N L] L] L] L]
L] *

CWOWWOWOOVWOOVOVLOOOVWOVWOOWYLOOYWOYW O
[] L[] . L] L] L] L[] L] . L] L] L[] [] [] L] (] [] .] [} [
BB BB BB WWWWWWWWWWWN
L]
AMTbBWWWWW
[]
W N

* o o o
N Wk =

L]

O

CONTENTS (Cont)

ERROR MESSAGE SERVICE MACROS
Header Information Message Macros
$DS_ERRSYS_x
$DS_ERRDEV_x
$DS__ERRHARD_x
$DS _ERRSOFT_x
Information Print Macros
$DS_PRINTB_x
$DS__PRINTX_x
$DS_PRINTF_x
$DS_PRINTS_x
$DS_CVTREG_x
PROGRAM-OPERATOR DIALOGUE SERVICE MACROS
$DS_ASKSTR_x
$DS_ASKDATA x
$DS_ASKVLD_x
$DS_ASKLGCL_x
$DS_ASKADR_ x
$DS_PARSE_x
SYSTEM CONTROL SERVICE MACROS
$DS_SETIPL_x
$DS SETVEC x
$DS_CLRVEC_x
$DS INITSCB_ x
HARDWARE P-TABLE ACCESS
$DS_GPHARD_x

VMS SERVICE MACROS

CODING VMS SERVICE MACROS
$name G
$name_S
RETURN STATUS CODES
I/0 SERVICE MACROS
$ASSIGN_x
$DASSGN_x
$QI0_x
QIO Service Diagnostic Functions
Function Encoding
Synchronizing I/0 Completion
I/0 Completion Status
$QIOW x
$GETCHAN
$CANCEL_x
EVENT FLAG SERVICE MACROS
$SETEF x
SCLREF x
SREADEF_x
SWAITFR x
SWFLAND x

vii

Page

8-23
8-24
8-24
8-26
8-27
8-28
8-28
8-33
8-34
8-35
8-35
8-36
8-40
8-42
8-43
8-43
8-46
8-46
8-48
8-53
8-53
8-54
8-54
8-54
8-55
8-55

.
[¢)}

e o o o
oo,

¢ e 0
wN -

. e o o o o o o o
e o o o e o o
B wNo - [o) ¥, B -1

VWO WVLYW VWVWOVLWVOVOWVIY VWYY
Ny

. L] L] L]

O 00 00 00 aonoanoaaounuwm

CHAPTER 10

10.1
10.2
16.3
10.4
10.5
10.6
19.7
19.8
16.9
16.10
19.11
19.12
16.13
10.14
16.15
104.16
19.17
19.18
16.19
16.20
16.21
10.22
19.23
19.24
10.25
14.26
16.27

CONTENTS (Cont)

SWFLOR x

TIMER SERVICE MACROS
SGETTIM x
SBINTIM x

Specifying Delta Time Values at Assembly

Time
$SETIMR x
$CANTIM x
Use of the Timer Services
FORMATTED ASCII OUTPUT SERVICE MACROS
$SFAO_x
$FAOL x
FAO Directives
FAO Control String and Parameter
Processing
MEMORY MANAGEMENT SERVICE MACROS
HIBERNATE AND WAKE SERVICE MACROS
SHIBER x
$WAKE x
UNWIND SERVICE MACRO

DIAGNOSTIC SYSTEM MACRO DICTIONARY

$ASSIGN x
SBINTIM x
SCANCEL x
$CANTIM x
SCLREF_ X
$DASSGN _x
$DEF

$DEFEND
SDEFINI

$DS ABORT
$DS_ASKADR_x
$DS_ASKDATA x
$DS_ASKLGCL x
$DS_ASKSTR_X
$DS ASKVLD
$DS” BCOMPLETE
$DS BERROR
$DS” BGNCLEAN
$DS BGNDATA
$DS_BGNINIT
$DS BGNMESSAGE
$DS” BGNMOD
$DS_BGNREG
$DS_BGNSERV
$DS BGNSTAT
$DS BGNSUB
$DS_BGNSUMMARY

viii

Page

9-33
9-34
9-35
9-35

9-38
9-38
9-49
9-41
9-42
9-42
9-44
9-44

9-45
9-48
9-49
9-50
9-51
9-52

19-1
10-4
19-5
19-6
19-7
19-8
19-9
19-9
16-9
10-9
16-10
10-11
19-12
19-13
19-14
19-15
19-16
19-16
10-16
10-17
10-17
10-17
16-18
19-18
19-18
19-18
19-18

10.28
16.29
10.30
190.31
19.32
106.33
10.34
19.35
10.36
10.37
19.38
10. 39
10.40
19.41
10.42
19.43
10.44
19. 45
10.46
10.47
10.48
19.49
19.50
190.51
19.52
19.53
19.54
196.55
19.56
10.57
19.58
16.59
19.60
196.61
19.62
19.63
19.64
19.65
10.66
16.67
19.68
19.69
106.70
16.71
19.72
19.73
10.74
16.75
19.76
10.77

CONTENTS (Cont)

$DS_BGNTEST
$DS_BITDEF
$DS_BNCOMPLETE
$DS_BNERROR
$DS_BNOPER
$DS_BNPASS@
$DS_BNQUICK
$DS_BOPER
$DS_BPASS@
$DS_BQUICK
$DS_BREAK
$DS_CANWAIT_x
$DS_CFDEF
$DS_CHANNEL_x
$DS__CHCDEF
$DS_CHDEF
$DS_CHIDEF
$DS_CHMDEF
$DF_CHSDEF
$DS_CKLOOP
$DS_CLI
$DS_CLIDEF
$DS_CLRVEC_x
$DS_CNTRLC_x
$DS”_CVTREG_x
$DS_DEFDEL
$DS_DEVTYP
$DS_DISPATCH
$DS_DSADEF
$DS_DSDEF
$DS_DSSDEF
$DS_ENDCLEAN
$DS_ENDDATA
$DS_ENDINIT
$DS__ENDMESSAGE
$DS_ENDMOD
$DS__ENDPASS_x
$DS_ENDREG
$DS__ENDSERV
$DS_ENDSTAT
$DS_ENDSUB
$DS_ENDSUMMARY
$DS_ENDTEST
$DS_ENVDEF
$DS_ERRDEF
$DS_ERRDEV_x
$DS__ERRHARD_x
$DS_ERRNUM
$DS__ERRSOFT
$DS_ERRSYS_x

ix

Page

19-19
1¢g-19
10-20
19-20
10-20
10-20
19-21
19-21
19-21
19-21
19-22
19-22
19-22
19-22
16-26
16-26
10-26
186-27
19-27
10-27
19-28
16-29
19-29
10-30
19-3¢0
19-31
16-31
19-32
19-32
16-33
19-34
19-35
19-36
1¢-36
10-36
19-36
196-36
16-37
16-37
18-37
19-37
18-37
10-38
19-38
19-38
19-39
19-39
10-490
19-41
19-41

CONTENTS (Cont)

Page
10.78 $DS_ESCAPE 19-43
10.79 $DS_EXIT 19-43
10-80 $DS_GETBUF_x 19-43
10.81 $DS_GPHARD_x 19-44
19.82 $DS_HDRDEF 19-44
10.83 $DS_HEADER 19-45
10.84 $DS_HPODEF 19-45
19.85 $DS_INITSCB x 10-46
10.86 $DS_INLOOP_x 19-46
10.87 $DS_MMOFF_x 10-46
19.88 $DS_MMON_x 10-47
10.89 $DS_PAGE 10-47
18.90 $DS_PARDEF 10-47
19.91 $DS_PARSE_x 1p-48
10.92 $DS_PRINTB x 19-48
16.93 $DS_PRINTF x 10-50
19.94 $DS_PRINTS_x 19-59
10.95 $DS_PRINTX x 19-51
19.96 $DS_PSLDEF 16-51
10.97 $DS_RELBUF _x 19-52
19.98 $DS_SBTTL 10-52
10.99 $DS_SCBDEF 19-53
10.100 $DS_SECDEF ' 19-54
10.101 $DS_SECTION 19-54
19.102 $DS__SETIPL 19-54
19.103 $DS_SETMAP_x 19-54
19.104 $DS_SETVEC_x 10-56
10.105 $DS_SHOWCHAN_x 19-57
10.106 $DS_STRING 16-57
10.107 $DS_SUMMARY_x 10-58
1¢.108 $DS_WAITMS_x 19-58
10.109 $DS_WAITUS x ' 19-58
19.110 $DS_$SDECIMAL 19-59
19.111 $DS_$END 19-59
10.112 $DS_$FETCH 10-59
16.113 $DS_SHEXADECIMAL 10-60
19.114 DS_SINITIALIZE 10-60
19.115 $DS_SLITERAL 10-60
19.116 $DS_$OCTAL 10-60
10.117 $DS_$SSTORE 19-61
19.118 $DS_$STRING 19-61
19.119 $FAO_x 19-61
19.119.1 FAO Directives 19-62
19.119.2 FAO Control String and
Parameter Processing 10-63
16.120 SFAOL_x 10-66
19.121 $GETCHN_ x 10-67
16.122 SGETTIM x 10-69
10.123 SHIBER S 10-70
19.124 $QI0 x 10-70

10.125
16.126
19.127
19.128
16.129
10.130
19.131
19.132
16.133
19.134

CHAPTER 11

11.1
11.1.
11.1.
11.1.
11.1.
11.1.
11.1.
11.1.
11.2
11.2.
11.2.
11. 2.
11.2.
11.2.
11.2.
11.3
11.3.
11. 3.
11.3.
11.3.
11.3.

11.3.
ll. 3.
11.3.
11.4
11.4.
11.4.
11.4.

CHAPTER 12

12.1
12.2
12.3
12.4

1
2
3
4
5
6
7

1
2
3
4
5
6

1
2
2.

2
2.
2
2

1
2
3
.4
5
2.6
1
2
3

CONTENTS (Cont)

S$QIOW x
$READEF_x 10-75
$SETEF_x
$SETIMR x
$SETPRT x
SUNWIND_x
SWAITFR_x

SWAKE x
SWFLAND x
$WFLOR_x

DIAGNOSTIC PROGRAM DOCUMENTATION

DOCUMENTATION FILE
Documentation Cover Sheet
Program Abstract
Hardware Requirements
Software Requirements
Prerequisites
Operating Instructions
Program Functional Description
MODULE PREFACE
Linker and Assembler Directives
Copyright Statement
Environment Statement
Program and Module Version Numbers
Module Maintenance History
Module Functional Description
ROUTINE PREFACE
Routine Functional Description
Routine Interface Sequence
Calling
Input and Output Parameters
Implicit Input and Output
Parameters
Completion Codes
Side Effects
Register Usage
COMMENTS
Block Comments
Group Comments
Line Comments

CODING CONVENTIONS AND PROCEDURES

GUIDELINES FOR EXECUTABLE CODES
GLOBAL SUBROUTINE GUIDELINES
ERROR MESSAGE ROUTINES

HANDLING INTERRUPTS

x1i

Page
10-74

16-75
10-76
19-78
19-80
10-80
19-81
19-82
10-83

11-1
11-2
11-3
11-3
11-4
11-4
11-4
11-5
11-6
11-7
11-7
11-7
11-8
11-9
11-19
11-10
11-12
11-13
11-13
11-13

11-14
11-14
11-14
11-14
11-14
11-15
11-16
11-17

12-1
12-2
12-2
12-4

12.5
12.6
12.7

12.7.1
12.7.2
12.7.3

12.8

12.8.1
12.8.2
12.8.3

12.9

CHAPTER 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

CHAPTER 14

14.1

14.1.1
14.1.2
14.1.3
14.1.4
14.1.5

14.1.6
14.1.7
14.1.8

14.2

14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6

14.3

CONTENTS (Cont)

ASYNCHRONOUS SYSTEM TRAPS
EXCEPTION HANDLERS AND CONDITION HANDLERS
USER-DEFINED MACROS
Data Structure Macros
Macros that Build Executable Code
Macro Libraries
SYMBOL NAMING CONVENTIONS
Public Symbols
Private Symbols
Object Data Types
ASSEMBLY AND LINK PROCEDURES

EXTERNAL INTERFACE DIAGNOSTIC CONSIDERATIONS

PROGRAM SETUP

AUTOMATED PRODUCT TEST (APT) CONSTRAINTS
SCRIPTING CONSTRAINTS

RUN-TIME CONSIDERATIONS

PARALLEL VERSUS SERIAL TESTING

LOOPING CONSTRAINTS

VOLUME VERIFICATION

LONG SILENCES

DEBUGGING TEST DESIGN

COMMON CODING ERRORS AND THEIR SYMPTOMS
Endless Loops
Forgetting Initialization
Forgetting Return Status
Neglecting to Save Registers
Forgetting the Context or Properties
of an Instruction
Improper Context for I/0 References
Forgetting the Number Sign (#)
Stack Underflow and Overflow
QUALITY ASSURANCE PROCEDURES
Specifications Check
Conventions Check
Load and Execution Check
Fault Detection and Reporting Check
Operational Checks
User Mode Checks
DEBUG AND UTILITY COMMANDS IN THE
DIAGNOSTIC SUPERVISOR
Set Base Command
Set Breakpoint Command
Clear Breakpoint Command
Show Breakpoints Command
Set Default Command
Example Command

xii

Page

12-6
12-190
12-14
12-14
12-15
12-16
12-16
12-16
12-16
12-18
12-19

13-1
13-1
13-2
13-2
13-2
13-3
13-3
13-3

14-1
14-1
14-1
14-2
14-2

14-2
14-2
14-3
14-3
14-3
14-3
14-3
14-4
14-4
14-5
14-6

14-6
14-6
14-6
14-7
14-7
14-7
14-8

14.3.7
14.3.8

APPENDIX A

APPENDIX B

Figure No.

3-1

w
|
N

(I
o e w

|
N

[}
- W

|
=W N

WO WYY \Om? @ n wn uwww

|
AW

(-
n:w)s
N

12-3
12-4
12-5
12-6

CONTENTS (Cont)

Deposit Command
Next Command

A SAMPLE DIAGNOSTIC PROGRAM

GLOSSARY OF DIAGNOSTIC SOFTWARE TERMS

FIGURES

Title

VAX Diagnostic System: Program Levels,
Environments and Operating Modes

The Building Block Structure of the
Diagnostic Environments

Console Environment

CPU Cluster Environment

System Environment

Diagnostic Supervisor Functional Block
Diagram

Diagnostic Supervisor and Diagnostic
Program Interaction

Diagnostic System Memory Allocation
Memory Format for RELBUF Supervisor
Service Macro Arguments

Operator Dialogue Flowchart

Command Interpreter Tree Structure
Memory Format for the ASSIGN VMS
Service Macro Arguments

Queue I/0 Diagnostic Buffer Format

I/0 Function Format

Function Modifier Format

I/0 Status Block Format

Buffer Layout Supplied by the GETCHAN
System Service

Diagnostic Buffer Format

Printing and Error Message, Program Flow
Handling Interrupts

Coordination of I/0 Transfer with an AST
Data Structures that Support the AST
Condition Handler Flowchart

Condition Handler Argument List and
Associated Arrays

xiii

Page

14-9
14-9

8-41
8-52

9-2
9-14
9-15
9-16
9-24

9-28
19-74
12-3
12-5
12-8
12-9
12-11

12-12

Table No.

\OKO\DLQ\O\O\'Q\O\D\DO)O\U'I
HOOJoOONbdwNEF -

=

=\
= |
[
—

12-1
14-1

Example No.

HOYOOONAAD & WN

(%))
|
=
=

5-12

(]
- b
U w

[
OO & WN =

()< e We) Ie Mo We) We) WO, T, N0]
I

TABLES

Title Page
Device Naming Conventions 5-6
P-Table Symbolic Offsets 6-9
Summary of FAO Directives 8-31
Read and Write I/0 Functions 9-15
Terminal I/0 Driver Functions 9-17
Disk I/0 Driver Functions 9-18
Magnetic Tape I/0 Driver Functions 9-19
Line Printer I/0 Driver Functions 9-20
Card Reader I/0 Driver Functions 9-20
Mailbox I/0 Driver Functions 9-20
DMC-11 I/O Driver Functions 9-21
ACP Interface Driver Functions 9-21
Field Function for ASCII Absolute

or Delta Time Values 9-37
Summary of FAO Directives 9-46
Summary of FAO Directives 19-64
Object Data Types 12-18
Examine Command Qualifier Descriptions 14-8

EXAMPLES

Title Page
Set Load Command 5-4
Show Load Command 5-4
Load Command 5-5
Attach Command 5-7
Select Command 5-7
Deselect Command 5-7
Show Device and Show Select Commands 5-8
Start Command 5-10
Run Command 5-11
Use of Control C, Summary, and

Continue Commands 5-13
Use of Control C, Summary, and

Abort Commands ' 5-13
A Typical Command File 5-14
Execution of a Typical Command File 5-14
Use of the Flag Control Commands 5-18
Event Flags Control Commands 5-19
A Program Header Module Preface 6-5
Declarations Section 6-6
Program Header Data Block 6-7
Dispatch Table Psect 6-8
P-Table Format 6-8
Global Data Section 6-11
Program Text Section 6-12
Error Report Statement 6-13

xiv

6-9

6-190
6-11
6-12
6-13
6-14

6-15

(o))
|
[a
[=)}

|
e
0

\ITITI\IO\G\
|
W+

\I\Il\‘l
~Non

EXAMPLES (Cont)

Initialization Routine for Parallel
Device Testing

Initialization Routine for Serial Device
Testing

Typical Design Specification for a Level 2
Program Cleanup Routine

Typical Design Specification for a
Summary Report Routine

Typical Design Specification for a Print
Expected and Received Data Routine

The Passing of Parameters from a Calling
Routine to a Global Subroutine
Arrangement of Arguments on the Stack
Use of Structural Macros to Define Test
and Subtest Boundaries

Typical Test and Subtest Documentation
32-Bit Register Test Patterns

Header Macro Format

Specification of Arguments by Position
Specification of Arguments by Keyword Names
Specification of Arguments by Position and
Keyword Name

Use of Begin and End Module Macros
Subtitle Directives

Expansion of the $DS_HEADER Macro in the
DZ11 Diagnostic Program (ESDAA)

Use of the $DS_DISPATCH Macro

Test Argument Table Directives

Device Register Storage Area Directives
Statistics Table Directives

Use of the $DS_SECTION and $DS_SECDEF Macros
Quadword Descriptor Directive
Initialization Code Directive

Cleanup Code Directives

Summary Code Directives

Interrupt Service Routine Directives
Test Directives

Message Routine Directives

Pass Control in Initialization Code
Quick Flag Macros

Operator Flag Macros

Program Subtest Control Macros

Loop Control Macro Use

Escape Control Macro

Branch on Complete Utility Macro Use
Program Abort Macro

Building a Data Structure for the RH780
P-Table Offsets

Building a P-Table Descriptor

Use of the $DS_name L Macro Format to

Xv

|

I
|ENMVWOOOIIOW,M oW N

NNNNNN NN
1

[|
N

[o] o o] 00 00 0o Q©
~ (=)} Ul W

| I T R I B |
O 0

Q0 CO 00 CO 00 0o 0

]
> w

(o) NS |

O o0

(o Vo Ve JRVe] o Ve O O

EXAMPLES (Cont)

Build an Argument List

Calling a Supervisor Service with the
$DS name G Macro Format

Expansion of $DS_name G Macro Form
Modification of an Argument List

Uses of $DS_name G, $DS_name L, and
$DS_name DEF Macro Formats

Use of the $DS_name S Macro Format
with Keywords —

$DS name S Macro Format with Arguments
Specified by Position

Expansion of the $DS_RELBUF_S Macro
Testing for Successful Return Status
Identifying the Return Status Code
$DS_CNTRLC_x Macro Usage

Use of the $DS INLOOP x Macro

Use of the $DS_ENDPASS Macro Call
Resetting the Unibus Channel with the
$DS_CHANNEL x Macro

Use of the SDS_SETMAP_x Macro

Use of the $DS_SHOWCHAN x Macro

Use of the $DS WAITUS x Macro
Coordination of the $DS_WAITMS x and
$DS_CANWAIT x Macros

Error Message Header Format

Sample Error Message Header Printout
Use of the $DS_ERRSYS x Macro

Use of the $DS_ERRHARD x Macro
Standard Formats for Basic Error Messages
Use of the $DS_PRINTB_ x Macro

Use of the $DS_CVTREG x Macro

A Sample Error Message

Prompting and Parsing a Command

Use of the $DS GPHARD x Macro

Use of the $name Macro Format to
Build an Argument List

Calling a VMS Service with the $name G
Macro Format

Modification of an Argument List

Uses of $name G, Sname, and $nameDEF
Macro Formats

Checking the Return Status Code for an
Error Condition

Checking the Return Status Code to
Determine the Nature of an Error

Use of the $ASSIGN_x Macro

Use of the $DASSGN x Macro

N

o W ww

(e o o 0o 0 ©

o

L I I |
= 00~ W LoJaohuwm

€0 00 00 o OO o

Synchronizing I/0 Completion, Three Methods

Use of the SBINTIM x to Convert an
Absolute Time Value to System Format

xvi

9-11
9-12
9-13

11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8

11-9

11-190
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
12-1

12-2

12-3

12-4
12-5
12-6
12-7
12-8
12-9
13-1

13-2

14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8

EXAMPLES (Cont)

Use of $BINTIM x to Convert a Delta Time
Value to System Format

Use of the SETIMR Service to Create a
B# Second Delay

Use of the SETIMR Service to Call an AST
at an Absolute Time

Documentation Cover Sheet

Program Abstract

Hardware Requirements Documentation
Software Requirements Documentation
Prerequisites

Operating Instructions

Test Description

Linker and Assembler Directives in
the Module Preface

Assemble and Link Commands Shown

in the Environment Statement

Module History

Sample Routine Preface

Standard Calling Sequence

Input Parameters

Output Parameters

Implicit Inputs

Completion Codes

Block Comment

Group Comments

Line Comments

Declaration of a Condition Handler
Continue from a Condition Handler
Resignal and Return from a

Condition Handler

A Table of Addresses and Strings

A Data Structure Macro Definition

A Macro that Generates Executable Code
Creating a Library

Include Files

Assembly and Link Commands

A Special Prompt Message for the
$DS_ASKxxx X Macro

A Special Prompt Message that Causes
Rejection of Scripted Responses

Set Base Command

Set Breakpoint Command

Clear Breakpoint Command

Show Breakpoints Command

Set Default Command

Example Command

Deposit Command

Next Command

xvii

Page

9-38
9-41

9-42
11-3
11-3
11-4
11-4
11-4
11-5
11-6

11-7

11-8
11-10
11-12
11-13
11-13
11-14
11-14
11-14
11-15
11-16
11-18
12-19
12-13

12-13
12-14
12-15
12-15
12-16
12-16
12-19

13-2

13-2
14-6
14-7
14-7
14-7
14-8
14-8
14-9
14-9

PREFACE

This manual presents an overview of the VAX diagnostic philosophy
and procedures and an explanation of how to write diagnostic
programs for VAX Family computers. It is written for diagnostic
engineers who are familiar with the VAX-11 Macro assembly
language, VAX hardware, the VAX/VMS operating system, and the
hardware device to be tested. You can use the manual as a
tutorial guide to diagnostic program development or as a reference
for specific features of the diagnostic supervisor and diagnostic
macro library.

The manual consists of two parts. Part I describes the VAX
diagnostic engineering philosophy. It deals with diagnostic
goals, functions, methods, and the structure of the VAX diagnostic
system. Part II presents system-wide guidelines. It tells you how
to write a diagnostic program that will interface with the
diagnostic supervisor and that will conform to DIGITAL engineering
standards.

Related documentation on VAX systems is listed in the following
table.

Related Documents

Document
Title Number Media

VAX-11 KA780 Central
Processor Technical 7
Description EK-KA780-TD Microfiche and hard copy

VAX-11 MS7880 Memory
System Technical
Description EK-MS780-TD Microfiche and hard copy

VAX-11 DW780 Unibus
Adaptor Technical
Description : EK-DW786-TD Microfiche and hard copy

VAX-11 RH780 Massbus
Adaptor Technical: : :
Description : EK-RH780-TD Microfiche and hard copy

VAX-11] KC788 Console
Interface Board Technical
Description EK-KC780-TD Microfiche and hard copy

VAX-11] Diagnostic System , o
User's Guide EK-DS780-UG Hard copy only

xix

Related Documents (Cont)

Title

Document
Number

Media.

VAX-11 Diagnostic System
Technical Description

VAX-11 Macro Language
Reference Manual

VAX-11 Linker Reference
Manual

VAX/WS Guide to Writing
a Device Driver

VAX-11 Text Editing
Reference Manual

VAX/VMS System Services
Reference Manual

VAX/WMS Command
Language User's Guide

VAX/WMS I/0 User' s
Guide

VAX-11/780 Architecture
Handbook

VAX-11/780 Hardware
Handbook

VAX-11 Software
Handbook

PDP-11 Per1pherals
Handbook

Terminals and
Communications Handbook

EK-DS780-TD
AA-D@32A-TE
AA-D@19A-TE
AA-H499A-TE

AA-D@29A-TE

AA-DO1A8-TE

AA-DO23A-TE
AA-D@28A-TE
EB-07466
EB-09987
EB-08126
EB-07667

EB-15486

Microfiche and hard-copy
Hard copy only
Hard copy’only
Hérd copy only
Hard copy only
Hard eopykoniy
Hard copy only
Hard copy only
Hard copy only
Hard copy only
Hard copy only
Hard copy only

Hard copy only

NOTES

1. If you wish to order these manuals from within the United
States, call Digital Equipment Corporatlon at either of
the two numbers listed below. :

From all areas of the United States except New Hampshire,
call (8909) 258-171¢0.

XX

PART 1

VAX DIAGNOSTIC ENGINEERING
DESIGN PHILOSOPHY

Part I provides an overview of the VAX diagnostic system purposes,
metrics, structure, and procedures. Diagnostic engineers must be
familiar with this material in order to write effective programs
that contribute substantially to the VAX diagnostic system.

CHAPTER 1
DIAGNOSTIC USERS AND APPLICATIONS

This chapter describes the purposes of diagnostic programs for
primary users and applications in the DIGITAL environment. An
attempt is made to introduce the requirements placed on diagnostics
by their users and applications.

1.1 DIAGNOSTIC USERS

Diagnostic programs are used by computer design engineers,
manufacturing technicians, and field service or customer engineers.
The common denominator of diagnostic users is their requirement for
excellent fault detection coverage. Requirements concerning other
diagnostic metrics such as program size, run-time, fault isolation,
or troubleshooting support, and operational documentation will vary
with users and applications.

1.1.1 Computer Design Engineers

Computer design engineers rely on design verification test programs
to detect functional or design implementation mistakes early in the
hardware development phase. Fault (mistake) detection is their main
concern. Design engineers have little or no concern for program
size, run-time, fault isolation and troubleshooting support, or
operational documentation. But poor or incomplete design
verification test coverage (mistake detection) can result in costly
ECOs affecting manufacturing inventories, installed systems, and/or
missed development schedules.

1.1.2 Manufacturing Technicians

Manufacturing technicians use diagnostics at several levels of the
hardware test and repair processes. Diagnostic programs are used to
screen (for defects) modules arriving from the module build process.
This application requires excellent fault coverage but is usually
sensitive to program run-time, thus forcing some design trade-offs
between exhaustive testing and acceptable time-to-test. Fault
isolation and troubleshooting support is generally not required in
module screen diagnostics, since module repair is usually performed
at a special purpose repair station utilizing repair tools (eg., GR
or microdiagnostics). Also, diagnostic operational documentation is
not heavily emphasized because the module screen process is
generally automated with the details of diagnostic execution/control
masked from the technicians.

A second area of manufacturing diagnostic use is unit or system
test, where CPUs, memory systems, 1/0 channels, and peripherals are
tested either as components or as newly integrated systems. As in
module screening, excellent fault detection coverage is required to
minimize the number of faults slipping through to later system tests
(utilizing operating system software) or customer applications.
Diagnostic programs used for unit or system test do not have the
severe size and run-time constraints associated with the module
screening diagnostics. However, unit and system test diagnostics
must provide effective fault isolation and troubleshooting support,
since repair is performed on-line, that is, at the time that the

1-1

VAX Diagnostic Design Guide

problem is detected. Diagnostic operational documentation becomes
more important in this application because the technicians are
directly involved with diagnostic execution and control. Technicians
also must deal with a wide variety of hardware options; hence, a
wide variety of diagnostic programs is needed.

1.1.3 Field Service Engineers

Field service engineers use diagnostic programs to install,
maintain, and repair computer systems in countless configurations
running countless applications. Their diagnostic requirements
include the full spectrum of metrics: fault detection, fault
isolation and troubleshooting support, and effective diagnostic
operational documentation. The need for excellent fault detection
coverage, fault isolation, and troubleshooting support is probably
obvious from the repair objective of the field service engineer's
task. The need for simple, effective diagnostic operational
documentation is based on the variety and complexity of the systems
that Field Service engineers support. Often the field service
engineer is required to isolate and repair faults in equipment on
which he has received 1little or no recent training. To further
complicate the task, details of equipment configuration and options
will seldom be known to the field service engineer and, therefore,
should not be required in order to execute the diagnostic programs.
Default diagnostic test scripts are key elements in the VAX
diagnostic operational effectiveness goal. Several diagnostic
metrics (such as program partitioning and run-time parameter
definition) are heavily driven to achieve the diagnostic operational
goals.

1.2 DIAGNOSTIC APPLICATIONS

Often, diagnostic programs are used in applications or processes
that are quite independent of the ultimate test and repair mission.
These applications impose requirements or constraints on the
diagnostic programs which, in some cases, conflict with test and
repair considerations. Since the ultimate effectiveness of a
diagnostic program is a result of both mission effectiveness and
process effectiveness, both sets of requirements must be addressed
and effective compromise solutions engineered.

1.2.1 Local Operator Application

The traditional and probably most important application for
diagnostic programs is local operator controlled and directed
testing, fault 1isolation, and repair verification. A major
percentage of the VAX diagnostic supervisor command functionality
and the major diagnostic test design and documentation effort are
directed toward local operator effectiveness. Diagnostic scripting,
predefined configuration parameter files, and default unit testing
are examples of 1local operator test effectiveness tools.

Diagnostic Users and Applications

Halt and loop-on-error control, multilevel error reporting, summary
test reports, field replaceable unit (FRU) callout, and listing
troubleshooting documentation are examples of local operator fault
isolation and repair effectiveness tools. To be totally effective,
diagnostic programs must be designed and implemented to achieve
excellence in test and repair support effectiveness, operator ease
of use, and control effectiveness.

1.2.2 Automated Applications

Over the past few years, diagnostic programs have been used in
automated, often centrally controlled, applications. Automated
diagnostic operation consists of the execution of predefined
sequences, or scripts, of diagnostic programs. The scripting can be
via local command files packaged on the diagnostic media and
processed by the diagnostic supervisor, or remote command files
that are processed by the remote computer, or diagnostic host, and
supplied to the diagnostic supervisor via a serial communication
link. In the local script case, the diagnostic programs are usually
loaded directly from the same local media, although there is at
least one VAX diagnostic application in which a 1local script
requests program loads from the remote host. In remote script
applications, the diagnostics can be loaded from the 1local
diagnostic media or down-line loaded from the host via the serial
communication link. ’

Automated diagnostic applications, whether locally or remotely
controlled, have a definite impact on diagnostic design and
packaging.

1.2.2.1 APT - APT is the acronym for an Automated Product Test
application used throughout DIGITAL Manufacturing. APT employs
remote diagnostic scripting with down-line diagnostic program load.
Once APT loads a diagnostic program (and the diagnostic supervisor)
and starts diagnostic execution, it performs all monitoring and
control functions (end of pass, error status collection) via an
APT-unique software interface and protocol implemented in the
diagnostic supervisor. This APT interface is totally
indistinguishable, to diagnostic programs, from local operation, and
totally insensitive to command or program output message content and
syntax (associated with local diagnostic operation).

APT as an application, however, is sensitive to diagnostic operator
intervention requirements, and to diagnostic program size and
down-line load time. Diagnostic operator intervention, whether for
configuration information or for hardware option information, is
generally unacceptable to the APT application because of the need to
create a finite set of test scripts that can be applied to a wide
set of possible system configurations and hardware options. (This
issue of run-time diagnostic configuration and option selection also
applies to local script and local operator diagnostic operation. VAX
diagnostic standards specifically disallow mandatory hardware option
or test sequence run-time selection.)

VAX Diagnostic Design Guide

Diagnostic program size and load-time considerations are obvious in
time sensitive test processes., Although arbitrary program size
reduction will reduce diagnostic fault coverage, thoughtful program
partitioning (to allow selective hardware testing) and avoidance of
verbose error and status messages (ASCII text) can benefit the
diagnostic APT application.

1.2.2.2 APT-RD - APT-RD 1is an automated diagnostic control
application utilized by DIGITAL field service to provide contract
customers with quick response and effective on-site repair action.
APT-RD becomes involved shortly after a customer requests a service
call, by establishing a phone connection with the target system and
initiating a diagnostic test session prior to the dispatching of a
field service engineer. APT-RD effects remote diagnostic control by
issuing diagnostic supervisor command sequences, via the phone link,
to load (from local customer-mounted diagnostic media) and execute
the appropriate diagnostics. Unlike APT, APT-RD will down-line load
diagnostics only in rare situations (such as inability to boot or
load from the local diagnostic media). APT-RD scripts use standard
supervisor commands and key on ASCII message output (from the
supervisor and individual diagnostic programs) for all monitoring
and control functions. As an application, APT-RD is extremely
sensitive to the details of the supervisor and diagnostic program
command and response messages. Also, as with APT, APT-RD is
sensitive to diagnostic operator intervention requirements and, to a
lesser degree, diagnostic program size and load time. Essentially
the same diagnostic design considerations that are important to meet
APT application requirements (program partitioning, no mandatory
operator run-time intervention) are required for APT-RD. 1In
addition, APT-RD requires well-defined, documented, and enforced
(from program to program and version to version) command and message
standards and implementation.

CHAPTER 2
DIAGNOSTIC PROGRAM METRICS

In this chapter, the term diagnostic metrics refers to the
characteristics, qualities, and attributes that affect the
usefulness or effectiveness of diagnostics for their various users
and applications. Chapter 1 introduces diagnostic metrics from the
standpoint of the diagnostic users and applications. This chapter
attempts to further define the metrics and relate them to the
diagnostic design and development process.

Considered in this chapter are the following metrics:

Fault detection coverage

Fault isolation and troubleshooting support
Diagnostic size

Diagnostic execution time

Operational functionality and documentation

2.1 FAULT DETECTION COVERAGE

Fault detection coverage is the common denominator or basic metric
of all diagnostic uses. Inadequate, incomplete fault detection
increases repair cost in either of two ways. First, it may defer
detection of a fault to a 1later point in the computer
manufacturing process. This results in higher repair or recycling
costs. Or it may defer detection of a fault to a higher 1level
diagnostic program (ultimately the customer's application). This
results in longer troubleshooting and repair verification time.

Effective diagnostic fault detection coverage is achieved through
thorough planning and thorough, conscientious implementation.

Planning

Define the scope of desired testing. The scope of testing is often
referred to as the unit under test (UUT). Avoid including
functionality that 1is (or should be) tested by a higher 1level
diagnostic program. For example, disk drive faults detected by a
program intended to test just the controller will give misleading
failure information and probably frustrate repair of the actual
fault.

Define and minimize the diagnostic hard-core functionality
(Paragraph 3.1, Chapter 3) which is used by the diagnostic program
in testing the UUT. Faults in the hard-core will result in
uncontrolled detection (i.e., program crash, unpredictable program
operation) and render fault 1isolation or troubleshooting
information ineffective. Hard-core functions should be provided
with built-in error detection such as parity or limit checks. The
diagnostic program should provide handlers or recovery routines
for all predictable hard-core exception situations such as
abnormal interrupts or machine checks.

VAX Diagnostic Design Guide

Develop a diagnostic functional specification that details each
logic function to be tested, and the proposed method of test.
Carefully document the use of all hardware diagnostic aids such as
loopback or special controls, and review the specification with
the hardware designer. In addition to mapping out the diagnostic
test strategy, the functional goals, and operational
functionality, the functional specification also provides a
reasonable basis for predicting program size and execution time.

Develop a design specification. Do a thorough job implementing the
functional specification. Check-off the logic prints as the tests
are designed and debugged, and double-check that all significant
boundary conditions, exception cases, and interactions are tested.
Document during design, not as an afterthought. Subject the
diagnostic program to physical fault insertion if feasible and
cost Jjustified. (Note that fault insertion has shown that
conscientiously planned and implemented diagnostics achieve 85 -
95 percent fault detection coverage. Fault insertion has the
greatest importance and payback for diagnostic programs that
provide field replaceable unit (FRU) callout or detailed
listing-based troubleshooting information.)

2.2 FAULT ISOLATION AND TROUBLESHOOTING SUPPORT

Fault isolation and troubleshooting support are the primary
functions of repair diagnostic programs. Fault isolation is
defined as explicit identification, via error reports, of one or
more FRUs. An FRU may be a subassembly (backplane and modules),
one or a few modules, or one or a few ICs. Troubleshooting
support consists of error reports (short of FRU callout), listing
documentation, and operational documentation intended to assist
the technician in locating the failing components using scope,
logic prints, etc.

2.2.1 Fault Isolation

Fault isolation is an ambitious diagnostic undertaking that cannot
be achieved without active cooperation from the hardware designer.
This cooperation must be in the form of well-defined and
controlled FRU functional logic partitioning or FRU interconnect
visibility.

FRU functional logic partitioning requires that all (or 90
percent) of the logic that implements a test function be
physically and logically located on one FRU. The implication is
that by detecting the fault, the diagnostic program has isolated
it to an FRU. Because of module density requirements, tristate bus
designs, and function interactions, diagnostic isolation based on
FRU functional logic partitioning rarely succeeds.

FRU interconnect visibility requires diagnostic read access to
logic states and signals that feed or control the test function.
When the diagnostic program detects a failure, it gathers the
appropriate inputs and control states to determine if the fault is
within the test function, or reflecting into the test function
from other interacting logic (which may be located in another FRU

2-2

Diagnostic Program Metrics

module or chip). Module interconnect visibility and function
interconnect visibility are employed by the VAX-11/780
microdiagnostics (module level FRU).

Even with FRU interconnect visibility, fault insertion quality
control (QC) 1is necessary to measure diagnostic FRU isolation
effectiveness (invariably exposing some incorrect callouts).

2.2.2 Troubleshooting Support

Troubleshooting support is a traditional component of virtually
all diagnostic programs. Error reports provide the first level of
troubleshooting information by supplying the failing test and
subtest numbers, a brief statement of the function and test
performed, and relevant test data and result data. Unless the user
has extensive experience with the diagnostic’' and hardware failure
symptoms, the error report information will not, in itself,
suffice to identify the repair action. However, the report should
direct the user to the correct test listing section which, coupled
with the test data and result data reported, should provide
detailed troubleshooting assistance.

The test 1listing documentation, coupled with operational
functionality such as loop-on-error, provides the user with a tool
for determining the failure source. Unfortunately, effective use
of test listing documentation and 1loop-on—-error techniques
requires a trained user and well-designed and structured
documentation. It is not wuncommon for one of these two
prerequisites to be missing, resulting in extended troubleshooting
and repair sessions. The diagnostic engineer cannot greatly
influence the level of training and expertise of the diagnostic
user. The engineer can, however, implement well-designed, well
structured, informative error reports and test sections that
maximize the potential transfer of troubleshooting assistance from
the implementor to the user. '

2.3 DIAGNOSTIC PROGRAM SIZE

Diagnostic program size is measured in kilobytes (KB) of memory
occupied by a diagnostic program at execution time. Diagnostic
programs are comprised of test data, test execution code,
environment interface code, and ASCII data. None of these
components can be reduced arbitrarily without sacrificing test
coverage, operational functionality, or isolation and
troubleshooting support effectiveness. The only viable trade-off
currently affecting diagnostic program size, is packaging: how
test functions are grouped into loadable, executable entities.

Obviously, program size must not exceed the minimum supported
system memory size. Beyond this restriction, program size should
be a function of the hardware test application. For example, a
single program covering a total hardware subsystem maximizes local
load media and test efficiency. Conversely, several small programs
covering specific hardware subassemblies and modules will minimize
APT down-line 1load time in a structured test process such as
manufacturing module screening.

VAX Diagnostic Design Guide

Program size <can rarely be specified accurately until
implementation is well underway. However, it is often necessary to
make size estimates earlier than this. Diagnostic functional and
program design specifications provide a useful basis for
generating reasonably accurate size and execution time estimates.
Once the diagnostic program is well-defined functionally and
structurally, it is quite possible to compare it to other existing
programs where visible similarities or differences (affecting
size) can be compared.

2.4 DIAGNOSTIC EXECUTION TIME

Diagnostic execution time 1is typically the 1least controllable
metric, and fortunately the 1least critical metric except 1in
unusual test situations. The execution time of a diagnostic
program is the elapsed time from start to completion of one test
pass. A test pass may consist of completion of all tests for each
selected UUT (serial test), or completion of all tests for all
selected UUTs (parallel test). Diagnostic execution time is
primarily defined by the characteristics and test requirements of
the UUT.

Pure logic tests usually execute at machine speed, thus allowing
many test passes to occur in a few seconds or less.
Electromechanical or data loop-back tests, such as disk head
positioning tests or data communication tests, incur millisecond
delays (pauses) resulting in test passes of a few minutes or less.
Media testing (disk or tape) 1incurs a combination of data
transfer, electromechanical, and media motion delays that can
result in many minutes per test pass. It is not uncommon for large
tape or disk units to require 30 minutes for one media test pass.
Therefore, diagnostic program execution time is the least
controllable metric. However, diagnostic program design should not
impose unnecessary pass time requirements by building iterations
into each test section.

Finally, the diagnostic engineer should estimate single pass
execution time (via the functional and program design
specification), review it with the users, and employ thoughtful
test algorithms to optimize electromechanical and media test
execution time.

2.5 OPERATIONAL FUNCTIONALITY AND DOCUMENTATION

Diagnostic program operational functionality and documentation
define the ease of loading and running the diagnostic program and
the use and interpretation of the diagnostic program in a
troubleshooting and repair situation.

Operational functionality is primarily what the diagnostic program
and the diagnostic supervisor are capable of providing to the
user. Documentation largely defines how easily and effectively
the user can take advantage of the functionality.

Diagnostic Program Metrics

Clearly, operational functionality is a prerequisite for easy,
effective diagnostic program use. However, without effective
documentation, the operational functionality will go unused.

Diagnostic programs are used in two modes: test mode and
troubleshooting and repair mode. From an operational standpoint,
these two modes have quite different requirements.

2.5.1 Test Mode Diagnostic Functionality

Test mode diagnostic use is typically an attempt to answer the
question "Is there a hardware fault in the unit, subsystem, or
system?" The goal of test mode diagnostic operation is to
facilitate the running of all applicable diagnostic programs with
as little system configuration, hardware option, and diagnostic
knowledge as possible. Only when a fault 1is detected by a
diagnostic program should it be necessary and appropriate for the
operator to understand the hardware operation, diagnostic test
algorithm, and troubleshooting functionality.

The VAX diagnostic system (supervisor plus unit diagnostic
programs) utilizes configuration parameter and diagnostic
execution scripts to automate, as much as possible, the test mode
use of diagnostic programs. Diagnostic programs adhering to the
VAX diagnostic supervisor interface conventions, which are
documented in Chapter 5 of this manual, will operate in script
driven test mode.

2.5.2 Troubleshooting and Repair Diagnostic Functionality
Troubleshooting and repair support diagnostic functionality is
important once a fault has been detected and reported by a
diagnostic program. The effectiveness of the failure isolation and
repair process depends on a combination of the diagnostic error
report, diagnostic test algorithm and supporting documentation,
and the diagnostic operator controls.

The error report must inform and direct the repair engineer
without overwhelming him with superfluous data. The VAX
diagnostics employ a three level error report structure —-- header,
basic, and extended. The intention is to provide essential test
information and function or FRU callout (header), initial and
final test status information (basic), and free-form
troubleshooting information (extended). The reports should
provide this information in structured, controlled packets that
can be selectively enabled or disabled according to the ability or
need of the diagnostic user to use the information.

Diagnostic test algorithms and their supporting documentation are
often the final resort troubleshooting guide for the repair
engineer. The diagnostic program must clearly define (through
documentation and test structure, not through a reading of the
code) what the test is doing, and how it is doing it. Hardware

VAX Diagnostic Design Guide

initialization, initial test data, and test results (data and
state) should be clearly identified and accessible. Although some
formal diagnostic user training must be a prerequisite for
effective diagnostic troubleshooting, the test algorithms and
documentation must transfer as much as possible of the diagnostic
engineer's hardware and test expertise to non-specialist
diagnostic users.

The diagnostic supervisor's operator controls provide the final
element of diagnostic troubleshooting functionality. Diagnostic
troubleshooting controls such as loop-on—-error, halt-on-error,
test and subtest selection, bell-on-error, etc., are traditional
functions long provided by diagnostics. In general, these
troubleshooting control functions are generic to all diagnostics,
and are standardized and implemented 1largely by the diagnostic
supervisor. However, effective use of these functions depends on
the diagnostic test design and proper program interface to
(interaction with) these functions.

CHAPTER 3
VAX DIAGNOSTIC SYSTEM: STRUCTURE AND STRATEGY

This chapter describes the structure of the VAX diagnostic system
and the underlying strategy behind it. For completeness, the
description will include all 1levels of VAX diagnostic programs
(from console-based microdiagnostics through the VMS-based system
diagnostic). However, the emphasis will be on the level 3 and
level 2 I/0 diagnostic programs, the predominant type required.

3.1 VAX FAMILY DIAGNOSTIC STRATEGY

The VAX architecture is intended to be implemented in a family of
computer systems spanning a wide range of product cost,
functionality, and diagnostic requirements. The VAX Family
diagnostic strategy 1is intended to achieve consistent and
appropriate diagnostic effectiveness and functionality across the
family, and to minimize the need for redundant diagnostic
development and support from implementation to implementation.

Achievement of the VAX diagnostic effectiveness and functionality
goals is dependent on careful attention to the key diagnostic
applications (Chapter 1), metrics (Chapter 2), and adherence to a
sound diagnostic development process (Chapter 4). Awareness of the
VAX diagnostic strategy and structure rationale will help ensure
consistency of implementation. Six program levels make up the VAX
diagnostic system, as follows.

Level 1 -- Operating system (VMS) based diaghostic programs
[using logical or virtual queue I/0 (QIO)]

Level 2R -- Diagnostic supervisor-based diagnostic programs
(restricted) that can be run only under VMS (using
physical QIO)

Certain peripheral diagnostic programs
System diagnostic program

Level 2 -- Diagnostic supervisor-based diagnostip programs that
can be run either under VMS (on-line) or 1in the
standalone mode (using physical QIO)

Bus interaction program
Formatter and reliability 1level peripheral
diagnostic programs

Level 3 -- Diagnostic supervisor-based diagnostic programs that
can be run in standalone mode only (using direct I/0)

Functional level peripheral diagnostic programs
Repair level peripheral diagnostic programs
CPU cluster diagnostic programs

VAX Diagnostic Design Guide

Level 4 -- Standalone macrodiagnostic programs that run without
the supervisor

Hard-core instruction test

Console
Level -— Console-based diagnostic programs that can be run in
the standalone mode only

Microdiagnostics

Console program

Octal Debugging Technique (ODT)
ROM resident power-up tests
LSI-11 diagnostic programs

These six program 1levels operate in the context of four
environments: user, system, cluster, and console. These four
environments, in turn, run within two operating modes: on-line
(under VMS) and standalone (without VMS). Figure 3-1 gives a
schematic representation of these relationships.

The four environments form the basis of the building block
diagnostic approach. For each environment a portion of the
hardware functions as a hard-core, which is assumed to be good.
Specific diagnostic programs operate from the hard-core of this
environment to test the hardware in an area beyond the hard-core.
The hard-core for each environment consists of the hard-core of
the next lower environment plus the area tested in that lower
environment. Figure 3-2 shows the building block structure of the
diagnostic environments.

VAX Diagnostic System: Structure and Strategy

LEVEL 1
(VIRTUAL QIO)
ON-LINE
MODE gﬁ%?RONMENT
(CONTROL FROM
ANY TERMINAL LEVEL 2R
ON SYSTEM) (PHYSICAL QIO)
DIAGNOSTIC
------ T TLEVEL2
SYSTEM SUPERVISOR (PHYSICAL QIO)
ENVIRONMENT
STAND ALONE
______ LEVEL 3
(DIRECT 1/0)
MODE
CLUSTER
ENVIRONMENT
LEVEL 4
(CONTROL FROM (MACHINE-LEVEL)
CONSOLE
TERMINAL,
OFF-LINE)
CONSOLE CONSOLE LEVEL
ENVIRONMENT (SUB-MACHINE LEVEL)

TK-3007

Figure 3-1 VAX Diagnostic System: Program Levels,
Environments, and Operating Modes

VAX Diagnostic Design Guide

USER
MODE
A
-
STAND ALONE
MODE USER
A ' ENVIRONMENT
r AREA UNDER
TEST
SYSTEM
ENVIRONMENT
AREA UNDER
TEST
'CPU CLUSTER
ENVIRONMENT
AREA UNDER
TEST
=
CONSOLE USER
ENVIRONMENT SYSTEM e T OMENT
AREA UNDER > ENVIRONMENT
TEST HARD-CORE
CPU CLUSTER
ENVIRONMENT
HARD-CORE
CONSOLE CONSOLE
HARDWARE ENVIRONMENT
HARD-CORE
p,
TK-3009
Figure 3-2 The Building Block Structure of the

Diagnostic Environments

3-4

VAX Diagnostic System: Structure and Strategy

3.1.1 Console Environment

The console environment operates in the standalone mode only. The
operator controls the system from the console terminal. This
environment consists of submachine level hardware, software, and
firmware. It provides fundamental operator control functions,
system programmer debugging functions, and basic (kernel) machine
diagnostic functions. Fiqure 3-3 shows the console environment
configuration. The console hardware forms the hard-core that must
be good in order to run the microdiagnostics. Notice that the CPU
microcode remains untested in the console environment.

From a diagnostic strategy standpoint, the console environment is
the most basic, most implementation-specific piece of the
diagnostic system. It ranges from the extensive capability and
functionality of the VAX 11/780 console (LSI-11 subsystem) to
totally ROM based quick verify tests in lower priced VAX CPUs.

The VAX console environment (also called kernel logic) diagnostic
strategy is to implement, at minimum, thorough fault detection of
the CPU kernel logic. Fault isolation to a replaceable module or
integrated circuit (IC) will be performed on those VAX systems
where Jjustified by the system, price, market, and maintenance
strategy.

3.1.2 CPU Cluster Environment

Like the console environment, the CPU cluster environment operates
in the standalone mode only. This environment consists of the
console environment plus the machine level components (complete
CPU, memory, I/O channels) that support standalone, macro-level
program execution. Figure 3-4 shows the CPU cluster environment
configuration. The hardware tested in the console environment, by
the microdiagnostics, forms the hard-core of the <cluster
environment.

The VAX CPU cluster environment diagnostic strategy is to
implement a small number of 1level 4 and 1level 3 diagnostic
programs which, in a building block fashion, test basic CPU/memory
functionality, extended CPU/memory functionality, I/0 channel
operation, and CPU/memory/I/0 channel/cluster interaction
functionality. The I/0 channel and cluster interaction diagnostic
programs make full use of channel loopback capability and special
plug-in exerciser wunits (manufacturing use) to maximize test
effectiveness.

VAX Diagnostic Design Guide

JUSWUOITAUY 8TOSUOD ¢-€ 92InBTg

Y00E-JL

3HOD-QYVH
LNIWNOHIANI
AVNIWY3L JT0SNOD
anv
JYVYMAYVYH
370SNOD
IYYMAYVH
Ndd
1s3lL
| H3IANN V3dV
_ LNIWNOHIANS
_) 370SNOD
195 _
|
2 3 L# _ — —— -
30V4HILNI 30V4H3LNI AYOW3IW mu<mmm_pzzm
SNESSYW SNESSVIN _
mmzommmw mmﬂomwmm 30000421 EENBIENE!
SNAsSSvYI SNESSVYIN Ndd SNgINN

VAX Diagnostic System: Structure and Strategy

€00E-311

JuswuolTAUg I93ISNTD NdD ¥-€ @anbig

IVYNIWH3L

aNVv
JHVMJHVH
3T0SNOD

IHVYMAHVH
Ndd

AHOWIW 30VAHILNI

SNgaiNNn

3IHOJ-AUVH
LNIWNOHIANS
431sSN19

Ndo

#
H381043X3
SNASSYW

L#
43S1043xX3 3000021
SNassviN

43S1043X3
SN8INN

1831

HIANN VIHVY
LNIANOYIANST
#31SN19
Ndo

VAX Diagnostic Design Guide

3.1.3 System and User Environments

The system and user environments consist of the CPU cluster
environment plus the I/0 subsystems (disk, tape, communication,
application) that make up the useful, application solving system
components. In the system environment, at the Unibus, Massbus,
DRXXbus interconnect level, the proliferation and variety of I/0

subsystems generate a strong demand for ongoing diagnostic program
development.

3.1.3.1 System Environment - The system environment operates only
in the standalone mode. The operator must use the console
terminal. This environment contains a wide spectrum of diagnostic
programs ranging from level 3 repair diagnostics through level 2
(QI0) device exercisers.

The VAX system environment level diagnostic strategy is to
implement a series of level 3 repair diagnostic programs and level
2 functional diagnostic programs for each I/O subsystem. The
diagnostic series (level 3 and level 2) for each I/0 subsystem is
designed to give building-block test coverage. This evolves from
static logic and maintenance loopback tests (level 3) through
basic function and electromechanical timing tests (level 3 or 2)
to media reliability, acceptance and multidevice exercisers (level
2).

Figure 3-5 shows the system environment configuration in a typical
VAX system. The hardware tested in the CPU cluster environment
forms the hard-core for the system environment.

3.1.3.2 User Environment - The VAX user environment operates in
the on-line mode, under VMS. The operator can control the
diagnostic process from any terminal on the system, including the
console terminal. The user environment includes the level 2
diagnostic programs, which run in the system environment, as well
as the level 2R programs, which do not. Many of the diagnostic
programs that run in the user environment will run simultaneously
with user application programs. However, some, like the system
diagnostic program, require exclusive use of the computer system.

3-8

VAX Diagnostic System: Structure and Strategy

LINE TAPE TAPE DISK DISK
PRINTER MODEM TERMINAL TERMINAL DRIVE DRIVE DRIVE DRIVE
SYSTEM L]
ENVIRONMENT ,
AREA UNDER —
TEST PRINTER COMM ASYNC TAPE TAPE |oisk DISK
ronTroLLer| |coNTROLLER MUX FORMATTER | | FORMATTER | |CONTROLLER| |CONTROLLER
MASSBUS MASSBUS
UNIBUS #1 #
 J -
A
MASSBUS MASSBUS
UNIBUS CPU
EXERCISER EXERCISER
EXERCISER MICROCODE 2 EX
UNIBUS | MASSBUS MASSBUS
INTERFACE MEMORY INTERFACE INTERFACE
| #1 #2
SYSTEM '
ENVIRONMENT
HARD-CORE cPU
HARDWARE
CONSOLE
HARDWARE
AND
TERMINAL
Yy - - - -

Figure 3-5 System
Environment

3-9

TK-3012

VAX Diagnostic Design Guide

3.1.4 Guidelines for the Use of the System and User Environments
The following guidelines should help diagnostic engineers to
determine the sets of diagnostic levels and functions applicable
for their target I/0 subsystems and diagnostic effectiveness
requirements. Each 1level ©possesses a set of diagnostic
characteristics and capabilities. However, each 1level imposes
constraints as well.

3.1.4.1 System Environment Level 3 Diagnostics
A. Diagnostic Capabilities

Direct I/0 device access (maximum hardware visibility)

Unrestrained use of device maintenance logic, loopback,
unorthodox command sequences, etc.

Microsecond range timer capability

Dedicated use of CPU cluster and I/0 channel functions
(i.e. standalone)

Tightest scope loops

B. Constraints
Execution in standalone mode only

C. Considerations
Performance of all I/0 channel programming functions via
the diagnostic supervisor channel services interface
(Chapter 5) to achieve VAX system transportability
Standalone debug and test facilities are required
No VMS driver support is required

3.1.4.2 System/User Environment Level 2 Diagnostics
A. Diagnostic Capabilities
Physical (privileged) QIO device access
Full device functional test capability
Millisecond range timer capability
VMS (privileged user) and standalone operation
Device test in the VMS/application execution environment
is possible
Execution with the VAX system diagnostic is possible.

B. Constraints
Device access restricted to QIO functions
No direct control over I/0 channel functions such as
interrupts
Share CPU cluster time and functions in user mode
Development of VMS physical I/0 driver is required

c. Considerations
Appropriate for most functional 1level diagnostic
programs where standard VMS support is planned
Especially appropriate for lengthy (run-time) media
reliability or acceptance tests
VAX system transportability 1is achieved through
VMS/diagnostic supervisor level 2 interface.

3-10

VAX Diagnostic System: Structure and Strategy

3.1.4.3 System Exerciser Tests (Level 2R)
A, Capabilities
Concurrent execution and full control of several level 2
or 2R diagnostic programs from one terminal are
possible (Paragraph 3.1.5)
Three system diagnostic modes are provided:
Quick verify mode
Acceptance mode
Conversation mode
All standard level 2 diagnostic programs run without
modification

B. Constraints
Execution under VMS only (level 2R)
Virtual dedication of system resources to testing is
implied

cC. Considerations
Same as for level 2 (Paragraph 3.1.4.2)

3.1.5 The VAX System Diagnostic Program (ESXBB)

The VAX System Diagnostic Program is a privileged process that
runs with the WMS operating system. ESXBB performs a multiplexer
function enabling a single VMS operator terminal to load, start,
control (with the full set of diagnostic supervisor functions) and
receive test results from any level 2 diagnostic program.
Throughout the test session, ESXBB allows the operator to exercise
individual diagnostic control and device test selection.

3-11

CHAPTER 4
DIAGNOSTIC DEVELOPMENT PROCESS

This chapter identifies the activities that make up the diagnostic
development process. The process presented is general in that it
is appropriate for any diagnostic development effort -- large or
small. The presentation is also specific in that it is heavily
biased toward the DIGITAL diagnostic development process.

The diagnostic development process consists of the following major
phases:

Consultation
Planning
Implementation
QA and release

Each phase involves objectives, time and staffing requirements,
and external dependencies. Although specific objectives,
requirements, and dependencies will vary from project to project,
development of an effective diagnostic product requires thoughtful
attention to each of the development phases.

4.1 CONSULTATION PHASE

The consultation phase of diagnostic development is an informal
information gathering and exchange process that begins as soon as
engineering or product management admits to a project and |is
willing or anxious to talk about it. It is usually a part-time
effort (less than 25 percent) requiring an experienced diagnostic
project leader or technical supervisor to work with engineering,
field service, and manufacturing to formulate diagnostic strategy,
key project milestones, and preliminary staffing requirements.

The consultation phase typically starts before project funding is
negotiated and continues through the writing of a cursory project
plan (strategy, key milestones, staffing).

Failure of a diagnostic engineer to be involved in a
project startup consultation phase reduces his opportunity for
early diagnostic inputs and hinders project team building.

4.2 PLANNING PHASE

The diagnostic development planning phase can begin in earnest
when the cursory diagnostic project plan is reviewed and agreed
upon and a diagnostic project leader is assigned. Then the
diagnostic project plan or functional specification is written.
For moderate to large projects (3 or more diagnostic engineers
and/or 9 month or more duration), the following diagnostic
planning documents should be developed:

Diagnostic project plan

Diagnostic functional specification
Diagnostic program design specification

4-1

VAX Diagnostic Design Guide

For smaller projects, it is appropriate to combine the relevant
planning information (project plan, functional specification, and
program design specification) into one or two documents. DIGITAL
engineers should follow the DIGITAL standards for the diagnostic
engineering project plan (7C3-1), functional specification
(7C3-2), and program design specification (7C3-3).

4,2.1 Diagnostic Project Plan

The diagnostic project plan lays the foundation for the total
development effort. It presents, in a single document, an overview
of the product and product goals, a statement of diagnostic goals
and strategy, a summary of key project and diagnostic development
milestones, and estimates of required resources (staff and
computer facilities). Often, the project plan is developed in two
stages. A Rev @ project plan requiring from two to several weeks
to develop may be followed later (often after functional
specifications are written) by the Rev 1 or final project plan.

Thoughtful development and review of the project plan are
prerequisites for all diagnostic development efforts, regardless
of their size or complexity.

4,2.2 Diagnostic Functional Specification

The diagnostic functional specification is essentially a statement
of how the diagnostic goals for each major diagnostic component
will be achieved. The functional specification should be developed
by the project 1leader or diagnostic engineer responsible for
program implementation.

The diagnostic functional specification addresses three important
facets of the product: diagnostic goals, diagnostic requirements,
and the development process:

A, Diagnostic Product Goals:

Intended users (design engineering, field service,
manufacturing)

Intended applications (local operator test, repair, APT,
APT-RD)

Diagnostic metrics (fault detection, isolation, and
troubleshooting goals; program size and execution-time
goals; operational functionality and documentation
goals)

B. Diagnostic Requirements

Hardware test and isolation aids (special control logic,
partitioning, test visibility)

Hardware and software environments (hard-core error
detection, minimum memory size and required hardware
options, operating system driver)

Development requirements (development resources: hardware
and software, debug and evaluation resources, project
staffing)

Diagnostic Development Process

C. Development Process
Key project milestones (engineering breadboard and
prototype support: what and when, preliminary release
availability, final completed availability)
Key process events (specification and implementation
reviews, quality assurance procedure, post-release
support)

4.2.3 Diagnostic Program Design Specification

The diagnostic program design specification describes, to the
working design 1level, the internal diagnostic program
implementation. It describes how the diagnostic functionality
(defined in the functional specification) is to be implemented.

Several methods of program design representation are available:

Detailed hierarchy charts

Interface specification blocks

HIPO diagrams (structured flowcharts)
Programming design language (PDL)

Development of an appropriate program design representation --
from overview level hierarchy charts to detailed PDL descriptions
-- 1is well worth the initial investment. It increases the
probability of a high quality, accurately scheduled, program
implementation and the timely development of useful program
maintenance documentation.

4.3 IMPLEMENTATION PHASE

In theory, the transition between the diagnostic planning phase
and the implementation phase should be <clearly defined.
Occasionally, however, both activities must go on in parallel.
Such is the case for diagnostic efforts in support of new hardware
products, where engineering breadboard and prototype support
programs for hardware debug and design verification are needed
well before the final diagnostic product is needed, or could be
developed.

It is often necessary and desirable to plan the engineering
breadboard and prototype diagnostic support phase as a semi-
independent part of a project within the overall diagnostic
effort. Based on the timing of engineering hardware support
requirements, with respect to the startup of the diagnostic plan
and specification effort, it may be necessary, and desirable, to
defer detailed diagnostic functional and design specification
completion until the engineering support programs are in place.
Obviously the hardware dependent diagnostic capabilities and
requirements must be specified during hardware design.

‘4.3.1 Engineering Breadboard and Prototype Support

The objective of this part of the implementation phase is to
provide the hardware engineers with basic hardware debug programs
and design verification programs. These programs will be required

VAX Diagnostic Design Guide

within a few hours to a few days of initial hardware power-on. The
level of hardware debug program support and diagnostic engineer
support will vary £from project to project. However, hardware
design verification programs are normally essential to reduce the
propagation of design mistakes into large numbers of prototypes or
final systems.

The timely development of the correct (needed) set of engineering
debug and design verification programs is an early, visible, and
important phase in the diagnostic development process. Also, this
phase enables the diagnostic engineer to develop the hardware
functional understanding and the hardware implementation
understanding that is &essential for specification and
implementation of effective diagnostics. The hardware debug and
design verification effort requires planning and review to the
same extent as the final diagnostic effort.

4.3.2 Final Diagnostic Implementation

To the same degree that the engineering breadboard and prototype
support diagnostic effort must be focused on engineering hardware
debug and design verification needs, the final diagnostic
implementation effort must be focused on the diagnostic
effectiveness and process needs of field service and
manufacturing.

Since the needs of engineering debug and design evaluation are
considerably different from those of manufacturing and field
service (Paragraph 1.1), the engineering diagnostic programs are
not readily transportable to the manufacturing and field service
environments. However, the diagnostic engineer's acquired
knowledge and expertise are significant and transportable.

The final diagnostic implementation phase begins with review of
the diagnostic functional and program design specifications and
ends when the diagnostic programs are suitable for pre-release.
Since this phase of diagnostic implementation is often a critical
path for key product milestones (manufacturing startup, design
maturity testing, and first customer shipment) it is important
that the development tasks be well-defined, understood, scheduled
in measurable stages, monitored, and reported. Good foresight in
the planning phase will pay off here. For complex or critical
product development efforts, trade-offs may have to be made
between diagnostic program completion and the need to provide
interim diagnostic programs. This is fine as long as deficiencies
and incompleteness are well communicated. Schedules should be
reviewed for possible early support interference with remaining
development and test. Legitimate diagnostic program pre-release
can occur when diagnostic development is complete (including debug
and test), listing documentation and operational documentation are
in final form, and a formal quality assurance (QA) checklist has
been prepared.

4-4

Diagnostic Development Process

The diagnostic engineer should prepare the QA checklist according
to the goals set up in the functional specification and the VAX
diagnostic engineering standards and conventions (see Chapter 14
of this manual for details). It is good practice (required in
DIGITAL diagnostic engineering) to conduct a pre-release review of
the package (including the planned QA checklist) with hardware
engineering, manufacturing and field service engineering
representatives.

Support of early manufacturing startup and support of in-house and
customer field test units normally require the pre-release of
diagnostic programs.

4.4 DIAGNOSTIC QA AND RELEASE PHASE

The final stage in the diagnostic development process is the QA
effort leading to formal diagnostic release. The QA process should
be planned (via the QA checklist, Chapter 14 of this manual) and
reviewed (via the pre-release review) to ensure that all specified
diagnostic user applications (Chapter 1) and diagnostic user
metrics (Chapter 2) have been achieved. Execution of the QA
checklist involves detailed diagnostic effectiveness checks,
operational functionality checks, and operating environment
checks. Depending on hardware availability and diagnostic product
complexity, the QA checklist process requires from two to six
weeks to complete properly. Full fault insertion QA, required for
fault isolating repair diagnostic programs, requires one to two
weeks per hardware module. Years of experience in diagnostic
program development show that this final QA effort makes the
difference between delivering prototype quality diagnostic
products and delivering finished, production quality diagnostic
products. From the perspective of the diagnostic end user, the
difference between the product qualities (prototype vs.
production) makes the QA process non-negotiable.

PART II

SYSTEM-WIDE GUIDELINES

Part II describes those features in the VAX diagnostic system
common to all diagnostic programs, in particular, those which run
under the VAX diagnostic supervisor (levels 2, 2R, and 3). In
addition, Part II provides standards and guidelines for the
diagnostic engineer concerning program interface with the
diagnostic supervisor, proper use of macros and the supervisor
library, program structure, and program debugging.

CHAPTER 5
DIAGNOSTIC SUPERVISOR BASICS

The diagnostic supervisor (ESSAA) 1is fundamental to the VAX
diagnostic system. Most diagnostic programs developed to test the
central processor, channel adapters, and peripheral devices on VAX
Family computers should be designed to interface with the
supervisor. The supervisor is a program that resides in memory
together with a diagnostic program. It provides a framework for
control and execution of diagnostic programs, and it provides
nondiagnostic services to diagnostic programs.

In addition, the supervisor incorporates all system-specific
features of the diagnostic system, enabling transportability of
peripheral device diagnostic programs between VAX implementations.
A disk diagnostic, for instance, should run on a small VAX system
as well as on a VAX-11/780 system.

The supervisor runs in three environments:

CPU Cluster Environments
System Environments
User Environments

The CPU cluster environment and the system environment operate in
the standalone mode (without VMS). In this mode, the supervisor
and the diagnostic program have exclusive control of the computer
system. The user environment operates only in the on-line mode
(under VMS), sharing the computer system with user applications
(Figure 3-1 in Chapter 3). The CPU cluster environment supports
only the 1level 3 diagnostic programs that test the central
processor, memory, and the channel adapters. The system
environment supports level 3 and level 2 peripheral device
diagnostic programs. The user environment supports level 2 and
level 2R diagnostic programs (refer to Chapter 3 for details).

In addition, the CPU cluster environment and the system
environment can be modified for automated product testing (APT).

5.1 SUPERVISOR FUNCTIONS FOR THE DIAGNOSTIC ENGINEER AND
THE USER

The common services provided by the three operating environments
of the supervisor are necessary for test operation, but they are
not directly related to the testing of a device. Incorporation of
these functions in the supervisor leaves the diagnostic engineer
free to concentrate on the device. In addition, a subset of the
supervisor commands includes debug and utility features such as
deposit, examine, and breakpoints.

VAX Diagnostic Design Guide

The framework that the supervisor provides for VAX level 2, level
2R, and level 3 diagnostic programs frees the operator from the
need to have a detailed knowledge of each program. A general
knowledge of the programs to be run and a familiarity with the
supervisor commands are sufficient to make good use of the
diagnostic programs.

The supervisor commands enable the operator to load and run the
diagnostic programs and to set flags that control program
execution. The control flags and commands are program independent
and, therefore, are consistent across the range of diagnostic

programs.

5.2 SUPERVISOR MACRO LIBRARY

The macros in the supervisor macro library (DIAG.MLB) function as
a high 1level diagnostic language supplement to the 1language
(VAX-11 Macro or Bliss) used by the programmer. These macros fall
into three categories, according to the functions they perform and

the ways they are implemented.

5.2.1 Utility Macros

The utility macros provide a variety of services for the program.
The program format utility macros provide assembler and linker
directives that aid in the interface between the diagnostic

program and the supervisor.

The program control utility macros enable the program to test
specific conditions and to alter the flow of the program. Some of
these macros call supervisor services to perform the required
functions. Others merely generate in-line executable code.

The symbol definition macros save the programmer great effort by
defining many of the global symbols required by most programs.
These macros generate assembler directives.

Refer to Chapter 7 for a more complete explanation of the utility
macros.

5.2.2 Supervisor Service Macros

The supervisor service macros call supervisor service routines to
perform specific functions. They do not, generally, alter the
flow of the program. Most of the supervisor routines return
status codes. The supervisor service macros call routines that
provide the following functions:

Program control

Channel control

Memory management

Program delay

Error reporting

Program-operator dialogue control
System control

Hardware P-table address retrieval

5-2

Diagnostic Supervisor Basics

Chapter 8 gives a more complete description of the supervisor
service macros.

5.2.3 VMS Service Macros

A subset of the VMS service macros is available to 1level 2 and
level 2R diagnostic programs. A small number of these macros are
also available to level 3 programs. When the supervisor runs
on-line, the service calls are mapped through the supervisor to
the required VMS routines. In the standalone mode, however, the
supervisor emulates these services. Six types of VMS services are
available to diagnostic programs:

1/0 services

Event flag services

Timer services .
Formatted ASCII output services
Memory management services
Hibernate and wake services

Refer to Chapter 9 for a more compete explanation of the VMS
service macros.

5.3 DIAGNOSTIC SUPERVISOR COMMANDS
The diagnostic supervisor commands are grouped in four sets:

Program and test sequence control
Scripting control

Execution control

Debug and utility control

The debug and utility features are listed in Chapter 14.
Commands, switches, and 1literal arguments may be abbreviated to
the minimum number of characters necessary to retain their unique
identity. For example, the Load command can be specified by a
single L, whereas the Start command requires a minimum of ST.

In the symbolic command descriptions that follow, certain special
characters are employed which require some explanation. Angle
brackets, < >, are used to enclose symbolic arguments that are
satisfied by a numeric expression or character string. Optional
arguments are enclosed by square brackets, []. An OR function is
indicated with an exclamation point,!. Literal arguments such as
ALL, OFF, and FLAGS are capitalized.

Use the hyphen, -, as a continuation character at the end of a
line to continue a command from one line to the next. Use an
exclamation point, !, to separate a comment from a command in a
command line.

Notice that operator input is underlined in the examples that
follow.

VAX Diagnostic Design Guide

5.3.1 Program/Test Sequence Control Commands
These commands enable the operator to select programs and portions
of programs and to control the sequence of test execution.

Set Load Command
SET LOAD <deviced>: [directory] <CR>
The Set Load command establishes the storage device from which the

supervisor will 1load diagnostic programs. Use the §Set Load
command in combination with the Load command or the Run command.

DS> SET LOAD DMA@: [SYSMAINT]
DS> LOAD ESDXA

DS> SET LOAD DMAQ: [SYSMAINT]
DS> RUN ESDXA

Example 5-1 Set Load Command

NOTE
The directory name, and the square
brackets around it, are necessary in the
Set Load command.

Show Load Command
SHOW LOADKCR>

The Show Load command causes the supervisor to display the storage
device from which diagnostic programs are to be loaded when the
Load command is given.

DS> SHOW LOAD
DMA@: [SYSMAINT]
DS>

Example 5-2 Show Load Command

Load Command
LOAD <file-spec><CR>

This command loads the specified file into main memory from the
default load device. The default file extension is .EXE. The
storage device from which the program is loaded is the device
established on the previous Set Load command.

Diagnostic Supervisor Basics

Note that you need supply only the five-letter code that
identifies each diagnostic program for the command line argument
<file-spec>.

For example:

Load the local terminal

LOAD ESTAA !
! diagnostic program.

Example 5-3 Load Command

Attach Command
ATTACH <UUT-type> <link-name> <generic-device-name> . . .<CR>

The operator should use several Attach commands, before starting a
diagnostic program, to define each unit under test (UUT), and the
devices which link it to the SBI, for the supervisor. If you are
testing several units at once, repeat the Attach command for each
device. Every unit under test is uniquely defined by a hardware
designation and a line.

The first parameter <UUT-type> is the hardware designation of the
unit under test. For example, RH780, TM@3, TEl6, and DZ11 are
hardware designations.

The second parameter <link-name> is the generic name of the piece
of hardware that links the unit under test, in most cases through
intermediate links, to the main system bus. For example, an RH780
is linked to the SBI. A TU45 is linked to an MTa; and a DZll is
1inked to a DWn. You must attach each piece of hardware (with the
exception of the SBI) before you can use it as a link in an Attach
command.

The third parameter is the generic device name, which identifies
to the supervisor the particular unit to be tested. Use the form
"GGan" for the device name. "GG" is a 2-character generic device
name (alphabetic). "a" is an alphabetic character, specifying the
device controller. "n" is a decimal number in the range of 0-255,
specifying the number of the unit with respect to the controller.

Use the unit number, "n" or "a", only if it is applicable to the
~ device. You must supply additional information for some types of
hardware to enable the diagnostic program to address the device.
For example, you must supply the TR and BR numbers for an RH780,
the controller number for a TMP3, and the CSR vector and BR for a
Unibus device. If you include such additional information in the
Attach command line, use the order and format shown in Table 5-1.
If you do not include additional information, but the information
is necessary, the supervisor will prompt you for it.

VAX Diagnostic Design Guide

Table 5-1 Device Naming Conventions

Type Link Generic Additional Information

KA780 SBI KAa <G-floating> <H-floating>
<WCS-last-address>

MS788 SB1 MSa <tr>

RH780 SBI RHa <tr>

DW780 SBI DWa <tr>

RP@7 RHa DBan

RPO 6 RHa DBan

RP@5 RHa DBan

RPO 4 RHa DBan

RM@3 RHa DRan

RK611 DWa DMa <ucsr> <uvector> <ubr>

RK@7 DMa DMan

RK@6 DMa DMan

TMO@ 3 RHa MTa <drive>

TE16 MTa MTan

TU45 MTa MTan

TU77 MTa MTan

DZ11 DWa TTa <ucsr> <uvector> <ubr> <EIA>
1 <20MA>

DUP11 DWa XJdan ucsr> <uvector> <ubr>

DMC11 DWa XMan <ucsr> <uvector> <ubr>

KMC11 DwWa XMan <ucsr> <uvector> <ubr>

LP11 DWa LPa <ucsr> <uvector> <ubr>

CR11 DWa CRa <ucsr> <uvector> <ubr>

DR11B DWa ??a <ucsr> <uvector> <ubr>

PCL11 DWa ??a <ucsr> <uvector> <ubr>

TS@4 DWa MTan <ucsr> <uvector> <ubr>

RLO2 ??a ??an <ucsr> <uvector> <ubr>

RL11 DWa ??an <ucsr> <uvector> <ubr>

The definitions for the additional fields are:

<tr> Adapter TR number decimal 1-15

 Adapter br level decimal 4-7

<drive> Massbus drive decimal a-7

ucsr> Unibus CSR address octal 7600008-777776

<uvector> Unibus vector octal 2-776

<ubr> Unibus BR level decimal 4-7

<EIA> EIA terminal interface

<2MA> 20 mA terminal interface

In

the generic name:

L
LR
noon

is a letter from A to Z.
is a decimal number in the range 8-255.
is a generic device name which may be any two letters.

5-6

Diagnostic Supervisor Basics

DS> ATTACH DW78¢ SBI DWS 3 4
DS> ATTACH DZ11 DW TTA
CSR?™ 760120

VECTOR? 320

BR? 4

Attach the DW784.
Attach the DZ1l1l TTA.
The supervisor prompts
for information not
supplied in the command
line.

DS>

Example 5-4 Attach Command

Select Command

SELECT <generic-device-name>[:],-<CR>
[<generic-device-name>([:] . . .] ! ALL<CR>

The operator must select each unit to be tested with the Select
command, after attaching it. For each wunit, supply the
appropriate generic device name, as shown in Table 5-1. The
Select command adds the specified device to the list of units to
be tested. The command takes effect when the next diagnostic
program is started.

DS> SELECT TTA:
DS>

Example 5-5 Select Command

Deselect Command

DESELECT <generic-device-name>([:] [,<generic-device-name>([:] -
. o o} ! ALLKCR>

Use the Deselect command to remove the name of one or more devices
from the list of units to be tested.

DS> DESELECT TTA:

DS> DESELECT ALL
DS>

Example 5-6 Deselect Command

Show Device Command

SHOW DEVICE <generic-device-name>[:]-<CR>
[,<generic-device-name>[:] . . .J<CR>

The Show Device command causes the supervisor to display the
characteristics of the specified devices on the operator's
terminal. If you omit the device name, the supervisor will list
the characteristics of all attached devices (Example 5-7).

VAX Diagnostic Design Guide

Show Select Command
SHOW SELECT<CR>

The Show Select command causes the display of information in the
same format as the Show Device command. However, the information
is shown only for the devices that have been previously selected.

DS> SHOW DEVICE

_Dwg DW780 60006000 TR=3. BR=4., NUMBER=#.

_DMA RK611 DW@ 6@013FF20 CSR=00000777440 (0) VECTOR=00000000210 (0) BR=5.
_DMAG RK@7 _DMA 00000000

_TTA DZ1l1 _DW@ 6013E050 CSR=00000750120 (0) VECTOR=00000000320(0) BR=4.

DS> SHOW SELECT

DS> SELECT TTA:
DS> SHOW SELECT
_TTA™ DzZ11 _DW@ 6613E050 CSR=00800760120(0) VECTOR=000000080320 (0) BR=4. |
DS> DESELECT TTA: _

DS> SHOW SELECT
DS>

Example 5-7 Show Device and Show Select Commands

Start Command

START [/SECTION:<section-name>]-<CR>
[/TEST:<first>[:<last>!/SUBTEST:<num>]]-<CR>
[/PASSES :<count>]<CR>

The Start command causes the diagnostic supervisor to pass control
to the initialize routine in the diagnostic program in memory,
thus beginning program execution.

Each diagnostic program is organized in discrete tests. The tests
are grouped in sections, according to their functions, execution
times, and whether or not there is need for operator interaction.

If the Start command is given without switches, the program will
run the tests in the default section. 1In other words, the initial
setting for Section is DEFAULT. The supervisor calls only those
tests that have been designed by the diagnostic engineer to run in
the default section. Default section tests should not require
operator intervention.

The SECTION switch, if required, must be set up by the programmer
in the data structures section of the program (Chapters 6 and 7).
When a section is selected in conjunction with the Start command,
only the tests that it contains will be executed. Default section
tests do not require operator intervention.

5-8

Diagnostic Supervisor Basics

The TEST switch is used in two distinctly different ways. If the
first and last arguments are specified, the supervisor
sequentially passes control to tests first through 1last,
inclusively. If the first argument is combined with the SUBTEST
switch, program execution begins at the beginning of the first
test and terminates at the end of the subtest num. If the SUBTEST
switch is used in conjunction with the PASSES switch, the operator
is provided with a loop-on-subtest capability. In this case, only
the subtest named in the command line is executed, once looping
begins.

If the TEST switch is not specified, all tests within the named
section of the program are executed. In other words, the default
for TEST is TEST 1 through TEST n, where TEST n is the highest
numbered test in the section. If only the first argument is
specified with the TEST switch, the last argument is assumed by
default to be the highest numbered test within the program.

Tests are run only if they are included in the section named.
If the PASSES switch is not used, the default value is 1. Test

and pass numbers are decimal, the minimum value for passes is 1.
The maximum value is @, which means infinity in this context.

5-9

VAX Diagnostic Design Guide

For example:
DS> START ! Start execution of the

! diagnostic program in memory.
DS> START/SEC: MANUAL ! Start execution of the

! manual section of the program.
DS> START/SEC:MANUAL /TEST:32:33 Run tests 32 and 33 if they are

in the manual section. Some
tests may not be executed
unless the section is
specified.

DS>

START/TEST:6:12

Run tests 6, 7, 8, 9, 19,
11, 12.

DS>

START /TEST:9 /SUBTEST:5

Run test 9, subtests 1, 2,
3’ 4' 5.

DS>

START /TEST:9

- e 0em

Run tests 9 through n,
where n is the last test in
the default section.

Ds>

START /PASS: 3

Run 3 passes of the
default section.

DS>

START /TEST:9 /SUBTEST:5/PASS: 0

Execute test 9, subtests 1, 2,
3, 4, and then loop on subtest 5
indefinitely.

Example 5-8

Start Command

5-190

Diagnostic Supervisor Basics

Run Command

RUN <file-spec>[/SECTION:<section-name>]-<CR>
[/TEST:<first>[:<last>!/SUBTEST:<num>]]-<CR>
[/PASSES:<count>]<CR>

Run is equivalent to a Load and Start command sequence. The Run
command switches are identical to those in the Start command.

For example:

Load and run the local
terminal diagnostic.

DS> RUN ESTAA

DS> RUN ESTAA/SEC:MANUAL Load the local terminal
diagnostic and run the

manual section.

Load the local terminal
diagnostic and run tests
32 and 33 in the manual
section.

DS> RUN ESTAA/SEC:MANUAL/TEST:32:33

b G Sm e

Load the local terminal
diagnostic and run tests
6' 7' 8, 9, lg’ ll, 120

DS> RUN ESTAA/TEST:6:12

0t gen Gum

DS> RUN ESTAA/TEST:9/SUBTEST:5 Load the local terminal
diagnostic and run test 9,

subtests 1, 2, 3, 4, 5.

= e gem

Load the local terminal
diagnostic and run tests 9
through n, where n is the
last test in the default
section.

DS> RUN ESTAA/TEST:9

Gt gup 0=t qem g

Load the local terminal
diagnostic and run three
passes.

DS> RUN ESTAA/PASS:3

DS> RUN ESTAA/TEST:9/SUBTEST:5/PASS:0

Load the local terminal
diagnostic, execute test 9,
subtests 1, 2, 3, 4, and
then loop on subtest 5
indefinitely.

Example 5-9 Run Command

5-11

VAX Diagnostic Design Guide

Summary Command

SUMMARY<CR>

This command causes the execution of the program's summary report
code section, which prints statistical reports. Note that this
command is generally used only after running a pass of a
diagnostic progranm. However, the summary command can be used at
any time, and would be useful, for example, when the Disk
Reliability Program is run. Type Control C first to return control
to the command line interpreter (CLI). Then type SUMMARY to
obtain a statistical report on the program. CONTINUE may be typed
at this point, if the operator wishes to resume program execution.

Control C Command

“C<CR>

Normally Control C returns control from a diagnostic program to
the CLI in the diagnostic supervisor. The supervisor then enters
a command wait state and displays the DS> prompt on the operator's
terminal. The operator may then issue any valid command. Control
C is the only diagnostic supervisor command that may be issued
while a program is running. When a diagnostic program is running
in conversation mode, Control C returns control to a command
interpreter within the program for the conversation mode.

Continue Command

CONTINUE<CR>

This command causes program execution to resume at the point at
which the program was suspended. This command is used to proceed
from a breakpoint, error halt, summary, or Control C situation.

The following example shows how Control C, Summary, and Continue

can be used together to obtain statistics on the program being run
and to then resume execution.

5-12

Diagnostic Supervisor Basics

...Program is running...

Operator types Control C.
supervisor prompt
Operator requests
statistical report.

AC ’
DS> SUMMARY

= gen Ve g

Statistical
Report

supervisor prompt
Operator requests
resumption of program.

DS> CONTINUE

...Program is running...

Example 5-10 Use of Control C, Summary, and Continue Commands

Abort Command
ABORT<KCR>

This command passes control to the program's cleanup code and then
returns control to the supervisor, which enters a command wait
state and displays the supervisor prompt, DS>. At this point the
operator may issue any command except Continue. Example 5-11
shows how the Abort command can be used together with Control C
and Summary.

..sProgram is running...

Operator types Control C.
supervisor prompt
Operator requests
statistical report.

~C
DS> SUMMARY

Statistical
Report
DS> ABORT ! supervisor prompt
! Operator requests program
! cleanup and termination.
DS> ! supervisor prompt

Example 5-11 Use of Control C, Summary, and Abort Commands

5-13

VAX Diagnostic Design Guide

5.3.2 Scripting

The scripting feature in the supervisor enables the computer
operator to run predefined sequences of diagnostic programs
automatically. Supervisor commands normally solicited from the
operator's terminal are instead taken from a text file.

5.3.2.1 Scripting Command
@[load-device: [directory]]<file-spec><CR>

This command causes the supervisor to execute the commands that it
finds in the command file specified. You should build the command
file with a text editor before starting the supervisor, and then
copy the command file on the diagnostic program load device. When
you execute the command file from the supervisor, the supervisor
assumes that the load device for the command file is the device
from which the supervisor was 1loaded. If the 1load device is
different, specify the device and the directory for the file
either with the scripting command or with a preceding Set Load
command. S

Example 5-12 shows a typical command file. Example 5-13 shows how
the file can be used. Notice that in Example 5-13 the load device
is specified, but the file type and version are not spec1f1ed.
When the operator does not supply the file type and ver51on
number, the superv1sor applles the defaults “.COM ar.

DS> ATTACH DW780 SBI DW@ 3 4

DS> ATTACH DZ1l DW@ TTA 76012@ 320 4
DS> SELECT TTA:

DS> RUN ESDAA/PASS:3

Example 5-12 A Typical Command File

NOTE
The author of the command file must
supply the DS> at the beginning of each
line..

$ COPY CMD.COM DMA@[TEST]
$ RUN ESSAA
DS> @DBAQ [TEST]CMD

Example 5-13 Execution of a Typical Command File
NOTE

The square brackets around the directory
name, [TEST], are necessary.

5-14

Diagnostic Supervisor Basics

Diagnostic programs should not solicit information from the
operator, except under unusual circumstances. Exceptions are
manual intervention tests and volume verification failures for
programs that write on disks. Responses to questions of this
nature should come from the operator, not from a script.
Therefore, script files contain only supervisor commands.

All of the $DS_ASKxxxX X supervisor services (Chapter 8) will
prompt the operator at the terminal regardless of the state of
scripting. Synchronization between the script and the supervisor
is not a problem, since each line in the script is a separate and
complete supervisor command. The supervisor interprets each
command exactly as 1if it had been typed on the operator's
terminal.

5.3.2.2 @ Command Processing - The supervisor processes the @
command roughly as follows.

1. The supervisor aborts the current program if necessary.

2. A DSSLOAD command reads the whole script at once into a
buffer. This prevents interaction between the unit under

test and the 1load unit. Any interaction might cause
incorrect interpretation of unit, controller, or channel
status.

3. The supervisor initializes a pointer to the first line of

the script.

4, The supervisor sets a flag to indicate that the next
command is to be taken from the script.

5. As the supervisor processes the commands in the script,
it displays the prompt and command text on the operator's
terminal.

6. When the script has been exhausted, the supervisor types

"@ <EOF>".
5.3.2.3 Buffer Allocation and Script Nesting - The supervisor
dynamically allocates the memory buffer for script text and
control and position information. Each script descriptor is

linked to previous script descriptors. This allows you to nest
scripts. The amount of memory available on a given VAX computer
system limits the number of nesting levels possible.

You can invoke script nesting with an "@<file-spec>" command
within a script. The supervisor processes commands from the
second script file until it reaches the end of the script. The
supervisor then releases the second script and resumes processing
commands from the first script. If no previous script is left
unprocessed, control returns to the operator's terminal.

5-15

VAX Diagnostic Design Guide

5.3.2.4 Interrupting the Script - The operator may type Control C
on the terminal to interrupt the script, if necessary. Control C
causes the supervisor to suspend the script and stop the current
program, if a program is running. The operator can issue any
command while the script is suspended. However, if the operator
wants to resume the script, eventually, by typing CONTINUE, the
selection of commands is limited.

These commands can be followed by resumption of the program.

Set
Clear
Examine
Deposit
Show
Summary
Nex t
Continue

The following commands flush all scripts and return control to the
command line interpreter in the supervisor:

Attach
Select
Deselect
Load
Start
Run
Abort

In general, a command flushes scripts if it would be meaningless
to continue the script after the command has been executed.

5.3.2.5 Command File Format - A command procedure must be a
contiguous ASCII file created by VAX-11 RMS (record management
services) on an ODS-1 or 0ODS-2 disk file structure. The file must
be line oriented and records must not exceed 72 characters. You
can create a command procedure file with any editor or with the
VMS Create command. The supervisor treats all records as
supervisor commands. Any legitimate supervisor command is valid
in a script.

5.3.3 Execution Control Functions

The execution control functions allow the operator to alter the
characteristics of the diagnostic programs and the diagnostic
supervisor. These functions are implemented by command flags and
event flags. The command flags are used to control the printing
of error messages, ringing the bell, halting and looping of the

program, and so on.

5-16

Diagnostic Supervisor Basics

Set Flags Command
SET [FLAGS] <arg-list><CR>

This command results in the setting of the execution control flags
specified by arg-list. No other flags are affected. Arg-list is
a string of flag mnemonics from the following table, separated by
commas.

HALT Halt on error detection. When the program detects a
failure and if this flag is set, the supervisor enters
a command wait state after all error messages
associated with the failure have been output. The
operator may then continue, restart, or abort the
program. This flag takes precedence over the Loop
flag.

LOOP Loop on error. When set, this flag causes the program

to enter a predetermined scope loop on a test or
subtest that detects a failure. Set the IEl flag if

you want to inhibit error messages. Looping will
continue until the operator returns control to the
supervisor by using the Control C command. The

operator may then continue, clear the flag and
continue, or abort the program. :

BELL Bell on error. When set, this flag will cause the
supervisor to send a bell to the operator whenever the
program detects a failure.

IE1 Inhibit error messages at level 1. When set, this
flag suppresses all error messages, except those that
are forced by the program or supervisor.

IE2 Inhibit error messages at level 2. When set, this
flag suppresses basic and extended information
concerning the failure. Only the header information
message (first three 1lines) 1is output for each
failure.

IE3 Inhibit error messages at level 3. When set, this
flag suppresses extended information concerning the
failure. The header and basic information messages
are output for each failure.

IES Inhibit summary report. When set, this flag
suppresses statistical report messages.

QUICK Quick verify. When set, this flag indicates to the
program that the operator wants a quick verify mode of
operation. The interpretation of this flag is program
dependent. (Refer to Chapter 7, Paragraph 7.3.2.)

5-17

VAX Diagnostic Design Guide

TRACE Report the execution of each test. When set, this
flag causes the supervisor to report the execution of
each individual test within the program as the
supervisor dispatches control to that test.

OPERATOR Operator present. When set, this flag indicates to
the supervisor that operator interaction is possible.
When cleared, the supervisor and the program take
appropriate actions to ensure that the test session
continues without an operator. (Refer to Chapter 7,
Paragraph 7.3.3.)

PROMPT - Display long dialogue. When set, this flag indicates
to the supervisor that the operator wants to see the

limits and defaults for all questions printed by the
program.

ALL All flags in this list.

Clear Flags Command

CLEAR [FLAGS] <arg-1list><CR>

This command results in the clearing of the flags specified by
arg-list. No other flags are affected. Arg-list is a string of
flag mnemonics separated by commas. See the Set command for
supported arguments.

Set Flags Default Command

SET FLAGS DEFAULT<LCR>

This command returns all flags to their initial default status.
The default flag settings are OPERATOR and PROMPT.

Show Flags Command

SHOW FLAGS<CR>

This command displays all the execution control flags and their
current status. The flags are displayed as two mnemonic lists;
one list is for those flags that are set, the other for those that

are clear.

The following example shows how the Set Flags, Clear Flags, and
Show Flags commands can be coordinated.

DS> SET FLAG TRACE ! Set the TRACE flag.

DS> CLEAR FLAG QUICK ! Clear the QUICK flag.

DS> SHOW FLAGS

CONTROL FLAGS SET: PROMPT, OPER, TRACE

CONTROL FLAGS CLEAR: QUICK, I1ES, IE3, IE2, IE1l, BELL, LOOP, HALT

DS >

Example 5-14 Use of the Flag Control Commands
5-18

Diagnostic Supervisor Basics

Set Event Flags Command
SET EVENT [FLAGS] <arg-list> ! ALL<CR>

This command results in the setting of the event flags specified
by arg-list. No other event flags are affected. Arg-list is a
string of flag numbers in the range of 1-23, separated by commas.
ALL may be specified instead of arg-1list.

Event flags are status posting bits maintained by VMS and the
supervisor. Diagnostic programs can use event flags to perform a

variety of signaling functions, including communication with the
operator.

The diagnostic engineer should follow three event flag conventions
in particular.

a. Event Flag @ (EV@) is reserved for the supervisor in
connection with QIO functions.

b. Event Flag 1 (EVl1) enables (when set) or disables (when
clear) error logging under VMS.

c. Event Flag 2 (EV2) enables (when set) or disables (when
clear) retries under VMS.

Clear Event Flags Command
CLEAR EVENT [FLAGS] <arg-list> ! ALL<CR>

This command results in the clearing of the event flags specified
by arg-list. No other event flags are affected. Arg-list is a
string of flag numbers in the range of 1-23, separated by commas.
An optional ALL may be specified instead of arg-list.

Show Event Flags Command
SHOW EVENT [FLAGS] <CR>

This command causes the supervisor to display a list of the event
flags that are currently set.

Example 5-15 shows how the Set Event Flags, Clear Event Flags, and
Show Event Flags commands can be coordinated.

DS> SET EVENT FLAGS 1, 9, 15
DS> CLEAR EVENT FLAGS 2, 6
DS> SHOW EVENT FLAGS

EVENT FLAGS SET: 15, 9, 1
DS>

Example 5-15 Event Flags Control Commands

VAX Diagnostic Design Guide

5.4 SUPERVISOR FUNCTIONAL DESCRIPTION

Most functions of the diagnostic supervisor fall into two
categories: command line interpreter (CLI) and program interface
(PGI). Together these categories of functions form the framework
within which level 2, 2R, and 3 diagnostic programs must be
executed. The CLI forms the interface between the operator's
terminal, the supervisor, and the program to be run. The program
interface handles communication between the diagnostic program and
the supervisor. Figure 5-1 shows the relationship of the CLI and
the PGI to the operator's terminal and the device under test.

The CLI implements the supervisor commands listed previously,
together with the supervisor debug commands. The CLI displays a
prompt symbol, DS>, when it is waiting for a command from the
operator. When the operator types a command, a parser in the CLI
interprets it and dispatches control to an appropriate action
routine.

Depending on the command, the called routines will perform the
desired function and then pass control back to the CLI or to the
diagnostic program. For instance, in response to a SET FLAG IE2
command, the parser will call a routine that sets the flag.
Control then returns to the CLI, which causes the display of
another prompt on the operator's terminal. In response to a START
command, however, the CLI calls the dispatch routine, which in
turn initiates diagnostic program execution.

DIAGNOSTIC
SUPERVISOR
CLI DIAGNOSTIC
SET FLAGS, ETC PROGRAM
OPERATOR'S
TERMINAL [
PGI 3 ! [
" ervice) ’ DIRECT I/0
2_?CUTINES. (I wwit
' I UNDER
/ TEST
CHANNEL SERVICES

AND
QUEUE I/Q SERVICES

TK-1736

Figure 5-1 Diagnostic Supervisor Functional Block Diagram

5-20

Diagnostic Supervisor Basics

The program interface implements the program control services,
message handling services, memory management services, channel
services, and 1/0 services. The dispatch routine calls the
various routines of the diagnostic program in the proper sequence
(initialization, test 1, test 2,...test n, and cleanup). The
routines that make up the diagnostic program, in turn, call
different service routines in the PGI as needed.

Figure 5-2 is a simplified flowchart showing how the CLI and the
PGI portions of the supervisor interface with a diagnostic
program. o

This figure highlights two features of the diagnostic system in
particular. First, control begins and ends with the DS> prompt in
the CLI portion of the supervisor. Second, the diagnostic program
is not an independent program. It consists of a series of
routines (initialization, test 1, etc.) that are called by the
dispatch routine in the supervisor. :

Figure 5-3 shows the diagnostic system memory allocation. The
diagnostic program space always starts at virtual address 2060.
The supervisor space starts at virtual address 10000. The APT
mailbox extends from FC@@ to FFFF. The spaces between the
diagnostic program and the APT mailbox and above the supervisor
are available for use as memory buffers.

5-21

VAX Diagnostic Design Guide

c

DIAGNOSTIC SUPERVISOR I DIAGNOSTIC
' PROGRAM
K I
cLI “DS>" PROMPT l
INITIALIZE
PROGRAM l
CONTEXT
" l
I S
l CLEANUP . |
INITIALIZE
| DEVICE
DISPATCH - 1
ROUTINE , S) .
' TEST 1 —
"
' TEST N N
I B (LAST TEST)
SERVICE l
PGl ROUTINES '
YES CONTROL- NO I

TK-1738

Figure 5-2 Diagnostic Supervisor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>