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CHAPTER 1
INTRODUCTION

1.1 MANUAL SCOPE

This document provides a technical description of the VAX 8800
memory system (MBox) hardware. It does not cover memory system
architecture or software. Use is made of system microcode and
software in explaining hardware functions; however, this manual
does not purport to be a complete or thorough treatment of
software aspects of the memory system.

Chapter 1 provides the purpose and major features of the MBox. It
provides an overview of the memory system and describes how the
MBox performs its function within the VAX 8800 system.

Chapter 2 provides a description of the memory controller (MCL).
Included in Chapter 2 is a description of the NMI signals that
interface with the MCL, an overview of the functional areas that
comprise the MCL, and a detailed description of the functional
areas. The MCL's functional areas coincide with the organization
of the engineering documentation. Thus, the detailed descriptions
are correlated with the engineering prints, specifications, etc.

Chapter 3 provides a description of the four-megabyte memory array
board (MAR4). 1Included in Chapter 3 is a description of the MAR4
array bus (NAB) and how all of the NAB signals function on the
MAR4 array board. It also includes an overview of the MAR4 and a
detailed description of the MAR4's functional areas. The MAR4's
functional areas coincide with the organization of the engineering
documentation in the same manner as the Chapter 2 functional
areas.

An appendix 1is provided that explains the flow-diagram symbology
used in the MBox technical description.

1.2 WRITING PHILOSOPHY

It will be helpful to the reader to be aware of some points that
were followed in the writing of this document. These points are
explained in the following paragraphs.

The detailed descriptions 1in Chapters 2 and 3 assume that the
reader has vread and understands the overall descriptions. The
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detailed descriptions are confined to the area being described. It
is important that the reader has read and understands the overview
in order to understand how the detailed functions relate to the
overall operation.

The functional block diagrams use logical AND and OR symbols. It
does not necessarily follow that a corresponding gate exists on
the engineering circuit prints. The assertion of inputs A and B
causing the assertion of output C may be represented on a block
diagram by a single AND gate, yet the engineering drawing may show
that several circuit stages are involved in the ANDing operation.

The signal mnemonics used in the illustrations are identical to
the signal mnemonics used in the engineering logic prints except
for "fan-cut" 1line designations which have a number or letter
designation (<X>) that specifies a fan-out of a given signal.
Fan-out lines are functionally identical, hence the fan-out line
designations have been omitted to prevent confusion with other
signal designations.

The signal mnemonics do not contain the H or L designations found
on the engineering drawings. Signals are referred to as being
asserted or negated without regard to high or low states. Tnis
point must be kept in mind when using timing waveform diagrams. As
the signals have no H or L designation, they are always shown
above the reference 1line for an asserted condition and on the
reference line for a negated condition.

Flow diagrams are used extensively throughout this document. Refer
to Apendix A (Flow Diagram Symbols) for any question on the
meaning of any of the flow diagram symbols.

It 1is to be noted that the flow diagrams are NOT timing diagrams;
in some cases the assertion or negation of a signal may not occur
exactly when shown in a flow diagram. A given signal may assert
before it serves 1its purpose in the flow of events. In such a
case, the signal would appear in the diagram at the point it is
used rather than at the point it was asserted. The flow diagrams
are meant to 1illustrate the purpose and functioning of the
hardware; to do this, the signals must be discussed at the time
they are performing their function. Where signal timing has a
functional significance, separate timing diagrams are used. With
this restriction noted, the flow diagrams provide a useful
representation of what is happening by serving as a pictorial
supplement to the written descriptions.

1.3 MBOX FUNCTIONS

Figure 1-1 is a simplified block diagram of the MBox. The MBox
interfaces with +the NMI where it always functions as a slave
nexus. The MBox consists of a memory controller (MCL) and up to
eight identical four-megabyte array boards (MAR4s). The MAR4s

7T ATATY

interface with the MCL via an array bus (NAB). The NAB has eight



board-select 1lines (AMCL BRD SEL<7:0>) -- one to each array board
-= which enable a MAR4 to execute a function. The other NAB lines
shown in Figure 1-1 are common to all the MAR4s.

>

NAB

AMCL BRD [_’
NMI N * fr——

- »”
¢ DATA<31:0> > L L I a— MAR4
AMCL BOARD 0
NMI MCL CMD<3:0> o ( )
s < FUNCTION<4:0> AMCL
=z ADDR<25:4> ol n
NMI ID AMCL
< MASK<3:0> DATA<31:0> o >

BMAR
{/ DATA<31:0> _

7

000 0O

MAR4
(BOARD 7)

*

ONE LINE PER ARRAY BOARD.

SCLD-337

Figure 1-1 MBox Simplified Block Diagram

An NMI transaction is initiated by a command/address cycle wherein
the NMI commander* places a function, an address, and its ID on
the NMI. In a write transaction, the command/address cycle is
followed by one or more data cycles in which the commander places
the longword(s) of write data on the NMI. In a read transaction,
the commander vreleases the NMI after the command/address cycle.
When the MBox is ready to send the requested read data, it places
the data on the NMI in read data cycle(s), along with the
commander 1ID,

* Nexus that initiates a transaction on the NMI.
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Figure 1-2 1is a simplified flow diagram which illustrates the
sequencing of read/write transactions. When a commander issues a
command to memory, it places its ID code (NMI ID MASK<3:0>), the
commanded function (NMI FUNCTION<4:0>), and the address (NMI
ADDRESS DATA<31:0>) on the NMI during the command/address bus
cycle. The MCL then:

° Stores the commander ID to be used if this is a read
operation.
® Determines which MAR4 board is being selected from the

NMI address, and asserts the select line (AMCL BRD SEL)
for the selected array board.

° Transfers the NMI address to the MAR4 as AMCL ADDR<25:4>
[address bits <3:2> become part of the 4-bit command
(AMCIL CMD<3:0>) and are used to select the array bank on
the MAR4; address bits <1:0> are not used as all array
addresses are longword aligned].

° Transfers the commanded function to the selected MAR4 by
asserting AMCL CMD<3:0> on the NAB.

If a write operation is executing, the commander places the write
data on the NMI address/data lines in the next (data) bus cycle.
The MCL takes the write data from the NMI and transfers it to the
NAB as AMCL DATA<31:0>. The selected MAR4 then writes the data
into its memory arrays.

If a vread operation is executing, the selected MAR4 supplies the
addressed read data to the MCL as BMAR DATA<31:0>. The MCL places
the read data on the NMI address/data lines along with an NMI
function code specifying the data as good read data. The MCL also
places the commander's ID code on the NMI ID mask<3:0> lines to
identify to whom the read data belongs.

If a masked write operation is commanded, the commander places the
masked write data on the NMI address/data lines, and the mask
field on the 1ID/mask 1lines, during the data cycle. The masked
write data 1is transferred to the MCL where it is held while the
addressed location on the selected MAR4 is read. The BMAR
DATA<31:0> read data is transferred to the MCL where it overwrites
the stored write data according to the mask field. The new write
data is then written into the MAR4 as AMCL DATA<31:0>.

1.4 MBOX OVERVIEW

Signals wused in the MBox are prefixed with the phase of the clock
to which they are referenced (A or B) and with the signal source.
Thus, an "AMCL" prefix indicates the signal is referenced to the
phase A clock and its source is the MCL. A "BMAR" prefix indicates
the signal 1is referenced to the phase B clock and its source is
the MARA4.
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1.4.1 NMI Signals Used by the MBox

Signals on the NMI that interface with the MBox are shown in Table
1-1. Most of these signals are used in NMI/MBox transactions as
described in Section 1.4.5.

1.4.2 MBox Operations
The operations supported by the MBox, and their corresponding NMI
function codes, are listed in Table 1-2.

1.4.3 Octaword Sort-of-Write

A non-masked octaword write transaction 1is a "sort-of-write"
operation in that the mask field associated with the longword is
used to specify if the 1longword 1is to be written. The
sort-of-write feature allows a nexus with longwords of data within
an octaword address to use the octaword write function even though
all the longwords are not to be written. This allows data to be
transferred on the NMI in one 1large transfer, rather than in
several slower transfers.

Non-masked longword writes are also sort-of-writes. The
sort-of-write rationale does not apply to longword writes,
however, due to logic standardization, the sort-of-write function
is implemented for all non-masked write transactions.

1.4.4 Command Bus Cycles
Possible sizes of NMI transfers for read/write operations are:

Longword writes

Quadword writes (masked writes only)
Octaword writes

Longword reads

Octaword reads

Hexword reads

Sections 1.4.4.1 through 1.4.4.6 describe the NMI bus cycles that
occur for the six transfers listed above. An NMI bus cycle is 50
ns'
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Table 1-1

NMI Signals Used by the MBox

No. of

Signal Direction Lines Function

NMI ADDRESS DATA<31:0> B 32 Address and data lines.

NMI DATA PARITY B 1 Parity bit for
address/data lines.

NMI FUNCTION<K4:0> B 5 Command function (Table
1-2).

NMI ID MASK<3:0> B 4 Commander ID and mask
code.

NMI FUNCT ID PARITY B 1 Parity bit for
function/ID/mask lines.

NMI CONFIRMATION<K1:0> U 2 MBox confirmation code
(Table 1-4),

NMI MEMORY ARB U 1 MBox arbitration
request line,

NMI MCL BUS EN U 1 NMI bus grant to MBox
from CPU.

NMI MEMORY HOLD U 1 Holds NMI for ‘MBox
after receiving bus
grant.

NMI MEMORY BUSY 8] 1 MBox busy line.

NMI MEM BUSY ARB U 1 MBox busy line to
arbitrator in CPU.

NMI LCPU MEM INTR U 1 MBox interrupt line to
left CPU.

NMI RCPU MEM INTR U 1 MBox interrupt line to
right CPU.

NMI FAULT DETECT<K3:0> U 4 Fault 1lines from other
NMI nexus.

NMI FAULT U 1 OR of MBox fault and
fault lines from other
NMI nexus.

B = bidivrectional; U = unidirectional
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Table 1-1

NMI Signals Used by the MBox (Cont)

Signal

No. of

Direction Lines

Function

s

NMI SLOW COUNT ENABLE U 1 Increments MBox timeout
counter.

NMI DC LO U 1 Warning of dc power
loss.

NMI BAT DC LO U 1 Backup battery power
low —-—- next power up
will be a "cold start.”

NMI SLOW MODE U 1 Warning that clocks are
about to stop.

NMI HARBINGER U 1 Inhibits MBox clocks.

NMI UNJAM U 1 Initializes MBoX.

NMI F A CLK IN U 1 Free runniang, phasc A
clock.

NMI F B CLK IN U 1 Free running, phase B
clock.

B = bidirectional; U unidirectional.

Table 1-2 MBox Command Functions
Function

(Hex) <4 3210> Command

10 1 coC¢Q Read longword

1 2 1 0010 Read octaword

13 1 0011 Read hexword

1 4 1 0100 Read longword interlocked

16 1 0110 Read octaword interlocked

17 1 0111 Read hexword interlocked

1B 1 011 Write longword

1 F 1 1111 Write octaword

1 8 1 1000 Write masked longword

19 1 1001 Write masked quadword

1A 1 1010 Write masked octaword

1C 1 1100 Write masked longword unlock

1D i 1101 Write masked quadword unlock

1 E 1 1110 Write masked octaword unlock
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Table 1-2 MBox Command Functions (Cont)

Function
(Hex) <4 3210> Command
0 A 0 1010 Read/return good data
0 E 0 1110 Read/return bad data
0 8 0 1000 Read/continue good data
0 C 0 1100 Read/continue bad data
0 9 1 1 001 Write data

1.4.4.1 Write Longword Bus Cycles (Table 1-3) --

Table 1-3 Write Longword Bus Cycles

Cmd/
Cycle Addr Data —-———

ADDRESS DATA<31:00> Addr Data —-———

FUNCTION<K4:0> Write Write ———-
LW data

ID MASK<K3:0> CMDR Byte —-_——
ID mask

CONFIRMATIONK1:0> —-——— —_——— OK

In the command/address bus cycle the commander places the 32-bit
address, a five-bit function code, and a four-bit ID/mask code on
the NMI. The function code specifies the operation as a longword
write and further defines it as a masked or unlock function. The
ID/mask code identifies the transaction commander.

In the data cycle, the commander places the 32-bit data longword,
a write-data function code, and a byte mask on the NMI. The
write-data function code identifies the data cycle as a write-data
cycle and specifies the data on the address/data lines as write
data. The byte mask is the byte mask for a masked write
transaction, or a write flag for a non-masked write transaction
(see Sort-of-Write, Section 1.4.3).

In the third bus cycle, the MBox places a 2-bit confirmation code
on the NMI specifying its response to the commander. Confirmation
codes occur in the third bus cycle for all NMI transactions (reads
and writes). Four confirmation responses are possible as shown in
Table 1-4.
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Table 1-4 NMI Confirmation Codes

NMI Confirmation Confirmation

<1 0> State

0 0 No acknowledgement
0 1 Command accepted

1 0 Interlock busy

1 1 Memory busy

1.4.4.2 Write Quadword Bus Cycles (Table 1-5) --

Table 1-5 Write Quadword* Bus Cycles

Cmd/
Cycle Addr Data Data
ADDRESS DATA<K31:00> Addr Data Data
FUNCTION<K4:0> Masked Write Write
write data data
oW
ID MASK<3:0> CMDR Byte Byte
ID mask mask
CONFIRMATIONK1:0> —-_—— ——— OK

* Masked writes only.

In the command/address bus cycle the commander places the address,
the function code, and the ID code on the NMI. The function code
specifies the transaction as a masked quadword write (a non-masked
quadword write is not a valid NMI function) and if the transaction
is a write unlock function. The ID code identifies the transaction
commander,

In the two write—-data cycles that follow, the commander places a
data longword, a write-data cycle code, and the byte mask on the
NMI. The write-data cycle code identifies the cycle as a
write-data cycle and specifies the data on the address/data lines
as write data.

The third bus cycle is the data cycle for the second longword of

write data. The confirmation code is placed on the NMI during this
cycle.
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1.4.4.3 Write Octaword Bus Cycles (Table 1-6) —--

Table 1-6 Write Octaword Bus Cycles

Cycle Cmd/ Data Data Data Data
Addr

ADDRESS DATA<31:00> Addr Data Data Data Data

FUNCTION<4:0> Write Write Write Write Write
ow data data data data

ID MASK<3:0> CMDR Byte Byte Byte Byte
ID mask mask mask mask

CONFIRMATIONK1:0> - —-_———— OK ———— ————

In the command/address bus cycle the commander places the address,
the function code, and the ID code on the NMI. The function code
specifies the transaction as an octaword write and if the
transaction is a masked or unlock function. The ID code identifies
the transaction commander.

In the four write-data cycles that follow, the commander places a
data longword, a write-data cycle code, and a byte mask on the
NMI. The write-data <cycle code specifies the data on the
address/data lines as write data. The byte mask is the byte mask
for a masked write transaction, or a write flag for a non-masked,
sort-of-write transaction.

The confirmation code is placed on the NMI in the third bus cycle
of the transaction.

1.4.4.4 Read Longword Bus Cycles (Table 1-7) -- 1In the
command/address bus cycle the commander places the address, the
function code, and the 1ID code on the NMI, The function code
specifies the transaction as a longword vread, and 1if the
transaction is an interlock function. The ID code identifies the
transaction commander.

The MBox places the confirmation code on the NMI in the third bus
cycle of the transaction.

After the MBox has extracted the requested data from the array
board, it arbitrates for the NMI by asserting NMI MEMORY ARB. When
the arbitration 1logic in the CPU grants the arbitration request,
it asserts NMI MCL BUS EN as a bus grant to the MBox. The bus
grant is issued in the same arbitration cycle in which the bus was
won.,
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Table 1-7 Read Longword Bus Cycles

Cycle Cmd/ Arb Data
Addr
ADDRESS DATAK31:00> Addr - -= - Data
FUNCTION<4:0> Read -- -= -- Read
LW Rtn
ID MASK<3:0> CMDR - - -— CMDR
ID ID
CONFIRMATIONK1:0> - - OK -— -
NMI MEMORY ARB - -= -- Arb --
NMI MCL BUS EN -- -— - BG -
NOTE

Table 1-7 1illustrates the case of the MBox winning the NMI bus
right away.

The bus-grant cycle is followed by the first data cycle in which
the MCL places the longword of read data on the NMI address/data
lines, a read return function code on the function lines, and the
commander ID on the ID/mask lines. There are four possible read
functions as seen in Table 1-2. These are:

Read/return good data
Read/return bad data
Read/continue good data
Read/continue bad data

The first longword of read data
return" function code specifying it
data. The following 1longwords (i
function code.

on the NMI has a "rcad
first longword of read
if any) have a "read continue"

The MCL performs an ECC check on all read data and corrects any
correctable (single-bit) errors found. If a non-correctable
(double-bit) error 1is detected, the erroneous longword is placed
on the NMI with a "bad-data" function code. Otherwise, the read
data carries a "good-data" function code.
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1.4.4.5 Read Octaword Bus Cycles {Table 1-8) --

Table 1-8 Read Octaword Bus Cycles

Cycle Cmd/ Arb Data Data Data Data
Addr
ADDRESS DATA<31:00> Addr -- - - Data Data Data Data
FUNCTION<4:0> Read -- - - Read Read Read Read
OW rtn cont cont cont
ID MASK<3:0> CMDR -- -- - CMDR CMDR CMDR CMDR
ID ID ID ID ID
CONFIRMATIONK1:0> - -- OK - -— - -- -
NMI MEMORY ARB - -— -- Arb -— - - -
NMI MCL BUS EN - - - BG BG BG BG -
NMI MEMORY HOLD - - - -— Hold Hold Hold --
NOTE

Table 1-8 1illustrates the case of the MBox winning the NMI bus
right away.

In the command/address bus cycle the commander places the address,
the function code, and the ID code on the NMI. The function code
specifies the transaction as an octaword read, and if the
transaction is an interlock function. The ID code identifies the
transaction commander.

The MBox places the confirmation code on the NMI in the third bus
cycle of the transaction.

After the MBox has extracted the requested data from the array
board, it arbitrates for the NMI. When the arbitration logic in
the CPU grants the arbitration request, it asserts NMI MCL BUS EN
as a bus-grant to the MBox. The bus-grant holds the NMI for only
one cycle. If the MCL needs the NMI for the next bus cycle, it
asserts NMI MEMORY HOLD. The CPU arbitration logic treats NMI
MEMORY HOLD as an arbitration request and keeps NMI MCL BUS EN
asserted.

The first bus-grant cycle 1is followed by the first of the four
data cycles. The MCL places the first longword of read data on the
NMI along with the vread function code (read/return) and the
commander ID. The MCL also asserts NMI MEMORY HOLD on the first
bus cycle and keeps it asserted for the next two bus cycles. This
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gives the NMI to the MCL for the four bus cycles needed to
transfer the data octaword.

If a non-correctable error 1is detected in any of the read
longwords, a "bad-data" function code is placed on the NMI with
the longword containing the non-correctable error.

1.4.4.6 Read Hexword Bus Cycles (Table 1-9) -- 1In the
command/address bus cycle the commander places the address, the
function code, and the 1ID code on the NMI. The function code
specifies the transaction as a hexword vread, and 1if the
transaction is an interlock function. The ID code identifies the

ancac 1
LL Ao o

The MBox places the confirmation code on the NMI in the third bus
cycle of the transaction.

After the MBox has extracted the requested data from the array
board, it arbitrates for the NMI. When the MBox receives the NMI
bus grant, it places the first longword of read data on the NMI
along with the read- data function code, the commander 1ID, and the
NMI MEMORY HOLD signal.

If a non-correctable error is detected in any of the read
longwords, a "bad-data" function code is placed on the NMI with
the longword containing the non-correctable error.

A hexword of read data is transferred to the NMI in two octaword
transfers. The MBox requires that there be at least one bus cycle
between the two octaword transfers; hence, it must re-arbitrate
for the NMI for the second octaword transfer.

1.4.5 Memory Controller (MCL)
The MCL interfaces the memory array boards with the NMI by
performing the following functions.

° Controls execution of the NMI commands on the array
boards, such as implementing masked and interlocked
functions.

° Converts gquadword and octaword writes into longword
writes for the array boards.*

[ Converts hexword reads into octaword reads for the array
boards.*
° Performs ECC checking of read data, correcting single-bit

errors and flagging double-bit errors.

* The array boards perform only longword write, longword read, and
octaword read operations.
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Table 1-9 Read Hexword Bus Cycles
Cycle Cma/s Arty Data Data Data Data Arb Data Data Data Data
Addr
ADDRESS Addr -- - - Data Data Data Data - Data Data Data Data
DATA<31:0>
FUNCTION<4:0> Read -- - - Read Read Read Read - Read Read Read Read
HW rtn cont cont cont rtn  cont cont cont
ID MASK<3:0> CMDR -- - -- CMDR CMDR CMDR CMDR - CMDR CMDR CMDR CMDR
1D 1D Id ID ID 1D D 1D ID
CONFIRMATION -= ~= 0K - == == == - = -- - = -
<1:0>
NMI MEMORY ARB -- -~  —- Y Arb  -- - - -
NMI MCL BUS EN ~-— - - BG BG BG BG -= BG BG BG BG --
NMI MEMORY - - - -- -- Hold Hold Hold -- - Hold Hold Hold --
HOLD
NOTE

Table 1-9 illustrates the

case of the MBox winning

the NMI bus right away.



Figure 1-3 1is a block diagram of the MBox (MCL, NAB, and MAR4).
The MCL is divided into three sections; the DFA, the MDP, and the
MRM, whose functions are listed below:

® The DFA interfaces the memory system to the NMI.

° The MDP (memory data path) routes the read/write data
between the DFA and the array boards.

® The MRM interfaces the MCL commands to the array boards,
and monitors array board status.

Signal 1lines on the NAB are common to all of the array boards
1

except the following four signals.
AMCL BRD SEL<7:0>

AMCL READ BD SEL<K7:0>
BMAR DATA RDY DONE<K7:0>
BMAR SEND NO CMD<K7:0>

These signals output the MRM on eight lines with one line

connected to each array board slot.
1.4.5.1 Command/Address Sequence -- Figure 1-4 is a flow diagram
of the command/address sequence (receiving an NMI command and

accessing the array boards). Refer to it and to Figure 1-3 during
the following discussion.

Wwhen a nexus sends a command to memory, it places the following
signals on the NMI in the command/address cycle:

e NMI FUNCTION<4:0> —- the command function

) NMI ID MASK<3:0> —-- the commander ID

° NMI FUNCT 1ID PARITY -- parity over the function and
ID/mask fields

° NMI ADDRESS DATA<31:00> -- the memory address

) NMI DATA PARITY —-- parity bit for the address/data field

The memory system may not be able to accept a command at this time
due to 1its being busy processing other commands, or due to being
write-locked. 1If this 1is the case, the DFA asserts a "busy" or
"write-locked" confirmation code (NMI CONFIRMATIONK1:0>) on the
NMI (Table 1-4). The commander will then try again at a later
time. If the DFA determines the command to be invalid, it asserts
a "no acknowledgement" confirmation code. If the command is
accepted by the MCL, a "command accepted" confirmation code is
asserted.
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Using the data parity bit and the function/ID/mask parity bit from
the NMI, the DFA performs parity checks on the memory address and
the function/ID field. 1If an error is detected, the DFA asserts
NMI FAULT and a "no acknowledgement" confirmation code on the NMI,
and the operation is aborted.

If no parity error is detected, the DFA processes the NMI data as
follows:

° It extracts the array board number (ADFA PRM BNUM<2:0>)
from the NMI address and sends it to the MRM.

° It extracts the type of operation (BDFA CMD<2:0>) and the
size of the transfer (BDFA SIZE<1:0>) from the NMI
function code, and sends them to the MRM.

e If a read operation is executing, it stores the commander
ID for use when the read data is placed on the NMI,

° It transfers the address through the DFA to the MDP as
ADFA DATA ADDR<31:0>. The address is stored in the MDP by
AMRM INPUT WRT EN<3:0> from the MRM.

The MRM checks the BMAR SEND NO CMD line from the target array
board. The board asserts the line if it is not able to accept a
command at this time due to executing a previous read command or
doing a refresh. If BMAR SEND NO CMD is false, the MRM:

° Enables the target array board by asserting the board's
AMCL BRD SEL select line.

° Provides the four-bit command to the array board (AMCT.
CMD<3:0>). The command contains a read/write bit, a size
bit, and two starting address bits. The starting address
bits select the bank on the array board (array boards
have four banks).

® Provides the address from the MDP as AMCL ADDR<25:4>.

° Provides a command/address parity bit generated by the
MRM (AMCL CMD ADDR PAR).

The array board performs a parity check on the command/address
fields and asserts BMAR CMD ADDR PAR ERR if an error is detected.
The MRM responds to the parity error by asserting AMRM INT ERROR
to abort the operation. AMRM INT ERROR is sent to the DFA which
asserts the two CPU interrupt lines on the NMI (NMI LCPU MEM INTR
and NMI RCPU MEM INTR).

If the parity checks OK, the command operation proceeds according
to the type of operation in progress.
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1.4.5.2 Normal Write -- Figure 1-5 is a flow diagram of a write
operation data cycle and 1is used in conjunction with the block
diagram (Figure 1-3).

In a write operation data cycle, the commander places the
following signals on the NMI:

° NMI FUNCTION<4:0> -- the command function (write data
cycle)

° NMI ID MASK<3:0> -- write flag

° FUNCT 1ID PARITY -- parity over the function and ID/mask
fields

) NMI ADDRESS DATA<31:00> -- the write data longword

o NMI DATA PARITY -- parity bit for the write data

NMI FUNCTION<4:0> specifies a write-data function to the MCL. NMI
ID MASK<3:0> is checked for the write flag that specifies that the
write data is to be written into the memory arrays (sort-of-write
operation, Section 1.4.3). An asserted £flag causes AMCL WRITE

ENABLE to be asserted to the array board.

Using the data parity bit and the function/ID/mask parity bit from
the NMI, the DFA performs parity checks on the write data and the
function/ID/mask fields. If an error is detected, the DFA asserts
NMI FAULT on the NMI and ADFA PARITY ERRORl to the MDP. ADFA
PARITY ERROR1 causes the MDP to set the bad-data bit (AMCL BAD
DATA) on the NAB, however the write operation is allowed to
execute. When the write data 1is written into the arrays, the
asserted bad-data bit marks the data as bad. The data is written
so that it can be analyzed later by maintenance diagnostics.

The write data (NMI ADDRESS DATA<31:0>) passes through the DFA to
the MDP ag ADFA DATA ADDR<31:0>. The write data is stored in the

MDP by AMRM INPUT WRT EN<3:0> from the MRM.

The only write operation performed by the array boards is a
longword write; hence, the MCL must convert quadword and octaword
writes into a series of longword writes for the array board.

For a normal (non-masked) write operation, the array board does
not assert its BMAR SEND NO CMD 1line due to an operation in
progress, because only one array bank 1is being written (only
longword writes are executed by the array boards). The other three
banks are free to accept write commands.

The write data stored in the MDP is placed on the NAB as AMCL
DATA<31:0>. The MDP also supplies a data parity bit, a
write—-enable bit, and a bad-data bit. The data parity bit allows
the array board to make a parity check on the write data. If the
array board detects a data parity error, the data is written into
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the arrays but 1is marked as bad data. The write-enable bit
specifies whether the associated longword is to be written or not.
Occasions when a longword is not to be written is for an unwanted
longword during a sort-of-write operation (Section 1.4.3), or when
a double- bit error is encountered during a masked write operation
(Section 1.4.5.4). The bad-data bit (or a write-data parity error
in the array board) specifies the associated longword as being
bad. The bad-data bit is set in any data cycle in which the MCL
detects a data parity error or a function/ID/MASK parity error
(Section 1.4.5.2), or when the DFA detects missing write data and
asserts ADFA BAD DATA to the MDP.

If the function being executed 1is a longword write, the board
asserts BMAR DATA RDY DONE to inform the MRM that the array bank
just written is ready to accept another command. The operation is
now finished.

e L LD AT LT

asserts the longword write command and address for the next array
bank. The next longword of write data from the NMI is processed
and supplied to the array board along with the data-parity,
write—-enable, and bad-data bits. The process repeats until all the
longwords are written.

If the function being executed is a multiword write, the MRM re-

BMAR DATA RDY DONE asserts for each longword of data that is
written. The MRM does not have to received BMAR DATA RDY DONE from
the first 1longword write command before it 1issues a second
longword write command because the second longword will be going
to the next array bank. In an NMI octaword write operation, the
MRM will have initiated four longword write operations to the
array board before it receives the first BMAR DATA RDY DONE. The
MRM knows the first BMAR DATA RDY DONE signal asserted is for the
first longword write operation.

1.4.5.3 Read -- Figure 1-6 is a flow diagram of a read operation
and is used in conjunction with the block diagram (Figure 1-3).

Longword and octaword reads are the only read operations performed
by the array boards. Hence, the MCL must convert a hexword read
into two octaword reads for the array board.

For a read operation, the array board asserts it BMAR SEND NO CMD
line to lock-up the board until the read operation is completed. A
read of the array board executes in two segments: reading the
arrays and taking the data. The two segments do not necessarily
follow each other immediately, so when the first segment is
initiated (reading the arrays) all new commands to the board must
be locked out until the second segment is executed.

(o]
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Figure 1-6 Read Data Cycle Flow Diagram (Sheet 1 of 2)

The array board proceeds to read the data and then asserts BMAR
DATA RDY DONE to inform the MRM that the arrays have been read and
the data 1is available to be taken. When the MRM is ready to take
the data, it asserts the board's AMCL READ BD SEL line to prepare
the board to send the data. When the array board is read-selected
by AMCL READ BD SEL, it negates its BMAR SEND NO CMD line. The MRM
then asserts BMCL DRIVE NEW DATA to transfer the read data to the
MDP. The read data consists of a longword of data (BMAR
DATA<31:0>) and seven ECC check bits (BMAR DATA<38:32>).

The MDP performs an ECC check on the read data. If no ECC error is
found, the data longword is sent to the DFA as feedback data (BMDP
FB DATA<31:0>). The DFA generates a "good read data" function code
and then proceeds to arbitrate for the NMI by asserting NMI MEMORY
ARB. When the arbitration logic in the CPU grants the NMI to the
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memory, 1t asserts NMI MCL BUS EN. NMI MCL BUS EN enables the DFA
output lines onto the NMI., The DFA outputs are:

[ ) The read data (NMI ADDRESS DATA<31:0>).
® A data parity bit generated in the DFA (NMI DATA PARITY).
° The function code specifying the data as good

"read-return" data.

° The ID of the commander that requested the data (NMI ID
MASK<3:0>). (The ID was stored during the
command/address sequence, Section 1.4.5.1.)

® A function/ID parity bit generated in the DFA (NMI FUNCT
ID PARITY).

If the function taken off the NMI was a longword read, the
operation is finished. 1If the function taken off the NMI is an
octaword read, the DFA asserts NMI MEMORY HOLD to hold the NMI.
This eliminates the need of re—-arbitrating for the NMI for the
second, third, and fourth longwords of read data.

The MRM holds the array board read-enabled by keeping AMCL READ BD
SEL asserted, and then re-—asserts BMCL DRIVE NEW DATA to take the
next longword of read data along with its ECC check bits. The
process repeats until all the longwords are read. The NMI function
code generated for the second, third, and fourth longwords is for
good "read/continue" data.

If a single-bit ECC error is detected during an ECC check, the MDP
generates correction bits (AMDP BIT CORRECT<2:0>) which are sent

tc the DFA along with the feedback read data (BMDP FRB DATAC31:0>).

The data is corrected in the DFA and then outputs onto the NMI as
good read data.

If a double-bit ECC error is detected, the MDP outputs AMDP DBE to
the DFA along with the feedback read data. The DFA generates a
"bad read data" function code which is placed on the NMI along
with the erroneous read data and the other NMI signals. The
bad-data function code may be a read/return or a read/continue
function code, as the case may be.

The DFA, sensing the MDP correction bits or the double-bit error
signal from the MDP, asserts a CPU interrupt on the NMI (NMI LCPU
MEM INTR and NMI RCPU MEM INTR) to indicate that an ECC error has
been detected.

1.4.5.4 Masked Write -- In a masked write opeation, write data is
placed into the MDP during the write-data cycle(s) as described in
Section 1.4.5.2., Data is then read from the addressed location on
the selected array board and used to overwrite the data stored in
the MDP. The new data is then written back into the array board.
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Figure 1-7 1is a flow diagram of a masked-write operation and is
used in conjunction with the block diagram (Figure 1-3).

In a masked write operation data cycle, the commander places the
following signals on the NMI:

° NMI FUNCTION<4:0> -- the command function (write data)

[ NMI ID MASK<3:0> -- mask field

o NMI FUNCT 1ID PARITY -- parity over the function and
ID/mask fields

® NMI ADDRESS DATA<31:00> -- the write data longword

° NMI DATA PARITY -- parity bit for the write data

NMI FUNCTION<4:0> specifies a write-data function to the MCL.

Using the data parity bit and the function/ID/mask parity bit from
the NMI, the DFA performs parity checks on the write data and the
function/ID/mask fields. If an error is detected, the DFA asserts
NMI FAULT on the NMI and ADFA PARITY ERROR1 to the MDP. ADFA
PARITY ERROR1 causes the MDP to set the bad-data bit {(AMCL BAD
DATA) on the NAB., The write operation is allowed to execute,
however, when the write data 1is written into the arrays, the
asserted bad-data bit marks the data as bad. The data is written
so that it can be analyzed later by maintenance diagnostics.

The write data (NMI ADDRESS DATA<31:0>) passes through the DFA to
the MDP as ADFA DATA ADDR<31:0>., The write data is stored in the
MDP by AMRM INPUT WRT EN<3:0> from the MRM.

NMI ID MASK<3:0> is transferred to the MRM as ADFA MASK<3:0> where
it is stored for use in overwriting the write data in the MDB.

If this 1is a multi-longword masked write operation, the process
repeats until all the longwords are stored in the MDB and their
associated mask fields are stored in the MRM.

The MRM then 1issues a read command to the selected array board
which asserts its BMAR SEND NO CMD, and then BMAR DATA RDY DONE
when the arrays have been read. The MRM then asserts the
read-board select line and the drive-new data line to transfer the
read data and check bits to the MDP where an ECC check is made on
the data.

If no ECC error is found, the MDP uses AMRM FB WRT EN<3:0> from
the MRM to input the read data into the MDB, thereby overwriting
specific bytes of the stored write data. AMRM FB WRT EN<3:0> is
derived from the mask field(s) stored in the MRM. Hence, the read
data overwrites write data according to the mask field.
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If this is a multiword operation, the process repeats until all of
the read data is taken from the array board and entered into the
MDP.

The MRM then transfers the new data from the MDP to the array
board with a write command. The BMAR SEND NO CMD line is checked
and if false, the MRM asserts the board's select line, the
write-longword command, and the command/address parity bit. The
MDP outputs the address to the array board where a parity check is
made. If the parity checks OK, the masked data is written into the
arrays as described in Section 1.4.5.2,

If a single-bit error is found in a longword of data read from the
array board, the MDP routes the longword (BMDP FB DATA<31:0>) to
the DFA, along with error correction bits (AMDP BIT CORRECT<2:0>).
The data longword is corrected in the DFA and then wrapped back to
the MDP, via the ADFA DATA ADDR<31:0> path, where it overwrites
specific bytes of the stored data via enabling bits AMRM INPUT WRT
EN<3:0>. The MRM senses that the read data had to be corrected in
the DFA and is inputing into the MDP via the ADFA DATA ADDR<31:0>
path from the DFA, Consequently, it applies the associated mask
code to the AMRM INPUT WRT EN<3:0> enabling signals, thus
overwriting the write data according to the mask field.

If a double-bit error is found in a longword of data read from the
array board, the MDP negates the write-enable bit (AMCL WRITE
ENABLE) associated with the 1longword. The MRM then proceeds to
overwrite the data stored in the MDP with the bad read data, using
the AMRM FB WRT EN<3:0> mask code, just as if there were no error.
When the data 1is written into the array module, the longword(s)
containing a double-bit error will have its write-enabled bits
negated and will not be written into the array bank(s). This
preserves the original erroneous data in the array for analysis by
maintenance routines.

When an ECC error occurs, the DFA, sensing the correction bits or
the AMDP DBE double-bit error signal, asserts the CPU interrupt on
the NMI to indicate that an ECC error has been detected.

1.4.6 Four-Megabyte Memory Array Board (MAR4)
The MAR4s share common signal 1lines on the NAB except for the
following four signals:

AMCL BRD SEL

AMCL READ BD SEL
BMAR SEND NO CMD
BMAR DATA RDY DONE

There are eight 1lines on the NAB for each of the above signals
with one line connected to each MAR4 slot on the backplane.

The NAB carries board select signals, command/address signals, and
data between the MCL and the MAR4s. Separate data lines exist on
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the NAB for read data and for write data. Thirty-two write data
lines carry write data from the MCL to the MAR4, Thirty-nine* read
data lines carry read data from the MAR4 to the MCL.

The MAR4 board has a total storage capacity of four megabytes. The
board has four memory array banks with each bank containing one
megabyte of memory. The array banks have a 39-bit wide common I/O
to the MAR4's internal data bus. The 39 bits consists of a 32-bit
longword and seven ECC check bits.

The MCL performs three command opertions on a MAR4 board. These
are:

] Longword write == Writes a data longword and seven ECC
check bits into one of the MAR4's array banks.
e Longword read =-- Reads a data longword and seven ECC

check bits from one of the MAR4's array banks.

° Octaword read -- Reads four data longwords and their
associated check bits from a MAR4 board. The data is read
from all four array banks (one longword from each bank).
The first longword transferred to the MCL can be from any
bank. The other three longwords are transferred from the
following three banks in wrap-around order. For example,
if the 1longword from bank 2 is the first longword
transferred, the next 1longwords transferred are from
banks 3, 4, and 1, in that order.

In addition, the MCL provides a refresh clock to the MAR4 boards
which 1is wused by MAR4 refresh logic to refresh the arrays on a
periodic basis. Battery backup is provided to maintain array
refreshes during periods of power interruptions..

Figure 1-8 1is a simplified flow diagram of MAR4 write and read
operations. Refer to it along with the block diagram (Figure 1-3)
in the following discussion.

1.4.6,1 MAR4 Select and Command/Address —-- The MCL initiates a
operation by asserting a board-select signal, the command/address,
and the C/A parity bit on the NAB.

-
i

The MCL selects the MAR4 by asserting its AMCL BRD SEL line. AMCL
BRD SEL selects the MAR4 by enabling the MAR4 control logic.

AMCL CMD<3:0> 1is a four-bit command applied to the MAR control
logic. Figure 1-9 illustrates the command fields. AMCL CMD<3:2>
are function bits specifying the operation that is to be
performed. AMCL CMD<3> 1is the write bit which is negated for a

* A 32-bit longword and 7 ECC check bits.
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Figure 1-9 MAR4 Command Fields

write and asserted for read*. AMCL CMD<2> is the octaword read
bit which is asserted for an octaword read and negated for a
longword read. AMCL CMD<1:0> is the starting address which
specifies the bank to be accessed for a longword read or write.
For an octaword read, it specifies the first bank to transfer its
data to the MCL.

AMCI ADDRK25:4> is the array address tc be accessed.
AMCL CMD ADDR PAR is a parity bit on the command/address.

The command/address and the command/address parity bit are applied
to a command/address parity checker. 1If a parity error is
detected, BMAR CMD ADDR PAR ERR is asserted back to the MCL which
aborts the operation and asserts the memory-interrupt lines on the
NMI.

1.4.6.2 Write Operation -- If a write operation is executing, the
MCL places the write data (AMCL DATA<31:0>) on the NAB. The write
data is coupled onto the MAR4's internal data bus as INT
DATA<31:0>. The data is applied to all of the array banks and to
an ECC generator. The ECC generator generates 7 ECC check bits on
the data and applies them to the banks as INTR DATA<38:32>.

AMCL ADDR<25:4> is applied to all four banks.

The MAR4 control logic responds to the input write command by
asserting LOAD DATA<KX> where X is the number of the bank selected
by the command starting address. LOAD DATA<X> loads the write data
(longword and check bits) into the selected bank but does not
write the data into the array.

*  The write bit is inverted on the MAR4 board where its asserted
state specifies a write command.
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After the write data is loaded into the bank, it is written into
the array providing that there was no command/address parity error
and the longword's write-enable bit is set. If a command/address
parity error did occur, or the write-enable bit 1is not set
(negated), no data is written.

A write-data parity error detected in the array board will not
prevent the data from being written but it will mark it as bad
data.

The control logic then asserts BMAR DATA RDY DONE on the NAB to
inform the MCL that the write operation has been completed and it
can 1issue a new command to the array bank. BMAR DATA RDY DONE is
asserted whether or not the write data was written.

1.4.6.3 Read Operation =-- If a read operation is executing, the
control 1logic asserts the MAR4's BMAR SEND NO CMD line on the NAB
to inhibit the MCL from issuing any new commands to the MAR4 until
the read operation is complete. A read operation executes in two
segments; a read of the array(s) and a transfer of the read data
to the MCL. The two segments do not necessarily follow one another
immediately. After the array(s) have been read the MCL will take
the read data when it is ready. BMAR SEND NO CMD serves as a "read
lock™ signal between the two segments., It asserts during the "read
array" segment and inhibits the MCL from issuing any new commands
to the MAR4* until the "data transfer" segment is started.

The MAR4 control 1logic responds to the input read command by
asserting READ BANK EN<KX> where X is the number of the bank
selected by the command starting address. READ BANK EN<KX> enables
the output of the selected bank onto the MAR4 internal bus.,.

The array banks(s) are then read according to the type of read in
progress. If a longword read is executing, the selected bank is
read and the data longword and associated check bits are coupled
to the internal bus as INT DATA<31:0> and INTR DATA<K38:32>
respectively. If an octaword read is executing, all of the banks
are read and the data from the selected bank is coupled to the
internal bus. The data read from the other three array banks is
held within the banks.

The control 1logic then asserts BMAR DATA RDY DONE on the NAB to
inform the MCL that the "read array" segment has been completed
and it can start the "data transfer" segment when it is ready.

Note that a command/address parity error has no effect on a read
operation within the MAR4.

* The MCL may issue commands to other MAR4 boards on the NAB.
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The MCL 1initiates the "data transfer" segment by asserting the
MAR4's read board-select line (AMCL READ BD SEL). The MAR4 control
logic responds to AMCL READ BD SEL by asserting DR WRT DATA DIS
and READ SELECT. DR WRT DATA DIS disables the data-in path from
the NAB to the MAR4's internal bus. READ SELECT enables the
data-out path from the internal bus to the NAB.

The MCL then asserts BMCL DRIVE NEW DATA to the control logic
which in turn asserts DATA OUT CLK. DATA OUT CLK transfers the
read data from the internal bus to the NAB via flip-flops. The
data 1longword and associated check bits appear on the NAB as BMAR
DATA<31:0> and BMAR DATA<K38:32> respectively.

In addition, DATA OUT CLK increments READ BANK EN<KX> within the
control 1logic to enable the read data (if any) from the next bank
out onto the internal bus. This function is used for octaword read
operations.

If a longword read operation is being executed, the operation is
complete.

If an octaword read operation 1is Dbeing executed, the MCL
re-asserts BMCL DRIVE NEW DATA to transfer the second longword
(and its check bits) out to the NAB. DATA OUT CLK again increments
READ BANK EN<KX> to couple the third longword (not necessarily from
the third bank) to the internal bus.

BMCL DRIVE NEW DATA continues to assert causing READ BANK EN<X> to
step through all four array banks taking a data longword and its
associated check bits from each bank.

When all four banks have been read, the octaword read operation is
complete.
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CHAPTER 2
MEMORY CONTROLLER (MCL)

The MCL (memory controller) 1is divided into three areas as
discussed in Chapter 1. The three areas are:

™ The DFA (DAD, FUNK, and ARID MCAs)
® The MDP (memory data path)
™ The MRM (MSC, MSC1l, RSC, and MASC MCAs)

Overviews of the DFA, MDP, and MRM are given in Sections 2.1, 2.5,
and 2.9 respectively. These three areas can be read as a general
description of the MCL. Each overview is followed by a detailed
description of the MCAs used in the respective area.

2.1 DFA OVERVIEW (Figure 2-1)
The three MCAs that make up the DFA are defined below.
° DAD = data/address: Interfaces the data and address to
the NMI.
° FUNK = function: 1Interfaces the function field to the

NMI, decodes the function field, generates the NMI
confirmation code, and generates NMI faults.

) ARID = arbitration/ID: Processes data and function
parity, processes the mask and commander ID fields,
arbitrates for the NMI, and generates NMI interrupts and
busy requests.

2.1.1 Command/Address Cycle
In the command/address cycle, the following is placed on the NMI
by the NMI commander.

° NMI FUNCTION<K4:0> -- command function
® ID MASK<3:0> =-- commander's ID
° FUNCT 1ID PARITY -- parity bit for function field and

commander ID
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° ADDRESS DATA<31:0> -- memory address
e NMI DATA PARITY -- address parity bit

The five-bit function field (NMI FUNCTION<4:0>) is applied to a
parity generator in the FUNK where parity is generated for the
function field. The generated parity bit (CTRL GEN PARITY) is
applied to a parity checker in the ARID.

The function field specifies the commanded function as shown in
Table 1-2. The function field is decoded in the FUNK function
logic, which outputs a three-bit command code (BDFA CMD<2:0) and a
two-bit size field (BDFA SIZE<1:0>). The three-bit command code
specifies a read or write operation, a memory or CSR access, and a
non-masked or masked operation, as shown in Table 2-1.

Table 2-1 Command Code

BDFA CMD
<2 1 0> Command

Read memory

No Op

Read CSR

No Op

Write memory

Write memory masked
Write CSR

No Op

HFHHHOOOD
HEHEOOHKFODO
—_O R OO O

f 9 -———--- Non-masked/masked
y - Memory/CSR
---------- Read/write

The function logic uses address bit 29 (NMI ADDRESS DATA<Z29>) to
determine if the command function is to memory or to a CSR.

in Table 2-2.

Table 2-2 Size Code

BDFA SIZE

<1 0> Size

0 O Longword
0 1 Octaword
1 O Quadword
1 1 Hexword
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Figure 2-1 DFA Block Diagram

The command code and size field are sent to the MRM for execution
of the command function.
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If the function logic detects an invalid function code, it aborts
the operation and asserts FUNCTION INVALID to the confirmation
logic which will assert a "no acknowledgement" confirmation code
(Table 1-4) on the NMI during the confirmation cycle (the
confirmation cycle 1is the second cycle after the command/address
cycle; see Table 1-3 and Tables 1-5 through 1-9). If a valid
function is decoded and no parity errors are detected (ADFA PARITY
ERROR2 false), START NEW CMD is asserted to the confirmation logic
causing it to place a "command accepted" code on the NMI during
the confirmation cycle.

If a read interlock command is decoded, INTERLOCK is asserted to
the timeout logic which then starts counting NMI SLOW COUNT EN
clocks from the NMI. When a write unlock command is received, the
function logic asserts UNLOCK which resets the timeout logic. If a
write unlock command is not received within approximately thirteen
microseconds from a read interlock command, the timeout logic
asserts ADFA TIMEOUT to the interrupt logic in the ARID causing it

to assert an interrupt on the NMI.

If a read interlock command 1is received while a previous read
interlock command is pending {previous read interlock command
received but a write unlock command has not been received yet),
the function logic aborts the new read interlock command and
asserts INTERLOCK BUSY to the confirmation logic. The confirmation
logic places an "interlock busy" confirmation code on the NMI
during the confirmation cycle.

Another output of the FUNK function logic is BDFA NEW CMD EARLY
which is used to inform the MRM that a new command has been
received.

The commander ID (NMI ID MASK<3:0>) is applied to the ARID where
it 1is stored in the 1ID store logic. When a read command is
executed, the commander ID will be popped from the ID store logic
and placed on the NMT along with the read data.

The commander ID is also applied to the ARID parity checker where
parity is generated on the 1ID and combined with the function
parity bit £from the FUNK (CTRL GEN PARITY). The composite parity
bit 1is compared to the function-ID parity bit from the NMI (NMI
FUNCT ID PARITY) and if an error is detected, CTRL PARITY ERR is
asserted to the ARID fault logic and to an OR function outside the
ARID. The ARID fault logic asserts ARID FAULT DETECT which causes
SYS FAULT DETECT to assert to the fault logic in the FUNK. The
FUNK fault logic then asserts NMI FAULT on the NMI.

When the OR function outside the ARID receives CTRL PARITY ERR, it
asserts ADFA PARITY ERROR2 to the FUNK function logic causing it
to abort the operation. ADFA PARITY ERROR2 is also applied to the
FUNK confirmation logic which will place a "no acknowledgement®

IX 2-4



The memory address (NMI ADDRESS DATA<31:0>) is applied to the DAD
where it passes through a mux and outputs the DAD as ADFA DATA
ADDR<31:0>., ADFA DATA ADDR<K31:0> is sent to the MDP where it is
stored in the MDB (memory data buffer). Data-address bits <3:2>
are sent to the MRM where they select the array bank to be
accessed.

ADFA DATA ADDRK31:0> 1is also applied to a decode RAM where it
selects the primary and alternate array board for the command
operation. ADFA PRM BNUM<2:0> is the primary board number and is
used to select the array board for all write operations, for
longword and octaword read operations, and for the first octaword
transfer of a hexword read operation. ADFA ALT BNUM<2:0> is the
alternate board number and is used only for the second octaword
transfer of a hexword read operation. The primary and alternate
board numbers are sent to the MRM where they are used to select
the array board(s) to be accessed. A decode-RAM parity bit (ADFA
DEC RAM PARITY) is also output from the decode RAM for use in an
MRM parity check.

Parity 1is generated on the memory address and outputs the DAD as
ADFA  GEN PARITY<3:0> where it is sent to the MDP for storage in
the memory data buffer. In addition, ADFA GEN PARITY<3:0> is sent
to a parity checker where it is checked against the address parity
bit (NMI DATA PARITY) from the NMI. The address parity bit is
latched in the ARID and then output to the parity checker as A
DATA PARITY. 1If the parity checker detects an address parity
error, 1t asserts DATA PARITY ERR to the ARID fault logic which
asserts ARID FAULT DETECT. This results in the assertion of NMI
FAULT on the NMI as in the case of a function/ID parity error.

In addition, DATA PARITY ERR asserts
FUNK function 1logic and confirmation
operation being aborted and a "no acknowledgement" confirmation
code for the NMI, as in the case of a function/ID parity error.

2.1.2 Write Data Cycle(s)

Write-data cycle(s) follow the command/address cycle for all write
operations. For longword operations, only one write-data cycle
occurs. For multi-longword operations, more than one write-data
cycle occurs (see Tables 1-3, 1-5, and 1-6).

In a write-data cycle, the following is placed on the NMI by the
NMI commander.

) NMI FUNCTION<4:0> -- command function

° NMI ID MASK<3:0> -- byte mask

° NMI FUNCT ID PARITY -- parity bit for function field and
byte mask

IX 2-5



° NMI ADDRESS DATA<31:0> -- write data
[ NMI DATA PARITY -- write data parity bit

A function parity bit (CTRL GEN PARITY) is generated for the
function field as was done during the command/address cycle.

For each write-data cycle, the FUNK function logic outputs BDFA LD
INPUT DATA to the MDP to load the associated write data into the
memory data buffer, and to the MRM to load the mask field into
mask store logic. It also outputs WRITE DATA CYCLE to the NMI dead
logic for wuse in single-bit error correction during masked write
operations (see Section 2.1.7).

~

The byte

mask (NMI ID MASK<3:0>) is applied to the ARID and then
output to the MRM as ADFA MASK<3:0> where it is used for byte

selection in masked write operations.

v

Parity 1is checked on the byte mask and function field just as in
the command/address cycle. The function parity bit (CTRL GEN
PARITY) 1is sent from the FUNK to the parity checker in the ARID
where it is combined with the parity bit generated from the byte
mask. The composite parity bit is compared to the function and
byte mask parity bit and if a parity error is detected, CTRL
PARITY ERROR asserts to the fault logic in the ARID and to the OR
function outside the ARID. The fault logic causes an interrupt on
the NMI. The OR function asserts ADFA PARITY ERRORI to the MDP
where it causes the bad-data bit to assert. Note that the write
operation is allowed to continue as opposed to the command/address
cycle where a function/commander ID parity error aborted the
operation.

The write data (NMI ADDRESS DATA<31:0>) is routed through the DAD
(via a mux) and sent to the MDP as ADFA DATA ADDR<31:0>. Parity is
generated on the write data and sent to the MDP as ADFA GEN
PARITY<3:0>. The write data and parity bits are stored in the MDB
in the MDP.

As in the case of the command/address cycle, parity bits ADFA GEN
PARITY<3:0> are generated on the write data and sent to the parity
checker where it is checked against the write-data parity bit NMI
DATA PARITY. If the parity checker detects a data parity error, it
asserts DATA PARITY ERR which causes a fault on the NMI via the
ARID and FUNK fault logic. In addition, DATA PARITY ERR asserts
ADFA PARITY ERROR1 to the MDP where it causes the bad-data bit to
assert as in the case of a function/mask parity error. Note that
the write operation 1is allowed to continue as opposed to the
command/address cycle where a memory address parity error aborted
the operation.

If th function 1logic in the FUNK, detects missing write data
(that 1is, an octaword write operation is executing but the NMI
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ngwords of write data), it asserts

commander sends only three lo
T DRETECT does the following:

SEQ FAULT DETECT. SEQ FAULT D&

pa

° Asserts NMI FAULT on the NMI via the FUNK fault logic.

® Asserts ADFA BAD DATA to the MDP where it causes the
had-data bit to assert.

2.1.3 First Read Data Cycle

When a read operation is executing and read data has been obtained
from the arrays, the MCL arbitrates for control of the NMI by
asserting NMI MEMORY ARB. NMI MEMORY ARB is generated by the ARID
arbitration logic which vreceives BMRM NEW LW and AMRM READ
CMD<1:0> from the MRM. BMRM NEW LW signifies that a longword of
read data has been read from the arrays. AMRM READ CMD<1>
specifies that the data is true read data -- not data read as part
of a masked write operation. AMRM READ CMD<0> specifies the data
as the first longword of the read operation.

Due to pipelining (processing sequential longwords of data at the
same time), BMRM NEW LW and AMRM READ CMD<1:0> associated with the
next longword (if this is a multi-longword operation) will appear
at the ARID even though the MCL has not yet won the bus. AMRM READ
CMD<0> specifies a "next" 1longword to the arbitration logic
causing it to assert HOLD to hold the NMI for the next bus cycle
once the NMI is won.

The 1ID store logic in the ARID also receives BMRM NEW LW and AMRM
READ CMD<K1:0> causing it to output the commander ID (POP ID<3:0>)
that was stored during the command/address cycle.

POP ID<3:0> 1is also applied to a parity generator where it
contributes to the generation of a parity bit for the function and
ID fields.

The FUNK read-function logic generates a read-return function code
tor the function field associated with the first longword of read
data. The 1logic receives BMRM NEW LW and AMRM READ CMD<1:0> from
the MRM and AMDP DRBRE (asserted 1if the read data contains a
double-bit error) from the MDP, from which it determines:

That there is a longword of read data.

The data is for the NMI.

That it is the first longword of the read operation.
Whether or not the data contains a double-bit error.

The read function 1logic generates a parity bit for the function
field which it outputs to the ARID as CTRL OUT PARITY. In the
ARID, CTRL OUT PARITY is applied to a parity generator where it is
combined with the parity bit generated for the commander ID. The
composite parity bit is output as ID PAR.
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The first longword of read data is received by the DAD from the
MDP, as BMDP FB DATA<31:0>. The data 1is routed through ECC
correction logic where it undergoes single-bit error correction if
necessary. If a single-bit error had been detected, AMDP BIT
CORRECTK2:0> from the MDP will effect the correction in the ECC
correction logic. From the correction logic, the read data passes
through a mux to become B WRAP DATA<31:0>.

Read data BMDP FB DATA<31:0> is also applied to a parity generator
in the DAD where parity bits BDFA OUT PARITY<3:0> are generated
and sent to the ARID. 1In the ARID, the parity bits are
consolidated 1into a single parity bit by a data parity generator.

During the bus-grant cycle (when the MCL is granted use of the
NMI), NMI MCL BUS EN is asserted and becomes ADFA OUTPUT ENABLE.
The bus-grant cycle is also the first read data cycle (see Tables
1-7, 1-8, and 1-9). The assertion of ADFA OUTPUT ENABLE does the
following:

° Enables the first longword of read data onto the NMI by
gating B WRAP DATA<31:0> out of the DAD as NMI ADDRESS
DATA<31:0>.

° Enables the read data parity bit out of the ARID onto the
NMI as NMI DATA PARITY.

e Enables the read data function field out of the FUNK onto
the NMI as NMI FUNCTIONK4:0>.

) Enables the commander ID onto the NMI by gating POP
IDK3:0> out of the ARID as NMI ID MASK<3:0>.

® Enables the function field and commander ID parity bit
onto the NMI by gating 1ID PAR out of the ARID as NMI
FUNCT ID PARITY.

° 1f this 1s a multi-longword operation, holds the NMI for
the next c¢ycle by gating HOLD out of the ARID as NMI
MEMORY HOLD.

2.1.4 "Next" Read Data Cycles
On the second and subsequent read data cycles:

° The read longwords pass through the DAD to the NMI as in
the first read data cycle.

° Parity 1is generated on the read data and placed on the
NMI as in the first read data cycle.

° The read function logic in the FUNK senses read command
bit <0> to output a read-continue function code. It also
monitors AMD DBE to specify a good data or bad data
function code.
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2.1.5

The ID store senses read command bit <0> to determine the
read data cycles to be "next" cycles and outputs the same
commander ID onto the NMI as 1in the first read data
cycle. It does not pop a new commander ID until it senses
a new "first" longword of read data.

Parity 1is generated on the commander ID and function
field and placed on the NMI as in the first read data
cycle.

The arbitration logic keeps NMI MEMORY HOLD asserted so
long as the MCL needs the NMI for the next bus cycle. NMI
HOLD is false during the fourth data bus cycle. If a
hexword read 1is 1in progress, the MCL must re-arbitrate
for the NMI to output the send octaword of read data.

NMI Interrupt

Interrupt logic in the ARID generates an NMI interrupt when:

2.1.6

ADFA TIMEOUT asserts from the FUNK timeout logic as
discussed in Section 2.1.1.

AMDP DBE asserts from the MDP indicating an uncorrectable
error has been detected.

AMRM INT ERROR asserts from the MRM indicating an
internal parity error or power failure.

NMI Memory Busy

Busy logic in the ARID generates NMI MEMORY BUSY when:

NMI

AMDP BUSY REQ asserts from the MDP indicating the MDB is
full and cannot accept any more write data. The MDP also
asserts AMDP BUSY REQ when a single-bit error is detected
(see Section 2.1.7).

AMRM BUSY REQ asserts from the MRM indicating that the
array boards are busy and no more commands can be
accepted.

AMRM INT ERROR asserts from the MRM. This is done to
prevent other nexus from sending commands to memory when
an internal error exists.

MEMORY BUSY is also applied to the confirmation logic in the

FUNK which will place a "memory busy" confirmation code on the NMI

during

the confirmation cycle of any command received while NMI

MEMORY BUSY is true.
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2.,1,7 Single-Bit Error Correction During a Masked Write

If the MDP detects a single-bit error in data read from the arrays
during a masked write operation, the data is sent to the DAD,
along with the AMDP BIT CORRECT<2:0> correction bhits, for error
correction and is then returned to the MDP.

Upon detecting the single-bit error, the MDP asserts AMDP BUSY REO
to the ARID busy logic which places NMI MEMORY BUSY on the NMI.
This 1is done to halt commands to memory so that the DAD data path
can be used for the corrected read data. NMI MEMORY BUSY is
applied to NMI dead logic in the FUNK, which then asserts ADFA NMI
DEAD to the DAD. ADFA NMI DEAD switches the DAD data mux to select
the corrected read data (B WRAP DATA<31:0>) for the return to the
MDP.

A copy of ADFA NMI DEAD (ADFA NMI DEAD1) is sent to the mask-store
logic in the MRM to signify that the read data is coming from the
DAD and not from the NAB.

The NMI dead 1logic does not assert ADFA NMI DEAD (nor ADFA NMI
DEADl1) if a write operation is in progress as indicated by the
assertion of WRITE DATA CYCLE from the function logic. The write
operation 1is allowed to finish before the DAD data mux breaks the
NMI data path through the DAD.

2.1.8 CSR Reads

CSR logic in the DAD collects CSR serial and-parallel data from
the DAD, MDP, FUNK, and ARID; converts it to parallel data; and
supplies it to the NMI during a CSR read operation. The MRM
detects the operaton as a CSR read and asserts BMRM EN SERIAL READ
to the DAD. BMRM EN SERIAL READ switches a mux to select CSR
DATA<31:0> from the CSR logic for the read data path out to the
NMTI.

2.2 DATA /ADDRESS (DAD) MCAS

There are four 1identical DAD MCAs that consist of muxes, ports,
and drivers which pass data to and from the NMI. Each DAD carries
an eight-bit slice of the 32-bit data/address. A two-bit mode
field 1is applied to each DAD to specify its byte position within
the longword. This allows the MCAs to be physically identical but
slightly different logically. Areas where the DADs are logically
different are noted in the block diagram description.

Figure 2-2 1is a block diagram of the DAD MCAs with all four DADs
represented on the diagram. The four data slices have been
combined giving total bit representation of the signals (for
example, the NMI ADDRESS DATA bits are the <31:0> longword rather
than the <7:0> byte processed by a single DAD MCA).

There are eight muxes used in forming the various data paths

through the DAD MCAs. The block diagram keys the muxes to their
names as used in the text.
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The major DAD ports are defined and then the block diagram is used
to describe how the DAD functions for the various MCL operations.

2.2.1 DAD Ports
The major DAD ports are:

e NMI ADDRESS DATA<31:0> -- data and address I/0 to the NMI
(bi-directional).

® ADFA DATA ADDR<K31:0> -- data-address output port to the
MDB.

° BMDP FB DATA<31:0> =-- receives feedback data from the

MAR4 during NMI reads from memory, masked writes, and
decode RAM addressing.

° CSR<3:0> SER RB<K3:0> -- input port for serial read back
data from CSRO, CSR1, CSR2, and CSR3 to the NMI.

2.2.2 NMI Writes to Memory

Data-address NMI ADDRESS DATA<31:0> from the NMI is latched in the
DAD to becomes RECV DATA ADDR<K31:0>. RECV DATA ADDR<31:0> 1is
applied to the DO input of a data-address mux. When ADFA NMI DEAD
is false, the data-address 1is output from the mux as ADFA DATA
ADDR<31:0> and transferred to the MDB.

Byte parity is generated on the data-address and is applied to the
DO input of a GEN-parity mux. When ADFA NMI DEAD is false, the mux
selects the parity bits and outputs them to the MDB as ADFA GEN
PARITY<3:0>. The parity bits are also sent to the ARID where a
parity check is made on the NMI data.

Parity 1s also generated on the four-bit nibble RECV DATA
ADDR<7:4>. The generated parity bit (ADFA NIBBLE 1 PARITY) from
MCA0 is sent to the MDB where it is used in the generation of
address parity for the memory arrays*. The ADFA NIBBLE 1 PARITY
outputs from the other three MCAs are not used.

2.2.3 NMI Reads from Memory

Data read from memory is coupled from the arrays to the DAD for
transfer to the NMI. The data is input to the DAD at the feedback
port as BMDP FB DATA<31:0>. BMDP FB DATA<31:0> becomes FB
DATA<31:0> which is then latched to become RECV FB DATA<31:0>.

RECV FB DATA<31:0> is applied to an ECC XOR gate where single-bit
error correction occurs (if needed). AMDP CORRECT EN<3:0> and AMDP
BIT CORRECT<2:0> are received from the DCHK and applied to a

* Address bits <3:0> are not used.
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correction decoder. If a single-bit error was detected by the
DCHK, AMDP CORRECT EN<3:0> enables the appropriate byte in the
decoder. AMDP BIT CORRECT<2:0> specifies the erroneous bit within
the byte. The decoder output (BIT CORR EN<31:0>) is XORed with the
memory read data. I1f no error exists in the data, all 32 bits from
the decoder are negated. If a single-bit error exists, the
corresponding bit from the decoder 1is asserted causing the
erroneous data bit to be flipped (corrected).

The output from the ECC XOR gate is applied to the DO input of a
correct-data mux which outputs the memory read data as MUX CORRECT
DATA<31:0>. MUX CORRECT DATA<31:0> 1is loaded into a B latch to
become B WRAP DATA<31:0>. B WRAP DATA<31:0> is latched by HOLD FB
DATA from the ARID arbitration logic, until the ARID has won the
NMI bus.

B WRAP DATA<31:0> is gated by EN DATA OUT and then transferred to
the NMI via the bi-directional NMI ADDRESS DATA<31:0> port. EN
DATA OUT 1is true when there is no internal error within the MCL
(AMRM INT ERROR negated), and ADFA OUTPUT ENABLE is asserted. ADFA
OUTPUT ENABLE is asserted by NMI MCL BUS EN which is the NMI bus
grant received from the CPU arbitration logic when the MCL has won
the bus.

Byte parity 1is generated on the memory read data by applying the
read data (FB DATA<31:0>) to an out-parity generator before it
passes through the ECC correction logic. The out-parity generator
outputs into the DO input of an out-parity mux which in turn
outputs the parity bits as BDFA OUT PARITY<3:0>. The parity bits
are transferred to the ARID MCA where a parity check is made on
the memory read data. If single-bit correction occurred on the
read data, the ARID compensates for the corrected bit.

2.2.4 Masked Writes Requiring Single-Bit Error Correction

In a masked write operation in which the DCHK detected a
single-bit error in the read data, the data is fed into the DAD
feedback port, ECC corrected, and then wrapped around and returned
to the MDB via the ADFA data-address port. Parity is generated on
the wrapped data and returned to the MDB with the data. Note that
the wrapped data uses the same output port as the data/address
from the NMI. Hence, there must be no input from the NMI while the
wrap—-data is passing through the DAD. To accomplish this, the ARID
asserts NMI BUSY to halt traffic on the NMI whenever the DAD wrap
path is to be wused. When the FUNK senses that there is no NMI
traffic, it asserts ADFA NMI DEAD to enable the wrap-data path.
The path of the wrap data through the DAD is described below.

BMDP FB DATA<31:0> is passed through the feedback channel where it
undergoes error correction in the ECC XOR gate. The corrected data
is then input into the B latch where it becomes B WRAP DATA<31:0>.
B  WRAP DATA<31:0> is latched by BMDP HOLD WRAP DATA from the MDBC
until the MDBC senses that the NMI is quiet (ADFA NMI DEAD true)
and negates BMDP HOLD WRAP DATA.
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The corrected wrap data held in the B latch (B WRAP DATA<31:0>) is
applied to the D1 input of a WOR (wired OR) mux. The MDBC, sensing
the true state of ADFA NMI DEAD, asserts BMDP OUTPUT WRAP DATA
which causes the WOR mux to select the D1 input for the WOR
DATA<31:0> output. WOR DATA<31:0> is then transferred to the ADFA
DATA ADDR<31:0> output port via the data-address mux.

The corrected wrapped data (B WRAP DATA<31:0>) is also applied to
a wrap-parity generator where parity bits CSR PARITY<3:0> are
generated. CSR PARITY<3:0> becomes WRAP DATA PARITY<3:0> which is
output from the DAD as ADFA GEN PARITY<3:0> via the GEN-parity
MuX.

2.2.5 Error-Free Masked Writes

The MAR4 read data is applied to the DAD feedback port even when
no error correction is required. This is done for parity checking
of the read data. The read data follows the same path as during an
NMI read from memory (Section 2.2.3), generating parity bits BDFA
OUT PARITY for the ARID where parity is checked. The read data in
the DAD never reaches the NMI (ADFA OUTPUT ENARLE false), nor does
it wrap back to the MDB (ADFA NMI DEAD false).

2,2.6 Decode RAM Addressing

The wrap data path is also used for addressing of the decode RAM.
A DECRAM-ADDR mux outputs store-decode RAM addresses into the DO
input of the WOR mux. The DO input is selected by the negated
state of BMDP OUTPUT WRAP DATA from the MDBC (no single-bit error
correction occurring). The DECRAM-ADDR mux inputs are generated
when the decode RAM is initially loaded and when reading CSR1.

2.2.6.1 1Initially Loading the Decode RAM -- The initial loading
addresses for the decode RAM are input at the DAD feedback port
(BMDP FB DATA<31:0>). BMDP FB DATA<31:0> becomes FB DATA<31:0>
which in turn 1is latched to become RECV FB DATA<31:0>. RECV FB
DATA<31:0> is applied to the DO input of the DECRAM-ADDR mux. With
A READ CSR1 SEL false, the mux selects the DO input for the WOR
mux.

2.2.6.2 Reading CSR1 -- When reading CSR1l, the store-decode RAM
is addressed at the DAD feedback port (BMDP FB DATA<31:0>). BMDP
FB DATA<31:0> becomes FB DATA<31:0> which is applied to the input
of an A latch. The latch is enabled for loading by B CSR WRITE
obtained by ANDing AMRM CSR WRITE from the MRM and B CSR1 DECODE
from a CSR decoder in the DAD.

The CSR decoder receives a 3-bit stored address (BMDP SPECIAL
ADDR<4> and BMDP STRD ADDR<3:2>) from the MDB which specifies
which CSR is to be accessed. The 3-bit address is decoded and the
selected CSR DECODE output is asserted. When the decoder senses
that CSR1 is to be accessed, it outputs B CSR1 DECODE.
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B CSR WRITE loads the A latch with the store-decode RAM address
which appears at the output of the latch as ST DECRAM ADDR<31:0>.
ST DECRAM ADDR<K31:0> is applied to the D1 input of the DECRAM-ADDR
mux where it is selected for the output by the true state of A
READ CSR1 SEL.

The A READ CSR1 SEL select signal is obtained by ANDing B CSR1
DECODE with SEL CSR DATA. SEL CSR DATA is asserted by ANDing BMRM
EN SERIAL RD (always asserted when CSRO, CSR1, CSR2, or CSR3 is to
be read) and the false state of stored address bit <4> (false when
CSR0O, CSR1, CSR2, or CSR3 is to be accessed).

2.2.7 CSR Reads to the NMI

Four MCL CSRs (CSRO, CSR1, CSR2, CSR3) are read out to the NMI via
the DAD serial read-back port. The port receives CSR data, in
serial format, from the FUNK, the ARID, and the MDP. The serial
data is accumulated and assembled inside the DAD and ocutput to the
NMI in parallel format.

The serial data from the four CSRs is applied to a CSR-select mux
where two stored address bits from the MDB (STRD ADDR<K3:2>) select
one of the CSRs. The CSR-select mux outputs the data from the
selected CSR to the DO input of a serial-parallel mux. The path
from the CSR-select mux to the serial-parallel mux is enabled by
the negated state of STRD ADDRK4>.

The serial-parallel mux selects the DO input due to the presently
false state of PARALLEL DATA SEL. The output from the
serial-parallel mux is applied to a 32-bit CSR latch which is load
enabled by the CSR BIT EN<K31:0> output from a counter. The counter
is enabled by EN SERIAL RD and incremented by F A CLK and F B CLK.
The counter asserts CSR BIT EN<K31:0> in sequence, thereby load
enabling the latch bit locations one at a time. As the serial CSR
data is applied to the latch it is loaded in a bit at a time.

The serial 1loading process into the CSR latch is accomplished
simultaneously by the four DADs; therefore, each DAD counter
outputs eight CSR BIT EN counts in sequence to serially load a
byte 1into each DAD latch. After eight cycles of the counter, the
32-bit CSR latch is fully loaded with the CSR data.

An exception to the serial data format of the received CSR data
occurs in the case of CSR1l. The least significant byte received
(bits <7:0>) 1is in serial format while the other three bytes are
received 1in parallel format. Consequently, when it is sensed that
CSR1 1is to be read, the select input to the serial-parallel mux
(PARALLEL DATA SEL) is asserted in MCAl, MCA2, and MCA3 to select
the D1 input from the feedback port. CSR1 routes its three most
significant bytes into the feedback port as FB DATA<31:8>.

PARALLEL DATA SEL in MCAO is false to select the DO input from the

CSR mux. MCA0O will pass the CSR1l least significant byte through
the CSR mux just as in the case for the other CSRs.
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PARALLEL DATA SEL is held false in MCAQO by the true state of SLICE
0 from a slice decoder. The slice decoder receives a two-bit code
(MODE<1:0>) which specifies the byte position of the MCA according
to its 1location on the MCL module. When the slice decoder senses
the MCA to be MCAO, it asserts SLICE 0 which inhibits the AND gate
producing PARALLEL DATA SEL. Hence, the serial-parallel mux in
MCAO never selects its D1 input.

The CSR latch outputs the CSR data as CSR DATA<31:0> which is then
applied to the D1 input of the correct-data mux. The D1 input to
the mux 1is selected for the output by the true state of SEL CSR
DATA. SEL CSR DATA is asserted for a CSR read by the assertion of
BMRM EN SERIAL RD and the negation of STRD ADDR<4> and EN DATA
OouT.

The CSR data is output from the correct-data mux as MUX CORRECT
DATA<31:0> which 1is 1loaded into the B latch and then latched by
HOLD FB DATA until the MCL has won the NMI. When the MCL receives
its bus grant from the CPU, EN DATA OUT asserts and transfers the
CSR data to the NMI via the NMI ADDRESS DATA<31:0> port.

The latched CSR data (B WRAP DATA<31:0>) is also applied to the
wrap-parity generator where CSR PARITY<3:0> is generated on the
CSR data. CSR PARITY<3:0> is applied out to the ARID as BDFA OUT
PARITY<3:0> via the Dl input of the out-parity mux.

The slice decoder described in the preceeding discusion, serves
another function during a read of the CSRs to the NMI. Address
inputs from the NMI are input to the slice decoder from the RECV
DATA ADDR<31:0> internal bus. The decoder monitors the addresses
and asserts CSR ADDR to the FUNK if a CSR address is detected. The
CSR addresses are in the I/0 space ranging from 3E000000 for CSRO
to 3E00001C for CSR7.

The MODE<1:0> inputs specify which MCA is MCAO0, MCAl, etc., so
that the decoder in each MCA will monitor the correct byte of the
32-bit address.

2.3 FUNCTION (FUNK) MCA
The FUNK MCA:

Decodes the NMI function to be used by the MCL.
Generates read function codes for the NMI.
Generates the confirmation codes for the NMI.
Asserts the NMI fault line.

Provides status bit to CSRO and CSRI1.

Figure 2-3 is a block diagram of the FUNK MCA. Refer to it
throughout this section.
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2.3.1 Function Field Parity

The five-bit function field from the NMI (NMI FUNCTION<4:0>) is
renamed and then applied to the FUNK MCA. NMI FUNCTION<K3:1> is
renamed XNMI FUNCTION<K2:0>, and NMI FUNCTION<4>,<0> is renamed
YNMI FUNCTIONK1:0>.

The function bits are latched to become FUNCTION<4:0> which are
then applied to a parity generator. Parity is generated on the
function field and output as CTRL GEN PARITY to the ARID MCA where
the function field parity is checked.

2.3.2 Function Decoder
FUNCTION<4:0> is applied to a function decoder where the commanded
operation is decoded. Another input to the function decoder is

address bit 29 (ADDRESS 29) which is received from the DAD MCA as
ADFA DATA ADDRESS<29>. Address bit 29 specifies the commanded
operation as an access to memory or to I/O space (to a CSR).

Table 2-3 lists the function bit codes and the command operations
they specify.

Table 2-3 PFunction Codes

FUNCTION

(Hex) <4 321 0> Command Operation

10 1 060060 Read longword

1 2 1 0010 Read octaword

13 1 0011 Read hexword

1 4 1 0100 Read longword interlocked
16 1 0110 Read octaword interlocked

1 7 1 0111 Read hexword interlocked

iB i 1611 Write longword

l1F 1 1111 Write octaword

18 1 1000 Write masked longword

19 1 1001 Write masked quadword

1 A 1 1010 Write masked octaword

1 C 1 1100 Write masked longword unlock
1D 1 1101 Write masked quadword unlock
1 E 1 1110 Write masked octaword unlock
0 A 0 1010 Read/return good data

0 E 0 1110 Read/return bad data

0 8 0 1000 Read/continue good data

0 C 0 1100 Read/continue bad data

[en]
\e]
[

fomd
<O
(]
i

Write data
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The decodexr outputs a 2-bit size code (BDFA SIZE<1:0>) that
specifies the size of the data transfer. The size code is shown in
Table 2-2. BDFA SIZE<K1> goes to the ARID to specify a hexword
operation to the ID/mask logic. BDFA SIZE<1:0> goes to the MRM.

The decoder outputs a 3-bit command code (BDFA CMD<2:0>) that
specifies the type of operation. The command code is shown in
Table 2-1.

Note in Table 2-1 that bit BDFA CMD<K2> specifies a read or write
operation, bit BDFA CMD<K1> specifies a memory or CSR access, and
bit BDFA CMD<0> specifies a non-masked or masked operation. Bits
BDFA CMD<2> and BDFA CMD<K0> are obtained directly from the
function decoder. Bit BDFA CMD<K1> is derived from CSR VALID. CSR
VALID is true 1if CSR ADDR from the DAD is asserted (the NMI
address 1is to one of the CSRs) and the function decoder has
decoded a WRITE CSR function or a READ LONGWORD function (access
to CSRs must be a longword function).

BDFA CMD<K0> goes to the MDBC to specify a masked operation. BDFA
CMD<2> goes to the ARID to specify a read operation. BDFA CMD<2:0>
goes to the MRM.

The command code (BDFA CMD<2:0>) and size code (BDFA SIZE<1:0>)
specify all the functions listed in Table 2-3 except:

® A lock function
™ An unlock function
® A write data cycle

These three functions are specified when the function decoder
respectively asserts:

® INTERLOCK
] UNLOCK
° WRITE DATA CYCLE

NOTE
The function decoder does not decode
read/return or read/continue functions
as these are not commands received from
the NMI. They are commands issued by the
MCL (from the MRM).

The function decoder asserts other outputs, with self-explanatory
mnemonics, that are wused within the FUNK as discussed in the
following sections.

2.3.3 NEW CMD EARLY/NEW CMD LATE

Early and late new-command signals are generated by the FUNK when
a valid, error-free, new command is detected. The new-command
signals are sent to the MRM as the load signals for the new
command.
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A new-command mux selects CSR VALID from the function decoder
(true if a valid CSR access is commanded) or ADFA MEM ADDR from
the decode RAM in the DFA (true 1if a valid memory access is
commanded). The output from the new-command mux is START NEW CMD.
Mux selection is made by memory/CSR address bit ADDRESS 29.

START NEW CMD is applied to two AND gates to generate BDFA NEW CMD
EARLY and BDFA NEW CMD LATE. BDFA NEW CMD EARLY and BDFA NEW CMD
LATE are functionally identical (BDFA NEW CMD EARLY occurs
slightly before BDFA NEW CMD LATE) and are applied to different
areas within the MRM. There are three conditions that will inhibit
the assertion of BDFA NEW CMD EARLY and BDFA NEW CMD LATE. These
are:

FUNCTION INVALID -- ass
the decoder senses a co
listed in Table 2-3.
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e BLOCK COMMAND -- asserted by the block-command logic when
the new command is to be blocked for reasons discussed in
Section 2.3.7.

ADFA PARITY ERROR2 -- asserted by the ARID module when a
parity error is detected in the 1ID/mask field, the
function field, or the data/address field (Figure 2-7).
ADFA PARITY ERROR2 inhibits only BDFA NEW CMD LATE in the
FUNK, however BDFA NEW CMD EARLY is inhibited by a parity
error in the MRM, thus the BDFA NEW CMD EARLY and BDFA
NEW CMD LATE remain functionally identical.

2.3.4 Read Lock Function

When the function decoder senses a read-lock function, it asserts
INTERLOCK. INTERLOCK is ANDed with B NEW CMD (an asserted B NEW
CMD means a valid, error-free, new command) to set a lock-logic
circuit. When set, the 1lock 1logic asserts LOCK which remains
asserted until the lock logic is cleared by a write-unlock command
or a write to CSRO.

The assertion of LOCK enables a lock—-timeout counter which starts
to time the interlock interval.

2.3.5 Write Unlock Function

When the function decoder senses a write-unlock function, it
asserts UNLOCK. UNLOCK 1is ANDed with B NEW CMD to assert CLEAR
LOCK (B TIMEOUT false). CLEAR LOCK clears the lock logic (thereby
negating LOCK) and resets the lock—-timeout counter.

Had a lock-timeout occurred, B TIMEOUT would have been true and
inhibited the clearing of the 1lock 1logic by the write-unlock
function. In this case the lock logic is cleared by writing bit 26
into CSRO. Writing bit 26 into CSRO asserts CLEAR LOCK via an AND
gate which is enabled by the following three inputs:
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° AMRM CSR WRITE -- asserted from the MRM whenever a CSR is

written.

° BMDP FB DATA<26> —-- asserted from the MDP when bit 26 is
true.

® CSRO DECODE =-- asserted from a CSR ADDR decoder when the

three-bit address «code (BMDP STRD ADDR<K4:2>) received
from the MDB specifies CSRO.

2.3.6 Lock-Timeout Counter

LOCK from the 1lock 1logic enables a lock-timeout counter. Once
enabled, the counter is increment by a clock (NMI SLOW COUNT EN)
received from the clock module via the NMI. The NMI SLOW COUNT EN
clock has a period of approximately 3.3 ms.

The lock-timeout counter 1is reset by CLEAR LOCK. Thus, when an
UNLOCK command 1is received and asserts CLEAR LOCK (to clear the
lock 1logic and negate LOCK), the lock-timeout counter is reset.
The negation of LOCK disables the timeout counter.

If an unlock command does not occur after three cycles of NMI SLOW
COUNT EN (approximately ten to thirteen ms depending on where LOCK
asserts in the NMI SLOW COUNT EN cycle), the lock-timeout counter
sets and outputs B TIMEOUT. B TIMEOUT is used in the generation of
BLOCK COMMAND, and to inhibit an unlock command from clearing the
lock logic. It is also applied to the FUNK CSRs where it sets the
CSRO timeout bit (bit 25; Figure 2-4). B TIMEOUT is output to the
ARID MCA as ADFA TIMEOUT where it causes an interrupt to the CPU
if the timeout enable bit (bit 30 of CSR3) is set.

2.3.7 Block Command

BLOCK COMMAND 1is asserted when a condition is sensed that calls
for aborting a new command. The new command is aborted by
inhibiting the assertion of BDFA NEW CMD EARLY and BDFA NEW CMD
LATE to the MRM.

The conditions that assert BLOCK COMMAND are described in the
following:

° INTERLOCK INVALID -- indicates that a received interlock
command is invalid because the memory is already locked
(INTERLOCK asserts while LOCK is true). The memory will
not accept a read-lock command while it is still locked
from a previous read-lock command.

° UNLOCK INVALID -- indicates that a received unlock
command is invalid because memory is not locked (UNLOCK
asserts while LOCK 1is false), or because the existing
lock command has timed out (UNLOCK asserts while B
TIMEOUT is true). Once a read-lock command has timed-out,
it cannot be unlocked by a write-unlock command.
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° WRITE BUSY -- indicates that the memory is busy with a
write function and cannot accept another command at this
time. Similar to WNMI MEMORY BUSY, however WRITE BUSY
asserts sooner and therefore <can block a new write
command during the first data cycle of the command. NMI
MEMORY BUSY does not assert soon enough to do this.
Serves as a "write-busy" flag.

WRITE BUSY 1is asserted when a write command is received
(WRITE COMMAND asserted from function decoder) and AMRM
INT ERROR, AMRM BUSY REQ, or AMDP BUSY REQ is true.

° NMI MEMORY BUSY =-- indicates that the memory is busy and
cannot accept another command at this time. Serves as

(i wili= [UR-15.3 4 4 o

a

rv a

"read-busy" flag.

® SEQ FAULT DETECT -- indicates that a write sequence fault
was detected in a prior transfer.

2.3.8 Write Sequence Fault

A write sequence fault occurs when a write command is received
followed by an insufficent number of data cycles to complete the
write transfer.

The FUNK MCA contains a write sequencer circuit, divided into
three sections (longword, quadword, and octaword). An input to the
longword section 1is asserted for a write longword command; an
input to the quadword section is asserted for a write quadword
command; and an input to the octaword section is asserted for a
write octaword command.

The three inputs must first be enabled from a memory AND gate. The
memory AND gate checks for a valid memory command by looking at
ADFA MEM ADDR from the decode RAM (true for a memory access) and
ADDRESS 29 (false for a memory access). If these two signals
indicate a memory access, and the command is valid (FUNCTION
INVALID, NMI MEMORY BUSY, and WRITE BUSY all false), the memory
AND gate 1is enabled and in turn enables a path for the three
write-sequencer inputs wvia a long AND gate, a quad AND gate, and
an octa AND gate.

2.3.8.1 Write Longword to Memory -- If the function decoder
detects a write 1longword command, it asserts WRITE LONG which
enables the long gate and asserts an input (via an OR gate) to the
longword section of the write sequencer. Upon sensing the input,
the longword section wuses the free-running A and B clocks to
assert a DLY 7 output followed by a DLY 8 output. The DLY 7 and
DLY 8 outputs occur during the write data cycle following the
longword command.

o O

LY 7 asserts BDFA LD INPUT DATA to the MDBC and the MRM to load
he latched write data.
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DLY 8 asserts WRT CMD DLY to a seqguence error AND gate where it is
ANDed with the negated state of WRITE DATA CYCLE from the function
decoder. A negated WRITE DATA CYCLE indicates that the write data
cycle that should have followed the write longword command did not
occur. If this is the case, SEQ FAULT DETECT asserts.

The assertion of SEQ FAULT DETECT causes the following to occut:

e Asserts BLOCK COMMAND to inhibit new transactions.
® Asserts ADFA BAD DATA to the MDBC.
° Asserts SEOQ FAULT DETECT to the confirmation logic where

a memory-busy code is generated to stop memory commands
from NMI nexus.

° Asserts NMI FAULT from the fault logic.
e Sets the write-sequence-fault error bit in CSRO.

Note that the occurrence of a write sequence error does not cause
the current write sequence to be aborted. The MCL functions to
write the missing data just as though it were there. However, the
bad-data bit is set and gets written into memory marking the
addressed location as bad data.

2.3.8.2 Write Longword to CSR -- If the write address is to a
CSR, ADFA MEM ADDR is false and ADDRESS 29 is true. This disables
the 1long, quad, and octa AND gates, but enables a CSR AND gate.
The enabling of the CSR AND gate requires that CSR ADDR from the
DAD be true (the address is one of the CSRs) and that WRITE CSR
from the function decoder be true. In addition, FUNCTION INVALID,
NMI MEMORY BUSY, and WRITE BUSY must all be false just as in the
case of a longword write to memory.

With the CSR AND gate enabled, the longword section of the write
sequencer receives an input (via the OR gate) and proceeds to
check for the write data cycle that should follow the
command/address cycle. If the write data cycle is missing, a
write-sequence error is asserted just as in the case of a longword
write to memory.

2.3.8.3 Write Ouadword -- Returning to the case of an access to
memory, 1f the function decoder detects a write quadword command,
it asserts WRITE QUAD which enables the quad gate and asserts an
input to the quadword section of the write sequencer. Upon sensing
the input, the gquadword section uses the free-running A and B
clocks to assert a DLY 5 output followed by a DLY 6 output. The
DLY 6 output is fed back into the longword section of the write
sequencer causing a DLY 7 and a DLY 8 output. All the DLY outputs
occur in sequence. The DLY 5 and DLY 6 outputs occur during the
first write data cycle following the gquadword command. The DLY 7
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and DLY 8 outputs occur during the second write data cycle
following the guadword command.

DLY 5 asserts BDFA LD INPUT DATA to the MDBC and the MRM to load
the 1latched write data of the first data cycle. DLY 6 asserts WRT
CMD DLY to the sequence error AND gate to check for the presence
of the first write data cycle. DLY 7 re-asserts BDFA LD INPUT DATA
to the MDBC and the MRM to load the latched write data of the
second write data cycle. DLY 8 vre-asserts WRT CMD DLY to the
sequence error AND gate to check for the presence of the second
write data cycle.

If either of the write data cycles are missing, SEQ FAULT DETECT
asserts and functions just as in the case of a missing write data
cycle during a longword write operation.

In a multi-longword write-data transfer, a write sequence error in
any of the write data cycles will hold SEQ FAULT DETECT asserted
for the rest of the data cycles. This is implemented by feeding
back SEQ FAULT DETECT to the sequence-error AND gate. When all
the DLY signals have occurred (all the data cycles for the current
transfer should have occurred), WRT CMD DLY will not assert, the
sequence-error AND gate will be disabled, and the SEQ FAULT DETECT
error will clear.

2.3.8.4 Write Octaword -- If the function decoder detects a write
octaword command, it asserts WRITE OCTA which enables the octa
gate and asserts an input to the octaword section of the write
sequencer. Upon sensing the input, the octaword section uses the
free-running A and B clocks to assert DLY 1, DLY 2, DLY 3, and DLY
4 in sequence. The DLY 4 output is fed back into the gquadword
section causing a DLY 5 and a DLY 6 output. The DLY 6 output is
fed back 1into the longword section causing a DLY 7 and a DLY 8
output.

The DLY 1 and DLY 2 outputs occur during the first write data
cycle following the octaword command. Likewise, each write data
cycle has an odd and an even numbered DLY output asserted. The
odd numbered DLY output asserts BDFA LD INPUT DATA to the MDBC and
the MRM to load the latched write data of the current data cycle.
The even numbered DLY output asserts WRT CMD DLY to the
sequence-error AND gate to check for the presence of a write data
cycle command. If any of the write data cycles are missing, SEQ
FAULT DETECT asserts.

Due to the feedback of SEQ FAULT DETECT, a missing data cycle
early in the octaword transfer will cause SEQ FAULT DETECT and
ADFA BAD DATA to stay asserted for the rest of the transfer even
though the later data cycles are present.
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2.3.9 NMI Faults

The FUNK receives fault-detect signals from all the NMI nexus and
from the ARID, and ORs them with the FUNK write-sequence errors.
The FUNK then outputs one fault line on the NMI for the entire
system. The assertion of any of the fault-detect lines will assert
NMI FAULT on the NMI.

NMI FAULT DETECT<3:0> is received from the other system nexus and
ORed with ARID FAULT DETECT from the ARID MCA*. The result is
input to the FUNK as SYS FAULT DETECT. SYS FAULT DETECT is applied
(via an OR gate) to an NMI fault lock-up circuit. The NMI fault
lock-up circuit asserts BDFA NMI FAULT to the ARID to latch up any
fault that may have been detected by the ARID. The NMI fault
lock-up circuit also asserts NMI FAULT on the NMI. A third output
signal (A FAULT) is asserted and fed back to the input OR gate to
lock-up the NMI fault 1logic and hold the three output signals

asserted.

A FAULT 1is also applied to the lock inputs of a trans-fault
lock-up circuit and a write-seg-fault lock-up «circuit. The
TRANS-fault lock-up circuit receives EN FUNC OUT which is derived
from ADFA OUTPUT ENABLE (received from the CPU as a bus grant)
when AMRM INT ERROR is false (Figure 2-5). The true state of EN
FUNC OUT signifies that the MCL has the NMI and is transmitting
data. Whenever EN FUNC OUT asserts, the output from the
trans-fault lock-up logic (B TRANS DUR FAULT) is asserted. B TRANS
DUR FAULT is applied to the FUNK CSR logic (Figure 2-4) as an
error bit in CSRO. However, the assertion of EN FUNC OUT does not
constitute an error unless A LOCK asserts at the same time. If EN
FUNC OUT is true when A LOCK asserts, then a fault occurred while
the memory was transmitting. In this case, B TRANS DUR FAULT is
locked-up by A FAULT, thereby holding B TRANS DUR FAULT asserted
to CSRO. When CSRO 1is read, the B TRANS DUR FAULT error bit is
read as being set.

The write-seqg-fault lock—-up circuit receives SEQ FAULT DETECT from
the write sequence fault logic if a write-sequence error OcCcCurs.
The write-seg-fault lock-up circuit outputs WRITE SEQ FAULT to the
CSR logic as an error bit in CSRO.

SEQ FAULT DETECT 1is also appled to the NMI fault lock-up logic
which in turn asserts its three error outputs (BDFA NMI FAULT, NMI
FAULT, and A FAULT). A FAULT locks-up the NMI fault logic (holding
NMI FAULT asserted on the NMI) and the write-seg-fault logic
(holding WRITE SEQ FAULT asserted to CSR0). When CSR0O is read, the
WRITE SEQ FAULT error bit is read as being set.

The NMI FAULT line on the NMI, and the WRITE SEQ FAULT and B TRANS
DUR FAULT error bits in CSR0O, are cleared by reading CSR5. The CSR

*  ARID FAULT DETECT asserts when a data or a control parity error

is detected.
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ADDR decoder decodes address input BMDP STRD ADDR<4:2> and outputs
CSR5 DECODE when the CSR5 address is decoded. CSR5 DECODE is ANDed
with BMRM EN SERIAL RD (true for a CSR read function) to assert
CLEAR FAULT. CLEAR FAULT clears the NMI-fault lock-up logic which
negates the FAULT line on the NMI and A FAULT from the NMI-fault
lock-up logic. The negation of A FAULT releases the
write-segq-fault lock-up logic and the trans-fault lock-up logic,
thereby clearing the two fault error bits in CSRO.

2.3.10 NMI Confirmation

The MCL places two confirmation bits (NMI CONFIRMATION<1:0>) on
the NMI during the second bus cycle after the command/address
cycle. The confirmation bits notifies the commander that:

The MCL does not acknowledge receipt of the command,
The MCL accepts the command,

The MCL is interlocked, or

The MCL is busy.

The confirmation bit code is shown in Table 2-4.

Table 2-4 NMI Confirmation Codes

NMI CONFIRMATION Confirmation
<1 0> State
0 O No acknowledgement
0 1 Command accepted
1 0 Interlock busy
1 1 Memory busy

The four confirmation states are described in the following.

. Memory busy -- The assertion of MEMORY BUSY asserts both
NMI confirmation bits. The assertion of MEMORY BUSY
requires the reception of a new command (START NEW CMD
true) and that the new command be valid (FUNCTION INVALID
false). In addition, one of the following three
conditions must be true:

- NMI MEMORY BUSY from the ARID.

-- SEQ FAULT DETECT from the write-sequence fault
logic. When a write seguence error occurs, a
memory-busy confirmation code is placed on the NMI
to stop new commands from other NMI nexus.

- WRITE BUSY from the block-command logic. Used to
indicate that the memory became busy during the
first write-data cycle of a write transfer (NMI
MEMORY BUSY not asserted yet; see Section 2.3.7).
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) Interlock busy - The assertion of INTERLOCK BUSY asserts
NMI CONFIRMATIONK1>. The assertion of INTERLOCK BUSY
requires that the access be to memory (ADFA MEM ADDR
true). In addition, one of the following conditions must
be true:

-— An interlock command is received (INTERLOCK asserts)
when the MCL is already locked-up (LOCK true).

-- An unlock command tries to unlock the MCIL (UNLOCK
asserts) when the memory has already timed out (B
TIMEOUT true).

The negated state of COMMAND CYCLE makes NMI
CONFIRMATION<KO> false. COMMAND CYCLE is negated by BLOCK
COMMAND during the interlock-busy state. BLOCK COMMAND is
true because it is asserted by either of the two
conditions that cause INTERLOCK BUSY to assert (see
Section 2.3.7).

° Command accepted -- The asertion of COMMAND CYCLE asserts
NMI CONFIRMATION<KO>. The assertion of COMMAND CYCLE
requires a new command (START NEW CMD true) and that the
new command be valid (FUNCTION INVALID false), and that
there be no reason to block the new command (BLOCK
COMMAND false).

The negated state of INTERLOCK BUSY makes NMI
CONFIRMATIONK1> false. INTERLOCK BUSY is negated because
it signifies a non-valid condition.

® No acknowledgement -- The 1lack of any of the signals
required for the assertion of COMMAND CYCLE will generate
a "no ack" response (NMI CONFIRMATION<1:0> both false).
In addition, a parity error detected in the ARID will
also cause a no-ack response.

2.3.11 NMI DEAD

When a memory-busy state exists, the MCL is busy doing internal
data processing. During this time the MCL must be isolated from
the NMI so that its internal data paths may be used for the data
processing. ADFA NMI DEAD performs this function. ADFA NMI DEAD is
generated in the FUNK and then sent to the DAD where it is used to
perform its NMI isolation task. ADFA NMI DEAD is also sent to the
ARID and the MDBC, and BDFA NMI DEADl is sent to the MRM to inform
these areas of the NMI isolation.

ADFA NMI DEAD is asserted by the assertion of NMI MEMORY BUSY so
long as a write operation is not in progress (COMMAND CYCLE and
WRITE DATA CYCLE false) as a write operation would require input
from the NMI
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2.3.12 CSRs (Figure 2-4)
Three bits of CSR0O and two bits of CSR3 reside in the FUNK. The
three CSRO bits are:

e B TIMEOUT -- from the lock timeout counter

° WRITE SEQ FAULT -- from the write-seg-fault lock-up
logic

° B TRANS DUR FAULT -- from the trans-fault lock-up logic

The two CSR3 bits are:

® INTERNAL ERR =- derived from AMRM INT ERROR received from
the MRM
o COLD START -- derived from A COLD POWER UP received from

the MCL battery backup wunit (BBU). A COLD POWER UP
asserts when power is applied after a power outage which
was too long for battery power to sustain memory data
(battery power maintain s memory data for only ten
minutes).

CSRO and CSR3 are read out serially with the serial bit selection
being made by BMRM SERIAL RD<2:0> from the MRM. The serial bits
from the two CSRs are output as FUNK CSR3 SER RB<3> and FUNK CSRO
SER RB<3>.

The two CSR3 bits are cleared by commanding a CSR write (AMRM CSR
WRITE asserted), selecting CSR3 (CSR3 DECODE from the CSR ADDR
decoder), and asserting the appropriate feedback bit from the MDB
(BMDP FB DATA<K25> to clear INTERNAL ERR and BMDP FB DATA<K26> to
clear COLD START).

The three CSRO bits are cleared in their respective logic areas as
already described.

2.3.13 Read/Return and Read/Continue (Figure 2-5)

The MCL becomes a transmitter when it is sending read data to a
commander that initiated a read transaction. When the MCL is to
transmit tread data, the FUNK receives a two-bit read command code
from the MRM specifying the data transfer as a read/return
function or a read/continue function. It also receives a
double-bit errvor signal from the DCHK which specifies the
read/return or tread/continue data as being good or bad. These
signals are wused to generate a three-bit code for the NMI that
identifies the read data transfer (see Table 2-5).

When the MCL arbitrates for the NMI bus to execute a read/return
function, the NMI bus may be busy. In this case, the MCL stops the
processing of the read data until the bus is won. However, before
the processing 1is stopped, the FUNK would have received two read
commands from the MRM and one double-bit error signal from the
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DCHK. FIFOs ate used to store the two read commands and the
double-bit error signal until the MCL has won the bus.

The case of the MCL immediately getting the NMI, and the case of
the MCL having to wait for the NMI, are discussed in the following
sections,

2.3.13.1 MCL Immediately Gets the NMI -- Read command bits AMRM
READ CMD<1:0> are received from the MRM and specify a read/return
operation (first longword to DFA) or a read/continue operation
(next longword to DFA). (See Table 2-6.)

Also received from the MRM is BMRM NEW LW signifying the presence
of a new longword of data. BMRM NEW LW and AMRM READ CMD<]1> are
ANDed to produce DECODE DFA VALID. DECODE DFA VALID asserts for
any data longword (read/return or read/continue).

DECODE DFA VALID and AMRM READ CMD<0> are ANDed to produce DECODE
READ CMD which asserts only for read/return operations. DECODE
READ CMD 1is pased through two signal latches and then through a
read-cmd mux to become READ CMD OUT.

As the first two DECODE READ CMD bits are clocked through the two
signal latches, they are also clocked into two latches in a
read-cmd FIFO. The FIFO output is applied to the DI input of the
read-cmd mux.

AMDP DBE 1is asserted from the DCHK whenever a double-bit error is

detected in a 1longword of read data. This could occur in a
read/return longword or a read/continue longword. AMDP DBE is
passed through a double-bit error mux to become DOURLE BIT ERR.

AMDP DBE is also clocked into a DBE FIFO latch. The latch output
is applied to the D1 input of the double-bit error mux.

ADFA OUTPUT ENABLE 1is the MCL bus grant received from the CPU.
ADFA OUTPUT ENABLE asserts ADFA TASK CMPT to the MRM and EN FUNC
OUT to the trans-fault lock-up logic (AMRM INT ERROR False). ADFA
TASK CMPT informs the MRM that access to the NMI has been obtained
and it can send more read commands and data. EN FUNC OUT enables
the three-bit read code (NMI FUNCTION<3:1> onto the NMI. NMI
FUNCTION<3:1> specifies what type of read function is associated
with the data being transmitted. FEN FUNC OUT becomes NMT
FUNCTION<3>. DOUBLE BIT ERR becomes NMI FUNCTION<2> which when
true, codes the function as bad data. READ CMD OUT becomes NMI
FUNCTION<1> which when true, codes the function as a read-return
function.

Table 2-5 lists the read-command function bit codes. Note that the

three NMI function bits are included in Table 2-3 for the four
read functions shown.
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Table 2-5 Read Function Codes

NMI FUNCTION

<3 2 D> Command

1 0 1 Read/return good data

1 1 1 Read/return bad data

1 0 O Read/continue good data
1 1 0 Read/continue bad data

DOUBLE BIT ERR and READ CMD OUT are also applied to a parity
generator where they generate CTRL OUT PARITY. CTRL OUT PARITY is
sent to the ARID where it is used to generate the function/ID
parity bit (NMI FUNCT ID PARITY) which is placed on the NMI along

with the read data.

2.3.13.2 MCL. Waits for the NMI -- If the MCL has to wait for the
NMI, ADFA OUTPUT ENABLE and EN FUNC OUT are false and ADFA TASK
CMPT is not asserted to the MRM. The false state of ADFA TASK CMPT
stops the command processing in the MRM but not before it has sent
two read commands to the FIUNK (and the DCHK has sent one AMDP
DBE). The two read commands assert DECODE DFA VALID twice. DECODE
DFA VALID loads a FIFO-control latch asserting DFA VALIDLl. DFA
VALIDl 1is applied to a second FIFO-control latch asserting DFA
VALID2. If EN FUNC OUT is still false at the time DFA VALID2
asserts, BLOCK 2 asserts and does the following:

° Asserts SEL FIFO to the read-cmd mux which selects the Dl
input from the read-CMD FIFO.

) Latches the second stage of the read-cmd FIFO to hold the
first read-command bit (read/return) at the D1 input of
the read-cmd mux,

) Latches the second stage of the FIFO control to hold DFA
VALID2 asserted.

° Enables the block-1 AND gate asserting BLOCK 1. BLOCK 1
latches the first stage of the FIFO to hold the second
read-command bit (read/continue) and the first stage of
the FIFO control to hold DFA VALID1l asserted,

) Asserts BLOCK 2 DLY to the double-bit error mux which
selects the D1 input from the DBE FIFO. BLOCK 2 DLY also
latches the DBE FIFO latch to hold the double-bit error
bit associated with the first data longword.

When the MCL has acquired the NMI bus, ADFA OUTPUT ENABLE and then
EN FUNC OUT asserts. The assertion of EN FUNC OUT negates BLOCK 2
and BLOCK 1 to release the latch stages in the read-cmd FIFO and
in the FIFO control logic. The two read-command bits in the
read-cmd FIFO and the double-bit-error bit in the DBE FIFO, are
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clocked out to the NMI through the read-cmd mux and the
double-bit-err mux respectively. The negation of the mux select
signals (SEL FIFO and BLOCK 2 DLY) are delayed until the two FIFOs
have output their stored bits. The muxes then switch their inputs
to the signal channels and normal operation is resumed.

2.3.14 MRM Hold Command (Figure 2-6)

NMI SLOW MODE is asserted by the clock module as a warning that
the system is about to go into single-step operation and the
normal clocks are to be stopped. When this occurs, ADFA SLOW MODE
EN asserts and checks for the presence of a write command or a
write data cycle. TIf either is present, a write function is
executing in which case the FUNK asserts BDFA HOLD CMD to the MRM.
BDFA  HOLD CMD causes the MRM to hold but not to execute the last
command.

BDFA HARBINGER is asserted when the system goes into single-step
and normal clocks are stopped. BDFA HARBINGER latches ADFA SLOW
MODE EN thereby keeping BDFA HOLD CMD asserted to the MRM.

When single-step mode is ended and normal clocks are resumed, BDFA
HARBINGER is negated and ADFA SLOW MODE EN is unlatched. ADFA
SLOW MODE EN then negates, which in turn negates BDFA HOLD CMD to
the MRM and normal operation is resumed.

2.3.15 Force One Cycle (Figure 2-6)

NO NEXT CLOCK<2> is received from the NMI when the system goes
into single-step operation and normal system clocks have stopped.
NO NEXT CLOCK<2> asserts BLOCK A and BLOCK B to lock-up latches
throughout the FUNK.

In addition, BLOCK B asserts FORCE ONE CYCLE which:

® Dlocks BDFA NEW CMD EARLY and BDFA NEW CMD LATE to the
MRM.
° Locks-up the current NMI confirmation bits on the NMT,
2.4 ARBITRATION/ID (ARID) MCA
2.4,1 NMI Data Parity (Figure 2-7)

NMI DATA PARITY is a bi-directional signal line that carries the
data parity bits (and the address parity bits) associated with the
data being transferred between the NMI and memory.

2.4.1.1 Parity In -- When an input, NMI DATA PARITY is the
address parity bit for a command/address cycle (read or write), or
the data parity bit for a write data cycle.
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NMI DATA PARITY 1is 1latched to become A DATA PARITY, and then
output from the ARID into a parity error detector. Also applied to
the parity error detector is ADFA GEN PARITY<3:0> from the DAD.
ADFA  GEN PARITY<3:0> are the byte parity bits generated on the
address/data as it 1is received 1into the DAD from the NMI. The
parity error detector compares ADFA GEN PARITY<3:0> with A DATA
PARITY and if a parity error is detected, asserts DATA PARITY ERR.
DATA PARITY ERR asserts ADFA PARITY ERROR1 to the MDBC, and ADFA
PARITY ERROR2 to the FUNK and MRM. In the MDBC, ADFA PARITY ERRORI1
asserts the bad-data bit for the associated longword during
write-data cycles. 1In the FUNK, ADFA PARITY ERROR2 aborts the
operation and forces a no-response confirmation code on the NMI
during the command/address cycle.

When ADFA NMI DEAD is false, DATA PARITY ERR is applied to the
ARID fault-detect 1logic and (via the fault-detect logic) to CSRO
in the CSR logic.

When ADFA NMI DEAD is true, DATA PARITY ERR does not cause an ARID
fault. 1In the DAD, ADFA NMI DEAD is asserted when the wrap-data
path is being wused and NMI inputs are blocked. Thus, the parity
bit from the NMI (NMI DATA PARITY) would not be related to wrapped
data parity and the parity check is invalid.

2.4.1.2 Parity Out -- When an output, NMI DATA PARITY is the data
parity bit for each longword of read data transmitted from memory
to the NMI.

BDFA OUT PARITY<3:0> are byte parity bits generated on the read
data in the DAD. BDFA OUT PARITY<3:0> is applied to a parity
generator which outputs a composite parity bit (PAR30) which is
then applied to an XOR gate. AMDP DATA SBE is also applied to the
XOR gate to correct the parity whenever a single-bit error occurs.
Parity correction is required because parity is generated in the
DAD before single-bit error correction occurs. Hence, whenever a
single-bit error 1is corrected, the parity generated is not right
for the corrected data. AMDP DATA SBE corrects this by flipping
PAR30,

The output from the XOR gate (OUTPAR) is applied to a latch. When
HOLD DATA PARITY 1is false, OUTPAR is loaded into the latch and
then gated onto the NMI DATA PARITY line by the true state of
OUTPUT,

OUTPUT 1is true and HOLD DATA PARITY is false when memory has use
of the NMI. If memory is arbitrating for but has not yet won the
NMI, OUTPUT is false to isolate the memory from the NMI, and HOLD
DATA PARITY 1is true to latch the OUTPAR parity bit until the NMI
bus is won.
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2.4.2 NMI Function/ID Parity (Figure 2-7)
NMI FUNCT 1ID PARITY is a bi-directional signal line that carries
the parity bit for the function and commander ID (or write mask).

2.4.,2.1 Parity In -- When an input, NMI FUNCT ID PARITY is the
function and ID parity bit for a command/address cycle (read or
write), and the function and mask parity bit for a write data
cycle,

NMI FUNCT 1ID PARITY is applied to a parity error detector where
the function parity and the ID (or mask) parity are checked. The
ID (or mask) is input from the NMI as NMI ID MASK<3:0> and then
latched to become 1ID<3:0>, 1ID<3:0> 1is applied to a parity
generator which generates the parity bit, ID XOR. ID XOR is
applied to the parity error detector along with function parity
bit CTRL GEN PARITY generated in the FUNK. CTRL GEN PARITY and ID
XOR are compared with NMI FUNCT ID PARITY and if a parity error is
detected, the parity error detector outputs CTRL PAR ERR.

CTRL PAR ERR becomes CTRL PARITY ERR which is then output from the
ARID. Outside the ARID, CTRL PARITY ERR is ORed with DATA PARITY
ERR, hence, it too asserts ADFA PARITY ERROR1 and ADFA PARITY
ERRORZ.

CTRL PAR ERR 1is also applied to the fault-detect logic and (via
the fault-detect logic) to CSRO in the CSR logic.

2.4.2.2 Parity Out -- When an output, NMI FUNCT ID PARITY is the
parity bit for the function and commander ID during a read/return
or a read/continue operation.

CTRL OUT PARITY 1is the read command parity bit generated in the
FUNK. CTRL OUT PARITY is applied to a parity generator along with
the commander ID (POP ID<3:0>) from the ID/mask logic. The parity
generator output (ID PAR) 1is a composite parity bit for the
AAammAanAd AanA TH

ID PAR is gated onto the NMI FUNCT ID PARITY line by the true
state of OUTPUT. OUTPUT is true when memory has use of the NMI.

2.4.3 Fault Detect (Figure 2-8)
ARID FAULT DETECT 1is asserted to the FUNK MCA whenever the ARID
detects a parity error on the incoming data.

A data parity error signal is received from the parity generation
and checking logic when a parity error is detected on the address
or write data being received from the NMI. CTRL PAR ERR is
received from the parity generation and checking logic when a
parity error 1is detected on the function and ID (or write mask)
being received from the NMI. Either parity error will assert ARID
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Figure 2-8 Fault Detect Logic

CTRL PAR ERR is applied to a CTRL-fault latch which outputs B CTRL
PARITY FAULT. Likewise, a data parity error asserts the input to a
data-fault latch which outputs B DATA PARITY FAULT. BDFA NMI FAULT
from the FUNK, latches the two fault latches thereby holding any
error they may contain until the fault is cleared.

The latched fault-errors (B CTRL PARITY FAULT and B DATA PARITY
FAULT) are applied to CSRO in the ARID CSR logic.

2.4.4 NMI ID/Mask (Figure 2-9)

2.4.4.1 1ID/Mask In -- When an input, NMI ID MASK<3:0> is the ID
of the commander nexus for a command/address cycle (read or
write), or the write mask for a write data cycle. NMI ID MASK<3:0>
is latched to become 1ID<3:0> which 1is applied to the parity
generation and checking logic for a parity check.

A. Commander 1ID

In a command/address cycle, ID<3:0> (commander ID) is applied to
the input of a six-deep ID/hex FIFO. The commander ID is loaded
into the FIFO by READ CMD which asserts for every new, error-free,
read command received by the memory (BDFA CMD<2> is false for read
commands; see Table 2-1).

Also entered into the FIFO is a hex flag (BDFA SIZE<K]1>
vvvv ™ ™ .

from the FUNK. BDFA SIZE<]1> is asserted for hex reads {(se

2-2).
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The commander ID and its associated hex flag is stored in the FIFO
until the memory transmits the requested read data. At this time,
the FIFO is unloaded to supply the ID to go with the read data.

The FIFO can store up to six read commands, after which the memory
enters the "busy" state and asserts BUSY on the NMI.

B. Write Mask

In a write data cycle, ID<3:0> (write mask) is output to the MRM
as ADFA MASK<3:0> where it functions as the write mask. In
addition, ADFA MASK<O0> 1is sent to the MDBC to specify a mask
operation.

2.4.4.2 ID Out -- When an output, NMI ID MASK<3:0> is the ID of
the commander that requested the read data.

The 1ID/hex FIFO 1is wunloaded for the read/return commands of a
longword read, an octaword read, and the first half of a hexword
read. At these times, the FIFO is unloaded to supply the commander
ID that goes with the read data. The hex flag associated with the
read/return function is unloaded along with the ID. The FIFO is
not unloaded for read/continue commands because the same ID is
used.

A special case occurs during the second octaword read of a hexword
read when a read/return command will occur but the FIFO is not to
be unloaded (same ID for both octawords). The hex flag signals
this condition and inhibits the unloading of the FIFO. The
unloading of the 1ID/hex FIFO is controlled by the FIFO control
logic as described in the following.

BMRM NEW LW 1is asserted from the MRM for every new longword of
read data. BMRM NEW LW enables a read-command decoder which
decodes the two-bit read commands (AMRM READ<1:0>) generated by
the MRM. The read decoder asserts DECODE FIRST LW for a
read/return operation and DECODE NEW LW for a read/continue
operation.

DECODE FIRST LW and DECODE NEW LW are sent to the arbitration
logic where they are used to acquire (and hold) the NMI for the
read data.

In addition, DECODE FIRST LW is applied to the FIFO control logic
causing it to assert B POP FIFO (via an OR gate). B POP FIFO
unloads the stored 1ID (STORE ID<3:0>) and loads it into a latch
where it becomes POP 1ID<3:0>. If the memory has won the bus
(OUTPUT true), the commander ID 1is gated to the NMI as NMI ID
MASK<3:0>,

When B POP FIFO negates, POP ID<3:0> is latched to provide the ID
for any read/continue operations that may follow.



POP ID<3:0> is also applied to the parity generation and checking
logic for the generation of the function/ID parity.

As the 1ID was wunloaded from the FIFO, its associated hex flag
(STORE HEX) was also unloaded and applied to the FIFO control
logic. 1If the FIFO control logic senses a hexword read operation
(STORE HEX true), it will not assert B POP FIFO on the next
assertion of DECODE FIRST LW because the next four longwords will
be going to the same commander hence the same ID is used.

If the memory does not immediately win the NMI bus, two read
commands may have been issued by the MRM before it halts
processing the read data. If these two commands are both longword
reads, the read command decoder will have issued a second DECODE
FIRST LW signal to the FIFO control logic. The FIFO control logic
monitors OUTPUT EN to determine if the memory has won the NMI bus.
If it senses OUTPUT EN to be false (memory has not won the NMI) it
holds the second DECODE FIRST LW signal until OUTPUT EN asserts,
When OUTPUT EN asserts, the control logic asserts B POP FIFO to
unload the new 1ID associated with the second longword-read
operation.

Note that a memory internal error (AMRM INT ERROR) inhibits the
FIFO load command (READ CMD) and asserts B POP FIFO. This results
in a flush of the FIFO by stopping any new IDs from being loaded,
and unloading all the stored IDs.

2.4.5 Arbitration/Hold Logic

The arbitration/hold 1logic places an arbitration request on the
NMI bus when the memory has read data to be transmitted. When the
memory has won the bus, the arbitration request is removed and the
read data is transmitted. If the read transmission is an octaword
read or a hexword read, the logic places a hold signal on the NMI
after the arbitration request is removed, to hold the bus while
the memory transmits the rest of the read data.

Several cases are considered which use the block diagram of Figure
2-10. The cases are divided into two general categories:

® Memory arbitrates and gets the bus right away
° Memory arbitrates but does not get the bus right away
2.4.5.1 Memory Gets the Bus Right Away - Longword Read -- DECODE

FIRST LW asserts from the ID/mask logic signifying a read/return
operation, DECODE FIRST LW asserts NMI MEMORY ARB on the NMI via
an OR gate and an enabled AND gate. Memory is granted the bus
causing ADFA OUTPUT ENABLE to assert which in turn asserts OUTPUT
EN (providing there is no internal error) and OUTPUT. ADFA OUTPUT
ENABLE 1is also applied to the DAD where it functions to transfer
the read data to the NMI during the next bus cycle. It is not
necessary to hold the NMI.
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Note that 1if an internal error 1is detected, BLOCK ARBHOLD is
asserted which prevents the memory from arbitrating for the NMI.
With AMRM INT ERROR true, the read data is unreliable and is not
placed on the NMI. BLOCK ARBHOLD is also asserted by AMRM RESET or
ADFA UNJAM.

2.4.5.2 Memory Gets the Bus Right Away - Octaword Read (Figure

2-11) -- DECODE FIRST LW asserts NMI MEMORY ARB on the
NMI. Memory is granted the bus causing ADFA OUTPUT ENABLE, OUTPUT
EN, and OUTPUT to assert. On the next cycle (the first data
cycle), while the first longword of read data is transferring to
the NMI, DECODE NEW LW asserts for the first read/continue
operation. The true states of DECODE NEW LW and OUTPUT EN enable
an AND gate which asserts HOLD. HOLD asserts NMI MEMORY HOLD
(providing BLOCK ARBHOLD is false) to hold the NMI for the next
cycle (the second data cycle) during which the second longword is
transferred to the NMI. (The true state of NMI MEMORY HOLD causes
the NMI arbitrator in the CPU to maintain the bus grant to the
memory thereby keeping OUTPUT EN and OUTPUT asserted.)

NMI
MEMORY ARB

l
OUTPUT EN —————————
NM| [
MEMORY HOLD

NMI -DATA

]
—

QQQQQQQ

Figure 2-11 NMI Arbitration/Hold Timing

The next two assertions of DECODE NEW LW continue to keep NMI
MEMORY HOLD asserted so that the last two data cycles can
complete., Note in Figure 2-11 that NMI MEMORY HOLD is asserted
during the first three data cycles but not during the fourth. NMI
MEMORY HOLD 1is asserted only when the NMI is needed for the
following cycle.

2.4.5.3 Memory Gets the Bus Right Away - Longword Read

Back-to-Back With Another Read Function -- DECODE FIRST
LW asserts NMI MEMORY ARB on the NMI. OUTPUT EN and OUTPUT assert
as the bus 1is won. On the next cycle, as the read data from the
first longword read is being transferred to the NMI, a second read
function occurs and asserts DECODE FIRST LW again. The true states
of DECODE FIRST LW and OUTPUT EN enable an AND gate which asserts
HOLD. HOLD inhibits the re-assertion of NMI MEMORY ARB (due to the
second assertion of DECODE FIRST LW) and asserts NMI MEMORY HOLD
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to hold the NMI for the next cycle during which the read data from
the second read function is transferred to the NMI.

2.4.5.4 Memory Gets the Bus Right Away - Hexword Read -- A
hexword read 1is two octaword reads as described in Section
2.4.5.2. MCL requirements dictate that at least one bus cycle
elapse between the two octawords of a hexword read. Hence,
re—arbitration for the NMI must occur for the second octaword
read.

2.4.5.5 Memory Does Not Get the Bus Right Away - Longword Read --
DECODE FIRST LW asserts NMI MEMORY ARB on the NMI. An ARB lock

—~ 3 4= + 1 . .
circuit senses the arbitration request and asserts ARB DLY. The

ARB lock circuit is usually held reset by OUTPUT, however, as the
memory does not have the bus, OUTPUT is false. On the next cycle,
DECODE FIRST LW negates but ARB DLY keeps NMI MEMORY ARB asserted
on the NMI as long as necessary.

By means of an enabled AND gate, ARB DLY asserts HOLD FB DATA and
HOLD DATA PARITY. HOLD FB DATA ia sent to the DAD where it latches
up the read data until the bus is won. HOLD DATA PARITY is sent to
the parity generation and checking section of the ARID where it
does the same thing for the data parity.

When the memory wins the NMI bus, OUTPUT is asserted and clears
the ARB lock «circuit, thereby removing the arbitration request
from the NMI. In addition, the assertion of OUTPUT negates HOLD FB
DATA and HOLD DATA PARITY, thereby allowing the read data and its
associated parity to transfer out to the NMI on the next cycle.

2.4.5.6 Memory Does not Get the Bus Right Away - Two Longword

Reads Back-to-Back or an Octaword Read -- If the memory
arbitrates for, but does not get the bus right away, the MRM could
have issued two read commands before it halts its processing of
the read operation. This could be two back-to-back longword reads
or a read/return and the first read/continue of an octaword read.
The following discusses these two situations.

DECODE FIRST LW asserts NMI MEMORY ARB on the NMI but no memory
grant is received from the NMI arbitrator (in the CPU) so OUTPUT
EN and OUTPUT are false. NMI MEMORY ARB is locked up by ARB DLY
which is also asserting HOLD FB DATA and HOLD DATA PARITY to latch
the read data and the read data parity in the DAD.

The assertion of ARB DLY enables a second-longword logic block
which monitors the DECODE FIRST LW and DECODE NEW LW signals. If
the operation that initiated the arbitration was an octaword read,
the second-longword logic will sense the assertion of DECODE NEW
LW caused by the first read/continue of the octaword read. The
second-longword logic responds to DECODE NEW LW by asserting
SECOND LW to an AND gate. When the bus is won and OUTPUT EN

IX 2-46



asserts, the AND gate is enabled. This results in the assertion of
HOLD and NMI MEMORY HOLD to hold the bus for the transfer of the
read/continue data on the next cycle. Winning the bus also asserts
OUTPUT which clears the second-longword logic thereby negating
SECOND LW. The assertion of DECODE NEW LW (due to the third and
fourth read longwords) functions to keep NMI MEMORY HOLD asserted.

Had this been two back-to-back longword reads, the first longword
read would have initiated the bus arbitration, asserted ARB DLY,
and enabled the second-longword logic. The second longword read
would have re-asserted DECODE FIRST LW which would have been
sensed by the enabled second-longword logic. The logic would then
output SECOND LW to await memory winning the bus as already
discussed.

2.4.6 Interrupts (Figure 2-12)
Any of the following four errors may cause the ARID to issue an
interrupt to the CPU.

An internal error

A lock timeout

A single-bit error
A double-bit error

Before any of these errors can cause an interrupt, they must be
interrupt-enabled by writing CSR3 with the appropriate bits.

To write CSR3, BDFA CSR3 DECODE is asserted from the DAD
indicating that CSR3 is being addressed. AMRM CSR WRITE is
asserted from the MRM indicating a CSR write command. With these
two inputs true, B CSR WRITE asserts and load-enables four
latches. Each 1latch receives one of four feedback bits (BMDP FB
DATA<31:28>) from the MDP. BMDP FB DATA<31:28> respectively assert
INTERNAL ERR EN, TIMEOUT EN, SBE EN, and DBE EN when a 1 is
written into the respective latch. After the latches are written,
the load enable signal (B CSR WRITE) is negated to lock-up the
enable signals that were asserted.

The four interrupt enable signals are applied to CSR3 in the CSR
logic.

Interrupt enable signal INTERNAL ERR EN enables an AND gate that
allows the AMRM INT ERROR input from the MRM to assert an input to
an INT ERR lock. The INT ERR lock outputs INT ERR INTERRUPT which
in turn asserts MEMORY INTERRUPT as an ARID output. MEMORY
INTERRUPT then aserts NMI LCPU MEM INTRPT to interrupt the left
CPU, and NMI RCPU MEM INTRPT to interrupt the right CPU.

Likewise, TIMEOUT EN enables an AND gate allowing ADFA TIMEOUT
from the FUNK to assert TIMEOUT INTERRUPT from the timeout lock.
TIMEOUT INTERRUPT asserts MEMORY INTERRUPT which in turn asserts
interrupt signals to the left and right CPUs.
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SBE EN and DBE EN enable similar channels which allow respective
assertions of SBE INTERRUPT or DBE INTERRUPT. SBE INTERRUPT or DBE
INTERRUPT asserts MEMORY INTERRUPT which generates memory
interrupts to the CPUs.

Note that AMDP LD PAGE ADDR must be asserted from the DCHK in
order for a single-bit error or a double-bit error to cause an
interrupt. AMDP LD PAGE ADDR 1is asserted by the DCHK whenever
there is a bit error in the read data. When AMDP LD PAGE ADDR is
asserted, AMDP DBE from the DCHK is checked to determine if the
error 1is a single-bit or a double-bit error. The assertion of a
double-bit error from the DCHK (AMDP DBE true) will assert an
interrupt signal 1into the double-bit error interrupt channel,
while the lack of a double-bit error (AMDP DBE false) will assert
an interrupt signal into the single-bit error interrupt channel.

A locked-up interrupt signal is cleared by reading CSR4. When the
DAD senses that CSR4 is being read, it asserts BDAF CSR4 DECODE to
the ARID. BDFA CSR4 DECODE is applied to the four lock circuits
where it clears the interrupt signal.

The ARID contains two bits of CSRO and four bits of CSR3.

2.4.7.1 CSRO —-- The two CSRO bits are the function/ID/mask parity
fault bit (B CTRL PARITY FAULT) and the data/address parity fault
bit (B DATA PARITY FAULT) received from the fault-detect logic.

Fault bits B CTRL PARITY FAULT and B DATA PARITY FAULT are read
out serially when the three-bit read code from the MRM (BMRM
SERIAL RD<2:0>) enables the fault bits out of the ARID as ARID
CSRO SER RB<3>. ARID CSRO SER RB<K3> is sent to the CSR logic in
the DAD.

2.,4.7.2 CSR3 -- The CSR3 bits are the four interrupt-enable bits
received from the interrupt logic. BMRM SERIAL RD<2:0> from the
MRM enables the four bits to be read out serially as ARID CSR3 SER
RB<3>. ARID CSR3 SER RB<3> is sent to the CSR logic in the DAD.

2.4.8 Memory Busy (Figure 2-14)

The ARID asserts memory-busy on the NMI when the memory is busy
and cannot accept a new command. The ARID senses a memory-busy
condition by any of the following three inputs:
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® AMRM BUSY REQ from the MRM
® AMRM INT ERROR from the MRM *
e AMDP BUSY REQ from the MDBC *

Any of these three inputs will assert NMI MEM BUSY ARB on the NMI
and NMI MEMORY BUSY on the NMI and to the FUNK MCA.

NMI MEMORY BUSY notifies all NMI nexus not to send any new
commands to the memory. NMI MEM BUSY ARB is an identical but
separate NMI 1line that connects only to the arbitration logic in
the CPU. NMI MEM BUSY ARB disables the arbitration logic in the
CPU so that no nexus can arbitrate for the memory. A dedicated
line is used for NMI MEM BUSY ARB to reduce signal loading so that
the CPU arbitration 1logic will be notified of the memory-busy
condition as quickly as possible.

An NMI requirement is that the memory asserts busy on the NMI, for
a minimum of 2 bus cycles+. Delay logic is used in the memory-busy
logic to meet this requirement. If the MRM or the MDBC asserts a
busy request, it asserts the output of an OR gate which in turn
asserts NMI MEMORY BUSY and NMI MEM BUSY ARB. On the next cycle
(50 ns 1later) an AND gate receives a delayed output from the OR
gate. 1If the memory busy request is asserted for only one cycle,
the AND gate 1is enabled and holds busy asserted on the NMI for one
more cycle,

When the busy request 1is asserted for more than two cycles, a
second 50 ns delay disables the AND gate thereby making the NMI
busy signal a direct function of the busy request.

2.4.9 Clocks and Clock Control (Figure 2-15)

NO NEXT CLOCK<3> 1is asserted from the DAD during single-step
operation. 1It, in turn, asserts BLOCK A and BLOCK B to stop
various clocks throughout the ARID.

AMRM RESET from the MRM asserts RESET B and RESET A and (via an OR
gate) CLEAR B and CLEAR A to the ARID MCA.

ADFA UNJAM from the NMI asserts only CLEAR B and CLEAR A,

The A and B clocks are received from the NMI and are distributed
throughout the ARID.

* AMRM INT ERROR and AMDP BUSY REQ assert memory-busy as a means
of stopping other nexus from sending commands or data to the
memory. AMRM INT ERR asserts when the MRM has detected an
internal error. AMDP BUSY REQ asserts when the MDB is full and
cannot accept any new data, or when the MDBC has detected a
single-bit error.

+ To allow time for other nexus to re—arbitrate for the NMI bus,
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2.5 MDP OVERVIEW (Figure 2-16)
The MDP is comprised of the following:

® MDB = memory data buffer: a multi-port RAM (four ports)
with sixteen, 36-bit 1locations., Eight 1locations are
reserved for memory addresses and eight locations are
reserved for write data.

° MDBC = memory data buffer control: an MCA that selects
the location in the MDB where the write data is placed,
and selects the write data that is output from the MDB,

° DCHK = data check: an MCA that performs an ECC check of
read data and generates correction bits for single-bit
errors.

2.5.1 MDB Address In

In the command/address cycle, the memory address (ADFA DATA
ADDR<31:0>) and the address parity bits (ADFA GEN PARITY<3:0>) are
received from the DFA and applied to the W write port of the MDB.
BMRM ADDR IN SEL<2:0> from the MRM is mux selected as the address
input to the MDB where it places the memory address into the
address section of the MDB. AMRM INPUT WRT EN<3:0> from the MRM
loads the memory address into the selected location.

2.,5.2 MDB Address Out

The memory address and the associated parity bits are available at
the MDB address read port. The address (BMDP STRD ADDR<25:4>) is
converted from ECL to TTL and placed onto the NAB as AMCL
ADDR<25:4>. The address parity bits (BMDP STRD APAR<K3:0>) are sent
to the MRM where they are used to generate a command/address
parity bit for the arrays.

The memory address selection is made by selection bits AMRM ADDR
OUT SEL<2:0> from the MRM.

2.5.3 MDB Data In

In the write data cycle(s), ADFA DATA ADDR<31:0> and ADFA GEN
PARITY<3:0> from the DFA are the write data and the write data
parity bits respectively. The load command remains AMRM INPUT WRT
EN<3:0> from the MRM. BDFA LD INPUT DATA asserts from the DFA
during write-data cycles, causing the MDB address mux to select B
DATA IN SEL<2:0> from the MDBC as the MDB location select signal.

B DATA IN SEL<2:0> is generated by the data-in select logic in the
MDBC. The MDB data section 1is divided into two sections (an X
buffer and a Y buffer) each having four locations. The data-in
select logic selects the first 1location 1in the X buffer. For
multi-longword writes, the data-in select logic i ements through
the other X-buffer locations. BDFA LD INPUT serts from the

(U 8 1T - AN L a RO LGN U S L

ic 1
DATA as
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DFA for each write-data cycle causing B DATA IN SEL<2:0> to
increment.

When the write data in the X buffer has been transferred to the
memory arrays, the MRM asserts BMRM CLEAR BUF USE informing the
data-in select 1logic that the X buffer can be used for the next
write command. If the next write command occurs before the data in
the X buffer 1is transferred to the arrays, the data-in select
logic places the new write data into the Y buffer. With the X and
Y buffers full, the data-in select logic outputs A BUFFER FULL
causing AMDP BUSY REQ to assert to the DFA. This places
memory-busy on the NMI to halt any more commands to memory.

The data buffer operates on a FIFO basis, Hence, the next
assertion of BMRM CLEAR BUF USE indicates that the X data has been
transferred to the arrays. The data-in select logic then asserts A
SELECT Y OUT to the data-out select logic specifying that the Y
buffer is to be unloaded next.

2.5.4 MDB Data Out

The write data and the associated parity bits are available at the
MDB data-read port. The write data (BMDP WRITE DATA<31:0>) is
converted from ECL to TTL and placed onto the NAB as AMCL
DATA<31:0>. The write-data parity bits (B BYTE PARITY<3:0>) are
sent to a parity generator in the MDBC where they are used to

generate a data parity bit for the arrays.

The data selected for output is determined by A DATA OUT SEL<3:0>
from the data-out selct logic in the MDBC. BMRM CMD ACPT from the
MRM informs the data-out select logic that the write command has
been accepted by the arrays. The data-out select logic selects the
first 1location in the X buffer. For multi-longword writes, BMRM
WRITE CMD<1> from the MRM specifies the following longwords as
being "next," causing the data-out select logic to increment
through the other X locations.

The data-out select logic always selects the MDB X buffer unless A
SELECT Y OUT is asserted by the data-in select logic, in which
case the Y buffer is selected.

2.5.5 Write-Enable and Bad-Data Bits

Write—enable and bad-data bits are generated in the MDBC and
supplied to the arrays with each write-data longword. The bits are
generated in good-data logic and write-enable logic, and stored in
an eight location bit-storage area. The storage area is divided
into a four-location X section and a four-location Y section
similar to the MDB.

The good-data logic receives ADFA PARITY ERROR1 and ADFA BAD DATA
from the DFA. ADFA PARITY ERROR1 indicates an NMI parity error was
detected in the DFA. ADFA BAD DATA indicates a write command
sequence error was detected in the DFA., Both ADFA PARITY ERROR1
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and ADFA BAD DATA must be false for the good-data logic to assert
A GOOD DATA to the bit-storage area.

The write-enable logic receives BDFA CMD<0> and ADFA MASK<0> from
the DFA, and AMDP DBE from the DCHK. BDFA CMD<0> informs the
write-enable logic if this is a masked operation (see Table 2-1).

® If this is a masked operation (BDFA CMD<0> = 1), AMDP DBE
from the DCHK should be false during the read portion of
the operation. AN asserted AMDP DBE indicates that the
longword read for the masked-write operation, contained
an uncorrectable error and the associated longword will
not be written. If this is not a masked operation (BDFA
CMD<0> = 0), ADFA MASK<O0> must be a 1 if the associated
longword is to be written (see sort-of-write operation;
Section 1.4.3).

The A GOOD DATA and IN WE bits are written into the bit-storage
area. The data-in select logic asserts A LOAD X if the X buffer in
the MDB is being loaded with write data. A LOAD X places the A
GOOD DATA and 1IN WE bits into the X section of the bit-storage
area. For multi-longword operations, A LOAD X is held asserted and
the next three pairs of bits are placed into the other three X
locations of the bit-storage.

When the data-in select logic is loading data into the Y buffer in
the MDB, it asserts A LOAD Y to the bit-storage area which loads
the A GOOD DATA and 1IN WE bits into the Y section of the
bit-storage. For multi-longword operations, A LOAD Y is held
asserted and the next three pairs of bits are placed into the
other three Y locations of the bit-storage area.

The two bits output the storage area as BMDP BAD DATA (inverse of
A GOOD DATA) and BMDP WRITE ENABLE which then become AMCL BAD DATA
and AMCL WRITE ENABLE respectively on the NAB. The bits are
selected for output as the data-out select logic selects the
corresponding data longwords from the MDB. The bit-storage will
always output from the X section except when A SELECT Y OUT is
asserted. A DOUT<K1:0> increments the bit-storage output locations
for multi-longword operations.

2.5.6 Data Parity

The data parity bits (B BYTE PARITY<3:0>) from the MDB are applied
to a parity generator in the MDBC along with the bad-data and
write-enable bits. A composite parity bit is generated (BMDP DATA
PARITY) which is applied to the NAB as AMCL DATA PARITY. Note that
the data parity bit sent over to the arrays represents data parity
on the data longword and on the bad-data and write-enable bits.

2.5.7 Data Read Operation
Read data read from the array boards (BMAR DATA<31:0>) is
converted from TTL to ECL to become ARCV DATA<31:0> and then

IX 2-57



applied to a mux in the MDB. The mux outputs the read data to the
DFA as BMDP FB DATA<31:0>. BMDP FB DATA<31:0> is also applied to
ECC check logic in the DCHK.

Seven ECC <check bits (BMAR DATA<38:32>) are received from the
array board along with each data longword, converted from TTL to
ECL, and then applied to the DCHK ECC check logic as ARCV CHECK
BITS<6:0>. The ECC <check 1logic re-generates the ECC check bits
from the data longword and compares the re-generated bits to the
received check bits to determine if there is a bit-error.

If a single-bit error is detected, the check-logic asserts AMDP
DATA SBE and a syndrome code (SYNDROME<6:0>) to correction decode
logic. AMDP DATA SBE enables the correction decode logic which

P =1~ e e raTe - o e T=-S o= o - e
decodes the syndrome <code to generate correction bits AMDP BIT

CORRECT<2:0>. The correction bits are sent to the DAD in the DFA
where they correct the bit-error in the data longword.

If a double-bit error is detected, the check-logic asserts AMDP
DBE tc the DFA where it generates a "read bad data”™ function code
and an NMI interrupt.

2.5.8 Masked Write Operation
In a masked write operation:
° Write data is loaded into the MDB in the normal manner.
® Read data is used to overwrite the write-data.
° The modified write data is transferred from the MDB to

the arrays in the normal manner.

The read data overwrites the MDB data via the C write port. The
read data (ARCV DATA<31:0>) is applied to the C write port along
with parity bits AMDP GEN PARITY<3:0> generated from the read data
longword. The read data is byte-enabled to overwrite the MDB data
by AMRM FB WRT EN<3:0> from the MRM.

The read data is ECC checked as in the case of a normal read. If a
single-bit error is detected AMDP DATA SBE and SYNDROME<6:0>
function to provide correction bits (AMDP BIT CORRECT<2:0>) to the
DAD in the DFA where the read data is corrected.

AMDP DATA SBE is applied to mask-correction logic in the MDBC. The
mask-correction 1logic 1is enabled by BMRM NEW LW (a longword of
read data has been received) and a negated AMRM READ CMD<K1> (the
read data is part of a masked write; see Table 2-6).
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Table 2-6 Read Command Code

AMRM READ CMD Command *

<1 0>
0 0 Next longword to MDP {masked write)
0 1 First longword to MDP (masked write)
1 O Next longword to DFrA
1 1 First longword to DFA

* Valid when used with BMRM NEW LW.

The mask-correction logic responds to the assertion of AMDP DATA
SBE by:

° Asserting B MASK ERROR which causes the assertion of AMDP
BUSY REQ to the DFA. In the DFA, AMDP BUSY REQ causes the
ARID to place memory-busy on the NMI to halt NMI traffic,
and the FUNK to generate ADFA NMI DEAD. ADFA NMI DEAD
switches the data path in the DAD to allow the corrected
read data to be wrapped around and returned to the MDP
where it overwrites the data in the MDP via the W write
port.

° Asserting EN MASK CORRECT to the MDB where it switches
the W port ADDR input mux to use B DATA IN SEL<2:0> to
load the corrected read data into the proper location.
The data-in select logic was informed of a masked write
operation by BDFA CMD<0> and retained the MDB select
address for use when the corrected read data was returned
to the MDB. The corrected read data overwrites the MDB
data according to the byte-enable signal AMRM INPUT WRT
EN<3:0> from the MRM.

If a double-bit error was detected by the DCHK, AMDP DBE is
asserted to the write-enable logic in the MDBC which negates the
write-enable bit associated with the modified write-data longword.
The longword 1is sent to the array module but is not written into
the array.

2.5.9 CSR Reads

When a CSR read operation is executing, the MRM asserts AMRM MPR
DATA SEL to the MDB to cause the data-path mux to select write
data from the MDB data-read port rather than read data from the
arrays. The MDB write data 1is fed back to the DFA where it is
combined with other CSR data and placed onto the NMI.

2.6 MEMORY DATA BUFFER (MDB) (Figure 2-17)
The MDB is a multi-port RAM having two read ports and two write
ports. The read ports are designated as the address read port and
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the data read port. The write ports are designated as the W write
port and the C write port.

The buffer storage area is 16 x 36 with 16 addressable 36-bit
locations*, A 36-bit location consists of 32 bits of write data
(or a 32-bit address) and four associated parity bits. The lower
halt of the storage area (locations 0 through 7) is the data
buffer where the write data is stored prior to transmission to the
MAR4 arrays. The upper half of the storage area (locations 8
through 15) is the address buffer where the command addresses
(read and write ) are stored prior to transmission to the MAR4
arrays., One of the address locations is used to store an error
page address for use in error logging.

The MDB is made up of four identical 16 x 9 RAMs each processing a
byte of data and one parity bit. The four RAMs have been combined
in Figure 2-17 to present an overall view of MDB operation.

2.6.1 Address Read Port

The address read port outputs command addresses (and parity) from
the address buffer. The four parity bits output the port as BMDP
STRD APAR<K3:0> and are sent to the MRM where a composite parity
bit is generated for the MAR4 board.

The command address outputs the port as B STRD ADDR<31:0>. Address
bits B STRD ADDR<31:26> and B STRD ADDR<1:0> are not used. B STRD
ADDR<K25:2> becomes BMDP STRD ADDR<25:2>. BMDP STRD ADDR<4:2> is
sent to the FUNK to specify selection of a CSR. BMDP STRD
ADDR<3:2> 1is sent to the DAD where it also specifies a CSR. BMDP
STRD ADDRK25:4> 1is translated from ECL to TTL and becomes AMCL
ADDR<25:4>, AMCL ADDRK25:4> is output to the NAB bus as the
address for the MAR4 memory arrays.

The ECL to TTL translator is enabled by BD TEST NAB ENABLE from
the NAB backplane. BD TEST NAB ENABLE is used for maintenance
testing. It is always asserted during normal operation.

Note that address bit B STRD ADDR<4> is XORED with BMRM SECOND
OCTA from the MRM. This is used for outputting wrapped hex read
addresses., If a hexword-read is being executed, the same address
is wused from the address read port to read both octawords. When
the second octaword is being addressed, the MRM asserts BMRM
SECOND OCTA which flips bit 4 of the address. This addresses the
next octaword location (the two octaword reads of a hexword read
are to contiguous locations).

In addition, B STRD ADDR<K4> becomes BMDP SPECIAL ADDR<4> and is
applied to the DAD as a third stored address bit for CSR

* The RAM storage area is actually 32 x 36 but only half of the
area 1s used.
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selection. It 1is sent to the DAD before being XORED with BMRM
SECOND OCTA because CSR selection requires the address as stored
in the MDB.

The addresses to be outputted through the address read port are
selected by a four-bit select signal at the port ADDR input. The
most significant select bit is a 1 (+V) so only the address buffer
locations are selected. The other three select bits (AMRM ADDR OUT
SEL<2:0>) select the address buffer location. The three select
bits are received from the MRM, hence the MRM controls which
addresses output through the address read port.

ormal operation (not reading CSR1l), the output of the data
read port 1is write data (and parity bits) from the data buffer.
The four parity bits output the port as B BYTE PARITY<3:0> and are
sent to the MDBC where a composite parity bit is generated for the

MAR4,

The write data outputs the port as BMDP WRITE DATA<31:0>. Write
data bits BMDP WRITE DATA<23> and BMDP WRITE DATA<20:19> are sent
to the MRM,

BMDP WRITE DATA<31:0> 1is translated from ECL to TTL and then
applied to the NAB bus as AMCL DATA<31:0>.

The data to be outputted through the data read port is selected by
a four-bit select signal at the port ADDR input. The four select
bits (A DATA OUT SEL<3:0>) can address all sixteen locations of
the memory buffer. For normal operation, the most significant
select bit 1is 0 and the port outputs write data from the data
buffer.

The most significant select bit is switched to a 1 when the CSRl
address in the address buffer 1is to be read. The CSR1 address
outputs the address buffer through the data read port and is then
fed back to the DAD, via a mux, as BMDP FB DATA<31:0>.

The four select bits for the data read port are received from the
MDBC which controls what data outputs from the data buffer.
However when the CSR1 address is to be selected from the address
puffer, the MRM provides the select bits (via the MDBC).

2.6.3 W Write Port

The input to the memory buffer through the W write port is the
data/address from the DAD (ADFA DATA ADDR<K31:0>) and its
associated parity bits (A SEL PARITY<3:0>).

Parity bits A SEL PARITY<2:1> are derived from ADFA GEN

PARITY<2:1>. ADFA GEN PARITY<2:1> is generated in the DAD on bytes
two and three of the data/address. Parity bits A SEL PARITY<3> and
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A SEL PARITY<0> are input via muxes which select according to
whether the input to the W port is an address or write data.

If the port input is an address, A DATA INPUT EN from the MDBC is
false and the muxes select their DO inputs. In this case, A SEL
PARITY<0> is ADFA NIBBLE 1 PARITY which is parity generated in the
DAD on address bits <7:4>. A SEL PARITY<3> 1is a parity bit
generated (XORed) on address bits <25:24>. This alters the parity
bits so that they reflect parity on the 22 address bits (<25:4>)
used to address the MAR4 array boards.

If the port input is write data, A DATA INPUT EN is asserted and
the muxes select the parity bit generated in the DAD on data byte
3 (ADFA GEN PARITY<3>) and the parity bit generated on data byte 0
(ADFA GEN PARITY<0>). This provides four parity bits for the full
32-bit data longword.

The location where the input data is to be written is selected by
a four-bit select input (B INPUT SEL<3:0>) at the W port ADDR
input. The four select bits can address all sixteen locations of
the memory buffer. The select bits are obtained through a mux
which selects according to whether the input to the W port is an
address or write data.

If the port input is an address, the mux selects its DO input. The
most significant bit of the DO input is a 1 (+V) which selects the
address buffer. The other three bits (BMRM ADDR IN SEL<2:0>)
select which of the eight locations of the address buffer is to be
written. The select bits are obtained from the MRM.

If the port input is write data, the mux is switched to select the
D1 input. The most significant bit of the Dl input is 0 which
selects the data buffer. The other three bits (B DATA IN SEL<2:0>)
select which of the eight locations in the data buffer is to be
written. The select bits are obtained from the MDBC.

Either of two signals can switch the mux to select its D1 input.
One is BDFA LD INPUT DATA obtained from the FUNK, during a
write-data cycle, when write data is being processed. The other is
EN MASK CORRECT asserted by the MDBC when masked read data was
corrected by the DAD and is being written into the MDB.

The W write port is byte enabled by AMRM INPUT WRT EN<3:0> from
the MRM. With the enable input being four bits, the MRM controls
the writing process by allowing all the bytes to be written for
unmasked operations, and selected bytes to be written for the
read-data correction cycle of a masked write operation.

2.6.4 C Write Port

Data is input to the memory buffer through the C write port during
the read portion of a masked write operation. The data consists of
the read data longword (ARCV DATA<31:0>) from the memory array NAB
bus, and 1its associated parity bits (AMDP GEN PARITY<3:0>). The
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read data from the NAB (BMAR DATA<31:0>) is translated from TTL to
ECL to become ARCV DATA<31:0>. The TTL to ECL translator is
enabled by BMRM NAB GATE from the MRM.

The four parity bits are generated on the read data in the MDP
parity-generate logic.

The location where the read data is to be written is selected by a
three-bit select input (B FB SEL<2:0>) at the C port ADDR input.
The three select bits can address only the eight locations of the
data buffer. The select bits are obtained from the MDBC which
places the read data 1in the data buffer so as to overwrite the
masked write data.

The C write port is byte enabled by AMRM FB WRT EN<3:0> from the
MRM. With the enable input being four bits, the MRM controls the
writing process by overwriting specific bytes according to the
associated mask field.

2.6.5 CSR Logic

Figure 2-18 illustrates CSR data supplied from the MDB area to the
CSR logic in the DAD. BMRM SERIAL RD<2:0> is supplied from the MRM
to the select inputs of a mux and serial-read logic. BMRM SERIAL
RD<2:0> 1is incremented to cause the mux and the serial-read logic
to convert multi-bit inputs into one-bit serial outputs. In eight
cycles, all the inputs have been converted to serial outputs,

The CSR1 data (BMDP CSR1 SER RB<0>) is a one-bit output obtained
from a mux, and carries the primary array board number (ADFA PRM
BNUM<2:0>), the alternate array board number (ADFA ALT BNUM<2:0>),
and the memory-address bit (ADFA MEM ADDR) from the decode-RAM in
the DAD, and write-data bit <4> from the MDB.

The CSR3 data (BMDP CSR3 SER RD<2:0>) are three bits obtained from
serial-read logic, that indicate the array-board size. A three-bit
code from each array board specifies the array board size. The 24
bits from all the boards (ARRAY SIZE<23:0>) are output to CSR3 in
three, eight-bit serial segments.

The CSRO data (BMDP CSRO SER RD<2:0>) consist of:

' An eight-bit revision code
® 0 volts
[ The most-significant bit of the serial-read select bits

(BMRM SERIAL RD<K2>)
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2.7 MEMORY DATA BUFFER CONTROL (MDBC) MCA
The main function of the MDBC is to control operation of the MDB.
MDB operations controlled by the MDBC are:

° Selecting the 1location in the data buffer for the write
data that 1is 1loaded via the W write port. The select
signal that points to the write data 1is B DATA IN
SEL<2:0>. Enabling of the MDB to write the data is done
by the MRM.

° Selecting the location in the data buffer for the
feedback data that is read from the MAR4 and loaded into
the data buffer via the C write port. The select signal
that points to the feedback data 1is B FB SEL<K2:0>.

Enabling of the MDB to write the feedback data is done by
the MRM.
[ Selecting the write data in the data buffer and the CSRI

data in the address buffer that is to be unloaded via the
data read port. The select signal that selects the write
data or the CSR1 data is A DATA OUT SEL<3:0>. The MDBC
has complete control of the unloading process as the MDB
does not require an enabling signal to unload data.

Other functions of the MDBC are to:

® Store up to eight pairs of bad-data and write-enable bits
associated with the data stored in the data buffer, and
unload them as their associated data longwords are
unloaded from the MDB.

° Generate a data parity bit for the write data unloaded
from the MDB.

° Generate a busy request for the FUNK when the data buffer
is full.

°® Notify the MRM when a masked write operation 1is
completed.

e Generate a delayed internal-error signal for the MRM.

® Generate a write strobe for the decode ram.

The data buffer portion of the MDB is divided into halves; an X
buffer consisting of four longwords (locations 0 through 3) and a
four-longword Y buffer (locations 4 through 7). Each buffer holds
the write data associated with a write command. The MDBC always
tries to place the write data into the X buffer. The only time the
MDBC will place data into the Y buffer is when the X buffer
already has data.

The data from only one write command is placed into a buffer. If a
longword of write data 1is in the X buffer and another longword
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write command occurs, the new longword is placed into the Y buffer
even though there are three empty locations in the X buffer,

In the following discussions of normal and masked writes, octaword
writes are described. The only way the MDBC knows the size of a
transfer 1is by the duration of the input load command {(BDFA LD
INPUT DATA or AMRM READ CMD<1>) or the output unload command (BMRM
WRITE CMD <K1:0>). A 1longword or quadword transfer is only the
first cycle or the first two <cycles of an octaword transfer.
Hence, longword and quadword writes are implicitly included in the
description of octaword writes.

The block diagram of the MDBC MCA 1is contained 1in four
illustrations (Figures 2-19, 2-23, 2-25, and 2-27). The four
illustrations divide the MDBC according to function. All of the
MDBC I/0 signals are shown in the illustrations.

2.7.1 Loading Data into the MDB
Loading write data into the MDB is done for normal writes and for
masked writes. During a masked write, feedback data from the NAB
is also 1loaded into the MDB to overwrite the data already there.
Normal writes are considered first.

2.7.1.1 Normal Octaword Write With X and Y Buffers Empty --
Figure 2-19 1is a block diagram of the MDBC data-in selection
function. The major areas shown in Figure 2-19 are defined below.

° Full Logic -- indicates that data is stored in the X or Y
buffer by asserting B X VALID or B Y VALID respectively.

[ Input Load CMD Detect -~ senses load commands and the
status of B X VALID. Indicates whether the new data is
for the X or Y buffer by asserting B NEW X or B NEW Y
respectively.

® Input Load Counter -- provides a two-bit select output (B
IN COUNT<1:0>) used as the two least significant bits of
the B DATA IN SEL<K2:0> input selection signal. Also used
as a select 1input for the X & Y bit-storage. When
enabled, the counter is incremented each bus cycle,

° X & Y bit-Storage -- an eight-deep storage buffer which
stores the good data and write-enable bits associated
with the data longword(s) stored in the X & Y buffers.

When write data 1is to be loaded into the MDB, the FUNK asserts
BDFA LD INPUT DATA into the MDBC and holds it asserted for the
entire transfer (one cycle for a longword transfer; four cycles
for an octaword transfer). The assertion of BDFA LD INPUT DATA
does the following:
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) Asserts A DATA INPUT EN to the MDB to select the data
parity (rather than the address parity) as an input to
the W write port.

° Latches B LOAD Y 1IN which is applied to the selection
output mux. B LOAD Y IN is 0 due to B X VALID being false
(the X buffer is empty).

e Enables the input-load counter. Once enabled, the counter
output (B 1IN COUNTK1:0>) is incremented from a count of
00 by F A CLK and F B CLK.

' Switches the selection output mux to its D1 input thereby
outputting B LOAD Y IN (presently 0) as the most
significant bit of B DATA 1IN SEL<K2:0>, and B 1IN
COUNT<1:0> as the two least significant bits. This starts
the B DATA 1IN SEL<2:0> output at 000 which is then
incremented to 011 by the input load counter to select
the four locations of the X buffer.

° Enables the input-load-CMD detect logic (Figure 2-20)
which asserts B NEW X indicating that new data is going
into the X buffer. B X VALID is false as the X buffer is
empty. B NEW X asserts ™ LOAD X via a latch. BDFA LD
INPUT DATA is delayed one cycle and then negates B NEW X
but latches A LOAD X for the duration of the transfer.

B NEW X 1is applied to the full logic (Figure 2-21) where it
asserts B X VALID indicating that data is in the X buffer. B X
VALID latches itself until cleared by B CLR X VALID,

B CLR X VALID is asserted after the X data has been unloaded from
the MDB. After the data has been unloaded, the MRM asserts BMRM
CLR BUF USE while BMRM CMD ACPT is true. A SELECT Y OUT asserts if
the Y buffer 1is selected for an unload (see Section 2.7.3). As
the X buffer was selected for the unload, A SELECT Y OUT is false

and B CLR X VALID asserts. B CLR X VALID is also asserted by AMRM
FLUSH DATA as part of a reset function.

CMD<0> into a latch. If this were a masked operation, BDFA CMD<O0>
would be true and B X IS MASK would be asserted and latched for
the duration of the transfer. B X IS MASK 1is sent to the
Y-out-select 1logic to indicate that the data going into the X
buffer is masked data.

A LOAD X is applied to the X & Y bit-storage block (Figure 2-22)
where it enables the B IN COUNT<1:0> bits to select the location
within the X bit-storage block where the good-data and the
write-enable bits are to be stored. B IN COUNT<1:0> is applied to
a decoder having four outputs. As B IN COUNTK1:0> is incremented,
the four decoder outputs are asserted in sequence., This causes the
four LOAD X<3:0> select signals to be asserted in sequence to
select the four storage locations within the X bit-storage block.

I~
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The good-data bit (A X GOOD DATA) is derived from the parity error
bit from the ARID and the bad data bit from the FUNK. If there
were no data or control parity errors detected in the ARID, ADFA
PARITY ERROR1 1is false. 1If there was no write sequence error
detected in the FUNK, ADFA BAD DATA is false. If both error inputs
are false, A X GOOD DATA is asserted to the X bit-storage block
indicating that the associated data longword being stored in the X
buffer is good data.

The write-enable bit (X IN WE) is generated by an OR gate with one
of the OR inputs derived from bit <0> of the write mask and the
double-bit error bit from the DBE logic. In a normal (non-masked)
write operation, bit <0> of the write mask (ADFA MASK<0>) is a 1
if the associated 1longword 1is to be written (sort-of-write
operation). With ADFA MASK<0> true, MASK IN<O> is also true. In a
masked write operation, BDFA CMD<0> is a 1 (see Table 2-1) also
causing MASK 1IN<KO> to be true. The double-bit error function is
disabled during normal writes (Section 2.7.1), hence A X MASK DBE
will be false, With A X MASK DBE false and MASK IN<O> true, X IN
WE 1is asserted to the X bit-storage block indicating that the
associated data longword stored in the X buffer is to be written
intp the memory arrays.

The other OR input that will assert the write-enable bit is ADFA
PARITY ERRORl. The condition under which ADFA PARITY ERRORI
asserts X IN WE is during a sort-of-write operation when a given
longword is not to be written (ADFA MASK<O0> false) and the ARID
detected a parity error on the longword*. ADFA PARITY ERROR1
forces the write-enable bit set so the longword will be written
for use in error analysis. The longword is written as bad data,
because ADFA PARITY ERROR1 will negate the good-data bit.

As the second, third, and fourth longword is loaded into the MDB,
B IN COUNT<1:0> (and then B DATA IN SEL<2:0>) is incremented to
locate the write data longwords into locations 0 through 3 of the
X buffer. B IN COUNT<1:0> also loads the four associated good-data
and write-enable bits into the X bit-storage block.

* The existence of a parity error does not force the write-enable
bit when a double-bit error is detected because by the time the
double-bit error has been detected, ADFA PARITY ERROR1 has
negated, hence the double-bit error negates the write-enable
bit as it normally would.
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e last data longword has been entered into the X buffer,
negates BDFA LD INPUT DATA. The negation of BDFA LD INPUT
pares the MDBC for the next write (which will be into the
if the X data has not been unloaded) by:

Loading B X VALID into a latch thereby asserting B LOAD Y
IN. With B LOAD Y IN asserted, the most significant bit
of B DATA IN SEL<2:0> becomes a 1 thereby selecting the Y
buffer for the next write operation.

Disabling the input load counter, thereby resetting it to
zero to address the first location in the Y buffer
{location 4). '

Disabling the input-ioad-CMD detect 1logic, thereby
negating A LOAD X which disables the X bit-storage block.

Negating A DATA INPUT EN so that the MDB will select the
address parity as an input to the W write port.

Normal Octaword Write With Data Already in the X or Y
Buffer -- If another write operation is executed with
11 in the X buffer, BDFA LD INPUT DATA will assert from
and do the following:

Assert A DATA INPUT EN to the MDB to select the data
parity (rather than the address parity) as an input to
the W write port.

Latch B LOAD Y IN. B LOAD Y IN is now true due to B X
VALID being true (the X buffer contains data). B LOAD Y
IN is applied to the selection output mux .

Enable the input load counter to increment B 1IN
COUNT<1:0>.

Switch the selection output mux to its D1 input thereby
outputting B LOAD Y 1IN (presently true) as the most
significant bit of B DATA 1IN SEL<K2:0>, and B 1IN
COUNT<1:0> as the two least significant bits. This starts
the B DATA 1IN SEL<2:0> output at 100 which is then
incremented to 111 by the input load counter to select
the four locations of the Y buffer.

Enable the input-load-CMD logic which asserts B NEW Y
indicating that new data is going into the Y buffer (B X
VALID true). B NEW Y asserts A LOAD Y via a latch. BDFA
LD INPUT DATA is delayed one cycle and then negates B NEW
Y but latches A LOAD Y for the duration of the transfer.

is applied to the full logic where it asserts B Y VALID

g that data is in the Y buffer. B Y VALID latches itself
eared by B CLR Y VALID. B CLR Y VALID is asserted by the
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assertion of BMRM CLR BUF USE while BMRM CMD ACPT is true. BMRM
CLR BUF USE is asserted after the data in the Y buffer has been
unloaded. B CLR Y VALID is also asserted by AMRM FLUSH DATA as
part of a reset function.

With both B X VALID and B Y VALID asserted, A BUFFER FULL asserts
in turn asserting AMDP BUSY REQ to the FUNK. The busy request sent
to the FUNK will cause memory-busy on the NMI indicating that the
data buffer is full and cannot accept any more data.

A LOAD Y 1is applied to the X & Y bit-storage block where it
enables the B IN COUNT<1:0> bits to select the location within the
Y bit-storage block where the good-data and the write-enable bits
are to be stored. As B IN COUNT<1:0> is incremented, the four LOAD
¥<3:0> select signals are asserted in sequence to select the four
storage locations within the Y bit-storage block.

The good-data bit (A Y GOOD DATA) is derived from the parity error
bit from the ARID and the bad data bit from the FUNK as described
for the X bit-storage block.

The write-enable bit (Y IN WE) is generated by an OR gate with one
of the OR inputs derived from bit <0> of the write mask and the
double-bit error bit from the DBE logic, as described for the X
bit-storage block. The other OR input is ADFA PARITY ERROR1 which
also functions as described for the X bit-storage block.

As the second, third, and fourth longword is loaded into the MDB,
B IN COUNT<1:0> (and then B DATA IN SEL<2:0>) is incremented to
locate the write data longwords into locations 4 through 7 of the
Y buffer. B IN COUNT<1:0> also loads the four associated good-data
and write-enable bits into the Y bit-storage block.

After the last data longword has been loaded into the Y buffer,
the FUNK negates BDFA LD INPUT DATA which negates A LOAD Y in the
input-load-CMD detect logic.

Data must be output from the data buffer (X buffer first) before
any more commands (read or write) can be processed by memory.

If data was in the Y buffer (instead of the X buffer) when the
write command was received, a similar sequence is executed to load
data into the X buffer, but with the following differences:

® B LOAD Y IN is false as B X VALID is false (no data in X
buffer). Consequently, B DATA IN SEL<2> is 0 and the X
buffer is selected for the new data.

° B NEW X and A LOAD X are asserted. A LOAD X enables the X
bit-storage block.

™ After the X buffer is loaded and AMDP BUSY REQ asserts,

it is the Y buffer that must be unloaded first before
anymore commands can be processed.
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2.7.1.3 Masked Write With No Errors --
A. General

In a masked write operation, write data is placed into the X (or
Y) buffer via the B DATA IN SEL<2:0> select signals as described
in Sections 2.7.1.1 and 2.7.1.2. Feedback data read from the
arrays 1is checked for errors 1in the DCHK. If no errors are
detected, the data is applied to the X (or Y) buffer where it
overwrites specific bytes as determined by the byte mask in the
MRM. The MDBC selects the location{(s) within the data buffer that
is to receive the feedback data.

Figure 2-23 1is a block diagram of the MDBC feedback selection
function. The major areas shown in Figure 2-23 are defined below.

) Feedback Counter -- provides a two-bit select output (B
FB SEL<K1:0>) wused as the two least significant bits of
the B FB SEL<2:0> feedback input selection signal. When
enabled, the counter is incremented each bus cycle.

® DBE Logic -- senses a double-bit error (AMDP DBE) from
the DCHK during a masked write operation, and asserts A X
MASK DBE (or A Y MASK DBE) to the X (or Y) reload decoder
and bit-storage block.

° X Reload -- reloads a negated write-enable bit into the X
bit-storage for any longword in which a double-bit error
was detected during the feedback-read portion of a masked
write to the X buffer.

° Y Reload =-- same as the X reload block but for the Y
write—-enable bit during masked write to the Y buffer.

B. Detailed

The signal that selects the location(s) of the feedback data is B
FB SEL<2:0>. The most-significant bit (B FB SEL<2>) is B Y FIRST
MASK from the Y-select logic. The Y-select logic asserts B Y FIRST
MASK when the feedback data is for the Y buffer. This is discussed
in the description of the Y-select logic contained in Section
2.7.3.

The two least significant bits (B FB SEL<1:0>) are obtained from
the feedback counter. The counter is cleared by BMRM RESET MASK
CTR from the MRM when a masked write operation is initiated. The
counter 1is enabled by A MDP SEL which is derived from BMRM NEW LW
and the inverse of AMRM READ CMD<1>. BMRM NEW LW asserts for each
new longword of data being transferred. AMRM READ CMD<1> is 0
(negated) when the read data is supplied to the MDB. (Read data
being supplied to the MDB is part of a masked write operation; see
Table 2-6.) When enabled, the counter is incremented from 00 to 11
by F A CLK and F B CLK.
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In addition, BMRM NEW LW asserts BMDP STRB FB DATA to the feedback
mux to strobe feedback data to the DAD (Figure 2-17). BMRM FAKE
CMD ACPT is used to assert BMDP STRB FB DATA for maintenance
testing.

2.7.1.4 Masked Write With a Correctable Error --
A. General

Feedback data from the NAB is checked for errors in the DCHK. If a
single-bit error is detected, the location select signal is saved
while the data is routed through the DAD for error correction. The
corrected data is then 1input to the data buffer through the W
write port where its location in the buffer is determined by the
location select signal that was saved.

Refer to Figure 2-23 for the following discussion.
B. Detailed

A MDP SEL is held asserted while the feedback data from the NAB is
read back. A MDP SEL asserts A DLY MDP SEL one cycle later (after
the DCHK has checked the feedback data). A DLY MDP SEL checks for
the presence of a single-bit error (AMDP DATA SBE). If there is
none, AMDBC TASK CMPT 1is asserted (via an OR gate) to indicate
that the masked write of the longword has been completed. AMDBC
TASK CMPT becomes BMDP TASK CMPT for the MRM.

If a single-bit error 1is detected, AMDP DATA SBE asserts which
inhibits the assertion of AMDBC TASK CMPT. In addition, AMDP DATA
SBE asserts SET MASK ERROR which in turn asserts AMDP BUSY REQ to
the FUNK (see Figure 2-19). AMDP BUSY REQ causes memory-busy to
assert on the NMI to stop traffic to the MCL so that the DAD can
return the corrected data to the MDB.

SET MASK ERROR is also applied to a mask-error lock-up block which
outputs B MASK ERROR. B MASK ERROR performs the following:

° Holds AMDBC TASK CMPT negated until the mask write is
completed.

° Holds AMDP BUSY REQ asserted until the corrected data is
returned from the DAD.

° Latches up the location select signal from the feedback
counter as B SAVE COUNT<1:0>. B SAVE COUNT<K1:0> is the
location in the MDB where the corrected data is to be
written when it is returned from the DAD.

® Asserts BMDP HOLD WRAP DATA to the DAD where it holds the
corrected data until the NMI traffic has stopped as
indicated by the assertion of ADFA NMI DEAD from the
FUNK.
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When ADFA NMI DEAD asserts, EN MASK CORRECT asserts to resume the
masked write seguence as follows:

° Switches the MDB W port ADDR mux to select the B DATA IN
SEL<2:0> select signal from the MDBC.

® Asserts A DATA INPUT EN (see Figure 2-19) to the MDB W
port to select the data parity bits for the DATA input.

® Asserts BMDP OUTPUT WRAP DATA to the DAD to enable the
corrected feedback data to flow to the MDB.

° Asserts AMDBC TASK CMPT to the MRM indicating that the
mask write is completed.

) Clears the mask-error lock-up logic thereby negating B
MASK ERROR. The negation of B MASK ERROR negates the NMI
busy request and BMDP HOLD WRAP DATA. The negation of
BMDP HOLD WRAP DATA allows the corrected feedback data to
wrap around the DAD and return to the MDB.

The latched location signal (B SAVE COUNT<1:0>) is selected as the
two least significant bits of the B DATA IN SEL<2:0> select signal
while B Y FIRST MASK is selected as the most-significant bit. This
writes the corrected data 1into the proper location in the data
buffer,

2.7.1.5 Masked Write With an Uncorrectable Error --
A. General

When an uncorrectable error occurs during a masked write
operation, a negated write-enable bit 1is reloaded into the
bit-storage block for the longword containing the uncorrectable
error. The write-enable bit has already been stored by the time
the double-bit error has been detected, hence the loading of the
negated bit is a reload operation. When the erroneous longword is
output to the NAB, the associated write-enable bit will be false
and the longword will not be written into the memory arrays.

Refer to Figure 2-23 for the following discussion.
B. Detailed

When the DCHK detects an uncorrectable error in the feedback data,
it asserts AMDP DBE to the DBE logic (Figure 2-24). A DLY MDP SEL
enables the DBE logic which senses the presence of the double-bit
error. The DBE logic looks at B Y FIRST MASK to determine which
buffer is being loaded. Accordingly, it asserts A X MASK DBE (or A
Y MASK DBE) which negates X IN WE (or Y IN WE) to the appropriate
bit-storage block. Note that the DBE logic is disabled by A LOAD X
(or A LOAD Y) during normal writes to the data buffer.
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Figure 2-24 Double-Bit Error Logic

The location of the -erroneous longword exists in the B SAVE
COUNT<1:0> code obtained one <cycle earlier from the feedback
counter. B SAVE COUNT<1:0> 1is applied to both X and Y reload
decoders. The appropriate decoder 1is enabled by the mask
double-bit error signal. The decoder decodes the B SAVE COUNT<1:0>
input and asserts a reload signal to the appropriate bit-storage
block. The relcocad signal 1loads the negated write-enable signal
into the location corresponding to the location of the bad data in
the data buffer.

2.7.2 Unloading Data From the MDB

2.7.2.1 General -- Figure 2-25 1is a block diagram of the MDBC
data out selection function. The major areas shown in Figure 2-25
are defined below.

[ Data-Out Counter -- provides a two-bit select output (A
DOUT<1:0>) used as the two least significant bits of the
A DATA OUT SEL<3:0> output selection signal. Also used to
select the output signals from the X and Y bit-stcrage
areas. When enabled, the counter is incremented each bus
cycle,

° Y Out Select Logic -- selects the Y buffer for an unload
of write data from the data buffer by determining the
second most-significant bit of A DATA OUT SEL<3:0>. Also
selects the Y buffer for a load of feedback data into the
data buffer by determining the most-significant bit of B
FB SEL<2:0>.

. Write Command Logic ~-- decodes input write commands to:
- Initiate an unload of normal data

—— Initiate an unload of masked data
- continue an unload that has already been initiated
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2.7.2.2 Detailed -- A DATA OUT SEL<3:0> is the select signal that
selects the MDB output that passes through the data-read port. A
DATA OUT SEL<3:0> is obtained from a mux which can choose a select
signal from the MRM (AMRM ERR ADDR PTR<2:0>) via its D1 input, or
the MDBC select signal via its DO input.

The AMRM ERR ADDR PTR<2:0> input is selected when a read of CSRl
is executing (BMRM EN SERIAL RD and BDFA CSR1 DECODE both true)
and the NMI is quiet (ADFA NMI DEAD true). The most-significant
bit of A DATA OUT SEL<3:0> is a 1, hence the MDB address buffer is
accessed. The three least-significant bits select the location of
the CSR1 bits in the address buffer.

For normal operation, the mux chooses the MDBC select bits. The
most-significant bit of A DATA OUT SEL<3:0> is a O, hence the MDB
data buffer is accessed. A SELECT Y OUT 1is the next
most-significant bit and determines whether the X or Y buffer is
selected. The last two bits of A DATA OUT SEL<3:0> are A DOUT<1:0>
obtained from the data out counter. The counter receives a CLEAR
COUNT and an INCREMENT COUNT signal from the write-command logic.
CLEAR COUNT resets the counter to zero and INCREMENT COUNT enables
the counter to be incremented each bus cycle by F A CLK and F B
CLK.

The write-command logic receives a two-bit write command (BMRM

WRITE CMD<1:0>) from the MRM which specifies the function being
executed as shown in Table 2-7.

Table 2-7 Write Commands

BMRM WRITE CMD Output* Function
<1 0>
o o m==—- No Op
0 1 INCREMENT COUNT Next longword
1 0 SELECT MASK Select first masked longword
1 1 SELECT NORMAL Select first normal longword

*

If VALIDATE is true.

The write command is decoded by the write-command logic and
asserts an output according to Table 2-7, if VALIDATE is true,
VALIDATE is true when the MRM asserts BMRM CMD ACPT while AMRM CSR
PROBE VALID 1is false, or when the MRM asserts BMRM FAKE CMD ACPT
for maintenance testing.

The write command received for a normal (non-masked) octaword
write is SELECT NORMAL followed by three INCREMENT COUNTs. SELECT
NORMAL initiates an unload of normal data from the data buffer,
SELECT NORMAL is applied to the Y-out-select logic where it checks
the state of Y FIRST NORMAL to determine if the Y buffer should be
accessed., If Y FIRST NORMAL is true, A SELECT Y OUT asserts,
making A DATA OUT SEL<K2> a 1 to select the Y buffer for the
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unload. 1If Y FIRST NORMAL is false, the X buffer is selected for
the wunload. The operation of the Y-out-select logic is discussed
in Section 2.7.3.

SELECT NORMAL asserts CLEAR COUNT which resets the data-out
counter to zero., The three INCREMENT COUNT commands that follow,
enable the data-out counter to be incremented. This increments A
DOUT<1:0> and then A DATA OUT SEL<K1:0> to step through the four
locations of the selected buffer.

The write command received for a masked octaword write is SELECT
MASK followed by three INCREMENT COUNTs. SELECT MASK initiates an
unload of masked data from the data buffer., SELECT MASK is applied
to the Y-out-select logic where it checks the state of B Y FIRST
MASK to see if the Y buffer should be accessed. If B Y FIRST MASK
is true, A SELECT Y OUT asserts, making A DATA OUT SEL<K2> a 1 to
select the Y buffer for the unload. If B Y FIRST MASK is false,
the X buffer is selected for the unload.

SELECT MASK asserts CLEAR COUNT which resets the data-out counter
to =zero. The three INCREMENT COUNT commands that follow, enable
the data-out counter to be incremented. This increments A
DOUT<1:0> and then A DATA OUT SEL<K1:0> to step through the four
locations of the selected buffer.

A DOUT<K1:0> and A SELECT Y OUT are used to unload the good-data
and write-enable bits from the X and Y bit-storage block (see
Figure 2-19). A DOUT<K1:0> 1is wused to select the good-data and
write—-enable bits from their locations within the X and Y storage
blocks (see Figure 2-22). A SELECT Y OUT is used to choose the X
bits or the Y bits., If A SELECT Y OUT is true, B Y STRD WE and the
inverse of B Y STRD GOOD DATA are selected and become BMDP WRITE
ENABLE and BMDP BAD DATA respectively. BMDP WRITE ENABLE and BMDP
BAD DATA output the MBDC and are translated from ECL to TTL to
become AMCL WRITE ENABLE and AMCL BAD DATA respectively, for the
NAB, If A SELECT Y OUT is false, the X write-enable and good-data
bits are selected.

The data parity bits from the MDB (B BYTE PARITY<3:0>) are
combined with the write-enable and bad-data bits in a parity
generator which generates a composite parity bit (BMDP DATA
PARITY). BMDP DATA PARITY is translated from ECL to TTL to become
AMCL DATA PARITY for the NAB. BMRM FORCE BAD DPAR from the MRM is
used to generate a parity error for maintenance testing.

2.7.3 Y Out Select Logic

2.7.3.1 General -- The Y-out-select logic selects the buffer (X
or Y) that is to be unloaded by controlling the A DATA OUT SEL<K2>
bit of the select signal. When the logic asserts A SELECT Y OUT,
the A DATA OUT SEL<K2> bit becomes a 1 and the Y buffer is
selected. TIf the logic does not assert its A SELECT Y OUT output,
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the A DATA OUT SEIL<K2> bit becomes a 0 and the X buffer is
selected.

As previously mentioned, the X buffer is used whenever possible.
The Y buffer is used only if the X buffer already has data.

If the X and Y buffers contain the same type of data, the
Y-out-select logic acts as a FIFO and the data loaded in first
will be unloaded first. If the buffers have a mix of data (normal
data in one buffer and masked data in the other), the MRM can
unload either buffer by commanding a mask write or a normal write
to the Y-out-select logic via the write-command logic.

Figure 2-26 is a flow diagram of the Y-out-select logic. The fiow
starts with the condition that there is data in the X buffer and
new data arrives to be placed into the Y buffer. It then
determineds what type of data is in each buffer. After that, the
four possible conditions

) Normal data in both buffers

° Normal data in X, masked data in Y
@® Masked data in X, normal data in Y
®

Masked data in both buffers)

are flowed to empty both buffers. In the following discussion of
the flow diagram, note that all of the signals required by the
flow are input to the Y-out-select logic in Figure 2-25.

2.7.3.2 Detailed -- With data already in the X buffer (B X VALID
true), new data is placed into the Y buffer (B NEW Y asserts). The
logic then checks B Y IS MASK and B X IS MASK to determine the
type of data in each buffer.

If the new Y data is masked but the X data is not, the Y buffer
select block asserts B Y FIRST MASK indicating that the Y buffer
will be selected by a masked write command. If a masked write
occurs (SELECT MASK asserts), A SELECT Y OUT is asserted to select
the Y buffer and the Y bit-storage block output. When the Y buffer
is emptied, B CLR Y VALID is asserted by the full logic and resets
the Y-out-select logic (negating B Y FIRST MASK). The X buffer is
then unloaded by a SELECT NORMAL command. If a normal write
occured (instead of a masked write), SELECT NORMAL asserts and the
X buffer is unloaded. When SELECT MASK does assert, A SELECT Y OUT
asserts and selects the Y buffer for the unload. B CLR Y VALID
then resets the Y-out-select logic.

For the case where there is masked data in both buffers, the Y
buffer select block does not assert either of its outputs thereby
selecting the X buffer for the next unload. SELECT MASK unloads
the X buffer after which B CLR X VALID is asserted by the full
logic. The Y buffer select block senses the assertion of B CLR X
VALID as an indication that the X buffer has been unloaded. It
also senses the true state of B Y VALID as an indication that
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there 1is data in the Y buffer. The Y buffer select block then
asserts B Y FIRST MASK so that the next masked write command will
select the Y buffer. When SELECT MASK asserts, A SELECT Y OUT
asserts to select the Y buffer for the unload. After the Y buffer
is wunloaded, B CLR Y VALID asserts to reset the Y-out-select
logic.

For the case where the new Y data is not masked but the X data is,
the Y buffer select block asserts Y FIRST NORMAL indicating that
the Y buffer will be selected by a normal write command. If a
normal write occurs (SELECT NORMAL asserts), A SELECT Y OUT is
asserted to select the Y buffer and the Y bit-storage block
output. When the Y buffer is emptied, B CLR Y VALID is asserted by
the full logic and resets the Y-out-select logic (negating Y FIRST
NORMAL). The X buffer is then unloaded by a SELECT MASK command.
If a masked write occured (instead of a normal write), SELECT MASK
asserts and the X buffer 1is unloaded. When SELECT NORMAL does
assert, A SELECT Y OUT asserts and selects the Y buffer for the
unload. After the Y buffer is unloaded, B CLR Y VALID is asserted
and resets the Y-out-select logic.

For the case where there is normal data in both buffers, the Y
buffer select block does not assert either of its. outputs thereby
selecting the X buffer for the next unload. SELECT NORMAL unloads
the X buffer after which B CLR X VALID is asserted by the full
logic. The Y buffer select block senses the assertion of B CLR X
VALID as an indication that the X buffer has been unloaded. It
also senses the true state of B Y VALID as an indication that
there 1is data in the Y buffer. The Y buffer select block then
asserts Y FIRST NORMAL so that the next normal write command will
select the Y buffer. When SELECT NORMAL asserts, A SELECT Y OUT
asserts to select the Y buffer for the unload. After the Y buffer
is unloaded, B CLR Y VALID is asserted and resets the Y-out-select
logic.

B Y FIRST MASK from the Y buffer select block becomes B FB SEI<2>
(Figure 2-23) which 1is the most-significant bit of the feedback
select signal. B FB SEL<K2> selects which buffer will receive the
feedback data. Note in the flow diagram that B Y FIRST MASK
asserts in only two cases:

o When the X buffer has normal data and the Y buffer has
just received masked data. In this case the feedback data
should go into the Y buffer to overwrite the masked data.

® When there is masked data in both buffers and the X
buffer has just been emptied. When there is masked data
in both buffers, the MRM will always unlcad the X buffer
before it reads feedback data to overwrite the masked
data in the Y buffer.
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2.7.4 Internal Error, Write Decode RAM, and Clocks
Miscellaneous functions executed on the MDBC MCA are shown in
Figure 2-27.

The internal error logic generates a delayed error signal for the
MRM. AMRM INT ERROR from the MRM enables a counter to be
incremented each bus cycle by F A CLK and F B CLK. After 15 1/2%
bus cycles, the counter outputs TERMINAL COUNT causing BMDP DLY
INT ERR to assert back to the MRM. BMDP DLY INT ERR is locked up
by feedback so long as AMRM INT ERROR remains asserted.

The write-decode-RAM 1logic generates the write strobe for the
decode RAM. If feedback bit <20> is a 1 when the MRM asserts AMRM
CSR WRITE and the DAD asserts BDFA CSR1 DECODE, then BMDP DECRAM
WRITE asserts as the write strobe for the decode RAM (Figure 2-2).

F A CLK IN and F B CLK IN distribute clocks throughout the MDBC.

2.8 DATA CHECK (DCHK) MCA
The DCHK MCA performs the following functions:
° Checks the data returned from the MAR4 for single-bit or
double-bit errors.
° Generates correction signals for single-bit errors.
[ Reports both single-bit and double-bit errors.
e Detects and reports an asserted bad-data bit in the MDBC

by means of the INT BAD DATA bit from the MARA4.

° Detects and reports a data parity error in the MAR4 by
means of the INT BAD DATA bit from the MAR4.

° Assembles and formats CSR2 data.
° Provides for reading and writing of CSR2.
) Provides for diagnostic testing.

* Fifteen and one-half cycles is a minimum. The time period could
be longer depending on the assertion time of AMRM INT ERROR
with respect to F A CLK and F B CLK.
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Figure 2-28 1is a block diagram of the DCHK. The block diagram
illustrates four functional areas that have been defined as
distinct logic areas by the engineering documentation (logic
prints, etc.). This description follows the same functional
partioning. The four functional areas are defined below.

° Syndrome Generate -—- generates error syndromes by
generating check bits from the read data and comparing
them to the check bits returned from the MAR4,

° Error Check -- using the generated syndrome bits, detects
a single-bit error, a double-bit error, or an asserted
INT BAD DATA bit from the MAR4. An asserted INT BAD DATA
from the MAR4 means that the bad-data bit was set in the
MDBC, or a data parity error was detected in the MAR4.

° Error Status -- 1locks wup any errors detected by the
error-check logic as CSR2 error bits. Generates and locks
up a high-error-rate signal as a CSR2 error bit.
Generates a LD PAGE ADDR signal which asserts an NMI
interrupt via the ARID.

° Serializer -- does parallel-to-serial conversion of CSR2
data for a CSR2 read operation.

2.8.1 Syndrome Generate

The ECC check bits associated with the read data are applied to

the DCHK as ARCV CHECK BITS<6:0>. The check bits are passed

through a mux and then loaded into a latch by BMRM NEW LW. The
~ 174 A

latched hec bhi lied to th aunArama ~NAnA o Ials i nPal?d

tChe ts are appisie C Tiae syndarome ycucx.al_c as CneCA

BITS<6:0>.

BMRM NEW LW also loads a copy of the check bits into another latch
where they output as MEM CB<6:0>. MEM CB<6:0> is sent to the
serializer where it becomes part of CSR2 (except in diagnostic
mode; see Section 2.8.5).

Data read (fed back) from the MAR4 is input to the DCHK as BMDP FB
DATA<31:0>. BMDP FB DATA<31:0> becomes B DATA IN<31:0> and then B
DATA<31:0> which is applied to the syndrome generate logic.

In the t:ynrirnrno generate logic 2 check-hb uses the

i ST oL yLri-g &G viicoon

data bits to regenerate the seven ECC check bits., The regenerated
check bits are compared to CHECK BITS<6:0> in a comparator which
outputs seven syndrome bits (SYNDROME<6:0>) to the error check
logic. If the data longword is error-free, SYNDROME<6:0> are all
Os.

Q
o
o

2.8.2 Error Check

The syndrome bits (SYNDROME<6:0>) are applied to the error check
logic (Figure 2-29) where they are input to an INT-bad-data
detector. The detector looks for the syndrome code that specifies
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Figure 2-29 Error Check Block Diagram

that the INT BAD DATA bit* in the MAR4 was set. When the detector
senses the INT-bad-data syndrome code (0010011), it asserts FORCED

DBE (double-bit error) as an output of the error-check logic.

FORCED DBE causes GATED FORCED DBE to assert as another
error-check output when ENABLE ECC 1is true. During normal
operation, ENABLE ECC is asserted by the enable-ECC logic which is
under diagnostic control (Section 2.8.5).

SYNDROME<6:0> are applied to an SBE (single-bit error) detector
which looks for those syndrome codes that indicate a single-bit
error has occurred+. When the detector senses a single-bit error

* The MAR4 INT BAD DATA bit is set by an asserted bad-data bit in
the MCL (MDBC) or by the detection of a data parity error in
the MAR4.

+ A single-bit error 1is indicated by an odd number of asserted
syndromes except for syndrome code 0000111. This code is
obtained when all the data bits and check bits are 1s, which is
a double-bit error condition. The SBE detector does not respond
to this code, hence a double-bit error is indicated.
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code, it asserts ERROR IS SINGLE which in turn asserts SNGL BIT
ERR if ENABLE ECC is true. If the INT BAD DATA bit is set, FORCED
DBE will inhibit the assertion of SNGL BIT ERR. Hence, the
assertion of SNGL BIT ERR indicates a single-bit error with the
INT BAD DATA bit reset.

SNGL BIT ERR outputs the DCHK as AMDP DATA SBE (Figure 2-28). AMDP
DATA SBE is sent to the ARID where it is wused for parity
correction.

A double-bit error is detected in the error-check logic by first
ORing the seven syndrome bits. The OR gate asserts ERROR if any
error condtion exists (syndrome bits are all 0s for a no-error
ion of ERROR will assert DBL BIT FERR if

As \

condition). The asser
:
:

ENABLE ECC is true and

® The INT BAD DATA bit is set (FORCED DBE true), or
° The error 1is not a single-bit error (ERROR IS SINGLE
false).
Hence, the assertion of DBL BIT ERR means a double-bit error in
the current longword or, the INT BAD DATA bit is set.

DBL BIT ERR outputs the DCHK as AMDP DBE which is sent to the ARID
and FUNK MCAs. In the ARID, AMDP DBE is used to generate a memory
interrupt on the NMI. In the FUNK, it is used to signify bad data
in the read/return or read/continue function codes.

When a single-bit error exists, SYNDROME<6:4> points to the byte
containing the error. SYNDROME<6:4> outputs the error-check logic
as SYN32, SYN16, and SYN8 respectively. They are applied to a byte
decoder which, when enabled, decodes the bits to assert BYTE<X>
where X 1is the byte with the erroneous bit. BYTE<X> outputs the
DCHK (via a mux) as AMDP CORRECT EN<KX> which enables the
correction logic within the appropriate DAD MCA. The byte decoder
is enabled by SNGL BIT ERR when a single-bit error has been
detected.

For the single-bit error case, SYNDROME<3:1> indicates, in binary
format, which data bit within the erroneous byte is incorrect.
SYNDROME<3:1> outputs the error-check logic as BIT<2:0>
respectively. BIT<2:0> outputs the DCHK as AMDP BIT CORRECT<2:0>
and are applied to the DAD error correction logic.

2.8.3 Error Status

Error signals GATED FORCED DBE, SNGL BIT ERR, and DBL BIT ERR are
coupled from the error-check logic to the error-status logic
(Figure 2-30) where they are locked up as status bits for CSR2.

The three error signals are enabled into the error-status logic by
NEW LW (derived from BMRM NEW LW).
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GATED FORCED DBE 1is applied to the FDBE lock-up block which
outputs CSR2 FDBE.

SNGL. BIT ERR 1is applied to the SBE lock-up block which outputs
CSR2 SBE.

DBL BIT ERR is applied to the DBE lock-up block (if FORCED DBE is
false), which outputs CSR2 DBE. CSR2 DBE is asserted only if
FORCED DBE is false, hence the assertion of CSR2 DBE indicates a
true double-bit error, not an asserted INT BAD DATA bit.

CSR2 DBE 1is applied to an AND gate which looks for another
double-bit error input from the error-check logic. If another
double-bit error occurs while CSR2 DBE is still locked up, an
input 1is asserted to the HERR (high error rate) lock-up block
which outputs CSR2 HERR.

The four 1lock-up blocks are cleared by a write to CSR2 with the
appropriate data bit (B DATA<31:28>) asserted. CSR2 WRT is
asserted by the assertion of AMRM CSR WRITE from the MRM while
ADFA CSR2 DECODE is asserted by the DAD.

The four CSR2 error ocutputs are applied tc the serializer as CSR2

our
error bits.

A LD PAGE error signal is generated by the error-status logic when
a single- or double-bit error occurs. LD PAGE is asserted for only
one bus cycle. When the single- or double-bit error is locked up
(CSR2 SBE or CSR2 DBE asserts), LD PAGE is negated.

LD PAGE is sent to the MRM as AMDP LD PAGE ADDR where it holds the
error page address pointer. This reserves the location in the MDB
that contains the address at which the single-bit or double-bit
error occurred,

AMDP LD PAGE ADDR is also sent to the ARID where it generates an
interrupt on the NMI. Single-bit errors are corrected on the fly
and do not halt the current operation. They do generate interrupts
and are logged by the software so that if a location gets too many
single-bit errors, the software can remove the page from its list
of available pages.

Double-bit errors are hard errors that halt the current operation.
Hence, as seen 1in Figure 2-30, LD PAGE is not asserted by a
single-bit error if a double-bit error has already been detected.

In addition, LD PAGE saves the syndrome bits from the error-check

logic by 1loading them into a latch. The latched syndrome bits (B
STRD SYNDROME<6:0>) are applied to the serializer as CSR2 bits,
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2.8.4 Serializer and CSR2

The serializer logic {(Figure 2-31) assembles and formats the CSR2
data. It functions as a parallel-to-serial converter when a read
of CSR2 occurs., Figure 2-32 is a bit map of CSR2.

Four parallel-to-serial converters each supply a byte of CSR2
data. The converters are enabled by a binary incrementer which is
itself enabled by EN SERIAL READ. EN SERIAL READ is asserted by
the assertion of BMRM EN SERIAL READ from the MRM when ADFA CSR2
DECODE from the DAD is true.

When enabled, the incrementer responds to the three-bit input code
(BMRM SERIAL RD<K2:0>) received from the MRM. The three-bit input
code 1is incremented 1in binary format causing the output of the
incrementer (B CNT<2:0>) to also increment in binary format. B
CNT<2:0> enables the parallel inputs to the converters to pass to
the output in serial format. Eight cycles are required to step
through the CNT<2:0> bits and read out a byte from each converter.

The first converter outputs BYTE SERIAIL<K3>., This converter
receives the four error signals locked up by the error-status
logic. Note the change in signal names going from the error-check
logic to the error-status logic. As byte three of CSR2 contains
only four information bits, only two counter bits (B CNT<1:0>) are
supplied by the incrementer.

The second converter receives six diagnostic bits (DIAGK5:0>)
which are output as BYTE SERIALK2>.

The third converter receives seven check bits (CSR2 RD CB<6:0>)
and B READ CB SEL which are output as BYTE SERIAL<K1>. The check
bits are obtained £from a mux which selects a copy of the check
bits received from the MAR4 (MEN CB<6:0>), or the substitute check
bits (B SUB CB<6:0>) used for diagnostics. The copy of the MAR4
check bits is latched by the assertion of BMRM EN SERIAL READ when
CSR2 is being read.

Mux selection is made by B READ CB SEL which asserts in diagnostic
mode (Section 2.8.5). B READ CB SEL is also one of the byte <1>
bits of CSR2.

The fourth converter receives the seven stored syndrome bits (B
STRD SYNDROME<6:0>) which are output as BYTE SERIAL<KO>.

The CSR2 serial data (BYTE SERIAL<3:0>) is mux selected for the
AMDP CORRECT EN<K3:0> output when a read of CSR2 is occurring (EN
SERIAL READ true).

2.8.5 Diagnostic Mode (Figure 2-28)

Most of the MCL diagnostic bits reside in the DCHK. To run the
diagnostics, a write of CSR2 is done wherein control bits and
substitute check bits are loaded into three DCHK latches. The data
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Figure 2-32 CSR2 Bit Map

lines are used to carry the diagnostic bits into the latches. When
CSR2 WRT asserts:

1.

Diagnostic check bits B DATA<14:8> are loaded into a
latch which outputs B SUB CB<6:0>. B SUB CB<6:0> are
applied to a mux in the serializer where they are
selected as part of byte <1> of CSR2. B SUB CB<6:0> are
also applied to another mux where they are selected as
the substitute (test) check bits for the
syndrome—-generate logic.

Select bit B DATA<K15> 1is loaded into a latch which
outputs B READ CB SEL. B READ CB SEL is sent to the
serializer mux where it selects the diagnostic check bits
(B SUB CB<K6:0>) for byte <1> of CSR2. The select bit is
included as part of byte <1>.

Diagnostic control bits B DATA<23:18> are loaded into a
latch which outputs DIAG BITS<5:0>. DIAG BITS<5:0> are
applied to the serializer as byte <2> of CSR2. In
addition, DIAG BITS<5:0> performs the following:

) DIAG BITS<5> -- diagnostic mode enable hit, Places
the MCL into the diagnostic mode. Within the DCHK, it
is applied to the enable-ECC logic and to an AND gate
which looks at diagnostic bit <3>.

° DIAG BITS<4> -- 1in diagnostic mode (DIAG BITS<5>
true) with loopback disabled (DIAG BITS<0> false),
disables the error-check 1logic by negating ENABLE
ECC. Disabling the error-check 1logic inhibits the
correction of read data.
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) DIAG BITS<3> - in diagnostic mode, selects
substitute check bits (B SUB CB<6:0>) for the
syndrome generate logic, instead of check bits from
the MAR4.

L DIAG BITS<2:1> -- forces the MRM to generate a parity
error on the NAB via the MDBC. The MRM receives the
diagnostic bits via CSR2,

® DIAG BITS<0> -- 1in diagnostic mode, enables a
loopback of data from the MDB into the MCL read-data
path for testing. In the DCHK, it enables the
error-check logic by asserting ENABLE ECC.

The enable-ECC 1logic asserts ENABLE ECC to th check leogic
in normal mode except when CSR2 is being read. When CSR2 is bheing
read, BMRM EN SERIAL READ asserts and negates the ENABLE ECC
output. This is done so the outputs of the error-check logic will
not change (and thereby change the CSR2 bits) during the eight
cycles required to serially read CSR2.

In A~k 1A

error=
TLLUuUL T

In diagnostic mode, the enable-ECC 1logic is controlled by the
diagnostic bits as shown in Truth Table 2-8. The four states shown
in the table are described below.

1. Normal mode -- ENABLE ECC is a function of BMRM EN SERIAL
READ.

2. Diagnostic mode with loopback enabled -- ECC is enabled.

3. Diagnostic mode with loopback disabled -- DIAG BITS<4>
negated -- ENABLE ECC 1is a function of BMRM EN SERIAL
READ.

4, Diagnostic mode with loopback disabled -- DIAG BITS<4>
asserted -- disables ECC.

2.8.6 Reset and Clocks (Figure 2-28)

CLEAR A and CLEAR B are asserted in the DCHK by AMRM RESET from
the MRM. CLEAR A <clears the three latches containing the
diagnostic control bits, the diagnostic check bits, and the CSR2
check-bit select signal.

CLEAR B clears the four CSR2 error bits in the error-status logic.
It also negates PSUEDO ECL HIGH in the error-check logic.

F A CLK IN and F B CLK IN supply A and B clocks to the DCHK logic.

IX 2-98



Table 2-8 ENABLE ECC Truth Table

State DIAG DIAG DIAG BMRM EN ENABLE
Number BITS<5> BITS<0> BITS<4> SERIAL READ ECC
1 0 X X 0 1
(Normal
Mode)
2 1 1 X X 1
(Diagnostic (Enable
Mode) Loopback)
3 1 0 0 0 1
(Diagnostic (Disable
Mode) Loopback)
4 1 0 1 X 0
(Diagnostic (Disable
Mode) Loopback)

X = don't care

2.9

MRM OVERVIEW (Figure 2-33)

The MRM is comprised of the following:

MSC = memory sequence control -- an MCA that receives and
buffers command information from the DFA. It also checks
for 1internal errors, generates the command field for the
memory arrays, and generates the write commands for the
MDP.

MSCl = memory sequence control 1 -- this MCA is an
extension of the MSC MCA. It stores the mask fields
associated with two masked write commands, and generates
the load enabling commands for the two write ports of the
MDB. It also generates the select bits that place the
command address into and select the address out of the
MDB.

MASC = memory array status control -- an MCA that checks
status of the array boards and selects the board to
receive the current command.

RCS = read control sequencer -- an MCA that controls the
transfer of read data from the array boards after the
arrays have been read. It generates read commands that
specify the type of read data being transferred.
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2.9.1 NAB Board Select
In the NAB command/address cycle, the MRM places onto the NAB the:

® Asserted board select 1line to the selected (X) array
(AMCL BRD SEL<KX>).

e Command field (AMCL CMD<3:0>).
® Command/address parity bit (AMCL CMD ADDR PAR).

Commands and board-select numbers are received from the DFA and
are applied to a buffer/decoder in the MSC. Commands and
board-select numbers for up to three commands can be held in the
buffer until the array boards are ready to accept the commands.
The buffer/decoder outputs command data from the first command it
receives but will not output command data from the next command
until it receives BMAS CMD ACPT from the MASC. The assertion of
BMAS CMD ACPT indicates that the command data £from the
buffer/decoder has been accepted by the array board and the
buffer/decoder can output the data from the next command. When the
buffer/decoder has command data for two commands, it asserts AMRM
BUSY REQ to the DFA to place memory-busy on the NMI. The third
location in the buffer/decoder is filled only when a read command
is received in the next bus cycle after the assertion of AMRM BUSY
REQ.

The primary board-select number (ADFA PRM BNUM<2:0>) passes
through the buffer/decoder and outputs the MSC as AMSC PROBE
BNUM<2:0>. When the buffer/decoder senses the second octaword read
of a hexword read operation, it uses the alternate board-select
number (ADFA ALT BNUM<2:0>) for the AMSC PROBE BNUM<2:0> output.

AMSC PROBE BNUM<2:0> is applied to the MASC where it is latched to
become BMAS BNUM<2:0>. AMSC PROBE BNUM<2:0> is also applied to
command-accept logic which checks the send-no-command and
data-ready-done status of the selected board. If the selected
board can accept the command, the command-accept logic asserts
BMAS CMD ACPT to inform the MCL of this fact. BMAS CMD ACPT
becomes BMAS BD VALID which outputs the MASC and enables an
ECL-to-TTL decoder. The decoder decodes the board select number
from the MASC (BMAS BNUM<2:0>) to assert one of eight AMCL BRD SEL
lines. The asserted AMCL BRD SEL line enables the selected array
board to perform the commanded operation.

BMAS BNUM<2:0> is also applied to the RCS where the board number
is stored in a buffer queue during read operations.
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2.9.2 NAB Command Field and Parity
The four-bit NAB command field (AMCL CMD<3:0>; Figure 1-9)
specifies the:

] Command function {read or write)
° Transfer {(longword read/write or octaword read)
° Starting address (which of the four array banks is to be

accessed).

The MRM functions to convert the other command types (masked
writes, octaword writes, hexword reads) into the command types
recognized by the array boards.

From the input command and size information, the buffer decoder
outputs AMSC READ and BMSC LEN. AMSC READ specifies the command
function., BMSC LEN specifies the size of the transfer. Address
bits ADFA DATA ADDR<3:2> from the DFA specify starting address
AMRM STADDR<1:0>.

A parity generator in the MSC generates a parity bit for the NAB
command field which 1is sent to the MASC as BMSC CMD PAR. In the
MASC the command parity bit is combined with the address parity
bits from the MDP (BMDP STRD APAR<K3:0>) to generate a
command/address parity bit (BMRM CMD ADDR PARITY). The
command/address parity bit is converted from ECL to TTL and placed
on the NAB as AMCL CMD ADDR PAR.

The MSC buffer/decoder also outputs A WRITE and A OCTA to
write-done logic. When the write-done logic senses a longword
write operation, (A WRITE true and A OCTA false), it monitors the
BMAS CMD ACPT signal from the MASC. When the array board has
accepted the longword write command, BMAS CMD ACPT asserts causing
the write-done logic to assert BMRM CLEAR BUF USE to the MDP. BMRM
CLEAR BUF USE informs the MDB that it can place new data into the
buffer that was just unloaded.

2.9.3 MDB Address Selection

Address-in select 1logic in the MSCl generates select bits to
locate the command address within the address area of the MDB. The
select bits (BMRM ADDR SEL<2:0>) are sent to the MDP where they
are applied to the W write port of the MDB. When a new command is
received, the DFA FUNK asserts BDFA NEW CMD EARLY to the
address-in select logic to increment the select bits to the next
location in the MDB.

The address-in select bits are also applied through a buffer to
address-out select logic where the select bits that locate the MDB
output address are generated. The output select bits (AMRM ADDR
OUT SEL<2:0>) are sent to the MDP where they are applied to the
address read port of the MDB. The buffer can hold up to three sets
of select bits. The first set of select bits are output from the
buffer to the address-out logic. The assertion of BMAS CMD ACPT
from the MASC (indicating that the array has accepted the current
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command address) causes the buffer to output the next set of
select bits.

2.9.4 Internal Error

If the selected array board detects a parity error in the command
field received from the MRM or in the address received from the
MDP, it asserts BMAR CMD ADDR PAR ERR in the second NAB bus cycle
atter the command/address cycle (Figures 3-1 through 3-3). BMAR
CMD ADDR PAR ERR enters the MSC as AMAR CMD ADDR PAR ERR where it
is applied to internal-error 1logic. The internal-error logic
generates parity on the primary and alternate board select numbers
which 1is compared to a parity bit from the decode RAM (ADFA DEC
RAM PARITY). If a parity error 1is detected in the decode RAM
output or AMAR CMD ADDR PAR ERR is asserted, the internal-error
logic asserts AMRM INT ERR to the DFA resulting in a memory-busy
and a memory-interrupt being placed onto the NMI.

2.9.5 MDB Write-Data Load

During the write-data cycles, the MSCl generates the load-enable
signals that byte-load the write data from the NMI (via the DAD)
into the MDB. The 4-bit 1load-enable signal (AMRM INPUT WRT
EN<3:0>) 1is sent to the MDB where it is applied to the W write
port. The load-enable signal 1is obtained from mask-store logic
which asserts all four bits (to load the entire longword) in all
cases except during a masked write when error correction is
required on the read data (see Section 2.9.8).

2.9.6 Octaword Writes

For an octaword write operation, the MRM maintains the board
select signal, the command field, and the command/address parity
bit on the NAB to effect four longword writes of the memory array.
A WRITE and A OCTA from the MSC buffer/decoder inform the
write-done 1logic and the write-command logic of an octaword write
operation while BMAS CMD ACPT informs them of each longword that

has been accepted by the array board. The write-command logic
generates write-command bits (BMRM WRITE CMD<1:0>) to the MDP to
unload the write data from the MDB. It also supplies write-state
bits (B WRITE ST<1:0>) to the write-done logic. The write-state
bits are incremented by BMAS CMD ACPT. Thus, the write-done logic
can determine when the fourth longword has been transferred to the
arrays. When this occurs, the write-done logic asserts BMRM CLEAR
BUF USE to the MDP to allow re-use of the MDB buffer that was just
unloaded.

2.9.7 Read-Data Cycle(s)

In read operations (including vreads associated with masked
writes), the board select number (BMAS BNUM<2:0>) from the MASC
along with AMSC MASK and BMSC LEN from the MSC, are entered into a
three-stage buffer queue.
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AMSC MASK outputs the RCS buffer-queue as read command bit <1>
(BRCS READ CMD<1>) which specifies the read operation as masked or
normal. BRCS READ CMD<1> is passed through the MSCl and then sent
to the DFA and MDB as AMRM READ CMD<1>.

The Dboard number from the buffer queue outputs the RCS as ARCS BD
SEL<2:0> and is applied to the MASC. In the MASC the board number
is applied to the command-accept logic where it inhibits BMAS CMD
ACPT for any command directed at the array board being read (AMSC
PROBE BNUM<2:0> = ARCS BD SEL<2:0>). ARCS BD SEL<2:0> is also
latched to become BMAS BD SEL<2:0> which is then applied to an
ECL-to-TTL decoder. When enabled the ECL-to-TTL decoder asserts
one of eight AMCL READ BD SEL lines to enable the array board to
transfer its read data to the MCL. The decoder is enabled by BRCS
BD SEL EN which is generated by the read-board enable "logic in the
RCS. The logic monitors the AMAR DATA RDY DONE line from the array
board commanded to do a read as specified by A MAR BNUM<2:0>. When
AMAR DATA RDY DONE asserts, the read-board enable logic asserts
BRCS BD SEL EN to enable the ECL-to-TTL decoder which then enables
the array board for a transfer of the read data by asserting AMCL
READ BD SEL<X>.

The read-board select 1logic also asserts A MAR DONE to the
drive-new data logic which then asserts AMRM DRIVE NEW DATA. AMRM
DRIVE NEW DATA becomes BMCL DRIVE NEW DATA on the NAB which
functions to clock the first read data longword from the array
board.

AMAR DRIVE NEW DATA also inputs into a read counter which outputs
BMRM NEW LW and AMRM READ CMD<0>. BMRM NEW LW informs the MCL that
a longword of read data is coming. Read command bit <0> specifies
the longword as the "first" longword transferred in the operation.,
If the drive-new-data logic senses this to be an octaword transfer
(A MAR OCTA true) it asserts three more drive-new-data pulses to
retrieve the other three longwords of read data from the array
board. The read-counter, also sensing this to be an octaword
transfer, asserts three more BMRM NEW LW pulses and specifies the
three longwords to be "next" longwords via read-command bit <0>.
During the transfer, the read counter outputs a longword count (B
NEW LW CNT<2:0>) to the read-board-enable logic causing it to hold
BRCS BD SEL EN asserted for the entire transfer.

2.9.8 Masked Writes

Insofar as the MRM 1is concerned, a masked write operation is
basically a read of an array board followed by a write to the same
board. The mask field (ADFA MASK<3:0>) is stored in MSC1l by BDFA
LD INPUT DATA from the MDP. The mask fields associated with the
data for two commands can be stored (corresponding to the data
stored in the X and Y buffers of the MDB). The mask field is
stored in an X or Y section according to the BMDP DATA IN SEL<2>
bit from the MDP. (BMDP DATA IN SEL<2> specifies in which section
of the MDB the write data is being stored).) When the mask-store
senses a masked operation (via the BRCS READ CMD<1> bit) and that
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a longword of read data has been obtained from the array board
(BMRM NEW LW asserts), it outputs the mask field as AMRM FB WRT
EN<3:0> to byte load the read data into the MDB. The mask field is
output from the X or Y section of mask store according to the BMDP
FB DATA SEL<2> bit from the MDP. BMDP FB DATA SEL<2> specifies
which section of the MDB (X buffer or Y buffer) is being unloaded.

If a single-bit error is detected in the read data, the mask-store
is informed of this by the assertion of BDFA NMI DEAD1 from the
DFA. The mask store then outputs the mask field as AMRM INPUT WRT
EN<3:0> to byte-load the corrected read data into the MDB via the
W write port. The corrected read data is loaded through the W
write port because after being corrected in the DAD, it was
wrapped around and returned to the MDB via the normal write data
path.

2.9.9 CSR READS

When the read command is for a CSR read, the MSC buffer/decoder
decodes this and outputs AMSC CSR PROBE VALID. AMSC CSR PROBE
VALID is applied to read-CSR logic in the in the RCS to specify
the read operation as a CSR read. The read-CSR logic responds by
outputing BMRM EN SERIAL READ and AMRM MPR DATA SEL. BMEM EN
SERIAL READ is sent to the DAD in the DFA where it switches the
CSR data onto the data output path to the NMI. AMRM MPR DATA SEL
is sent to the MDB where it switches a mux which wraps the write
data output from the MDB back into the DFA as CSR feedback data.
The wrapped write data is applied to the CSR logic in the DAD.

2.10 MEMORY SEQUENCE CONTROL (MSC) MCA

The MSC MCA (along with the MSCl1 MCA) recives and processes
commands for the array modules. Figure 2-34 is a block diagram of
the MSC MCA. The block diagram divides the MSC into nine areas
that perform the following functions.

° Buffer Control -- if a target array board is busy, the
buffer control will queue up to three commands in the
command/address/size buffer and the BNUM probe buffer.
The buffer control asserts a busy request on the NMI when
two commands are queued. When the array board is free,
the buffer control allows the commands to pass through
the buffers,

® BNUM Probe Buffer and Error Logic -- stores up to three
board probe numbers. Checks for errors and asserts AMRM
INT ERR to the MCL if an error is detected.

° Command/Address/Size Buffer - stores
command/address/size data associated with wup to three
commands.

° Size Logic =-- generates size signals according to the

size of the commanded transfer,
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° Starting Address Logic -- generates starting address for
array boards.

° Mask Address/Size Buffer -- stores address/size data
associated with the read portions of up to three masked
write operations,

® Write Command Logic -- generates write-command bits for
unloading MDB. Indicates state of octaword write
transfers.

® Mask Write Logic -- senses a masked write operation and
generates appropriate control signals.

° Command Done Logic =-- signifies completion of the MSC's
involvement in normal and masked operations.

Figure 2-34 1illustrates the major signals connecting the nine
functional areas. Each functional area has a detailed block
diagram that may show other signals not shown on the overall block
diagram. These signals have their source or destination
referenced, by figure number, to other functional area(s). Refer
to Figure 2-34 throughout Section 2.10.

2.10.1 MSC Buffer Control (Figure 2-35)

2,10.1.1 Buffer Control Operation -- The assertion of BDFA NEW CMD
LATE signifies a new valid command has entered the
command/address/size buffer and the BNUM probe buffer. BDFA NEW
CMD LATE is clocked through two latches to become B VALID CMD<1>.

If the array board has accepted the BNUM probe (BMAS CMD ACPT true
from the MASC) and the MSC has completed processing the command
(BMSC PRE CMD DONE true from the command-done logic), B CMD DONE
asserts. B CMD DONE prevents B VALID CMD<1> from reaching the
third buffer latch, hence, A VALID CMD<2> remains false supplying
an asserted A FIRST signal to the command/address/size buffer and
the BNUM probe buffer. A FIRST bypasses the commands around the
latches in the command/address/size and the BNUM probe buffers.

If the array board is not able to accept the command or the MSC is
still processing the command (as in the case of an octaword write
or a hexword read), B CMD DONE will be false. In this case the
third buffer latch is set and A VALID CMD<2> asserts. The
assertion of A VALID CMD<2> will:

° Negate A FIRST to remove the bypass path in the
command/address/size and the BNUM probe buffers.,

o Assert B HOLD CS2 to the command/address/size and BNUM
probe buffers to latch the command in the buffers.

° Latches A VALID CMD<2> to maintain B HOLD CS2 asserted.
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B HOLD €S2 is applied to an A-HOLD-CS1 AND gate which looks for
another command as indicated by the assertion of B VALID CMD<1>.

I1f another command 1is received, BDFA NEW CMD LATE asserts,
followed by the assertion of A VALID CMD<O0> and B VALID CMDK1>. B
VALID CMD<1> enables the A-HOLD-CS1 AND gate asserting A HOLD CSl
to the two buffers. A HOLD CSl:

® Latches the second command in the two buffers.
® Latches B VALID CMD<1> to maintain A HOLD CS1 asserted.

A VALID CMD<2> 1is ANDed with either B VALID CMD<1> or A VALID
CMD<0> to assert AMRM BUSY REQ. AMRM BUSY REQ causes memory-busy
to assert on the NMI to stop new commands to memory. Only a read
command received in the next bus cycle after the assertion of AMRM
BUSY REQ will be accepted by the MCL.

A VALID CMD<2> and B VALID CMD<1> are applied to a B-HOLD-CS(Q AND
gate which looks for another command as indicated by the assertion
of A VALID CMD<0>. If a read command occurs in the next bus cycle
and the array board is still not free, BDFA NEW CMD LATE and A
VALID CMD<0O»> asserts. The assertion of A VALID CMD<KO> causes B
HOLD CSO to assert which:

® Latches the read command as the third command in the two
buffers.
) Latches A VALID CMD<0> to maintain B HOLD CS0O asserted.

When the array board is free (BMAS CMD ACPT true) and the MSC has
finished processing the current command* (BMSC PRE CMD DONE
asserted), B CMD DONE asserts. B CMD DONE negates the three
HOLD-CS latch signals and the commands output the
command/address/size and BNUM probe buffers in order.

2.10.1.2 AMRM BUSY REQ -- When the buffer control has latched two
commands in the buffers, it asserts AMRM BUSY REQ to the ARID
which asserts memory-busy on the NMI. As seen in Figure 2-35, the
true state of A VALID CMD<2> along with the the assertion of
either A VALID CMD<0> or B VALID CMD<1>, will assert the busy
request.,

A CSR1 operation always requires that busy be asserted (see
Section 2.2.6). The assertion of A CSR1 OPER from the command
logic will assert the busy request when the CSR command is valid
(A VALID CMD<2> if signals are queued; A VALID CMD<O0> if no
signals are queued).

*  This would be four longword writes for an octaword write
command or two octaword reads for a hexword read command.
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2.10.1.3 A CMD PROC START -- A CMD PROC START is generated in the
buffer control and sent to the BNUM probe buffer where it
initiates the processing of a command by enabling the BNUM probe.
A CMD PROC START is also sent to the write-command logic and the
command-done logic to initiate command processing in those areas.

The write portion of a masked write has priority over other
commands. A CMD PROC START is inhibited when the write portion of
a masked write 1is pending (A MASK PEND true from the write-mask
logic) and a multi-longword write operation is not already in
progress (A WRITE MACHINE IDLE true from the write-command logic).
When the write portion of the masked write is started, A DO MASK
asserts (and A MASK PEND negates) from the write-mask logic. This
results in the assertion of A CMD PROC START to start the write
portion of the masked write. If the masked write is a quadword or
octaword write, A CMD PROC START remains asserted for the duration
of the transfer.

For a non-masked operation (and the read portion of a masked-write
operation), A CMD PROC START asserts when:

° There 1is a valid command in the first or third location
of the buffers (A VALID CMD<K0O> or A VALID CMD<K2> true)
while BDFA HOLD CMD is false. (The only time BDFA HOLD
CMD is true is in single-step mode when a write command
is being execute.d) Or,

° There is a valid command in the second and third
locations of the command/address/size and BNUM probe
buffers (B VALID CMD<1> and A VALID CMD<2> true).*

2.10.2 BNUM Probe Buffer and Error Logic (Figure 2-36)

2.10.2.1 Probe Logic -- The probe logic supplies the three-bit
probe number (AMSC PROBE BNUM<2:0>) and a probe-valid signal (AMSC
PROBE VALID) to the MASC. The probe number selects the array board
to receive the current command. The probe-valid signal validates
the probe number for the MASC.

Three-bit probe numbers ADFA PRM BNUM<2:0> and ADFA ALT BNUM<2:0>
are recieved from the decode RAM and specify a primary and an
alternate board number. The primary board number is used for
longword, guadword, and octaword operations (only one array board
is accessed). The alternate board number is used for the second
octaword read of a hexword read operation. For interleaved
oeration, the primary and alternate board numbers are different.
For non-interleaved operation, they are the same.

* In this case, BDFA HOLD CMD is not a factor as A CMD PROC START
is for the A VALID CMD<2> command whose data has already been
loaded into the MDB.
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ADFA PRM BNUM<2:0> and ADFA ALT BNUM<2:0> are input into a
three-stage buffer., 1If necessary, the buffer can hold the probe
numbers associated with three queued commands. B HOLD CS2, A HOLD
CS1, and B HOLD CSO from the buffer control logic, latch the three
probe numbers in the buffer. If no commands are queued, A FIRST
from the buffer control 1logic is true and bypasses the primary
probe number around the buffer latches via a mux.

The primary probe number output from the mux (A PRE PROBE<2:0>),
is applied to another mux which also receives the alternate board
number (A PRE PROBE<5:3>) from the buffer. This mux is controlled
by A SECONDARY from the size logic. When the size logic detects
the second octaword read of a hexword read, it asserts A SECONDARY
to select the alternate probe number. Otherwise, the mux selects
the primary board number.

The probe number output from the mux is applied to still another
mux where it 1is selected during non-masked oprations and during
the read portion of a masked-write operation. When the write
portion of a masked-write is executing, A DO MASK is asserted from
the mask-write logic causing the mux to select the BMAS BD
SEL<2:0> probe number from the MASC. BMAS BD SEL<2:0> is the board
number used by the MASC for the read portion of the masked-write,
It was loaded into the BNUM probe buffer by A NEW MASK from the
mask-write logic when the read portion was executing. It is now
provided as the board number for the write portion,

A probe wvalid signal (AMSC PROBE VALID) is supplied to the MASC
indicating that the probe number is valid. For the probe number to
be valid:

° The buffer control logic must signal the start of a valid
command process by asserting A CMD PROC START.

' This must be a memory access (A CSR CMD from the
command/address/size buffer false).

° There must be no internal error, reset, or unjam
conditions as indicated by the false state of A BLOCK
PROBE,

If the current operation is a CSR access (not to the memory
arrays), A CSR CMD will assert to inhibit a memory probe-valid
signal, and assert a CSR probe-valid signal (AMSC CSR PROBE
VALID). In addition, if this is a CSR1 access, it is required that
ADFA NMI DEAD be true before AMSC CSR PROBE VALID assert. ADFA NMI
DEAD indicates that the DAD data path is clear for accessing the
decode RAM as required for a read or write of CSR1 (see Section
2.3.11).

AMSC CSR PROBE VALID is applied to the MDBC where it disables the

write-command logic thereby disabling the MDB data-out function of
the MDBC,
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2.10.2.2 Error Logic =-- The primary and alternate board numbers
are applied to a parity checker along with two other decode RAM
outputs; ADFA MEM ADDR (true when the memory is being addressed)
and ADFA DEC RAM PARITY. If a parity error is detected, the
checker asserts B DECR PAR ERR which in turn asserts AMRM INT ERR
via an OR gate. AMRM INT ERR is distributed throughout the MRM as
shown in Figure 2-34,

Other OR gate inputs that will cause an internal error are:

° The negation of B ECL RC POWER OK from the BBU.
° A command/address parity error from the memory array
(AMAR CMD ADDR PAR ERR) if the array module is validated

by AMSC1 DLY7 BD VALID from the MSCl.

AMRM INT ERR is locked-up and remains asserted for a minimum of 15
1/2 bus cycles after which BMDP DLY INT ERR is received from the
MDBC to clear AMRM INT ERR. Fifteen and one-half bus cycles is
sufficient time for the system to flush queues and prepare to
start over. The flush of read commands queued in the RCS is
checked by meonitoring BRCS EMPTY. AMRM INT ERR will not clear
until the RCS buffer is empty (BRCS EMPTY asserted).

AMRM INT ERR also asserts A BLOCK PROBE which prevents any command
from executing by inhibiting any memory or CSR probe-valid
signals. In addition, it asserts AMRM FLUSH DATA to the MDBC where
it clears all the MDB input commands and resets the MDB input
logic.

A system unjam or reset signal also asserts A BLOCK PROBE.

2.10.3 Command/Address/Size Buffer (Figure 2-37)

A three-bit command (BDFA CMD<2:0>) and a two-bit size code (BDFA
STZE<1:0>) from the FUNK, and a two-bit address (ADFA DATA
ADDR<3:2>) from the DAD, are input into a three-stage buffer. If
necessary, the buffer can hold the command, address, and size
associated with three queued commands. B HOLD CS2, A HOLD CSl, and
B HOLD Cs0 from the buffer control 1logic, latch the
command/address/size data in the buffer.

If no commands are queued, A FIRST from the buffer control logic
is true and bypasses the command/address/size data around the
pbuffer latches via a mux (except during the write portion of a
masked-write).

2.10.3.1 Command Channel -- The three command bits are:
BDFA CMD<K2>

@
e BDFA CMDK1>
o BDFA CMD<KO>

I

write bit; 0 = read; 1 write
CSR bit; 0 = memory; 1 = CSR
mask bit:; 0 = non-masked; 1 = masked
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The output of the read/write channel (A PRE READ) is asserted for
a read operation. An inversion after the first latch accomplishes
this. Note that 1in a masked write operation (BDFA CMD<0>
asserted), A PRE READ is forced true for the read portion of the
masked write,

When the command is a CSR access, A CSR CMD asserts. If the access
is to CSR1l, the address bit code will be 0:1 causing A CSR1 OPER
to assert to the buffer control and the BNUM probe logic.

The read/write <channel and the CSR channel contain a mux that
feeds the output mux. During the write portion of a masked write,
A DO MASK asserts and forces a 0 into the two channels via the
muxes This negates A PRE READ and A CSR CMD for the write

.
oneration.
oper on .,

2.10.3.2 Address/Size Channel -- The address bits output the
address channel as A PRE STADDRK1:0>. The size bits output the
size channel as A SIZE<1:0>.

During the write portion of a masked write, A DO MASK asserts and
substitutes A MASK CMD<2:1> for the address bits, and 0 and A MASK
CMD<0> for the size bits. A MASK CMD<2:0> are obtained from the
mask address/size buffer where they were stored during the read
portion of the masked write. A MASK CMD<2:0> are the starting
address bits and the length bit associated with the read portion
of the masked write and are now used as the starting address bits
and the length bit for the write portion of the masked write.

In addition, A DO MASK forces A BYPASS false so that the
read/write and CSR channels will output the selected 0s, and the
address and size channels will output the mask address and size
command (A MASK CMD<2:0>).

2.10.4 Size Logic (Figure 2-38)

The size logic receives a two-bit size code (A SIZE<1:0>) from the
command/address/size buffer, and generates signals specifying the
size of the commanded transfer. The logic also contains a hex
state machine that generates signals relating tc a hexword read
operation. The A SIZE<1:0> code is shown in Table 2-9.

Table 2-9 Size Code

A SIZE Size

<1 0>

00 Longword
01 Octaword
10 Quadword
11 Hexword
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Figure 2-38 Size Logic

In discussing the size logic, three points must be noted:

° A quadword transfer 1is treated as an octaword transfer
with no data transferred for the third and fourth
at

octaword loc

(OLOR -2 A0S0

® A hexword transfer is treated as two octaword transfers.

° The array boards recognize only two size of transfers: a
longword transfer (read or write) and an octaword
transfer (read only)

A LEN 1is the length bit sent to the array board as part of the
array command. It is negated for a longword transfer and asserted
for an octaword transfer. A LEN is obtained from an AND gate that

receives A PRE READ from the command/address/size buffer. For a

3 1 nl 3 3 . A~ oA~ £
write operation, A PRE READ is false making A LEN false to specify

a longword transfer. For a read operation (A PRE READ true), the
size bits are examined and will assert A LEN except when a
longword is specified (size = 0:0).

A OCTA indicates that the current command is an octaword
operation., A OCTA is identical to A SIZE<0> which is asserted for
an octaword transfer and a hexword transfer (two octaword
transfers).
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A HEX indicates that the current command is a hexword operation. A
HEX asserts when a size code of 1:1 is detected.

A hex state machine receives A HEX and BMAS CMD ACPT which places
the machine into various hex states during the execution of a
hexword read operation. The machine generates a two-bit hex state
code (B HEX ST<1:0>) that indicates the current state of the
machine.

Figure 2-39 is a flow diagram of the operation of the hex state
machine during the execution of a hexword command. The machine
idles in state 0 while waiting for a hex command. When a hex
command is received, A HEX asserts causing the machine to advance
to state 2 (1:0) while the MCL attempts to send the first octaword
read command. When the array board accepts the octaword command,
BMAS CMD ACPT asserts which in turn asserts A HEX ST. A HEX ST

signifies that the first octaword has been sent.

A HEX will still be asserted to send the second octaword command,
unless the write portion of a masked write is ready to execute. If
this 1is the <case, A HEX will be false placing the machine into
state 3 (1:1) until the masked write completes. While A HEX is

false, the state machine does not respond to BMAS CMD ACPT (which
will assert due to the masked write).

The true state of A HEX places the machine into state 1 (0:1)
signifying that the MCL is attempting to send the second octaword
command. When in state 1, the machine outputs BMRM SECOMD OCTA
signifying that the current command is the second octaword of a
hexword transfer. BMAS CMD ACPT asserts when the second octaword
has been accepted by the array board. The state machine then
returns to state 0 to await another hexword read command.

BMRM SECOND OCTA is used to increment the address from the MDB for
the second octaword location.

A HEX ST is applied to an AND gate that checks for a size code of
1:1. When a 1:1 size code is detected (hex transfer), A SECONDARY
is asserted to the BNUM probe buffer to select the alternate board
number for the second octaword transfer.

2.10.5 Starting Address Logic (Figure 2-40)

The starting address 1logic converts the pre-starting address
received from the command/address/size buffer (A PRE STADDR<K1:0>)
into an initial starting address (A INIT STADDRK1:0>) that
specifies which bank on the array board is to be accessed first.
In addition, the logic increments the starting address during an
octaword write operation to access the four banks on the array
board.

2.10.5.1 Initial Starting Address -- The pre-starting address is
passed through the 1initial address logic to become the initiail
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address. An 1initial address control forces specific pre-address
bits to zero in the initial address logic, thereby restricting the
choice of banks that can be selected as the starting bank. Table
2-10 is a truth table of the initial address.

Table 2-10 1Initial Address Truth Table

Command A INIT Bank
STADDR Accessed
<1 : 0O>* First
All Reads X X Any
LW Writes X X Any
OW Writes X 0 First or third
OW Writes 0 0 First

* Bits shown as 0 are forced.
X = Corresponding A PRE STADDR<1:0> bit.

For all normal reads, the initial address is identical to the
pre-address. A longword read can access any bank and an octaword
read can start at any bank. The initial address control checks for
an asserted A PRE READ and a negated A MASK to establish the
command as a normal read.

For normal or masked longword writes, the initial address is
identical to the pre-address. A normal or masked longword write
can be made to any bank. The initial address control checks for a
negated A PRE READ and a longword size code (0:0) to establish the
command as a longword write.

For a masked quadword write, pre-address starting bit <0> is
forced zero. A masked gquadword write must start with either the
first or the third array bank. The initial address control checks
for a negated A PRE READ and a quadword size code (1:0) to
establish the command as a quadword write.

For normal or masked octaword writes, both pre-address bits are
forced zero giving an initial starting address of 0:0. A normal or
masked octaword write must start with the first array bank (bank
0). The initial address control checks for a negated A PRE READ
and an octaword size code (0:1) to establish the command as an
octaword write.

The initial address control receives an asserted A DO MASK during
the write portion of a masked write operation, which tells the
control to wuse the pre-starting address unchanged. During the
write portion of a masked-write, the pre-starting address is the
initial starting address used for the read portion of the masked
write that has been stored in the mask address/size buffer.
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2.10.5.2 Address Incrementation -- The initial address from the
initial address logic (A INIT STADDR<1:0>) is passed through a mux
and output from the MSC as AMRM STADDR<1:0> for transmission to
the array board. The true state of A WRITE MACHINE IDLE from the
write-command logic causes the mux to select the initial starting
address as the AMRM STADDR<1:0> output.

For a longword read or write, the initial starting address
specifies the only bank to be accessed.

For an octaword read, the array board needs only the starting
address. The length command bit specifies an octaword transfer to
the array boards which reads the four array banks starting with
the bank selected by the initial starting address.

For an octaword (and quadword) write, the initial starting address
must be incremented because four longword writes are to be
executed. The 1initial starting address (AMRM STADDR<1:0>) is
loaded into an incrementer. The incrementer is enabled by B START
WRITE MACHINE from the write-command logic when an octaword write
command 1is received. B START WRITE MACHINE is validated by BMAS
CMD ACPT when the array board has accepted the BNUM probe. When
the incrementer 1is enabled, the 1initial starting address is
removed, and F A CLK and F B CLK function to increment the initial
address to select subsequent banks in the array board. Once the
write machine starts, the write-command 1logic negates A WRITE
MACHINE IDLE causing the mux to select the incremented address for
the AMRM STADDR<1:0> output. The incrementer is held enabled for
the octaword command by the binary state code (B WRITE ST<1:0>)
from the write machine.

2.10.6 Mask Address/Size Buffer (Figure 2-41)

The mask address/size buffer receives the starting address (AMRM
STADDR<1:0>) and the 1length bit (A LEN) associated with every
command sSent to the array beoards. The starting address and length
bit pass through three buffer stages and are loaded into an output
latch by A NEW MASK from the mask-write logic. A NEW MASK asserts
only when the mask-write logic senses the read portion of a masked
write operation. Hence, only the starting address and length bit
associated with a masked write are loaded into the output latch
and made available to the command/address/size buffer.

The starting address and length bit associated with three read
operations (including masked-write reads) can be stored in the
buffer. When a read command is received (A PRE READ true), and the
array board has accepted the command (BMAS CMD ACPT true),; and the
read access is to memory (A CSR CMD false), a latch is set
asserting A VALID RD<O>. A VALID RD<0> becomes B VALID RD<1> which
then becomes A VALID RD<2>. A POP 1is received from the
masked-write logic and is asserted every time a new read command
executes. If A POP is false when A VALID RD<2> asserts, the read
command didn't execute (array board busy) and B HOLD2 asserts to
latch the starting address and length bit associated with the

—
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pending read command. B HOLD2 latches A VALID RD<2> to maintain
the B HOLD2 latch signal.

I1f another read command is received while A POP is still false, A
VALID RD<0> asserts causing B VALID RD<K1> to assert, B VALID RDK1>
causes A HOLDl to assert and latch the starting address and length
bit associated with the second read command. A HOLD1 latches up B
VALID RD<1> to maintain the A HOLDl1l latch signal.

Likewise, if a third read command is accepted, it will assert A
VALID RD<KO> and B HOLDO to latch up the third set of address and
length bits,

When A POP does assert, B HOLD2 negates, in turn negating A HOLDI1

~ A »n IOAT YN 11 R + 3
and B HOLDO, allowing the address and length bits to proceed

through the buffer. Address and length bits that are part of a
masked write will get loaded into the output latch by A MASK and
be applied to the command/address/size buffer as A MASK CMD<2:0>.

2.10.7 Write Command Logic (Figure 2-42)

The write command 1logic generates a two-bit write command (BMRM
WRITE CMD<1:0>) for the MDBC that specifies a write command as the
first longword of a transfer or a "next" longword, and identifies
the first longword as masked or normal. The logic also contains a
write-state machine that generates a two-bit, write-state code (B
WRITE ST<1:0>) related to an octaword write operation.

2.10.7.1 Write Machine -- The write machine is started by the
assertion of B START WRITE MACHINE when an octaword write command
is received. B START WRITE MACHINE asserts when:

° The write machine 1is 1in 1its neutral state (A WRITE
MACHINE IDLE true).

° The buffer control has allowed a command process to start
(A CMD PROC START true).

® The command is a write (A WRITE true).
® The command is an octaword transfer (A OCTA true).

Once the write machine 1is started, the write-state code is
incremented by BMAS CMD ACPT each time the array board accepts a
longword write command. The write-state code indicates the status
of the octaword transfer by indicating which longword is being
transferred. The write-state code does not increment in binary
format, as can be seen in Table 2-11.
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Table 2-11 Write State Code

Longword Being B WRITE ST Binary
Transferred <1 : 0> State

1st longword
2nd longword
3rd longword
4th longword

-0 0
OO
N WO

Once the write state code advances from its neutral (0:0) state, A
WRITE MACHINE IDLE negates which in turn negates B START WRITE
MACHINE.

2.10.7.2 Write Command Bits -- Write command bits BMRM WRITE
CMD<1:0> 1identify every write command as the first or following
longword in a write transfer, and the first longword as masked or
normal. The bits are generated by two AND gates enabled by BMRM
WRITE CMD EN whenever a write command is issued by the MRM. BMRM
WRITE CMD EN 1s asserted by:

[ B LW WRITE CMD from the command-done logic whenever a

longword write command is received, or by

o B START WRITE MACHINE for the first longword transferred
in an octaword write command, or by

° The B WRITE ST<1:0> code during the 2nd, 3rd, and 4th
longword transferred during an octaword write command.

Table 2-12 defines the write command bit code that is generated.

Tahle 2-12 Write Command Code

BMRM WRITE CMD Function

<1 0>

0 0 No Op

0 1 Next longword (normal or masked)
1 0 First masked longword

1 1 First normal longword

As seen in Table 2-12, an asserted BMRM WRITE CMD<1> indicates the
first 1longword 1in a transfer. BMRM WRITE CMD<1> is asserted by A
WRITE MACHINE IDLE which is true except when the write machine is
stepping through the second, third, or fourth longword of an
octaword transfer.

=
B
N
|
I—_l
N
20
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An asserted BMRM WRIT MD<0> performs two functions:

° It indicates the first longword in a transfer as being
normal.
) It indicates a longword as being a "next" longword.
During the first 1longword of a write transfer, the write

state-code is 0:0 making BMRM WRITE CMD<0> a function of A DO
MASK. A DO MASK 1is true for a masked write causing BMRM WRITE
CMD<0> to negate. For normal writes, A DO MASK is false and BMRM
WRITE CMD<O0> is asserted.

During the second, third, and fourth longword of an octaword
transfer, the write-state code has at least one bit asserted,
thereby Kkeeping BMRM WRITE CMD<O0> asserted to indicate the three
longwords as "next" longwords.

2.10.8 Masked-Write Logic (Figure 2-43)

The masked-write 1logic senses when the write portion of a masked
write 1is commanded and generates A NEW MASK and A DO MASK to
inform the MRM.

The masked-write logic 1looks at read command bits AMRM READ
CMD<1:0> from the RCS and the MSCl to determine if a read command
is normal or masked, and if the current longword is the first
longword in the transfer or a "next" longword (see Table 2-6).

AMRM READ CMD<0> is true for the first longword of a read transfer
and asserts A FIRST RD LW. If the read bits are validated by BMRM
NEW LW, and this is not a CSR read (BMRM EN SERIAL RD false), A
POP asserts. A POP is sent to the mask address/size buffer where
it allows any queued address/length command to pass through the
buffer. Hence, A POP asserts for the first longword of all read
transfers (masked and normal).

If the read command is part of a masked write operation (AMRM READ
CMD<1> false), A MDP is true and asserts A NEW MASK to the BNUM
probe buffer and the mask address/size buffer specifying the first
longword as being part of a masked transfer. In the BNUM probe
buffer, A NEW MASK loads the array board number from the MASC. In
the mask address/size buffer, A NEW MASK loads in the address/size
data from the buffer gueue making it available to the
command/address/size buffer. '

A NEW MASK is also applied to a mask-pending lock-up block which
asserts and holds A MASK PEND. A MASK PEND is applied to the
buffer control to 1inhibit a new command process from being
initiated until the masked write is completed. In addition, A MASK
PEND checks that the write machine is not executing an octaword
operation (A WRITE MACHINE 1IDLE true) and then asserts B ALLOW
MASK to a do-mask lock-up block. B ALLOW MASK clears A MASK PEND
while the do-mask lock-up block asserts and holds A DO MASK. A DO
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MASK stays true until the masked write is completed as indicated
by the assertion of BMRM CLEAR BUF USE (validated by BMAS CMD
ACPT) from the command-done logic.

2.10.9 Command Done Logic (Figure 2