| RSTS/E Task Builder Reference Manual

Order Number: AA-5072D-TC

RSTS/E Task Builder Reference Manual
Order Number: AA-5072D-TC

August 1990

This document describes the RSTS/E Task Builder (TKB), and tells how you use it to link
programs.

Operating System and Version: RSTS/E Version 10.0
Software Version: RSTS/E Version 10.0

digital equipment corporation
maynard, massachusetts

August 1990

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used
or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990. All rights reserved.
Printed in US.A.

The postpaid READER'S COMMENTS form on the last page of this document requests
the user’s critical evaluation to assist in preparing future documentation. The following are
trademarks of Digital Equipment Corporation:

ALL—IN—-1 DEUNA RSX
DEC/CMS DIBOL RT
DECdx EDT RT-11
DEC/FMS-11 IAS TOPS-10
DECmail LA TOPS-21
DECnet LNO1 ULTRIX
DECneVE Micro/RSX UNIBUS
DECSA 0s/8 VAX
DECserver PDP VAXmate
DECsystem-10 PDP-11 VMS
DECSYSTEM-20 PDT VT
DECUS Q-BUS WPS-PLUS
DECworld RMS-11 Rainbow

DELUA RSTS ™
DEQNA clilliltall

IBM is a registered trademark of International Business Machines Corporation.
RMS is a trademark of American Management Systems, Inc.

Contents

Preface e Xv
Chapter 1 Introduction
1.1 What the Task Builder Does, 1-2
1.1.1 Linking . . . oo oo e 1-2
1.1.2 Overlays o e e e e 1-3
1.2 Relationship to the DCL LINK Command 14
Partl Getting Started
Chapter 2 Building Programs
2.1 Job Area e e e e 2-2
2.1.1 Your Program Withinthe JobArea 2-2
2.2 Libraries e 2-3
2.21 Disk Libraries e e e 24
222 Resident Libraries 2-5
223 Comparison of Disk and Resident Libraries 2-7
23 How to Run the Task Builder 2-7
2.3.1 Command Linet 2-8
2.3.2 Multiline Command e 2-9
2.3.3 Options . . . e e e e 2-10
2.34 The LIBR and RESLIB Options, 2-10
2.3.5 The CLSTR Option i i e e 2-11
2.4 Examples of Simple Builds 2-14
2.4.1 BASIC-PLUS-2 Examples Including Disk, Resident, and Cluster
Libraries e e 2-15
2.4.2 PDP-11 COBOL Example Including Two Disk Libraries. 2-16
243 COBOL-81 Examples Including Disk Library and Cluster Libraries 2-16
2.4.4 DIBOL Example Including Disk and Resident Libraries 2-16
2.4.5 FORTRAN-77 Examples Including One Disk Library 2-17
2.4.6 MACRO Examples Including Resident Libraries 2-17

Partll Overlays
Chapter 3 The Basic Concepts
3.1 What are Overlays?ttt it e et e 3-2
3.2 Constructing an ODL File: .ROOT, .FCTR, and .END Commands 3-3
3.2.1 The ROOT Command, 3-3
3.2.2 The FCTR Commandttt 34
3.23 The .END Command i 3-5
3.24 Flexibility of the Overlay Description Language 3-5
33 Using an ODL Flle When You Run TKB, 3-6
3.4 The Memory Map File e e e 3-6
3.5 Designing Overlays Intelligently: Considering Space and Time 3-7
3.5.1 Considering Space: Two Possibilities for Example 3-8
3.5.2 Considering Time: Reducing Disk Access 3-9
3.6 Logical Independence of ltems in Overlay Structure 3-10
3.7 Resolution of Global Symbols 3-11
3.7.1 What Is a Global Symbol?. L 3-11
3.7.2 Undefined, Multiply Defined, and Ambiguously Defined Global
SYmMbOIS . . . e e 3-12
3.73 How Routines Are Inserted from Libraries 3-13
3.74 The Default Library i 3-15
Chapter 4 Co-Trees: Another Way to Save Space
41 The Co-Tree Structuret ittt i it 41
4.2 Using the .NAME Command for a Co-Tree Root 44
4.3 Designing the Most Space-Saving Co-Trees 4-5
4.4 Co-Trees and High-Level Languages e 4-6
441 Sample Source Program and Subprograms 4-6
442 Outlining the Sample Program’s Call Structure 4-7
443 Compiling the Sample Program and Subprograms 4-8
444 First Build for Sample Program: Putting Subprograms in the Root 4-9
445 Second Build for Sample Program: Usinga Co-Tree 4-10
4486 Third Build for Sample Program: Restructured Tree and Library Routines
N ROOt. . .. e e 4-15
447 Further Tips e 4-17
4.4.8 Using Co-Tree Techniques with the Default Library 4-17

Chapter 5

The Autoload Indicator

5.1 What are Autoload Vectors? i, 5—1
5.2 Where are Autoload Vectors Really Needed?
5.3 How to Request Specific Autoload Vectors. 54
5.3.1 Asterisk Before File Names and Program Sections 54
5.3.2 Asterisk Before ltems in Parentheses 5-5
5.3.3 Asterisk Before Mames Defined in .FCTR Commands 5-5
5.3.4 Asterisk Before Names Defined in NAME Command 5-5
5.4 Example of Specific Autoload Vector Requests. 56
55 If You Make aMistake. e e 5-6
Chapter 6 Working with Program Sections
6.1 What is a Program Section? e e 6-1
6.2 Allocating Space for Global Program Sections 6-2
6.3 How the Task Builder Orders Program Sections 6-3
6.4 The Task Builder’s .PSECT Command 6-5
6.5 Using .NAME to Make a Data PSECT Autoloadable 6-5
6.6 More About Program Sections: DecipheringtheMap 66
6.6.1 Source for Program USER 6-8
6.6.2 Source for Subprogram INTRO 6-8
6.6.3 Source for Subprogram CRUNCH. 6-8
6.6.4 Source for Subprogram CHATR 6-8
6.6.5 Overlay Description File FRED.ODL 6-8
6.6.6 Task Builder Command File, 6-9
6.6.7 Task Builder Listing 6-9
Partlli System Aspects
Chapter 7 Building Your Own Memory-Resident Areas
71 What is a Resident Area? e 7-1
7.2 The Steps in Creating a Resident Area 7-1
7.3 How to Build Memory-Resident Areas, 7-2
7.31 Building Position-independent Resident Areas 7-2
7.3.2 Building Absolute Resident Areas 7-3
7.4 Resident Areas with Memory-Resident Overlays 74
7.41 Specifying Memory-Resident Overlays 7-5
7.4.2 Building Memory-Resident Overlays 7-6

7.5 Building Your Own Cluster Libraries 7-8

7.5.1 Rule 1: Position Independent or Built for Exact Address. 7-8

7.5.2 Rule 2: Use Memory-Resident Overlays 7-8

7.5.3 Rule 3: No Required Parameters onthe Stack 7-9

7.54 Rule 4: No Trap or Asynchronous Entry 7-9

755 Rule 5: No Calls to Routines in Another Cluster Library 7-10

7.5.6 Revectoring Cluster Libraries, 7-10

7.5.7 Sample Vector Table Code, 7-12

7.5.8 GBLXCLand GBLINC Options 7-12

7.6 FORTRAN Virtual Arrays i e e i et s 7-13
7.7 Virtual Program Selectors i 7-14
7.74 FORTRAN Run-Time Support for Virtual Program Sections 7-17

7714 The ALSCT Subroutine 7-18

7712 The RLSCT Subroutine 7-19

7.7.2 Building a Program That Uses a Virtual Program Section 7-20

7.8 Advanced Programmed Region Control 7-26
7.8.1 The EXTMS$ Feature et 7-27

7.9 Fast-Mapping Facility i 7-28
7.9.1 Fast-Mapping Code Provided by TKB 7-29

7.9.2 Programming Considerations 7-29

7.9.2.1 Caling Sequence i, 7-30

7922 Returned Data. i, 7-30

7923 Programming Examples 7-30

Chapter 8 User-Mode |- and D-Space

8.1 User-Task Data Space i i 81
8.2 I- and D-Space Task ldentification 81
8.3 Comparison of Conventional Tasks and I- and D-Space Tasks 81
8.4 Conventional Task Mapping i, 8-2
8.5 - and D-Space Task Mapping i 8-3
8.6 Designing an l-and D-Space Task 84
8.7 Concurrent Libraries. e e 84

Chapter 9 Supervisor-Mode Library

9.1 Mode-Switching Vectors 91
9.2 Completion Routines e 9-2
9.3 Programming Considerations for the Contents of Supervisor-Mode
Libraries e 9-2
9.4 Supervisor-Mode Library Mapping o 92
9.4.1 Supervisor-Mode Library Data 9-3
9.4.2 Supervisor-Mode Libraries with |- and D-Space Tasks 9-3

vi

9.5 Building and Linking to Supervisor-Mode Libraries 94
9.5.1 Relevant TKB Options ittt 9-5
9.5.2 Mode-Switching Instruction, 9-5

9.5.2.1 Required Memory Layouts for Supported CSM
Instructions e e 9-5
9.5.2.2 The CSM Library Dispatching Process. 9-5
9.6 CSM Libraries e e 9-6
9.6.1 Buildinga CSM Library 9-6
9.6.2 Linkingtoa CSM Library. 9-8
9.6.3 Example of a CSM Library and Buildinga Task 9-8
9.6.3.1 Building the Library SUPER 9-16
9.6.3.2 Building TSUP 917
9.6.3.3 Running TSUP e 9-18
9.6.4 Passing Parameters Using Stack Space 9-18
9.7 Using Supervisor-Mode Libraries as User-Mode Resident Libraries 9-19
9.8 Multiple Supervisor-Mode Libraries 9-19
9.9 Linking Supervisor-Mode Libraries 9-19
9.10 Writing Your Own Vectors and Completion Routines 9-19
9.1 Overlaid Supervisor-Mode Libraries 9-20
9.12 Using ODT to Debug CMS Library 9-20
9.13 Trap Handling with Supervisor Libraries. 9-21
9.13.1 Locating Service Routines 9-21
9.13.11 FPPA$SAND SCCA$. it 9-21
9.13.1.2 SVTK$andSVDB$ i, 9-21
9.14 Building to a Supervisor-Mode RMS Library 9-22
9.15 Map Supervisor D-Space e e 9-23

Part IV Reference Section
Chapter 10 Task Builder Command Line Format

101 Running the Task Builder 10-1
10.1.1 CommandLine i 10-1
10.1.2 Multiline Command. e e 103
10.2 OptioNs e e 10-3
10.3 Multiple Builds inOne Run i i 104
10.4 Indirect Command Files e 104
10.5 Comments in Lines it it 10-6
10.6 File Specifications e e i e 10-6

vii

Chapter 11 Task Builder Switches

1.1 /CC—Concatenated Programs and Subprograms 11-3
11.2 /CO—Build a Common Block Shared Region 114
1.3 /DA—Debugging Aid e e 11-5
1.4 /DL—Default Library e e 11-6
115 JEL—Extend Library e e 11-7
11.6 IFM—Fast Map e 11-8
1.7 /FO—Fast Map Overlay i i e 11-9
11.8 /FP—Floating Point. e 11-10
11.9 /FU—Full Search e 11-11
1110 /HD—Header e 11-12
1111 /ID—-and D-Space e 11-13
1112 /LB—Library File e 11-14
11.13 /LI—Build a Library Shared Region 11-16
11.14 /MA—Map Contentsof File 11-17
1115 /MP—OverlayMap DI 11-18
1116 /MU—Multiuser Program i i e e 11-19
11.17 /NM—No Diagnostic Messages s 1120
11.18 /Pl—Position Independent e e 11-21
1119 /PM—Post-Mortem Dump e e 11-22
11.20 /RO—Resident Overlay i i i 11-23
11.21 /SB—Slow Build e e 11-24
11.22 /SG—Segregate Program Sections i, 11-25
1123 /SH—Short Map i e e 11-26
11.24 /SP—Spool Map Output i it 11-32
11.25 /SQ—Sequential e e e 11-33
11.26 /SS—Selective Search. L. e 11-34
11.27 /TR—Traceable Program i, 11-36
11.28 /WI—Wide Listing Format 11-37
11.29 /XT[:n]—EXiton Error e 11-38

viii

Chapter 12 Task Builder Options

121 ABORT—Abortthe Build i 12-3
12.2 ABSPAT—Absolute Patch i, 124
12.3 ACTFIL—Number of Active Files 12-6
12.4 ASG—Assign Devices. 12-6
12.5 CLSTR—Cluster Libraries i, 12-6
12.6 CMPRT—Completion Routine 12-9
12.7 COMMON—Access System Common Block 12-10
128 DSPPAT—Absolute Patchfor D-Space 12-11
12,9 EXTSCT—Extend Program Section 12-12
12.10 EXTTSK—Extend Task Memory 12-13
1211 FMTBUF—Format Buffer Size 12-14
12.12 GBLDEF—Define a Global Symbol 12-15
12.13 GBLINC—Include Globalin STBFile 12-16
12.14 GBLPAT—Gilobal Relative Patch. 12-17
12.15 GBLREF—Giobal Symbol Reference 12-18
12.16 GBLXCL—Exclude Global from .STBFile 12-19
12.17 HISEG—Define High Segment i .. 12-20
12.18 LIBR—Access System-Owned Resident Library 12-21
12.19 MAXBUF—Maximum Record Buffer Size 12-23
12.20 ODTV—ODT SST Vector it e e 12-24
12.21 PABR—Partition for Resident Area.o, 12-25
12.22 RESCOM—Access Resident Common BIockvvrunnnn.n. 12-26
12.23 RESLIB—Access Resident Library i e 12-27
12.24 RESSUP—Resident Supervisor-Mode Library 12-29
12.25 RBNDSEG—Round Segmentt 12-30
12.26 STACK—Declare Stack Size i, 12-31
12.27 SUPLIB—Resident Supervisor-Mode Library 12-32
12.28 TASK—Program Name for SYSTAT i, 12-33
12.29 TSKV—Task SST Vector T 12-34

12.30 UNITS—Maximum Number of UnitsorChannels 12-35

12.31 VARRAY - Virtual Array Specificationand Usage. 12-36
12.32 VSECT—Virtual Program Section 12-38
1233 WNDWS—Number of Address Windows 12--39

Chapter 13 Overlay Description Language (ODL)

13.1 ODL Command Line i i e 131
13.2 The [END Command i 13-2
13.3 The FCTR Commandttt 13-2
134 The NAME Command i i 13-2
13.5 The .PSECT Command ittt 13-3
13.6 The . ROOT Command i, 134
13.7 Indirect Command Files e e 13-6
Appendixes

Appendix A Error Messages

Appendix B Task Builder Input Data Formats

B.1 Global Symbol Directory e 2-3
B.1.1 Module Name e e 2-5
B.1.2 Control Section Name i B-5
B.1.3 internal Symbol Name B-6
B.1.4 Transfer Address o e B-8
B.1.5 Global Symbol Name B-7
B.i.8 PSECTName e e e e B-8
B.1.7 Program Version Identification B-10
B.1.8 Mapped Array Declaration (Type 7). it B-10
B.1.9 Completion Routine Definition (Type 10) B—11
B.2 End of Global Symbol Directory B-12
B.3 Text Information L e B-i2
B.4 Relocation Directory e B-14
B.4.1 Internal Relocation e B-15
B.4.2 Global Relocation. e e B-16
B.4.3 Internal Displaced Relocation B-16
B.4.4 Global Displaced Relocation B-17
B.4.5 Global Additive Relocation. B-18
B.4.6 Global Additive Displaced Relocation B-18

B.5

B.6

B.4.7 Location Counter Definition 000 ..., B-19

B.4.8 Location Counter Modification B-20
B.4.9 Program Limits e B-20
B.4.10 PSECT Relocation B-21
B.4.11 PSECT Displaced Relocation B-21
B.4.12 PSECT Additive Relocation B-22
B.4.13 PSECT Additive Displaced Relocation B-23
B.4.14 Complex Relocation i B-24
B.4.15 Additive Relocation. B-26
Internal Symbol Directory Record B-26
B.5.1 Overall Record Format B-27
B.5.2 TKB-Generated Records (Type 1) B-28
B.5.2.1 Start-of-Segment ltem (Type 1) B-28
B5.2.2 Task Ildentification Item (Type 2) B-29
B.5.2.3 Autoloadable Library Entry Point ltem (Type 3) B-30
B.5.3 Relocatable/Relocated Records (Type 2) B-30
B.5.3.1 Module Name ltem (Type 1) B-31
B.5.3.2 Global Symbol ltem (Type 2) B-32
B.5.3.3 PSECT ltem (Type 3) oot et B-32
B.5.3.4 Line-number or PC Correlation ltem (Type 4) B-34
B.5.3.5 Internal Symbol Name ltem (Type 5) B-34
B.5.4 Literal Records (Type 4) ittt i e B-36
Endof Module e e B-36

Appendix C
C.1

C.2

C3

C.4

C.5

Executable File Structure

Label Block Group e e e C-2
Header e e C-6
c.2.1 Low Core Contextt iiinnnnnn c-9
Overlay Data Structurettt e e C-11
C.3.1 Autoload Vectors for Conventional Tasks C-13
Cc.3.2 Segment Descriptor e C-14

C3.2.1 Autoload Vectors for |- and D-Space Tasks C-17
C.3.3 Window Descriptor e c-18
C.34 Region Descriptor C-19
Root Segment e e e C-19
Overlay Segments e e C-19

Appendix D

Reserved Symbols

Appendix E

E.1

Improving Task Builder Performance

Evaluating and Improving Task Builder Performance. E-1
E.1.1 The Task Builder Work File E—1
E1.2 Input File Processing E-3

xi

Index

Examples
3-1 Overlay Description of Memory AllocatonMap 3-7
4-1 First Page of Map File for Sample Program 4-10
4-2 Excerpts from Map File for Second Build of Sample Program 4-12
4-3 First Page of Map File for Third Build of Sample Program 4-16
7-1 VSECT2.CMD o e 7-20
7-2 Source Listing for VSECT2.FTN i it 7-21
7-3 Task Builder Map (Edited) for VSECT2.TSK i 7-23
74 VSECT.CMD e e e 7-24
7-5 Source Listing for VSECT.FTN e 7-25
91 Code for SUPER.MAC e 9-9
9-2 Memory Allocation Map for Super o 9-10
9-3 Completion Routine $CMPCS from SYSLIB.OLB. 9-11
9 Code for TSUPMAC e 9-14
9-5 Memory Allocation Map for TSUP o oo 9-16
111 Memory Allocation (Map) File. e 11-27
12-1 A Task Using a Virtual Array with the OVR Attribute 12-36
Figures
1-1 Steps in Creating a Program e 1=1
1-2 The Task Builder Resolves Global References 1-2
1-3 The Task Builder Constructs the Overlays You Specify i-4
2—1 You Tell the Task Builder Which Libraries to Include 2~1
2-2 Job Area: Two User Programs i 2-3
2-3 Disk and Resident Libraries 2-8
2-4 Clustered Resident Libraries L, 2-183
3-1 The ODL File Is Your "Blueprint" for Overlays 3-1
3-2 Outlining the Call Structure i i 3-2
3-3 A Simple Overlay in Memory e e 3-3
34 Outline of First Call Structure for Example 3-8
3-5 Outline of Second Call Structure for Example, 3-9
3-6 Separate Paths inan Overlay Structure 3-11
3-7 Resolving Global Symbols 3-13
3-8 Resolving Global Symbols from Disk Libraries 3-14
4— Co-Trees Save More Space Than Simple Overlays 4-1
4-2 Putting Aand Binthe Root. 4-2
4-3 A Co-Tree Structure e 4-2
44 How a Co-Tree Is Loaded During Program Execution 44
4-5 Co-trees Save More Space When Pieces Are the Same Size 4-5
4-8 Cail Structure for Sample Program 4-8
4-7 First Build Structure for Sample Program, 4-9
4-8 Structure for Second Build of Sample Program 4-10
4-9 Sketch of the Structure for Second Build of Sample Program 4-14
4-10 Structure for Third Build of Sample Program 4-15
5-1 The Easiest Way to Use Autoload Indicators 5-1

xii

5-2

61
6-2

7-1
7-2
7-3
7-4
8-1
82
o1

9-2

PRTETLE

B-7

B-9
B-10
B—11
B-12
B-13
B-14
B-15
B-16
B-17
B-18
B-19
B—20
B-21
B-22
B-23
B-24
B-25
B-26
B-27
B-28
B—29
B-30
B—31
B-32
B33

The Four-Word Structure of a Vector Autoload 52

An Overlay Structure Without Autoload Vectors 5-3
The Task Builder Works with Program Sections 6-1
Allocating Space for Global Program Sections 6-3
Allocation of Program Sections for IN1, IN2,and IN3 6—4
Memory-Resident Overlays 7-5
Using a Null Memory-ResidentOverlay 7-9
Overview of How Inter-Cluster-Library Calls Work 7-11
VSECT OptionUsage i e et et e 7-16
Conventional Task Linked to a Region in |- and D-Space System 8-3
I- and D-space Task Mapping in an |- and D-space System 84
Mapping of a 24K Word Conventional User Task Linking to a 16K Word

Supervisor-Mode Library e 9-3
Mapping of a 40K Word |- and D-Space Task Linking to an 8K Word

Supervisor-Mode Library e 94
Overlay Configuration Allowed for Supervisor-Mode Libraries 9-20
General Object Module Format B-2

GSD Record and Entry Format i B4
Module Name Entry Format. i e B-5
Control Section Name Entry Format B-6
Internal Symbol Name Entry Format B-6
Transfer Address Entry Format. B-7
Global Symbol Name Entry Format B-7
PSECT Name Entry Format. i B-8
Program Version Ildentification Entry Format B-10
Mapped Array Declaration Entry Format B-11
Completion Routine Entry Format B—11
End-of-GSD Record Format. B-12
Text Information Record Format B-13
Relocation Directory Record Format B-15
Internal Relocation Entry Format B-16
Global Relocation Entry Format B-16
Internal Displaced Relocation Entry Format B-17
Global Displaced Relocation Entry Format B-17
Global Additive Relocation Entry Format B-18
Global Additive Displaced Relocation Entry Format B-19
Location Counter Definition B-19
Location Counter Modification B-20
Program Limits Entry Format B-20
PSECT Relocation Entry Format B-21
PSECT Displaced Relocation Entry Format B-—22
PSECT Additive Relocation Entry Format. B-23
PSECT Additive Displaced Relocation Entry Format B-24
Complex Relocation Entry Format. B-25
Additive Relocation Entry Format B-26
General Format of Al ISD Records B-27
General Format of a TKB-Generated Record B-28
Format of TKB-Generated Start-of-Segment kem (1) B-28
Format of TKB-Generated Task Identification ltem (2) B—29

xiii

B-34 Format of an Autoloadable Library Entry Pointltem (3) B-30
B-35 Format of a Module Name ltem (Type 1) i, B-31
B-36 Format of a Global Symbol ltem (Type 2) B-32
B-37 Formatof a PSECT ltem (Type 3) it it B-33
B-38 Format of a Line-Number or PC Correlation Item (Type 4) B-34
B-39 Format of an Internal Symbol Name ltem (Type 5) B-35
B40 FormatofaliteralRecord Type B-36
B—41 End-of-Module Record Format i, B-36
C-1 TaskImageon Disk i C-1
Cc-=2 Label Block Group e e C-3
Cc-3 Task Header Fixed Part i, c—7
c+4 Task Header Variable Part i Cc-8
C-5 Vector Extension Area Format i C-10
c-6 Task-Resident Overlay DataBase i, C-11
Cc—7 Task-Resident Overlay Database for and I- and D-Space Overlaid Task C-12
Cc-8 Autoload Vector Entry e e C-13
Cc-9 Segment Descriptor e e C-14
C—10 Sample Treet e e C-16
C—-11 Segment Linkage Directives. i e Cc-16
C-12 Autoload Vector Entry for |- and D-Space Tasks C-17
C—13 Window Descriptor e Cc-18
C—14 Region Descriptor e Cc-19
Tables
2-1 Disk Libraries Used with RSTS/E i i i 2-4
2-2 Applicable Libraries for the CLSTR Option 2-12
6-1 Program Sections for IN1, IN2, ANDIN3 64
7-1 Format of Region Descriptor it 7-18
7-2 Bit Meanings inthe Mask Value, 7-26
7-3 Values for the First Fast-Mapping Call Parameter 7-29
8-1 Mapping Comparison Summaryttt i e e 8-2
11-1 Task Builder Switches e 111
11-2 Input Files for /ISS Example o i e e 11-34
12—1 Task Builder Options i e e 12—1
B-1 GSD Entry Types . . . o it ittt e s B-3
B-2 Types of Entries for Relocation Directory Records B-14
B-3 Defined Operation Codes for the RLD Command Word B-24
C— Task and Resident Library Data i c4
C-=2 Contents of SRTS/Common Name Block Cc-6
D Task Builder Reserved Global Symbols, D-1
D-2 PSECT Names Reserved by the Task Builder. D-3

Xiv

Preface

Objectives

This manual describes how to use the RSTS/E Task Builder to link your compiled
or assembled programs and subprograms into an executable program file to run
on RSTS/E.

On RSTS/E systems, your programs must be linked by the Task Builder if they
were written in languages for the compilers listed below. Note that this manual
is current for the versions shown in parentheses. Information about using the
Task Builder may change for subsequent versions.

Compiler (Version)

BASIC-PLUS-2 (V2.6)
FORTRAN-77 (V5.3)
PDP-11 C (V1.0)
COBOL-81 (V3.0)
DIBOL (V6.1)

This manual also applies to the MAC assembler (V5.5) for MACRO programs.

Audience

Although you do not need to be a computer expert to use this manual, you should
have a general understanding of computer languages and be familiar with using
programs and subprograms.

Document Structure

This manual contains four parts, as indicated by the divider sheets preceding
each section, and five appendixes:

Part I Tells all you need to know to get a program built with the right li-
braries to run on a RSTS/E system. The two types of libraries (disk
libraries and memory-resident libraries) are explained, along with
details on how to link them with your program.

XV

xvi

Part II

Part III

Part IV

Discusses overlays. Chapter 3 describes how to specify an overlay
structure for programs that are too large to fit in the available space.
The key statements of the Overlay Description Language (ODL) are
described and examples are given. Chapter 4 extends the discussion
of overlays by describing a special overlay structure, called co-trees.
Chapter 5 explains the autoload indicator, an ODL symbol, and tells
how you can use this symbol to save some space in your program.
Chapter 6 describes overlays from another point of view: working with
units called "program sections." Special ODL commands are available
to deal with these units; they are described in this section, and more
examples are given.

Describes system aspects of Task Building. Chapter 7 describes how
to build your own memory-resident library, and how to build your own
cluster library. Chapter 8 describes techniques for revectoring cluster
libraries, and Chapter 9 describes the use of instruction and data (I- &
D-) space.

Is a reference source. Chapters 10, 11, and 12 describe the full
Task Builder command format, switches, and options, respectively.
Chapter 13 describes the Overlay Description Language in detail.

Appendix A describes error messages provided by the Task Builder.
Appendixes B and C describe internal data formats used by the Task
Builder and the format of the executable file produced by the Task
Builder. Appendix D lists and describes global symbols and program
section names reserved for use by the Task Builder. Appendix E
describes how to improve Task Builder performance.

MK-00565-00

Conventions

UPPERCASE COMMANDS In general command format descriptions, UPPERCASE

indicates commands that you must type as shown.

lowercase commands Indicate variables that you supply. For example:

.ROOT structure

Red Print In the Task Builder command examples, user input is

shown in red. The Task Builder’s responses and prompts
are printed in black. For example:

ENTER OPTIONS:
TKB> UNITS=8

The dollar sign is the default DCL prompt.

Summary of Technical Changes

RSTS/E V10.0 is a major release of the RSTS/E PDP-11 operating system. This
manual describes the following technical changes to the Task Builder function:

There are two new switches: the /FM and /FO switches.
Four new options are available: RESSUP, SUPLIB, VARRAY AND VSECT.

Prior to RSTS/E V9.7, when a library was included in a task build, whichever
APRs were assigned to the RESLIB or LIBR libraries included both I- and
D-spaces. Beginning with V9.7, both the I- and D-spaces are initially assigned
to the libraries; however, the COMMON and RESCOM options can be used
to reallocate the D-space APRs to data-only regions. This feature, called
"concurrent libraries", allows for more efficient use of memory when I-only
code libraries (such as RMS) are used. Note that this feature is available only
on CPUs that support separate I- and D- spaces.

Xvii

Chapter 1

Introduction

You need to use the Task Builder (TKB) if you write programs on RSTS/E systems
in BASIC-PLUS-2, FORTRAN-77, PDP-11 C, COBOL-81, DIBOL, or the MACRO
assembly language using the MAC assembler.

The compilers and assemblers associated with these languages translate your
programs and subprograms (called source code) into machine instructions
(object code). The Task Builder applies the final touches, converting the object
code produced by the compilers to code that can be executed by the computer.
Figure 1-1 shows the steps involved in creating a program.

Figure 1—1: Steps in Creating a Program

MAIN.SRC

PROGRAM
A = BC

END

SUB.SRC

SUB-END

(DCREATING
THE
SOURCE

(EDT OR OTHER
EDITOR)

AN

MAIN.OBJ

011
101

1567

SUB. OBJ

0 1110

101

253

(2)COMPILING
OR

(MAC, FORTRAN
BP2, DIBOL,
COBOL)

1000
2000

2263
2375

PROGRAM.TSK

(RSTS/E INFORMATION)

(STACK)

(MAIN CODE)

(LIBRARY ROUTINES)

(SUB CODE)

(LIBRARY ROUTINES)

(TKB)

MK-00566—00

Introduction 1-1

1.1 What the Task Builder Does

The Task Builder handles two basic functions: linking and producing overlays.

1.1.1

1-2

Linking

Linking is necessary because you seldom write programs as one unit. It is
easier to work with programs that are written as modules — programs and
subprograms—that you can separately design, code, debug, and maintain.

Even if you code your program as one main program, with no separately assem-
bled or compiled subprograms, every compiler translates some source statements
into calls to subroutines kept in libraries. For example, all the compilers gener-
ate calls to library subroutines to perform I/O or do mathematical calculations.
Libraries are provided with the system and with the compilers available with
RSTS/E systems.

The Task Builder links these separate modules—your main program, subpro-
grams, and library routines—together in the order you specify, resolving any
references that cross module boundaries. For example, Figure 1-2 shows a call to
SUBL1 from the program MAIN.

Figure 1-2: The Task Builder Resolves Global References

OCTAL
ADDRESS
a EIB 0
'I _ MAIN
CALL SUBHT
11216
11216
SUB SUBH1
SUBEND
RUN $TKB
TKB>MAIN = MAIN, SUB1, LB:F4POTS /LB
TKB> /¢ MK-00567-00

Introduction

The command to the Task Builder (the line after RUN $TKB) says that these
two modules are to be linked together. In addition, any routines necessary from
the FORTRAN library are to be linked with these two modules. To simplify, the
figure shows only the linking of MAIN and SUB1. Part of the linking process
involves generating the proper succession of addresses. As Figure 1-1 showed,
the compilers and assemblers generate what are called "relative addresses”; the
first address of each module (MAIN and SUB1) is numbered 0 at the compilation
stage. When the Task Builder links modules, it changes the addresses of the
second and following modules to begin where the addresses of the previous
module left off. So, the final addresses for the linked program, as assigned by the
Task Builder, range upward from 0 in succession.

The second aspect of linking is resolving references to what are called "global
symbols." At compile time, for example, MAIN’s reference to SUB1 cannot be
resolved. SUB1 is flagged as a global reference (somewhere in the "world outside
of MAIN") when MAIN is compiled. Likewise, when SUB1 is compiled, it is
again flagged as a global symbol; it will serve as an entry point from the "outside
world."

The Task Builder, as shown in Figure 1-2, keeps track of the addresses assigned
to global symbols and substitutes the address for the entry point of SUB1 into the
call in MAIN. Then, when the program is run, and the call is executed, control
transfers to address 11216, the entry point for SUBL.

1.1.2 Overlays

The second necessary service that the Task Builder provides is a means to
construct overlays. The amount of memory from which programs can be executed
is limited on PDP-11 computers to 32,000 words. On RSTS/E systems, for reasons
described in Chapter 2, there are further limitations. If your program is too large
to fit in the space available, you must specify how you want it overlaid—such that
sections of code and data can be called into memory at different times (the new
sections "overlaying” the old).

Figure 1-3 shows the concept behind overlays. The Task Builder links both the
modules SUB1 and SUB2 to start at address 15,726. The Task Builder then
inserts code into MAIN such that, when MAIN’s call to SUB2 is executed, SUB2
will replace SUBI, called and executed previously. SUB1 does not have to be the
same length as SUB2, but both will be linked to start at the same address.

Figure 1-3 also shows something called the "high segment" in high address space.
This code is the main reason your program does not have the full 32,000 words
available on PDP-11 systems. For further information, see Chapter 2.

Introduction 1-3

Figure 1-3: The Task Builder Constructs the Overlays You Specify

RUN $ TKB
TKB> PROG =0OVR/MP
TKB>//

(THE 'MAP FILE’
OVR.ODL CONTAINS

AN OVERLAY MAIN
DESCRIPTION)

15,726

21,322

(HIGH
SEGMENT)

(32 K) MK—00568-00

1.2 Relationship to the DCL LINK Command

1-4

Introduction

You can use the DCL LINK command to link your programs, as described in the
RSTS/E DCL User’s Guide. Like all DCL commands, the LINK command is

somewhat simpler to use, compared to typing a RUN command to execute TKB.
However, the LINK command does not offer all the features and flexibility of the
Task Builder. Note that the DCL LINK command does not work any faster than
running TKB; LINK also runs the Task Builder to perform the requested action.

Partl
Getting Started

Chapter 2

Building Programs

This chapter tells how to build nonoverlaid programs. How large can a program
be before it must be overlaid? The answer depends on the language you used to
write your program; Section 2.1 discusses some specifics. The library routines
built into your executable program also affect its size (Figure 2—1). Section 2.2
names and describes the disk libraries currently provided by Digital for the
various languages. Section 2.3 discusses the Task Builder command line in
general, and Section 2.4 gives specific examples for building programs written in
each of the various languages.

Figure 2-1: You Tell the Task Builder Which Libraries to Include

MAIN
F4POTS

(_/<J % SUB
210
@ |0

RUN $ TKB

TKB>MAIN, SUB1,LB: F4POTS/LB

TKB>//

MK-00569-00

Building Programs 21

2.1 Job Area

As Chapter 1 mentions, the hardware imposes a limit on your program’s size.
The PDP-11 computer handles instruction and data in terms of a "16-bit word."
A 16-bit word can reference 2 18 (65,536 10) bytes, or 32,768 words. Thus, unless
your program uses user-mode I- and D-space, 32K words is the maximum area of
computer memory you can work with at one time.

If you have a PDP-11/44, 11/45, 11/50, 11/53, 11/565, 11/70, 11/73, 11/83, 11/84,
11/93 or 11/94 system, you can use user-mode I- and D-space. This feature lets
you extend your task to 64K words of virtual address space (32K-word maximum
of instruction space, and 32K-word maximum of data space). See Chapter 7 for
more information on user-mode I- and D-space.

2.1.1

Your Program Within the Job Area

Except in special applications such as BASIC-PLUS and RT-11, the monitor loads
programs. Monitor-loaded programs include BASIC-PLUS-2, PDP-11 C, PDP-11
COBOL, COBOL-81, DIBOL, FORTRAN-77, and MACRO programs assembled
with the MAC assembler.

This section describes how your program fits within the job area if your program
uses a run-time system.

The Task Builder constructs your executable program so that it fits within the
job area in the low address space, beneath the run-time system (see Figure 2-2).
Note the way your job area is constructed of various regions in physical memory.

For example, Figure 2-2 shows physical memory addresses for user program 2
that are actually higher than the so-called "hiseg" or run-time system. Yet the
Task Builder, when it builds a program, constructs addresses for the program
as though it operated within one 32K-word job area in memory. The RSTS/E
monitor resolves this difference by using active page registers (APRs).

The job area is sometimes called "virtual address space," because it appears to
you that your program and its associated run-time system reside in a contiguous
32K-word area. As Figure 2-2 shows, this is not actually the case in physical
memory.

2-2 Building Programs

Figure 2-2: Job Area: Two User Programs

PHYSICAL MEMORY

VIRTUAL ADDRESS
SPACE

JOB1 o
4K
8K -

12K
16K
20K
24K 4 USER PROGRAM
28K -

32K

USER PROGRAM

JOB2 o

4K USER PROGRAM
8K

12K 4
16K 4
20K
24K A
28K
32K

USER PROGRAM

MK-00570-00

2.2 Libraries

As mentioned in Chapter 1, every compiler translates some source statements
into calls to subroutines. These subroutines are kept in what are called
"libraries." Digital supplies libraries of subroutines used with each language.
Because the Task Builder has no way of knowing the source language you used,
you must tell it what libraries contain routines that are referenced by your
program. Two general types of libraries may be available on your system: disk
libraries and resident libraries.

Building Programs 2-3

2.2.1 Disk Libraries

The libraries listed in Table 2—-1 are currently shipped with RSTS/E and its
associated languages. Note that the table is current for the versions of the
software mentioned in the Preface. As new versions of languages are released,
library names and contents may change. In addition, other products available
with RSTS/E can have associated libraries, and your own installation may have
generated its own libraries.

One way to find out what libraries are available is to get a directory of the system
library device (LB:) with a wildcard file name and a file type of .OLB. (OLB
stands for object library.) For example:

DIR LB:*.OLB

Name .Typ Size Prot DR3:[1,1]
SYSLIB.OLB 220 < 40>

RMSLIB.OLB 300 < 40>
BP20TS.OLB 225 < 40>
COBLIB.OLB 178 < 40>

Table 2—-1 describes some of the libraries in this account that your program may
use.

Table 2-1: Disk Libraries Used with RSTS/E

Disk Library

Name Description

SYSLIB.OLB The system library. Contains many routines used by programs
written in MACRO (for the MAC assembler) and the higher-level
languages. The Task Builder always searches this library to resolve
undefined symbols. You do not need to specify it in a Task Builder
command line.

RMSLIB.OLB Contains routines needed if you use RMS (Record Management
Services) on RSTS/E systems.

RMSDAP.OLB Contains routines needed for network record access through RMS
on RSTS/E systems.

BP20TS.OLB Contains routines needed to run your BASIC-PLUS-2 program
under the RSX run-time system.

DBLLIB.OLB Contains routines needed to run your DIBOL program if it uses the

DIBOL Management System (DMS) for I/0. Note that you must also
declare a resident library (DBLRES) if you use this disk library. See
Section 2.3.4 for information on how to specify resident libraries.

DBRLIB.OLB Contains routines needed to run your DIBOL program if you use the
Record Management System (RMS) for I/O. Note that you must also
declare a resident library (DBRRES) if you use this disk library. See
Section 2.3.4 for information on how to specify resident libraries.

COBLIB.OLB Contains routines needed to run your PDP-11 COBOL program. If
you use this library rather than COBOVR.OLB, your program will
take more memory but will run faster.

(continued on next page)

2-4 Building Programs

Table 2—1 (Cont.): Disk Libraries Used with RSTS/E

Disk Library
Name Description
COBOVR.OLB Contains routines needed to run your PDP-11 COBOL program if

it is overlaid. You use this library if you use the PDP-11 COBOL
segmentation facility. However, if you use this library rather than
COBLIB.OLB, your program will run slower, as the routines are
called in as needed and overlay each other.

C81CIS.OLB Contains routines needed to run your COBOL-81 program if the
program was compiled with the /CIS switch. This is the normal
default if your computer has the Commercial Instruction Set (CIS)
option.

C81LIB.OLB Contains routines needed to run your COBOL-81 program if the
program was compiled with the /-CIS switch. This is the normal

default if your computer does not have the Commercial Instruction
Set (CIS) option.

FDVDBG.OLB Contains routines needed if you use the FMS form driver with
debug mode support.

FDVLIB.OLB Contains routines needed if you use the FMS form driver without
debug mode support.

F4POTS.OLB Contains routines needed to run your FORTRAN-77 program.

F4PRMS.OLB Contains routines for FORTRAN-77 programs using RMS (Record

Management Services) for I/O.

2.2.2 Resident Libraries

In addition to disk libraries, you may also have to work with resident libraries
on RSTS/E systems. "Resident" means residing in computer memory. The system
manager defines libraries as resident so that they can be shared by more than
one user. Instead of building routines into your program (as is done with disk
libraries), you use a copy of the library. The copy is resident in memory as long
as you or someone else is using it.

The Task Builder links your program to appropriate routines in the resident
library by a technique called "mapping.” Mapping is the process of accessing
different logical areas of memory. With the mapping technique, many programs
can use routines from the same space in computer memory. The system manager
usually defines a library to be resident when it is heavily used. In such cases,
less overall computer memory is taken by a resident library than by having each
program include its own copy of routines from the library.

Figure 2-3 shows the difference between disk and resident libraries. For disk
libraries, the Task Builder takes a copy of each routine that you reference in your
program and builds it into your program. Note that a copy of RTNA has been
built into both PROG1 and PROG2 in this figure. However, both programs can
reference a resident library from the same area of physical memory.

Building Programs 2-5

Figure 2-3: Disk and Resident Libraries

PROGH PROG2

Y
S

RTN E
RTN A
RTN F u
RTN B RTN A

RTN D
RTN A RTNE

RTN F

RTN C

RTN B

DISK LIBRARY: COPIES OF ROUTINES ARE BUILT INTO EACH PROGRAM.

PROGH1 PROG2
PHYSICAL
MEMORY
RESIDENT
/ LIBRARY \
RESIDENT RESIDENT
LIBRARY LIBRARY

RESIDENT LIBRARY: MANY PROGRAMS CAN USE ONE COPY OF THE LIBRARY IN MEMORY.

MK-00571-00

You need to be aware of the distinction between disk and resident libraries
because the Task Builder commands that cause a link to resident libraries differ
from those for disk libraries. You can tell what resident libraries are on your
system by running the SYSTAT program. One section of the system status report
is headed "Resident Libraries:". You can request just this section of the report by
using the SHOW LIBRARIES DCL command.

The following example shows resident libraries. The RMS libraries are sup-
plied with all RSTS/E systems. They contain routines providing RMS (Record
Management Services) for input/output. The two BASIC resident libraries,
BP2RES and BP2SML are components of the layered product BASIC-PLUS-2 and
are discussed further in Section 2.2.3.

2-6 Building Programs

$ SHOW LIBRARY
Resident Libraries:

Name Prot Acct Size Users Comments
RMSRES < 42> DR1l:[0,1] 4K 1 Temp, Addr:733
RMSLBB < 42> DR1:[0,1] 4K 1 Temp, Addr:737
RMSLBA < 42> DR1:[0,1] 4K 0 Temp, Addr:741
RMSLBC < 42> DR1l:[0,1] 3K 0 Non-Res, Addr:745
RMSLBD < 42> DR1l:[0,1] 2K 0 Temp, Addr:748
RMSLBE < 42> DR1l:[0,1] 4K 0 Temp, Addr:750
RMSLBF < 42> DR1l:[0,1] 4K 0 Temp, Addr:754
BP2RES < 42> DR1l:[0,1] 19K 0 Non-Res, Addr:760
BP2SML < 42> DR1l:[0,1] 8K 0 Temp, Addr:779

The Task Builder allows your program to access up to seven resident libraries on
RSTS/E systems.

2.2.3 Comparison of Disk and Resident Libraries

Resident libraries require a large amount of physical memory. However, if many
tasks run at the same time, resident libraries reduce the total amount of physical
memory required by these tasks.

For example, BP2ZRES contains most of the BASIC Object Time System (OTS),
that is, most of the library routines supplied with BASIC-PLUS-2. It occupies
19K words of physical memory and takes 8K words of virtual address space in
your program. BP2SML contains a subset of the most commonly used BASIC
routines. It uses 8K words of physical memory and 8K words of virtual address
space. Even though BP2RES takes up 19K words of physical memory, that would
be less than, say five running copies of a program each using 4K words of BP2
routines built into each copy from a disk library (20K words total).

Therefore, the main advantage of using resident libraries is that their code can
be shared by many programs. In addition, task building is much faster when
using resident libraries because the Task Builder does not have to access the
library on disk as often. If you program in BASIC-PLUS-2, note that the resident
libraries (BP2SML and BP2RES) do not contain the entire OTS, therefore, most
BASIC-PLUS-2 programs will reference some entry points within the disk library
BP20TS.OLB.

2.3 How to Run the Task Builder

To run the Task Builder, type:
RUN $TKB

Or, if the system manager has installed TKB as a concise command language
(CCL) command, you can simply type:

TKB

The Task Builder responds with the prompt TKB> and you type a command. If
TKB has been installed as a CCL command, you can type TKB and the command
on the same line:

TKB command

We describe the format of Task Builder commands below. Note that the Task
Builder allows much flexibility in the way you can specify commands. The
following sections show only the simplest and most direct way. For a detailed
description of all the features available, including command file input to the Task
Builder, see Chapter 10.

Building Programs 2-7

2.3.1 Command Line

The Task Builder produces up to three files as output from its analysis of the
object files you specify as input. The general form of the command is shown
below in lowercase letters:

RUN $TKB
TKB>task-file,map-file,symbol-file=object,....,object
TKB>//

where:

task-file is the file specification you give to name the executable program file
produced by the Task Builder. If you do not want this file produced,
simply type the comma. If you leave off the file type from the file
specification, the Task Builder supplies a default type of .TSK.

map-file is the file specification you give to name the memory map file
produced by the Task Builder. This map can be very useful if you
are doing overlays; it is not particularly helpful otherwise. See
Chapters 3, 4, and 6, where overlays are discussed, for a description
of the map file.

If you do not want this file, simply type the comma delimiter. If you
leave off the file type from the file specification, the Task Builder
supplies a default type of .MAP.

symbol-file is the file specification you give to name the symbol-table file
produced by the Task Builder. This file is necessary if you want to
build your own resident library. It is also used by the COBOL-81
symbolic debugger. It is not useful otherwise. See Chapter 7 for a
description of the symbol file.

If you do not want this file, simply leave out the file specification.
If you leave off the file type from the file specification, the Task
Builder supplies a default type of .STB.

object,... are the object files produced from the assembly or compilation of
your program and subroutines, plus disk library files containing
subroutines needed to complete the program. These files are input
to the Task Builder. The Task Builder combines these object files in
the order you specify, and resolves cross-references to produce the
task file.

You signify disk library files by appending the switch /LB to the file
specification. This notifies the Task Builder that the file named is

a library to be searched. The library is searched for routines that
resolve references to undefined global symbols in all files to the left
of the library file in the input list. So, be sure to put the library to
the right of all object files that may contain references to routines
in the library. (Usually, you put the library or libraries at the end of
the input list.)

If you do not specify file types, the Tagk Builder assumes a default
type of .OBJ for object files and a default type of .OLB for object
libraries.

If you give a device or project-programmer number in a file specifi-
cation in the input list (to the right of the equal sign), it applies to
all file specifications to the right in the list.

Consider a build using MACRO object programs, for example. Assuming that
TKB has been installed as a concise command language (CCL) command, a
suitable command line is:

TKB EXE1l, EXEl,EXE1=0BJl,0BJ2,LB:RMSLIB/LB

2-8 Building Programs

The Task Builder constructs the executable file EXE1.TSK, the map file
EXE1.MAP, and the symbol table file EXE1.STB from the files OBJ1.0BJ,
OBJ2.0BJ, and relevant modules from the library LB:RMSLIB.OLB. (The rel-
evant modules are those referenced in your program. You may have referred to
them in source statements, or the MAC assembler may have translated source
statements into calls referring to this library.)

To omit the map file, type:
TKB EXE1, ,EXE1=OBJ1,0BJ2,LB:RMSLIB/LB

To produce only the executable file, type:
TKB EXE1=OBJ1,OBJ2,LB:RMSLIB/LB

To produce no output files, type:
TKB=OBJ1, OBJ2,LB:RMSLIB/LB

The example above is useful if you are running the Task Builder only to see error
messages; that is, a diagnostic run.

Note how project-programmer numbers and device designators work when they
are given for a file specification in the input list:

TKB=OBJ1, [2,243]0BJ2,0BJ3,LB:RMSLIB/LB, MYLIB/LB

For this command, the Task Builder would search for the file OBJ1.0OBJ in the
user’s account and for the files OBJ2.0BJ and OBJ3.0BJ in the account [2,243].
The project-programmer number also applies to the library; that is, the Task
Builder would look on the system library disk for a file RMSLIB.OLB under the
account [2,243]. Likewise, since the device name LB: also applies to MYLIB,
the Task Builder looks on the system library disk under account [2,243] for the
library file MYLIB.OLB.

If you do not want this to happen, respecify the project-programmer number
and device that you want to apply to remaining files. The simplest way to
accomplish this is to assign a logical name to the account [2,243] and use the
system-wide logical SY: to "get back to" your account on the public disk structure.
For example:

ASSIGN SY:[2,243] JOHN
Ready
TKB=OBJ1, JOHN:0BJ2, SY:0BJ3, LB:RMSLIB/LB, SY:MYLIB/LB

This can also be accomplished using multiline commands, as shown in the
following section.

2.3.2 Multiline Command

Because you can specify any number of input files to the Task Builder, you
sometimes need to use more than one line to enter a command.

If you type RUN $TKB or just TKB, so that the Task Builder prompts with
TKB>, it continues prompting for input until it receives a line consisting only of
two slash characters (/). For example:

RUN $TKB

TKB> IMG1, IMG1, IMG1=SY:[2,243]FILEl
TKB> FILE2,FILE3,LB:RMSLIB/LB

TKB> MYLIB/LB

TKB> //

Building Programs 2-9

The above sequence produces the same result as the single-line command:
TKB IMG1, IMGL, IMGl=JOHN:FILEl,SY:FILE2,FILE3, LB:RMSLIB/LB, SY:MYLIB/LB

You must specify the output file specifications and the equal sign on the first line.
You can begin or continue input file specifications on subsequent lines.

2.3.3 Options

You may need to specify options to build a particular program. An option modifies
the action taking place during the build. To include options, you must use the
multiline format as shown below. When you type a line consisting of a single
slash (/), the Task Builder assumes that the last input file has been entered and
prompts for options by displaying "ENTER OPTIONS:" and another "TKB>"
prompt.

RUN $TKB
TKB>command
TKB>continued-command
TKB>/

ENTER OPTIONS:
TKB>option=value:value
TKB>//

The format for options is shown here because some languages require certain
options for a Task Build. If your language manual set includes a user’s guide, you
will probably find helpful pointers about necessary or particularly useful options
for your language. Table 12-1 in the Reference Section of this manual (Part IV)
gives an overview of all the options available for the Task Builder. The options
are then described in detail in the remainder of Chapter 12.

The options you will probably find most useful regardless of source language are
RESLIB and LIBR. You need to use these options if you need to link to one or
more resident libraries. Since resident libraries are commonly used, these options
are discussed in the following section. Some examples of these and other options
are shown in Section 2 4.

2.3.4 The LIBR and RESLIB Options

You can link to a maximum of seven user mode resident libraries using the Task
Builder on RSTS/E systems. Supervisor mode resident libraries are explained in
Chapter 9. With either the LIBR or RESLIB option, you specify that you want to
link your program to one resident library. The choice between LIBR or RESLIB
depends on whether the library is "system-owned" or "user-owned."

The LIBR option declares that your program intends to access a "system-owned"
resident library. "System-owned" simply means that the file containing the
library is located in the library account (LB:). This can be any account on any
disk, as assigned by the system manager.

2-10 Building Programs

"User-owned" means that the library can be on some disk or account other than
LB:. With the RESLIB option, you specify the disk containing the resident library
files.

The formats for the options are:
LIBR=name:access-code[:apr]
RESLIB=file-specification/access-code[:apr]

Note that with the LIBR option, you name only the resident library. The Task
Builder looks for the appropriate files (name.STB and name.TSK) on the system
library disk (LB:) when it is building the code necessary to load the resident
library. With the RESLIB option, you specify a complete file specification. This
names the device, account, and file name of the executable file to be loaded. You
do not specify the file type. The Task Builder uses the executable file and the
symbol table file for the library, and requires that they have file types of .TSK
and .STB.

The access-code is either RW (read/write) or RO (read-only), indicating how your
program intends to access the library. (It will be RO for Digital-provided resident
libraries such as RMSRES.)

The Active Page Register (APR) parameter is an integer in the range of 1 to 7
that specifies the first APR reserved for the library. If you leave this parameter
off, the Task Builder assigns the highest APR it can to the resident library.

It is not really necessary to understand Active Page Registers to understand or
use the APR modifier. Think of your 32K word user job area as divided into eight
parts of 4K words each, numbered from 0 through 7. Your program occupies one
or more of the lowest-numbered segments.

You can "map" resident libraries into the area between the top of the program
and the highest address of virtual memory. The map must begin on a 4K-word
boundary. For example, suppose your program takes 6K words and the run-time
system takes 4K words of memory. You can map up to 20K words of resident
library into your job, beginning with APR 2.

NOTE

With the use of advanced programming techniques, it is possible to
use resident libraries with certain run-time systems other than RSX.
However, Digital supports the use of resident libraries only under the
RSX run-time system.

2.3.5 The CLSTR Option

You can use the CLSTR option if you need to use more than one resident library.
CLSTR lets multiple resident libraries share the same virtual address space in
your program. However, not all resident libraries available with RSTS/E can take
advantage of this feature. Table 2-2 lists those libraries to which CLSTR can

apply.

Building Programs 2-11

Table 2-2: Applicable Libraries for the CLSTR Option

Disk Library

Name Description

BP2RES Clusterable resident library for BASIC-PLUS-2 programs.

BP2SML Clusterable resident library (a subset of BP2RES) for BASIC-PLUS-2
programs.

C81CIS Clusterable resident library for COBOL-81 programs compiled with
the /CIS switch (normal default if your computer has the Commercial
Instruction Set [CIS] option).

C81LIB Clusterable resident library for COBOL-81 programs compiled with
/-CIS switch (normal default if your computer does not have the CIS
option).

DIBOLR Clusterable resident library for RMS DIBOL programs.

F4PCLS Clusterable resident library for RMS FORTRAN-77 programs.

FDVRDB Clusterable resident library for the FMS form driver with debug
mode support.

FDVRES Clusterable resident library for the FMS form driver without debug
mode support.

RMSRES Clusterable resident library for RMS-11 that supports sequential,
relative, and indexed file operations.

DAPRES Clusterable resident library for network record access through RMS.

SMRES Clusterable resident library for SORT/MERGE.

Refer to the documentation for your specific languages to see whether their
libraries can cluster.

Figure 2—4 illustrates the concept of cluster libraries. In the figure, three libraries
form a cluster for the user program: LIB1, LIB2, and LIB3. LIB1 is the "default
library"; that is, it is mapped into the high end of the user program’s address
space before any calls have been made to any library at execution time.

Figure 2—4 also illustrates that at "time 2" a call is executed to a routine in LIB3.
LIB1 is unmapped from the high-address space, and LIB3 is mapped, so the
routine can be executed. When control passes from the library routine back to
the user program (time 3), LIB3 is unmapped, and LIB1 (the default library) is
mapped again. At time 4, a call is executed to a routine in LIB2; again, LIB1 is
unmapped and LIB2 is mapped to the high-address space.

This process of mapping and unmapping proceeds throughout execution of the
user program. The resident libraries forming a cluster share the same high-
address space in the job area (virtual address space). They take much less space
from the user program than they would if all three libraries were mapped to the
virtual address space at the same time.

2-12 Building Programs

Figure 2-4: Clustered Resident Libraries

USER USER
VIRTUAL PHYSICAL VIRTUAL PHYSICAL
ADDRESS SPACE MEMORY ADDRESS SPACE MEMORY
LIB1 LIB1
USER USER
PROGRAM “,fg:::;'; PROGRAM Coram)
LIB1 LIB3 LIB3 LIB3
LIB2 LIB2
Time 1 Time 2
USER USER
VIRTUAL PHYSICAL VIRTUAL PHYSICAL
ADDRESS SPACE MEMORY ADDRESS SPACE MEMORY
LiB1 LIB1
USER USER
PROGRAM (?.E::‘rjyh) PROGRAM (ﬁg:::lt)
LIB1 LIB3 LiB2 LiB3
LIB2 LiB2
Time 3 Time 4
MK~01048-00

To use cluster libraries, use the CLSTR option. The format is:
CLSTR=default-library,library-2,...,library-5:access-code[:apr]

The first library listed in the CLSTR option is the default library. Because of the
way clustering works, only certain libraries can be default libraries. If you want
to build libraries to be clusterable, the techniques are described in Chapter 7. If
you simply want to use libraries in a resident library cluster, the Digital-supplied
libraries are designed so the language library can always serve as the default
library.

Thus, for the resident libraries listed previously, you can use either BP2SML
or BP2RES for BASIC-PLUS-2 programs, or C81CIS or C81LIB for COBOL-81
programs. As a secondary library in the cluster, you can use either FDVRES or
RMSRES or both.

Building Programs 2-13

Up to five resident libraries can form a cluster. A cluster for Digital-supplied
libraries must occupy the upper 8K words of your address space. If your site
builds its own clusterable libraries, however, these libraries can occupy their own
separate cluster, as long as the limit of five resident libraries for each task build
is not exceeded. (You can have no more than five libraries involved in clusters.)

Thus, you can cluster either of two variations of the COBOL-81 library (C81CIS
or C81LIB) with the FMS library (FDVRES) and/or the RMS library (RMSRES),
and any two of your own clusterable libraries either in the same cluster or in a

separate cluster in lower virtual address space.

Likewise, you can cluster BP2RES or BP2SML with the RMS (RMSRES) or
FMS (FDVRES) libraries or both, together with any two of your own clusterable
libraries.

The access-code is either RW (read/write) or RO (read-only). This code is an
attribute of the library itself. That is, you could not select RW (indicating your
program can read from or write to the library) if the library has been built RO.
The access-code is RO for Digital-provided resident libraries such as BP2RES,
FDVRES, C81CIS, and C81LIB. For example:

TKB>CLSTR=C81CIS, FDVRES, RMSRES:RO

The Active Page Register (APR) parameter is an integer in the range of 1 to 7
that specifies the first APR reserved for the clustered libraries. If you omit this
parameter, the Task Builder assigns the highest APR it can to the cluster (APRs
6 and 7 for the command line above).

Currently, Digital-supplied libraries are built to use the top two APRs available
to the cluster. APRs are assigned according to the following guidelines:

1. If the language library is part of a cluster, the cluster will occupy APRs 6 and
7. (You need not specify an APR parameter.)

2. If the language library is not part of a cluster and occupies the top two APRs,
such as the BP2SML resident library, the cluster will occupy APRs 4 and 5.
(You specify an APR parameter of 4.) This description applies mainly to users
who are building their own cluster libraries.

3. If a run-time system occupies the top APR (7), the cluster will occupy APRs 5
and 6. (You specify an APR parameter of 5.)

2.4 Examples of Simple Builds

The examples in this section illustrate building programs in various languages
and with various kinds of libraries. Note that in all the examples, an executable
program file is requested. You might want to request the other files once to see
what they look like. For these simple builds, however, neither the map file nor
symbol table file are particularly useful. Map files become useful when you are
working with overlays; they are described in Chapters 3, 4, and 6. Symbol table
files are chiefly useful when you are constructing your own resident libraries
(Chapter 7), or when you are using the COBOL-81 symbolic debugger.

2-14 Building Programs

241 BASIC-PLUS-2 Examples Including Disk, Resident, and Cluster Libraries

Note that RSX directive emulation code must be installed on your system in order
to use BASIC-PLUS-2 V2.0.

To build a BASIC-PLUS-2 program using disk and resident libraries, you can
type:

RUN S$TKB
TKB> PROG=0BJ1,0BJ2,0BJ3,LB:BP20TS/LB
TKB> /
ENTER OPTIONS:
TKB> LIBR=BP2SML:RO
TKB> LIBR=RMSRES:RO
TKB> UNITS=12
TKB> ASG=SY:5:6:7:8:9:10:11:12
TKB> EXTTSK=512
TKB> //

The first line tells the Task Builder to create the task image file, named
PROG.TSK. The object programs are OBJ1.0BJ, OBJ2.0BJ, and OBJ3.0BJ.
The /LB switch references the BP20TS library. LB: is the system library device,
and the Task Builder assumes a default file type of .OLB for libraries.

You end the command line and indicate that you want to enter options by
typing a single slash (/) on a separate line. The Task Builder responds with
ENTER OPTIONS: and another TKB> prompt. You then enter the LIBR option,
designating BP2SML as the resident library to be mapped read-only. RMSRES is
the RMS resident library; it also is to be mapped read-only. (Symbols not resolved
by the resident library, BP2SML, will be resolved by BP20TS.OLB.)

The UNITS option declares the maximum number of I/O channels (units) that
your program will use. The ASG option relates these channels to devices. For
instance, the following example shows a maximum of twelve channels are used
by the program. Defaults are accepted for channels 1 through 4. Channels 5
through 12 are the public structure (SY:). EXTTSK allocates an additional 512
words of memory to your program. You then end Task Builder input by typing
two slash characters (/) on a separate line.

This BASIC-PLUS-2 example shows the use of cluster libraries:

RUN S$STKB
TKB> MYPROG=PROG1, SUB1, SUB2, LB:BP20TS/LB
TKB> /
ENTER OPTIONS:
TKB> CLSTR=BP2RES, RMSRES:RO
TKB> UNITS=12
TKB> ASG=SY:5:6:7:8:9:10:11:12
TKB> EXTTSK=512
TKB> //

In this example, you request the executable file MYPROG.TSK, consisting of the
object modules PROG1.0BJ, SUB1.0BdJ, and SUB2.0BJ. The resident libraries
BP2RES and RMSRES are to be built to form a cluster using the upper 8K words
of address space (APRs 6 and 7). The libraries are to be mapped read-only. The
language library BP20OTS is the default library.

Building Programs 2-15

2.4.2 PDP-11 COBOL Example Including Two Disk Libraries

To build a PDP-11 COBOL program, you can type:

RUN $TKB
TKB> OUT=PROG, SUB, SUB2, LB: COBLIB/LB, LB:RMSLIB/LB
TKB> //

This command tells the Task Builder to create one file, the executable file,
named OUT.TSK. The compiled object programs are PROG.OBJ, SUB.OBJ, and
SUB2.0BJ. Two libraries are referenced; COBLIB.OLB and RMSLIB.OLB. The
/LB switch indicates that the libraries are located in the library account (LB:).

2.4.3 COBOL-81 Examples Including Disk Library and Cluster Libraries

The following example illustrates building a COBOL-81 program:

RUN $TKB
TKB> FINAL=PROGL, PROG2,LB:C81CIS/LB
TKB> //

With this command, the Task Builder creates the executable file FINAL.TSK from
the compiled object programs PROG1.0BJ and PROG2.0BJ, and from necessary
routines from the library for the Commercial Instruction Set (CIS), C81CIS.OLB.

The second example for COBOL-81 shows the use of cluster libraries:

RUN S$TKB

TKB> FINAL=PROG1l,PROG2,LB:C81CIS/LB
TKB> /

ENTER OPTIONS:

TKB> CLSTR=C81CIS, FDVRES, RMSRES : RO
TKB> //

In the example above, you request the executable file FINAL.TSK, consisting of
the object modules PROG1.0BJ and PROG2.0BJ. The /LB switch references the
disk library C81CIS.OLB. The resident libraries C81CIS, FDVRES, and RMSRES
are to be built to form a cluster using the upper 8K words of address space (APRs
6 and 7). The libraries are to be mapped read-only. The language library C81CIS
is the default library. Note that while C81CIS in the command line refers to the
disk library, C81CIS in the CLSTR option refers to the resident library.

2.4.4 DIBOL Example Including Disk and Resident Libraries

The following example illustrates building a typical RMS DIBOL program:

RUN $TKB

TKB> PAY=HOURS, EMPLK, CHECK, MYLIB/LB, LB :DBRLIB/LB
TKB> /

ENTER OPTIONS:

TKB> LIBR=DBRRES : RO: 4

TKB> LIBR=RMSRES :R0: 6

TKB> //

This example requests the executable file PAY. TSK. The object modules used

are HOURS.OBJ, EMPLK.OBJ, and CHECK.OBJ. Modules are included from
the library MYLIB.OLB (on the system disk in your account) and the library
DBRLIB.OLB (in the system library account LB:). DBRRES is the DIBOL
resident library for RMS; it is to be mapped read-only, beginning in APR 4.
RMSRES is the RMS resident library; it also is to be mapped read-only, beginning
in APR 6.

2-16 Building Programs

2.4.5 FORTRAN-77 Examples Including One Disk Library

To build a FORTRAN-77 program, you can type:

RUN $TKB
TKB> BURNS=KNIGHT, DAY, LB:F4POTS/LB
TKB> //

This example requests an executable file named BURNS.TSK. The files
KNIGHT.OBJ and DAY.OBJ are the compiled files to be used, along with
referenced routines from the library FAPOTS.OLB.

2.4.6 MACRO Examples Including Resident Libraries

The following examples show the use of the LIBR and RESLIB options.
The first uses LIBR:

RUN $TKB

TKB> FINAL=FINAL, SUB1, SUB2
TKB> /

ENTER OPTIONS:

TKB> LIBR=RMSRES
TKB> //

This example requests the executable file FINAL.TSK, constructed using the
compiled files FINAL.OBJ, SUB1.0BJ, and SUB2.0BJ. The resident library
RMSRES is linked in also. Note that in this case, no APR is given; the Task
Builder will use APRs 6 and 7 for RMSRES, so the system manager must have
installed the system with RSX directive emulation code as a part of the monitor.

The LIBR option is used because the files RMSRES.TSK and RMSRES.STB are
located on the system library device (LB:).

The next example uses the RESLIB option:

RUN S$TKB

TKB> FINAL=FINAL, SUB1, SUB2
TKB> /

ENTER OPTIONS:

TKB> RESLIB=DRO: [1,150]RMSRES
TKB> //

The same requests are made as in the previous example. In this case, the files
RMSRES.TSK and RMSRES.STB are located on the device DRO: in account
[1,150]. The RESLIB option is used instead of LIBR because the library is not in
LB..

Building Programs 2-17

S
™,

Partll
Overlays

Chapter 3

The Basic Concepts

If your program is too large to fit in the space available, you must specify an
overlay structure for it. The easiest way to find out if your program is too large is
to try to build it, using the steps outlined in Chapter 2. If you get the following
error message, your program is too large:

?Task has illegal memory limits

Languages that can dynamically allocate memory (such as BASIC-PLUS-2) may
not give this error at task build. Rather, they may produce another message at
run time, such as:

?Maximum memory exceeded

This chapter tells how to specify an overlay structure to eliminate this problem.
You design an overlay structure, such as the diagram in Figure 3-1, and describe
the structure to the Task Builder using an "ODL file"; a file written in the
Overlay Description Language.

Figure 3—1: The ODL File Is Your "Blueprint” for Overlays

.ROOT MAIN-+~(AWL, BWL, CWL)
AWL: .FCTR A-LIB- (A1-LIB,A2-LIB)
BWL: .FCTR B-LIB
CWL: .FCTR C-LIB
LIB: .FCTR LB:BP2OTS/LB
END MK-00573-00

The Basic Concepts 3-1

COBOL PROGRAMMERS NOTE

You cannot use the specific techniques described in this chapter to
construct overlays. In COBOL, you begin working with overlays within
the language itself by using the segmentation facility of the COBOL
compiler. Techniques are described in the PDP-11 COBOL User’s Guide
and the RSTS/E COBOL-81 User’s Guide.

COBOL programmers may want to read this chapter to get an idea of
what the PDP-11 COBOL or COBOL-81 compiler and MRG utility (for
PDP-11 COBOL) or BLDODL utility (for COBOL-81) are doing for you.
Chapter 6 describes overlays in terms of program sections and may also
be of interest to you.

3.1 What are Overlays?

The best way to explain overlays is by example. Suppose that the program

you have written consists of a main program (called MAIN) and two separately
compiled subroutines (called SUB1 and SUB2). Suppose further that MAIN calls
both SUB1 and SUB2, and that neither SUB1 nor SUB2 contain any calls to
separately compiled subroutines or to MAIN (see Figure 3-2).

Figure 3-2: Outlining the Call Structure

MAIN

/

(CALL suB1) (CALL SUB2)

/ \

SuUB1 suB2

MK-00574-00

You can specify an overlay structure such that the run-time system (described in
Section 2.1) loads MAIN when the program is first run. When MAIN calls SUBI,
code built into MAIN by the Task Builder loads SUB1 for execution. Then, when
control passes back to MAIN and it calls SUB2, the loading code that was built
into MAIN brings SUB2 into memory overlaying SUB1 (see Figure 3-3).

Note that SUB1 and SUB2 do not call or use data from each other. This "logical
independence” is necessary for program pieces that overlay each other. In this
example, calls to routines or references to data that are not currently in memory
must be made from the "root": the MAIN program.

3-2 The Basic Concepts

Figure 3-3: A Simple Overlay in Memory

MAIN MAIN

SUB1
SuB2

(UNUSED MEMORY)
(UNUSED MEMORY)

TIME 1 = TIME 2 MK—-00575-00

3.2 Constructing an ODL File: .ROOT, .FCTR, and .END
Commands

To define an overlay structure to the Task Builder, you construct an "overlay
map": a file consisting of instructions written in a language called the "Overlay
Description Language.” This file is often referred to as an ODL file.

Three commands form the heart of the Overlay Description Language: .ROOT,
.FCTR, and .END. To give you an idea of its simplicity, here is an ODL file for the
example shown in Figure 3—-2:

.ROOT MAINWL-* (SUB1WL, SUB2WL)

MAINWL: .FCTR MAIN-LIBR

SUB1WL: .FCTR SUB1-LIBR

SUB2WL: .FCTR SUB2-LIBR

LIBR: .FCTR LB:BP20TS/LB
.END

The .ROOT, .FCTR, and .END commands for this example are described in the
following sections.

3.2.1 The .ROOT Command

Every ODL file has one and only one .ROOT command; this command describes
the entire overlay structure. In the example at the start of Section 3.2, the
.ROOT command defines the entire structure in terms of "factors" defined in
following .FCTR commands. This is simply for the convenience of saving space in
the command line. You could have referred to the actual object files MAIN, SUBI,
SUB2, and the library LB:BP20TS in the .ROOT command and eliminated the
.FCTR commands entirely (see Section 3.2.4). However, the .ROOT command
would have been long and somewhat hard to read and interpret.

The Basic Concepts 3-3

The syntax of the .ROOT and .FCTR commands defines the overlay structure.
The first item following the .ROOT command indicates the root item, to be
assigned the lowest virtual addresses:

.ROOT MAINWL-* (SUBLWL, SUB2WL)

The root item in this example is MAINWL. This item—named to denote "MAIN
With Library"—is defined in the following .FCTR command:

MAINWL: .FCTR MAIN-LIBR

For the moment, however, consider the .ROOT command. The following symbols
define the structure of the overlay:

- Separates pieces to be concatenated in memory
, Separates pieces to be overlaid in memory

() Groups pieces to be overlaid

Thus, the hyphen in the .ROOT command indicates that MAINWL is to be
concatenated with the structure (SUB1WL,SUB2WL). The parentheses indicate
grouping; they enclose items that are to overlay each other. The structure
inside—SUB1WL,SUB2WL—indicates SUB1WL and SUB2WL are to occupy the
same space, or overlay each other as necessary.

In other words, a comma separating two or more items within parentheses
indicates that they are to overlay each other. A dash between two items indicates
they are to be concatenated, with the item on the left assigned the lowest
addresses.

The asterisk (*) symbol shown in the example is an autoload indicator. It does
not affect the overlay structure, although it is very important. It tells the Task
Builder to generate what are called autoload vectors to ensure that overlay pieces
can be loaded properly when the program is executed.

The use of asterisks is discussed in detail in Chapter 5; you can save a little
space in your program if you use them carefully. However, the simplest rule, and
one that always ensures proper loading for overlay structures described in this
chapter, is to put an asterisk before the outermost left parenthesis in your ODL
file.

3.2.2 The .FCTR Command

Consider the example under discussion again:

.ROOT MAINWL-* (SUB1WL, SUB2WL)

MAINWL: .FCTR MAIN-LIBR

SUB1WL: .FCTR SUB1-LIBR

SUB2WL: .FCTR SUB2-LIBR

LIBR: .FCTR LB:BP20TS/LB
.END

MAINWL, SUB1IWL, and SUB2WL are all defined as factors in the lines following
the first line. The term "factor" is used in the sense of "ingredient." That is,
.FCTR commands are used to further define elements used in a . ROOT command
or a preceding .FCTR command.

3-4 The Basic Concepts

Note that the names used in the .ROOT command are defined in each .FCTR
command by the first field: the name terminated by a colon. Likewise, the name
LIBR, used in several of the .FCTR commands, is defined in the last .FCTR
command. In general, factor names can consist of 1-6 characters from the set A-Z,
0-9, and the dollar sign ($).

The .FCTR command also specifies an overlay structure; the same items and
operators used in a .ROOT command can also be used in a .FCTR command. In
the example, the first three .FCTR commands consist of two items separated by
a hyphen. Again, the hyphen separating two items means that the first item

is assigned the lowest addresses, and the second item is to be concatenated
following the first.

In the example shown at the start of Section 3.2, however, the concatenated
item is LIBR, defined by a later . FCTR command as the BP20TS library. When
an item in a hyphenated series is a file with the /LB switch, it means that the
first item’s unresolved references are to be resolved from routines within that
disk library. In other words, the entire library is not concatenated. Only those
routines referenced are actually concatenated and added to the executable file.
The items MAIN, SUB1, and SUB2 are the compiled or assembled object files. As
with a simple build, the default file type for such files is .OBJ. The default file
type for a file with the /LB switch is .OLB.

Note that a .FCTR command can contain an item defined in another .FCTR
command. In general, FCTR commands can be "nested" in this fashion up to 16
levels.

3.2.3 The .END Command

The .END command ends the ODL file; every ODL file must have one .ROOT
command and end with .END.

3.2.4 Flexibility of the Overlay Description Language

From the preceding discussion, you probably have observed that there are many
ways to construct ODL files using the three basic commands and their operators.
For example, the following ODL file has the same effect as the example in
Section 3.2:

.ROOT MAIN-LB:BP20TS/LB-* (SUB1-LB:BP20TS/LB, SUB2-LB:BP20TS/LB)
.END

The ODL file above has no FCTR statements. The following file also produces
the same structure as the example at the beginning of Section 3.2:

.ROOT MAIN-LIBR-* (SUB1-LIBR, SUB2-LIBR)

LIBR: .FCTR LB:BP20TS/LB
.END

The Basic Concepts 3-5

3.3 Using an ODL Flle When You Run TKB

To tell the Task Builder to build a program according to the structure specified in
an ODL file, you simply give the ODL file name with the switch /MP instead of
the object files in an ordinary command line. For example, to build the program
described in Sections 3.1 and 3.2, you can type:

RUN STKB

TKB>MYPROG, MPFILE=OVERLY/MP
ENTER OPTIONS:
TKB>LIBR=BP2RES:RO
TKB>UNITS=12
TKB>ASG=SY:5:6:7:8:9:10:11:12
TKB>EXTTSK=512

TKRB>//

When you specify /MP on the input file for your task, it must be the only input
file that you specify. Note that when you specify an ODL file, TKB automatically
prompts for option input. Therefore, do not use the single slash (/) to direct TKB
to prompt for options when you specify /MP on your input file.

The /MP switch indicates the file is an "overlay map," or ODL file. The default
file type for files with the /MP switch is .ODL. Thus, the file used here as an
overlay map is named OVERLY.ODL, on the system disk in the user’s account.

The LIBR option declares that your program will access the resident library
BP2RES. UNITS, ASG, and EXTTSK are other options often useful with BASIC-
PLUS-2 programs. For another language, use the appropriate command as
described in Chapter 2.

Note that you request a map file in this example. The map file is very useful
when working with overlays.

3.4 The Memory Map File

This section discusses how to determine the size of the programs and subpro-
grams you want to overlay.

Suppose that the build in Section 3.3 produces the error "SEGMENT seg-name
HAS ADDR OVERFLOW: ALLOCATION DELETED". The program is too large;
you must reexamine it. Now, though, you have an important tool: the memory
map file, called in this case MPFILE MAP. The first page of this map is shown
in Example 3-1. Note the highlighted section, titled "MYPROG.TSK OVERLAY
DESCRIPTION".

This section of the memory allocation map appears only if you request overlays
by using the /MP switch appended to an ODL file specification. To get this
information, then, you must specify the most reasonable overlay structure
possible without actually knowing the length of the pieces.

In the first three columns, this section gives, in octal, the base address, top ad-
dress, and length, in bytes, of each overlay piece. The most relevant information
is given in the second of the two LENGTH columns: the decimal length of the
piece, in bytes. The MAIN program, for example, is 49,152 bytes long. SUBI is
34,164 bytes, and SUB2 is 16,384 bytes.

3-6 The Basic Concepts

You are building the program to run under the RSX run-time system, which
allows 32K words, or 64K bytes for your program. Thus, you must restructure
the program to divide MAIN into further pieces to be overlaid. At 49152 bytes,
MAIN with SUB1 and SUB2 is too large to fit in the space available. To do this
intelligently, however, you need to know more about the Task Builder.

Note that total task size and task image size show the space allocated for the
program minus a calculated overflow.

Example 3—1: Overlay Description of Memory Allocation Map

MAIN.TSK Memory allocation map TKB 08.006 Page 1
19-MAR-90 14:56

Partition name : GEN

Identification : 600319

Task UIC : [1,234]

Stack limits: 001000 001777 001000 00512.
PRG xfr address: 012000

Total address windows: 2.

Task extension : 512. words
Task image size : 25280. words
Total task size : 25792. words

Task address limits: 000000 035047
R-W disk blk limits: 000002 000060 000057 00047.

MYPROG.TSK Overlay description:

Base Top Length

000000 042563 140000 49152. MAIN
34164. SUB1
16384. SUB2

(Other pages of memory map)

3.5 Designing Overlays Intelligently: Considering Space and Time

The same considerations are necessary in designing an overlay structure as in
other aspects of computing: space and time. Some aspects of the problem of space
(how to get the pieces to fit) have been discussed. To do the job well, you must
also consider the problem of time: how to get the pieces to fit so that they execute
in the least possible time.

The Basic Concepts 3-7

3.5.1 Considering Space: Two Possibilities for Example

Suppose that examining the program in our example reveals two possibilities for
dividing the program so that the pieces will fit.

In the first case, you divide MAIN into five parts by inserting calls in MAIN
in the source code. Now you have a "root" segment, MAIN, with five branches,
MAIN1, MAIN2, MAIN3, SUB1, and SUB2. The call structure is outlined in
Figure 3—4.

Figure 3-4: Outline of First Call Structure for Example

MAIN

o | I I |
(CALL MAIN1) (CALL MAIN2) (CALL MAIN3) (CALL SUB1) (CALL SUB2)
| | | | |
MAIN1 MAIN2 MAIN3 SUBH1 SUB2
MK-00576-00

Note again the logical independence of the call structure for the items to be
overlaid. Defining the overlay structure based on the call structure is one way
to ensure the logical independence of the items in the overlay structure. In this
case, MAIN1, MAIN2, MAIN3, SUB1, and SUB2 could not call each other or
refer to data in each other. These items overlay each other and will not reside
in memory at the same time. The ODL file for such a structure could look as
follows:

.ROOT MAINWL-* (MAIN1L,MAIN2L,MAIN3L, SUB1L, SUB2L)
MAINWL: .FCTR MAIN-LIBR
MAIN1L: .FCTR MAIN1-LIBR
MAIN2L: .FCTR MAIN2-LIBR
MAIN3L: .FCTR MAIN3-LIBR

SUB1L: .FCTR SUB1-LIBR

SUB2L: .FCTR SUB2-LIBR

LIBR: .FCTR LB:BP20TS/LB
-.END

In the second case, you divide MAIN into two pieces and divide SUB2 into two
pieces called SUB2A and SUB2B. The outline for the call structure is shown in
Figure 3-5.

3-8 The Basic Concepts

Figure 3-5: Outline of Second Call Structure for Example

MAIN

/

(CALL MAINT1) (CALL MAIN2)

/ \

MAIN1 MAIN2

| /\

(CALL SuUBH1) (CALL SUB2A) (CALL suUB2B)

| / \

SUB1 SUB2A SuB2B

MK-00577-00

The ODL file for such a structure could look as shown below. Note the nested
parentheses used to group the pieces that overlay each other. In general, paren-
theses can be nested to 16 levels.

.ROOT MAINWL-* (MAIN1L-SUB1L,MAIN2L- (SUB2AL, SUB2BL))

MAINWL: .FCTR MAIN-LIBR
MAIN1L: .FCTR MAIN1-LIBR
SUB1L: .FCTR SUB1-LIBR
MAIN2L: .FCTR MAIN2-LIBR
SUB2AL: .FCTR SUB2A-LIBR
SUB2BL: .FCTR SUB2B-LIBR
LIBR: .FCTR LB:BP20TS/LB
.END

Now suppose you build the program successfully in both of the above cases. The
problem with space is resolved with either the structure shown in Figure 3—4
or in Figure 3-5. You would choose the structure that requires the least time to
execute, as described in the following section.

3.5.2 Considering Time: Reducing Disk Access

When you ask for overlays, the Task Builder inserts code into your program to
load the overlays properly. For the example in Figure 3—4, the Task Builder
inserts code into MAIN to load MAIN1, MAIN2, MAIN3, SUBI1, and SUB2 from
disk into memory when they are called. (MAIN itself is loaded by the run-time
system when the program is first run.)

Thus, when MAIN calls MAIN1, the code inserted by the Task Builder is executed
to load MAIN1 from disk into memory for execution. When MAIN calls MAIN2,
this code is again executed to load MAIN2 from disk into memory, and so forth.
These disk accesses take time. You want to design your overlays to reduce the
number of disk accesses. |

The Basic Concepts 3-9

In general, the Task Builder analyzes your ODL file to determine the best way
to store pieces on disk so that they can be loaded quickly. It constructs the
executable program file in "segments" that are loaded with one disk access.
Pieces connected by a dash (-) are stored in one segment. Pieces separated by a
comma are stored in separate segments.

Thus, the executable file for the ODL file in Figure 3—4 consists of the main
program (loaded by the run-time system) and five segments each requiring

a separate disk access for loading. The executable file for the ODL file in
Figure 3-5 consists of the main program and four segments. MAIN1 and SUB]I,
connected by a dash in the ODL file, are stored as one segment. When MAIN
calls MAIN1, MAIN1 and SUB1 are loaded together. Then, when MAIN1 calls
SUBI, no separate disk access is necessary: SUBI is already in memory.

MAIN2, SUB2A, and SUB2B are stored as separate segments. Each requires a
separate disk access.

Thus, assuming each call is made only once, the structure in Figure 3—4 calls for
five disk accesses. The structure in Figure 3-5 calls for four disk accesses. Since
both fit, you would choose the structure shown in Figure 3-5.

3.6 Logical Independence of ltems in Overlay Structure

This section discusses the need for the logical independence of items in an overlay
structure and suggests that basing the overlay structure on the call structure is
a reasonable way to approach overlay structure design. If your program has a
complex call structure, however, this approach may not be feasible.

You can still visualize the tree-like structure we have shown previously, and you
can still specify an overlay structure in terms of separately assembled or compiled
program and subroutine files. However, you must consider the sequence of calls
these pieces make to each other. In general, you must structure the overlay tree
so that calls (or references to data) take place between pieces that are along the
same path. Calls or references to data cannot take place between pieces that are
along different paths. A path is simply any route from the root of the structure
that follows a series of branches to an outermost piece of the tree.

Figure 3-6 shows a structure that is specified by the following ODL commands:

.ROOT AL-BL-* (CL, FCTR1)

FCTR1: .FCTR DL~ (EL,FL, GL)
AL: .FCTR A~-LIBR
BL: .FCTR B-LIBR
CL: .FCTR C-LIBR
DL: .FCTR D-LIBR
EL: .FCTR E-LIBR
FL: .FCTR F-LIBR
GL: .FCTR G-LIBR
LIBR: .FCTR LB:F4POTS/LB
.END

Figure 3-6 shows pieces that overlay each other as separate "branches” of the
tree. C and D would start at the same virtual address, as would E, F, and G. The
paths in this structure are A-B-C, A-B-D-E, A-B-D-E, and A-B-D-G. Calls may be
made between pieces on any of these paths. However, F could not call G, E, or C;
C could not call D, E, F, or G; and so forth.

3-10 The Basic Concepts

Figure 3-6: Separate Paths in an Overlay Structure

FOUR PATHS:

e - —

MK-00578-00

3.7 Resolution of Global Symbols

In the last section, it was noted that overlay pieces that are on separate paths
cannot call each other or refer to data in each other. If you specify such a
structure, the Task Builder gives you error messages about multiply defined

or ambiguously defined global symbols. Since these errors can be one of the
most frustrating aspects of task building, further clarification of the underlying
concepts is necessary.

3.7.1 What Is a Global Symbol?

All languages provide the facility for defining and referring to symbols. In
general, a symbol is a name that is eventually translated to an address for a
location in computer memory. The location may contain data or a computer
instruction.

Symbols can be classified as either local or global. A local symbol is one that
is both defined and referenced within one program or subprogram. That is, its
definition and usage are in the same (local) area.

A global symbol is one that can be defined in one program or subprogram and
referred to by another separately compiled or assembled program or subprogram.

While you may not be aware of it, for example, the FORTRAN compiler defines
a name you give to a COMMON area as a global symbol. Similar translations
take place in all languages for common areas and entry points to programs and
subprograms, including subprograms contained in libraries.

The Basic Concepts 3-11

3.7.2 Undefined, Multiply Defined, and Ambiguously Defined Global Symbols

The Task Builder resolves references to global symbols at build time. In general,
you can define two global symbols with the same name if they are on separate
paths and are not referenced from a piece that is common to both paths.

If you define a global symbol on one path but refer to it on another path, the
symbol is diagnosed as undefined where it is referenced.

If you define two global symbols with the same name on the same path, the
symbol is multiply defined.

If you define two global symbols with the same name on different paths, but
the symbol is referenced from a piece that is common to both, the symbol is
ambiguously defined.

Examine the overlay structure in Figure 3-7. The global symbol Q is defined
in A0 and BO. The references to Q in A22 and Al are resolved by the definition
in A0Q. The reference to Q in B1 is resolved by the definition in BO. The two
definitions of Q are distinct in all respects; the definitions and references occupy
separate paths.

The global symbol R is defined in A2. The reference to R in A22 is resolved by
the definition in A2 because there is a path to the reference from the definition
(CNTRL-A0-A2-A22). The reference to R in Al, however, is undefined because

there is no definition for R on a path through Al.

The global symbol S is defined in both A0 and BO. References to S from Al, A21,
or A22 are resolved by the definition in AO. References to S in B1 and B2 are
resolved by the definition in BO. However, the reference to S in CNTRL cannot
be resolved, because there are two different definitions of S on separate paths
through CNTRL. The global symbol S is ambiguously defined.

The global symbol T is defined in both A21 and AQ. Since there is a single path
through the two definitions (CNTRL-A0-A2-A21), the global symbol T is multiply
defined.

3-12 The Basic Concepts

Figure 3-7: Resolving Global Symbols

CNTRL
S(REF)
A0 BO
Q(DEF) Q(DEF)
S(DEF) S(DEF)
T(DEF)
A1 B1
Q(REF) A2 Q(REF) B2
R(REF) R(DEF) S(REF) S(REF)
S(REF)
A21 A22
T(DEF) R(REF)
S(REF) Q(REF)
S(REF)
MK-00579-00

3.7.3 How Routines Are Inserted from Libraries

In all the examples so far, we have shown a library concatenated (using the
dash in the ODL file) at the end of the root and every segment in the overlay
structure. Unless you know which library routines are used by each piece of your
program, this is the best way to ensure that library routines are properly inserted
from the desired disk libraries. The Task Builder then ensures that routines
referred to by more than one piece are accessible to all pieces. For example,
consider the following ODL file for the overlay structure shown in Figure 3-8:

.ROOT ROOTL-* (AL,BL- (B1L,B2L))

ROOTL: .FCTR ROOT-LIBR

AL: .FCTR A-Al1-LIBR

BL: .FCTR B-LIBR

BlL: .FCTR B1-LIBR

B2L: .FCTR B2-LIBR

LIBR: .FCTR LB:F4POTS/LB
.END

The Basic Concepts 3-13

Figure 3-8: Resolving Global Symbols from Disk Libraries

ROOT
REF $READ
REF $WRITE
$READ
$WRITE
A B
REF $READ REF $READ
REF $ASIN REF $ASIN
REF $COsS
A1 $ASIN
REF $WRITE
$cos
$ASIN
B1
REF $COS B2
REF $ABS REF $READ
$ABS

MK-00580-00

As shown in Figure 3-8, the ROOT section calls the routines $READ and
$WRITE. The Task Builder resolves these references by building the routines
into ROOT. The references to $READ in A and B are then resolved from ROOT.
The reference to $WRITE in Al is likewise resolved from ROOT.

Both A and B refer to the $ASIN routine. Since A and B are on different paths,
the Task Builder puts the $ASIN routine in both A and B.

Both B and B1 refer to the $COS routine; it is built into B because B is closer

to the root than B1. The reference to $COS in B1 is resolved by referring to the
routine in B.

The $ABS routine is referred to in B1 only. It is built into B1.

3-14 The Basic Concepts

If you know which routines are called from the various pieces of your program,
you can shorten the time necessary to build your program by specifying the
routines directly. You make a direct specification by appending a colon and the
routine name to the /LB switch. For example, to build the structure shown in
Figure 3-8, you could use:

.ROOT ROOTL-* (AL,BL-(B1L,B2))

ROOTL: .FCTR ROOT-LB:F4POTS/LB:$READ:SWRITE
AL: .FCTR A-Al1-LB:F4POTS/LB:SASIN
BL: .FCTR B-LB:F4POTS/LB:$ASIN:$COS
BlL: .FCTR B1-LB:F4POTS/LB:$ABS
.END

You could also request a different structure. To build all the required routines
into the root, for example, you could specify:

.ROOT ROOTL-* (A-Al,B-(B1l,B2))
ROOTL: .FCTR ROOT-LB:F4POTS/LB:$READ:SWRITE:$ASIN:$COS:$ABS
.END

In general, up to eight routines can be specified on one /LB switch.

3.7.4 The Default Library

The Task Builder searches through the overlay structure to resolve global
symbols. If any symbols are undefined after it examines all the pieces you specify,
it will search the default library (normally LB:SYSLIB.OLB). If it can resolve a
global symbol by inserting a piece from this library, it will do so.

Note that because SYSLIB.OLB used the MACRO assembly language judiciously,
the code is not inserted as described in Section 3.7.3. Units called program
sections have been carefully defined using MACRO, such that the code in SYSLIB
takes as little space as possible. Program sections, and how the Task Builder
builds programs with them, are described in Chapter 6.

For libraries built from compiler-language routines, however, the information in
Section 3.7.3 would apply.

The Basic Concepts 3-15

Chapter 4

Co-Trees: Another Way to Save Space

Chapter 3 describes the basics of specifying an overlay structure in an ODL file.
This chapter discusses another overlay structure: co-trees. Co-trees are slightly
more complex structures than any previously discussed. If applicable to your
call structure, however, they can be extremely useful in cutting down the virtual
address space your program takes (see Figure 4-1).

Figure 4-1: Co-Trees Save More Space Than Simple Overlays

/ SUBT | g
COTREE
cosup1 225082
'\ /

ODL FILE:

.ROOT MANTRE, COTRE
MANTRE: .FCTR MAIN-LIB-+(SUB1-LIB, SUB2-LIB)
COTRE: .FCTR*COTREE-LIB—(COSUB1-LIB, COSUB2-LIB)
LIB: .FCTR LB:BP20TS/LB
.END

MK-00581-00

4.1 The Co-Tree Structure

As the name implies, co-trees allow you to define more than one tree structure
in an overlay description. For example, suppose that A and B are routines that
are called from several branches of a tree. You could define A and B as part

Co-Trees: Another Way to Save Space 4-1

of the root, so that they are always accessible from any branch of the tree (see
Figure 4-2).

Figure 4-2: Putting A and B in the Root

I MAIN f——
CALL —— A ~—] (CALL
(SUB1) guez)

(CALL B <) (CALL
A) A)
(CALL (CALL
B) B)
| I
suB1 suB2

MK-00582-00

The ODL file for such a structure could appear as follows:

.ROOT MAIN-A-B-LIBR-* (SUB1-LIBR, SUB2-LIBR)
LIBR: .FCTR LB:BP20TS/LB
.END

Since A and B never call each other, however, they do not need to reside in
memory at the same time. To save space, you could define A and B as part of a
co-tree, such that they overlay each other. Like the main tree, co-trees must have
a root. In this case, the root is called "COTRE" (see Figure 4-3).

Figure 4-3: A Co-Tree Structure

MAIN | oo COTRE

(CALL SUB1) (CALL SUB2) (CALL A) (CALL B)
/ \ / \

SUB1 suB2 A B

b

(CALL COTRE) (CALL COTRE)

MK-00583-00

4-2 Co-Trees: Another Way to Save Space

The ODL file for such a structure could be:

.NAME COTRE

.ROOT MANTRE, COTREE
MANTRE: .FCTR MAIN-LIBR-*(SUB1-LIBR, SUB2-LIBR)
COTREE: .FCTR *COTRE-LIBR-*(A-LIBR,B-LIBR)
LIBR: .FCTR LB:BP20TS/LB

.END

To separate co-trees, use the comma—not enclosed in parentheses — as between
MANTRE and COTREE in the .ROOT statement above. (When the comma is
used within parentheses, it separates pieces to be overlaid.) Note also that you
put an autoload indicator (*) before the co-tree root and before the outermost left
parenthesis in the co-tree overlay description.

To get an idea of how co-trees are loaded during execution, see Figure 4—4. This
figure assumes that the call sequence is: MAIN calls SUB1, which calls COTRE
twice: once to execute A and once to execute B. MAIN then calls SUB2, which
calls COTRE to call A and B again.

The run-time loader loads MAIN. The remaining pieces are loaded by code
inserted in MAIN by the Task Builder. Once called (at time 3 in Figure 4-4),
COTRE is resident in memory for the rest of the run. Note that it begins at the
place where the longest part of the main tree ends (after SUB2).

As shown in Figure 44, storage is not shared between trees. Any piece in a
tree can call or refer to data in another tree without displacing pieces from the
calling tree. However, calls back and forth between trees (called cross-tree calls)
can cause problems. For example, suppose that at time 4 in Figure 44 the
subprogram A had called SUB2. SUB2 would be loaded, displacing SUB1 from
the main tree. In the normal course of events, SUB2 would return control to

A, which would return control to an address generated for SUB1 at build time.
SUBL is no longer in memory, however. Control would be passed to some location
in SUB2, which has displaced SUB1 in memory.

To keep this from happening inadvertently, the Task Builder restricts its search
through the structure for references to the default library if you specify co-trees.
The Task Builder makes one pass through the entire structure trying to resolve
global symbols from the pieces you have specified in the ODL file. If there are
unresolved symbols after this first pass, the Task Builder makes another pass,
attempting to resolve undefined symbols from the default system library. If you
have specified co-trees, the Task Builder restricts its search during this second
pass.

For example, if the Task Builder resolves a symbol in one tree by inserting a
module from the default system library, it does not search through co-trees to see
if there are other unresolved references to this module. It restricts its search to
the current tree and the root of the main tree. This procedure eliminates cross-
tree calls like that described above; necessary code is not inadvertently displaced.

Co-Trees: Another Way to Save Space 4-3

Figure 4-4: How a Co-Tree Is Loaded During Program Execution

MAIN JMAN MAIN MAIN MAIN
—(CALL SUBT |~
SUBT
SUB1 :iéifffﬁﬁfﬁﬁif SUBH1 SUB1
COTRE COTRE |
COTRE | =™ FGAlLA |£S| " CALLB |
™ ¢
B
TIME 1 TIME 2 TIME 3 TIME 4 TIME 5
MAIN MAIN CALLS sSuB1 CALLS COTRE CALLS COTRE CALLS
LOADED SUB1; SUB1 COTRE; COTRE A; A LOADED B; B LOADED
LOADED LOADED
2|__MAN MAIN MAIN
—(CALL SUB2 |<
SuB2 SuB2 suB2
‘ZCALL COTRE|<
COTRE COTRE
COTRE —i CALLA |~ =|_CcALLB |
S
B B
TIME 6 TIME 7 TIME 8
CONTROL FALLS SUB2 CALLS COTRE CALLS
BACK TO MAIN, COTRE (ALREADY B; B LOADED
WHICH CALLS SuUB2: THERE) COTRE
SuUB2 LOADED CALLS A; A LOADED
MK-00584-00

4.2 Using the .NAME Command for a Co-Tree Root

The example in Section 4.1 defined a separate co-tree root routine called COTRE.

You can eliminate

the need for a real routine (which takes space) by using the

.NAME command to define the name of a dummy root for a co-tree. The calls out
of SUB1 and SUB2 can then refer to A and B directly, and they will be loaded
properly. For example, the ODL file could be:

. NAME

.ROOT
MANTRE: .FCTR
COTREE: .FCTR
LIBR: .FCTR

.END

NULL

MANTRE , COTREE

MAIN-LIBR-* (SUB1-LIBR, SUB2-LIBR)
NULL-* (A-LIBR,B-LIBR)
LB:BP20TS/LB

The NAME command lets you give a name to a piece of the overlay structure.
(You can also use it to assign certain attributes to pieces of the overlay structure,
described further in Section 6.5.) The NAME command is described in detail in

Section 134,

4-4 Co-Trees: Another Way to Save

Space

Note in the preceding example that you do not need to use an autoload indicator
(*) before a null root in a co-tree.

4.3 Designing the Most Space-Saving Co-Trees

Co-trees can save the most space when the pieces being overlaid in each tree are
about the same size. For example, look at the structure of the example from the
previous sections. Figure 4-5 shows three different structures. Figure 4-5 also
shows a new way of looking at overlay structures that takes the size of the pieces
into account. You may find this particularly useful when dealing with co-trees.

Figure 4-5: Co-trees Save More Space When Pieces Are the Same Size

MAIN MAIN MAIN
A SUB1 SUB1|SUB2|SUB3
suB2
B
A B C
SUB1 A
suB2 B

NO CO-TREE FIRST CO-TREE REDESIGNED CO-TREE

MK-00585-00

The first structure in Figure 4—5 shows the original overlay design, with A

and B built after MAIN in the root of the overlay structure. SUB1 and SUB2
overlay each other, after the root. The second structure in Figure 4—5 shows the
structure arrived at in the previous section: A and B are overlaid in a co-tree. By
comparing the first and second structures in Figure 4-5, you can see that co-trees
can save space. The total size of the program in virtual address space is smaller
using the co-tree.

Note in the second structure, however, that SUB2 and B are much larger than
their counterparts SUB1 and A. The space shown between SUB1 and the A-B
co-tree is essentially wasted. If you cut down SUB2, you can "squeeze" the co-tree
down further in virtual address space. Furthermore, if you reduce the size of B,
you can also reduce the total size of the program in virtual address space.

The third structure in Figure 4-5 shows a better co-tree. SUB2 has been divided
into two routines, SUB2 and SUB3. These routines are overlaid and are about
the same size as each other and SUB1. B has also been divided into two separate
routines, B and C. Again, the routines are overlaid and are about the same size as
each other and A. Note that the total size of the program in virtual address space
has been reduced even more than the second structure shown in Figure 4-5.

Co-Trees: Another Way to Save Space 4-5

Thus, the general rule for constructing tight programs using co-trees is: use small
subprograms of uniform size. If you are using co-trees at all, you are probably
more concerned with space than with your program’s execution time. You may
not lose that much time, though, depending on how the calls are structured.
Remember that calls can be made between co-trees without necessarily causing a
new overlay segment to be loaded from disk.

For example, suppose that in the third structure of Figure 4-5, SUB1 calls A.
A will remain in memory until B or C is called. Suppose coritrol passes back to
SUBL to call A again, back to MAIN, and on to SUB2, which is loaded and calls
A. A is still in memory. It does not need to be loaded again.

4.4 Co-Trees and High-Level Languages

As you can see from the previous sections, using co-trees can save space. The first
time you try to build one using a high-level language, however, you will likely get
a number of diagnostic error messages flagging multiply defined, ambiguously
defined, and undefined symbols. This can be a bit disconcerting, especically since
many of the symbols will not be any that you have referred to or defined in your
program. Furthermore, the total virtual address space taken by the program may
be even larger than that taken without co-trees.

The symbols are from library routines that have been inserted by the Task
Builder. Note that the Task Builder is very careful about where it puts routines
that are called from outside the main tree root on different trees in a co-tree
structure. When you put general library references in your ODL file the Task
Builder builds any routine that is called from outside the main tree root on

two or more paths in two or more trees, into all the paths and trees where it is
referenced. The Task Builder then resolves references to a routine in a particular
path in a tree by referring to the routine built into that path on that tree.

So, the program will run as it has been built (unless you have made errors in
your program, of course). Still, you may not want these routines built into each
tree, where they can take more space than might actually be necessary. So,
the Task Builder flags the symbols it finds as multiply defined or ambiguously
defined, so that you can correct the situation if you want to.

4.4.1 Sample Source Program and Subprograms

Consider the following BASIC-PLUS-2 program and subprograms.

The main program, USER, simply calls three subprograms: INTRO, CRUNCH,
and CHATR. INTRO displays a question at the user’s terminal, and accepts the
user’s response: two integers. CRUNCH performs addition, multiplication, and
subtraction on the two input numbers and calls CALC2 and CALC]1, passing on
the two input numbers. CHATR takes the sum, product, and difference calculated
by CRUNCH and displays the values on the user’s terminal. It then calls CALC1
and CALC2. CALCI1 subtracts the two values and displays the difference. CALC2
adds the two values and displays the sum.

4-6 Co-Trees: Another Way to Save Space

Source for Program USER

10
20
30
40

CALL INTRO (A1%,B1%)

CALL CRUNCH (A1%,B1%, SUMM%, PRODUCTS, DIFFER%)
CALL CHATR(Al%,B1%, SUMM%, PRODUCT%, DIFFER%)
END

Source for Subprogram INTRO

10
20
30

SUB INTRO (AA%,BA%)
INPUT "INPUT TWO NUMBERS";AA%,BA%
SUBEND

Source for Subprogram CRUNCH

10
20
30
40
50
60
70

SUB CRUNCH (AB%, BB%, CA%, CB%, CC%)
CA% = AB% + BB%

CB% = AB% * BB%

CC% = AB% - BBS%

CALL CALC2 (AB%, BB%)

CALL CALCI1 (AB%, BB%)

SUBEND

Source for Subprogram CHATR

10
20
30
40
50
60
70

SUB CHATR (AC%,BC%,CA%, CB%, CC%)

PRINT "THE SUM OF ";ACS;" AND ";BC%;" IS ";CA%

PRINT "THE PRODUCT OF ";AC%;" AND ";BC%;" IS ";CB%
PRINT "THE DIFFERENCE OF ";AC%;" AND ";BC%;" IS ";CC%
CALL CALC1 (AC%,BCS%)

CALL CALC2 (AC%,BC%)

SUBEND

Source for Subprogram CALCA1

10
20
30
40

SUB CALC1 (AD%,BD%)

DA%$=AD%$-BD%

PRINT "THE COTREE DIFFERENCE IS ";DA%
SUBEND

Source for Subprogram CALC2

10
20
30
40

SUB CALC2 (AE%,BE%)

EA%=AE%+BE%

PRINT "THE COTREE SUM IS ";EA%
SUBEND

4.4.2 Outlining the Sample Program’s Call Structure

As Figure 4-6 shows, the sample program and its subprograms fit the general
situation where co-trees can help: one or more subprograms called by one or more
other subprograms.

Co-Trees: Another Way to Save Space 4-7

Figure 4-6: Call Structure for Sample Program

USER

|
(CALL INTRO) (CALL CRUNCH) (CALL CHATR)
| | |
INTRO CRUNCH CHATR
(CALL CALC2) (CALL CALC1) (CALL CALC1) (CALL CALC2)

| | | |

CALC2 CALCH CALC1 CALC2

MK-00586-00

4.4.3 Compiling the Sample Program and Subprograms
The general steps for compiling a BASIC-PLUS-2 program are:

RUN $BASIC2

BASIC2 = (the prompt from BASIC-PLUS-2)

OLD source-file

BASIC2 =

COMPILE /OBJ

For example, to compile a source file named USER.B2S, type:

RUN $BASIC2
BASIC2

OLD USER
BASIC2
COMPILE /OBJ

These commands compile the file USER.B2S, creating the file USER.OBJ. (.B2S
and .OBJ are the default file types assumed by BASIC-PLUS-2.)

4-8 Co-Trees: Another Way to Save Space

4.4.4 First Build for Sample Program: Putting Subprograms in the Root

After creating the object files, the next step is task building. For the first build,
without co-trees, we put CALC1 and CALC2 in the root (Figure 4-7).

Figure 4-7: First Build Structure for Sample Program

USER
CALC1
CALC2

l
| |

INTRO CRUNCH CHATR

MK-00586-01

The ODL file for such a structure could be:

.ROOT USER-CALC1-CALC2-LIBR-* (INTWL, CHATWL, CRUNWL)

INTWL: .FCTR INTRO-LIBR
CRUNWL: .FCTR CRUNCH-LIBR
CHATWL: .FCTR CHATR-LIBR
LIBR: .FCTR LB:BP20TS/LB
.END
Calling the above file OVER1.ODL, the build process is:
RUN S$TKB

TKB>TRY1, TRY1=OVER1/MP

ENTER OPTIONS:

TKB>UNITS=12
TKB>ASG=SY:5:6:7:8:9:10:11:12
TKB>EXTTSK=512

TKB>//

The build proceeds without error. Examining the map file, TRY1.MAP, you see
the first page shown in Example 4-1.

The significant information is highlighted in Example 4—-1. The TASK IMAGE
SIZE is 6528 words, or 13056 bytes. This means that the total amount of virtual
address space that the program will take is 13056 bytes. Further down, the size
is itemized by segment. Segment USER (constructed from the files USER.OBJ,
CALC1.0BJ, and CALC2.0BJ, plus library routines from BP20TS.OLB) requires
11348 bytes; INTRO, 1696 bytes; CHATR, 380 bytes; and CRUNCH, 196 bytes.
In subsequent builds, you will see the structure (shown by the way the segment
names are indented) and the sizes change.

Co-Trees: Another Way to Save Space 4-9

Example 4-1: First Page of Map File for Sampie Program

TRY1.TSK Memory allocation map TKB 08.006 Page 1
15-MAY-90 14:46

Partition name : GEN

Identification : 000708

Task UIC : [1,196]

Stack limits: 001000 001777 001000 00512.
PRG xfr address: 022462

Total address windows: 1.

Task extension : 512 words

Task image size : 6528. words

Total task size : 7040. words

Task address limits: 000000 031363

R-W disk blk limits: 000002 000036 000035 00029.

TRY1.TSK Overlay description:

Base Top Length

000000 026123 026124 11348. USER

026124 031363 003240 01696. INTRO
026124 026717 000574 00380. CHATR
026124 026427 000304 00196. CRUNCH

MK-01049-00

4.4.5 Second Build for Sample Program: Using a Co-Tree

For the second build of the sample program, use the co-tree structure shown in
Figure 4-8.

Figure 4-8: Structure for Second Build of Sample Program

INTRO CRUNCH CHATR CALCH1 CALC2

MK-00586-02

The ODL file for such a structure could be:

.NAME NULL

.ROOT USERWL, COTRWL
COTRWL: .FCTR NULL-* (CALC1-LIBR,CALC2-LIBR)
USERWL: .FCTR USER-LIBR-* (INTWL, CHATWL, CRUNWL)
INTWL: .FCTR INTRO-LIBR
CHATWL: .FCTR CHATR-LIBR
CRUNWL: .FCTR CRUNCH-LIBR
LIBR: .FCTR LB:BP20TS/LB

.END

4-10 Co-Trees: Another Way to Save Space

Calling the file above OVER2.0DL, the build process is:

RUN $TKB

TKB>TRY2, TRY2=OVER2/MP

ENTER OPTIONS:

TKB>UNITS=12
TKB>ASG=8Y:5:6:7:8:9:10:11:12
TKB>EXTTSK=512

TKB>//

This run, unlike the first, produces a blizzard of diagnostic error messages:

TKB -- *DIAG* -- MODULE CALCl AMBIGUOUSLY DEFINES SYMBOL xXXxxX
TKB -- *DIAG* -- MODULE $ICINI MULTIPLY DEFINES SYMBOL XxXXX
TKB -- *DIAG* -- MODULE $JPMOV MULTIPLY DEFINES SYMBOL XxXXX

It is useful to take note of the modules mentioned, for reasons that become clear
later when you look at the memory map. The modules are, in order: CALCI,
$ICINI, $JPMOV, $ICWRT, $ECONV, $ICFNS, $STFN1, CALC2, (and again)
$ICINI, $JPMOV, $ICWRT, $ECONV, $ICFNS, and $STFNI1.

If you try running the program, (by typing RUN TRY2.TSK), it works. So the
Task Builder’s error messages are only diagnostic messages, as indicated.

Example 4-2 shows two pages of the relevant information from the map file
TRY2.MAP. Page 2 of the map shows that the total size of the program has grown
from 6528 words in the first build to 7552 words for the second build. This would
seem an inauspicious start for a memory-saving co-tree structure, but you can be
prepared for this and look for the reasons.

Page 5 shows the start of the information you are most interested in at this point.
The highlighted portion under the TITLE column shows the names of library
routines that have been built into the INTRO piece of the overlay structure. You
know that they are library routines because the FILE column shows them as
from the library file BP20TS.OLB.

Following pages of the map (not shown in Example 4-2) would show similar
entries for library routines in the overlay pieces CRUNCH, CHATR, CALC]1, and
CALC2.

Co-Trees: Another Way to Save Space 4-11

Example 4-2: Excerpts from Map File for Second Build of Sample Program

TRY2.TSK Memory allocation map TKB 08.006

CALC2 15-MAY-90

Partition name : GEN
Identification : 000708
Task UIC : [1,196]

13:17

Stack limits: 001000 001777 001000 00512.

PRG xfr address: 016030
Total address windows: 1.
Task extension : 512.

Task image size : 7552.
Total task size : 8064.

words
words
words

Task address limits: 000000 035313
R-W disk blk limits: 000002 000054 000053 00043.

TRY2.TSK Overlay description:

Base Top Length

000000 021043 021044 08740.
021044 030523 007460 03888.
021044 026173 005130 02648.
021044 021577 000534 00348.
030524 030523 000000 00000.
030524 035313 004570 02424.
030524 035303 004560 02416.

USER

INTRO
CHATR
CRUNCH

NULL

CALC1
CALC2

Page 2

TRY2.TSK Memory allocation map TKB

USER 15-MAY-90

*%% Segment: INTRO

R/W mem limits: 021044 030523 007460
Disk blk limits: 000024 000033 000010

Memory allocation synopsis:

Section

. BLK.: (RW, I, LCL, REL, CON)
BP20TS: (RW, I, LCL, REL, CON)

SARRAY: (RW, D, LCL, REL, CON)

021044
021044
021044
021466
023472
024350
025212
027616
030044
030246
030336

13:17

000000
007272
000422
002004
000656
000642
002404
000226
000202
000070
000000

08.006

03888.
00008.

00000.

03770.

00274. S$ICINI
01028. S$SICRED
00430. SICWRT
00418. $STMOS
01248. SECONV
00150. $ICFNS
00130. $STLSS
00056. S$STFN1
00000.

Page 5

Ident

23CM
53CM
40CM
16CM
24CM
11RE
08CM
06CM

File

BP20TS.OLB
BP20TS.OLB
BP20TS.OLB
BP20TS.OLB
BP20TS.OLB
BP20TS.OLB
BP20TS.OLB
BP20TS.OLB

4-12 Co-Trees: Another Way to Save Space

At this point, it is useful to sketch the information shown in the map file, listing
the routines included in each overlaid piece from the library BP20TS.OLB.
Figure 4-9 is such a sketch, showing the relative sizes of the pieces and naming
the library routines built into each of the overlaid pieces.

NOTE

Library routines have also been built into the root segment, USER, but
they are of no concern. It is theoretically possible that some of these
routines could be overlaid in their own tree. However, it is difficult to
know the sequence in which such routines are called from other trees.
You would have to look at an assembly-language listing of the compiled
code to determine the sequence of calls.

That is, overlaying such routines in their own tree could, and probably
would, result in the cross-tree call problem mentioned in Section 4.1.
An overlay piece could inadvertently displace another overlay piece in
memory, causing errors at execution time.

Figure 4-9 is the basis of the analysis for "fine-tuning” a build using co-trees with
a high-level language. Now you can see more clearly just what the Task Builder
has done and why.

First, it has built the routines $ICINI, $ICWRT, $ECONYV, $ICFNS, and $STFN1
into two paths in each of the two trees: that is, into INTRO and CHATR in the
main tree, and CALC1 and CALC2 in the co-tree. This was indeed the most
reasonable thing for the Task Builder to do; it had no way of knowing whether
to resolve the references in CALC1 and CALC2 with the definitions in INTRO or
the definitions in CHATR. So, it built the routines into CALC1 and CALC2 again,
and flagged the routines (modules) and symbols for your examination.

Co-Trees: Another Way to Save Space 4-13

Figure 4-9: Sketch of the Structure for Second <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>