
ABSTRACT

Gordon Bel~ William D.
November 8, 1975

Strecker

COMPUTER STRUCTURES:
WHAT HAVE WE LEARNED FROM THE PDP-II?

Over the PDP-II'S six year life
about 20,000 specimens have been
built based on i0 species (models).
Although range was a design goal,
it was unquantified; the actual
range has exceeded expectations
(500:1 in memory size and system
price). The range has stressed the
basic mini(mal) computer
architecture along all dimensions.
The main PMS structure, i.e. the
UNIBUS, has been adopted as a de
facto standard of interconnection
for many micro and minicomputer
systems. The architectural
experience gained in the design and
use of the PDP-II will be described
in terms of its environment
(initial goals and constraints,
technology, and the organization
that designs, builds and
distributes the machine).

1.0 INTRODUCTION

Although one might think that
computer architecture is the sole
determinant of a machine, it is
merely the focal point for a
specification. A computer is a
product of its total environment.
Thus to fully understand the
PDP-II, it is necessary to
understand its environment.

Figure Org. shows the various
groups (factors) affecting a
computer. The lines indicate the
primary flow of information for
product functional behavior and for
product specifications. The
physical flow of goods is nearly
along the same lines, but more
direct: starting with applied
technology (e.g., semiconductor
manufacturers), going through
computer manufacturing, and finally
to the service personnel before
being turned over to the final
user.

The relevant parts, as they affect
the design are:

1. The basic technology--it is
important to understand the
components that are available
to build from, as they directly
affect the resultant designs.

2. The development
organization--what is the
fundamental nature of the
organization that makes it

3.

behave in a particular way?
Where does it get inputs? How
does it formulate and solve
problems?

The rest of the DEC
organization--this includes
applications groups associated
with market groups, sales,
service and manufacturing.

4. The user, who receives the
final output.

Note, that if we assume that a
product is done sequentially, and
each stage has a gestation time of
about two years, it takes roughly
eight years for an idea from basic
research to finally appear at the
user's site. Other organizations
also affect the design:
competitors (they establish a
design level and determine the
product life); and government(s)
and standards.

There are an ever increasing number
of groups who feel compelled to
control all products bringing them
all to a common norm: the
government(s), testing groups such
as Underwriters Laboratory, and the
voluntary standards groups such as
ANSI and CBEMA. Nearly all these
groups affect the design in some
way or another (e.g. by requiring
time).

2.0 BACKGROUND

It is the nature of engineering
projects to be goal oriented--the
ii is no exception, with much
pressure on deliverable products.
Hence, it is difficult to plan for
a long and extensive lifetime.
Nevertheless, the ii evolved more
rapidly and over a wider range than
we expected, placing unusual stress
on even a carefully planned system.
The ii family has evolved under
market and implementation group
pressure to build new machines. In
this way the planning has been
asynchronous and diffuse, with
distributed development. A
decentralized organization provides
checks and balances since it is not
all under a single control point,
often at the expense of
compatibility. Usually, the
hardware has been designed, and the
software is modified to provide
compatibility.

Independent of the planning, the
machine has been very successful in
the marketplace, and with the
systems programs written for it.
In the paper (Bell et al, 1970) we
are first concerned with market
acceptance and use. Features
carried to other designs are also a
measure of how it contributes to
computer structures and are of
secondary importance.

The PDP-II has been successful in
the marketplace with over 20,000
computers in use (1970-1975). It
is unclear how rigid a test (aside
from the marketplace) we have given
the design since a large and
aggressive marketing and sales
organization, coupled with software
to cover architectural
inconsistencies and omissions, can
save almost any design. There was
difficulty in teaching the machine
to new users; this required a
large sales effort. On the other
hand, various machine and operating
systems capabilities still are to
be used.

2.1 GOALS AND CONSTRAINTS - 1970

The paper (Bell et al~ 1970)
described the design, beginning
with weaknesses of minicomputers to
remedy other goals and constraints.
These will be described briefly in
this section, to provide a
framework, but most discussion of
the individual aspects of the
machine will be described later.

Weakness i, that of limited address
capability, was solved for its
immediate future, but not with the
finesse it might have been.
Indeed, this has been a costly
oversight in redundant development
and sales.

There is only one mistake that can
be made in a computer design that
is difficult to recover from--not
providing enough address bits for
memory addressing and memory
management. The PDP-II followed
the unbroken tradition of nearly
every known computer. Of course,
there is a fundamental rule of
computer (and perhaps other)
designs which helps to alleviate
this problem: any well-designed
machine can be evolved through at
least one major change. It is
extremely embarrassing that the ii
had to be evolved with memory
management only two years after the
paper was written outlining the
goal of providing increased address
space. All predecessor DEC designs
have suffered the same problem, and
only the PDP-10 evolved over a ten
year period before a change was

made to increase its address space.
In retrospect, it is clear that
since memory prices decline at 26%
to 41% per year, and many users
tend to buy constant dollar
systems, then every two or three
years another bit is required for
the physical address space.

Weakness 2 of not enough registers
was solved by providing eight
16-bit registers; subsequently six
more 32-bit registers were added
for floating point arithmetic. The
number of registers has proven
adequate. More registers would
just increase the context switching
time, and also perhaps the
programming time by posing the
allocation dilemma for a compiler
or a programmer.

Lack of stacks (weakness 3) has
been solved, uniquely, with the
auto-increment/auto-decrement
addressing mechanism. Stacks are
used extensively in some languages,
and generally by most programs.

Weakness 4, limited interrupts and
slow context switching has been
generally solved by the ii UNIBUS
vectors which direct interrupts
when a request occurs from a given
I/O device.

Byte handling (weakness 5) was
provided by direct byte addressing.

~ead-only memory (weakness 6) can
be used directly without special
programming since all procedures
tend to be pure (and reentrant) and
can be programmed to be recursiw~
(or multiply reentrant) . Read-only
memories are used extensively for
bootstrap loaders, debugging
programs, and now provide normal
console functions (in program)
using a standard terminal.

Very elementary I/O processing
(weakness 7) is partially provided
by a better interrupt structure~,
but so far, I/O processors per se
have not been implemented.

Weakness 8 suggested that we must
have a family. Users would like to
move about over a rang~of models.

\

High programming costs (weakness 9)
should be addressed because users
program in machine language. Here
we have no data to suggest
improvement. A reasonable
comparison would be programming
costs on an Ii versus other
machines. We built more comple~:
systems (e.g., operating systems,
computers) with the ii than with
simpler structures (e.g. PDP-8 or
15). Also, some systems
programming is done using higher
level languages.

Another constraint was the word
length had to be in multiples of
eight bits. While this has been
expensive within DEC because of our
investment in 12, 18 and 36 bit
systems, the net effect has
probably been worthwhile. The
notion of word length is quite
meaningless in machines like the ii
and the IBM 360 because data-types
are of varying lengths, and
instructions tend to be in
multiples of 16 bits. However, the
addressing of memory for floating
point is inconsistent.

Structural flexibility (modularity)
was an important goal. This
succeeded beyond expectations, and
is discussed extensively in the
part on PMS, in particular the
UNIBUS section.

There was not an explicit goal of
microprogrammed implementation.
Since large read-only memories were
not available at the time of the
Model 20 implementation,
microprogramming was not used.
Unfortunately, all subsequent
machines have been microprogrammed
but with some additional difficulty
and expense because the initial
design had poorly allocated
opcodes, but more important the
condition codes behavior was over
specified.

Understandability was also stated
to be a goal, that seems to have
been missed. The initial handbook
was terse and as such the machine
was only saleable to those who
really understood computers. It is
not clear what the distribution of
first users was, but probably all
had previous computing experience.
A large number of machines were
sold to extremely knowledgeable
users in the universities and
laboratories. The second handbook
came out in 1972 and helped the
learning problem somewhat, but it
is still not clear whether a user
with no previous computer
experience can determine how to use
a machine from the information in
the handbooks. Fortunately, two
computer science textbooks
(Eckhouse, 75; and Stone and
Siewiorek, 75) have been written
based on the ii to assist in the
learning problem.

2.2 FEATURES THAT HAVE MIGRATED TO
OTHER COMPUTERS AND OFFSPRINGS

A suggested test (Bell et al 1970)
was the features that have migrated
into competitive designs. We have
not fully permitted this test
because some basic features are
patented; hence, non-DEC designers
are reluctant to use various ideas.

At least two organizations have
made machines with similar bus and
ISP structures (use of address
modes, behavior of registers as
program counter and stack); and a
third organization has offered a
plug-replacement system for sale.

The UNIBUS structure has been
accepted by many designers as the
PMS structure. This
interconnection scheme is
especially used in microprocessor
designs. Also, as part of the
UNIBUS design, the notion of
mapping I/O data and/or control
registers into the memory address
space has been used often in the
microprocessor designs since it
eliminates instructions in the ISP
and requires no extra control to
the I/O section.

Finally, we were concerned in 1970
that there would be
offsprings--clearly no problem;
there have been about ten
implementations. In fact, the
family is large enough to suggest
need of family planning.

3.0 TECHNOLOGY

The computers we build are strongly
influenced by the basic electronic
technology. In the case of
computers, electronic information
processing technology evolution has
been used to mark the four
generations.

3.1 Effects Of Semiconductor
Memory On The PDP-II Model
Designs

The PDP-II computer series design
began in 1969 with the Model 20.
Subsequently, 3 models were
introduced as minimum cost, best
cost/performance, and maximum
performance machines. The memory
technology in 1969 formed several
constraints:

i. Core memory for the primary
(program) memory with an
eventual trend toward
semiconductor memory.

2. A comparatively small number of
high speed registers for
processor state (i.e. general
registers), with a trend toward
larger, higher speed register
files at lower cost. Note,
only 16 word read-write
memories were availableat
design time.

3. Unavailability of large, high
speed read-only memories,

permitting a microprogrammed
approach to the design of the
control part. Note, not for ca
paper, read-only memory was
unavailable although slow,
read-only MOS was available for
character generators.

These constraints established the
following design principles and
attitudes:

i. It should be asynchronous and
capable of accepting various
configurations of memories in
size and speed.

2. It should be expandable, to
take advantage of an eventually
larger number of registers for
more data-types and improve
context switching time. Also,
more registers would permit
eventually mapping memory to
provide a virtual machine and
protected multiprogramming.

3. It could be relatively complex,
so that an eventual microcode
approach could be used to
advantage. New data-types
could be added to the
instruction set to increase
performance even though they
added complexity.

4. The UNIBUS width would be
relatively wide, to get as much
performance as possible, since
LSI was not yet available to
encode functions.

3.2 Variations In PDP-I1 Models
Through Technology

Semiconductor memory (read-only and
read-write) were used to tradeoff
cost performance across a
reasonably wide range of models.
Various techniques based on
semiconductors are used in the
tradeoff to provide the range.
These include:

i. Improve performance through
brute force with faster
memories. The 11/45 and 11/70
uses bipolar and fast MOS
memory.

2. Microprogramming (see below) to
improve performance through a
more complex ISP (i.e.,
floating point).

3. Multiple copies of processor
state (context) to improve time
to switch context among various
running programs.

4. Additional registers for
additional data-types--i.e.,
floating point arithmetic.

5. Improve the reliability by
isolating (protecting) one
program from another.

6. Improve performance by mapping
multiple programs into the same
physical memory, giving each
program a virtual machine.
Providing the last two points
requires a significant increase
in the number of registers
(i.e. at least 64 word fast
memory arrays).

4.0 THE ORGANIZATION OF PEOPLE

Three types of design are based
both on the technology and the cost
and performance considerations.
The nature of this tradeoff is
shown in Figure DS. Note, that one
starts at 0 cost and performance,
proceeds to add cost, to achieve a
base (minimum level of
functionality). At this point,
certain minimum goals are met: for
the computer, it is simply that
there is program counter, and the
simplest arithmetic operations can
be carried out. It is easy to show
(based on the Turing machine) that
only a few instructions are
required, and from these, any
program can be written. From this
minimal point, performance
increases very rapidly in a step
fashion (to be described later) for
quite sometime (due to fixed
overhead of memories, cabinets,
power, etc.) to a point of
inflection where the cost-effective
solution is found. At this point,
performance continues to increase
until another point where the
performance is maximized.
Increasing the size implies
physical constraints are exceeded,
and the machine becomes
unbuildable, and the performance
can go to 0. There is a general
tendency of all designers to "n+l"
(i.e., incrementally add to the
design forever). No design is so
complete, that a redesign can't
improve it.

The two usual problems of design
are: inexperience and
"second-systemitis" The first
problem is simply a resources
problem. Are there people
available? What are their
backgrounds? Can a small group
work effectively on architectural
definitions? Perhaps most
important is the principle, that no
matter who is the architect, the
design must be clearly understood
by at least one person.

Second-systemitis is the phenomenon
of defining a system on the basis
of past system history.

Invariably, the system solves all
past problems...bordering on the
unbuildable.

4.1 PDP-II Experience

Some of the PDP-II architecture was
initially carried out by at
Carnegie-Mellon University (HM with
GB). Two of the useful ideas: the
UNIBUS, and the use of general
registers in a substantially more
general fashion (e.g. as stack
pointers) came out of earlier work
(GB) at CMU and was described in
COMPUTER STRUCTURES (Bell and
Newell, 1971). During the detailed
design amelioration, 2 persons (HM,
and RC) were responsible for the
specification.

Although the architectural activity
of the 11/20 proceeded in parallel
with the implementation, there was
less interaction than in previous
DEC designs where the first
implementation and architecture
were carried out by the same
person. As a result, a slight
penalty was paid to build
subsequent designs, especially vis
avis microprogramming.

As the various models began to be
built outside the original
PDP-II/20 group, nearly all
architectural control (RC)
disappeared, and the architecture
was managed by more people, and
design resided with no one person!
A similar loss of control occurred
in the design of the peripherals
after the basic design.

The first designs for 16-bit
computers came from a group placed
under the PDP-15 management (a
marketing person, with engineering
background). It was called PDP-X,
and did include a range. As a
range architecture, it was better
thought out than the later PDP-II,
but didn't have the innovative
aspects. Unfortunately, this group
was intimidating, and some members
lacked credibility. The group also
managed to convince management that
the machine was potentially as
complex as the PDP-10 (which it
wasn't); since no one wanted
another large computer disconnected
from the main business, it was a
sure suicide. The (marketing)
management had little understanding
of the machine. Since the people
involved in the design were
apparently simultaneously designing
Data General, the PDP-X was not of
foremost importance.

As the PDP-X project folded and the
DCM (for Desk Calculator Machine

for security) project started up,
design and planning were in
disarray, since Data General had
been formed and was competing with
the PDP-8 using a very small 16-bit
computer. Although the Product
Line Manager, a former engineer
(NM) for the PDP-8, had the
responsibility this time, the new
project manager was a
mathematician/programmer followed
by another manager (RC) who had
managed the PDP-8. Work proceeded
for several months based on the DCM
and with a design review at
Carnegie-Mellon University in late
1969. The DCM review took only a
few minutes. Aside from a general
dullness and a feeling that it was
too little too late to compete. It
was difficult to program
(especially by compilers).
However, it's benchmark results
were good. (We believe it had been
tuned to the benchmarks, hence
couldn't do other problems very
well.) One of the designers (HM)
brought along the kernel of an
alternative, which turned out to be
the PDP-II. We worked on the
design all weekend, recommending a
switch to the basic ii design.

At this point, there were reviews
to ameliorate the design, and each
suggestion, in effect, amounted to
an n+l; the implementation was
proceeding in parallel (JO) and
since the logic design was
conventional , it was difficult to
tradeoff extensions. Also, the
design was constrained with boards
and ideas held over from the DCM.
(The only safe way to design a
range is simultaneously do both
high and low end designs.) During
the summer at DEC, we tried to free
op code space, and increased
(n+l'ed) the UNIBUS bandwidth (with
an extra set of address lines), and
outlined alternative models.

The advent of large, read-only
memories, made possible the various
follow-on designs to the 11/20.
Figure "Models" sketches the cost
of various models versus time, with
lines of consistent performance.
This very clearly shows the design
styles (ideologies) . The 11/40
design was started right after the
11/20, although it was the last to
come on the market (the low and
high ends had higher priority to
get into production as they
extended the market). Both the
11/04 and 11/45 design groups went
through extensive buy in processes,
as they came into the ii by first
proposing alternative designs. In
the case of the 11/45, a larger,
ll-like 18-bit machine was proposed
by the 15 group; and later, the
LINC engineering group proposed an
alternative design which was subset
compatible at the symbolic program
level. As the groups considered

the software ramifications, buy-in
was rapid. Figure Models shows the
minimum cost-oriented group has two
successors providing lower cost
(yet higher performance) and the
same cost with the ability to have
larger memories and perform better.
Note, both of these came from a
backup strategy to the LSI-II.
These come from larger read-only
memories, and increased
understanding of how to implement
the ii.

The 11/70 is, of course, a natural
follow on to extend the performance
of the 11/45.

5.0 PMS STRUCTURE

In this section, we give an
overview of the evolution of the
PDP-II in terms of its PMS
structure, and compare it with
expectations (Bell et al, 1970).
The aspects include: the UNIBUS
structure; UNIBUS performance;
use for diagnostics; architectural
control required; and
multi-computer and multi-processor
computer structures.

5.1 The UNIBUS - The Center Of The
PMS Structure

In general, the UNIBUS has behaved
beyond expectations, acting as a
standard for intercommunication of
peripherals. Several hundred types
of memories and peripherals have
been attached to it. It has been
the principle PMS interconnection
media of Mp-Pc and peripherals for
systems in the range 3K dollars to
100K dollars (1975). For larger
systems supplementary buses for
Pc-Mp and Mp-Ms traffic have been
added. For very small systems,
like the LSI-II, a narrower bus
(Q-bus) has been designed.

The UNIBUS by being a standard has
provided us with a PMS architecture
for easily configuring systems;
any other organization can also
build components which interface
the bus...clearly ideal for buyers.
Good busses (standards) make good
neighbors (in terms of
engineering), since people can
concentrate on design in a
structured fashion. Indeed, the
UNIBUS has created a complete
secondary industry dealing in
alternative sources of supply for
memories and peripherals. Outside
of the IBM 360 I/O
Multiplexor~Selector bus, the
UNIBUS is the most widely used

computer interconnection standard.
Although it has been difficult to
fully specify the UNIBUS such that
one can be certain that a given
system will work electrically and
without missed data, specification
is the key to the UNIBUS. The bus
behavior specification is a yet
unsolved problem in dealing with
complexity--the best descriptions
are based on behavior (i.e., timinq
diagrams).

There are also problems with the
design of the UNIBUS. Although
parity was assigned as two of the
bits on the bus (parity and parity
is available), it has not beer
widely used. Memory parity was
implemented directly in the memory,
since checking required additional
time. Memory and UNIBUS parity is
a good example of nature of
engineering optimization. The
tradeoff [s one of cost and
decreased performance versus
decreased service cost and more
data integrity for the user. The
engineer is usually measured on
production cost goals, thus parity
transmission and checking are
clearly a capability to be omitted
from design...especially in view of
lost performance. The internal
Field Service organization has been
unable to quantify the increase in
service cost savings due to shorter
MTTR by better fault isolation.
Similarly, many of the transient
errors which parity detects can be
detected and corrected by software
device drivers and backup
procedures without parity. With
lower cost for logic and increased
responsibility (scope) to include
warranty costs as part of the
product design cost forces much
more checking into the design.

The interlocked nature of the
transfers is such that there is a
deadlock when two comput%rs are
joined together using the UNIBUS
window. With the window a computer
can map another computer's address
space into its own address space in
a true multiprocessor fashion.
Deadlock occurs when the two
computers simultaneously attempt to
access the other's addresses
through each window. A request to
the window is in progress on one
UNIBUS, and at the same time a
request to the other UNIBUS is in
progress on the reguestee's UNIBUS,
hence neither request can be
answered, causing a deadlock. One
or both requests are aborted and
the deadlock is broken by having
the UNIBUS time out since this is
equivalent to a non--existent
address (e.g., a memory). In this
way the system recovers and
requests can be reissued (which may
cause deadlock). The UNIBUS window
is confined to applications where
there is likely to be a low
deadlock rate.

5.2 UNIBUS and Performance 5.3 Evolution Of Models: Predicted
Optimality Versus Actual

Although we always want more
performance on one hand, there is
an equal pressure to have lower
cost. Since cost and peformance
are almost totally correlated the
two goals perfectly conflict. The
UNIBUS has turned out to be optimum
over a wide dynamic range of
products, (argued below). However,
at the lowest size system, the
Q-bus has been introduced, which
contains about 1/2 the number of
conductors; and at the largest
systems, the data path width for
the processor and memory has been
increased to 32-bits for added
performance although the UNIBUS is
still used for communication with
most I/O controllers.

Since all interconnection schemes
are highly constrained, it is clear
that future lower and higher
systems cannot be accomplished from
a single design unless a very low
cost, high performance
communication media (e.g. optical)
is found.

The optimality of the UNIBUS comes
about because memory size (number
of address bits) and I/O traffic
are correlated with the processor
speed. Amdahl's rule-of-thumb for
IBM computers (including the 360)
is: one byte of memory is required
per instruction/sec and one bit of
I/O is required for each
instruction executed. For our
applications, we believe there is
more computation required for each
memory word, because of the bias
toward control and scientific
applications. Also, there has been
less use of complex instructions
typical of the IBM computers.
Hence, we assume one byte of memory
is required for each two
instructions executed, and assume
one byte of I/O is an upper bound
(for real time applications) for
each instruction executed. In the
PDP-II, an average instruction
accesses three to five bytes of
memory, and with one byte of io, up
to six bytes of memory are accessed
for each instruction~sac.
Therefore, a bus which can support
two megabyte/sec traffic permits
instruction execution rates of .33
to .5 mega instruction/sec. This
imputes to meory sizes of .16 to
.25 megabytes; the maximum
allowable memory is .3 to .256
megabytes. By using a cache memory
with a processor, the effective
memory processor rate can be
increased to further balance the
processor. Alternatively, faster
floating point operations will
bring the balance to be more like
the IBM data, requiring more
memory.

The original prediction (Bell et
al, 1970) was that models with
increased performance would evolve
using: increased path width for
data; multi-processors; and
separated bus structures for
control and data transfers to
secondary and tertiary memory.
Nearly all of these forms have been
used, though not exactly as
predicted. (Again, this points to
lack of overall architectural
planning versus our willingness and
belief that the suggestions and
plans for the evolution must come
from the implementation groups.)

In the earlier 11/45, a separate
bus was added for direct access of
either bipolar (300ns) or fast MOS
(400ns) memory. In general, it was
assumed that these memories would
be small, and the user would move
the important part of his algorithm
to the fast memory for direct
execution. The 11/45 provided a
second UNIBUS for direct
transmission of information to the
fast memory without Pc
interference. The 11/45 also
increased performance by adding a
second autonomous data operation
unit called the Floating Point
Processor (actually not a
processor). In this way, both
integer and floating point
computation could proceed
concurrently.

The 11/70, a cache based processor,
is a logical extension of using
fast, local memories, but without
need for expert movement of data.
It has a memory path width of
32-bits, and the control portion
and data portion of I/O transfers
have been separated as originally
suggested. The performance
limitation of the UNIBUS are
removed, since the second Mp system
permits data transfers of up to
five megabytes/sec (2.5 times that
of the UNIBUS). Note, that a
peripheral memory map control is
needed since Mp address space (two
megabytes) exceeds the UNIBUS. In
this way, direct memory access
devices on the UNIBUS transfer data
into a mapped portion of the larger
address space.

5.4 Multi-processor Computer
Structures

Although it is not surprising that
multi-processors have not been used
except on a highly specialized
basis, it is depressing. In
Computer Structures (Bell and
Newell, 71) we carried out an

analysis of the IBM 360,
predicating a multi-processor
design. The range of performance
covered by the PDP-II models is
substantially worse than with the
360, although the competitive
environment of the two companies is
substantially different. For the
360, smaller models appear to
perform worse than the technology
would predict. The reasons why
multiprocessors have not
materialized may be:

i. The basic nature of engineering
is to be conservative, this is
a classical deadlock situation:
we cannot learn how to program
multiprocessors until such
systems exist; a system canot
be built before programs are
ready.

2. The market doesn't demand them.
Another deadlock: how can the
market demand them, since the
market doesn't even know that
such a structure could exist?
IBM has not yet blessed the
concept.

3. We can always build a better
single, special processor.
This design philosophy stems
from local optimization of the
designed object, and ignores
global costs of spares,
training, reliability and the
ability of the user to
dynamically adjust a
configuration to his load.

4. There are more available
designs for new processors than
we can build already.

5. Planning and technology are
asynchronous. Within DEC, not
all products are planned and
built at a particular time,
hence, it is difficult to get
the one right time when a
multiprocessor would be better
than an existing Uniprocessor
together with one or two
additional new processors.

6. Incremental market demands
require specific new machines.
By having more products, a
company can better track
competitors by specific
uniprocessors.

5.4.1 Existent Multiprocessors -

Figure MP gives some of the
multiprocessor systems that have
been built on the ii base. The top
most structure has been built using
11/05 processors, but because of
improper arbitration in the
processor, the performance expected
based on memory contention didn't
materialize. We would expect the

following results for multiple
11/05 processors sharing a single
UNIBUS:

PC. Pc. PRICE/ SYS Price/
#Pc Mp PERF PRICE PERF* Price PERF**
1 .6 1 1 1 3 1
2 1.15 1.85 1.23 .66 3.23 .58
3 1.42 2.4 1.47 .61 3.47 .48
40 2.25 1.35 .6 3.35 .49

*Pc cost only
** Total system, assuming 1/3 of system is
Pc.cost

From these results we would expect
to use up to three processors, to
give the performance of a model 40.
More processors, while increasing
the performance, are less
cost-effective. This basic
structure has been applied on a
production basis in the GT4X series
of graphics processors. In this
scheme, a second P.display is added
to the UNIBUS for display picture
maintenance.

The second type of structure given
in Figure MP is a conventional
multiprocessor using multiple port
memories. A number of these
systems have been installed and
operate quite effectively, however,
they have only been used for
specialized applications.

The most extensive multiprocessor
structure, C.mmp, has been
described elsewhere. Hopefully,
convincing arguments will be
forthcoming about the effectiveness
of multiprocessors from this work
in order to establish these
structures on an applied basis.

6.0 THE ISP

Determining an ISP is a design
problem. The initial ii design was
based substantially on benchmarks,
and as previously indicated this
approach yielded a predecessor (not
built) that though performing best
on the six benchmarks, was
difficult to program for other
applications.

6.1 General ISP Design Problems

The guiding principles for ISP
design in general, have been
especially difficult because:

i. The range of machines argues
for different encoding over the
range. At the smallest
systems, a byte-oriented
approach with small addresses

2.

3.

4.

5.

is optimum, whereas larger
implementations require more
operations, larger addresses
and encoding efficiency can be
traded off to gain performance.

The ii has turned out to be
applied (and hopefully
effective) over a range of 500
in system price ($500 to
$250,000) and memory size (Sk
bytes to 4 megabytes). The 360
by comparison varied over a
similar range: from 4k bytes
to 4 megabytes.

At a given time, a certain
style of machine ISP is used
because of the rapidly varying
technology. For example, three
address machines were initially
used to minimize processor
state (at the expense of
encoding efficiency), and stack
machines have never been used
extensively due to memory
access time and control
complexity. In fact, we can
observe that machines have
evolved over time to include
virtually all important
operations on useful
data-types.

The machine use varies over
time. In the case of DEC, the
initial users were
sophisticated and could utilize
the power at the machine
language level. The ii
provided more fully general
registers and was unique in the
minicomputer marketplace, which
at the time consisted largely
of 1 or 2 accumulator machines
with 0 or 1 index registers.
Also, the typical minicomputer
operation codes were small.
the ii extended data-typing to
the byte and to reals, by the
extension of the auto-indexing
mode, the string was
conveniently programmed, and
the same mechanism provided for
stack data-structures.

The machine is applied into
widely different markets.
Initially the ii was used at
the machine language level.
The user base broadened by
applications with substantially
higher level languages. These
languages initially were the
scientific based register
transfer languages such as
BASIC, FORTRAN, DEC'S FOCAL,
but the machine eventually
began to be applied in the
commercial marketplace for the
RPG, COBOL, DIBOL, and
BASIC-PLUS languages which
provided string and decimal
data-types.

The criteria for a capability
in an instruction set is highly

6.

7.

variable, and borders on the
artistic. Ideal goals are thus
to have a complete set of
operations for a given basic
data-type (e.g.
integers)--completeness, and
operations would be the same
for varying length
da ta-types--or thogonal ity.
Selection of the data-types is
totally a function of the
application. That is, the ii
considers both bytes and full
words to be integers, yet
doesn't have a full set of
operations for the byte; nor
are the byte and word ops the
same. By adhering to this
principle, the compiler and
human code generators are
greatly aided.

We would therefore ask that the
machine appear elegant, where
elegance is a combined quality
of instruction formats relating
to mnemonic significance,
operator/data-type completeness
and orthogonality, and
addressing consistency. By
having completely general
facilities (e.g., registers)
and which are not context
dependent assists in minimizing
the number of instruction
types, and greatly aids in
increasing the
understandability (and
usefulness).

Techniques for generating code
by the human and compiler vary
widely. With the ii, more
addressing modes are provided
than any other computer. The 8
modes for source and
destination with dyadic
operators provide what amounts
to 64 possible instructions;
and by associating the Program
Counter and Stack Pointer
registers with the modes, even
more data accessing methods are
provided. For example, 18
forms of the MOVE instruction
can be seen (Bell et al, 1971)
as the machine is used as a
two-address, general registers
and stack machine program
forms. (The price for this
generality is extra bits). In
general, the machine has been
used mostly as a general
register machine.

Basic design can take the very
general form or be highly
specific, and design decisions
can be bound in some
combination of microcode or
macrocode with no good criteria
for tradeoff.

6.2 Problems In Extending The systems provide functions to
Machine Range get additional segments).

Several problems have arisen as the
basic machine has been extended:

1. The operation-code extension
problem--the initial design did
not leave enough free opcode
space for extending the machine
to increase the data-types.

At the time the 11/45 was
designed (FPP was added),
several extension schemes were
examined: an escape mode to
add the floating point
operations; bringing the ii
back to a more conventional
general register machine by
reducing the modes and finally,
typing the data by adding a
global mode which could be
switched to select floating
point (instead of byte
operations).

2. Extending the addressing
range--the UNIBUS limits the
physical memory to 262,144
bytes (18-bits). In the
implementation of the 11/70,
the physical address was
extended to 4 megabytes by
providing a UNIBUS map so that
devices in a 262K UNIBUS space
could transfer into the 4
megabyte space by mapping
registers.

While the physical address
limits are acceptable for both
the UNIBUS and larger systems,
the address for a single
program is still confined to an
instantaneous space of 16 bits,
the user virtual address.

The main method of dealing with
relatively small addresses is
via process-oriented operating
systems that handle large
numbers of smaller tasks. This
is a trend in operating
systems, especially for process
control and transaction
processing. It also enforces a
structuring discipline in the
(user) program organization.
The RSX series operating
systems are organized this way,
and the need for large
addresses except for problems
where large arrays are accessed
is minimized.

The initial memory management
proposal to extend the virtual
memory was predicated on
dynamic, rather than static
assignment of memory segment
registers. In the current
memory management scheme, the
address registers are usually
considered to be static for a
task (although some operating

7.0 SUMMARY

This paper has re-examined the
PDP-II and compared it with the
initial goals and constraints. With
hindsight, we now clearly see what
the problems with the initial design
were. Design faults occurred not
through ignorance, but because the
design was started too late. As we
continue to evolve and improve the
PDP-II over the next five years, it
will indeed be interesting to
observe, however, the ultimate test
is use.

BIBLIOGRAPHY

Ames, G.T., Drongowski, P.J. and
Fuller, S.H. Emulating the Nova on
the PDP-II/40: a case study.
Proc. COMPCON (1975).

Bell, G., Cady, R., McFarland, H.,
Delagi, B., O'Loughlin, J., Noonan,
R., and Wulf, W. A new
architecture of minicomputers-- the
DEC PDP-11. Proc. SJCC (1970)
Vo136, pp.657-675.

Bell, C.G. and Newell, A.
Computer Structures. McGraw Hill
(1971)

Bell, J.R. Threaded code. COMM
ACM (June 1973) Vol 16, No. 6, pp
370-372.

Eckhouse, R.H. Minicomputer
Systems: organization and
programming (PDP-II).
Prentice-Hall,(1975)

Fusfeld, A. R. The technological
progress function. Technology
Review (Feb. 1973) pp.29-38

McWilliams, T., Sherwood, W.,
Fuller, S., PDP-II Implementation
using the Intel 3000 microprocessor
chips. Submitted to NCC (May 1976)

O'Loughlin, J.F. Microprogramming
a fixed architecture machine.
Microprogramming and Systems
Architecture Infotech State of the
Art Report 23. pp205-224

Ornstein, 1972? (page 28)

Stone, H.S. and Siewiorek, D.P.
Introduction to computer
organization and data structures:
PDP-II Edition. McGraw-Hill,
(1975)

Turn, R. Computers in the 1980's.
Columbia University Press 1974.

Wulf, W.A., Bell, C.G., C.mmp: A
multi-mini-processor. FJCC (1972)

i0

b
!

I I I
""

I I I

L
d

 C9
Z

Z

0

W

~
z

w

Z
-_1

~
,~

el_

n."

..£=~

o

~o
/ c

~
w

~

I
l

c4
>

-
0

9

n
"

O
 \

1 W

~
9

.--I

.f

¢D

P~

Z

~D

a

2 8 cD

z
i--

u_
u_

,<

N

Z .<

O

W

(D

Q
=

O

~D

u.

11

Fig. DS DESIGrl STYLES (IDEOLOGIES) Irl TERHS OF COST AND PERFOR~4ANCE

Performance Cost ~/

ma×imum l /

effective /~/ Physical

/ ~"'- incremented /~//~//~/ Constraint

S

minimum / fixed 8, variable
functionality

null unbuildable

12

0
-r-
n

/
/

/ /

~
9

f--

t2
~

°

0 f..-

U

E

8

0

0.)
C

"-"
0

K
I.

/

/
/

/

/
/

/

E
/
0

"
0
1

/
/

/
/./

/
/

¢
i

.
-
-

,o
// /

/
/

/

/

/
~

/

\

W
l

o[
~

j

~
_

j

¢.JI

m
l

O
I

--r

~
L

~
J

I--L

--i
~

r

u
JI

--i

m
'--I

m
l

%
1

%
1

m
l

m
 &

13

Pc Pc... btp... KT... KMS...
I I I I I

a. Multi-Pc structure using a sinNe Unibus.

Pc Pdisplay* Mp... KT...
I I 1 I

* used in GT4X series; alternatively

P specialized (e.g., FFT)

KMs...
I

I
Pc specialized

b. Pc v,,ith P.display using a single Unibus.

Pc KMs... KT... Kclock
I I 1 I

Pc : KMs... KT... Kclock
I I I I [

Mp...

c. Multiprocessor using multiport Mp.

Mp(a 0:15) T ,= S Fent ral;crosspoint ;-] ~ - - - Pc(~ 0:15 ;'I 1/40) =
! L 16x16 _j L.._i

d. C.mmp CMLI multi-mini-processor compurcr structure.

S(Unibus).
KT... KMs...

Figure MP blulti-Processor Computer Structures Implenlented using PDP-11

1/4

