
United States Patent [\9]

Rubinson et al.

[54] DISK FORMAT FOR SECONDARY
STORAGE SYSTEM

[75) Inventors: Barry L. Rubinson; Mark A. Parenti;
Richard F. Lary; Edward A. Gardner,
all of Colorado Springs, Colo.

[73) Assignee: Digital Equipment Corporation,
Maynard, Mass.

[21] A ppl. No.: 308,771

[22) Filed: Oct. 5, 1981

[51) Int. CI.3 .. G06F 11/10
[52) U.S. CI. .. 371/10; 360/53;

364/200; 371/13
[58) Field of Search 371/10, 13, 38; 360/47,

360/53; 364/200, 900

[56) References Cited

U.S. PATENT DOCUMENTS

Re.31,069 10/1982 Chang et a\. 360/53
3,059,266 10/1962 Cleveland 371/13
4,037,091 7/1977 Beuscher 371/13
4,152,695 5/1979 Democrate et a\. 371/10
4,214,280 7/1980 Halfhill et a\. 360/53

Primary Examiner-Charles E. Atkinson
Attorney, Agent, or Firm-Cesari and McKenna

[57) ABSTRACT

In a disk mass storage facility for data processing sys­
tems, a disk fo.rmat which improves handling of defec-

CALCULA TE [DC

[\\]

[45]

4,434,487
Feb. 28, 1984

tive segments of medium and reduces access time. The
format has three layers. A first, physical layer comprises
the bytes, sectors and collections of sectors, as well as
error detection and correction codes. A second, logical
layer is used to address the physical layer and to collect
together sectors to form a mUltiplicity of separately
addressable spaces, with each space having a distinct
functional utility. At a third, functional layer the use of
data fields in each space is specified. This layer governs
the handling of bad blocks if required, and the use of
certain format information. Handling of bad blocks is
controlled by a hierarchically layered process. A por­
tion of each disc, distributed across the medium, is re­
served as spare sectors to replace defective sectors.
After a bad sector is replaced, future attempts to access
the bad sector are redirected (i.e., revectored) to the
replacement sector. For the simplest revectoring, the
bad block is replaced by a replacement block in a
known location. If that cannot be done, multiple copies
of the replacement block's header are stored in the bad
block's data field and the copies are compared to find
the replacement address. If the comparison fails, or the
header cannot be read, a back-up table is available to
match the available replacement addresses with the
original address which was replaced. A special code is
used to identify blocks wherein the medium is good but
the contents of the block are logically corrupted.

18 Claims, 36 Drawing Figures

360

362

364

378

SIGNAL NON-FORCED

u.s. Patent Feb. 28, 1984 Sheet 1 of 27 4,434,487

2
A

;' ,

DISK 10
HOST CONTROLLER DRIVE

./ L) 4 l, 3

Fig. fA

5

7

SEE FIG. 1\ FOR SECTOR FORMAT

C

12A

14

12

C Lc CYLS \ C+Lc

~H LBN's I~SP LBN's

I---'

~

L-
r-

HOST
APPLICATION

AREA
(LBN's)

VISIBLE
TO

I

RBN's

HOST -,
APPLICATIONS

REVECTOR
CONTROL
TABLES

"-(LBN's)

)

VISIBLE TO HOST I

C+Lc+Xc C+Lc+X

XC CYLS Dc cn S

FORMAT DIAGNOSTIC
AREA CYLINDERS

(XBN's) (DBN's)

\ (

128 16 18

r OPERATING SYSTEM i
~ VISIBLE TO CONTROLLER ~

Fig. Ie

ER
c+Oc

c .
VJ .
""C
~
f""t-
~ ::s
f""t-

61
?"
N
$10 -10
00
~

en
::r o o
N

~
N
-l

~ ...
~
w
~ ...
~
00
-l

U.S. Patent Feb. 28, 1984 Sheet 3 of 27 4,434,487

BOOLEAN PROCEDURE MULTI-REAO(TARGET.COPY.SIZE.N.DATA.BLK);
INTEGER TARGET.COPY.SIZE.N;
INTEGER ARRAY DATA.BLK (0:143);
INTEGER BLOCK.NEXT,I;
BEGIN

BLOCK ; = TARGET;
NEXT := 0;

LOOP: READCOMPARE(BLOCK)DATA~BLK;
IF ERROR THEN
BEGIN

END;

NEXT := NEXT + 1;
IF NEXT = N THEN GOTO EXIT;
BLOCK := BLOCK + COPY.SIZE;
GOTO LOOP;

EXIT: MULTI-READ:= NEXT <> N;
EXIT ;

END;

Ag.2

u.s. Patent Feb. 28, 1984 Sheet 4 of 27 4,434,487

BOOLEAN PROCEDURE MULTI-WRITE(TARGET,COPY~SIZE.N.DATA.BLK);
INTEGER NEXT.ERR~COUNT,BLOCK;
BEGIN

BLOCK := TARGET;
NEXT := ERR~COUNT .= rio. • lJ ,

LOOP: WRITECOMPARE(BLOCKlDATA.BLK;
IF UNRECOVERABLE ERROR THEN BEGIN

END;

ERR.COUNT := ERR~COUNT + 1;
WRITE.FORCE.ERROR(BLOCKl DATA.BLOCK;

NEXT := NEXT + 1;
IF NEXT = N THEN GOTO DONE;
BLOCK := BLOCK + COPY.SIZE;
GOTO LOOP;

DONE: MUL TI-WR HE : = ERR.COUNT < N;
END;

Fig. 3

U.S. Patent Feb. 28, 1984 Sheet 5 of 27 4,434,487

FAILURE IN
MIDDLE OF

BBR

Fig.4A

110

RECEIVE NOTIFICATION OF
BAD BLOCK DETECTED

SUPPLY INFORMATION

SUPPLY
INFORMATION

114 LOCK OUT ACCESS
TO BAD BLOCK.

AND UPDATE! WRITE
ACCESS OF RCT

CLEAR BUFFER & WRITE IN
BAD BLOCK CONTENTS

READ

u.s. Patent Feb. 28, 1984 Sheet 6 of 27

128

SIGNALS
FLAG

REPORT TO
ERROR LOG

130

WRITE DATA FROM
STEP 120

YES

RECORD BAD BLOCK'S
LBN

124

4,434,487

B --.,.----=S~E C:;".;T..::.O:..:..,R ...::0_.-.J
NOT SUCCESSFULLY READ

SECTOR 0
NOT SL-UC--C-::-E S":::S'::-":F::"':'UL"::::L:':"Y ~W-R-IT--T-E N......t E

At----------~

W/R TEST PATTERNS 132
BLOCK TO CONFIRM BLOCK BAD
BAD

BLOCK MAY BE
GOOD

NOT

F BAD WRITE SAVED DATA TO 134
BAD BLOCK

Fig. 48

u.s. Patent Feb. 28, 1984 Sheet 7 of 27 4,434,487

138

RE T S SCAN RCT 136
POR CAN SCAN AND DETERMINE F AlLURE TO '------1

ERROR LOG FAILE RBN TO USE & OLD RBN
IF THERE WAS ONE

142 140

REC. NEW RBN
REPORT TO ERROR WHETHER REPL. BEFORE
LOG REPL. FAILED OLD RBN; PHASE 2

146

REPORT TO ERROR
LOG BLOCK CAN'T

BE READ

152

REPLACE COMMAND
FAILED

158

REPORT TO
ERROR LOG

UPDATE FAILED

IN SECTOR 0

REVECTOR AND STORE
SAVED DATA IN

REPLACEMENT BLOCK

156

UPDATE SECTOR 0
OF RCT COPIES

EXIT

Fig.4C

148

REPORT TO
ERROR LOG
BLOCK NOT

WRITTEN

172

REPORT ERRORS ~~ UPDATE SECTOR 0 OF
TO ERROR LOG RCT COPIES

~--------------------~~------~B
174

RELEASE LOCK

176

INDICATE FAILED

EXIT

Fig. 40

u.s. Patent Feb. 28, 1984 Sheet 9 of 27

B4{ LBN (LOW)

CODE LBN (HIGH)

r-4 BITS _I_ 12 BITS

Fig. 6

Fig.7A

268

• • •

Fig. 5

REPLACEMENT AND
CACHING CONTROL

INFORMATION
REPLACED

LBN
IMAGE

128 REPLACEMENT
BLOCK

DESCRIPTORS
128 REPLACEMENT

BLOCK
DESCRIPTORS

• • •

V 202

SECTOR 0

V 204
SECTOR 1

V
S

/

• • •

S

206a
ECTOR 2

206b
ECTOR 3

~--12-8-R-E-PL-A-CE-M-EN-T--~~206m
BLOCK SECTOR RCT-l

DESCRIPTORS

260
LOW ORDER WORD 0 VOLUME SERIAL NUMBER

262
VOLUME SERIAL NUMBER WORD 1

264
VOLUME SERIAL NUMBER WORD 2

266
HIGH ORDER WORD 3 VOLUME SERIAL NUMBER

WORD 4

272

4,434,487

tl90

192

-1

u.s. Patent Feb. 28, 1984 Sheet 10 of 27 4,434,487

278 RESERVED WORD 5

280 "- LOW ORDER LBN
BEING REPLACED

WORD 6

282 HIGH ORDER LBN
BEING REPLACED

WORD 7

284 -....... LOW ORDER RBN
REPLACEMENT WORD 8

286 -... HIGH ORDER RBN
REPLACEMENT WORD 9

288 LOW ORDER BAD
RBN

WORD 10

290 HIGH ORDER BAD
RBN

WORD 11

292 -... LOW ORDER
CACHE 10

WORD 12

294 -....... CACHE 10 WORD 13

296 -..... CACHE 10 WORD 14

298 -...... HIGH ORDER
CACHE 10

WORD 15

300 -....... LOW ORDER CACHE
INCARNATION NUMBER

WORD 16

302 HIGH ORDER CACHE
INCARNATION NUMBER WORD 17

304 -..... LOW ORDER FORMAT
TIME AND DATE WORD 18

306 -- FORMAT
TIME AND DATE WORD 19

308 -- FORMAT
TIME AND DATE

WORD 20

310 -- HIGH ORDER FORMAT
TIME AND DATE

WORD 21

Fig. 78
• RESERVED •
• • ,.- -- -- - - -- - -- - -..,
I I

I RESERVED :
l ______________ J

WORD 255

u.s. Patent Feb. 28, 1984 Sheet 11 of 27 4,434,487

RCT SECTOR 3
FIRST

RCT
DESCRIPTOR

SECTOR

RCT SECTOR M

~
2

HASH --- PRIMARY ~
1

f--

RCT SECTOR M+ 1
RCT

BLOCK

LAST RCT SECTOR
LAST

RCT

BLOCK

NUL ENTRY
-

Fig. 8

U.S. Patent Feb. 28, 1984 Sheet 12 of 27

PROCEDURE HASH(LBN.RCT~BLOCK.RCT~OFFS£T);

BEGIN

4,434,487

RCT~BLOCK := QUO((QUO(LBN/l)'Rl/238l+H+2;

RCT.OFFSET := REM((QUO(LBN/ll'Rl/128;
END;

Fig. 10

RCT.BLOCK • THE HOST LBN ADDRESS OF THE SECTOR. IN THE FIRST RCT
COPY. CONTAINING EITHER THE RBN DESCRIPTOR OR THE FIRST
EMPTY DESCRIPTOR ENCOUNTERED (IF ANY).

RCT.OFFSET • THE 32-BIT OFFSET WITHIN THE ABOVE BLOCK. OF EITHER THE
RBN DESCRIPTOR OR THE FIRST EMPTY DESCRIPTOR (IF ANY).

LBN • THE HOST LBN BEING SEARCHED FOR.

RESULT • AN INTEGER INOICATING THE RESULT OF THE SEARCH;
o • PRIMARY EMPTY. 1 • SECONDARY EMPTY.
2 • FULL TABLE (NO MATCH).

RBN • THE UNIT RELATIVE RBN CORRESPONDING TO RCT-BLOCK
AND RCT-OFFSET.

MATCHFLAG • FLAG INDICATING MATCH STATUS

o . NO HATCH FOR THIS LBN
1 • RBN IN MATCHRBN WAS MATCH FOR THIS LBN

MATCHRBN • RBN WHICH HATCHED THIS LBN

Fig. 9A

U.s. Patent Feb. 28, 1984 Sheet 13 of 27 4,434,487

PROCEDURE
SEARCH(LBN.RcT~BlOCK.RCT~OFFSET.RESUlT.RBN.BLOCK.HATCHFLAG.MATCHRBN))

INTEGER LBN. RCT~BLOCK.RCT~OFFSET.RESUlT.RBN

INTEGER EHPTYTYPE.RESCAN.DElTA.START~OFFSET.N

INTEGER ARRAY BLOCK (0:143)1
BEGIN

NEXT:

TEST:

END;

HASH(LBN.RcT~BlOCK.START~OFFSET)1

HATCHFLAG :" 0;

EMPTYTYPE :" 0;
RESCAN :" 0;
IF NOT MUlTI-READ(RCT~BlOCK.(RET+RcT.PAD).N.BlOCK) THEN GOTO FAIL;

DELTA :"0;

RCT~OFFSET :"START~OFFSET + DELTA;

IF RCT~OFFSET <0 OR RCT..I.OFFSET > 127 THEN GOTO BUMPDEl TA:

IF BlOCK(RCT..I.OrrsET) " 0 THEN BEGIN

RESULT :" EMPTYTYPEI

GOTO FINISH;

EMPTYTYPE :- 1;

IF BLOCK(RCT~OrFsETJ.[29l " 1 THEN BEGIN

ENOl

IF BlOCK(RCT~DrFsETJ.[27;0l - LBN THEN BEGIN

HATCHFLAG :- 1;
MATCHRBN :-((RCT..I.BlocK - (H+2) • 128) + (RCT~OrrsET)1

END:

IF BlOCK(RCT..I.orFsETJ.[31J - 1 THEN BEGIN

IF RESCAN - 1 THEN GOTD FAIll

RESCAN :- 11

Fig. 98

u.s. Patent Feb. 28, 1984 Sheet 14 of 27

END;

START~OFFSET := 0;

RCT.BLOCK := H + 2;

GOTO NEXT;

BUMPDELTA:

FAIL :

FINISH:

DELTA := - DELTA

IF DELTA)= 0 THEN DELTA := DELTA + 1;

IF DELTA < 128 THEN GOTO TEST;

START~OFFSET := 0;
RCT~BLOCK := RCT~BLOCK + 1;

GOTO NEXT;

RESULT := 2;

EXIT ;

4,434,487

RBN := ((RCT~BLOCK - (H + 2)) • 128) + (RCT~OFFSET);

END;

Fig. 9C

338 r340 330 342 r344 332 334, 336
J I

H H D. S D.

S E P S
p

S DATA E E A L 0 0 y D x4 R p
I Y D C

N E E. A C N 256/288 WORDS C C
C R C E C
H E H

---- --~-- ---- -~-----

Fig. ff

346 348

W R
R
E

R E I
I R c
T

N
E 0 S

0 E A V T
0 E R

T R U
0 Y C

T

- -------

c
•
Vl

~ a
(D

= t""t-

"T1
(1)
r:r
N
00
~ -1.0
00
~

C/)
:::r'
(1)

g. -VI

~
N
...J

~ ...
~
(,.;.l

~ ...
~
00
.....)

u.s. Patent Feb. 28, 1984 Sheet 16 of 27 4,434,487

LBN. RBN. XBN OR DBN (LOW) ~~352

3561. CODE f LBN. RBN. XBN. OR DBN (HIGH) - ... 354

I 4 BITS 1-... ------12 BITS -----I ..

Fig. 12

1 :" [256 OR 288],

J :" 0;

mc :" 69;

SET INITIAL BLOCK SIZE.

POINT TO FIRST DATA WORD.

SET INITIAL VALUE.

LOOP: EDC: XOR(EDC.DATA[J)l; XOR NEXT DATA WORD TO EDC.
J :" J + i. COMPUTE NEXT DATA WORD LOCATION.

EDC :" CIRCLFTSH(EDC), ROTATE THE EDC 1 BIT TO THE LEFT.

IF J < I THEN GOTO LOOP; LOOP IF NOT DONE.

MATCH :" EDC-DATA[J], TRUE IF GOOD EDC.

Fig. 13A

u.s. Patent Feb. 28, 1984 Sheet 17 of 27

360

CALCULATE EDC 362
(I.E .• GENERATE A SECOND EDC)

YES 364

366

TO READ

SIGNAL NON-FORCED
READ ERROR, SET

4,434,487

Fig. /38

378

YES

382

FE FLAG 272 (SEE FIG. 78)

u.s. Patent Feb. 28, 1984 Sheet 18 of 27 4,434,487

FROM LINE 366 OR LINE 382

FROM ,HOST
t 394

I COMPUTE £DC

(ENTER FROM STEP 384)

t WRITE SECTOR WITH EDC IN

WRITE SECTOR
WITH FEr CODE
(I.E •• £DC) IN

£DC I FET FIELD 334

(396

EDClFEI FIELD 334 ~ 392

Fig. /3C

(EXIT: WRITE COMPLETED

u.s. Patent Feb. 28, 1984 Sheet 19 of 27 4,434,487

MSB LSB

BYTE 1 0 1 1 1 1 0 0 0
BYTE 2 SOl VERS SHORT T.O. (TIMEOUT AS LOG2)

BYTE 3 XFER RATE

BYTE 4 RETRIES LONG T.O. (TIMEOUT AS LOG2)

BYTE 5 ssl RSVD F / RC T COP IE S

BYTE 6 ERROR RECOVERY LEVELS

BYTE 7 ECC THRESHOLD

BYTE 8 MICROCODE REV NO.

BYTE 9 HARDWARE REV NO.

BYTE 1¢ UNIQUE DRIVE 10 (LO)

BYTE 11 UNIQUE DRIVE 10

BYTE 12 UNIQUE DRIVE ID

BYTE 13 UNIQUE DRIVE ID

BYTE 14 UNIQUE DRIVE IO

BYTE 15 UNIQUE DRIVE IO (HI)

BYTE 16 DRIVE TYPE IDENTIFIER

BYTE 17 REVS/SECOND

BYTE 18

BYTE 19

BYTE 20

lBS

lBS

lBS I
ERROR

BYTE 21

BYTE 22

BYTE 23

lBS

lBS

lBS . ,

~~LDS

Fig. 14

u.s. Patent Feb. 28, 1984 Sheet 20 of 27 4,434,487

MSB LSB

BYTE 1 ~ 1 1 1 r/J 1 1 1

BYTE 2 LBN SPACE IN CYL (La)

BYTE 3 LBN SPACE IN CYL

BYTE 4 LBN SPACE IN CYL

BYTE 5 o IHI CYl # ILBN CYLs (HI)

BYTE 6 GROUPS/CYLINDER

BYTE 7 HI STRT SBNIHI STRT LBN

BYTE 8 TRACKS/GROUP

BYTE 9 HI STRT DBNIHI STRT RBN

BYTE 1~ RM I RBN' S !TRACK

BYTE 11 RESERVED

BYTE 12 DATA PREAMBLE (WORDS)

BYTE 13 HEADER PREAMBLE (WORDS)

BYTE 14 LOW ORDER MEDIA TYPE

BYTE 15 MEDIA TYPE

BYTE 16 MEDIA TYPE

BYTE 17 HI ORDER MEDIA TYPE

BYTE 18 FCT CPY SIZE-XBN's (La)

BYTE 19 FCT CPY SIZE-XBN's (HI)

Fig. 15A

u.s. Patent Feb. 28, 1984 Sheet 21 of 27 4,434,487

BYTE 20 LBN's/TRACK

BYTE 21 GROUP OFFSET

BYTE 22 LBN's IN HOST AREA (LO)

BYTE 23 LBWs IN HOST AREA 512 BYTE FORMAT

BYTE 24 LBN's IN HOST AREA

BYTE 25 0 ILBN'S (HI)

BYTE 26 RCT CPY SIZE-LBN's (L 0)

BYTE 27 RCT CPY SIZE-LBN's (HI)

BYTE 28 LBN's/TRACK

BYTE 29 GROUP OFFSET

BYTE 30 LBN's IN HOST AREA (LO)

BYTE 31 LBN's IN HOST AREA 576 BYTE FORMAT

BYTE 32 LBN's IN HOST AREA

BYTE 33 0 I LBN'S (HI)

BYTE 34 RCT CPY SIZE-LBN's (LO)

BYTE 35 RCT CPY SIZE-LBN's (HI)

BYTE 36 XBN SPACE IN CYL (LO)

BYTE 37 XBN SPACE IN CYL (HI)

BYTE 38 RIO GROUPS IN DBN AREA

BYTE 39 DB~ SPACE I~ CYL .

Fig. 158

CYLINDER C
GROUP 0
TRACK 0

LBN L - --] LBN L+l 1"1 RBN R~J"IRBN R+r-l

CYLINDER C
GROUP 0
TRACK 1

,- ~-L:t-- -r--LBNL:~l--' .. [RBNR:;· - J .. JRBN R+2r-l

•
•
•

•
•
•

CYLINDER C+Lc-l •
GROUP g-l •
TRACK t-l

•

LBN L+H+Rsp-l LBN L+H+RSP-l+11··1 RBN R+Rs-r I··IRBN R+Rs-l

Fig. 16

c::: •
CI'.l
•

~ a
~ ::s
I"""t"

~
N
.. 00 -\0

~

CI'.l g-
~
N
N

~
N
-..J

~ ...
~
Vol
~ ...
~
00
....,J

U.S. Patent Feb. 28, 1984 Sheet 23 of 27 4,434,487

CYLINDER X
GROUP ~ TRACK

XBN X XBN X+l ••• I XBN X+s- 1

CYLINDER X
GROUP 0
TRACK 1

XBN X+s XBN X+s+l ••• I XBN X+2s-1

• •
• •
• •

• CYLINDER X+Xc=l •
GROUP 9 = 1

• TRACK t = 1 •
XBN X+Xc*g*t.s-s BN X+Xc.g.t*s=s+~ ••• I XBN x+xc*g*t*s-ll

Fig. 17

CYLINDER 0
GROUP ~ TRACK

OBN 0 OBN 0+1 • • • I OBN O+s-l

CYLINDER 0
GROUP ~ TRACK

OBN O+s OBN O+s+l • • · I OBN 0+2s-1
• •
• •

• •
• CYLINDER 0+Oc-1 •

GROUP g-l
·TRACK t-2 •

I OBN D+Oc*g*t*s-sl OBN O+Oc*g*t*s-s+2/ • • • I OBN 0.c*g*t*s-21

Fig. 18

FACTORY
FORMATTED
cn (512
BYTE FORMAT)

u.s. Patent Feb. 28, 1984 Sheet 24 of 27 4,434,487

CYLINDER-NuMBER
GRoup-NuMBER
TRACK-NuMBER
SECTOR-NuMBER
SECTORS-FRM-INDX

CYLI NDE R- NUMBE R
GRoup-NuMBER
TRACK-NUMBER
SECTOR-NuMBER
SECTORS-FRM-INDX

CYLINDER-NuMBER
GRoup-NuMBER
TRACK-NUMBER
SECTOR-NuMBER
SECTORS-FRM-INDX

CYLINDER-NuMBER
GRoup-NuMBER
TRACK-NuMBER
SECTOR-NuMBER
SECTORS-FRM-INDX

= C+QUO((LBN-Ll/(g'Q'1l1
= QUO (REM ((LBN-Ll/ (g' t '2 I I 1 (t '1) I
= QUO(REM((LBN-Ll/(t'111/11
= REM((LBN-Ll/l1
= REM((SECTOR-NuMBER+(o'GROUp-NuMBER)I/sl

Fig. 19

= C+QUO((RBN-Rl/(g*t'rl)
= QUO(REM((RBN-R)/(g*t'r)/(t'r) I
= QUO(REM((RBN-R)/(t'r))/r)
= REM((RBN-R)/rl+l
= REM((SECTOR-NuMBER+(O'GROUp-NuMBER))/s)

Fig. 20

= C+Lc+QUO((XBN-X)/(g*t*s))
= QUO(REM((XBN-Xf(9't*S) l/("sl)
= QUO(REM((XBN-Xl/(t*s)l/s)
= REM((XBN-Xl/sl
= REM((SECTOR-NuMBER+(O*GROUp-NuMBER))/s)

Fig. 21

= C+Lc+Xc+QUO((DBN-Dl/(g't*s))
= QUO(REM((DBN-Dl/(g*t'sl)/(t*s))
= QUO(REM((DBN-D)/(t*sl)/s)
• REM((DBN-D)/sl
= REM((SECTOR-NUMBER+(O+GROUp-NUMBERll/s)

Fig. 22

u. S. Patent Feb. 28, 1984 Sheet 25 of 27

PROCEDURE COMPARE-128(VALUE.BLOCK.SUCCESS);

INTREGER ARRAY BLOCK(0:143),

INTEGER I.J.COUNT.VALUE;

BOOLEAN SUCCESS;

CONSTANT MATCH =24;

BEGIN

J := COUNT :" 0;

WHILE (J < 128 - MATCH) AND (COUNT < MATCH) DO

BEGIN

VALUE :" BLOCK(J);

J:=J+1;

I :" J;

COUNT :'" 0;

4,434,487

WHILE (I < 128) AND (- MATCH < COUNT) AND (COUNT<MATCH) DO

BEGIN

END;

END;

IF (BLOCK(I) = VALUE) THEN COUNT :'" COUNT + 1 ELSE

COUNT :" COUNT - 1;

I :'" I + 1,

SUCCESS := (COUNT>" MATCH),

END;

Fig. 23

u.s. Patent Feb. 28, 1984 Sheet 26 of 27 4,434,487

VOLUME
INFORMATION

BLOCK
SECTOR f/J

128 BAD BLOCK
DESCRIPTORS SECTOR 1

512 MODE

128 BAD BLOCK
DESCRIPTORS SECTOR 2
512 MODE

• • •
• • •
• • •

128 BAD BLOCK
DESCRIPTORS SECTOR M

576 MODE

SECTOR M+l

• • •
• • •
• • •

128 BAD BLOCK
DESCRIPTORS SECTOR P
576 MODE

SUBSYSTEM
~CRATCH SECTOR P+l

TORAGE

• • •
• • •
• • •

STEM
SCRATCH SECTOR Fct-l
STORAGE

Fig. 24

u.s. Patent Feb. 28, 1984 Sheet 27 of 27 4,434,487

MEDIA MODE
WORD 0

FORMATTING INSTANCE
NUMBER WORD 1

VOLUME SERIAL NUMBER
LEAST SIGNIFICANT WORD WORD 2

NUMBER OF USED ENTRIES
IN 512 TABLE (HIGH) WORD 14

VOLUME SERIAL NUMBER
WORD 3

NUMBER OF USED ENTRIES
IN 512 TABLE (HIGH) WORD 15

VOLUME SERIAL NUMBER
WORD 4

NUMBER OF USED ENTRIES
IN 576 TABLE (LOW) WORD 16

VOLUME SERIAL NUMBER
MOST SIGNIFICANT WORD WORD 5

NUMBER OF USED ENTRIES
IN 576 TABLE (HIGH) WORD 17

DATE THAT VOLUME WAS
FIRST FORMATTED (LOW) WORD 6

XBN OF SCRATCH AREA
IN THIS COPY (LOW) WORD 18

DATE THAT VOLUME ~IA S
FIRST FORMATTED WORD 7

XBN OF SCRATCH AREA
IN THIS COPY (HIGH) WORD 19

DATE THAT VOLUME WAS
FIRST FORMATTED WORD 8

SIZE OF SCRATCH AREA
IN THIS COPY WORD 20

DATE THAT VOLUME WAS • •
FIRST FORMATTED (HIGH) WORD 9 • ZEROS •

• •
DATE OF MOST RECENT

VOLUME FORMATTING (LOW)

DATE OF MOST RECENT

• •
WORD 10

1 I WORD 255 ZEROS

VOLUME FORMATTING WORD 11
DATE OF MOST RECENT

VOLUME FORMATTING WORD 12
DATE OF MOST RECENT

VOLUME FORMATTING (HIGH) WORD 13

Fig. 25

1
4,434.487

DISK FORMAT FOR SECONDARY STORAGE
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application relates to a data processing system,
other aspects of which are described in the following
commonly assigned applications filed on even date
herewith, the disclosures of which are incorporated by
reference herein to clarify the environment, intended
use and explanation of the present invention:

Ser. No. 308,826, titled Interface Between a Pair of
Processors, Such as Host and Peripheral-Controlling
Processors In Data Processing Systems and Ser. No.
308,593, titled Storage Facility Employing Serial Com­
munication Between Drive and Controller.

FIELD OF THE INVENTION

This invention relates to the field of data processing
systems and, in particular, to the formatting of disk type
mass storage facilities in such systems. This invention
further relates primarly to such facilities which use
fixed block, rather than variable block architecture.

BACKGROUND AND SUMMARY OF THE
INVENTION

5

2
a lot of good medium with the bad. Further, only a
limited number of substitute tracks can be made avail­
able without significantly detracting from the usable
volume of medium.

A second technique, which is much less drastic, in­
validates the bad sector and does not use bad blocks.
This, however, creates problems when transferring the
contents of one disk surface to another disk surface,
since it is statistically almost impossible to find the same

10 bad blocks on two different surfaces. An additional
disadvantage of this technique is that it causes holes in
the logical addressing space.

A third technique is to provide on each track a lim­
ited amount of space which can be used to substitute for

15 bad portions of sectors on that track by skipping over
the defective area and pushing the remainder of the
sector further down the track. This technique is helpful
only up to the point where the defective area on a track
does not exceed the reserved portions. It also causes

20 sectors on different tracks to lose their alignment, caus-
ing problems in achieving real-time head switching.

A fourth technique is to reserve "n" sectors per track.
Bad blocks are then either revectored (Le., redirected)

25 to one of those sectors on that track, or all blocks subse­
quent to a bad block are "slid" down, without revector­
ing. This limits replacement to those sectors, per track
however.

Secondary storage subsystems, such as disk drives, . A fifth technique is to reserve some portion of the
are an Important part of modem data processing sys- 30 disk and to revector from the bad blocks to the reserved
terns. Such subsystems provide a large volume of mem-
ory for storing programs and data. In disk drives, rotat- region through a table. This approach has the disadvan-
ing disks with magnetic recording material provide the tage of poor performance.
actual storage medium. Since bad blocks can occur both during manufactur-

A primary objective in the use of such secondary ing and then subsequently during the use of the disk, it
storage subsystems is to minimize the time required to 35 is important that bud block replacement be performed
read or write information at a specific address on a disk both initially, before the medium is first used to store
surface from a starting point at another address position. host information, and later, when dynamic conditions
The access time to move a read/write head to the de- give rise to appropriate circumstances. Prior art tech-
sired target address is a function both of physical pa- niques are not very good for both cases.
rameters of the disk drive (e.g., how fast the drive's 40 The present invention deals with this problem in a
electronic control circuits can determine and supply hierarchial, multi-level fashion. An evenly distributed
appropriate signals to that actuator) and of the address- portion of each disk is reserved as spare sectors for
ing scheme employed (which will determine the physi- replacing defective sectors. After a bad sector has been
cal spacing between starting and target addresses). replaced, future attempts to access the bad sector are

Another objective of such subsystems is to achieve 45 redirected (Le., re-vectored) to the replacement sector.
high reliability in writing and reading data. Unfortu- Three levels of revectoring mechanism are illustrated;
nately, the medium is not perfect. Portions of the oxide they differ in the way that the address of a replacement
surface of the medium may be manufactured defec- block is determined. It is possible, optionally, to trade
tively; other portions may degrade and wear out under off performance against complexity by electing not to
conditions of long-term use. If information is written SO employ all of these mechanisms.
(i.e., recorded) on,such areas, it cannot be stored or read In the primary revectoring mechanism, the position
(i.e., retrieved) reliably. of the replacement block is implied by the position of

Error detection and correction techniques are, of the bad block and the need to revector is indicated by a
course, part of the solution to this problem. However, code in the header. Each track is provided with one or
error detection and correction may not be enough 55 more replacement sectors. The implied primary re-
where the medium will not permit the recording of a placement block for a bad block is the first replacement
sufficient portion of a block so as to allow those tech- sector on its track. In the secondary revectoring mecha-
niques to be invoked successfully when the block is nism, the need to revector is signalled by a code in the
read. It is therefore important to avoid the use of por- header. The location of the replacement block is arbi-
tions of the medium which are found to be so bad that 60 trary. To determine its address, multiple copies of the
information will be unrecoverable or where the infor- replacement block's header value are stored in the data
mation may degrade to an unrecoverable state. In the field of the bad block. The copies are read and com-
prior art, several approaches or techniques have pared statistically to come up with the address so indi-
evolved for dealing with this problem. cated. Finally, there is a so-called tertiary revectoring

A first technique simply invalidates an entire track 65 mechanism used when the header copy comparison fails
when too much of it is bad. All of the information in- to yield a valid value or when the multiple copies of the
tended for that track is redirected to a substitute track. replacement address in the secondary scheme do not
It will be readily apparent that this scheme may discard meet the statistical matching requirement. For imp le-

3
4,434,487

4
being written in multiple locations. to store multiple
copies of the same information. If a sufficient number of
copies, or portions of copies. are recorded unimpaired.
the recorded information can be retrieved despite the

mentation of this mechanism. there are stored on the
disk multiple copies of a table containing a list of each
replacement block and the address of any bad block
mapped to it; if any. This table is searched to find the
appropriate replacement address. 5 corruption of one or more copies.

A unique logical addressing scheme also is employed,
collecting sectors according to a hierarchy of geometri-
cal and access time considerations. This permits sectors
to be addressed logically, rather than physically; they
are self-defining in terms of physical locations, so as to 10
optimize sector access time latencies. This. combined
with revectoring, provides a logically contiguous ad­
dress space at all times-Le., one without holes.

A further aspect of this invention is that the disk is
divided into different regions which comprise separate 15
logical areas-one available to users, one for replace­
ment of bad blocks, one for diagnostics. and one for
recording certain information regarding disk format­
ting. Each is a logically self-consistent. but different,
addressing space. 20

Initially. a disk is "inspected" for sectors which are
bad when the disk is manufactured. These are replaced
during the manufacturing process or at installation.
Other sectors are replaced as they start to degrade in
quality, but before they produce an error rate exceeding 25
the capabilities of the error correcting code (ECC)
which is employed. (This ECC "threshold" is specified
by the drive itself.) Other sectors are replaced after they
degrade and are not readable; this requires notification
that the data is corrupted. 30

Yet another feature of this invention is the use of a
special code to distinguish sectors which contain logi­
cally corrupted information, but wherein the medium
itself is usable. This special code is referred to as the
"forced error" indicator; in the implementation de- 35
scribed below, it is the one's complement of an error
detecting code (EDC) generated by the information in
a sector's data field in accordance with a preselected
algorithm, and appended to the data field of the sector.
When a sector is read. its EDC is computed and com- 40
pared with the EDC recorded on the disk. If the com­
parison reveals that the EDC field is recorded as the
one's complement of the computed EDC. the forced
error indicator has been detected. The host is thereby
notified that the data is logically bad. but the medium is 45
not known to be impaired. This indicator is useful. for
example, during an omine volume copy, when the data
in the block is found to be physically corrupted and
uncorrectable. but must be copied to a physically good
sector on another volume. In order to allow hosts 50
which access the copy to know that the data there is
corrupted and unreliable, the forced error indicator is
set in that sector. The next time information is written
to this sector, the forced error indicator will be cleared,
since the medium itself is good and only the information 55
previously written to the medium was bad.

Use of the forced error indicator follows three rules:
first. a read operation from a block where the forced
error indicator is set must always fail. Second, a write
operation to such a block must clear the forced error 60
indicator. Third. a read operation must produce a
unique error code so as to differentiate the detection of
a forced error from any other read error.

It should be appreciated that this forced error indica­
tor is not part of the data bytes transferred; it is control 65
information generated when the sector is written.

The contents of certain portions of the disk which are
not protected by replacement are protected by virtue of

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. lA is a generalized block diagram of a data
processing system in which the present invention may
be utilized;

FIG. lB is a diagrammatic illustration of a disc sur­
face in the disk drive of FIG. lA. according to the
invention;

FIG. lC is a diagrammatic illustration of the logical
spaces provided on a disk, according to the present
invention;

FIG. 2 is an exemplary procedure for reading infor­
mation protected by the multi-copy mechanism dis­
closed herein;

FIG. 3 is an exemplary procedure for writing infor­
mation onto a disk according to the multi-copy protec­
tion mechanism;

FIGS. 4A-4D are a flow chart of the bad block re­
placement procedure of the present invention;

FIG. 5 is a diagrammatic illustration of the format of
a replacement block descriptor;

FIG. 6 is a diagrammatic illustration of the structure
of the replacement and caching table (RCT) of the
present invention;

FIGS. 7A and 7B are a diagrammatic illustration of
the contents of sector zero of the RCT of FIG. 6;

FIG. 8 is a diagrammatic illustration of the RCT
search algorithm of the present invention;

FIGS. 9A-9C, together, are a listing of an exemplary
procedure for implementing the RCT search alogrithm
of FIG. 8;

FIG. 10 is a listing of an exemplary procedure for
implementing the RCT hash algorithm described
herein;

FIG. 11 is a diagrammatic illustration of the sector
format employed by the present invention;

FIG. 12 is a diagrammatic illustration of one-fourth
of the sector header of the sector format of FIG. 11;

FIG. 13A is an exemplary listing of a routine for
generating an error detecting code usable in the present
invention;

FIG. 13B is an exemplary flow chart for operating
the controller 4 of FIG. lA in accordance with this
invention to utilize a so-called forced error indicator
when a sector is read from a disk;

FIG. 13C is an exemplary flow chart for operating
the controller 4 of FIG. lA in accordance with this
invention to utilize (or not utilize. as appropriate) the
forced error indicator;

FIG. 14 is a diagrammatic illustration of a response
from drive to controller. providing certain drive char­
acteristics;

FIGS. ISA and 15B, together. are a diagrammatic
illustration of a response providing certain other char­
acteristics for a designated drive subunit;

FIG. 16 is a diagrammatic illustration of the first two
and the last tracks of the LBN/RBN space of a drive;

FIG. 17 is a diagrammatic illustration of the first two
and the last tracks of the XBN space of a drive;

FIG. 18 is a diagrammatic illustration of the first two
and the last tracks of the DBN space of a drive;

FIG. 19 is a listing of a procedure for determining a
logical block's sector address;

5
4,434,487

FIG. 20 is a listing of a procedure for determining a
replacement block's sector address;

FIG. 21 is a listing of a procedure for determining an
external block's sector address;

FIG. 22 is a listing of a procedure for determining a 5
diagnostic block's sector address;

FIG. 13 is a listing of an exemplary procedure for
reading 128 copies of an RBN's header to determine
reliably the correct value of that header;

FIG. 14 is a diagrammatic illustration of the format of 10
a copy of the FCT (format control table) in the XBN
space of the present invention; and

FIG. 25 is a diagrammatic illustration of sector zero
of each FCT copy.

DETAILED DESCRIPTION OF A PREFERRED 15
EMBODIMENT

A generalized block diagram of a data processing
system which can utilize the present invention is shown
in FIG. 1. That system includes a host computer 1 (hav- 20
ing a central processor, main memory and input/output
devices, not shown) and a secondary storage subsystem
2. The secondary storage subsystem, in tum, includes a
disk drive 3 and a controller 4 for that disk drive. The
controller 4 typically contains one or more processors 25
of its own and provides proper signals for actuating the
drive to read or write information in accordance with
instructions from the host processor.

The present invention utilizes a unique disk format to
improve defect handling and reduce access time. It 30
further serves to protect certain selected areas of a disk

. by storing multiple copies, and facilitates adaptation to
peripheral device timing characteristics. This format
comprises an architecture composed of three layers.
First, there is a physical layer, comprising the actual 35
bytes, sectors, and collections of sectors on the disk.
This layer also includes an error detection and correc­
tion mechanism. Second, there is a logical layer, which
is the level at which the physical layer is addressed and
grouped into spaces, with particular uses assigned to 40
those spaces. Third, there is a functional layer, which is
the level at which the use of data fields in each space is
described. This layer includes the handling of bad
blocks, if required, and other format usage information.

What follows generally is a detailed description of 45
each of those layers. Before proceeding, however, it
will prove useful to define certain terminology used
herein.

A "sector" is the smallest unit by which data is ad­
dressed physically on a disk surface. Each sector occu- 50
pies a specific physical position relative to an index
location on a disk, and has the property that it is avail­
able for reading or writing once per disk rotation.

Sectors are grouped together hierarchically for ad­
dressing purposes. First, a disk surface is divided into 55
one or more "cylinders." In turn, cylinders are divided
into "groups;" and groups are divided into "tracks."

A "track" is a logical entity comprising a set of sec­
tors occupying contiguous logical disk locations.

A "group" is, in tum, a logical entity representing a 60
set of tracks such that individual tracks in a group can
be selected within the inter-sector rotation time. Tracks
in the same group are "aligned" such that the same
physical sector address is available simultaneously for
reading or writing on all tracks in the group. 65

A "cylinder" is a logical entity representing a collec­
tion of groups which can be selected via an operation
with latencies less than the minimum "seek" time. Cyl-

6
inders have the additional property that the selection of
a new cylinder requires the longest average head-posi­
tioning operation. Groups within a cylinder are offset
such that spiraling between adjacent graps is accom­
plished without the loss of a full revolution of the disk.

The terms track, group and cylinder simply relate
collections of sectors to each other as a function of
access time considerations. They are independent of
physical organization or construction of the device.

The "sector number" portion of a sector address is
always the low order portion. The "track number"
portion of a specific sector address is always the middle
portion of that address between the group and sector
portions. The "group number" portion of a specific
sector address is always a middle portion of that address
between cylinder and track. The "cylinder number"
portion of a specific sector address is always the highest
order portion of that address.

A "bad block" is a sector containing a defect which
either (1) causes an error exceeding the correction capa­
bility of the error correction scheme used by the subsys­
tem, or (2) exceeds a drive-specified error threshold
beyond which the continued integrity of data in the
sector cannot be guaranteed. A bad block may also be a
sector which is defective to such an extent that, while
data integrity is still assured, the overhead imposed by
the required error correction procedure is greater than
will be tolerated.

"Bad block replacement" is the designation of a spare
sector (i.e., replacement block) to substitute for a bad
block.

"Bad block revectoring" denotes the act of transfer­
ring a read or write operation to the replacement block
associated with a bad sector upon access thereto.

A "physical block number" (PBN) is a number which
identifies a sector's physical position within the set of
sectors on a mass storage device.

A "logical block number" (LBN) is a number identi­
fying a sector's relative position within the set of sectors
directly accessible to the host. These are used for host
data storage and revector control information.

A "replacement block number" (RBN) is a number
which identifies a sector's relative position within the
set of sectors used as replacements for bad sectors.

A "primary replacement block" is a replacement
block with a designated RBN on a track which has been
allocated to replace a logical block on the same track.

A "secondary replacement block" is a replacement
block which is not a primary replacement block. It is
either not the replacement block with the designated
RBN of the primary replacement block on a track or is
allocated to replace a logical block located on another
track.

An "external block number" (XBN) is a number
which identifies a sector's relative position within the
set of sectors in the external format area.

A "diagnostic block number" (DBN) is a number
which identifies a sector's relative position within the
set of sectors in the diagnostic area.

A "host" is a central processing unit serviced by a
secondary storage subsystem.

A drive may be in any of several states relative to the
controller. When in the "drive-omine" state, the drive
is not operational and may not communicate with the
controller via the drive control protocol. Conversely, a
"drive-online" drive is dedicated to the exclusive use of
a particular controller and is not available to any alter­
nate controller.

7
4,434,487

8
constrain a track into the logical (but not necessarily
physical) structure of a ring. Similarly, a group is de­
scribed as a collection of tracks wherein the time re­
quired to switch from a sector at a given angular posi-

In the "drive-unavailable" state, the drive is operat­
ing, is visible to, and may at times communicate with
the controller; but the controller may not fully utilize
the drive because the drive is "drive-online" to another
controller.

A drive which is "drive-available" is one which is
visible to, capable of communicating with, and capable
of becoming (but is not currently) "drive-online" to any
specific controller.

5 tion on one track to a sector at the next sequential angu­
lar position on any other track is less than or equal to
the time required to traverse the gap between adjacent
sectors on the same track, during normal rotation.

It will also be helpful to define briefly a number of \0
generic symbols which will be used thorughout this
description and in the accompanying drawings:

Customarily, in a dish drive a single head-positioning
actuator will be used to position mUltiple read/write
heads which are separated from each other by a fixed
distance. When instructed to read or write, a controller
determines which of the heads services the addressed

Symbol Meaning portion of the disk and uses that head to perform the
--~-C---S-ta::":'T--tin--g':;;c-y-li-nd-e-r----------- 15 operation.

L Starting LBN Traversing the dislance between two logically adja-
R Starting RBN cent tracks in adjacent groups may involve a head

D
x Starting XBN switching time which exceeds the gap time. Therefore,

Starting DBN
I LBN's per track according to this invention, in order to not lose a revo-

RBN's per track 20 lution of the disk while the switching occurs, the first
s
t

g
o
H

Lc
Xc
Dc
Ret

sectors per track sector (i.e., the sector with the lowest PBN) on all
tracks per group
groups per cylinder tracks on the next higher-numbered group is offset an-
Group offset gularly from the first sector on all tracks of the next
LBN's in host area 25 lower-numbered group on the same cylinder by a num-
LBN space size in cylinders ber of sectors sufficient to compensate for the head
XBN space size in cylinders
DBN space size in cylinders switching time.
Size of one copy of replacement and caching For cylinders having more than one group, the sector

n
table, in LBN's with the lowest physical block number on a track in the
Number of copies of tables in non·revectored
spaces 30 second group of the cylinder is offset from the index
LcOgOtOr the number of replacement blocks mark on that track by a number of sectors representing Rs

Retpad Size of per RCT copy track/cylinder alignment at least the maximum switching time between the two
~~Iacement and caching area size groups (modulo the rotation time). The third group on Rsp
(nORct+ RctpadO(n-l» the cylinder would be offset by twice this value, etc.

The Physical Layer

The sector is the basic addressable unit of the disk. A
disk S, as shown in FIG. IB, is a circular platter having

35 Three examples will illustrate this logical addressing
structure and definition:

Assume first that a drive has four disks and seven
physical oxide surfaces used for data storage. Each data
recording surface has two read/write heads associated
therewith; switching between one physical head and
another head on the same or any other oxide surface can
be accomplished during the intersector time. Other than
selecting one of the fourteen heads, however, there is
nothing else that can be accessed without moving the
heads via a cylinder switching (seek). As a result, the
drive has a logical geometry of "14 tracks, one group,
560 cylinders."

Assume next the same physical configuration as
above, implemented using a servo technology which
requires a settling time larger than the intersector time
when a head is selected. Like the above drive, this drive
would have seven physical oxide surfaces used for data
storage and two heads on each surface. Switching be­
tween one head and any other head, however, would
result in a head settling time greater than any intersector
time, regardless of which oxide surface the head resides
on. A switching of heads on such a drive would thus be
accomplished via a group switching operation (group
select). Other then selecting one of the fourteen data

a coating of a ferromagnetic material on a rigid sub- 40
strate. For reading information from the disk or writing
information to the disk, a transducer head 6 is posi­
tioned by an actuator 7 over one of a number of concen­
tric bands whose center lines are indicated by the nu­
merals 8. Each "sector", such as a sector 9, is an arcuate 45
segment of such a band, of finite extent. Every sector is
written in a predetermined format which includes a
header, data bytes, error detecting code and error cor­
recting code. Each header is, in turn, a 32-bit quantity
that contains the logical address of the sector. There are 50
four copies of the header in every sector. The data bytes
are application-specific information recorded on the
disk by host and subsystem input/output operations. By
convention there are either 512 or 576 bytes of data in
every sector, when standard formats are employed. 55
(For example, the assignee's PDP-II and VAX-II com­
puter systems use a 512 byte format, while its PDP-1O
and DECSYSTEM-20 computer systems use a 576 byte
format.) Sector layout is described in greater detail
below. 60 heads, however, there is nothing else that could be

accessed on the current cylinder without moving the
heads via a seek operation. The logical geometry of
such a drive, therefore, is "I track, 14 groups, 560 cylin­
ders."

"Tracks", "groups" and "cylinders" are collections
of sectors grouped into a hierarchy of categories ac­
cording to access time latencies. Access time to any
sector on a track is a linear function of the distance of
that sector from the current sector which is under the 65
read/write head, if on the same track. The first sector
on the track immediately follows the last sector with
respect to access time considerations. These properties

Third, assume semiconductor technology which pro­
vides thin-film heads capable of accommodating several
read/write gaps on a single head. If the above men­
tioned hypothetical drive were fitted with such heads,

9
4,434,487

each physical arm would have multiple gaps located on
it, each selectable in the intersector time. For discus­
sion, assume eight such gaps per arm. Inter-head
changes would be accomplished via group select opera­
tions. Such a device would thus have a logical geometry 5
of "8 tracks, 14 groups, 560 cylinders."

All three of the above logical geometries, of course,
were derived from the same physical geometry.

It is possible by changing the logical organization of
a disk, to change its access time characteristics. Indeed, 10
proper redefinition of the logical addressing structure
has been found to yield a possible average access time
reduction of 5 to 6 percent, which is due to minimiza­
tion of rotational access latencies. It is difficult to gener­
alize as to a technique for selecting the best logical 15
addressing arrangement for a particular drive, since
there are a large number of physical parameters in­
volved and some relate to host characteristics. So far,
trial and error based on knowledgeable guesswork has
proven successful. That is, a drive is exercised with a 20
large number of read and write operations and its aver­
age access time are determined. A change in the logical
structure is made (e.g., the number of groups is altered),
the disk is reformatted and the drive is again exercised.
This process is repeated as desired. The result is a logi- 25
cal format "tuned" to the physical characteristics of the
host-controller-drive combination.

The Logical Layer

Attention is now directed to the logical layer of the 30
format. At this layer, the disk is divided into four ad­
dress spaces of interest, as illustrated in FIG. lB. Two
of these address spaces are in the set of sectors having
an effect on the host; the other two are invisible to the
host. (Specific implementations may have additional 35
address spaces which are not visible to the host). The
first address space 12 contains the set of LBN's which
are visible to the host. This LBN space is subdivided
into two areas: the host applications area 12A and the
Replacement and Caching Table (RCT) area 12B. For a 40
given sector size, the host applications area 12A is of
constant size with respect to the number of usable
blocks; that is, it is "bad block free." The RCT area 12B

10
native formats as may be available (e.g., 512 or 576
bytes/sector). The media error lists comprise a Format
Control Table (FCT), which is a table containing infor­
mation regarding blocks found to be bad at the time of
manufacture.

Area 18 contains the diagnostic cylinders (DBN's).
This area is inaccessible to the host and is utilized solely
by diagnostics executing out of the mass storage subsys­
tem.

The mass storage subsystem is responsible for utiliz­
ing the logical blocks and replacement blocks in a fash­
ion presenting the host with a logically contiguous set
of blocks numbered from 0 to H - 1 for each unit, where
H is the block capacity of the host applications area of
the unit, as seen from the host. Allocated replacement
blocks belong to one of two performance classifications:
(I) primary replacement blocks and (2) secondary re­
placement blocks. Primary replacement blocks are
those allocated in the simplest (and usually fastest) man­
ner, such that a negligible amount of time (i.e., at most
one rotation) is used to access them during revectoring.
Secondary replacement blocks are those that are deter­
mined in a more complex fashion and normally require
greater than one rotation time to access them during
revectoring (i.e., a group selection or seek).

The Functional Layer

The functional layer comprises bad block handling.
Two bad block handling mechanisms are used on the
media. These are: (I) the use of multi-copy structures
and (2) replacement and revectoring. The former pro-
tects from failure by recording multiple copies of im­
portant fields; the latter is a mechanism that replaces
bad sectors with spare sectors which are reserved for
that purpose. These mechanisms are used in different
areas and have two fundamentally different effects.

Multi-copy structures are allocated in the RCT and
FCT area to provide protection for critical data struc­
tures. Replacementirevectoring is used in the host ap­
plications area to eliminate holes in the address space.

Multi-copy structures are allocated in areas where
replacement is either not possible or not desirable. An
example of a multi-copy structure is the RCT described
herein. In reading or writing a multi-copy structure, is not bad block free; it is protected by a multi-copy

error handling mechanism described below. 45 only one block of the logical structure may be accessed
at a time. Each copy must be accessed sequentially, in
ascending order. Error recovery and correction must
be enabled for both read and write operations. The

The RCT address space contains a list of RBN's
which are used to replace LBN's that have become
unusable on devices susceptible to bad blocks. These
RBN's comprise a second logical space, 14, and are the
last r sectors of each track (where "r" is a drive-specific 50
parameter) in host applications area 12A. RBN space 14
is outside the LBN space 12 presented by the controller
to the host so RBN's are invisible to the host (except for
the performance implications they may have on alloca­
tion policies and the size of the RCT area 12B of LBN 55
space 12). A replacement block number is converted to
a specific physical device location by a series of trans­
formations performed by the subsystem using parame­
ters supplied by the storage device to the subsystem.
These conversions are subsystem implementation- 60
dependent and are of no interest to the host.

The area 16 contains the XBN's which provide for­
matting information. It is inaccessible to the host and
always is written in a predefined format (e.g., 512 by­
tes/sector) even if other areas (e.g., LBN space 12) may 65
be written in other formats. The contents of area 16 are
multiple copies of format control information and media
error lists to use when formatting the disk in such alter-

number of copies allocated is a device characteristic and
must be chosen to ensure achievement of the error rate
goals of the system. A typical value for n will be four.
Each copy must be positioned on the physical medium
such that a single failure will not invalidate all copies.

The Multi-Copy Read Algorithm

FIG. 2 is a listing of an exemplary computer program
illustrating; the method used to read sectors protected
by the multi-copy protection mechanism. It provides a
procedure which detects errors and attempts to read the
next copy in sequence. For this method to operate prop­
erly, error correction and recovery must be available
and in use. In the Figure, the variable "target" repre­
sents the address of the sector being read in the first
copy; "copy-size" is the size of a copy of the informa­
tion being protected, including any pad; "n" is the num­
ber of copies; "next" is the next copy to examine; and
"data-blk" is the block into which one sector's worth of
data is read.

11
4,434,487

12
The Multi-Copy Write Algorithm

replacement process is notified of that fact. (Step 110).
Alternatively, the bad block replacement process may
be notified that a failure or loss of context occurred in
the middle of bad block replacement; this is detected

FIG. 3 illustrates the corresponding method utilized
to write sectors protected by the multi-copy protection
mechanism. As with the multi-copy read algorithm,
copies are accessed sequentially and error recovery
must be enabled. In that Figure, the variables have the
following meanings: "target" refers to the address ofthe
sector in the first copy where the information is to be
written; "copy-size" is the size of a copy of the informa­
tion being protected, including any pad; "n" is the num­
ber of copies; "next" is the next copy to write; "err­
count" is the number of write failures; and "data-blk" is
the block of data (one sector) to write.

5 while bringing the unit online. Step 112. Either notifica­
tion includes the bad block's LBN, the previous data
contents of the bad block, and an indication as to
whether or not the data is valid (i.e., whether the origi­
nal reading of the bad block succeeded). In the case of

10 a failure or loss of context during phase 2, the notifica­
tion also includes the new RBN with which to replace
the bad block, whether or not the bad block had previ­
ously been replaced, and (if it had been previously re­
placed) the old RBN that currently replaces the bad

ReplacementiRevectoring Protection
15 block.

Replacement is used under three circumstances to
substitute spare sectors (RBN's) for sectors in the host
application area (LBN's): (I) to fill holes in the logical
address space left by bad blocks; (2) to reduce the risk of 20
failure due to progressive deterioration of sectors; and
(3) to improve performance in those implementations
wherein the correction mechanism (if any) requires
more time than the revectoring mechanism. The sec­
ondary storage subsystem determines the occurrence of 25
the above-listed cases and initiates replacement. This is
done either by notifying the host to begin host-initiated
replacement or by performing subsystem-initiated re­
placement.

Notification to begin host-initiated replacement is 30
done by a predetermined host protocol message packet.

Second, the bad block replacement process locks out
all access to the bad block and all update or write access
to the unit's RCT. Step 114. This is a "soft" lock-i.e.,
one which is implicitly released if the host or subsystem
(whichever is performing the replacement) loses con­
text. Optionally, since bad block replacement frequency
should be low, it may be acceptable to lock out all
access to the entire unit, rather than just the bad block
and RCT.

Third, step 116, a determination is made as to what
type of loss of context or failure is involved. If it is one
which occurred in phase 2, then control is relinquished
to step 144. If the failure or loss of context occurred
during phase I, though, the process branches to step
132. If there was no loss of context, the process contin­
ues with step 118.

Fourth (step 118), a sector-sized buffer is cleared and
the current contents of the bad block are written into
that buffer. (The buffer is initially cleared to account for

In the case of an unrecoverable error, the packet con­
tains both the failure notification and the bad block
notification; in the other cases, it contains only a bad
block notification. If bad block replacement is host­
initiated, the bad block may be replaced immediately
(termed dynamic replacement) or when the file or data
structure is re-allocated (termed static replacement).
Dynamic replacement is made possible by the "forced
error indicator", by writing the replacement block with
the "forced error" modifier. If subsystem - initiated
replacement is used, it is dynamic.

35 the rare case wherein no data can be transferred.) A
read operation is the performed, step 120, with error
recovery and error correction capabilities enabled and
evaluated as to success, step 122. The saved data is
considered valid if the read succeeded, and invalid if it

40 did not.

After a sector has been replaced, revectoring will
occur upon each host access to the replaced LBN.

Next, step 124, the data obtained when the bad block
was read during step 120 is recorded in the second
sector (i.e., sector 1) of each RCT copy and evaluated
for success. Step 126. If the data cannot be successfully

Replacement Strategy

In explaining bad sector replacement, certain termi­
nology must be understood. First, if an error is said to

45 recorded in the RCT, the error is reported to the error
log, step 128, and process control is transferred to step
174.

be "recoverable" and "correctable", that implies the
associated operation can be performed successfully; an 50
operation fails if and only if an "unrecoverable" error
occurs. Second, the disk going "omine" or "available"
in the middle of bad block replacement is treated as an
unrecoverable error; the disk must not be brought back
online with the bad block replacement algorithm resum- 55
ing where it left off. Instead, when the host or control­
ler next brings the unit online, it must act on the data
stored in RCT sector zero exactly as it would any other
time a disk is brought online.

Bad sectors which are discovered during the media 60
formatting process are replaced at that time. Bad blocks
which are caused by wear are replaced according to the
procedure detailed below in FIGS. 4A-4D. A two
phase replacement scheme is utilized. First (i.e., phase
I), a block is determined to be bad. Second (ie., phase 2), 65
the bad block is replaced.

When a specified logical block is found to be bad
during an attempt to read that block, the bad block

Sixth, in step 130, the bad block's LBN is recorded,
with an indication of whether or not the saved data is
valid, together with the fact that the process is in phase
I; this information is put in sector zero of each RCT
copy. This, of course, requires reading sector zero,
modifying the appropriate flag (PI), then writing the
updated sector zero in order to preserve other informa­
tion stored in that sector. If RCT sector zero cannot be
successfully read, the error is reported to the error log
and control is transferred to step 174. If sector zero
cannot be successfully written, the error is reported to
the error log and sequence control is transferred to step
170.

Seventh, step 132, test patterns are written to and
read from the suspected bad block to determine
whether or not it actually is a bad block. If the test
patterns fail, control is transferred to step 136 (and the
block is presumed bad). If the test patterns succeed,
then the process continues with step 134, under the
assumption that the block may be good. The test pat­
terns fail if either (I) the block is reported as a bad block

13
4,434,487

for the second time or (2) the test patterns cannot be
written and read back correctly.

In step 134, the saved data is written back to the bad
block using a write-compare operation. The write-com­
pare is performed with the "forced error" flag if and 5
only if the saved data is invalid. If the write-compare
both succeeds and the block is no longer reported as a
bad block, then the original problem was a transient one
and the sequence resumes at step 156. The write-com­
pare succeeds if no error is detected and the saved data 10
is valid, or if only a forced error is detected and the
saved data is invalid.

The next step, step 136, is to scan the ReT and deter­
mine the new RBN to use to replace the bad block,
whether or not the bad block has been previously re- 15
placed, and the bad block's old RBN ifit has previously
been replaced. The RCT is not updated at this time. If
the RCT scan fails, the error is reported to the error log;
step 138, and control jumps to step 166. If there is no
jump, step 140 is performed next. There, the new RBN 20
is recorded in the ReT, whether or not the bad block
has previously been replaced, as well as the bad block's
old RBN if it was previously replaced, and the fact that
the process is in phase two (which is indicated by flag
P2) (step 140); this information goes in sector zero of 25
each ReT copy. The RCT is updated without reading
sector zero, using instead the copy of ReT sector zero
last read or written to the ReT. If the ReT cannot be
updated, that is reported as an error to the error log
(step 142) and control of the replacement process jumps 30
to step 166.

If there is no such jump, step 144 is performed next,
and the process updates the RCT to indicate that the
bad block has been replaced with the new RBN and that
the old RBN, if any, is unusable. If this requires updat- 35
ing two blocks in the RCT, then both blocks are read
before either is written. If a block cannot be read suc­
cessfully, that error is reported to the error log (step
146) and control jumps to step 166. If a block cannot be
rewritten successfully, that also is reported as an error 40
to the error log (step 148) and the process jumps to step
162.

In the absence of jumps or branches, step 150 is
reached next. There, a "replace" command is used to
alter the header of the bad black, in indicate that it has 45
been replaced in either the primary or secondary mode,
and to contain 128 copies of the replacement block's
RBN address; and a write-compare command (ad­
dressed to the bad block's LBN) is used to store the
saved data in the replacement block. If and only if the 50
saved data is invalid, the write-compare is performed
with the "forced error" modifier set. The replace com­
mand implicitly verifies that a header servo track failure
has not occurred, which would cause a large number of
improper replacements. If the replace command fails, 55
Step 152, control branches to step 162. If the write
command fails, Step 154, control branches back to step
136, to re-scan the RCT for another RBN. The current
new RBN will become the old RBN for this next pass.
Either failure will already have been reported to the 60
error log. The write command succeeds if there is no
error detected and the saved data is valid, or if only a
forced error is detected and the saved data is invalid.

Next, in step 156, the process updates sector zero of
the ReT copies to indicate that it is no longer in the 65
middle of replacing a bad block. The ReT must be
updated without reading sector zero, using instead the
copy of sector zero last read from or written to the

14
ReT. If the RCT cannot be updated, the error is re­
ported to the error log, step 158, and control branches
to step 170.

In step 160, the process releases the lock it acquired in
step 114 and exits.

In step 162, the process restores the RCT to indicate
that the new RBN is unallocated and usable and that the
bad block is neither replaced nor has been revectored to
the old RBN, whichever was it's original status. The
RCT must be updated without reading any blocks from
it, using instead the copies of the relevant blocks that
were read from the ReT in step 144. Any errors are
reported to the error log (step 164) but otherwise ig­
nored.

Proceeding to step 166, the process uses a write com­
mand, addressed to the bad block's LBN, to restore the
saved data. This write should also set the "forced error"
flag if and only if the saved data is invalid. Errors are
reported to the error log, step 168, but otherwise are
ignored.

The process next updates sector zero of the ReT
copies, step 170, to indicate that it is no longer in the
middle of replacing the bad block. The RCT is updated
without reading sector zero, instead using the copy of
sector zero last read from or written to the RCT. Errors
are reported to the error log, step 172, but otherwise are
ignored.

In step 174, the process then releases the lock that it
acquired in step 114. If a controller is performing the
bad block replacement, it reports to the host the failed
bad block replacement procedure; if a host is perform­
ing the bad block replacement, it takes whatever host­
dependent action is appropriate for failed bad block
replacement operation Step 176. That ends the process,
and it exits.

When a disk is brought online to a host, the host or
subsystem (whichever is performing bad block replace­
ment), must do three things: (I) read sector zero of the
RCT copies; (2) write the data just read back to sector
zero of the ReT copies (this catches failures that occur
in the middle of the multi-write routine); and (3) check
the data just read to see if a failure occurred part way
through bad block replacement (and, if so, resume the
bad block replacement process as described above).
Write access to the disk must not be allowed until after
these actions have been performed and any partially
completed bad block replacement has run to comple­
tion.

The foregoing algorithm guarantees that data is never
lost, as the best guess to the correct data is permanently
stored before any action is taken that might destroy the
data. There is a failure mode, however, in host-initiated
replacement, which assumes that the system crashes in
the middle of bad block replacement. The bad block
that has been partially replaced may be in the middle of
the system core image or some other portion of the disk
critical to booting the host system. This failure mode is
eliminated if the subsystem, rather than the host, per­
forms bad block replacement.

The Replacement and Caching Tables

The replacement and caching tables maintain a re­
cord of the locations of all revectored LBN sectors and
the status of each RBN on the unit. Each RCT entry
represents an RBN. In turn, each copy of the table has
entries organized in ascending RBN order, with an
entry for each RBN sector on the unit. There are "n"
copies of the table on the unit, where "n" is a device

15
4,434,487

characteristic. The tables are stored at the high address
end of the LBN area of the unit. Table entries and
RBN's are allocated via a "hash" algorithm described
elsewhere in this document.

A plurality of copies of the ReT are stored in the 5
highest addresses of the LBN space. Each sector of the
ReT contains 128 entries, regardless of whether the
disk is formatted as 512 or 576 bytes/sector. Each copy
of the ReT is stored on an integral number of tracks.
"Null entry" positions are added to adjust the ReT's \0
size so that it meets this requirement. These nul1 entries

16
And the contents of sector zero of the ReT are illus­

trated in FIGS. 7A and 7B. As shown there, the sector
comprises 512 bytes. Words 260-266 contain the vol­
ume identification assigned during the formatting pro­
cess. Word 268 contains four bits having individual
significance. Bit 272 is the forced error (FE) flag indi-
cating that the replacement process should write the
forced error indicator in the target RBN; as explained
elsewhere herein, "setting" the forced error indication
means writing the sector with the code for the forced
error indicator, which in the example illustrated is the
one's complement of the error detecting code for the
sector. Bit 274 is a flag (BR) for bad RBN's, indicating
that the replacement in progress was caused by a bad
RBN; it is cleared after the replacement process is over.
Bits 275 and 276 are flags (P2 and PI, respectively),
indicating whether a replacement is in progress and, if
so, its phase. Words 278-282 hold a copy of the LBN of
the block being replaced, if a replacement is in progress;

do not correspond to RBN's; there is always at least one
null entry at the end of the ReT. FIG. 5 illustrates the
format of a replacement block descriptor. There, 190
represents the lower order portion of a revectored 15
LBN's logical block number and 192 represents its
higher order portion. A four-bit segment 194 is placed
contiguous to that address. It is written with an octal
status code. Suitable exemplary codes and their mean­
ings are listed below: 20 this field is only valid when the P2 bit 274 is set (i.e.,

when in phase 2 of replacement). Words 284, 286 con­
tain a copy of the RBN of the block with which the
LBN is being replaced. if a replacement is in progress;
they, too, require that the RP flag be set. The RBN of

Code

00

Meaning

unallocated (Le., empty)
replacement block
allocated replacement
block·primary RBN
allocated replacement
block·non·primary

02
25 the bad replacement block appears in words 288, 290 if

the BR flag 274 is set.
03

04
10

RBN
unusable replacement block
null entry

The ReT replacement allocation algorithm is one
which is used to allocate an RBN to replace a bad LBN.
Described below are the search algorithm and various

30 support algorithms.

Additionally, the size of the copies must be adjusted
so that corresponding blocks of each copy are, to the
maximum extent possible, accessed using physical1y 35
distinct components. For conventional1y structured
devices, this implies: (1) if the number of copies is less
than or equal to the number of read/write heads, then
corresponding blocks of each copy are accessed by
different heads; (2) if the number of copies is greater 40
than the number of heads, then corresponding blocks of
each copy are distributed as evenly as possible across all
heads; (3) if a device uses a servo surface, then corre­
sponding blocks of each copy are located using differ­
ent tracks of the servo surface; and (4) the ReT copies 45
are allocated such that the last sector of the last copy
occupies the last LBN on the unit. The last copy of the
ReT is padded so that its size is an exact multiple of the
device's track size. Allocation of the ReT is then per­
formed starting at the highest LBN and working down- 50
ward. The ReT pad area is controller-specific and is
not accessed by the host.

The first sector in the ReT contains information
about the state of any replacement operation which may
be in progress. A copy of the volume serial number is 55
also contained in this sector to allow validation of the
ReT by diagnostics routines.

The second sector in each copy of the ReT, sector 1,
is used by the bad block replacement algorithm, as
stated above. This sector is used to hold a copy of the 60
data from the sector being replaced.

FIG. 6 illustrates the resulting ReT structure. The
first sector 202 of the ReT (i.e., the so-called sector 0)
contains replacement and caching table information.
The second sector, 204, (i.e., the so-called sector 1) 65
contains the replaced LBN image. Sectors 206a-206m
(i.e., the so-called sectors 2 thru ReT-I) correspond to
the 128 replacement block descriptors.

ReT Search

The search begins at the descriptor for the primary
replacement block. If the desired LBN address is not
stored there and the descriptor is not empty, then a ping
pong search begins of the sector containing the primary
replacement block descriptor. If either the desired LBN
address or an empty descriptor is not encountered, then
a linear scan of the remaining ReT blocks, and descrip­
tors within blocks (with wrap-around at the end of the
ReT), ensues until one of two things occurs: (I) an
unallocated replacement block descriptor is encoun­
tered in an overflow location (a secondary) or (2) the
entire ReT is searched without success (a failure).

The search operates at two levels. First, within the
primary descriptor ReT sector, the search proceeds
outward from the primary descriptor searched, starting
with the next highest RBN descriptor. This degenerates
to a linear search once the lirst or last descriptor is
encountered. The linear search starts with the next
highest ReT sector address, once the initial sector has
been completely searched. Each new sector is searched
in a linear fashion starting at the lowest RBN descriptor
and scanning until the highest RBN descriptor in the
sector is encountered. If at any time during the linear
search a null (not an empty) entry is encountered, the
search resumes at the first entry in the third ReT sector
(the first with descriptors). The search is terminated
when it is certain that all the ReT entries have been
searched.

FIG. 8 illustrates the ReT search algorithm. A listing
of a sample coding for the algorithm is shown in FIGS.
9A-9C.

The Primary ReT Hash Algorithm

The primary ReT has algorithm is one which takes
as input and LBN and produces a host LBN address of
the ReT block containing the primary RBN descriptor

17
4,434,487

that corresponds to the previously revectored LBN. An
offset pointing to the primary RBN descriptor within
the RCT block is also produced. This algorithm always
produces a block number within the first copy of the
RCT within the replacement control area. The algo- S
rithm is illustrated in FIG. 10.

Detailed Description of an Embodiment of the Physical
Layer

With the foregoing generalized description in mind, it 10
will now be helpful to provide some further details of an
exemplary implementation.

Referring now to FIG. 11, a suitable sector format is
shown there, illustrating the various sector fields:
header 330, data 332, error detecting code (EDC) 334 1 S
and error correcting code (ECC) 336. Four copies of
the logical address are provided within the header. The
EDC in field 334 provides error detection coverage
from the entry of the data into the subsystem until its
exit from the subsystem. It is also used in the illustrated 20
embodiment to generate the ''forced error indicator."
Sixteen bits are used for the error detecting code in the
present example, although codes of other lengths can be
employed, of course. The ECC in field 336 provides the
primary detection and correction mechanism against 2S
medium and device transmission errors. (An exemplary
ECC occupies 170 bits and is described in commonly
assigned patent application Ser. No. 277,060, filed June
24, 1981, by Charles M. Riggle et aI, and titled Multiple
Error Detecting and Correcting System Employing 30
Reed-Solomon Codes, which is incorporated by refer­
ence herein for the purpose of describing the error
correcting code and its use).

The header preamble "spacer" field 338 is an area
padded with zeroes and used to accommodate the maxi- 3S
mum uncertainty between a drive's negation of sector
pulse and a controller's notice of the change, plus the
controller quantization error in preamble length.

The header preamble field 340, also zeroes, is the
number of words necessary to allow the drive's phase- 40
locking oscillator (PLO) to settle before the occurrence
of header sync. The "header preamble length" field is
provided to the controller by the drive in response to a
designated command.

18
is computed. (Step 362). The error detecting code cal­
culated in step 362 is then compared with the error
detecting code contained in field 334 of the information
read from sector A in step 360. (Step 364). If the calcu­
lated EDC matches the EDC read from the recording
medium, then the read operation is successful and pro-
cessing proceeds along the branch 366 to exit point 368.
However, if the two EDC values do not match, some
further processing is required to determine the reason
for the mismatch and to decide on further steps to take.
Thus, the controller next looks to see whether the
forced error indicator was present (or "set") in sector A
as recorded; this is done by comparing the calculated
EDC with the one's complement of the EDC read from
field 334. (step 370). If the two match, that means the
forced error indicator was detected, in which case pro-
cessing continues along branch 372; the controller then
knows that the data in the sector already was corrupted
when it was written and therefore cannot be recovered
through the read operation. Thus, the read operation
fails; and in doing so, a specific code or signal is gener-
ated in step 374 to notify the host that the read opera­
tion failed due to detection of the forced error indicator.
On the other hand, if the forced error indicator was not
detected in step 370, it is possible that error recovery
technique might successfully be employed, so control is
transferred along branch 376 to step 378. In step 378,
the available error recovery techniques are invoked and
an attempt is made to reconstruct the data written to
sector A. If error recovery is successful, then the read
operation has succeeded and, analogously to a success-
ful outcome from step 364, control proceeds along
branch 382 to exit point 368. However, if error recov­
ery does not succeed, then an error code is generated to
indicated to the host that the read operation failed due
to the medium inaccurately storing the information.
Step 384. This latter error code is different from the
error code generated in step 374, to distinguish between
read errors due to defective media and read errors due
to the forced error indicator.

It is important to distinguish between forced errors
and non-forced errors in reading because they are han­
dled differently when copying information from one
sector or group of sectors on to another sector or group

Generation and Use of the Forced Error Indicator

The controller 4 transmits to the drive 3 the informa­
tion for each sector, to be written in the format of FIG.

4S of sectors. When a forced error indicator has been set in
a sector, the underlying medium is still presumably in
satisfactory condition; thus, new information can be
written into that sector, at which point the forced error

11. Generally, the error detecting code and error cor­
recting code are computed and are inserted in the ap- so
propriate fields of the sector format by the controller 4,
though in some cases the host or the drive itself might
supply some of such information. Similarly, when read­
ing from the disk drive 3, the controller 4 generally
performs the functions of checking the error detecting 55
code and error correcting code, though it is also possi­
ble for the host or drive to do so in some systems.

The procedure by which the controller (or host or
drive, as appropriate) gemerates and utilizes the error
detecting code field 334 for forced error indication is 60
illustrated in FIG. 13B. There, a flow chart is provided
illustrative of the operation of a processor for reading
from the recording medium. With reference now to that
figure, a sector "A" is to be read. Under command from
the controller, the disk drive positions a head appropri- 65
ately so as to "read" and provide to the controller the
information stored in sector A. (Step 360). From the
data field of the sector, an error detecting code (EDC)

indicator is cleared. However, if the information in a
sector is unrecoverably corrupted but the forced error
indicator is not present, it is likely that the medium
underlying sector is defective and that any futher writ­
ing onto that medium would result in a further loss of
information.

There are thus three types of situations to deal with
when copying a sector from a first volume of memory
into a second volume of memory. If the sector was
successfully read from the first volume of memory, it
may of course be written intact into the second volume
of memory. If the sector could not be successfully read
because it was logically corrupted and unrecoverable,
then the contents of that sector can either be discarded
entirely or can be written into a sector in the second
volume with the forced error indicator set to signify
that the data was corrupted when recorded. Rerecord­
ing of that sector subsequently results in the clearing of
the forced error indicator. Thus the organization of a
particular file can be retained with the position in the

19
4,434,487

file being held open and identified as not being defective
though containing incorrect data.

This is illustrated in FIG. 13C, which shows the two
possibilities for writing into the EDC/FEI field 334 of
a sector. If a sector is to be written with information 5
read from a disk file, and in the reading process of FIG.
13B, step 384 has been reached (signifying that the data
read is corrupted and the forced error indicator code is
not present for the sector which was read), then the data
known to be corrupted is to be wt"itten to a good block \0
of recording medium on the same or another disk sur­
face and the forced error indicator code is to be set
when the new sector is written. This is indicated by
going or branching from step 384 directly to a step 392,
where the write operation occurs with the forced error 15
indication code set in field 334. A contrast, when the
sector is to be written with new data from a host (which
data is presumed to be reliable and uncorrupted) or with
data successfully read from storage, as indicated by the
"yes" branches from steps 364 or 380, then the write 20
operation occurs with an appropriate non-comple­
mented error detection code written to the EDC/FEI
field. (Step 394).

The data preamble "space" field 342 is the area neces­
sary to accommodate controller quantization errors in 25
the transition between reading headers and writing data
preamble. The length of splice field 344 is the number of
words necessary to accommodate worst-case header
transmission delays, header compare time, write splice
area and PLO lock time. The number for this area (in 30
words) is placed in the "data preamble length" field of
the response to the above-designated command.

20
block number in the header represents the LBN for this
block. This LBN has been revectored to its primary
RBN. This header field may be registered in the non­
RCT portion of LBN space only.

Yet another code, such as 06, may be used to indicate
a usable replacement sector, wherein data mayor may
not be valid, depending on the validity of the EOe. The
block number in the header represents the RBN for this
block. This header code may appear in RBN space only.

Another code, such as 11, may signify an unusable
sector, where data is invalid. The block number in the
header is that of the sector's type if it had been a usable
sector. This header code may appear in RBN, XBN, or
DBN space, the RCT area of LBN space, and in LBN's
which have been secondary revectored due to header
errors.

Yet another code, such as 12, may signify a usable
external sector, wherein data mayor may not be valid
depending upon the value of the EDe. The block num­
ber in the header represents the XBN for this block.
This header code may appear in XBN space only. A
further code, such as 14, may represent a usable diag­
nostic sector. The block number in the header repre­
sents the DBN for this block. This header code may
appear in DBN space only.

Header Compare Algorithm

A header compare algorithm is used by the controller
for locating a designated sector. First, the controller
determines the address of the sector it is searching for
on the disk (i.e., the "target" address). The controller
then reads the four copies of the 32-bit header of the
sector that may be at the target address. These headers
are broken into two 16 bit fields (low and high). If any

The length of the write-to-read recovery field 346 is
the number of bits necessary for write recovery, plus an
allowance for uncertainty.

The length of the reinstruct time field 348 is the disk
area traversed during the time the controller is cleaning
up the current sector transfer and sending the command
to the next one.

35 two of the four low fields, as retrieved from the disk,
match the low field of the target address and any two of
the four high fields, as retrieved from the disk, match
the high field of the target address, then the header
compare succeeds. If at least two low matches are not

The Headers
40 found, then a header match is not possible.

The sector header is 128 bits: thirty-two bits repli­
cated four times. The layout of one of the thirty-two bit
copies is shown in FIG. 12. A l6-bit word 352 and the
lower 12 bits of the next word 354 form a 28-bit block 45
number field, which is followed by a 4-bit header code
356. The block number field represents an LBN, an
RBN, an XBN, or a DBN, depending on the header
code. The block number field provides enough address­
ing for approximately 0.25 giga-sectors or 1 terabit of 50
data.

The octal header code may, for example, be inter­
preted as follows. First, an exemplary code such as 00
(octal) may indicate a usable logical sector wherein data
mayor may not be valid, depending upon the validity of 55
the EDe. The block number in the header represents
the LBN for this block. This header code may appear in
LBN space only. Another code, such as 03, may indi­
cate an unusable revectored logical sector. This header
code may appear in the non-RCT portion of LBN space 60
only. The data field contains the RBN header field of
the replacement block, replicated 128 times; the block
number in the header represents the LBN for this block.

Yet another code, such as 05, may indicate an unus­
able primary revectored logical sector. Such a sector 65
has been revectored onto the first replacement sector on
the track. The data field contains the RBN header field
of the replacement block, replicated 128 times. The

If at least two low matches are found and two high
matches are not found, then it is possible that the cor­
rect sector was located but the header code did not
match the target header code. This is possible if an LBN
has been replaced, or if a bad block has been found in a
multi-copy protected area (i.e., RCT, XBN or DBN).
The controller alters the header code in the target ad­
dress then determines if two high matches now exist. A
variant of the header compare algorithm is also used to
conclude that a drive has mis-seeked or seeked to the
wrong cylinder or group, or that an incorrect head has
been selected. For this purpose, any three of the four
high header words must match and any three of the four
low header words must match, since there is not an
expected header value to match against. Given this
three-way match, the controller may interpret the
header code and block number fields to determine the
actual cylinder, group and track that have been ac­
cessed, for comparison against the correct values.

The Data

The contents of the data field are application-depend­
ent. The data field size will depend on the format used
by the host processor. For the assignee's products, there
are two basic data field sizes, 512 bytes and 576 bytes. A
portion of all disks is always formatted with 512 byte
data fields. This is the manufacturing defect area
(XBN). The other areas on disk drives attached to those

21
4,434,487

controllers that support both sector sizes may be for­
matted in either 512 or 576 byte format. Each time a
device comes "online" to a controller, the controller is
responsible for determining the sector size employed by
the device according to the algorithm described below. 5
First, the device is instructed to change the sector size
of its reading operation to 512 bytes. The starting sector
of the first copy of format information is read. The first
word of this sector is tested. If it is equal to a preselected
number, then LBN/RBN space is written in 512 byte 10
mode. On the other hand, if it is written with some other
preselected number, then such space is written in 576
byte mode. If the starting XBN of the first copy is not
readable or a value other than the aforementioned pre­
selected values is in the first word, then the starting 15
XBN of the next copy of the format control table is
computed using the following formula:

next copy XBN =old copy XBN + size offormat
control table. 20

22
one's complement of the EDC to be expected on the
basis of the recorded data.

The Track

A track is composed of sectors and timing marks.
There must be at least two sectors per track (I LBN
sector and 1 RBN sector). Timing marks are of two
types: (1) sector marks and (2) index marks. A sector
mark precedes each sector and may be used by the
controller for rotational optimization purposes. An
index mark precedes the first sector on each track
within the first group in the cylinder and precedes a
sector at the same angular position with respect to the
first group on all other tracks within all other groups in
a cylinder.

Detailed Description of an Embodiment of The Logical
Layer

Address Spaces

There are four address spaces in the set of sectors
This new sector is then read. If it has an uncorrectable made available to the controller by the drive. The first
I/O error, then the next copy is accessed, until all cop- address space contains the set of logical blocks which
ies are tried. If all copies are read and there is no copy are visible to the host. This LBN space is divided into
that can be read without an uncorrectable I/O error, 25 two regions: the host accessible area and the RCT's.
then a media format error is returned to the host. Also, The second address space contains replacement blocks
if the first sector (i.e., XBN) of the first copy read with- which are used to replace logical blocks that have be-
out an uncorrectable error contains an invalid media come unusable. These RBN's are invisible to the host
mode code, then a media format error is returned to the except for the implications they have on allocation
host. 30 policies. The controller utilizes the logical blocks and

(The host may force the device into a specific mode, replacement blocks in a fashion that presents to the host
in which case the controller will attempt to access the a logically contiguous set of blocks numbered from zero
device unit using that mode, without issuing the media to H-l, where H is the block capacity as seen from the
format error. This is intended only as a means of data host. The third address space is the extended block
recovery, and not as a standard operating practice.) 35 space; (XBN's); this is a set of blocks visible only to the

If the volume is in 512 byte format, the algorithm is controller, which is used to store manufacturing format
complete. If in 576 byte format, the controller is respon- control information and transient controller-specific
sible for prefacing all operations on XBN's or 512 byte information. Finally, there is the diagnostic block space
DBN's with a command to change the size to 512 bytes, (DBN's) containing blocks devoted to controller-resi-
and preceeding the next reference to LBN's or RBN's 40 dent diagnostics. The DBN's are also visible only to the
with a command to change the size back to 576 byte controller. These address spaces are differentiated by
format. In other words, the controller is responsible for unique header codes, preventing inadvertent access to
changing the sector size dynamically based on which or operation in the wrong type of sector.
space the sector falls in, using 512 byte format for Although conformation to the overall geometry de-
XBN's and DBN's but 576 byte format for LBN's and 45 scribed herein is a requirement of the invention, the
RBN's. specific capacities and other physical parameters associ­

The EDC

The Error Detecting Code (EDC) is a 16-bit code
used to detect errors caused by internal problems in the 50
controller. It is applied as an end-to-end verification of
correct controller operation. The algorithm shown here
was designed to detect column errors as well as multi-
bit parity errors.

The EDC is computed via an exclusive-OR operation 55
and left circular shift algorithm, using a non-zero initial
value and 16 bit word size. The rotate used in this algo­
rithm has no carry. The algorithm itself is listed in FIG.
13A. In addition to detecting errors, the EDC also is
used herein to provide a forced error indicator. This is 60
accomplished by storing the one's complement of the
correct EDC in the EDC field of the sector. An "error"
is thereby indicated when the sector is read; this "error"
is eliminated when the sector is next written with cor­
rect EDC. This technique makes it very easy for diag- 65
nostie routines to identify sectors having forced errors.
That is, when an EDC indicates an error, it is a simple
matter to determine whether that EDC is in fact the

ated with the geometry of the disk will vary from de­
vice type to device type. These specific parameters are
part of the permanent characteristics of each device
type, and are determined when the device is designed.
The controller shields from the host these parameter­
dependent device properties. The controller issues a
generic command termed the GET CHARACTERIS­
TICS command, in response to which the drive re­
sponds by sending to the. controller the parameters
necessary for use in geometry-related operations. The
controller then uses those parameters as appropriate
and necessary.

The Drive Characteristics Blocks

As mentioned above, in a secondary storage subsys­
tem according to this invention, a disk drive provides to
the controller, responsive to a command, one or more
messages containing various parametric information. In
this regard, it should be noted that within a drive there
may be one or more subunits, each of which can be
addressed independently by the host and controller.
Thus, to fully characterize the drive, two commands are

23
4,434,487

used. First, a command named the GET COMMON
CHARACTERISTICS command is employed to
evoke a message regarding parameters which are com­
mon to all subunits of the drive. Next, a comand named
the GET SUBUNIT CHARACTERISTICS command 5
is used to evoke the characteristics of specific subunits
of a drive. The format of the response to the GET
COMMON CHARACTERISTICS command is illus­
trated in FIG. 14. There, a 23 byte sequence is shown.
The first byte identifies the nature of the response. The 10
lower half of the second byte conveys the length of a
short time out, expressed as power of two. The upper
half of the second byte contains a number indicating in
the version of the bus used between the controller and
drive. In the third byte, the drives bit transfer rate is 15
specified, scaled down by a factor of 100,000. The
fourth byte, like the second byte, is broken in half. Its
lower half includes a long time out, also expressed as a
power of two; while its upper half conveys the number
of retries of a failed operation which will be required by 20
the drive. In the lower half of the fifth byte, a number is
written to indicate the number of FCT and RCT copies
maintained. The most significant bit in the fifth byte, SS,
indicates the drive sector size. The sixth byte specifies
the number of error recovery levels which the drive 25
makes available. It is a characteristic of this system that
the controller need not be aware of the error recovery
techniques available in the drive. The drive may employ
several different error recovery techniques, numbered
in their order of increasing or decreasing chance of 30
success. Assume. for example. that by convention error
recovery Level I corresponds to the technique having
the greatest probability of success; error recovery Level
2 is the next most likely to succeed, etc. Then, the con­
troller need only signal for the invocation of error re- 35
co very Level I and the subsequent error recovery tech­
niques. in ascending numerical order (corresponding to
descending probability of success). The drive, respon­
sive to seeing each of the error recovery level indica-
tors, invokes the appropriate recovery method. 40

The seventh byte contains the ECC threshold, above
which replacement and revectoring are invoked. The
eighth byte contains an indication of the microcode
revision number of the drive and the ninth byte contains
an indication of its hardware revision number. 45

24
this subunit, while the upper half of the byte contains
the same bits for the first DBN on this subunit.

The number of RBN's per track is indicated on byte
10. Bytes 12 and 13 contain the length of the data and
header preambles, respectively, in words.

Bytes 14-17 record the media type. Bytes 18 and 19
give the size of copy of the FCT, in XBN's.

Bytes 20-27 are used for the 512 byte format, and
their counterpart for the 576 byte format is bytes 28-35.
As labelled in the drawing, the contents of the bytes
should be self-explanatory. Bytes 20 and 28 indicate the
number of LBN's per track. Bytes 21 and 29 indicate the
group offset-i.e., the offset from one group to another
to permit spiral read operation. The number of LBN's in
the host area is indicated from byte 22 through the
lower-half of byte 25 and from byte 30 to the lower-half
of byte 33. Bytes 20-23 and 34-35 indicate the size of a
copy of the RCT, in LBN's.

Bytes 36-39 are common to both formats. Bytes 36
and 37 indicate the size of the XBN space, in cylinders.
Byte 38 indicates the number of groups in the DBN area
and byte 39 indicates the size of the DBN space in cylin­
ders.

The replacement sectors in any given drive are logi­
cally numbered from 0 to (Rs - I), where Rs = Lc*g*t*r
is the total number of replacement sectors. A replace­
ment block number is converted to a specific physical
disk location through a series of transformations per­
formed by the controller using parameters supplied by
the drive. These transformations are described later.
The last r sectors (where r is a drive-specific parameter)
of each track in the host application area is reserved for
replacement blocks for revectored bad blocks. These
alternate blocks lie outside of the LBN space presented
by the controller to the host, and are accommodated in
the logical-to-physical address conversion algorithm
described below.

FIG. 16 illustrates the first two and last tracks in the
LBN/RBN space of a subunit.

External Block Track Geometry

The external sectors on any given drive are logically
numbered from (0 to Xtot-I), where Xtot=Xc*g*t*s
and is the total number of external sectors.

The transformation for converting an external block
number to a specific physical disk location is explained
later.

XBN's are allocated contiguously on all XBN cylin-

Bytes 10-15 contain a unique drive identification
number or serial number. The sixteenth byte contains a
drive type identifier and byte seventeen indicates the
rotational speed of the disk platters, in revolutions per
second.

Bytes 18-23 contain various error thresholds.
50 ders; they increase incrementally from the starting XBN

number as the sector number, track number, and cylin­
der number increase, until the XBN cylinders are ex­
hausted. There are no replacement blocks on XBN

The response to the GET SUBUNIT CHARAC­
TERISTICS command is indicated in FIGS. 15A and
15B. As shown there, the response is 39 bytes in length.
The first byte contains a pattern indicating the nature of 55
the response. Bytes 2, 3, 4 and the lower-order half of
byte 5 contain the number of cylinders in the LBN
space. The field comprising bits 6-4 of byte 5 contains
bits number 30-28 of all cylinder numbers on this sub­
unit.

cylinders.
FIG. 17 illustrates the first two and last track in the

XBN space of a subunit.

Diagnostic Cylinder Geometry

The diagnostic sectors on a drive are numbered logi-

The number of groups per cylinder is indicated in
byte 6.

60 cally from 0 to Ds-l, where Ds=Dc*g*t*s is the total
number of diagnostic sectors. The method for trans­
forming DBN's to specific physical disk locations is
described below. An adequate number of cylinders is The lower-order half of byte 7 contains bits 27-24 of

the first LBN on this subunit, while the upper-order half
of that byte contains the same bits of the first XBN on 65
this subunit. Byte 8 contains the number of tracks per
group. Byte 9 is fragmented into two halves, the lower
half of which contains the bits 27-24 of the first RBN on

reserved for diagnostic usage. Sector headers in those
cylinders are coded to reflect that they are DBN's.
These diagnostic cylinders are formatted initially in the
512 byte mode and the last cylinder in this space must
remain in that mode; that cylinder contains various data

25
4,434,487

patterns prerecorded at the factory. Diagnostic space
geometry is illustrated in FIG. 18.

Address Conversions

Two generic variables are used to express the address 5
conversion algorithms. They are actual or calculated
device characteristics. The function QUO() is used to
indicate a quotient resulting from a division operation
and the function REM() is used to indicate the remain-
der resulting from a division operation. 10

The starting LBN for a drive (L) is computed from
the characteristic "HISTRTLBN", the high order part
of the address of the starting LBN. (see below). This is
done by OR-ing the "HISTRTLBN" nibble into bits 15
27-24 of a previously zeroed longword.

Given a header LBN, the algorithm listed in FIG. 19
is used to determine the logical block's physical sector
address. In reading that figure, note that the starting
cylinder for a drive (C) is computed from the drive 20
characteristic "HI CYL", the high order part of the
cylinder address. This is done by OR-ing the "HI CYL"
nibble into bits 30-28 of a previously zeroed longword.
In the figure, "0" represents an offset.

Given a header RBN, the algorithm of FIG. 20 may 25
be used to determine the replacement block's physical
sector address. Note that the starting RBN for a drive
(R) is computed from the characteristic
"HISTRTRBN," the high order part of the RBN ad­
dress. This is done by OR-ing the "HISTRTRBN" 30
nibble into bits 27-24 of a previously zeroed longword.

Given a header XBN, the algorithm listed in FIG. 21
may be used to determine the external block's physical
sector address. The starting XBN for a drive (X) is 35
computed from the drive characteristic
"HISTRTXBN," the high order part of the XBN ad­
dress. This is done by OR-ing the "HISTRTXBN"
nibble into bits 27-24 of a previously zeroed longword.

Given a header DBN, the controller executes the 40
algorithm of FIG. 22 to determine the diagnostic
block's physical sector address. The starting DBN for a
drive (D) is computed from the characteristic
"HISTRTDBN," the high order part of the DBN ad­
dress. This is done by OR-ing the "HISTRTDBN" 45
nibble into bits 27-24 of a previously zeroed longword.

26
Detailed Description of an Embodiment of the

Functional Layer Revectoring

Once a sector has been replaced, revectoring should
occur upon each access to the replaced LBN. Three
revectoring mechanisms are supported by the particular
implemention discussed herein. These mechanisms all
depend upon values in the code field of the sector's
header to initiate revectoring. Additionally, all revec-
tored LBN's contain 128 copies of the replacement
block's header in their data field, unless revectoring is
the result of a header error. The revectoring mecha­
nisms differ in the ways that the addresses of the target
RBN's are determined.

In the primary revectoring mechanism, the position
of the RBN to which revectoring is performed is im­
plied by the position of the LBN on the volume. This
implied position is the first replacement sector on the
track containing the LBN. This is a many LBN to one
RBN mapping function.

With so-called secondary revectoring, an arbitrary
RBN is used whose address is determined by the pres­
ence of the 128 copies of the RBN's header value (code
and address) in the data field of the bad LBN. The
algorithm listed in FIG. 23 is used to determine reliably
the correct value of the RBN header; it provides as
output (from the 128 copies input) the address found to
have at least 24 matches, if there is one.

Finally, there is a so-called tertiary revectoring
mechanism which is used when the header compare
algorithm fails to determine a valid header address or
code or the algorithm of FIG. 23 fails to yield a valid
result. It is important to determine then if the LBN has
been revectored or if access to the LBN should result in
an unrecoverable error. Since all revectored LBN's are
recorded in the multiple copies of the RCT, an RCT
search is used to determine if the bad LBN has been
revectored. The RCT search algorithm, described
above, results in the RBN address if the LBN was re­
vectored, or a failure indication if it was not revectored.
The determination that the attempted input/output
operation was done to the correct sector requires, since
the header is "smashed" and unusable (I) a determina­
tion that the correct cylinder, group and track have
been selected; (2) for controllers that use sector count­
ing via sector and index pulses, at least one revolution of
counting after completion of the foregoing step and (3)
for controllers that locate sectors by reading headers, at
least four full revolutions searched after the foregoing

Given a header LBN that has been revectored to the
first RBN on the same track (primary RBN), then the
following algorithm or formula may be used to deter­
mine the replacement block's RBN:

RBN=R+(QVO«LBN- L)/I»·r

50 step is complete. Failure to achieve a header match on
the latter two actions requires invocation of tertiary
revectoring.

Given a host LBN that has been revectored to the
first RBN on the same track (primary RBN), then the 55
following formula may be used to determine the re­
placement block's RBN:

Formatting Support

Formatting and reformatting processes are responsi-
ble for establishing which sectors are bad and replacing
them, if they are in the host applications area, or format­
ting there headers with the unusable code if they are
bad LBN's in the RCT, bad XBN's, bad DBN's or bad RBN = R + (QUO{(LBN)/ I»·r

Given the physical address (cylinder, group and
track) of a logical block that has revectored to the first
RBN on the same track (primary RBN), then the fol­
lowing formula may be used to determine the replace­
ment block's RBN:

RBN=R+([([(Cyl. No. -C)'g]+Group
No.)·t] + Track No.)'r

60 RBN's.
The formatting process is supported by the format

(;ontrol tables (FCT), which are used to record informa­
tion about the location of manufacturing detected bad
blocks. Format information for both 512 byte and 576

65 byte formats is stored in the FCT. The first subtable in
the FCT contains information about where the bad
blocks would be located if the disk were located in the
512 byte format, the second subtable contains informa-

27
4,434,487

tion about where the bad blocks would be located if the
disk were recorded in the 576 byte format. For those
mass storage devices that don't support the 576 byte
format, the 576 byte sub table contains null entries.

A second function of the FCT is the identification of 5
the current mode of the LBN space (i.e., whether it is
recorded in 512 or 576 byte format. The first sector of
each FCT copy contains a code identifying the current
LBN sector size. This mode identification sector is
updated each time the volume is formatted.

The FCT contains at least one track of subsystem
scratch storage also.

10

Each copy of the FCT is composed of one volume
information block, one 512 byte format table, one 576

15 byte format table, and one subsystem temporary storage
area (distributed amongst the alignment pads). This
format is illustrated in FIG. 24. The XBN area itself is
always formatted to contain 512 byte sectors. Sector 0
of the FCT contains various volume identification in- 20
formation. Its format is illustrated in FIG. 25.

Conclusion

Having thus described an exemplary embodiment of
the invention, it will be apparent that variolls alter- 25
ations, modifications and improvements will readily
occur to those skilled in the art. Such obvious alter­
ations, modifications and improvements, though not
expressly described above, are nonetheless intended to
be implied and are within the spirit and scope of the 30
invention. Accordingly, the foregoing discussion is
intended to be illustrative only, and not limiting; the
invention is limited and defined only by the following
claims and equivalents thereto.

What is claimed is:
1. In a secondary storage subsystem (2) for a data

processing system (10), wherein data is recorded on a
mass storage medium (5) and the smallest addressable
unit of the medium is a sector (9), each sector including

35

a header field for recording address information and a 40
data field for recording data to be associated with and
stored at such address, the improvement comprising:

means (4, FIG. 13C-392) for writing in each sector a
predetermined code, termed the forced error indi­
cator, when the data being recorded in the data 4S
field is known to be logically corrupted and the
medium underlying the sector is not known to be
defective; and

28
(b) the forced error indicator code when the data

being recorded in the sector is known to be logi­
cally corrupted (392).

3. The apparatus of claim 2 wherein the forced error
indicator code is the one's complement of the error
detection code for the dal.a being recorded in the sector.

4. The apparatus of claim 3 further including:
means (4, FIG. 13B-362) for generating a second

error detection code upon reading the data re­
corded in a sector, using the preselected algorithm;
and

the means for providing a forced error signal com­
prising means for comparing the error detection
code thus generated with the signal read from the
EDC/FEI field (4, FIG. 13B-364, 370) and for
generating the forced error indicator when the
signal read from the EDC/FEI field corresponds
to the one's complement of the second error detec-
tion code.

5. In a secondary storage subsystem for a data pro­
cessing system, wherein data is recorded on a mass
storage medium and the smallest addressable unit of the
medium is a sector, a method of replacing a defective
sector with a substitute sector, such that information to
be written to or read from a defective sector is written
to and then read from the substitute sector instead, once
the defective sector is identified as unreliable, such
method comprising the steps of:

A. reserving a portion of the medium to be used as
spare sectors for replacing defective sectors, at
least one spare sector being provided within each
set of sectors occupying contiguous logical loca­
tions on the medium;

B. replacing the first defective sector in said set of
sectors with the first one of said spare sectors,
termed a primary replacement sector;

C. indicating such replacement by writing a first
predetermined code in the defective sector; and

D. when writing data to or reading data from a sec-
tor, detecting the first predetermined code and, in
response to detecting said code, revectoring the
writing or reading operation to said first one of the
spare sectors for the involved set of sectors where
the code was detected.

6. The method of claim 5 wherein each sector com­
prises a header field and a data field, the address of the
sector normally being written in the header field and the
information to be stored in the sector being written in

means (4, FIG. 13B-374) for providing a signal,
termed a forced error signal, responsive to detec­
tion of the forced error indicator during a read
operation.

50 the data field, and further wherein said predetermined
code is written in the header field of the defective SeC-

2. The apparatus of claim 1 wherein the means for
writing the forced error indicator code includes S5

means (4, FIG. 13C-394) for generating for each sec­
tor an error detection code which is uniquely re­
lated to such sector's data, in accordance with a
preselected algorithm, for use in detecting the pres­
ence of errors in reading data recorded in the sec- 60
tor; and

means (3, 4, FIG. 13C) for writing a signal into a
predetermined location in the sector (9, FIG.
11-334), such location being termed the EDC/FEI
field, said signal being

(a) the error detection code for the data being re­
corded in the sector when the data is not known to
be logically corrupted (396), or

65

tor.
7. The method of claim 6 wherein the reserved sec­

tors are evenly distributed throughout the medium.
8. The method of claim 6 wherein the medium is a

magnetic disk and the sets of sectors are tracks.
9. The method of claim 6 wherein the reserved sec­

tors are located in predefined locations within said
tracks.

10. The method of claim 6 further including the steps
of, when the primary replacement Sector is unavailable:

D. selecting for a defective sector other than the first
defective sector in said set of sectors a replacement
sector other than the primary replacement sector,
said replacement sector being termed a secondary
replacement sector;

E. in the header field of such defective sector, writing
a second predetermined code indicating that said

29
4,434,487

sector has been replaced by a secondary replace­
ment sector;

F. in the data field of each such defective sector,
writing a predetermined multiple number of copies
of the physical address of the secondary replace- 5
ment sector selected therefor;

G. on reading the header field of the defective sector,
checking for said second code;

H. responsive to detecting said second code, obtain­
ing the physical address of the secondary replace- 10
ment sector by reading said multiple copies and
comparing them statistically to arrive at the re­
corded value of said address; and

I. revectoring the writing or reading operation in­
tended for the defective sector to said secondary 15

replacement sector.
11. The method of claim 10 wherein the reserved

sectors are evenly distributed throughout the medium.
12. The method of claim 10 wherein the medium is a

magnetic disk and the sets of sectors are tracks.
13. The method of claim 10 wherein the primary

replacement sectors are located in predefined locations
within said tracks.

20

14. The method of claim 10 further including the 25
steps of, when the primary replacement sector is un­
available:

J. providing on the medium multiple copies of a table
containing a list of each spare sector and the ad­
dress of the defective sector replaced by it, if any; 30

K. responsive to detecting a defective sector, search­
ing a copy of said table to find the address of the
replacement sector therefor; and

E. revectoring the writing or reading operation in­
tended for the defective sector to said replacement 35
sector.

15. In a secondary storage subsystem for a data pro­
cessing system, wherein data is recorded on a mass
storage medium and the smallest addressable unit of the
medium is a sector, each sector comprising a header 40
field and a data field, the address of the sector normally
being written in the header field and the information to
be stored in the sector being written in the data field, a
method of replacing a defective sector with a substitute
sector, such that information to be written to or read 45
from a defective sector is written to and then read from
the substitute sector instead, once the defective sector is
identified as unreliable, such method comprising the
steps of:

A. reserving a portion of the medium to be used as 50
spare sectors for replacing defective sectors;

B. selecting for a defective sector a replacement sec­
tor from among said spare sectors;

C. in the header field of such defective sector, writing
a predetermined code indicating that said sector 55
has been replaced by a secondary replacement
sector;

D. in the data field of a defective sector, writing a
predetermined mUltiple number of copies of the
physical address of the selected replacement sector 60
therefor, termed a secondary replacement sector;

E. on reading the header field of the defective sector,
checking for said second code;

F. responsive to detecting said second code, obtain­
ing the physical address of the secondary replace- 6S
ment sector by reading said multiple copies and
comparing them statistically to arrive at the re­
corded value of said address; and

30
G. revectoring the writing or reading operation in­

tended for the defective sector to said secondary
replacement sector.

16. In a secondary storage subsystem for a data pro­
cessing system, wherein data is recorded on a mass
storage medium and the smallest addressable unit of the
medium is a sector, a method of replacing a defective
sector with a substitute sector, such that information to
be written to or read from a defective sector is written
to and then read from the substitute sector instead, once
the defective sector is identified as unreliable, such
method comprising the steps of:

A. reserving a portion of the medium to be used as
spare sectors for replacing defective sectors;

B. selecting for a defective sector a replacement sec­
tor from among said spare sectors;

C. providing on the medium multiple copies of a table
containing a list of each spare sector and the ad­
dress of the defective sector replaced by it, if any;

D. responsive to detecting a defective sector, search­
ing a copy of said table to find the address of the
replacement sector therefor; and

E. revectoring the writing or reading operation in­
tended for the defective sector to said replacement
sector.

17. In a disk drive for a secondary storage facility of
a data processing system, wherein a read/write head
must be positioned to read or write successive portions
of the medium and the usable area of the storage me­
dium is divided into sectors, each sector occupying a
specific physical position relative to an index location
on the medium and being available for reading or writ­
ing once per disk rotation, a method of reducing the
time consumed in head repositioning, comprising the
steps of:

A. logically grouping sectors into tracks, groups and
cylinders according to access time latencies, a track
being a set of sectors occupying contiguous logical
disk locations, a group, being a set of tracks which
can be selected within the time required for a sec­
tor to rotate past a head, and a cylinder being a
collection of groups that can be selected by opera­
tions having latencies less than the time for a head­
positioning seek operation;

tracks, groups and cylinders being independent of phys­
ical organization of the drive; and

B. mapping the physical address of each sector to a
logical track, group and cylinder address to effect
optimal access time reduction.

18. In a secondary storage device, the improvement
comprising: dividing the medium into multiple address
spaces, at least two address spaces being addressable by
a host computer system which uses the mass storage
device and at least two address spaces being invisible to
and not accessible by the host computer system;

the first address space addressable by the host com­
puter system being the set of storage locations
visible to an operating system of the host computer;

a second address space addressable by the host com­
puter system being a space containing revector
control tables for revectoring access to bad blocks
on the medium;

the first address space not accessible by the host com­
puter system comprising a region which provides
formatting information;

a second address space not accessible by the host
computer being adapted to contain diagnostic in­
formation.

• • • • III

