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[57) ABSTRACT 

In a disk mass storage facility for data processing sys­
tems, a disk fo.rmat which improves handling of defec-
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tive segments of medium and reduces access time. The 
format has three layers. A first, physical layer comprises 
the bytes, sectors and collections of sectors, as well as 
error detection and correction codes. A second, logical 
layer is used to address the physical layer and to collect 
together sectors to form a mUltiplicity of separately 
addressable spaces, with each space having a distinct 
functional utility. At a third, functional layer the use of 
data fields in each space is specified. This layer governs 
the handling of bad blocks if required, and the use of 
certain format information. Handling of bad blocks is 
controlled by a hierarchically layered process. A por­
tion of each disc, distributed across the medium, is re­
served as spare sectors to replace defective sectors. 
After a bad sector is replaced, future attempts to access 
the bad sector are redirected (i.e., revectored) to the 
replacement sector. For the simplest revectoring, the 
bad block is replaced by a replacement block in a 
known location. If that cannot be done, multiple copies 
of the replacement block's header are stored in the bad 
block's data field and the copies are compared to find 
the replacement address. If the comparison fails, or the 
header cannot be read, a back-up table is available to 
match the available replacement addresses with the 
original address which was replaced. A special code is 
used to identify blocks wherein the medium is good but 
the contents of the block are logically corrupted. 

18 Claims, 36 Drawing Figures 
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BOOLEAN PROCEDURE MULTI-REAO(TARGET.COPY.SIZE.N.DATA.BLK); 
INTEGER TARGET.COPY.SIZE.N; 
INTEGER ARRAY DATA.BLK (0:143); 
INTEGER BLOCK.NEXT,I; 
BEGIN 

BLOCK ; = TARGET; 
NEXT := 0; 

LOOP: READCOMPARE(BLOCK)DATA~BLK; 
IF ERROR THEN 
BEGIN 

END; 

NEXT := NEXT + 1; 
IF NEXT = N THEN GOTO EXIT; 
BLOCK := BLOCK + COPY.SIZE; 
GOTO LOOP; 

EXIT: MULTI-READ:= NEXT <> N; 
EXIT ; 

END; 

Ag.2 
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BOOLEAN PROCEDURE MULTI-WRITE(TARGET,COPY~SIZE.N.DATA.BLK); 
INTEGER NEXT.ERR~COUNT,BLOCK; 
BEGIN 

BLOCK := TARGET; 
NEXT := ERR~COUNT .= rio. • lJ , 

LOOP: WRITECOMPARE(BLOCKlDATA.BLK; 
IF UNRECOVERABLE ERROR THEN BEGIN 

END; 

ERR.COUNT := ERR~COUNT + 1; 
WRITE.FORCE.ERROR(BLOCKl DATA.BLOCK; 

NEXT := NEXT + 1; 
IF NEXT = N THEN GOTO DONE; 
BLOCK := BLOCK + COPY.SIZE; 
GOTO LOOP; 

DONE: MUL TI-WR HE : = ERR.COUNT < N; 
END; 

Fig. 3 
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PROCEDURE HASH(LBN.RCT~BLOCK.RCT~OFFS£T); 

BEGIN 

4,434,487 

RCT~BLOCK := QUO((QUO(LBN/l)'Rl/238l+H+2; 

RCT.OFFSET := REM((QUO(LBN/ll'Rl/128; 
END; 

Fig. 10 

RCT.BLOCK • THE HOST LBN ADDRESS OF THE SECTOR. IN THE FIRST RCT 
COPY. CONTAINING EITHER THE RBN DESCRIPTOR OR THE FIRST 
EMPTY DESCRIPTOR ENCOUNTERED (IF ANY). 

RCT.OFFSET • THE 32-BIT OFFSET WITHIN THE ABOVE BLOCK. OF EITHER THE 
RBN DESCRIPTOR OR THE FIRST EMPTY DESCRIPTOR (IF ANY). 

LBN • THE HOST LBN BEING SEARCHED FOR. 

RESULT • AN INTEGER INOICATING THE RESULT OF THE SEARCH; 
o • PRIMARY EMPTY. 1 • SECONDARY EMPTY. 
2 • FULL TABLE (NO MATCH). 

RBN • THE UNIT RELATIVE RBN CORRESPONDING TO RCT-BLOCK 
AND RCT-OFFSET. 

MATCHFLAG • FLAG INDICATING MATCH STATUS 

o . NO HATCH FOR THIS LBN 
1 • RBN IN MATCHRBN WAS MATCH FOR THIS LBN 

MATCHRBN • RBN WHICH HATCHED THIS LBN 

Fig. 9A 
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PROCEDURE 
SEARCH(LBN.RcT~BlOCK.RCT~OFFSET.RESUlT.RBN.BLOCK.HATCHFLAG.MATCHRBN)) 

INTEGER LBN. RCT~BLOCK.RCT~OFFSET.RESUlT.RBN 

INTEGER EHPTYTYPE.RESCAN.DElTA.START~OFFSET.N 

INTEGER ARRAY BLOCK (0:143)1 
BEGIN 

NEXT: 

TEST: 

END; 

HASH(LBN.RcT~BlOCK.START~OFFSET)1 

HATCHFLAG :" 0; 

EMPTYTYPE :" 0; 
RESCAN :" 0; 
IF NOT MUlTI-READ(RCT~BlOCK.(RET+RcT.PAD).N.BlOCK) THEN GOTO FAIL; 

DELTA :"0; 

RCT~OFFSET :"START~OFFSET + DELTA; 

IF RCT~OFFSET <0 OR RCT..I.OFFSET > 127 THEN GOTO BUMPDEl TA: 

IF BlOCK(RCT..I.OrrsET) " 0 THEN BEGIN 

RESULT :" EMPTYTYPEI 

GOTO FINISH; 

EMPTYTYPE :- 1; 

IF BLOCK(RCT~OrFsETJ.[29l " 1 THEN BEGIN 

ENOl 

IF BlOCK(RCT~DrFsETJ.[27;0l - LBN THEN BEGIN 

HATCHFLAG :- 1; 
MATCHRBN :-((RCT..I.BlocK - (H+2) • 128) + (RCT~OrrsET)1 

END: 

IF BlOCK(RCT..I.orFsETJ.[31J - 1 THEN BEGIN 

IF RESCAN - 1 THEN GOTD FAIll 

RESCAN :- 11 

Fig. 98 
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END; 

START~OFFSET := 0; 

RCT.BLOCK := H + 2; 

GOTO NEXT; 

BUMPDELTA: 

FAIL : 

FINISH: 

DELTA := - DELTA 

IF DELTA )= 0 THEN DELTA := DELTA + 1; 

IF DELTA < 128 THEN GOTO TEST; 

START~OFFSET := 0; 
RCT~BLOCK := RCT~BLOCK + 1; 

GOTO NEXT; 

RESULT := 2; 

EXIT ; 

4,434,487 

RBN := ((RCT~BLOCK - (H + 2)) • 128) + (RCT~OFFSET); 

END; 

Fig. 9C 
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MSB LSB 
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PROCEDURE COMPARE-128(VALUE.BLOCK.SUCCESS); 

INTREGER ARRAY BLOCK(0:143), 

INTEGER I.J.COUNT.VALUE; 

BOOLEAN SUCCESS; 

CONSTANT MATCH =24; 

BEGIN 

J := COUNT :" 0; 

WHILE ( J < 128 - MATCH ) AND ( COUNT < MATCH) DO 

BEGIN 

VALUE :" BLOCK(J); 

J:=J+1; 

I :" J; 

COUNT :'" 0; 

4,434,487 

WHILE (I < 128) AND (- MATCH < COUNT) AND (COUNT<MATCH) DO 

BEGIN 

END; 

END; 

IF (BLOCK(I) = VALUE) THEN COUNT :'" COUNT + 1 ELSE 

COUNT :" COUNT - 1; 

I :'" I + 1, 

SUCCESS := (COUNT>" MATCH), 

END; 

Fig. 23 
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DISK FORMAT FOR SECONDARY STORAGE 
SYSTEM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application relates to a data processing system, 
other aspects of which are described in the following 
commonly assigned applications filed on even date 
herewith, the disclosures of which are incorporated by 
reference herein to clarify the environment, intended 
use and explanation of the present invention: 

Ser. No. 308,826, titled Interface Between a Pair of 
Processors, Such as Host and Peripheral-Controlling 
Processors In Data Processing Systems and Ser. No. 
308,593, titled Storage Facility Employing Serial Com­
munication Between Drive and Controller. 

FIELD OF THE INVENTION 

This invention relates to the field of data processing 
systems and, in particular, to the formatting of disk type 
mass storage facilities in such systems. This invention 
further relates primarly to such facilities which use 
fixed block, rather than variable block architecture. 

BACKGROUND AND SUMMARY OF THE 
INVENTION 

5 

2 
a lot of good medium with the bad. Further, only a 
limited number of substitute tracks can be made avail­
able without significantly detracting from the usable 
volume of medium. 

A second technique, which is much less drastic, in­
validates the bad sector and does not use bad blocks. 
This, however, creates problems when transferring the 
contents of one disk surface to another disk surface, 
since it is statistically almost impossible to find the same 

10 bad blocks on two different surfaces. An additional 
disadvantage of this technique is that it causes holes in 
the logical addressing space. 

A third technique is to provide on each track a lim­
ited amount of space which can be used to substitute for 

15 bad portions of sectors on that track by skipping over 
the defective area and pushing the remainder of the 
sector further down the track. This technique is helpful 
only up to the point where the defective area on a track 
does not exceed the reserved portions. It also causes 

20 sectors on different tracks to lose their alignment, caus-
ing problems in achieving real-time head switching. 

A fourth technique is to reserve "n" sectors per track. 
Bad blocks are then either revectored (Le., redirected) 

25 to one of those sectors on that track, or all blocks subse­
quent to a bad block are "slid" down, without revector­
ing. This limits replacement to those sectors, per track 
however. 

Secondary storage subsystems, such as disk drives, . A fifth technique is to reserve some portion of the 
are an Important part of modem data processing sys- 30 disk and to revector from the bad blocks to the reserved 
terns. Such subsystems provide a large volume of mem-
ory for storing programs and data. In disk drives, rotat- region through a table. This approach has the disadvan-
ing disks with magnetic recording material provide the tage of poor performance. 
actual storage medium. Since bad blocks can occur both during manufactur-

A primary objective in the use of such secondary ing and then subsequently during the use of the disk, it 
storage subsystems is to minimize the time required to 35 is important that bud block replacement be performed 
read or write information at a specific address on a disk both initially, before the medium is first used to store 
surface from a starting point at another address position. host information, and later, when dynamic conditions 
The access time to move a read/write head to the de- give rise to appropriate circumstances. Prior art tech-
sired target address is a function both of physical pa- niques are not very good for both cases. 
rameters of the disk drive (e.g., how fast the drive's 40 The present invention deals with this problem in a 
electronic control circuits can determine and supply hierarchial, multi-level fashion. An evenly distributed 
appropriate signals to that actuator) and of the address- portion of each disk is reserved as spare sectors for 
ing scheme employed (which will determine the physi- replacing defective sectors. After a bad sector has been 
cal spacing between starting and target addresses). replaced, future attempts to access the bad sector are 

Another objective of such subsystems is to achieve 45 redirected (Le., re-vectored) to the replacement sector. 
high reliability in writing and reading data. Unfortu- Three levels of revectoring mechanism are illustrated; 
nately, the medium is not perfect. Portions of the oxide they differ in the way that the address of a replacement 
surface of the medium may be manufactured defec- block is determined. It is possible, optionally, to trade 
tively; other portions may degrade and wear out under off performance against complexity by electing not to 
conditions of long-term use. If information is written SO employ all of these mechanisms. 
(i.e., recorded) on,such areas, it cannot be stored or read In the primary revectoring mechanism, the position 
(i.e., retrieved) reliably. of the replacement block is implied by the position of 

Error detection and correction techniques are, of the bad block and the need to revector is indicated by a 
course, part of the solution to this problem. However, code in the header. Each track is provided with one or 
error detection and correction may not be enough 55 more replacement sectors. The implied primary re-
where the medium will not permit the recording of a placement block for a bad block is the first replacement 
sufficient portion of a block so as to allow those tech- sector on its track. In the secondary revectoring mecha-
niques to be invoked successfully when the block is nism, the need to revector is signalled by a code in the 
read. It is therefore important to avoid the use of por- header. The location of the replacement block is arbi-
tions of the medium which are found to be so bad that 60 trary. To determine its address, multiple copies of the 
information will be unrecoverable or where the infor- replacement block's header value are stored in the data 
mation may degrade to an unrecoverable state. In the field of the bad block. The copies are read and com-
prior art, several approaches or techniques have pared statistically to come up with the address so indi-
evolved for dealing with this problem. cated. Finally, there is a so-called tertiary revectoring 

A first technique simply invalidates an entire track 65 mechanism used when the header copy comparison fails 
when too much of it is bad. All of the information in- to yield a valid value or when the multiple copies of the 
tended for that track is redirected to a substitute track. replacement address in the secondary scheme do not 
It will be readily apparent that this scheme may discard meet the statistical matching requirement. For imp le-
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4 
being written in multiple locations. to store multiple 
copies of the same information. If a sufficient number of 
copies, or portions of copies. are recorded unimpaired. 
the recorded information can be retrieved despite the 

mentation of this mechanism. there are stored on the 
disk multiple copies of a table containing a list of each 
replacement block and the address of any bad block 
mapped to it; if any. This table is searched to find the 
appropriate replacement address. 5 corruption of one or more copies. 

A unique logical addressing scheme also is employed, 
collecting sectors according to a hierarchy of geometri-
cal and access time considerations. This permits sectors 
to be addressed logically, rather than physically; they 
are self-defining in terms of physical locations, so as to 10 
optimize sector access time latencies. This. combined 
with revectoring, provides a logically contiguous ad­
dress space at all times-Le., one without holes. 

A further aspect of this invention is that the disk is 
divided into different regions which comprise separate 15 
logical areas-one available to users, one for replace­
ment of bad blocks, one for diagnostics. and one for 
recording certain information regarding disk format­
ting. Each is a logically self-consistent. but different, 
addressing space. 20 

Initially. a disk is "inspected" for sectors which are 
bad when the disk is manufactured. These are replaced 
during the manufacturing process or at installation. 
Other sectors are replaced as they start to degrade in 
quality, but before they produce an error rate exceeding 25 
the capabilities of the error correcting code (ECC) 
which is employed. (This ECC "threshold" is specified 
by the drive itself.) Other sectors are replaced after they 
degrade and are not readable; this requires notification 
that the data is corrupted. 30 

Yet another feature of this invention is the use of a 
special code to distinguish sectors which contain logi­
cally corrupted information, but wherein the medium 
itself is usable. This special code is referred to as the 
"forced error" indicator; in the implementation de- 35 
scribed below, it is the one's complement of an error 
detecting code (EDC) generated by the information in 
a sector's data field in accordance with a preselected 
algorithm, and appended to the data field of the sector. 
When a sector is read. its EDC is computed and com- 40 
pared with the EDC recorded on the disk. If the com­
parison reveals that the EDC field is recorded as the 
one's complement of the computed EDC. the forced 
error indicator has been detected. The host is thereby 
notified that the data is logically bad. but the medium is 45 
not known to be impaired. This indicator is useful. for 
example, during an omine volume copy, when the data 
in the block is found to be physically corrupted and 
uncorrectable. but must be copied to a physically good 
sector on another volume. In order to allow hosts 50 
which access the copy to know that the data there is 
corrupted and unreliable, the forced error indicator is 
set in that sector. The next time information is written 
to this sector, the forced error indicator will be cleared, 
since the medium itself is good and only the information 55 
previously written to the medium was bad. 

Use of the forced error indicator follows three rules: 
first. a read operation from a block where the forced 
error indicator is set must always fail. Second, a write 
operation to such a block must clear the forced error 60 
indicator. Third. a read operation must produce a 
unique error code so as to differentiate the detection of 
a forced error from any other read error. 

It should be appreciated that this forced error indica­
tor is not part of the data bytes transferred; it is control 65 
information generated when the sector is written. 

The contents of certain portions of the disk which are 
not protected by replacement are protected by virtue of 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. lA is a generalized block diagram of a data 
processing system in which the present invention may 
be utilized; 

FIG. lB is a diagrammatic illustration of a disc sur­
face in the disk drive of FIG. lA. according to the 
invention; 

FIG. lC is a diagrammatic illustration of the logical 
spaces provided on a disk, according to the present 
invention; 

FIG. 2 is an exemplary procedure for reading infor­
mation protected by the multi-copy mechanism dis­
closed herein; 

FIG. 3 is an exemplary procedure for writing infor­
mation onto a disk according to the multi-copy protec­
tion mechanism; 

FIGS. 4A-4D are a flow chart of the bad block re­
placement procedure of the present invention; 

FIG. 5 is a diagrammatic illustration of the format of 
a replacement block descriptor; 

FIG. 6 is a diagrammatic illustration of the structure 
of the replacement and caching table (RCT) of the 
present invention; 

FIGS. 7A and 7B are a diagrammatic illustration of 
the contents of sector zero of the RCT of FIG. 6; 

FIG. 8 is a diagrammatic illustration of the RCT 
search algorithm of the present invention; 

FIGS. 9A-9C, together, are a listing of an exemplary 
procedure for implementing the RCT search alogrithm 
of FIG. 8; 

FIG. 10 is a listing of an exemplary procedure for 
implementing the RCT hash algorithm described 
herein; 

FIG. 11 is a diagrammatic illustration of the sector 
format employed by the present invention; 

FIG. 12 is a diagrammatic illustration of one-fourth 
of the sector header of the sector format of FIG. 11; 

FIG. 13A is an exemplary listing of a routine for 
generating an error detecting code usable in the present 
invention; 

FIG. 13B is an exemplary flow chart for operating 
the controller 4 of FIG. lA in accordance with this 
invention to utilize a so-called forced error indicator 
when a sector is read from a disk; 

FIG. 13C is an exemplary flow chart for operating 
the controller 4 of FIG. lA in accordance with this 
invention to utilize (or not utilize. as appropriate) the 
forced error indicator; 

FIG. 14 is a diagrammatic illustration of a response 
from drive to controller. providing certain drive char­
acteristics; 

FIGS. ISA and 15B, together. are a diagrammatic 
illustration of a response providing certain other char­
acteristics for a designated drive subunit; 

FIG. 16 is a diagrammatic illustration of the first two 
and the last tracks of the LBN/RBN space of a drive; 

FIG. 17 is a diagrammatic illustration of the first two 
and the last tracks of the XBN space of a drive; 

FIG. 18 is a diagrammatic illustration of the first two 
and the last tracks of the DBN space of a drive; 

FIG. 19 is a listing of a procedure for determining a 
logical block's sector address; 
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FIG. 20 is a listing of a procedure for determining a 
replacement block's sector address; 

FIG. 21 is a listing of a procedure for determining an 
external block's sector address; 

FIG. 22 is a listing of a procedure for determining a 5 
diagnostic block's sector address; 

FIG. 13 is a listing of an exemplary procedure for 
reading 128 copies of an RBN's header to determine 
reliably the correct value of that header; 

FIG. 14 is a diagrammatic illustration of the format of 10 
a copy of the FCT (format control table) in the XBN 
space of the present invention; and 

FIG. 25 is a diagrammatic illustration of sector zero 
of each FCT copy. 

DETAILED DESCRIPTION OF A PREFERRED 15 
EMBODIMENT 

A generalized block diagram of a data processing 
system which can utilize the present invention is shown 
in FIG. 1. That system includes a host computer 1 (hav- 20 
ing a central processor, main memory and input/output 
devices, not shown) and a secondary storage subsystem 
2. The secondary storage subsystem, in tum, includes a 
disk drive 3 and a controller 4 for that disk drive. The 
controller 4 typically contains one or more processors 25 
of its own and provides proper signals for actuating the 
drive to read or write information in accordance with 
instructions from the host processor. 

The present invention utilizes a unique disk format to 
improve defect handling and reduce access time. It 30 
further serves to protect certain selected areas of a disk 

. by storing multiple copies, and facilitates adaptation to 
peripheral device timing characteristics. This format 
comprises an architecture composed of three layers. 
First, there is a physical layer, comprising the actual 35 
bytes, sectors, and collections of sectors on the disk. 
This layer also includes an error detection and correc­
tion mechanism. Second, there is a logical layer, which 
is the level at which the physical layer is addressed and 
grouped into spaces, with particular uses assigned to 40 
those spaces. Third, there is a functional layer, which is 
the level at which the use of data fields in each space is 
described. This layer includes the handling of bad 
blocks, if required, and other format usage information. 

What follows generally is a detailed description of 45 
each of those layers. Before proceeding, however, it 
will prove useful to define certain terminology used 
herein. 

A "sector" is the smallest unit by which data is ad­
dressed physically on a disk surface. Each sector occu- 50 
pies a specific physical position relative to an index 
location on a disk, and has the property that it is avail­
able for reading or writing once per disk rotation. 

Sectors are grouped together hierarchically for ad­
dressing purposes. First, a disk surface is divided into 55 
one or more "cylinders." In turn, cylinders are divided 
into "groups;" and groups are divided into "tracks." 

A "track" is a logical entity comprising a set of sec­
tors occupying contiguous logical disk locations. 

A "group" is, in tum, a logical entity representing a 60 
set of tracks such that individual tracks in a group can 
be selected within the inter-sector rotation time. Tracks 
in the same group are "aligned" such that the same 
physical sector address is available simultaneously for 
reading or writing on all tracks in the group. 65 

A "cylinder" is a logical entity representing a collec­
tion of groups which can be selected via an operation 
with latencies less than the minimum "seek" time. Cyl-

6 
inders have the additional property that the selection of 
a new cylinder requires the longest average head-posi­
tioning operation. Groups within a cylinder are offset 
such that spiraling between adjacent graps is accom­
plished without the loss of a full revolution of the disk. 

The terms track, group and cylinder simply relate 
collections of sectors to each other as a function of 
access time considerations. They are independent of 
physical organization or construction of the device. 

The "sector number" portion of a sector address is 
always the low order portion. The "track number" 
portion of a specific sector address is always the middle 
portion of that address between the group and sector 
portions. The "group number" portion of a specific 
sector address is always a middle portion of that address 
between cylinder and track. The "cylinder number" 
portion of a specific sector address is always the highest 
order portion of that address. 

A "bad block" is a sector containing a defect which 
either (1) causes an error exceeding the correction capa­
bility of the error correction scheme used by the subsys­
tem, or (2) exceeds a drive-specified error threshold 
beyond which the continued integrity of data in the 
sector cannot be guaranteed. A bad block may also be a 
sector which is defective to such an extent that, while 
data integrity is still assured, the overhead imposed by 
the required error correction procedure is greater than 
will be tolerated. 

"Bad block replacement" is the designation of a spare 
sector (i.e., replacement block) to substitute for a bad 
block. 

"Bad block revectoring" denotes the act of transfer­
ring a read or write operation to the replacement block 
associated with a bad sector upon access thereto. 

A "physical block number" (PBN) is a number which 
identifies a sector's physical position within the set of 
sectors on a mass storage device. 

A "logical block number" (LBN) is a number identi­
fying a sector's relative position within the set of sectors 
directly accessible to the host. These are used for host 
data storage and revector control information. 

A "replacement block number" (RBN) is a number 
which identifies a sector's relative position within the 
set of sectors used as replacements for bad sectors. 

A "primary replacement block" is a replacement 
block with a designated RBN on a track which has been 
allocated to replace a logical block on the same track. 

A "secondary replacement block" is a replacement 
block which is not a primary replacement block. It is 
either not the replacement block with the designated 
RBN of the primary replacement block on a track or is 
allocated to replace a logical block located on another 
track. 

An "external block number" (XBN) is a number 
which identifies a sector's relative position within the 
set of sectors in the external format area. 

A "diagnostic block number" (DBN) is a number 
which identifies a sector's relative position within the 
set of sectors in the diagnostic area. 

A "host" is a central processing unit serviced by a 
secondary storage subsystem. 

A drive may be in any of several states relative to the 
controller. When in the "drive-omine" state, the drive 
is not operational and may not communicate with the 
controller via the drive control protocol. Conversely, a 
"drive-online" drive is dedicated to the exclusive use of 
a particular controller and is not available to any alter­
nate controller. 
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8 
constrain a track into the logical (but not necessarily 
physical) structure of a ring. Similarly, a group is de­
scribed as a collection of tracks wherein the time re­
quired to switch from a sector at a given angular posi-

In the "drive-unavailable" state, the drive is operat­
ing, is visible to, and may at times communicate with 
the controller; but the controller may not fully utilize 
the drive because the drive is "drive-online" to another 
controller. 

A drive which is "drive-available" is one which is 
visible to, capable of communicating with, and capable 
of becoming (but is not currently) "drive-online" to any 
specific controller. 

5 tion on one track to a sector at the next sequential angu­
lar position on any other track is less than or equal to 
the time required to traverse the gap between adjacent 
sectors on the same track, during normal rotation. 

It will also be helpful to define briefly a number of \0 
generic symbols which will be used thorughout this 
description and in the accompanying drawings: 

Customarily, in a dish drive a single head-positioning 
actuator will be used to position mUltiple read/write 
heads which are separated from each other by a fixed 
distance. When instructed to read or write, a controller 
determines which of the heads services the addressed 

Symbol Meaning portion of the disk and uses that head to perform the 
--~-C---S-ta::":'T--tin--g':;;c-y-li-nd-e-r----------- 15 operation. 

L Starting LBN Traversing the dislance between two logically adja-
R Starting RBN cent tracks in adjacent groups may involve a head 

D
x Starting XBN switching time which exceeds the gap time. Therefore, 

Starting DBN 
I LBN's per track according to this invention, in order to not lose a revo-

RBN's per track 20 lution of the disk while the switching occurs, the first 
s 
t 

g 
o 
H 

Lc 
Xc 
Dc 
Ret 

sectors per track sector (i.e., the sector with the lowest PBN) on all 
tracks per group 
groups per cylinder tracks on the next higher-numbered group is offset an-
Group offset gularly from the first sector on all tracks of the next 
LBN's in host area 25 lower-numbered group on the same cylinder by a num-
LBN space size in cylinders ber of sectors sufficient to compensate for the head 
XBN space size in cylinders 
DBN space size in cylinders switching time. 
Size of one copy of replacement and caching For cylinders having more than one group, the sector 

n 
table, in LBN's with the lowest physical block number on a track in the 
Number of copies of tables in non·revectored 
spaces 30 second group of the cylinder is offset from the index 
LcOgOtOr the number of replacement blocks mark on that track by a number of sectors representing Rs 

Retpad Size of per RCT copy track/cylinder alignment at least the maximum switching time between the two 
~~Iacement and caching area size groups (modulo the rotation time). The third group on Rsp 
(nORct+ RctpadO(n-l» the cylinder would be offset by twice this value, etc. 

The Physical Layer 

The sector is the basic addressable unit of the disk. A 
disk S, as shown in FIG. IB, is a circular platter having 

35 Three examples will illustrate this logical addressing 
structure and definition: 

Assume first that a drive has four disks and seven 
physical oxide surfaces used for data storage. Each data 
recording surface has two read/write heads associated 
therewith; switching between one physical head and 
another head on the same or any other oxide surface can 
be accomplished during the intersector time. Other than 
selecting one of the fourteen heads, however, there is 
nothing else that can be accessed without moving the 
heads via a cylinder switching (seek). As a result, the 
drive has a logical geometry of "14 tracks, one group, 
560 cylinders." 

Assume next the same physical configuration as 
above, implemented using a servo technology which 
requires a settling time larger than the intersector time 
when a head is selected. Like the above drive, this drive 
would have seven physical oxide surfaces used for data 
storage and two heads on each surface. Switching be­
tween one head and any other head, however, would 
result in a head settling time greater than any intersector 
time, regardless of which oxide surface the head resides 
on. A switching of heads on such a drive would thus be 
accomplished via a group switching operation (group 
select). Other then selecting one of the fourteen data 

a coating of a ferromagnetic material on a rigid sub- 40 
strate. For reading information from the disk or writing 
information to the disk, a transducer head 6 is posi­
tioned by an actuator 7 over one of a number of concen­
tric bands whose center lines are indicated by the nu­
merals 8. Each "sector", such as a sector 9, is an arcuate 45 
segment of such a band, of finite extent. Every sector is 
written in a predetermined format which includes a 
header, data bytes, error detecting code and error cor­
recting code. Each header is, in turn, a 32-bit quantity 
that contains the logical address of the sector. There are 50 
four copies of the header in every sector. The data bytes 
are application-specific information recorded on the 
disk by host and subsystem input/output operations. By 
convention there are either 512 or 576 bytes of data in 
every sector, when standard formats are employed. 55 
(For example, the assignee's PDP-II and VAX-II com­
puter systems use a 512 byte format, while its PDP-1O 
and DECSYSTEM-20 computer systems use a 576 byte 
format.) Sector layout is described in greater detail 
below. 60 heads, however, there is nothing else that could be 

accessed on the current cylinder without moving the 
heads via a seek operation. The logical geometry of 
such a drive, therefore, is "I track, 14 groups, 560 cylin­
ders." 

"Tracks", "groups" and "cylinders" are collections 
of sectors grouped into a hierarchy of categories ac­
cording to access time latencies. Access time to any 
sector on a track is a linear function of the distance of 
that sector from the current sector which is under the 65 
read/write head, if on the same track. The first sector 
on the track immediately follows the last sector with 
respect to access time considerations. These properties 

Third, assume semiconductor technology which pro­
vides thin-film heads capable of accommodating several 
read/write gaps on a single head. If the above men­
tioned hypothetical drive were fitted with such heads, 
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each physical arm would have multiple gaps located on 
it, each selectable in the intersector time. For discus­
sion, assume eight such gaps per arm. Inter-head 
changes would be accomplished via group select opera­
tions. Such a device would thus have a logical geometry 5 
of "8 tracks, 14 groups, 560 cylinders." 

All three of the above logical geometries, of course, 
were derived from the same physical geometry. 

It is possible by changing the logical organization of 
a disk, to change its access time characteristics. Indeed, 10 
proper redefinition of the logical addressing structure 
has been found to yield a possible average access time 
reduction of 5 to 6 percent, which is due to minimiza­
tion of rotational access latencies. It is difficult to gener­
alize as to a technique for selecting the best logical 15 
addressing arrangement for a particular drive, since 
there are a large number of physical parameters in­
volved and some relate to host characteristics. So far, 
trial and error based on knowledgeable guesswork has 
proven successful. That is, a drive is exercised with a 20 
large number of read and write operations and its aver­
age access time are determined. A change in the logical 
structure is made (e.g., the number of groups is altered), 
the disk is reformatted and the drive is again exercised. 
This process is repeated as desired. The result is a logi- 25 
cal format "tuned" to the physical characteristics of the 
host-controller-drive combination. 

The Logical Layer 

Attention is now directed to the logical layer of the 30 
format. At this layer, the disk is divided into four ad­
dress spaces of interest, as illustrated in FIG. lB. Two 
of these address spaces are in the set of sectors having 
an effect on the host; the other two are invisible to the 
host. (Specific implementations may have additional 35 
address spaces which are not visible to the host). The 
first address space 12 contains the set of LBN's which 
are visible to the host. This LBN space is subdivided 
into two areas: the host applications area 12A and the 
Replacement and Caching Table (RCT) area 12B. For a 40 
given sector size, the host applications area 12A is of 
constant size with respect to the number of usable 
blocks; that is, it is "bad block free." The RCT area 12B 

10 
native formats as may be available (e.g., 512 or 576 
bytes/sector). The media error lists comprise a Format 
Control Table (FCT), which is a table containing infor­
mation regarding blocks found to be bad at the time of 
manufacture. 

Area 18 contains the diagnostic cylinders (DBN's). 
This area is inaccessible to the host and is utilized solely 
by diagnostics executing out of the mass storage subsys­
tem. 

The mass storage subsystem is responsible for utiliz­
ing the logical blocks and replacement blocks in a fash­
ion presenting the host with a logically contiguous set 
of blocks numbered from 0 to H - 1 for each unit, where 
H is the block capacity of the host applications area of 
the unit, as seen from the host. Allocated replacement 
blocks belong to one of two performance classifications: 
(I) primary replacement blocks and (2) secondary re­
placement blocks. Primary replacement blocks are 
those allocated in the simplest (and usually fastest) man­
ner, such that a negligible amount of time (i.e., at most 
one rotation) is used to access them during revectoring. 
Secondary replacement blocks are those that are deter­
mined in a more complex fashion and normally require 
greater than one rotation time to access them during 
revectoring (i.e., a group selection or seek). 

The Functional Layer 

The functional layer comprises bad block handling. 
Two bad block handling mechanisms are used on the 
media. These are: (I) the use of multi-copy structures 
and (2) replacement and revectoring. The former pro-
tects from failure by recording multiple copies of im­
portant fields; the latter is a mechanism that replaces 
bad sectors with spare sectors which are reserved for 
that purpose. These mechanisms are used in different 
areas and have two fundamentally different effects. 

Multi-copy structures are allocated in the RCT and 
FCT area to provide protection for critical data struc­
tures. Replacementirevectoring is used in the host ap­
plications area to eliminate holes in the address space. 

Multi-copy structures are allocated in areas where 
replacement is either not possible or not desirable. An 
example of a multi-copy structure is the RCT described 
herein. In reading or writing a multi-copy structure, is not bad block free; it is protected by a multi-copy 

error handling mechanism described below. 45 only one block of the logical structure may be accessed 
at a time. Each copy must be accessed sequentially, in 
ascending order. Error recovery and correction must 
be enabled for both read and write operations. The 

The RCT address space contains a list of RBN's 
which are used to replace LBN's that have become 
unusable on devices susceptible to bad blocks. These 
RBN's comprise a second logical space, 14, and are the 
last r sectors of each track (where "r" is a drive-specific 50 
parameter) in host applications area 12A. RBN space 14 
is outside the LBN space 12 presented by the controller 
to the host so RBN's are invisible to the host (except for 
the performance implications they may have on alloca­
tion policies and the size of the RCT area 12B of LBN 55 
space 12). A replacement block number is converted to 
a specific physical device location by a series of trans­
formations performed by the subsystem using parame­
ters supplied by the storage device to the subsystem. 
These conversions are subsystem implementation- 60 
dependent and are of no interest to the host. 

The area 16 contains the XBN's which provide for­
matting information. It is inaccessible to the host and 
always is written in a predefined format (e.g., 512 by­
tes/sector) even if other areas (e.g., LBN space 12) may 65 
be written in other formats. The contents of area 16 are 
multiple copies of format control information and media 
error lists to use when formatting the disk in such alter-

number of copies allocated is a device characteristic and 
must be chosen to ensure achievement of the error rate 
goals of the system. A typical value for n will be four. 
Each copy must be positioned on the physical medium 
such that a single failure will not invalidate all copies. 

The Multi-Copy Read Algorithm 

FIG. 2 is a listing of an exemplary computer program 
illustrating; the method used to read sectors protected 
by the multi-copy protection mechanism. It provides a 
procedure which detects errors and attempts to read the 
next copy in sequence. For this method to operate prop­
erly, error correction and recovery must be available 
and in use. In the Figure, the variable "target" repre­
sents the address of the sector being read in the first 
copy; "copy-size" is the size of a copy of the informa­
tion being protected, including any pad; "n" is the num­
ber of copies; "next" is the next copy to examine; and 
"data-blk" is the block into which one sector's worth of 
data is read. 
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12 
The Multi-Copy Write Algorithm 

replacement process is notified of that fact. (Step 110). 
Alternatively, the bad block replacement process may 
be notified that a failure or loss of context occurred in 
the middle of bad block replacement; this is detected 

FIG. 3 illustrates the corresponding method utilized 
to write sectors protected by the multi-copy protection 
mechanism. As with the multi-copy read algorithm, 
copies are accessed sequentially and error recovery 
must be enabled. In that Figure, the variables have the 
following meanings: "target" refers to the address ofthe 
sector in the first copy where the information is to be 
written; "copy-size" is the size of a copy of the informa­
tion being protected, including any pad; "n" is the num­
ber of copies; "next" is the next copy to write; "err­
count" is the number of write failures; and "data-blk" is 
the block of data (one sector) to write. 

5 while bringing the unit online. Step 112. Either notifica­
tion includes the bad block's LBN, the previous data 
contents of the bad block, and an indication as to 
whether or not the data is valid (i.e., whether the origi­
nal reading of the bad block succeeded). In the case of 

10 a failure or loss of context during phase 2, the notifica­
tion also includes the new RBN with which to replace 
the bad block, whether or not the bad block had previ­
ously been replaced, and (if it had been previously re­
placed) the old RBN that currently replaces the bad 

ReplacementiRevectoring Protection 
15 block. 

Replacement is used under three circumstances to 
substitute spare sectors (RBN's) for sectors in the host 
application area (LBN's): (I) to fill holes in the logical 
address space left by bad blocks; (2) to reduce the risk of 20 
failure due to progressive deterioration of sectors; and 
(3) to improve performance in those implementations 
wherein the correction mechanism (if any) requires 
more time than the revectoring mechanism. The sec­
ondary storage subsystem determines the occurrence of 25 
the above-listed cases and initiates replacement. This is 
done either by notifying the host to begin host-initiated 
replacement or by performing subsystem-initiated re­
placement. 

Notification to begin host-initiated replacement is 30 
done by a predetermined host protocol message packet. 

Second, the bad block replacement process locks out 
all access to the bad block and all update or write access 
to the unit's RCT. Step 114. This is a "soft" lock-i.e., 
one which is implicitly released if the host or subsystem 
(whichever is performing the replacement) loses con­
text. Optionally, since bad block replacement frequency 
should be low, it may be acceptable to lock out all 
access to the entire unit, rather than just the bad block 
and RCT. 

Third, step 116, a determination is made as to what 
type of loss of context or failure is involved. If it is one 
which occurred in phase 2, then control is relinquished 
to step 144. If the failure or loss of context occurred 
during phase I, though, the process branches to step 
132. If there was no loss of context, the process contin­
ues with step 118. 

Fourth (step 118), a sector-sized buffer is cleared and 
the current contents of the bad block are written into 
that buffer. (The buffer is initially cleared to account for 

In the case of an unrecoverable error, the packet con­
tains both the failure notification and the bad block 
notification; in the other cases, it contains only a bad 
block notification. If bad block replacement is host­
initiated, the bad block may be replaced immediately 
(termed dynamic replacement) or when the file or data 
structure is re-allocated (termed static replacement). 
Dynamic replacement is made possible by the "forced 
error indicator", by writing the replacement block with 
the "forced error" modifier. If subsystem - initiated 
replacement is used, it is dynamic. 

35 the rare case wherein no data can be transferred.) A 
read operation is the performed, step 120, with error 
recovery and error correction capabilities enabled and 
evaluated as to success, step 122. The saved data is 
considered valid if the read succeeded, and invalid if it 

40 did not. 

After a sector has been replaced, revectoring will 
occur upon each host access to the replaced LBN. 

Next, step 124, the data obtained when the bad block 
was read during step 120 is recorded in the second 
sector (i.e., sector 1) of each RCT copy and evaluated 
for success. Step 126. If the data cannot be successfully 

Replacement Strategy 

In explaining bad sector replacement, certain termi­
nology must be understood. First, if an error is said to 

45 recorded in the RCT, the error is reported to the error 
log, step 128, and process control is transferred to step 
174. 

be "recoverable" and "correctable", that implies the 
associated operation can be performed successfully; an 50 
operation fails if and only if an "unrecoverable" error 
occurs. Second, the disk going "omine" or "available" 
in the middle of bad block replacement is treated as an 
unrecoverable error; the disk must not be brought back 
online with the bad block replacement algorithm resum- 55 
ing where it left off. Instead, when the host or control­
ler next brings the unit online, it must act on the data 
stored in RCT sector zero exactly as it would any other 
time a disk is brought online. 

Bad sectors which are discovered during the media 60 
formatting process are replaced at that time. Bad blocks 
which are caused by wear are replaced according to the 
procedure detailed below in FIGS. 4A-4D. A two 
phase replacement scheme is utilized. First (i.e., phase 
I), a block is determined to be bad. Second (ie., phase 2), 65 
the bad block is replaced. 

When a specified logical block is found to be bad 
during an attempt to read that block, the bad block 

Sixth, in step 130, the bad block's LBN is recorded, 
with an indication of whether or not the saved data is 
valid, together with the fact that the process is in phase 
I; this information is put in sector zero of each RCT 
copy. This, of course, requires reading sector zero, 
modifying the appropriate flag (PI), then writing the 
updated sector zero in order to preserve other informa­
tion stored in that sector. If RCT sector zero cannot be 
successfully read, the error is reported to the error log 
and control is transferred to step 174. If sector zero 
cannot be successfully written, the error is reported to 
the error log and sequence control is transferred to step 
170. 

Seventh, step 132, test patterns are written to and 
read from the suspected bad block to determine 
whether or not it actually is a bad block. If the test 
patterns fail, control is transferred to step 136 (and the 
block is presumed bad). If the test patterns succeed, 
then the process continues with step 134, under the 
assumption that the block may be good. The test pat­
terns fail if either (I) the block is reported as a bad block 
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for the second time or (2) the test patterns cannot be 
written and read back correctly. 

In step 134, the saved data is written back to the bad 
block using a write-compare operation. The write-com­
pare is performed with the "forced error" flag if and 5 
only if the saved data is invalid. If the write-compare 
both succeeds and the block is no longer reported as a 
bad block, then the original problem was a transient one 
and the sequence resumes at step 156. The write-com­
pare succeeds if no error is detected and the saved data 10 
is valid, or if only a forced error is detected and the 
saved data is invalid. 

The next step, step 136, is to scan the ReT and deter­
mine the new RBN to use to replace the bad block, 
whether or not the bad block has been previously re- 15 
placed, and the bad block's old RBN ifit has previously 
been replaced. The RCT is not updated at this time. If 
the RCT scan fails, the error is reported to the error log; 
step 138, and control jumps to step 166. If there is no 
jump, step 140 is performed next. There, the new RBN 20 
is recorded in the ReT, whether or not the bad block 
has previously been replaced, as well as the bad block's 
old RBN if it was previously replaced, and the fact that 
the process is in phase two (which is indicated by flag 
P2) (step 140); this information goes in sector zero of 25 
each ReT copy. The RCT is updated without reading 
sector zero, using instead the copy of ReT sector zero 
last read or written to the ReT. If the ReT cannot be 
updated, that is reported as an error to the error log 
(step 142) and control of the replacement process jumps 30 
to step 166. 

If there is no such jump, step 144 is performed next, 
and the process updates the RCT to indicate that the 
bad block has been replaced with the new RBN and that 
the old RBN, if any, is unusable. If this requires updat- 35 
ing two blocks in the RCT, then both blocks are read 
before either is written. If a block cannot be read suc­
cessfully, that error is reported to the error log (step 
146) and control jumps to step 166. If a block cannot be 
rewritten successfully, that also is reported as an error 40 
to the error log (step 148) and the process jumps to step 
162. 

In the absence of jumps or branches, step 150 is 
reached next. There, a "replace" command is used to 
alter the header of the bad black, in indicate that it has 45 
been replaced in either the primary or secondary mode, 
and to contain 128 copies of the replacement block's 
RBN address; and a write-compare command (ad­
dressed to the bad block's LBN) is used to store the 
saved data in the replacement block. If and only if the 50 
saved data is invalid, the write-compare is performed 
with the "forced error" modifier set. The replace com­
mand implicitly verifies that a header servo track failure 
has not occurred, which would cause a large number of 
improper replacements. If the replace command fails, 55 
Step 152, control branches to step 162. If the write 
command fails, Step 154, control branches back to step 
136, to re-scan the RCT for another RBN. The current 
new RBN will become the old RBN for this next pass. 
Either failure will already have been reported to the 60 
error log. The write command succeeds if there is no 
error detected and the saved data is valid, or if only a 
forced error is detected and the saved data is invalid. 

Next, in step 156, the process updates sector zero of 
the ReT copies to indicate that it is no longer in the 65 
middle of replacing a bad block. The ReT must be 
updated without reading sector zero, using instead the 
copy of sector zero last read from or written to the 
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ReT. If the RCT cannot be updated, the error is re­
ported to the error log, step 158, and control branches 
to step 170. 

In step 160, the process releases the lock it acquired in 
step 114 and exits. 

In step 162, the process restores the RCT to indicate 
that the new RBN is unallocated and usable and that the 
bad block is neither replaced nor has been revectored to 
the old RBN, whichever was it's original status. The 
RCT must be updated without reading any blocks from 
it, using instead the copies of the relevant blocks that 
were read from the ReT in step 144. Any errors are 
reported to the error log (step 164) but otherwise ig­
nored. 

Proceeding to step 166, the process uses a write com­
mand, addressed to the bad block's LBN, to restore the 
saved data. This write should also set the "forced error" 
flag if and only if the saved data is invalid. Errors are 
reported to the error log, step 168, but otherwise are 
ignored. 

The process next updates sector zero of the ReT 
copies, step 170, to indicate that it is no longer in the 
middle of replacing the bad block. The RCT is updated 
without reading sector zero, instead using the copy of 
sector zero last read from or written to the RCT. Errors 
are reported to the error log, step 172, but otherwise are 
ignored. 

In step 174, the process then releases the lock that it 
acquired in step 114. If a controller is performing the 
bad block replacement, it reports to the host the failed 
bad block replacement procedure; if a host is perform­
ing the bad block replacement, it takes whatever host­
dependent action is appropriate for failed bad block 
replacement operation Step 176. That ends the process, 
and it exits. 

When a disk is brought online to a host, the host or 
subsystem (whichever is performing bad block replace­
ment), must do three things: (I) read sector zero of the 
RCT copies; (2) write the data just read back to sector 
zero of the ReT copies (this catches failures that occur 
in the middle of the multi-write routine); and (3) check 
the data just read to see if a failure occurred part way 
through bad block replacement (and, if so, resume the 
bad block replacement process as described above). 
Write access to the disk must not be allowed until after 
these actions have been performed and any partially 
completed bad block replacement has run to comple­
tion. 

The foregoing algorithm guarantees that data is never 
lost, as the best guess to the correct data is permanently 
stored before any action is taken that might destroy the 
data. There is a failure mode, however, in host-initiated 
replacement, which assumes that the system crashes in 
the middle of bad block replacement. The bad block 
that has been partially replaced may be in the middle of 
the system core image or some other portion of the disk 
critical to booting the host system. This failure mode is 
eliminated if the subsystem, rather than the host, per­
forms bad block replacement. 

The Replacement and Caching Tables 

The replacement and caching tables maintain a re­
cord of the locations of all revectored LBN sectors and 
the status of each RBN on the unit. Each RCT entry 
represents an RBN. In turn, each copy of the table has 
entries organized in ascending RBN order, with an 
entry for each RBN sector on the unit. There are "n" 
copies of the table on the unit, where "n" is a device 
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characteristic. The tables are stored at the high address 
end of the LBN area of the unit. Table entries and 
RBN's are allocated via a "hash" algorithm described 
elsewhere in this document. 

A plurality of copies of the ReT are stored in the 5 
highest addresses of the LBN space. Each sector of the 
ReT contains 128 entries, regardless of whether the 
disk is formatted as 512 or 576 bytes/sector. Each copy 
of the ReT is stored on an integral number of tracks. 
"Null entry" positions are added to adjust the ReT's \0 
size so that it meets this requirement. These nul1 entries 
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And the contents of sector zero of the ReT are illus­

trated in FIGS. 7A and 7B. As shown there, the sector 
comprises 512 bytes. Words 260-266 contain the vol­
ume identification assigned during the formatting pro­
cess. Word 268 contains four bits having individual 
significance. Bit 272 is the forced error (FE) flag indi-
cating that the replacement process should write the 
forced error indicator in the target RBN; as explained 
elsewhere herein, "setting" the forced error indication 
means writing the sector with the code for the forced 
error indicator, which in the example illustrated is the 
one's complement of the error detecting code for the 
sector. Bit 274 is a flag (BR) for bad RBN's, indicating 
that the replacement in progress was caused by a bad 
RBN; it is cleared after the replacement process is over. 
Bits 275 and 276 are flags (P2 and PI, respectively), 
indicating whether a replacement is in progress and, if 
so, its phase. Words 278-282 hold a copy of the LBN of 
the block being replaced, if a replacement is in progress; 

do not correspond to RBN's; there is always at least one 
null entry at the end of the ReT. FIG. 5 illustrates the 
format of a replacement block descriptor. There, 190 
represents the lower order portion of a revectored 15 
LBN's logical block number and 192 represents its 
higher order portion. A four-bit segment 194 is placed 
contiguous to that address. It is written with an octal 
status code. Suitable exemplary codes and their mean­
ings are listed below: 20 this field is only valid when the P2 bit 274 is set (i.e., 

when in phase 2 of replacement). Words 284, 286 con­
tain a copy of the RBN of the block with which the 
LBN is being replaced. if a replacement is in progress; 
they, too, require that the RP flag be set. The RBN of 

Code 

00 

Meaning 

unallocated (Le., empty) 
replacement block 
allocated replacement 
block·primary RBN 
allocated replacement 
block·non·primary 

02 
25 the bad replacement block appears in words 288, 290 if 

the BR flag 274 is set. 
03 

04 
10 

RBN 
unusable replacement block 
null entry 

The ReT replacement allocation algorithm is one 
which is used to allocate an RBN to replace a bad LBN. 
Described below are the search algorithm and various 

30 support algorithms. 

Additionally, the size of the copies must be adjusted 
so that corresponding blocks of each copy are, to the 
maximum extent possible, accessed using physical1y 35 
distinct components. For conventional1y structured 
devices, this implies: (1) if the number of copies is less 
than or equal to the number of read/write heads, then 
corresponding blocks of each copy are accessed by 
different heads; (2) if the number of copies is greater 40 
than the number of heads, then corresponding blocks of 
each copy are distributed as evenly as possible across all 
heads; (3) if a device uses a servo surface, then corre­
sponding blocks of each copy are located using differ­
ent tracks of the servo surface; and (4) the ReT copies 45 
are allocated such that the last sector of the last copy 
occupies the last LBN on the unit. The last copy of the 
ReT is padded so that its size is an exact multiple of the 
device's track size. Allocation of the ReT is then per­
formed starting at the highest LBN and working down- 50 
ward. The ReT pad area is controller-specific and is 
not accessed by the host. 

The first sector in the ReT contains information 
about the state of any replacement operation which may 
be in progress. A copy of the volume serial number is 55 
also contained in this sector to allow validation of the 
ReT by diagnostics routines. 

The second sector in each copy of the ReT, sector 1, 
is used by the bad block replacement algorithm, as 
stated above. This sector is used to hold a copy of the 60 
data from the sector being replaced. 

FIG. 6 illustrates the resulting ReT structure. The 
first sector 202 of the ReT (i.e., the so-called sector 0) 
contains replacement and caching table information. 
The second sector, 204, (i.e., the so-called sector 1) 65 
contains the replaced LBN image. Sectors 206a-206m 
(i.e., the so-called sectors 2 thru ReT-I) correspond to 
the 128 replacement block descriptors. 

ReT Search 

The search begins at the descriptor for the primary 
replacement block. If the desired LBN address is not 
stored there and the descriptor is not empty, then a ping 
pong search begins of the sector containing the primary 
replacement block descriptor. If either the desired LBN 
address or an empty descriptor is not encountered, then 
a linear scan of the remaining ReT blocks, and descrip­
tors within blocks (with wrap-around at the end of the 
ReT), ensues until one of two things occurs: (I) an 
unallocated replacement block descriptor is encoun­
tered in an overflow location (a secondary) or (2) the 
entire ReT is searched without success (a failure). 

The search operates at two levels. First, within the 
primary descriptor ReT sector, the search proceeds 
outward from the primary descriptor searched, starting 
with the next highest RBN descriptor. This degenerates 
to a linear search once the lirst or last descriptor is 
encountered. The linear search starts with the next 
highest ReT sector address, once the initial sector has 
been completely searched. Each new sector is searched 
in a linear fashion starting at the lowest RBN descriptor 
and scanning until the highest RBN descriptor in the 
sector is encountered. If at any time during the linear 
search a null (not an empty) entry is encountered, the 
search resumes at the first entry in the third ReT sector 
(the first with descriptors). The search is terminated 
when it is certain that all the ReT entries have been 
searched. 

FIG. 8 illustrates the ReT search algorithm. A listing 
of a sample coding for the algorithm is shown in FIGS. 
9A-9C. 

The Primary ReT Hash Algorithm 

The primary ReT has algorithm is one which takes 
as input and LBN and produces a host LBN address of 
the ReT block containing the primary RBN descriptor 
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that corresponds to the previously revectored LBN. An 
offset pointing to the primary RBN descriptor within 
the RCT block is also produced. This algorithm always 
produces a block number within the first copy of the 
RCT within the replacement control area. The algo- S 
rithm is illustrated in FIG. 10. 

Detailed Description of an Embodiment of the Physical 
Layer 

With the foregoing generalized description in mind, it 10 
will now be helpful to provide some further details of an 
exemplary implementation. 

Referring now to FIG. 11, a suitable sector format is 
shown there, illustrating the various sector fields: 
header 330, data 332, error detecting code (EDC) 334 1 S 
and error correcting code (ECC) 336. Four copies of 
the logical address are provided within the header. The 
EDC in field 334 provides error detection coverage 
from the entry of the data into the subsystem until its 
exit from the subsystem. It is also used in the illustrated 20 
embodiment to generate the ''forced error indicator." 
Sixteen bits are used for the error detecting code in the 
present example, although codes of other lengths can be 
employed, of course. The ECC in field 336 provides the 
primary detection and correction mechanism against 2S 
medium and device transmission errors. (An exemplary 
ECC occupies 170 bits and is described in commonly 
assigned patent application Ser. No. 277,060, filed June 
24, 1981, by Charles M. Riggle et aI, and titled Multiple 
Error Detecting and Correcting System Employing 30 
Reed-Solomon Codes, which is incorporated by refer­
ence herein for the purpose of describing the error 
correcting code and its use). 

The header preamble "spacer" field 338 is an area 
padded with zeroes and used to accommodate the maxi- 3S 
mum uncertainty between a drive's negation of sector 
pulse and a controller's notice of the change, plus the 
controller quantization error in preamble length. 

The header preamble field 340, also zeroes, is the 
number of words necessary to allow the drive's phase- 40 
locking oscillator (PLO) to settle before the occurrence 
of header sync. The "header preamble length" field is 
provided to the controller by the drive in response to a 
designated command. 
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is computed. (Step 362). The error detecting code cal­
culated in step 362 is then compared with the error 
detecting code contained in field 334 of the information 
read from sector A in step 360. (Step 364). If the calcu­
lated EDC matches the EDC read from the recording 
medium, then the read operation is successful and pro-
cessing proceeds along the branch 366 to exit point 368. 
However, if the two EDC values do not match, some 
further processing is required to determine the reason 
for the mismatch and to decide on further steps to take. 
Thus, the controller next looks to see whether the 
forced error indicator was present (or "set") in sector A 
as recorded; this is done by comparing the calculated 
EDC with the one's complement of the EDC read from 
field 334. (step 370). If the two match, that means the 
forced error indicator was detected, in which case pro-
cessing continues along branch 372; the controller then 
knows that the data in the sector already was corrupted 
when it was written and therefore cannot be recovered 
through the read operation. Thus, the read operation 
fails; and in doing so, a specific code or signal is gener-
ated in step 374 to notify the host that the read opera­
tion failed due to detection of the forced error indicator. 
On the other hand, if the forced error indicator was not 
detected in step 370, it is possible that error recovery 
technique might successfully be employed, so control is 
transferred along branch 376 to step 378. In step 378, 
the available error recovery techniques are invoked and 
an attempt is made to reconstruct the data written to 
sector A. If error recovery is successful, then the read 
operation has succeeded and, analogously to a success-
ful outcome from step 364, control proceeds along 
branch 382 to exit point 368. However, if error recov­
ery does not succeed, then an error code is generated to 
indicated to the host that the read operation failed due 
to the medium inaccurately storing the information. 
Step 384. This latter error code is different from the 
error code generated in step 374, to distinguish between 
read errors due to defective media and read errors due 
to the forced error indicator. 

It is important to distinguish between forced errors 
and non-forced errors in reading because they are han­
dled differently when copying information from one 
sector or group of sectors on to another sector or group 

Generation and Use of the Forced Error Indicator 

The controller 4 transmits to the drive 3 the informa­
tion for each sector, to be written in the format of FIG. 

4S of sectors. When a forced error indicator has been set in 
a sector, the underlying medium is still presumably in 
satisfactory condition; thus, new information can be 
written into that sector, at which point the forced error 

11. Generally, the error detecting code and error cor­
recting code are computed and are inserted in the ap- so 
propriate fields of the sector format by the controller 4, 
though in some cases the host or the drive itself might 
supply some of such information. Similarly, when read­
ing from the disk drive 3, the controller 4 generally 
performs the functions of checking the error detecting 55 
code and error correcting code, though it is also possi­
ble for the host or drive to do so in some systems. 

The procedure by which the controller (or host or 
drive, as appropriate) gemerates and utilizes the error 
detecting code field 334 for forced error indication is 60 
illustrated in FIG. 13B. There, a flow chart is provided 
illustrative of the operation of a processor for reading 
from the recording medium. With reference now to that 
figure, a sector "A" is to be read. Under command from 
the controller, the disk drive positions a head appropri- 65 
ately so as to "read" and provide to the controller the 
information stored in sector A. (Step 360). From the 
data field of the sector, an error detecting code (EDC) 

indicator is cleared. However, if the information in a 
sector is unrecoverably corrupted but the forced error 
indicator is not present, it is likely that the medium 
underlying sector is defective and that any futher writ­
ing onto that medium would result in a further loss of 
information. 

There are thus three types of situations to deal with 
when copying a sector from a first volume of memory 
into a second volume of memory. If the sector was 
successfully read from the first volume of memory, it 
may of course be written intact into the second volume 
of memory. If the sector could not be successfully read 
because it was logically corrupted and unrecoverable, 
then the contents of that sector can either be discarded 
entirely or can be written into a sector in the second 
volume with the forced error indicator set to signify 
that the data was corrupted when recorded. Rerecord­
ing of that sector subsequently results in the clearing of 
the forced error indicator. Thus the organization of a 
particular file can be retained with the position in the 
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file being held open and identified as not being defective 
though containing incorrect data. 

This is illustrated in FIG. 13C, which shows the two 
possibilities for writing into the EDC/FEI field 334 of 
a sector. If a sector is to be written with information 5 
read from a disk file, and in the reading process of FIG. 
13B, step 384 has been reached (signifying that the data 
read is corrupted and the forced error indicator code is 
not present for the sector which was read), then the data 
known to be corrupted is to be wt"itten to a good block \0 
of recording medium on the same or another disk sur­
face and the forced error indicator code is to be set 
when the new sector is written. This is indicated by 
going or branching from step 384 directly to a step 392, 
where the write operation occurs with the forced error 15 
indication code set in field 334. A contrast, when the 
sector is to be written with new data from a host (which 
data is presumed to be reliable and uncorrupted) or with 
data successfully read from storage, as indicated by the 
"yes" branches from steps 364 or 380, then the write 20 
operation occurs with an appropriate non-comple­
mented error detection code written to the EDC/FEI 
field. (Step 394). 

The data preamble "space" field 342 is the area neces­
sary to accommodate controller quantization errors in 25 
the transition between reading headers and writing data 
preamble. The length of splice field 344 is the number of 
words necessary to accommodate worst-case header 
transmission delays, header compare time, write splice 
area and PLO lock time. The number for this area (in 30 
words) is placed in the "data preamble length" field of 
the response to the above-designated command. 

20 
block number in the header represents the LBN for this 
block. This LBN has been revectored to its primary 
RBN. This header field may be registered in the non­
RCT portion of LBN space only. 

Yet another code, such as 06, may be used to indicate 
a usable replacement sector, wherein data mayor may 
not be valid, depending on the validity of the EOe. The 
block number in the header represents the RBN for this 
block. This header code may appear in RBN space only. 

Another code, such as 11, may signify an unusable 
sector, where data is invalid. The block number in the 
header is that of the sector's type if it had been a usable 
sector. This header code may appear in RBN, XBN, or 
DBN space, the RCT area of LBN space, and in LBN's 
which have been secondary revectored due to header 
errors. 

Yet another code, such as 12, may signify a usable 
external sector, wherein data mayor may not be valid 
depending upon the value of the EDe. The block num­
ber in the header represents the XBN for this block. 
This header code may appear in XBN space only. A 
further code, such as 14, may represent a usable diag­
nostic sector. The block number in the header repre­
sents the DBN for this block. This header code may 
appear in DBN space only. 

Header Compare Algorithm 

A header compare algorithm is used by the controller 
for locating a designated sector. First, the controller 
determines the address of the sector it is searching for 
on the disk (i.e., the "target" address). The controller 
then reads the four copies of the 32-bit header of the 
sector that may be at the target address. These headers 
are broken into two 16 bit fields (low and high). If any 

The length of the write-to-read recovery field 346 is 
the number of bits necessary for write recovery, plus an 
allowance for uncertainty. 

The length of the reinstruct time field 348 is the disk 
area traversed during the time the controller is cleaning 
up the current sector transfer and sending the command 
to the next one. 

35 two of the four low fields, as retrieved from the disk, 
match the low field of the target address and any two of 
the four high fields, as retrieved from the disk, match 
the high field of the target address, then the header 
compare succeeds. If at least two low matches are not 

The Headers 
40 found, then a header match is not possible. 

The sector header is 128 bits: thirty-two bits repli­
cated four times. The layout of one of the thirty-two bit 
copies is shown in FIG. 12. A l6-bit word 352 and the 
lower 12 bits of the next word 354 form a 28-bit block 45 
number field, which is followed by a 4-bit header code 
356. The block number field represents an LBN, an 
RBN, an XBN, or a DBN, depending on the header 
code. The block number field provides enough address­
ing for approximately 0.25 giga-sectors or 1 terabit of 50 
data. 

The octal header code may, for example, be inter­
preted as follows. First, an exemplary code such as 00 
(octal) may indicate a usable logical sector wherein data 
mayor may not be valid, depending upon the validity of 55 
the EDe. The block number in the header represents 
the LBN for this block. This header code may appear in 
LBN space only. Another code, such as 03, may indi­
cate an unusable revectored logical sector. This header 
code may appear in the non-RCT portion of LBN space 60 
only. The data field contains the RBN header field of 
the replacement block, replicated 128 times; the block 
number in the header represents the LBN for this block. 

Yet another code, such as 05, may indicate an unus­
able primary revectored logical sector. Such a sector 65 
has been revectored onto the first replacement sector on 
the track. The data field contains the RBN header field 
of the replacement block, replicated 128 times. The 

If at least two low matches are found and two high 
matches are not found, then it is possible that the cor­
rect sector was located but the header code did not 
match the target header code. This is possible if an LBN 
has been replaced, or if a bad block has been found in a 
multi-copy protected area (i.e., RCT, XBN or DBN). 
The controller alters the header code in the target ad­
dress then determines if two high matches now exist. A 
variant of the header compare algorithm is also used to 
conclude that a drive has mis-seeked or seeked to the 
wrong cylinder or group, or that an incorrect head has 
been selected. For this purpose, any three of the four 
high header words must match and any three of the four 
low header words must match, since there is not an 
expected header value to match against. Given this 
three-way match, the controller may interpret the 
header code and block number fields to determine the 
actual cylinder, group and track that have been ac­
cessed, for comparison against the correct values. 

The Data 

The contents of the data field are application-depend­
ent. The data field size will depend on the format used 
by the host processor. For the assignee's products, there 
are two basic data field sizes, 512 bytes and 576 bytes. A 
portion of all disks is always formatted with 512 byte 
data fields. This is the manufacturing defect area 
(XBN). The other areas on disk drives attached to those 
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controllers that support both sector sizes may be for­
matted in either 512 or 576 byte format. Each time a 
device comes "online" to a controller, the controller is 
responsible for determining the sector size employed by 
the device according to the algorithm described below. 5 
First, the device is instructed to change the sector size 
of its reading operation to 512 bytes. The starting sector 
of the first copy of format information is read. The first 
word of this sector is tested. If it is equal to a preselected 
number, then LBN/RBN space is written in 512 byte 10 
mode. On the other hand, if it is written with some other 
preselected number, then such space is written in 576 
byte mode. If the starting XBN of the first copy is not 
readable or a value other than the aforementioned pre­
selected values is in the first word, then the starting 15 
XBN of the next copy of the format control table is 
computed using the following formula: 

next copy XBN =old copy XBN + size offormat 
control table. 20 
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one's complement of the EDC to be expected on the 
basis of the recorded data. 

The Track 

A track is composed of sectors and timing marks. 
There must be at least two sectors per track (I LBN 
sector and 1 RBN sector). Timing marks are of two 
types: (1) sector marks and (2) index marks. A sector 
mark precedes each sector and may be used by the 
controller for rotational optimization purposes. An 
index mark precedes the first sector on each track 
within the first group in the cylinder and precedes a 
sector at the same angular position with respect to the 
first group on all other tracks within all other groups in 
a cylinder. 

Detailed Description of an Embodiment of The Logical 
Layer 

Address Spaces 

There are four address spaces in the set of sectors 
This new sector is then read. If it has an uncorrectable made available to the controller by the drive. The first 
I/O error, then the next copy is accessed, until all cop- address space contains the set of logical blocks which 
ies are tried. If all copies are read and there is no copy are visible to the host. This LBN space is divided into 
that can be read without an uncorrectable I/O error, 25 two regions: the host accessible area and the RCT's. 
then a media format error is returned to the host. Also, The second address space contains replacement blocks 
if the first sector (i.e., XBN) of the first copy read with- which are used to replace logical blocks that have be-
out an uncorrectable error contains an invalid media come unusable. These RBN's are invisible to the host 
mode code, then a media format error is returned to the except for the implications they have on allocation 
host. 30 policies. The controller utilizes the logical blocks and 

(The host may force the device into a specific mode, replacement blocks in a fashion that presents to the host 
in which case the controller will attempt to access the a logically contiguous set of blocks numbered from zero 
device unit using that mode, without issuing the media to H-l, where H is the block capacity as seen from the 
format error. This is intended only as a means of data host. The third address space is the extended block 
recovery, and not as a standard operating practice.) 35 space; (XBN's); this is a set of blocks visible only to the 

If the volume is in 512 byte format, the algorithm is controller, which is used to store manufacturing format 
complete. If in 576 byte format, the controller is respon- control information and transient controller-specific 
sible for prefacing all operations on XBN's or 512 byte information. Finally, there is the diagnostic block space 
DBN's with a command to change the size to 512 bytes, (DBN's) containing blocks devoted to controller-resi-
and preceeding the next reference to LBN's or RBN's 40 dent diagnostics. The DBN's are also visible only to the 
with a command to change the size back to 576 byte controller. These address spaces are differentiated by 
format. In other words, the controller is responsible for unique header codes, preventing inadvertent access to 
changing the sector size dynamically based on which or operation in the wrong type of sector. 
space the sector falls in, using 512 byte format for Although conformation to the overall geometry de-
XBN's and DBN's but 576 byte format for LBN's and 45 scribed herein is a requirement of the invention, the 
RBN's. specific capacities and other physical parameters associ­

The EDC 

The Error Detecting Code (EDC) is a 16-bit code 
used to detect errors caused by internal problems in the 50 
controller. It is applied as an end-to-end verification of 
correct controller operation. The algorithm shown here 
was designed to detect column errors as well as multi-
bit parity errors. 

The EDC is computed via an exclusive-OR operation 55 
and left circular shift algorithm, using a non-zero initial 
value and 16 bit word size. The rotate used in this algo­
rithm has no carry. The algorithm itself is listed in FIG. 
13A. In addition to detecting errors, the EDC also is 
used herein to provide a forced error indicator. This is 60 
accomplished by storing the one's complement of the 
correct EDC in the EDC field of the sector. An "error" 
is thereby indicated when the sector is read; this "error" 
is eliminated when the sector is next written with cor­
rect EDC. This technique makes it very easy for diag- 65 
nostie routines to identify sectors having forced errors. 
That is, when an EDC indicates an error, it is a simple 
matter to determine whether that EDC is in fact the 

ated with the geometry of the disk will vary from de­
vice type to device type. These specific parameters are 
part of the permanent characteristics of each device 
type, and are determined when the device is designed. 
The controller shields from the host these parameter­
dependent device properties. The controller issues a 
generic command termed the GET CHARACTERIS­
TICS command, in response to which the drive re­
sponds by sending to the. controller the parameters 
necessary for use in geometry-related operations. The 
controller then uses those parameters as appropriate 
and necessary. 

The Drive Characteristics Blocks 

As mentioned above, in a secondary storage subsys­
tem according to this invention, a disk drive provides to 
the controller, responsive to a command, one or more 
messages containing various parametric information. In 
this regard, it should be noted that within a drive there 
may be one or more subunits, each of which can be 
addressed independently by the host and controller. 
Thus, to fully characterize the drive, two commands are 
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used. First, a command named the GET COMMON 
CHARACTERISTICS command is employed to 
evoke a message regarding parameters which are com­
mon to all subunits of the drive. Next, a comand named 
the GET SUBUNIT CHARACTERISTICS command 5 
is used to evoke the characteristics of specific subunits 
of a drive. The format of the response to the GET 
COMMON CHARACTERISTICS command is illus­
trated in FIG. 14. There, a 23 byte sequence is shown. 
The first byte identifies the nature of the response. The 10 
lower half of the second byte conveys the length of a 
short time out, expressed as power of two. The upper 
half of the second byte contains a number indicating in 
the version of the bus used between the controller and 
drive. In the third byte, the drives bit transfer rate is 15 
specified, scaled down by a factor of 100,000. The 
fourth byte, like the second byte, is broken in half. Its 
lower half includes a long time out, also expressed as a 
power of two; while its upper half conveys the number 
of retries of a failed operation which will be required by 20 
the drive. In the lower half of the fifth byte, a number is 
written to indicate the number of FCT and RCT copies 
maintained. The most significant bit in the fifth byte, SS, 
indicates the drive sector size. The sixth byte specifies 
the number of error recovery levels which the drive 25 
makes available. It is a characteristic of this system that 
the controller need not be aware of the error recovery 
techniques available in the drive. The drive may employ 
several different error recovery techniques, numbered 
in their order of increasing or decreasing chance of 30 
success. Assume. for example. that by convention error 
recovery Level I corresponds to the technique having 
the greatest probability of success; error recovery Level 
2 is the next most likely to succeed, etc. Then, the con­
troller need only signal for the invocation of error re- 35 
co very Level I and the subsequent error recovery tech­
niques. in ascending numerical order (corresponding to 
descending probability of success). The drive, respon­
sive to seeing each of the error recovery level indica-
tors, invokes the appropriate recovery method. 40 

The seventh byte contains the ECC threshold, above 
which replacement and revectoring are invoked. The 
eighth byte contains an indication of the microcode 
revision number of the drive and the ninth byte contains 
an indication of its hardware revision number. 45 
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this subunit, while the upper half of the byte contains 
the same bits for the first DBN on this subunit. 

The number of RBN's per track is indicated on byte 
10. Bytes 12 and 13 contain the length of the data and 
header preambles, respectively, in words. 

Bytes 14-17 record the media type. Bytes 18 and 19 
give the size of copy of the FCT, in XBN's. 

Bytes 20-27 are used for the 512 byte format, and 
their counterpart for the 576 byte format is bytes 28-35. 
As labelled in the drawing, the contents of the bytes 
should be self-explanatory. Bytes 20 and 28 indicate the 
number of LBN's per track. Bytes 21 and 29 indicate the 
group offset-i.e., the offset from one group to another 
to permit spiral read operation. The number of LBN's in 
the host area is indicated from byte 22 through the 
lower-half of byte 25 and from byte 30 to the lower-half 
of byte 33. Bytes 20-23 and 34-35 indicate the size of a 
copy of the RCT, in LBN's. 

Bytes 36-39 are common to both formats. Bytes 36 
and 37 indicate the size of the XBN space, in cylinders. 
Byte 38 indicates the number of groups in the DBN area 
and byte 39 indicates the size of the DBN space in cylin­
ders. 

The replacement sectors in any given drive are logi­
cally numbered from 0 to (Rs - I), where Rs = Lc*g*t*r 
is the total number of replacement sectors. A replace­
ment block number is converted to a specific physical 
disk location through a series of transformations per­
formed by the controller using parameters supplied by 
the drive. These transformations are described later. 
The last r sectors (where r is a drive-specific parameter) 
of each track in the host application area is reserved for 
replacement blocks for revectored bad blocks. These 
alternate blocks lie outside of the LBN space presented 
by the controller to the host, and are accommodated in 
the logical-to-physical address conversion algorithm 
described below. 

FIG. 16 illustrates the first two and last tracks in the 
LBN/RBN space of a subunit. 

External Block Track Geometry 

The external sectors on any given drive are logically 
numbered from (0 to Xtot-I), where Xtot=Xc*g*t*s 
and is the total number of external sectors. 

The transformation for converting an external block 
number to a specific physical disk location is explained 
later. 

XBN's are allocated contiguously on all XBN cylin-

Bytes 10-15 contain a unique drive identification 
number or serial number. The sixteenth byte contains a 
drive type identifier and byte seventeen indicates the 
rotational speed of the disk platters, in revolutions per 
second. 

Bytes 18-23 contain various error thresholds. 
50 ders; they increase incrementally from the starting XBN 

number as the sector number, track number, and cylin­
der number increase, until the XBN cylinders are ex­
hausted. There are no replacement blocks on XBN 

The response to the GET SUBUNIT CHARAC­
TERISTICS command is indicated in FIGS. 15A and 
15B. As shown there, the response is 39 bytes in length. 
The first byte contains a pattern indicating the nature of 55 
the response. Bytes 2, 3, 4 and the lower-order half of 
byte 5 contain the number of cylinders in the LBN 
space. The field comprising bits 6-4 of byte 5 contains 
bits number 30-28 of all cylinder numbers on this sub­
unit. 

cylinders. 
FIG. 17 illustrates the first two and last track in the 

XBN space of a subunit. 

Diagnostic Cylinder Geometry 

The diagnostic sectors on a drive are numbered logi-

The number of groups per cylinder is indicated in 
byte 6. 

60 cally from 0 to Ds-l, where Ds=Dc*g*t*s is the total 
number of diagnostic sectors. The method for trans­
forming DBN's to specific physical disk locations is 
described below. An adequate number of cylinders is The lower-order half of byte 7 contains bits 27-24 of 

the first LBN on this subunit, while the upper-order half 
of that byte contains the same bits of the first XBN on 65 
this subunit. Byte 8 contains the number of tracks per 
group. Byte 9 is fragmented into two halves, the lower 
half of which contains the bits 27-24 of the first RBN on 

reserved for diagnostic usage. Sector headers in those 
cylinders are coded to reflect that they are DBN's. 
These diagnostic cylinders are formatted initially in the 
512 byte mode and the last cylinder in this space must 
remain in that mode; that cylinder contains various data 
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patterns prerecorded at the factory. Diagnostic space 
geometry is illustrated in FIG. 18. 

Address Conversions 

Two generic variables are used to express the address 5 
conversion algorithms. They are actual or calculated 
device characteristics. The function QUO( ) is used to 
indicate a quotient resulting from a division operation 
and the function REM( ) is used to indicate the remain-
der resulting from a division operation. 10 

The starting LBN for a drive (L) is computed from 
the characteristic "HISTRTLBN", the high order part 
of the address of the starting LBN. (see below). This is 
done by OR-ing the "HISTRTLBN" nibble into bits 15 
27-24 of a previously zeroed longword. 

Given a header LBN, the algorithm listed in FIG. 19 
is used to determine the logical block's physical sector 
address. In reading that figure, note that the starting 
cylinder for a drive (C) is computed from the drive 20 
characteristic "HI CYL", the high order part of the 
cylinder address. This is done by OR-ing the "HI CYL" 
nibble into bits 30-28 of a previously zeroed longword. 
In the figure, "0" represents an offset. 

Given a header RBN, the algorithm of FIG. 20 may 25 
be used to determine the replacement block's physical 
sector address. Note that the starting RBN for a drive 
(R) is computed from the characteristic 
"HISTRTRBN," the high order part of the RBN ad­
dress. This is done by OR-ing the "HISTRTRBN" 30 
nibble into bits 27-24 of a previously zeroed longword. 

Given a header XBN, the algorithm listed in FIG. 21 
may be used to determine the external block's physical 
sector address. The starting XBN for a drive (X) is 35 
computed from the drive characteristic 
"HISTRTXBN," the high order part of the XBN ad­
dress. This is done by OR-ing the "HISTRTXBN" 
nibble into bits 27-24 of a previously zeroed longword. 

Given a header DBN, the controller executes the 40 
algorithm of FIG. 22 to determine the diagnostic 
block's physical sector address. The starting DBN for a 
drive (D) is computed from the characteristic 
"HISTRTDBN," the high order part of the DBN ad­
dress. This is done by OR-ing the "HISTRTDBN" 45 
nibble into bits 27-24 of a previously zeroed longword. 
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Detailed Description of an Embodiment of the 

Functional Layer Revectoring 

Once a sector has been replaced, revectoring should 
occur upon each access to the replaced LBN. Three 
revectoring mechanisms are supported by the particular 
implemention discussed herein. These mechanisms all 
depend upon values in the code field of the sector's 
header to initiate revectoring. Additionally, all revec-
tored LBN's contain 128 copies of the replacement 
block's header in their data field, unless revectoring is 
the result of a header error. The revectoring mecha­
nisms differ in the ways that the addresses of the target 
RBN's are determined. 

In the primary revectoring mechanism, the position 
of the RBN to which revectoring is performed is im­
plied by the position of the LBN on the volume. This 
implied position is the first replacement sector on the 
track containing the LBN. This is a many LBN to one 
RBN mapping function. 

With so-called secondary revectoring, an arbitrary 
RBN is used whose address is determined by the pres­
ence of the 128 copies of the RBN's header value (code 
and address) in the data field of the bad LBN. The 
algorithm listed in FIG. 23 is used to determine reliably 
the correct value of the RBN header; it provides as 
output (from the 128 copies input) the address found to 
have at least 24 matches, if there is one. 

Finally, there is a so-called tertiary revectoring 
mechanism which is used when the header compare 
algorithm fails to determine a valid header address or 
code or the algorithm of FIG. 23 fails to yield a valid 
result. It is important to determine then if the LBN has 
been revectored or if access to the LBN should result in 
an unrecoverable error. Since all revectored LBN's are 
recorded in the multiple copies of the RCT, an RCT 
search is used to determine if the bad LBN has been 
revectored. The RCT search algorithm, described 
above, results in the RBN address if the LBN was re­
vectored, or a failure indication if it was not revectored. 
The determination that the attempted input/output 
operation was done to the correct sector requires, since 
the header is "smashed" and unusable (I) a determina­
tion that the correct cylinder, group and track have 
been selected; (2) for controllers that use sector count­
ing via sector and index pulses, at least one revolution of 
counting after completion of the foregoing step and (3) 
for controllers that locate sectors by reading headers, at 
least four full revolutions searched after the foregoing 

Given a header LBN that has been revectored to the 
first RBN on the same track (primary RBN), then the 
following algorithm or formula may be used to deter­
mine the replacement block's RBN: 

RBN=R+(QVO«LBN- L)/I»·r 

50 step is complete. Failure to achieve a header match on 
the latter two actions requires invocation of tertiary 
revectoring. 

Given a host LBN that has been revectored to the 
first RBN on the same track (primary RBN), then the 55 
following formula may be used to determine the re­
placement block's RBN: 

Formatting Support 

Formatting and reformatting processes are responsi-
ble for establishing which sectors are bad and replacing 
them, if they are in the host applications area, or format­
ting there headers with the unusable code if they are 
bad LBN's in the RCT, bad XBN's, bad DBN's or bad RBN = R + (QUO{(LBN)/ I»·r 

Given the physical address (cylinder, group and 
track) of a logical block that has revectored to the first 
RBN on the same track (primary RBN), then the fol­
lowing formula may be used to determine the replace­
ment block's RBN: 

RBN=R+([([(Cyl. No. -C)'g]+Group 
No.)·t] + Track No.)'r 

60 RBN's. 
The formatting process is supported by the format 

(;ontrol tables (FCT), which are used to record informa­
tion about the location of manufacturing detected bad 
blocks. Format information for both 512 byte and 576 

65 byte formats is stored in the FCT. The first subtable in 
the FCT contains information about where the bad 
blocks would be located if the disk were located in the 
512 byte format, the second subtable contains informa-
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tion about where the bad blocks would be located if the 
disk were recorded in the 576 byte format. For those 
mass storage devices that don't support the 576 byte 
format, the 576 byte sub table contains null entries. 

A second function of the FCT is the identification of 5 
the current mode of the LBN space (i.e., whether it is 
recorded in 512 or 576 byte format. The first sector of 
each FCT copy contains a code identifying the current 
LBN sector size. This mode identification sector is 
updated each time the volume is formatted. 

The FCT contains at least one track of subsystem 
scratch storage also. 

10 

Each copy of the FCT is composed of one volume 
information block, one 512 byte format table, one 576 

15 byte format table, and one subsystem temporary storage 
area (distributed amongst the alignment pads). This 
format is illustrated in FIG. 24. The XBN area itself is 
always formatted to contain 512 byte sectors. Sector 0 
of the FCT contains various volume identification in- 20 
formation. Its format is illustrated in FIG. 25. 

Conclusion 

Having thus described an exemplary embodiment of 
the invention, it will be apparent that variolls alter- 25 
ations, modifications and improvements will readily 
occur to those skilled in the art. Such obvious alter­
ations, modifications and improvements, though not 
expressly described above, are nonetheless intended to 
be implied and are within the spirit and scope of the 30 
invention. Accordingly, the foregoing discussion is 
intended to be illustrative only, and not limiting; the 
invention is limited and defined only by the following 
claims and equivalents thereto. 

What is claimed is: 
1. In a secondary storage subsystem (2) for a data 

processing system (10), wherein data is recorded on a 
mass storage medium (5) and the smallest addressable 
unit of the medium is a sector (9), each sector including 

35 

a header field for recording address information and a 40 
data field for recording data to be associated with and 
stored at such address, the improvement comprising: 

means (4, FIG. 13C-392) for writing in each sector a 
predetermined code, termed the forced error indi­
cator, when the data being recorded in the data 4S 
field is known to be logically corrupted and the 
medium underlying the sector is not known to be 
defective; and 

28 
(b) the forced error indicator code when the data 

being recorded in the sector is known to be logi­
cally corrupted (392). 

3. The apparatus of claim 2 wherein the forced error 
indicator code is the one's complement of the error 
detection code for the dal.a being recorded in the sector. 

4. The apparatus of claim 3 further including: 
means (4, FIG. 13B-362) for generating a second 

error detection code upon reading the data re­
corded in a sector, using the preselected algorithm; 
and 

the means for providing a forced error signal com­
prising means for comparing the error detection 
code thus generated with the signal read from the 
EDC/FEI field (4, FIG. 13B-364, 370) and for 
generating the forced error indicator when the 
signal read from the EDC/FEI field corresponds 
to the one's complement of the second error detec-
tion code. 

5. In a secondary storage subsystem for a data pro­
cessing system, wherein data is recorded on a mass 
storage medium and the smallest addressable unit of the 
medium is a sector, a method of replacing a defective 
sector with a substitute sector, such that information to 
be written to or read from a defective sector is written 
to and then read from the substitute sector instead, once 
the defective sector is identified as unreliable, such 
method comprising the steps of: 

A. reserving a portion of the medium to be used as 
spare sectors for replacing defective sectors, at 
least one spare sector being provided within each 
set of sectors occupying contiguous logical loca­
tions on the medium; 

B. replacing the first defective sector in said set of 
sectors with the first one of said spare sectors, 
termed a primary replacement sector; 

C. indicating such replacement by writing a first 
predetermined code in the defective sector; and 

D. when writing data to or reading data from a sec-
tor, detecting the first predetermined code and, in 
response to detecting said code, revectoring the 
writing or reading operation to said first one of the 
spare sectors for the involved set of sectors where 
the code was detected. 

6. The method of claim 5 wherein each sector com­
prises a header field and a data field, the address of the 
sector normally being written in the header field and the 
information to be stored in the sector being written in 

means (4, FIG. 13B-374) for providing a signal, 
termed a forced error signal, responsive to detec­
tion of the forced error indicator during a read 
operation. 

50 the data field, and further wherein said predetermined 
code is written in the header field of the defective SeC-

2. The apparatus of claim 1 wherein the means for 
writing the forced error indicator code includes S5 

means (4, FIG. 13C-394) for generating for each sec­
tor an error detection code which is uniquely re­
lated to such sector's data, in accordance with a 
preselected algorithm, for use in detecting the pres­
ence of errors in reading data recorded in the sec- 60 
tor; and 

means (3, 4, FIG. 13C) for writing a signal into a 
predetermined location in the sector (9, FIG. 
11-334), such location being termed the EDC/FEI 
field, said signal being 

(a) the error detection code for the data being re­
corded in the sector when the data is not known to 
be logically corrupted (396), or 

65 

tor. 
7. The method of claim 6 wherein the reserved sec­

tors are evenly distributed throughout the medium. 
8. The method of claim 6 wherein the medium is a 

magnetic disk and the sets of sectors are tracks. 
9. The method of claim 6 wherein the reserved sec­

tors are located in predefined locations within said 
tracks. 

10. The method of claim 6 further including the steps 
of, when the primary replacement Sector is unavailable: 

D. selecting for a defective sector other than the first 
defective sector in said set of sectors a replacement 
sector other than the primary replacement sector, 
said replacement sector being termed a secondary 
replacement sector; 

E. in the header field of such defective sector, writing 
a second predetermined code indicating that said 
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sector has been replaced by a secondary replace­
ment sector; 

F. in the data field of each such defective sector, 
writing a predetermined multiple number of copies 
of the physical address of the secondary replace- 5 
ment sector selected therefor; 

G. on reading the header field of the defective sector, 
checking for said second code; 

H. responsive to detecting said second code, obtain­
ing the physical address of the secondary replace- 10 
ment sector by reading said multiple copies and 
comparing them statistically to arrive at the re­
corded value of said address; and 

I. revectoring the writing or reading operation in­
tended for the defective sector to said secondary 15 

replacement sector. 
11. The method of claim 10 wherein the reserved 

sectors are evenly distributed throughout the medium. 
12. The method of claim 10 wherein the medium is a 

magnetic disk and the sets of sectors are tracks. 
13. The method of claim 10 wherein the primary 

replacement sectors are located in predefined locations 
within said tracks. 
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14. The method of claim 10 further including the 25 
steps of, when the primary replacement sector is un­
available: 

J. providing on the medium multiple copies of a table 
containing a list of each spare sector and the ad­
dress of the defective sector replaced by it, if any; 30 

K. responsive to detecting a defective sector, search­
ing a copy of said table to find the address of the 
replacement sector therefor; and 

E. revectoring the writing or reading operation in­
tended for the defective sector to said replacement 35 
sector. 

15. In a secondary storage subsystem for a data pro­
cessing system, wherein data is recorded on a mass 
storage medium and the smallest addressable unit of the 
medium is a sector, each sector comprising a header 40 
field and a data field, the address of the sector normally 
being written in the header field and the information to 
be stored in the sector being written in the data field, a 
method of replacing a defective sector with a substitute 
sector, such that information to be written to or read 45 
from a defective sector is written to and then read from 
the substitute sector instead, once the defective sector is 
identified as unreliable, such method comprising the 
steps of: 

A. reserving a portion of the medium to be used as 50 
spare sectors for replacing defective sectors; 

B. selecting for a defective sector a replacement sec­
tor from among said spare sectors; 

C. in the header field of such defective sector, writing 
a predetermined code indicating that said sector 55 
has been replaced by a secondary replacement 
sector; 

D. in the data field of a defective sector, writing a 
predetermined mUltiple number of copies of the 
physical address of the selected replacement sector 60 
therefor, termed a secondary replacement sector; 

E. on reading the header field of the defective sector, 
checking for said second code; 

F. responsive to detecting said second code, obtain­
ing the physical address of the secondary replace- 6S 
ment sector by reading said multiple copies and 
comparing them statistically to arrive at the re­
corded value of said address; and 

30 
G. revectoring the writing or reading operation in­

tended for the defective sector to said secondary 
replacement sector. 

16. In a secondary storage subsystem for a data pro­
cessing system, wherein data is recorded on a mass 
storage medium and the smallest addressable unit of the 
medium is a sector, a method of replacing a defective 
sector with a substitute sector, such that information to 
be written to or read from a defective sector is written 
to and then read from the substitute sector instead, once 
the defective sector is identified as unreliable, such 
method comprising the steps of: 

A. reserving a portion of the medium to be used as 
spare sectors for replacing defective sectors; 

B. selecting for a defective sector a replacement sec­
tor from among said spare sectors; 

C. providing on the medium multiple copies of a table 
containing a list of each spare sector and the ad­
dress of the defective sector replaced by it, if any; 

D. responsive to detecting a defective sector, search­
ing a copy of said table to find the address of the 
replacement sector therefor; and 

E. revectoring the writing or reading operation in­
tended for the defective sector to said replacement 
sector. 

17. In a disk drive for a secondary storage facility of 
a data processing system, wherein a read/write head 
must be positioned to read or write successive portions 
of the medium and the usable area of the storage me­
dium is divided into sectors, each sector occupying a 
specific physical position relative to an index location 
on the medium and being available for reading or writ­
ing once per disk rotation, a method of reducing the 
time consumed in head repositioning, comprising the 
steps of: 

A. logically grouping sectors into tracks, groups and 
cylinders according to access time latencies, a track 
being a set of sectors occupying contiguous logical 
disk locations, a group, being a set of tracks which 
can be selected within the time required for a sec­
tor to rotate past a head, and a cylinder being a 
collection of groups that can be selected by opera­
tions having latencies less than the time for a head­
positioning seek operation; 

tracks, groups and cylinders being independent of phys­
ical organization of the drive; and 

B. mapping the physical address of each sector to a 
logical track, group and cylinder address to effect 
optimal access time reduction. 

18. In a secondary storage device, the improvement 
comprising: dividing the medium into multiple address 
spaces, at least two address spaces being addressable by 
a host computer system which uses the mass storage 
device and at least two address spaces being invisible to 
and not accessible by the host computer system; 

the first address space addressable by the host com­
puter system being the set of storage locations 
visible to an operating system of the host computer; 

a second address space addressable by the host com­
puter system being a space containing revector 
control tables for revectoring access to bad blocks 
on the medium; 

the first address space not accessible by the host com­
puter system comprising a region which provides 
formatting information; 

a second address space not accessible by the host 
computer being adapted to contain diagnostic in­
formation. 
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