clilgiltlall

Semiconductor
Databook

Volume 2

o ?EgAT 10NS
o
A
& usa
ISRAEL

&
F-3 . SCOTLAND
o
3 AW
w
w

Confidential and Proprietary

1987







* Foreword

We at Semiconductor Operations (SCQ) are committed to provide excellence in integrated cir-
cuit technologies, products, and services to support our customers, the Digital Systems Groups.
Our primary objective is to optimize Digital’s competitive market position by develop-
ing leadership system performance at the lowest possible cost and within the appropriate
time constraints.

The execution of programs designed to achieve this objective has resulted in the technologies
and products described in the 1987 Semsiconductor Databook Volumes 1 and 2. While the basic
charter of SCO is to provide strategic and tactical management of all integrated circuit
requirements, the VL.SI design and manufacturing function of SCO has become the focal point
for unique and complex circuits that have contributed significantly to the success of many new
Digital products. A strategic investment has been made in CMOS technology and in the design
tools necessary to take advantage of this technology. Increased circuit densities and perform-
ance have resulted, and capabilities have been extended from full-custom design for maximum
performance to semi-custom design for fast time-to-market application. CAD tools are
continually being developed to further enhance design and design methodology.

SCQ is continually expanding its facilities to provide you with better service. While Hudson
and Andover, Massachusetts are the nucleus of the engineering and manufacturing operations,
supplemental design facilities are available in Israel and Japan and additional manufacturing
capacity is being planned in Scotland. In addition, a new 6-inch wafer pilot fabrication line has
been approved for construction in Hudson to aid in the state-of-the-art development of the
advanced CMOS devices.

During the past yeat, many new integrated circuits have been developed and released. Although
some are application-specific, the circuits that are suitable for general use are described in
Volumes 1 and 2 of this databook. Volume 1 is a revision to the 1986 Databook and includes the
latest revisions and changes. Volume 2 contains information related to the new CMOS products
that have been recently developed for general use. We encourage you to become familiar with
these products and to use them inthe design of Digital’s systems products when possible. We are
ready to assist you in your design process and in support of your production needs.

Our ultimate goal is to ensure that Digital’s systems continue to maintain significant competi-
tive advantage through the use of SCO services and products.

Confidential and Proprietary iii



Confidential and Proprietary




« Part Identification Codes

The following identification codes are used with the devices in this databook.

780 Series
78xyz - XX - XX
10 = Processors 5 = Controllers GA = Gullwing
1 = Coprocessor 6 = Graphic devices FA = Straight
2 = Memories 7 = Bus interfaces PA = Pin grid array
3 = I/O devices & = Communications devices
4 = Reserved 9 = Reserved
DC Series
DCxyz
3 0 = Custom bipolar devices 3 = MOS devices
——1 = Custom bipolar devices 5 = MOS devices

» Cross-referencing of Semiconductor Products

Part Part Purchase Description
Name Number  Number

DC341 78034-GA 21-24674-01  CVAX Central Processing Unit (CVAX CPU)
DC513 78134-GA  21-26604-01  CVAX Floating-point Accelerator (CFPA)
DC509 78135-GA  21-24673-01 CVAX Clock Generator (CCLOCK)

DC551 78332-GA 21-24942-01 MicroVAX System Support Chip (SSC)
DC357 78588-PA  21-25091-01 CVAX Memory Controller (CMCTL)
DC527 78711-GA  21-25972-01 CVAX Q22-bus Interface Chip (CQBIC)
DC514 - 21-24674-01 CMOS VAXBI Bus Interface Chip (CBIC)

Confidential and Proprietary




vi

Confidential'and Proprietary




Contents

Section 1 « Microprocessor and Support Devices

CVAX 78034 32-bit Central Processing Unit. . ... ... ... ... .. 1-1
CVAX 78134 Floating-point Accelerator . ............co it 1-91
CVAX 78135 Clock Generator. . ..o oo vttt et e e e e e e 1-109
MicroVAX 78332 System Support Chip ... ... 1-123

Section 2 = Bus Support Devices

CVAX 78388 Memoty Controller . . . ... ... . 2-1
CVAX 78711 Q22-bus Interface Chip . . .. ... ... it 2-55
DC3514 CMOS VAXBI Bus Interface Chip . ... ...... ... . i 2-107

Appendix » Mechanical Specifications

Confidential and Proprietary vii







» Section 1—Microprocessor and Support Devices

The CVAX 78034 microprocessor and support devices are the latest development in CMOS devices.
They provide the increased performance and the versatility required for the design of new and
faster VAX systems.

CVAX 78034 Central Processing Unit—The CVAX 78034 CPU is a low-cost high-performance, 32-
bit virtual memory microprocessor. It is implemented in double-metal CMOS and is functionally
compatible with the MicroVAX 78032 CPU. It contains a 1-Kbyte cache memory and provides
pipeline architectures and instruction prefetch.

CVAX 78134 Floating-point Accelerator—The CVAX 78134 CFPA is a high-performance coprocessor
used with the CVAX 78034 CPU to accelerate the execution of floating-point instructions. It
eliminates the need to emulate floating-point operations in software.

CVAX 78135 Clock Generator—The CVAX 78135 CCLOCK generates the precision MOS clock
signals required by the CVAX 78034 CPU, CVAX 78134 CFPA, and up to two additional support
chips.

MicroVAX 78332 System Support Chip—The MicroVAX 78332 SSC is a multifunction device that
provides the common functions necessary to support the MicroVAX 78032 and CVAX 78034 CPU.
It includes support logic for an external ROM, two asynchronous serial-line ports, programmable
address decoders, programmable timers, and a realtime clock.







Features

= High performance » Vectored software and hardware interrupts
—32-bit internal and external data path
—~-1 Kbyte on-chip instruction/data cache
—Pipelined architecture
—Instruction prefetch

* VAX memory management
~—Full memory protection
—Four privilege modes
—Process and system space mapped

Optimized flodting-point accelerator interface

4 gigabyte virtual address space

VAX instruction set

—304 instructions (59 emulated)
—21 address modes

—14 data types

1 gigabyte physical address space
-—512 megabyte memory space
—-512 megabyte IO space

- - - . D; ;' o -
Sixteen 32-bit general purpose registers ata parity checking

» Industry compatible external interface

22 interrupt levels
—15 software
—7 hardware

Single 5-volt power supply

84-pin surfacemount package

Description

The CVAX 78034 Central Processing Unit (CVAX CPU) is a 32-bit, virtual memory microprocessor.
Implemented in a double-metal CMOS process, the CVAX CPU is a low-cost, high-performance
microprocessor for single-board computers, single-user workstations, low-end systems, and other
applications such as multiprocessing configurations. The CVAX CPU is functionally: compatible
with the MicroVAX 78032 CPU and offers the system designer software compatibility, faster bus
cycle times, a 1-KByte on-chip cache, and an optimized interface for the CVAX 78134 Floating-
point Accelerator (CFPA). Figure 1 is a block diagram of the CVAX 78034 CPU.

INSTRUCTION PREFETCH |

g R - RESET
1 — AND DECCUE .. o - - té%f cka
le— CLKB
..—J I 8 toe gtk i R . fe— RG<3.0>
¢ S R HA - > le—— PRF
READ/ GENERAL REGISTERS = E"_ b
WRITE el AND e INTERRUPT = HALT
DATA CACHE INTERNAL REGISTERS C — WEMERR
AND 1 MEMORY Lo [+ MEMERR
ADDAESS MICROS EQUENCER M
BUFFERS AND la— (TN
SN R N l T CONTROL STORE
ATAW L <o ceea o[ ARSTACTOY
i 2L - ANTERFACE
N | AND SHIET S AT R
N B SHIFTER i I 5 AOGIC L—. CPROAT< B>
b 1‘ :
~ - H s A
R R i hesm
MEMORY * E
be-wd . MANAGEMENT - favnd o fo - . et BE
UNIT X BACROINSTRUCTION BUS ¥ ) ¢ o T DBE
DAL 7 ' o BUS o
3 PARITY i i e BN <30
e e | INTERFACE paiy
H UNIT [ BLY
| le— ERE
| le— TR
s . . 1] e
£t . P . . CONTROL 5TATUS PMG
ANO o CLIL
BYTE : h " DATA PARITY - ‘
ROTATOR . LOGIC 5 e TS DP<T 05
. o L 1 s - TEST
INTERNAL DAL (1DAL] Gt J—
] o - CWB

Figure 1» CVAX 78034 A’Iicropmc:essor Block Diagram

Confidential and Proprietary 1-1




. CVAX 78034

- Pin and Slgnal Descupnons

This section pmvldes a descrlptlon of the input and output 51gr1als and power and ground
connections used by the CVAX 78034 CPU. The signal pin assignments are identified in Figure 2
and summarized in Table 1.

DAL24, . DAL22 DALZG  DAL1S - DALI6  DALI4 BAL12Z OAL1O CALOB DALOG DALO4

0AL23 DAL2T DALIO DALLY DAL1S oAaL1Ta DALY DALCS DALO7 DALOS
74 73 7207 70 69 68 67 66 65 64 513 62 611 60 58 &8 57 ‘.'“;b 55 54 R
VSS wnd 75 : §3 p— vob
voo—i 76 . [ i 52 —- vgs
Voo ——di 77 * 51 frm VS
pAL2S — 78 : . 50 fsm DALO3
DALZE ] 79 i : 29 [ DALO2’
DALZT —— 80 ’ 48 |— 0ALO1
DAL2B —~{ 81 a7 ——-’ DALOO
DALZS ——{ 82 : . 46 | BMO
DAL3G ] ‘83 ! o a5 fmeen BMT
DALIY ~md 84 a4 e BWIZ
Voo -%; ’ CVAX 78034 CPU a3 f—— BM3
VS8 ] 2 . : 42 fme CSDPD
CPOATE ~—q 3 ) a1 e CSOPT ;
CPOATA i 4 . 40 o CSOP2
CPOATE ——f & . ; ) 36 t— csor3
. croarze— g . ) i 38 = OFE
i . CPDATI == 7 N : d i 37 == VSS
. CPDATO ~—} 8 . . 36 V&b
crsta =] 9 . ) ’ 8 b RESeT
CPSTAQ ——1 10 - . ) - 34 [ clea
m b IR AT ; e 33 = CLK8
1213 141516 1]7 18 1[9 20 21 22 2,3 24 2]5 26 1{7 28 29 30 31 32
l I 7]
oz F&?Iﬁﬁ\ REMERR | HALT Voo BT OMG RoY s DB
Rat RO3 CRD PWRFL TESTAVSS  VSS . CCTL BMR AR s Wi

Figure 2« CVAX 78034 Pin Assignments

Table 1 « CVAX 78034 CPU Pin and Signal Summary

Pin Signl  Input/Output Definition/Function

84-78, DAL<31 00> Input/Output Data/Address LmesmTlme multlplexed data and

74-54, address lines used to transfer address and data informa-

50.47 tion between the CVAX CPU and memory, external

» processor registers, CFPA, or I/O devices.

39-42 CSDP<310> Input/Output Control Status and Data Parity—Time-multiplexed
lines used to transfer eycle status information and data
parity. '

1-2- Confidential and Proprietary




Pl'e]i .” gy

Pin

Signal

Input/Qutput

Definttion/Function

38

DPE

Input/Output Data- Parity Enable—A signal used to enable parity

checking and to indicate valid parity information on
CSDP< 3:0>.

30

i Inpu’thutput

Address QtrobewA strobe that indicates the initial

-information on DAL <31: 00> and CSDP<3 0> is

valid. The leading edge can be used to latch the

. ,mformatmn on the lines.

29

- Output

"Data Strobe—A strobe, that indicates to the system

mterface that DAL<31: 00> and CSDP<3:0> are
ready to receive -data during a CPU tead, external
‘ pmcessor register read; ‘or interrupt acknowledge cycle.

“It'is ‘deasserted to decate that the data has been

received. It also contains valid outgoing;data during a

 CPU write cycle or external processor register write
. ¢ycle and is deasserted when the data is ready to be
- removed. e

43-46

BM‘<,3:O,V>‘

 Output

Byte Masks—-Spééify which by'tesy of DAL data and
associated parity bits are vahd durmg the second part of

“an [/O cycle :

32

Output

ert@-5pec1f1es the dxrecuon of data transfer on the
o DAL

31

Outpﬁt

Data Buffel EnablewUsed \wth WR to control cxter
nal DAL trarxscewers

27

Ihputy h

/ Ready—-—Asserted by extemai logic to indicate the nor-
mal termination of the current bus cycle. RDY and ERR.

can be- asserted togethér to requést a refry of the bus

- cycle

28

— s

Error«—Asserted by external logic to indicate the

~abnormal termination of the current bus cycle. ERR

" B and RDY can be asserted together to request a retry of
thebus cycle.

35

Input. - "

fir Reset——Assérted by external logic to initialize the

CVAX CPU to a predetermined initial state.

19

JInput

. HaltwAnanmaskable im«;:rrupt used tb reansfer con--

trol to.console macrocode.

14-11

TRO<3.0>

Input

Interrupt Requesthour maskable mtr:rrupt request
lines for device i interrupts.

18

 PWREL

Input

PowerfalimA maskable mtermpc used to mdlcate a

. powerfail, cond;tlcn

Confidential and Proprietary 1-3




Preliminary

Pin Signal Input/Output Definition/Function:

16 CRD Input . Corrected Read Data—A maskable interrupt used to
signal an ECC correctable read error in a memory
subsystem.

15 INTTIM Input Interval Timer—A maskable interrupt used to provide

, system timing information from the interval timer.

17 MEMERR Input Memory Error— A maskable interrupt used to indicate
a Memory error.

26 “DMR Input DMA Request— Asserted by external logic to request a

' DMA cycle.

25 DMG Qutput DMA Grant—Asserted by the CVAX CPU to acknowl-
edge a DMA request.

24 CCTL Input Cache Control—Used by external logic to control the
operation of the internal cache memory during DMA
and CPU read cycles.

3-8 CPDAT <5:0> Input/Output Coprocessor Data—Used to transfer opcode, control
information, condition code, and exception status
between the CVAX CPU and the CFPA.

9,10 CPSTA < 1:0> Input/Output Cbprocessor Status—Used to transfer status informa-

o tion between the CVAX CPU and the CFPA.

1,21,36, Vyp Input Voltage—5-volt power supply.

53,76,77 S

2,22,37, Vs Input Ground—Ground reference.

51,52,75 ~ ~

34,33 CLKA,CLKB Input Clock A and Clock B—Supply the basic clock timing to
the CVAX CPU. CLKA and CLKB are phase shifted by
180 degrees. These inputs are nominal 20-MHz, MOS
level, square-wave signals.

23 CWB Qutput Clear Write Buffer—Used to indicate that conditions
internal to the CPU require the external write buffer (if
included) to be cleared. This signal provides test infor-
mation when the TEST input is asserted and its test
output is reserved for chip manufacturing test.

20 TEST/ Vs Input Test{Vis—Reserved for chip manufacturing test. TEST
must be connected to Vys when not in test mode.

Data/Address

Data/Address Lines (DAL < 31:00 >)—These are bidirectional time-multiplexed lines used to

transfer address, data, and interrupt information. The information'on DAL < 31:00 > depends on

the type of bus cycle being executed. During the first part of a CPU read or CPU write cycle,
DAL < 31:00> specify the length of the memory operand and DAL<29:02> contain the
longword address of the memory operand. DAL29 is used to distinguish a memory space address

1-4

Confidential and Proprietary

e




Preliminary CVAX 78034

from an /O space address. DAL < 01:00 > are reserved. BM < 3:0 > determine whichbyte(s) of the
longword address are to be used. Refer to the Menzory Access Protocol section for adchnonal
information. The DAL mfermanon is defmed in Table 2. :

Tabie 2:CVAX 78034 Dam and Address Line Information ;
DAL ‘Operandlength DAL Type DAL S DAL}‘<'01=06‘>, i

31 30 R 29 o <28 02> _
0. 0 DMA hexword 0 - Memory longword address reserved -
0 1 longwerd 1 i I/O i

1 0 quadword L o : ﬂ
1. 1 . DMA octaword V | )

extemal processor regl.ster x;ead or write,
Reglster (IPR) number. that is being acce; ! ] , )
processor reg1ster read, or interrupt ackno ed cycle, DAL< 00> z:eceive mcmmng :,nforma—
tion. Durmg the second part of a CPU wr,xte or, extemal processor reglster write cycle
DAL < 31:00 > are used to transmit the data to be wmt

Cycle Status and Data Parity (CSDP <3:0 >)—These time:,
and data parlty mformatlcm between AtV
cycle m and WR provide staru: informati e current bus cycle as listed in Table 3.
CSDP3 mdlcates the set in the internal k\t:he memory that eu;g allocated durmga, cachable read
operation and i fmed durmg‘a,il;»othgr bus cycles, C&Bg’} is assezted to: apeafy ser 1 and
negated to specgfy set2. ) , o ey

mﬁgllmlexed h@es Hgnsfe: cycle status
evices. During the first part of 2 bus

N

*““raiszé 3 -”i:\%ﬁjé ”713‘0‘32% m;;z‘fyaé *‘si‘a‘mgf‘ o

WR CSDP Bus cycle type
H L ] L RIS 7request: D-stream read
H | L H‘ H L extemal IPR read
H L : T H , H 5 mtermpt acknbwfedge o -
H: H ‘ L ' L .. ~/_frmquest Lstreamread |
H H L H'  demandDisticam read Iock)
H H H t - L u.,gdemand D-stream read modai:y intent
H‘ H H H demandD stream read (no lcck or modlfy mteht)
L L L i ,mserved - o e i '
' L ; “L Hee o reserved» : !
L L “éktemallfgg&;ite

Confidential and Proprietary : 1-5




Mﬂﬂﬁﬂ #77s Preliminary |

WR 0 CSDP e ol “”Bﬁs‘éycle't‘)}j’e AR
O YO T e W T et B A T 3
L L H H ‘ reserved for use by DMA devleesr
L H L " L “resetved ¢ ‘

L H L H write unlock” :
L H - H - L -~ reserved - |

L H H H - wfg,t:e:no unlock

*H =high level, L=low level

During the second part of a bus cycle, CSDP < 3:0> transfer byte parity mformatlon for DAL line
data during a CPU read, CPU write, or external processor write cycle. Parity checking is not
performed during external processor register read cycles or during transfers between the CPU and
the optional floating-point accelerator. Even parity is checked or génerated on even bytes, and odd
parity is checked or generated on odd bytes, During a CPU read ¢ycle, the CPU reads ‘and checks the
data parity on the bytes specitied by the BM<3:0> information. During a CPU write or external
processm register write transaction, the CPU g generates data parity for all bytes regardless of the
state of BM< 3:0> . The DPE sxgnal spec1f1es when the CPUisto check or generate parity. It must
not be asserted during external processor register read operauons or durmg transfers between the
CPU and the optional floating-point accelerator.

Data Parlty Enable (DPE)—This bldlrectxonal signal controls the checkmg ot generatlon of data
parity. During 4 CPU read cycle or interrupt acknowledge cycle, D DPE is asserted by external logic
with the DAL data to enable parity checkmg by the CPU of the mcommg data. During a CPU.write
cycle or external processor register write cycle, the CPU asserts DPE to indicate that vahd parity
information is on CSDP< 3:0> . DPE must not bé asserted during external processor reglster read
transfers or transfers between the CPU and the optional floating-point accelerator. DPE requirés an
external pullup resistor and must be as serted by an extemal mterf ace that requires the CPU to check
parity.

Bus Control : V

Address Strobe (AS)—This bidirectional signal indicates that valid address information is on the
DAL lines. The CPU asserts AB-to dindicate-that the address and ‘control information on
DAL < 31:00> and CSDP<3:0> is valid. During a DMA transfer, the CPU uses the assertion of
AS by the DMA device to latch the DMA address The CPU'uses this address during a DMA cache
invalidate cycle.

Data Strobe (DS)— This signal prov1des timing mformanon for data transfers. Durmg a CPU read

external processor register read, or interrupt acknowledge bus cycle, the CPU asserts DS to indicate
that DAL < 31:00> and CSDP<3:0> ate available to receive incoming data and deasserts DS to
indicate that the incoming data has been latched into the CPU. During a CPU write or external
processor - register write cycle, the C PU asserts DS to indicate that DAL< 31:00> and
CSDP<3:0> ‘contain valid outgoing data. It deasserts DS to 1nd1cate that the data is about
tobe remaved o : : :
Byte Masks (BM <3 0 S )-—These 51gnals 1nd1cate which bytes of the DAL lines contain vahd data

During a CPU read cycle, they indicate the bytes of data and associated parity bits that are to be
transferred onto the DAL and CSDP lines. During a CPU write cycle, theyiindicate the bytes of the’
DAL lines and CSDP lines that contain valid data and' pam‘v information. The BM<3:0> line
information is qualified by the assertion AS ' ?

1-6 Confidential and Proprietary




ol Preliminary’ .

Write: (WR)-——This signal indicates the direction of data transfer on' the DAL bus for the current
bus cycle. When asserted during a CPU bus cycle, the CPU will-transfer data onto the DAL lines.
When deasserted during a CPU bus cycle; the CPU will read data from the DAL lines. WR can be
used to contxol the direction of the external DAL transceivers inputs. WR is quahfned by the
assertlon Qf AS v ,

Data Buﬁen Enable {DBE)-——Thxs mgnal and WR isused to ccmm'ol extemai DAL transceivers. The
CPU asserts DBE to enable the DAL transceivers and. deasserts ﬁ to: chsabie the DAL
transceivers, DBE is qualified by the assertion of AS.. . « .. 3 e
Read:y (RDY)—-Thxs signal is asserted by external lcgax: t0] mdxcawtha ﬁormal termination cf the
current bus cycle It may a,lso beasseftcd wn:h the m:ror mgnal (ﬁ“}to rc:quest a retry:of ﬁhe current
buscycle: e ; o b b
Error (ERR)-—TIus ﬂgnﬁl is asserted by ex‘ternai logic to ndlcaie the hbnm‘mal termination af the
current bus cyde It may also be asserted w1th RDY to requzest a re‘try of rhe current bus cshtle

System Control ; S b e s b il b
Reset (RESET)-——Thls mgnal is asserted by extemal loglc to force thc CPU to its mltlal powemp
state.

restart process with a restart code equﬂ o 2 and the H
sensmve sampked eVery rmcrocycfe, and mtemally syﬁchremzed’

Interrupt Request ( ‘Qi 3:0> )~=These sigtials allow external logic to transfer intetrupt réquests
to the CPU. The CPU responds to the assertion of one or more of these signals by executing an
interrupt acknowledge bus cycle for the highest pending Interrupt Priority. Level (IPL)S T IPL
associated with each line is hstéd in Table 4 The m s;gnaIs are Ievei‘-*sensxtfve an& m«e
sampledevexﬁymlcrocycle, DI TTLT e BT TR R SRR R P I e

rilnge

Table 4 - CVAX 78034 Interrupt Request Lme Assxgnments

Line ’Intermptl’no' ity B o
ST Level (hexadecimal) N

IRQ3 IPL 17

RQ2 ~ IPLI6

w1 | L | A
m B IPL 14”; : T ,'-:;v fvf LS B I SRS FIPTOS L *

Powerfail (PWRFL)— This signal allows external logic to notify the CVAX CPU of a power failyre.
When asserted, it results in the generation of an interrupt at IPL 1E (hexademmal) The CPU
responds to the interrupt by accessing System Control Block (SCB) vector OC (hexadec;mal) The
CPU does not execute an interrupt acknowledge bus cycle when responding to this intefrupt. This
signal is edge-sensitive, sampled every microcycle, and internally synchronized by the CPU.,

Corrected Read Data (CRD)—This signal allows external logic to notify the CPU of an ECC error mz,
memory. Assertmg thls sxgnal results in the, generatlon of-an mterrupt at IPL. 1A (hexadeamal)
The CPU responds to this interrupt by accessing SCB vector 54 (hexadecimal). The CPU does not

Confidential and Proprietary . 1-7




Eosnoen Preliminary ' CVA 34

execute an interrupt 'acknowledge bus cycle when responding to this interrupt. This Sig“nal is edge
sensitive, sampled every microcycle, and internally synchrofiized by the CPU:

Interval Tlmer (INTTIM)—This s1gnal allows external logIc to signal an mterVal timer rollover to
the CPU. The assertion of this signal results in'the generation of an interrupt at IPL 16
(hexadecimal). The CPU responds to this interrupt by accessing SCB vector CO (hexadecimal). The
CPU does not execute an interrupt acknowledge bus eycle when responding to: this interrupt. It is
edge-sensitive, sampled every microcycle, and internally synchromzed by the LPU j

Memory Error (MEMERR)— This signal allows external logic to indicate to the CPU’ thata memory
error has been detected. The assertion of this signal results in the generation of an interrupt at TPL
1D (hexadecimal). The CPU responds to this interrupt by accessing SCB vector 60 thexadecimal)
and does not execute an interrupt acknowledge bus cycle. MEMERR provides support for the
implementation of a memory subsystem with multiple write buffers or delayed write transfers:
When the CPU writes to this type of memory subsystem, the address and data are latched and the
RDY signal is asserted. If an error occurs it is reported to the CPU when MEMERR is asserted. It is
edge-sensitive sampled every microcycle, and internally synchronized by the CPU. . . ;

D:rect Memory Access Control

DMA Request (DMR)—This signal allows external logic to request use of the DAL and re]ated
control signals for a DMA transfers or for other purposes. It is a level-sensitive sxgnal sampled
every microcycle, and lntemally synchromzed by the C PU.

DMA Grant (DMG)—This 51gnal is asserted by the CPU to grant control of the DAL hnes and
related control signals to external logic. The CPU sets the DAL<31:00> AS, DS, BM<3:0>,
DEE, DPE, CSDP< 3:0>, and WR lines to a high-impedance state. When extemal Ilec deasserts
DMR, the CPU responds by deasserting DMG and by starting the next buscycle. . o

o

Cache Control .
Cache Control (CCT L)——The {unctzon of thlS 51gnal depends onthe tj, pe of bus cycle

During 2 DMA cycle, the assertion of this signal by external logic initiates a conditional cache

invalidate cycle. CCTL is edge-sensitive, sampled every mlcrocyde and mternally synchronized by
the CPU. ) . P ; ,

During a CPU read cycle, thxs signal is assertcd to prevent the accessed data from being stored in the
internal cache memory of the CPU. CCTL is level-sensitive and must be assextgd synchronously
with the timing sampling point for the CPU read cycle.

Floating-point Accelerator Control

FPA Data (CPDAT < 5:0>)—These bidirectional lines transfer opcodes, contro] mformanon
condition codes, and exception status information between the CVAX CPU and the CVAX FPA.-

FPA Status (CPSTA < 1:0 > )—These bidirectional lines indicate the mterpretatlon of the C PDAT
<5:0> line mformatlon to the CVAX C PU or CVAX FPA.

Power Supply
Voltage (Vm,)-——5 volt power ‘supply

Ground’ (\Ls)u—-Ground reference

Clock Tmung

Clock A and Clock B (CLKA and CLKB)—T hese i inputs supp]y the baslc cloci«: ’tlmxng fo the CVAX

CPU. The inputs are nominally 20 MHz and are MOS- level sf;uare ane 51gnals CLKA is. phase
shifted from CBKB by 180 degrees.

1-8 Confidential and Proprietary




Miscellaneous ‘ §
Clear Write Buffer (CWB)—This signal is asserted by the CPU to indicate that mtemal conchtmns
of the CPU require clearing of the external write buffer (if included). This signal provides test
information when the TEST input-is asserted. It is reserved for manufacturing test. The CPU ;-
asserts CWB Z

» At the start of an instruction or sequence that can change the processor state. These are CHMx,
REI], start of an interrupt, exception or abort (including machine check, BPT, etc.), or entry to the
console {including HATT).

« Asapartof an instruction or sequence that can change context such as end of LDPCTX or end of
SVPCTX.

» As a part of an instruction or, sequence 1nvolved in ermr recovcry such as a write to the MAPEN
CADR, or MSER registers. ‘ , : .

Test (TEST)—Reserved for manufacturmg test. Tl'us mput prcmdes the gmund fcr the Ab Ioglc
and must be connected, to Vs durmg normal operation, .

'

Architecture Summary

The programming model for the CVAX 78034 archuectune is shown in Flgure 3. Itis, greuped into 1
application programming (user) area and system programming area.

The sixteen general registers and Processor Status Word (PSW) are user accessible. The system
registers are privileged registers that are used by the operating system. These registers are used for
context swuchmg, memory management cache memory control, reportmg of memory subsystem
status, exception and i mterrupt handlmg, and processor control

APPLICATIONS PROGRAMMING
GENERAL REGISTERS

v . G =1~
TR RN R R 3 ¥
S - ;
R3
R4
2 |
L i i L g .
AN (R T 1
R10 PROCESSOR STATUS WORD
Rig Poaiv ‘L
: CSYSTEM 11 PROGRAMMING "7+ b
PROCESS CONTROL REGISTERS _INTERRUPT REGISTERS.
T | | SIRR |
[ PCER ] [ SISR ]
MEMORY MANAGEMENT REGISTERS. o T
Il POBR 1
[ ros | L __ASTLVL ] .
[ rryes i *"MEMORY SYSTEM REGISTERS * o ' ,
| PILR - 1 7 caon T
[ sB ] [ TTMSER 7
| SLR | ; e v
i X PROCESSOR STATUS LONGWORD
[ MAPEN T [ IYPL[ psw |

Fzgwe 3= CVAX 78034 Programmzng Model

Confidential and Proprietary 1-9




Egeanen. . Preliminary’

Genetal Registers s fing
The CVAX 78034 has sixteen 32-bit general registers th.at can be used for temporary storage a8
accumulators, base registers, and index registers. The registers used for specific functions are the
Stack Pointer (SP), Argument Pointer (AP), Frame Pointer (FP), and Progtam ‘Counter (PC).
Stack Pointer (SP)—Five SP registers are included, one for each operating mode of the processor
and one for use by the system when handling interrupts. The SP contains the address of the
processor defined stack The stack pointer(s) used is determined by the operating mode of the
processor.

Argument Pointer (AP)—The VAX procedure call convention uses a data structure called an
argument [ist. The AP register contains the address of the base of this structute.

Frame Pointer (FP)—The VAX procedure call convention builds a data structure on the stack caﬂed

a stack frame. The FP register contains the address of the base of this structure.

Program Counter (PC)— The PC register contains the address of the next byte of the pmgram nand
is not used as an accumulator, index; or temporary register. 113

Processor Status Word (PSW)—The PSW ¢ontains the condition codes and trap enable flags for
the CVAX 78034 CPU. The PSW is the user accessible portion of the processor status longword.
The lower 16 bits of the PSL contain the PSW. The format of the PSW is shown in Figure 4 and
described ini ‘Table 5.

15 1413 12 ‘11 10 09 o8 07 06 05 04 03 02 01 00

mez ojoviegl vt Nz v]oe

Figure 4« CVAX 78034 Processor Status Word Format

Table 5 » CVAX 78034 Processor Status Word Description

Bit Description | : L
15:08 MBZ—Must be zero.

07:04  Trap enable flags-»—Thesé bits are used to enable traps to occur inspecial circumstances.
DV (Decimal overflow)—Used by macrocode in the emulation of decimal instructions.

FU (Floating underflow)-—~When set, this bit causes a floating underflow trap after an
instruction that produced a floating result too small in magnitude to be represented.

IV (Integer overflow)—When set, this bit causes an integer overflow trap after an
instruction that produced an integer result that could not be correctlv represented in the
space provided. o i

T (Trace)—When set, this bit causes a trace trap to occur after execution of the next
instruction.

03:00 Condition Codes«These bits contain information related to the result of the last CPU
arithmetic or logical operation. The bits are set as follows: ~ *~
N =1 if the result was negative.
Z =1 if the result was zero. * .
V=1 if the operation resulted inan arlthmeue overﬂow ~
C=1if the operand resulted in a carry out of or bogrow into the most significant bit.

1-10 Confidential and Proprietary




Preliminary - CVAX 78034

Process Control Registers
The process control reglsters are’ used by the system to access the system controi black and the
process control block. / '

System Control Block Base register (SCBB)—The SCBB register contains the base address of the
System Control Block (SCB). The SCB contains the vectors used-for serv;cmg interrupts and
exceptions,

Process Control Block Base register (PCBB)—The PCBEB mntams the base address of the Process
Control Block (PCB). The PCB contains the hardware cont&xt of the current process.

Memory Management Registers '

These registers are used by the system to enable the mtemal memory management unit of the
CVAX CPU and to access the page-table entries in memory used to translate virtual addresses into-
physical addresses. The function of each of these registers is:described in the Memm"y Managemenf
section.

Interrupt Registers SRR ; o

These registers are used to contro] the interrupt system of thc processor They monitor mtermpt
requuests, current interrupt priority level,-and. the interrupt stack pmrite:r The fﬂm:tmn of each af
these registers is. descnbed inthe Exceptzam and: Intmpt section,’ : ,

Memory System chxstcrs ha ' i /

These registers aré used to control: the opemnon 0£ the mtema] cache m&moéry and to repurt status
and errors for both the cache memory and the external memory subsystem. 12 :
Cache Disable Register (CADR)—The CADR controls the internil ¢ache memory. This- register
enables and disables:cache memory opefation; selects the set (Set'l and Set 2) to be used,; and
selects the type of reference(s) to be stored. Thi format of the CADR reglswr is shscwn in Fxgure 5.

anddescmbed in Table 6. . P R F 0 YRR SR SR RN ¥
31 08070605 0403020100 .
L2500 D A 0 WD
0 SEN[CEN| 1/ 1| Th | cADR
N T Y 0 R 0 A AT Al

Fzgure 5 CVAX 78034 Cacbe Disable Register Format

Table 6 = CVAX 78034 Cache Disable Register Description

Bit Description
31:08 Readaszeros

07:06. - SEN {Set enable)—These bits are read/write and are used-to embie Set 1 and bet 2
sections of cache memory.

Bit - Set2 . L /Set.l

07 06

0 0 disabled ~ disabled
0 1 disabled - -enabled
1 0 “enabled - disabled @
1 1 enabled enabled

Confidential and Proprietary 1-11




Bit Dcscnptlon

05:04 CEN (Lache enable)——These read/wrlte blts are used to enable cache and to select the
type of references to be stored in cache.

k . Bit o Result
05 04
0 . cache disabled

1 I-stream only
1 I-stream and D-stream

03:02°  Read as ones.

0 1 D-stream only (for diagnostic use) \
0
1

01 WW (Write wrong parity)—This bit is set to cause wrong parity to be stored when the
cache is written.

00 DIA (Diagnostic)—This bit is set to select diagnostic mode for cache memoty. The cache‘
cannot be cleared when this bit is set.

When CADR bits 5:4 selecﬁ I-stream:only (10)to be stored in cache, the CVAX CPU automatically
clears the cache when an REI instruction is-executed. The REI instruction must be executed priot
to running code from an updated page of memory as defined by the VAX Systemn Reference Manual
(VAX SRM). Therefore, systems that adhere to the VAX SRM are not required to monitor DMA
write operations in order to prevent stale data from accumulating in the cache. When CADR bits
5:4 select D-stream only (01) or I-stream and D-stream (11), invalidate-on-hit cycles must be used to
remove stale data from the cache, . , :

Diagnostic mode should be selected only when one set (Set 1 or Set 2) is enabled. The dxagnostlc
mode prevents clearing of the cache when the CADR is written. o

Memory System Error Register (MSER)—The MSER contains status and error information for the
internal cache memory and the external memory subsystem. The format of the MSER register is
shown in Figure 6 and described in Table 7.

3 I . 080706050403020100
LI P 2 120 DT}

©AmiAlcici i AlAl  MSER
N N N N IO A O N O O A A U viplef | I1ig

Figure 6+ CVAX 78034 Memory System Error Register Format

Table 7 - CVAX 78034 Memory System Error Register Description

Bit  Description

31:08  Read as zeros. ;

07 HM (Hit/Miss)— Set for a cache miss and ¢leared for a cache hit.

06 DAL (DAL parity)—Set when a parity error is detected on the DAL durmg a demand or

request read operation. It is cleared by wrltmg, to the M% R.

05 MCD (Machine check on DAL pamty error)—Set whm a DAL parity error: causes a
machine check. It is cleared by writing to the MSER.

1-12 Confidential and Proprietary




Bit Description

04  MCC (Machine check on cache parity error)—Set when a cache parity error (tag or data)
causes a machine check. It is cleared by writing to the MSER.

03:02 1—Read as ones.

01 DAT (Cache parity error in data)—Set when the cache parity error was detected in the
data. It is cleared by writing to the MSER.

00 TAG {(Cache parity error in tag)—Set when the c%iché"p'arify error was in the tag. It is
cleared by writing to the MSER. This is the only bit set ‘when a cache entry has a parity
error in both its tag and data. e : :

Processor Status Longword (PSL)—The I PSL contams pmccssor stat‘ "nformatlon The lower 16
bits are the user accessible Processor Status Word (PSW), The upper 16 bits are privileged and
accessed only by the system. The format of the PSL is shown in Figure 7 and descnbed in Tabie 8
Refer to the Cacbe Memory secnon far a descmptlon of the PQW

31 3029282726252423222120 1615 a0

N ‘CUR RV | NG DN DU DO NN FNON NN AN NN S DO NN NN SN SNE N BN S MO g
{mBz} B BT TR | PROCESSOR STATUS WORD - | :PSL
V821, | |mopjmon} E : Act ,

[l ISTONEN I TN TR NS WO O WA O O 0 O S O R T O

MBZ FPD MBZ TR R SR
TP BTN

s Fz’gu.mi’y' CVAX 78034 Processor Status Loungword Eométt, oiE

'I’able 8 CVAX 78034 I’%ocessor Status Langword Iﬁescrlptmn
Bit Descnpnon , :
31 MBZ-<-Mustbezero.

30 TP (Trace pending)—Forces a trace trap when set at the begiﬁniﬁglof a'ny' instruction. Set
by the processor if the T b1t in the PS\W is set at the begmmng of an instruction.

29:28 MBZ——-Mustbezem

27 FPD (First ; part done)—Set when an exception or mterrupt occurs during an instruction
that can be suspended. If FPD is set when the processor returns from an eéxception or
interrupt, it resumes the interrupted operation from where it stopped rather than

restartmg the complete mstructlon i e
[STa e L Gk vE i gy

26 1S (Im;errupt stack)wSet when the pmc«:asor is executmg ot the mterrupf stm:k

Confidential and Proprietaty 113




Bit  Description

25;;24,‘. CUR MOD (Current mode)——lndlcates the access mode of the currently exeautmg

process. ot Y ot I
Bit o Mode '

25 24 o

0 0 7 ‘Kernel

0 1 - Executive

1., 0 .. . Supervisor .

1 1 .. User . .

23:22 PRV MOD (Previous mode)w—-Loaded from CUR MOD bits 25:24 by exceptions and
_ Change mode (CHM\) instructions. Qleared by i interrupts, and restort,d by Return from
T Excepnon or Intcrrupt (RFI) mstrucnon T , :

21 0 MBZ~+Must.be Z€e10: )

20:16  IPL (Intetrupt Priority Lé\}eij Contains the current bro(:essot éfiéfitv in the‘rén:ge 0 to
1F (hexadecimal). The processor will accept mterrupts only on Ievels greater than the its

current IPL. . :

15:00  Processor Statua Word Contams processor status that is-¢ accesstbie by the user.

Implementation Specific Registers
The registers that are specific to the CVAX 78034 CPU are the Interval Clock Control and Status
(ICCS) register, Console Saved PSL {SAVPSL) register, and the Console Saved PC (SAVPC) register.

Interval Clock, Control, and Status Register (ICCS)—The ICCS register, Figure 8, controls the
interval timer interrupt. It contains a read/write IE bit 06 that is used to enable or disable interval
timer interrupts generated by the assertion of the INTTIM input. When this bit s set, the interval
timer interrupts are enabled and the assertion of INTTIM results in an interrupt request at IPL 16
(hexadecimal). When this bit is clear, the interval timer interrupts are disabled and the assertion of
INTTIM does not generate an interrupt request. Bits 31:07 and 05: 00 are .redd as Zeros and are
1gnored durmg write operatlens -

WO gy e B Q706051 “ oo
| A A A TTTTT

!
E

hees -

lllllllilllJllllllelill l]lll

f zgme 8 C VAX 7 8034 Iﬂte’rwl (,lock Control cmd Stcztm Regmer Format
Console Saved Registers (SAVPC and SAVPSL) —The SAVPC and SAVPSL regi\stéxié<rééord the value
of the PC and PSL when the CVAX CPU restarts: The SAVPC register contains the previous value of
the PC befare the restart operation. The SAVPC and SAVPSL register formats are shown in Figure 9.
The SAVPSL register contains the information described in Table 9.

1-14. Confidential and Proprietary




2asaoen Preliminary -

o 00
I L L I o
' SAVED PROGRAM COUNTER {SAVPC
RN RN RN NE N
31 e T T eistas 0807 © oo
L N O I L0000 O
PSL <31:16> RESTART PSW SAVPSL
RN NENE RN ke I

MN’EN—-J LVAUD STACK FLAG

F ‘igure 9+ CVAX 78034 Console, Saved Regtster Formats o

Table 9« CVAX 78034 Console Saved Processor Status Longword Reglster Descrxptlon

Bit Descrlptlon

31:16  PSL (Processor Status Longword)——Contams ::he prevxous PbL value k
15 MAPEN (Map Enable)—Set to enable the map.

14 Valid stack flag—Set to indicate a valid stack flag.

13:08  Restart Code—Contains the restart code (hexadecimal) as follows
Code '+ Definition. ‘

2 HAIT asserted

3 _initial power on

4  interriipt stack not valid'during exception

5 machine check normal exception

6~ | HALT instruction executed in kernel mode

7 - SCB.vector bits 01:00=11. . .
8 " SCB vector bits 01:00= 10

A CHMx executed while on interrupt stack

10 ACV or TNV during machine check exception

1 ACV or TNV durmg kernel stack not valid exception -~
12 machine check during machine check exception

13 machine check during kernel stack not valid exception ™

19 PSL bits 26:24 = 101 during interrupt or exceptlon

1A PSL bits 26:24 = 110 during interrupt or exception
1B PSL bits 26:24 = 111 during interrupt or exceptmn :
1D PSL bits 26:24 = 101 during REI
1E PSL bits 26:24 = 110 during REI
1F PSL bitd 26:24 = 111 during REI

07:00  PSW (Processor Status Word)—Contains the previous PSW value.

System Identification Register (SID)—The SID register is a read-only register that specifies the
processor type as 2a GVAX CPU and defines its microcode revision level: Figure 10 shows the register
format.

Confidential and Proprietary 1-15



alilolilt ol JEE Preliminary CVAX 78034

31 2423 0807 00
T LD U A A M A A A D O AR R P T
10 (DECIMAL) RESERVED MICROCODE REV.
Y T T | 1N TN U T T O O A S I | | NS T |

Figure 10+ CVAX 78034 System ldentification Register Format

DataTypes I S i
The architecture of the CVAX 78034 supports the following data types: byte, word, longword,
quadword, character string, variable-length bit field, and, through the optional floating-point

accelerator, F_floating, D_floating, and G_floating. Figures 11 shows the integer, character string,
and field data types. Figure 12 shows the floating-point data types.

5

WORD

15 00 07 o0
LN LA B DL S B D B N R T T T T T7T
Lo -l A BYTE (R Y.
TR SN S TEN SN [N WS LN W (R RS R IO | R N TR X2% WO a1
LONGWORD ; ; , . P
31 - . . 90
III(»II]TTIIII!IIlllllllll;lltllllf;,,:
A
S WO TN N O T T U N O T N T T N T N SO U O O 24 R % P s
QUADWORD o
31 , : 00
LI A 1 S B A RO N (O O U S kS AR A O O U A B
PN SRR TR TN NN TN A0 TN U T T I il U N VA ik A0 O A Ol 0 A
LI N N O A A B S A S S N S N B A N SN S G N S B A+
FNSR VR VNS YR S0 E TN DNV T Y U0 UG K VOO OO JURE WO UK S0 WL LR U it OO 00 A o A it
63 . . 32
CHARACTER STRING
07 00
L I B I
A
At
[ T W |
!
07 i 00
L N A B
AL
[ I
VARIABLE LENGTH BIT FIELD
P+§ P+S-1 ‘ PPt 00
FFFFFFFFFFFFEFFFFFEFRFRFFRRFF oA
s1 ' 00

Figure 11 = CVAX 78034 Integer, Character String, and Field Data Types

1-16 Confidential and Proprietary



t
E s e 6
dlilolilt/a]1 8 Preliminary
D_FLOATING
15 14 a7 Q06 : 00
T T T l 4 i T 1 1 1
8 EXPONENT FRACTION
FRACTION
FRACTION
. FRACTION
i i i i i i i 1 1 1 i i
63 48
F_FLOATING
15 14 07 06 00
i T T ! T T T L T 1
S EXPONENT FRACTION
FRACTION
i 4 1 1 i L i ] i A i |
31 16
G_FLOATING
15 14 04 03 00
H i i i T T i 1 [ H
S EXPONENT FRACTION
FRACTION
FRACTION
FRACTION
i 1 ] 1 i | i i I i i i
83

« Instruction Formats

Figure 12 =« CVAX 78034 Floating-point Data Types

48

(A2

(A+4

:A+6

A2

" (A2
A4

(AB

The VAX instruction set has a variable-length instruction format that may be one byte or more
depending on the type of instruction. The general format of a VAX instruction is shown in Figure
13. Each instruction is made up of an operation code (opcode) followed by no operand or up to six
operand specifiers. The number and type of operand specifiers depend on the opcode. All operand
specifiers are similar and consist of an address mode plus additional information used to locate the
operand. This additional information contains up to two register designators and addressds, data,
or displacement values. The use of the operand is determined implicitly from the opcode and is the
operand type. It includes both the access type and the data type.

Confidential and Proprietary

1-17



S—

Blilolitlal!] Preliminary CVAX 78034

OPCODE (1 OR 2 BYTES}

OPERAND SPECIFIER 1

OPERAND SPECIFIER 2

OPERAND SPECIFIER 3

3T

]
1
|
i
{
|
i
I
|
|

OPERAND SPECIFIER 6

Figure 13 « CVAX 78034 Iustruction Format

Opcode Format § o , - .

Each VAX instriction contains an opcode that specifies the desired operation to be performed, The
opcode may be one ot two bytes depending on the contents of the byte at address-A. The opcode is
two bytes if the value of the byte at address A is FD (hexadecimal). Figure 14 shows the opcode
format. I o ‘

ONE BYTE OPCODE:

07 00

OPCODE A
i i L i H H 1

TWO BYTE OPCODE:

1 R - IRt AN RSt o o0
L/ B AN AESUN IUERE | T T T T T T T
OPCODE FD A

AT Y A 1 o (TRERIGEE RS LRSI B S | ]

i i 1

‘ Figu‘re 14 CVAX 78034 Opcode Format

1-18 Confidential and Proprietary



———

Operand Type . ' A ~
The operand type specifies the use of the operand associated w1th an instruction. Informamon
provided by the opcode includes the data type of each operand and its method of access. An
Operand may be accessed as follows:

* Read—The specified operand is read- only h

» Write—The specified operand is write-only.

« Modify—The specified operand is read, may or may not be modified, and is written,

* Address--Address calculation occurs until the actual address of the operand is obtained. In this
mode, the data type indicates the operand size to be used in the address calculation. The
specified operand is not accessed directly although the instruction may use the address to access
that operand.

+ Variable bit field base address—If only R[n] is specified, the field is in general register R[n] or in
Rln+17R[n] (i.e., R[n+ 1] concatenated with R[n]). Otherwise, the address calculation occurs
until the actual address of the operand is obtained. This address specifies the base to which the
field position (offset) is applied.

= Branch—No operand is accessed. The operand specifier is the branch dmplacement In the
specifier, the data type indicates the size of the branch displacement. # :

- Addressing Modes

A summary of the addressing modes used by the CVAX 78034 is hsted in Table: 10 A brief
description of each mode follows.

Table 10 » CVAX 78034 Summary of Addressmg Modes
General Register Addressing Mode

,Access St ey
Hexadecimal Name Assembler r “m w a v PC SP Indexable?
0-3 literal S #literal v f £ f £ - - f
4 index i (Rx) VoV vy oy b Yesioe® ledes
5 register. . ~ Rn v.ov oy o Loy o ow S
6 register deferred {Rn).. VoV oY.¥. ¥, ou e
7 autodecrement ~(Rn) VvV V. V vV ¥oou Cuxe
8 autoingrement .~ (Rn)+ VOV VOV Y P Y e X
9 autoincrement  @MRn) vy v vy v v p ux
deferred e : ) R
A bvte displacement - . B'dRn) v v v v oy s
B _byte displ acement @B dRn) y yuyvoyoy o op o Ly ooy
deferred i z ‘ e e bl
C word displacement W'dRn) v v v v v o p. oy .
D ~ word dxsplaccmnm . @W'dRn)y v v v v poy LY
deferred T P N . A : e
E longword displacement L'd(Rn) v v v v v p y vy
F ” longword Jlsphaemmt @L" d(Rn), v Vv vy Py Ty
- deferred o ' . I '

Confidential and Proprietary’ 119

N



SO

dilgliltal Preliminary CVAX 78034
Program Counter Addressing Mode

e , Access
Hexadecimal Name : Assembler * m w a v -+ Indexable?
8 immediate I"#constant v. u u v vy u
9 absolute @#address. v v v v v y
A bvte relative B address v v v v-v : v
B byte relative deferred  @B"addressy v v v v y
C word relative W address v. vy v v oy y
D word relative deferred W address v- v v v vy oy
E longword relative - Lladdress v v v vy ' y
F longword relative Liaddress v v v vy vy y

deferred \ = SR

Addressing Legend
Access: - Syntax:
r = read i = any indexable address mode
m = modify d = displacement
W= write, Rn = general register; n-= 0 to 15
a = address Rx = general register, x = 0 to 14-
vV = fiéld
Results: "
v = yes, always valid address mode
f = reserved address mode fault R
- = logically impossible
p = program counter addressing
u = unpredictable
uq = unpredictable for quad, D_/G_floating, or field if pos + size > 327
ux = unpredictable if index reg = base reg

General Register Address Modes

The general register address modes use one or mote general registers, depending on the instruction
and data type, to contain the operand(s) or information required to locate the operand(s) to be used
by the specified instruction. ‘ o

Register Mode—The operand is contained in one of the general regi‘s'téxf's (Rnj}.
Register Deferted Mode—Register Rn contains the address of the operand.

Autoincrement Mode—Register Rn contains the address of the operand.

After the operand address is determined, the size of the operand in bytes (determined by its data
type) is added to the contents of Rn and the result is placed in Rn,

Autoincrement Deferred Mode—Register Rn contains a longword address that is a pointer to the
operand address. After the operand address has been determined, the value of four is added to the
contents of Rn and the contents of R are replaced by the result.

Autodecrement Mode—The size of the operand in bytes (determined by its data type) is subtracted
from the contents of Rn and the contents of Rn are replaced by the result. The updated contents of
Rn are the address of the operand.

1-20 Confidential and Proprietary



Literal Mode—Litcral mode addressing provides an efficient means of specifying ifiteget.constants.

in the range from 0 to 63 (decirnal). In addition to short integer literals, this mode can be used to
‘specify floating-point hterala The value is containied in the opérand specifier. ’

Dlsplacemem Mode-«The dlsplacement conramed in the operand spemfler afte "\g s;gn—
extended to 32 bits if it is a byte or word, is added to the contents of register Rn. The msu_  is the
operand address. B

Displacement Deferred Mode— The displacement contained in the operand specifier, after being
sign-extended to 32 bits if it is a byte or word, is added to the contents of register Rn, -The result is
the longword address of the operand address. '

Index Mode—The operand specifier con51sts of a mlmmum of two by tes, a prxmarv operand
specifier, and a base operand specifier. The primary operand specifier contained i in bits 0 through 7
includes the index register (Rx) and a mode specifier of 4. The address of the prlmary operand is
determined by multiplying the contents of index register Rx by the size. of the primary operand in
bytes as determined by operand type. This value is then added to the address, spec1f1:d by the base
operand specifier (bits 15:08) and the result is used as the primary operand address

Program Counter Addressing

Register 15 is used as the Program Counter (PC). It can also be used as a regxster in addressing
modes. The processor increments the program counter as the opcode, operand specifier, and
immediate data or addresses of the instruction are evaluated. The incremented vahue is determined
by the opcode, number of operand specifiers, etc. The PC can be used with éll \7AX addressmg
modes except reglster index, register deferred, or autodecrement. §

Immediate mode—This mode is autoincrement mode when the PC is used as the general regxster
The contents of the location following the addressing mode are immediate data '

Absolute mode—This mode is autoincrement deferred using the PC as the gerxeral reglster Th¢
contents of the location following the addressing mode are used as the operan@ address. Thls is

,,,,,

memory where the assembled mstructlon IS executed) \

Relative mode— This mode is displacement mode with the PC used as: tbe gergg’al reglster The
dxsplacement that follows the operand specifier is added to the contents of the PC, and the. result is
the address of the operand. N )
Relative deferred mode—This mode is similar to relative mode except that the dxsplacement t:hai
follows the addressing mode is added to the contents of the PC; and the result. is the Jongword
address of the operand. .

Branch Addressing Lk
During branch displacement addressing, the byte or word dleplacement is sign-ex: o 32 bits
and added to the updated content of the PC. The updated content of the PC is.the address of the
first byte beyond the operand specifier. , BT .

Confidential and Proprietary




ZASOOSD - Preliminary CVAX 78054

Thxs section provldes a summary o{ the VAX mstructlons 1mplemenred,by the CVAX 78034 the
floating-point instructions supported by the ﬂoatmg -point accelerator, aad the emulated instryc-
tions that are assisted by the mlcmcode of the CS/AX 78034 The standard notatxon us;d for the
operand specifiers is

<mame> < accese type> ‘<data type>

1. Name—A suggestive narme for the operand in the comext of the mstrucnon It is the capltahzed
name of a register or block for implied operands. B
2. Access typemA letter denotlng the operand speafier access type. -
‘a=address operand ;
' b=branch displacement §
= modified operand (both read and wr1tten) o
S read only operand o
=if not “Rn;” same as address opetand other\mse Rln+1TR[n]

w=write only operand
3. Data type—A letter denotmg the data type of the operand

b= by:e I

,d =D ﬂoatmg

f= R.,ﬂcvatmg

g=G_floating

I=longword

'q=quadword , ' L

v= field (used only m 1mphed operands) ‘

w=word E

K multxp%e !dngwords (uscd only in 1mplied operands}

Qperand are denoted by braces { }. The abbrevlatxons for condmon codes are
- ¥ =conditionally set/cleared :
~=not affected
O =cleared
I=set. . = unn e NG S o

“The abbreviations for exceptions are

rsv=reserved operand fault
iov =integer overflow trap
idvz =integer divide by zero trap
fov=floating overtlow fault

" fuv =flodting underflow fault =
fdvz = floating divide by zero fault
dov = decimal overflow ttap
ddvz = decimal divide by zero trap
sub = subscript range trap
prv=privileged instruction fault

Opcode values are given in hexadecimal.

1-22 Confidential and Proprietary

e st

T

e e b e



Preliminary CVAX 78034
« Integer Arithmetic and Logical Instructions iy
OP Mnemonic and Arguments Description NZVC Exceptions
58  ADAW1 add.rw, sum.mw Add ali;gned word interlocked Kok jQ\g o
80 - ADDB2 add.rb, sum.mb Add byte 2-operand Rk E gy
CO ADDL2 add.t], sum.ml Add long 2-operand *ox * ov
A0 ADDW?2 add.rw, sum.mw Add word 2-operand ¥ *jov
81 ADDB3 add1.rb, add2.rb, sum.wb Add'k‘byre 3-operand BoEOY % oy
C1 ADDL3 add1.1l, add2.tl, sum.wl Add long 3-operand R 1+
Al ADDW3 addl.rw, add2.rw, sum.ww Add word 3-operand R R oy
D8 ADWC add:rl, sum.ml ' Add with carry RO OF jov
78 ASHL cnt.rb sre.rl, dst.wl Arithmetic shift left % %0 jov
79. ASHQ ent.rb sre.rq, dst.wq Arithmetic shift quad R0 dov
8A BICB2 mask.rb, dst.mb Bit clear byte 2-operand oE Q-
CA BICL2 mask.rl, dst.ml Bit clear long 2-operand oL
AA BICW2 mask.rw, dst.mw Bit cleat word 2-operand S I
8B BICB3 mask.rb, src.rb, dst.wb Bit clear byte 3-operand *oELQ -
CB BICL3 mask.1l, src.rl, dst.ml Bit clear long 3-operand R ¢ I
AB BICW3 mask.rw, stc.rw, dst.mw ; Bit;clear word 3-operand RO -
88 BISB2 mask.rb, dst.mb Bit set byte 2-operand N |
C8 BISL2 mask.r], dst.ml . Bit set long 2-operand R (I
A8 BISW2 mask.rw, dst.mw Bit set word 2-operand S |
89 BISB3 mask.rb, src.rb, dst.mb Bit set byte 3-operand EF Q-
C9 BISL3 mask.rl, sre.rl, dst.ml Bit set long 3-operand R | R
A9 BISW3 mask.rw, src.rw, dst.mw Bit set word 3~operand FoR 0 -
93  BITB mask.tb, src.tb Bit test byte ok oo
D3 BITL mask.rl, src.rl Bit test fong S ¢ K
B3 BITW mask.rw, stc.rw Bit test word S ¢ I
94 CLRBdst.wb Clear byte 010 -
D4 CLRLdst.wl Clear long 010 -
7C CLRQ dsét.wq Clear quad 0190 -~
B4 CLRW dst.ww Clear word 0 1.0 =
91 CMPB srel.rb, sre2.rb Compare byte G | B
D1 CMPL srcl.rl, sre2.1l Compare long Hookogow
Bl CMPW srcl.rw, src2.rw Compare word FOEOQ %
98 CVTBL src.tb, dst.wl - Convert byte to long =g
99  CVTBW src.rb, dst.wl ‘Convert byte to word N VR ¢
F6 CVTLB sre.rl, dst.wb Convert long to byte RO 0 jow
F7 CVTLW src.rl, dst.ww Convert long to word ¥Rk 0 jov
33 CVTWB src.rw, dst.wb Convert word to byte ok 0 jov
32 CVTWL src.rw, dst.wl Convert word to long F 00
97 DECBdif.mb Decrement byte ok Ok L E oy
D7 DECLdif.l Decrement long BOkOFE oy
97 DECW dif.mw Decrement word ‘ S A (4
86 DIVB2 divrrb, quo.mb Divide byte 2-operand %R0 oy, idva
C6 DIVL2 diverl, quo.ml Divide long 2-operand Ok E 0 oy idvz
A6 DIVW2 dive.rw, quo.mw Divide word 2-operand *0% % (0 oy, idvz
Confidential and Proprietary 1-23



o P

OP Mnemonic and Arguments Description SNy e Exeeptions

87 DIVB3 dive.rb, divd.rb, quo.wb Divide byte 3~opex~éxia ¥ - iov; idvz
~C7 DIVL3 diverl, divd.rl, quo.wl Divide long 3-operand * 0 ov, idvz

A7 DIVW3 diverw, divd.rw, quo.ww " Divide word 3-operand % ) oy, idvz

7B EDIV divrrl, divd.rq, quo.wl, rem.wl o E’xtendpd divide * Lioy, idvz -

7A  EMUL mulerl, muld.t, add.«l, prod.wq  Extended multiply * ‘

96 INCB sum.mb Increment byte * iov

D6 INCL sum.ml Increment long * iov.

B6 INCW sum.mw Increment word v o oy,

92 MCOMB stc.th, dst.wb " Move compleniented byte RO - :

D2 MCOML sre.1l, dst.wl Move complemented long b

B2 MCOMW sre.rw, dst.ww Move complemented word oEog oL

8E MNEGB src.rb, dst.wb " Move negated byte * ok FF oy

CE MNEGL src.rl, dst.wl Move negated long ORI oy

AE MNEGW sre.rw, dst.ww Move negated word R OE L Gov

90 MOVB src.th, dst.wb Move byte R0 -

D0 MOVL src.rl, dst.wl Move long - FEL e

BO MOVW sre.rw, dstww - Move word oo

9A MOVZBW sre.rb, dst.wh Move zero-extended byte toword 0 * 0 -

9B MOVZBL src. gb, dst.wl Move zero-extended byte tolong 0 %0 "~

3C MOVZWL sre.rw, dst.ww -Move zero‘extended word tolong 0 % 0 =

84 MULB2 mulr.rb, prod.mb Multiply byte 2-operand R 0 iov

C4 MULL2 mulr.rl; prod.ml Multiply long 2-operand ok F 0 jov©

A4 MULWZ mulrrw, prod.mw Multiply word 2-operand PORE O jovo

85 MULB3 mulrrb, muld.tb, prod.mb’ Multiply byte 3-operand %0 joy

C5 MULL3 mulrrl; muld.rl, prod.ml Multiply long 3-operand 0 o

A5 MULW3 mult.rw, muld.rw, prod.mw Multiply word 3-operand Qi

DD PUSHL src.rl, Push long - :

9C ROTL ent.rb, sre.rl, dst.wl Rotate long’

D9 SBWC sub.rl, dif.ml Subtract with carry

82 SUBB2 sub.rb, difimb Subtmgn byte 2-operand

C2 SUBL2 sub.tl, dif.ml " Subtract long 2-operand

A2 SUBW2 sub.rw, dif.mw Subtract word 2-operand

83
C3

SUBES3 sub.rb, min.rb, dif mb
SUBL3 sub.rl, min.fl, dif.ml

* Subtract byte 3-operand

Subtract long 3-operand

A3 SUBW3 sub.rw, min.rw, dif. mw Subtract word 3-operand

95 TSTBsrcab Test byte

D5 TSTLsre.xl Test long

B> TSTW src.rw Test word

8C  XORB2 mask.rb, dst.mb Exclusive or byte 2-operand 8.
CC XORL2 mask.rl, dst.ml Exchusive or long 2-operand i
AC XORW?2 mask.rw, dst.mw Exclusive or word 2-operand o~
8D XORB3 mask,rb) sre.rb, dst.wb Exclusivé or byte 3-operand * kP -
CD XORL3 mask.rl, src.rl, dst.wl Exclusive or long 3-operand SEEEL S
AD XORW3 mask.rw, stc.rw, dst.ww Gl g

Exclusive or word 3-operand

1-24

Confidential and Proprietary. -




Preliminary CVAX 78034

+ Address Instructions
OP Mnemonic and Arguments ‘Description N Z V C Exceptions
9E MOVAB src.ab, dst.wl ~ Move address of byte N
DE MOVAL {=F} src.al, dst.wl . Move address of long A | B
7E MOVAQ {=D=G} src.aq, dst.wl _ Move address of quad ¥ %0
3E MOVAW src.aw, dst.wl - ) Mow)é_ address of word R
9F PUSHAB sic.ab, {~(SP).wl} = . . .Push address of byte Q-
DF PUSHAL {=F} stc.al, {-(SP).wl} .Push address of long *oE QL
7F PUSHAQ {=D=G} src.aqg, {-(SP).wl} ... Pushaddmssof quad @ .~ *: *.0 <
3F PUSHAW src.aw, {~(SP).wl} : - Push address of word oY | I
» Variable-length Bit Field Instructions. -
OP Mnemonic and Arguments Descriptioxiﬂ e . NZV C ’E;:égptigns
EC CMPV pos.tl, size.rb, base.rb, R Gt ! s
{field.rv}, src.rl Compare field S X E sy
ED CMPZV pos.1l, size.tb, base.vb, o . : -
{field.rv?,)src.rl Compare zero-extended field ~  * *0 * sy
EE EXTV pos.tl, size.rb, base.vb, (b s et
{field.rv}, dst.wl Extractfield .. . . - RO - orsvo
EF EXTZV pos.tl, size.tb, base.vb, ) T ol o . A
{field.rv}, dst.wl I . .Extract zero-extended field ' *oF Q0 o~ rsv,
FO INSV src.rl, pos.rl, size.rb, ) . et s ‘ ’
buseab, {feldws} . lmsecfidd
EB FFC startpos.tl size.rb, base.vb, G L0 S LR : o
{field.rv}, findpos.wl Find first:iclearbit o R sy
EA FFS startpos.rl, size.rb, base.vb, s i oo L it : P
{field.rvf, findpos.wl - Find first setbit - . ... oA | B Vv
« Control Instructions
OP Mnemonic and Arguments I)‘es'cripti/o’l'l' h B o NZ N C "VExcepvﬁ;)‘n‘s
9D ACBB limit.tb, add.rb, R S
index.mb, displ.bw Add compare and branch byte R - A
F1 ACBL limit.rl, add.t], index.ml, ' , P T T
displ.bw - Add compare and brapch long LR e oV
3D ACBW limit.rw, add.rw, - o - S
index.mw, displ.bw - .Add compare and branch woérd ¥R o~ ov -
F3 AOBLEQ limit.tl, index.ml, [ '
displ.bb Add one and branch on less or equal R OE o~ ov
F2 AOBLSS limit.rl, index.ml, o et B osiichie il
displ.bb Add one and branch on less *EOF - oy

Confidential and Proprietary 1-25




folilolijta) 8

OP Mnemonic and Arguments

Description

1E BCC{=BGEQU} displ.bb
1F BCS{=BLSSU} displ.bb
‘13 BEQL{ =BEQLU} displ.bb
18 BGEQdispl.bb

14 BGTR displ.bb

1A BGTRU displ.bb
15 BLEQdispl.bb

1B BLEQUdispl.bb

19 BLSSdispl.bb

12 BNEQ {=BNEQU} displ.bb
1C  BVC displ.bb

1D BVS displ.bb

Branch on carry clear
Brangh on carry set
Branchon equal

" Branch on greater or equal

Branch on greater
Branch on greater urmgnﬁd
Branch on less or equal

“+ Branch on less or equal unsigned

Branch on less

- Branch on not equal
- Branch on overflow clear

Branch on overflow set

El BBCgos .t], base.vb, displ.bb,

{fiel Branch on bit clear ¥+
EO0 BBS pos. rl base.vb, displ.bb,
- {field.rv} Branch on bit set B A
E5 BBCC pos.i, base. vb displ.bb, ‘ o - Con o
{field.mv} Branch on bit clear and clear R R A
E3 BBCS pos.tl, base.vh, displ.bb, e :
{field.mv} Branch on bit clear and set - = = -lrsv
E4 BBSC pos.rl, base.vb, displ.bb, . . - ‘ .
- {field.mv} Branch on bit set and clear - - - - sV
E2 BBSS pos.tl, base.vb, displ.bb, ‘ ‘
- {field.mv} ‘Branch on bit set and set R O
E7 BBCCI pos.rl, base vb, dislp.bb, Lo :
{field. mv} - Branch on bit clear and clear interlocked - - = = fsv
E6 BBSSI pos.tl, base.vb, dislp.bb, o ‘ -
{field.mv} Branch on bit set and set interlocked - == = rsy
E9 BLBC src.1l, displ.bb Branch on low bit clear e
E8 BLBSsrc.rl, displ.bb Branch onlow bit set: — = s
11 BRBdispl.bb Branch with byte displacement - e
31 BRW d1spl bw Branch with word disp]at:@hlent R
10 BSBBdispl.bb {- (bP) wl} Branch to subroutine with byte
displacement - = = ==
30 BSBW displ.bw {-(SP).w!} Branch to subroutine with word
S ; ; displacement - - - - -
8F:: CASEB selectorrb; base.rb, o o
- limit.tb, displ.bw-list Case byte ‘ o0
CF CASEL selector.t], base.rl, i )
 limit.rl, displ.bw-list . - Case long R Q X
AF CASEW selector.rw, base.rw,
~ limit.rw, displ. bw-list Case'word A U
17 JMPdst.ab ; ~ Jump _ R
16 JSBdst.ab, {~(SP).wl} Jump to subroutine - oo -
05 RSB {(SP)+-.rl} Retinn fmm subroutine . -~ - = =
F4 SOBGEQ index.ml, displ.bb' Subtract one and branch on greater i i
L ¢ or equal’ oo L lov:
F5 SOBGTR index.ml, displ.bb Subtract one and branch on greater * - dov

1-26

Confidential and Proprietary




Preliminary.

BVS displ.bb

» Variable-length Bit Field Instructions R

OP Mnemonic and Arguments Description N Z V::C %xbéptiqns

EC CMPV pos.1l, size.rb, base.rb, i T
{field.rv}, src.1tl Compare field * Y0 rsy

ED CMPZV pos.tl, size.tb, base.vb, ERTE sy by s ;
{field.rv];c,] sre.rl Compare zero-extended field FLEOQY syl

EE EXTV pos.1l, size.rb, base.vb, o RESRE : R
{field.rv}, dst.wl Extract field e RO~ rsv

EF EXTZV pos.tl, size.rb, base.vb, o i D
{field.rv}, dst.wl Extract zero-extended field R0 - xSy

‘FO'INSV sre.rl, pos.tl, size.rb, ) o B w140
base.vb, {fieldwv} Insertfield - = = ISV

EB FFC startpos.1l size.rb, base.vb, ] ; i S
{field.rv}, findpos.wl - Find first clearbit © -0 * w

EA FFS startpos.tl, size. rb base.vh, vt bl e el g 3
{field.rvfo mdpos wl Find first set:bit . LR ;

« Control Instructions

OP Mnemonic and Arguments . Description et N :Z. V.G Exceptiops

9D ACBB limit.rb, add.rb, ; T :
index.mb, dlspl bw Add compare and branch hyte FFE L E e ey

F1 ACBL limit.tl, add.rl, index.ml, AL e
displ.bw Add compare and branch long SEE R ov

3D ACBW limit.rw, add.rw, B T e
index.mw, displ.bw Add compare andibym,ngh Word ' R Ko~ dov

F3 AOBLEQ limit.rl, index.inl, L an
displ.bb . Addone dl'ld branch on ]ess or equal CRE % L jow .

F2 AOBLSS limit.rl, index.ml, § RS
displ.bb. Add one. and branch on less oA R L oy

1E BCC{=BGEQU} dispLbb . Branch on carry clear e i

1F BCS{=BLSSU} displ.bb Branch oncarry set -~/ - - - - -

13 BEQL{=BEQLU} displ.bb . ... Branchonequal, . —

-18 - BGEQ displ.bb Branch on greater ot equal - - e

14 BGTR displ.bb Branch on greater - )

1A BGTRU displ.bb Branch on greater unsigned  ziti i

15 BLEQ displ.bb Branch on less or equal - - - -

1B BLEQU displ.bb Branch on less or equal unsigned

19 BLSS displ.bb Branch ¢hléss *

12 BNEQ {= BNEQU} dlspl bb " Branch on not- equal

1C BVC displ.bb ; ‘Branch on overflow clear . el

1D Bmﬂch on overﬂ@w set - - -

Confidential and Proptietary:

127




.. . . B 5
-Elisenen Preliminary | CVAX 78034
OP Mnemonic and Arguments Description NZ Ve Ei‘:ééptibns
E1 BBC é)os.rl, base.vb, displ.bb, , ;
oo {fieldrv} o Branch on bit clear, TS
"E0° BBS pos.rl, base.vb, displ.bb, )
{field.rv} Branch on bit set R
E5 BBCC pos.1l, base.vb, displ.bb,
{field.mv} Branchon bit clearand clear -~ -~ - - sV
E3 BBCS pos.l, base.vb, displ.bb, ' ‘
{field.mv} Branch on bit clear and set - ~ = -~ 18V
E4 BBSC pos.1l, base.vb, displ.bb, ' . i
{field.mv} Branch on bit set and clear -~ = = = ISV
E2 BBSS pos.tl, base.vb, displ.bb, ‘
{field.mv} ‘Branch on bit set and set - = = = I8V
E7 BBCCI pos.rl, base.vb, dislp.bb,
{field.mv} Branch on bit clear and clear interlocked -~ -~ -~ - rsv
E6  BBSSI pos.rl, base.vb, dislp.bb, . ;
{field.mv} Branch on bit set and set interlocked - + - - 18V
E9 BLBC src.tl, displ.bb Branch on low bit clear - e -
E8 BLBS src.1l, displ.bb Branchonlow bitset ~ - < - - -
11 BRBdispl.bb Branch with byte displacement  ~~ ~ - - - -
31 BRW displ.bw Branch with word displacement =
10 BSBB displ.bb {-(SP).wl} Branch to subroutine with byte
’ ; ‘ : displacement - e - s
30 BSBW displ.bw {-(SP).wl} Branch to subroutine with word
' o displacement F
8F CASEB selector.rb, base.rb,
limit.rb, displ.bw-list Case byte *E0
CF CASEL selector.r], base.rl, ]
: limic.rl, displ. bw-list Case long * 0
AF CASEW selector.rw, base.rw, _ .
~ limit.rw, displ.bw-list Casé word *Q o
17 JMPdst.ab Jump ’ - - e
16 ~-JSB-dst.ab, {~(SP).wl} Jump to subroutine - -l L
05 RSB {(SP)+ .11} Return from subroutine - -
F4 SOBGEQ index.ml, displ.bb Subtract one and branch on greater ;
or equal , *o* o~ jov
F5 SOBGTR index.ml, displ.bb Subtract one and branch on greater R
Procedure Call Instructions
OP Mnemonic and Arguments Description N Z V C Exceptions
FA  CALLG arglist.ab, dst.ab, {-(SP).w'} Call with general argumentlist -~ 0 0 0 0 rsv
FB CALLS numarg.tl, dst.ab, {-(SP).w'} ' Call with argumentlistonstack 0 0 0 0 rsv
04 RET {(SP)+.r'} Return from procedure kKK gy
1-28 Confidential and Proprietary




» Miscellaneous Instructions

Preliminary -

oP M;;aem&mt and A#guments Descrip;:ioh,, - N & V. €. Exceptivns
B9 BICPSW mask.rw:  Bitclear processor status word: % ¥ ¥ psgi
B8 BISPSW maskirw' Bit set pmceﬁsér status wofcf'k' kR E gy

03 BPT {~(KSP).w'}

' "',‘Break poinc fault " . 00 00 .

00 HALT {~(KSP).w'} Hait(kernalmﬁdg:only} B R S e A
OA" INDEX subscript.tl, low.t1, high.tl, : Erg S0 T BT 00
size.rl, indexin.rl, indexout.w «Indm’calmlanon = % 0 0 sub

DC MOVPSL dst.wl

-~ Move processor status longword - ==

01 NOP .+ No operation’ fm= = o 7
BA POPR mask.rw, ;{{SP)+.r"} Pcp regiét’&é f? e T =
BB PUSHR mask.rw, ;{-(SP)+.w'} Push regxswrs G i Ly e

FC XFC {unspecified oeprands}

Queue Instructions

NP Exlmded mnctxon calI 0 (Q 08

OP Mnemonic and Arguments

Description

5C INSQHI entry.ab header.aq

Insert at head of

Exceptions

5D INSQTL entry.ab headerag

Insert'at tail of qu‘ e:,-mtetiﬁcked

0E INSQUE entry.ab, pred.ab

Insert into queue

N ETe

Remove from head of queue, mterlod‘:ed

sy

5E REMOQHI header.aq, addr.wl 0
SF REMOQTIheaderag, addrwl  Remove from tail of queue, interlocked 0 * * * rsv
0F - REMCUE ‘entry.ab, addr.wl Rem@v&frﬁhi;}ﬁew A Rd * i

- Character String Instructions B ‘

OP

Mnemonic-and Arguments

_ Description

~ Exceptions

29

CMBC3 len.rw, sn,laddr ab, src2s acidr ab

L ,»Compare character

o igdinty

- 3-operand e
2D C.MPCS src]len rw, srcladdr ab, t;ll by “Compare Lharacter IR ARIRAS S TS
src2len.rw, szw:Zaddr ab - S-operand e
5A LOCC char. th, len.rw, addr_a,’o " Locate character . . 0% 0.0
28 MOVC3 len.tw, srcaddrab, dstaddnab i3 S '
{RO-5.wl} - - Move character 3-operand. - 0 100
2C  MOVCS srclen.rw, srcaddrab fill.rb,, o o o
dstle.rw, dstaddr.ab, {RO-5. wit ‘Move character S-operand " * % 0 ¥
2A SCANC len.rw, addr.ab, t’bladdnab; m‘ée‘ak,x‘b, :S:can for éfwﬁfgctéf o 0 * 0
3B SKPC charrb, len.rw, addrab . Bkip character Q¥
2B SPANC len.rw, len.rw, thladdrab, mask.tb - Scan characters O -*-0 0

Confidential and Proprietary

1-29




» System Support Instructions

OP  Mnemonic and Arguments Description N 'Z V C Exceptions

BD CHME param.rw, {~(ySP).w'} Change mode to executive 0000

BC CHMK param.rw, {-(ySP).w'} Change mode to kernel 00 0.0

BE CHMS param.rw, {~(ySP).w'} Change mode to supervisor - 0000

BF CHMU param.rw, {~(ySP).w'} Change mode to user 0000

Where y=MINU(x.PSL < current_mode <)

06 LDPCTX {PCB.r", -(KSP).w'} Load process context - =~ = ISV, prv
{(kernel mode only)

DB MFPR procreg.tl, dst.wl Move from processor register ¥ ¥ 0 - orsv, prv
(kernel mode only)

DA MTPR ste.tl, procreg.rl Move to processor register * % 0 - rsv,prv
{kernel mode only)

0C PROBER mode.rb, len.rw, base.ab  Probe read access 0 * 0 -

0D PROBEW mode.rb, len.rw, base.ab  Probe write access 0 * 0 -

02 REI{(SP)+.r"} Return from exception or interrupt ~ * * * rsv

07 SVPCTX {{SP)+.r", PCB.w'} Save process context - = - - prv

(kernel mode only)

Mlcrocode assisted Emulated Instructions

The CVAX 78034 provides microcode assistance: for the emulation of these instructions by
system software. The processor processes the operand specifiets, creates a standard argument list,
and takes an emulated instruction fault.

OP Mnemonic and Arguments Description N Z V C Exceptions
20 ADDP4 addlen.rw, addaddr.ab, sumlen.rw,

sumaddr.ab Add packed 4-operand ¥oEF 0 rsy, dov
21  ADDP6 addllen.rw, addladdr.ab, add2len.rw,

add2addr.ab, sumlen.rw, sumaddr.ab Add packed 6-operand ¥oE %0 rsy dov
F8 ASHP cnt.rh, srclen.rw, sreaddrab, round.rb,  Arithmetic shift and round .

dstlen.rw, dstaddr.ab packed SRUE* 0 sy, dov
35 CMPP3 len.rw, sreladdrab, sre2addrab Compare packed 3-operand * * .0 0
37 CMPP4 srcllen.rw, sreladdrab, sre2len.rw,

src2add.ab Compare packed 3-operand * * 0 *
0B CRC tbl.ab, inicrc.tl, strien.rw, stream.ab Calculate cyclic

redundancy check 00

F9 CVTLP src.tl, dstlen.rw, dstadde.ab Convert long to packed % % (0 rev, dov
36 CVTPL srclen.rw, srcaddr.ab, dst.wl ’ Convert packed to long * kR 0 rsy,iov
08 CVTPS, stclen.rw, sicaddrab, dstlen.rw, Convert packed to leading

dstaddr.ab separate ¥ OE % () rsy, dov
09 CVTSP srclen.rw, srcaddr, dstlen.rw, ._-Convert leading separate to . .

dstaddr.ab packed ¥o% % rey, dov

1-30 Confidential and Proprietary

e o A TSR B




ol ol Preliminary - CVAX 78034

opP Mnémonic and Arguments Déscription N Z V C Exceptions
24 CVTPT srclenrw, sreaddrab, tbladdrab, ' g

dstlen.rw, dstaddr.ab Convert packed to trailling * * * .0 fsv, dov
26  CVTTP srclen.rw, srcaddr.ab, thladdr. ab :

 dstlen.rw, dstaddr.ab Convert packed to trailing * * * 0 .rsv, dov

27 DIVP divrien.rw, d1vmddr ab, dlvdlen rw, o , , ) .

quolen.rw, quoaddr.ab ~ Divide packed * % % 0 rsv,dov,ddvz
38 EDITPC srclen.rw, srecaddr.ab, pattem ab, Edit packed to character

dstaddr.ab string ®o¥ow % rgy dov

39 MATCHC objlen.rw, objaddr.ab, srclen.ow,

o

stcaddr.ab , ,, Matcﬁ characters

34 MOVP len.rw, srcaddr.ab, dstaddrab i Move packed k00

2E  MOVTIC srclen.rw, sreaddeab, fillxb, o
tbladdr.ab, dstlen.rw, dstaddrab Move x:ranslated characters * * 0 *

2F MOVTUC srclen.rw, srcaddrab, escrb, . © Move trans]ated until . .
tbladdrab dstlen rw, dstaddr.ab i characr.a . o e

25 MULP mulrien.rw, mulraddr.ab, muldlen W, . Sty S
muldaddr.ab, prodlen.rw, prodaddr ab ’ Multiply packed _FF % 0 rsydov

22 SUBP4 sublen.rw, subaddr.ab, d;lﬂen tw, s ; !
difaddr.ab - Subtract packed 4-operand ¥ ¥ F O asv dov:

23 SUBP6 sublen.rw, subaddr.ab, minleniew, oo ‘ Ceaihs e .
minaddr.ab, diflen.rw, difaddr.ab Subtract packed 6-operand * * * 0 rsv, dov

* Floating-point Instructions

These instructions are implemented in hardware only if the optional CVAX 78134 Floating-point
accelerator is present in the system. They must be sof'tware emulated if the CVAX 78134 is not
included. : ,

OP Mnemonic and Arguments =" Description' © N Z 'V C Exceptions
06F  ACRBD limit.rd, add.rd, index.md  Add compare and branch =~ S A

D_floating R * 0~ rav foy fuv ,
04F  ACBF limit.rf, add.rf, index.rf Add compare and branch

F_floating FEOQ e sy, fmf, fuv
4FFD ACBG limit.rg, add.rg, index.mg ' Add compare and branch '

G__floating BB I A {cw fuv
060  ADDD?2 add.rd, sum.md 'Add D_floating 2-operand ¥ (0 rsv, foy, fuv
040  ADDF2 add.rf, sum.mf < Add F_#loating 2-operand cEE g 0 rsw, fov, fuv
40FD ADDG?2 add.rg, sum.mg ~ Add G_floating 2-operand *oE 0.0 rsy, foy, fuv
061  ADDD3 addl.rd, add2.rd, sumwd ~ Add D-_floating 3-0pemnd o % %) yey fov, fuy
041  ADDF3addi.rf; add2.rf, sum-wf  Add F_floating 3-operand ok k0 gy, fov, fuv

* .0 rsv, fov, fuv

41FD ADDG3 addl.rg, add2.rg, sum.wg  Add G._floating 3-operand ¥

Confidential and Proprietary 1-31




dlioit ol FER Preliminary CVA2
OP::o:Mnemonic and-Arguments fﬁescnpmm UNeZoV G Exceptions ¢
071 CMPD srelrd, src2.1d ~ Compare D_ floatmg Gt s e Oy e b
051  CMPF srel.rf, src2.rf ~Compare F__floating E00 sy
51FD CMPG srel.rg, sre2.rg Compare G_floating L (VR
06C  CVTBD src.rb, dst.wd Convert byte to D_floating =% * 0 0
04C  CVTBF sre.rb, dst.wf Convert byte to F_ iloatmg L Ego
4CFD CVTBG sre.rb, dst.wg - Convert byte to G_fleating woxo0o0
068  CVTDB sre.rb, dst.wh Convert D,,ffbat‘iﬂg' o byte X0 rsy, iov
076~ CVTDF src.rd, dstiwf Convert D_floating to F_float ~ * * 0" 0 sy, fov
06A  CVTDL src.rd, dst.wl Convert D_ floating to long FoE ¥ (0 sy iov
069  CVTDW sre.rd, dst.ww Convert D_ floating to word % 0 rsy; dov
048  CVTFB src.rf, dst.wb Convert F_floating to byte * * 0 riv, iov
056  CVTFD sre.rf, dst.wg Convert F.__floating to D_float! * 0 rsv
99FD CVTFG sre.rf, dst.wg Convert F__floating té G_float 0 rsv .
04A  CVTFL src.xf, dst.wl Convert F_floating to long 0. rsy, iov
049  CVTFW src.rf, dst.ww Convert F_floating to word * 0 rsy,iov -
48FD CVIGB sre.xg, dst.wb Convert G_floating to byte’ “ 0 sy iov
33FD CVTGF sic.rg, dst.wf Convert G_floating to F_float  * 0 -rsv, fov, fuv
4AFD CVIGL ste.rg, dst.wl Convert G_floating to long *0 sy, foy
49FD CVTGW sre. rg, dst.ww Convert G_floating to word *0 sy iov |
06E  CVTLD sre.tl, dst.wb Convert long to D_floating 00
04E  CVTLF sm.ri, dst.wf Convert long to F__floating * 00
4EFD CVTLG stc.tl, dst.wg Convert long to G__floating 00
06D  CVTWD src.rw, dst.wd Convert word to D__floating 00
04D CVTWE sre.rw, dst.wf Convert word to F__floating i 0.0
ADFD CVTWG sre.rw, dst.wg: Convert word to G__floating 0 0
06B  CVTRDL src.rd, dst.wl Convert roundcd D._ floatmg, i L
: ‘ w long - %070 rsviov
048 CVTRFLsre.rf, dst.wl Convert munded F_floating
to long * 0 rsviov
4BFD CVTRGL sre.rg, dst.wl Convert rounded G__floating B =
to long SR E 0 rgy, iov :
066~ DIVD2 divrrd, quo.md Divide D_floating 2-operand ~ * * 0 0 rsv fov fuv fdvz
046 DIVF2 diverf, giio.mf Divide F_floating 2-operand ~ * * 0 0 svfovfuv fdvz
46FD DIVG2 divrrg, quo.mg Divide G_floating 2-operand * 0 0 rsvfovfuyfdvz
067  DIVD3 divr.ed, divr.rd, quo.wd Divide D_floating 3-operand * 0 0 rsyfov fuy fdvz
047 . DIWVD3 div uf, diverf; quo.wf Divide F_floating 3-operand. . --*. * 0. 0 rsv fov fuv fdvz>
47FD DIVD3 divr.rg, divrrg, quo.wg Divide G_ floatmg 3-operand  * F 00 sy fov fuv fdvz,
074  EMODD nuirtd, mulrx.rd,
muld.rd, int.wl, fract.wd Extendcd modulus D_floating * * 0. gsv fov fuviov:
054  EMODF muirrf, mulrx.rb,
muld.rd int.wl, fract.wf “ % % 0 rsyfov fuviov -

54FD - EMODG muir.rg, mulrs.rw,

Extended modulus F__floating

‘muld.rg int,wl, fract.wg Extended modulus G_floating = * * * 0 ‘rsvfoy fuviov
072  *MNEGD ste.xd, dst.wd Move negated D_floating 0 sy
052  *MNEGF src.rf, dst.wf Move negated F__floating (0 sy
52FD *MNEGG src.1g, dst.wg Move negated G_floaring 0 rsv. . .
070 *MOVD-sre.rd, dstwd Move D_floating = st
050 . *MOVF src.of, dst.wf - Move F..floating - “hgsy T
50FD  *MOVG sic.rg, dstiwg” Move G_floating -y

1-32

Confidential and Proprietary -




goZooen Preliminary

OP  Mnemonic and Arguments ”D'escv:yryipt’ion . NZV C E':Ecépfié’mﬁs
064 MULD2 mulrrd, prod.md Multiply D_floating 2-operand * * 0 0 rsy, fov, fuv
044  MULF2 mulerf, prod.mf - -Multiply F_fleating 2-operand  * * "0 0 ssv, fov, fuv
44FD MULG2 mulorg, prod.mg Multiply G_floating 2-operand ¥ 0 0 rsv, fov, fuv
065 MULD3 mulr.rd, muld.rd, prod. wd Multiply D_floating 3-operand * * 0 0 rsv, foy, fuv
045  MULF3 mulr.rf, muld.rf, prod.wf | Multiply F_floating 3- operand ¥ 0 0 54 fov fuv -’
45FD MULG3 mulrrf, muld.rg, pmd.wg; Multiply G_ifloating 3-operand * 0 0 rsy, foy, fuv
075  POLYD arg.rd, degree rw, tbladder.ab Evaluate polynomial D_floating * * 0 0 " rsv, fov, fuv
055  POLYF arg,rf, degree rw, tbladderab Evaluate polynomial F_floating * * 0 0 rsy, fov, fuv
55FD POLYD arg.rg, degreerw; tbladderafb Ewvaluate polynomial G_floating * * 0 0 rsy, foy, fuv
062  SUBD2 sub.rd, dif.md © Subtract D_floating 2-operand * ¥ 00 rsy, fov, fuv -
042 .- SUBE2 sub.rf, dif.mf - : ' Subtract F_floating 2-operand  * * 0 0 sy, fov, fuv
42FD SUBG2sub.rg, dif. mg - Subtract G_floating 2-operand  *..* .0 "0 rsv, fov, fuv
063  SUBD3 sub.rd, minrd, dif.md | Subtract D_floating 3-operand = %% rsy fov fuv
043  SUBF2 sub.rf, minrf, dif. mf - Subtract F_floating 3-operand  * * 0 0 rsvfov fuy
43FD SUBG2sub.rg, minrg, dif.mg -Subtract G_floating 3-operand . * * .0..0., rsv fov fuv
073 *TSTD src.rd © Test D_floating ¥R 0 sy

053 *TSTF src.xf ¢ Test F_floating FE D0 sy

53FD *TSTG src.rg - Test G_floating R0 0 v

+ Memory Managemem .

The memory management unit of the CVA)& 78034 pmvxdes a ﬂexxbie ‘and efficient virtual
memory programming environment. Memory management, together with the operating system
prov1des both pagmg (w1th user control) and swappmg It also pm\udes four hlgrarchxcal

hardware with small memory conflguratlons Programs e ecutey in an envu‘o_ ment : ;
process. The virtual memory system for the CVAX 78034 promdes each process ‘with a 4 billion
byte address space.

Virtual Address Space , i

Virtual address space consists. of two address. -spaces of: equal sizé~—alsystemr-space and a process
space. The process space contams the P() and P1 regmns Flgune 15 shows the virtual address space
3331gnmenl:s

Confidential and Proprietary 1-33




dlilailtlal B

Preliminary -

100000000 [C - RSO S
- ‘ ~VLENGTHOFPDHEGWNINPAGES-“~“
‘ (POLR) =
PO .
REGION ' L
PO REGION GROWTH DIRECTION *
BFFFFFFF || ‘ e ' B
40000000 Ehe T , B : ,
. P1 REGION GROWTH DIRECTION
e ] L
REGION ' ;
- LENGTHOFPTRENON!NPAGES
St 72t 21=PILR)
7EFFFFFF
80000000 o , T ; ; it
[T o s RO LENGTHDFSYSTEMREGIONINPAGES
. (SLR) <l
SYSTEM ‘ ) » o
REGION ‘ ) S e : IS IR 0
o ' SYSTEM REGION GROWTH DIRECTION
BFFFFFFF ; E
€0000000
" RESERVED
REGION
FFFFEFFF

~ Figure 15 = CVAX 78034 Virtual Address Space Assz'gn;;zeﬁis

flf,lds of a v1rtuaI address

31 0908 00
| AR A D T A N N Y T N (N A D A I N A | LN B O I D B B

VPN BYTE NUMBER
il vlv;.l | NS O Y RS 0 N N0 OO N NF YOO TN (N KO0 U5 IO AU A0 IO NP N N WSS TS WS O B

S Y Fiore 16+ CVAX 78034 Virtual Addess Format

1-34- Confidential and Proprietaty-




Preliminary. "

Taiﬁie 11 ‘CVAX 18(!354 Vn'iual Addvess l)escﬂptmﬁ

Bit Descnptlon

%

31:09 VPN (Virtual page number)—This field specmeb the wirtual page to be xeferenced
~  Virtual address space contains 8,388,608 pages of 512 bytes each !

- Bits 31:30 of the VPN are used to- select the reglon ot vn:tual address space bemg
referenced as follows: :

Bits 31:30. . .. Region

value - . . .. i e S P—— e i
00 < PO
1 . . - - Pi - - ,i ;{;» s
2 . system SR it R o
3 . reserved . b S fen

08:00 Byte Number— This fleld specxfles thﬁ byte numbeer thhm the:page.

Page protecuon-—lndependem of s locatlo
protected according to its use. Although the sysig : » «
address, the program can be prevented from modifying or ac és&mg p onsof the e/ stx@:m space. A
program can also be prevented from: accessing or* modvamg portions 6:‘5 pfocess space

Virtual address space allocations— Access to the PO, P1, and System region is controlled by a lengﬁl
register. The PO region is controlled by the PO Length Register (POLR), the P1 region by the Pt
Length Register (P1LR), and the system region by the Syster Length Regist 3

limits defined by the length registers, the access is controlled by & page tabie t}tat speafxes thz;
validity,-access rcqun'emems and- iocanorr of each page in the regio : -

Access control

The access control functxon vahdates the type of memory access that is ailowed 10 dccess 4 page.

running is stored in the current mode field of thc Processor Status Longword (PSL). “The médes in
order of most to least privileged are

. GKernﬁinScdbythe kemei of theopemmg system for page msnagemem ‘scheduling; and i7l)
drivers. e T g _ :

+ 1 Executive—Used for many of éhe ope’ral?mg Systerii‘service calls.”

* 2 Supervisor—Used for services such as command i mterpretation

» 3 User—Used for user-level code, utilities, compil s, T debBuy gt:rs ete, T T

The protection code; located-in the page-table entry fcr that page; specifies whether the page can
be accessed for each‘mode These codes are described in Table 12,

Confidential and Proprietary - 1-35°




Table 12 = CVAX 78034 Pmmcnm Codes Ass:gnmems

Code Mnemonic Current mode' ‘ il
dgcimal binary K; E S "U:_ _ Comment
0 0000 NA. o — . — — no access
1 - 0001 il ol % ekl ‘reserved
2 0010 KW RW - — —-—
3 oo11 KR R — — — "
4 0100 Uw RW RW RW RW all access
5 0101 EW RW RW —_ —
6 0110 ERKW RW —_ —
7 0111 ER - R — -
8 1000 . . SW R\X/ ! RW . - ¢ RW — e
9 1001 SREW ~ RW RW R —
10 000 | SRKW  RwW R R —
1 - 1011 ‘ SR~ R / "R ‘ R : i
12 100 URSW  RW RW  RW R
13 1101 '~ UREW =~ RW RW R ‘R
14 1110 URKW  RW ‘R R R
15 1111 ‘ UR R R R R
'— = 1o access . 4 o K=Kernel ' o
% = unpredictable E = Executive
=read only S = Supervisor

RW = read/writé o

Memory-management Control
The three registers used to control the memory management function are descmbed as follows

U="User =

Map Enable register (MAPEN)—-—Thls register is used to enable and disable memory management.
The format of the register is shown in Figure 17 and described in Table 13.

136

31

o ;01‘00

TSN TS S T TN T S S W T N WO S U O S0 U Y S Y Y O

MBZ

LN AN N I A L N O (RO S A (3 O A A U S AR LV AV R U PO B B0 S N 0

Figure 17 » CVAX 78034 Map Enable Register Format

Confidential and Proprietary .

CMME

MAF’EN




, » 'Ihble 13- CVAX 78034 Map Enable Reglster Desenpu‘)n >
Bit Dcmr;mon
31:01  MBZ—Must be zero

00 MME (Memory management enable)—Enable and disable memory management as
follows:" , EREER L S
MMEXm 1 (enabled)
MME = 0 (disabled)

Translation butfer—This buffer is used to save the actual memom references when pages are
repeatedly referenced. The CVAX CPU uses this buffér to record successful virtual address
translations and page status. The translation buffer contains 28 fully associative entries. Both
system space and process space references share the entries.’ Transiauon buffer entries are replaced

f) alg : 2 that
last translauon buffet entr’y to be used This is aecomphs , ,é&bymtating vszhe repl
the next sequennal translanon butfer entry if the pomter is pointing to an entrs

The TBIS regwter is used ‘to mvahdate smgle PTE: enm‘
accomplished by ‘writing a ‘virtual address into ‘the TBIS register that mvakéates any tr’amlanon
buffer entry that maps the virtual address Flg:,urc 18 5}10*&:15 th£ regm&er ?:{amial;

.31 .

B 100 R
VIRTUAL ADDRESS

llll}liLll!lIllll!iilj//_

Figure 19+ CVAX 7 8034 Trcmslatioﬁ Byuﬁer frﬁ;aixda\fe All }"’wgisﬁer

Address Translation

The translation of a virtual address to a physical address by the memory management unit is
controlled by the Memory Management Enable bit 00 of the MAPEN register. When MME is
cleared, memory mapping is disabled and the low-order bits of the virtual address bits 29:00 are the
physical address. When MME is set, memory mapping is enabled and the virtual address is mapped
to a physical address by memory management.

Confidential and Proprietary 1-37




4

All virtual addresses are translated to physical addresses by a page table entry (PTE). The PTE has a
valid bit that controls only the wahdnv of the modify bit and page frame number field. The
protection field is always valid and is checked first. The page table entry is shown in F}gure 20 and
described in Table 14. : :

3130 2726252423222120 00

vl T 1 L L L N L L O
Vi PROT [MicC 00 PFN
Jo L i k. 10000 W NN TN N N VO TN Y N U Y N Y O o v
OWN

Figure 20« CVAX 78034 Page Table Entry Format

Table 14 + CVAX 78034 Page Table Entry Description

Bit =~ Description

31 V (Valid bit)}—Determines the validity of the modify bit 26 and the page frame number
+ - field bits 20:00. V is set for valid and cleared for not valid.

30:27 PROT (Protection)—Defines the protection for the page. This field is always vahd and is
used by the hardware even when V bit 31 is cleared.

26 M (Medify bit)—This bit is set 1 if the page has already been recorded as modified, If M
is cleared, the page has not been recorded as modified. Used only if V is set. .

25 0—Reserved for used by Digital.

24:23  OWN (Owner)—Reserved.
22:21  0—Reserved for use by Digital.

20:00 PPN (Page frame number)—The upper 21 bits of the phy51cal address of the base of the
page. Used only if V is set.

System Space Address Translation

A virtual address with bits 31:30 equal to 2 is identified as an address in the svstem virtual address
space that is mapped by the System Page Table (SPT) in physical memory. The System‘Base
Register (SBR) contains the physical address of the SPT and the System Length Register (SLR)
defines the number of SPT entries in longwords. The page table entry pointed to by the SBR maps
the first page of system virtual address space which is virtual byte address 80000000 (hexadeci-
mal). Figure 21 shows the SBR and SLR mapping format. The process of translating a system virtual
address to a physical address is shown in Figure 22.

1-38. ' Confidential and Proprietary




Preliminary

vgz| PHYS!CAL LONGWOHDADBRESSGFSPT
SRRV XIS SN N TN U1 O L WO R YN S5 DU N JOOU U A O (0 0 L OOF O O . §

f:ﬂr T T TTTT T lrll\llxll,|1r;1'"

310 : 2221 : : 00
T T T T T T T [T T T T T L
MBZ | CLENGTH OF SPT IN' i SUR
| N I T T T O | NV SN0 O TUUON TN JOIC DR T S s | L.l

Figure 21 « CVAX 78034 System Mapping Registers Format

313029 00
SVA: JTTTT T it
(SYSTEM VIRTUAL Fr Voo o " 'BYTE NUMBER
ADDRESS) [l B | ; [ T R R R
CERTRACT AND .
CHECK LENGTH
31 S Cpslo2 -t g 02{0100
LR B A AL ) L LA Ty T
0 0
S T S W O | | NN S S NS SN TEN NS AY T OO KNS N AU N N MR SO U AU 1
ADD
31 0100
o e L O L I I | LI R O O O O R TR T T
$BR: i A PHYGICAL BASE ADE OF §hT

lll!llllilil![llL!l’! I CRI: TR T SO A [N WO NN P |

o bl
31 s , i 0100

L DL L L O L 0 A A N e e P B s I G | 2
| I PHYSICAL ADR OF PTE
JS0sdd OO U SRS OO N W JSACE SO By ! GRS GRS MRS S SRR W i) Lot i

FRESIE S N TUR RN S
3130 . 21200 L e 00
;rrrrllrllT17111«111TIT“TI1:1|115
PTE: 1 } R <2 L p;& ’ ’ ¥ A
B 20005 SO0 (0 T 050 [0 U Tk N S 105 T O A0 ke U A 10 DA, 00 s YO o) Ve T 00 o O T U
CHECK ACCESS o THIS ACCESS CHECK
; IN CURRENT MODE 1y
29 e 09108 00
TT T 17 T T T I T T T T T T T
PHYSICAL ADR OF DATA: P J
E T S0 U G0 TR TN WO N0 30 D) 1 8 AN T T T O I O IO I W O

Process Space Address Translation

A virtual address with bit 31 equal to 0 is identified as an addrcss in the process virtual address
space. Process space is divided into two equal sized: sepamt@ly mapped regions. When bit 30 is
equal to 0, the address is in region P0O. When bit 30 is equal to 1, the address is in region P1:

Confidential and Proprietary 139

&
&
i




PO Region Address Translation—The PO region of process address space is mapped by the PO Page

Table (POPT) that is Jocated in system virtual address space. The PO ragxo;l addres

s éefmed by the

PO Base Register ( 1508}{ \The page table entry pointed-to by the POBR-imdps the first page of the PO
region of the virtual address space which is virtual byte address 0. The PO Length Register (POLR)
contains the number of page table entries in longwords. Figure 23 shows the POBR and POLR
mapping formats. The process of translatmg a PO yirtual address to a physmal address is shown

in Figure 24.
313029 ) 020100
i 1 T T T T T TP ryryrrrrrrr T
SYSTEM VIRTUAL LONGWORD ADDRESS OF POPT MBZ :POBR
Jd ) OO NN N S U TR N OO N TSN TN N T VN T Y O T N N NN WO NN N 1 1
31 { L2221 e, : 00
B I A A A DR N N B | lFIITTWlll]II]!!Ii‘IY
ooamez L . LENGTH.OF POPT IN LONGWQRDS :POLR
TN T O U TN T T O T T O T O O O S A OO W O A O O
Figure 23 « CVAX 78034 PQ Region Mapping Registers Format
i 313029 R 0908 00
PVA T LB ERNS ISR I A RS S AR A Sl A N N N A | LR LR
(PROCESSV!RTUAL 0. o RTINS SN O 0 N0 S S BYTE NUMBER
ADDRESS) 1 N0 SN0 N Y SO S TN U S (O S N W O O O WO A Y N T O O S O |
EXTRACT AND
yeeey r ¢ GHECK LENGTH
131 23(22 -1 : 02{0100
% R S o | JR 200 N PUDH NS DUDE JN0E MUSS SR SUUY SUNS SUN SN SN AR N A SN N A N | | AN A o T
0 0
LAl L W 0 T W TS TN N S K D T W N N A N | S 1
ADD
31 0100
[ DAt S P | Y AP SN RIS ) SR MG IS SR S 00 DU SENR SR PR AR AN ex M U ) ] B A ) ¥
POBR: ! SYS VIRT BASE ADR OF POPT 0
: L.l TS TN SN 1Y I O Y U 0 O S Y O T -
YIELDS
31 0100
[ ] t T e TrrirrreaT Tyt Tror L 1
; ) SYS VIRTUAL ADR OF PTE - 0
il [N TN N U T T T T TG O O W O O L Ll Li i 1
FETCH BY SYSTEM SPACE
TRANSLATION ALGORITHNM;
INCLUDING LENGTH AND
KERNEL MODE ACCESS CHECKS
313000 2120 oo T A oo
LA L I L I L LR L B e L e 1T
PTE: 1 PFN
. | J T - | 1SN0 N O O O W T N DU TN SO N O U | L.l 4
CHECK ACCESS THIS ACCESS CHECK .
IN CURRENT MODE ¢ i
¥ 29 ' B ;'
HE S L LG O R A N I RO R DL G EEEY BN SR R SR ERN ORN RN AN H p S0 S0 Ll N A A AR 3
PHYSICAL ADR OF DATA; . L e S P i
. TN NN N O T T T O T S0 | L1 T T B T A |

Figuse 24 « CVAX 78034 PO Virtual-to-physical Address Translution

1-40 -

Confidential and Proprietary




P1 Region Address Translation—The P1 region of the address space is'mapped by the P1 Page
Table (P1PT) thit is lacated in system virtual address space. The Pf‘region' is'definéd by the P1
Base Register (P1BR) and the P1 Length Register (P1LR). Because the P1 space advances towar{f
smaller addresses and because'a consistent hardware interprétation of the'base and fength re

is not desirable, P1BR and P1LR define the portion of P1 space that is not accessible.
contains the numbet of nonexistent PTEs; P1BR cofitains the systémvirtual addreéss of what would
be the PTE for the first page of P1 which is virtual byte address 40000000 (hexadecimal). The

address in P1BR may not be a valid system virtual address but all addresses of PTEs mustbevalid -

system virtual addresses. The P1BR and PILR ma
of v1rtua1 address to physmal address trans

apping format is shown in F}gure 25. The process
t on 15 ‘hown in }"‘xgure 6. ‘

a1 o . ‘620100

o i . 4 2 e S e e s i R RS TIRL
. SYSTEM VIRTUAL LONGWORD, @m} s@mf ?m le
ll'i‘ltnl:'llsxtnifrrllll TS T VO R

gy L g L

B0 (N EON B IR G AR PN D i!Fl»rs&lyu
MBZ 2

) NS TN NN O S W S O | L.l

1

313029 . o oo ... .0808 . .. ... 00
PVA: T 1.7 . = :
(PROCESS VIRTUAL [53 SICTESTR LR RIRY

ADDRESS)

T i o
P1BR: SYS VIRT BASE ADR
N U N S N A YO R s s I o

T

TRANSLATION ALGOR] i
INCLUDING LENGTH ANDI: i
KERNEL MDDE AGLESS LHE*CKS

3130 : i o0
. L L L A 4 1][' LR A I S RS M A IR S
PTE: 1 PEFN
| N R T T | | SO OO S S Y NN YOO NN NN JOCE A N NN O N N N B N

CHECK ACCESS . . ; THIS ACCESS LHECK
T ‘ CHANCURKENTMODE 1

PHYSICAL ADR OF DATA:

F igure 26+ CVAX /8034 Pl meual ro»;.\byszcal Addrm flmmlatzon

Confidential and Proprietary. 1:41°

H
¥




lilgil =l Preliminary! CVAX 78034

Memory Management Faults . st ‘ o el spehhd poten sl 9
The two types of faults assocmted vmh memorv mappmg and pa:otecmon are Tmnslatlon Not V,ahd
(TNV) and Access Control Violation (ACV), An ACV fault exists when the protection field of the
page table entry. (PTE) indicates that the intended page reference in the specified access: mode-is
illegal. A TNV fault exists when a read o write reference is attempted through an invalid PTE (PTE
btt 31is set). The A(,u\7 fau t takes prcc:edence when bcvth an ACV and TNV fault peears. | 2

Exceptxons and Interrupts

During the operatxon 'of a system, events within the system may occur ir that 1 requlre the execunon of
software beyond the software required for normal control. The processor transfers control by
forcing a change in the flow of control from the currently executing process.

Events that are primarily relevant to-the currently executing process normally-invoke software in
the context of the current process. The notification of these events are defmed as exceptions.

Events that are prlmauly relevant to other processes or to the entire system are serviced in a
systemwide context. The notlflcatlon of these events is defined as interrupts. The system wide
context is also defined as “executing on the interrupt stack.” The pnorxty associated with an
interrupt is specified by the i interrupt priority level (IPL).

Interrupt Priority Levels—The VAX architecture has 31 mterrupt priority levels grouped into 15
software levels (1 to F hexadecimal) and 16 hardware levels (10 to 1F hexadecimal). Table 15 lists the
CVAX 78034 IPL, priority, and the conditions causing the interrupt.

. 'Table 15 « CVAX 78034 Interrupt Prlonty Level Assngnments

Prioity ~ ~ IPL Condition
(hexadecimal)
Highest ~unused -
PWRFL asserted
MEMERR asserted
. ,1B through 1L unused
CT1A - CRDasserted
18,19, _unused .
17 ' RO3 asserted
w016 INTTIM Asserted
S 16 IRQ2 asserted
A5 . TROT asserted -
14 IRQO asserted
, 10 through 13 unused
Lowéest 01 through OF  software mterrupt request oo re
Interrupt Reglstem b e Pl hads oo Lobdeshe s b :

The. interrupt system is controlled by the Interrupt Priority Level register, the Software Interrupt
Request Register (SIRR) and the Softwarc. Interrupt Summary Register (SISR). The IPL corres-
ponds to PSL bits 20:16. e

Sqftwa.re Intexrupt _Summary Reglster (SISR)—The SISR 1S a privileged regtster ‘that records

‘pending softwate interrupts. It contains ones in the bit positions that correspond to levels on which
software interrupts are pending. Figure 27 shows the SISR format. '

142 Confidential and Proprietary




T 1818 ! ; 0TS
T TTT T T R weummwmassxmmﬁupw,
N VLvi Lol i LLLI LLgoa (FEDCBIAeB 7654321 |

i

set. The processor will Clear the bit Iﬁ the SISR when the interrupt has been taken. F1g1re 28 shm*zs
the SIRR format.

Fegn

PECU. i { 0403 00
1r1!1x1r1|1|11|r|11« T T
' ST HGNORED T Pl e B K0 IREQUESTY ISIRR 0

IlltllllllllillllllllIilli[III

Figure 28 + CVAX 78034 Safgware InterruptRequest Register.Format

Wmtmg to the IPL register loads the pmcessor pnontv
‘ IPL register format.

Interrupt Priority Level Register (IPL)-«-
field in the processor status iongword F ‘

05 04 oo
T T LI B
a2 O T OO 3 LA S | T e s A O SR

- i i , ‘ PSL<20:16> -
Figure 29 « CVAX 78034 Iﬁ&*m;pt Pho y Lwei Regzsfer Format

Interrupts Sy
Hardware and software i anterrugt:§ am uunated by the following conditions.

Hardware interrupts—Hardware interrupts : vitiated: by 'HAIT (nonmaskable interrupt),
PWRFL, MEMERR, CRD, INTTIM, and IRG<3;0> signals: These signals are sampled once each
microcycle by the interrupt controller of the CPU. The interrupt controller compares the IPL
associated with ‘any signal that is assertéd to the current IPL of the CPU. If any-of-the asserted
signals have ari IPL higher than the CPU, an interrupt will be taken. For interrupts generated by the
TIATT, PWRFL, MEMERR, CRD, and INTTIM, the CPU internally generates a vector which is an
offset into the SCB. For interrupts generated by TRQ<3:0>, the CPU executes an mnerrupt
acknowledge cycle to fetch the vector from the device requesting the interrupt.

An interrupt is serviced at its priority level except for interrupts requested by* Q<305 that are
serviced at either their associated TPL or IPL 17 Gzexa&ecxmal) The level at ‘which an interrupt
requested by an TRQ3105> is'serviced is determined by DALOO whéin the device sends’ the vector to
the CPU. When DALOO is 2 0, the nﬁérmpt is ‘serviced af ‘the TPL asséciated with the asserted
signal. When DALOO is a 1, the interrupt is serviced at IPL 17 (hexadecimal).

Confidential and Proprietary - 143

:




Software interrupts— Software interrupts are requested by system or user macrocode by writing a
value into the Software Interrupt Request: Regls ter (SIRR). The value written to the SIRR is one of
the IPL levels (hexadecimal) assigned to software interrupts, Writing a value to the SIRR results in
setting the corresponding bit in the software interrupt summary register. The interrupt controller
compares the IPL of the highest pending software interrupt request to the current IPL of the CPU.
If no outstanding hardware interrupt exist and the IPL of the software interrupt is higher than the
current IPL of the CPU, the interrupt will be granted. The CPU internally generates the interrupt
vector in the SCB.

The software i mterrupt system is affected by an REI i instruction or othef event that changes the IPL
of the CPU. If the IPL is Lhanged toa value lower than the highest pending software interrupt
request and no hardware mterrupts are pending, the mterrupt controller grants the software
interrupt.

Exceptions

An exception is an event resulting from the execution of a specific instruction. Exceptions also
include errors automatically detected by the processor such as improperly formed instructions. The
CVAX 78034 recognizes the six classes of exceptions summarized in Table 16.

- Table 16 - CVAX 78034 CPU Summary of Exceptions

Exception class Cause

arithmetic traps/faults o integer overflow trap
S integer divide by zero trap
‘subscript range trap
tloating overflow fault
floating divide by zero fault
: ufloating underflow fault -

memory management exceptions . . access Lontrol violation (ACV) fault
o translation not valid (TNV) fault

operand reference exceptions . reserved addressing mode fault
o ‘ ’ reserved operand fault or abort

instruction execution exceptions reserved/privileged instruction fault
emulated instruction fault
customer reserved instruction fault

* breakpoint fa,uit
tracmg exceptmn o o 1 trace fault T e e ‘
system failure exceptmns ¢+ machine chcck zabort mdudmg read/wme bus and parity

errors, cache parity errors, and FPA pmmcol errors
‘ , , kernel stack not valid abort o S
WP T B s Voo interrupt stack not valid abort -

System Control Block ‘
The System Control Blocl«: (SCB) is a page ahgned mble in: physmal memory thar contams the
vectors for servicing interrupts and exceptions. Table 17 lists the system control block vectors. The:
SCB,is pointed to by the system control bloc,k ba:e register. (SQBB) The register. f@rmat s shawn in
Flgure 30. 3 , i e : My e e

1-44 Confidential and Proprietary




Prel*imixxary! =

Vector -
(I\exa&ecamal)

“Table 17 - CVAX 78034 System Control Biock Vectorﬁ" g

Name .

00'{ ’

04
08

0oC

lob Qi
g
g
1C

20
24

28

2C

30

34

38-3C
40 . .

44

48

4C

50

54

58-5C
60

64-80

84

88

8C
90-BC -
co
c4

C8

CC

100-1FC’
200-FFFC

DOFC -~~~ -

 passive release
" machine chec
e vkernel stack

access controt ?ials}flﬂn

translation not valid'
trace pending (TP)

4 Cresemed addressmg mode

breakpomt mstructmn :

unused i

aritﬁmetm Sl e

unused
—GHMK
CHME
CHMS
CHMU
unused :
~ corrected read data '
unused-
memory error
~ unused ‘
7 software level 1
 software level 2.
software 1@6:1 3

unused
e ‘,;emulatxon st:arc
.+ emulation cam‘murz
unused o

adapter x vemors

device vectms

o interrupt

3 30 29

odos

MBZ

LS S CRE AN T P Ee: O A R SR B IS P2 U0 O S BN i T

PHYSICAL LONGWORD ADDRESS OF SCB

FO SN0 T UAO0, S Y (N WO UIUU0 SO UV U NUUF SUUN NN JURS: KO W N WO S5 |

MBZ - -
BT O T R T O 0t

Figure 30 CVAX 78034 System Control Block Base Register Format

Confidential and Proprietary

TTTTTTTI T
:SCBB

il mterru;:n

145

-
{
:
!




clifgliltlal) S Preliminary ' CVAX

SCB vectors from 100 through FFFC (hexadecimal) are used to directly vector interrupts from the
external bus. The SCBB vector index is determined by bits 15:02 of the value supplied by external
hardware. The new PSL priority level is determined either:by:the external interrupt request-level
that caused the interrupt or by bit 0 of the value supplied by external hardware. If bit.0 is cleared,

the new IPL level is determined by the interrupt request level being serviced. If bt 0 is set, the new
IPL is forced to 17 (hexadecimal). The ability to force the IPL to 17 supports an external bus, such as
the Q-bus, that cannot guarantee that the device generatmg the SCBB vector index is the device
that originally requested the interrupt. For example, the Q- bus has four separate interrupt request
signals that correspond to TRQ < 3:0> but only one interrupt grant is daisychained. Devices on the
Q-bus are also arranged so that higher-priority devu:es are electrically closer to the bus master. If an
IRQT is being serviced, a device with a higher priority may intercept the grant. Software must
determine the level of the device that was serviced and set the IPL to the correct value.

External devices, except devices that emulate the console storage and terminal hardware, should
use only the vectors in the range of 100 to FFFC (hexadecimal),

Machine Check
A machine check occurs as a result of serious 1mernal CPU errors or external CPU errors such as
memory subsystem errors. These errors and conditions include

» FPA protocol errors.

= Impossible situations in memory management.

= Unused IPL requests.

+ Impossible situations in the CPU microcode.

= Bus memory errors.

» Multiple errors.

Machine Check Processing—The CPU processes a machine check as follows:

» If an exception is in progress and a machine check occurs, a processor restart is executed by the
CPU. Refer to the Processor Restart description that follows.

« If the current instruction can be suspended (MOVC3, MOVCS5), the state of the processor should
be saved and the machine check handled. '

» If the instruction cannot be suspended, the state of the processor should be returned to the
beginning of the instruction, if possible, and then the machine check should occur.

An instruction that cannot be restarted after the machine check is considered nonrecoverable and
the current process or the operating system must be terminated.

When a machine check is generated, the CPU sets an internal serious error flag and performs
machine check exception processing through SCB vector 4. A machine check exception is always
pracessed on the interrupt stack. When machine check exception processing is complete, the CPU
clears its internal serious error flag and the next instruction is decoded. The parameters recorded
on the stack for a machine check are shown in Figure 31 and listed in Table 18.

i

1-46 Confidential and Proprietary




Preliminary

BYTE COUNT (00000010 HEX)

MACHINE CHECK CODE

MOST RECENT MEMORY ADDRESS -~~~ 1[0

INTERNAL STATE iNFOHMATlQN 2

INTERNAL STATE INFORMATION 1.

PC

PSL

Figure 31+ CVAX 78034 Machine Check Sack

T

s

Table 18 « CVAX 78034 Machine Check I’arameters‘g ST s

Machine check code (hexadecimal):

code

000NN e

o .

. read bus etror, $PTE; PCB; or: SCB read

definition

- FPA protocol error.,
. FPAreserved i mstructmn
~FPA unknown error

FPA unknown ereor. - : =t
process PTE in PQ space (TB rmss]
process PTE in P1 space (TB miss)
process PTE in PO space (M=0)
process PTE in P1 space (M =0)
undefined interrupt ID code
impossible microcode state (MOVLX)
read bus error, normal read

write bus error; normal write

- write bus error] SPTE of PCB write

e

Most recent memory address:

address

31:00

value
currem; contents of VAP ; reglster

Internal state mformatmn 1

bits

31:24
23:20

19116
15:08.
07:00 -

value
cm‘i*en‘t canytents of opcode 7:0

11
. current contents of HSIR 3 O

current contents of CADR 07:00
current contents of MSER 07:00

Confidential and Proprietary

1-47




Internal state information 2:

bits value

31:24 cutrent contents of SC 7:0

23:22 11: . ! ) . -
21:16 current contents of State 5: 0 i
15 current contents of VAX CAN'T RESTART blt :
14:12 111

11:08 cufrent ALU condition codes

07:00 delta PC at time of exception

Program counter (PC)

bits value -

31:00 PC of start of current instruction

Processor status longword (PSL)

bits value
31:00 current contents of PSL
Machine Check Errors =/

Machine check errors include protocol errors, memory management and microcode impossible
situations, bus memory errors, and multiple errors.

Protocol—CVAX 78134 FPA checks for the proper order of requests from the' CPU. If a protocol
violation is detected, a machine check occurs. All FPA protocol error ‘machine checks are
nonrecoverable. The error should be logged and the currently riinning process or the operang
system should be terminated. The hexadecimal codes generated for a FPA pmtocol error are

Code Error o

1 FPA protocol
2 FPA reserved instruction
3 and 4 FPA unknown

Impossible situations (memory management)—The CVAX LPU ch@cks for some impossible
conditions in the memory management unit. If an impossible situation is detected, a machine
check occurs. All impossible memory management machine checks are nonrecoverable. The ertor
should be logged and the currently running process or operating system should be tesminated. The
current memory management registers (POBR, P1BR, SBR POLR PlLR and SLR) :»hould also! he
logged. The hexadecimal codes generated are

Code  Machine check error

5 The calculated virtual address for a process PTE is in PO space (TB miss flows)
6 “The calculated virtual address for a Process PTE is in P1 space (TB mms f]ows)
7

PRS2 ias

The calculated virtual address for a Process PTE is in PO space (M 0 flows)

[0e]

The calculated virtual address for a Process PTE is in P1 space (M =0 flows)

Unused IPL request—The CVAX CPU uses 13 of the 16 hardware interrupt ptiority levels as
defined in the VAX architecture. If an interrupt at an unused hardware IPL: is requested;’a
hexadecimal code and machine check occurs. The unused IPL-machine check is:nonrecoverable.
The error should be logged. A nonvectored interrupt representifig a serious error (corrected read
data, memory error, powetfail, or processor halt) has probably been lost. The operating system
should be terminated. The hexadecimal code and error is

1:48 Confidential and Proprietary




Code  Machine check error
9 The i interrupt controller returned an mterruptmg IPL of 18 19, or 1B {hexadeamal?

Imposs:ble situations (tmcrocode)—-—Because of size constramts ::rroneous branches in mxcrocode
will usually result in the execution of random fmcmmstruct' ) r, if th xmcrocode detecr.,s
an 1mp0531blc sxmation a machme check ‘occurs. The

Code Machme check em;cr
A MOVC3 or MOVCS in impossible state

Bus memory errors—If external logic asserts ERR in response to a memory cyc:lc jothe than ar
instruction prefetc;h or, mterru” ¥ ckno edg ck ogeur: i
hexadecxmal cod e is generated

Code  Machine check error

80 read bus error, normal read g
81 read bus-error, SPTE, PCB, or SCB read S
82 rite bws error; normal write- S RS SO AP
83 wr1te bus error; SPTE-or-PCB write -

Bus memory error machine checks may be rechemblq depending on the error code, the VAX Can't
Restart flag, and FPD flags in the machine check stack frame, Bas memory ettor machine checks
that are recogmmd by the CPU as restartable may be nemecevembie for system reasons {e.g., a read
lock may be outstanding). On a nonrecoverable etror, the error should be logged, and the currently
running pméess or the operating system should be termmatnd The code andrelatmns}np is

Code . VAXcant - FPD* - Action '
© restart* )
80,81 0 X = wsestﬂr»table» o
AR Y ¢ N xmmecésjerabla ;
1 1 _restartable . o e i e
82,83 X X _— nonrecqﬁ}emble« :
*X is either 1 or 0.~ : -

Multiple Errors-—-lf the CVAX CPU encoutiters sérious errofs that are nested together (e g., kernel
stack not vahd inside a machine check) orother conditions that cannot be processed by the system
macrocode (e.g., HALT instruction in kernel mode), the microcode places the current PC in internal
processor register-SAVPC and-the: current PSL; MAPEN -and restart-code in mtemal processor
register SAVPSL It then executes a processor restart. i

Processor Resta:tu-lf the hardware or kernel sofi twam env1mnmem becomes severely ;:ormpted
the CPU may not be able to continue normal pmcessmg The CP{J then executes 2 processor restart
operation and transfers control to the recovery code begmnmg at p};}smal address’ 120040000
(hexadecimal). The SAVPC register contains the previous PC. value and the SAYPSLLegIStEr contains
the previous PSL value with MAPEN in bit 15, a valid stack flag in bit 14,'ahd a restart code in bits
13:08. The restart codes are summarized in Table 9. The state of the CPU fpr, a processor restart is as
follows. All other registers are not defined. '

Confidential and Proprictary 1-49

[y
W
e




51 . Preliminaty "

Register Condition

SAVPC .. _saved PC . ‘ - [

SAVPSL  saved PSL b!ts 31:16. 07 OO in blts 31 16 and 07 00 saved MAPENO in blc 15, vahd
- S ‘stack flag in blt 14, and sgved restart code 1nlb1ts 13 08" ‘ ‘
S interrupt stack pomter R _A;.TLYL 4 (powerup only)

PSL 041F0000 (hexadecimal)  ~'1¢CS '_:f}cleared (powerup only)

PCc 20040000 (hexademmal) ~ MSER  cleared (powerup only)

MAPEN ~ cleared =~ ' CADR cleared (powerup ly)
SISR cleared (powerup only)

Process Structure o

‘A process is 4 single thread of execution. Thé contdxt of it eirent process is contame& in the
Process Control Block (PCB). The PCB, as defined by'the CVAX 78034 CPU, is shown in Fxgure 32
The PCB is located in physical memory and is pointed to by the Process Control Block Base register
(PCBB) shown in Figure 33,

IEE A

KSP v e o "1 pce

ESP R
o - ‘ oo ‘ ‘ Y
‘{'MUS‘P\‘( ", R ! LA ’ i’“z N

R2 o |

R ] s

R T

RS +36

RE ‘ 440

R7 ) ) +44

R8 ; +48

"R +52

R10 Tl T
RiT e
CAPR12) e o +64 e
O B R
e e
PSL - D ‘
posR T g

N L T
: T e —
'f,;PM‘EJ:,"w FMBZ l o b e RILRY o +#92;

NOTE: THE PME FIELDIS UNUSED, 7' S
[P R R CE A

Figure 32« CVAX 78034 Process Control Block Format

1-50 Confidential and Proprietary




[ 315029, o ) 020100
”“t1(1111r!l|r|lr1|11111|11111vIA‘""
MBZ i PHYSICAL LONGWORD ADDRESS OF PCB mBZl PCBE

5lllJlJ[llllll[lli||i!lll!l4'l' :

Figure 33 CVAX 78034 Pmcess Control Block Base chzs‘ter

Processor Reg;sters L e
The VAX architecture defines the Imemal Processor Regis

implemented in the CVAX 78034 CPU and some can be imp)
by the CVAX CPU. These registers are explicitly accessed by thﬂ M
(MTPR) and Move From Processor Regxs;:e; (MFPR) instructions.
processor registers and their Lategorxes that are defmed as Eaﬂmws: .
1 Implemented by the CVAX CPU as spemﬁed in the VAX Arc:hl

032). -

2 Implemented only by th& CVAX.CPU.

3 Passed to external logic via an external processor register cycle. If not extgr,;, [y impl
they are read as zero and perform no funcnon during write ﬂpemuons

4 Access not allowed (reserved opermd fault}

'ﬂ‘log ‘fand accessed
‘To Processor Register

Tai;le 19~ CVAX 78954 Ime: N

Number Register Name = M ; Categgtf‘
0 Kernel Stack Pointer | R ©OKSP 1
1~ Executive Stack Pointer T RSP 1
2 Supervisor Stack Pointer SSP .
3 User Stack Poi,}i:ter _ ) ) S usp 1
4 Interrupt Stack Pointer s 1
5 reserved e AL 4
6 reserved A L 4
7 reserved T = 4 |
8 PO Base Regi_s;'é} 7 POBR_ 1
9 PO Length Regitter | POLR . RW 1
10 PI Base Register “ PIBR 1
11 P1 Length Regiéter S pPILR o1
2 Svstem Base Register T SBR ’ 1
13 System Length Register ~~~° SLR. __RW CPU T
14 reserved o e — — - 4
15 reserved V ; T - = -4
16 Process Control Block Base ~ peBB RW _ PRC '

Y

*Refer to Processor Register description.

Confidential and Proprietary 151




dliloitlol| EEERE Preliminary -

Number RegiSte}‘~~N§ﬁ;\e~z» e Minemonie - Type. Scopefnmalxze Category*

17 SysiemControl Block Base ~ SCBB KW CPU - 1
18 Interrupt k[’,l}jj‘oxi‘gy I&?YQJ , AL CRW O CPU - ves 1
19 AST Level ASTLVL RW  PROC ves 1
20 Software Interrupt Request SIRR W CPU  —zagd wseeg
21 o Sg‘t)t\'va‘ré'[n@fuptiSunﬂn‘xafy L SISIi . :"R‘\\’f, cru yes S 1
22, .. a'Ihtéx*prOCGSSOr'Iriterfupt : s CIPIR RW o CPU — o
235 CMIEmorRegister ' CMIERR R = ru — A
20 TnevalClockComl  ICGS KW G ye 2
25 - Next IntervalkCount NICR W CPU — 3
26 Interval Count ICR ‘R CPU =7 >3
27 77 Time Of Year R TODR CRWCCPU - - 3
28 Console StoragekRecei\"e} Stﬁtvus‘ (VTSTRS V _‘RX\\(/ 3"(“.1‘31{ — ;\," " 3
29 Console Storage Receiver Data CSRD R U — 3
30 Console Storage Transmitter Status,  CSTS . RW = CPU: — 3
3‘1" o éCon's'lec;‘ Stor?g\é’ifrqrtl?znittqr'[)zﬁligzyll . CSTD W cru - -~ ,; , v 3
32 k Consélé Receijv’er,St"’atu:; | W - RXCS RW  CPU ‘ — ’ AS
33 " Console Receiver Data ; RXDB R CPU  — 3
34 Console Transmitrer St:;;t\,ls - TXCS RW (‘.I’{U - . 3
35 | Console Transmitter Data . TXDB wooCcPU — "3
36 Translation Buffer DisaBle - TBDR RW  CPU -~ — 3
37 Cache Disable CADR R\‘é’ cru — ' 3
38 Machine Check Error Summary MCESR RYW CPU  — 3
39 Cache Error CAER RW  CPU - 3
40 Accelerator Control/Status ~ ACCS RW  CPU. — 4
41 Console Saved Inrerrupt Stack Pointer SAVISP R !(111I;I ': — 2
42 Console Saved PC ~ SAVPC R (II/"L_!J‘ — 2
43 Console dechSl : SAVPSL R "(;T’Iv..l o 2
44 WCS Address ‘ ; WCSA RW. . ‘CP[}’I — | 4
45 ’ WCS Data . o WSD RW >(:PU =7 4 7,
46 reserved ‘ ‘ — [ — _ 4
47 reserved ’ ' - el DA 4
48 SBI Fau]t/Sta:tgl; . SBIFS RW  GPU —~ 3

*Refer to Pracessor Register description.

1-52 Confidential and Proprietary




Number Register ﬁme A
% SBISle . . . _SBIS _ .R CP

50 SBI Silo Comparawr SBISC RW
51 SBI Maintenance | SBIMT RW
52 . " 5BLEsror Register oo SBEER T RW
53 SBI Timeout Addreés . sB
S4 ,SBLQuAdworci( lear - P

55 AOBusReset 110 i 00008 3
56 Memory Management Enable R
57 Trans. Buf. Invalidate All ; 1
58 Tans Buf InvalidateSingle  TRIS _ W_ CPU_— o1
59 Translation Buffér Data" "LjBDATA RW : CPU% S 3
60 Microprogram Bmak MBRR RW CPU  — 3
61 . Performance Mommr Lmble . BMR RW PR(‘}C - 3
62 System Identification . SID RCPU e " b1
63 Translation Buffel Chec:k ! } ‘ ’"X;B(ZHKV N ’ CPU o | 1
64:127  reserved »*— E -~ it ] 4

*Refer to Processor Register description, |

Data cycles and read/wrlte bus cydes, in the C P ,
classes are determined by the type of data to be transfers the data is required unmedlately
by the CPU. Status information, related to the type and class of bus cycle, is transferred onto the
CSDP < 2:0> lines during the address part of a bus cycle. :

Data Class--The data class mcluc’f‘es Istrzam {mstmctl i stream) and DQstmam (data stream).

Bus Cyde Classww'l'l‘lem areAi_ ,  es of The.
request I-stream read; request D-stream read; and demand sﬁ%am, read and swrite.-Each class of
bus cycle is also grouped according to the type of bus or memory aperatmn performzd These are
read, read lock, read modify intent, read no lock or modify, wwrite: unlock, and write no unlock:

Request read cycles are generated when data is not immediately required by the CPU. For example,

prefetching the I-stream (request I-stream read) and filling the second cache langword during &

D-stream read (request D-stream read) generate request reads.

Demand read cycles are generated when data is immediately required by the CPU. For example,,
when an operand PTE, SCB and PCB refamx;wes all generate demand D-stream reads,,

Wmte cycles are. ge:ﬂex:at@d when dm;a s ‘to be wr ten to cache: and e:xtem:al memfsry

Confidential and Proprietary 153

R

T




gosaosn. Preliminary -

Request and demand read cycles respond differently to errors reported during the reference.
Request read errors usually do not affect | program flow, and demand read errors cause a. rnachme
check abort. The effects of errors on the operation of the CPU during these cycles are described in
the Error Handling section. e

Cache Memory

To optimize the performance of the memory subsystem, the CVAX CPU contains a 1 KByte, two-
way associative, 8-byte block cache memory. Cache memory can be configured to store I-stream
only, I-stream and D-stream, or D-stream only (diagnostic use) references.

Organization—The CVAX CPU cache memory is organized into two sets of 64 rows as shown in
Figure 34. Each row in a set is made up of a Valid (V) bit, a 20-bit tag with parity, and 8-byte data
block with byte panty showrl in Figure 35.

SET1 ‘ R SET2
. .
TAG DATA TAG DATA
(20-BITS WITH " (BBYTESWITH PARITY) (20-BITSWITH | ' (8 BYTES WITH PARITY)
26 ROWS PARITY AND 26 ROWS PARITY AND
¢ VALID BIT) VALID BIT)
93 72 71 00 93 LUT2TU s i 00

Fzgwe 34. CVAX 780 34 C acbe Memory Oigamzatzon '

19 T oo

“i83 86 55 a8 - a7 4o 38 s om0 za 23 16 15 08T o7 o0

“lel eyt el evres |e{ BvrEs |e| evres [p| svre3 |P|Evez2 " |p| Tevrer e} svree |

P = PARITY BIT
V = VALID BIT

~ Figure 35+ CVAX 78034 Cache Tag and Data Format

Control ‘ ' " Co e S
Operation of cache memory is controlled by the Cache Disable Register (CADR) and the CCTL
signal. Status informatiomis reported by the Memory Error Register (MEMER) ‘and CSDP3. The
CADR register determines the operating mode of the cache and selects the set(s) to be enabled.

1-54 Confidential and Proprietary




Preliminary CVAX 78034

External logic can use the CCTL signal to prevent the storing of data in cache during CPU read
cycles and-to invalidate cache entries during DMA cycles that write to a memory location stored in
cache. CSDP3 allows external logic to track the set in the internal cache that has been aﬂor:ated
This allows a coherent external cache memory system to be constructed.

Access—A cache memory location is accessed by a physical address generated by the CPU. The
cache physical addresses are shown in Flgure 36 The fumtmn of each fxeld of the physxcal address
“is descnbed in Table 20.

2928 0908 0302 00

L T A e O N S CANY 0 I A
LABEL CACHE INDEX, .
llllltllillllllilll'»r‘l”fl”“lfl LI
{/0 SPACE R L RN BWE/WORD/LONGW@RD
. . SR - ISELECT o

Fi zgure 36+ CVAX 78034 P/oyszczzl Address for Cacbc'ﬂccess

i

Table 20 - CVAX 78034 Physical Address 'Déécfi[ition

Bit Description

29 1O '("input/o‘utput)ii‘—"fh.is bit indicates whether the '}é)}iyéitél address is iiﬁ/@ space. When
set, the physical address.isiin I/O space. I/O space references are never stored in c‘ache‘. i

28:09 .- Label-~These bits are compared to thc TAG fleld(s) of the row selected by the Cache
Index bits 08:03. i

08:03 = Cache Index—These bits select the row in cache memory to be accessed

02:00  Byte/Word/Longword Select—These bits select the bytes to be accessed in thc data block
when there is a cache hit.-

Cachable reference—A cachable reference has the followmg characterlstlcs

» The reference matches the type seleuted by bits 05 04 of the (ADR These are I stream onlv,
I-stream and D- stream, or D- stream only (dlagnostlc use)

« The reference i is notaread Iock reference e e

» The reference is not in I/QO space, bit 29 of the physmal address i5 0.

‘Cache hit—A cache hit occurs when the requested data is present and valid in cache. memory. Ahit
is recognized when the label field of the physical address is the same as a tag in the selected set(s)
and the entry is valid, During a CPU read operation, the data is from cache memory and no external
bus cycle is performed. During a CPU write operation, cache memory and external memory are
updated. This is defined as a write-through. , -

Cache miss— A cache miss occurs when the requested data is not in cache memory or is not valid. A
cache miss during a CPU read operation resalts in a cache allocation if the reference is a cachable. A
cache location cannot be allocated on a write-miss.

-Cache allocation—The CVAX CPU allocates a ca(,he memory Iocauon when a CPU read operation
to a cacheable reference results in'a cache miss. When the CVAX allocates a cache memorylocation,

Confidential and Proprietary 1-55




lildlito Preliminary

it initiates a multiple transfer CPU read cycle. This bus cycle will read two longwords from memory
to fill the allocated 8-byte row in cache. The first longword read is the one that contains the data
requested by the CPU (preferred longword). The second longword read completes the quadword in
the row.

Random set selection is used when both sets in cache memory are selected. The CPU does not
differentiate between valid and invalid entries when selecting the set for a cache allocation. When
the CPU allocates a row in cache, it clears the valid bit for the row in the selected set, fetches the
preferred longword, fills the row with the second longword, and sets the valid bit if no errors occur.
Refer to the Multiple Transfer CPU Read Cycles section.

Error Handling

The response of the CVAX 78034 CPU to ertors depends on the type of etror reported and the
function being performed at the time the error was reported. Some errors result in an interrupt,
and the CPU responds to other errors. Errors reported by the assertion of the CRD, MEMERR, and
PWRFL signals generate interrupts. Bus errors, DAL parity errors, cache parity errors, and memory
management errors have a defined response from the CPU.

Bus errors— External logic notifies the CPU of a bus error by asserting the ERR signal during a bus
cycle. The response of the CPU to a bus errors is summarized in Table 21. External logic can also
request a retry of some bus cycles by asserting the ERR and RDY signals.

Table 21 - CVAX 78034 Response to Bus Errors and DAL Parity Errors

Cycle type Prefetch ~ Cache' Error status® Results

demand D-stream . — entry is logged in machine check -
(read) invalidated MESRbits 06:05 abort

write — . —_ — machine check

‘ abort

request D-stream  — entry is logged in _

(read) invalidated MESR bit 06
«tequest I-stream prefetch entry is logged in ( —

(read) halted invalidated MSER bit 06

"The entire row in cache memory selected by the faulting address is invalidated whether the
reference is cachable or not cachable. The entries from both sets are invalidated.
*Only DAL parity errors will log the status.

DAL parity errors—FE xternal logic enables DAL parity checking by asserting the DPE signal. Each
8-bit byte of DAL data is conditionally checked by a parity bit. Odd data bytes have odd parity and
even data bytes have even parity. The parity sense is alternated in order to detect stuck-at-one faults
and stuck-at-zero faults. DAL parity checking can be disabled, referente by reference, by
deasserting the DPE signal.

The action following the detection of a DAL parity etror depends on the type of refeérence; During a
demand D-stream reference, the cache entry is invalidated, the cause of the error is logged in the
MSER bits 06:05, and a machine check abort is initiated. During request D-stream and I-stream
references, the cache entry is invalidated, the cause of the error is logged in MSER b1t 06, and no
abort occurs. Table 21 lists responses of the CPU to DAL parity ertors. ;

1-56 Confidential and Proprietary




Preliminary CVAX 78034

Cache parity—The CVAX CPU protects the internal cache with parity. Each 8-bit byte of cache
data and the 20-bit tag field is checked by a parity bit. Odd data bytes record odd parity and even
data bytes record even parity. The tag field records odd parity. The stored parity is valid only when
the valid bit associated with the cache entry is set. Cache parity is checked on all cachable read and
write references that can be stored in cache and on DMA invalidate cycles Read cycles report cache
parity errors when a valid tag matches bits 28:09 of the physical address and either the stored tag or
the longword selected by address bit 02 generate a parity error. Write and DMA invalidate cycles
repott cache parity errors when a valxd tag matches bits 28:09 of the physical address and the stored
tag generates a parity error.

The results of detecting a cache parity error depend on the reference type Durmg a demand
‘D-stream reference, the entire cacheé is cleared and disabled (CADR is cleared), the cause of the
error is logged in MSER bits 04:00, and a machine check abort is initiated. During a DMA
invalidate cycle, the cache remains unchanged, the cause of the errot is logged in MSER bits 3:0,

V and an abort does not occur. During a request I-stream reference, the entire cache is cleared but it
remains enabled, the. cause of the error is Iogged in MSER bits 3:0; prefetchmg is halted and an
abort does not occurs.. : ;

The responses of the CPU to cache pmt’y errots is hsted in Table 22.

; ~ Table 22 CVAX 78034 ResponsetoCache P’m:xty Ertor o
Cydetype  Prefewch Cache .. 1 ' Errorstatus ~ Results

demaﬁd‘D-stream‘ L e clearcache loggedin  machine check
(read) and disabled! MSER bits 04:00 abort
write — ' ' clear cache” loggedin -
cache hit - : MSER bits 03: ()02

DMA invalidate - — no cache loggedin =
cache hit : change MSER bits 03:00%
write : = (not possible) g ;
cache miss

request D-stream ’ (not possibley

(read)

request I-stream  prefetch clear cache! logged in —
(read) halted MSER bits 03:00

'The cache is cleared only if CADR bit 00 is cleared.
*A parity error is detected only in the tags.

Memory Management Ertor—The CPU response to-memory management faults is listed in Table
23. Refer to Memory-management Faults for a descmptlon of memory management faults.

Table 23 - CVAX 78034 Response to 'Mémory-management Faults

Cycle type Prefetch Results
demand D-stream — memory-management fault (ACV, TNV, etc.)
(read)

Confidential and Proprietary 1.57




o Preliminary

Cycle type " Prefetch ©  Results’ | ’ L
write : —ﬂ— L o ;memérwmanégexﬁent fatﬂt (ACV,«,TNV, etc.) ‘
' reques"‘t‘D-stréani‘ ' (i}pf poés'ibl(fr)" '
(read) R
. request I-stream prefetch halted
(read)
Interfacing Requirements

‘The power supply; clock timing, and bus connectmns to the CVAX CPU chip are descnbed in the
, followmg paragraphs ,

. Power and Ground Connections" ‘ o ” ‘
The CVAX 78034 requires a single' 5-volt power supply. Six Vi pins and six Vi, pins connect to the

- power supply and ground. The TEST/V,s pin connects to the supply ground or can be used for test
purposes. Figure 37 shows the power and ground connection and decouphng Table 24 lists the
CVAX CPU pin and associated power and ground requirements.”

Note
Care must be taken when connecting the Vi, and Vs pins. The Vyp pins should be connected
together and to the 5-volt power plane using short wires. The Vi pins should also connect together
and to the ground plane using short leads. The power supply should be decoupled by connecting a
0.33 fand'a 0.047 f ceramic or equivalent capacitor between each Vo, pin and its associated Vs pin.

" vS$ cs E 53\ voc:L .
’ ; PR ERE B A

p ~
047{ .33 . 33| .047 .
+5V VoD 76 . E 52 ves 1l
+5V v 77 :
‘ ‘ VSS
51 p————{t
047 33
[l
- VDD :
+5V°‘TT‘51 CVAX 78034 CPYU .
sl 33 5
VSS

o] o[ |

ALL VALUES IN uF ALl CAF‘ACITOHS CERAMIC OR EQUIVALENT.,

 Figure 37 « CVAX 78034 CPU Power and Ground Connections

1-58 Confidential and Proprietaty




Table 24 = CVAX 78034 CPU Power Distribution

Pin Type Output signals powered

76,53 Voo DAL<31:00>,BM<3:0>

7552 Vg ~ DAL<31:00>, BM<3:0>

77 Voo caiéhé and internal IDAL drivers

51 Vis o \,cache and mternal IDAL drwers

1,36 Voo mtefnal Iagu: :

2,37 Vi, internal logm ; T

21 Voo CPDAT<5:0>, CPSAT< 10>, TEST ‘c“:‘v”c?’a‘ CCTL, "ISM'G DS, AS,

DBE» fWR CSDP<3:.0> . Py

22 \Iqs ' "~ CPDAT<5:0>, CPSAT<1:0>, TEST CWB CCTL, DMG DS, WR,
‘ c<’ﬁ§“«&"§’"ﬁ’§

20 Vi AS ‘V

Clocks and Synchronization:

The CVAX CPU uses two precision MOS, clock inputs to generate its internal timing and control
signals. These clocks are provided by the CVAX 78135 clock generator. The TTL level oscillator
input pro\ndes the two 180 degree phase shifted, precision MOS clock signals required by the
CPU.

The RESFT RDY, and ERR 51gnals to the CPU must be asserted synchronously with respect to the
CLKA and CLKB inputs. To aid the system designer, the CVAX 78135 clock (CCLOCK) generator
provides a common synchronization point for these signals. This allows peripheral support chips
and other devices to operate asynchronously with the CCLOCK and to synchronize these inputs to
meet the timing requitements of the CPU. Figure 38 shows the CVAX 78135 CCLOCK in a CVAX
78034 CPU system. Care must be taken during board layout to limit the amount of skew between
the CLKA and CLKB inputs of the CVAX CPU so that the timing parameters are met.

Confidential and Proprietary 1:59




ERBOOD Preliminary” CVAX 78034

IR Y:] s J—
" vss —1 _
P iy h
 TEST CONTROL ~={TesT ‘
TEST CLOCK SOURCE smremmeememeetid TCLK N
1 CLKIN
1T osc MCLKA.B -
RESET -
e RDY
POWER UP CVAX 78034
LoGIC SYSRESET =, e
SYSRDY o
G
SYSERR = —
ACLKA, B, C
CVAX 78135 -
ASYNCHRONOUS CLOCK CHIP
SYSTEM
INTERFACE CVAX 78134
: FPA
OTHER
SYNCHRONOUS
SUPPORT
CHIPS
NOTE: -

TEST, TCLK__IN, SYSRDY, SYSERR, RDY,
AND ERR REQUIRE PULL-UP RESISTORS. -

Figure 38+ CVAX 78034 CPU SyStem with CVAX 78135 Clock Genentor

Strobe Termination

To eliminate interactions between the output strobes of the CVAX 78034 CPU, each strobe output
must be terminated with a series resistor. The strobe ouputs that requiring resistors are AS, DS,
DBE, WR, DPE, CSDP < 3:0>, and CWB. The resistor value should be from 20Q to 47Q, however,
the value depends on the layout and loading of each strobe. The resistor value selected should
dampen the transmission line reflections. A 10Q series resistor reduces a glitch by approximately
1.0 volt. The terminating resistors should be connected as close to the signal pin as possible.

Bus Cycles
The CVAX CPU performs a bus cycle when

« Reading or writing information to or from memory, a peripheral device, or an externally
implemented processor register.

= Acknowledging an interrupt and reading a device interrupt vector.

= Transferring information from or to the CVAX 78134 FPA,

1-60 Confidential and Proprietary




CVRX378%34

Preliminary

Figure 39 shows the bus connections used by the CVAX CPU.

e HALT . DS - : e EAELENEE. .
et} PAVRFL %, ‘ =
INTERRUPT | %] CRD aM<3:0> : :
CONTROL | ] TAEMERR : BYTEMASK | BW<30>
el INTTIM - . !
) [RG<3:0> _
1 CONTROL STATUS |~ T8<2.0>
fpatcw o T
CVAX 78034
CENTRAL PROCESSOR
UNIT £ §
e PRy ] DFE0S
CS DP<3:0> TRANSCEIVERS —_—
WRITE 1. b e
B ik oI M AR
"DBE - BEE
DMA - i D,,H ; . [ DTS o [e) ‘ ! L :
CONTROL \. e BT i ; i »
B ) : [PUIREgE ¥ : A para :
DAL<31:005 c:—-—:_> Thanscevens [CBO<ITOE> >
’ " ADDRESS "
LATCH
CACHE MEMORY p— B B -
- ANDWRITE Burrer { T ] STt =
CONTROL & e 377 : oap
: D DAL<31:00>
| CPETA1:05 fatwameirs W crsTa< 10
CPDAT<5:03 b et CPOBT<5:05 .
R RCRIBE bepit : a
CLKB =+ CLKB cvgx%man, )
: FLOATING-POINT]
; RES A RESET ot FRATOR. - J
. . . ; i | ACCEL ‘ﬁ“D""(
Y
: CLKB  RDY. Eﬁﬁ
et RESET wE B

Figure 39+ CVAX 78034 CPU Bus Connections

A microcycle is the basic timing unit for a bus cycle. A microcycle is defined as four clock phases (P1
through P4) as shown in Figure 40. Detailed timing information for the following bus cycles is
contained in the ac Electrical Characteristics.

et MICROCYCLE MICROCYCLE

23

=/ N\

Pa

T\

P3

N/

N\ /N

e an

Figure 40» CVAX 78034 Microcycle

Confidential and Proprietary

L4

1-61




il Preliminary CVAX 78034

Idle cycle—An idle cycle requires one’ microcycle. During an idle cycle; DAL< 31:00> are

undefined and the bus control signals are not asserted.

Single transfer CPU read cycle—During a single transfer CPU read cycle, shown in Figure 41, the

CPU reads'a minimum of one longword from main memory or from an IfO device. A single transfer

CPU read cycle requires two or more microcycles. Additional microcycles are always in increments

of a microcycle. The sequence of events is

1. The CPU transfers the physical longword address onto DAL <29:02>. DAL <31:30> are set to
01 to indicate a single longword transfer.

2. BM<3:0> and CSDP< 3:0> are asserted as required and WR is negated.

3. The CPU asserts AS indicating that the physical address, BM< 3:0>, CSDP < 3.0 >, and WR
are valid and can be latched. o

4. The CPU asserts DBE to enable'the external interface to drive the DAL and asserts DS to indicate
that DAL are available to receive the incoming data.

5. The CPU checks for a complete cycle once every two clock phases starting at the next possible P1
edge. The three Responses are used by external logic to indicate to the CPU that the cycle is
complete are o e
a. If no error occurs, external logic places the required data on DAL<31:00> and parity
information on CSD < 3:0 >, asserts DPE if DAL parity is to be checked, and asserts RDY with
ERR deasserted. The CPU reads the data and corresponding byte parity information from
DAL < 31:00> and CSDP < 3:0>. If a parity error occurs, the appropriate error information is
logged in the memory system etror register, the CPU ignores the data on DAL < 31:00>, and
generates a machine check if the cycle was a demand read cycle.

b. If an error occurs, external logic asserts ERR with RDY deasserted. The CPU ignores the data
on DAL < 31:00> and generates a machine check if the cycle was a demand read cycle. An error
will be recognized only if RDY is deasserted for two consecutive P1 sample points. If the error
response (ERR asserted and RDY deasserted) is detected at the first P1 sample point, but RDY is
asserted at the second P1 sample point, the cycle will terminate according to the retry protocol.

c. External logic can request a retry of the cycle by asserting RDY and ERR. Retrying a read cycle
can eliminate deadlocks on the DAL because the CPU guarantees that bus arbitration occurs
before the cycle is restarted (DMG will be granted if DMR is asserted). Certain request read
cycles will not reissue a bus cycle if they are retried. Specifically, if the retry occurs on a prefetch
reference, the operation may not be reissued because the CPU may execute a branch operation
before the prefetch can be retried.

6 The CPU completes the cycle by deasserting DS, DBE and AS.

1-62 Confidential and Proprietary




CLKA /
CLK8 \

DAL < 31:00>

Preliminary
e MICROCYCLE: ROCYCL : ]
P2 " ps e2

CVAX 78034

Jr‘\/—

ADDRESS

v

. gy .
P4 & . . P2

N /N

TS BP0, .

AS

DBE

N

BAM<3:0

 VALID BYTE MASKS X

ROY.ERR

Figure 41 + CVAX 78034 Single ,:f;»;ffzsfer?:c.pg Read Cycle

Multiple transfer CPU read cycle—During multiple transfer CPU read cycles shown in Figure 42,
the CPU reads two longwords (one quadword) from main memory. A multiple transfer CPU read
cycle requires a minimum of three microcycles. Each longword transfer may be increased in
increments of one microcycle. I/O space read references always occur as single transfer read cvcles.
The sequence of events for a multiple transfer CPU read cycle is

1. The CPU transfers the physical address of the preferred longword that is to be accessed onto
DAL <29:02>. This address can be aligned with either of the longword addresses within the
quadword block. DAL < 31:30 > are set to 10 to indicate a quadword transfer. The CPU sends an
address only on the initial longword (preferred) transfer of a multiple transfer read cycle. The
address associated with the second (cache fill) transfer is implied and therefore is not transferred
by the CPU. External logic can generate the implied address by inverting address bit 02 of the
preferred address. All references, therefore, remain within a quadword block. For example, if
the initial longword address in a quadword transfer is 0007FB36 (hexadecimal), the implied
address is 0007FB32.

Confidential and Proprietary

1-63




2. BM<3:0> and CSDP<3:0> are asserted and WR is not asserted. .

3. The CPU asserts AS to indicate that the physical address, BM < 3:0>, CSDP< 3:0> and WR
are valid and can be latched. ,

4. The CPU asserts DBE to indicate that the external 1nterface can transfer mformatxon onto
DAL < 31:00>. DBE is not asserted between each data transfer.

5. The CPU asserts DS for each data transfer to indicate that DAL <31:00> are available to receive
incoming data.

6. The CPU checks for a complete cycle after each longword transfer. This check is performed once
every microcycle at the first P1 edge after DS is asserted for each transfer. The response by the
external logic is

a. If no error occurs, external logic places the required data on DAL< 31:00> and parity
information on CSDP < 3:0 >, asserts DPE if DAL parity is to be checked, asserts CCTL if data
caching is to be prevented, and asserts RDY with ERR deasserted for each transfer. The CPU
reads the data from the DAL lines and the corresponding byte parity information from
CSDP<3:0> and deasserts DS. If data caching was not prevented (CCTL deasserted), the CPU
continues on to read the next longword by reasserting DS. If data caching is prevented, the cycle
immediately terminates without reading the second longword of data. If a parity error occurs,
the appropriate error information is logged into the MSER register, the CPU ignores the data on
DAL < 31:00> and generates a machine check if the cycle was a demand read cycle. If a DAL
parity error is detected on the first longword transfer, the CPU will perform the second data
transfer and ignore the data.

b. If an error occurs during either data transfer, external logic asserts ERR with RDY deasserted.
The CPU “ignores the data on DAL<31:00>, terminates the cycle without reading any
additional data, and generates a machine check if the cycle was a demand read cycle. Only the
first transfer can be.a demand cycle. An error will be recognized only if RDY is deasserted for
two consecutive P1 sample points. If the error response (ERR asserted and RDY deasserted) is
detected at the first P1 sample point but RDY is asserted at the second P1 sample point, the cycle
will terminate accordmg to the retry protocol.

¢. To request a retry, external logic asserts both RDY and ERR. Retrying a read cycle can
eliminate DAL deadlocks because the CPU guarantees that bus arbitration occurs before the
cycle is restarted (DMG will be granted if DMR is asserted). If the retry occurs during the second
longword transfer, the read cycle will not be reissued.

7. The CPU completes the cycle by deasserting AS, DBE, and DS.

1-64 Confidential and Proprietary




ICAOCYCLE

ROCYCLI

CVAX 78034

HCROCYCL

[l

CLka /
CLKB \

N\

N\

\/\/

SN

SN

anNa

DAL<31:00> ADDRESS DATA §

X

X DATAZ .,

|

PE

/

O

<

~—

C§ BP<3:0>

i

\?F?wa

BM<E0>

VALID BYTE MASKS

ROV.ERR

It

Figure 42« CVAX 78034 Multiple Transfer CPU Read Cycle

Normally, 2 multiple transfer CPU read  cycle reads two longwords of data. However, the cycle
terminates after the first data transfer if ERR is asserted and RDY is deasserted (memory error), or

if CCTL is assertcd to prevent data cachlng The cycle does not terminate early if a DAL parity error.
is detected on the first transfer Table 25 lists the possxble multlple transfer cycle responses.

Table 25  CVAX 78034 Responses to a Multiple Trarisfer CPU Read Cycle

Condition DAL patity Action - R ,

CCTL RDY ERR emor First reference Second reference

X H H ‘ X ' wait fof data wa.lt for data

X “H L X machine check if demand  no machihe check -
“invalidate cache entry ' invalidate cache entry
‘no second reference E

H L H H no machine check . 'no machine check

__proceed to second reference

update cache

update cache

Confidential and Proprietary

1-65




dligiit/a]| B Preliminary - CVAX 78034
Condition DAL parity Action
CCTL RDY ERR  error First reference Second reference
L L - H H no machine check . no machine check
‘ invalidate cache entry update cache
no second reference
H L H L " machine check if demand no machine check
' " invalidate cacheentry =~ invalidate cache entry
log error in MSER log error in MSER
~ proceed to second reference
L L H L machine check if demand ~ no machine check
’ invalidate cache entry invalidate cache entry
log etror in MSER log error in MSER
no second reference
X no machine check no machine check

no cache change

no second reference-retry ~

invalidate cache entry
no retry

X is either hlgh or low level

CPU Write Cycle—During a CPU write cycle, shown in Figure 43, the CPU writes information to

main memory or-to an I/O device. A CPU write cycle requires 2 minimum of two microcycles. Each

transfer can be increased in increments of one microcycle. The sequence of events for a CPU write

cycle is X

1. The CPU chlp transfers the phvsm:il Iongword address onto DAL <29:02>. DAL < 31:30> are
set to 01 to indicate a longword transfer.

2. BM<3:0> and CSDP<3:0> are asserted as required and WR is asserted

3. The CPU asserts AS to indicate that the physmal address, BM<3:0>, CSDP<3:0>, and WR
are valid and can be latched.

4. The CPU asserts DBE to indicate the write data can be transferred onto an external bus. -

5. The CPU transfers the output data onto DAL< 31:00> and byte parity information onto

CSDP< 3:0>, asserts DPE to indicate that valid parity information is available, and asserts DS

to indicate that the DAL contains valid data.

6. The CPU checks for a complete cycle once every two clock phases starting at the next possible
P1. The response of the external logic is : :

a. If no error occurs, external logic reads the data from the DAL < 31 00> and asserts RDY with
ERR deasserted.

b. If an error occurs, external Ioglc asserts ERR with RDY deasserted. Aborting a write rite cycle
generates a machine check. External logic can report a DAL parity etror by asserting ERR and
deasserting RDY. An error will be recognized only if RDY is deasserted for two consecutive P1
sample points, If the error response ERR asserted and RDY deasserted) is detected at the first P1
sample point but RDY is asserted at the second P1 sample pomt the cycle will terminate
- according to the retry protocol. .

¢. To request a retry, external logic asserts both RDY and ERR. DAL arbitration occurs after the
write operation is terminated.

7. The CPU completes the cycle by deaésefting AS, DBE, and DS.

1-66 Confidential and Proprietary




€8 DP<3:0>

2

BeE

BM<3:0>

External Processor Register Read Cycle—An external processor tegistér read cycle'is initiated
when a category 3 processor register (refer to. Processor.Registers)is read using a MEPR instruction.
The external processor register read cycle is the same as a single transfer CPU.read cycle shown in
Figure 41. This cycle requires a minimum of two microeycles and can be extended in increments of
one microcycle. The sequence of events for an éxternal processor register read cycleis - - -

1.

. BM<3:0> are all asserted, CSDP <3+
. The CPU asserts AS indicating that the neglster number BM < 3 1‘3> C‘SDP< 3 0 > and ‘W_

The CPU transfers the processor register rmmbefr onto DAL< 07 02 >, and DAL < 31 30 > ‘are
set to 01 to indicate longword transfer:

< are assérted as requwe& and WRis unassea‘tefd

are valid and can be latched. - i

4. The CPU asserts DBE to indicate. that, read glat@ can be. transgerredmnm the !AL

. The CPU asserts DS to indicate that DAL are available to: receive incoming data. e
. The CPU checks for a complete cycie once every two clock phases at the next posalblc Pl The

response of external logicis =~ ;

a. If the processor register is 1mplemented extema] logxc transfers the neqmred data on
DAL < 31:00>, deasserts DPE, and asserts R 5 wn:h Edeasserted The CPU reads rhe data‘

- from DAL < 31:002> .. TEE

b. If the processor registet is riot xmpierrfemed external loglc asserts ERR wrth Ei')'" deasserted
The CPU ignotes the data on DAL < 31: 00> and internally forces the result to zero. A detected

parity érror will force the result to zero and is not reported Therefore, it is recommendéd that

Confidéntial and Proprietary ' 1-67




7.

DPE remain deasserted during a processor register read. The unimplemented response will be
recognized only if RDY is deasserted for two consecutive P1 sample points. If this response (ERR
asserted and RDY deasserted) is detected at the first P1 sample point but RDY is asserted at the
second P1 sample point, the cycle will temunate according to the retry protocol.

¢. To request a retry, external logic asserts both RDY RDY and ERR. DAL arbitration occurs after the
initial read cycle is terminated.

The CPU completes the cycle by deasserting AS, DBE, and DS. -

External Processor Register Write Cycle—An external processor register write cycle is initiated
when a category 3 processor register (refer to Processor Registers) is written using.a MTPR
instruction. An external processor register wiite cycle is the same as a CPU write cycle shown in
Figure 43. This cycle requires a minimum of two microcycles and may be extended in increments of
one microcycle. The sequence of events for an external processor register write cycle is

1.

The CPU transfers the processor register number onto DAL < 07:02> and DAL <31:30> are
set to 01 to indicate a longword transfer.

2. BM<3:0> are all asserted, CSDP< 3:0> are asserted as required, and WR is asserted.

. The CPU asserts AS to indicate that the reglster number, BM<3:0>, CSDP<3:0> and WR

are valid and can be latched.

. The CPU asserts DBE to indicate that the data to be written can be transferred onto an external

bus.

. The CPU transfers the data onto DAL<31 00> and asserts DS to mchcate that the DAL

contains valid data.

. The CPU checks for a complete cycle once every two clock phases starting at the next possible

P1. The response of the external logic is

a. If the processor register is implemented, external loglc reads the data from DAL and asserts
RDY while ERR is deasserted. . :

- b. If the processor register is not implemented, extcma!

logic either responds as if the register is implemented by asserting ERR when RDY is deasserted :

" Both responses have the same effect and no special action is taken. The unimplemenited:

response initiates no special action only if RDY is deasserted for two consecutive P1 sample

- points. If this response is detected at the first P1 sample point, but RDY is Asserted at the

7.

second P1 sample point, the cycle will terminate according to the retry protocol..

c. To request a retry, external logic. asserts both RDY and ERR. DAL arbitration occurs after the
initial write cycle is terminated.

The CPU completes the cycle by deassertmg AS DBE and DS.

Interrupt Acknowledge Cycle—An interrupt acknowledge cycle sequence: is snmlar toa smgle
transfer CPU read cycle shown in Figure 41. The sequence of events is :

1.

DAL < 06:02> transfers the IPL of the interrupt being acknowledged with TPL 17, IPL 16, IPL
15 and IPL 14 as IRQ3, IRQ2, IRQ1, and IRQO, respectlvely DAL < 31:30 > are set to 01, and
DAL <29:07 > and DAL < 01:00> are set to zeros, ~

. The data read is used to generate the vector and new IPL far t:he mterrupr sequence. Bits 15:02

of the incoming data are used to create the vector offset within the system ‘control block: The
new processor status longword priority level is determined either by the external interrupt

‘ ‘request level that caused the interrupt or by bit 00 of the value supplied by external hardware. If

‘bxt 001is 0, the new IPLis determined by the interrupt request level being serviced. TRQ3 sets the

1-68 Confidential and Proprietary




Preliminary CVAX 78034

. IPL to 17 (hexadecimal) and IRQO to IPL 14 (hexadecimal). If bit 00 of the value supplied by
, e);temal hardware is 1, the new IPL is forced to 17 (hexadecimal). Bits <31:16> and bit 01 of
the incoming data are ignored.

3. Assertion of ERR in the proper order with RDY causes the bus cycle to be reissued or aborted.
An abort causes the DAL data to be ignored and the CPU continues as if the interrupt request
never occurred (passive release of the interrupt request) A detected DAL parity error also causes
a passive release and is not reported. Therefore, it is recommended that T remam deasserted
during an interrupt acknowledge cycle.

DMA Grant Cycle—The CPU can mlmquxsh its control of the DAL bus and related control slgnals
upon request from a DMA device or another CPU. Figure 44 shows the sequence of the DMA grant
cycle. The sequence is

1. The external dewce requests controlof the bus by assertmg DMR

2. At the conclusion of the current bus cycle, the CPU responds by causmg DAL < 31:00> S,

WR, DBE, BM<3:0>, and CSDP <3:0>to become a high mlpedance and asserts
3. The exfernal device: rray now use the DAL to transfer data.

4. To return control of DAL to the CPU, the external device deasserts DMR DMR The CPU responds by
deasserting DMG and starting the next bus cycle.

,AS,
M

The CPU ensures that successive DMA requests (DMR asserted) cannot. pmvent-aﬂ CPU activity. As
an example, one CVAX cycle can occur bétween two successive assertions of DMR.

X_/'*m IW

o —4
MG
\ it 1.
. . . . r LA . : "
¢ - ;
= om " . 4 e i - . .
DMA DEVICE] 2 -
B . . . Ry
TS (FROM 'l' - ) ” "
TS (FROM (VAX) d )
AS BBE D9E, i § {6
Wh BR<EES " "
{ - -
DAL=31-00: L N v /
BF<aD: . r T
1 . |

Figure 44 » CVAX 78034 DMA Grant Cycle

Cache Invalidate Cycles—External logic initiates a conditional cache invalidate cycle, shown in
Figures 45 and 46, to allow the CPU to detect and invalidate stale data that is stored in the cache. A
conditional invalidate cycle uses a minimum of three rmcrocycles The sequence of events for a
cache invalidate cycle is

1. After DMG is asserted by the CPU, extemai icg)c asynchmnously tmnsfers the physlca} address

" onto DAL < 31:00>, asynchronously asserts &S to latch ‘the address into the CPU, and

asynchronously asserts CCTL to start a conditional invalidate cycle.

2. The CPU invalidates the quadword cache entry sélected by the DMA address if the location is
stored in the cache.

Confidential and Proprietary 169




dilolit 2/ S Preliminary -~ CVAX 78034

3. External logic deasserts CCTL and optionally reasserts CCTL to conditionally invalidate the
“alternate quadword formed by inverting address bit 03 of the physical address. This allows
external logic to detect and invalidate stale data stored in any naturally aligned octaword. =

4; The cycle ends when external logic deasserts both S and TCTL. '

If a cache parity error is detected during the condltlonal invalidate operatlon no macEme check is
generated no invalidate occurs, and the error xs logged in the MSER.’

The CPU detects and invalidates quadword stale data in three microcycles. Therefore the
maximum cache invalidate rate cannot exceed 8-byte or three microcycles (nommally 26 6 Mbytes)
per secorrd

P3 e P3 Pl P3 Pt P
o W \ / \ /-_~\_.
: R : Cohe ’ - TWO EYCLE

J ¢
P
I
i NEXT OMA
DAL«<37:00> DMA ADDRESS o ADDRESS
T ¥

Figure 45 » CVAX 78034 Quadword Cache Ivalidate Cycle

Py P » 4 P £3 P P

TWO CVCLE
DELAY

MAMI\_

=T ks

d
T 3T 1} —
DALZ 3160 » OM4 ADDRESS
| { it

%
A =

Figure 46+ C WIX 78034 Octaword Cache Invalidate Cycle

Copmcessor Protocols : ; T . ' :

Coprocessor protocols are used by the CVAX CPU when commumcatmg w1th the optlonal CVAX
78134 FPA (CFPA). These devices communicate with each other through the CPSTA < 1:0> and
CPDAT < 5:0 > lines and DAL < 31:00>, CPSTA < 1:0> inform the CPU or CFPA ori thé method
of interpretation of the CPDAT < 5:0> information. The CPDAT < 5:0 > lines transfer opcode and
control information to the CFPA and return condirion code and exception status to the CPU.
DAL < 31:00> are used to transfer operands and results.

1-70 Confidential and Proprietary




dlilo ]tz I8 Preliminary CVAX 78034

The protocol for the transfer of information between the two devices is -+
1. The CPU sends the opcode for the instruction to be executed and the operand(s) to the CFPA.

2. The CPU waits for the CFPA to complete the instruction. DMA devices may be granted use of
DAL < 31:00 > and its associated control signals while the CPU waits. .

3. The CFPA notifies the CPU that the result is ready. Condition codes. and error information are
transferred on CPDAT < 5:0> lines by the FPA.

4 The CFPA transfers any results of the computauon thmugh DAL < 31 {}{3 > durmg consecutive
microcyeles. ¢ g .
5. When the operation is. complete the CPU can mnd am)ther opcade o the CFPA

Opcode Transfer-—The CPU transfers opcode information to the CFPA when the CFPA is ready to
execute an instruction, The transfer cycle is shown in Figre 47. The CPU tran

bits of the opcode onto the CPDAT <'5:0> hnes and the optocle type (F D (} fioatmg or 1meger)

onto.the CPSTA< 1:0> hnes

P2 P4 -y P2,

OPCODE ON CPDAT

CPDAT<5:0> . X ppeooe X ’
. e EXEEUTION G NEW . E ST
VAX INSTRUCTION. . 5
BEGINS

Figure 47 « CVAX 78034 Opcode Transfer Cycle =

CPSTA<1:0> £ ' B #/0. 6 OR INTEGER X

Operand Transfer—After sending the opcode to the CFPA, the CPU transfers the necessary
operands to the CFPA as shown in Figures 48 and 49. The operand(s) can originate from the general
reglsters or the internal cache memory of the CRU or.from eﬁé:@rnal memory,; The CFPA monitors
the &S signal to determine if the source of the operand. When &S is deasserted, the operand is from
the CPU. When AS is asserted, the operand is from external memory. The protocol used for an
operand transfer is

1. The CPU sets the CPSTA< 1:0> lines to 00 to mdmate that the operation is encoded on
CPDAT <5:0>.
2. The CPU transfers information related to the operand transfer onto CPDAT < 5:0>. The line
information is
CPDAT Line Description
<5:4> Address alignment code. These are zeros when the operand originates from
general registers. They transfer the two low-order address bits of the reference
when the operand originates from cache or external memory.

3 0 for an operand transfer.

Confidential and Proprietary 1-71




Ay
@m FodE

CPDAT Line Description. - .. 1 .. |

0 when PSL 06is cleared

1 when PSLG is set

0 for no action S :
1 when DAL < 31:00> contains the operand -

0 for no action
1 when DAL <05:00> is a short literal (DAL < 31:06> are zeros.

3. The operand is transferred to the CFPA on DAL < 31:00>. The CFPA aligns all unahgned data.
When the operand originates from external memory (A5 asserted), the CFPA reads
DAL < 31:00 > according to the full memory read protocol (RDY and/or ERR asserted). When
the operand originates from the general registers or internal cache memory of the CPU, the data

s transferred onto DAL < 31:00> at P3 of the cycle and sampled by the FPA at the next P1.
4. If a parity error is detected by the CPU when the soutce of the operand is either the internal

cache memory or external memoty, it aborts the FPA operation. The CPU aborts the operation
by not informing the CFPA of the current result. The CFPA is reset when the CPU sends a new

opcode.

1-72

CPSTA<T:0> o o >\ - o A )
CPDAT<5:0> X OPERAND ON DAL X
DAL<31:00> ) X OPERAND X )

Figure 48 » CVAX 78034 Single-precision CPU to CFPA Transfer

Confidential and Proprietary




Preliminary :

CLKB.

CPSTA<1:0>. - | i¢ i :
fei Res A S I SRR Rd S e (R
CPDAT<5:0>" '~ 7 X OPERAND ON DAL o X OPERAND ON DAL X
DAL<31:00> . x FIRST OPERAND X " X SECOND OPERAND X
1 ; SE e £ g P Torie 3

ngmé 49+ CVAX 78034 Dréyuglé:})recis;én CPElto CFM Tramfer . |

CFPA Result Transfer—-After receiving the opcode and otpera‘ ds, th»c C F’PA executes the
instruction and transfers condition codes status information, and result of the computatlon to the
CPU. Flgure 50 showsv a sirigle- -precision CFPA to CPU transfer, and Flgure 51 shows a double-
precision CFPA to CPU transfer. The protocol for the transferis

1.

When the CPU is ready for a result it set the CPSTA << 1:0 > lines to zero and the CPDAT3 hne to
1. Ownership of CPSTA< 1:0> and CPDAT < 5:0>> lines is then transferred to the CFPA. The
DAL < 31 00> areset toa hxgh»lmpedancﬁstatc at the next P2 edge

. The CFPA. gaing ownershlp of the CPSTA < 1:0> and CPDAT <5:0 > lines by transfemng Zeros

on lines CPSTA<1:0> indicating that the result is not-‘ready and undefined-data on
CPDAT<5:0> during the next P3 edge. The CFPA continues to transfer zeros on
CPSTA < 1:0> ateach P3 edge. The CPU continuously monitors the CPSTA < 1:0>> lines until a
11 is present indicating that the result is ready. While waiting for the CFPA to retusn the result
ready condition, the CPU.can grant use of the DAL and its associated control signals (DMG
assérted) to 'a DMA device. The CPU asserts. DMG ¢ on.a. P4 edge and’ stops samphng
CPSTA < 1:0> until it deasserts DMG.

. The CFPA sets the CPSTA< 1:0> to 11 and transfers condltwn codes and status information on

lines CPDAT <5:0> on-the next P3-edge.-If a DMA ¢ycle-is-in-progress-or is gmnted on the
following P4 edge, the CFPA repeats the response until DMG is deasserted

. The CPU reads the CPDAT<5:0> information to determine the response of the FPA, and a

DMA request is not granted untxl the end of the operatlon The CPDAT<5 0> lines are
encoded as follows:

CPDAT Line Description

5

0 if the result clears the N bit of the PSL
1 if the result sets the N bit of the PSL

0 if the result clears the Z bit of the PSL
1 if the result sets the Z bit of the PSL

0 if the result clears the V bit of the PSL ’
1 if the result sets the V bit of the PSL (integer overflow/ACB condition met)

Confidential and Proprietary 173




Preliminary + "
<2:0>., These bits define the. status of the mformanon
: .. Code -Status ' .
000 .-~ protocol error - ]
0oL 7 reserved opeode’ 4
- 010 reserved operand trap
~ou divide by zero
1007 floating-point overflow
- 10t~ floating-point underflow
"110- - - reserved-—protocol error
m no error

CVAX 78034

Data transfer

aborted
aborted
aborted
aborted
aborted

“aborted

aborted

continue

The results are transferred on DAL < 31:00> in consecutive microcycles immediately following
the return of the condition codes. A single unaligned longword is transferred for a single-
precision result (F floating) and two unaligned longwords are transferred for a double-precision
result (D or G floating). The CPU ahgns the data and performs the fmal transfer if the

destination of the data is memory.

If CPDAT < 2:0> indicate a protocol error, reserved opcode, reserved operand trap, divide by

zero, floating-point overflow or underflow, no data i is transferred The CFPA will not return a

- floatmg -point undetflow ertor if PSL6 is clear.

5. The CFPA sets the C PSTA< 1: O> and CPDAT < 5: 0> ines to a hlgh lmpedance state on the
next P2 edge. The CPU gains control of CPSTA <1:0> and CPDAT < 5:0> on the followmg P3

edge to completc? the transfer.

P3 P3

/*‘"\/"\/‘"\/‘"\/“\;

CLKE

coruumcm )
CODES READY, I

CPSTAC<1:05

/ cj

. [ R [ ERTEI . . . :
CPDAT<5:0> X READY FOR RESULT . ).__.g M NO ERRORX
DAL<31:00> )___! {

L

e\l
L/L,J\/\/\/\/“

X -

DMG
. CVAXS DAL, CPDAT
AND CPSTA MASTER

o CFPAISCPOATAND
CPSTA MASTER

CVAX IS DAL,
CPDAT, AKD
i CPSTAMASTER

Figure 50+ CVAX 73’034 Sirlz'glye—pmcyz;s‘z‘on‘ CFPA to CPU Hansfw o b

1-74 Confidential and Proprietary




e Y
TN e CEm
CPDAT<E0> X READY FOR RESULT )———-5‘,-——-( NOEAROR X
oM@ Fo ERE A )“""‘H : Pl

~~~ i Lo ” : o
E /

|
|

CVAX 1S DAL, CPDAT,
i AND CF5TA MASTER

! 15 DAL, O | cvaxispac
o cPsTn umtn J gf:cnu Mmsn" T CPOAT ARD
I | ‘

oy Ly

 Figure 51 CVAX 78034 Doule-precision CEPA to CPU Transfer

Memory Access Protocol -
The 28-bit address provided by the CVAX CPU on DAL<29 02 > isd lcngwmd a&dfess that‘
uniquely identifies one of up to 268,435,456 32-bit memory Ioaa}:wms PU provic te,
masks on lines BM<3:0> to facilitate byte accesses within 32-bit mem{}ry locanons The CPU
imposes no restrictions on data alignment. Any data item regardless of size may- starf at ‘any
memory address except for the aligned operands of ADAWT and the interlocked queue instructions.

Memory is viewed as four parallel 8-bit banks each of which receives:the: longword address
DAL <29:02> in parallel. Each bank-reads or writes one byte of the data from DAL < ii’ 00 >
when its byte mask signal is asserted. Figure 52 shows the memory organization. %

B3> ‘
[4 A ;r
gBITS
AN IEpe s
: : o
1 , } X i
© DAL<29:02>—e T | I ‘ | ) B
| I T ot it Cal RO
] I : i
'?a e
DAL<31:24> DAL<23:16> DAL<15:08> DAL<07:06>
Figure 52 « CVAX 78034 Memory Qrganization
Confidential and Proprietary 175

g

e




Any CPU read or write operation can be a byte access, word access within a longword, word access
across longwords, aligned longword access, or unaligned longword access: Quadword accesses are
performed as two successive longword accesses with no optimization. Byte accesses, word accesses
within a longword, and aligned longword accesses require one bus cycle. Word accesses that cross a
longword boundary and unaligned longword accesses require two bus cycles.

I-stream Prefetchmg

The CVAX CPU contains a-12-byte I-stream prefetch buffer orgamzed as three aligned longwords.
The CPU generates an I- stream prefetch cycle when an aligned longword in the buffer is empty. At
any time the CPU can use up to a maximum of 6 bytes from the prefetch buffer.

- Specifications
The mechanical, electrical, and environmental Specificétions of the CVAX 78034 are contained in

the following paragraphs. The test conditions for the values specified are listed as follows unless
indicated otherwise.

» Temperature (T,): 70°C -

. Power supply voltage (Vo): 4. BV
. Ground (Vss)

Mechamcal Conﬁguratmn ‘ ! :
The physical dimensions of the CVAX 78()34 CPU 84 pm surfacemount package are contamed in
the Appendix. :

Absolute Maximum Ratings

Stresses greater than the absolute maximum ratings may cause permanent damage to the device.
Exposure to thé absolute maximum ratings for extended periods of time may adversely affect the
reliability of the device. '

= Storage ﬁemperature range (Ty): -55°C to 125°C

» Active temperature range (T,,: 0°C to 125°C

» Power SUPPIY voltage (VDD): —Ojv to 70V e

« Input or output voltage applied: ~1.0 V to 7.0 V

Rf.comme'hded Operating :Conditions

- Temperature( m): 0°C 1o 70°C , ;
= Power supply voltage (V,,;,): 4.75 V»to 5.25v.

176, Confidential and Proprietary .




dec Electrical Characteristics -
The dcinput and output parameters are hsted in Table 26

Tabie 26~ CVAX 78034 de Input aml Ontput Pammeters ittt it o1

Symbol Parameﬁer _

e Requmemems

= Umts ' Tcst Ctmdium

k High—lé%rel input o
| voltage (TTL)

" Lowlevel input
 voltage (TTL).

High-level output

EXt valmgewzmosr

VOLN

Low-level output o i

' voltage {MOS)

Vi

High-level input

© yoltage (MOS)

V i i
V | i ".' i
T~ |

Viw

Low-level input
voltage (MOS)

High-level output

™ ‘voltage

A/ IoH":*f*QQ“A

~ Low-level output voltage P

(all pins cxcept DBE)
DBE pin

v “,L.,l‘Imsz OmA

I,L—-S 0 mA

IIL

Input leakage current

A 0<V, <525V

Low

Output leakage current

WA 0<V, <525V

Lec

Active supply current

mA  L.=0,T,=0°C

Cin -

Input capacitance ="

Cou

Output capacitance "

*Tobe ﬂdetermined;k :

ac Electrical Characteristics i :
The following notes apply to Figures 53 thmzxgh 67 and their assoémted txmmg tabie&

=-All times are inr nanoseconds (ns) except Whe:re ‘rioted.

L

* Cua= 130 pF {except for CPDAT < 5:0 > aﬁd CPSTA<: 0>)

= ac highs for MOS inputs are measured at Vi and lows are measurcd at Vm

» ac highs for MOS outputs are measured at Vo and lows are measured at Vi,

= ac highs for TTL inputs are measured at Vi, and lows are measured at V.

Contidential and Proprietary. .

1-77-




= ac highs for TTL outputs are measured at Vi, and lows are measuredat Vi, cwne s Db o

T

« MOS mputs are driven to Voum of Vouw and TTLi mputs are driven to \/m or Vou.
—RDY and ERR sampling is performed by the CPU to determine if one of the following bus cycles
is to be completed: CPH tead cycle, mtermpt acknowlédge‘ cycle, multiple transfer CPU read
cycle, and a CPU write cycle. If RDY or ERR is not asserted during the sampling window, the
bus cycle is extended in increments of one mxcrocycle until KDY or ERR are asserted. The
following restrictions apply to the assertion-and deassertion of RDY or ERR with respect to the
sampling window.

—Only 2 high to low transition (assertion) is allowed on RDY or ERR during a P4 that is part of
the sampling window. If the assertion of RDY or ERR meets setup time tgys, the CPU
recognizes the assertion of the signal. The result of a low-to-high transition (deassertion) of
either of these signals during P4 is unpredictable.

—If RDY or ERR is to be recognized by the CPU as deasserted, the signal must be deasserted prior
to the P4 that starts the sampling window and held deasserted through the sampling window.

—RDY and ERR can be asserted prior to P4 that starts the sampling window and yrer'na‘iyn asserted
through the sampling window if they are to be recognized by the CPU as asserted.

Clock Timing—Figure 53 shows the timing symbols used to define the CLKA 'and‘”CLKB clock
inputs. The timing parameters are defined in Table 27. :

¢

20%

CLKA /
0%
-n—— Tc1 KE
fevete ».-MJ iCLKE . - xww‘

90% f"“CLKDL\' , ERIAYE .
cLke
10% E Lo
—1 e CLKE t
J YAV S— o ICLKE ieL KHA TCLKL % .

Figure 53 » CVAX 78034 Clock Input Timing

Table 27 « CVAX 78034 Clock Timing Parameters

Symbol  Definition ‘ Requirements (ns)
, -Min. , - Max.
taxmy  CLKA to CLKB delay teref2-2 toad2+2
terke External clock edge rate ; ‘ 0 10
town External clock high 50 - k o 25
te . External clock low 5o ‘ s
teyers - External clock cycle 50 ' T

*Ta be determined.

178 Confidential and Proprietary




Preliminary

Initialization and Reset Timing
The initialization and reset timing sequence is shown in Flgura 54. The txmmg parameters are
hsted in Table 28.

e ool TV B e 0 e BT 0 e il
* Figure 54 « CVAX 78034 Initialization and Reset Timjﬁg

~ Table 28~ CVAX 78034 Initializatiory and Reset Tumng

Symbol Definition e Requmemzms (ns)
‘ Min, Max

Uinitasp First asselfti(?ﬁ' of AS after RESET i 20 x tmcu: -

theseto Strobe inactive delay from RESET 0 o 25

tresgroy - Output drive from RESET deassertion . 7 Xtcvcm 3 57X tmcu«."'ZG

tresers RESET input setup prior to P1 20 tevee—10

treseTw RESET input width , S 10 X tevews —_—

treserz Bus h1gh1mpedance t1me from RESET N 0 25

Clear Write Buffer and Test Signal Tlmmg

The Clear Write Buffer (CWB) and TESI sighal ummg are shown in Figure 55. The signal
parameters are listed in Table 29: :

Confidential-and Proprietary 1-79

s

—




e S

PJ;\ ; /m AN i

W NN \
o fo-tream ] f-»wesm ‘, TESTH —wf
- m C.EAR WRITE BUFFER Clﬂﬁ“"“ﬁ'ﬁ BUF;ESR TEST STATE i . X
J : “"“"""“‘" T
i 77
B %«}E‘i‘ ,). NORMAL INPUTS X TEST INPUTS L )
, el P e e
é‘gg:&:‘sﬂoz NORMAL INPUTS TEST INPUTS K TESTINPUTS
Figure 55 CVAX 78034 Clear Write Buﬁér‘éhd Test Signal Tz’mz’ﬂg .
'Eable 29+ CVAX 78034 Clear Wrxte Buffelr and TEST Slgnal Parameters
Symbol Definition* ‘ Requxrements (ns)
Min. Max.
reso CWBdrive o 32
Lresta CWB hold v‘ - 0 o -
b . Test input hold 50 —
trs Test input setup 10 -
External Interrupt Timing

Figure 56 shows external interrupt timing sequence, and Table 3{) hsts the timing parameters.

1-80

CLKB \

IRG<3:0>

MEMERR,
CRD. PWRFL,
INTTIM, HALT

s
TSYNF h—
[ tCCTLW

f ISYNR

Figure 56 » CVAX 78034 External Interrupt Input Timing

Confidential:and Proprietary




 Table 30~ CVAX 78034 External Interrupt Input Timing Parameters

Symbol  ‘Definition* Requfmmmts (ns)
temw  CCTLwidth during cache invalidates ' tyuns + tian —.

towe  Asynchronousinput fall time 0 — 15

tson - Asynchronous input hold

toynn - Asynchronous input rise time

tsyns Asynchmnous input setup

*IRQ<3: U > are level sensitive and must be asserte& for ) j g(tm,s) _agd hafd time (tmg) near
the end of P2 to assure recognition. : T

- Low going pulses that occur outside the setup and held w e not, rt:cogmzed

MEMERR, CRD, PWREL, INTTIM, and HATT are edge sens;t £ Thetranmmn from deasserted

 to asserted must occur one setup time (tgyys) before the end of P2 to assure recognition; otherwise,
recogmnon is delayed one mlcrocycle o)

% ‘;, .

Extemal DMA Timing

Figure 57 shows the timing sequence for the cxtema& DMA' sxgnais Table 31 Jists the tlmmg
parameters.

\ ) i . T
' .
b TN ot Lo ok by y Iy . H R e S Y ey Y e 3
—SYNF " iOMGSD o o . X 15YNA ;' N .

L 1OMGSID

e i 5 — etz foeg gy
5 el 5 n { % F ;

BRCATE

OALZHL—

DAL <31:00>, L
BT

;:«.
- " Fa '
Foom oma ' 5 f 5 /‘”\-—
oeviE] oy e
———
|

Confidéntial and Proprietaty 1-81




SaEEn

Requirements (ns)

Symbol

! Min. Max.
tpaLnLz . DAL h@gh;impedance delay 0 20
tparzuL . DAL active arivekdelay L0 0
fomasp’  DMG strobe assertion delay 0 20
- DMG strobe deassertion delay 0 20
thspLy ~ DS delay from receiving DMG R R o _
tsnz ‘ «Sitro‘be<higfhfimkagdancé delay 0 20
Toynr Asynchronous input fall time e 15 i
tsynu’ As'ynchrohous’iﬁpqt hold ‘ ’ 15 ___
‘?sm‘ Aé‘ygxcli‘ronpﬁs‘ti’ﬁizidt rise time _ 15
toyns’ Asynchronous input setup 15 o
tszm Strobe active drive delay 0 20

IDMG is asserted at P4 when DMR is asserted eight phases earlier and no CPU I/O eyele has star{ed
*DMG is deasserted at P3 when DMR is deasserted seven phases earlier.

2toyns and tsyny are the setup and hold times needed at a synchronizer to ensure that a signal is
recognized by the CPU as expected.

Cache Invahdate Tnmmg o ‘
Figure 58 shows the timing sequence for a quadword cache invalidate cycle-and Figure 59 shows the
timing sequence for a octaword cache mvahdate cycle. Table 32 hst& the timing parameters.

-/ \’/\/““\/‘*

ECTL

1SYNS
-!ccnw g ——
b 1CCTLADRS

TWOLYCLE
OELAY P4

\__/

P2

R

tASDLY

|
LASADRS —»1
’Ensmnua{

DAL<31:00> y DMA ADDRESS X :L X NAE;))gRIéBSASA
Figure 58 » CVAX 78034 Quadword Cache Invalidate Cycle Timing
1-82 Confidential and Proprietary




DAL<31:60> B f y i OMAADDRESS T " | £ T
S , i g e m £ f¢
" 4 Ry Y

=

- Figure 59+ CVAX 78034 Octaword Cache Invalidate Cycle Timing -

N Tab}e 32 CVAX 78034 Cache invahdaﬁemﬁﬁg Parameters

Symbol Deﬁmtlon* TS Requlrements (ns)
" DAL hol d during ache tovalidates S S5
tasaprs -~ DAL setup during cache. invalidates % .2~
tamy . ASdelay. fromasscstmgﬁﬁfdurmg mvahciates P 1
tyn?~ - AShold-during caﬂhe mhdates o R s ;
taswo ""5 width during octaword mVahdaxes BN B R —
tAst - Wld durmg quadword invalidates ,» d e

tCCTLADRS oo AS set updurmg cache invalidates .. . . 200

tecmeve CCTL cycle time during octaword mvahdates 6 —
teenw - TCTT width diiring cache invalidates = v+ oy
R Asynchronous input hold , 15 —
tsyns' Asynchronous input setup 15 —

'2 X teyee — tenkn (MAX.) + toyns — tocriangs:

?tysn is measured from the third P4 that follows recognition of CCTL. On octaword invalidate
cycles, it is measured from the third P4 that follows the second CCTL.

*tecrieve = 2 X taspry + aswo + taspry (Max.).

*4 X teyers + teoraprs * tasu + Lasory {MAx.) - taspry.

*teerianes is measured from the P4 that follows the recognition of CCTL. On octaword invalidate
cycles, it is measured from the first recognition of CCTL.

6 X teycrs + tsyns + Lsynn.

"tsyns and tsyny are the setup and hold times needed at a synchronizer to ensure a signal is recognized
by the CPU as expected.

Read and Write Timing

Figure 60 shows the timing sequence for a single-transfer read and interrupt cycle, Figure 61 shows
the timing sequence for a multiple-transfer read bus cycle, and Figure 62 shows the timing
sequence for CPU write bus cycle. Table 33 lists the read and write cycle timing parameters.

Confidential and Proprietary 1-83




8ol g/it]a]1 N Preliminary-"'

P3 P e P3 P

/_—\

L cka

“p2 ST pa fpy

[ )
/ DALH le— i
i B T 1 i
[*DALD > ) 1DALHLZ - 08 ] 4 '

CLKB

IPAN

. DAL<31:00>

4 R £ -
§ Aooafas ’ { o S———

L T
& X

IDALH = e

DALHLZ —~l l L
TS DP<30S X
; CS DP<3:0> - s - - op - . _ _
. . . . L‘ASD- ) o tasiD

r‘a'sb—- - il s TR

BM<3:0> ‘ . X . VALID HYTE MASKS

foood ‘ o *I =

ROV, ERR

- Figure 60 = CVAX 78034 Single-transfer Read and Interrupt Bus Cycle Timing

1-84 Confidential and Proprietary




OFE

g

TBE

ROV, ERR

- 1pAL D+

DH e —

J‘« oz

ol

DaTAL - K L
WAL o

o 1o

p— 15D

AL

- L‘ASD'

4

DALH

sy S

e

tAGI—|

'SD- p—s|

VALID BYTE MASKS

e

/

»’ P .;,H.;_Yw“
N

Figure 61 « CVAX 78034 Multiple-transfer Read Bus Cycle Timing

Confidential and Proprietary

1-85




ol liltlal Preliminary. CVAX 78034

w“ TN N\
b g
|
P2 ) ! P2 ) P4 P2 2]
« \_/ N S S S S
' ’ b 1DALD +] | ‘DALH‘.‘ fa e 1040+ e f*‘OALH
\ v . 4
DALC1.00> { ADDRESE )3 ¥ WRITE DaTa,
S—— ) 4 3
| e SPARITYD ~—o o PARITYH
GPE / |
Pm‘ |
T v 4 X rd X
CEDP<30n . s oF
. ><t~ . . - N\
kl/\sm ‘"[ASID"i

- N Y,

' }vloso\j - 1nsm~—1}

. -“sa«-[ ; e\suac[ §
»—:sn—o{ '-l boees BMH .
BW<305 ] X VALID BYTE MASKS J}( X
L—lsoai A-} [‘—'amn }

e I - ——

e — ISWIMAX
R R )

Figure 62 « CVAX 78034 CPU Write Bus Cycle Timing

gl

fo= i5Ws
tswos o

Table 33 - CVAX 78034 Read and Write Bus Cycle Timing Parameters

Symbol Definition Requirements (ns)

Min, Max.
taso AS strobe assertion delay 0 15
tasto AS strobe deassertion delay 0 20
amu BM and WR hold 0 —
toaLD DAL drive 0 20
tparn DAL hold 5.0 —
EpALHLZ DAL high-impedance delay 0 20
tou DAL hold 5.0 —
tops Parity setup 20 —
tps DAL setup 25 —
tosn DS strobe assertion delay 0 20
Eosio DS strobe deassertion delay 0 18
1-86 Confidential and Proprietary




Prefibiuaty-< CVAX 78034

Symbol Definition , Requirements (ns)

' : ' . Min, * Max.
toz DAL high impedance ‘ ' " oo -
T DP drive S 0 35
- pPhold o —
ten General strobe assertion delay - - <ot Q0 20
tsip Stmbe'deassértibn'délat" oo 20
tswns "Yand ERR deassertlon setup o h tmm —
town RDY and ERR sample- wmdow hold . 5%0 e —
towLMAX RDY and ERR maximum assertion time . 40
tows " RDY and ERR sample-window setup -~~~ 715 —
Coprocessor Timing

These following specifications are in effect when the CVAX 78034 CPU is operating with the CVAX
78134 floating-point accelerator (CFPA) coprocessor. Figure 63 shmvs the timing sequence for the
operand transfer cycle. Figure 64 shows the CPU to CFPA timing sequence for single-precision
transters, and Figure 65 shows the CPU to CFPA timing sequence for double-precision transfers.
Figures 66 and 67 show the CFPA to CVAX CPU smgle and double preclsxon transfers, respectively.
Table 34 hsts the coprocessor tmnng parameters

g e A g

L¥ - <2
1
o F/D, G OR INTEGER
CPSTA<1:03 DS OR INTECER,
CPOAT<5:0> X OPCODE K
| EXECUTION OF NEW |
VAX INSTRUCTICN
| BEGINS i

Figure 63 » CVAX 78034 Qperand Transfer Cycle Timing

Confidential and Proprietary 1-87




ENBHnEn

CPSTA<1:0>
CPDAT<S:0>
DAL<31:00>

AS

OPERAND ON DAL

—

OPERAND

—7

Figure 64 » CVAX 78034 Single-precision CPU to CFPA Transfer Timing

N/
. /"\

E

£2

]‘

Vot

Pt

| |

PO~ 1CPDH o je— tcPO o (e WCPDH

CPSTA<1:0> ) < > <
CPDAT<5:0> . OPERAND ON DAL K X OPERAND ON DAL

£

1DALD e [-o~ WALH-—{ o’ (— tDALD ~o | DALH
p!

DAL<31:00> X FIRST OPERAND ?( x SECOND OPERAND

/

{

As

_/

Figure 65 « CVAX 78034 Double-precision CPU to CFPA Transfer Timing

1-88

Confidential and Proprietary




Pefipy CVAX 78034

P3 - F3

)

CLRA

CLKB \

N
I N/ E/ e N/

be-1cPD~] CPDH b tcPH . ‘o
g ‘- al
CP’STA 10> croHZ CONDITION RESULY ‘
< ES READYIA, . . o A reay
, -
" cpoar<so» ) " BEADY FORRESILT, f——-{ NO ERROR K u ;
o mu—4 .
. - R ﬁ:i N los |
DAL<E1:00> § { S RESULT s
[
e 1
BNG

-

CFPA IS CPDAT AND
CPSTA MASTER

“NTTT "K \1

CVAX IS DAL, CPDAT . CEPA IS DAL, CPOAT S
AND CPSTA MASTER AND CPSTA MASTER T AND en

Figure 66 = CVAX 78034 Single-precision CFPA to CPU Transfer Timing

= X M {
-t ‘cPom e iy PN N cpo-e]
|
CPOHLE -~ fomr i —
- CONDITION
ePsTA 10> % HH T K RESULT HEADY K y RESULT READY '
{

Necermssime
T {
{ i i
: P——
CPDAT<5:0> ) READY FOR RESIALT e nOERROR :x N LAST X Last
X S
m.::] - %f:‘ DAL b
‘o1 b (0
—
oacean0 i neso 1 [
R
it
4
7
Cvax 18 DAL, CPOAT | 1 CEPa S CPDAT L CPRAIS DAL, CPUAT ‘I 2“,“:"“""‘,’,’3
Smaas S croTa A TER * r AN CPTA MASTER T AND CPETA MASTER

Figure 67 « CVAX 78034 Double-precision CEPA to CPU Transfer Timing

Table 34 - CVAX 78034 Coprocessor Timing Parameters
Definition

Symbol Requirements (ns)

Min. Max.

tepp® Coprocessor line drive 0 20
teppn™ Coprocessor line hold 0 —
teon™ Coprocessor line hold 23 —
tepuiz Coprocessor high-impedance delay 0 20
teps ™ Coprocessor line setup 23 —

Confidential and Proprietary

1-89




- E0SEaeED - - Preliminary-

Symbol- Definition " Requirements (ns)
S st caro’ T B i . Min. Max.“‘“

o DALdRe 0w

ta  DALhold -~ - - . 0 20
ton DALhod 5.0 , -
tbs», T DALsetup , R 25 L
*Cu=50pE. * ‘

1:90 Confidential and Proprietary




« Features. .

= High-performance, floating-point processor for use with the CVAX 78034 CPU

= VAX floating-point instruction set (70 mstrucuons)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>