
mamaama OpenVMS Programming Concepts Manual

Part Number: AA-PV678-TK

OpenVMS Programming Concepts
Manual
Order Number: AA-PV67B-TK

March 1994

This manual describes the features that the Open VMS operating system
provides to programmers.

Revision/Update Information: This manual supersedes the Open VMS
Programming Concepts Manual,
Open VMS AXP Version 1.5 and
Open VMS VAX Version 6.0.

Software Version: Open VMS AXP Version 6.1
Open VMS VAX Version 6.1

Digital Equipment Corporation
Maynard, Massachusetts

March 1994

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

©Digital Equipment Corporation 1994. All rights reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader, DEC
Fortran, DECdtm, DECforms, DECnet, DECwindows, Digital, FORTRAN77, FORTRAN90, IAS,
LinkWorks, MACR0-32, OpenVMS, RSX-UM, RSX-UM-PLUS, VAX, VAX C, VAX DOCUMENT,
VAXcluster, VAX MACRO, VMS, VMScluster, and the DIGITAL logo.

The·following are third-party trademarks:

Intel is a trademark of Intel Corporation.

Internet is a registered trademark of Internet, Inc.

Xerox is a registered trademark of Xerox Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

ZK5841

Send Us Your Comments
We welcome your comments on this or any other Open VMS manual. If you have suggestions for
improving a particular section or find any errors, please indicate the title, order number, chapter,
section, and page number (if available). We also welcome more general comments. Your input is
valuable in improving future releases of our documentation.

You can send comments to us in the following ways:

• Internet electronic mail: OPENVMSDOC@ZKO. MTS. DEC. COM

• Fax: 603-881-0120 Attn: OpenVMS Documentation, ZK03-4/U08

• A completed Reader's Comments form (postage paid, if mailed in the United States), or a
letter, via the postal service. 'l\vo Reader's Comments forms are located at the back of each
printed Open VMS manual. Please send letters and forms to:

Digital Equipment Corporation
Information Design and Consulting
OpenVMS Documentation
110 Spit Brook Road, ZK03-4/U08
Nashua, NH 03062-2698
USA

You may also use an online questionnaire to give us feedback. Print or edit the online file
SYS$HELP:OPENVMSDOC_SURVEY.TXT. Send the completed online file by electronic mail to our
Internet address, or send the completed hardcopy survey by fax or through the postal service.

Thank you.

Contents

Preface . xxv

1 Process Creation

1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.3.1
1.4.4
1.5

Processes and Process Threads
Execution Context of a Process
Modes of Execution of a Process
Creating a Subprocess

Using LIB$SPAWN to Create a Spawned Subprocess
Using PPL$SPAWN to Create a Spawned Subprocess . ~
Using SYS$CREPRC to Create a Subprocess

Disk and Directory Defaults for Created Processes
Debugging Within a Subprocess

Creating a Detached Process

2 Process Communication

2.1
2.1.1
2.1.2
2.1.2.1
2.1.2.2
2.1.2.3
2.1.3
2.1.3.1
2.1.3.2
2.1.4
2.1.4.1
2.1.4.2
2.1.4.3
2.1.4.4
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.1.6
2.2.1.7

Communication Within a Process
Using Local Event Flags
Using Logical Names

Using Logical Name Tables
Using Access Modes
Creating and Accessing Logical Names

Using Command Language Interpreter Symbols
Local and Global Symbols
Creating and Using Global Symbols

Using the Common Area
Creating the Process Common Area
Common I/O Routines
Modifying or Deleting Data in the Common Block
Specifying Other Types of Data

Communication Between Processes
Mailboxes .. .

Creating a Mailbox
Creating Temporary and Permanent Mailboxes
Assigning an I/O Channel Along with a Mailbox
Reading and Writing Data to a Mailbox
Using Synchronous Mailbox I/O
Using Immediate Mailbox I/O
Using Asynchronous Mailbox I/O

1-1
1-2
1-2
1-3
1-3
1-5
1-5
1-9

1-10
1-10

2-1
2-2
2-2
2-2
2-2
2-2
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-6
2-7
2-8
2-9
2-9

2-10
2-11
2-12
2-14
2-17

v

3 Process Control

3.1 Using Process Control for Programming Tasks
3.1 .1 Determining Privileges for Process Creation and Control
3.1 .2 Determining Process Identification ,
3.1.3 Qualifying Process Naming Within Groups
3.2 Obtaining Process Information
3.2.1 Using the PID to Obtain Information
3.2.2 Using the Process Name to Obtain Information
3.2.3 Using SYS$GETJPI and LIB$GETJPI ~
3.2.3.1 Requesting Information About a Single Process
3.2.3.2 Requesting Information About All Processes on the Local

System
3.2.4 Using SYS$GETJPI with SYS$PROCESS_SCAN
3.2.4.1 Using SYS$PROCESS_SCAN Item List and Item-Specific

Flags .. .
3.2.4.2 Requesting Information About Processes That Match One

Criterion
3.2.4.3 Requesting Information About Processes That Match Multiple

Values for One Criterion
3.2.4.4 Requesting Information About Processes That Match Multiple

Criteria .. .
3.2.5 Specifying a Node as Selection Criterion
3.2.5.1 Checking All Nodes on the Cluster for Processes
3.2.5.2 Checking Specific Nodes on the Cluster for Processes
3.2.5.3 Conducting Multiple Simultaneous Searches with

SYS$PROCESS_SCAN
3.2.6 Programming with SYS$GETJPI
3.2.6.1 Using Item Lists Correctly
3.2.6.2 Improving Performance by Using Buffered $GETJPI

Operations .. .
3.2.6.3 Fulfilling Remote SYS$GETJPI Quota Requirements
3.2.6.4 Using the SYS$GETJPI Control Flags
3.2.7 Using SYS$GETLKI
3.2.8 Setting Process Privileges .
3.3 Changing Process Scheduling
3.4 Changing Process Name
3.5 Synchronizing Programs by Specifying a Time for Program Execution .. .
3.5.1 Obtaining the System Time
3.5.1.1 Executing a Program at a Specified Time
3.5.1.2 Executing a Program at Timed Intervals
3.5.2 Placing Entries in the System Timer Queue
3.6 Suspending, Resuming, and Stopping Process Execution
3.6.1 Process Hibernation and Suspension
3.6.1.1 Using Process Hibernation
3.6.1.2 Using Alternative Methods of Hibernation
3.6.1.3 Using SYS$SUSPND
3.6.2 Passing Control to Another Image
3.6.2.1 Invoking a Command Image
3.6.2.2 Invoking a N oncommand Image
3.6.3 Performing Image Exit
3.6.3.1 Performing Image Rundown
3.6.3.2 Initiating Rundown
3.6.3.3 Performing Cleanup and Rundown Operations

. 3.6.3.4 Initiating Image Rundown for Another Process

vi

3-1
3-2
3-3
3-4
3-5
3-5
3-6
3-8
3-8

3-11
3-13

3-14

3-15

3-17

3-18
3-19
3-19
3-20

3-20
3-21
3-21

3-22
3-23
3-24
3-28
3-29
3-29
3-30
3-30
3-31
3-32
3-33
3-34
3-35
3-35
3-36
3-38
3-39
3-39.
3-39
3-40
3-40
3-41
3-41
3-42
3-42

3.6.4
3.6.4.1
3.6.4.2

Deleting a Process .
Deleting a Process By Using System Services
Terminating Mailboxes

4 Using Asynchronous System Traps

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
4.6
4.7

Overview of AST Routines
Access Modes for AST Execution
ASTs and Process Wait States

Event Flag Waits .. .
Hibernation .. .
Resource Waits and Page Faults

How ASTs Are Declared
The AST Service Routine
AST Delivery .. .
Example of Using AST Services

5 System Time Operations

5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.1.1

5.2.1.2

5.2.1.3
5.2.1.4
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.5
5.6
5.6.1
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.2.4
5.6.2.5
5.6.2.6
5.6.2.7
5.6.3

System Time Format .. .
Absolute Time Format
Delta Time Format

Time Conversion and Date/Time Manipulation
Time Conversion Routines

Calculating and Displaying Time with SYS$GETTIM and
SYS$SUBX .. .
Obtaining Absolute Time with SYS$ASCTIM and
SYS$BINTIM .. .
Obtaining Delta Time with SYS$BINTIM
Obtaining Numeric and ASCII Time with SYS$NUMTIM

Date/Time Manipulation Routines
Timer Routines Used to Obtain and Set Current Time

Obtaining Current Time and Date with LIB$DATE_TIME
Obtaining Current Time and Date with SYS$GETTIM
Setting the Current Time with SYS$SETIME

Routines Used for Timer Requests
Setting Timer Requests with SYS$SETIMR
Canceling a Timer Request with SYS$CANTIM
Scheduling Wakeups with SYS$WAKE
Canceling a Scheduled Wakeup with SYS$CANWAK
Executing a Program at Timed Intervals

Routines Used for Timer Statistics
Date/Time Formatting Routines

Performing Date/Time Logical Initialization
Selecting a Format

Formatting Run-Time Mnemonics
Specifying Formats at Run Time
Specifying Input Formats at Run Time
Specifying,, Output Formats at Run Time
Specifying Formats at Compile Time
Specifying Input Format Mnemonics at Compile Time
Specifying Output Formats at Compile Time

Converting with the LIB$CONVERT_DATE_STRING Routine

3-43
3-46
3-46

4-3
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-8
4-9

5-1
5-1
5-2
5-2
5-2

5-4

5-6
5-6
5-7
5-7
5-8
5-9

5-10
5-11
5-13
5-14
5-16
5-16
5-17
5-18
5-18
5-21
5-21
5-22
5-23
5-24
5-24
5-27
5-29
5-30
5-31
5-31

vii

5.6.4
5.6.4.1
5.7

Retrieving with LIB$GET_DATE_FORMAT Routine
Using User-Defined Output Formats

Coordinated Universal Time Format (VAX Only)

6 Using Run-Time Library Routines to Access Operating System
Components

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4
6.4.1
6.4.2
6.5
6.6
6.7
6.7.1
6.7.2
6.7.3
6.7.4

System Service Access Routines
Access to the Command Language Interpreter

Obtaining the Command Line
Chaining from One Program to Another
Executing a CLI Command
Using Symbols and Logical Nam es
Disabling and Enabling Control Characters
Creating and Connecting to a Subprocess

Access to VAX Machine Instructions
Variable-Length Bit Field Instruction Routines
Integer and Floating-Point Routines
Queue Access Routines
Character String Routines
Miscellaneous Instruction Routines

Processwide Resource Allocation Routines
Allocating Logical Unit Numbers
Allocating Event Flag Numbers

Performance Measurement Routines
Output Formatting Control Routines
Miscellaneous Interface Routines

Indicating Asynchronous System Trap in Progress
Create a Directory or Subdirectory ·
File Searching Routines
Inserting an Entry into a Balanced Binary Tree

7 Run-Time Library Input/Output Operations

viii

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.4.1
7.4.1.1
7.4.1.2
7.4.1.3
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.4.2.4
7.4.2.5

Choosing 1/0 Techniques
Using SYS$INPUT and SYS$0UTPUT

Default Input and Output Devices
Reading and Writing to Alternate Devices and External Files

Working with Simple User 1/0
Default Devices for Simple 1/0
Getting a Line of Input
Getting Several Lines of Input
Writing Simple Output ~

Working with Complex User 1/0
Pasteboards .. .

Erasing a Pasteboard
Deleting a Pasteboard .
Setting Screen Dimensions and Background Color

'Virtual Displays .
Creating a 'Virtual Display
Pasting Virtual Displays .
Rearranging 'Virtual Displays .
Removing Virtual Displays
Modifying a Virtual Display

5-32
5-32
5-34

6-1
6-2
6-3
6-5
6-7
6-8
6-8
6-9
6-9

6-10
6-12
6-12
6-14
6-15
6-16
6-16
6-17
6-17
6-20
6-21
6-22
6-22
6-23
6-29

7-1
7-3
7-3
7-4
7-4
7-4
7-4
7-5
7-6
7-7
7-9
7-9

7-10
7-10
7-10
7-11
7-11
7-14
7-15
7-16

7.4.2.6
7.4.3
7.4.4
7.4.4.1
7.4.4.2
7.4.4.3
7.4.4.4
7.4.4.5
7.4.5
7.4.6
7.4.6.1
7.4.6.2
7.4.6.3
7.4.6.4
7.4.7
7.4.8
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.8.1
7.5.8.2

Using Spawned Subprocesses
Viewports .. .
Writing Text to Virtual Display

Positioning the Cursor
Writing Data Character by Character
Writing Data Line by Line
Drawing Lines
Deleting Text .

Using Menus
Reading Data

Reading from a Display
Reading from a Virtual Keyboard
Reading from the Keypad
Reading Composed Input

Controlling Screen Updates
Maintaining Modularity

Performing Special Input/Output Actions
Using Ctrl/C and Ctrl/Y Interrupts
Detecting Unsolicited Input
Using the Type-Ahead Buffer
Using Echo
Using Timeout .. .
Converting Lowercase to Uppercase
Performing Line Editing and Control Actions
Using Broadcasts .. .

Default Handling of Broadcasts ~ .. .
How to Create Alternate Broadcast Handlers

8 File Operations
8.1
8.1.1
8.2
8.3
8.3.1
8.3.2
8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.1.3
8.4.1.4
8.5
8.6
8.6.1
8.6.1.1
8.6.1.2
8.6.1.3

File Attributes
Specifying File Attributes

File Access Strategies
File Protection and Access .

Read-Only Access ... :
Shared Access .. .

File Access and Mapping
Using SYS$CRMPSC

Mapping a File
Using the User-Open Routine
Initializing a Mapped Database
Saving a Mapped File

Opening and Updating a Sequential File
User-Open Routines

Opening a File .. .
Specifying USEROPEN
Writing the User-Open Routine
Setting FAB and RAB Fields

7-17
7-18
7-18
7-18
7-19
7-20
7-21
7-22
7-22
7-23
7-23
7-24
7-25
7-28
7-30
7-30
7-32
7-32
7-35
7-38
7-39
7-40
7-41
7-41
7-42
7-42
7-42

8-1
8-2
8-2
8-2
8-2
8-3
8-4
8-4
8-5

8-10
8-11
8-11
8-12
8-15
8-15
8-15
8-16
8-17

ix

9 System Service Input/Output Operations

9.1 Overview of Open VMS QIO Operations -. 9-2
9.2 Quotas, Privileges, and Protection . 9-2
9.2.1 Buffered 1/0 Quota. 9-3
9.2.2 Buffered 1/0 Byte Count Quota . 9-3
9.2.3 Direct 1/0 Quota . 9-3
9.2.4 AST Quota . 9-3
9.2.5 Physical 1/0 Privilege. 9-3
9.2.6 Logical 1/0 Privilege. 9-4
9.2.7 Mount Privilege . 9-4
9.2.8 Volume Protection . 9-4
9.2.9 Device Protection . 9-5
9.2.10 System Privilege . 9-5
9.2.11 Bypass Privilege . 9-5
9.3 Physical, Logical, and Virtual 1/0 . 9-5
9.3.1 Physical 1/0 Operations . 9-5
9.3.2 Logical 1/0 Operations . 9-6
9.3.3 Virtual 1/0 Operations . 9-6
9.4 1/0 Function Encoding . 9-10
9.4.1 Function Codes . 9-10
9.4.2 Function Modifiers" . 9-11
9.5 Assigning Channels . 9-11
9.6 Queuing 1/0 Requests . 9-12
9. 7 Synchronizing Service Completion . 9-13
9.8 Recommended Method for Testing Asynchronous Completion 9-16
9.9 Synchronous and Asynchronous Forms oflnput/Output Services 9-18
9.9.1 Reading Operations with SYS$QIOW . 9-18
9.9.2 Reading Operations with SYS$QIO . 9-20
9.9.3 Write Operations with SYS$QIOW . 9-22
9.10 1/0 Completion Status . 9-23
9.11 Deassigning 1/0 Channels . 9-24
9 .12 Using Complete Terminal 1/0 . 9-24
9 .13 Canceling 1/0 Requests . 9-26
9 .14 Logical Names and Physical Device Names . 9-26
9.15 Device Name Defaults . 9-27
9.16 Obtaining Information About Physical Devices . 9-28
9.16.1 Checking the Terminal Device . 9-28
9.16.2 Terminal Characteristics . 9-29
9.16.3 Record Terminators . 9-31
9.16.4 File Terminators . 9-31
9.17 Device Allocation . 9-31
9.17.1 Implicit Allocation.. 9-33
9 .17 .2 Deallocation . 9-33
9.18 Mounting, Dismounting, and Initializing Volumes 9-33
9.18.1 Mounting a Volume . 9-33
9.18.1.1 Calling the SYS$MOUNT System Service 9-34
9.18.1.2 Calling the SYS$DISMOU System Service 9-35
9.18.2 Initializing Volumes . 9-36
9.18.2.1 Calling the Initialize Volume System Service 9-36
9.19 Formatting Output Strings . 9-37
9.20 Mailboxes............ 9-39
9.20.1 Mailbox Name . 9-42
9.20.2 System Mailboxes . 9-42
9.20.3 Mailboxes for Process Termination Messages..... 9-43

x

9.21 Example of Using 1/0 Services. 9-44

10 Logical Name Services

Logical Name System Services 10.1
10.1.1
10.1.2
10.1.2.1
10.1.2.2
10.1.2.3
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.7.1
10.1.7.2
10.1.7.3
10.1.7.4
10.1.8
10.1.9
10.2
10.3
10.3.1
10.4
10.5
10.6

Logical Names, Equivalence Names, and Search Lists
Logical Name Tables

Logical Name Directory Tables
Process, Job, Group, and System Default Logical Name Tables .. .
Creating User-Defined Logical Name Tables

Duplicating Logical Names
Defining Privileges .
Specifying Access Modes
Specifying Attributes
Establishing Logical Name Table Quotas

Directory Table Quotas
Default Logical Name Table Quotas
Job Logical Name Table Quotas
User-Defined Logical Name Table Quotas

Using Logical Name and Equivalence Name Format Conventions
Specifying the Logical Name Table Search List

Creating a Logical Name Using SYS$CRELNM
Creating Logical Name Tables Using SYS$CRELNT

Creating Shareable Logical Name Tables
Deleting Logical Names Using SYS$DELLNM
Translating Logical Names Using SYS$TRNLNM
Example of Using the Logical Name System Services

11 Distributed Name Service (VAX Only)

11.1
11.1.1

DECdns Clerk System Service
Using the DECdns System Service and Run-Time Library
Routines

11.1.1.1 Using the SYS$DNS System Service
11.1.1.2 Using the Run-Time Library Routines
11 .2 Using the SYS$DNS System Service Call
11.2.1 Creating Objects .. .
11.2.2 Modifying Objects and Their Attributes
11 .2.3 Requesting Information from DECdns
11.2.3.1 Using the Distributed File Service (DFS)
11.2.3.2 Reading Attributes from DNS
11 .2.3.3 Enumerating DECdns Names and Attributes
11.3 Using the DCL Command DEFINE with DECdns Logical Names

12 Using the Distributed Transaction Manager

12.1 Introduction to DECdtm Services
12.1.1 Sample Atomic Transaction
12.1.2 Transaction Participants
12.1.3 DECdtm System Services
12.1.4 Default Transactions
12.2 Calling DECdtm System Services
12.3 Using DECdtm Services: An Example

10-1
10-2
10-2
10-3
10-3
10-6
10-7
10-9

10-10
10-10
10-11
10-12
10-12
10-12
10-12
10-13
10-14
10-15
10-16
10-17
10-17
10-17
10-19

11-1

11-2
11-2
11-4
11-4
11-4
11-6
11-9
11-9

11-10
11-13
11-16

12-1
12-1
12-2
12-2
12-3
12-3
12-3

xi

13 Condition-Handling Routines and Services

xii

13.1
13.2
13.2.1
13.2.2
13.3
13.3.1
13.3.1.1
13.3.2
13.3.3
13.3.4
13.4
13.4.1

Overview of Run-Time Errors
Overview of the Open VMS Condition Handling Facility

Condition-Handling Terminology
Functions of the Condition Handling Facility

Exception Conditions .. .
System Service Exception Conditions

Conditions Caused by Exceptions
Exception Conditions
Arithmetic Exceptions .
Unaligned Access Traps (AXP Only)

How Run-Time Library Routines Handle Exceptions
Exception Conditions Signaled from Mathematics Routines (VAX
Only)

13.4.1.1 Integer Overflow and Floating-Point Overflow
13.4.1.2 Floating-Point Underflow
13.4.2 System-Defined Arithmetic Condition Handlers
13.5 Condition Values
13.5.1 Return Status Convention
13.5.1.1 Testing Returned Condition Values
13.5.1.2 Testing SS$_NOPRIV and SS$_EXQUOTA Condition Values
13.5.2 Modifying Condition Values
13.6 Exception Dispatcher .. .
13.7 Argument List Passed to a Condition Handler
13.8 Signaling
13.8.1 Generating Signals with LIB$SIGNAL and LIB$STOP
13.8.2 Signal Argument Vector
13.8.3 VAX Mechanism Argument Vector (VAX Only)
13.8.4 AXP Mechanism Argument Vector (AXP Only)
13.8.5 Multiple Active Signals
13.9 Types of Condition Handlers
13.9.1 Default Condition Handlers
13.9.2 Interaction Between Default and User-Supplied Handlers
13.10 Types of Actions Performed by Condition Handlers
13.10.1 Unwinding the Call Stack
13.10.2 GOTO Unwind Operations (AXP Only)
13.11 Displaying Messages .
13.11.1 Chaining Messages
13.11 .2 Logging Error Messages to a File ..
13.11.2.1 Creating a Running Log of Messages Using SYS$PUTMSG
13.11.2.2 Suppressing the Display of Messages in the Running Log
13.11.3 Using the Message Utility to Signal and Display User-Defined

13.11.3.1
13.11.3.1.1
13.11.3.1.2
13.11.3.1.3
13.11.3.1.4
13.11.3.1 .5
13.11.3.1.6
13.11.3.1.7

13.11.3.1.8
13.11.3.1.9

Messages .. .
Creating the Message Source File

Specifying the Facility
Specifying the Severity
Specifying Condition Names and Messages
Specifying Variables in the Message Text
Compiling and Linking the Messages
Linking the Message Object Module
Accessing the Message Object Module from Multiple Programs

Modifying a Message Source Module
Accessing Modified Messages Without Relinking

13-1
13-2
13-2
13-4
13-6
13-7
13-8

13-12
13-13
13-15
13-16

13-16
13-16
13-17
13-17
13-19
13-21
13-21
13-21
13-23
13-24
13-27
13-28
13-30
13-32
13-35
13-37
13-39
13-41
13-42
13-44
13-45
13-46
13-49
13-49
13-53
13-55
13-56
13-56

13-57
13-58
13-58
13-59
13-59
13-60
13-60
13-60

13-60
13-61
13-61

13.11.4 Signaling User-Defined Values and Messages with Global and Local
Symbols

13. 11.4.1 Signaling with Global Symbols
13.11.4.2 Signaling with Local Symbols
13.11.4.3 Specifying FAO Parameters
13.12 Writing a Condition Handler
13.12.1 Continuing Execution
13.12.2 Resignaling .. .
13.12.3 Unwinding the Call Stack
13.12.4 Example of Writing a Condition Handler
13.12.4.1 Signal Array .. .
13.12.4.2 Mechanism Array
13.12.4.3 Comparing the Signaled Condition with an Expected Condition

13.12.4.4 Exiting from the Condition Handler
13.12.4.5 Returning Control to the Program
13.12.5 Example of Condition-Handling Routines
13.13 Debugging a Condition Handler
13.14 Run-Time Library Condition-Handling Routines
13.14.1 Converting a Floating-Point Fault to a Floating-Point Trap (VAX

Only)
13.14.2 Changing a Signal to a Return Status
13.14.3 Changing a Signal to a Stop
13.14.4 Matching Condition Values
13.14.5 Correcting a Reserved Operand Condition (VAX Only)
13.14.6 Decoding the Instruction That Generated a Fault (VAX Only)
13.15 Exit Handlers
13.15.1 Establishing an Exit Handler
13.15.2 Writing an Exit Handler
13.15.3 Debugging an Exit Handler
13.15.4 Example of an Exit Handler

14 Synchronizing Data Access and Program Operations

14.1
14.1.1
14.1.2
14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.3
14.3.1
14.3.2
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.5
14.5.1
14.5.2

Overview of Synchronization
Threads of Execution
Atomicity .. .

Memory Read and Memory Write Operations
Alignment
Granularity .. .
Ordering of Read and Write Operations
Memory Reads and Memory Writes

Memory Read-Modify-Write Operations
Uniprocessor Operations
Multiprocessor Operations

Hardware-Level Synchronization
Interrupt Priority Level
LDx_L and STx_C Instructions
Interlocked Instructions
Memory Barriers .. .
PALcode Routines

Software-Level Synchronization· .
Synchronization Within a Process
Synchronization Using Process Priority

13-61
13-61
13-61
13-62
13-63
13-64
13-64
13-64
13-65
13-65
13-65

13-65
13-66
13-67
13-69
13-70
13-70

13-70
13-71
13-72
13-72
13-73
13-73
13-73
13-74
13-75
13-76
13-76

14-1
14-2
14-3
14-3
14-3
14-3
14-4
14-4
14-5
14-5
14-6
14-7
14-7
14-8
14-9

14-10
14-10
14-10
14-11
14-11

xiii

14.5.3
14.5.4

14.5.5
14.5.6
14.6
14.6.1
14.6.2
14.6.3
14.6.3.1
14.6.4
14.6.4.1
14.6.4.2
14.6.4.3
14.6.4.4
14.6.5
14.6.6
14.6.7
14.6.8
14.7

14.7.1
14.7.2
14.7.3
14.7.4
14.8

Synchronizing Multiprocess Applications
Writing Applications for an Operating System Running in a
Multiprocessor Environment
Synchronization Using Spin Locks
Writable Global Sections

Synchronizing Operations with Event Flags ·
General Guidelines for Using Event Flags
Event Flag Numbers and Event Flag Clusters
Using Local Event Flags

Example of Event Flag Services
Using Common Event Flags

Associating a Name with a Common Event Flag Cluster
Using the name Argument with SYS$ASCEFC
Temporary Common Event Flag Clusters
Permanent Common Event Flag Clusters

Event Flag Waits .. .
Setting and Clearing Event Flags
Example of Using a Common Event Flag Cluster
Example of Using Event Flag Routines and Services

Synchronizing Operations with Parallel Processing Run-Time
Routines .. .

Using Subprocesses
Using Spin Locks .. .
Using Semaphores
Using Barrier Synchronization

Synchronizing Operations with Synchronous and Asynchronous System
Services .. .

15 Synchronizing Access to Resources

15.1 Synchronizing Operations with the Lock Manager
15.2 Concepts of Resources and Locks
15.2.1 Resource Granularity
15.2.2 Resource Domains
15.2.3 Resource Names
15.2.4 Choosing a Lock Mode
15.2.5 Levels of Locking and Compatibility
15.2.6 Lock Management Queues
15.2. 7 Concepts of Lock Conversion
15.2.8 Deadlock Detection
15.3 Queuing Lock Requests
15.3.1 Example of Requesting a Null Lock
15.4 Advanced Locking Techniques
15.4.1 Synchronizing Locks
15.4.2 Notification of Synchronous Completion
15.4.3 Expediting Lock Requests
15.4.4 Lock Status Block
15.4.5 Blocking ASTs .. .
15.4.6 Lock Conversions .. .
15.4.7 Forced Queuing of Conversions ,
15.4.8 Parent Locks
15.4.9 Lock Value Blocks
15.5 Dequeuing Locks
15.6 Local Buffer Caching with the Lock Management Services

xiv

14-12

14-12
14-13
14-13
14-14
14-14
14-15
14-16
14-17
14-18
14-18
14-19
14-20
14-20
14-22
14-23
14-23
14-26

14-27
14-27
14-27
14-28
14-28

14-28

15-1
15-2
15-3
15-4
15-4

' 15-5
15-5
15-6
15-7
15-8
15-8
15-9

15-10
15-10
15-11
15-11
15-11
15-12
15-12
15-13
15-14
15-15
15-16
15-18

15.6.1
15.6.2
15.6.2.1
15.6.2.2
15.6.3
15.7

Using the Lock Value Block
Using Blocking ASTs

Deferring Buffer Writes
Buffer Caching

Choosing a Buffer-Caching Technique
Example of Using Lock Management Services

16 Image Initialization

15-18
15-18
15-18
15-19
15-19
15-19

16.1 Initializing an Image . 16-1
16.2 Initializing an Argument List . 16-5
16.3 Declaring Initialization Routines . 16-6
16.4 Dispatching to Initialization Routines . 16-6
16.5 Initialization Routine Options . 16-7
16.6 Initialization Example . 16-7

17 Shareable Resources

17.1
17.1.1
17.1.1.1
17.1.1.2
17.1.1.3
17.1.1.4
17.1.2
17.2
17.3
17.3.1
17.3.2
17.3.3
17.3.3.1
17.3.3.2
17.3.3.3
17.3.3.4
17.3.3.5
17.3.4
17.3.4.1
17.3.4.2
17.3.4.3

Sharing Program Code
Object Libraries .•...... ·

System- and User-Defined Default Object Libraries
How the Linker Searches Libraries
Creating an Object Library
Managing an Object Library

Text and Macro Libraries
Shareable Images
Symbols .. .

Defining Symbols .. .
Local and Global Symbols
Resolving Global Symbols

Explicitly Named Modules and Libraries
System Default Libraries
User Default Libraries
Making a Library Available for Systemwide Use
Macro Libraries .

Sharing Data
Installed Common Blocks
Global Sections
RMS Shared Files

18 Creating User-Written System Services

18.1
18.2
18.3
18.3.1
18.3.2
18.3.3

18.4
18.4.1
18.4.2

Overview
Writing a Privileged Routine (User-Written System Service)
Creating a Privileged Shareable Image (VAX Only)

Creating User-Written Dispatch Routines on VAX Systems
Creating a PLV on VAX Systems
Declaring Privileged Routines as Universal Symbols Using Transfer
Vectors on VAX Systems

Creating a User-Written System Service (AXP Only)
Creating a PLV on AXP Systems
Declaring Privileged Routines as Universal Symbols Using Symbol
Vectors on AXP Systems

17-1
17-2
17-2
17-2
17-2
17-2
17-3
17-3
17-3
17-3
17-4
17-4
17-5
17-5
17-5
17-5
17-5
17-6
17-6
17-8

17-12

18-1
18-3
18-4
18-4
18-5

18-9
18-9
18-9

18-14

xv

19 Memory Management Services and Routines (VAX Only)

19.1 Virtual Page Size ..
19.2 Virtual Address Space
19.3
19.3.1
19.4

Extended Addressing Enhancements on Selected VAX Systems
Page Table Entry for Extended Addresses on VAX Systems

Levels of Memory Allocation Routines
Using System Services for Memory Allocation 19.5

19.5.1
19.5.2
19.5.3
19.5.4
19.5.5
19.5.6
19.5.6.1
19.5.6.2
19.5.6.3
19.5.6.4
19.5.6.5
19.5.6.6
19.5.6.7
19.5.6.8
19.5.6.9
19.5.6.10
19.5.6.11
19.5.6.12
19.5.6.13
19.5.6.14
19.5.6.15
19.5.7

Increasing and Decreasing Virtual Address Space
Input Address Arrays and Return Address Arrays
Page Ownership and Protection
Working Set Paging
Process Swapping .. .
Sections

Creating Sections .
Opening the Disk File
Defining the Section Extents
Defining the Section Characteristics .. .
Defining Global Section Characteristics
Global Section Name
Mapping Sections
Mapping Global Sections
Global Page-File Sections
Section Paging .
Reading and Writing Data Sections
Releasing and Deleting Sections .
Writing Back Sections
Image Sections .. .
Page Frame Sections ·

Example of Using Memory Management System Services

20 Memory Management Services and Routines (AXP Only)

xvi

20.1
20.2
20.3
20.4
20.4.1
20.4.2
20.4.3

Virtual Page Sizes ..
Virtual Address Space
Levels of Memory Allocation Routines
Using System Services for Memory Allocation

20.4.4
20.4.5
20.4.6
20.4.7
20.4.7.1
20.4.7.2
20.4.7.3
20.4.7.4
20.4.7.5
20.4.7.6
20.4.7.7
20.4.7.8
20.4.7.9
20.4.7.10

Increasing and Decreasing Virtual Address Space
Input Address Arrays and Return Address Arrays
Allocating Memory in Existing Virtual Address Space on AXP
Systems (AXP Only)
Page Ownership and Protection
Working Set Paging
Process Swapping .. .
Sections

Creating Sections .
Opening the Disk File .
Defining the Section Extents
Defining the Section Characteristics .
Defining Global Section Characteristics
Global Section Name
Mapping Sections
Mapping Global Sections
Global Page-File Sections
Mapping into a Defined Address Range

19-1
19-1
19-3
19-5
19-5
19-7
19-8
19-9

19-10
19-11
19-12
19-13
19-14
19-14
19-15
19-15
19-16
19-17
19-18
19-19
19-20
19-20
19-22
19-23
19-23
19-23
19-24
19-25

20-1
20-2
20-3
20-5
20-6
20-8

20-9
20-10
20-10
20-12
20-12
20-13
20-14
20-15
20-15
20-16
20-17
20-18
20-20
20-"21
20-21

20.4.7.11
20.4.7.12
20.4.7.13
20.4.7.14
20.4.7.15
20.4.7.16
20.4.7.17
20.4.7.18
20.4.8

Mapping from an Offset into a Section File
Section Paging .
Reading and Writing Data Sections
Releasing and Deleting Sections .
Writing Back Sections
Image Sections .
Page Frame Sections
Partial Sections .

Example of Using Memory Management System Services

21 Using Run-Time Routines for Memory Allocation

21.1
21.2
21.3
21.4
21.4.1
21.4.2
21.4.3
21.4.4
21.4.5
21.4.6
21.5
21.6
21.6.1
21.6.2
21.6.3
21.6.4
21.7
21.8

Allocating and Freeing Pages
Interactions with Other Run-Time Library Routines
Interactions with System Services
Zones .. .

Zone Attributes
Default Zone
Zone Identification
Creating a Zone
Deleting a Zone
Resetting a Zone .. .

Allocating and Freeing Blocks
Allocation Algorithms .. .

First Fit Algorithm
Quick Fit Algorithm
Frequent Sizes Algorithm
Fixed Size Algorithm

User-Defined Zones
Debugging Programs That Use Virtual Memory Zones

22 Alignment on OpenVMS VAX and AXP Systems

22.1 Alignment .. .
22.1 .1 Alignment and Performance
22.1.1.1 Alignment on OpenVMS VAX
22.1.1.2 Alignment on Open VMS AXP
22.2 Using Compilers for Alignment
22.2.1 The DEC C Compiler (AXP Only)
22.2.1.1 Compiler Example of Memory Structure of VAX C and DEC C .. .
22.2.2 The Bliss Compiler
22.2.3 The DEC Fortran Compiler (AXP Only)
22.2.4 The MACR0-32 Compiler (AXP Only)
22.2.5 The VAX Environment Software Translator-VEST (AXP Only)
22.3 Using Tools for Finding Unaligned Data
22.3.1 The OpenVMS Debugger
22.3.2 The Performance and Coverage Analyzer-PCA
22.3.3 System Services (AXP Only)

20-22
20-22
20-24
20-24
20-25
20-25
20-26
20-26
20-27

21-1
21-3
21-4
21-6
21-8

21-12
21-12
21-13
21-13
21-13
21-14
21-14
21-15
21-15
21-16
21-16
21-16
21-19

22-1
22-2
22-3
22-3
22-4
22-4
22-5
22-5
22-6
22-7
22-8
22-9
22-9

22-10
22-10

xvii

23 System Security Services

23.1 Overview of the Operating System's Protection Scheme
23.2 Identifiers .. .
23.2.1 Identifier Format .. .
23.2.2 General Identifiers
23.2.3 System-Defined Identifiers
23.2.4 UIC Identifiers .. .
23.2.5 Facility Identifiers
23.2.6 Identifier Attributes
23.3 Rights Database ·
23.3.1 Initializing a Rights Database
23.3.2 Using System Services to Affect a Rights Database
23.3.2.1 Translating Identifier Values and Identifier Names
23.3.2.2 Adding Identifiers and Holders to the Rights Database
23.3.2.3 Determining Holders of Identifiers
23.3.2.4 Determining Identifiers Held by a Holder
23.3.2.5 Modifying the Identifier Record
23.3.2.6 Modifying a Holder Record
23.3.2. 7 Removing Identifiers and Holders from the Rights Database
23.3.3 Search Operations
23.3.4 Modifying a Rights List
23.4 Managing Object Protection
23.4.1 Protected Objects .. .
23.4.2 Object Security Profile
23.4.2.1 Displaying the Security Profile
23.4.2.2 Modifying the Security Profile
23.4.3 Types of Access Control Entries
23.4.3.1 Design Considerations
23.4.3.2 Translating ACEs
23.4.3.3 Creating and Maintaining ACEs
23.5 Protected Subsystems
23.6 Security Auditing
23. 7 Checking Access Protection
23.7.1 Creating a Security Profile
23. 7 .2 SYS$CHKPRO System Sevice
23.7.3 SYS$CHECK_ACCESS System Service
23.8 SYS$CHECK_PRIVILEGE
23.9 Implementing Site-Specific Security Policies (VAX Only)
23.9.1 Creating Loadable Security Services
23.9.1.1 Preparing and Loading a System Service
23.9.1.2 Removing an Executive Loaded Image ·
23.9.2 Installing Filters for Site-Specific Password Policies
23.9.2.1 Creating a Shareable Image
23.9.2.2 Installing a Shareable Image

Index

xviii

23-1
23-2
23-2
23-2
23-3
23-3
23-4
23-5
23-8
23-9

23-10
23-11
23-12
23-13
23-13
23-13
23-14
23-16
23-16
23-19
23-19
23-19
23-20
23-20
23-21
23-21
23-21
23-22
23-22
23-23
23-24
23-24
23-25
23-25
23-25
23-26
23-26
23-26
23-27
23-28
23-29
23-29
23-29

Examples

2-1
2-2
2-3
2-4
2-5
3-1
3-2

3-3
3-4

3-5

3-6

3-7

3-8
3-9
3-10
3-11
3-12

3-13
3-14
3-15
4-1

5-1
5-2
5-3
5-4
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15

Performing an Iterative Calculation with a Spawned Subprocess
Opening a Mailbox
Synchronous I/O Using a Mailbox
Immediate I/O Using a _Mailbox
Asynchronous I/O Using a Mailbox
Obtaining Different Types of Process Information
Using SYS$GETJPI to Obtain Information About the Calling
Process .. .
Obtaining the Process Name
Using SYS$GETJPI and the Process Name to Obtain Information
About a Process
Using SYS$GETJPI to Request Information About All Processes on
the Local System .. .
Using SYS$GETJPI and SYS$PROCESS_SCAN to Select Process
Information by User Name•.........
Using SYS$GETJPI and SYS$PROCESS_SCAN with Multiple Values
for One Criterion .. .
Selecting Processes That Match Multiple Criteria
Searching the Cluster for Process Information
Searching for Process Information on Specific Nodes in the Cluster ..
Using a SYS$GETJPI Buffer to Improve Performance
Using SYS$GETJPI Control Flags to Avoid Swapping a Process into
the Balance Set .
Procedure for Obtaining Process Lock Information
Executing a Program Using Delta Time
Executing a Program at Timed Intervals
Calling the SYS$SETIMR System Service
Calculating and Displaying the Time
Setting an Event Flag
Specifying an AST Service Routine
Displaying and Writing Timer Statistics
Reading a Line of Data
Reading a Varying Number oflnput Records
Associating a Pasteboard with a Terminal
Creating a Pasteboard
Modifying Screen Dimensions and Background Color
Defining and Pasting a Virtual Display
Scrolling Forward Through a Display
Scrolling Backward Through a Display
Creating a Statistics Display
Reading Data from a Virtual Keyboard
Reading Data from the Keypad
Redefining Keys
Using Interrupts to Perform I/O
Receiving Unsolicited Input from a Virtual Keyboard
Trapping Broadcast Messages

2-3
2-12
2-12
2-15
2-18
3-6

3-8
3-10

3-11

3-12

3-15

3-17
3-18
3-20
3-20
3-22

3-25
3-28
3-32
3-34

4-2
5-5

5-14
5-15
5-19

7-5
7-5
7-8
7-9

7-10
7-12
7-20
7-20
7-21
7-24
7-26
7-28
7-34
7-36
7-43

xix

8-1
8-2
8-3
8-4
8-5
8-6
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
15-1
17-1
18-1
18-2
18-3
18-4

21-1
22-1

Figures

3-1
6-1
7-1
7-2
7-3
7-4
7-5
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
12-1
13-1
13-2
13-3
13-4
13-5

xx

Mapping·a Data File to the Common Block on a VAX System
Mapping a Data File to the Common Block on an AXP System
Using a User-Open Routine
Closing a Mapped File
Creating a Sequential File of Fixed-Length Records
Updating a Sequential File
Event Flags .. .
AST Routine
1/0 Status Block
Reading Data from the Terminal Synchronously
Reading Data from the Terminal Asynchronously
Writing Character Data to a Terminal
Using SYS$GETDVIW to Verify the Device Name
Disabling the HOSTSYNC Terminal Characteristic
Requesting a Null Lock
Interprocess Communication Using Global Sections
Sample Dispatching Routine
Assigning Values to a PLV on a VAX System
Creating a PLV on AXP Systems
Declaring Universal Symbols for Privileged Shareable Image on an
AXP System .. .
Monitoring Heap Operations with a User-Defined Zone
Open VMS Debugger Output from SET OUTPUT LOG Command

Image Exit and Process Deletion
Format of a Variable-Length Bit Field
Defining and Pasting Virtual Displays .
Moving a Virtual Display
Repasting a Virtual Display
Popping a Virtual Display
Statistics Display .
Mailbox Protection Fields .
Physical 1/0 Access Checks .
Logical 1/0 Access Checks .
Physical, Logical, and Virtual 1/0 .
1/0 Function Format
Function Modifier Format
1/0 Status Block
SYS$MOUNT Item Descriptor
Participants in a Distributed Transaction
SS$_HPARITH Exception Signal Array
SS$_ALIGN Exception Signal Array
Format of a Condition Value
Searching the Stack for a Condition Handler
Sample Stack Scan for Condition Handlers

8-6
8-8

8-10
8-12
8-13
8-14
9-14
9-15
9-16
9-19
9-21
9-22
9-29
9-30

15-10
17-8
18-5
18-8

18-13

18-14
21-17
22-9

3-45
6-11
7-13
7-14
7-15
7-16
7-21
9-4
9-7
9-8
9-9

9-10
9-11
9-23
9-34
12-2

13-14
13-16
13-19
13-26
13-30

13-6 Format of the Signal Argument Vector
13-7 Signal Argument Vector for the Reserved Operand Error Conditions

13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
15-1
15-2
15-3
15-4
16-1
16-2
18-1
18-2
18-3
18-4
19-1
19-2
19-3
19-4
19-5
20-1
20-2
21-1
21-2
22-1
22-2
22-3
23-1
23-2
23-3
23-4
23-5
23-6

Signal Argument Vector for RTL Mathematics Routine Errors
Format of a VAX Mechanism Argument Vect.or
Mechanism Array on AXP Systems
Stack After Second Exception Condition Is Signaled
Interaction Between Handlers and Default Handlers
Unwinding the Call Stack
Formats of Message Sequences
Using a Condition Handler to Log an Error Message
Structure of an Exit Handler
Model. Database .. .
Three Lock Queues
Deadlock .. .
Lock Status Block
Sequence of Events During Image Initialization on VAX Systems
Sequence of Events During Image Initialization on AXP Systems
Flow of Control Accessing a Privileged Routine on VAX Systems
Components of the Privileged Library Vector on VAX Systems
Linkage for a Privileged Routine after Image Activation
Components of the Privileged Library Vector on AXP Systems
Virtual Address Overview on VAX Systems
Layout of VAX Process Virtual Address Space
Physical Address Space for VAX Systems with XPA
Virtual Address Space for VAX Systems with XVA
Hierarchy of VAX Memory Management Routines
Layout of AXP Process Virtual Address Space
Hierarchy of AXP Memory Management Routines
Memory Fragmentation
Boundary Tags .. .
Aligned and Unaligned Structures
Alignment Using VAX C Compiler
Alignment Using DEC C Compiler
ID Format
UIC Identifier Format
Facility-Specific Identifiers
Format of the Identifier Record
Format of the Holder Record
Format of the holder Argument

13-33

13-34
13-35
13-35
13-38
13-41
13-44
13-48
13-52
13""-56
13-74
15-3.
15-7
15-8

15-11
16-4
16-5
18-6
18-7

18-10
18-11
19-2
19-3
19-4
19-5
19-7
20-3
20-5
21-3
21-9
22-2
22-5
22-5
23-3
23-4
23-4
23-8
23-9

23-13

xxi

Tables

1-1
1-2

3-1
3-2
3-3
3-4
3-5
3-6

4-1
4-2
4-3
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10

6-11
6-12
7-1
7-2
9-1
9-2

9-3
9-4
10-1

xxii

Characteristics of Subprocesses and Detached Processes 1-1
Comparison ofLIB$SPAWN, PPL$SPAWN, and SYS$CREPRC
Context Values . 1-3
Routines and Commands for Controlling Processes 3-2
Process Identification . 3-4
Item-Specific Flags . 3-14
Time Manipulation System Services and Routines 3-31
Process Hibernation and Suspension . 3-36
System Services and Routines Used for Hibernation and
Suspension . 3-36
AST System Services . 4-1
System Services That Use ASTs . 4-2
AST Arguments for VAX Systems and AXP Systems 4-6
Time Conversion Routines and System Services 5-3
Date/Time Manipulation Routines . 5-8
Timer RTLs and System Services . 5-8
Timer System Services . 5-13
Available Languages for Date/Time Formatting. 5-21
Format Mnemonics . 5-23
Input String Punctuation and Defaults . 5-26
Predefined Output Date Formats . 5-27
Predefined Output Time Formats . 5-29
Available Components for Specifying Formats at Compile Time 5-30
Legible Format Mnemonics . 5-30
Sample Input Format Strings . 5-32
System Service Access Routines . 6-2
CLI Access Routines . 6-2
Variable-Length Bit Field Routines . 6-10
Integer and Floating-Point Routines . 6-12
Queue Access Routines . 6-13
Character String Routines . 6-14
Miscellaneous Instruction Routines . 6-15
Processwide Resource Allocation Routines . 6-16
Performance Measurement Routines . 6-17
The code Argument in LIB$SHOW_TIMER and
LIB$STAT_TIMER.. 6-18
Routines for Customizing Output . 6-20
Miscellaneous Interface Routines. 6-21
SYS$INPUT and SYS$0UTPUT Values . 7-3
Setting Video Attributes . 7-17
Read and Write I/O Functions . 9-10
Asynchronous Input/Output Services and Their Synchronous Versions

System Services for Translating Logical Names
Default Device Names for I/O Services
Summary of Privileges

9-18
9-27
9-28
10-9

13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
14-1
14-2
14-3
15-1
15-2
15-3
15-4
15-5
18-1
18-2
19-1
19-2

20-1
20-2
20-3

21-1
21-2
21-3
21-4
22-1
23-1

23-2

23-3

Summary of Exception Conditions
Architecture-Specific Hardware Exceptions
Exception Summary Argument Fields
Run-Time Library Condition-Handling Support Routines
Fields of a Condition Value
Severity of Error Conditions
Privilege Errors
Quota Errors
$CHFDEF Symbolic Names and Arguments on VAX Systems
$CHFDEF2 Symbolic Names and Arguments on AXP Systems
Fields in the AXP Mechanism Array
Event Flag Routines and Services
Services Using Event Flags to Signal a Calling Process
Event Flags .. .
Lock Manager Services
Lock Modes .. .
Compatibility of Lock Modes
Legal QUECVT Conversions
Effect of Lock Conversion on Lock Value Block
Components of the VAX Privileged Library Vector
Components of the AXP Privileged Library Vector
Sample Virtual Address Arrays on VAX Systems
Flag Bits to Set for Specific Section Characteristics on VAX
Systems
Page and Byte Offset Within Pages on AXP Systems
Sample Virtual Address Arrays on AXP Systems
Flag Bits to Set for Specific Section Characteristics on AXP
Systems
Overhead for Area Control Blocks
Possible Values for the Block Size Attribute
Attribute Values for the Default Zone
Allocation Algorithms
Aligned Data Sizes
Using System Services to Manipulate Elements of the Rights
Database :
Returned Records of SYS$IDTOASC, SYS$FIND_HELD, and
SYS$FIND_HOLDER
Item Code Symbols and Meanings

13-8
13-12
13-15
13-18
13-19
13-20
13-22
13-22
13-27
13-28
13-39
14-14
14-15
14-16

15-2
15-5
15-6

15-14
15-16

18-7
18-12
19-10

19-16
20-8
20-9

20-16
21-10
21-10
21-12
21-14
22-2

23-10

23-17
23-23

xxiii

Preface

Intended Audience
This manual is intended for system and application programmers. It presumes
that its readers have some familiarity with the Open VMS programming
environment, derived from the Open VMS Programming Environment Manual
and Open VMS high-level language documentation.

Document Structure
This manual's chapters provide information about the programming features of
Open VMS. A list of the chapters and a summary of their content is as follows:

Chapter 1, Process Creation, defines the two types of processes, what constitutes
the context of a process, and the modes of execution of a process. It also describes
the creation of a subprocess and a detached process.

Chapter 2, Process Communication, describes communication within a process.
and between processes.

Chapter 3, Process Control, describes how to use the creation and control of a
process for programming tasks. It also describes how to gather information about
a process and how to synchronize a program by using time.

Chapter 4, Using Asynchronous System Traps, describes how to use asynchronous
traps (ASTs). It describes access modes and service routines for ASTs and how
ASTs are declared and delivered.

Chapter 5, System Time Operations, describes the system time format, and the
manipulation of date/time and time conversion. It further describes how to obtain
and set the current date and time, how to set and cancel timer requests, and how
to schedule and cancel wakeups. The Coordinated Universal Time (UTC) system
is also described.

Chapter 6, Using Run-Time Library Routines to Access Operating System
Components, describes using RTLs with system services, the command language
interpreter, and allowing high-level programs to use VAX machine instructions.
Also, this chapter describes using RTLs to allocate processwide resources to a
single process, perform performance evaluation, and control output formatting.

Chapter 7, Run-Time Library Input/Output Operations, describes using
RTLs for input-output operations within a program, using SYS$INPUT, -
and SYS$0UTPUT, as well as LIB$GET_INPUT and LIB$PUT_OUTPUT.
Additionally, this chapter describes using the SMG$ routine for managing
terminal screens, and for managing screen management routines.

xxv

xxvi

Chapter 8, File Operations, describes file attributes, strategies to access files, and
file protection techniques.

Chapter 9, System Service Input/Output Operations, describes using the
SYS$QIO and SYS$QIOW system services for establishing quotas, privileges,
and protection. It also describes assigning and deassigning I/O channels, queuing
requests, and synchronizing I/O completions. This chapter describes how to use
logical names and physical device names for I/O operations; how to use device
name defaults; obtain information about physical devices; and how to allocate
devices. Functions such as mounting, dismounting and initializing disk and tape
volumes, along with using mailboxes are explained.

Chapter 10, Logical Name Services, describes how to create and use logical name
services, how to use logical and equivalence names, and how to add and delete
entries to a logical name table.

Chapter 11, Distributed Name Service (VAX Only), describes the use of the
SYS$DNS system service to provide applications with a method to assign
networkwide names to system resources such as printers, files, application
databases, disks, nodes, and servers.

Chapter 12, Using the Distributed Transaction Manager, describes the use of the
DECdtm system services to ensure the integrity and consistency of distributed
transactions by implementing a two-phase commit protocol.

Chapter 13, Condition-Handling Routines and Services, describes the Open VMS
Condition Handling facility. It describes VAX system and AXP system exceptions,
arithmetic exceptions, and AXP system unaligned access traps. It describes
the condition value field, exception dispatcher, signaling, and the argument list
passed to a condition handler. Additionally, types of condition handlers and
various types of action performed by them are presented. This chapter also
describes how to write and debug a condition handler, and how to use an exit
handler.

Chapter 14, Synchronizing Data Access and Program Operations, describes
synchronization concepts and differences between the VAX system and AXP
system synchronization techniques. It presents methods of synchronization such
as event flags, asynchronous system traps (ASTs), parallel processing RTLs, and
process priorities. It also describes using synchronous and asynchronous system
services, and how to write applications in a multiprocessing environment.

Chapter 15, Synchronizing Access to Resources, describes the use of the lock
manager system services to synchronize access to shared resources. This chapter
presents the concept of resources and locks; and also describes the use of the
SYS$ENQ and SYS$DEQ system services to queue and dequeue locks.

Chapter 16, Image Initialization, describes how to use the LIB$INITIALIZE
routine to initialize an image.

Chapter 17, Shareable Resources, describes how to share data and program code
among programs. It defines shareable images; it defines and describes how to use
local and global symbols to share images.

Chapter 18, Creating User-Written System Services, describes how to create
user-written system services with privileged shareable images for both VAX
systems and AXP systems.

Chapter 19, Memory Management Services and Routines (VAX Only), describes
the use of system services and RTLs of VAX systems to manage memory. It
describes the page size and layout of virtual address space of VAX systems. This
chapter also describes how to add virtual address space, adjust working sets,
control process swapping, and create and manage sections on VAX systems.

Chapter 20, Memory Management Services and Routines (AXP Only), describes
the use of system services and RTLs of AXP systems to manage memory. It
describes the page size, and layout of virtual address space of AXP systems. This
chapter also describes how to add virtual address space, adjust working sets,
control process swapping, and create and manage sections on AXP systems.

Chapter 21, Using Run-Time Routines for Memory Allocation, describes the use
of RTLs to allocate and free pages and blocks of memory, and how to use RTLs
for the creation, managing and debugging of virtual memory zones.

Chapter 22, Alignment on Open VMS VAX and AXP Systems, describes the
importance and techniques of instruction and data alignment.

Chapter 23, System Security Services, describes the system services that
establish protection by using identifiers, rights databases, and access control
entries. This chapter also describes how to modify a rights list as well as check
access protection.

Associated Documents
For a detailed description of each run-time library and system service routine
mentioned in this manual, see the Open VMS Run-Time Library documentation
and the Open VMS System Services Reference Manual.

You can find additional information about calling VMS system services and
Run-Time Library routines in Open VMS Programming Interfaces: Calling a
System Routine and in your language processor documentation. The following
documents may also be useful:

• Open VMS DCL Dictionary

• Open VMS User's Manual

• Guide to Open VMS File Applications

• qpen VMS Guide to System Security

• DECnet for Open VMS Networking Manual

• Open VMS Record Management Services documentation

• Open VMS Utility Routines Manual

• Open VMS I I 0 User's Reference Manual

For a complete list and description of the manuals in the VMS document set, see
the Overview of Open VMS Documentation.

Conventions
In this manual, every use of Open VMS AXP means the Open VMS AXP operating
system, every use of Open VMS VAX means the Open VMS VAX operating system,
and every use of Open VMS means both the Open VMS AXP operating system and
the Open VMS VAX operating system.

xxvii

xxviii

The following conventions are used to identify information specific to Open VMS
AXP or to Open VMS VAX:

M3w

•

The AXP icon denotes the beginning of information
specific to Open VMS AXP.

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS AXP or to Open VMS
VAX.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for Open VMS software.

The following conventions are also used in this manual:

Ctrl/x

PFlx

GOLDx

()

[]

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PFl x indicates that you must first press
and release the key labeled PFl and then press and release
another key or a pointing device button.

A sequence such as GOLD x indicates that you must first
press and release the key defined as GOLD and then press
and release another key. GOLD key sequences can also have
a slash(/), dash(-), or underscore(_) as a delimiter in EVE
commands.

The GOLD key definition is often mapped to the PFl key on
the keypad.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an Open VMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ }

boldface text

italic text

UPPERCASE TEXT

struct

numbers

mouse

MBI, MB2, MB3

PB1,PB2,PB3,PB4

SBI,SB2,SB3

In command format descriptions, braces surround a required
choice of options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason (user action
that triggers a callback).

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information and indicates
complete titles of manuals and variables. Variables include
information that varies in system messages (Internal error
number), in command lines (/PRODUCER=name), and in
command parameters in text (where device-name contains up
to five alphanumeric characters).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type in text identifies the following C programming
language elements: keywords, the names of independently
compiled external functions and files, syntax summaries, and
references to variables or identifiers introduced in an example.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

All numbers in text are assumed to be decimal unless
otherwise noted. N ondecimal radixes-binary, octal, or
hexadecimal-are explicitly indicated.

The term mouse refers to any pointing device, such as a mouse,
a puck, or a stylus.

MBI indicates the left mouse button, MB2 indicates the middle
mouse button, and MB3 indicates the right mouse button. (The
user can redefine the buttons.)

PBI, PB2, PB3, and PB4 indicate buttons on the puck.

SBI, SB2, and SB3 indicate buttons on the stylus.

xxix

1
Process Creation

This chapter describes process creation and the different types of processes. This
chapter contains the following sections:

Section 1.1 describes what a process is and the two types of processes.

Section 1.2 describes the execution context of a process.

Section 1.3 describes the modes of execution of a process.

Section 1.4 describes the creation of a subprocess.

Section 1.5 describes the creation of a detached process.

1.1 Processes and Process Threads
A process is the environment in which an image executes. Two types of processes
can be created with the operating system: spawned subprocesses, or detached
processes.

A spawned subprocess is dependent on the process that created it (its parent),
and receives a portion of its parent process's resource quotas. The system deletes
the spawned subprocess when the parent process exits.

A detached process is independent of the process that created it. The process
the system creates when you log in is, for example, a detached process. If
you want a created process to continue after the parent exits, or not to share
resources with the parent, use a detached process.

Table 1-1 compares the characteristics of subprocesses and detached processes.

Table 1-1 Characteristics of Subprocesses and Detached Processes

Characteristic

Privileges

Quotas and limits

User authorization file

User identification code

Restrictions

How created

Subprocess

Received from creating process

Shared with creating process

Used for information not given
by creating process

Received from creating process

Exist as long as creating process
exists

SYS$CREPRC, LIB$SPAWN
or PPL$SPAWN from another
process

Detached Process

Specified by creating process

Specified by creating process, but
not shared with creating process

Used for most information not given
by creating process

Specified by creating process

None

SYS$CREPRC from another process

(continued on next page)

1-1

Process Creation
1.1 Processes and Process Threads

Table 1-1 (Cont.) Characteristics of Subprocesses and Detached Processes

Characteristic

When deleted

Subprocess

At image exit, or when creating
process exits

Detached Process

At image exit

Command language interpreter
present

Usually not if created with
SYS$CREPRC; usually if
spawned

Usually not (though interactive
user processes have CLI present,
and they are created with
SYS$CREPRC)

A thread is a single, sequential flow of control within a program. A single
process contains an address space wherein a single thread or multiple threads
execute concurrently. Within a single thread, there is a single point of execution.
Since threads execute concurrently, a multithread program has multiple points
of execution at any one time. For more information about the concepts and
implementation of threads, see the Guide to DECthreads.

1.2 Execution Context of a Process
The execution context of a process defines a process to the system. It includes the
following:

• Image that the process is executing

• Input and output streams for the image executing in the process

• Disk and directory defaults for the process

• System resource quotas and user privileges available to the process

When the system creates a detached process as the result of a login, it uses
the system user authorization file (SYSUAF.DAT) to determine the process's
execution context.

For example, the following occurs when you log in to the system:

1. The process created for you executes the image LOGINOUT.

2. The terminal you are using is established as the input, output, and error
stream device for images that the process executes.

3. Your disk and directory defaults are taken from the user authorization file.

4. The resource quotas and privileges you have been granted by the system
manager are associated with the created process.

5. A command language interpreter (CLI) is mapped into the created process.

1.3 Modes of Execution of a Process

1-2

A process executes in one of the following modes:

• Interactive-Receives input from a record-oriented device, such as a terminal
or mailbox

• Batch-Is created by the job controller and is not interactive

• Network-Is created by the network ancillary control program (ACP)

• Other-Is not running in any of the other modes (for example, a spawned
subprocess where input is received from a command procedure)

Process Creation
1.4 Creating a Subprocess

1.4 Creating a Subprocess
You can create a subprocess using the LIB$SPAWN and PPL$SPAWN run-time
library routines or the SYS$CREPRC system service. A subprocess created with
LIB$SPAWN or PPL$SPAWN is called a spawned subprocess.

Table 1-2 lists the context values provided by LIB$SPAWN, PPL$SPAWN, and
SYS$CREPRC for a subprocess when using the default values in the routine
calls.

Table 1-2 Comparison of LIB$SPAWN, PPL$SPAWN, and SYS$CREPRC
Context Values

Context LIB$SPAWN PPL$SPAWN SYS$CREPRC

DCL Yes Yes No1

Default device and Parent's Parent's Parent's
directory

Symbols Parent's Parent's No

Logical Nam es Parent's2 Parent's2 No2

Privileges Parent's Parent's Parent's

Priority Parent's Parent's 0

1The created subprocess can include DCL by executing the system image
SYS$SYSTEM:LOGINOUT.EXE.
2Plus group and job logical name tables.

1.4.1 Using LIB$SPAWN to Create a Spawned Subprocess
The LIB$SPAWN routine enables you to create a subprocess and to set some
context options for the new subprocess. LIB$SPAWN creates a subprocess with
the same priority as the parent process (generally priority 4). The format for
LIB$SPAWN is:

LIB$SPAWN ([command_string],[input_file],
,[output_file],[flags],[process-name],[process_id],[completion_status]
,[completion_efn],[completion_astadr],[completion_astarg],[prompt],[cli])

For complete information on using each argument, refer to the LIB$SPAWN
routine in Open VMS RTL Library (LIB$) Manual.

Specifying a Command String
Use the command_string argument to specify a single DCL command to execute
once the subprocess is initiated. You can also use this argument to execute a
command procedure that, in turn, executes several DCL commands (@command_
procedure_name).

Redefining SYS$ERROR, SYS$1NPUT, and. SYS$0UTPUT
Use the error, input, and output arguments to specify alternate input, output,
and error devices for SYS$INPUT, SYS$0UTPUT, and SYS$ERROR. Using
alternate values for SYS$INPUT, SYS$0UTPUT and SYS$ERROR can be
particularly useful when you are synchronizing processes that are executing
concurrently.

1-3

Process Creation
1 ~4 Creating a Subprocess

1-4

Passing Parent Process Context Information to the Subprocess ·
Use the flags argument to specify which characteristics of the parent process are
to be passed on to the subprocess. With this argument, you can reduce the time
required to create a subprocess. by passing only a part of the parent's context. You
can also specify whether the parent process should continue to execute (execute
concurrently) or wait until the subprocess has completed execution (execute in
line). .

After the Subprocess Completes Execution
Use the completion_status, completion_efn, and completion_astadr
arguments to specify the action fo be taken when the subprocess completes
execution (send a completion status, set a local event flag, or invoke an AST
procedure). For more information about event flags and ASTs, refer to Chapter 4.

Specifying an Alternate Prompt String
Use the prompt argument to specify a prompt string for the subprocess.

Specifying an Alternate Command Language Interpreter
Use the cli argument to specify a command language interpreter for the
subprocess.

Examples of Creating Subprocesses
The following example creates a subprocess that executes the commands
in the COMMANDS.COM command procedure, which must be a command·
procedure on the current default device in the current default directory. The
created subprocess inherits symbols, logical names (including SYS$INPUT and
SYS$0UTPUT), keypad definitions, and other context information from the
parent. The subprocess executes while the parent process hibernates.

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS= LIB$SPAWN ('@COMMANDS')

The following Fortran program segment creates a subprocess that does not inherit
the parent's symbols, logical names, or keypad definitions. The subprocess reads
and executes the commands in the COMMANDS.COM command procedure.
(The CLI$symbols are defined in the $CLIDEF module of the system object or in
shareable image library. See Chapter 17 for more information.

! Mask for LIB$SPAWN
INTEGER MASK
EXTERNAL CLI$M NOCLISYM,
2 CLI$M-NOLOGNAM,
2 CLI$M-NOKEYPAD
! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

! Set mask and call LIB$SPAWN
MASK = %LOC(CLI$M NOCLISYM) .OR.
2 %LOC(CLI$M-NOLOGNAM) .OR.
2 %LOC(CLI$M=NOKEYPAD)

STATUS= LIB$SPAWN ('@COMMANDS.COM',
2
2

II

MASK)

The following Fortran program segment creates a subprocess to execute the image
$DISK1:[USER.MATH]CALC.EXE. CALC reads data from DATA84.IN and writes
the results to DATA84.RPT. The subprocess executes concurrently. (CLI$M_
NOWAIT is defined in the $CLIDEF module of the system object or shareable
image library; see Chapter 17 .)

Process Creation
1.4 Creating a Subprocess

! Mask for LIB$SPAWN
EXTERNAL CLI$M NOWAIT
! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS= LIB$SPAWN ('RUN $DISKl:[USER.MATH)CALC',
2 'DATA84.IN',
2 'DATA84.RPT',
2 %LOC(CLI$M_NOWAIT))

! Image
! Input
! Output
1 Concurrent

1.4.2 Using PPL$SPAWN to Create a Spawned Subprocess
The PPL$SPAWN routine works similarly to LIB$SPAWN in that it creates one
or more subprocesses with the same context as the parent process on the same
node (or system) as the parent process. You can specify the name of an image to
be executed in the subprocess. However, you should limit use of PPL$SPAWN to
creating subprocesses specifically for parallel processing.

Before using PPL$SPAWN, you must set up special PPL$ data structures with
the PPL$INITIALIZE routine; otherwise, unpredictable results may occur. Also,
after you create a process with PPLS$CREATE_PROCESS and the process has
completed its activity, you must explicitly delete it with PPL$STOP.

For more information about using these PPL$ routines, see the Open VMS RTL
Parallel Processing (PPL$) Manual.

1.4.3 Using SVS$CREPRC to Create a Subprocess
The Create Process (SYS$CREPRC) system service creates both subprocesses
and detached processes. This section discusses creating a subprocess; Section 1.5
describes creating a detached process. When you call the SYS$CREPRC system
service to create a process, you define the context by specifying arguments to
the service. The number of subprocesses a process can create is controlled by
its PQL$_PRCLM subprocess quota, an individual quota description under
the quota argument. The DETACH privilege controls your ability to create a
detached process with a user identification code (UIC) that is different from the
UIC of the creating process.

With SYS$CREPRC, you must usually specify the priority because the default
priority is zero. Though SYS$CREPRC does not set many context values for
the subprocess by default, it does allow you to set many more context values
than LIB$SPAWN. For example, you cannot specify separate privileges for a
subprocess with LIB$SPAWN directly, but you can with SYS$CREPRC.

By default, SYS$CREPRC creates a subprocess rather than a detached process.
The format for SYS$CREPRC is as follows:

SYS$CREPRC ([pidadr],[image],[input],[output],[error],[prvadr],(quota]
,[prcnam], [baspri], (uic] ,[mbxunt],[stsflg])

Ordinarily, when you create a subprocess, you need only assign it an image
to execute and, optionally, the SYS$INPUT, SYS$0UTPUT, and SYS$ERROR
devices. The system provides default values for the process's privileges, resource
quotas, execution modes, and priority. In some cases, however, you may want
to define these values specifically. The arguments to the SYS$CREPRC system
service that control these characteristics follow. For details, see the descriptions
of arguments to the SYS$CREPRC system service in the Open VMS System
Services Reference Manual.

1-5

Process Creation
1.4 Creating a Subprocess

1-6

The default values passed into the subprocess might not be complete enough for
your use. The following sections describe how to modify these default values with
SYS$CREPRC.

Redefining SYS$1NPUT, SYS$0UTPUT, and SYS$ERROR
Use the input, output, and error arguments to specify alternate input, output,
and error devices for SYS$INPUT, SYS$0UTPUT, and SYS$ERROR. Using
alternate values for SYS$INPUT, SYS$0UTPUT, and SYS$ERROR can be
particularly useful when you are synchronizing processes that are executing
concurrently. By providing alternate or equivalent names for the logical names
SYS$INPUT, SYS$0UTPUT, and SYS$ERROR, you can place these logical name
/equivalence name pairs in the process logical name table for the created process.

The following C program segment is an example of defining input, output, and
error devices for a subprocess:

#include <stdio.h>
#include <ssdef .h>
#include <descrip.h>

main() {

}

unsigned int status;

$DESCRIPTOR(input,"SUB MAIL BOX");
$DESCRIPTOR(output, "COMPUT(~OUT");

/* Descriptor for input stream */
/* Descriptor for output and error*/
/* streams */

$DESCRIPTOR(image,"COMPUTE.EXE"); /* Descriptor for image name */

/* Create the subprocess */
status = SYS$CREPRC(O, /* process id */

&image, /* image */
&input, «) /* input SYS$INPUT device */
&output, f) /* output SYS$0UTPUT device*/
&output, 6) /* error SYS$ERROR device*/
o,o,o,o,o,o,o);

«) The input argument equates the equivalence name SUB_MAIL_BOX to the
logical name SYS$INPUT. This logical name may represent a mailbox that
the calling process previously created with the Create Mailbox and Assign
Channel (SYS$CREMBX) system service. Any input the subprocess reads
from the logical device SYS$INPUT are read from the mailbox.

f) The output argument equates the equivalence name COMPUTE_OUT to the
logical name SYS$0UTPUT. All messages the program writes to the logical
device SYS$0UTPUT are written to this file.

6) The error argument equates the equivalence name COMPUTE_OUT to
the logical name. SYS$ERROR. All system-generated error messages will be
written into this file. Because this is the same file as that used for program
output, the file effectively contains a complete record of all output produced
during the execution of the program image.

The SYS$CREPRC system service does not provide default equivalence names
for the logical names SYS$INPUT, SYS$0UTPUT, and SYS$ERROR. If none
are specified, any entries in the group or system logical name tables, if any, may
provide equivalences. If, while the subprocess executes, it reads or writes to one
of these logical devices and no equivalence name exists, an error condition results.

Process Creation
1.4 Creating a Subprocess

In a program that creates a subprocess, you can cause the subprocess to share the
input, output, or error device of the creating process. You must first follow these
steps:

1. Use the Get DeviceNolume Information (SYS$GETDVI) system service to
obtain the device name for the logical name SYS$INPUT, SYS$0UTPUT, or
SYS$ERROR.

2. Specify the address of the descriptor returned by the SYS$GETDVI service
when you specify the input, output, or error argument to the SYS$CREPRC
system service.

This procedure is illustrated in the following example:

#include <stdio.h>
#include <ssdef .h>
#include <prcdef .h>
#include <dvidef .h>
#include <descrip.h>

/* Item list to return device name */

s"truct {
unsigned short buflen, item code;
void *bufaddr; -
void *retlenaddr;
unsigned int terminator;

}itm_lst;

main()

char term[64];
unsigned int baspri=4, status, *termlen;

/* Descriptors for SYS$GETDVI */
$DESCRIPTOR(lognam,"SYS$INPUT");

/* Descriptors for SYS$CREPRC */
$DESCRIPTOR(image,"SYS$SYSTEM:LOGINOUT.EXE");
$DESCRIPTOR(termdesc, term);

/* Assign values to the item list */

itm lst.buflen = 64;
itm-lst.item code = DVI$ DEVNAM;
itn1lst.bufaddr = term; -
itm-lst.retlenaddr = &termlen;
itm=lst.terminator = O;

/* Determine the terminal name */

status = SYS$GETDVI(O,
o,
&lognam,
&itm 1st,
o,o,o,o);

if((status & 1) != 1)

/* efn (event flag) */
/* channel */
/* devnam */
/* item list */

LIB$SIGNAL(status);

/* Create the subprocess */

1-7

Process Creation
1.4 Creating a Subprocess

1-8

status = SYS$CREPRC(O, &image,
&termdesc,
&termdesc,
&termdesc,
o,o,o,
&baspri,
O,O,O);

/* image to be run */
/* input (SYS$INPUT device) */
/* output (SYS$0UTPUT device) */
/* error (SYS$ERROR device) */

/* base priority */

if((status & 1) != 1)
LIB$SIGNAL(status);

In this example, the subprocess executes, and the logical names SYS$INPUT,
SYS$0UTPUT, and SYS$ERROR are equated to the device name of the creating
process's logical input device. The subprocess can then do one of the following:

• Use Open VMS RMS to open the device for reading or writing, or both.

• Use the Assign I/O Channel (SYS$ASSIGN) system service to assign an I/O
channel to the device for input/output operations.

In the following example, the program assigns a channel to the device specified
by the logical name SYS$0UTPUT:

unsigned int status;
unsigned short chan;
$DESCRIPTOR(devnam,"SYS$0UTPUT");

status = SYS$ASSIGN(&devnam,
&chan,
0, 0, 0);

/* Device name */
/* Channel */

For more information about channel assignment for I/O operations, see Chapter 9.

Setting Privileges
Set different privileges by defining the privilege list for the subprocess using
the prvadr argument. This is particularly useful when you want to dedicate
a subprocess to execute privileged or sensitive code. If you do not specify this
argument, the privileges of the calling process are used. If you specify the
prvadr argument, only the privileges specified in the bit mask are used; the
privileges of the calling process are not used. For example, a creating process
has the user privileges GROUP and TMPMBX. It creates a process, specifying
the user privilege TMPMBX. The created process receives only the user privilege
TMPMBX; it" does not have the user privilege GROUP.

If you need to create a process that has a privilege that is not one of your current
process's privileges, you must have the user privilege SETPRV.

Symbols associated with privileges are defined by the $PRVDEF macro. Each
symbol begins with PRV$V _ and identifies the bit number that must be set to
specify a given privilege. The following example shows the data definition for a
bit mask specifying the GRPNAM and GROUP privileges:

struct {
unsigned int privs = PRV$M GRPNAM I I PRV$M_GROUP;
unsigned int terminator; -

}prvrnsk;

Process Creation
1.4 Creating a Subprocess

Setting Process Quotas
Set different process quotas by defining the quota list of system resources for the
subprocess using the quota argument. This option can be useful when managing
a subprocess to limit use of system resources (such as AST usage, I/O, CPU time,
lock requests, and working set size and expansion). If you do not specify this
argument, the system defines default quotas for the subprocess.

Setting the Subprocess Priority
Set the subprocess priority by setting the base execution priority with the baspri
argument. If you do not set the subprocess priority, the priority defaults to 2 for
VAX MACRO and VAX BLISS-32 and to 0 for all other languages. If you want
a subprocess to have a higher priority than its creator, you must have the user
privilege ALTPRI to raise the priority level.

Specifying Additional Processing Options
Enable and disable parent and subprocess wait mode, control process
swapping, control process accounting, control process dump information, control
authorization checks, and control working set adjustments using the stsftg
argument. This argument defines the status flag, a set of bits that control some
execution characteristics of the created process, including resource wait mode and
process swap mode.

Defining an Image for a Subprocess to Execute
When you call the SYS$CREPRC system service, use the image argument
to provide the process with the name of an image to execute. For example,
the following lines of C create a subprocess to execute the image named
CARRIE.EXE:

$DESCRIPTOR(image,"CARRIE");

status = SYS$CREPRC (0, &image, . . .) i

In this example, only a file name is specified; the service uses current disk and
directory defaults, performs logical name translation, uses the default file type
.EXE, and locates the most recent version of the image file. When the subprocess
completes execution of the image, the subprocess is deleted. Process deletion is
described in Chapter 3.

1.4.3.1 Disk and Directory Defaults for Created Processes
When you use the SYS$CREPRC system service to create a process to execute
an image, the system locates the image file in the default device and directory of
the created process. Any created process inherits the current default device and
directory of its creator.

If a created process runs an image that is not in its default directory, you must
identify the directory and, if necessary, the device in the file specification of the
image to be run.

There is no way to define a default device or directory for the created process
that is different from that of the creating process in a call to SYS$CREPRC.
The created process can, however, define an equivalence for the logical device
SYS$DISK by calling the Create Logical Name ($CRELNM) system service.

1-9

Process Creation
1.4 Creating a Subprocess

If the process is a subprocess, you, in the creating process, can define an
equivalence name in the group logical name table, job logical name table, or
any logical name table shared by the creating process and the subprocess. The
created process then uses this logical name translation as its default directory.
The created process can also set its own default directory by calling the Open VMS
RMS default directory control routine, SYS$SETDDIR.

A process can create a process with a default directory that is different from its
own by completing the following steps in the creating process:

1. Make a call to SYS$SETDDIR to change its own default directory

2. Make a call to SYS$CREPRC to create the new process

3. Make a call to SYS$SETDDIR to change its own default directory back to the
default directory it had before the first call to SYS$SETDDIR

The creating process now has its original default directory. The new process has
the different default directory that the creating process had when it created the
new process. For details on how to call SYS$SETDDIR, see the Open VMS System
Services Reference Manual.

1.4.4 Debugging Within a Subprocess
You can allow a program to be debugged within a subprocess. To allow debug
operations, equate the subprocess logical names DBG$INPUT and DBG$0UTPUT
to the terminal. When the subprocess executes the program, which has
been compiled and linked with the debugger, the debugger reads input from
DBG$INPUT and writes output to DBG$0UTPUT.

If you are executing the subprocess concurrently, you should restrict debugging to
the program in the subprocess. The debugger prompt DBG> should enable you
to differentiate between input required by the parent process and input required
by the subprocess. However, each time the debugger displays information, you
must press the Return key to display the DBG> prompt. (By pressing the Return
key, you actually write to the parent process, which has regained control of the
terminal following the subprocess's writing to the terminal. Writing to the parent
process allows the subprocess to regain control of the terminal.)

1.5 Creating a Detached Process

1-10

The creation of a detached process is primarily a task the operating system
performs when you log in. In general, an application creates a detached process
only when a program must continue executing after the parent process exits.
To do this, you should use the SYS$CREPRC system service. You can also
use detached processes to write to another process's terminal by using the
SYS$BREAKTHRU system service.

The DETACH privilege controls the ability to create a detached process with
a UIC that is different from the UIC of the creating process. You can use the
uic argument to the SYS$CREPRC system service to define whether a process
is a subprocess or a detached process. The uic argument provides the created
process with a user identification code (UIC). If you omit the uic argument, the
SYS$CREPRC system service creates a subprocess that executes under the DIC
of the creating process.

You can also create a detached process with the same UIC as the creating
process by specifying the detach flag in the stsflg argument. You do not need
the DETACH privilege to create a detached process with the same UIC as the
creating process.

Process Creation
1.5 Creating a Detached Process

Examples of Creating a Detached Process
The following Fortran program segment creates a process that executes the
image SYS$USER:[ACCOUNT]INCTAXES.EXE. INCTAXES reads input from
the file TAXES.DAT and writes output to the file TAXES.RPr. (TAXES.DAT and
TAXES.RPr are in the default directory on the default disk.) The last argument
specifies that the created process is a detached process (the UIC defaults to that
of the parent process). (The symbol PRC$M_DETACH is defined in the $PRCDEF
module of the system macro library.)

EXTERNAL PRC$M_DETACH

! Declare status and system routines
INTEGER STATUS,SYS$CREPRC

(, STATUS = SYS$CREPRC
2 'SYS$USER:[ACCOUNT]INCTAXES', ! Image
2 'TAXES.DAT', ! SYS$INPUT
2 'TAXES.RPT', SYS$0UTPUT
2 , , , ,
2 %VAL(4), Priority
2 ,,
2 %VAL(%LOC(PRC$M_DETACH)) Detached

The following program segment creates a detached process to execute the DCL
commands in the command file SYS$USER:[TEST]COMMANDS.COM. The
system image SYS$SYSTEM:LOGINOUT.EXE is executed to include DCL in the
created process. The DCL commands to be executed are specified in a command
procedure that is passed to SYS$CREPRC as the input file. Output is written to
the file SYS$USER: [TEST] OUTPUT.DAT.

STATUS = SYS$CREPRC
2
2
2
2
2
2
2

(,
'SYS$SYSTEM:LOGINOUT', ! Image
'SYS$USER:[TEST]COMMANDS.COM',! SYS$INPUT
'SYS$USER:[TEST]OUTPUT.DAT', ! SYS$0UTPUT
,, ,,
%VAL(4), Priority
, ,
%VAL(%LOC(PRC$M_DETACH)) Detached

1-11

2
Process Communication

This chapter describes communication mechanisms used within a process and
between processes. It contains the following sections:

Section 2.1 describes communication within a process.

Section 2.2 describes communication between processes.

The operating system allows your process to communicate within itself and with
other processes. Processes can be either wholly independent or cooperative.
This chapter presents considerations for developing applications that require
the concurrent execution of many programs, and how you can use process
communication to perform the following functions:

• Synchronize events

• Share data

• Obtain information about events important to the program you are executing

2.1 Communication Within a Process
Communicating within a process, from one program component to another, can be
performed using the following methods:

• Local event flags

• Logical names (in supervisor mode)

• Global symbols (command language interpreter symbols)

• Common area

For passing information among chained images, you can use all four methods
because the image reading the information executes immediately after the image
that deposited it. Only the common area allows you to pass data reliably from
one image to another in the event that another image's execution intervenes
between the two communicating images.

For communicating within a single image, you can use event flags, logical names,
and symbols. For synchronizing events within a single image, use event flags.
See Chapter 14 for more information about synchronizing events.

Since permanent mailboxes and permanent global sections are not deleted when
the creating image exits, they also can be used to pass information from the
current image to a later executing image. However, use of the common area
is recommended because it uses fewer system resources than the permanent
structures and does not require privilege. (You need the PRMMBX privilege to
create a permanent mailbox and the PRMGBL privilege to create a permanent
global section.)

2-1

Process Communication
2.1 Communication Within a Process

2.1.1 Using Local Event Flags
Event flags are status posting bits maintained by the operating system for general
programming use. Programs can set, clear, and read event flags. By setting and
clearing event flags at specific points, one program component can signal when an
event has occurred. Other program components can then check the event flag to
determine when the event has been completed. For more information about using
local and common event flags for synchronizing events, refer to Chapter 14.

2.1.2 Using Logical Names
Logical names can store up to 255 bytes of data. When you need to pass
information from one program to another within a process, you can assign
data to a logical name when you create the logical name; then, other programs
can access the contents of the logical name. See Chapter 10 for more information
about logical name system services.

2.1.2.1 Using Logical Name Tables
If both processes are part of the same job, you can place the logical name in
the process logical name table (LNM$PROCESS) or in the job logical name table
(LNM$JOB). If a subprocess is prevented from inheriting the process logical name
table, you must communicate using the job logical name table. If the processes
are in the same group, place the logical name in the group logical name table
LNM$GROUP (requires GRPNAM or SYSPRV privilege). If the processes are
not in the same group, place the logical name in the system logical name table
LNM$SYSTEM (requires SYSNAM or SYSPRV privilege). Symbols can also be
used, but only between a parent and a spawned subprocess that has inherited the
parent's symbols.

2.1.2.2 Using Access Modes
You can create a logical name under three access modes-user, supervisor, or
executive. If you create a process logical name in user mode, it is deleted after
the image exits. If you create a logical name in supervisor or executive mode, it is
retained after the image exits. Therefore, to share data within the process from
one image to the next, use supervisor-mode or executive-mode logical names.

2.1.2.3 Creating and Accessing Logical Names

2-2

Perform the following steps to create and access a logical name:

1. Create the logical name and store data in it. Use LIB$SET_LOGICAL to
create a supervisor logical name. No special privileges are required. You can
also use the system service SYS$CRELNM, but you need SYSNAM privilege
to create a supervisor logical name. SYS$CRELNM also allows you to create
a logical name for the system or group table and to create a logical name in
any other mode, assuming you have appropriate privileges.

2. Access the logical name. Use the system service SYS$TRNLNM.
SYS$TRNLNM searches for the logical name and returns information about
it.

3. Once you have finished using the logical name, delete it. Use the routine
LIB$DELETE_LOGICAL or SYS$DELLNM. LIB$DELETE_LOGICAL
deletes the supervisor logical name without requiring any special privileges.
SYS$DELLNM requires special privileges to delete logical names for
privileged modes. However, you can also use this routine to delete logical
name tables or a logical name within a system or group table.

Process Communication
2.1 Communication Within a Process

Example 2-1 creates a spawned subprocess to perform an iterative calculation.
The logical name REP _NUMBER specifies the number of times that REPEAT, the
program executing in the subprocess, should perform the calculation. Since both
the parent process and the subprocess are part of the same job, REP _NUMBER
is placed in the job logical name table LNM$JOB. (Note that logical names are
case sensitive; specifically, LNM$JOB is a system-defined logical name that refers
to the job logical name table, whereas lnm$job is not.) To satisfy the references to
LNM$_STRING, the example includes the file $LNMDEF.

Example 2-1 Performing an Iterative Calculation with a Spawned Subprocess

PROGRAM CALC

! Status variable and system routines
INTEGER*4 STATUS,
2 SYS$CRELNM,
2 LIB$GET EF,
2 LIB$SPAWN

Define itmlst structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR

END MAP
MAP

INTEGER*4 END LIST
END MAP -

END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ LNMLIST(2)
! Number to pass to REPEAT.FOR
CHARACTER*3 REPETITIONS STR
INTEGER REPETITIONS -
! Symbols for LIB$SPAWN and SYS$CRELNM
! Include FORSYSDEF symbol definitions:
INCLUDE '($LNMDEF)'
EXTERNAL CLI$M NOLOGNAM,
2 CLI$M-NOCLISYM,
2 CLI$M-NOKEYPAD,
2 CLI$M-NOWAIT,
2 LNM$_STRING

. ! Set REPETITIONS STR

Set up and create logical name REP NUMBER in
LNMLIST(l).BUFLEN = 3 -
LNMLIST(l).CODE = LNM$ STRING
LNMLIST(l).BUFADR = %LOC(REPETITIONS STR)
LNMLIST(l).RETLENADR = 0 -
LNMLIST(2).END LIST = 0
STATUS= SYS$CRELNM (,

job table

2 'LNM$JOB',
2 'REP NUMBER' 11

! Logical name table
! Logical name

2 LNMLIST) ! List specifying

IF (.NOT. STATUS)
! equivalence string

CALL LIB$SIGNAL (%VAL(STATUS))

(continued on next page)

2-3

Process Communication
2.1 Communication Within a Process

Example 2-1 (Cont.) Performing an Iterative Calculation with a Spawned

2-4

Subprocess

! Execute REPEAT.FOR in a subprocess
MASK = %LOC (CLI$M NOLOGNAM) .OR.
2 %LOC (CLI$M-NOCLISYM) .OR.
2 %LOC (CLI$M-NOKEYPAD) .OR.
2 %LOC (CLI$M-NOWAIT)
STATUS = LIB$GET EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= LIB$SPAWN ('RUN REPEAT' ,,,MASK,,,,FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

REPEAT.FOR

PROGRAM REPEAT
! Repeats a calculation REP NUMBER of times,
! where REP_NUMBER is a logical name

! Status variables and system routines
INTEGER STATUS,
2 SYS$TRNLNM,
2 SYS$DELLNM

! Number of times to repeat
INTEGER*4 REITERATE,
2 REPEAT STR LEN
CHARACTER*3 REPEAT-STR-
! Item list for SYS$TRNLNM
! Define itmlst structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR

END MAP
MAP

INTEGER*4 END LIST
END MAP -

END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ LNMLIST (2)
! Define item code
EXTERNAL LNM$ STRING
! Set up and translate the logical name REP NUMBER
LNMLIST (1) . BUFLEN = 3 -
LNMLIST(l).CODE = LNM$ STRING
LNMLIST(l).BUFADR = %LOC(REPEAT STR)
LNMLIST(l).RETLENADR = %LOC(REPEAT-STR LEN)
LNMLIST(2).END LIST = 0 - -
STATUS= SYS$TRNLNM (,
2 'LNM$JOB',
2 'REP NUMBER',,
2 LNMLIST)

! Logical name table
! Logical name
! List requesting

IF (.NOT. STATUS)
! equivalence string

CALL LIB$SIGNAL (%VAL(STATUS))

(continued on next page)

Process Communication
2.1 Communication Within a Process

Example 2-1 (Cont.) Performing an Iterative Calculation with a Spawned
Subprocess

! Convert equivalence string to integer
! BN causes spaces to be ignored
READ (UNIT= REPEAT STR (l:REPEAT STR LEN),
2 FMT = '(BN,I3)') REITERATE - -
! Calculations
DO I = 1, REITERATE

END DO
! Delete logical name
STATUS= SYS$DELLNM ('LNM$JOB'' ! Logical name table
2 'REP NUMBER' ,) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

2.1.3 Using Command Language Interpreter Symbols
The symbols you create and access for process communication are command
language interpreter (CLI) symbols. These symbols are stored in symbol tables
maintained for use within the context of DCL, the default command language
interpreter. They can store up to 255 bytes of information. The use of these
symbols is limited to processes using DCL. If the process is not using DCL, an
error status is returned by the symbol routines.

2.1.3.1 Local and Global Symbols
The two kinds of CLI symbols and their definitions are as follows:

• Local-A local symbol is available to the command level that defined it, any
command procedure executed from that command level, and lower command
levels.

• Global-A global symbol can be accessed from any command level, regardless
of the level at which it was defined.

2.1.3.2 Creating and Using Global Symbols
If you need to pass information from one program to another within a process,
you can assign data to a global symbol when you create the symbol. Then, other
programs can access the contents of the global symbol. You should use global
symbols so that the value within the symbol can be accessed by other programs.

To use DCL global symbols, follow this procedure:

1. Create the symbol and assign data to it using the routine LIB$SET_SYMBOL.
Make sure you specify that the symbol will be placed in the global symbol
table in the tbl-ind argument. If you do not specify the global symbol table,
the symbol will be a local symbol.

2. Access the symbol with the LIB$GET_SYMBOL routine. This routine uses
DCL to return the value of the symbol as a string.

3. Once you have finished using the symbol, delete it with the LIB$DELETE_
SYMBOL routine. If you created a global symbol, make sure you specify the
global symbol table in the tbl-ind argument. By default, the system searches
the local symbol table.

2-5

Process Communication
2.1 Communication Within a Process

2.1.4 Using the Common Area
Use the common area to store data from one image to the next. Such data is
unlikely to be corrupted between the time one image deposits it in a common area
and another image reads it from the area. The common area can store 252 bytes
of data. The LIB$PUT_COMMON routine writes information to this common
area; the LIB$GET_COMMON routine reads information from this common area.

2.1.4.1 Creating the Process Common Area
The common area for your process is automatically created for you; no special
declaration is necessary. To pass more than 255 bytes of data, put the data
into a file instead of in the common area and use the common area to pass the
specification.

2.1.4.2 Common 1/0 Routines
The LIB$PUT_COMMON routine allows a program to copy a string into the
process's common storage area. This area remains defined during multiple image
activations. LIB$GET_COMMON allows a program to copy a string from the
common area into a destination string. The programs reading and writing the
data in the common area must agree upon its amount and format. The maximum
length of the destination string is defined as follows:

[min(256, the length of the data in the common storage area) - 4]

This maximum length is normally 252.

In BASIC and Fortran, you can use these routines to allow a USEROPEN
routine to pass information back to the routine that called it. A USEROPEN
routine cannot write arguments. However, it can call LIB$PUT_COMMON to put
information into the common area. The calling program can then use LIB$GET_
COMMON to retrieve it.

You can also use these routines to pass information between images run
successively, such as chained images run by LIB$RUN_PROGRAM.

2.1.4.3 Modifying or Deleting Data in the Common Block
You cannot modify or delete data in the process common area unless LIB$PUT_
COMMON is invoked. Therefore, you can execute any number of images between
one image and another, provided that LIB$PUT_COMMON has not been invoked.
Each subsequent image reads the correct data. Invoking LIB$GET_COMMON to
read the common block does not modify the data.

2.1.4.4 Specifying Other Types of Data

2-6

Although the descriptions of the LIB$PUT_COMMON and LIB$GET_COMMON
routines in the Open VMS RTL Library (LIB$) Manual specify a character string
for the argument containing the data written to or read from the common area,
you can specify other types of data. However, you must pass both noncharacter
and character data by descriptor.

The following program segment reads statistics from the terminal and enters
them into a binary file. After all of the statistics are entered into the file, the
program places the name of the file into the per-process common area and exits.

Process Communication
2.1 Communication Within a Process

Enter statistics

Put the name of the stats file into common
STATUS= LIB$PUT_COMMON (FILE_NAME (l:LEN))

The following program segment reads the file name from the per-process common
block and compiles a report using the statistics from that file.

Read the name of the stats file from common
STATUS = LIB$GET COMMON (FILE NAME,
2 - LEN)-

Compile the report

2.2 Communication Between Processes
Communication between processes, or interprocess communication, can be
performed in the following ways:

• Shared files

• Common event flags

• Logical names

• Mailboxes

• Global sections

• Lock management system services

Each approach offers different possibilities in terms of the speed at which it
communicates information and the amount of information it can communicate.
For example, shared files offer the possibility of sharing an unlimited amount
of information; however, this approach is the slowest because the disk must be
accessed to share information.

Like shared files, global sections offer the possibility of sharing large amounts of
information. Because sharing information through global sections requires only
memory access, it is the fastest communication method.

Logical names and mailboxes can communicate moderate amounts of information.
Because each method operates through a relatively complex system service, each
is faster than files, but slower than the other communication methods.

The lock management services and common event flag cluster methods can
communicate relatively small amounts of information. With the exception of
global sections, they are the fastest of the interprocess communication methods.

2-7

Process Communication
2.2 Communication Between Processes

Common event flags: Processes executing within the same group can use
common event flags to signal the occurrence or completion of particular activities.
For details about event flags, and an example of how cooperating processes in the
same group use a common event flag, see Chapter 14.

Logical name tables: Processes executing in the same job can use the job
logical name table to provide member processes with equivalence names for
logical names. Processes executing in the same group can use the group logical
name table. A process must have the GRPNAM or SYSPRN privilege to place
names in the group logical name table. All processes in the system can use
the system logical name table. A process must have the SYSNAM or SYSPRV
privilege to place names in the system logical name table. Processes can also
create and use user-defined logical name tables. For details about logical names
and logical name tables, see Chapter 10.

Mailboxes: You can use mailboxes as virtual input/output devices to pass
information, messages, or data among processes. For additional information on
how to create and use mailboxes, see Section 2.2.1. Mailboxes may also be used
to provide a creating process with a way to determine when and under what
conditions a created subprocess was deleted. For an example of a termination
mailbox, see Section 3.6.4.2.

Global sections: Global sections can be either disk files or page-file sections
that contain shareable code or data. Through the use of memory management
services, these files can be mapped to the virtual address space of more than one
process. In the case of a data file on disk, cooperating processes can synchronize
reading and writing the data in physical memory; as data is updated, system
paging results in the updated data being written directly back into the disk file.
Global page-file sections are useful for temporary storage of common data; they
are not mapped to a disk file. Instead, they page only to the system default page
file. Global sections are described in more detail in Chapter 19 and Chapter 20.

Lock management system services: Processes can use the lock management
system services to control access to resources (any entity on the system that
the process can read, write, or execute). In addition to controlling access,
the lock management services provide a mechanism for passing information
among processes that have access to a resource (lock value blocks). Blocking
ASTs can be used to notify a process that other processes are waiting for a
resource. Using lock value blocks is a practical technique for communicating
in cluster environments. With lock value blocks, communication between two
processes from node to node in a distributed environment is an effective way
of implementing cluster communication. For more information about the lock
management system services, see Chapter 15.

While common event flags and lock management services establish
communication, they are most useful for synchronizing events and are. discussed
in Chapter 14. Global sections and shared files are best used for sharing data
and are discussed in Chapter 17.

2.2.1 Mailboxes

2-8

A mailbox is a virtual device used for communication among processes. You must
call Open VMS RMS services, language 1/0 statements, or 1/0 system services to
perform actual data transfers.

Process Communication
2.2 Communication Between Processes

2.2.1.1 Creating a Mailbox
To create a mailbox, use the SYS$CREMBX system service. SYS$CREMBX
creates the mailbox and returns the number of the I/O channel assigned to the
mailbox.

The format for the SYS$CREMBX system service is as follows:

SYS$CREMBX ([prmflg], chan, [maxmsg], [bufquo], [promsk], [acmode], [lognam])

When you invoke SYS$CREMBX, you usually specify the following two
arguments:

• Specify a variable to receive the I/O channel number using the chan
argument. This argument is required.

• Specify the logical name to be associated with the mailbox using the lognam
argument. The logical name identifies the mailbox for other processes and for
input/output statements.

The SYS$CREMBX system service also allows you to specify the message size,
buffer size, mailbox protection code, and access mode of the mailbox; however, the
default values for these arguments are usually sufficient. For more information
on SYS$CREMBX, refer to the Open VMS System Services Reference Manual.

2.2.1.2 Creating Temporary and Permanent Mailboxes
By default, a mailbox is deleted when no I/O channel is assigned to it. Such
a mailbox is called a temporary mailbox. If you have PRMMBX privilege, you
can create a permanent mailbox (specify the prmflg argument as 1 when you
invoke SYS$CREMBX). A permanent mailbox is not deleted until it is marked
for deletion with the SYS$DELMBX system service (requires PRMMBX). Once a
permanent mailbox is marked for deletion, it is like a temporary mailbox; when
the last I/O channel to the mailbox is deassigned, the mailbox is deleted.

The following statement creates a mailbox named MAIL_BOX. The I/O channel
assigned to the mailbox is returned in MEX_ CHAN.

! I/O channel
INTEGER*2 MBX CHAN

! Mailbox name
CHARACTER*(*) MBX NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')

STATUS= SYS$CREMBX (,
2 MBX_CHAN,
2
2

, ,, ,
MBX_NAME)

I/O channel

Mailbox name

Do not use MAIL as the logical name for a mailbox or the system will not
execute the proper image in response to the DCL command MAIL.

2-9

Process Communication
2.2 Communication Between Processes

The following program segment creates a permanent mailbox, then creates a
subprocess that marks that mailbox for deletion:

INTEGER STATUS,
2 SYS$CREMBX
INTEGER*2 MBX CHAN

! Create permanent mailbox
STATUS= SYS$CREMBX (%VAL(l), Permanence flag
2 MBX CHAN, Channel
2 I I,-;
2 'MAIL BOX') Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Create subprocess to delete it
STATUS= LIB$SPAWN ('RUN DELETE MBX')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

The following program segment executes in the subprocess. Notice that the
subprocess must assign a channel to the mailbox and then use that channel to
delete the mailbox. Any process that deletes a permanent mailbox, unless it is
the creating process, must use this technique. (Use SYS$ASSIGN to assign the
channel to the mailbox to ensure that the mailbox already exists. SYS$CREMBX
system service assigns a channel to a mailbox; however, SYS$CREMBX also
creates the mailbox if it does not already exist.)

INTEGER STATUS,
2 SYS$DELMBX,
2 SYS$ASSIGN
INTEGER*2 MBX CHAN

! Assign channel to mailbox
STATUS= SYS$ASSIGN ('MAIL BOX',
2 MBX CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Delete the mailbox
STATUS= SYS$DELMBX (%VAL(MBX CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

2.2.1.3 Assigning an 1/0 Channel Along with a Mailbox

2-10

A mailbox is a virtual device used for communication between processes. A
channel is the communication path that a process uses to perform I/O operations
to a particular device. The LIB$ASN_ WTH_MBX routine assigns a channel to a
device and associates a mailbox with the device.

Normally, a process calls the SYS$CREMBX system service to create a mailbox
and assign a channel and logical name to it. In the case of a temporary mailbox,
this service places the logical name corresponding to the mailbox in the job logical
name table. This implies that any process running in the same job and using the
same logical name uses the same mailbox.

Sometimes it is not desirable to have more than one process use the same
mailbox. For example, when a program connects explicitly with another process
across a network, the program uses a mailbox to obtain the data confirming the
connection and to store the asynchronous messages from the other process. If
that mailbox is shared with other processes in the same group, there is no way
to determine which messages are intended for which processes; the processes
read each other's messages, and the original program does not receive the correct
information from the cooperating process across the network link.

Process Communication
2.2 Communication Between Processes

The LIB$ASN_ WTH_MBX routine avoids this situation by associating the
physical mailbox name with the channel assigned to the device. To create
a temporary mailbox for itself and other processes cooperating with it, your
program calls LIB$ASN_ WTH_MBX. The run-time library routine assigns
the channel and creates the temporary mailbox by using the system services
$GETDVI, $ASSIGN, and $CREMBX. Instead of a logical name, the mailbox is
identified by a physical device name of the form MBcu. The elements that make
up this device name are as follows:

MB indicates that the device is a mailbox.

c is the controller.

u is the unit number.

The routine returns this device name to the calling program, which then must
pass the mailbox channel to the other programs with which it cooperates. In this
way, the cooperating processes access the mailbox by its physical name instead of
by its jobwide logical name.

The calling program passes the routine a device name, which specifies the device
to which the channel is to be assigned. For this argument (called dev-nam), you
can use a logical name. If you do so, the routine attempts one level of logical
name translation.

The privilege restrictions and process quotas required for using this routine are
those required by the $GETDVI, $CREMBX, and $ASSIGN system services.

2.2.1.4 Reading and Writing Data to a Mailbox
The following list describes the three ways you can read and write to a mailbox:

• Synchronous I/0-Reads or writes to a mailbox and then waits for the
cooperating image to perform the other operation. Use I/O statements for
your programming language. This is the recommended method of addressing
a mailbox.

• Immediate I/0-Queues a read or write operation to a mailbox and continues
program execution after the operation completes. To do this, use the
SYS$QIOW system service.

• Asynchronous I/0-Queues a read or write operation to a mailbox and
continues program execution while the request executes. To do this, use
the SYS$QIO system service. When the read or write operation completes,
the I/O status block (if specified) is filled, the event flag (if specified) is set,
and the AST routine (if specified) is executed.

Chapter 9 describes the SYS$QIO and SYS$QIOW system services and provides
further discussion of mailbox I/O. See the Open VMS System Services Reference
Manual for more information. Digital Equipment Corporation recommends that
you supply the optional I/O status block parameter when you use these two
system services. The contents of the status block varies depending on the QIO
function code; refer to the function code descriptions in the Open VMS I I 0 User's
Reference Manual for a description of the appropriate status block.

2-11

Process Communication
2.2 Communication Between Processes

2.2.1.5 Using Synchronous Mailbox 1/0

2-12

Use synchronous I/O when you read or write information to another image and
cannot continue until that image responds.

The program segment shown in Example 2-2 opens a mailbox for the first time.
To open a mailbox for Fortran I/O, use the OPEN statement with the following
specifiers: UNIT, FILE, CARRIAGECONTROL, and STATUS. The value for the
keyword FILE should be the logical name of a mailbox (SYS$CREMBX allows
you to associate a logical name with a mailbox when the mailbox is created). The
value for the keyword CARRIAGECONTROL should be 'LIST'. The value for the
keyword STATUS should be 'NEW' for the first OPEN statement and 'OLD' for
subsequent OPEN statements.

Example 2-2 Opening a Mailbox ·

! Status variable and values
INTEGER STATUS

! Logical unit and name for mailbox
INTEGER MBX LUN
CHARACTER(*) MBX NAME
PARAMETER (MBX_NAME = MAIL_BOX)
! Create mailbox
STATUS= SYS$CREMBX (,
2 MBX_CHAN, ! Channel

2 "" 2 MBX NAME) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET LUN (MBX LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = MBX LUN,
2 FILE = MBX-NAME,
2 CARRIAGECONTROL = 'LIST',
2 STATUS= 'NEW')

In Example 2-3, one image passes device names to a second image. The second
image returns the process name and the terminal associated with the process
that allocated each device. A WRITE statement in the first image does not
complete until the cooperating process issues a READ statement. (The variable
declarations are not shown in the second program because they are very similar
to those in the first program.)

Example 2-3 Synchronous 1/0 Using a Mailbox

! DEVICE.FOR

PROGRAM PROCESS DEVICE

! Status variable
INTEGER STATUS

! Name and I/O channel for mailbox
CHARACTER*(*) MBX NAME
PARAMETER (MBX NAME= 'MAIL BOX')
INTEGER*2 MBX CHAN -
! Logical unit number for FORTRAN I/O
INTEGER MBX LUN

(continued on next page)

Process Communication
2.2 Communication Between Processes

Example 2-3 (Cont.) Synchronous 1/0 Using a Mailbox
! Character string format
CHARACTER*(*) CHAR FMT
PARAMETER (CHAR FMT = '(ASO) ')
! Mailbox message
CHARACTER*SO MBX MESSAGE

Create the mailbox
STATUS= SYS$CREMBX (,
2 MBX CHAN, ! Channel
2 ,,,-;
2 MBX_NAME) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET LUN (MBX LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = MBX LUN,
2 FILE = MBX-NAME,
2 CARRIAGECONTROL = 'LIST',
2 STATUS= 'NEW')

Create subprocess to execute GETDEVINF.EXE
STATUS= SYS$CREPRC (,
2 'GETDEVINF', Image

2 '"" 2 'GET DEVICE' , Process name
2 %VAL(4),,,) Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Pass device names to GETDEFINF
WRITE (UNIT=MBX LUN,
2 FMT=CHAR=FMT) 'SYS$DRIVE0'
! Read device information from GETDEFINF
READ (UNIT=MBX LUN,
2 FMT=CHAR=FMT)· MBX MESSAGE

END

GETDEVINF.FOR

Create mailbox
STATUS= SYS$CREMBX (,
2 MBX_CHAN, ! I/O channel
2 I II I

2 MBX_NAME) ! Mailbox name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET LUN (MBX LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT=MBX LUN,
2 FILE=MBX-NAME,
2 CARRIAGECONTROL='LIST',
2 STATUS= 'OLD')
! Read device names from mailbox
READ (UNIT=MBX LUN,
2 FMT=CHAR=FMT) MBX MESSAGE

(continued on next page)

2-13

Process Communication
2.2 Communication Between Processes

Example 2-3 (Cont.) Synchronous 1/0 Using a Mailbox
Use SYS$GETJPI to find process and terminal
Process name: PROC NAME (l:P LEN)
Terminal name: TERM-(l:T_LEN)-

MBX MESSAGE= MBX MESSAGE//' '//
2 - PROC NAME(l:P LEN)//' '//
2 TERM{l:T_LEN)-

Write device information to DEVICE
WRITE (UNIT=MBX LUN,
2 FMT=CHAR=FMT) MBX MESSAGE

END

2.2.1.6 Using Immediate Mailbox 1/0

2-14

Use immediate I/O to read or write to another image without waiting for
a response from that image. To ensure that the other process receives the
information that you write, either do not exit until the other process has a
channel to the mailbox, or use a permanent mailbox.

Queueing an lmmmediate 1/0 Request
To queue an immediate I/O request, invoke the SYS$QIOW system service. See
the Open VMS System Services Reference Manual for more information.

Reading Data from the Mailbox
Since immediate I/O is asynchronous, a mailbox may contain more than one
message or no message when it is read. If the mailbox contains more than one
message, the read operation retrieves the messages one at a time in the order in
which they were written. If the mailbox contains no message, the read operation
generates an end-of-file error.

To allow a cooperating program to differentiate between an empty mailbox
and the end of the data being transferred, the process writing tl~e messages
should use the IO$_ WRITEOF function code to write an end-of-file message to
the mailbox as the last piece of data. When the cooperating program reads an
empty mailbox, the end-of-file message is returned and the second longword of
the I/O status block is 0. When the cooperating program reads an end-of-file
message explicitly written to the mailbox, the end-of-file message is returned and
the second longword of the I/O status block contains the process identification
number of the process that wrote the message to the mailbox.

In Example 2-4, the first program creates a mailbox named MAIL_BOX, writes
data to it, and then indicates the end of the data by writing an end-of-file
message. The second program creates a mailbox with the same logical name,
reads the messages from the mailbox into an array, and stops the read operations
when a read operation generates an end-of-file message and the second longword
of the I/O status block is nonzero, confirming that the writing process sent the
end-of-file message. The processes use common event flag 64 to ensure that
SEND.FOR does not exit until RECEIVE.FOR has established a channel to the
mailbox. (If RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN
cannot find the mailbox.)

Process Communication
2.2 Communication Between Processes

Example 2-4 Immediate 1/0 Using a Mailbox

!SEND.FOR

INTEGER*4 STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX NAME
PARAMETER (MBX NAME= 'MAIL BOX')
INTEGER*2 MBX CHAN -
! Mailbox message
CHARACTER*80 MBX MESSAGE
INTEGER LEN -
CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE LEN (255)
INTEGER MAX MESSAGE
PARAMETER (MAx MESSAGE = 255)
! I/O function-codes and status block
INCLUDE '($IODEF)'
INTEGER*4 WRITE CODE
STRUCTURE /STATUS BLOCK/

INTEGER*2 IOSTAT~
2 MSG LEN

INTEGER*4 READER PIO
END STRUCTURE -
RECORD /STATUS BLOCK/ IOSTATUS
! System routines
INTEGER SYS$CREMBX,
2 SYS$ASCEFC,
2 SYS$WAITFR,
2 SYS$QIOW
! Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX CHAN,
2 ,, ,~
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Fill MESSAGES array

Write the messages
DO I = 1, MAX MESSAGE

2
2
2
2
2
2

WRITE CODE ~ IO$ WRITEVBLK .OR. I0$M_NOW
MBX MESSAGE = MESSAGES(I)
LEN-= MESSAGE LEN(I)
STATUS= SYS$QIOW (,

%VAL(MBX CHAN),
%VAL(WRITE CODE),
IOSTATUS, -
I I

Channel
I/O code
Status. block

%REF(MBX MESSAGE), Pl
%VAL(LEN),,,,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)

2 CALL LIB$SIGNAL (%VAL(IOSTATUS.STATUS))
END DO

(continued on next page)

2-15

Process Communication
2.2 Communication Between Processes

2-16

Example 2-4 (Cont.) Immediate 1/0 Using a Mailbox

! Write end-of-file
WRITE CODE = IO$ WRITEOF .OR. IO$M NOW
STATUS= SYS$QIOW (, -
2 %VAL(MBX CHAN), Channel
2 %VAL(WRITE CODE), ! End-of-file code
2 IOSTATUS, - ! Status block
2 ,,,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

Make sure cooperating process can read the information
by waiting for it to assign a channel to the mailbox

STATUS= SYS$ASCEFC (%VAL(64),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

RECEIVE.FOR

INTEGER STATUS

INCLUDE '($IODEF)'
INCLUDE '($SSDEF)'

! Name and channel number for mailbox
CHARACTER*(*) MBX NAME
PARAMETER (MBX NAME= 'MAIL BOX')
INTEGER*2 MBX CHAN -
! QIO function code
INTEGER READ CODE
! Mailbox message
CHARACTER*80 MBX MESSAGE
INTEGER*4 LEN-
! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE LEN (255)
! I/O status block -
STRUCTURE /STATUS BLOCK/

INTEGER*2 IOSTAT~
2 MSG LEN

INTEGER*4 READER PID
END STRUCTURE -
RECORD /STATUS BLOCK/ IOSTATUS
! System routines
INTEGER SYS$ASSIGN,
2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$QIOW

(continued on next page)

Process Communication
2.2 Communication Between Processes

Example 2-4 (Cont.) Immediate 1/0 Using a Mailbox

! Create the mailbox and let the other process know
STATUS = SYS$ASSIGN (MBX NAME,
2 MBX-CHAN,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$ASCEFC (%VAL(64),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$SETEF (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Read first message
READ CODE = IO$ READVBLK .OR. IO$M NOW
LEN -; 80 - -
STATUS= SYS$QIOW (,
2 %VAL(MBX CHAN),
2 %VAL(READ CODE),
2 IOSTATUS,-
2 , ,

Channel
Function code
Status block

2 %REF(MBX MESSAGE), Pl
2 %VAL(LEN),,,,) P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTATUS.IOSTAT) .AND.
2 (IOSTATUS.IOSTAT .NE. SS$ ENDOFFILE)) THEN

CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))
ELSE IF (IOSTATUS.IOSTAT .NE. SS$ ENDOFFILE) THEN

I = 1 -
MESSAGES(I) = MBX MESSAGE
MESSAGE LEN(I) = IOSTATUS.MSG LEN

END IF - -
! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTATUS.IOSTAT .EQ. SS$ ENDOFFILE) .AND.
2 (IOSTATUS.READER_PID .NE.-0)))

STATUS= SYS$QIOW (,
2 %VAL(MBX CHAN), Channel

Function code
Status block

2 %VAL(READ CODE),
2 IOSTATUS,-
2
2
2

2

,,
%REF(MBX MESSAGE), Pl
%VAL(LEN),,,,) P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTATUS.IOSTAT) .AND.

(IOSTATUS.IOSTAT .NE. SS$ ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

ELSE IF (IOSTATUS.IOSTAT .NE. SS$ ENDOFFILE) THEN
I=I+l -
MESSAGES(I) = MBX MESSAGE
MESSAGE LEN(I) = IOSTATUS.MSG LEN

END IF - -

END DO

2.2.1.7 Using Asynchronous Mailbox 1/0
Use asynchronous I/Oto queue a read or write request to a mailbox. To ensure
that the other process receives the information you write, either do not exit the
other process until the other process has a channel to the mailbox, or use a
permanent mailbox.

2-17

Process Communication
2.2 Communication Between Processes

2-18

To queue an asynchronous I/O request, invoke the SYS$QIO system service;
however, when specifying the function codes, do not specify the 10$M_NOW
modifier. The SYS$QIO system service allows you to specify an AST to be
executed or an event flag to be set when the I/O operation completes.

Example 2-5 calculates gross income and taxes and then uses the results
to calculate net income. INCOME.FOR uses SYS$CREPRC, specifying a
termination mailbox, to create a subprocess to calculate taxes (CALC_TAXES)
while INCOME calculates gross income. INCOME issues an asynchronous read
to the termination mailbox specifying an event flag to be set when the read
completes. (The read completes when CALC_TAXES completes terminating the
created process and causing the system to write to the termination mailbox.)
After finishing its own gross income calculations, INCOME.FOR waits for the flag
that indicates CALC_TAXES has completed and then figures net income.

CALC_TAXES.FOR passes the tax information to INCOME.FOR using the
installed common block created from INSTALLED.FOR.

Example 2-5 Asynchronous 110 Using a Mailbox

!INSTALLED.FOR

Installed common block to be linked with INCOME.FOR and
CALC TAXES.FOR.
Unless the shareable image created from this file is
in SYS$SHARE, you must define a group logical name
INSTALLED and equivalence it to the full file specification
of the shareable image.

INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

END

!INCOME.FOR
Status and system routines

INCLUDE '($SSDEF)'
INCLUDE '($IODEF)'
INTEGER STATUS,
2 LIB$GET LUN,
2 LIB$GET-EF,
2 SYS$CLREF,
2 SYS$CREMBX,
2 SYS$CREPRC,
2 SYS$GETDVIW,
2 SYS$QIO,
2 SYS$WAITFR

(continued on next page)

Process Communication
2.2 Communication Between Processes

Example 2-5 (Cont.) Asynchronous 1/0 Using a Mailbox

! Set up for SYS$GETDVI
! Define itmlst structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR

END MAP
MAP

INTEGER*4 END LIST
END MAP -

END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ DVILIST (2)
INTEGER*4 UNIT BUF,
2 UNIT-LEN
EXTERNAL DVI$ UNIT
! Name and I/O channel for mailbox
CHARACTER*(*) MBX NAME
PARAMETER (MBX NAME= 'MAIL BOX')
INTEGER*2 MBX CHAN -
INTEGER*4 MBX-LUN ! Logical unit number for I/O
CHARACTER*84 MBX MESSAGE ! Mailbox message
INTEGER*4 READ CODE,
2 LENGTH
! I/O status block
STRUCTURE /STATUS BLOCK/

INTEGER*2 IOSTAT~
2 MSG LEN

INTEGER*4 READER PID
END STRUCTURE -
RECORD /STATUS BLOCK/ IOSTATUS
! Declare calculation variables in installed common
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET
! Flag to indicate taxes calculated
INTEGER*4 TAX DONE
! Get and clear an event flag
STATUS = LIB$GET EF (TAX DONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS= SYS$CLREF (%VAL(TAX DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create the mailbox
STATUS= SYS$CREMBX (,
2 MBX CHAN,
2 I II~
2 MBX NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

(continued on next page)

2-19

Process Communication
2.2 Communication Between Processes

2-20

Example 2-5 (Cont.) Asynchronous 1/0 Using a Mailbox

! Get unit number of the mailbox
DVILIST(l).BUFLEN = 4
DVILIST(l).CODE = %LOC(DVI$ UNIT)
DVILIST(l).BUFADR = %LOC(UNIT-BUF)
DVILIST(l).RETLENADR = %LOC(UNIT-LEN)
DVILIST(2).END LIST = 0 -
STATUS= SYS$GETDVIW (,
2 %VAL(MBX CHAN),
2 MBX NAME-;-
2 DVILIST,
2 "')

Channel
Device
Item list

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create subprocess to calculate taxes
STATUS= SYS$CREPRC (,
2 'CALC TAXES', Image
2 ,,,,,-
2 'CALC TAXES', Process name
2 %VAL(4), Priority
2 '
2 %VAL(UNIT_BUF),)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Asynchronous read to termination mailbox
! sets flag when tax calculations complete
READ CODE = IO$ READVBLK
LENGTH = 84 -
STATUS = SYS$QIO
2

(%VAL(TAX DONE), ! Indicates read complete
%VAL(MBX-CHAN), ! Channel

2 %VAL(READ_CODE), Function code
2 IOSTATUS,,, ! Status block
2
2

%REF(MBX MESSAGE),! Pl
%VAL(LENGTH),,,,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
Calculate incomes

Wait until taxes are calculated
STATUS= SYS$WAITFR (%VAL(TAX DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Check mailbox I/O
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

Calculate net income after taxes

END

CALC_ TAXES.FOR

! Declare calculation variables in installed common
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

(continued on next page)

Process Communication
2.2 Communication Between Processes

Example 2-5 (Cont.) Asynchronous 1/0 Using a Mailbox

! Calculate taxes

END

2-21

3
Process Control

This chapter describes how to use operating system features to control a process
or set of cooperating processes. It contains the following sections:

Section 3.1 describes the creation and control of a process to complete a
programming task.

Section 3.2 describes how to use the operating system's process information
services to gather information about a process.

Section 3.3 describes how to change a process's scheduling.

Section 3.4 describes how to change a process's name.

Section 3.5 describes how to synchronize programs by setting specific times for
program execution.

Section 3.6 describes how to suspend, resume, and stop program execution.

3.1 Using Process Control for Programming Tasks
Process control features in the operating system allow you to employ the following
techniques to design your application:

• Modularize application programs so that each process of the application
executes a single task

• Perform parallel processing, in which one process executes one part of a
program while another process executes another part

• Implement application program control, in which one process manages and
coordinates the activities of several other processes

• Schedule program execution

• Dedicate a process to execute DCL commands

• Isolate code for one or more of the following reasons:

To debug logic errors

To execute privileged code

To execute sensitive code

Among the services and routines the operating system provides to help you
monitor and control the processes involved in your application are those that
perform the following functions:

• Obtaining process information

• Setting process privileges

• Setting process name

• Setting process scheduling

3-1

Process Control
3.1 Using Process Control for Programming Tasks

• Hibernating or suspending a process

• Deleting a process

• Synchronizing process execution

You can use system routines and DCL commands to accomplish these tasks.
Table 3-1 summarizes which routines and commands to use. You can use
the DCL commands in a command procedure that is executed as soon as the
subprocess (or detached process) is created.

For process synchronization techniques other than specifying a time for program
execution, refer to Chapter 4, Chapter 14, and Chapter 15.

Table 3-1 Routines and Commands for Controlling Processes

Routine

LIB$GETJPI
SYS$GETJPI
SYS$GETJPIW

SYS$SETPRV

SYS$SETPRI

SYS$SETSWM

SYS$HIBER
SYS$SUSPND
SYS$RESUME

SYS$SETPRN

SYS$FORCEX
SYS$EXIT
SYS$DELPRC

DCL Command

SHOW PROCESS

SET PROCESS

SET PROCESS

SET PROCESS

SET PROCESS

SET PROCESS

EXIT and STOP

Task

Return process information

Set process privileges

Set process priority

Control swapping of process

Hibernate and suspend process

Set process name

Initiate process and image
rundown
Delete process

By default, the routines and commands reference the current process. To
reference another process, you must specify either the process identification
number (PID) or the process name when you call the routine or with a command
qualifier when you enter commands. You must have the GROUP privilege to
reference a process with the same group number and a different member number
in its UIC and WORLD privilege to reference a process with a different group
number in its UIC.

The information presented in this section covers using the routines. If you want
to use the DCL commands in a command procedure, refer to the Open VMS DCL
Dictionary. ·

3.1.1 Determining Privileges for Process Creation and Control
There are three levels of process control privilege.

3-2

• Processes with the same UIC can always issue process control services for one
another.

• You need the GROUP privilege to issue process control services for other
processes executing in the same group.

• You need the WORLD privilege to issue process control services for any
process in the system.

You need additional privileges to perform some specific functions; for example,
raising the base priority of a process requires ALTPRI privilege.

Process Control
3.1 Using Process Control for Programming Tasks

3.1.2 Determining Process Identification
There are two types of process identification:

• Process identification number (PID)

The system assigns this unique 32-bit number to a process when it is created.
If you provide the pidadr argument to the SYS$CREPRC system service, the
system returns the process identification number at the location specified.
You can then use the process identification number in subsequent process
control services.

• Process name

There are two types of process names:

Process name

A process name is a 1- to 15-character name string. Each process name
must be unique within its group (processes in different groups can have
the same name). You can assign a name to a process by specifying the
prcnam argument when you create it. You can then use this name to
refer to the process in other system service calls. Note that you cannot
use a process name to specify a process outside the caller's group; you
must use a process identification number (PID).

Full process name

The full process name is unique for each process in the cluster. Full
process name strings can be up to 23 characters long and are configured
in the. following way:

1-6 characters for the node name
2 characters for the colons(::) that follow the node name
1-15 characters for the local process name

For example, you could call the SYS$CREPRC system service, as follows:

unsigned int orionid=O, status;
$DESCRIPTOR(orion,"ORION");

status = SYS$CREPRC(&orionid,
&orion, . . .) ;

/* pidadr (process id returned) */
/* prcnam - process name */

The service returns the process identification in the longword at ORIONID. You
can now use either the process name (ORION) or the PID (ORIONID) to refer to
this process in other system service calls.

A process can set or change its own name with the Set Process Name ($SETPRN)
system service. For example, a process can set its name to CYGNUS, as follows:

/* Descriptor for process name */
$DESCRIPTOR(cygnus,"CYGNUS");

status = SYS$SETPRN(&cygnus); /* prcnam - process name */

Most of the process control services accept the prcnam or the pidadr argument
or both. However, you should identify a process by its process identification
number for the following reasons:

• The service executes faster because it does not have to search a table of
process names.

3-3

Process Control
3.1 Using Process Control for Programming Tasks

• For a process not in your group, you must use the process identification
number (see the following section, Section 3.1.3).

If you specify the PID address, the service uses the PID address. If you specify
the process name without a PID address, the sevice uses the process name. If
you specify both-the process name and PID address-the PID address is used
unless the contents of the PID is 0. In that case, the process name is used. If you
specify a PID address of 0 without a process name, then the service is performed
for the calling process.

If you specify neither the process name argument nor the process identification
number argument, the service is performed for the calling process. If the PID
address is specified, the service returns the PID of the target process in it.
Table 3-2 summarizes the possible combinations of these arguments and explains
how the services interpret them.

Table 3-2 Process Identification

Process PIO Resultant
Name Address Contents of Action
Specified? Specified? PIO by Services

No No The process identification of the
calling process is used, but is
not returned.

No Yes 0 The process identification of
the calling process is used and
returned.

No Yes PID The process identification is
used and returned.

Yes No The process name is used. The
process identification is not
returned.

Yes Yes 0 The process name is used and
the process identification is
returned.

Yes Yes PID The process identification is
used and returned; the process
name is ignored.

3.1.3 Qualifying Process Naming Within Groups

3-4

Process names are always qualified by their group number. The system maintains
a table of all process names and the UIC associated with each. When you use the
prcnam argument in a process control service, the table is searched for an entry
that contains the specified process name and the group number of the calling
process.

To use process control services on processes within its group, a calling process
must have the GROUP user privilege; this privilege is not required when you
specify a process with the same UI C as the caller.

The search for a process name fails if the specified process name does not have
the same group number as the caller. The search fails even if the calling process
has the WORLD user privilege. To execute a process control service for a process
that is not in the caller's group, the requesting process must use a process
identification and must have the WORLD user privilege.

Process Control
3.2 Obtaining Process Information

3.2 Obtaining Process Information
The operating system's process information procedures enable you to gather
information about processes. You can obtain information about one process or
a group of processes on the local system or on remote nodes in a VMScluster
system. You can also obtain process lock information. DCL commands such as
SHOW SYSTEM and SHOW PROCESS use the process information procedures
to display information about processes. You can also use the process information
procedures within your programs.

The following are process information procedures:

• Get Job/Process Information (SYS$GETJPl(W))

• Get Job/Process Information (LIB$GETJPI)

• Process Scan (SYS$PROCESS_SCAN)

• Get Lock Information (SYS$GETLKI)

For more information about SYS$GETJPI, SYS$PROCESS_SCAN, and
SYS$GETLKI, see the Open VMS System Services Reference Manual.

The differences among these procedures are as follows:

• SYS$GETJPI operates asynchronously.

• SYS$GETJPIW and LIB$GETJPI operate synchronously.

• SYS$GETJPI and SYS$GETJPIW can obtain one or more pieces of
information about a process in a single call.

• LIB$GETJPI can obtain only one piece of information about a process in a
single call.

• SYS$GETJPI and SYS$GETJPIW can specify an AST to execute at the
completion of the routine.

• SYS$GETJPI and SYS$GETJPIW can use an I/O status block (IOSB) to test
for completion of the routine.

• LIB$GETJPI can return some items either as strings or as numbers. It is
often the easiest to call from a high-level language because the caller is not
require the caller to construct an item list.

• SYS$GETLKI returns information about the lock database.

3.2.1 Using the PIO to Obtain Information
The process information procedures return information about processes by using
the process identification (PID) or the process name. The PID is a 32-bit number
that is unique for each process in the cluster. Specify the PID by using the
pidadr argument. All the significant digits of a PID must be specified; only
leading zeros can be omitted.

3-5

Process Control
3.2 Obtaining Process Information

3.2.2 Using the Process Name to Obtain Information

3-6

To obtain information about a process using the process name, specify the
prcnam argument. Although a PID is unique for each process in the cluster, a
process name is unique (within a UIC group) only for each process on a node.
To locate information about processes on the local node, specify a process name
string of 1 to 15 characters. To locate information about a process on a particular
node, specify the full process name, which can be up to 23 characters long. The
full process name is configured in the following way:

• 1 to 6 characters for the node name

• 2 characters for the colons(::) that follow the node name

• 1 to 15 characters for the local process name

Note that a local process name can look like a remote process name. Therefore,
if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a process
named SMITH.

Open VMS Programming Interfaces: Calling a System Routine and the Open VMS
System Services Reference Manual describe these routines completely, listing
all items of information that you can request. LIB$GETJPI, SYS$GETJPI, and
SYS$GETJPIW share the same item codes with the following exception: LIB$K_
items can be accessed only by LIB$GETJPI.

In the following example, the string argument rather than the numeric argument
is specified, causing LIB$GETJPI to return the UIC of the current process as a
string:

! Define request codes
INCLUDE '($JPIDEF)'

! Variables for LIB$GETJPI
CHARACTER*9 UIC
INTEGER LEN

STATUS = LIB$GETJPI (JPI$_UIC,
2
2
2

' ' ' UIC,
LEN)

To specify a list of items for SYS$GETJPI or SYS$GETJPIW (even if that
list contains only one item), use a record structure. Example 3-1 uses
SYS$GETJPIW to request the process name and user name associated with
the process whose process identification number is in SUBPROCESS_PID.

Example 3-1 Obtaining Different Types of Process Information

PID of subprocess
INTEGER SUBPROCESS PIO

! Include the request codes
INCLUDE '($JPIDEF)'

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-1 {Cont.) Obtaining Different Types of Process Information

! Define itmlst structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR

END MAP
MAP

INTEGER*4 END LIST
END MAP -

END UNION
END STRUCTURE
! Declare GETJPI itmlst
RECORD /ITMLST/ JPI LIST(3)
! Declare buffers for information
CHARACTER*l5 PROCESS NAME
CHARACTER*l2 USER NAME
INTEGER*4 PNAME LEN,
2 UNAME-LEN
! Declare I/O status structure
STRUCTURE /IOSB/

INTEGER*2 STATUS,
2 COUNT

INTEGER*4 %FILL
END STRUCTURE
! Declare I/O status variable
RECORD /IOSB/ JPISTAT
! Declare status and routine
INTEGER*4 STATUS,
2 SYS$GETJPIW

• ! Define SUBPROCESS PID

! Set up itmlst
JPI LIST(l).BUFLEN = 15
JPI-LIST(l).CODE = JPI$_PRCNAM
JPI-LIST(l).BUFADR = %LOC(PROCESS NAME)
JPI-LIST(l).RETLENADR = %LOC(PNAME LEN)
JPI-LIST(2).BUFLEN = 12 -
JPI-LIST(2).CODE = JPI$ USERNAME
JPI-LIST(2).BUFADR = %LOC(USER NAME)
JPI-LIST(2).RETLENADR = %LOC(UNAME LEN)
JPI=LIST(3).END_LIST = 0 -

(continued on next page)

3-7

Process Control
3.2 Obtaining Process Information

Example 3-1 (Cont.) Obtaining Different Types of Process Information

! Request information and wait for it
STATUS= SYS$GETJPIW (,
2 SUBPROCESS PIO,
2 , -
2 JPI LIST,
2 JPISTAT,
2 ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Check final return status
IF (.NOT. JPISTAT.STATUS) THEN

CALL LIB$SIGNAL (%VAL(JPISTAT.STATUS))
END IF

3.2.3 Using SVS$GET JPI and LIB$GET JPI
SYS$GETJPI uses the PID or the process name to obtain information about
one process and the -1 wildcard as the pidadr to obtain information about
all processes on the local system. If a PID or process name is not specified,
SYS$GETJPI returns information about the calling process. SYS$GETJPI cannot
perform a selective search-it can search for only one process at a time in the
cluster or for all processes on the local system. If you want to perform a selective ·
search for information or get information about processes across the cluster, use
SYS$GETJPI with SYS$PROCESS_SCAN.

3.2.3.1 Requesting Information About a Single Process

3-8

Example 3-2 is a Fortran program that displays the process name and the PID of
the calling program. If you want to get the same information about each process
on the system, specify the initial process identification argument as -1 when you
invoke LIB$GETJPI or SYS$GETJPI(W). Call the GETJPI routine (whichever
you choose) repeatedly until it returns a status of SS$_NOMOREPROC,
indicating that all processes on the system have been examined.

Example 3-2 Using SYS$GET JPI to Obtain Information About the Calling
Process

No process name or PID is specified; $GETJPI returns data on the
calling process.

PROGRAM CALLING PROCESS

IMPLICIT NONE ! Implicit none

INCLUDE '($jpidef) /nolist' ! Definitions for $GETJPI

INCLUDE '($ssdef) /nolist' ! System status codes

STRUCTURE /JPIITMLST/
UNION

MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 RETLENADR

Structure declaration for
$GETJPI item lists

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-2 (Cont.) Using SYS$GET JPI to Obtain Information About the
Calling Process

END MAP
MAP

INTEGER*4 END LIST
END MAP

END UNION
END STRUCTURE
RECORD /JPIITMLST/
2 JPILIST(3)

INTEGER*4 SYS$GETJPIW

INTEGER*4 STATUS,
2 PID

INTEGER*2 IOSB(4)

CHARACTER*l6
2 PRC NAM
INTEGER*2 PRCNAM LEN
!·Initialize $GETJPI item list

JPILIST(l).BUFLEN = 4
JPILIST(l).CODE = JPI$_PID
JPILIST(l).BUFADR = %LOC(PID)
JPILIST(l).RETLENADR = 0
JPILIST(2).BUFLEN = LEN(PRCNAM)

A longword of 0 terminates
an item list

Declare the item list for
$GETJPI

System service entry points

Status variable
PID from $GETJPI

I/O Status Block for $GETJPI

Process name from $GETJPI
Process name length

JPILIST(2).CODE = JPI$ PRCNAM
JPILIST(2).BUFADR = %LOC(PRCNAM)
JPILIST(2).RETLENADR = %LOC(PRCNAM LEN)
JPILIST(3).END LIST = 0 -
! Call $GETJPI-to get data for this process

STATUS = SYS$GETJPIW (
2 No event flag
2 No PID
2 , No process name
2 JPILIST, Item list
2 IOSB, Always use IOSB with $GETJPI!
2 No AST
2 No AST arg
! Check the status in both STATUS and the IOSB, if
! STATUS is OK then copy IOSB(l) to STATUS

IF (STATUS) STATUS = IOSB(l)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
TYPE 1010, PID, PRCNAM(l:PRCNAM LEN)

1010 FORMAT (I I I z 8 • 8 I , I I A) -
ELSE

END IF

END

CALL LIB$SIGNAL(%VAL(STATUS))

3-9

Process Control
3.2 Obtaining Process Information

3-10

Example 3-3 creates the file PROCNAME.RPr that lists, using LIB$GETJPI, the
process name of each process on the system. If the process running this program
does not have the privilege necessary to access a particular process, the program
writes the words NO PRIVILEGE in place of the process name. If a process
is suspended, LIB$GETJPI cannot access it and the program writes the word
SUSPENDED in place of the process name. Note that, in either of these cases,
the program changes the error value in STATUS to a success value so that the
loop calling LIB$GETJPI continues to execute.

Example 3-3 Obtaining the Process Name

Status variable and error codes
INTEGER STATUS,
2 STATUS OK,
2 LIB$GET LUN,
2 LIB$GETJPI
INCLUDE '($SSDEF)'
PARAMETER (STATUS_OK = 1)

! Logical unit number and file name
INTEGER*4 LUN
CHARACTER*(*) FILE NAME
PARAMETER (FILE NAME= 'PROCNAME.RPT')
! Define item codes for LIB$GETJPI
INCLUDE '($JPIDEF)'

! Process name
CHARACTER*l5 NAME
INTEGER LEN
! Process identification
INTEGER PIO /-1/

Get logical unit number and open the file
STATUS = LIB$GET LUN (LUN)
OPEN (UNIT = LUN~
2 FILE = 'PROCNAME.RPT' I

2 STATUS= 'NEW')
! Get information and write it to file
DO WHILE (STATUS)

2
2
2
2

STATUS = LIB$GETJPI(JPI$ PRCNAM,
PID, -

II

NAME,
LEN)

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-3 (Cont.) Obtaining the Process Name

! Extra space in WRITE commands is for
! FORTRAN carriage control
IF (STATUS) THEN

WRITE (UNIT = LUN,
2 FMT = '(2A)') , , I NAME(l:LEN)

STATUS = STATUS OK
ELSE IF (STATUS .EQ. SS$ NOPRIV) THEN

WRITE (UNIT = LUN, -
2 FMT = '(2A)') , I I 'NO PRIVILEGE'

STATUS = STATUS OK
ELSE IF (STATUS .EQ. SS$ SUSPENDED) THEN

WRITE (UNIT = LUN, -
2 FMT = '(2A)') ' ', 'SUSPENDED'

STATUS = STATUS OK
END IF -

END DO
! Close file
IF (STATUS .EQ. SS$ NOMOREPROC)
2 CLOSE (UNIT = LUN)

Example 3-4 demonstrates how to use the process name to obtain information
about a process.

Example 3-4 Using SYS$GET JPI and the Process Name to Obtain Information
About a Process

To find information for a particular process by name,
substitute this code, which includes a process name,
to call $GETJPI in Example 3-2

Call $GETJPI to get data for a name~ process

STATUS = SYS$GETJPIW (
2 No event flag

No PID
Process name
Item list

2
2
2
2
2
2

I

'SMITH 1' I
JPILIST,
IOSB, Always use IOSB with $GETJPI!

No AST
No AST arg

3.2.3.2 Requesting Information About All Processes on the Local System
You can use SYS$GETJPI to perform a wildcard search on all processes on the
local system. When the initial pidadr argument is specified as -1, SYS$GETJPI
returns requested information for each process that the program has privilege
to access. The requested information is returned for one process per call to
SYS$GETJPI.

To perform a wildcard search, call SYS$GETJPI in a loop, testing the return
status.

3-11

Process Control
3.2 Obtaining Process Information

3-12

When performing wildcard searches, SYS$GETJPI returns an error status for
processes that are inaccessible. When a program that uses a -1 wildcard checks
the status value returned by SYS$GETJPI, it should test for the following status
codes:

Status Explanation

All processes have been returned. SS$_NOMOREPROC

SS$_NOPRIV

SS$_SUSPENDED

The caller lacks sufficient privilege to examine a process.

The target process is being deleted or is suspended and
cannot return the information.

Example 3-5 is a C program that demonstrates how to use the SYS$GETJPI -1
wildcard to search for all processes on the local system.

Example 3-5 Using SYS$GET JPI to Request Information About All Processes
on the Local System

#include <stdio.h>
#include <jpidef .h>
#include <stdlib.h>
#include <ssdef .h>

/* Item descriptor */

struct {
unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;
unsigned int terminator;

}itm_lst;

/* I/O Status Block */

struct {

}iosb;

main()

unsigned short iostat;
unsigned short iolen;
unsigned int device_info;

unsigned short len;
unsigned int efn=l,pidadr = -!,status, usersize;
char username[l2];

/* Initialize the item list */

itm lst.buflen = 12;
itm-lst.item code = JP!$ USERNAME;
itm-lst.bufaddr = username;
itm-lst.retlenaddr = &usersize;
itm=lst.terminator = O;

do{

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-5 (Cont.) Using SYS$GET JPI to Request Information About All
Processes on the Local System

status = SYS$GETJPIW(O,
&pidadr,
o,
&itm 1st,
&iosb,

/* no event flag */
/* process id */
/* process name */
/* item list */
/* I/O status block */

o,
0);

/* astadr (AST routine) */
/* astprm (AST parameter) */

case SS$ NOPRIV:

switch(status)
{

- printf("\nError: No privileges for attempted operation");
break;

case SS$ SUSPENDED:
- printf("\nError: Process is suspended");

break;
case SS$ NORMAL:

- if (iosb.iostat == SS$ NORMAL)
printf ("\nUsername: %s", username);

else
printf("\nIOSB condition value %d returned",iosb.iostat);

}

}while(status != SS$_NOMOREPROC);

3.2.4 Using SYS$GET JPI with SYS$PROCESS_SCAN
Using the SYS$PROCESS_SCAN system service greatly enhances the power
of SYS$GETJPI. With this combination, you can search for selected groups of
processes on the local system as well as for processes on remote nodes or across
the cluster. When you use SYS$GETJPI alone, you specify the pidadr or the
prcnam argument to locate information about one process. When you use
SYS$GETJPI with SYS$PROCESS_SCAN, the pidctx argument generated by
SYS$PROCESS_SCAN is used as the pidadr argument to SYS$GETJPI. This
process context allows SYS$GETJPI to use the selection criteria set up in the call
to SYS$PROCESS_SCAN.

You can use SYS$PROCESS_SCAN only with SYS$GETJPI; you cannot use
it alone. The process context generated by SYS$PROCESS_SCAN is used like
the -1 wildcard except that it is initialized by calling the SYS$PROCESS_
SCAN service instead of by a simple assignment statement. However, the
SYS$PROCESS_SCAN context is more powerful and more flexible than the -1
wildcard. SYS$PROCESS_SCAN uses an item list to specify selection criteria to
be used in a search for processes and produces a context longword that describes
a selective search for SYS$GETJPI.

Using SYS$GETJPI with SYS$PROCESS_SCAN to perform a selective search
is a more efficient way to locate information because only information about
the processes you have selected is returned. For example, you can specify a
search for processes owned by one user name, and SYS$GETJPI returns only
the processes that match the specified user name. You can specify a search for
all batch processes and SYS$GETJPI returns only information about processes
running as batch jobs. You can specify a search for all batch processes owned by
one user name and SYS$GETJPI returns only information about processes owned
by that user name that are running as batch jobs.

3-13

Process Control
3.2 Obtaining Process Information

3.2.4.1 Using SYS$PROCESS_SCAN Item List and Item-Specific Flags
SYS$PROCESS_SCAN uses an item list to specify the selection criteria for the
SYS$GETJPI search.

3-14

Each entry in the SYS$PROCESS_SCAN item list contains the following:

• The attribute of the process to be examined

• The value of the attribute or a pointer to the value

• Item-specific flags to control how to interpret the value

Item-specific flags enable you to control selection information. For example,
you can use flags to select only those processes that have attribute values that
correspond to the value in the item list, as shown in Table 3-3.

Table 3-3 Item-Specific Flags

Item-Specific Flag

PSCAN$M_OR

PSCAN$M_EQL

PSCAN$M_NEQ

PSCAN$M_GEQ

PSCAN$M_GTR

PSCAN$M_LEQ

PSCAN$M_LSS

PSCAN$M_CASE_BLIND

PSCAN$M_PREFIX_MATCH

PSCAN$M_ WILDCARD

Description

Match this value or the next value.

Match value exactly (the default.)

Match if value is not equal.

Match if value is greater than or equal to.

Match if value is greater than.

Match if value is less than or equal to.

Match if value is less than.

Match without regard to case of letters.

Match on the leading substring.

Match string is a wildcard pattern.

The PSCAN$M_OR flag is used to connect entries in an item list. For example,
in a program that searches for processes owned by several specified users, each
user name must be specified in a separate item list entry. The item list entries
are connected with the PSCAN$M_OR flag as shown in the following Fortran
example. This example connects all the processes on the local node that belong to
SMITH, JONES, or JOHNSON.

PSCANLIST(l).BUFLEN = LEN('SMITH')
PSCANLIST(l).CODE = PSCAN$_USERNAME
PSCANLIST(l).BUFADR = %LOC('SMITH')
PSCANLIST(l).ITMFLAGS = PSCAN$M OR
PSCANLIST(2).BUFLEN = LEN('JONES')
PSCANLIST(2).CODE = PSCAN$ USERNAME
PSCANLIST(2).BUFADR = %LOC('JONES')
PSCANLIST(2).ITMFLAGS = PSCAN$M OR
PSCANLIST(3).BUFLEN = LEN('JOHNSON')
PSCANLIST(3).CODE = PSCAN$ USERNAME
PSCANLIST(3).BUFADR = %LOC('JOHNSON')
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

Use the PSCAN$M_ WILDCARD flag to specify that a character string is to be
treated as a wildcard. For example, to find all process names that begin with the
letter A and end with the string ER, use the string A *ER with the PSCAN$M_
WILDCARD flag. If the PSCAN$M_ WILDCARD flag is not specified, the search
looks for the 4-character process name A *ER.

Process Control
3.2 Obtaining Process Information

The PSCAN$M_PREFIX_MATCH defines a wildcard search to match the initial
characters of a string. For example, to find all process names that start with
the letters AB, use the string AB with the PSCAN$M_PREFIX_MATCH flag. If
you do not specify the PSCAN$M_PREFIX_MATCH flag, the search looks for a
process with the 2-character process name AB.

3.2.4.2 Requesting Information About Processes That Match One Criterion
You can use SYS$GETJPI with SYS$PROCESS_SCAN to search for processes
that match an item list with one criterion. For example, if you specify a search
for processes owned by one user name, SYS$GETJPI returns only those processes
that match the specified user name.

Example 3-6 demonstrates how to perform a SYS$PROCESS_SCAN search on
the local node to select all processes that are owned by user SMITH.

Example 3-6 Using SYS$GET JPI and SYS$PROCESS_SCAN to Select Process
Information by User Name

PROGRAM PROCESS SCAN

IMPLICIT NONE

INCLUDE '($jpidef) /nolist'
INCLUDE '($pscandef) /nolist'
INCLUDE '($ssdef) /nolist'

STRUCTURE /JPIITMLST/
UNION

2

2

MAP
INTEGER*2 BUFLEN,

CODE
INTEGER*4 BUFADR,

RETLENADR
END MAP
MAP

INTEGER*4 END LIST
END MAP

END UNION
END STRUCTURE
STRUCTURE /PSCANITMLST/

UNION

2

2

MAP
INTEGER*2 BUFLEN,

CODE
INTEGER*4 BUFADR,

ITMFLAGS
END MAP
MAP

INTEGER*4 END LIST
END MAP

END UNION
END STRUCTURE

Implicit none

Definitions for $GETJPI
Definitions for $PROCESS SCAN
Definitions for SS$_NAMES

Structure declaration for
$GETJPI item lists

A longword of 0 terminates
an item list

Structure declaration for
$PROCESS_SCAN item lists

A longword of 0 terminates
an item list

(continued on next page)

3-15

Process Control
3.2 Obtaining Process Information

3-16

Example 3-6 (Cont.) Using SYS$GET JPI and SVS$PROCESS_SCAN to Select
Process Information by User Name

RECORD /PSCANITMLST/ Declare the item list for
2 PSCANLIST(l2) $PROCESS_SCAN

RECORD /JPIITMLST/
2 JPILIST(3)

Declare the item list for
$GETJPI

INTEGER*4 SYS$GETJPIW, System service entry points
2 SYS$PROCESS_SCAN

INTEGER*4 STATUS, Status variable
2 CONTEXT, Context from $PROCESS SCAN
2 PIO PIO from $GETJPI -

INTEGER*2 IOSB(4)

CHARACTER*l6

I/O Status Block for $GETJPI

2 PRC NAM
INTEGER*2 PRCNAM LEN

Process name from $GETJPI
Process name length

LOGICAL*4 DONE Done with data loop

!**
!* Initialize item list for $PROCESS SCAN *
!**

! Look for processes owned by user SMITH

PSCANLIST(l).BUFLEN = LEN('SMITH')
PSCANLIST(l).CODE = PSCAN$_USERNAME
PSCANLIST(l).BUFADR = %LOC('SMITH')
PSCANLIST(l).ITMFLAGS = 0
PSCANLIST(2).END LIST= 0
!**
!* End of item list initialization *
!**

STATUS = SYS$PROCESS SCAN (Set up the scan context
2 - CONTEXT,
2 PSCANLIST)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Loop calling $GETJPI with the context

DONE = .FALSE.
DO WHILE (.NOT. DONE)

! Initialize $GETJPI item list

JPILIST(l).BUFLEN = 4
JPILIST(l).CODE = JPI$_PID
JPILIST(l).BUFADR = %LOC(PID)
JPILIST(l).RETLENADR = 0
JPILIST(2).BUFLEN = LEN(PRCNAM)
JPILIST(2).CODE = JPI$ PRCNAM
JPILIST(2).BUFADR = %LOC(PRCNAM)
JPILIST(2).RETLENADR = %LOC(PRCNAM LEN)
JPILIST(3).END_LIST = 0 -

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-6 (Cont.) Using SYS$GET JPI and SYS$PROCESS_SCAN to Select
Process Information by User Name

1010

Call $GETJPI to get the next SMITH process

2
2
2
2
2
2
2

END DO

END

STATUS = SYS$GETJPIW (

' CONTEXT,

' JPILIST,
IOSB,

No event flag
Process context
No process name
Item list
Always use IOSB with $GETJPI!
No AST
No AST arg

Check the status in both STATUS and the IOSB, if
STATUS is OK then copy IOSB(l) to STATUS

IF (STATUS) STATUS = IOSB(l)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
TYPE 1010, PIO, PRCNAM(l:PRCNAM LEN)

FORMAT (' ' , Z 8 • 8 , ' ' , A) -
ELSE IF (STATUS .EQ. SS$ NOMOREPROC) THEN

DONE = .TRUE. -
ELSE

CALL LIB$SIGNAL(%VAL(STATUS))
END IF

3.2.4.3 Requesting Information About Processes That Match Multiple Values for One Criterion
You can use SYS$PROCESS_SCAN to search for processes that match one of
a number of values for a single criterion, such as processes owned by several
specified users.

Each value must be specified in a separate item list entry, and the item
list entries must be connected with the PSCAN$M_OR item-specific flag.
SYS$GETJPI selects each process that matches any of the item values.

For example, to look for processes with user names SMITH, JONES, or
JOHNSON, substitute code such as that shown in Example 3-7 to initialize
the item list in Example 3-6.

Example 3-7 Using SYS$GET JPI and SYS$PROCESS_SCAN with Multiple
Values for One Criterion

!**
!* Initialize item list for $PROCESS SCAN *
!**

! Look for users SMITH, JONES and JOHNSON

(continued on next page)

3-17

Process Control
3.2 Obtaining Process Information

Example 3-7 (Cont.) Using SYS$GET JPI and SYS$PROCESS_SCAN with
Multiple Values for One Criterion

PSCANLIST(l).BUFLEN = LEN('SMITH')
PSCANLIST(l).CODE = PSCAN$_USERNAME
PSCANLIST(l).BUFADR = %LOC('SMITH')
PSCANLIST(l).ITMFLAGS = PSCAN$M OR
PSCANLIST(2).BUFLEN = LEN('JONES')
PSCANLIST(2).CODE = PSCAN$ USERNAME
PSCANLIST(2).BUFADR = %LOC('JONES')
PSCANLIST(2).ITMFLAGS = PSCAN$M OR
PSCANLIST(3).BUFLEN = LEN('JOHNSON')
PSCANLIST(3).CODE = PSCAN$ USERNAME
PSCANLIST(3).BUFADR = %LOC('JOHNSON')
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

!**
! * End of item list initialization *
!**

3.2.4.4 Requesting Information About Processes That Match Multiple Criteria

3-18

You can use SYS$PROCESS_SCAN to search for processes that match values for
more than one criterion. When multiple criteria are used, a process must match
at least one value for each specified criterion.

Example 3-8 demonstrates how to find any batch process owned by either SMITH
or JONES. The program uses syntax like the following logical expression to
initialize the item list:

((username = "SMITH") OR (username = "JONES"))

AND

(MODE = JPI$K_BATCH)

Example 3-8 Selecting Processes That Match Multiple Criteria

!**
!* Initialize item list for $PROCESS SCAN *
!**

! Look for BATCH jobs owned by users SMITH and JONES

PSCANLIST(l).BUFLEN = LEN('SMITH')
PSCANLIST(l).CODE = PSCAN$_USERNAME
PSCANLIST(l).BUFADR = %LOC('SMITH')
PSCANLIST(l).ITMFLAGS = PSCAN$M OR
PSCANLIST(2).BUFLEN = LEN('JONES')
PSCANLIST(2).CODE = PSCAN$ USERNAME
PSCANLIST(2).BUFADR = %LOC('JONES')
PSCANLIST(2).ITMFLAGS = 0
PSCANLIST(3).BUFLEN = 0
PSCANLIST(3).CODE = PSCAN$ MODE
PSCANLIST(3).BUFADR = JPI$K_BATCH

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-8 (Cont.) Selecting Processes That Match Multiple Criteria

PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

!**
!* End of item list initialization *
!**

See the Open VMS System Services Reference Manual for more information about
SYS$PROCESS_SCAN item codes and flags.

3.2.5 Specifying a Node as Selection Criterion
Several SYS$PROCESS_SCAN item codes do not refer to attributes of a
process, but to the VMScluster node on which the target process resides. When
SYS$PROCESS_SCAN encounters an item code that refers to a node attribute, it
creates an alphabetized list of node names. SYS$PROCESS_SCAN then directs
SYS$GETJPI to compare the selection criteria against processes on these nodes.

SYS$PROCESS_SCAN ignores a node specification if it is running on a node
that is not part of a VMScluster system. For example, if you request that
SYS$PROCESS_SCAN select all nodes with the hardware model name VAX 6360,
this search returns information about local processes on a nonclustered system,
even if it is a Micro VAX system.

A remote SYS$GETJPI operation currently requires the system to send a message
to the CLUSTER_SERVER process on the remote node. The CLUSTER_SERVER
process then collects the information and returns it to the requesting node. This
has several implications for clusterwide searches:

• All remote SYS$GETJPI operations are asynchronous and must be
synchronized properly. Many applications that are not correctly synchronized
might seem to work on a single node because some SYS$GETJPI operations
are actually synchronous; however, these applications fail if they attempt
to. examine processes on remote nodes. For more information on how to
synchronize SYS$GETJPI operations, see Chapter 14.

• The CLUSTER_SERVER process is always a current process, because it is
executing on behalf of SYS$GETJPI.

• Attempts by SYS$GETJPI to examine a node do not succeed during a brief
period between the time a node joins the cluster and the time that the
CLUSTER_SERVER process is started. Searches that occur during this
period skip such a node. Searches that specify only such a booting node fail
with a SYS$GETJPI status of SS$_ UNREACHABLE.

• SS$_NOMOREPROC is returned after all processes on all specified nodes
have been scanned.

3.2.5.1 Checkitlg All Nodes on the Cluster for Processes
The SYS$PROCESS_SCAN system service can scan the entire cluster for
processes. For example, to scan the cluster for all processes owned by SMITH,
use code like that in Example 3-9 to initialize the item list to find all processes
with a nonzero cluster system identifier (CSID) and a user name of SMITH.

3-19

Process Control
3.2 Obtaining Process Information

Example 3-9 Searching the Cluster for Process Information

!**
!* Initialize item list for $PROCESS SCAN *
!**

! Search the cluster for jobs owned by SMITH

PSCANLIST(l).BUFLEN = 0
PSCANLIST(l).CODE = PSCAN$_NODE_CSID
PSCANLIST(l).BUFADR = 0
PSCANLIST(l).ITMFLAGS = PSCAN$M NEQ
PSCANLIST(2).BUFLEN = LEN('SMITH')
PSCANLIST(2).CODE = PSCAN$ USERNAME
PSCANLIST(2).BUFADR %LOC('SMITH')
PSCANLIST(2).ITMFLAGS = 0
PSCANLIST(3).END_LIST = 0

!**
! * End of item list initialization *
!**

3.2.5.2 Checking Specific Nodes on the Cluster for Processes
You can specify a list of nodes as well. Example 3-10 demonstrates how to design
an item list to search for batch processes on node TIGNES, VALTHO, or 2ALPES.

Example 3-10 Searching for Process Information on Specific Nodes in the
Cluster

!**
!* Initialize item list for $PROCESS SCAN *
!**

! Search for BATCH jobs on nodes TIGNES, VALTHO and 2ALPES

PSCANLIST(l).BUFLEN = LEN('TIGNES')
PSCANLIST(l).CODE = PSCAN$_NODENAME
PSCANLIST(l).BUFADR = %LOC('TIGNES')
PSCANLIST(l).ITMFLAGS = PSCAN$M OR
PSCANLIST(2).BUFLEN = LEN('VALTHO')
PSCANLIST(2).CODE = PSCAN$ NODENAME
PSCANLIST(2).BUFADR = %LOC('VALTHO')
PSCANLIST(2).ITMFLAGS = PSCAN$M OR
PSCANLIST(3).BUFLEN = LEN('2ALPES')
PSCANLIST(3).CODE = PSCAN$ NODENAME
PSCANLIST(3).BUFADR = %LOC('2ALPES')
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).BUFLEN = 0
PSCANLIST(4).CODE = PSCAN$ MODE
PSCANLIST(4).BUFADR = JPI$K BATCH
PSCANLIST(4).ITMFLAGS = 0 -
PSCANLIST(S).END_LIST = 0

!**
!* End of item list initialization *
!**

3.2.5.3 Conducting Multiple Simultaneous Searches with SVS$PROCESS_SCAN

3-20

Only one asynchronous remote SYS$GETJPI request per SYS$PROCESS_SCAN
context is permitted at a time. If you issue a second SYS$GETJPI request using
a context before a previous remote request using the same context has completed,
your process stalls in a resource wait until the previous remote SYS$GETJPI

Process Control
3.2 Obtaining Process Information

request completes. This stall in the RWAST state prevents your process from
executing in user mode or receiving user-mode ASTs.

If you want to run remote searches in parallel, create multiple contexts by calling
SYS$PROCESS_SCAN once for each context. For example, you can design a
program that calls SYS$GETSYI in a loop to find the nodes in the VMScluster
system and creates a separate SYS$PROCESS_SCAN context for each remote
node. Each of these separate contexts can run in parallel. The DCL command
SHOW USERS uses this technique to obtain user information more quickly.

Only requests to remote nodes must wait until the previous search using the
same context has completed. If the SYS$PROCESS_SCAN context specifies
the local node, any number of SYS$GETJPI requests using that context can be
executed in parallel (within the limits implied by the process quotas for ASTLM
and BYTLM).

Note ~~~~~~~~~~~~~

When you use SYS$GETJPJ. to reference remote processes, you must
properly synchronize all SYS$GET JPI calls. Before the operating system's
Version 5.2, if you did not follow these synchronization rules, your
programs might have appeared to run correctly. However, if you attempt
to run such improperly synchronized programs using SYS$GET JPI
with SYS$PROCESS_SCAN with a remote process, your program might
attempt to use the data before SYS$GETJPI has returned it.

To perform a synchronous search in which the program waits until all requested
information is available, use SYS$GETJPIW with an iosb argument.

See the Open VMS System Services Reference Manual for more information about
process identification, SYS$GETJPI, and SYS$PROCESS_SCAN.

3.2.6 Programming with SYS$GET JPI
The following sections describe some important considerations for programming
with SYS$GETJPI.

3.2.6.1 Using Item Lists Correctly
When SYS$GETJPI collects data, it makes multiple passes through the item list.
If the item list is self-modifying-that is, if the addresses for the output buffers
in the item list point back at the item list-SYS$GETJPI replaces the item list
information with the returned data. Therefore, incorrect data might be read or
unexpected errors might occur when SYS$GETJPI reads the item list again. To
prevent confusing errors, Digital recommends that you do not use self-modifying
item lists.

The number of passes that SYS$GETJPI needs depends on which item codes
are referenced and the state of the target process. A program that appears to
work normally might fail when a system has processes that are swapped out of
memory, or when a process is on a remote node.

3-21

Process Control
3.2 Obtaining Process Information

3.2.6.2 Improving Performance by Using Buffered $GET JPI Operations

3-22

To request information about a process located on a remote node, SYS$GETJPI
must send a message to the remote node, wait for the response, and then
extract the data from the message received. When you perform a search on a
remote system, the program must repeat this sequence for each process that
SYS$GETJPI locates.

To reduce the overhead of such a remote search, use SYS$PROCESS_SCAN
with the PSCAN$_GETJPI_BUFFER_SIZE item code to specify a buffer size
for SYS$GETJPI. When the buffer size is specified by SYS$PROCESS_SCAN,
SYS$GETJPI packs information for several processes into one buffer and
transmits them in a single message. This reduction in the number of messages
improves performance.

For example, if the SYS$GETJPI item list requests 100 bytes of information,
you might specify a PSCAN$_GETJPI_BUFFER_SIZE of 1000 bytes so that
the service can place information for at least 10 processes in each message.
(SYS$GETJPI does not send fill data in the message buffer; therefore, information
for more than 10 processes can be packed into the buffer.)

The SYS$GETJPI buffer must be large enough to hold the data for at least one
process. If the buffer is too small, the error code SS$_IVBUFLEN is returned
from the SYS$GETJPI call.

You do not have to allocate space for the SYS$GETJPI buffer; buffer space
is allocated by SYS$PROCESS_SCAN as part of the search context that it
creates. Because SYS$GETJPI buffering is transparent to the program that
calls SYS$GETJPI, you do not have to modify the loop that calls SYS$GETJPI.

If you use PSCAN$_GETJPI_BUFFER_SIZE with SYS$PROCESS_SCAN, all
calls to SYS$GETJPI using that context must request the same item code
information. Because SYS$GETJPI collects information for more than one
process at a time within its buffers, you cannot change the item codes or the
lengths of the buffers in the SYS$GETJPI item list between calls. SYS$GETJPI
returns the error SS$_BADPARAM if any item code or buffer length changes
between SYS$GETJPI calls. However, you can change the buffer addresses in the
SYS$GETJPI item list from call to call. .

The SYS$GETJPI buffered operation is not used for searching the local node.
When a search specifies both multiple nodes and SYS$GETJPI buffering, the
buffering is used on remote nodes but is ignored on the local node. Example 3-11
demonstrates how to use a SYS$GETJPI buffer to improve performance.

Example 3-11 Using a SYS$GET JPI Buffer to Improve Performance

!**
!* Initialize item list for $PROCESS SCAN *
!**

Search for jobs owned by users SMITH and JONES
! across the cluster with $GETJPI buffering

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-11 (Cont.) Using a SYS$GET JPI Buffer to Improve Performance

PSCANLIST(l).BUFLEN = 0
PSCANLIST(l).CODE = PSCAN$_NODE_CSID
PSCANLIST(l).BUFADR = 0
PSCANLIST(l).ITMFLAGS = PSCAN$M NEQ
PSCANLIST(2).BUFLEN = LEN('SMITH')
PSCANLIST(2).CODE = PSCAN$ USERNAME
PSCANLIST(2).BUFADR = %LOC('SMITH')
PSCANLIST(2).ITMFLAGS = PSCAN$M OR
PSCANLIST(3).BUFLEN = LEN('JONES')
PSCANLIST(3).CODE = PSCAN$ USERNAME
PSCANLIST(3).BUFADR = %LOC('JONES')
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).BUFLEN = 0
PSCANLIST(4).CODE = PSCAN$ GETJPI BUFFER SIZE
PSCANLIST(4).BUFADR = 1000 - - -
PSCANLIST(4).ITMFLAGS = 0
PSCANLIST(S).END_LIST = 0

!**
!* End of item list initialization *
!**

3.2.6.3 Fulfilling Remote SYS$GET JPI Quota Requirements
A remote SYS$GETJPI request uses system dynamic memory for messages.
System dynamic memory uses the process quota BYTLM. Follow these steps to
determine the number of bytes required by a SYS$GETJPI request:

1. Add the following together:

• The size of the SYS$PROCESS_SCAN item list

• The total size of all reference buffers for SYS$PROCESS_SCAN (the sum
of all buffer length fields in the item list)

• The size of the SYS$GETJPI item list

• The size of the SYS$GETJPI buffer

• The size of the calling process RIGHTSLIST

• Approximately 300 bytes for message overhead

2. Double this total.

The total is doubled because the messages consume system dynamic memory
on both the sending node and the receiving node.

This formula for BYTLM quota applies to both buffered and nonbuffered
SYS$GETJPI requests. For buffered requests, use the value specified in the
SYS$PROCESS_SCAN item, PSCAN$_GETJPI_BUFFER_SIZE, as the size of the
buffer. For nonbuffered requests, use the total length of all data buffers specified
in the SYS$GETJPI item list as the size of the buffer.

If the BYTLM quota is insufficient, SYS$GETJPI (not SYS$PROCESS_SCAN)
returns the error SS$_EXBYTLM.

3-23

Process Control
3.2 Obtaining Process Information

3.2.6.4 Using the SYS$GET JPI Control Flags

3-24

The JPI$_GETJPI_CONTROL_FLAGS item code, which is specified in the
SYS$GETJPI item list, provides additional control over SYS$GETJPI. Therefore,
SYS$GETJPI may be unable to retrieve all the data requested in an item list
because JPI$_GETJPI_CONTROL_FLAGS requests that SYS$GETJPI not
perform certain actions that may be necessary to collect the data. For example,
a SYS$GETJPI control flag may instruct the calling program not to retrieve a
process that has been swapped out of the balance set.

If SYS$GETJPI is unable to retrieve any data item because of the restrictions
imposed by the control flags, it returns the data length as 0. To verify that
SYS$GETJPI received a data item, examine the data length to be sure that it
is not 0. To make this verification possible, be sure to specify the return length
for each item in the SYS$GETJPI item list when any of the JPI$_GETJPI_
CONTROL_FLAGS flags is used.

Unlike other SYS$GETJPI item codes, the JPI$_GETJPI_CONTROL_FLAGS
item is an input item. The item list entry should specify a longword buffer. The
desired control flags should be set in this buffer.

Because the JPI$_GETJPI_CONTROL_FLAGS item code tells SYS$GETJPI how
to interpret the item list, it must be the first entry in the SYS$GETJPI item list.
The error code SS$_BADPARAM is returned if it is not the first item in the list.

The following are the SYS$GETJPI control flags.

JPl$M_NO_ TARGET _INSWAP

When you specify JPI$M_NO_TARGET_INSWAP, SYS$GETJPI does not retrieve
a process that has been swapped out of the balance set. Use JPI$M_NO_
TARGET_INSWAP to avoid the additional load of swapping processes into a
system. For example, use this flag with SHOW SYSTEM to avoid bringing
processes into memory to display their accumulated CPU time.

If you specify JPI$M_NO_TARGET_INSWAP and request information from a
process that has been swapped out, the following consequences occur:

• Data stored in the virtual address space of the process is not accessible.

• Data stored in the process header (PHD) may not be accessible.

• Data stored in resident data structures, such as the process control block
(PCB) or the job information block (JIB), is accessible.

You must examine the return length of an item to verify that the item was
retrieved. The information may be located in a different data structure in another
release of the operating system.

JPl$M_NO_ TARGET _AST

When JPI$M_NO_TARGET_AST is specified, SYS$GETJPI does not deliver a
kernel-mode AST to the target process. JPI$M_NO_TARGET_AST is used to
avoid executing a target process in order to retrieve information.

If you specify JPI$M_NO_TARGET_AST and cannot deliver an AST to a target
process, the following consequences occur:

• Data stored in the virtual address space of the process is not accessible.

• Data stored in system data structures, such as the process header (PHD), the
process control block (PCB), or the job information block (JIB), is accessible.

Process Control
3.2 Obtaining Process Information

You must examine the return length of an item to verify that the item was
retrieved. The information may be located in a different data structure in another
release of the operating system.

The use of the flag JPI$M_NO_TARGET_AST also implies that SYS$GETJPI
does not swap in a process, because SYS$GETJPI would only bring a process into
memory to deliver an AST to that process.

JPl$M_IGNORE_ TARGET _STATUS
When JPI$M_IGNORE_TARGET_STATUS is specified, SYS$GETJPI attempts
to retrieve as much information as possible, even if the process is suspended or
being deleted. JPl$M_IGNORE_TARGET_STATUS is used to retrieve all possible
information from a process. For example, this flag is used with SHOW SYSTEM
to display processes that are suspended, being deleted, or in miscellaneous wait
states.

Example 3-12 demonstrates how to use SYS$GETJPI control flags to avoid
swapping processes during a SYS$GETJPI call.

Example 3-12 Using SYS$GET JPI Control Flags to Avoid Swapping a Process
into the Balance Set

PROGRAM CONTROL FLAGS

IMPLICIT NONE

INCLUDE '($jpidef) /nolist'
INCLUDE '($pscandef) /nolist'
INCLUDE '($ssdef) /nolist'

STRUCTURE /JPIITMLST/
UNION

2

2

MAP
INTEGER*2 BUFLEN,

CODE
INTEGER*4 BUFADR,

RETLENADR
END MAP
MAP

INTEGER*4 END LIST
END MAP

END UNION
END STRUCTURE
STRUCTURE /PSCANITMLST/

UNION

2

2

MAP
INTEGER*2 BUFLEN,

CODE
INTEGER*4 BUFADR,

ITMFLAGS
END MAP
MAP

INTEGER*4 END LIST
END MAP

END UNION
END STRUCTURE
RECORD /PSCANITMLST/
2 PSCANLIST(S)

RECORD /JPIITMLST/
2 JPILIST(6)

Implicit none

Definitions for $GETJPI
Definitions for $PROCESS SCAN
Definitions for SS$_ names

Structure declaration for
$GETJPI item lists

A longword of 0 terminates
an item list

Structure declaration for
$PROCESS_SCAN item lists

A longword of 0 terminates
an item list

Declare the item list for
$PROCESS_SCAN

Declare the item list for
$GETJPI

(continued on next page)

3-25

Process Control
3.2 Obtaining Process Information

3-26

Example 3-12 (Cont.) Using SVS$GET JPI Control Flags to Avoid Swapping a
Process into the Balance Set

INTEGER*4 SYS$GETJPIW, System service entry points
2 SYS$PROCESS_SCAN

INTEGER*4 STATUS, Status variable
2 CONTEXT, Context from $PROCESS SCAN
2 PIO, PIO from $GETJPI -
2 JP I FLAGS Flags for $GETJPI

INTEGER*2 IOSB(4)

CHARACTER*l6

I/O Status Block for $GETJPI

2 PRCNAM,
2 NODENAME
INTEGER*2 PRCNAM LEN,

Process name from $GETJPI
Node name from $GETJPI
Process name length

2 NODENAME LEN Node name length

CHARACTER*80
2 IMAGNAME
INTEGER*2 IMAGNAME LEN

Image name from $GETJPI
Image name length

LOGICAL*4 DONE Done with data loop

!**
!* Initialize item list for $PROCESS SCAN *
!**

! Look for interactive and batch jobs across
! the cluster with $GETJPI buffering

PSCANLIST(l).BUFLEN = 0
PSCANLIST(l).CODE = PSCAN$_NODE_CSID
PSCANLIST(l).BUFADR = 0
PSCANLIST(l).ITMFLAGS = PSCAN$M NEQ
PSCANLIST(2).BUFLEN = 0 -
PSCANLIST(2).CODE = PSCAN$ MODE
PSCANLIST(2).BUFADR = JPI$K INTERACTIVE
PSCANLIST(2).ITMFLAGS = PSCAN$M OR
PSCANLIST(3).BUFLEN = 0 -
PSCANLIST(3).CODE = PSCAN$ MODE
PSCANLIST(3).BUFADR = JPI$K BATCH
PSCANLIST(3).ITMFLAGS = 0 -
PSCANLIST(4).BUFLEN = 0
PSCANLIST(4).CODE = PSCAN$ GETJPI BUFFER SIZE
PSCANLIST(4).BUFADR 1000 - - -
PSCANLIST(4).ITMFLAGS = 0
PSCANLIST(S).END_LIST = 0

!**
! * End of item list initialization *
!**

STATUS = SYS$PROCESS SCAN (Set up the scan context
2 - CONTEXT,
2 PSCANLIST)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Initialize $GETJPI item list

JPILIST(l).BUFLEN = 4
JPILIST(l).CODE = IAND ('FFFF'X, JPI$_GETJPI_CONTROL_FLAGS)
JPILIST(l).BUFADR = %LOC(JPIFLAGS)
JPILIST(l).RETLENADR = 0

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-12 (Cont.) Using SYS$GET JPI Control Flags to Avoid Swapping a

1010
1020

Process into the Balance Set

JPILIST(2).BUFLEN = 4
JPILIST(2).CODE = JPI$_PID
JPILIST(2).BUFADR = %LOC(PID)
JPILIST(2).RETLENADR = 0
JPILIST(3).BUFLEN = LEN(PRCNAM)
JPILIST(3).CODE = JPI$ PRCNAM
JPILIST(3).BUFADR = %LOC(PRCNAM)
JPILIST(3).RETLENADR = %LOC(PRCNAM LEN)
JPILIST(4).BUFLEN = LEN(IMAGNAME)
JPILIST(4).CODE = JPI$ IMAGNAME
JPILIST(4).BUFADR = %LOC(IMAGNAME)
JPILIST(4).RETLENADR = %LOC(IMAGNAME LEN)
JPILIST(5).BUFLEN = LEN(NODENAME)-
JPILIST(5).CODE = JPI$ NODENAME
JPILIST(5).BUFADR = %LOC(NODENAME)
JPILIST(5).RETLENADR = %LOC(NODENAME LEN)
JPILIST(6).END LIST = 0 -
! Loop calling-$GETJPI with the context

DONE = .FALSE.
JPIFLAGS = IOR (JPI$M NO TARGET INSWAP, JPI$M IGNORE TARGET STATUS)
DO WHILE (.NOT. DONE)- - - - - -

2
2
2
2
2
2
2

2

END DO

! Call $GETJPI to get the next process

STATUS = SYS$GETJPIW (
,
CONTEXT,
,
JPILIST,
IOSB,

No event flag
Process context
No process name
Itemlist
Always use IOSB with $GETJPI!
No AST
No AST arg

Check the status in both STATUS and the IOSB, if
STATUS is OK then copy IOSB(l) to STATUS

IF (STATUS) STATUS = IOSB(l)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
IF (IMAGNAME LEN .EQ. 0) THEN

ELSE

END IF

TYPE-1010, PID, NODENAME, PRCNAM

TYPE 1020, PIO, NODENAME, PRCNAM,
IMAGNAME(l:IMAGNAME_LEN)

ELSE IF (STATUS .EQ. SS$ NOMOREPROC) THEN
DONE = .TRUE. -

ELSE
CALL LIB$SIGNAL(%VAL(STATUS))

END IF

FORMAT (I I ,ZB.8, I

FORMAT (I I , z 8 • 8 , I

',A6,':: ',A,' (no image)')
I ,A6, I:: I ,A, I I ,A)

END

3-27

Process Control
3.2 Obtaining Process Information

3.2.7 Using SVS$GETLKI

3-28

The SYS$GETLKI system service allows you to obtain process lock information.
Example 3-13 is a C program that illustrates the procedure for obtaining process
lock information for both AXP and VAX systems. However, to compile on AXP
systems, you need to supply the /DEFINE=AXP=l qualifier.

Example 3-13 Procedure for Obtaining Process Lock Information

LOCK SCAN

#pragma nostandard
#ifdef AXP
#pragma module
#else /* AXP */ -
#module
#endif /* AXP */
#pragma standard

#include
#include

<ssdef.h>
<lkidef .h>

#pragma nostandard
global value

LOCK SCAN

ss$ normal, ss$ nomorelock;
#pragma standard -

struct lock item list
- {

short int
short int
void
void
};

buff er length;
item code;
*bufaddress;
*retaddress;

typedef struct lock_item_list lock_item_list_type;

unsigned long lock id;
long int value_block[4];

#pragma nostandard
static lock item list type

getlki item list[] =-{
{sizeof(vaiue block), LKI$ VALBLK,
{sizeof(lock Id), LKI$-LOCKID,
{O,O,O,O} - -

&value block, O},
&lock_Id, O},

};
globalvalue ss$ normal, ss$_nomorelock;
#pragma standard

main()
{

int status = ss$ normal;
unsigned long lock_context = -1; /* init for wild-card operation */

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-13 (Cont.) Procedure for Obtaining Process Lock Information

while (status == ss$ normal) {

}

status= sys$getikiw(1, &lock context, getlki item list,O,O,O,O);
/* ' - - -*/
/* Dequeue the lock if the value block contains a 1 */
/* */
if ((status== ss$ normal) & (value block[O] == 1)){

status = sys$deq(lock_id, o, o~ o);

if (status != ss$ nomorelock){
exit(status) ;-

}

3.2.8 Setting Process Privileges
Use the SYS$SETPRV system service to set process privileges. Setting process
privileges allows you to limit executing privileged code to a specific process, to
limit functions within a process, and to limit access from other processes. You can
either enable or disable a set of privileges and assign privileges on a temporary
or permanent basis. To use this service, the creating proces~ must have the
appropriate privileges.

3.3 Changing Process Scheduling
To alter the system's process scheduling, you can change the base priority of a
process and lock a process into physical memory so that it is not swapped out.
Processes with higher priority levels or those that have been locked are executed
first.

If you create a subprocess with the LIB$SPAWN routine, you can set the priority
of the subprocess by executing the DCL command SET PROCESS/PRIORITY as
the first command in a command procedure. You can also use the SYS$SETPRI
system service to change the priority of any process, regardless of how you
created it. You must have the ALTPRI privilege to increase a process's base
priority above the base priority of the creating process.

If you create a subprocess with the LIB$SPAWN routine, you can inhibit
swapping by executing the DCL command SET PROCESS/NOSWAP as the first
command in a command procedure. Use the SYS$SETSWM system service to
inhibit swapping for any process. A process must have the PSWAPM privilege to
inhibit swapping.

Altering process scheduling must be don~ with care. Review the following
considerations before you attempt to alter the standard process scheduling with
either SYS$SETPRI or SYS$SETSWM:

• Priority-Increasing a process's base priority gives that process more
processor time at the expense of processes that execute at lower priorities.
This is not recommended unless you have a program that must respond
immediately to events (for example, a real-time program). If you must
increase your base priority, return it to normal as soon as possible. If the
entire image must execute at an increased priority, reset the base priority
before exiting; image termination does not reset the base priority.

3-29

Process Control
3.3 Changing Process Scheduling

• Swapping-Inhibiting swapping keeps your process in physical memory. This
is not recommended unless the effective execution of your image depends on
it (for example, if the image executing in the process is collecting statistics on
processor performance).

3.4 Changing Process Name
Use the system service SYS$SETPRN to change the name of your process.
SYS$SETPRN can be used only on the calling process. Changing process names
might be useful when a lengthy image is being executed. You can change names
at significant points in the program; then monitor program execution through the
change in process names. You can obtain a process name by calling a GETJPI
routine from within a controlling process, by pressing the Ctrlfr key sequence
if the image is currently executing in your process, or by entering the DCL
command SHOW SYSTEM if the program is executing in a detached process.

The following program segment calculates the tax status for a number of
households, sorts the households according to tax status, and writes the results
to a report file. Since this is a time-consuming process, the program changes the
process name at major points so that progress can be monitored.

Calculate approximate tax rates
STATUS= SYS$SETPRN ('INCTAXES')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = TAX RATES (TOTAL HOUSES,
2 - PERSONS HOUSE,
2 ADULTS HOUSE,
2 INCOME-HOUSE,
2 TAX PER HOUSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Sort
STATUS= SYS$SETPRN ('INCSORT')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = TAX SORT (TOTAL HOUSES,
2 - TAX PER HOUSE)
IF (.NOT. STATUS) CALL-LIB$SIGNAL(%VAL(STATUS))

! Write report
STATUS= SYS$SETPRN ('INCREPORT')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

3.5 Synchronizing Programs by Specifying a Time for Program
Execution

You can synchronize timed program execution in the following ways:

• Executing a program at a specific time

• Executing a program at timed intervals

3-30

Process Control
3.5 Synchronizing Programs by Specifying a Time for Program Execution

3.5.1 Obtaining the System Time
The process control procedures that allow you to synchronize timed program
execution require you to supply a system time value.

You can use either system services or RTL routines for obtaining and reading
time. They are summarized in Table 3-4. With these routines, you can determine
the system time, convert it to an external time, and pass a time back to the
system. The system services use the operating system's default date format. With
the RTL routines, you can use the default format or specify your own date format.
However, if you are just using the time and date for program synchronization,
using the operating system's default format is probably sufficient.

When using the RTL routines to change date/time formats, initialization routines
are required. Refer to the Open VMS RTL Library (LIB$) Manual for more
information.

See Chapter 5 for a further discussion of using timing operations with the
operating system.

Table 3-4 Time Manipulation System Services and Routines

Routine

SYS$GETTIM

SYS$NUMTIM

SYS$ASCTIM

SYS$ASCUTC

LIB$SYS_ASCTIM

SYS$BINTIM

SYS$BINUTC

SYS$FAO

SYS$GETUTC

SYS$NUMUTC

SYS$TIMCON

LIB$ADD_TIMES

LIB$CONVERT_DATE_STRING

LIB$CVT_FROM_INTERNAL_TIME

LIB$CVTF _FROM_INTERNAL_TIME

LIB$CVT_TO_INTERNAL_TIME

LIB$CVTF _TO_INTERNAL_TIME

Description

Obtains the current date and time in 64-bit binary format

Converts system date and time to numeric integer values

Converts an absolute or delta time from 64-bit system time
format to an ASCII string

Converts an absolute time from 128-bit UTC format to an
ASCII string

Converts binary time to ASCII string

Converts a date and time from ASCII to system format

Converts an ASCII string to an absolute time value in the
128-bit UTC format

Converts a binary value into an ASCII character string in
decimal, hexadecimal, or octal notation and returns the
character string in an output string

Returns the current time in 128-bit UTC format

Converts an absolute 128-bit binary time into its numeric
components. The numeric components are returned in local
time

Converts 128-bit Coordinated Universal Time (UTC) to 64-
bit system format or 64-bit system format to 128-bit UTC
based on the value of the convert flag

Adds two quadword times

Converts an input date/time string to an operating system
internal time

Converts internal time to external time

Converts internal time to external time (F-floating value)

Converts external time to internal time

Converts external time to internal time (F-floating value)

(continued on next page)

3-31

Process Control
3.5 Synchronizing Programs by Specifying a Time for Program Execution

Table 3-4 (Cont.) Time Manipulation System Services and Routines

Routine Description

LIB$CVT_ VECTIM

LIB$DAY

Converts 7-word vector to internal time

Obtains offset to current day from base time, in number of
days

LIB$DATE_TIME

LIB$FORMAT_DATE_TIME

LIB$FREE_DATE_TIME_CONTEXT

LIB$GET_DATE_FORMAT

LIB$GET_MAXIMUM_DATE_LENGTH

Obtains the date and time in user-specified format

Formats a date and/or time for output

Frees date/time context

Returns the user's specified date/time input format

Returns the maximum possible length of an output date
/time string

LIB$GET_USERS_LANGUAGE.

LIB$INIT_DATE_TIME_CONTEXT

LIB$SUB_TIMES

Returns the user's selected langauge

Initializes the date/time context with a user-specified format

Subtracts two quadword times

3.5.1.1 Executing a Program at a Specified Time

3-32

To execute a program at a specified time, use LIB$SPAWN to create a process that
executes a command procedure containing two commands-the DCL command
WAIT and the command that invokes the desired program. Since you do not want
the parent process to remain in hibernation until the process executes, execute
the process concurrently.

You can also use the SYS$CREPRC system service to execute a program at a
specified time. However, since a process created by SYS$CREPRC hibernates
rather than terminates after executing the desired program, the LIB$SPAWN
routine is recommended unless you need a detached process.

Example 3-14 executes a program at a specified delta time. The parent program
prompts the user for a delta time, equates the delta time to the symbol
EXECUTE_TIME, and then creates a subprocess to execute the command
procedure LATER.COM. LATER.COM uses the symbol EXECUTE_TIME as
the parameter for the WAIT command. (You might also allow the user to enter an
absolute time and have your program change it to a delta time by subtracting the
current time from the specified time. Chapter 5 discusses time manipulation.)

Example 3-14 Executing a Program Using Delta Time

1 Delta time
CHARACTER*!? TIME
INTEGER LEN
1 Mask for LIB$SPAWN
INTEGER*4 MASK

1 Declare status and library routine
INTEGER STATUS, LIB$SPAWN

1 Get delta time
STATUS = LIB$GET INPUT (TIME,
2 - 'Time (delta): ',
2 LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

Process Control
3.5 Synchronizing Programs by Specifying a Time for Program Execution

Example 3-14 (Cont.) Executing a Program Using Delta Time

! Equate symbol to TIME
STATUS= LIB$SET SYMBOL ('EXECUTE TIME',
2 - TIME (1 : LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Set the mask and call LIB$SPAWN
MASK = IBSET (MASK,O) ! Execute subprocess concurrently
STATUS= LIB$SPAWN('@LATER',
2 'DATA84.IN',
2 'DATA84.RPT',
2 MASK)

END

LATER.COM

$ WAIT 'EXECUTE TIME'
$RUN SYS$DRIVEO:[USER.MATH]CALC
$ DELETE/SYMBOL EXECUTE_TIME

3.5.1.2 Executing a Program at Timed Intervals
To execute a program at timed intervals, you can use either LIB$SPAWN or
SYS$CREPRC.

Using LIB$SPAWN
Using LIB$SPAWN, you can create a subprocess that executes a command
procedure containing three commands: the DCL command WAIT, the command
that invokes the desired program, and a GOTO command that directs control
back to the WAIT command. Since you do not want the parent process to remain
in hibernation until the subprocess executes, execute the subprocess concurrently.
See Section 3.5.1.1 for an example of LIB$SPAWN.

Using SVS$CREPRC
Using SYS$CREPRC, create a detached process to execute a program at timed
intervals as follows:

1. Create and hibernate a process-Use SYS$CREPRC to create a process
that executes the desired program. Set the PRC$V _HIBER bit of the stsflg
argument of the SYS$CREPRC system service to indicate that the created
process should hibernate before executing the program.

2. Schedule a wakeup call for the created subprocess-Use the SYS$SCHDWK
system service to specify the time at which the system should wake up
the subprocess, and a time interval at which the system should repeat the
wakeup call.

Example 3-15 executes a program at timed intervals. The program creates
a subprocess that immediately hibernates. (The identification number of the
created subprocess is returned to the parent process so that it can be passed
to SYS$SCHDWK.) The system wakes up the subprocess at 6:00 a.m. on the
23rd (month and year default to system month and year) and every 10 minutes
thereafter.

3-33

Process Control
3.5 Synchronizing Programs by Specifying a Time for Program Execution

Example 3-15 Executing a Program at Timed Intervals

! SYS$CREPRC options and values
INTEGER OPTIONS
EXTERNAL PRC$V HIBER
! ID of created subprocess
INTEGER CR ID
! Binary times
INTEGER TIME(2),
2 INTERVAL(2)

Set the PRC$V HIBER bit in the OPTIONS mask and
create the process

OPTIONS= IBSET (OPTIONSr %LOC(PRC$V HIBER))
STATUS= SYS$CREPRC (CR ID, f PID of created process
2 'CHECK' , ! Image

2 '"" 2 'SLEEP', Process name
2 %VAL(4), Priority
2 I I

2 %VAL(OPTIONS)) Hibernate
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Translate 6:00 a.m. (absolute time) to binary
STATUS= SYS$BINTIM ('23-- 06:00:00.00' I ! 6:00 a.m.
2 TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Translate 10 minutes (delta time) to binary
STATUS= SYS$BINTIM ('0 :10:00.00' I ! 10 minutes
2 INTERVAL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Schedule wakeup calls
STATUS = SYS$SCHDWK (CR ID, ID of created process
2 I -

2 TIME, Initial wakeup time
2 INTERVAL) Repeat wakeup time
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

3.5.2 Placing Entries in the System Timer Queue

3-34

When you use the system timer queue, you use the timer expiration to signal
when an image is to be executed. You can use an event flag or AST for the actual
signal. With this method, you do not need a separate process to control program
execution. However, you do use up your process's quotas for ASTs and timer
queue requests.

Use the system service SYS$SETIMR to place a request in the system timer
queue. The format of this service is as follows:

SYS$SETIMR ([efn],daytim,[astadr],[reqidt])

Process Control
3.5 Synchronizing Programs by Specifying a Time for Program Execution

Specifying the Starting Time
Specify the absolute or delta time at which you want the program to begin
execution using the daytim argument. Use the SYS$BINTIM system service to
convert an ASCII time to the binary system format required for this argument.

Signaling Timer Expiration
Once the system has reached this time, the timer expires. To signal timer
expiration, set an event flag in the efn argument or specify an AST routine to be
executed in the astadr argument. Refer to Section Section 14.6 and Chapter 4
for more information about using event flags and ASTs.

How Timer Requests Are Identified
The reqidt argument identifies each system time request uniquely. Then, if you
need to cancel a request, you can refer to each request separately.

To cancel a timer request, use the SYS$CANTIM system service.

3.6 Suspending, Resuming, and Stopping Process Execution
You can control process execution in the following ways:

• Suspending a process

• Hibernating a process

• Stopping a process

• Resuming a process

• Passing control to another image

• Exiting an image

• Deleting a process

3.6.1 Process Hibernation and Suspension
There are two ways to halt the execution of a process temporarily: hibernation,
performed by the Hibernate (SYS$HIBER) system service, and suspension,
performed by the Suspend Process (SYS$SUSPND) system service. The
process can continue execution normally only after a corresponding Wake from
Hibernation (SYS$WAKE) system service (if it is hibernating) or after a Resume
Process (SYS$RESUME) system service, if it is suspended.

Suspending or hibernating a process puts it into a dormant state; the process
is not deleted, but the image within it is not being executed. A process in
hibernation can control itself; a process in suspension requires another process to
control it. Table 3-5 compares hibernating and suspended processes.

3-35

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

Table 3-5 Process Hibernation and Suspension

Hibernation Suspension

Can only cause self to hibernate Can suspend self or another process, depending on
privilege

Reversed by SYS$WAKE system Reversed by SYS$RESUME system service
service

Interruptible; can receive ASTs

Can wake self

Noninterruptible; cannot receive ASTs1

Cannot cause self to resume

Can schedule wakeup at an
absolute time or at a fixed time
interval

Cannot schedule resumption

Requires little system overhead Requires system dynamic memory

1 If a process is suspended at kernel mode (a hard suspension), it cannot receive any ASTs. If a process
is suspended at supervisor mode (a soft suspe'nsion), it can receive executive or kernel mode ASTs. See
the description of SYS$SUSPND in the Open VMS System Services Reference Manual: GETQUI-Z.

Table 3-6 summarizes the system services and routines that can place a process
in or remove from hibernation or suspension.

Table 3-6 System Services and Routines Used for Hibernation and Suspension

Routine

Hibernating Processes

SYS$HIBER

SYS$WAKE

SYS$SCHDWK

LIB$WAIT

SYS$CANWAK

Suspended Processes

SYS$SUSPEND

SYS$RESUME

Function

Places a process in hibernation

Resumes execution of a process in hibernation

Resumes execution of a process in hibernation at a specified
time

Places a process in hibernation for a specified number of
seconds

Cancels a scheduled wakeup issued by SYS$SCHDWK

Places a process in a suspended state

Resumes execution of a process in a suspended state

3.6.1.1 Using Process Hibernation

3-36

The hibernate/wake mechanism provides an efficient way to prepare an image for
execution and then to place it in a wait state until it is needed. When you issue
the wakeup request, the image is reactivated with little delay or system overhead.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

If you create a subprocess that must execute the same function repeatedly and
must execute immediately when it is needed, you could use the SYS$HIBER and
SYS$WAKE system services, as shown in the following example:

/* Process TAURUS */

#include <stdio.h>
#include <descrip.h>

main()

unsigned int status;
$DESCRIPTOR(prcnam,"ORION");
$DESCRIPTOR(image, 11 COMPUTE.EXE 11

);

/* Create ORION */
status = SYS$CREPRC(O,

&image,
o, o, o, o, o,
&prcnam,
O, O, O, O);

if ((status & 1) != 1)
LIB$SIGNAL(status);

I* Wake ORION *I
status= SYS$WAKE(O, &prcnam);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Wake ORION again */
status = SYS$WAKE(O, &prcnam);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Process ORION and image COMPUTE */

#include <stdio.h>
#include <ssdef .h>

sleep:

}

status= SYS$HIBER();
if ((status & 1) != 1)

LIB$SIGNAL(status);

goto sleep;

0 /* Process id */
/* Image */

/* Process name */

0 Process TAURUS creates the process ORION, specifying the descriptor for the
image named COMPUTE.

f) At an appropriate time, TAURUS issues a SYS$WAKE request for ORION.
ORION continues execution following the SYS$HIBER service call. When it
finishes its job, ORION loops back to repeat the SYS$HIBER call and to wait
for another wakeup.

3-37

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

6) The image COMPUTE is initialized, and ORION issues the SYS$HIBER
system service.

The Schedule Wakeup (SYS$SCHDWK) system service, a variation of the
SYS$WAKE system service, schedules a wakeup for a hibernating process at
a fixed time or at an elapsed (delta) time interval. Using the SYS$SCHDWK
service, a process can schedule a wakeup for itself before issuing a SYS$HIBER
call. For an example of how to use the SYS$SCHDWK system service, see
Chapter 5.

Hibernating processes can be interrupted by asynchronous system traps (ASTs),
as long as AST delivery is enabled. The process can call SYS$WAKE on its own
behalf in the AST service routine, and continue execution following the execution
of the AST service routine. For a description of ASTs and how to use them, see
Chapter 4.

3.6.1.2 Using Alternative Methods of Hibernation

3-38

You can use two additional methods to cause a process to hibernate:

• Specify the stsflg argument for the SYS$CREPRC system service, setting
the bit that requests SYS$CREPRC to place the created process in a state of
hibernation as soon as it is initialized.

• Specify the /DELAY, /SCHEDULE, or /INTERVAL qualifier to the RUN
command when you execute the image from the command stream.

When you use the SYS$CREPRC system service, the creating process can
control when to wake the created process. When you use the RUN command,
its qualifiers control when to wake the process.

If you use the /INTERVAL qualifier and the image to be executed does not call
the SYS$HIBER system service, the image is placed in a state of hibernation
whenever it issues a return instruction (RET). Each time the image is awakened,
it begins executing at its entry point. If the image does call SYS$HIBER, each
time it is awakened it begins executing at either the point following the call to
SYS$HIBER or at its entry point (if it last issued a RET instruction).

If wakeup requests are scheduled at time intervals, the image can be terminated
with the Delete Process (SYS$DELPRC) or Force Exit (SYS$FORCEX) system
service, or from the command level with the STOP command. The SYS$DELPRC
and SYS$FORCEX system services are described in Section 3.6.3.4 and in
Section 3.6.4. The RUN and STOP commands are described in the Open VMS
DCL Dictionary.

These methods allow you to write programs that can be executed once, on request,
or cyclically. If an image is executed more than once in this manner, normal
image activation and termination services are not performed on the second and
subsequent calls to the image. Note that the program must ensure both the
integrity of data areas that are modified during its execution and the status of
opened files.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.1.3 Using SYS$SUSPND
Using the Suspend Process (SYS$SUSPND) system service, a process can place
itself or another process into a wait state similar to hibernation. Suspension,
however, is a more pronounced state of hibernation. The operating system
provides no system service to force a process to be swapped out, but the
SYS$SUSPND system service can accomplish the task in the following way.
Suspended processes are the first processes to be selected for swapping. A
suspended process cannot be interrupted by ASTs, and it can resume execution
only after another process calls a Resume Process (SYS$RESUME) system service
on its behalf. If ASTs are queued for the process while it is suspended, they
are delivered when the process resumes execution. This is an effective tool for
blocking delivery of all ASTs.

At the DCL level, you can suspend a process by issuing the SET PROCESS
command with the /SUSPEND qualifier. This command temporarily stops the
process's activities. The process remains suspended until another process resumes
or deletes it. To allow a suspended process to resume operation, use either the
/NOSUSPEND or /RESUME qualifier.

3.6.2 Passing Control to Another Image
The RTL routines LIB$DO_COMMAND and LIB$RUN_PROGRAM allow you to
invoke the next image from the current image. That is, they allow you to perform
image rundown for the current image and pass control to the next image without
returning to DCL command level. Which routine you use depends on whether the
next image is a command image or a noncommand image.

3.6.2.1 Invoking a Command Image
The .following DCL command executes the command image associated with the
DCL command COPY:

$ COPY DATA.TMP APRIL.DAT

To pass control from the current image to a command image, use the RTL routine
LIB$DO_COMMAND. If LIB$DO_COMMAND executes successfully, control
is not returned to the invoking image, and statements following the LIB$DO _
COMMAND statement are not executed. The following statement causes the
current image to exit and executes the DCL command in the preceding example:

STATUS= LIB$DO COMMAND ('COPY DATA.TMP APRIL.DAT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

To execute a number of DCL commands, specify a DCL command procedure.
The following statement causes the current image to exit and executes the DCL
command procedure [STATS.TEMP]CLEANUP.COM:

STATUS= LIB$DO COMMAND ('@[STATS.TEMP]CLEANUP')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

3-39

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.2.2 Invoking a Noncommand Image
You invoke a noncommand image at DCL command level with the DCL
command RUN. The following command executes the noncommand image
[STATISTICS.TEMP]TEST.EXE:

$ RUN [STATISTICS.TEMP]TEST

To pass control from the current image to a noncommand image, use the run­
time library routine LIB$RUN_PROGRAM. If LIB$RUN_PROGRAM executes
successfully, control is not returned to the invoking image, and statements
following the LIB$RUN_PROGRAM statement are not executed. The following
program segment causes the current image to exit and passes control to the
noncommand image [STATISTICS.TEMP]TEST.EXE on the default disk:

STATUS= LIB$RUN PROGRAM ('[STATISTICS.TEMP]TEST.EXE')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

3.6.3 Performing Image Exit

3-40

When image execution completes normally, the operating system performs a
variety of image rundown functions. If the image is executed by the command
interpreter, image rundown prepares the process for the execution of another
image. If the image is not executed by the command interpreter-for example, if
it is executed by a subprocess-the process is deleted.

Main programs and main routines terminate by executing a return instruction
(RET). This instruction returns control to the caller, which could have been
LIB$INITIALIZE, the debugger, or the command interpreter. The completion
code, SS$_NORMAL, which has the value 1, should be used to indicate normal
successful completion.

Any other condition value can be used to indicate success or failure. The
command language interpreter uses the condition value as the parameter to
the Exit (SYS$EXIT) system service. If the severity field (STS$V _SEVERITY) is
SEVERE or ERROR, the continuation of a batch job or command procedure is
affected.

These exit activities are also initiated when an image completes abnormally as a
result of any of the following conditions:

• Specific error conditions caused by improper specifications when a process
is created. For example, if an invalid device name is specified for the
SYS$INPUT, SYS$0UTPUT, or SYS$ERROR logical name, or if an invalid
or nonexistent image name is specified, the error condition is signaled in the
created process.

• An exception occurring during execution of the image. When an exception
occurs, any user-specified condition handlers receive control to handle the
exception. If there are no user-specified condition handlers, a system-declared
condition handler receives control, and it initiates exit activities for the image.
Condition handling is described in Chapter 13.

• A Force Exit (SYS$FORCEX) system service issued on behalf of the process
by another process.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.3.1 Performing Image Rundown
The operating system performs image rundown functions that release system
resources obtained by a process while it is executing in user mode. These
activities occur in the following order:

1. Any outstanding I/O requests on the I/O channels are canceled, and I/O
channels are deassigned.

2. Memory pages occupied or allocated by the image are deleted, and the
working set size limit of the process is readjusted to its default value.

3. All devices allocated to the process at user mode are deallocated (devices
allocated from the command stream in supervisor mode are not deallocated).

4. Timer-scheduled requests, including wakeup requests, are canceled.

5. Common event flag clusters are disassociated.

6. Locks are dequeued as a part of rundown.

7. User mode ASTs that are queued but have not been delivered are deleted, and
ASTs are enabled for user mode.

8. Exception vectors declared in user mode, compatibility mode handlers, and
change mode to user handlers are reset.

9. System service failure exception mode is disabled.

10. All process private logical names and logical name fables created for user
mode are deleted. Deletion of a logical name table causes all names in that
table to be deleted. Note that names entered in shareable logical name tables,
such as the job or group table, are not deleted at image rundown, regardless
of the access mode for which they were created.

3.6.3.2 Initiating Rundown
To initiate the rundown activities described in Section 3.6.3.1, the system calls
the Exit (SYS$EXIT) system service on behalf of the process. In some cases,
a process can call SYS$EXIT to terminate the image itself (for example, if an
unrecoverable error occurs).

You should not call the SYS$EXIT system service directly from a main program.
By not calling SYS$EXIT directly from a main program, you allow the main
program to be more like ordinary modular routines and therefore usable by other
programmers as callable routines.

The SYS$EXIT system service accepts a status code as an argument. If you use
SYS$EXIT to terminate image execution, you can use this status code argument
to pass information about the completion of the image. If an image returns
without calling SYS$EXIT, the current value in RO is passed as the status code
when the system calls SYS$EXIT.

This status code is used as follows:

• The command interpreter uses the status code to display optionally an error
message when it receives control following image rundown.

• If the image has declared an exit handler, the status code is written in the
address specified in the exit control block.

• If the process was created by another process, and the creator has specified a
mailbox to receive a termination message, the status code is written into the
termination mailbox when the process is deleted.

3-41

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.3.3 Performing Cleanup and Rundown Operations
Use exit handlers to perform image-specific cleanup or rundown operations. For
example, if an image uses memory to buffer data, an exit handler can ensure that
the data is not lost when the image exits as the result of an error condition.

To establish an exit-handling routine, you must set up an exit control block and
specify the address of the control block in the call to the Declare Exit Handler
(SYS$DCLEXH) system service. You can call an exit handler by using standard
calling conventions; you can provide arguments to the exit handler in the exit
control block. The first argument in the control block argument list must specify
the address of a longword for the system to write the status code from SYS$EXIT.

If an image declares more than one exit handler, the control blocks are linked
together on a last-in, first-out (LIFO) basis. After an exit handler is called and
returns control, the control block is removed from the list. You can remove
exit control blocks prior to image exit by using the Cancel Exit Handler
(SYS$CANEXH) system service.

Exit handlers can be declared from system routines executing in supervisor or
executive mode. These exit handlers are also linked together in other lists, and
they receive control after exit handlers that are declared from user mode are
executed.

Exit handlers are called as a part of the SYS$EXIT system service. While a call
to the SYS$EXIT system service often precedes image rundown activities, the call
is not a part of image rundown. There is no way to ensure that exit handlers will
be called if an image terminates in a nonstandard way.

3.6.3.4 Initiating Image Rundown for Another Process

3-42

The Force Exit (SYS$FORCEX) system service provides a way for a process to
initiate image rundown for another process. For example, the following call to
SYS$FORCEX causes the image executing in the process CYGNUS to exit:

$DESCRIPTOR(prcnam,"CYGNUS");

status = SYS$FORCEX(O,
&prcnam,

0);

/* pidadr - Process id */
/* prcnam - Process name */
/* code - Completion code */

Because the SYS$FORCEX system service calls the SYS$EXIT system service,
any exit handlers declared for the image are executed before image rundown.
Thus, if the process is using the command interpreter, the process is not deleted
and can run another image. Because the SYS$FORCEX system service uses
the AST mechanism, an exit cannot be performed if the process being forced to
exit has disabled the delivery of ASTs. AST delivery and how it is disabled and
reenabled is described in Chapter 4.

The following program segment shows an example of an exit-handling routine:

#include <stdio>
#include <ssdef>

/* Exit control block */

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

struct {
unsigned int *desblk;
unsigned int (*exh)();
unsigned int argcount;
unsigned int *cond value;

}exitblock = {O, &exitrtn,-1, O};

main() {

unsigned int status;

/* Declare the exit handler */

status = SYS$DCLEXH(&exitblock);
if ((status & 1) != 1)

LIB$SIGNAL(status);

int exitrtn (int condition) {
if ((status & 1) != 1)
{

}

/* Clean up */

}
else

return 1;

/* Normal exit */

return O;

0

0 EXITBLOCK is the exit control block for the exit handler EXITRTN. The
third longword indicates the number of arguments to be passed. In this
example, only one argument is passed: the address of a longword for the
system to store the return status code. This argument must be provided in an
exit control block.

f1 The SYS$DCLEXH system service call designates the address of the exit
control block, thus declaring EXITRTN as an exit handler.

0 The EXITRTN exit handler checks the status code. If this is a normal exit,
EXITRTN returns control. Otherwise, it handles the error condition.

3.6.4 Deleting a Process
Process deletion completely removes a process from the system. A process can be
deleted by any of the following events:

• The Delete Process (SYS$DELPRC) system service is called.

• A process that created a subprocess is deleted.

• An interactive process uses the DCL command LOGOUT.

• A batch job reaches the end of its command file.

• An interactive process uses the DCL command STOPIID=pid or STOP
username.

• A process that contains a single image calls the Exit (SYS$EXIT) system
service.

• The Force Exit (SYS$FORCEX) system service forces image exit on a process
that contains a single image.

3-43

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3-44

When the system is called to delete a process as a result of any of these
conditions, it first locates all subprocesses, and searches hierarchically. No
process can be deleted until all the subprocesses it has created have been deleted.

The lowest subprocess in the hierarchy is a subprocess that has no descendant
subprocesses of its own. When that subprocess is deleted, its parent subprocess
becomes a subprocess that has no descendant subprocesses and it can be deleted
as well. The topmost process in the hierarchy becomes the parent process of all
the other subprocesses.

The system performs each of the following procedures, beginning with the lowest
process in the hierarchy and ending with the topmost process: ·

• The image executing in the process is run down. The image rundown that
. occurs during process deletion is the same as that described in Section 3.6.3.1.
When a process is deleted, however, the rundown releases all system
resources, including those acquired from access modes other than user
mode.

• Resource quotas are released to the creating process, if the process being
deleted is a subprocess.

• If the creating process specifies a termination mailbox, a message indicating
that the process is being deleted is sent to the mailbox. For detached
processes created by the system, the termination message is sent to the
system job controller.

• The control region of the process's virtual address space is deleted. (The
control region consists of memory ·allocated and used by the system on behalf
of the process.)

• All system-maintained information about the process is deleted.

Figure 3-1 illustrates the flow of events from image exit through process
deletion.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

Figure 3-1 Image Exit and Process Deletion

Image Exit

Call Them, in LIFO Order,
Using Argument List in Exit

Control Block

No Call the Delete Process
>----~ .. ($DELPRC) System Service

Yes

Call the Exit Handler
Declared by the

Command Interpreter*

Return to Command
Interpreter to Execute

the Next Image

to Delete the Process

No

Send a Termination Message
to the Mailbox Specified by

the Process's Creator

*This exit handler is declared from supervisor mode and is
located during the normal search for exit handlers.

ZK-0857-GE

3-45

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.4.1 Deleting a Process By Using System Services
A process can delete itself or another process at any time, depending on the
restrictions outlined in Section 3.1.1. Any one of the following system services
can be used to delete a subprocess or a detached process. Some services terminate
execution of the image in the process; others terminate the process itself.

• SYS$EXIT-Initiates normal exit in the current image. Control returns to the
command language interpreter. If there is no command language interpreter,
the process is terminated. This routine cannot be used to terminate an image
in a detached process.

• SYS$FORCEX-Initiates a normal exit on the image in the specified process.
GROUP or WORLD privilege may be required, depending on the process
specified. An AST is sent to the specified process. The AST calls on the
SYS$EXIT routine to complete the image exit. Because an AST is used, you
cannot use this routine on a suspended process. You can use this routine on a
subprocess or detached process. See Section 3.6.3.4 for an example.

• SYS$DELPRC-Deletes the specified process. GROUP or WORLD privilege
may be required, depending on the process specified. A termination message
is sent to the calling process's mailbox. You can use this routine on a
subprocess, a detached process, or the current process. For example, if a
process has created a subprocess named CYGNUS, it can delete CYGNUS, as
follows:

$DESCRIPTOR(prcnam,"CYGNUS");

status = SYS$EDLPRC(O,
&prcnam);

/* Process id */
/* Process name */

Because a subprocess is automatically deleted when the image it is executing
terminates (or when the command stream for the command interpreter
reaches end of file), you normally do not need to call the SYS$DELPRC
system service explicitly.

3.6.4.2 Terminating Mailboxes

3-46

A termination mailbox provides a process with a way of determining when, and
under what conditions, a process that it has created was deleted. The Create
Process (SYS$CREPRC) system service accepts the unit number of a mailbox as
an argument. When the process is deleted, the mailbox receives a termination
message.

The first word of the termination message contains the symbolic constant,
MSG$_DELPROC, which indicates that it is a termination message. The second
longword of the termination message contains the final status value of the image.
The remainder of the message contains system accounting information used by
the job controller and is identical to the first part of the accounting record sent
to the system accounting log file. The description of the SYS$CREPRC system
service in the Open VMS System Services Reference Manual provides the complete
format of the termination message.

If necessary, the creating process can determine the process identification of the
process being deleted from the I/O status block (IOSB) posted when the message
is received in the mailbox. The second longword of the IOSB contains the process
identification of the process being deleted.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

A termination mailbox cannot be located in memory shared by multiple
processors.

The following example illustrates a complete sequence of process creation, with a
termination mailbox:

#include <stdio.h>
#include <descrip.h>
#include <ssdef .h>
#include <msgdef .h>
#include <dvidef .h>
#include <iodef .h>
#include <accdef .h>

unsigned short unitnum;
unsigned int pidadr;

/* Create a buffer to store termination info */

struct accdef exitmsg;

/* Define and initialize the item list for $GETDVI */

static struct {
unsigned short buflen,item code;
void *bufaddr; -
void *retlenaddr;
unsigned int terminator;

}mbxinfo = { 4, DVI$_UNIT, &unitnum, O, O};

/* I/O Status Block for QIO */

struct {
unsigned short iostat, mblen;
unsigned int mbpid;

}mbxiosb;

main()

void exitast(void);
unsigned short exchan;

0

unsigned int status,maxmsg=84,bufquo=240,promsk=O;
unsigned int func=IO$ READVBLK;
$DESCRIPTOR(image,"LYRA");

/* Create a mailbox */
status = SYS$CREMBX(O, /* prmflg (permanent or temporary) */ f)

&exchan, /* channel */
maxmsg, /* maximum message size */
bufquo, /* no. of bytes used for buffer */
promsk, /* protection mask */
o,o,o,o);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Get the mailbox unit number */
status = SYS$GETDVI(O,

exchan,
o,
&mbxinfo,
o,o,o,o);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* efn - event flag */
/* chan - channel */
/* devnam - device name */
/* item list */

3-47

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

/* Create a subprocess */
status = SYS$CREPRC(&pidadr, /* process id */

&image, /* image to be run */
o,o,o,o,o,o,o,o,
unitnum, /* mailbox unit number */

O); /*options flags */
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Read from mailbox */
status = SYS$QIOW(O,

exchan,
func,
&mbxiosb,
&exitast,

o,
&exitmsg,
ACC$K TERMLEN,

o,o,o,o); -
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* efn - event flag */ ~
/* chan - channel number */
/* function modifier */
/* iosb - I/O status block */
/* astadr - astadr AST routine *I
/* astprm - astprm AST parameter */
/* pl - buffer to receive message*/
/* p2 - length of buffer */
/* p3, p4, p5, p6 */

void exitast(void)

3-48

if (mbxiosb.iostat == SS$ NORMAL) 0
{ -

}

printf("\nMailbox successfully written ..• ");
if (exitmsg.acc$w msgtyp == MSG$ DELPROC)
{ - -

printf("\nProcess deleted ••. ");
if (pidadr == mbxiosb.mbpid)
{

}
else

}
else

printf("\nPIDs are equal ••• ");
if (exitmsg.acc$1 finalsts == SS$ NORMAL)

printf ("\nNormaI termination ••• ");
else
printf("\nAbnormal termination status: %d",

exitmsg.acc$l_finalsts);

printf("\nPIDs are not equal");

printf("\nTermination message not received •.• status: %d",
exitmsg.acc$w_msgtyp);

else

return;

printf("\nMailbox I/O status block: %d",mbxiosb.iostat);

0 The item list for the Get DeviceNolume Information (SYS$GETDVI) system
service specifies that the unit number of the mailbox is to be returned.

8 The Create Mailbox and Assign Channel (SYS$CREMBX) system service
creates the mailbox and returns the channel number at EXCHAN.

0 The Create Process (SYS$CREPRC) system service creates a process to
execute the image LYRA.EXE and returns the process identification at
LYRAPID. The mbxunt argument refers to the unit number of the mailbox,
obtained from the Get DeviceNolume Information (SYS$GETDVI) system
service.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

E) The Queue I/O Request (SYS$QIO) system service queues a read request to
the mailbox, specifying both an AST service routine to receive control when
the mailbox receives a message and the address of a buffer to receive the
message. The information in the message can be accessed by the symbolic
offsets defined in the $ACCDEF macro. The process continues executing.

0 When the mailbox receives a message, the AST service routine EXITAST
receives control. Because this mailbox can be used for other interprocess
communication, the AST routine does the following:

• Checks for successful completion of the I/O operation by examining the
first word in the IOSB

• Checks that the message received is a termination message by examining
the message type field in the termination message at the offset ACC$W _
MSG TYPE

• Checks for the process identification of the process that has been deleted
by examining the second longword of the IOSB

• Checks for the completion status of the process by examining the status
field in the termination message at the offset ACC$L_FINALSTS

In this example, the AST service routine performs special action when the
subprocess is deleted. All other messages or error conditions cause a branch
to the label 20$.

The Create Mailbox and Assign Channel (SYS$CREMBX), Get DeviceNolume
Information (SYS$GETDVI), and Queue I/O Request (SYS$QIO) system services
are described in greater detail in Chapter 9.

3-49

4
Using Asynchronous System Traps

This chapter describes the use of asynchronous system traps (ASTs). It contains
the following sections:

Section 4.1 provides an overview of AST routines.

Section 4.2 describes access modes for ASTs.

Section 4.3 describes ASTs and process wait states.

Section 4.4 describes how ASTs are declared.

Section 4.5 describes the AST service routine.

Section 4.6 describes how ASTs are delivered.

Section 4.7 presents a code example of how to use AST services.

Asynchronous system traps (ASTs) are interrupts that occur asynchronously (out
of sequence) with respect to the process's execution. The trap provides a transfer
of control to a user-specified procedure that handles the event. For example,
you can use them to signal a program to execute a routine whenever a certain
condition occurs.

Some system services allow a process to request that it be interrupted when
a particular event occurs. Table 4-1 shows the system services that are AST
services.

Table 4-1 AST System Services

System Service

SYS$SETAST

SYS$DCLAST

SYS$SETPRA

Task Performed

Set AST Enable

Declare AST

Set Power Recovery AST

The system services that use the AST mechanism accept as an argument the
address of an AST service routine, that is, a routine to be given control when the
event occurs.

Table 4-2 shows some of the services that use ASTs.

4-1

Using Asynchronous System Traps

4-2

Table 4-2 System Services That Use ASTs

System Service

SYS$DCLAST

SYS$ENQ

SYS$GETDVI

SYS$GETJPI

SYS$GETSYI

SYS$QIO

SYS$SETIMER

SYS$SETPRA

SYS$UPDSEC

Task Performed

Declare AST

Enqueue Lock Request

Get DeviceNolume Information

Get Job/Process Information

Get Systemwide Information

· Queue I/O Request

Set Timer

Set Power Recovery AST

Update Section File on Disk

For example, if you call the Set Timer (SYS$SETIMR) system service, you can
specify the address of a routine to be executed when a time interval expires or at
a particular time of day. The service schedules the execution of the routine and
returns; the program image continues executing. When the requested timer event
occurs, the system "delivers" an AST by interrupting the process and calling the
specified routine.

Example 4-1 shows a typical program that calls the SYS$SETIMR system service
with a request for an AST when a timer event occurs.

Example 4-1 Calling the SYS$SETIMR System Service

#include <stdio.h>
#include <stdlib.h>
#include <ssdef .h>
#include <descrip.h>

struct {
unsigned int lower, upper;

}daytim;

/* AST routine */
void time_ast(void);

main() {
unsigned int status;
$DESCRIPTOR(timbuf,"0 ::10.00"); /* 10-second delta*/

/* Convert ASCII format time to binary format */

status = SYS$BINTIM(&timbuf, /* buffer containing ASCII time */
&daytim); /* timadr (buffer to receive */

/* binary time) */
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Converting time to binary format ••• \n");

/* Set the timer */

(continued on next page)

Using Asynchronous System Traps

Example 4-1 (Cont.) Calling the SYS$SETIMR System Service

status = SYS$SETIMR(O,
&daytim,
&time ast,
o, -
0) i

if ((status & 1) != 1)
LIB$SIGNAL(status);

else

/* efri (event flag) */ 0
/* expiration time */
/* astadr (AST routine) */
/* reqidt (timer request id) */
/* flags *I

printf("Setting the timer to expire in 10 secs ... \n"); f}

/* Hibernate the process until the timer expires */

status= SYS$HIBER();
if ((status & 1) != 1)

LIB$SIGNAL(status);

void time ast (void) {

unsigned int status;

status = SYS$WAKE(O,
0) i

/* process id */
/* process name */

if ((status & 1) != 1)
LIB$SIGNAL(status);

printf("Executing AST routine to perform wake up .•• \n"); 8
return;

0 The call to the SYS$SETIMR system service requests an AST at 10 seconds
from the current time.

The daytim argument refers to the quadword, which must contain the time
in system time (64-bit) format. For details on how this is accomplished, see
Chapter 5. The astadr argument refers to TIME_AST, the address of the
AST service routine.

When the call to the system service completes, the process continues
execution.

f} The timer expires in 10 seconds and notifies the system. The system
interrupts execution of the process and gives control to the AST service
routine.

8 The user routine TIME_AST handles the interrupt. When the AST routine
completes, it issues a RET instruction to return control to the program. The
program resumes execution at the point at which it was interrupted.

The following sections describe in more detail how ASTs work and how to use
them.

4.1 Overview of AST Routines
The routine executed upon delivery of an AST is called an AST routine. It
is coded and referenced like any other subroutine. The differences are that
it is executed only after an AST is received by the program and is called
asynchronously by the operating system, not by the current image.

4-3

Using Asynchronous System Traps
4.1 Overview of AST Routines

4-4

When the AST routine is finished, the program that was interrupted resumes
execution from the point of interruption.

To deliver an AST, you use system services that specify the address of the AST
routine. Then, the system delivers the AST (that is, transfers control to your
subprogram) at a particular time or in response to a particular event.

The AST routine must observe the following restrictions:

• Arguments-The queuing mechanism for an AST does not provide for
returning a function value or passing arguments. Therefore, you should write
an AST routine as a subroutine, and use common blocks to pass arguments
between an AST routine and the program that queues it.

In some cases, a system service that queues an AST allows you to specify an
argument for the AST routine (for example, SYS$GETJPI). If you choose to
pass the argument, the AST routine must be written to accept the argument.

• Terminal I/0-If you try to access the terminal with language I/O statements
using SYS$INPUT or SYS$0UTPUT, you may receive a redundant I/O error.
You must establish another channel to the terminal by explicitly opening the
terminal (or by using the SMG$ routines). ·

• Shared routines-An AST routine might invoke a subprogram that is also
invoked by another program unit in the program. To prevent conflicts, a
program unit should use the SYS$SETAST system service to disable AST
interrupts before calling a routine that might be invoked by an AST. Once the
shared routine has executed, the program unit can use the same service to
reenable AST interrupts.

• Invocation-You should never directly call an AST routine as a subroutine or
a function.

• Iteration-You should never allow an AST routine to be delivered iteratively.

The system service used to queue the AST routine determines whether the AST
is deliver~d after a specified event or time.

• Event-The following system routines allow you to specify an AST routine to
be delivered when the system routine completes:

LIB$SPAWN-Signals when the subprocess has been created.

SYS$ENQ and SYS$ENQW-Signal when the resource lock is blocking a
request from another process.

SYS$GETDVI and SYS$GETDVIW-Indicate that device information has
been received.

SYS$GETJPI and SYS$GETJPIW-Indicate that process information has
been received.

SYS$GETSYI and SYS$GETSYIW-Indicate that system information has
been received.

SYS$QIO and SYS$QIOW-Signal when the requested I/O is completed.

SYS$UPDSEC-Signals when the section file has been updated.

• Event-The SYS$SETPRA system service allows you to specify an AST to be
delivered when the system detects a power recovery.

Using Asynchronous System Traps
4.1 Overview of AST Routines

• Time-The SYS$SETIMR system service allows you to specify a time for the
AST to be delivered.

• Time-The SYS$DCLAST system service delivers a specified AST
immediately. This makes it an ideal tool for debugging AST routines.

If a program queues an AST and then exits before the AST is delivered, the AST
is deleted from the queue. If a process is hibernating when an AST is delivered,
the AST executes and the process continues hibernating.

If a suspended process receives an AST, the execution of the AST depends on the
AST mode and the mode at which the process was suspended, as follows:

• If the process was suspended from a SYS$SUSPEND call at supervisor mode,
user-mode ASTs are executed as soon as the process is resumed. If more
than one AST is delivered, they are executed in the order in which they were
delivered. Supervisor-, executive-, and kernel-mode ASTs are executed upon
delivery.

• If the process was suspended from a SYS$SUSPEND call at kernel mode, all
ASTs are blocked and are executed as soon as the process is resumed.

Generally, AST routines are used with the SYS$QIO or SYS$QIOW system·
service for handling CtrVC, CtrVY, and unsolicited input.

4.2 Access Modes for AST Execution
Each request for an AST is associated with the access mode from which the AST
is requested. Thus, if an image executing in user mode requests notification of an
event by means of an AST, the AST service routine executes in user mode.

Because the ASTs you use almost always execute in user mode, you do not need
to be concerned with access modes. However, you should be aware of some
system considerations for AST delivery. These considerations are described in
Section 4.6.

4.3 ASTs and Process Wait States
A process in a wait state can be interrupted for the delivery of an AST and the
execution of an AST service routine. When the AST service routine completes
execution, the process is returned to the wait state, if the condition that caused
the wait is still in effect.

With the exception of suspended waits (SUSP) and suspended outswapped waits
(SUSPO), any wait states can be interrupted.

4.3.1 Event Flag Waits
If a process is waiting for an event flag and is interrupted by an AST, the wait
state is restored following execution of the AST service routine. If the flag is set
at completion of the AST service routine (for example, by completion of an I/O
operation), then the process continues execution when the AST service routine
completes.

Event flags are described in Section 14.6.

4-5

Using Asynchronous System Traps
4.3 ASTs and Process Wait States

4.3.2 Hibernation
A process can place itself in a wait state with the Hibernate (SYS$HIBER) system
service. This wait state can be interrupted for the delivery of an AST. When the
AST service routine completes execution, the process continues hibernation. The
process can, however, "wake" itself in the AST service routine or be awakened by
another process or as the result of a timer-scheduled wakeup request. Then, it
continues execution when the AST service routine completes.

Process suspension is another form of wait; however, a suspended process cannot
be interrupted by an AST. Process hibernation and suspension are described in
Chapter 3.

4.3.3 Resource Waits and Page Faults
When a process is executing an image, the system can place the process in a
wait state until a required resource becomes available, or until a page in its
virtual address space is paged into memory. These waits, which are generally
transparent to the process, can also be interrupted for the delivery of an AST.

4.4 How ASTs Are Declared
Most ASTs occur as the result of the completion of an asynchronous event
initiated by a system service (for example, a SYS$QIO or SYS$SETIMR request)
when the process requests notification by means of an AST.

The Declare AST (SYS$DCLAST) system service creates ASTs. With this service,
a process can declare an AST only for the same or for a less privileged access
mode.

You may find occasional use for the SYS$DCLAST system service in your
programming applications; you may also find the SYS$DCLAST service useful
when you want to test an AST service routine.

4.5 The AST Service Routine

4-6

An AST service routine must be a separate procedure. The AST must use the
standard call procedure, and the routine must return using a RET instruction.
If the service routine modifies any registers other than the standard scratch
registers, it must set the appropriate bits in the entry mask so that the contents
of those registers are saved.

Because you cannot know when the AST service routine will begin executing, you
must take care when you write the AST service routine that it does not modify
any data or instructions used by the main procedure (unless, of course, that is its
function).

On entry to the AST service routine, the arguments shown in Table 4-3 are
passed.

Table 4-3 AST Arguments for VAX Systems and AXP Systems

VAX System Arguments AXP System Arguments

AST parameter AST parameter

RO RO
(continued on next page)

Using Asynchronous System Traps
4.5 The AST Service Routine

Table 4-3 (Cont.) AST Arguments for VAX Systems and AXP Systems

VAX System Arguments AXP System Arguments

Rl Rl
PC PC
PSL PS

Registers RO and Rl, the program counter (PC), and the processor status
longword (PSL) on VAX systems, or processor status (PS) on AXP systems were
saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine so that
it can identify the event that caused the AST. When you call a system service
requesting an AST, or when you call the SYS$DCLAST system service, you
can supply a value for the AST parameter. If you do not specify a value, the
parameter defaults to 0.

The following example illustrates an AST service routine. In this example, the
ASTs are queued by the SYS$DCLAST system service; the ASTs are delivered
to the process immediately so that the service routine is called following each
SYS$DCLAST system service call.

#include <stdio.h>
#include <ssdef .h>

/* Declare the AST routine */

void astrtn (int);

main()
{

unsigned int status, valuel=l, value2=2;

status = SYS$DCLAST(&astrtn,
value!,
0);

if((status & 1) != 1)
LIB$SIGNAL(status);

/* astadr - AST routine */ Ct
/* astprm - AST parameter */
/* acmode */

status= SYS$DCLAST(&astrtn, value2, O);
if((status & 1) != 1)

LIB$SIGNAL(status);

void astrtn (int value) {

/* Evaluate AST parameter */
switch (value)
{

};

case 1: printf("Executing AST routine with value 1 ••• \n");
goto handler 1;
break; -

case 2: printf("Executing AST routine with value 2 ••• \n");
goto handler 2;
break; -

default: printf("Error\n");

/* Handle first AST */

4-7

Using Asynchronous System Traps
4.5 The AST Service Routine

handler 1:

return;

/* Handle second AST */

handler 2:

return;
}

0 The program CELESTEF calls the SYS$DCLAST AST system service twice to
queue ASTs. Both ASTs specify the AST service routine, ASTRTN. However,
a different parameter is passed for each call.

f) The first action this AST routine takes is to check the AST parameter so
that it can determine if the AST being delivered is the first or second one
declared. The value of the AST parameter determines the flow of execution.
If a number of different values are determining a number of different paths
of execution, Digital recommends that you use the VAX MACRO instruction
CASE.

4.6 · AST Delivery

4-8

When a condition causes an AST to be delivered, the system may not be able to
deliver the AST to the process immediately. An AST cannot be delivered under
any of the following conditions:

• An AST service routine is currently executing at the same or at a more
privileged access mode.

Because ASTs are implicitly disabled when an AST service routine executes,
one AST routine cannot be interrupted by another AST routine declared for
the same access mode. It can, however, be interrupted for an AST declared
for a more privileged access mode.

• AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the Set AST Enable
(SYS$SETAST) system service. This service may be useful when a program
is executing a sequence of instructions that should not be interrupted for the
execution of an AST routine.

On AXP systems, SYS$SETAST is often used in a main program that shares
data with an AST routine in order to block AST delivery while the program
accesses the shared data. •

• The process is executing or waiting at an access mode more privileged than
that for which the AST is declared.

For example, if a user-mode AST is declared as the result of a system service
but the program is currently executing at a higher access mode (because of
another system service call, for example), the AST is not delivered until the
program is once again executing in user mode.

Using Asynchronous System Traps
4.6 AST Delivery

If an AST cannot be delivered when the interrupt occurs, the AST is queued
until the conditions disabling delivery are removed. Queued ASTs are ordered
by the access mode from which they were declared, with those declared from
more privileged access modes at the front of the queue. If more than one AST is
queued for an access mode, the ASTs are delivered in the order in which they are
queued.

4.7 Example of Using AST Services
The following is an example of a DEC Fortran program that finds the pro·cess
identification number (PID) of any user working on a particular disk and delivers
an AST to notify the user that the disk is coming down:

PROGRAM DISK DOWN
! Implicit none
! Status variable
INTEGER STATUS
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN,
2 CODE

INTEGER*4 BUFADR,
2 RETLENADR

END MAP
MAP

INTEGER*4 END LIST
END MAP -

END UNION
END STRUCTURE
RECORD /ITMLST/ DVILIST(2),
2 JPILIST(2)
! Information for GETDVI call
INTEGER PID BUF;
2 PID-LEN
! Information for GETJPI call
CHARACTER*? TERM NAME
INTEGER TERM LEN-
EXTERNAL DVI$ PID,
2 JPI$-TERMINAL
! AST routine-and flag
INTEGER AST FLAG
PARAMETER (AST FLAG = 2)
EXTERNAL NOTIFY USER

INTEGER SYS$GETDVIW,
2 SYS$GETJPI,
2 SYS$WAITFR

4-9

Using Asynchronous System Traps
4.7 Example of Using AST Services

4-10

! Set up for SYS$GETDVI
DVILIST(l).BUFLEN = 4
DVILIST(l).CODE = %LOC(DVI$ PID)
DVILIST(l).BUFADR = %LOC(PID BUF)
DVILIST(l).RETLENADR = %LOC(PID LEN)
DVILIST(2).END LIST= 0 -
! Find PID number of process using SYS$DRIVEO
STATUS= SYS$GETDVIW (,
2 '
2 ' MTAO : ' , ! device
2 DVILIST, ! i tern list
2 "')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get terminal name and fire AST
JPILIST(l).CODE = %LOC(JPI$ TERMINAL)
JPILIST(l).BUFLEN = 7 -
JPILIST(l).BUFADR = %LOC(TERM NAME)
JPILIST(l).RETLENADR = %LOC(TERM LEN)
JPILIST(2).END LIST= 0 -
STATUS= SYS$GETJPI (,
2 PID BUF, !process id
2 ' -
2 JPILIST, !itemlist
2 '
2 NOTIFY USER, !AST
2 TERM NAME) !AST arg
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Ensure that AST was executed
STATUS= SYS$WAITFR(%VAL(AST FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

SUBROUTINE NOTIFY USER (TERM STR)
! AST routine that broadcasts a message to TERMINAL
! Dummy argument
CHARACTER*(*) TERM STR
CHARACTER*8 TERMINAL
INTEGER LENGTH
! Status variable
INTEGER STATUS
CHARACTER*(*) MESSAGE
PARAMETER (MESSAGE =
2 'SYS$TAPE going down in 10 minutes')
! Flag to indicate AST executed
INTEGER AST FLAG

! Declare system routines
INTRINSIC LEN
INTEGER SYS$BRDCST,
2 SYS$SETEF
EXTERNAL SYS$BRDCST,
2 SYS$SETEF,
2 LIB$SIGNAL
! Add underscore, to device name
LENGTH = LEN (TERM STR)
TERMINAL(2:LENGTH+l) = TERM STR
TERMINAL(l:l) = ' '

Using Asynchronous System Traps
4.7 Example of Using AST Services

! Send message
STATUS = SYS$BRDCST(MESSAGE,
2 TERMINAL(l:LENGTH+l))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Set event flag
STATUS= SYS$SETEF (%VAL(AST FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

4-11

5
System Time Operations

This chapter describes the types of system time operations performed by the
operating system. It contains the following sections:

Section 5.1 describes the system time format.

Section 5.2 describes time conversion and date/time manipulation.

Section 5.3 describes how to get the current date and time and set the current
time.

Section 5.4 describes how to set and cancel timer requests and how to schedule
and cancel wakeups.

Section 5.5 describes using run-time library (RTL) routines to collect timer
statistics.

Section 5.6 describes using date/time formatting routines.

Section 5.7 describes the Coordinated Universal Time (UTC) system.

5.1 System Time Format
The operating system maintains the current date and time in 64-bit format.
The time value is a binary number in 100-nanosecond (ns) units offset from
the system base date and time, which is 00:00 o'clock, November 17, 1858 (the
Smithsonian base date and time for the astronomic calendar). Time values must
be passed to or returned from system services as the address of a quadword
containing the time in 64-bit format. A time value can be expressed as either of
the following:

• An absolute time that is a specific date or time of day, or both. Absolute times
are always positive values (or 0).

• A delta time that is an offset from the current time to a time or date in the
future. Delta times are always expressed as negative values.

If you specify 0 as the address of a time value, the operating system supplies the
current date and time.

5.1.1 Absolute Time Format
The operating system uses the following format for absolute time. The full date
and time require a character string of 23 characters. The punctuation is required.

dd-MMM-yyyy hh:mm:ss.cc

dd

MMM
yyyy

Day of the month (2 characters)

Month (first 3 characters of the month in uppercase)

Year (4 characters)

5-1

System Ti me Operations
5.1 System Time Format

hh Hours of the day in 24-hour format (2 characters)

mm Minutes (2 characters)

ss.cc Seconds and hundredths of a second (5 characters)

5.1.2 Delta Time Format
The operating system uses the following format for delta time. The full date and
time require a character string of 16 characters. The punctuation is required.

dddd hh:mm:ss.cc

dddd Day of the month (4 characters)

hh Hour of the day (2 characters)

mm Minutes (2 characters)

ss.cc Seconds and hundredths of a second (5 characters)

A delta time is maintained as an integer value representing an amount of time in
100-ns units.

5.2 Time Conversion and Datefrime Manipulation
This section presents information about time conversion and date/time
manipulation features, and the routines available to implement them.

5.2.1 Time Conversion Routines

5-2

Since the timer system services require you to specify the time in a 64-bit format,
you can use time conversion run-time library and system service routines to work
with time in a different. format. Run-time library and system services do the
following:

• Obtain the current date and time in an ASCII string or in system format.

• Convert an ASCII string into the system time format.

• Convert a system time value into an ASCII string.

• Convert the time from system format to integer values.

Table 5-1 shows time conversion run-time and system service routines.

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

Table 5-1 Time Conversion Routines and System Services

Routine Function

Time Conversion Run-Time Library (LIB$) Routines

LIB$CONVERT_DATE_STRING

LIB$CVT_FROM_INTERNAL_TIME

LIB$CVTF _FROM_INTERNAL_TIME

LIB$CVT_TO_INTERNAL_TIME

LIB$CVTF _TO_INTERNAL_TIME

LIB$CVT_ VECTIM

LIB$FORMAT_DATE_TIME

LIB$SYS_ASCTIM

Converts an input date/time string to an
operating system internal time.

Converts an operating system standard
internal binary time value to an external
integer value. The value is converted
according to a selected unit of time
operation.

Converts an operating system standard
internal binary time to an external
F-floating point value. The value is
converted according to a selected unit of
time operation.

Converts an external integer time value
to an operating system standard internal
binary time value. The value is converted
according to a selected unit of time
operation.

Converts an F-fl.oating point time value
to an internal binary time value.

Converts a 7-word array (as returned
by the SYS$NUMTIM system service)
to an operating system standard format
internal time.

Allows you to select at run time a specific
output language and format for a date or
time, ·or both.

Provides a simplified interface between
higher-level languages and the $ASCTIM
system service.

(continued on next page)

5-3

System Time Operations
5.2 Time Conversion and Dateffime Manipulation

Table 5-1 (Cont.) Time Conversion Routines and System Services

Routine

Time Conversion System Service Routines

SYS$ASCTIM

SYS$ASCUTC

SYS$BINTIM

SYS$BINUTC

SYS$FAO

SYS$GETUTC

SYS$NUMTIM

SYS$NUMUTC

SYS$TIMCON

Function

Converts an absolute or delta time from
64-bit binary time format to an ASCII
string.

Converts an absolute time from 128-
bit Coordinated Universal Time (UTC)
format to an ASCII string.

Converts an ASCII string to an absolute
or delta time value in a binary time
format.

Converts an ASCII string to an absolute
time value in the 128-bit UTC format.

Converts a binary value into an ASCII
character string in decimal, hexadecimal,
or octal notation and returns the
character string in an output string.

Returns the current time in 128-bit UTC
format.

Converts an absolute or delta time from
64-bit system time format to binary
integer date and time values.

Converts an absolute 128-bit binary
time into its numeric components. The
numeric components are returned in local
time.

Converts 128-bit UTC to 64-bit system
format or 64-bit system format to 128-bit
UTC based on the value of the convert
flag.

You can use the SYS$GETTIM system service to get the current time in internal
format, or you can use SYS$BINTIM to convert a formatted time to an internal
time, as shown in Section 5.3.2. You can also use the LIB$DATE_TIME routine to
obtain the time, LIB$CVT_FROM_INTERNAL_TIME to convert an internal time
to an external time, and LIB$CVT_TO_INTERNAL to convert from an external
time to an internal time.

5.2.1.1 Calculating and Di~playing Time with SVS$GETTIM and SVS$SUBX

5-4

Example 5-1 calculates differences between the current time and a time input
in absolute format, and then displays the result as delta time. If the input time
is later than the current time, the difference is a negative value (delta time) and
can be displayed directly. If the input time is an earlier time, the difference is a
positive value (absolute time) and must be converted to delta time before being
displayed. To change an absolute time to a delta time, negate the time array
by subtracting it from 0 (specified as an integer array) using the LIB$SUBX
routine, which performs subtraction on signed two's complement integers of
arbitrary length. For t_he absolute or delta time format, see Section 5.1.1 and
Section 5.1.2.

System Time Operations
5.2 Time Conversion and Dateffime Manipulation

Example 5-1 Calculating and Displaying the Time

Internal times
Input time in absolute format, dd-mmm-yyyy hh:nun:ss.ss

INTEGER*4 CURRENT TIME (2),
2 PAST TIME (2),
2 TIME-DIFFERENCE (2),
2 ZER0-(2)
DATA ZERO /0,0/
! Formatted times
CHARACTER*23 PAST TIME F
CHARACTER*l6 TIME-DIFFERENCE F - -! Status
INTEGER*4 STATUS
! Integer functions
INTEGER*4 SYS$GETTIM,
2 LIB$GET INPUT,
2 SYS$BINTIM,
2 LIB$SUBX,
2 SYS$ASCTIM
! Get current time
STATUS = SYS$GETTIM (CURRENT TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get past time and convert to internal format
STATUS = LIB$GET INPUT (PAST TIME F,
2 - 'Past time (in absolute format) : ')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SYS$BINTIM (PAST TIME F,
2 PAST-TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Subtract past time from current time
STATUS = LIB$SUBX (CURRENT TIME,
2 PAST TIME,
2 TIME-DIFFERENCE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! If resultant time is in absolute format (positive value means
! most significant bit is not set), convert it to delta time
IF (.NOT. (BTEST (TIME DIFFERENCE(2),31))) THEN

STATUS = LIB$SUBX (ZERO,
2
2
END IF

TIME DIFFERENCE,
TIME=DIFFERENCE)

! Format time difference and display
STATUS= SYS$ASCTIM (, TIME DIFFERENCE F,
2 TIME DIFFERENCE,) -
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, 'Time difference= I' TIME DIFFERENCE F
END - -

If you are ignoring the time portion of date/time (that is, working just at the date
level), the LIB$DAY routine might simplify your calculations. LIB$DAY returns
to you the number of days from the base system date to a given date.

5-5

System Time Operations
5.2 Time Conversion and DatefTime Manipulation

5.2.1.2 Obtaining Absolute Time with SYS$ASCTIM and SYS$BINTIM
The Convert Binary Time to ASCII String (SYS$ASCTIM) is the converse of
the Convert ASCII String to Binary Time (SYS$BINTIM) system service. You
provide the service with the time in the ASCII format shown in Section 5.3.2.
The service then converts the string to a time value in 64-bit format. You can use
this returned value as input to a timer scheduling service.

When you specify the ASCII string buffer, you can omit any of the fields, and
the service uses the current date or time value for the field. Thus, if you want a
timer request to be date independent, you could format the input buffer for the
SYS$BINTIM service as shown in the following example. The two hyphens that
are normally embedded in the date field must be included, and at least one blank
must precede the time field.

#include <stdio.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buffl, buff2;
}binary_ noon;

main()

unsigned int status;
$DESCRIPTOR(ascii_noon,"-- 12:00:00.00"); /*noon (absolute time) */

/* Convert time */
status = SYS$BINTIM(&ascii noon,

&binary_noon); -
/* timbuf - ASCII time */
/* timadr - binary time */

When the SYS$BINTIM service completes, a 64-bit time value representing "noon
today" is returned in the quadword at BINARY_NOON.

5.2.1.3 Obtaining Delta Time with SYS$BINTIM

5-6

The SYS$BINTIM system service also converts ASCII strings to delta time values
to be used as input to timer services. The buffer for delta time ASCII strings has
the following format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0 if you are
specifying a delta time for .the current day.

The following example shows how to use the SYS$BINTIM service to obtain a
delta time in system format:

#include <stdio.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buffl, buff2;
}btenmin;

main() {

unsigned int status;
$DESCRIPTOR(atenmin,"0 00:10:00.00"); /* 10-min delta*/

/* Convert time from ASCII to binary */
status = SYS$BINTIM(&atenmin,

&btenmin);

}

/* timbuf - time in ASCII */
/* timadr - binary time */

System Time Operations
5.2 Time Conversion and Date!Time Manipulation

If you are programming in VAX MACRO, you can also specify approximate
delta time values when you assemble a program, using two MACRO .LONG
directives to represent a time value in 100-ns units. The arithmetic is based on
the following formula:

1 second = 10 million * 100 ns

For example, the following statement defines a delta time value of 5 seconds:

FIVESEC: .LONG -10*1000*1000*5,-1 ; Five seconds

The value 10 million is expressed as 10*1000*1000 for readability. Note that the
delta time value is negative.

If you use this notation, however, you are limited to the maximum number of
100-ns units that can be expressed in a longword. In time values this is slightly
more than 7 minutes.

5.2.1.4 Obtaining Numeric and ASCII Time with SYS$NUMTIM
The Convert Binary Time to Numeric Time (SYS$NUMTIM) system service
converts a time in the system format into binary integer values. The service
returns each of the components of the time (year, month, day, hour, and so on)
into a separate word of a 7-word buffer. The SYS$NUMTIM system service and
the format of the information returned are described in the Open VMS System
Services Reference Manual.

You use the SYS$ASCTIM system service to format the time in ASCII for
inclusion in an output string. The SYS$ASCTIM service accepts as an argument
the address of a quadword that contains the time in system format and returns
the date and time in ASCII format.

If you want to include the date and time in a character string that contains
additional data, you can format the output string with the Formatted ASCII
Output (SYS$FAO) system service. The SYS$FAO system service converts binary
values to ASCII representations, and substitutes the results in character strings
according to directives supplied in an input control string. Among these directives
are !%T and !%D, which convert a quadword time value to an ASCII string and
substitute the result in an output string. For examples of how to do this, see the
discussion of $FAO in the Open VMS System Services Reference Manual.

5.2.2 Date!Time Manipulation Routines
The run-time LIB$ facility provides several date/time manipulation routines.
These routines let you add, subtract, and multiply dates and times. Use the
LIB$ADDX and LIB$SUBX routines to add and subtract times, since the times
are defined in integer arrays. Use LIB$ADD_TIMES and LIB$SUB_TIMES
to add and subtract two quadword times. When manipulating delta times,
remember that they are stored as negative numbers. For example, to add a delta
time to an absolute time, you must subtract the delta time from the absolute time.
Use LIB$MULT_DELTA_TIME and LIB$MULTF _DELTA_TIME to multiply delta
times by scalar and floating scalar.

Table 5-2 lists all the LIB$ routines that perform date/time manipulation.

5-7

System Time Operations
5.2 Time Conversion and DatefTime Manipulation

Table 5-2 Dateffime Manipulation Routines

Routine

LIB$ADD_TIMES

LIB$FORMAT_DATE_TIME

LIB$FREE_DATE_TIME_CONTEXT

LIB$GET_MAXIMUM_DATE_LENGTH

LIB$GET_USERS_LANGUAGE

LIB$INIT_DATE_TIME_CONTEXT

LIB$MULT_DELTA_TIME

LIB$MULTF _DELTA_ TIME

LIB$SUB_TIMES

Function

Adds two quadword times

Formats a date and/or time for output

Frees the date/time context

Returns the maximum possible length of
an output date/time string

Returns the user's selected language

Initializes the date/time context with a
user-specified format

Multiplies a delta time value by an
integer scalar value

Multiplies a delta time value by an
F-fioating point scalar value

Subtracts two quadword times

5.3 Timer Routines Used to Obtain and Set Current Time

5-8

This section presents information about getting the current date and time, and
setting current time. The run-time library (LIB$) facility provides date/time
utility routines for languages that do not have built-in time and date functions.
These routines return information about the current date and time or a date/time
specified by the user. You can obtain the current time by using the LIB$DATE_
TIME routine or by implementing the SYS$GETTIM system service. To set the
current time, use the SYS$SETTIME system service.

Table 5-3 describes the date/time routines.

Table 5-3 Timer RTLs and System Services

Routine

Timer Run-Time Library (LIB$) Routines

LIB$DATE_TIME

Function

Returns, using a string descriptor, the
operating system date and time in the
semantics of a string that the user provides.

(continued on next page)

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

Table 5-3 (Cont.) Timer RTLs and System Services

Routine

Timer Run-Time Library (LIB$) Routines

LIB$DAY

LIB$DAY_OF _WEEK

System Service Routine

SYS$SETIME

Function

Returns the number of days since the system
zero date of November 17, 1858. This routine
takes one required argument and two optional
arguments:

• The address of a longword to contain the
number of days since the system zero date
(required)

• A quadword passed by reference
containing a time in system time format
to be used instead of the current system
time (optional)

• A longword integer to contain the number
of IO-millisecond units since midnight
(optional)

Returns the numeric day of the week for an
input time value. If the input time value is 0,
the current day of the week is returned. The
days are numbered 1 through 7: Monday is
day 1 and Sunday is day 7.

Changes the value of or recalibrates the
system time.

5.3.1 Obtaining Current Time and Date with LIB$DATE_ TIME
The LIB$DATE_TIME routine returns a character string containing the current
date and time in absolute time format. The full string requires a declaration of 23
characters. If you specify a shorter string, the value is truncated. A declaration of
16 characters obtains only the date. The following example displays the current
date and time:

! Formatted date and time
CHARACTER*23 DATETIME
! Status and library procedures
INTEGER*4 STATUS,
2 LIB$DATE TIME
EXTERNAL LIB$DATE-TIME
STATUS = LIB$DATE TIME (DATETIME)
IF (.NOT. STATUS)-CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, DATETIME

5-9

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

5.3.2 Obtaining Current Time and Date with SYS$GETTIM
You can obtain the current date and time in internal format with the
SYS$GETTIM system service. You can convert from internal to character
format with the SYS$ASCTIM system service or a directive to the SYS$FAO
system service and convert back to internal format with the SYS$BINTIM system
service. The Get Time (SYS$GETTIM) system service places the time into a
quadword buffer. For example:

/* Buffer to receive the binary time */
struct {

unsigned int buffl, buff2;
}time;

main()

unsigned status;

This call to SYS$GETTIM returns the current date and time in system format in
the quadword buffer TIME.

The Convert Binary Time to ASCII String (SYS$ASCTIM) system service converts
a time in system format to an ASCII string and returns the string in a 23-byte
buffer. You call the SYS$ASCTIM system service as follows:

#include <stdio.h>
#include <descrip.h>

struct {
unsigned int buffl, buff2;

}time_value;

main()

unsigned int status;
char timestr[23];
$DESCRIPTOR(atimenow, timestr);

/* Get binary time */
status= SYS$GETTIM(&timadr);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Convert binary time to ASCII */
status = SYS$ASCTIM(O,

&atimenow,
&time value,
O); -

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* timlen - Length of ASCII string */
/* tirnbuf - ASCII time buffer */
/* timadr - Binary time */
/* cvtflags - Conversion indicator */

Because the address of a 64-bit time value is not supplied, the default value, 0, is used.

5-10

The string the service returns has the following format:

dd-MMM-yyyy hh:mm:ss.cc

dd Day of the month

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

mmm

yyyy

hh:mm:ss.cc

Month (a 3-character alphabetic abbreviation)

Year

Time in hours, minutes, seconds, and hundredths of a second

5.3.3 Setting the Current Time with SYS$SETIME
The Set System Time (SYS$SETIME) system service allows a user with the
operator COPER) and logical I/O (LOG_IO) privileges to set the current system
time. You can specify a new system time (using the timadr argument), or you
can recalibrate the current system time using the processor's hardware time-of­
year clock (omitting the timadr argument). If you specify a time, it. must be an
absolute time value; a delta time (negative) value is invalid.

The system time is set whenever the system is bootstrapped. Normally you do not
need to change the system time between system bootstrap operations; however, in
certain circumstances you may want to change the system time without rebooting.
For example, you might specify a new system time to synchronize two processors,
or to adjust for changes between standard time and Daylight Savings Time. Also,
you may want to recalibrate the time to ensure that the system time matches the
hardware clock time (the hardware clock is more accurate than the system clock).

The DCL command SET TIME calls the SYS$SETIME system service.

If a process issues a delta time request and then the system time is changed, the
interval remaining for the request does not change; the request executes after the
specified time has elapsed. If a process issues an absolute time request and the
system time is changed, the request executes at the specified time, relative to the
new system time.

On VAX systems that are running the distributed time synchronization
service (DECdts), the SYS$SETIME system service is disabled and an error
SS$_TIMENOTSET is returned. You must either disable DECdts to use the
SYS$SETIME system service, or use DECdts to set the system time. +

The following example shows the effect of changing the system time on an
existing timer request. In this example, two set timer requests are scheduled:
one is to execute after a delta time of 5 minutes and the other specifies an
absolute time of 9:00.

#include <stdio.h>
#include <descrip.h>
#include <ssdef .h>
#include <stdlib.h>

void gemini (int x);
unsigned int status;

/* Buffers to receive binary times */
struct { ·

unsigned int buffl, buff2;
}abs_binary, delta_binary;

main() {
$DESCRIPTOR(abs time,"-- 19:37:00.00");
$DESCRIPTOR(delta_time,"0 :00:30");

/* 9 am absolute time */
/* 5-min delta time */

/* Convert ASCII absolute time to binary format */
status = SYS$BINTIM(&abs time, /* ASCII absolute time */

&abs_binary); /*Converted to binary*/

5-11

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

5-12

if (status == SS$_NORMAL)
{

status = SYS$SETIMR(O,
&abs binary,
&gemini,
1,
0);

if (status == SS$ NORMAL)

/* efn - event flag */
/* daytim - expiration time */
/* astadr - AST routine */
/* reqidt - timer request id */
/* flags */

printf("Setting system timer A\n");
}
else

LIB$SIGNAL(status);

/* Convert ASCII delta time to binary format */
status = SYS$BINTIM(&delta time, /* ASCII delta time */

&delta binary); /* Converted to binary */
if (status == SS$_NORMAL) -

. {
printf("Converting delta time to binary format\n");
status = SYS$SETIMR(O, /* efn - event flag */

&delta binary, /* daytim - expiration time */
&geminI, /* astadr - AST routine */
2, /* reqidt - timer request id */
0) ; I* flags *I

if (status == SS$ NORMAL)
printf("Setting system timer B\n");

else
LIB$SIGNAL(status);

}
else

LIB$SIGNAL(status);

status= SYS$HIBER();

void gemini (int reqidt) {

unsigned short outlen;
unsigned int cvtflg=l;
char timenow[l2];
char fao str[BO];
$DESCRIPTOR(nowdesc, timenow);
$DESCRIPTOR(fao in, "Request ID !UB answered at !AS");
$DESCRIPTOR(fao=out, fao_str);

/* Returns and converts the current time */
status = SYS$ASCTIM(O, /* timlen - length of ASCII string */

&nowdesc, /* timbuf - receives ASCII string */
O, /* timadr - time value to convert */
cvtflg); /* cvtflg ~conversion flags */

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Receives the formatted output string */
status = SYS$FAO(&fao in, /* srcstr - control FAO string */

&outlen, /* outlen - length in bytes */
&fao out, /* outbuf - output buffer */
reqidt, /* pl - param needed for 1st FAO dir */
&nowdesc); /* p2 - param needed for 2nd FAO dir */

if ((status & 1) != 1)
LIB$SIGNAL(status);

status= LIB$PUT_OUTPUT(&fao out);

return;

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

The following example shows the output received from the preceding program.
Assume the program starts execution at 8:45. Seconds later, the system time is
set to 9:15. The timer request that specified an absolute time of 9:00 executes
immediately, because 9:00 has passed. The request that specified a delta time of
5 minutes times out at 9:20.

$ SHOW TIME
30-DEC-1993 8:45:04.56 +----------------------+

!-~~~-~~~~~=~-----------------------------------'! ~~a~~r 9s:~~s system I
Request ID number 1 executed ·at 09:15:00.00 +----------------------+
Request ID number 2 executed at 09:20:00.02
$

5.4 Routines Used for Timer Requests
This section presents information about setting and canceling timer requests,
and scheduling and canceling wakeups. Since many applications require the
scheduling of program activities based on clock time, the operating system allows
an image to schedule events for a specific time of day or after a specified time
interval. For example, you can use timer system services to schedule, convert,
or cancel events. For example, you can use the timer system services to do the
following:

• Schedule the setting of an event flag or the queuing of an asynchronous
system trap (AST) for the current process, or cancel a pending request that
has not yet been processed

• Schedule a wakeup request for a hibernating process, or cancel a pending
wakeup request that has not yet been processed

• Set or recalibrate. the current system time, if the caller has the proper user
privileges

Table 5-4 system services that set, cancel, and schedule timer requests.

Table 5-4 Timer System Services

Timer System Service Routine

SYS$SETIMR

SYS$CANTIM

SYS$SCHDWK

SYS$CANWAK

Function

Sets the timer to expire at a specified time.

Cancels all or a selected subset of the Set Timer
requests previously issued by the current image
executing in a process.

Schedules the awakening (restarting) of a process
that has placed itself in a state of hibernation
with the Hibernate (SYS$HIBER) service.

Removes all scheduled wakeup requests for a
process from the timer queue, including those
made by the caller or by other processes. The
Schedule Wakeup ($SCHDWK) service makes
scheduled wakeup requests.

5-13

System Time Operations .
5.4 Routines Used for Timer Requests

5.4.1 Setting Timer Requests with SVS$SETIMR

5-14

Timer requests made with the Set Timer (SYS$SETIMR) system service are
queued; that is, they are ordered for processing according to their expiration
times. The quota for timer queue entries (TQELM quota) controls the number of
entries a process can have pending in this timer queue.

When you call the SYS$SETIMR system service, you can specify either an
absolute time or a delta time value. Depending on how you want the request
processed, you can specify either or both of the following:

• The number of an event flag to be set when the time expires. If you do not
specify an event flag, the system sets event flag 0.

• The address of an AST service routine to be executed when the time expires.

Optionally, you can specify a request identification for the timer request. You
can use this identification to cancel the request, if necessary. The request
identification is also passed as the AST parameter to the AST service routine, if
one is specified, so that the AST service routine can identify the timer request.

Example 5-2 and Example 5-3 show timer requests using event flags and ASTs,
respectively. Event flags, event flag services, and ASTs are described in more
detail in the Chapter 4.

Example 5-2 Setting an Event Flag

#include <stdio.h>
#include <ssdef .h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buffl, buff2;
}b30sec;

main() {

unsigned int efn = 4,status;
$DESCRIPTOR(a30sec,"0 00:00:30.00");

/* Convert time to binary format */
status = SYS$BINTIM(&a30sec, /* tirnbuf - ASCII time */

&b30sec);/* timadr - binary time*/
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf ("Converting ASCII to binary time ••• \n");

/* Set timer to wait */
status = SYS$SETIMR(efn, /* efn - event flag */

&b30sec,/* daytim - binary time */
O, /* astadr - AST routine */
O, /* reqidt - timer request */
O); /*flags */ CJ

if ((status & 1) != 1)
LIB$SIGNAL(status);

else
printf("Request event flag be set in 30 seconds ••• \n");

(continued on next page)

System Time Operations
5.4 Routines Used for Timer Requests

Example 5-2 (Cont.) Setting an Event Flag

/* Wait 30 seconds */
status= SYS$WAITFR(efn);
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Timer expires ••• \n");

0 The call to SYS$SETIMR requests that event flag 4 be set in 30 seconds
(expressed in the quadword B30SEC).

f.) The Wait for Single Event Flag (SYS$WAITFR) system service places the
process in a wait state until the event flag is set. When the timer expires, the
flag is set and the process continues execution.

Example 5-3 Specifying an AST Service Routine

#include <stdio.h>
#include <descrip.h>

#define NOON 12

struct {
unsigned int buffl, buff2;

}bnoon;

/* Define the AST routine */

void astserv(int);

main() {
unsigned int status, reqidt=12;
$DESCRIPTOR(anoon,"-- 12:00:00.00");

/* Convert ASCII time to binary */
status = SYS$BINTIM(&anoon,

&bnoon);
if((status & 1) != 1)

LIB$SIGNAL(status);
else

/* timbuf - ASCII time */ 0
/* timadr - binary time buffer */

printf ("Converting ASCII to binary ••. \n");

/* Set timer */
/* efn - event flag */ f.) . status = SYS$SETIMR(O,

&bnoon,
&astserv,
reqidt,
0);

/* daytim - timer expiration */
/* astadr - AST routine */

if((status & 1) != 1)
LIB$SIGNAL(status);

else

/* reqidt - timer request id */
/* cvtflg - conversion flags */

printf("Setting timer expiration •.. \n");

status= SYS$HIBER();

void astserv(int astprm) {

(continued on next page)

5-15

System Time Operations
5.4 Routines Used for Timer Requests

Example 5-3 (Cont.) Specifying an AST Service Routine

/* Do something if it's a "noon" request */
if (astprm == NOON)

printf("This is a noon AST request\n");
else

printf("Handling some other request\n");

status = SCHDWK(O, /* pidadr - process id */
· O);/* prcnam - process name*/

return;

0 The call to SYS$BINTIM converts the ASCII string representing 12:00
noon to format. The value returned in BNOON is used as input to the
SYS$SETIMR system service.

f) The AST routine specified in the SYS$SETIMR request will be called when
the timer expires, at 12:00 noon. The reqidt argument identifies the timer
request. (This argument is passed as the AST parameter and is stored
at offset 4 in the argument list. See Chapter 4.) The process continues
execution; when the timer expires, it is interrupted by the delivery of the
AST. Note that if the current time of day is past noon, the timer expires
immediately.

0 This AST service routine checks the parameter passed by the reqidt
argument to determine whether it must service the 12:00 noon timer request
or another type of request (identified by a different reqidt value). When the
AST service routine completes, the process continues execution at the point of
interruption.

5.4.2 Canceling a Timer Request with SYS$CANTIM
The Cancel Timer Request (SYS$CANTIM) system service cancels timer requests
that have not been processed. The SYS$CANTIM system service removes the
entries from the timer queue. Cancellation is based on the request identification
given in the timer request. For example, to cancel the request illustrated in
Example 5-3, you would use the following call to SYS$CANTIM:

unsigned int status, reqidt=12;

status= SYS$CANTIM(reqidt, O);

If you assign the same identification to more than one timer request, all requests
with that identification are canceled. If you do not specify the reqidt argument,
all your requests are canceled.

5.4.3 Scheduling Wakeups with SYS$WAKE

5-16

Example 5-2 shows a process placing itself in a wait state using the
SYS$SETIMR and SYS$WAITFR services. A process can also make itself inactive
by hibernating. A process hibernates by issuing the Hibernate (SYS$HIBER)
system service. Hibernation is reversed by a wakeup request, which can be put
into effect immediately with the SYS$WAKE system service or scheduled with the
Schedule Wakeup (SYS$SCHDWK) system service. For more information about
the SYS$HIBER and SYS$WAKE system services, see Chapter 3.

System Time Operations
5.4 Routines Used for Timer Requests

The following example shows a process scheduling a wakeup for itself prior to
hibernating:

#include <stdio.h>
#include <descrip.h>

struct {
unsigned int buffl, buff2;

}btensec;

main()

unsigned int status;
$DESCRIPTOR(atensec,"0 00:00:10.00");

/* Convert time */
. status = SYS$BINTIM(&atensec, /* timbuf - ASCII time */

&btensec);/* timadr - binary time */
if ((status & 1) l= 1)

LIB$SIGNAL(status);

/* Schedule wakeup */
status = SYS$SCHDWK(O, /* pidadr - process id */

O, /* prcnam - process name */
&btensec, /* daytim - wake up time */
O); /* reptim - repeat interval */

if ((status & 1) l= 1)
LIB$SIGNAL(status);

/* Sleep ten seconds */

}

status= SYS$HIBER();
if ((status & 1) l= 1)

LIB$SIGNAL(status);

Note that a suitably privileged process can wake or schedule a wakeup request
for another process; thus, cooperating processes can synchronize activity using
hibernation and scheduled wakeups. Moreover, when you use the SYS$SCHDWK
system service in a program, you can specify that the wakeup request be repeated
at fixed time intervals. See Chapter 3 for more information on hibernation and
wakeup.

5.4.4 Canceling a Scheduled Wakeup with SVS$CANWAK
You can cancel scheduled wakeup requests that are pending but have not yet
been processed with the Cancel Wakeup (SYS$CANWAK) system service.

The following example shows the scheduling of wakeup requests for the process
CYGNUS and the subsequent cancellation of the wakeups. The SYS$SCHDWK
system service in this example specifies a delta time of 1 minute and an interval
time of 1 minute; the wakeup is repeated every minute until the requests are
canceled.

#include <stdio.h>
#include <descrip.h>

/* Buffer to hold one minute */

struct {
unsigned int buffl, buff2;

}interval;

main()

unsigned int status;
$DESCRIPTOR(one min,"0 00:01:00.00");
$DESCRIPTOR(cygnus, "CYGNUS");

/* One minute delta */
/* Process name */

5-17

System Time Operations
5.4 Routines Used for Timer Requests

/* Convert time to binary */
status = SYS$BINTIM(&one min,

&interval) ;
if((status & 1) != 1)

LIB$SIGNAL(status);
else

/* timbuf - ASCII delta time */
/* timadr - Buffer to hold binary time */

printf("Converting time to binary format •.. \n");

/* Schedule wakeup */
status = SYS$SCHDWK(O,

&cygnus,
&interval,
&interval);

if((status & 1) != 1)
LIB$SIGNAL(status);

}
else

/* pidadr - process id */
/* prcnam - process name */
/* daytim - time to be awakened */
/* reptim - repeat interval */

printf ("Scheduling wakeup ••• \n");

/* Cancel wakeups */
status = SYS$CANWAK(O,

&cygnus);
/* pidadr - process id */
/* prcnam - process name */

5.4.5 Executing a Program at Timed Intervals
To execute a program at timed intervals, you can use either the LIB$SPAWN
routine or the SYS$CREPRC system service. With LIB$SPAWN, you can create
a subprocess that executes a command procedure containing three commands:
the DCL command WAIT, the command that invokes the desired program, and a
GOTO command that directs control back to the WAIT command. To prevent the
parent process from remaining in hibernation until the subprocess executes, you
should execute the subprocess concurrently; that is, you should specify CLI$M_
NO WAIT.

For more information about using LIB$SPAWN and SYS$CREPRC, see
Chapter 3.

5.5 Routines Used for Timer Statistics

5-18

This section presents information about the LIB$INIT_TIMER, LIB$SHOW _
TIMER, LIB$STAT_TIMER, and LIB$FREE_TIMER routines. By calling these
run-time library routines, you can collect the following timer statistics from the
system:

• Elapsed time-Actual time that has passed since setting a timer

• CPU time-CPU time that has passed since setting a timer

• Buffered I/0-Number of buffered I/O operations that have occurred since
setting a timer

• Direct I/0-Number of direct I/O operations that have occurred since setting
a timer

• Page faults-Number of page faults that have occurred since setting a timer

Following are descriptions of each routine:

• LIB$INIT_TIMER-Allocates and initializes space for collecting the statistics.
You should specify the handle-adr argument as a variable with a value of 0
to ensure the modularity of your program. When you specify the argument,
the system collects the information in a specially allocated area in dynamic
storage. This prevents conflicts with other timers used by the application.

System Time Operations
5.5 Routines Used for Timer Statistics

• LIB$SHOW_TIMER-Obtains one or all of five statistics (elapsed time, CPU
time, buffered 1/0, direct 110, and page faults); the statistics are formatted for
output. The handle-adr argument must be the same value as specified for
LIB$INIT_TIMER (do not modify this variable). Specify the code argument
to obtain one particular statistic rather than all the statistics.

You can let the system write the statistics to SYS$0UTPUT (the default),
or you can process the statistics with a routine of your own. To process
the statistics yourself, specify the name of your routine in the action-rtn
argument. You can pass one argument to your routine by naming it in the
user-arg argument. If you use your own routine, it must be written as an
integer function and return an error code (return a value of 1 for success).
This error code becomes the error code returned by LIB$SHOW _TIMER. Two
arguments are passed to your routine: the first is a passed-length character
string containing the formatted statistics, and the second is the value of the
fourth argument (if any) specified to LIB$SHOW _TIMER.

• LIB$STAT_TIMER-Obtains one of five unformatted statistics. Specify the
statistic you want in the code argument. Specify a storage area for the
statistic in value. The handle-adr argument must be the same value as you
specified for LIB$INIT_TIMER.

• LIB$FREE_TIMER-You should invoke this procedure when you are done
with the timer to ensure the modularity of your program. The value in the
handle-adr argument must be the same as that specified for LIB$INIT_
TIMER.

You must invoke LIB$INIT_TIMER to allocate storage for the timer. You should
invoke LIB$FREE_TIMER before you exit from your program unit. In between,
you can invoke LIB$SHOW_TIMER or LIB$STAT_TIMER, or both, as often as
you want. Example 5-4 invokes LIB$SHOW _TIMER and uses a user-written
subprogram either to display the statistics or to write them to a file.

Example 5-4 Displaying and Writing Timer Statistics

Timer arguments
INTEGER*4 TIMER ADDR,
2 TIMER-DATA,
2 TIMER-ROUTINE
EXTERNAL TIMER-ROUTINE
! Declare library procedures as functions
INTEGER*4 LIB$INIT TIMER,
2 LIB$SHOW-TIMER
EXTERNAL LIB$INIT-TIMER,
2 LIB$SHOW-TIMER
! Work variables -
CHARACTER*5 REQUEST
INTEGER*4 STATUS
! User request - either WRITE or FILE
INTEGER*4 WRITE,
2 FILE
PARAMETER (WRITE = 1,
2 FILE = 2)

(continued on next page)

5-19

System Time Operations
5.5 Routines Used for Timer Statistics

5-20

Example 5-4 (Cont.) Displaying and Writing Timer Statistics

! Get user request
WRITE (UNIT=*, FMT='($,A)') , Request: ,
ACCEPT *, REQUEST
IF (REQUEST .EQ. 'WRITE') TIMER DATA= WRITE
IF (REQUEST .EQ. 'FILE') TIMER DATA= FILE
! Set timer -
STATUS = LIB$INIT TIMER (TIMER ADDR)
IF (.NOT. STATUS)-CALL LIB$SIGNAL (%VAL (STATUS))

Get statistics
STATUS = LIB$SHOW TIMER
2 -

(TIMER ADDR, ,
TIMER-ROUTINE,
TIMER-DATA) 2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Free timer
STATUS = LIB$FREE TIMER (TIMER ADDR)
IF (.NOT. STATUS)-CALL LIB$SIGNAL (%VAL (STATUS))

INTEGER FUNCTION TIMER ROUTINE (STATS,
2 - TIMER _DATA)
! Dummy arguments
CHARACTER*(*) STATS
INTEGER TIMER DATA
! Logical unit number for file
INTEGER STATS FILE
! User request
INTEGER WRITE,
2 FILE
PARAMETER (WRITE = 1,
2 FILE = 2)
! Return code
INTEGER SUCCESS,
2 FAILURE
PARAMETER (SUCCESS = 1,
2 FAILURE = 0)
! Set return status to success
TIMER ROUTINE = SUCCESS
! Write statistics or file them in STATS.DAT
IF (TIMER DATA .EQ. WRITE) THEN

TYPE *,-STATS
ELSE IF (TIMER DATA .EQ. FILE) THEN

CALL LIB$GET-LUN (STATS FILE)
OPEN (UNIT=STATS FILE, -

2 FILE=' STATS.DAT')
WRITE (UNIT=STATS FILE,

2 FMT=' (A) I)-STATS
ELSE

TIMER ROUTINE = FAILURE
END IF -
END

System Time Operations
5.5 Routines Used for Timer Statistics

You can use the SYS$GETSYI system service to obtain more detailed system
information on boot time, the cluster, processor type, emulated instructions,
nodes, paging files, swapping files, and hardware and software versions. With
SYS$GETQUI and LIB$GETQUI, you can obtain queue information.

5.6 Date!Time Formatting Routines
This section provides information about using date/time formatting routines that
allow you to specify input and output formats other than the standard operating
system format for dates and times. These include international formats with
appropriate language spellings for days and months.

If the desired language is English (the default language) and the desired format
is the standard operating system format, then initialization of logical names is
not required in order to use the date/time input and output routines. However,
if the desired language and format are not the defaults, the system manager (or
any user having CMEXEC, SYSNAM, and SYSPRV privileges) must initialize the
required logicals.

5.6.1 Performing Date!Time Logical Initialization
Note ~~~~~~~~~~~~~

You must complete the initialization steps outlined in this section
before you can use any of the date/time input and output routines with
languages and formats other than the defaults.

As an alternative to the standard operating system format, the command
procedure SYS$MANAGER:LIB$DT_STARTUP.COM defines several output
formats for dates and times. This command procedure must be executed by the
system manager prior to using any of the run-time library date/time routines for
input or output formats other than the default. Ideally, this command procedure
should be executed from a site-specific startup procedure.

In addition to defining the date/time formats, the LIB$DT_STARTUP.COM
command procedure also defines spellings for date and time elements in
languages other than English. If different language spellings are required,
the system manager must define the logical name SYS$LANGUAGES before
invoking LIB$DT_STARTUP.COM. The translation of SYS$LANGUAGES is then
used to select which languages are defined.

Table 5-5 shows the available languages and their logical names.

Table 5-5 Available Languages for Date/Time Formatting

Language

Austrian

Danish

Dutch

Finnish

French

Logical Name

AUSTRIAN

DANISH

DUTCH

FINNISH

FRENCH

(continued on next page)

5-21

System Time Operations
5.6 Date/Time Formatting Routines

Table 5-5 (Cont.) Available Languages for Date/Time Formatting

Language Logical Name

French Canadian CANADIAN

German GERMAN

Hebrew HEBREW

Italian ITALIAN

Norwegian NORWEGIAN

Portuguese PORTUGUESE

Spanish SPANISH

Swedish SWEDISH

Swiss French SWISS_FRENCH

Swiss German SWISS_GERMAN

For example, if the system manager wants the spellings for French, German,
and Italian languages to be defined, he or she must define SYS$LANGUAGES as
shown, prior to invoking LIB$DT_STARTUP.COM:

$ DEFINE SYS$LANGUAGES FRENCH, GERMAN, ITALIAN

If the user requires an additional language, for example FINNISH, then the
system manager must add FINNISH to the definition of SYS$LANGUAGES and
reexecute the command procedure.

5.6.2 Selecting a Format

5-22

There are two methods by which date/time input and output formats can be
selected:

• The language and format are determined at run time through the translation
of the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_
INPUT_FORMAT.

• The language and format are programmable at compile time through the use
of the LIB$INIT_DATE_TIME_CONTEXT routine.

In general, if an application accepts text from a user or formats text for
presentation to a user, the logical name method of specifying language and
format should be used. With this method, the user assigns equivalence names to
the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_INPUT_
FORMAT, thereby selecting the language and input or output format of the date
and time at run time.

If an application reads text from internal storage or formats text for internal
storage or transmission, the language and format should be specified at compile
time. If this is the case, the routine LIB$INIT_DATE_TIME_CONTEXT is used
to specify the language and format of choice.

System Time Operations
5.6 Date/Time Formatting Routines

5.6.2.1 Formatting Run-Time Mnemonics
The format mnemonics listed in Table 5-6 are used to define both input and
output formats at run time.

Table 5-6 Format Mnemonics

Date

!DO

!DD

!DB

!WU

!WAU

!WC

!WAC

!WL

!WAL

!MAU

!MAAU

!MAC

!MAAC

!MAL

!MAAL

!MNO

!MNM

!MNB

!Y4

!Y3

!Y2

!Yl

Time

!H04

!HH4

!HB4

!H02

!HH2

!HB2

!MO

!MM

!MB

!SO

!SS

Explanation

Day; zero-filled

Day; no fill

Day; blank-filled

Weekday; uppercase

Weekday; abbreviated, uppercase

Weekday; capitalized

Weekday; abbreviated, capitalized

Weekday; lowercase

Weekday; abbreviated, lowercase

Month; alphabetic, uppercase

Month; alphabetic, abbreviated, uppercase

Month; alphabetic, capitalized

Month; alphabetic, abbreviated, capitalized

Month; alphabetic, lowercase

Month; alphabetic, abbreviated, lowercase

Month; numeric, zero-filled

Month; numeric, no fill

Month; numeric, blank-filled

Year; 4 digits

Year; 3 digits

Year; 2 digits

Year; 1 digit

Explanation

Hours; zero-filled, 24-hour clock

Hours; no fill, 24-hour clock

Hours; blank-filled, 24-hour clock

Hours; zero-filled, 12-hour clock

Hours; no fill, 12-hour clock

Hours; blank-filled, 12-hour clock

Minutes; zero-filled

Minutes; no fill

Minutes; blank-filled

Seconds; zero-filled

Seconds; no fill

(continued on next page)

5-23

System Time Operations
5.6 Date!Time Formatting Routines

Table 5-6 (Cont.) Format Mnemonics

Time

!SB

!C7

!C6

!C5

!C4

!C3

!C2

!Cl

!MIU

!MIC

!MIL

Explanation

Seconds; blank-filled

Fractional seconds; 7 ~igits

Fractional seconds; 6 digits

Fractional seconds; 5 digits

Fractional seconds; 4 digits

Fractional seconds; 3 digits

Fractional seconds; 2 digits

Fractional seconds; 1 digit

Meridiem indicator; uppercase

Meridiem indicator; capitalized (mixed case)

Meridiem indicator; lowercase

5.6.2.2 Specifying Formats at Run Time
If an application accepts text from a user or formats text for presentation to
a user, the logical name method of specifying language and format should be
used. With this method, the user assigns equivalence names to the logical names
SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_INPUT_FORMAT, thereby
selecting the language and format of the date and time at run time. LIB$DT_
INPUT_FORMAT must be defined using the mnemonics listed in Table 5-6. The
possible choices for SYS$LANGUAGE and LIB$DT_FORMAT are defined in the
SYS$MANAGER:LIB$DT_STARTUP.COM command procedure that is executed
by the system manager prior to using these routines.

The following actions occur when any translation of a logical name fails:

• If the translation of SYS$LANGUAGE or any logical name relating to text
fails, then English is used and a statu:S of LIB$_ENGLUSED is returned.

• If the translation of LIBDT_FORMAT, LIBDT_INPUT_FORMAT, or
any logical name relating to format fails, the operating system standard
(SYS$ASCTIM) representation of the date and time is used, that is, dd­
MMM-yyyy hh:mm:ss.cc, and a status of LIB$_DEFFORUSE is returned.

Since English is the default language and must therefore always be available,
English spellings are not taken from logical name translations, but rather are
looked up in an internal table.

5.6.2.3 Specifying Input Formats at Run Time

5-24

Using the logical name LIB$DT_INPUT_FORMAT, the user can define his or her
own input format at run time using the mnemonics listed in Table 5-6. Once an
input format is defined, any dates or times that are input to the application are
parsed against this format. For example:

$ DEFINE LIB$DT INPUT FORMAT -
_$ "!MAU !DD, !Y4 !H02:!MO:!SO:!C2 !MIU"

A valid input date string would be as follows:

JUNE 15, 1993 08:45:06:50 PM

System Time Operations
5.6 Date!Time Formatting Routines

If the user has selected a language other than English, then the translation
of SYS$LANGUAGE is used by the parser to recognize alphabetic months and
meridiem indicators in the selected language.

Input Format String
The input format string used to define the input date/time format must contain
at least the first seven of the following eight fields:

• Month (either alphabetic or numeric)

• Day of the month (numeric)

• Year (from 1 to 4 digits)

• Hour (12- or 24-hour clock)

• Minute of the hour

• Second of the minute

• Fractional seconds

• Meridiem indicator (required for 12-hour clock; illegal for 24-hour clock)

If the input format string specifies a 24-hour clock, the ·string will contain only
the first seven fields in the preceding list. If a 12-hour clock is specified, the
eighth field (the meridiem indicator) is required.

The format string fields must appear in two groups: one for date and one for time
(date and time fields cannot be intermixed within a group). For the input format,
alphabetic case distinctions and abbreviation-specific codes have no significance.
For example, the following format string specifies that the month name will be
uppercase and spelled out in full:

!MAU !DD, !Y4 !H02: !MO: !SO: !C2 !MIU

If the input string corresponding to this format string contains a month name
that is abbreviated and lowercase, the parse of the input string still works
correctly. For example:

feb 25, 1988 04:39:02:55 am

If this input string is entered, the parse still recognizes "feb" as the month name
and "am" as the meridiem indicator, even though the format string specified both
of these fields as uppercase, and the month name as unabbreviated.

Punctuation in the Format and Input Strings
One important aspect to consider when formatting date/time input strings is
punctuation. The punctuation referred to here is the characters that separate the
various date/time fields or the date and time groups. Punctuation in these strings
is important because it is used as an outline for the parser, allowing the parser to
synchronize the input fields to the format fields.

There are three distinct classes of punctuation:

• None

Although it is common for no punctuation to begin or end an input format
string, you can specify a date/time format that also has no punctuation
between the fields or groups of the format string. If this is the case, the
corresponding input string must not have any punctuation between the
respective fields or groups, although white space (see the next item in this
list) may appear at the beginning or end of the input string.

5-25

System Time Operations
5.6 Date!Time Formatting Routines

5-26

• White space

White space includes any combination of spaces and tabs. In the
interpretation of the format string, any white space is condensed to a single
space. When parsing an input string, white space is generally noted as
synchronizing punctuation and is skipped; however, white space is significant
in some situations, such as with blank-filled numbers.

• Explicit

Explicit punctuation refers to any string of one or more characters that is
used as punctuation and is not solely comprised of white space. Any white
space appearing within an explicit punctuation string is interpreted literally;
in other words, the white space is not compressed. In the format string, you
can use explicit punctuation to denote a particular format and to guide the
parser in parsing the input string. In the input string, you can use explicit
punctuation to synchronize the parse of the input string against the format
string. The explicit punctuation used should not be a subset of the valid input
of any field that it precedes or follows it.

Punctuation is especially important in providing guidelines for the parser to
translate the input date/till?-e string properly.

Default DatefTime Fields
Punctuation in a date/time string is also useful for specifying which fields you
want to omit in order to accept the default values. That is, you can control the
parsing of the input string by supplying punctuation without the appropriate
field values. If only the punctuation is supplied and a user-supplied default is not
specified, the value of the omitted field defaults according to the following rules:

• For the date group, the default is the current date.

• For the time group, the default is 00:00:00.00.

Table 5-7 gives some examples of input strings (using punctuation to indicate
defaulted fields) and their full translations (assuming a current date of 25-FEB-
1993 and using the default input format).

Table 5-7 Input String Punctuation and Defaults

Input

31

-MAR

-SEPTEMBER

-1993

23:

:45:

::23

.01

Full Date/Time Input String

31-FEB-1993 00:00:00.00

25-MAR-1993 00:00:00.00

25-SEP-1993 00:00:00.00

25-FEB-1993 00:00:00.00

25-FEB-1993 23:00:00.00

25-FEB-1993 00:45:00.00

25-FEB-1993 00:00:23.00

25-FEB-1993 00:00:00.01

Note on the Changing Century
Because the default is the current date for the date group, if you specify a value
of 00 with the !Y2 format, the year is interpreted as 1900. After January 1, 2000,
the value 00 will be interpreted as 2000.

System Time Operations
5.6 Date!Time Formatting Routines

For example, 02/29/00 is interpreted as 29-FEB-1900, which results in LIB$_
INVTIME because 1900 is not a leap year. After the turn of the century (the year
2000), 02/29/00 will be 29-FEB-2000, which is a valid date because 2000 is a leap
year.

5.6.2.4 Specifying Output Formats at Run Time
_ If the logical name method is used to specify an output format at run time,

the translations of the logical names SYS$LANGUAGE and LIB$DT_FORMAT
specify one or more executive mode logicals which in turn must be translated to
determine the actual format string. These additional logicals supply such things
as the names of the days of the week and the months in the selected language
(as determined by SYS$LANGUAGE). All of these logicals are predefined, so
that a nonprivileged user can select any one of these languages and formats. In
addition, a user can create his or her own languages and formats; however, the
CMEXEC, SYSNAM and SYSPRV privileges are required.

To select a particular format for a date or time, or both, you must define the
LIB$DT_FORMAT logical name using the following logicals:

• LIB$DATE_FORMAT_nnn, where nnn ranges from 001 to 040

• LIB$TIME_FORMAT_nnn, where nnn ranges from 001 to 020

The order in which these logical names appear in the definition of LIB$DT_
FORMAT determines the order in which they are output. A single space is
inserted into the output string between the two elements, if the definition
specifies that both are output. For example:

$ DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_006, LIB$TIME_FORMAT_012

This definition causes the date to be output in the specified format, followed by a
space and the time in the specified format, as follows:

13 JAN 93 9:13 AM

Table 5-8 lists all predefined date format logical names, their formats, and
examples of the output generated using those formats. (The mnemonics used to
specify the formats are listed in Table 5-6.)

Table 5-8 Predefined Output Date Formats

Date Format Logical Format

LIB$DATE_FORMAT_001 !DB-!MAAU-!Y4

LIB$DATE_FORMAT_002 !DB !MAU !Y4

LIB$DATE_FORMAT_003 !DB.!MAU !Y4

LIB$DATE_FORMAT_004 !DB.!MAU.!Y4

LIB$DATE_FORMAT_005 !DB !MAU !Y2

LIB$DATE_FORMAT_006 !DB !MAAU !Y2

LIB$DATE_FORMAT_007 !DB.!MAAU !Y2

LIB$DATE_FORMAT_008 !DB.!MAAU.!Y2

LIB$DATE_FORMAT_009 !DB !MAAU !Y4

LIB$DATE_FORMAT_010 !DB.!MAAU !Y4

Example

13-JAN-1993

13 JANUARY 1993

13.JANUARY 1993

13.JANUARY.1993

13 JANUARY 93

13 JAN 93

13.JAN 93

13.JAN.93

13 JAN 1993

13.JAN 1993

(continued on next page)

5-27

System Time Operations
5.6 Date/Time Formatting Routines

Table 5-8 (Cont.) Predefined Output Date Formats

Date Format Logical Format

LIB$DATE_FORMAT_Oll !DB.!MAAU.!Y4

LIB$DATE_FORMAT_012 !MAU !DD, !Y4

LIB$DATE_FORMAT_013 !MNO/!DO/!Y2

LIB$DATE_FORMAT_014 !MNO-!DO-!Y2

LIB$DATE_FORMAT_Ol5 !MNO.!DO.!Y2

LIB$DATE_FORMAT_016 !MNO !DO !Y2

LIB$DATE_FORMAT_Ol 7 !DO/!MNO/!Y2

LIB$DATE_FORMAT_018 !DO/!MNO-!Y2

LIB$DATE_FORMAT_019 !DO-!MNO-!Y2

LIB$DATE_FORMAT_020 !DO.!MNO.!Y2

LIB$DATE_FORMAT_021 !DO !MNO !Y2

LIB$DATE_FORMAT_022 !Y2/!MNO/!DO

LIB$DATE_FORMAT_023 !Y2-!MNO-!DO

LIB$DATE_FORMAT_024 !Y2.!MNO.!DO

LIB$DATE_FORMAT_025 !Y2 !MNO !DO

LIB$DATE_FORMAT_026 !Y2!MNO!DO

LIB$DATE_FORMAT_027 /!Y2.!MNO.!DO

LIB$DATE_FORMAT_028 !MNO/!DO/!Y 4

LIB$DATE_FORMAT_029 !MNO-!DO-!Y4

LIB$DATE_FORMAT_030 !MNO.!DO.!Y4

LIB$DATE_FORMAT_031 !MNO !DO !Y4

LIB$DATE_FORMAT_032 !DO/!MNO/!Y 4

LIB$DATE_FORMAT_033 !DO-!MNO-!Y4

LIB$DATE_FORMAT_034 !DO.!MNO.!Y4

LIB$DATE_FORMAT_035 !DO !MNO !Y4

LIB$DATE_FORMAT_036 !Y 4/!MNO/!DO

LIB$DATE_FORMAT_037 !Y4-!MNO-!DO

LIB$DATE_FORMAT_038 !Y4.!MNO.!DO

LIB$DATE_FORMAT_039 !Y4 !MNO !DO

LIB$DATE_FORMAT_040 !Y4!MNO!DO

Example

13.JAN.1993

JANUARY 13, 1993

01/13/93

01-13-93

01.13.93

0113 93

13/01/93

13/01-93

13-01-93

13.01.93

13 01 93

93/01/13

93-01-13

93.01.13

93 0113

930113

/93.01.13

01/13/1993

01-13-1993

01.13.1993

0113 1993

13/01/1993

13-01-1993

13.01.1993

13 011993

1993/01/13

1993-01-13

1993.01.13

1993 0113

19930113

Table 5-9 lists all predefined time format logical names, their formats, and
examples of the output generated using those formats.

5-28

5.6.2.5

System Time Operations
5.6 Date!Time Formatting Routines

Table 5-9 Predefined Output T.ime Formats

Time Format Logical Format Example

LIB$TIME_FORMAT_001 !H04:!MO:!SO.!C2 09:13:25.14

LIB$~IME_FORMAT _002 !H04: !MO: !SO 09:13:25

LIB$TIME_FORMAT _003 !H04.!MO.!SO 09.13.25

LIB$TIME_FORMAT _004 !H04 !MO !SO 09 13 25

LIB$TIME_FORMAT _005 !H04:!MO 09:13

LIB$TIME_FORMAT_006 !H04.!MO 09.13

LIB$TIME_FORMAT _007 !H04 !MO 09 13

LIB$TIME_FORMAT_008 !HH4:!MO 9:13

LIB$TIME_FORMAT_009 !HH4.!MO 9.13

LIB$TIME_FORMAT_010 !HH4 !MO 913

LIB$TIME_FORMAT_Oll !H02:!MO !MIU 09:13 .AM:

LIB$TIME_FORMAT_012 !HH2:!MO !MIU 9:13 .AM:

LIB$TIME_FORMAT_013 !H04!MO 0913

LIB$TIME_FORMAT_014 !H04H!MOm 09Hl3m

LIB$TIME_FORMAT_015 kl !H04.!MO kl 09.13

LIB$TIME_FORMAT_016 !H04H!MO' 09H13'

LIB$TIME_FORMAT_Ol 7 !H04.!MO h 09.13 h

LIB$TIME_FORMAT_018 h !H04.!MO h 09.13

LIB$TIME_FORMAT_019 !HH4h !MM 9 h 13

LIB$TIME_FORMAT _020 !HH4 h !MM min !SS s 9 h 13 min 25 s

Specifying Formats at Compile Time
If an application reads text from internal storage or formats text for internal
storage or transmission, the language and format should be specified at compile
time. The routine LIB$INIT_DATE_TIME_CONTEXT allows the user to specify
the language and format at compile time by initializing the context area used by
LIB$FORMAT_DATE_TIME for output or LIB$CONVERT_DATE_STRING for
input with specific strings, instead of through logical name translations. Note
that when the text will be parsed by another program, LIB$INIT__DATE_TIME_
CONTEXT expects all required context information (including spellings) to be
specified. For applications where the context specifies a user's preferred format
style, the spellings can be looked up from the logical name tables.

Only one context component can be initialized per call to LIB$INIT_DATE_
TIME_CONTEXT. Table 5-10 lists the available components and their number
of elements. (_ABB indicates an abbreviated version of the month and weekday
names.)

5-29

System Time Operations
5.6 Date!Time Formatting Routines

Table 5-10 Available Components for Specifying Formats at Compile Time

Available Component

LIB$K_MONTH_NAME

LIB$K_MONTH_NAME_ABB

LIB$K_FORMAT_MNEMONICS

LIB$K_ WEEKDAY_NAME

LIB$K_ WEEKDAY_NAME_ABB

LIB$K_RELATIVE_DAY_NAME

LIB$K_MERIDIEM_INDICATOR

LIB$K_OUTPUT_FORMAT

LIB$K_INPUT_FORMAT

LIB$K_LANGUAGE

Number of Elements

12

12

9

7

7

3

2

2

1

1

To specify the actual values for these elements, you must use an initialization
string in the following format:
11

[delim][string-1][delim][string-2][delim] ... [delim][string-n][delim]"

In this format, [-] is a delimiting character that is not in any of the strings, and
[string-n] is the spelling of the nth instance of the component.

For example, a string passed to this routine to specify the English spellings of the
abbreviated month names might be as follows:

" I JAN I FEB I MAR I APR I MAY I JUN I JUL I AUG I SEP I OCT I NOV I DEC I "

The string must contain the exact number of elements for the associated
component; otherwise the error LIB$_NUMELEMENTS is returned. Note that
the string begins and ends with a delimiter. Thus, there is one more delimiter
than the number of string elements in the initialization string.

5.6.2.6 Specifying Input Format Mnemonics at Compile Time

5-30

To specify the input format mnemonics at compile time, the user must initialize
the component LIB$K_FORMAT_MNEMONICS with the appropriate values.
Table 5-11 lists the nine fields that must be initialized, in the appropriate order,
along with their default (English) values.

Table 5-11 Legible Format Mnemonics

Order Format Field

1 Year

2 Numeric month

3 Numeric day

4 Hours (12- or 24-hour)

5 Minutes

6 Seconds

7 Fractional seconds

Legible Mnemonic (Default)

yyyy

MM

DD

HH

MM

SS

cc
(continued on next page)

System Time Operations
5.6 Date/Time Formatting Routines

Table 5-11 (Cont.) Legible Format Mnemonics

Order

8

9

Format Field

Meridiem indicator

Alphabetic month

Legible Mnemonic (Default)

AM/PM

MONTH

For example, the following is a valid definition of the component LIB$K_
FORMAT_MNEMONICS, using English as the natural language:

IYYYYIMMIDDIHHIMMlsslcclAM/PMIMONTHI

If the user were entering the same string using Austrian as the natural language,
the definition of the component LIB$K_FORMAT_MNEMONICS would be as
follows:

IJJJJIMMITTlsslMMlsslHHI IMONATI

5.6.2.7 Specifying Output Formats at Compile Time
To specify an output format at compile time, the user must preinitialize the
component LIB$K_OUTPUT_FORMAT. 'I\vo elements are associated with this
output format string. One describes the date format fields, the other the time
format fields. The order in which they appear in the string determines the order
in which they are output. A single space is inserted into the output stream
between the two elements, if the call to LIB$FORMAT_DATE_TIME specifies
that both be output. For example:

II I !DB-!MAAU-!Y4 I !H04:!MO:!SO.!C2 I II

(These mnemonics are listed in Table 5-6.) This format string represents the
format used by the $ASCTIM system service for outputting times. Note that the
middle delimiter is replaced by a space in the resultant output.

13-JAN-1993 14:54:09:24

5.6.3 Converting with the LIB$CONVERT _DATE_STRING Routine
The LIB$CONVERT_DATE_STRING routine converts an absolute date/time
string into an operating system internal format date/time quadword. You can
optionally specify which fields of the input string can be defaulted (using the
input-flags argument), and what the default values should be (using the
defaults argument). By default, the time fields can be defaulted but the date
fields cannot. Table 5-7 gives some examples of these default values.

The optional defaulted-fields argument to LIB$CONVERT_DATE_STRING
can be used to determine which input fields were defaulted. That is, the
defaulted-fields argument is a bit mask in which each set bit indicates .that
the corresponding field was defaulted in the input date/time string.

If you want to use LIB$CONVERT_DATE_STRING to return the current time as
well as the current date, you can call the $NUMTIM system service and pass the
timbuf argument, which contains the current date and time, to LIB$CONVERT_
DATE_STRING as the defaults argument. This tells the LIB$CONVERT_
DATE_STRING routine to take the default values for the date and time fields
from the 7-word array returned by $NUMTIM.

5-31

System Time Operations
5.6 Dateffime Formatting Routines

5.6.4 Retrieving with LIB$GET _DATE_FORMAT Routine
The LIB$GET_DATE_FORMAT routine enables you to retrieve information about
the currently selected input format. The string returned by LIB$GET_DATE_
FORMAT parallels the currently defined input format string, consisting of the
format punctuation (with most white space compressed) and legible mnemonics
representing the various format fields.

Based on the currently defined input date/time format, LIB$GET _DATE_
FORMAT returns a string comprised of the mnemonics that represent the current
format. These mnemonics are listed in Table 5-11.

Table 5-12 gives some examples of input format strings and their resultant
mnemonic strings (using English as the default language).

Table 5-12 Sample Input Format Strings

Sample Format String

!MAU !DD, !Y4 !H04:!MO:!SO:!C2

!MNO-!DO-!Y2 !H04:!MO:!SO.!C2

!MNO/!DO/!Y2 !H02:!MO:!SO.!C2 !MIU

LIB$GET _DATE_FORMAT Value

MONTH DD, YYYY4 HH:MM:SS:CC2

MM-DD-YYYY2 HH:MM:SS.CC2

MM/DD/YYYY2 HH:MM:SS.CC2 AM/PM

5.6.4.1 Using User-Defined Output Formats

5-32

In addition to the 40 date output formats and 20 time output formats provided,
users can define their own date and time output formats using the logical names
LIB$DATE_FORMAT_nnn and LIB$TIME_FORMAT_nnn, where nnn ranges
from 501 to 999. (That is, values of nnn from 001 to 500 are reserved for use by
Digital Equipment Corporation.) The mnemonics used to define output formats
are listed in Table 5-6.

User-defined output formats must be defined as executive-mode logicals, and
they must be defined in the table LNM$DT_FORMAT_TABLE. These formats
are normally defined from the site-specific startup command procedure. The
following example illustrates the steps required of the system manager to create
a particular output format using French as the language:

$ DEFINE/EXEC/TABLE=LNM$DT FORMAT TABLE LIB$DATE FORMAT 501 -
$ "!WL, le !DD !MAL !Y4"- - - -

$ DEFINE/EXEC/TABLE=LNM$DT FORMAT TABLE LIB$TIME FORMAT 501 -
_$ "!H04 heures et !MO minutes" - - -

After the system manager defines the desired formats, the user can access them
by using the following commands:

$ DEFINE SYS$LANGUAGE FRENCH
$ DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_501, LIB$TIME_FORMAT_501

After completing these steps, a program outputting the date and time provides
the following results:

mardi, le 20 janvier 1993 13 heures et 50 minutes

In addition to creating their own date and time formats, users can also define
their own language tables (provided they have the SYSNAM, SYSPRV and
CMEXEC privileges). To create a language table, a user must define all the
logical names required.

System Time Operations
5.6 DatefTime Formatting Routines

The following example defines a portion of the Dutch language table. This table
is included in its entirety in the set of predefined languages provided with the
international date/time formatting routines.

$ CREATE/NAME/PARENT=LNM$SYSTEM DIRECTORY/EXEC/PROT=(S:RWED,G:R,W:R) -
$ LNM$LANGUAGE DUTCH -

$ DEFINE/EXEC/TABLE=LNM$LANGUAGE DUTCH LIB$WEEKDAYS L -
$ "maandag", "dinsdag", "woensdag", "donderdag", "vrijdag", -

-$ "zaterdag", "zondag"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE DUTCH LIB$WEEKDAY ABBREVIATIONS L -

$ "maa", "din", "woe", "don", "vri", "zat", "zon" -
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE DUTCH LIB$MONTHS L "januari", -

$ "februari", "maart", "april"; "mei", "juni", "juli", "augustus", -
-$ "september", "oktober", "november", "december"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE DUTCH LIB$MONTH ABBREVIATIONS L -

$ "jan", "feb", "mrt", "apr", "mei", "jun", "jul", "aug", "sep", -
-$ "okt", "nov", "dee"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE AUSTRIAN LIB$RELATIVE DAYS L -
_$ "gisteren", "vandaag", "morgen" - -

All logicals that are used to build a language are as follows:

LIB$WEEKDAYS_[U I LI C]
These logicals supply the names of the weekdays, spelled out in full (uppercase,
lowercase, or mixed case). Weekdays must be defined in order, starting with
Monday.

LIB$WEEKDAY _ABBREVIATIONS_[U ILIC]
These logicals supply the abbreviated names of the weekdays (uppercase,
lowercase, or mixed case). Weekday abbreviations must be defined in order,
starting with Monday.

LIB$MONTHS_[U I LI C]
These logicals supply the names of the months, spelled out in full (uppercase,
lowercase, or mixed case). Months must be defined in order, starting with
January.

LIB$MONTH_ABBREVIATIONS_[U I LI C]
These logicals supply the abbreviated names of the months (uppercase, lowercase,
or mixed case). Month abbreviations must be defined in order, starting with
January.

LIB$Ml_[U I LI C]
These logicals supply the spellings for the meridiem indicators (uppercase,
lowercase, or mixed case). Meridiem indicators must be defined in order; the first
indicator represents the hours 0:00:0.0 to 11:59:59.99, and the second indicator
represents the hours 12:00:00.00 to 23:59:59.99.

LIB$RELATIVE_DAYS_[U'I LI C]
These logicals supply the spellings for the relative days (uppercase, lowercase,
or mixed case). Relative days must be defined in order: yesterday, today, and
tomorrow, respectively.

LIB$FORMAT _MNEMONICS
This logical supplies the abbreviations for. the appropriate format mnemonics.
That is, the information supplied in this logical is used to specify a desired input
format in the user-defined language. The format mnemonics, along with their
English values, are listed in the order in which they must be defined.

5-33

System Time Operations
5.6 Date!Time Formatting Routines

1. Year (YYYY)

2. Numeric month (MM)

3. Day of the month (DD)

4. Hour of the day (HH)

5. Minutes of the hour (MM)

6. Seconds of the minute (SS)

7. Parts of the second (CC)

8. Meridiem indicator (AM/PM)

9. Alphabetic month (MONTH)

The English definition of LIB$FORMAT_MNEMONIC is therefore as follows:

$ DEFINE/EXEC/TABLE=LNM$LANGUAGE ENGLISH LIB$FORMAT MNEMONICS -
_$ "YYYY"' "MM"' "DD"' "HH"' "MM"' "SS"' "CC"' "AM7PM II' "MONTH"

5.7 Coordinated Universal Time Format (VAX Only)

4ll!J:• II

5-34

This section provides information about VAX systems that supply system base
date and time format other than the Smithsonian base date and time system.
The other base date and time format system is the Coordinated Universal Time
(UTC) system. UTC time is determined by a network of atomic clocks that are
maintained by standard bodies in several countries. Formerly, applications that
spanned time zones often used Greenwich Mean Time (GMT) as a time reference.

UTC binary timestamps are opaque octawords of 128-bits that contain several
fields. Important fields of the UTC format are an absolute time value, a time
differential factor (TDF) that contains the offset of the host node's clock from
UTC, and an inaccuracy, or tolerance, that can be applied to the absolute time
value. Unlike UTC, the operating system binary date and timestamps in the
Smithsonian base date and time format represent only the local time of the host
node; they do not contain TDF values or inaccuracy values.

The UTC system services allow applications to gain the benefits of a Coordinated
Universal Time reference. The UTC system services enable applications to
reference a common time standard independent of the host's location and local
date and time value.

By calling the UTC system services, applications can perform the following
functions:

• Obtain binary representations of UTC in the binary UTC format

• Convert the binary operating system format date and time to binary
UTC-format date and time

• Convert binary UTC-format date and time to the binary operating system
date and time

• Convert ASCII-format date and time to binary UTC-format date and time

• Convert binary UTC-format date and time to ASCII format date and time

System services that implement the UTC format date and time are:

• SYS$ASCUTC-Convert UTC to ASCII

• SYS$BINUTC-Convert ASCII String to UTC Binary Time

System Time Operations
5.7 Coordinated Universal Time Format (VAX Only)

• SYS$GETUTC-Get UTC Time

• SYS$NUMUTC-Convert UTC Time to Numeric Components

• SYS$TIMCON-Time Converter

For specific implementation information about the UTC system services, see the
Open VMS System Services Reference Manual. +

5-35

6
Using Run-Time Library Routines to Access

Operating System Components

This chapter describes the run-tiriie library (RTL) routines that allow access to
various operating system components. It contains the following sections:

Section 6.1 describes how to use RTL routines to make system services return
different types of strings.

Section 6.2 describes how to use RTL routines to provide access to the command
language interpreter.

Section 6.3 describes how to use RTL routines to allow high-level language
programs to use most VAX machine instructions or their AXP equivalent.

Section 6.4 describes how to use RTL routines to allocate processwide resources
to a single operating system process.

Section 6.5 describes how to use RTL routines to measure performance.

Section 6.6 describes how to use RTL routines to control output formatting.

Section 6. 7 describes how to use RTL routines for miscellaneous interface
routines.

Run-time library routines allow access to the following operating system
components:

• System services

• Command language interpreter

• Some VAX machine instructions

6.1 System Service Access Routines
You can usually call the operating system's system services directly from your
program. However, system services return only fixed-length strings. In some
applications, you may want the result of a system service to be returned as a
character array, dynamic string, or variable-length string. For this reason, the
. RTLs provides jacket routines for the system services that return strings.

You call jacket routines exactly as you would the corresponding system service,
but you can pass an output argument of any valid string class. The routines write
the output string using the semantics (fixed, varying, or dynamic) associated with
the string's descriptor.

The jacket routines follow the conventions established for all RTL routines, except
that the arguments are listed in the order of the arguments for the corresponding
system service. Thus, they may not be listed in the standard RTL order (read,
modify, write).

6-1

Using Run-Time Library Routines to Access Operating System Components
6.1 System Service Access Routines

For example, the LIB$SYS_ASCTIM routine calls the SYS$ASCTIM system
service to convert a binary date and time value to ASCII text. It returns the
resulting string using the semantics that the calling program specifies in the
destination string argument.

For further information about the operations of the system services, see the
Open VMS System Services Reference Manual.

The RTL routines provide access to only the system services that produce output
strings, which are listed in Table 6-1. The corresponding RTL routines recognize
all VAX string classes.

The RTL does not provide jacket routines for all the system services that accept
strings as input. Your program should pass only fixed-length or dynamic input
strings to all system services and RTL j~cket routines.

Table 6-1 System Service Access Routines

Entry Point System Service

LIB$SYS_ASCTIM $ASCTIM

LIB$SYS_FAO $FAO

LIB$SYS_FAOL $FAOL

LIB$SYS_GETMSG $GETMSG

LIB$SYS_TRNLOG $TRNLOG

Function

Converts system time in binary form
to ASCII text

Converts a binary value to ASCII text

Converts a binary value to ASCII text,
using a list argument

Obtains a system or user-defined
message text

Returns the translation of the specified
logical name

6.2 Access to the Command Language Interpreter

6-2

Two command language interpreters (CLis) are available on the operating
system: DCL and MCR. The run-time library provides several routines that
provide access to the CLI callback facility. These routines allow your program to
call the current CLI. In most cases, these routines are called from programs that
execute as part of a command procedure. They allow the command procedure and
the CLI to exchange information.

These routines call the CLI associated with the current process to· perform the
specified function. In some cases, however, a CLI is not present. For example,
the program may be running directly as a subprocess or as a detached process. If
a CLI is not present, these routines return the status LIB$_NOCLI. Therefore,
you should be sure that these routines are called when a CLI is active. Table 6-2
lists the RTL routines that access the CLI.

Table 6-2 CLI Access Routines

Entry Point

LIB$GET_FOREIGN

LIB$DO_COMMAND

Function

Gets a command line

Executes a command line after exiting the current
program

(continued on next page)

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

Table 6-2 (Cont.) CLI Access Routines

Entry Point Function

LIB$RUN_PROGRAM Runs another program after exiting the current program
(chain)

LIB$GET_SYMBOL

LIB$DELETE_SYMBOL

LIB$SET_SYMBOL

LIB$DELETE_LOGICAL

LIB$SET_LOGICAL

LIB$DISABLE_ CTRL

LIB$ENABLE_CTRL

LIB$ATTACH

LIB$SPAWN

Returns the value of a CLI symbol as a string

Deletes a CLI symbol

Defines or redefines a CLI symbol

Deletes a supervisor-mode process logical name

Defines or redefines a supervisor-mode process logical
name

Disables CLI interception of control characters

Enables CLI interception of control characters

Attaches a terminal to another process

Creates a subprocess of the current process

The following routines execute only when the current CLI is DCL:

LIB$GET_SYMBOL
LIB$SET_SYMBOL
LIB$DELETE_SYMBOL
LIB$DISABLE_CTRL
LIB$ENABLE_ CTRL
LIB$SPAWN
LIB$ATTACH

6.2.1 Obtaining the Command Line
The LIB$GET_FOREIGN routine returns the contents of the command line that
you use to activate an image. It can be used to give your program access to the
qualifiers of a foreign command or to prompt for further command line text.

A foreign command is a command that you can define and then use as if it
were a DCL or MCR command in order to run a program. When you use the
foreign command at command level, the CLI parses the foreign command only
and activates the image. It ignores any options or qualifiers that you have defined
for the foreign command. Once the CLI has activated the image, the program can
call LIB$GET_FOREIGN to obtain and parse the remainder of the command line
(after the command itself) for whatever options it may contain.

The Open VMS DCL Dictionary describes how to define a foreign command.

The action of LIB$GET_FOREIGN depends on the environment in which the
image is activated:

• If you use a foreign command to invoke the image, you can call LIB$GET_
FOREIGN to obtain the command qualifiers following the foreign command.
You can also use LIB$GET_FOREIGN to prompt repeatedly for more
qualifiers after the command. This technique is illustrated in the following
example.

• If the image is in the SYS$SYSTEM: directory, the image can be invoked
by the DCL command MCR or by the MCR CLI. In this case, LIB$GET_
FOREIGN returns the command line text following the image name.

6-3

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

6-4

• If the image is invoked by the DCL command RUN, you can use LIB$GET _
FOREIGN to prompt for additional text.

• If the image is not invoked by a foreign command or by MCR, or if there is no
information remaining on the command line, and the user-supplied prompt
is present, LIB$GET_INPUT is called to prompt for a command line. If the
prompt is not present, LIB$GET_FOREIGN returns a zero-length string.

Example
The following PL/I example illustrates the use of the optional force-prompt
argument to permit repeated calls to LIB$GET_FOREIGN. The command line
text is retrieved on the first pass only; after this, the program prompts from
SYS$INPUT.

EXAMPLE: ROUTINE OPTIONS (MAIN);

%INCLUDE $STSDEF; /* Status-testing definitions */

DECLARE COMMAND LINE CHARACTER(80) VARYING,
PROMPT FLAG FIXED BINARY(31) INIT(O),
LIB$GET FOREIGN ENTRY (CHARACTER(*) VARYING,

- CHARACTER(*) VARYING,
FIXED BINARY(l5),
FIXED BINARY(31))

OPTIONS(VARIABLE) RETURNS (FIXED BINARY(31)),
RMS$_EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Call LIB$GET FOREIGN repeatedly to obtain and print
subcommand text. Exit when end-of-file is found. *I

DO WHILE ('l'B); /*Do while TRUE*/
STS$VALUE = LIB$GET FOREIGN

(COMMAND LINE,'Input: ',,
PROMPT FLAG);

IF STS$SUCCESS THEN -
PUT LIST(' Corrunand was ',COMMAND LINE);

ELSE DO; -
IF STS$VALUE A= RMS$ EOF THEN

PUT LIST ('Error encountered');
RETURN;
END;

PUT SKIP;
END;

END;

/* Skip to next line */
/* End of DO WHILE loop */

Assuming that this program is present as SYS$SYSTEM:EXAMPLE.EXE, you
can define the foreign command EXAMPLE to invoke it, as follows:

$ EXAM*PLE :== $EXAMPLE

Note the optional use of the asterisk in the symbol name to denote an abbreviated
command name. This permits the command name to be abbreviated as EXAM,
EXAMP, EXAMPL or to be specified fully as EXAMPLE. See the Open VMS DCL
Dictionary for information about abbreviated command names.

Note that the use of the dollar sign($) before the image name is required in
foreign commands.

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

Now assume that a user runs the image by typing the foreign command and
giving "subcommands" that the program displays:

$ EXAMP Subcommand 1
Command was SUBCOMMAND 1

Input: Subcommand 2
Command was SUBCOMMAND 2

Input: "z
$

In this example, Subcommand 1 was ob~ained from the command line; the
program prompts the user for the second subcommand. The program terminated
when the user pressed the Ctrl/Z key sequence (displayed as "Z) to indicate
end-of-file.

6.2.2 Chaining from One Program to Another
The LIB$RUN_PROGRAM routine causes the current image to exit at the point
of the call and directs the CLI, if present, to start running another program.
If LIB$RUN_PROGRAM executes successfully, control passes to the second
program; if not, control passes to the CLI. The calling program cannot regain
control. This technique is called chaining.

This routine is provided primarily for compatibility with PDP-11 systems, on
which chaining is used to extend the address space of a system. Chaining may
also be useful in an operating system environment where address space is
severely limited and large images are not possible. For example, you can use
chaining to perform system generation on a small virtual address space because
disk space is lacking.

With LIB$RUN_PROGRAM, the calling program can pass arguments to the next
program in the chain only by using the common storage area. One way to do
this is to direct the calling program to call LIB$PUT_COMMON in order to pass
the information into the common area. The called program then calls LIB$GET_
COMMON to retrieve the data.

In general, this practice is not recommended. There is no convenient way
to specify the order and type of arguments passed into the common area, so
programs that pass arguments in this way must know about the format of the
data before it is passed. Fortran COMMON or BASIC MAP/COMMON areas
are global OWN storage. When you use this type of storage, it is very difficult
to keep your program modular and AST reentrant. Further, you cannot use
LIB$RUN_PROGRAM if a CLI is present, as with image subprocesses and
detached subprocesses.

Examples
The following PL/I example illustrates the use of LIB$RUN_PROGRAM. It
prompts the user for the name of a program to run and calls the RTL routine to
execute the specified program.

6-5

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

6-6

CHAIN: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));
DECLARE LIB$RUN PROGRAM ENTRY (CHARACTER(*)) /*Address of

- /* descriptor
string

RETURNS (FIXED BINARY (31)); /*Return status
%INCLUDE $STSDEF; /* Include definition of return status values
DECLARE COMMAND CHARACTER (80);

/*

*/

GET LIST (COMMAND) OPTIONS (PROMPT('Program to run: '));
STS$VALUE = LIB$RUN_PROGRAM (COMMAND);

If the function call is successful, the program will terminate
here. Otherwise, return the error status to command level.

RETURN (STS$VALUE);
END CHAIN;

*/
*/
*/

The following COBOL program also demonstrates the use of LIB$RUN_
PROGRAM. When you compile and link these two programs, the first calls
LIB$RUN_PROGRAM, which activates the executable image of the second. This
call results in the following screen display:

THIS MESSAGE DISPLAYED BY PROGRAM PROG2

WHICH WAS RUN BY PROGRAM PROGl

USING LIB$RUN_PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGl.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 PROG-NAME PIC X(9)
01 STAT PIC 9(9)

88 SUCCESSFUL

ROUTINE DIVISION.

001-MAIN.
CALL "LIB$RUN PROGRAM"

VALUE "PROG2.EXE".
COMP.
VALUE 1.

USING BY DESCRIPTOR PROG-NAME
GIVING STAT.

IF NOT SUCCESSFUL
DISPLAY "ATTEMPT TO CHAIN UNSUCCESSFUL"
STOP RUN.

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG2.

ENVIRONMENT DIVISION.

DATA DIVISION.

ROUTINE DIVISION.

001-MAIN.
DISPLAY
DISPLAY "THIS MESSAGE DISPLAYED BY PROGRAM PROG2".
DISPLAY
DISPLAY "WHICH WAS RUN BY PROGRAM PROGl".
DISPLAY
DISPLAY "USING LIB$RUN PROGRAM".
STOP RUN. -

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

6.2.3 Executing a CLI Command
The LIB$DO_COMMAND routine stops program execution and directs the CLI to
execute a command. The routine's argument is the text of the command line that
you want to execute.

This routine is especially useful when you want to execute a CLI command after
your program has finished executing. For example, you could set up a series of
conditions, each associated with a different command. You could also use the
routine to execute a SUBMIT or PRINT command to handle a file that your
program creates.

Because of the following restrictions on LIB$DO_COMMAND, you should be
careful when you incorporate it in your program.

• After the call to LIB$DO_COMMAND, the current image exits, and control
cannot return to it.

• The text of the command is passed to the current CLI. Because you can define
your own CLI in addition to DCL and MCR, you must make sure that the
command is handled by the intended CLI.

• If the routine is called from a subprocess and a CLI is not associated with
that subprocess, the routine does execute correctly.

You can also use LIB$DO_COMMAND to execute a DCL command file. To do
this, include the at sign(@) along with a command file specification as the input
argument to the routine.

Some DCL CLI$ routines perform the functions ofLIB$DO_COMMAND. See the
Open VMS DCL Dictionary for more information.

Example
The following PIJI example prompts the user for a DCL command to execute after
the program exits:

EXECUTE: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

DECLARE LIB$DO_COMMAND ENTRY (CHARACTER (*)) /*Pass DCL command */
/* by descriptor */

RETURNS (FIXED BINARY (31)); /*Return status */
%INCLUDE $STSDEF; /* Include definition of return status values */

DECLARE COMMAND CHARACTER (80);

/*

*/

GET LIST (COMMAND) OPTIONS (PROMPT('DCL command to execute: '));
STS$VALUE = LIB$DO_COMMAND (COMMAND);

If the call to LIB$DO COMMAND is successful, the program will terminate
here. Otherwise, it will return the error status to command level.

RETURN (STS$VALUE);

END EXECUTE;

This example displays the following prompt:

DCL command to execute:

6-7

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

What you type after this prompt determines the action of LIB$DO_COMMAND.
LIB$DO_COMMAND executes any command that is entered as a valid string
according to the syntax of PL/I. If the command you enter is incomplete, you
are prompted for the rest of the command. For example, if you enter the SHOW
command, you receive the following prompt:

$_Show what?:

6.2.4 Using Symbols and Logical Names
The RTL provides seven routines that give you access to the CLI callback facility.
These routines allow a program to "call back" to the CLI to perform functions. that
normally are performed by CLI commands. These routines perform the following
functions:

LIB$GET_SYMBOL

LIB$SET_SYMBOL

LIB$DELETE_SYMBOL

LIB$SET_LOGICAL

LIB$DELETE_LOGICAL

Returns the value of a CLI symbol as a string.

Optionally, this routine also returns the length of the
returned value and a value indicating whether the symbol
was found in the local or global symbol table. This routine
executes only when the current CLI is DCL.

Causes the CLI to define or redefine a CLI symbol.

The optional argument specifies whether the symbol is to
be defined in the local or global symbol table; the default
is local. This routine executes only when the current CLI
is DCL.

Causes the CLI to delete a symbol.

An optional argument specifies the local or global symbol
table. If the argument is omitted, the symbol is deleted
from the local symbol table. This routine executes only
when the current CLI is DCL.

Defines or redefines a supervisor-mode process logical
name.

Supervisor-mode logical names are not deleted when
an image exits. This routine is equivalent to the DCL
command DEFINE. LIB$SET_LOGICAL allows the
calling program to define a supervisor-mode process
logical name without itself executing in supervisor mode.

Deletes a supervisor-mode process logical name.

This routine is equivalent to the DCL command
DEASSIGN. LIB$DELETE_LOGICAL does not require
the calling program to be executing in supervisor mode to
delete a supervisor-mode logical name.

For information about using logical names, see Chapter 10.

6.2.5 Disabling and Enabling Control Characters

6-8

Two run-time library routines, LIB$ENABLE_CTRL and LIB$DISABLE_CTRL,
allow you to call the CLI to enable or disable control characters. These routines
take a longword bitmask argument that specifies the control characters to be
disabled or enabled. Acceptable values for this argument are LIB$M_CLI_CTRLY
and LIB$M_CLI_ CTRLT.

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

LIB$DISABLE_CTRL Disables CLI interception of control characters.

This routine performs the same function as the DCL
command SET NOCONTROL=n, where n is Tor Y.

It prevents the currently active CLI from intercepting the
control character specified during an interactive session.

For example, you might use LIB$DISABLE_CTRL to
disable CLI interception of CtrlN. Normally, CtrlN
interrupts the current command, command procedure,
or image. If LIB$DISABLE_CTRL is called with LIB$M_
CLI_CTRLY specified as the control character to be
disabled, CtrlN is treated like Ctrl/U followed by a
carriage return.

LIB$ENABLE_CTRL Enables CLI interception of control characters.

This routine performs the same function as the DCL
command SET CONTROL=n, where n is Tor Y.

LIB$ENABLE_CTRL restores the normal operation of
CtrlN or Ctrl!I'.

6.2.6 Creating and Connecting to a Subprocess
You can use LIB$SPAWN and LIB$ATTACH together to spawn a subprocess and
attach the terminal to that subprocess. These routines will execute correctly only
if the current CLI is DCL. For more information on the SPAWN and ATTACH
commands, see the Open VMS DCL Dictionary. For more information on creating
processes, see Chapter 1.

LIB$SPAWN Spawns a subprocess.

This routine is equivalent to the DCL command SPAWN. It requests
the CLI to spawn a subprocess for executing CLI commands.

LIB$ATTACH Attaches the terminal to another process.

This routine is equivalent to the DCL command ATTACH. It requests
the CLI to detach the terminal from the current process and reattach it
to a different process.

6.3 Access to VAX Machine Instructions
The VAX instruction set was designed for efficient use by high-level languages
and, therefore, contains many functions that are directly useful in your programs.
However, some of these functions cannot be used directly by high-level languages.

The run-time library provides routines that allow your high-level language
program to use most VAX machine instructions that are otherwise unavailable.
On Alpha AXP machines, these routines execute a series of Alpha AXP
instructions that emulate the operation of the VAX instructions. In most
cases, these routines simply execute the instruction, using the arguments you
provide. Some routines that accept string arguments, however, provide some
additional functions that make them easier to use.

These routines fall into the following categories:

• · Variable-length bit field instruction routines (Section 6.3.1)

• Integer and floating-point instructions (Section 6.3.2)

• Queue instructions (Section 6.3.3)

• Character string instructions (Section 6.3.4)

6-9

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

• Routine call instructions (Section 6.3.5)

• Cyclic redundancy check (CRC) instruction (Section 6.3.5)

The VAX Architecture Reference Manual describes the VAX instruction set in
detail.

6.3.1 Variable-Length Bit Field Instruction Routines

6-10

The variable-length bit field is a VAX data type used to store small integers
packed together in a larger data structure. It is often used to store single flag
bits.

The run-time library contains five routines for performing operations on variable­
length bit fields. These routines give higher-level languages that do not have the
inherent ability to manipulate bit fields direct access to the bit field instructions
in the VAX instruction set. Further, if a program calls a routine written in a
different language to perform some function that also involves bit manipulation,
the called routine can include a call to the run-time library to perform the bit
manipulation. ·

Table 6-3 lists the run-time library variable-length bit field routines.

Table 6-3 Variable-Length Bit Field Routines

Entry Point

LIB$EXTV

LIB$EXTZV

LIB$FFC

LIB$FFS

LIB$INSV

Function

Extracts a field from the specified variable-length bit field and returns
it in sign-extended longword form.

Extracts a field from the specified variable-length bit field and returns
it in zero-extended longword form.

Searches the specified field for the first clear bit. If it finds one, it
returns SS$_NORMAL and the bit position (find-pos argument) of
the clear bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

Searches the specified field for the first set bit. If it finds one, it
returns SS$_NORMAL and the bit position (find-pos argument) of
the set bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

Replaces the specified field with bits 0 through [size -1] of the source
(src argument). If the size argument is 0, nothing is inserted.

Three scalar attributes define a variable bit field:

• Base address-The address of the byte in memory that serves as a reference
point for locating the bit field.

• Bit position-The signed longword containing the displacement of the least
significant bit of the field with respect to bit 0 of the base address.

• Size-A byte integer indicating the size of the bit field in bits (in the range
0 <= size <= 32). That is, a bit field can be no more than one longword in
length.

Figure 6-1 shows the format of a variable-length bit field. The shaded area
indicates the field.

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

Figure 6-1 Format of a Variable-Length Bit Field

P+S-1 p 8 7 0

:A
\ ___ y ___ A. ___________)

S = Size of Field in Bits--t f
P =Bit Displacement of Field --------­

from Bit O of Address A

ZK-1981-GE

Bit fields are zero-origin, which means that the routine regards the first bit in
the field as being the zero position. For more detailed information about VAX bit
numbering and data formats, see the VAX Architecture Reference Manual.

The attributes of the bit field are passed to an RTL routine in the form of three
arguments in the following order:

pos

Operating system usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position relative to the base address. The pos argument is the address of a
signed longword integer that contains this bit position.

size

Operating system usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field. The size argument is the address of an unsigned byte which
contains this size.

base

Operating system usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Base address. The base argument contains the address of the base address.

Example
The following BASIC example illustrates three RTL routines. It opens the
terminal as a file and specifies HEX> as the prompt. This prompt allows you to
get input from the terminal without the question mark that VAX BASIC normally
adds to the prompt in an INPUT statement. The program calls OTS$CVT_TZ_L
to convert the character string input to a longword. It then calls LIB$EXTZV
once for each position in the longword to extract the bit in that position. Because
LIB$EXTVZ is called with a function reference within the PRINT statement, the
bits are displayed.

6-11

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

10

20

EXTERNAL LONG FUNCTION
OTS$CVT TZ L,
LIB$EXTZV -

Convert hex text to LONG
Extract zero-ended bit field

OPEN "TT:" FOR INPUT AS FILE #1%
INPUT #1%, "HEX>"; HEXIN$
STAT%=0TS$CVT TZ L(HEXIN$, BINARY%)
IF (STAT% AND-1%) <> 1%
THEN

! Open terminal as a file
! Prompt for input

! Convert to longword
! Failed?

PRINT "Conversion failed, decimal status ";STAT%

ELSE
GO TO 2 0 ! Try again

PRINT HEXIN$,
PRINT STR$(LIB$EXTZV(N%, 1%, BINARY%));

FOR N%=31% to 0% STEP -1%

6.3.2 Integer and Floating-Point Routines
Integer and floating-point routines give a high-level language program access
to the corresponding machine instructions. For a complete description of these
instructions, see the VAX Architecture Reference Manual. Table 6-4 lists the
integer and floating-point routines once up front.

Table 6-4 Integer and Floating-Point Routines

Entry Point

LIB$EMUL

LIB$EDIV

Function

Multiplies integers with extended precision

Divides integers with extended precision

6.3.3 Queue Access Routines

6-12

A queue is a doubly linked list. A run-time library routine specifies a queue entry
by its address. 'I\vo longwords, a forward link and a backward link, define the
location of the entry in relation to the preceding and succeeding entries. A self­
relative queue is a queue in which the links between entries are displacements;
the two longwords represent the displacements of the current entry's predecessor
and successor. The VAX instructions INSQHI, INSQTI, REMQHI, and REMQTI
allow you to insert and remove an entry at the head or tail of a self-relative
queue. Each queue instruction has a corresponding RTL routine.

The self-relative que.ue instructions are interlocked and cannot be interrupted,
so that other processes cannot insert or remove queue entries while the current
program is doing so. Since the operation requires changing two pointers at the
same time, a high-level language cannot perform this operation without calling
the RTL queue access routines.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an asynchronous system trap.

The remove queue instructions (REMQHI or REMQTI), return the address of the
removed entry. Some languages, such as BASIC, COBOL, and Fortran, do not
provide a mechanism for accessing an address returned from a routine. Further,
BASIC and COBOL do not allow routines to be arguments.

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

Table 6-5 lists the quem~ access routines.

Table 6-5 Queue Access Routines

Entry Point

LIB$INSQHI

LIB$INSQTI

LIB$REMQHI

LIB$REMQTI

Examples
LIB$1NSQHI

Function

Inserts queue entry at head

Inserts queue entry at tail

Removes queue entry at head

Removes queue entry at tail

In BASIC and Fortran, queues can be quadword aligned in a named COMMON
block by using a linker option file to specify alignment of program sections. The
LIB$GET_ VM routine returns memory that is quadword aligned. Therefore,
you should use LIB$GET_ VM to allocate the virtual memory for a queue. For
instance, to create a COMMON block called QUEUES, use the LINK command
with the FILE/OPTIONS qualifier, where FILE.OPT is a linker option file
containing the line:

PSECT = QUEUES, QUAD

A Fortran application using processor-shared memory follows:

INTEGER*4 FUNCTION INSERT Q (QENTRY)
COMMON/QUEUES/QHEADER -
INTEGER*4 QENTRY(lO), QHEADER(2)
INSERT Q = LIB$INSQHI (QENTRY, QHEADER)
RETURN-
END

A BASIC application using processor-shared memory follows:

COM (QUEUES) QENTRY%(9), QHEADER%(1)
EXTERNAL INTEGER FUNCTION LIB$INSQHI
IF LIB$INSQHI (QENTRY%() BY REF, QHEADER%() BY REF) AND 1%

THEN GOTO 1000

1000 REM INSERTED OK

LIB$REMQHI

In Fortran, the address of the removed queue entry can be passed to another
routine as an array using the %VAL built-in function.

6-13

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

In the following example, queue entries are 10 longwords, including the two
longword pointers at the beginning of each entry:

COMMON/QUEUES/QHEADER
INTEGER*4 QHEADER(2), !STAT
!STAT = LIB$REMQHI (QHEADER, ADDR)
IF (!STAT) THEN

CALL PROC (%VAL (ADDR)) ! Process removed entry
GO TO ••.

ELSE IF (!STAT .EQ. %LOC(LIB$ QUEWASEMP)) THEN
GO TO • • • - ! Queue was empty
ELSE IF

END IF

END
SUBROUTINE PROC (QENTRY)
INTEGER*4 QENTRY(lO)

RETURN
END

! Secondary interlock failed

6.3.4 Character String Routines

6-14

The character string routines listed in Table 6-6 give a high-level language
program access to the corresponding VAX machine instructions. For a complete
description of these instructions, see the VAX Architecture Reference Manual. For
each instruction, the VAX Architecture Reference Manual specifies the contents of
all the registers after the instruction executes. The corresponding RTL routines
do not make the contents of all the registers available to the calling program.

Table 6-6 lists the LIB$ character string routines and their functions.

Table 6-6 Character String Routines

Entry Point

LIB$LOCC

LIB$MATCHC

LIB$SCANC

LIB$SKPC

LIB$SPANC

LIB$MOVC3

LIB$MOVC5

LIB$MOVTC

LIB$MOVTUC

Function

Locates a character in a string

Returns the relative position of a substring

Scans characters

Skips characters

Spans characters

Moves characters

Moves characters and fills

Moves translated characters

Move translated characters until specified character is found

The Open VMS RTL String Manipulation (STR$) Manual describes STR$ string
manipulation routines.

Using Run-Time Library Routines to Access Operating System Components
· 6.3 Access to VAX Machine Instructions

Example
This COBOL program uses LIB$LOCC to return the position of a given letter of
the alphabet.

IDENTIFICATION DIVISION.
PROGRAM-ID. LIBLOC.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01

01
01
01

SEARCH-STRING

SEARCH-CHAR
IND-POS
DISP-IND

PIC X(26)
VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
PIC X.
PIC 9(9) USAGE IS COMP.
PIC 9(9).

ROUTINE DIVISION.

001-MAIN.
MOVE SPACE TO SEARCH-CHAR.
DISPLAY II ".

DISPLAY "ENTER SEARCH CHARACTER: " WITH NO ADVANCING.
ACCEPT SEARCH-CHAR.
CALL "LIB$LOCC"

USING BY DESCRIPTOR SEARCH-CHAR, SEARCH-STRING
GIVING IND-POS.

IF IND-POS = ZERO
DISPLAY

"CHAR ENTERED (" SEARCH-CHAR ") NOT A VALID SEARCH CHAR"
STOP RUN.

MOVE IND-POS TO DISP-IND.
DISPLAY

"SEARCH CHAR (" SEARCH-CHAR") WAS FOUND IN POSITION"
DISP-IND.

GO TO 001-MAIN.

6.3.5 Miscellaneous Instruction Routines
Table 6-7 lists additional routines that you can use.

Table 6-7 Miscellaneous Instruction Routines

Entry Point

LIB$CALLG

LIB$CRC

LIB$CRC_TABLE

LIB$CALLG

Function

Calls a routine using an array argument list

Computes a cyclic redundancy check

Constructs a table for a cyclic redundancy check

The LIB$CALLG routine gives your program access to the CALLG instruction.
This instruction calls a routine using an argument list stored as an array in
memory, as opposed to the CALLS instruction, in which the argument list is
pushed on the stack.

6-15

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

LIB$CRC
The LIB$CRC routine allows your high-level language program to use the CRC
instruction, which calculates the cyclic redundancy check. This instruction checks
the integrity of a data stream by comparing its state at the sending point and the
receiving point. Each character in the data stream is used to generate a value
based on a polynomial. The values for each character are then added together.
This operation is performed at both ends of the data transmission, and the two
result values are compared. If the results disagree, then an error occurred during
the transmission.

LIB$CRC_ TABLE

The LIB$CRC_TABLE routine takes a polynomial as its input and builds the
table that LIB$CRC uses to calculate the CRC. You must specify the polynomial
to be used.

For more details, see the VAX Architecture Reference Manual.

6.4 Processwide Resource Allocation Routines
This section discusses routines that allocate processwide resources to a single
operating system process. The processwide resources discussed here are:

• Local event flags

• BASIC and Fortran logical unit numbers (LUNs)

The resource allocation routines are provided so that user routines can use the
processwide resources without conflicting with one another.

In general, you must use run-time library resource allocation routines when your
program needs processwide resources. This allows RTL routines, Digital-supplied
routines, and user routines that you write 'to perform together within a process.

If your called routine includes a call to any RTL routine that frees a processwide
resource, and that called routine fails to execute normally, the resource will not
be freed. Thus, your routine should establish a condition handler that frees
the allocated resource before resignaling or unwinding. For information about
condition handling, see Chapter 13.

Table 6-8 list routines that perform processwide resource allocation.

Table 6-8 Processwide Resource Allocation Routines

Entry Point

LIB$FREE_LUN

LIB$GET_LUN

LIB$FREE_EF

LIB$GET_EF

LIB$RESERVE_EF

Function

Deallocates a specific logical unit number

Allocates next arbitrary logical unit number

Frees a local event flag

Allocates a local event flag

Reserves a local event flag

6.4.1 Allocating Logical Unit Numbers

6-16

BASIC and Fortran use a logical unit number (LUN) to define the file or device
a program uses to perform input and output. For a routine to be modular, it
does not need to know the LUN s being used by other routines that are running
at the same time. For this reason, logical units are allocated and deallocated at
run time. You can use LIB$GET_LUN and LIB$FREE_LUN to obtain the next

Using Run-Time Library Routines to Access Operating System Components
6.4 Processwide Resource Allocation Routines

available number. This ensures that your BASIC or Fortran routine does not
use a logical unit that is already being used by a calling program. Therefore,
you should use this routine whenever your program calls or is called by another
program that also allocates LUN s. Logical unit numbers 100 to 119 are available
to modular routines through these entry points.

To allocate an LUN, call LIB$GET_LUN and use the value returned as the LUN
for your I/O statements. If no LUNs are available, an error status is returned
and the logical unit is set to -1. When the program unit exits, it should use
LIB$FREE_LUN to free any LUNs that have been allocated by LIB$GET_LUN.
If it does not free any LUNs, the available pool of numbers is freed for use.

If your called routine contains a call to LIB$FREE_LUN to free the LUNs upon
exit, and your routine fails to execute normally, the LUNs will not be freed.
For this reason, you should make sure to establish a condition handler to call
LIB$FREE_LUN before resignaling or unwinding. Otherwise, the allocated LUN
is lost until the image exits.

6.4.2 Allocating Event Flag Numbers
The LIB$GET_EF and LIB$FREE_EF routines operate in a similar way to
LIB$GET_LUN and LIB$FREE_LUN. They cause local event flags to be allocated
and deallocated at run time, so that your routine remains independent of other
routines executing in the same process.

Local event flags numbered 32 to 63 are available to your program. These event
flags allow routines to communicate and synchronize their operations. If you
use a specific event flag in your routine, another routine may attempt to use the
same flag, and the flag will no longer function as expected. Therefore, you should
call LIB$GET_EF to obtain the next arbitrary event flag and LIB$FREE_EF
to return it to the storage pool. You can obtain a specific event flag number by
calling LIB$RESERVE_EF. This routine takes as its argument the event flag
number to be allocated.

For information about using event flags, see Chapter 2 and Chapter 14.

6.5 Performance Measurement Routines
The run-time library timing facility consists of four routines to store count and
timing information, display the requested information, and deallocate the storage.
Table 6-9 lists these routines and their functions.

Table 6-9 Performance Measurement Routines

Entry Point

LIB$INIT_TIMER

LIB$SHOW _TIMER

LIB$STAT_TIMER

LIB$FREE_TIMER

Function

Stores the values of the specified times and counts in units of
static or heap storage, depending on the value of the routine's
argument

Gets and formats for output the specified times and counts
that are accumulated since the last call to LIB$INIT_TIMER

Gets one of the times and counts since the last call to
LIB$INIT_TIMER and returns it as an unsigned quadword
or longword

Frees the storage allocated by LIB$INIT_TIMER

6-17

Using Run-Time Library Routines to Access Operating System Components
6.5 Performance Measurement Routines

6-18

Using these routines, you can access the following statistics:

• Elapsed time

• CPU time

• Buffered 1/0 count

• Direct 1/0 count

• Page faults

The LIB$SHOW _TIMER and LIB$STAT_TIMER routine are relatively simple
tools for testing the performance of a new application. To obtain more detailed
information, use the system services SYS$GETTIM (Get Time) and SYS$GETJPI
(Get Job/Process Information).

The simplest way to use the run-time library routines is to call LIB$INIT_TIMER
with no arguments at the beginning of the portion of code to be monitored. This
will cause the statistics to be placed in OWN storage. To get the statistics from
OWN storage, call LIB$SHOW _TIMER (with no arguments) at the end of the
portion of code to be monitored.

If you want a particular statistic, you must include a code argument with a call
to LIB$SHOW_TIMER or LIB$STAT_TIMER. LIB$SHOW_TIMER returns the
specified statistic(s) in formatted form and sends them to SYS$0UTPUT. On
each call, LIB$STAT_TIMER returns one statistic to the calling program as an
unsigned longword or quadword value.

Table 6-10 shows the code argument in LIB$SHOW_TIMER or LIB$STAT_
TIMER.

Table 6-10 The code Argument in LIB$SHOW_TIMER and LIB$STAT_TIMER

Argument LIB$SHOW _TIMER LIB$STAT _TIMER
Value Meaning Format Format

1 Elapsed real time dddd hh:mm:ss.cc Quadword, in
system time
format

2 Elapsed CPU time hhhh:mm:ss.cc Longword, in
10-millisecond
increments

3 Number of buffered I/O nnnn Longword
operations

4 Number of direct I/O nnnn Longword
operations

5 Number of page faults nnnn Longword

When you call LIB$INIT_TIMER, you must use the optional handler argument
only if you want to keep several sets of statistics simultaneously. This argument
points to a block in heap storage where the statistics are to be stored. You need to
call LIB$FREE_TIMER only if you have specified handler in LIB$INIT_TIMER
and you want to deallocate all heap storage resources. In most cases, the implicit
deallocation when the image exits is sufficient.

Using Run-Time Library Routines to Access Operating System Components
6.5 Performance Measurement Routines

The LIB$STAT_TIMER routine returns only one of the five statistics for each call,
and it returns that statistic in the form of an unsigned quadword or longword.
LIB$SHOW _TIMER returns the virtual address of the stored information,
which BASIC cannot directly access. Therefore, a BASIC program must call
LIB$STAT_TIMER and format the returned statistics, as the following example
demonstrates.

Example
The following BASIC example uses the run-time library performance analysis
routines to obtain timing statistics. It then calls the $ASCTIM system service to
translate the 64-bit binary value returned by LIB$STAT_TIMER into an ASCII
text string.

100 EXTERNAL INTEGER FUNCTION LIB$INIT TIMER
EXTERNAL INTEGER FUNCTION LIB$STAT-TIMER
EXTERNAL INTEGER FUNCTION LIB$FREE-TIMER
EXTERNAL INTEGER CONSTANT SS$_NORMAL

200 DECLARE LONG COND VALUE, RANDOM SLEEP
DECLARE LONG CODE~ HANDLE -
DECLARE STRING TIME BUFFER
HANDLE = 0 -
TIME_BUFFER = SPACE$(50%)

300 MAP (TIMER) LONG ELAPSED TIME, FILL
MAP (TIMER) LONG CPU TIME
MAP (TIMER) LONG BUFIO
MAP (TIMER) LONG DIRIO
MAP (TIMER) LONG PAGE FAULTS

400 PRINT "This program returns information about:"
PRINT "Elapsed time (l)"
PRINT "CPU time (2)"
PRINT "Buffered I/O (3)"
PRINT "Direct I/O (4)"
PRINT "Page faults (5)"
PRINT "Enter zero to exit program"
PRINT "Enter a number from one to"
PRINT "five for performance information"
INPUT "One, two, three, four, or five"; CODE
PRINT

450 GOTO 32766 IF CODE = 0

500 COND_VALUE = LIB$INIT_TIMER(HANDLE)

550 IF (COND VALUE <> SS$ NORMAL) THEN PRINT @

650

"Error-in initialization"
GOTO 32767

A = 0
FOR I = 1 to 100000
A = A + 1
NEXT I

This code merely uses some CPU time

700 COND_VALUE = LIB$STAT_TIMER(CODE, ELAPSED_TIME, HANDLE)

750 IF (COND VALUE <> SS$ NORMAL) THEN PRINT @
"Error-in statistics routine"

GOTO 32767

800 GOTO 810 IF CODE <> 1%
CALL SYS$ASCTIM (, TIME BUFFER, ELAPSED TIME, 1% BY VALUE)
PRINT "Elapsed time: "; TIME BUFFER -

6-19

Using Run-Time Library Routines to Access Operating System Components
6.5 Performance Measurement Routines

810 PRINT "CPU time in seconds: "; .01 * CPU TIME IF CODE = 2%
PRINT "Buffered I/O: ";BUFIO IF CODE = 3{
PRINT "Direct I/O: ";DIRIO IF CODE = 4%
PRINT "Page faults: ";PAGE_FAULTS IF CODE = 5%
PRINT

900 GOTO 400

32765 COND VALUE = LIB$FREE TIMER(HANDLE)
32766 IF (COND VALUE <> SS$-NORMAL) THEN PRINT @

"Error-in LIB$FREE TIMER"
GOTO 32767

32767 END

For information about using system time, see Chapter 5.

6.6 Output Formatting Control Routines

6-20

Table 6-11 lists the run-time library routines that customize output.

Table 6-11 Routines for Customizing Output

Entry Point

LIB$CURRENCY

LIB$DIGIT_SEP

LIB$LP _LINES

LIB$RADIX_POINT

Function

Defines the default currency symbol for process

Defines the default digit separator for process

Defines the process default size for a printed page

Defines the process default radix point character

The LIB$CURRENCY, LIB$DIGIT_SEP, LIB$LP _LINES, and LIB$RADIX_
POINT routines allow you to customize output. Using them, you can define
the logical names SYS$CURRENCY, SYS$DIGIT_SEP, SYS$LP _LINES, and
SYS$RADIX_POINT to specify your own currency symbol, digit separator, radix
point, or number oflines per printed page. Each routine works by attempting
to translate the associated logical name as a process, group, or system logical
name. If you have redefined a logical name for a specific local application, then
the translation succeeds, and the routine returns the value that corresponds to
the option you have chosen. If the translation fails, the routine returns a default
value provided by the run-time library, as follows:

$ SYS$CURRENCY

SYS$DIGIT_SEP

SYS$RADIX_POINT

66 SYS$LP _LINES

For example, if you want to use the British pound sign (£) as the currency symbol
within your process, but you want to leave the dollar sign($) as the system
default, define SYS$CURRENCY to be in your process logical name table. Then,
any calls to LIB$CURRENCY within your process return"£", while any calls
outside your process return"$".

You can use LIB$LP _LINES to monitor the current default length of the line
printer page. You can also supply your own default length for the current process.
United States standard paper stock permits 66 lines on each physical page.

Using Run-Time Library Routines to Access Operating System Components
6.6 Output Formatting Control Routines

If you are writing programs for a utility that formats a listing file to be printed
on a line printer, you can use LIB$LP _LINES to make your utility independent
of the default page length. Your program can use LIB$LP _LINES to obtain the
current length of the page. It can then calculate the number of lines of text per
page by subtracting the lines used for margins and headings.

The following is one suggested format:

• Three lines for the top margin

• Three lines for the bottom margin

• Three lines for listing heading information, consisting of:

Language-processor identification line

Source program identification line

One blank line

6.7 Miscellaneous Interface Routines
There are several other RTL routines that permit high-level access to components
of the operating system. Table 6-12 lists these routines and their functions. The
sections that follow give further details about some of these routines.

Table 6-12 Miscellaneous Interface Routines

Entry Point

LIB$AST_IN_PROG

LIB$ASN_ WTH_MBX

LIB$CREATE_DIR

LIB$FIND_IMAGE_SYMBOL

LIB$ADDX

LIB$SUBX

LIB$FILE_SCAN

LIB$FILE_SCAN_END

LIB$FIND _FILE

LIB$FIND _FILE_END

Function

Indicates whether an asynchronous system trap is in
progress

Assigns an I/O channel and associates it with a
mailbox

Creates a directory or subdirectory

Reads a global symbol from the shareable image file
and dynamically activates a shareable image into the
PO address space of a process

Performs addition on signed two's complement
integers of arbitrary length (multiple-precision
addition)

Performs subtraction on signed two's complement
integers of arbitrary length (multiple-precision
subtraction)

Finds file names given Open VMS RMS file access
block (FAB)

End of file scan

Finds file names given string

End of find file

(continued on next page)

6-21

Using Run-Time Library Routines to Access Operating System Components
6. 7 Miscellaneous Interface Routines

Table 6-12 (Cont.) Miscellaneous Interface Routines

Entry Point

LIB$INSERT_TREE

LIB$LOOKUP _TREE

LIB$TRAVERSE_TREE

LIB$GET_COMMON

LIB$PUT_COMMON

Function

Inserts an element in a binary tree

Finds an element in a binary tree

Traverses a binary tree

Gets a record from the process's COMMON storage
area

Puts a record to the process's COMMON storage area

6.7.1 Indicating Asynchronous System Trap in Progress
An asynchronous system trap (AST) is a mechanism for providing a software
interrupt when an external event occurs, such as when a user presses the Ctrl/C
key sequence. When an external event occurs, the operating system interrupts
the execution of the current process and calls a routine that you supply. While
that routine is active, the AST is said to be in progress, and the process is said to
be executing at AST level. When your AST routine returns control to the original
process, the AST is no longer active and execution continues where it left off.

The LIB$AST_IN_PROG routine indicates to the calling program whether an
AST is currently in progress. Your program can call LIB$AST_IN_PROG to
determine whether it is executing at AST level, and then take appropriate action.
This routine is useful if you are writing AST-reentrant code.

For information about using ASTs, see Chapter 4.

6.7.2 Create a Directory or Subdirectory

6-22

The LIB$CREATE_DIR routine creates a directory or a subdirectory. The calling
program must specify the directory specification in standard Open VMS RMS
format. This directory specification may also contain a disk specification.

In addition to the required directory specification argument, LIB$CREATE_DIR
takes the following five optional arguments:

• The user identification code (UIC) of the owner of the created directory or
subdirectory

• The protection enable mask

• The protection value mask

• The maximum number of versions allowed for files created in this directory or
subdirectory

• The relative volume number within the volume set on which the directory or
subdirectory is created

See the Open VMS RTL Library (LIB$) Manual for a complete description of
LIB$CREATE_DIR.

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

6. 7 .3 File Searching Routines
The run-time library provides two routines that your program can call to search
for a file and two routines that your program can call to end a search sequence.

• When you call LIB$FILE_SCAN with a wildcard file specification and an
action routine, the routine calls the action routine for each file or error, or
both, found in the wildcard sequence. LIB$FILE_SCAN allows the search
sequence to continue even though certain errors are present.

• When you call LIB$FIND_FILE with a wildcard file specification, it finds the
next file specification that matches the wildcard specification.

In addition to the wildcard file specification, which is a required argument,
LIB$FIND _FILE takes the following four optional arguments:

• The default specification.

• The related specification.

• The Open VMS RMS secondary status value from a failing RMS operation.

• A longword containing two flag bits. If bit 1 is set, LIB$FIND_FILE performs
temporary defaulting for multiple input files and the related specification
argument is ignored. See the Open VMS RTL Library (LIB$) Manual for a
complete description of LIB$FIND _FILE in template format.

The LIB$FIND_FILE_END routine is called once after each call to LIB$FIND_
FILE in interactive use. LIB$FIND _FILE_END prevents the temporary default
values retained by the previous call to LIB$FIND _FILE from affecting the next
file specification.

The LIB$FILE_SCAN routine uses an optional context argument to perform
temporary defaulting for multiple input files. For example, a command such as
the following would specify A, B, and C in successive calls, retaining context, so
that portions of one file specification would affect the next file specification:

$ COPY [smith]A,B,C *
The LIB$FILE_SCAN_END routine is called once after each sequence of calls to
LIB$FILE_SCAN. LIB$FILE_SCAN_END performs a parse of the null string to
deallocate saved Open VMS RMS context and to prevent the temporary default
values retained by the previous call to LIB$FILE_SCAN from affecting the next
file specification. For instance, in the previous example, LIB$FILE_SCAN_END
should be called after the C file specification is parsed, so that specifications from
the $COPY files do not affect file specifications in subsequent commands.

The following Bliss example illustrates the use of LIB$FIND_FILE. It prompts
for a file specification and default specification. The default specification indicates
the default information for the file for which you are searching. Once the routine
has searched for one file, the resulting file specification determines both the
related file specification and the default file specification for the next search.
LIB$FIND _FILE_END is called at the end of the following Bliss program to
deallocate the virtual memory used by LIB$FIND_FILE.

%TITLE 'FILE EXAMPLEl - Sample program using LIB$FIND FILE'
MODULE FILE EXAMPLEl(! Sample program usingLIB$FIND FILE

BEGIN

- !DENT= '1-001', -
MAIN = EXAMPLE START
) = -

6-23

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

6-24

%SBTTL 'Declarations'
!+
! SWITCHES:
!-

SWITCHES ADDRESSING MODE (EXTERNAL= GENERAL, NONEXTERNAL = WORD_RELATIVE);

!+
! TABLE OF CONTENTS:
!-

FORWARD ROUTINE
EXAMPLE_START;

!+
! INCLUDE FILES:
!-

LIBRARY 'SYS$LIBRARY:STARLET.L32';

!+

Main program

! System symbols

! Define facility-specific messages from shared system messages.
!-
$SHR MSGDEF(CLI,3,LOCAL,

- (PARSEFAIL,WARNING));
!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET INPUT,
LIB$FIND FILE,
LIB$FIND-FILE END,
LIB$PUT OUTPUT,
STR$COPY_DX;

LITERAL
TRUE = 1,
FALSE = O;

End find file

Read from SYS$INPUT
Wildcard scanning routine

Write to SYS$0UTPUT
String copier

Success
Failure

%SBTTL 'EXAMPLE START - Sample program main routine';
ROUTINE EXAMPLE-START =
BEGIN -
!+

This program reads a file specification and default file
specification from SYS$INPUT. It then prints all the files that
match that specification and prompts for another file specification.
After the first file specification no default specification is requested,
and the previous resulting file specification becomes the related

! file specification.
!-
LOCAL

!+

LINEDESC : $BBLOCK[DSC$C S BLN],
RESULT DEsc·: $BBLOCK[DSC$C s BLN],
CONTEXT, - -
DEFAULT DESC : $BBLOCK[DSC$C S BLN],
RELATED-DESC : $BBLOCK[DSC$C=S=BLN],
HAVE DEFAULT,
STATUS;

! Make all string descriptors dynamic.
!-

! String desc. for input line
! String desc. for result file
! LIB$FIND FILE context pointer
! String desc. for default spec
! String desc. for related spec

CH$FILL(O ,DSC$C S BLN,LINEDESC);
LINEDESC[DSC$B CLASS] = DSC$K CLASS D;
CH$MOVE(DSC$C S BLN,LINEDESC,RESULT-DESC);
CH$MOVE(DSC$C-S-BLN,LINEDESC,DEFAULT DESC);
CH$MOVE(DSC$C-S-BLN,LINEDESC,RELATED-DESC);
HAVE DEFAULT ~ FALSE; -
CONTEXT = O;

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

!+
! Read file specification, default file specification, and
! related file specification.
!-

WHILE (STATUS = LIB$GET INPUT(LINEDESC,
$DESCRIPTOR('FILE SPECIFICATION: '))) NEQ RMS$_EOF

DO BEGIN

'+

IF NOT .STATUS
THEN SIGNAL_STOP(.STATUS);

!+
! If default file specification was not obtained, do so now.
!-
IF NOT .HAVE DEFAULT
THEN BEGIN -

!+

STATUS = LIB$GET INPUT(DEFAULT DESC,
$DESCRIPTOR('DEFAULT FlLE SPECIFICATION: '));

IF NOT .STATUS
THEN SIGNAL STOP(.STATUS);

HAVE DEFAULT = TRUE;
END;-

! CALL LIB$FIND FILE until RMS$ NMF (no more files) is returned.
! If an error other than RMS$ NMF is returned, it is signaled.
! Print out the file specification if the call is successful.
!-
WHILE (STATUS = LIB$FIND FILE(LINEDESC,RESULT DESC,CONTEXT,

DEFAULT_DESC,RELATED_DESC)) NEQ RMS$_NMF
DO IF NOT .STATUS

THEN SIGNAL(CLI$ PARSEFAIL,1,RESULT DESC,.STATUS)
ELSE LIB$PUT_OUTPUT(RESULT_DESC); -

!+
! Make this resultant file specification the related file
! specification for next file.
!-
STR$COPY DX(RELATED DESC,LINEDESC);
END; - - End of loop

reading file specification

Call LIB$FIND FILE END to deallocate the virtual memory used by LIB$FIND FILE.
Note that we do this outside of the loop. Since the MULTIPLE bit of the­
optional user flags argument to LIB$FIND FILE wasn't used, it is not
necessary to call LIB$FIND FILE END after each call to LIB$FIND FILE.
(The MULTIPLE bit would have caused temporary defaulting for multiple input
files.)

STATUS= LIB$FIND_FILE_END (CONTEXT);

IF NOT .STATUS
THEN SIGNAL STOP (.STATUS);

RETURN TRUE
END;
END

ELUDOM

End of main program
End of module

The following Bliss example illustrates the use of LIB$FILE_SCAN and
LIB$FILE_SCAN_END.

6-25

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

6-26

%TITLE 'FILE EXAMPLE2 - Sample program using LIB$FILE SCAN'
MODULE FILE EXAMPLE!(! Sample program us1ng LIB$FILE SCAN

IDENT = '1-001', -
MAIN = EXAMPLE START
) = -

BEGIN

%SBTTL 'Declarations'
!+
! SWITCHES:
!-

SWITCHES ADDRESSING MODE (EXTERNAL = GENERAL,
NONEXTERNAL-= WORD_RELATIVE);

!+
! TABLE OF CONTENTS:
!-

FORWARD ROUTINE
EXAMPLE START,
SUCCESS-RTN,
ERROR_ RTN; .

!+
! INCLUDE FILES:
!-

Main program
Success action routine
Error action routine

LIBRARY 'SYS$LIBRARY:STARLET.L32'; ! System symbols

!+
! Define VMS block structures (BLOCK[,BYTE]).
!-
STRUCTURE

BBLOCK [O, P, S, E; N] =
[N]
(BBLOCK + 0) <P, S, E>;

!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET INPUT,
LIB$FILE SCAN,
LIB$FILE-SCAN END,
LIB$PUT_OUTPUT;

Read from SYS$INPUT
Wildcard scanning.routine
End of file scan
Write to SYS$0UTPUT

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

%SBTTL 'EXAMPLE START - Sample program main routine';
ROUTINE EXAMPLE-START =
BEGIN -
!+
! This program reads the file specification, default file specification,
! and related file specification from SYS$INPUT and then displays on
! SYS$0UTPUT all files which match the specification.
!-
LOCAL

!+

RESULT BUFFER VECTOR[NAM$C_MAXRSS,BYTE],

EXPAND BUFFER VECTOR[NAM$C_MAXRSS,BYTE],

LINEDESC : BBLOCK[DSC$C_S_BLN],

RESULT_DESC : BBLOCK[DSC$C_S_BLN],

DEFAULT DESC BBLOCK[DSC$C_S_BLN],

RELATED DESC BBLOCK[DSC$C_S_BLN],

IFAB : $FAB DECL,
INAM : $NAM-DECL,
RELNAM : $NAM DECL,
STATUS; -

! Make all descriptors dynamic.
!-
CH$FILL(0, DSC$C S BLN,LINEDESC);
LINEDESC[DSC$B CLASS] = DSC$K CLASS D;
CH$MOVE(DSC$C S BLN,LINEDESC,RESULT-DESC);
CH$MOVE(DSC$C-S-BLN,LINEDESC,DEFAULT DESC);
CH$MOVE(DSC$C-S-BLN,LINEDESC,RELATED-DESC);
!+ - - -

!Buffer for resultant
! name string
!Buffer for expanded
! name string
!String descriptor
! for input line
!String descriptor
! for result file
!String descriptor
! for default specification
!String descriptor
! for related specification
!FAB for file scan

and a NAM block
! and a related NAM block

! Read file specification, default file specification, and related
! file specification
!-
STATUS = LIB$GET INPUT(LINEDESC,

$DESCRIPTOR('File specification: '));
IF NOT .STATUS

THEN SIGNAL STOP(.STATUS);
STATUS = LIB$GET INPUT(DEFAULT DESC,

$DESCRIPTOR('Default file specification: '));
IF NOT .STATUS

THEN SIGNAL STOP(.STATUS);
STATUS = LIB$GET INPUT(RELATED DESC,

$DESCRIPTOR('Related file specification: '));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
!+
! Initialize the FAB, NAM, and related NAM blocks.
!-
$FAB INIT(FAB=IFAB,

- FNS=.LINEDESC[DSC$W LENGTH],
FNA=.LINEDESC[DSC$A-POINTER],
DNS=.DEFAULT DESC[DSC$W LENGTH],
DNA=.DEFAULT-DESC[DSC$A-POINTER],
NAM=INAM); - -

$NAM INIT(NAM=INAM,
- RSS=NAM$C MAXRSS,

RSA=RESULT BUFFER,
ESS=NAM$C MAXRSS,
ESA=EXPAND BUFFER,
RLF=RELNAM);

6-27

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

6-28

$NAM INIT(NAM=RELNAM);
RELNAM[NAM$B RSL] = .RELATED DESC[DSC$W LENGTH];
RELNAM[NAM$L-RSA] = .RELATED-DESC[DSC$A-POINTER];
!+ - - -
! Call LIB$FILE SCAN. Note that errors need not be checked
! here because LIB$FILE SCAN calls error rtn for all errors.
!- - -
LIB$FILE_SCAN(IFAB,SUCCESS_RTN,ERROR_RTN);

'!+
! Call LIB$FILE SCAN END to deallocate virtual memory used for
! file scan structures.
!-
STATUS = LIB$FILE_SCAN_END (IFAB);

IF NOT .STATUS
THEN SIGNAL STOP (.STATUS);

RETURN 1
END;

ROUTINE SUCCESS RTN (IFAB : REF BBLOCK) =
BEGIN -
!+

End of main program

This routine is called by LIB$FILE SCAN for each file that it
successfully finds in the search sequence.

Inputs:

IFAB Address of a f ab

Outputs:

file specification printed on SYS$0UTPUT

LOCAL
DESC : BBLOCK[DSC$C S BLN];

BIND - -
! A local string descriptor

INAM = .IFAB[FAB$L_NAM] : BBLOCK;

CH$FILL(O,DSC$C_S_BLN,DESC);

DESC[DSC$~_LENGTH] = .INAM[NAM$B_RSL];

DESC[DSC$A POINTER] = .INAM[NAM$L RSA];
RETURN LIB$PUT_OUTPUT(DESC) -

END;

ROUTINE ERROR RTN (IFAB : REF BBLOCK) =
BEGIN -
'+

Find NAM block
from pointer in FAB

Make static
string descriptor

Get string length
from NAM block

Get pointer to the string
• Print name on SYS$0UTPUT

and return

This routine is called by LIB$FILE SCAN for each file specification that
produces an error. -

Inputs:

if ab Address of a f ab

Outputs:

Error message is signaled

LOCAL
DESC : BBLOCK[DSC$C_S_BLN]; A local string descriptor

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

BIND
INAM = .IFAB[FAB$L_NAM] : BBLOCK;

CH$FILL(O,DSC$C_S_BLN,DESC);

DESC[DSC$W LENGTH] = .INAM[NAM$B RSL];
DESC[DSC$A-POINTER] = .INAM[NAM$L RSA];
!+ - -

Get NAM block pointer
from FAB

Create static
string descriptor

! Signal the error using the shared message PARSEFAIL
! and the CLI facility code. The second part of the SIGNAL
! is the RMS STS and STV error codes.
!-
RETURN SIGNAL((SHR$ PARSEFAIL+3Al6),l,DESC,

.IFAB[FAB$L_STS],.IFAB[FAB$L_STV])

END;
END

ELUDOM

! End of module

6.7.4 Inserting an Entry into a Balanced Binary Tree
Three routines allow you to manipulate the contents of a balanced binary tree:

• LIB$INSERT_TREE adds an entry to a balanced binary tree.

• LIB$LOOKUP _TREE looks up an entry in a balanced binary tree.

• LIB$TRAVERSE_TREE calls an action routine for each node in the tree.

Example
The following Bliss example illustrates all three routines. The program prompts
for input from SYS$INPUT and stores each data line as an entry in a binary tree.
When the user enters end-of-file character (Ctrl/Z), the tree will be printed in
sorted order. The program includes three subroutines:

• The first subroutine allocates virtual memory for a node.

• The second subroutine routine compares a key with a node.

• The third· subroutine is called during the tree traversal. It prints out the left
and right subtree pointers, the current node balance, and the name of the
node.

%TITLE 'TREE EXAMPLE - Sample program using binary tree routines'
MODULE TREE EXAMPLE(! Sample program using trees

BEGIN

- IDENT = '1-001',
MAIN = TREE START
) = -

%SBTTL 'Declarations'
!+
! SWITCHES:
!-
SWITCHES ADDRESSING MODE (EXTERNAL= GENERAL, NONEXTERNAL = WORD_RELATIVE);

!+
LINKAGES:

NONE

TABLE OF CONTENTS:
!-

6-29

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

6-30

FORWARD ROUTINE
TREE START,
ALLOC NODE,
COMPARE NODE,
PRINT_NODE;

!+
! INCLUDE FILES:
!-

LIBRARY 'SYS$LIBRARY:STARLET.L32';

!+

Main program
Allocate memory for a node
Compare two nodes
Print a node (action routine
for LIB$TRAVERSE_TREE)

System symbols

! Define VMS block structures (BLOCK[,BYTEJ).
!-
STRUCTURE

BBLOCK [O, P, S, E; NJ =
[NJ
(BBLOCK + 0) <P, S, E>;

!+
1 MACROS:
!-
MACRO

NODE$L LEFT = 0,0,32,0%,
NODE$L-RIGHT = 4,0,32,0%,
NODE$W-BAL = 8,0,16,0%,
NODE$B-NAMLNG = 10,0,8,0%,
NODE$T=NAME = 11,0,0,0%;

LITERAL
NODE$C_LENGTH = 11;

!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET INPUT,
LIB$GET-VM,
LIB$INSERT TREE,
LIB$LOOKUP-TREE,
LIB$PUT OUTPUT,
LIB$TRAVERSE TREE,
STR$UPCASE, -
SYS$FAO;

Left subtree pointer in node
Right subtree pointer
Balance this node
Length of name in this node
Start of name (variable length)

Length of fixed part of node

Read from SYS$INPUT
Allocate virtual memory
Insert into binary tree
Lookup in binary tree
Write to SYS$0UTPUT
Traverse a binary tree

. Convert string to all uppercase
Formatted ASCII output routine

%SBTTL 'TREE START - Sample program main routine';
ROUTINE TREE-START =
BEGIN -
!+
! This program reads from SYS$INPUT and stores each data line
! as an entry in a binary tree. When end-of-file character (CTRL/Z)
! is entered, the tree will be printed in sorted order.
!-
LOCAL

NODE : REF BBLOCK, ! Address of allocated node
TREEHEAD, ! List head of binary tree
LINEDESC : BBLOCK[DSC$C_S_BLNJ, ! String descriptor for input line
STATUS;

Using Run-Time Library Routines to Access Operating System Components
6. 7 Miscellaneous Interface Routines

TREEHEAD = O; ! Zero binary tree head
CH$FILL(O,DSC$C s BLN,LINEDESC); ! Make a dynamic descriptor
LINEDESC[DSC$B CLASS] = DSC$K CLASS D; ! ...
!+ - - -
! Read input lines until end of file seen.
!-
WHILE (STATUS = LIB$GET INPUT(LINEDESC,

-$DESCRIPTOR('Text: ,)))
! Read input line
! with this prompt

NEQ RMS$ EOF
DO IF NOT .STATUS - ! Report any errors found

!+

THEN SIGNAL(.STATUS)
ELSE BEGIN

STR$UPCASE(LINEDESC,LINEDESC); ! Convert string
! to uppercase

IF NOT (STATUS = LIB$INSERT TREE(
TREEHEAD, - Insert good data into the tree
LINEDESC, Data to insert
%REF(l), Insert duplicate entries
COMPARE NODE, Addr. of compare routine
ALLOC NODE, Addr. of node allocation routine
NODE,- Return addr. of
0)) allocated node here

THEN SIGNAL(.STATUS);
END;

! End of file character encountered. Print the whole tree and exit.
!-
IF NOT (STATUS = LIB$TRAVERSE TREE(

TREEHEAD,
PRINT NODE,
0)) -

Listhead of tree
Action routine to print a node

THEN SIGNAL(.STATUS);

RETURN SS$ NORMAL
END; - ! End of routine tree start

ROUTINE ALLOC NODE (KEYDESC,RETDESC,CONTEXT) =
BEGIN -
!+

!-

This routine allocates virtual memory for a node.

INPUTS:

KEYDESC

RETDESC

CONTEXT

OUTPUTS:

Address of string descriptor for key
(this is the linedesc argument passed
to LIB$INSERT TREE)

Address of location to ~eturn address of
allocated memory

Address of user context argument passed
to LIB$INSERT TREE (not used in this
example) -

Memory address returned in longword pointed to by retdesc

MAP
KEYDESC
RETDESC

LOCAL

REF BBLOCK,
REF VECTOR[,LONG];

NODE : REF BBLOCK,
STATUS;

6-31

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

6-32

STATUS= LIB$GET VM(%REF(NODE$C LENGTH+.KEYDESC[DSC$W LENGTH]),NODE);
IF NOT . STATUS - - -

THEN RETURN .STATUS
ELSE BEGIN

NODE[NODE$B NAMLNG] = .KEYDESC[DSC$W LENGTH]; ! Set name length
CH$MOVE(.KEYDESC[DSC$W LENGTH], - ! Copy in the name

.KEYDESC[DSC$A-POINTER],
NODE[NODE$T NAME]);

RETDESC[O] = .NODE;- Return address to caller
END;

RETURN . STATUS

END;

ROUTINE COMPARE NODE (KEYDESC,NODE,CONTEXT)
BEGIN
'+

This routine compares a key with a node.

INPUTS:

KEYDESC Address of string descriptor for new key
(This is the linedesc argument passed to
LIB$INSERT TREE)

Address of current node NODE
CONTEXT User context data (Not used in this example)

MAP
KEYDESC : REF BBLOCK,
NODE : REF BBLOCK;

RETURN CH$COMPARE(.KEYDESC[DSC$W_LENGTH],

END;

.KEYDESC[DSC$A POINTER],

.NODE[NODE$B NAMLNG],
NODE[NODE$T_NAME])

ROUTINE PRINT NODE (NODE,CONTEXT) =
BEGIN -
!+

Compare key with
current node

! This routine is called during the tree traversal. It
! prints out the left and right subtree pointers, the
! current node balance, and the name of the node.
!-
MAP

NODE : REF BBLOCK;

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

LOCAL
OUTBUF : BBLOCK[512], FAO output buffer
OUTDESC : BBLOCK[DSC$C s BLN], Output buffer descriptor
STATUS; - -

CH$FILL(O,DSC$C S BLN,OUTDESC); Zero descriptor
OUTDESC[DSC$W LENGTH] = 512;
OUTDESC[DSC$A-POINTER] = OUTBUF;
IF NOT (STATUS= SYS$FAO($DESCRIPTOR('!XL !XL !XL !XW !AC'),

OUTDESC,OUTDESC,
.NODE,.NODE[NODE$L LEFT],
.NODE[NODE$L RIGHT],
.NODE[NODE$W-BAL],
NODE[NODE$B NAMLNG]))

THEN SIGNAL(.STATUS) -
ELSE BEGIN

STATUS= LIB$PUT OUTPUT(OUTDESC); Output the line
IF NOT .STATUS -

THEN SIGNAL(.STATUS);
END;

RETURN SS$_NORMAL

END;
END

ELUDOM

End of module TREE EXAMPLE

6-33

7
Run-Time Library Input/Output Operations

This chapter describes the different I/O programming capabilities provided by the
run-time library and illustrates these capabilities with examples of common I/O
tasks. This chapter contains the following sections:

Section 7.1 describes the input and o1:1tput operations within a program.

Section 7 .2 describes using SYS$INPUT and SYS$0UTPUT.

Section 7.3 describes using LIB$GET_INPUT and LIB$PUT_OUTPUT for simple
user I/O.

Section 7.4 describes using the SMG$ run~time library routines for managing the
appearance of terminal screens.

Section 7 .5 describes using screen management input routines and the SYS$QIO
and SYS$QIOW system services to perform special actions.

7.1 Choosing 1/0 Techniques
The operating system and its compilers provide the following methods for
completing input and output operations within a program:

• DEC Text Processing Utility

• DECforms software

• Program language I/O statements

• Open VMS Record Management Services (RMS) and Run-Time Library (RTL)
routines

• SYS$QIO and SYS$QIOW system services

• Non-Digital-supplied device drivers to control the I/O to the device itself

The DEC Text Processing Utility (DECTPU) is a text processor that can be used
to create text editing interfaces. DECTPU has the following features:

• High-level procedure language with several data types, relational operators,
error interception, looping, case language statements, and built-in procedures

• Compiler for the DECTPU procedure language

• Interpreter for the DECTPU procedure language

• Extensible Versatile Editor (EVE) editing interface which, in addition to the
EVE keypad, provides EDT, VTlOO, WPS, and numeric keypad emulation

In addition, DECTPU offers the following special features:

• Multiple buffers

• Multiple windows

• Multiple subprocesses

7-1

Run-Time Library Input/Output Operations
7.1 Choosing 1/0 Techniques

7-2

• Text processing in batch mode

• Insert or overstrike text entry

• Free or bound cursor motion

• Learn sequences

• Pattern matching

• Key definition

The method you select for I/O operations depends on the task you want to
accomplish, ease of use, speed, and level of control you want.

The DECforms software is a forms management product for transaction
processing. DECforms integrates text and graphics into forms and menus
that application programs use as an interface to users. DECforms software offers
application developers software development tools and a run-time environment
for implementing interfaces.

DECforms software integrates with the Application Control and Management
System (ACMS), a transaction process (TP) monitor that works with other Digital
commercial applications to provide complete customizable development and
run-time environments for TP applications. An asynchronous call interface to
ACMS allows a single DECforms run-time process to control multiple terminals
simultaneously in a multithreaded way, resulting in an efficient use of memory.
By using the ACMS Remote Access Option, DECforms software can be distributed
to remote CPUs. This technique allows the host CPU to offload forms processing
and distribute it as closely as possible to the end user.

In contrast to Open VMS RMS, RTLs, SYS$QIOs, and device driver I/O, program
language I/O statements have the slowest speed and lowest level of control, but
they are the easiest to use and are highly portable.

Open VMS RMS and RTL routines can perform most I/O operations for a high­
level or assembly language program. For information about Open VMS RMS, see
the Open VMS Record Management Services Reference Manual.

System services can complete any I/O operation and can access devices not
supported within Open VMS RMS. See Chapter 9 for a description of using I/O
system services.

Writing a device driver provides the most control over I/O operations, but can
be more complex to implement. For information about device drivers for VAX
systems, see the Open VMS VAX Device Support Manual.

Several types of I/O operations can be performed within a program, including the
following:

• RTL routines allow you to read simple input from a user or send simple
. output to a user. One RTL routine allows you to specify a string to prompt
for input from the current input device, defined by SYS$INPUT. Another RTL
routine allows you to write a string to the current output device, defined by
SYS$0UTPUT. See Section 7 .2 and Section 7 .3 for more information.

• RTL routines allow you to read complex input from a user or to send complex
output to a user. By providing an extensive number of screen management
(SMG$) routines, the RTL allows you to read multiple lines of input from
users or to send complex output to users. The SMG$ routines also allow
you to create and modify complicated displays that accept input and produce
output. See Section 7.4 for more information.

Run-Time Library Input/Output Operations
7.1 Choosing 1/0 Techniques

• RTL routines allow you to use programming language I/O statements to send
data to and receive data from files. Program language 1/0 statements call
Open VMS RMS routines to complete most file I/O. You can also use Open VMS
RMS directly in your programs for accomplishing file I/O. See Chapter 8 for
more information.

• The SYS$QIO and SYS$QIOW system services allow you to send data to
and from devices with the most flexibility and control. You can use system
services to access devices not supported by your programming language or by
Open VMS RMS.

You can perform other special I/O actions, such as interrupts, controlling
echo, handling unsolicited input, using the type-ahead buffer, using case
conversion, and sending sytem broadcast messges, by using SMG$ routines
or, for example, by using SYS$BRKTHRU system service to broadcast
messages. See Section 7 .5 for more information.

7.2 Using SYS$1NPUT and SYS$0UTPUT
Typically, you set up your program so that the user is the invoker. The user
starts the program by entering a DCL command associated with the program or
by using the RUN command.

7.2.1 Default Input and Output Devices
The user's input and output devices are defined by the logical names SYS$INPUT
and SYS$0UTPUT, which are initially set to the values listed in Table 7-1.

Table 7-1 SYS$1NPUT and SYS$0UTPUT Values

Logical Name

SYS$INPUT

SYS$0UTPUT

User Mode

Interactive

Batch job

Command procedure

Interactive

Batch job

Command procedure

Equivalence Device or File

Terminal at which the user is logged in

Data lines following the invocation of the
program

Data lines following the invocation of the
program

Terminal at which the user is logged in

Batch log file

Terminal at which the user is logged in

Generally, use of SYS$INPUT and SYS$0UTPUT as the primary input and
output devices is recommended. A user of the program can redefine SYS$INPUT
and SYS$0UTPUT to redirect input and output as desired. For example, the
interactive user might redefine SYS$0UTPUT as a file name to save output in a
file rather than display it on the terminal.

7-3

Run-Time Library Input/Output Operations
7.2 Using SYS$1NPUT and SYS$0UTPUT

7.2.2 Reading and Writing to Alternate Devices and External Files
Alternatively, you can design your program to read input from and write output
to a file or a device other than the user's terminal. Files may be useful for writing
large amounts of data, for writing data that the user might want to save, and for
writing data that can be reused as input. If you use files or devices other than
SYS$INPUT and SYS$0UTPUT, you should provide the names of the files or
devices (best form is to use logical names) and any conventions for their use. You
can specify such information by having the program write it to the terminal, by
creating a help file, or by providing user documentation.

7.3 Working with Simple User 1/0
Usually, you can request information from or provide information to the user
with little regard for formatting. For such simple I/O, use LIB$GET_INPUT and
LIB$PUT_OUTPUT or the I/O statements for your programming language.

To provide complex screen displays for input or output, use the screen
management facility described in Section 7.4.

7.3.1 Default Devices for Simple 1/0
The LIB$GET_INPUT and LIB$PUT_OUTPUT routines read from SYS$INPUT
and write to SYS$0UTPUT, respectively. The logical names SYS$INPUT and
SYS$0UTPUT are implicit to the routines, because you need only call the
routine to access the I/O unit (device or file) associated with SYS$INPUT and
SYS$0UTPUT. You cannot use these routines to access an I/O unit other than
the one associated with SYS$INPUT or SYS$0UTPUT.

7.3.2 Getting a Line of Input

7-4

A read operation transfers one record from the input unit to a variable or
variables of your choice. At a terminal, the user ends a record by pressing a
terminator. The terminators are the ASCII characters NUL through US (0
through 31) except for LF, VT, FF, TAB, and BS. The usual terminator is CR
(carriage return), which is generated by pressing the Return key.

If you are reading character data, LIB$GET_INPUT is a simple way of prompting
for and reading the data. If you are reading noncharacter data, programming
language I/O statements are preferable since they allow you to translate the data
to a format of your choice.

For example, Fortran offers the ACCEPT statement, which reads data from
SYS$INPUT, and the READ statement, which reads data from an I/O unit of your
choice.

Make sure the variables that you specify can hold the largest number of
characters the user of your program might enter, unless you want to truncate the
input deliberately. Overflowing the input variable using LIB$GET_INPUT causes
the fatal error LIB$_INPSTRTRU (defined in $LIBDEF); overflowing the input
variable using language I/O statements may not cause an error but does truncate
your data.

LIB$GET_INPUT places the characters read in a variable of your choice. You
must define the variable type as a character. Optionally, LIB$GET _INPUT places
the number of characters read in another variable of your choice. For input at a
terminal, LIB$GET_INPUT optionally writes a prompt before reading the input.
The prompt is suppressed automatically for an operation not taking place at a
terminal.

Run-Time Library Input/Output Operations
7.3 Working with Simple User 1/0

Example 7-1 uses LIB$GET_INPUT to read a line of input.

Example 7-1 Reading a Line of Data

INTEGER*4 STATUS,
2 LIB$GET_INPUT
INTEGER*2 INPUT SIZE
CHARACTER*512 INPUT-
STATUS = LIB$GET INPUT (INPUT, ! Input value
2 - 'Input value: ' ! Prompt {optional)
2 INPUT SIZE) ! Input size (optional)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.3.3 Getting Several Lines of Input
The usual technique for getting a variable number of input records-either values
for which you are prompting or data records from a file-is to read and process
records until the end-of-file. End-of-file means one of the following:

• Terminal-The user has pressed Ctrl/Z. To ensure that the convention is
followed, you might first write a message telling the user to press Ctrl/Z to
terminate the input sequence.

• Command procedure-The end of a sequence of data lines has been reached.
That is, a sequence of data lines ends at the next DCL command (a line in
the procedure beginning with a dollar sign [$]) or at the end of the command
procedure file.

• File-The end of an actual file has been reached.

Process the records in a loop (one record per iteration) and terminate the loop
on end;.of-file. LIB$GET_INPUT returns the error RMS$_EOF (defined in
$RMSDEF) when end-of-file occurs.

Example 7-2 uses a Fortran READ statement in a loop to read a sequence of
integers from SYS$INPUT.

Example 7-2 Reading a Varying Number of Input Records

! Return status and error codes
INTEGER STATUS,
2 IOSTAT,
3 STATUS OK,
4 IOSTAT-OK
PARAMETER (STATUS OK = 1,
2 IO OK~ 0)
INCLUDE I ($FoRDEF) I

! Data record read on eacn iteration
INTEGER INPUT NUMBER
! Accumulated data records
INTEGER STORAGE COUNT,
2 STORAGE-MAX
PARAMETER (STORAGE MAX = 255)
INTEGER STORAGE=NUMBER (STORAGE_MAX)

(continued on next page) ·

7-5

Run-Time Library Input/Output Operations
7.3 Working with Simple User 1/0

Example 7-2 (Cont.) Reading a Varying Number of Input Records
! Write instructions to interactive user
TYPE *,
2 'Enter values below. Press CTRL/Z when done.'
! Get first input value
WRITE (UNIT=*,
2 FMT='(A,$)') ' Input value: '
READ (UNIT=*,
2 IOSTAT=IOSTAT,
2 FMT='(BN,I)') INPUT NUMBER
IF (IOSTAT .EQ. IO OK) THEN

STATUS = STATUS OK
ELSE -

CALL ERRSNS (,,,,STATUS)
END IF
! Process each input value until end-of-file
DO WHILE ((STATUS .NE. FOR$ ENDDURREA) .AND.

(STORAGE COUNT .LT. STORAGE MAX))
! Keep repeating-on conversion error
DO WHILE (STATUS .EQ. FOR$ INPCONERR)

WRITE (UNIT=*, -
2 FMT=' (A,$),) , Try again: ,

READ (UNIT=*,
2 IOSTAT=IOSTAT,
2 FMT='(BN,I)') INPUT NUMBER

IF (IOSTAT .EQ. IO OK) THEN
STATUS = STATUS OK

ELSE -
CALL ERRSNS (,,,,STATUS)

END IF
END DO
! Continue if end-of-file not entered
IF (STATUS .NE. FOR$ ENDDURREA) THEN

! Status check on Iast read
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Store input numbers in input array
STORAGE COUNT = STORAGE COUNT + 1
STORAGE-NUMBER (STORAGE-COUNT) = INPUT NUMBER
! Get next input value - -
WRITE (UNIT=*,

2 FMT='(A,$)') ' Input value: '
READ (UNIT=*,

2 IOSTAT=IOSTAT,
2 FMT='(BN,I)') INPUT NUMBER

IF (IOSTAT .EQ. IO OK) THEN
STATUS = STATUS OK

ELSE -
CALL ERRSNS (,,,,STATUS)

END IF
END IF

END DO

7.3.4 Writing Simple Output

7-6

You can use LIB$PUT_OUTPUT to write character data. If you are writing
noncharacter data, programming language I/O statements are preferable because
they allow you to translate the data to a format of your choice.

Run-Time Library Input/Output Operations
7.3 Working with Simple User 1/0

LIB$PUT_OUTPUT writes one record of output to SYS$0UTPUT. Typically,
you should avoid writing records that exceed the device width. The width of
a terminal is 80 or 132 characters, depending on the setting of the physical
characteristics of the device. The width of a line printer is 132 characters. If your
output record exceeds the width of the device, the excess characters are either
truncated or wrapped to the next line, depending on the setting of the physical
characteristics.

You must define a value (a variable, constant, or expression) to be written. The
value must be expressed in characters. You should specify the exact number of
characters being written and not include the trailing portion of a variable.

The following example writes a character expression to SYS$0UTPUT:

INTEGER*4 STATUS,
2 LIB$PUT OUTPUT
CHARACTER*40 ANSWER -
INTEGER*4 ANSWER SIZE

STATUS= LIB$PUT OUTPUT ('Answer: , II ANSWER (l:ANSWER SIZE))
IF (.NOT. STATUS)'CALL LIB$SIGNAL (%VAL (STATUS)) -

7.4 Working with Complex User 1/0
DECwindows Motif for Open VMS (DECwindows Motif), and the SMG$ run-
time library routines enable complex screen display I/O. The DECwindows
Motif environment provides a consistent user interface for developing software
applications. It also includes an extensive set of programming libraries and tools.
The following DECwindows Motif software allows you to build a graphical user
interface:

• Toolkit composed on graphical user interface objects, such as widgets and
gadgets. Widgets provide advanced programming capabilities that permit you
to create graphic applications easily; gadgets, similar to widgets, require less
memory to create labels, buttons, and separators.

• Language to describe visual aspects of objects, such as menus, labels, and
forms, and to specify changes resulting from user interaction.

• OSF/Motif Window Manager to allow you to customize the interface.

DECwindows Motif environment also makes available the LinkWorks services
for creating, managing, and traversing informational links between different
application-specific data. Along with the LinkWorks Manager application,
LinkWorks services help organize information into a hyperinformation
environment. LinkWorks Developer's Tools provide a development environment
for creating, modifying, and maintaining hyperapplications.

For information about using Open VMS DECwindows Motif, see the Overview of
DECwindows Motif for Open VMS Documentation and the DECwindows Motif
Guide to Application Programming.

The SMG$ run-time library routines provide a simple, device-independent
interface for managing the appearance of the terminal screen. The SMG$
routines are primarily for use with video terminals; however, they can be used
with files or hardcopy terminals.

7-7

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

7-8

To use the screen management facility for output, do the following:

1. Create a pasteboard-A pasteboard is a logical, two-dimensional area on
which you place virtual displays. Use the SMG$CREATE_PASTEBOARD
routine to create a pasteboard, and associate it with a physical device. When
you refer to the pasteboard, SMG performs the necessary 1/0 operation to the
device.

2. Create a virtual display-A virtual display is a logical, two-dimensional area
in which you place the information to be displayed. Use the SMG$CREATE_
VIRTUAL_DISPLAY routine to create a virtual display.

3. Paste virtual displays to the pasteboard-To make a virtual display visible,
map (or paste) it to the pasteboard using the SMG$PASTE_ VIRTUAL_
DISPLAY routine. You can reference a virtual display regardless of whether
that display is currently pasted to a pasteboard.

4. Create a viewport for a virtual display-A viewport is a rectangular viewing
area that can be moved around on a buffer to view different pieces of the
buffer. The viewport is associated with a virtual display.

Example 7-3 associates a pasteboard with the terminal, creates a virtual display
the size of the terminal screen, and pastes the display to the pasteboard. When
text is written to the virtual display, the text appears on the terminal screen.

Example 7-3 Associating a Pasteboard with a Terminal

Screen management control structures
INTEGER*4 PBID, ! Pasteboard ID
2 VOID, ! Virtual display ID
2 ROWS, ! Rows on screen
2 COLS ! Columns on screen

Status variable and routines called as functions
INTEGER*4 STATUS,
2 SMG$CREATE PASTEBOARD,
2 SMG$CREATE-VIRTUAL DISPLAY,
2 SMG$PASTE VIRTUAL DISPLAY

Set up SYS$0UTPUT-for screen management
and get the number of rows and columns on the screen

STATUS = SMG$CREATE PASTEBOARD (PBID, ! Return value
2 - 'SYS$0UTPUT',
2 ROWS, ! Return value
2 COLUMNS) ! Return value
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Create virtual display that pastes to the full screen size
STATUS = SMG$CREATE VIRTUAL DISPLAY (ROWS,
2 - - COLUMNS,
2 VOID) ! Return value
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

Example 7-3 {Cont.) Associating a Pasteboard with a Terminal

! Paste virtual display to pasteboard
STATUS = SMG$PASTE VIRTUAL DISPLAY (VOID,
2 - - PBID,
2 1, ! Starting at row 1 and
2 1) ! column 1 of the screen
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

To use the SMG$ routines for input, you associate a virtual keyboard with a
physical device or file using the SMG$CREATE_ VIRTUAL_KEYBOARD routine.
The SMG$ input routines can be used alone or with the output routines. This
section assumes that you are using the input routines with the output routines.
Section 7 .5 describes how to use the input routines without the output routines.

The screen management facility keeps an internal representation of the screen
contents; therefore, it is important that you do not mix SMG$ routines with
other forms of terminal I/O. The following subsections contain guidelines for
using most of the SMG$ routines; for more details, see the Open VMS RTL Screen
Management (SMG$) Manual.

7 .4.1 Pasteboards
Use the SMG$CREATE_PASTEBOARD routine to create a pasteboard and
associate it with a physical device. SMG$CREATE_PASTEBOARD returns
a unique pasteboard identification number; use that number to refer to the
pasteboard in subsequent calls to SMG$ routines. After associating a pasteboard
with a device, your program references only the pasteboard. The screen
management facility performs all necessary operations between the pasteboard
and the physical device. Example 7-4 creates a pasteboard.

Example 7-4 Creating a Pasteboard

STATUS = SMG$CREATE PASTEBOARD (PBID, ROWS, COLUMNS)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.4.1.1 Erasing a Pasteboard
When you create a pasteboard, the screen management facility clears the screen
by default. To clear the screen yourself, invoke the SMG$ERASE_PASTEBOARD
routine. Any virtual displays associated with the pasteboard are removed from
the screen, but their contents in memory are not affected. The following example
erases· the screen:

STATUS = SMG$ERASE PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7-9

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

7.4.1.2 Deleting a Pasteboard
Invoking the SMG$DELETE_PASTEBOARD routine deletes a pasteboard,
making the screen unavailable for further pasting. The optional second argument
of the SMG$DELETE_PASTEBOARD routine allows you to indicate whether the
routine clears the screen (the default) or leaves it as is. The following example
deletes a pasteboard and clears the screen:

STATUS = SMG$DELETE PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

By default, the screen is erased when you create a pasteboard. Generally, you
should erase the screen at the end of a session.

7.4.1.3 Setting Screen Dimensions and Background Color
The SMG$CHANGE_PBD_CHARACTERISTICS routine sets the dimensions of
the screen and its background color. You can also use this routine to retrieve
dimensions and background color. To get more detailed information about the
physical device, use the SMG$GET_PASTEBOARD_ATTRIBUTES routine.
Example 7-5 changes the screen width to 132 and the background to white, then
restores the original width and background before exiting.

Example 7-5 Modifying Screen Dimensions and Background Color

INTEGER*4 WIDTH,
2 COLOR
INCLUDE '($SMGDEF)'
! Get current width and background color
STATUS= SMG$CHANGE PBD CHARACTERISTICS (PBID,,
2 - - WIDTH I I I I

2 COLOR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Change width and background color
STATUS = SMG$CHANGE PBD CHARACTERISTICS
2 - -

(PBID,
132, I I I

2
IF

SMG$C COLOR WHITE)
(.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) -

Restore width and background color
STATUS = SMG$CHANGE PBD CHARACTERISTICS
2 - -
2

(PBID,
WIDTH,,,,
COLOR)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7 .4.2 Virtual Displays

7-10

You write to virtual displays, which are logically configured as rectangles, by
using the SMG$ routines. The dimensions of a virtual display are designated
vertically as rows and horizontally as columns. A position in a virtual display is
designated by naming a row and a column. Row and column numbers begin at 1.

Run-Time Library Input/Output Operations
7 .4 Working with Complex User 1/0

7.4.2.1 Creating a Virtual Display
Use the SMG$CREATE_ VIRTUAL_DISPLAY routine to create a virtual
display. SMG$CREATE_ VIRTUAL_DISPLAY returns a unique virtual display
identification number; use that number to refer to the virtual display.

Optionally, you can use the fifth argument of SMG$CREATE_ VIRTUAL_
DISPLAY to specify one or more of the following video attributes: blinking,
holding, reversing background, and underlining. All characters written to that
display will have the specified attribute unless you indicate otherwise when
writing text to the display. The following example makes everything written to
the display HEADER_ VDID appear bold by default:

INCLUDE '($SMGDEF)'

STATUS = SMG$CREATE VIRTUAL DISPLAY (1, ! Rows
2 - - 80, ! Columns
2 HEADER VOID,,
2 SMG$M_BOLD)

You can border a virtual display by specifying the fourth argument when you
invoke SMG$CREATE_ VIRTUAL_DISPLAY. You can label the border with the
routine SMG$LABEL_BORDER. If you use a border, you must leave room for it:
a border requires two rows and two columns more than the size of the display.
The following example places a labeled border around the STATS_ VDID display.
As pasted, the border occupies rows 2 and 13 and columns 1 and 57.

STATUS = SMG$CREATE VIRTUAL DISPLAY (10, ! Rows
2 - - 55, ! Columns
2 STATS VOID,
2 SMG$M=BORDER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$LABEL BORDER (STATS VOID,
2 - 'stat1stics')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE VIRTUAL DISPLAY (STATS VOID,
2 - - PBID, -
2 3, ! Row
2 2) ! Column

7.4.2.2 Pasting Virtual Displays
To make a virtual display visible, paste it to a pasteboard using the
SMG$PASTE_ VIRTUAL_DISPLAY routine. You position the virtual display
by specifying which row and column of the pasteboard should contain the upper
left corner of the display. Example 7-6 defines two virtual displays and pastes
them to one pasteboard.

7-11

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

7-12

Example 7-6 Defining and Pasting a Virtual Display

INCLUDE '($SMGDEF)'
INTEGER*4 PBID,
2 HEADER VOID,
2 STATS VOID
INTEGER*4 STATUS,
2 SMG$CREATE PASTEBOARD,
2 SMG$CREATE-VIRTUAL DISPLAY,
2 SMG$PASTE VIRTUAL DISPLAY
! Create pasteboard-for SYS$OUTPUT
STATUS = SMG$CREATE PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Header pastes to first rows of screen
STATUS = SMG$CREATE VIRTUAL DISPLAY (3, ! Rows
2 - - · 78, ! Columns
2 HEADER VOID, Name
2 SMG$M BORDER) ! Border
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE VIRTUAL DISPLAY (HEADER VOID,
2 - - PBID, -
2 2, Row
2 2) Column
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Statistics area pastes to rows 5 through 15,
! columns 2 through 56
STATUS = SMG$CREATE VIRTUAL DISPLAY (10, Rows
2 - - 55, Columns
2 STATS VOID, Name
2 SMG$M=BORDER) ! Border
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE VIRTUAL DISPLAY (STATS VOID,
2 - - PBID, -
2 5, Row
2 2) Column
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

Figure 7-1 shows the screen that results from Example 7-6.

Figure 7-1 Defining and Pasting Virtual Displays

ZK-2044-GE

You can paste a single display to any number of pasteboards. Any time you
change the display, all pasteboards containing the display are automatically
updated.

A pasteboard can hold any number of virtual displays. You can paste virtual
displays over one another to any depth, occluding the displays underneath. The
displays underneath are only occluded to the extent that they are covered; that
is, the parts not occluded remain visible on the screen. (In Figure 7-2, displays 1
and 2 are partially occluded.) When you unpaste a virtual display that occludes
another virtual display, the occluded part of the display underneath becomes
visible again.

You can find out whether a display is occluded by using the SMG$CHECK_FOR_
OCCLUSION routine. The following example pastes a two-row summary display
over the last two rows of the statistics display, if the statistics display is not
already occluded. If the statistics display is occluded, the example assumes that
it is occluded by the summary display and unpastes the summary display, making
the last two rows of the statistics display visible again.

2
2

2

2
2
2

STATUS = SMG$CHECK FOR OCCLUSION (STATS VDID,
- - PBID,-

OCCLUDE STATE)
OCCLUDE STATE must be defined as INTEGER*4
IF (OCCLUDE STATE) THEN

STATUS = SMG$UNPASTE VIRTUAL DISPLAY (SUM VDID,
- - PBID)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
ELSE

STATUS = SMG$PASTE_VIRTUAL_DISPLAY

IF (.NOT. STATUS) CALL LIB$SIGNAL
END IF

(SUM VDID,
PBID,
11,
2)

(%VAL (STATUS))

7-13

Run-Time Library Input/Output Operations
7 ~4 Working with Complex User 1/0

7 .4.2.3 Rearranging Virtual Displays
Pasted displays can be rearranged by moving or repasting.

• Moving-To move a display, use the SMG$MOVE_VIRTUAL_DISPLAY
routine. The following example moves display 2. Figure 7-2 shows the screen
before and after the statement executes.

STATUS = SMG$MOVE VIRTUAL DISPLAY (VOID,
2 - - PBID,
2 5,
2 10)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Figure 7-2 Moving a Virtual Display

Before Moving Display 2 After Moving Display 2

7-14

1

3
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

1 = ~~ ~~..,r--- 2
bbbbbbbb
bbbbbbbb

'-----t b 3
b
b

ccccccccc
ccccccccc

ZK-2045-GE

• Repasting-To repaste a display, use the SMG$REPASTE_ VIRTUAL_
DISPLAY routine. The following example repastes display 2. Figure 7-3
shows the screen before and after the statement executes.

STATUS = SMG$REPASTE VIRTUAL DISPLAY (VOID,
2 - - PBID,
2 4,
2 4)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

Figure 7-3 Repasting a Virtual Display

Before Repasting Display 2 After Repasting Display 2

bbbbbbbb

3
bbbbbbbb
bbbbbbbb

ccccccccc bbbbbbbb cc
ccccccccc bbbbbbbb cc
ccccccccc cc
ccccccccc ccccccccc
ccccccccc ccccccccc

ZK-2046-GE

You can obtain the pasting order of the virtual displays using SMG$LIST_
PASTING_ ORDER. This routine returns the identifiers of all the virtual displays
pasted to a specified pasteboard.

7.4.2.4 Removing Virtual Displays
You can remove a virtual display from a pasteboard in a number of different
ways:

• Erase a virtual display-Invoking SMG$UNPASTE_ VIRTUAL_DISPLAY
erases a virtual display from the screen but retains its contents in memory.
The following example erases the statistics display:

STATUS = SMG$UNPASTE VIRTUAL DISPLAY (STATS VOID,
2 - - PBID)-
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Delete a virtual display-Invoking SMG$DELETE_ VIRTUAL_DISPLAY
removes a virtual display from the screen and removes its contents from
memory. The following example deletes the statistics display:

STATUS = SMG$DELETE VIRTUAL DISPLAY (STATS VOID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Delete several virtual displays-Invoking SMG$POP _ VIRTUAL_DISPLAY
removes a specified virtual display and any virtual displays pasted after
that display from the screen and removes the contents of those displays
from memory. The following example "pops" display 2. Figure 7-4 shows the
screen before and after popping. (Note that display 3 is deleted because it
was pasted after display 2, and not because it is occluding display 2.)

STATUS = SMG$POP VIRTUAL DISPLAY (STATS VOID,
2 - - PBID)-
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7-15

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

Figure 7-4 Popping a Virtual Display

Before Popping Display 2 After Popping Display 2

1

3
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

aaaa~aaa.
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

ZK-2047-GE

7.4.2.5 Modifying a Virtual Display

7-16

The screen management facility provides several routines for modifying the
characteristics of an existing virtual display:

• SMG$CHANGE_ VIRTUAL_DISPLAY-Changes the size, video attributes, or
border of a display

• SMG$CHANGE_RENDITION-Changes the video attributes of a portion of a
display

• SMG$MOVE_TEXT-Moves text from one virtual display to another

The following example uses SMG$CHANGE_ VIRTUAL_DISPLAY to change the
size of the WHOOPS display to five rows and seven columns and to turn off all of
the display's default video attributes. If you decrease the size of a display that is
on the screen, any characters in the excess area are removed from the screen.

STATUS = SMG$CHANGE VIRTUAL DISPLAY (WHOOPS VDID,
2 - - 5, ! :Rows
2 7,, ! Columns
2 0) ! Video attributes off

The following example uses SMG$CHANGE_RENDITION to direct attention to
the first 20 columns of the statistics display by setting the reverse video attribute
to the complement of the display's default setting for that attribute:

STATUS = SMG$CHANGE RENDITION
2 -
2
2
2
2
2
2

(STATS VDID,
1, -
1,
10,
20,
I

SMG$M_REVERSE)

Row
Column
Number of rows
Number of columns

! Video-set argument
! Video-comp argument

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

SMG$CHANGE_RENDITION uses three sets of video attributes to determine the
attributes to apply to the specified portion of the display: (1) the display's default
video attributes, (2) the attributes specified by the rendition-set argument of
SMG$CHANGE_RENDITION, and (3) the attributes specified by the rendition­
complement argument of SMG$CHANGE_RENDITION. Table 7-2 shows the
result of each possible combination.

Table 7-2 Setting Video Attributes

rendition-set

off

on

rendition-complement

off

off

Result

Uses display default

Sets attribute

off on Uses the complement of display
default

on on Clears attribute

In the preceding example, the reverse video attribute is set in the rendition­
complement argument but not in the rendition-set argument, thus specifying
that SMG$CHANGE_RENDITION use the complement of the display's default
setting to ensure that the selected portion of the display is easily seen.

Note that the resulting attributes are based on the display's default attributes,
not its current attributes. If you use SMG$ routines that explicitly set video
attributes, the current attributes of the display may not match its default
attributes.

7.4.2.6 Using Spawned Subprocesses
You can create a spawned subprocess directly with an SMG$ routine to
allow execution of a DCL command from an application. Only one spawned
subprocess is allowed per virtual display. Use the following routines to work with
subprocesses:

• SMG$CREATE_SUBPROCESS-Creates a DCL spawned subprocess and
associates it with a virtual display.

• SMG$EXECUTE_COMMAND-Allows execution of a specified command in
the created spawned subprocess by using mailboxes. Some restrictions apply
to specifying the following commands:

SPAWN, GOTO, or LOGOUT cannot be used and will result in
unpredictable results.

Single-character commands such as Ctrl/C have no effect. You can
signal an end-of-file (that is, press Ctrl/Z) command by setting the flags
argument.

A dollar sign ($)must be specified as the first character of any DCL
command.

• SMG$DELETE_SUBPROCESS-Deletes the subprocess created by
SMG$CREATE_SUBPROCESS.

7-17

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

7 .4.3 Viewports
Viewports allow you to view different pieces of a virtual display by moving a
rectangular area around on the virtual display. Only one viewport is allowed for
each virtual display. Once you have associated a viewport with a virtual display,
the only part of the virtual display that is viewable is contained in the viewport.

The SMG$ routines for working with viewports include the following:

• SMG$CREATE_ VIEWPORT-Creates a viewport and associates it with
a virtual display. You must create the virtual display first. To view the
viewport, you must paste the virtual display first with SlVIG$PASTE_
VIRTUAL_DISPLAY.

0 SMG$SCROLL_VIEWPORT-Scrolls the viewport within the virtual display.
If you try to move the viewport outside of the virtual display, the viewport is
truncated to stay within the virtual display. This routine allows you to specify
the direction and extent of the scroll.

• SMG$CHANGE_ VIEWPORT-Moves the viewport to a new starting location
and changes the size of the viewport.

• SMG$DELETE_ VIEWPORT-Deletes the viewport and dissociates it from the
virtual display. The viewport is automatically unpasted. The virtual display
associated with the viewport remains intact. You can unpaste a viewport
without deleting it by using SMG$UNPASTE_ VIRTUAL_DISPLAY.

7.4.4 Writing Text to Virtual Display
The SMG$ output routines allow you to write text to displays and to delete or
modify the existing text of a display. Remember that changes to a virtual display
are visible only if the virtual display is pasted to a pasteboard.

7.4.4.1 Positioning the Cursor

7-18

Each virtual display has its own logical cursor position. You can control the
position of the cursor in a virtual display with the following routines:

• SMG$HOME_CURSOR-Moves the cursor to a corner of the virtual display.
The default corner is the upper left corner, that is, row 1, column 1 of the
display.

• SMG$SET_CURSOR_ABS-Moves the cursor to a specified row and column.

• SMG$SET_CURSOR_REL-Moves the cursor to offsets from the current
cursor position. A negative value means up (rows) or left (columns). A value
of 0 means no movement.

In addition, many routines permit you to specify a starting location other than
the current cursor position for the operation.

The SMG$RETURN_CURSOR_POS routine returns the row and column of the
current cursor position within a virtual display. You do not have to write special
code to track the cursor position.

Typically, the physical cursor is at the logical cursor position of the most recently
written-to display. If necessary, you can use the SMG$SET_PHYSICAL_CURSOR
routine to set the physical cursor location.

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

7.4.4.2 Writing Data Character by Character
If you are writing character by character (see Section 7.4.4.3 for line-oriented
output), you can use three routines:

• SMG$DRAW _CHAR-Puts one line-drawing character on the screen at a
specified position. It does not change the cursor position.

• SMG$PUT_CHARS-Puts one or more characters on the screen at a specified
position, with the option of one video attribute.

• SMG$PUT_CHARS_MULTI-Puts several characters on the screen at a
specified position, with multiple video attributes.

These routines are simple and precise. They place exactly the specified characters
on the screen, starting at a specified position in a virtual display. Anything
currently in the positions written-to is overwritten; no other positions on the
screen are affected. Convert numeric data to character data with language 1/0
statements before invoking SMG$PUT_CHARS.

The following example converts an integer to a character string and places it at a
designated position in a virtual display:

CHARACTER*4 HOUSE NO STRING
INTEGER*4 HOUSE-NO~
2 LINE NO,
2 STATS VDID

WRITE (UNIT=HOUSE NO STRING,
2 FMT='(I4)') HOUSE NO
STATUS = SMG$PUT CHARS (STATS VDID,
2 - HOUSE-NO STRING,
2 LINE NO,- ! Row
2 1) - ! Column

Note that the converted integer is right-justified from column 4 because the
format specification is 14 and the full character string is written. To left-justify
a converted number, you must locate the first nonblank character and write a
substring starting with that character and ending with the last character.

Inserting and Overwriting Text
To insert characters rather than overwrite the current contents of the screen, use
the routine SMG$INSERT_CHARS. Existing characters at the location written to
are shifted to the right. Characters pushed out of the display are truncated; no
wrapping occurs and the cursor remains at the end of the last character inserted.

Specifying Double-Size Characters
In addition to the preceding routines, you can use SMG$PUT_CHARS_ WIDE to
write characters to the screen in double width or SMG$PUT_CHARS_HIGHWIDE
to write characters to the screen in double height and double width. When you
use these routines, you must allot two spaces for each double-width character on
the line and two lines for each line of double-height characters. You cannot mix
single-and double-size characters on a line.

All the character routines provide rendition-set and rendition-complement
arguments, which allow you to specify special video attributes for the characters
being written. SMG$PUT_CHARS_MULTI allows you to specify more than one
video attribute at a time. The explanation of the SMG$CHANGE_RENDITION
routine in Section 7.4.2.5 discusses how to use rendition-set and rendition­
complement arguments.

7-19

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

7.4.4.3 Writing Data Line by Line

7-20

The SMG$PUT_LINE and SMG$PUT_LINE_MULTI routines write lines to
virtual displays one line after another. If the display area is full, it is scrolled.
You do not have to keep track of which line you are on. All routines permit you to
scroll forward (up); SMG$PUT_LINE and SMG$PUT_LINE_MULTI permit you
to scroll backward (down) as well. SMG$PUT_LINE permits spacing other than
single spacing.

Example 7-7 writes lines from a buffer to a display area. The output is scrolled
forward if the buffer contains more lines than the display area.

Example 7-7 Scrolling Forward Through a Display

INTEGER*4 BUFF_COUNT,
2 BUFF SIZE (4096)
CHARACTER*512 BUFF-(4096)

DO I = 1, BUFF COUNT
STATUS = SMG$PUT LINE (VDID,

2 - BUFF (I) (l:BUFF SIZE (I)))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL-(STATUS))

END DO

Example 7-8 scrolls the output backward.

Example 7-8 Scrolling Backward Through a Display

DO I = BUFF COUNT, 1, -1
STATUS = SMG$PUT LINE (VDID,

2 - BUFF (I) (l:BUFF SIZE (I)),
2 SMG$M DOWN) -

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END DO

Cursor Movement and Scrolling
To maintain precise control over cursor movement and scrolling, you can write
with SMG$PUT_CHARS and scroll explicitly with SMG$SCROLL_DISPLAY_
AREA. SMG$PUT_CHARS leaves the cursor after the last character written
and does not force scrolling; SMG$SCROLL_DISPLAY _AREA scrolls the current
contents of the display forward, backward, or sideways without writing to the
display. To restrict the scrolling region to a portion of the display area, use the
SMG$SET_DISPLAY_SCROLL_REGION routine.

Inserting and Overwriting Text
To insert text rather than overwrite the current contents of the screen, use the
SMG$INSERT_LINE routine. Existing lines are shifted up or down to open space
for the new text. If the text is longer than a single line, you can specify whether
or not you want the excess characters to be truncated or wrapped.

Using Double-Width Characters
In addition, you can use SMG$PUT_LINE_ WIDE to write a line of text to the
screen using double-width characters. You must allot two spaces for each double­
width character on the line. You cannot mix single- and double-width characters
on a line.

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

Specifying Special Video Attributes
All line routines provide rendition-set and rendition-complement arguments,
which allow you to specify special video attributes for the text being written.
SMG$PUT_LINE_MULTI allows you to specify more than one video attribute
for the text. The explanation of the SMG$CHANGE_RENDITION routine
in Section 7.4.2.5 discusses how to use the rendition-set and rendition­
complement arguments.

7 .4.4.4 Drawing Lines
The routine SMG$DRAW _LINE draws solid lines on the screen. Appropriate
corner and crossing marks are drawn when lines join or intersect. The routine
SMG$DRAW_CHARACTER draws a single character. You can also use the
routine SMG$DRAW _RECTANGLE to draw a solid rectangle. Suppose that you
want to draw an object such as that shown in Figure 7-5 in the statistics display
area (an area of 10 rows by 55 columns).

Figure 7-5 Statistics Display

ZK-2048-GE

Example 7-9 shows how you can create a statistics display using SMG$DRAW_
LINE and SMG$DRAW _RECTANGLE.

Example 7-9 Creating a Statistics Display

STATUS = SMG$CREATE VIRTUAL DISPLAY (10,
2 - - 55,
2 STATS VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Draw rectangle with upper left corner at row 1 column 1
! and lower right corner at row 10 column 55
STATUS =SMG$DRAW RECTANGLE (STATS VDID,
2 - 1, 1,-
2 10, 55)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Draw vertical lines at columns 11, 21, and 31
DO I = 11, 31, 10

STATUS = SMG$DRAW LINE (STATS VDID,
2 - 1, I, -
2 10, I)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END DO

(continued on next page)

7-21

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

Example 7-9 (Cont.) Creating a Statistics Display

! Draw horizontal line at row 3
STATUS = SMG$DRAW LINE (STATS VDID,
2 - 3, 1,-
2 3, 55)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE VIRTUAL DISPLAY (STATS VDID,
2 - - PBID,-
2 3,
2 2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.4.4.5 Deleting Text
The following routines erase specified characters, leaving the rest of the screen
intact:

• SMG$ERASE_CHARS-Erases specified characters on one line.

• SMG$ERASE_LINE-Erases the characters on one line starting from a
specified position.

• SMG$ERASE_DISPLAY-Erases specified characters on one or more lines.

• SMG$ERASE_COLUMN-Erases a column from the specified row to the end
of the column from the virtual display.

The following routines perform delete operations. In a delete operation,
characters following the deleted characters are shifted into the empty space.

• SMG$DELETE_CHARS-Deletes specified characters on one line. Any
characters to the right of the deleted characters are shifted left.

• SMG$DELETE_LINE-Deletes one or more full lines. Any remaining lines in
the display are scrolled up to fill the empty space.

The following example erases the remaining characters on the line whose line
number is specified by LINE_NO, starting at the column specified by COLUMN_
NO:

STATUS = SMG$ERASE LINE (STATS VDID,
2 - LINE NO,
2 COLUMN NO)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.4.5 Using Menus

7-22

You can use SMG$ routines to set up menus to read user input. The type of
menus you can create include the following:

• Block menu-Selections are in matrix format. This is the type of menu often
used.

• Vertical menu-Each selection is on its own line.

• Horizontal menu-All selections are on one line.

Menus are associated with a virtual display, and only one menu can be used for
each virtual display.

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

The menu routines include the following:

• SMG$CREATE_MENU-Creates a menu associated with a virtual display.
This routine allows you to specify the type of menu, the position in which
the menu is displayed, the format of the menu (single or double spaced), and
video attributes.

• SMG$SELECT_FROM_MENU-Sets up menu selection capability. You can
specify a default menu selection (which is shown in reverse video), whether
online help is available, a maximum time limit for making a menu selection,
a key indicating read termination, whether to send the text of the menu item
selected to a string, and a video attribute.

• SMG$DELETE_MENU-Discontinues access to the menu and erases it.

When you are using menus, no other output should be sent to the menu area;
otherwise, unpredictable results may occur.

The default SMG$SELECT_FROM_MENU allows specific operations, such as
use of the arrow keys to move up and down the menu selections, keys to make a
menu selection, ability to select more than one item at a time, ability to reselect
an item already selected, and the key sequence to invoke online help. By using
the flags argument to modify this operation, you have the option of disallowing
reselection of a menu item and of allowing any key pressed to select an item.

7 .4.6 Reading Data
You can read text from a virtual display (SMG$READ _FROM_DISPLAY) or from
a virtual keyboard (SMG$READ_STRING, SMG$READ_COMPOSED_LINE, or
SMG$READ_KEYSTROKE). The three routines for virtual keyboard input are
known as the SMG$ input routines. SMG$READ_FROM_DISPLAY is not a true
input routine because it reads text from the virtual display rather than from a
user.

The SMG$ input routines can be used alone or with the SMG$ output _routines.
This section assumes that you are using the input routines with the output
routines. Section 7.5 describes how to use the input routines without the output
routines.

When you use the SMG$ input routines with the SMG$ output routines, always
specify the optional vdid argument of the input routine, which specifies the
virtual display in which the input is to occur. The specified virtual display must
be pasted to the device associated with the virtual keyboard that is specified as
the first argument of the input routine. The display must be pasted in column 1,
cannot be occluded, and cannot have any other display to its right; input begins
at the current cursor position, but the cursor must be in column 1.

7.4.6.1 Reading from a Display
You can read the contents of the display using the routine SMG$READ_
FROM_DISPLAY. By. default, the read operation reads all of the characters
from the current cursor position to the end of that line. The row argument of
SMG$READ_FROM_DISPLAY allows you to choose the starting point of the read
operation, that is, the contents of the specified row to the rightmost column in
that row.

If the terminator-string argument is specified, SMG$READ_FROM_DISPLAY
searches backward from the current cursor position and reads the line beginning
at the first terminator encountered (or at the beginning of the line). A

7-23

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

terminator is a character string. You must calculate the length of the character
string read operation yourself.

The following example reads the current contents of the first line in the STATS_
VDID display:

CHARACTER*4 STRING
INTEGER*4 SIZE

STATUS = SMG$HOME CURSOR (STATS VDID)
IF (.NOT. STATUS)-CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SMG$READ FROM DISPLAY (STATS VDID,
2 - - STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
SIZE = 55
DO WHILE ((STRING (SIZE:SIZE) .EQ. I ') .AND.
2 (SIZE .GT. 1))

SIZE = SIZE - 1
END DO

7.4.6.2 Reading from a Virtual Keyboard

7-24

The SMG$CREATE_ VIRTUAL_KEYBOARD routine establishes a device for input
operations; the default device is the user's terminal. The routine SMG$READ_
STRING reads characters typed on the screen until the user types a terminator
or until the maximum size (which defaults to 512 characters) is exceeded.
(The terminator is usually a carriage return; see the routine description in
the Open VMS RTL Screen Management (SMG$) Manual for a complete list of
terminators.) The current cursor location for the display determines where the
read operation begins.

The operating system's terminal driver processes carriage returns differently
than the SMG$ routines. Therefore, in order to scroll input accurately, you must
keep track of your vertical position in the display area. Explicitly set the cursor
position and scroll the display. If a read operation takes place on a row other
than the last row of the display, advance the cursor to the beginning of the next
row before the next operation. If a read operation takes place on the last row of
the display, scroll the display with SMG$SCROLL_DISPLAY _AREA and then set
the cursor to the beginning of the row. Modify the read operation with TRM$M_
TM_NOTRMECHO to ensure that no extraneous scrolling occurs.

Example 7-10 reads input until Ctrl/Z is pressed.

Example 7-1 O Reading Data from a Virtual Keyboard

Read first record
STATUS = SMG$HOME CURSOR (VDID)
IF (.NOT. STATUS)-CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ STRING (KBID,
2 - TEXT,
2 'Prompt: ',
2 4,
2 TRM$M TM TRMNOECHO, , ,
2 TEXT SIZE,,
2 WI~

(continued on next page)

Run-Time Library Input/Output Operations
7.4 Working with Complex User 1/0

Example 7-10 (Cont.) Reading Data from a Virtual Keyboard

! Read remaining records until CTRL/Z
DO WHILE (STATUS .NE. SMG$ EOF)

2
2
2
2
2
2

IF (.NOT. STATUS) CALL LlB$SIGNAL (%VAL (STATUS))
! Process record

! Set up screen for next read
! Display area contains four rows
STATUS = SMG$RETURN CURSOR POS (VDID, ROW, COL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (ROW .EQ. 4) THEN

STATUS = SMG$SCROLL DISPLAY AREA (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET CURSOR ABS (VDID, 4, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

ELSE
STATUS= SMG$SET CURSOR ABS (VDID,, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET CURSOR REL (VDID, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Read next record
STATUS = SMG$READ_STRING (KBID,

TEXT,
'Prompt: '
4,
TRM$M TM TRMNOECHO,,,
TEXT SIZE,'
VDID)

END DO

~~~~~~~~~~~~~ Note ~~~~~~~~~~~~~ 

Since you are controlling the scrolling, SMG$PUT_LINE and SMG$PUT_ 
LINE_MULTI might not scroll as expected. When scrolling a mix of input 
and output, you can prevent problems by using SMG$PUT_CHARS. 

7.4.6.3 Reading from the Keypad 
To read from the keypad in keypad mode (that is, pressing a keypad character to 
perform some special action rather than to enter data), modify the read operation 
with TRM$M_TM_ESCAPE and TRM$M_TM_NOECHO. Examine the terminator 
to determine which key was pressed. 

Example 7-11 moves the cursor on the screen in response to the user's pressing 
the keys surrounding the keypad 5 key. The keypad 8 key moves the cursor north 
(up); the keypad 9 key moves the cursor northeast; the keypad 6 key moves the 
cursor east (right); and so on. The SMG$SET_CURSOR_REL routine is called, 
instead of being invoked as a function, because you do not want to abort the 
program on an error. (The error attempts to move the cursor out of the display 
area and, if this error occurs, you do not want the cursor to move.) The read 
operation is also modified with TRM$M_TM_PURGE to prevent the user from 
getting ahead of the cursor. 

7-25 



Run-Time Library Input/Output Operations 
7.4 Working with Complex User 1/0 

See Section 7.4.6.1 for the guidelines for reading from the display. 

7-26 

Example 7-11 Reading Data from the Keypad 

INTEGER STATUS, 
2 PBID, 
2 ROWS, 
2 COLUMNS, 
2 VOID, ! Virtual display ID 
2 KID, ! Keyboard ID 
2 SMG$CREATE PASTEBOARD, 
2 SMG$CREATE-VIRTUAL DISPLAY, 
2 SMG$CREATE-VIRTUAL-KEYBOARD, 
2 SMG$PASTE VIRTUAL DISPLAY, 
2 SMG$HOME CURSOR, -
2 SMG$SET CURSOR REL, 
2 SMG$READ STRING, 
2 SMG$ERASE PASTEBOARD, 
2 SMG$PUT CHARS, 
2 SMG$READ FROM DISPLAY 
CHARACTER*31 INPUT STRING, 
2 MENU STRING 
INTEGER*2 TERMINATOR 
INTEGER*4 MODIFIERS 
INCLUDE '($SMGDEF)' 
INCLUDE '($TRMDEF)' 
! Set up screen and keyboard 
STATUS = SMG$CREATE PASTEBOARD (PBID, 
2 - 'SYS$0UTPUT' , 
2 ROWS, 
2 COLUMNS) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$CREATE VIRTUAL DISPLAY (ROWS, 
2 - - COLUMNS, 
2 VOID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$PUT CHARS (VOID, 
2 - ' MENU CHOICE ONE' , 
2 1~30) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$PUT CHARS (VOID, 
2 - ' MENU CHOICE TWO' , 
2 15,°30) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$CREATE VIRTUAL KEYBOARD (KID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$PASTE VIRTU~.L DISPLAY (VOID, 
2 - - PBID, 
2 1, 
2 1) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Put cursor in NW corner 
STATUS = SMG$HOME CURSOR (VOID) 
IF (.NOT. STATUS)-CALL LIB$SIGNAL (%VAL (STATUS)) 

(continued on next page) 



Run-Time Library Input/Output Operations 
7.4 Working with Complex User 1/0 

Example 7-11 {Cont.) Reading Data from the Keypad 

! Read character from keyboard 
MODIFIERS = TRM$M TM ESCAPE .OR. 
2 TRM$M-TM-NOECHO .OR. 
2 TRM$M-TM-PURGE 
STATUS = SMG$READ-STRING (KID, 
2 - INPUT STRING I 
2 I -

2 6, 
2 MODIFIERS I 

2 
2 
2 
2 

I 

TERMINATOR) 
( (STATUS) .AND. DO WHILE 

2 (TERMINATOR .NE. SMG$K TRM CR)) 
! Check status of last read - -
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! North 
IF (TERMINATOR .EQ. SMG$K TRM KP8) THEN 

CALL SMG$SET CURSOR REL-(VDYD, -1, 0) 
! Northeast - -
ELSE IF (TERMINATOR .EQ. SMG$K TRM KP9) THEN 

CALL SMG$SET CURSOR REL (VDID, -I, 1) 
! Northwest - -
ELSE IF (TERMINATOR .EQ. SMG$K TRM KP7) THEN 

CALL SMG$SET CURSOR REL (VDID, -I, -1) 
! South - -
ELSE IF (TERMINATOR .EQ. SMG$K TRM KP2) THEN 

CALL SMG$SET CURSOR REL (VDID, 1~ 0) 
! Southeast - -
ELSE IF (TERMINATOR .EQ. SMG$K TRM KP3) THEN 

CALL SMG$SET CURSOR REL (VDID, 1~ 1) 
! Southwest - -
ELSE IF (TERMINATOR .EQ. SMG$K TRM KPl) THEN 

CALL SMG$SET CURSOR REL (VDID, 1~ -1) 
! East - -
ELSE IF (TERMINATOR .EQ. SMG$K TRM KP6) THEN 

CALL SMG$SET CURSOR REL (VDID, O~ 1) 
! West - -
ELSE IF (TERMINATOR .EQ. SMG$K TRM KP4) THEN 

CALL SMG$SET CURSOR REL (VDID, O~ -1) 
END IF - -
! Read another character 
STATUS = SMG$READ STRING 

2 -
(KID, 
INPUT_STRING, 

2 I 

2 6, 
2 MODIFIERS, 
2 
2 
2 I 

2 TERMINATOR) 
END DO 

(continued on next page) 

7-27 



Run-Time Library Input/Output Operations 
7 .4 Working with Complex User 1/0 

Example 7-11 (Cont.) Reading Data from the Keypad 

! Read menu entry and process 
! 
STATUS = SMG$READ FROM DISPLAY (VDID, 
2 - - MENU STRING) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

Clear screen 
STATUS = SMG$ERASE PASTEBOARD (PBID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

END 

7.4.6.4 Reading Composed Input 

7-28 

The SMG$CREATE_KEY_TABLE routine creates a table that equates keys 
to character strings. When you read input using the routine SMG$READ_ 
COMPOSED_LINE and the user presses a defined key, the corresponding 
character string in the table is substituted for the key. The SMG$ADD_KEY_ 
DEF routine can be used to load the table. Composed input also permits the 
following: 

• If states-You can define the same key to mean different things in different 
states. You can define a key to cause a change in state. The change in state 
can be temporary (until after the next defined key is pressed) or permanent 
(until a key that changes states is pressed). 

• Input termination-You can define the key to cause termination of the input 
transmission (as if the Return key were pressed after the character string). If 
the key is not defined to cause termination of the input, the user must press 
a terminator or another key that does cause termination. 

Example 7-12 defines keypad keys 1 through 9 and permits the user to change 
state temporarily by pressing the PFl key. Pressing the keypad 1 key is 
equivalent to typing 1000 and pressing the Return key. Pressing PFl key and 
then the keypad 1 key is equivalent to typing 10000 and pressing the Return 
key. 

Example 7-12 Redefining Keys 

INTEGER*4 TABLEID 

Create table for key definitions 
STATUS = SMG$CREATE KEY TABLE (TABLEID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Load table 
! If user presses PFl, the state changes to BYTEN 
! The BYTEN state is in effect only for the very next key 
STATUS = SMG$ADD KEY DEF (TABLEID, 
2 - - 'PFl', 
2 , , , I BYTEN I ) 

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

(continued on next page) 



Run-Time Library Input/Output Operations 
7.4 Working with Complex User 1/0 

Example 7-12 (Cont.) Redefining Keys 
1 Pressing KPl through Kp9 in the null state is like typing 
1 1000 through 9000 and pressing return 
STATUS = SMG$ADD KEY DEF (TABLEID, 
2 - - 'KPl, I 

2 I 

2 SMG$M KEY TERMINATE, 
2 '10007 ) -
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$ADD KEY DEF (TABLEID, 
2 - - 'KP2' I 

2 I 

2 SMG$M KEY TERMINATE, 
2 '20007 ) -
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

STATUS = SMG$ADD KEY DEF (TABLEID, 
2 - - 'KP9' I 

2 I 

2 SMG$M KEY TERMINATE, 
2 '90007 ) -
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
1 Pressing KPl through KP9 in the BYTEN state is like 
1 typing 10000 through 90000 and pressing return 
STATUS = SMG$ADD KEY DEF (TABLEID, 
2 - - 'KPl, I 

2 'BYTEN' I 

2 SMG$M KEY TERMINATE, 
2 , 10000') -
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$ADD KEY DEF (TABLEID, 
2 - - 'KP2, I 

2 'BYTEN' I 

2 SMG$M KEY TERMINATE, 
2 '20000') -
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

STATUS = SMG$ADD KEY DEF 
2 - -
2 
2 
2 

(TABLEID, 
'KP9' I 

'BYTEN' I 

SMG$M KEY TERMINATE, 
, 90000') -

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

(continued on next page) 

7-29 



Run-Time Library Input/Output Operations 
7.4 Working with Complex User 1/0 

Example 7-12 (Cont.) Redefining Keys 

End loading key definition table 

Read input which substitutes key definitions where appropriate 
STATUS = SMG$READ COMPOSED LINE (KBID, 
2 - - TABLE ID, 
2 STRING, 
2 SIZE, 
2 VOID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

Use the SMG$DELETE_KEY_DEF routine to delete a key definition; use the 
SMG$GET_KEY_DEF routine to examine a key definition. You can also load 
key definition tables with the SMG$DEFINE_KEY and SMG$LOAD_KEY_DEFS 
routines; use the DCL command DEFINE/KEY to specify input to these routines. 

To use keypad keys 0 through 9, the keypad must be in application mode. 
For details, see SMG$SET_KEYPAD_MODE in the Open VMS RTL Screen 
Management (SMG$) Manual. 

7.4.7 Controlling Screen Updates 
If your program needs to make a number of changes to a virtual display, you can 
use SMG$ routines to make all of the changes before updating the display. The 
SMG$BEGIN_DISPLAY_UPDATE routine causes output operations to a pasted 
display to be reflected only in the display's buffers. The SMG$END_DISPLAY_ 
UPDATE routine writes the display's buffer to the pasteboard. 

The SMG$BEGIN_DISPLAY_UPDATE and SMG$END_DISPLAY_UPDATE 
routines increment and decrement a counter. When this counter's value is 
0, output to the virtual display is sent to the pasteboard immediately. The 
counter mechanism allows a subroutine to request and turn off batching without 
disturbing the batching state of the calling program. 

A second set of routines, SMG$BEGIN_PASTEBOARD_UPDATE and 
SMG$END_PASTEBOARD_UPDATE, allow you to buffer output to a pasteboard 
in a similar manner. 

7.4.8 Maintaining Modularity 

7-30 

When using the SMG$ routines, you must take care not to corrupt the mapping 
between the screen appearance and the internal representation of the screen. 
Therefore, observe the following guidelines: 

• Mixing SMG I/O and other forms of I/O 

In general, do not use any other form of terminal I/O while the terminal is 
active as a pasteboard. If you do use I/O other than SMG I/O (for example, 
if you invoke a subprogram that may perform non-SMG terminal I/0), first 
invoke the SMG$SAVE_PHYSICAL_SCREEN routine and when the non-SMG 
I/O completes, invoke the SMG$RESTORE_PHYSICAL_SCREEN routine, as 
demonstrated in the following example: 



Run-Time Library Input/Output Operations 
7.4 Working with Complex User 1/0 

STATUS = SMG$SAVE PHYSICAL SCREEN (PBID, 
2 - - SAVE VDID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL-(STATUS)) 
CALL GET EXTRA INFO (INFO ARRAY) 
STATUS =-SMG$RESTORE PHYSICAL SCREEN (PBID, 
2 - - SAVE VDID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

• Sharing the pasteboard 

A routine using the terminal screen without consideration for its current 
contents must use the existing pasteboard ID associated with the terminal 
and delete any virtual displays it creates before returning control to the 
high-level code. This guideline also applies to the program unit that invokes 
a subprogram that also performs screen I/O. The safest way to clean up your 
virtual displays is to call the SMG$POP _ VIRTUAL_DISPLAY routine and 
name the first virtual display you created. The following example invokes a 
subprogram that uses the terminal screen: 

Invoking Program Unit 
CALL GET EXTRA INFO (PBID, 
2 - - INFO_ARRAY) 

CALL STATUS = SMG$CREATE PASTEBOARD (PBID) 
IF (.NOT. STATUS) CALL LlB$SIGNAL (%VAL (STATUS)) 

Subprogram 
SUBROUTINE GET EXTRA INFO (PBID, 
2 - - INFO _ARRAY) 

l Start executable code 
STATUS = SMG$CREATE VIRTUAL DISPLAY (4, 
2 - - 40, 
2 INSTR VDID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$PASTE VIRTUAL DISPLAY (INSTR VDID, 
2 - - PBID, -1, 1) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

STATUS = SMG$POP VIRTUAL DISPLAY (INSTR VDID, 
2 - - PBID)-
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

END 

• Sharing virtual displays 

To share a virtual display created by high-level code, the low-level code must 
use the virtual display ID created by the high-level code; an invoking program 
unit must pass the virtual display ID to the subprogram. To share a virtual 
display created by low-level code, the high-level code must use the virtual 
display ID created by the low-level code; a subprogram must return the 
virtual display ID to the invoking program. 

7-31 



Run-Time Library Input/Output Operations 
7.4 Working with Complex User 1/0 

The following example permits a subprogram to use a virtual display created 
by the invoking program unit: 

Invoking Program Unit 
STATUS = SMG$CREATE VIRTUAL DISPLAY (4, 
2 - - 40 t 

2 INSTR VDID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$PASTE VIRTUAL DISPLAY (INSTR VOID, 
2 - - PBID, l, 1) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
CALL GET EXTRA INFO (PBID, 
2 - - INSTR VOID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

Subprogram 
SUBROUTINE GET EXTRA INFO (PBID, 
2 - - INSTR_VDID) 

7.5 Performing Special Input/Output Actions 
Screen management input routines and the SYS$QIO and SYS$QIOW system 
services allow you to perform I/O operations otherwise unavailable to high-level 
languages. For example, you can allow a user to interrupt normal program 
execution by typing a character and by providing a mechanism for reading that 
character. You can also control such things as echoing, time allowed for input, 
and. whether data is read from the type-ahead buffer. 

Some of the operations described in the following sections require the use of 
the SYS$QIO or SYS$QIOW system services. For more information about the 
QIO system services, see the Open VMS System Services Reference Manual and 
Chapter 9. 

Other operations, described in the following sections, can be performed by calling 
the SMG$ input routines. The SMG$ input routines can be used alone or with 
the SMG$ output routines. Section 7.4 describes how to use the input routines 
with the output routines. This section assumes that you are using the input 
routines alone. To use the SMG$ input routines, do the following: 

1. Call SMG$CREATE_ VIRTUAL_KEYBOARD to associate a logical keyboard 
with a device or file specification (SYS$INPUT by default). SMG$CREATE_ 
VIRTUAL_KEYBOARD returns a keyboard identification number; use that 
number to identify the device or file to the SMG input routines. 

2. Call an SMG$ input routine (SMG$READ_STRING or SMG$READ_ 
COMPOSED_LINE) to read data typed at the device associated with the 
virtual keyboard. 

When using the SMG$ input routines without the SMG$ output routines, do not 
specify the optional VDID argument of the input routine. 

7.5.1 Using Ctrl/C and CtrlN Interrupts 

7-32 

The QIO system services enable you to detect a Ctrl/C or Ctrl/Y interrupt at a 
user terminal, even if you have not issued a read to the terminal. To do so, you 
must t~ke the following steps: 

1. Queue an asynchronous system trap (AST)-Issue the SYS$QIO or 
SYS$QIOW system service with a function code of I0$_SETMODE modified 
by either I0$M_CTRLCAST (for Ctrl/C interrupts) or 
IO$M_CTRLYAST (for Ctrl/Y interrupts). For the Pl argument, provide the 



Run-Time Library Input/Output Operations 
7.5 Performing Special Input/Output Actions 

name of a subroutine to be executed when the interrupt occurs. For the P2 
argument, you can optionally identify one longword argument to pass to the 
AST subroutine. 

2. Write an AST subroutine-Write the subroutine identified in the Pl argument 
of the QIO system service and link the subroutine into your program. Your 
subroutine can take one longword dummy argument to be associated with the 
P2 argument in the QIO system service. You must define common areas to 
access any other data in your program from the AST routine. 

If you press Ctrl/C or Ctr IN after your program queues the appropriate AST, the 
system interrupts your program and transfers control to your AST subroutine 
(this action is called delivering the AST). After your AST subroutine executes, 
the system returns control to your program at the point of interruption (unless 
your AST subroutine causes the program to exit, or unless another AST has been 
queued). Note the following guidelines for using Ctrl/C and Ctr IN ASTs: 

• ASTs are asynchronous-Since your AST subroutine does not know exactly 
where you are in your program when the interrupt occurs, you should avoid 
manipulating data or performing other mainline activities. In general, the 
AST subroutine should either notify the mainline code (for example, by 
setting a flag) that the interrupt occurred, or clean up and exit from the 
program (if that is what you want to do). 

• · ASTs need new channels to the terminal-If you try to access the terminal 
with language I/O statements using SYS$INPUT or SYS$0UTPUT, you may 
receive a redundant I/O error. You must establish another channel to the 
terminal by explicitly opening the terminal. 

• Ctrl/C and CtrlN ASTs are one-time ASTs-After a Ctrl/C or CtrlN AST is 
delivered, it is dequeued. You must reissue the QIO system service if you 
wish to trap another interrupt. 

• Many ASTs can be queued-You can queue multiple ASTs (for the same or 
different AST subroutines, on the same or different channels) by issuing the 
appropriate number of QIO system services. The system delivers the ASTs on 
a last-in, first-out (LIFO) basis. 

• Unhandled Ctrl/Cs turn into CtrlNs-If the user enters Ctrl/C and you do 
not have an AST queued to handle the interrupt, the system turns the Ctrl/C 
interrupt into a CtrlN interrupt. 

• DCL handles CtrlN interrupts-DCL handles CtrlN interrupts by returning 
the user to DCL command level, where the user has the option of continuing 
or exiting from your program. DCL takes precedence over your AST 
subroutine for CtrlN interrupts. Your CtrlN AST subroutine is executed 
only under the following circumstances: 

If CtrlN interrupts are disabled at DCL level (SET NOCONTROL_Y) 
before your program is executed 

If your program disables DCL CtrlN interrupts with LIB$DISABLE_ 
CTRL 

If the user elects to continue your program after DCL interrupts it 

• You can dequeue Ctrl/C and CtrlN ASTs-You can dequeue all Ctrl/C or 
CtrlN ASTs on a channel by issuing the appropriate QIO system service 
with a value of 0 for the Pl argument (passed by immediate value). You can 
dequeue all Ctrl/C ASTs on a channel by issuing the SYS$CANCEL system 

7-33 



Run-Time Library Input/Output Operations 
7.5 Performing Special Input/Output Actions 

7-34 

service for the appropriate channel. You can dequeue all Ctrl/Y ASTs on a 
channel by issuing the SYS$DASSGN system service for the appropriate 
channel. 

• You can use SMG$ routines-You can connect to the terminal using the SMG$ 
routines from either AST level or mainline code. Do not attempt to connect to 
the terminal from AST level if you do so in your mainline code. 

Example 7-13 permits the terminal user to interrupt a display to see how many 
lines have been typed up to that point. 

Example 7-13 Using Interrupts to Perform 1/0 

!Main Program 

INTEGER STATUS 
! Accumulated data records 
CHARACTER*l32 STORAGE (255) 
INTEGER*4 STORAGE SIZE (255), 
2 STORAGE-COUNT 
! QIOW and QIO structures 
INTEGER*2 INPUT CHAN 
INTEGER*4 CODE -
STRUCTURE /IOSTAT BLOCK/ 

INTEGER*2 IOSTAT 
BYTE TRANSMIT, 

2 RECEIVE, 
2 CRFILL, 
2 LFFILL, 
2 PARITY, 
2 ZERO 
END STRUCTURE 
RECORD /IOSTAT BLOCK/ IOSB 
! Flag to notify program of CTRL/C interrupt 
LOGICAL*4 CTRLC CALLED 
! AST subroutine to handle CTRL/C interrupt 
EXTERNAL CTRLC AST 
! Subroutines -
INTEGER SYS$ASSIGN, 
2 SYS$QIOW 
! Symbols used for I/O operations 
INCLUDE '($IODEF)' 
! Put values into array 
CALL LOAD STORAGE (STORAGE, 
2 - STORAGE SIZE, 
2 STORAGE-COUNT) 
! Assign channel and set up QIOW structures 
STATUS= SYS$ASSIGN ('SYS$INPUT', 
2 INPUT CHAN, , ) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
CODE = IO$_SETMODE .OR. IO$M_CTRLCAST 

(continued on next page) 



Run-Time Library Input/Output Operations 
7 .5 Performing Special Input/Output Actions 

Example 7-13 (Cont.) Using Interrupts to Perform 1/0 
! Queue an AST to handle CTRL/C interrupt 
STATUS= SYS$QIOW (, 
2 %VAL (INPUT CHAN), 
2 %VAL (CODE)~ 
2 IOSB, 
2 , , 
2 CTRLC AST, ! Name of AST routine 
2 CTRLC-CALLED, ! Argument for AST routine 
2 ff I) -
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
IF (.NOT. IOSB.IOSTAT) 
2 CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT)) 
! Display STORAGE array, one element per line 
DO I = 1, STORAGE COUNT 

2 
2 
2 
2 
2 
2 
2 

TYPE*, STORAGE-(!) (l:STORAGE_SIZE (I)) 

! Additional actions if user types CTRL/C 
IF (CTRLC CALLED) THEN 

CTRLC CALLED = .FALSE. 
! Show user number of lines displayed so far 
TYPE *, 'Number of lines: ', I 
! Requeue AST 
STATUS = SYS$QIOW (, 

%VAL (INPUT CHAN), 
%VAL (CODE)~ 
IOSB, 
, , 
CTRLC AST, 
CTRLC-CALLED, 
",) -

IF (.NOT. STATUS) CALL LIB$SIGNAL (iVAL (STATUS)) 
IF (.NOT. IOSB.IOSTAT) 

2 CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT)) 
END IF 

END DO 

END 

AST Routine 

! AST routine 
! Notifies program that user typed CTRL/C 
SUBROUTINE CTRLC AST (CTRLC CALLED) 
LOGICAL*4 CTRLC CALLED -
CTRLC CALLED = :TRUE. 

END 

7.5.2 Detecting Unsolicited Input 
You can detect input from the terminal even if you have not called SMG$READ _ 
COMPOSED_LINE or SMG$READ_STRING by using SMG$ENABLE_ 
UNSOLICITED_INPUT. This routine uses the AST mechanism to transfer 
control to a subprogram of your choice each time the user types at the terminal; 
the AST subprogram is responsible for reading any input. When the subprogram 
completes, control returns to the point in your mainline code where it was 

·interrupted. 

7-35 



Run-Time Library Input/Output Operations 
7 .5 Performing Special Input/Output Actions 

7-36 

The SMG$ENABLE_ UNSOLICITED_INPUT routine is not an SMG$ input 
routine. Before invoking SMG$ENABLE_UNSOLICITED_INPUT, you must 
invoke SMG$CREATE_PASTEBOARD to associate a pasteboard with the 
terminal and SMG$CREATE_ VIRTUAL_KEYBOARD to associate a virtual 
keyboard ~ith the same terminal. 

SMG$ENABLE_UNSOLICITED_INPUT accepts the following arguments: 

• The pasteboard.identification number (use the value returned by 
SMG$CREATE_PASTEBOARD) 

• The name of an AST subprogram 

• An argument to be passed to the AST subprogram 

When SMG$ENABLE_UNSOLICITED_INPUT invokes the AST subprogram, it 
passes two arguments to the subprogram: the pasteboard identification number 
and the argument that you specified. Typically, you write the AST subprogram 
to read the unsolicited input with SMG$READ_STRING. Since SMG$READ_ 
STRING requires that you specify the virtual keyboard at which the input was 
typed, specify the virtual keyboard identification number as the second argument 
to pass to the AST subprogram. 

Example 7-14 permits the terminal user to interrupt the display of a series of 
arrays, and either to go on to the next array (by typing input beginning with 
an uppercase N) or to exit from the program (by typing input beginning with 
anything else). 

Example 7-14· Receiving Unsolicited Input from a Virtual Keyboard 

Main Program 
The main program calls DISPLAY ARRAY once for each array. 
DISPLAY ARRAY displays the array in a DO loop. 
If the user enters input from the terminal, the loop is 
interrupted and the AST routine takes over. 
If the user types anything beginning with an N, the AST 
sets DO NEXT and resumes execution -- DISPLAY ARRAY drops 
out of the loop processing the array (because-DO NEXT is 
set -- and the main program calls DISPLAY ARRAY Ior the 

. next array. -
If the user types anything not beginning with an N, 
the program exits. 

INTEGER*4 STATUS, 
2 VKID, ! Virtual keyboard ID 
2 PBID ! Pasteboard ID 
! Storage arrays 
INTEGER*4 ARRAY! (256), 
2 ARRAY2 (256), 
2 ARRAY3 (256) 
! System routines 
INTEGER*4 SMG$CREATE PASTEBOARD, 
2 SMG$CREATE-VIRTUAL KEYBOARD, 
2 SMG$ENABLE-UNSOLICITED INPUT 
! AST routine - -
EXTERNAL AST ROUTINE 

(continued on next page) 



Run-Time Library Input/Output Operations 
7.5 Performing Special Input/Output Actions 

Example 7-14 (Cont.) Receiving Unsolicited Input from a Virtual Keyboard 

! Create a pasteboard 
STATUS = SMG$CREATE PASTEBOARD (PBID, ! Pasteboard ID 
2 - 'SYS$INPUT') 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Create a keyboard for the same device 
STATUS = SMG$CREATE VIRTUAL KEYBOARD (VKID, ! Keyboard ID 
2 - - 'SYS$INPUT' ) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Enable unsolicited input 
STATUS = SMG$ENABLE UNSOLICITED INPUT (PBID, ! Pasteboard ID 

AST ROUTINE, 2 - -
2 

IF (.NOT. STATUS) CALL LIB$SIGNAL 

VKID) ! Pass keyboard 
! ID to AST 

(%VAL (STATUS)) 

Call display subroutine once for each array 
CALL DISPLAY ARRAY (ARRAYl) 
CALL DISPLAY-ARRAY (ARRAY2) 
CALL DISPLAY=ARRAY (ARRAY3) 

END 

Array Display Routine 

! Subroutine to display one array 
SUBROUTINE DISPLAY_ARRAY (ARRAY) 
! Dummy argument 
INTEGER*4 ARRAY (256) 
! Status 
INTEGER*4 STATUS 
! Flag for doing next array 
LOGICAL*4 DO NEXT 
COMMON /DO NEXT/ DO NEXT 
! If AST has been delivered, reset 
IF (DO NEXT) DO NEXT = .FALSE. 
! Initialize control variable 
I = 1 
! Display entire array unless interrupted by user 
.! If interrupted by user (DO NEXT is set), drop out of loop 
DO WHILE ((I .LE. 256) .AND.-(.NOT. DO NEXT)) 

TYPE *, ARRAY (I) -
I = I + 1 

END DO 

END 

(continued on next page) 

7-37 



Run-Time Library Input/Output Operations 
7 .5 Performing Special Input/Output Actions 

Example 7-14 (Cont.) Receiving Unsolicited Input from a Virtual Keyboard 

AST Routine 

1 Subroutine to read unsolicited input 
SUBROUTINE AST ROUTINE (PBID, 
2 - VKID) 
! dummy arguments 
INTEGER*4 PBID, 
2 VKID 
! Status 
INTEGER*4 STATUS 
! Flag for doing next array 
LOGICAL*4 DO NEXT 
COMMON /DO NEXT/ DO NEXT 
1 Input string -
CHARACTER*4 INPUT 
! Routines 
INTEGER*4 SMG$READ STRING 
! Read input -

Pasteboard ID 
Keyboard ID 

STATUS = SMG$READ STRING (VKID, ! Keyboard ID 
2 - INPUT) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! If user types anything beginning with N, set DO NEXT 
! otherwise, exit from program 
IF (INPUT (1:1) .EQ. 'N') THEN 

DO NEXT = .TRUE. 
ELSE-

CALL EXIT 
END IF 

END 

7.5.3 Using the Type-Ahead Buffer 

7-38 

Normally, if the user types at the terminal before your application is able to 
read from that device, the input is saved in a special data structure maintained 
by the system called the type-ahead buffer. When your application is ready to 
read from the terminal, the input is transferred from the type-ahead buffer to 
your input buffer. The type-ahead buffer is preset at a size of 78 bytes. If the 
HOSTSYNC characteristic is on (the usual condition), input to the type-ahead 
buffer is stopped (the keyboard locks) when the buffer is within 8 bytes of being 
full. If the HOSTSYNC characteristic is off, the bell rings when the type-ahead 
buffer is within 8 bytes of being full; if you overflow the buffer, the excess data 
is lost. The TTY_ALTALARM system parameter determines the point at which 
either input is stopped or the bell rings. 

You can clear the type-ahead buffer by reading from the terminal with 
SMG$READ_STRING and by specifying TRM$M_TM_PURGE in the modifiers 
argument. Clearing the type-ahead buffer has the effect of reading only what the 
user types on the terminal after the read operation is invoked. Any characters 
in the type-ahead buffer are lost. The following example illustrates how to purge 
the type-ahead buffer: 

INTEGER*4 
2 
2 
2 
2 

SMG$CREATE VIRTUAL KEYBOARD, 
SMG$READ STRING, -
STATUS, -
VKID, ! Virtual keyboard ID 
INPUT SIZE 



Run-Time Library Input/Output Operations 
7.5 Performing Special Input/Output Actions 

CHARACTER*512 INPUT 
INCLUDE '($TRMDEF)' 
STATUS = SMG$CREATE VIRTUAL KEYBOARD (VKID, 
2 - - , SYS$INPUT,) I/O device 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$READ STRING (VKID, ! Keyboard ID 
2 - INPUT, ! Data read 
2 'Prompt> ' , 
2 512, 
2 TRM$M TM PURGE, 
2 " - -
2 INPUT SIZE) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

You can also clear the type-ahead buffer with a QIO read operation modified by 
IO$M_PURGE (defined in $IODEF). You can turn off the type-ahead buffer for 
further read operations with a QIO set mode operation that specifies TT$M_ 
NOTYPEAHD as a basic terminal characteristic. 

You can examine the type-ahead buffer by issuing a QIO sense mode operation 
modified by IO$M_TYPEAHDCNT. The number of characters in the type-ahead 
buffer and the value of the first character are returned to the Pl argument. 

The size of the type-ahead buffer is determined by the TTY_TYPAHDSZ system 
parameter. You can specify an alternative type-ahead buffer by turning on the 
ALTYPEAHD terminal characteristic; the size of the alternative type-ahead 
buffer is determined by the TTY _ALTYPAHD system parameter. 

7.5.4 Using Echo 
Normally, the system writes back to the terminal any printable characters that 
the user types at that terminal. The system also writes highlighted words in 
response to certain control characters; for example, the system writes EXIT if the 
user enters Ctrl/Z. If the user types ahead of your read, the characters are not 
echoed until you read them from the type-ahead buffer. 

You can turn off echoing when you invoke a read operation by reading from the 
terminal with SMG$READ_STRING and by specifying TRM$M_TM_NOECHO 
in the modifiers argument. You can turn off echoing for control characters only 
by modifying the read operation with TRM$M_TM_TRMNOECHO. The following 
example turns off all echoing for the read operation: 

INTEGER*4 SMG$CREATE VIRTUAL KEYBOARD, 
2 SMG$READ STRING, -
2 STATUS, -
2 VKID, ! Virtual keyboard ID 
2 INPUT SIZE 
CHARACTER*512 INPUT-
INCLUDE '($TRMDEF)' 
STATUS = SMG$CREATE VIRTUAL KEYBOARD (VKID, ! Keyboard ID 
2 - - 'SYS$INPUT') ! I/O device 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$READ STRING (VKID, ! Keyboard ID 
2 - INPUT, ! Data read 
2 'Prompt> ' , 
2 512, 
2 TRM$M TM NOE CHO, 
2 " - -
2 INPUT SIZE) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

7-39 



Run-Time Library Input/Output Operations 
7.5 Performing Special Input/Output Actions 

You can also turn off echoing with a QIO read operation modified by I0$M_ 
NOECHO (defined in $IODEF). You can turn off echoing for further read 
operations with a QIO set mode operation that specifies TT$M_NOECHO as 
a basic terminal characteristic. 

7.5.5 Using Timeout 

7-40 

Using SMG$READ_STRING, you can restrict the user to a certain amount of 
time in which to respond to a read command. If your application reads data 
from the terminal using SMG$READ_STRING, you can modify the timeout 
characteristic by specifying, in the timeout argument, the number of seconds the 
user has to respond. If the user fails to type a character in the allotted time, the 
error condition SS$_TIMEOUT (defined in $SSDEF) is returned. The following 
example restricts the user to 8 seconds in which to respond to a read command: 

INTEGER*4 SMG$CREATE VIRTUAL KEYBOARD, 
2 SMG$READ STRING, -
2 STATUS, -
2 VKID, Virtual keyboard ID 
2 INPUT SIZE 
CHARACTER*512 INPUT-
INCLUDE '($SSDEF)' 
STATUS = SMG$CREATE VIRTUAL KEYBOARD (VKID, 
2 - - 'SYS$INPUT') 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$READ STRING (VKID, ! Keyboard ID 
2 - INPUT, Data read 
2 'Prompt> ' 
2 512 t 

2 
2 
2 
2 
IF (.NOT. STATUS) THEN 

I 

8, 
I 

INPUT_SIZE) 

IF (STATUS .EQ. SS$ TIMEOUT) CALL NO RESPONSE () 
ELSE - -

CALL LIB$SIGNAL (%VAL (STATUS)) 
END IF 

You can cause a QIO read operation to time out after a certain number of seconds 
by modifying the operation with IO$M_TIMED and by specifying the number of 
seconds in the P3 argument. A message broadcast to a terminal resets a timer 
that is set for a timed read operation (regardless of whether the operation was 
initiated with QIO or SMG). 

Note that the timed read operations work on a character-by-character basis. To 
set a time limit on an input record rather than an input character, you must use 
the SYS$SETIMR system service. The SYS$SETIMR executes an AST routine ai 
a specified time. The specified time is the input time limit. When the specified 
time is reached, the AST routine cancels any outstanding 1/0 on the channel that 
is assigned to the user's terminal. 



Run-Time Library Input/Output Operations 
7.5 Performing Special Input/Output Actions 

7 .5.6 Converting Lowercase to Uppercase 
You can automatically convert lowercase user input to uppercase by reading from 
the terminal with the SMG$READ_STRING routine and by specifying TRM$M_ 
TM_CVTLOW in the modifiers argument, as shown in the following example: 

INTEGER*4 SMG$CREATE VIRTUAL KEYBOARD, 
2 SMG$READ STRING, -
·2 STATUS, -
2 VKID, Virtual keyboard ID 
2 INPUT SIZE 
CHARACTER*512 INPUT-
INCLUDE ' ( $TRMDEF)' 
STATUS = SMG$CREATE VIRTUAL KEYBOARD (VKID, ! Keyboard ID 
2 - - 'SYS$INPUT') 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$READ STRING (VKID, ! Keyboard ID 
2 - INPUT, ! Data read 
2 'Prompt> ' , 
2 512, 
2 TRM$M TM CVTLOW, 
2 " - - ' 
2 INPUT SIZE) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

You can also convert lowercase characters to uppercase with a QIO read operation 
modified by IO$M_CVTLOW (defined in $IODEF). 

7.5.7 Performing Line Editing and Control Actions 
Normally, the user can edit input as explained in the Open VMS I I 0 User's 
Reference Manual. You can inhibit line editing on the read operation by reading 
from the terminal with SMG$READ_STRING and by specifying TRM$M_TM_ 
NOFILTR in the modifiers argument. The following example shows how you can 
inhibit line editing: 

INTEGER*4 SMG$CREATE VIRTUAL KEYBOARD, 
2 SMG$READ STRING, -
2 STATUS, -
2 VKID, Virtual keyboard ID 
2 INPUT SIZE 
CHARACTER*512 INPUT-
INCLUDE '($TRMDEF)' 
STATUS = SMG$CREATE VIRTUAL KEYBOARD (VKID, ! Keyboard ID 
2 - - 'SYS$INPUT') 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$READ STRING (VKID, ! Keyboard ID 
2 - INPUT, ! Data read 
2 '.) 'Prompt> ' , 
2 512, 
2 TRM$M TM NOFILTR, 
2 " - -
2 INPUT SIZE) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

You can also inhibit line editing with a QIO read operation modified by I0$M_ 
NOFILTR (defined in $IODEF). 

7-41 



Run-Time Library Input/Output Operations 
7.5 Performing Special Input/Output Actions 

7.5.8 Using Broadcasts 
You can write, or broadcast, to any interactive terminal by using the 
SYS$BRKTHRU system service. The following example broadcasts a message to 
all terminals at which users are currently logged in. Use of SYS$BRKTHRU to 
write to a terminal allocated to a process other than your own requires the OPER 
privilege. 

INTEGER*4 STATUS, 
2 SYS$BRKTHRUW 
INTEGER*2 B STATUS (4) 
INCLUDE '($BRKDEF)' 
STATUS = SYS$BRKTHRUW 
2 
2 

( , 
'Accounting system started',, 
%VAL (BRK$C ALLUSERS), 
B STATUS, , , -; , , ) 2. 

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

7.5.8.1 Default Handling of Broadcasts 
If the terminal user has taken no action to handle broadcasts, a broadcast is 
written to the terminal screen at the current position (after a carriage return and 
line feed). If a write operation is in progress, the broadcast occurs after the write 
ends. If a read operation is in progress, the broadcast occurs immediately; after 
the broadcast, any echoed user input to the aborted read operation is written to· 
the screen (same effect as pressing Ctrl/R). 

7 .5.8.2 How to Create Alternate Broadcast Handlers 

7-42 

You can handle broadcasts to the terminal on which your program is running with 
SMG$SET_BROADCAST_TRAPPING. This routine uses the AST mechanism to 
transfer control to a subprogram of your choice each time a broadcast message is 
sent to the terminal; when the subprogram completes, control returns to the point 
in your mainline code where it was interrupted. 

The SMG$SET_BROADCAST_TRAPPING routine is not an SMG$ input 
routine. Before invoking SMG$SET_BROADCAST_TRAPPING, you must invoke 
SMG$CREATE_PASTEBOARD to associate a pasteboard with the terminal. 
SMG$CREATE_PASTEBOARD returns a pasteboard identification number; pass 
that number to SMG$SET_BROADCAST_TRAPPING to identify the terminal 
in question. Read the contents of the broadcast with SMG$GET_BROADCAST_ 
MESSAGE. 

Example 7-15 demonstrates how you might trap a broadcast and write it at the 
bottom of the screen. For more information about the use of SMG$ pasteboards 
and virtual displays, see Section 7.4. 



Run-Time Library Input/Output Operations 
7.5 Performing Special Input/Output Actions 

Example 7-15 Trapping Broadcast Messages 

INTEGER*4 STATUS, 
2 PBID, 
2 VOID, 
2 SMG$CREATE PASTEBOARD, 
2 SMG$SET BROADCAST TRAPPING 
2 SMG$PASTE VIRTUAL-DISPLAY 
COMMON /ID/ PBID~ -
2 VOID 
INTEGER*2 B STATUS (4) 
INCLUDE '($SMGDEF)' 
INCLUDE '($BRKDEF)' 
EXTERNAL BRKTHRU ROUTINE 
STATUS = SMG$CREATE PASTEBOARD (PBID) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

Pasteboard ID 
Virtual display ID 

STATUS = SMG$CREATE VIRTUAL DISPLAY (3, ! Height 
2 - - 80, Width 
2 VOID, , Display ID 
2 SMG$M REVERSE) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
STATUS = SMG$SET BROADCAST TRAPPING (PBID, ! Pasteboard ID 
2 - - BRKTHRU ROUTINE) ! AST 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

SUBROUTINE BRKTHRU ROUTINE () 
INTEGER*4 STATUS, -
2 PBID, 
2 VOID, 
2 SMG$GET BROADCAST MESSAGE, 
2 SMG$PUT-CHARS, -
2 SMG$PASTE VIRTUAL DISPLAY 
COMMON /ID/ PBID~ -
2 VOID 
CHARACTER*240 MESSAGE 
INTEGER*2 MESSAGE SIZE 
! Read the message 
STATUS = SMG$GET BROADCAST MESSAGE (PBID, 
2 - - MESSAGE I 

2 MESSAGE SIZE) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Write the message to the virtual display 
STATUS = SMG$PUT CHARS (VOID, 

Pasteboard ID 
Virtual display ID 

2 - MESSAGE ( 1 :MESSAGE SIZE), 
2 1, - ! Line 
2 1) ! Column 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Make the display visble by pasting it to the pasteboard 
STATUS = SMG$PASTE VIRTUAL DISPLAY (VOID, 
2 - - PBID, 
2 22, Row 
2 1) Column 

END 

7-43 





8 
File Operations 

This chapter describes file operations that support file input/output (1/0) and 
file 1/0 instructions of the operating system's high-level languages. This chapter 
contains the following sections: 

Section 8.1 describes file attributes. 

Section 8.2 describes strategies to access files. 

Section 8 .. 3 describes protection and access of files. 

Section 8.4 describes file mapping. 

Section 8.5 describes how to open and update a sequential file. 

Section 8.6 describes using the Fortran user-open routines. 

1/0 statements transfer data between records in files and variables in your 
program. The 1/0 statement determines the operation to be performed; the 
1/0 control list specifies the file, record, and format attributes; and the 1/0 list 
contains the variables to be acted upon. 

Note ___________ _ 

Some confusion might arise between records in a file and record variables. 
Where this chapter refers to a record variable, the term record variable is 
used; otherwise, record refers to a record in a file. 

8.1 File Attributes 
Before writing a program that accesses a data file, you must know the attributes 
of the file and the order of the data. To determine this information, see your 
language-specific programming manual. 

File attributes (organization, record structure, and so on) determine how data is 
stored and accessed. Typically, the attributes are specified by keywords when you 
open the data file. 

Ordering of the data within a file is not important mechanically. However, if you 
attempt to read data without knowing how it is ordered within the file, you are 
likely to read the wrong data; if you attempt to write data without knowing how 
it is ordered within the file, you are likely to corrupt existing data. 

8-1 



File Operations 
8.1 File Attributes 

8.1.1 Specifying File Attributes 
Large sets of attributes can be specified using the File Definition Language utility 
(FDL). All of the file attributes can be specified using Open VMS RMS in a user­
open routine (see Section 8.6). Typically, you need only programming language 
file specifiers. Use FDL only when language specifiers are unavailable. 

Refer to the appropriate programming language reference manual for information 
about the use of language specifiers. 

For complete information about how to use FDL, see the Open VMS Record 
Management Utilities Reference Manual. 

8.2 File Access Strategies 
When determining the file attributes and order of your data file, consider how you 
plan to access that data. File access strategies fall into the following categories: 

• Complete access 

If your program processes all or most of the data in the file and especially if 
many references are made to the data, you should read the entire file into 
memory. Put each record in its own variable or set of variables. 

If your program is larger than the amount of virtual memory. available 
(including the additional memory you get by using memory allocation 
routines), you must declare fewer variables and process your file in pieces. To 
determine the size of your program, add the number of bytes in each program 
section. The DCL command LINK/MAP produces a listing that includes the 
length of each program section (PSECT). 

• Record-by-record access 

If your program accesses records one after another, or if you cannot fit the 
entire file into memory, you should read one record into memory at a time. 

• Discrete records access 

If your program processes only a selection of the file's records, you should 
read only the necessary records into memory. 

• Sequential and indexed file access 

If your program demands speed and needs to conserve disk space, use an 
unformatted sequential file. Use indexed files to process selected sets of 
records or to access records directly. Use a sequential file with fixed-length 
records, a relative file, or an indexed file to access records directly. 

8.3 File Protection and Access 
Files are owned by the process that creates them and receive the default 
protection of the creating process. To create a file with ownership and protection 
other than the default, use the File Definition Language (FDL) attributes 
OWNER and PROTECTION in the file. 

8.3.1 Read-Only Access 

8-2 

By default, the user of your program must have write access to a file in order 
for your program to open that file. However, if you specify use of the Fortran 
READONLY specifier when opening the file, the user needs only read access to 
the file in order to open it. The READONLY specifier does not set the protection 
on a file. The user cannot write to a file opened with the READONLY specifier. 



File Operations 
8.3 File Protection and Access 

8.3.2 Shared Access 
The Fortran specifier READONLY and the SHARED specifier allow multiple 
processes to open the same file simultaneously, provided that each process uses 
one of these specifiers when opening the file. The READONLY specifier allows 
the process read access to the file; the SHARED specifier allows other processes 
read and write access to the file. If a process opens the file without specifying 
READONLY or SHARED, no other process can open that file even by specifying 
READONLYorSHARED. 

In the following Fortran segment, if the read operation indicates that the record 
is locked, the read operation is repeated. You should not attempt to read a locked 
record without providing a delay (in this example, the call to ERRSNS) to allow 
the other process time to complete its operation and unlock the record. 

! Status variables and values 
INTEGER STATUS, 
2 IOSTAT, 
2 IO OK 
PARAMETER (IO OK = 0) 
INCLUDE '($FORDEF)' 
! Logical unit number 
INTEGER LUN /1/ 
! Record variables 
INTEGER LEN 
CHARACTER*80 RECORD 

READ (UNIT = LUN, 
2 FMT = I ( Q, A) I 

2 IOSTAT = IOSTAT) LEN, RECORD (l:LEN) 
IF (IOSTAT .NE. IO OK) THEN 

CALL ERRSNS (,,,~STATUS) 
IF (STATUS .EQ. FOR$ SPERECLOC) THEN 

DO WHILE (STATUS .EQ. FOR$ SPERECLOC) 
READ (UNIT = LUN, -

2 FMT = '(Q,A)' 
2 IOSTAT = IOSTAT) LEN, RECORD(l:LEN) 

ELSE 

IF (IOSTAT .NE. IO OK) THEN 

END IF 

CALL ERRSNS (,,,,STATUS) 
IF (STATUS .NE. FOR$ SPERECLOC) THEN 

CALL LIB$SIGNAL(%VAL(STATUS)) 
END IF 

END DO 

CALL LIB$SIGNAL (%VAL(STATUS)) 
END IF 

END IF 

In Fortran, each time you access a record in a shared file, that record is 
automatically locked until you perform another I/O operation on the same logical 
unit, or until you explicitly unlock the record using the UNLOCK statement. ·If 
you plan to modify a record, you should do so before unlocking it; otherwise, you 
should unlock the record as soon as possible. 

8-3 



File Operations 
8.4 File Access and Mappir-g 

8.4 File Access and Mapping 
To copy an entire data file from the disk to program variables and back again, 
either use language I/O statements to read and write the data or use the Create 
and Map Section (SYS$CRMPSC) system service to map the data. Oten times, 
mapping the file is faster than reading it. However, a mapped file usually uses 
more virtual memory than one that is read using language I/O statements. Using 
I/O statements, you have to store only the data that you have entered. Using 
SYS$CRMPSC, you have to initialize the database and store the entire structure 
in virtual memory including the parts that do not yet contain data. 

8.4.1 Using SYS$CRMPSC 

8-4 

Mapping a file means associating each byte of the file with a byte of program 
storage. You access data in a mapped file by referencing the program storage; 
your program does not use I/O statements. 

Note 

Files created using Open VMS RMS typically contain control information. 
Unless you are familiar with the structure of these files, do not attempt 
to map one. The best practice is to map only those files that have been 
created as the result of mapping. 

To map a file, perform the following operations: 

1. Place the program variables for the data in a common block. Page align 
the common block at link time by specifying an options file containing the 
following link option for VAX and AXP systems: 

For VAX systems, specify the following: 

PSECT_ATTR = name, PAGE • 

For AXP systems, specify the following: 

PSECT_ATTR = name, solitary • 

The variable name is the name of the common block. 

Within the common block, you should specify the data in order from most 
complex to least complex (high to low rank), with character data last. This 
naturally aligns the data, thus preventing troublesome page breaks in virtual 
memory. 

2. Open the data file using a user-open routine. The user-open routine must 
open the file for user I/O (as opposed to Open VIvIS RivIS I/0) and return the 
channel number on which the file is opened. 

3. Map the data file to the common block. 

4. Process the records using the program variables in the common block. 

5. Free the memory used by the common block, forcing modified data to be 
written back to the disk file. 

Do not initialize variables in a common block that you plan to map; the initial 
values will be lost when SYS$CRMPSC maps the common block. 



File Operations 
8.4 File Access and Mapping 

8.4.1.1 Mapping a File 

•• 

,,. 

The format for SYS$CRMPSC is as follows: 

SYS$CRMPSC ([inadr],[retadr],[acmode],[flags],[gsdnam],[ident],[relpag], 
[ch an], [pagcnt],[vbn], [prot],[pfc]) 

For a complete description of the SYS$CRMPSC system service, see the 
Open VMS System Services Reference Manual. 

Starting and Ending Addresses of the Mapped Section 
On VAX systems, specify the location of the first variable in the common block as 
the value of the first array element of the array passed by the inadr argument. 
Specify the location of the last variable in the common block as the value of the 
second array element. + 

On AXP systems, specify the location of the first variable in the common block as 
the value of the first array element of the array passed by the inadr argument; 
the second array element must be the address of the last variable in the common 
block, which is derived by performing a logical OR with the value of the size of a 
memory page minus 1. The size of the memory page can be retrieved by a call to 
the SYS$GETSYI system service. + 

If the first variable in the common block is an array or string, the first variable in 
the common block is the first element of that array or string. If the last variable 
in the common block is an array or string, the last variable in the common block 
is the last element in that array or string. 

Returning the Location of the Mapped Section 
SYS$CRMPSC returns the location of the first and last elements mapped in the 
retadr argument. The value returned as the starting virtual address should 
be the same as the starting address passed to the inadr argument. The value 
returned as the ending virtual address should be equal to or slightly more than 
(within 512 bytes, or 1 block) the value of the ending virtual address passed to 
the inadr argument. + 

SYS$CRMPSC returns the location of the first and last elements mapped in the 
retadr argument. The value returned as the starting virtual address should 
be the same as the starting address passed to the inadr argument. The value 
returned as the ending virtual address should be equal to or slightly less than 
(within a single page size) the value of the ending virtual address passed to the 
inadr argument. + 

If the first element is in error, you probably forgot to page-align the common block 
containing the mapped data. 

If the second element is in error, you were probably creating a new data file and 
forgot to specify the size of the file in your program (s~e Section 8.4.1.3). 

Using Private Sections 
Specify SEC$M_ WRT for the flags to indicate that the section is writable. If 
the file is new, also specify SEC$M_DZRO to indicate that the section should be 
initialized to zero. 

Obtaining the Channel Number 
You must use· a user-open routine to get the channel number (see Section 8.4.1.2). 
Pass the channel number to the chan argument. 

8-5 



File Operations 
8.4 File Access and Mapping 

8-6 

Example 8-1 maps a data· file consisting of one longword and three real arrays 
to the INC_DATA common block. The options file INCOME.OPT page-aligns the 
INC_DATA common block. 

If SYS$CRMPSC returns a status of SS$_IVSECFLG and you have correctly 
specified the flags in the mask argument, check to see if you are passing a 
channel number of 0. 

Example 8-1 Mapping a Data File to the Common Block on a VAX System 

!INCOME.OPT 

PSECT_ATTR = INC_DATA, PAGE 

INCOME.FOR 

! Declare variables to hold statistics 
REAL PERSONS HOUSE (2048), 
2 ADULTS HOUSE (2048), 
2 INCOME-HOUSE (2048) 
INTEGER TOTAL HOUSES 
! Declare section information 
! Data area 
COMMON /INC DATA/ PERSONS HOUSE, 
2 - ADULTS HOUSE, 
2 INCOME-HOUSE, 
2 TOTAL HOUSES 
! Addresses 
INTEGER ADDR( 2) , 
2 RET ADDR(2) 
! section length 
INTEGER SEC LEN 
! Channel -
INTEGER*2 CHAN, 
2 GARBAGE 
COMMON /CHANNEL/ CHAN, 
2 GARBAGE 
! Mask values 
INTEGER MASK 
INCLUDE '($SECDEF)' 
! User-open routines 
INTEGER UFO OPEN, 
2 UFO-CREATE 
EXTERNAL UFO OPEN, 
2 UFO-CREATE 
! Declare logical unit number 
INTEGER STATS LUN 
! Declare status variables and values 
INTEGER STATUS, 
2 IOSTAT, 
2 IO OK 
PARAMETER (IO OK = 0) 
INCLUDE '($FORDEF)' 
EXTERNAL INCOME BADMAP 
! Declare logical for INQUIRE statement 
LOGICAL EXIST 
! Declare subprograms invoked as functions 
INTEGER LIB$GET LUN, 
2 SYS$CRMPSC, 
2 SYS$DELTVA, 
2 SYS$DASSGN 
! Get logical unit number for STATS.SAV 
STATUS = LIB$GET LUN (STATS LUN) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
INQUIRE (FILE = 'STATS.SAV', 
2 EXIST = EXIST) 

(continued on next page) 



File Operations 
8.4 File Access and Mapping 

Example 8-1 {Cont.) Mapping a Data File to the Common Block on a VAX 
System 

IF (EXIST) THEN 
OPEN (UNIT=STATS LUN, 

2 FILE='STATS.SAV', 
2 STATUS='OLD', 
2 USEROPEN = UFO OPEN) 

MASK = SEC$M WRT -
ELSE -

! If STATS.SAV does not exist, create new database 
MASK = SEC$M WRT .OR. SEC$M DZRO 
SEC LEN = - -

(address of last - address of first + size of last + 511)/512 
2 ( (%LOC(TOTAL HOUSES) - %LOC(PERSONS HOUSE(l)) + 4 + 511)/512 

OPEN (UNIT=STATS LUN, -
2 FILE='STATS.SAV', 
2 STATUS='NEW', 
2 INITIALSIZE = SEC LEN, 
2 USEROPEN = UFO CREATE) 
END IF -
! Free logical unit number and map section 
CLOSE (STATS_LUN) 

******** 
! MAP DATA 
! ******** 
! Specify first and last address of section 
ADDR(l) = %LOC(PERSONS HOUSE(!)) 
ADDR(2) = %LOC(TOTAL HOUSES) 
! Map the section -
STATUS = SYS$CRMPSC (ADDR, 
2 RET_ADDR, 
2 , 
2 %VAL(MASK), 
2 , , , 
2 %VAL(CHAN), 
2 ",) 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
! Check for correct mapping 
IF (ADDR(l) .NE. RET_ADDR (1)) 

2 CALL LIB$SIGNAL (%VAL (%LOC(INCOME_BADMAP))) 

Reference data using the 
data structures listed 
in the common block 

Close and update STATS.SAV 
STATUS= SYS$DELTVA (RET ADDR,,) 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
STATUS= SYS$DASSGN (%VAL(CHAN)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 

END + 

8-7 



File Operations 
8.4 File Access and Mapping 

1;11• 

8-8 

Example 8-2 shows the code for performing the same functions as Example 8-1 
but in an AXP systems' environment. 

Example 8-2 Mapping a Data File to the Common Block on an AXP System 

!INCOME.OPT 

PSECT_ATTR = INC_DATA, SOLITARY, SHR, WRT 

INCOME.FOR 

! Declare variables to hold statistics 
REAL PERSONS HOUSE (2048), 
2 ADULTS HOUSE (2048), 
2 INCOME-HOUSE (2048) 
INTEGER TOTAL HOUSES, STATUS 
! Declare section information 
! Data area 
COMMON /INC DATA/ PERSONS HOUSE, 
2 - ADULTS HOUSE, 
2 INCOME-HOUSE, 
2 TOTAL HOUSES 
! Addresses -
INTEGER ADDR(2), 
2 RET ADDR(2) 
! section length 
INTEGER SEC LEN 
! Channel -
INTEGER*2 CHAN, 
2 GARBAGE 
COMMON /CHANNEL/ CHAN, 
2 GARBAGE 
! Mask values 
INTEGER MASK 
INCLUDE '($SECDEF)' 
! User-open routines 
INTEGER UFO OPEN, 
2 UFO-CREATE 
EXTERNAL UFO OPEN, 
2 UFO-CREATE 
! Declare logical unit number 
INTEGER STATS LUN 
! Declare status variables and values 
INTEGER STATUS, 
2 IOSTAT, 
2 IO OK 
PARAMETER (IO OK = 0) 
INCLUDE '($FORDEF)' 
EXTERNAL INCOME BADMAP 
! Declare logical for INQUIRE statement 
LOGICAL EXIST 
! Declare subprograms invoked as functions 
INTEGER LIB$GET LUN, 
2 SYS$CRMPSC, 
2 SYS$DELTVA, 
2 SYS$DASSGN 
! Get logical unit number for STATS.SAV 
STATUS = LIB$GET LUN (STATS LUN) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
INQUIRE (FILE = 'STATS.SAV' I 

2 EXIST = EXIST) 

(continued on next page) 



File Operations 
8.4 File Access and Mapping 

Example 8-2 (Cont.) Mapping a Data File to the Common Block on an AXP 
System 

IF (EXIST) THEN 
OPEN (UNIT=STATS LUN, 

2 FILE='STATS.SAV', 
2 STATUS='OLD', 
2 USEROPEN = UFO OPEN) 

MASK = SEC$M WRT -
ELSE -

! If STATS.SAV does not exist, create new database 
MASK = SEC$M WRT .OR. SEC$M DZRO 
SEC LEN = - -

(address of last - address of first + size of last + 511)/512 
2 ( (%LOC(TOTAL HOUSES) - %LOC(PERSONS HOUSE(l)) + 4 + 511)/512 

OPEN (UNIT=STATS LUN, -
2 FILE='STATS.SAV', 
2 STATUS='NEW', 
2 INITIALSIZE = SEC LEN, 
2 USEROPEN = UFO CREATE) 
END IF -
! Free logical unit number and map section 
CLOSE (STATS_LUN) 

******** 
! MAP DATA 
! ******** 
STATUS= LIB$GETSYI(SYI$ PAGE SIZE, PAGE MAX,,,,) 
IF (.NOT. STATUS) CALL LIB$STOP (%VAL (STATUS)) 
! Specify first and last address of section 
ADDR(l) = %LOC(PERSONS HOUSE(l)) 
! Section will always be smaller than page max bytes 
ADDR(2) = ADDR(l) + PAGE MAX -1 -
! Map the section -
STATUS = SYS$CRMPSC (ADDR, 
2 RET_ADDR, 
2 , 
2 %VAL(MASK), 
2 ", 
2 %VAL(CHAN), 
2 ,,,) 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
! Check for correct mapping 
IF (ADDR(l) .NE. RET_ADDR (1)) 

2 CALL LIB$SIGNAL (%VAL (%LOC(INCOME_BADMAP))) 

Reference data using the 
data structures listed 
in the common block 

Close and update STATS.SAV 
STATUS= SYS$DELTVA (RET ADDR,,) 
IF (.NOT. STATUS) CALL LlB$SIGNAL(%VAL(STATUS)) 
STATUS= SYS$DASSGN (%VAL(CHAN)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 

END + 

8-9 



File Operations 
8.4 File Access and Mapping 

8.4.1.2 Using the User-Open Routine 

8-10 

When you open a file for mapping in Fortran, for example, you must specify 
a user-open routine (Section 8.6 discusses user-open routines) to perform the 
following operations: 

1. Set the user-file open bit (FAB$Y _UFO) in the file access block (FAB) options 
mask. 

2. Open the file using SYS$0PEN for an existing file or SYS$CREATE for a new 
file. (Do not invoke SYS$CONNECT if you have set the user-file open bit.) 

3. Return the channel number to the program unit that started the OPEN 
operation. The channel number is in the additional status longword of the 
FAB (FAB$L_STV) and must be returned in a common block. 

4. Return the status of the open operation (SYS$0PEN or SYS$CREATE) as the 
value of the user-open routine. 

After setting the user-file open bit in the FAB options mask, you cannot use 
language I/O statements to access data in that file. Therefore, you should free the 
logical unit number associated with the file. The file is still open. You access the 
file with the channel number. 

Example 8-3 shows a user-open routine invoked by the sample program in 
Section 8.4.1.1 if the file STATS.SAY exists. (If STATS.SAY does not exist, the 
user-open routine must invoke SYS$CREATE rather than SYS$0PEN.) 

Example 8-3 Using a User-Open Routine 

!UFO OPEN.FOR 

INTEGER FUNCTION UFO OPEN (FAB, 
2 - RAB, 
2 LUN) 

Include Open VMS RMS definitions 
INCLUDE '($FABDEF)' 
INCLUDE '($RABDEF)' 
! Declare dummy arguments 
RECORD /FABDEF/ FAB 
RECORD /RABDEF/ RAB 
INTEGER LUN 
! Declare channel 
INTEGER*4 CHAN 
COMMON /CHANNEL/ CHAN 
! Declare status variable 
INTEGER STATUS 
! Declare system procedures 
INTEGER SYS$0PEN 
! Set useropen bit in the FAB options longword 
FAB.FAB$L FOP = FAB.FAB$L FOP .OR. FAB$M UFO 
! Open f iie - -
STATUS = SYS$0PEN (FAB) 
! Read channel from FAB status word 
CHAN = FAB.FAB$L_STV 

! Return status of open operation 
UFO OPEN = STATUS 

END 



File Operations 
8.4 File Access and Mapping 

8.4.1.3 Initializing a Mapped Database 
The first time you map a file you must perform the following operations in 
addition to those listed at the beginning of Section 8.4.1: 

1. Specify the size of the file-SYS$CRMPSC maps data based on the size of the 
file. Therefore, wheJ?. creating a file that is to be mapped, you must specify in 
your program a file large enough to contain all of the expected data. Figure 
the size of your database as follows: 

• Find the size of the common block (in bytes)-Subtract the location of the 
first variable in the common block from the location of the last variable in 
the common block and then add the size of the last element. 

• Find the number of blocks in the common block-Add 511 to the size and 
divide the result by 512 (512 bytes= 1 block). 

2. Initialize the file when you map it-The blocks allocated to a file might not be 
initialized and therefore contain random data. When you first map the file, 
you should initialize the mapped area to zeros by setting the SEC$V _DZRO 
bit in the mask argument of SYS$CRMPSC. 

The user-open routine for creating a file is the same as the user-open routine for 
opening a file except that SYS$0PEN is replaced by SYS$CREATE. 

8.4.1.4 Saving a Mapped File 
To close a data file that was opened for user I/O, you must deassign the I/O 
channel assigned to that file. Before you can deassign a channel assigned to a 
mapped file, you must delete the virtual memory associated with the file (the 
memory used by the common block). When ,you delete the virtual memory used 
by a mapped file, any changes made while the file was mapped are written back 
to the disk file. Use the Delete Virtual Address Space (SYS$DELTVA) system 
service to delete the virtual memory used by a mapped file. Use the Deassign I/O 
Channel (SYS$DASSGN) system service to deassign the I/O channel assigned to 
a file. 

The program segment shown in Example 8-4 closes a mapped file, automatically 
writing any modifications back to the disk. To ensure that the proper locations 
are deleted, pass SYS$DELTVA the addresses returned to your program by 
SYS$CRMPSC rather than the addresses you passed to SYS$CRMPSC. If you 
want to save modifications made to the mapped section without closing the 
file, use the Update Section File on Disk (SYS$UPDSEC) system service. To 
ensure that the proper locations are updated, pass SYS$UPDSEC the addresses 
returned to your program by SYS$CRMPSC rather than the addresses you 
passed to SYS$CRMPSC. Typically, you want to wait until the update operation 
completes before continuing program execution. Therefore, use the efn argument 
of SYS$UPDSEC to specify an event flag to be set when the update is complete, 
and wait for the system service to complete before continuing. For a complete 
description of the SYS$DELTVA, SYS$DASSGN, and SYS$UPDSEC system 
services, see the Open VMS System Services Reference Manual. 

8-11 



File Operations 
8.4 File Access and Mapping 

Example 8-4 Closing a Mapped File 

! Section address 
INTEGER*4 ADDR(2), 
2 RET ADDR(2) 
! Event flag -
INTEGER*4 FLAG 
! Status block 
STRUCTURE /IO BLOCK/ 

INTEGER*2 IOSTAT, 
2 HARDWARE 

INTEGER*4 BAD PAGE 
END STRUCTURE -
RECORD /IO BLOCK/ IOSTATUS 

Get an event flag 
STATUS = LIB$GET EF (FLAG) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
! Update the section 
STATUS = SYS$UPDSEC (RET ADDR, 
2 ",-
2 %VAL(FLAG) 
2 ' 
2 IOSTATUS,,) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
! Wait for section to be updated 
STATUS= SYS$SYNCH (%VAL(FLAG), 
2 IOSTATUS) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

8.5 Opening and Updating a Sequential File 

8-12 

This section provides an example, written in DEC Fortran, of how to open and 
update a sequential file on a VAX system. A sequential file consists of records 
arranged one after the other in the order in which they are written to the file. 
Records can only be added to the end of the file. Typically, sequential files are 
accessed sequentially. 

Creating a Sequential File 
To create a sequential file, use the OPEN statement and specify the following 
keywords and keyword values: 

• STATUS =·NEW• 

• ACCESS = 'SEQUENTIAL' 

• ORGANIZATION= •SEQUENTIAL• 

The file structure keyword ORGANIZATION also accepts the value 'INDEXED' 
or 'RELATIVE' . 



File Operations 
8.5 Opening and Updating a Sequential File 

Example 8-5 creates a sequential file of fixed-length records. 

Example 8-5 Creating a Sequential File of Fixed-Length Records 

INTEGER STATUS, 
2 LUN, 
2 LIB$GET INPUT, 
2 LIB$GET-LUN, 
2 STR$UPCASE 
INTEGER*2 FN SIZE, 
2 REC SIZE 
CHARACTER*256 FILENAME 
CHARACTER*80 RECORD 
! Get file name 
STATUS = LIB$GET INPUT (FILENAME, 
2 - 'File name: ' 
2 FN SIZE) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Get free unit number 
STATUS = LIB$GET LUN (LUN) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Open the file 
OPEN (UNIT = LUN, 
2 FILE= FILENAME (l:FN SIZE), 
2 ORGANIZATION = 'SEQUENTIAL', 
2 ACCESS = 'SEQUENTIAL', 
2 RECORDTYPE = 'FIXED', 
2 FORM= 'UNFORMATTED', 
2 RECL = 20, 
2 STATUS= 'NEW') 
! Get the record input 
STATUS= LIB$GET"INPUT (RECORD, 
2 - 'Input: ' 
2 REC SIZE) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
DO WHILE (REC_SIZE .NE. 0) 

! Convert to uppercase 
STATUS = STR$UPCASE (RECORD,RECORD) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

WRITE (UNIT=LUN) RECORD(l:REC SIZE) 
! Get more record input -
STATUS = LIB$GET INPUT (RECORD, 

2 - 'Input: ', 
2 REC SIZE) 

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

END DO 

END 

Updating a Sequential File 
To update a sequential file, read each record from the file, update it, and write it 
to a new sequential file. Updated records cannot be written back as replacement 
records for the same sequential file from which they were read. 

Example 8-6 updates a sequential file, giving the user the option of modifying a 
record before writing it to the new file. The same file name is used for both files; 
since the new update file was opened after the old file, the new file has a higher 
version number. 

8-13 



File Operations 
8.5 Opening and Updating a Sequential File 

8-14 

Example 8-6 Updating a Sequential File 

INTEGER STATUS, 
2 LUNl, 
2 LUN2, 
2 I OS TAT 
INTEGER*2 FN SIZE 
CHARACTER*256-FILENAME 
CHARACTER*80 RECORD 
CHARACTER*80 NEW RECORD 
INCLUDE I ( $FORDEF) I 

INTEGER*4 LIB$GET INPUT, 
2 LIB$GET-LUN, 
2 STR$UPCASE 
! Get file name 
STATUS = LIB$GET INPUT (FILENAME, 
2 - 'File name: ' 
2 FN SIZE) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Get free unit number 
STATUS = LIB$GET LUN (LUNl) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Open the old file 
OPEN (UNIT=LUNl, 
2 FILE=FILENAME (l:FN SIZE), 
2 ORGANIZATION='SEQUENTIAL', 
2 ACCESS=' SEQUENTIAL', 
2 RECORDTYPE='FIXED', 
2 FORM='UNFORMATTED', 
2 RECL=20, 
2 STATUS='OLD') 
! Get free unit number 
STATUS = LIB$GET LUN (LUN2) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Open the new file 
OPEN (UNIT=LUN2, 
2 FILE=FILENAME (l:FN SIZE), 
2 ORGANIZATION='SEQUENTIAL', 
2 ACCESS=' SEQUENTIAL', 
2 RECORDTYPE='FIXED', 
2 FORM='UNFORMATTED', 
2 RECL=20, 
2 STATUS='NEW') 
! Read a record from the old file 
READ (UNIT=LUNl, 
2 IOSTAT=IOSTAT) RECORD 
IF (IOSTAT .NE. IOSTAT OK) THEN 

CALL ERRSNS (,,,,STATUS) 
IF (STATUS .NE. FOR$ ENDDURREA) THEN 

CALL LIB$SIGNAL (%VAL(STATUS)) 
END IF 

END IF 

DO WHILE (STATUS .NE. FOR$_ENDDURREA) 

TYPE *, RECORD 

(continued on next page) 



File Operations 
8.5 Opening and Updating a Sequential File 

Example 8-6 (Cont.) Updating a Sequential File 

! Get record update 
STATUS = LIB$GET INPUT (NEW RECORD, 

2 - 'Update: ') 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Convert to uppercase 
STATUS = STR$UPCASE (NEW RECORD, 

2 NEW-RECORD) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

! Write unchanged record or updated record 
IF (NEW RECORD .EQ. I I ) THEN 

WRITE-(UNIT=LUN2) RECORD 
ELSE 

WRITE (UNIT=LUN2) NEW RECORD 
END IF 

! Read the next record 
READ (UNIT=LUNl, 

2 IOSTAT=IOSTAT) RECORD 
IF (IOSTAT .NE. IOSTAT OK) THEN 

CALL ERRSNS (,,,,STATUS) 
IF (STATUS .NE. FOR$ ENDDURREA) THEN 

CALL LIB$SIGNAL (%VAL(STATUS)) 
END IF 

END IF 
END DO 

END 

8.6 User-Open Routines 
A user-open routine in Fortran, for example, gives you direct access to the 
file access block (FAB) and record access block (RAB) (the OpenVMS RMS 
structures that define file characteristics). Use a user-open routine to specify file 
characteristics that are otherwise unavailable from your programming language. 

When you specify a user-open routine, you open the file rather than allow the 
program to open the file for you. Before passing the F AB and RAB to your 
user-open routine, any default file characteristics and characteristics that can 
be specified by keywords in the programming language are set. Your user-open 
routine should not set or modify such file characteristics because the language 
might not be aware that you have set the characteristics and might not perform 
as expected. 

8.6.1 Opening a File 
Section 8.4.1.2 provides guidelines on opening a file with a user-open routine. 
This section provides an example of a Fortran user-open routine. 

8.6.1.1 Specifying USEROPEN 
To open a file with a user-open routine, include the USEROPEN specifier in the 
Fortran OPEN statement. The value of the USEROPEN specifier is the name of 
the routine (not a character string containing the name). Declare the user-open 
routine as an INTEGER*4 function. Since the user-open routine name is specified 
as an argument, it must be declared in an EXTERNAL statement. 

8-15 



File Operations 
8.6 User-Open Routines 

The following statement instructs Fortran to open SECTION .DAT using the 
routine UFO_OPEN: 

! Logical unit number 
INTEGER LUN 

! Declare user-open routine 
INTEGER UFO OPEN 
EXTERNAL UFO OPEN 

OPEN (UNIT = LUN, 
2 FILE = 'SECTION.DAT', 
2 STATUS = 'OLD', 
2 USEROPEN = UFO_OPEN) 

8.6.1.2 Writing the User-Open Routine 

8-16 

Write a user-open routine as an INTEGER function that accepts three dummy 
arguments: 

• FAB address-Declare this argument as a RECORD variable. Use 
the record structure FABDEF defined in the $FABDEF module of 
SYS$LIBRARY:FORSYSDEF.TLB. 

• RAB address-Declare this argument as a RECORD variable. Use 
the record structure RABDEF defined in the $RABDEF module of 
SYS$LIBRARY:FORSYSDEF.TLB. 

• Logical unit number-Declare this argument as an INTEGER. 

A user-open routine must perform at least the following operations. In addition, 
before opening the file, a user-open routine usually adjusts one or more fields in 
the FAB or the RAB or in both. 

• Opens the file-To open the file, invoke the SYS$0PEN system service if the 
file already exists, or the SYS$CREATE system service if the file is being 
created. 

• Connects the file-Invoke the SYS$CONNECT system service to establish a 
record stream for I/O. 

• Returns the status-To return the status, equate the return status of the 
SYS$0PEN or SYS$CREATE system service to the function value of the 
user-open routine. 

The following user-open routine opens an existing file. The file to be opened is 
specified in the OPEN statement of the invoking program unit. 

UFO_OPEN.FOR 
INTEGER FUNCTION UFO OPEN (FAB, 
2 - RAB, 
2 LUN) 

Include Open VMS RMS definitions 
INCLUDE '($FABDEF)' 
INCLUDE '($RABDEF)' 
! Declare dummy arguments 
RECORD /FABDEF/ FAB 
RECORD /RABDEF/ RAB 
INTEGER LUN 



! Declare status variable 
INTEGER STATUS 
! Declare system routines 
INTEGER SYS$CREATE, 
2 SYS$0PEN, 
2 SYS$CONNECT 

Optional FAB and/or RAB modifications 

Open file 
STATUS = SYS$0PEN (FAB) 
IF (STATUS) 
2 STATUS = SYS$CONNECT (RAB) 

! Return status of $OPEN or $CONNECT 
UFO OPEN = STATUS 

END 

8.6.1.3 Setting FAB and RAB Fields 

File Operations 
8.6 User-Open Routines 

Each field in the FAB and RAB is identified by a symbolic name, such as FAB$L_ 
FOP. Where separate bits in a field represent different attributes, each bit offset 
is identified by a similar symbolic name, such as FAB$V_CTG. The first three 
letters identify the structure containing the field. The letter following the dollar 
sign indicates either the length of the field (B for byte, W for word, or L for 
longword) or that the name is a bit offset (V for bit) rather than a field. The 
letters following the underscore identify the attribute associated with the field or 
bit. The symbol FAB$L_FOP identifies the FAB options field, which is a longword 
in length; the symbol FAB$V _CTG identifies the contiguity bit within the options 
field. 

The STRUCTURE definitions for the FAB and RAB are in the $FABDEF and 
$RABDEF modules of the library SYS$LIBRARY:FORSYSDEF.TLB. To use these 
definitions, do the following: 

1. Include the modules in your program unit. 

2. Declare RECORD variables for the FAB and the RAB. 

3. Reference the various fields of the FAB and RAB using the symbolic name of 
the field. 

The following user-open routine specifies that the blocks allocated for the file 
must be contiguous. To specify contiguity, you clear the best-try-contiguous bit 
(FAB$V _CBT) of the FAB$L_FOP field and set the contiguous bit (FAB$V _CTG) 
of the same field. 

UFO_CONTIG.FOR 
INTEGER FUNCTION UFO CONTIG (FAB, 
2 - RAB, 
2 WN) 

Include Open VMS RMS definitions 
INCLUDE '($FABDEF)' 
INCLUDE ' ( $RABDEF) ' 
! Declare dummy arguments 
RECORD /FABDEF/ FAB 
RECORD /RABDEF/ RAB 
INTEGER LUN 
! Declare status variable 
INTEGER STATUS 

8-17 



File Operations 
8.6 User-Open Routines 

8-18 

! Declare system procedures 
INTEGER SYS$CREATE, 
2 SYS$CONNECT 
! 'clear contiguous-best-try bit and 
! set contiguous bit in FAB options 
FAB.FAB$L FOP = IBCLR (FAB.FAB$L FOP, FAB$V CBT) 
FAB.FAB$L-FOP = IBSET (FAB.FAB$L-FOP, FAB$V=CTG) 
! Open file -
STATUS = SYS$CREATE (FAB) 
IF (STATUS) STATUS = SYS$CONNECT (RAB) 

! Return status of open or connect 
UFO CONTIG = STATUS 

END 



9 
System Service Input/Output Operations 

This chapter describes how to use system services to perform input and output 
operations. It contains the following sections: 

Section 9.1 describes the QIO operation. 

Section 9.2 describes the use of quotas, privileges, and protection. 

Section 9.3 describes device addressing modes. 

Section 9.4 describes 1/0 function encoding. 

Section 9.5 describes how to assign channels. 

Section 9.6 describes how to queue 1/0 requests. 

Section 9. 7 describes how to synchronize 1/0 completions. 

Section 9.8 describes the routine to use to wait for completion of an asynchronous 
event. 

Section 9.9 describes executing 1/0 services synchronously or asynchronously. 

Section 9.10 describes the completion status of an 1/0 operation. 

Section 9.11 describes how to deassign 1/0 channels. 

Section 9.12 presents a progam example of a complete input and output 
operation. 

Section 9.13 describes how to cancel I/O requests. 

Section 9.14 describes how to use logical names and physical device names for 1/0 
operations. 

Section 9.15 describes how to use device name defaults. 

Section 9.16 describes how to obtain information about physical devices. 

Section 9.17 describes device allocation. 

Section 9.18 describes how to mount, dismount, and initialize disk and tape 
volumes. 

Section 9.19 describes format output strings. 

Section 9.20 describes how to use mailboxes for 1/0 operations. 

Section 9.21 provides a program example of using I/O system services. 

Examples are provided to show you how to use the I/O services for simple 
functions, such as terminal input and output operations. If you plan to write 
device-dependent 1/0 routines, see the Open VMS I I 0 User's Reference Manual. 

9-1 



System Service Input/Output Operations 

•• If you want to write your own device driver or connect to a device interrupt 
vector, see the Open VMS VAX Device Support Reference Manual. + 

Besides using 1/0 system services, you can use Open VMS Record Management 
Services (RMS). Open VMS RMS provides a set of routines for general-purpose, 
device-independent functions such as data storage, retrieval, and modification. 

Unlike RMS services, 1/0 system services permit you to use the 1/0 resources of 
the operating system directly in a device-dependent manner. 1/0 services also 
provide some specialized functions not available in Open VMS RMS. Using 1/0 
services requires more programming knowledge than using Open VMS RMS, but 
can result in more efficient input/output operations. 

9.1 Overview of OpenVMS QIO Operations 
The operating system provides QIO operations that perform three basic 1/0 
functions: read, write, and set mode. The read function transfers data from a 
device to a user-specified buffer. The write function transfers data in the opposite 
direction-from a user-specified buffer to the device. For example, in a read QIO 
function to a terminal device, a user-specified buffer is filled with characters 
received from the terminal. In a write QIO function to the terminal, the data in a 
user-specified buffer is transferred to the terminal where it is displayed. 

The set mode QIO function is used to control or describe the characteristics and 
operation of a device. For example, a set mode QIO function to a line printer can 
specify either uppercase or lowercase character format. Not all QIO functions are 
applicable to all types of devices. The line printer, for example, cannot perform a 
read QIO function. 

9.2 Quotas, Privileges, and Protection 

9-2 

To preserve the integrity of the operating system, the 1/0 operations are 
performed under the constraints of quotas, privileges, and protection. 

Quotas limit the number and type of 1/0 operations that a process can perform 
concurrently and the total size of outstanding transfers. They ensure that all 
users have an equitable share of system resources and usage. 

Privileges are granted to a user to allow the performance of certain 1/0-related 
operations, for example, creating a mailbox and performing logical 1/0 to a 
file-structured device. Restrictions on user privileges protect the integrity and 
performance of both the operating system and the services provided to other 
users. 

Protection controls access to files and devices. Device protection is provided in 
much the same way as file protection: shareable and nonshareable devices are 
protected by protection masks. 

The Set Resource Wait Mode (SYS$SETRWM) system service allows a process 
to select either of two modes when an attempt to exceed a quota occurs. In the 
enabled (default) mode, the process waits until the required resource is available 
before continuing. In the disabled. mode, the process is notified immediately by 
a system service status return that an attempt to exceed a quota has occurred. 
Waiting for resources is transparent to the process when resource wait mode is 
enabled; the process takes no explicit action when a wait is necessary. 

The different types of 1/0-related quotas, privilege, and protection are described 
in the following sections. 



System Service Input/Output Operations 
9.2 Quotas, Privileges, and Protection 

9.2.1 Buffered 1/0 Quota 
The buffered 1/0 limit quota (BIOLM) specifies the maximum number of 
concurrent buffered 1/0 operations that can be active in a process. In a buffered 
1/0 operation, the user's data is buffered in system dynamic memory. The driver 
deals with the system buffer and not the user buffer. Buffered 1/0 is used 
for terminal, line printer, card reader, network, mailbox, and console medium 
transfers and file system operations. For a buffered 1/0 operation, the system 
does not have to lock the user's buffer in memory. 

The system manager, or the person who creates the process, establishes the 
buffered 1/0 quota value in the user authorization file. If you use the Set 
Resource Wait Mode (SYS$SETRWM) system service to enable resource wait 
mode for the process, the process enters resource wait mode if it attempts to 
exceed its direct 1/0 quota. 

9.2.2 Buffered 1/0 Byte Count Quota 
The buffered 1/0 byte count quota (BYTELM) specifies the maximum amount of 
buffer space that can be consumed· from system dynamic memory for buffering 
1/0 requests. All buffered 1/0 requests require system dynamic memory in which 
the actual 1/0 operation takes place. 

The system manager, or the person who creates the process, establishes the 
buffered 1/0 byte count quota in the user authorization file. If you use the 
SYS$SETRWM system service to enable resource wait mode for the process, the 
process enters resource wait mode if it attempts to exceed its direct 1/0 quota. 

9.2.3 Direct 1/0 Quota 
The direct 1/0 limit quota (DIOLM) specifies the maximum number of concurrent 
direct (unbuffered) 1/0 operations that a process can have active. In a direct 1/0 
operation, data is moved directly to or from the user buffer. Direct 1/0 is used 
for disk, magnetic tape, most DMA real-time devices, and nonnetwork transfers, 
such as DMCll/DMRll write transfers. For direct 110, the user's buffer must be 
locked in memory during the transfer. 

The system manager, or the person who creates the process, establishes the direct 
1/0 quota value in the user authorization file. If you use the SYS$SETRWM 
system service to enable resource wait mode for the process, the process enters 
resource wait mode if it attempts to exceed its direct 1/0 quota. 

9.2.4 AST Quota 
The AST quota specifies the maximum number of outstanding asynchronous 
system traps that a process can have. The system manager, or the person who 
creates the process, establishes the quota value in the user authorization file. 
There is never an implied wait for that resource. 

9.2.5 Physical 1/0 Privilege 
Physical 1/0 privilege (PHY_IO) allows a process to perform physical 1/0 
operations on a device. Physical 1/0 privilege also allows a process to perform 
logical 1/0 operations on a device. 

9-3 



System Service Input/Output Operations 
9.2 Quotas, Privileges, and Protection 

9.2.6 Logical 1/0 Privilege 
Logical I/O privilege (LOG_IO) allows a process to perform logical I/O operations 
on a device. A process can also perform physical operations on a device if the 
process has logical I/O privilege, the volume is mounted foreign, and the volume 
protection mask allows access to the device. (A foreign volume is one volume that 
contains no standard file structure understood by any of the operating system 
software.) See Section 9.3.2 for a further information about logical I/O privilege. 

9.2. 7 Mount Privilege 
Mount privilege (MOUNT) allows a process to use the IO$_MOUNT function to 
perform mount operations on disk and magnetic tape devices. The IO$_MOUNT 
function is used in ancillary control processs (ACP) interface operations. 

9.2.8 Volume Protection 

9-4 

Volume protection protects the integrity of mailboxes and both foreign and 
Files-11 On-Disk Structure Level 2 structured volumes. Volume protection for 
a foreign volume is established when the volume is mounted. Volume protection 
for a Files-11 structured volume is established when the volume is initialized. (If 
the process mounting the volume has the override volume protection privilege, 
VOLPRO, protection can be overridden when the volume is mounted.) 

The SYS$CREMBX system service protection mask argument establishes mailbox 
protection. 

Set Protection QIO requests allow you to set volume protection on a mailbox. You 
must either be the owner of the mailbox or have the BYPASS privilege. 

Protection for structured volumes and mailboxes is provided by a volume 
protection mask that contains four 4-bit fields. These fields correspond to the 
four classes of user permitted to access the volume. (User classes are based on 
the volume owner's UIC.) 

The 4-bit fields are interpreted differently for volumes that are mounted as 
structured (that is, volumes serviced by an ACP), volumes that are mounted as 
foreign, and mailboxes (both temporary and permanent). 

Figure 9-1 shows the 4-bit protection fields for mailboxes. Usually, volume 
protection is meaningful only for read and write operations. 

Figure 9-1 Mailbox Protection Fields 

11 10 9 8 

Logical 1/0 * Write Read 

*Not Used ZK-0624-GE 



System Service Input/Output Operations 
9.2 Quotas, Privileges, and Protection 

9.2.9 . Device Protection 
Device protection protects the allocation of nonshareable devices, such as 
terminals and card readers. 

Protection is provided by a device protection mask similar to that of volume 
protection. The difference is that only the bit corresponding to read access is 
checked, and that bit determines whether the process can allocate or assign a 
channel to the device. 

You establish device protection with the DCL command SET PROTECTION 
/DEVICE. This command sets both the protection mask and the device owner 
UIC. 

9.2.10 System Privilege 
System UIC privilege (SYSPRV) allows a process to be eligible for the volume or 
device protection specified for the system protection class, even if the process does 
not have a UIC in one of the system groups. 

9.2.11 Bypass Privilege 
Bypass privilege (BYPASS) allows a process to bypass volume and device 
protection completely. 

9.3 Physical, Logical, and Virtual 1/0 
I/O data transfers can occur in any one of three device addressing modes: 
physical, logical, or virtual. Any process with device access allowed by the volume 
protection mask can perform logical I/Oona device that is mounted foreign; 
physical I/O requires privileges. Virtual I/O does not require privileges; however, 
intervention by an ACP to control user access might be necessary if the device 
is under ACP control. (ACP functions are described in the Open VMS I I 0 User's 
Reference Manual.) 

9.3.1 Physical 1/0 Operations 
In physical I/O operations, data is read from and written to the actual, physically 
addressable units accepted by the hardware (for example, sectors on a disk or 
binary characters on a terminal in the PASSALL mode). This mode allows direct 
access to all device-level I/O operations. 

Physical I/O requires that one of the following conditions be met: 

• The issuing process has physical I/O privilege (PHY_IO). 

• The issuing process has all of the following characteristics: 

The issuing process has logical I/O privilege (LOG_IO). 

The device is mounted foreign. 

The volume protection mask allows physical access to the device. 

If neither of these conditions is met, the physical I/O operation is rejected by the 
SYS$QIO system service, which returns a condition value of SS$_NOPRIV (no 
privilege). Figure 9-2 illustrates the physical I/O access checks in greater detail. 

The inhibit error-logging function modifier (10$M_INHERLOG) can be specified 
for all physical I/O functions. The 10$M_INHERLOG function modifier inhibits 
the logging of any error that occurs during the I/O operation. 

9-5 



System Service Input/Output Operations 
9.3 Physical, Logical, and Virtual 1/0 

9.3.2 Logical 1/0 Operations 
In logical I/O operations, data is read from and written to logically addressable 
units of the device. Logical operations can be performed on both block­
addressable and record-oriented devices. For block-addressable devices (such 
as disks), the addressable units are 512-byte blocks. They are numbered from 
0 to n-1, where n is the number of blocks on the device. For record-oriented or 
non-block-structured devices (such as terminals), logical addressable units are 
not pertinent and are ignored. Logical I/O requires that one of the following 
conditions be met: 

• The issuing process has physical I/O privilege (PHY_IO). 

• The issuing process has logical I/O privilege (LOG_IO). 

• The volume is mounted foreign and the volume protection mask allows access 
to the device. 

If none of these conditions is met, the logical I/O operation is rejected by the 
SYS$QIO system service, which returns a condition value of SS$_NOPRIV (no 
privilege). Figure 9-3 illustrates the logical I/O access checks in greater detail. 

9.3.3 Virtual 1/0 Operations 

9-6 

You can perform virtual I/O operations on both record-oriented (non-file­
structured) and block-addressable (file-structured) devices. For record-oriented 
devices (such as terminals), the virtual function is the same as a logical function; 
the virtual addressable units of the devices are ignored. 

For block-addressable devices (such as disks), data is read from and written 
to open files. The addressable units in the file are 512-byte blocks. They are 
numbered starting at 1 and are relative to a file rather than to a device. Block­
addressable devices must be mounted and structured and must contain a file that 
was previously accessed on the I/O channel. 

Virtual I/O operations also require that the volume protection mask allow 
access to the device (a process having either physical or logical I/O privilege can 
override the volume protection mask). If these conditions are not met, the virtual 
I/O operation is rejected by the QIO system service, which returns one of the 
following condition values: 

Condition Value 

SS$_NOPRIV 

SS$_DEVNOTMOUNT 

SS$_DEVFOREIGN 

Meaning 

No privilege 

Device not mounted 

Volume mounted foreign 

Figure 9-4 shows the relationship of physical, logical, and virtual I/Oto the 
driver. 



System Service Input/Output Operations 
9.3 Physical, Logical, and Virtual 1/0 

Figure 9-2 Physical 110 Access Checks 

Allow 
Access 

Yes 

No 

*Volume protection mask allows access. 

Start 

No 

No 

No 

No 

Deny 
Access 

ZK-0625-GE 

9-7 



System Service Input/Output Operations 
9.3 Physical, Logical, and Virtual 1/0 

Figure 9-3 Logical 1/0 Access Checks 

9-8 

Allow 
Access 

Yes 

Yes 

No 

* Volume protection mask allows access. 

Start 

No 

No 

No 

No 

No 

Yes 

Deny 
Access 

ZK-0626-GE 



System Service Input/Output Operations 
9.3 Physical, Logical, and Virtual 1/0 

Figure 9-4 Physical, Logical, and Virtual 1/0 

Error 

No 

QIO 
Request 

Translate Logical 
Block Address 

to Physical 
Block Address 

Map Virtual Block 
Address to Logical 

Block Address 

Yes 

Goto 
ACP 

WakeACPto 
Change Mapping 

Window 

*Needed to map virtual address to logical address. 

Yes 

1/0 
Driver 

ZK-0627-GE 

9-9 



System Service Input/Output Operations 
9.4 1/0 Function Encoding 

9.4 1/0 Function Encoding 
IJO functions fall into three groups that correspond to the three I/O device 
addressing modes (physical, logical, and virtual) described in Section 9.3. 
Depending on the device to which it is directed, an I/O function can be expressed 
in one, two, or all three modes. 

IJO functions are described by 16-bit, symbolically expressed values that specify 
the particular I/O operation to be performed and any optional function modifiers. 
Figure 9-5 shows the format of the 16-bit function value. 

Symbolic names for I/O function codes are defined by the $10DEF macro. 

Figure 9-5 1/0 Function Format 

15 6 5 0 

Function Modifiers Code 

ZK-0628-GE 

9.4.1 Function Codes 

9-10 

The low-order 6 bits of the function value are a code that specifies the particular 
operation to be performed. For example, the code for read logical block is 
expressed as 10$_READLBLK. Table 9-1 lists the symbolic values for read and 
write I/O functions in the three transfer modes. 

Table 9-1 Read and Write 1/0 Functions 

Physical 1/0 

IO$_READPBLK 

IO$_ WRITEPBLK 

Logical 110 

I0$_READLBLK 

IO$_ WRITELBLK 

Virtual 1/0 

IO$_READVBLK 

IO$_ WRITEVBLK 

The set mode I/O function has a symbolic value of 10$_SETMODE. 

Function codes are defined for all supported devices. Although some of the 
function codes (for example, 10$_READVBLK and 10$_ WRITEVBLK) are used 
with several types of devices, most are device dependent; that is, they perform 
functions specific to particular types of devices. For example, IO$_ CREATE is a 
device-dependent function code; it is used only with file-structured devices such 
as disks and magnetic tapes. The I/O user's reference documentation provides 
complete descriptions of the functions and function codes. 

Note ~~~~~~~~~~~~~ 

You should determine the device class before performing any QIO 
function, because the requested function might be incompatible with some 
devices. For example, the SYS$INPUT device could be a terminal, a disk, 
or some other device. Unless this device is a terminal, an IO$_SETMODE 
request that enables a Ctrl/C AST is not performed. 



9.4.2 Function Modifiers 

System Service Input/Output Operations 
9.4 1/0 Function Encoding 

The high-order 10 bits of the function value are function modifiers. These are 
individual bits that alter the basic operation to be performed. For example, 
you can specify the function modifier 10$M_NOECHO with the function 10$_ 
READLBLK to a terminal. When used together, the two values are written in 
VAX MACRO as IO$_READLBLK!IO$M_NOECHO. This causes data typed at 
the terminal keyboard to be entered into the user buffer but not echoed to the 
terminal. Figure 9-6 shows the format of function modifiers. 

Figure 9-6 Function Modifier Format 

15 13 12 

Device/Function 
Independent 

Device/Function 
Dependent 

6 0 

ZK-0629-GE 

As shown in Figure 9-6, bits <15:13> are device- or function-independent bits, 
and bits <12:6> are device- or function-dependent bits. Device- or function­
dependent bits have the same meaning, whenever possible, for different device 
classes. For example, the function modifier IO$M_ACCESS is used with both disk 
and magnetic tape devices to cause a file to be accessed during a create operation. 
Device- or function-dependent bits always have the same function within the 
same device class. 

There are two device- or function-independent modifier bits: 10$M_INHRETRY 
and IO$M_DATACHECK (a third bit is reserved). I0$M_INHRETRY is used to 
inhibit all error recovery. If any error occurs and this modifier bit is specified, the 
operation is terminated immediately and a failure status is returned in the 1/0 
status block (see Section 9.10). Use I0$M_DATACHECK to compare the data in 
memory with that on a disk or magnetic tape .. 

9.5 Assigning Channels 
Before any input or output operation can be performed on a physical device, you 
must assign a channel to the device to provide a path between the process and 
the device. The Assign 1/0 Channel (SYS$ASSIGN) system service establishes 
this path. 

When you write a call to the SYS$ASSIGN service, you must supply the name 
of the device, which can be a physical device name or a logical name, and the 
address of a word to receive the channel number. The service returns a channel 
number, and you use this channel number when you write an input or output 
request. 

For example, the following lines assign an I/O channel to the device TTA2. The 
channel number is returned in the word at TTCHAN. 

9-11 



System Service Input/Output Operations 
9.5 Assigning Channels 

#include <stdio.h> 
#include <descrip.h> 
#include <ssdef .h> 

main() { 
unsigned int status; 
unsigned short ttchan; 
$DESCRIPTOR(ttname,"TTA2:"); 

/* Assign a channel to a device */ 
status = SYS$ASSIGN( &ttname, 

&ttchan, 
Q f, 
o, 
0 ) ; 

if((status & 1) != 1) 
LIB$SIGNAL(status); 

/* devnam - device name */ 
/* chan - channel number */ 
/* acmode - access mode */ 
/* mbxnam - logical name for mailbox */ 
/* flags */ 

To assign a channel to the current default input or output device, use the logical 
name SYS$INPUT or SYS$0UTPUT. 

For more details on how SYS$ASSIGN and other I/O services handle logical 
names, see Section 9.2.5. 

9.6 Queuing 1/0 Requests 

9-12 

All input and output operations in the operating system are initiated with the 
Queue I/O Request (SYS$QIO) system service. The SYS$QIO system service 
permits direct interaction with the system's terminal driver. SYS$QIOs permit 
some operations that cannot be performed with language I/O statements and 
RTL routines; calls to SYS$QIO reduce overhead and permit asynchronous I/O 
operations. However, calls to SYS$QIO are device dependent. The SYS$QIO 
service queues the request· and returns immediately to the caller. While the 
operating system processes the request, the program that issued the request can 
continue execution. 

The format for SYS$QIO is as follows: 

SYS$QIO([efn],chan,func[,iosb][,astadr][,astprm][,p1][,p2][,p3][,p4][,p5][,p6] 

Required arguments to the SYS$QIO service include the channel number 
assigned to the device on which the I/O is to be performed, and a function code 
(expressed symbolically) that indicates the specific operation to be performed. 
Depending on the function code, one to six additional parameters may be 
required. 

For example, the 10$_ WRITEVBLK and IO$_READVBLK function codes are 
device-independent codes used to read and write single records or virtual 
blocks. These function codes are suitable for simple terminal I/O. They require 
parameters indicating the address of an input or output buffer and the buffer 
length. A call to SYS$QIO to write a line to a terminal may look like the 
following: 



System Service Input/Output Operations 
9.6 Queuing 1/0 Requests 

unsigned int status, func=IO$_WRITEVBLK; 

status = SYS$QIO(O, 
ttchan, 
func, 
o, 
o, 
O, 
buffadr, 
buflen); 

/* efn - event flag */ 
/* chan - channel number */ 
/* func - function modifier */ 
/* iosb - I/O status block */ 
/* astadr - AST routine */ 
/* astprm - AST parameter */ 
/* pl - output buffer */ 
/* p2 - length of message */ 

Function codes are defined for all supported device types, and most of the codes 
are device dependent; that is, they perform functions specific to a particular 
device. The $IODEF macro defines symbolic names for these function codes. 
For information about how to obtain a listing of these symbolic names, see the 
Open VMS Programming Interfaces: Calling a System Routine. For details about 
all function codes and an explanation of the parameters required by each, see the 
Open VMS 110 User's Reference Manual. 

To read from or write to a terminal with the SYS$QIO or SYS$QIOW system 
service, you must first associate the terminal name with an 1/0 channel by 
calling the SYS$ASSIGN system service, then use the assigned channel in the 
SYS$QIO or SYS$QIOW system service. To read from SYS$INPUT or write to 
SYS$0UTPUT, specify the appropriate logical name as the terminal name in 
the SYS$ASSIGN system service. In general, use SYS$QIO for asynchronous 
operations, and use SYS$QIOW for all other operations. 

9.7 Synchronizing Service Completion 
The SYS$QIO system service returns control to the calling program as soon 
as a request is queued; the status code returned in RO indicates whether the 
request was queued successfully. To ensure proper synchronization of the queuing 
operation with respect to the program, the program must do the following: 

• Test whether the operation was queued successfully. 

• Test whether the operation itself completed successfully. 

Optional arguments to the SYS$QIO service provide techniques for synchronizing 
1/0 completion. There are three methods you can use to test for the completion of 
an 1/0 request: 

• Specify the number of an event flag to be set when the operation completes. 

• Specify the address of an AST routine to be executed when the operation 
completes. 

• Specify the address of an 1/0 status block in which the system can place the 
return status when the operation completes. 

1/0 status blocks are explained in Section 9.10. 

The use of these three techniques is shown in Example 9-1, Example 9-2, and 
Example 9-3. 

9-13 



System Service Input/Output Operations 
9.7 Synchronizing Service Completion 

9-14 

Exam pie 9-1 Event Flags 

unsigned int status, efn=O, efnl=l, efn=2; 

status = SYS$QIO(efnl, 
if ((status & 1)) != 1) 
LIB$SIGNAL( status ); 

); /* Issue 1st I/O request */ 

status = SYS$QIO ( efn2, • • • ) ; 
if ( (status & 1) ) ! = 1) 

LIB$SIGNAL( status ); 

status = SYS$WFLAND( efn, 
&mask, 

/* Queued successfully? */ C» 

/* Issue second I/O request */ 8 
/* Queued successfully? */ 

6) 
I *Wait until both are done */ 

e 

C» When you specify an event flag number as an argument, SYS$QIO clears the 
event flag when it queues the 1/0 request. When the 1/0 completes, the flag 
is set. 

8 In this example, the program issues two Queue 1/0 requests. A different 
event flag is specified for each request. 

0 The Wait for Logical AND of Event Flags (SYS$WFLAND) system service 
places the process in a wait state until both 1/0 operations are complete. The 
efn argument indicates that the event flags are both in cluster O; the mask 
argument indicates the flags for which the process is to wait. 

0 Note that the SYS$WFLAND system service (and the other wait system 
services) wait for the event flag to be set; they do not wait for the 1/0 
operation to complete. If some other event were to set the required event 
flags, the wait for event flag would complete too soon. You must coordinate 
the use of event flags carefully. (See Section 9.8 for a discussion of the 
recommended method for testing 1/0 completion.) 



System Service Input/Output Operations 
9. 7 Synchronizing Service Completion 

Example 9-2 AST Routine 

unsigned int status, astprm=l; 

status = SYS$QIO( . . . &ttast, /* I/O request with AST *I 0 
astprm • • . ) ; 

if ((status & 1) != 1) /*Queued successfully?*/ 
LIB$SIGNAL( status ); 

void ttast ( int astprm ) { /* AST service routine */ f) 
/* Handle I/O completion */ 

return; 
} /* End of AST routine */ 

0 When you specify the astadr argument to the SYS$QIO system service, the 
system interrupts the process when the I/O completes and passes control to 
the specified AST service routine. 

The SYS$QIO system service call specifies the address of the AST routine, 
TTAST, and a parameter to pass as an argument to the AST service routine. 
When $QIO returns control, the process continues execution. 

8 When the I/O completes, the AST routine TTAST is called, and it responds to 
the I/O completion. By examining the AST parameter, TTAST can determine 
the origin of the I/O request. 

When this routine is finished executing, control returns to the process at the 
point at which it was interrupted. If you specify the astadr argument in your 
call to SYS$QIO, you should also specify the iosb argument so that the AST 
routine can evaluate whether the I/O completed successfully. 

9-15 



System Service Input/Output Operations 
9. 7 Synchronizing Service Completion 

Example 9-3 1/0 Status Block 

#include <stdio.h> 
#include <ssdef .h> 

/* I/O status block */ 
struct { 

}ttiosb; 

unsigned short iostat, iolen; 
unsigned int dev_info; 

unsigned int status; 

status = SYS$QIO(, • • • , &ttiosb, • • • ) ; 8 

0 

if ((status & 1) != 1) /*Queued successfully? */ 
LIB$SIGNAL( status ); 

while(ttiosb.iostat == 0) 
/* Loop until done */ 

if (ttiosb.iostat != SS$ NORMAL) 
/* Perform error handling */ 

0 An I/O status block is a quadword structure that the system uses to post 
the status of an I/O operation. You must define the quadword area in your 
program. TTIOSB defines the I/O status block for this I/O operation. The 
iosb argument in the SYS$QIO system service refers to this quadword. 

8 Instead of polling the low-order word of the I/O status block for the completion 
status, the program uses the preferred method of using an event flag and 
calling SYS$SYNCH to determine I/O completion., 

8 The process polls the I/O status block. If the low-order word still contains 
zero, the I/O operation has not yet completed. In this example, the program 
loops until the request is complete. 

9.8 Recommended Method for Testing Asynchronous Completion 
Digital recommends that you use the Synchronize (SYS$SYNCH) system service 
to wait for completion of an asynchronous event. The SYS$SYNCH service 
correctly waits for the actual completion of an asynchronous event, even if some 
other event sets the event flag. 

9-16 



System Service Input/Output Operations 
9.8 Recommended Method for Testing Asynchronous Completion 

To use the SYS$SYNCH service to wait for the completion of an asynchronous 
event, you must specify both an event flag number and the address of an 
I/O status block (IOSB) in your call to the asynchronous system service. The 
asynchronous service queues the request and returns control to your program. 
When the asynchronous service completes, it sets the event flag and places the 
final status of the request in the IOSB. 

In your call to SYS$S~CH, you must specify the same efn and I/O status block 
that you specified in your call to the asynchronous service. The SYS$SYNCH 
service waits for the event flag to be set by means of the SYS$WAITFR system 
service. When the specified event flag is set, SYS$SYNCH checks the specified 
I/O status block. If the I/O status block is nonzero, the system service has 
completed and SYS$SYNCH returns control to your program. If the I/O status 
block is zero, SYS$SYNCH clears the event flag by means of the SYS$CLREF 
service and calls the $WAITFR service to wait for the event flag to be set. 

The SYS$SYNCH service sets the event flag before returning control to your 
program. This ensures that the call to SYS.$SYNCH does not interfere 
with testing for completion of another asynchronous event that completes at 
approximately the same time and uses the same event flag to signal completion. 

The following call to the Queue I/O Request (SYS$QIO) system service 
demonstrates how the SYS$SYNCH service is used: 

}ttiosb; 

unsigned int status, event flag = l; 
struct { -

short int iostat, iolen; 
unsigned int dev_info; 

/* Request I/O */ 
status = SYS$QIO (event_flag, . • • , &ttiosb • • . ) ; 
if ((status & 1) != 1) 

LIB$SIGNAL( status ); 

/* Wait until I/O completes */ 
status = SYS$SYNCH (event flag, &ttiosb ); 
if ((status & 1) != 1) -

LIB$SIGNAL( status ); 

~~~~~~~~~~~~~ Note ~~~~~~~~~~~~~ 

The SYS$QIOW service provides a combination of SYS$QIO and
SYS$SYNCH.

9-17

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

9.9 Synchronous and Asynchronous Forms of Input/Output
Services

You can execute some input/output services either synchronously or
asynchronously. A "W" at the end of a system service name indicates the
synchronous version of the system service.

The synchronous version of a system service combines the functions of the
asynchronous version of the service and the Synchronize (SYS$SYNCH)
system service. The synchronous version acts exactly as if you had used the
asynchronous version of the system service followed immediately by a call to
SYS$SYNCH; it queues the 1/0 request, and then places the program in a wait
state until the 1/0 request completes. The synchronous version takes the same
arguments as the asynchronous version.

Table 9-2 lists the asynchronous and synchronous names of input/output services
that have synchronous versions.

Table 9-2 Asynchronous Input/Output Services and Their Synchronous
Versions

Asynchronous Name

$BRKTHRU

$GETDVI

$GETJPI

$GETLKI

$GETQUI

$GETSYI

$QIO

$SNDJBC

$UPDSEC

Synchronous Name

$BRKTHRUW

$GETDVIW

$GETJPIW

$GETLKIW

$GETQUIW

$GETSYIW

$QIOW

$SNDJBCW

$UPDSECW

Description

Breakthrough

Get DeviceNolume Information

Get Job/Process Information

Get Lock Information

Get Queue Information

Get Systemwide Information

Queue 1/0 Request

Send to Job Controller

Update Section File on Disk

9.9.1 Reading Operations with SYS$QIOW

9-18

The SYS$QIO and SYS$QIOW system services move one record of data from
a terminal to a variable. For synchronous 1/0, use SYS$QIOW. Complete
information about the SYS$QIO and SYS$QIOW system services is presented in
the Open VMS System Services Reference Manual.

Note ___________ _

Do not use the SYS$QIO and SYS$QIOW system services for input from
a file or nonterminal device.

The SYS$QIO and SYS$QIOW system services place the data read in the variable
specified in the 1 argument. The second word of the status block contains the
offset from the beginning of the buffer to the terminator-hence, it equals the size
of the data read. Always reference the data as a substring, using the offset to the
terminator as the position of the last character (that is, the size of the substring).
If you reference the entire buffer, your data will include the terminator for
the operation (for example, the CR character) and any excess characters from

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

a previous operation using the buffer. (The only exception to the substring
guideline is if you deliberately overflow the buffer to terminate the I/O operation.)

Example 9-4 shows use of the SYS$QIOW system service and reads a line of data
from the terminal and waits for the I/Oto complete.

Example 9-4 Reading Data from the Terminal Synchronously

INTEGER STATUS
! QIOW structures
INTEGER*2 INPUT CHAN
INTEGER CODE,
2 INPUT BUFF SIZE,
2 PROMPT SIZE,
2 INPUT SIZE
PARAMETER (PROMPT SIZE = 13,
2 INPUT BUFF SIZE = 132)
CHARACTER*l32 INPUT -
CHARACTER*(*) PROMPT

I/O channel
Type of I/O operation
Size of input buff er
Size of prompt
Size of input line as read

PARAMETER (PROMPT= 'Input value: ')
! Define symbols used in I/O operations
INCLUDE '($IODEF)'
! Status block for QIOW
STRUCTURE /IOSTAT BLOCK/

INTEGER*2 IOSTAT,
2 TERM OFFSET,
2 TERMINATOR,
2 TERM SIZE
END STRUCTURE -
RECORD /IOSTAT BLOCK/ IOSB
! Subprograms -
INTEGER*4 SYS$ASSIGN,
2 SYS$QIOW

Return status
Location of line terminator
Value of terminator
Size of terminator

Assign an I/O channel to SYS$INPUT
STATUS= SYS$ASSIGN ('SYS$INPUT',
2 INPUT CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Read with prompt
CODE = IO$ READPROMPT
STATUS= SYS$QIOW (,
2 % VAL (INPUT CHAN) ,
2 %VAL (CODE)~
2 IOSB,
2
2
2
2
2
2

, ,
%REF (INPUT),
%VAL (INPUT_BUFF_SIZE),
, ,
%REF (PROMPT),
%VAL (PROMPT_SIZE))

(continued on next page)

9-19

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 9-4 (Cont.) Reading Data from the Terminal Synchronously

! Check QIOW status
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Check status of I/O operation
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Set size of input string
INPUT SIZE = IOSB.TERM OFFSET - -

9.9.2 Reading Operations with SYS$QIO

9-20

To perform an asynchronous read operation, use the SYS$QIO system service
and specify an event flag (the first argument, which must be passed by value).
Your program continues while the I/O is taking place. When you need the input
from the I/O operation, invoke the SYS$SYNCH system service to wait for the
event flag and status block specified in the SYS$QIO system service. If the I/O
is not complete, your program pauses until it is. In this manner, you can overlap
processing within your program. Naturally, you must take care not to assume
data has been returned by the I/O operation before you call SYS$SYNCH and it
returns successfully. Example 9-5 demonstrates an asynchronous read operation.

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 9-5 Reading Data from the Terminal Asynchronously

INTEGER STATUS
! QIO structures
INTEGER*2 INPUT CHAN I/O channel
INTEGER CODE, Type of I/O operation
2 INPUT BUFF SIZE, Size of input buffer
2 PROMPT SIZE, Size of prompt
2 INPUT SIZE Size of input line as read
PARAMETER (INPUT BUFF SIZE = 132,
2 PROMPT = lJ)
CHARACTER*l32 INPUT
CHARACTER*(*) PROMPT
PARAMETER (PROMPT= 'Input value: ')
INCLUDE '($IODEF)' ! Symbols used in I/O operations
! Status block for QIO
STRUCTURE /IOSTAT BLOCK/

INTEGER*2 IOSTAT,
2 TERM OFFSET,
2 TERMINATOR,
2 TERM SIZE
END STRUCTURE -
RECORD /IOSTAT BLOCK/ IOSB
! Event flag for I/O
INTEGER INPUT EF
! Subprograms-
INTEGER*4 SYS$ASSIGN,
2 SYS$QIO,
2 SYS$SYNCH,
2 LIB$GET_EF

Return status
Location of line terminator
Value of terminator
Size of terminator

Assign an I/O channel .to SYS$INPUT
STATUS= SYS$ASSIGN ('SYS$INPUT',
2 INPUT CHAN I I)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get an event flag
STATUS = LIB$GET EF (INPUT EF)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Read with prompt
CODE = IO$ READPROMPT
STATUS= SYS$QIO (%VAL (INPUT EF),
2 %VAL (INPUT-CHAN) I

2 %VAL (CODE)-;
2 IOSB,
2
2
2
2
2
2

I I

%REF (INPUT) I

%VAL (INPUT_BUFF_SIZE),
I I

%REF (PROMPT),
%VAL (PROMPT_SIZE))

(continued on next page)

9-21

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 9-5 (Cont.) Reading Data from the Terminal Asynchronously

! Check status of QIO
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

STATUS= SYS$SYNCH (%VAL (INPUT_EF),
2 IOSB)
! Check status of SYNCH
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Check status of I/O operation
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Set size of input string
INPUT SIZE = IOSB.TERM OFFSET - -

Be sure to check the status of the I/O operation as returned in the I/O status
block. In an asynchronous operation, you can check this status only after the I/O
operation is complete (that is, after the call to SYS$SYNCH).

9.9.3 Write Operations with SYS$QIOW

9-22

The SYS$QIO and SYS$QIOW system services move one record of data from a
character value to the terminal. Do not use these system services, as described
here, for output to a file or nonterminal device.

For synchronous I/O, use SYS$QIOW and omit the first argument (the event flag
number). For complete information about SYS$QIO and SYS$QIOW, refer to the
Open VMS System Services Reference Manual.

Example 9-6 writes a line of character data to the terminal.

Example 9-6 Writing Character Data to a Terminal

INTEGER STATUS,
2 ANSWER SIZE
CHARACTER*31 ANSWER
INTEGER*2 OUT CHAN
! Status block for QIO
STRUCTURE /IOSTAT BLOCK/

INTEGER*2 IOSTAT,
2 BYTE COUNT,
2 LINES OUTPUT

BYTE COLUMN,
2 LINE
END STRUCTURE
RECORD /IOSTAT BLOCK/ IOSB
! Routines -
INTEGER SYS$ASSIGN,
2 SYS$QIOW

(continued on next page)

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 9-6 (Cont.) Writing Character Data to a Terminal

1 IO$ symbol definitions
INCLUDE '($IODEF)'

STATUS= SYS$ASSIGN ('SYS$0UTPUT',
2 OUT CHAN, ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SYS$QIOW (,
2 %VAL (OUT CHAN) ,
2 %VAL (IO$-WRITEVBLK),
2 IOSB, -
2

2 '
2 %REF ('Answer: '//ANSWER(l:ANSWER SIZE)),
2 %VAL (8+ANSWER_SIZE), -
2 '
2 %VAL (32),,) 1 Single spacing
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
END

9.1 O 1/0 Completion Status
When an 1/0 operation completes, the system posts the completion status in the
1/0 status block, if one is specified. The completion status indicates whether the
operation completed successfully, the number of bytes that were transferred, and
additional device-dependent return information.

Figure 9-7 illustrates the format for the SYS$QIO system service of the
information written in the IOSB.

Figure 9-7 1/0 Status Block

31 1615 0

Count I Condition value

Device-dependent information

ZK-0856-GE

The first word contains a system status code indicating the success or failure of
the operation. The status codes used are the same as for all returns from system
services; for example, SS$_NORMAL indicates successful completion.

The second word contains the number of bytes actually transferred in the 1/0
operation. Note that for some devices this word contains only the low-order word
of the count. For information about specific devices, see the Open VMS I I 0 User's
Reference Manual.

The second longword contains device-dependent return information.

9-23

System Service Input/Output Operations
9.10 1/0 Completion Status

System services other than SYS$QIO use the quadword 1/0 status block, but the
format is different. See the description of each system service in the Open VMS
System Services Reference Manual for the format of the information written in
the IOSB for that service.

To ensure successful 1/0 completion and the integrity of data transfers, you
should check the IOSB following 1/0 requests, particularly for device-dependent
1/0 functions. For complete details about how to use the 1/0 status block, see the
Open VMS I I 0 User's Reference Manual.

9.11 Deassigning 1/0 Channels
When a process no longer needs access to an 1/0 device, it should release
the channel assigned to the device by calling the Deassign 1/0 Channel
(SYS$DASSGN) system service:

$DASSGN_S CHAN=TTCHAN

This service call releases the terminal channel assignment acquired in the
SYS$ASSIGN example shown in Section 9.5. The system automatically deassigns
channels for a process when the image that assigned the channel exits.

9.12 Using Complete Terminal 1/0

9~24

The following example shows a complete sequence of input and output
operations using the $QIOW macro to read and write lines to the current
default SYS$INPUT device. Because the input/output of this program must be to
the current terminal, it functions correctly only if you execute it interactively.

#include <stdio.h>
#include <ssdef .h>
#include <descrip.h>
#include <string.h>
#include <iodef .h>

/* I/O status block */
struct {

unsigned short iostat, ttiolen;
unsigned int dev info;

}ttiosb; -

main() {

0

unsigned int status ,outlen, inlen;
unsigned short ttchan;
char buffer[80];
$DESCRIPTOR(ttname,"SYS$INPUT");

/* Assign a channel */
status = SYS$ASSIGN(&ttname,

&ttchan,
0, 0, O);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* devnam - device number */ G»
/* chan - channel number */

System Service Input/Output Operations
9.12 Using Complete Terminal 1/0

/* Request I/O */
inlen = strlen(buffer);
status = SYS$QIOW(O,

ttchan,
IO$ READVBLK,
&ttiosb,
o,
o,
buffer,
inlen,
O, O, O, O); 0

if ((status & 1) != 1) 0
LIB$SIGNAL(status);

/* Get length from IOSB */
outlen = ttiosb.ttiolen; fj

/* efn - event flag */
/* chan - channel number */
/* func - function modifier */
/* iosb - I/O status block */
/* astadr - AST routine */
/* astprm - AST parameter */
/* pl - buffer */
/* p2 - length of buffer */

status = SYS$QIOW(O, ttchan, IO$ WRITEVBLK, &ttiosb, O, o, buffer, outlen,
O, O, O, O); -

if ((status & 1) != 1)
LIB$SIGNAL(status); 0

/* Deassign the channel */
status= SYS$DASSGN(ttchan); /* chan - channel*/ 0
if ((status & 1) != 1) ·

LIB$SIGNAL(status);

0 The IOSB for the I/O operations is structured so that the program can easily
check for the completion status (in the first word) and the length of the input
string returned (in the second word).

8 The string will be read into the buffer BUFFER; the longword OUTLEN will
contain the length of the string for the output operation.

6) The TTNAME label is a character string descriptor for the logical device
SYS$INPUT, and TTCHAN is a word to receive the channel number assigned
to it.

8 The $ASSIGN service assigns a channel and writes the channel number at
TTCHAN. .

0 If the $ASSIGN service completes successfully, the $QIOW macro reads a line
from the terminal, and requests that the completion status be posted in the
I/O status block defined at TTIOSB.

0 The process waits until the I/O is complete, then checks the first word in the
I/O status block for a successful return. If unsuccessful, the program takes an
error path.

fj The length of the string read is moved into the longword at OUTLEN, because
the $QIOW macro requires a longword argument. However, the length field
of the I/O status block is only 1 word long. The $QIOW macro writes the line
just read to the terminal.

0 The program performs error checks. First, it ensures that the $OUTPUT
macro successfully queued the I/O request; then, when the request is
completed, it ensures that the I/O was successful.

0 When all I/O operations on the channel are finished, the channel is
deassigned.

9-25

System Service Input/Output Operations
9.13 Canceling 1/0 Requests

9.13 Canceling 1/0 Requests
If a process must cancel I/O requests that have been queued but not yet
completed, it can issue the Cancel I/O On Channel (SYS$CANCEL) systein
service. All pending I/O requests issued by the process on that channel are
canceled; you cannot specify a particular I/O request.

The SYS$CANCEL system service performs an asynchronous cancel operation.
This means that the application must wait for each I/O operation issued to the
driver to complete before checking the status for that operation.

For example, you can call the SYS$CANCEL system service as follows:

unsigned int status, efn1=3, efn2=4;

status = SYS$QIO(efnl, ttchan, &iosbl,);
status = SYS$QIO(efn2, ttchan,· &iosb2,);

status= SYS$CANCEL(ttchan);
status = SYS$SYNCH(efnl, &iosbl);
status = SYS$SYNCH(efn2, &iosb2);

In this example, the SYS$CANCEL system service initiates the cancellation of all
pending I/O requests to the channel whose number is located at TTCHAN.

The SYS$CANCEL system service returns after initiating the cancellation of the
I/O requests. If the call to SYS$QIO specified an event flag, AST service routine,
or I/O status block, the system sets the flag, delivers the AST, or posts the I/O
status block as appropriate when the cancellation is completed.

9.14 Logical Names and Physical Device Names

9-26

When you specify a device name as input to an I/O system service, it can be a
physical device name or a logical name. If the device name contains a colon (:),
the colon and the characters after it are ignored. When an underscore character
(_) precedes a device name string, it indicates that the string is a physical device
name string, for example, _TTB3:.

Any string that does not begin with an underscore is considered a logical name,
even though it may be a physical device name. Table 9-3 lists system services
that translate a logical name iteratively until a physical device name is returned,
or until the system default number of translations have been performed.

System Service Input/Output Operations
9.14 Logical Names and Physical Device Names

Table 9-3 System Services for Translating Logical Names

System Service Definition

SYS$ALLOC Allocate Device

SYS$ASSIGN Assign I/O Channel

SYS$BRDCST Broadcast

SYS$DALLOC Deallocate Device

SYS$DISMOU Dismount Volume

SYS$GETDEV Get I/O Device Information

SYS$GETDVI Get DeviceNolume Information

SYS$MOUNT Mount Volume

In each translation, the logical name tables defined by the logical name
LNM$FILE_DEV are searched in order. These tables, listed in search order,
are normally LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM. If
a physical device name is located, the I/O request is performed for that device.

If the services do not locate an entry for the logical name, the I/O service treats
the name specified as a physical device name. When you specify the name of an
actual physical device in a call to one of these services, include the underscore
character to bypass the logical name translation.

When the SYS$ALLOC system service returns the device name of the physical
device that has been allocated, the device name string returned is prefixed
with an underscore character. When this name is used for the subsequent
SYS$ASSIGN system service, the SYS$ASSIGN service does not attempt to
translate the device name.

If you use logical names in I/O service calls, you must be sure to establish a valid
device name equivalence before program execution. You can do this by issuing
a DEFINE command from the command stream, or by having the program
establish the equivalence name before the I/O service call with the Create Logical
Name (SYS$CRELNM) system service.

For details about how to create and use logical names, see Chapter 10.

9.15 Device Name Defaults
If, after logical name translation, a device name string in an I/O system service
call does not fully specify the device name (that is, device, controller, and unit),
the service either provides default values for nonspecified fields, or provides
values based on device availability.

The following rules apply:

• The SYS$ASSIGN and SYS$DALLOC system services apply default values,
as shown in Table 9-4.

• The SYS$ALLOC system service treats the device name as a generic device
name and attempts to find a device that satisfies the components of the device
name specified, as shown in Table 9-4.

9-27

System Service Input/Output Operations
9.15 Device Name Defaults

Table 9-4 Default Device Names for 1/0 Services

Device

dd:

ddc:

ddu:

ddcu:

Device Name 1

ddAO: (unit 0 on controller
A)

ddcO: (unit 0 on controller
specified)

ddAu: (unit specified on
controller A)

ddcu: (unit and controller
specified)

Generic Device

ddxy: (any available device of the specified
type)

ddcy: (any available unit on the specified
controller)

ddxu: (device of specified type and unit on any
available controller)

ddcu: (unit and controller specified)

1See the Open VMS User's Manual for a summary of the device names.
Key

dd-Specified device type (capital letters indicate a specific controller; numbers indicate a specific
unit)
c-Specified controller
x-Any controller
u-Specified unit number
y-Any unit number

9.16 Obtaining Information About Physical Devices
The Get DeviceNolume Information (SYS$GETDVI) system service returns
information about devices. The information returned is specified by an item list
created before the call to SYS$GETDVI.

When you call the SYS$GETDVI system service, you must provide the· address
of an item list that specifies the information to be returned. The format of the
item list is described in the description of SYS$GETDVI in the Open VMS System
Services Reference Manual. The Open VMS I I 0 User's Reference Manual contains
details on the device-specific information these services return.

In cases where a generic (that is, nonspecific) device name is used in an 1/0
service, a program may need to find out what device has been used. To do this,
the program should provide SYS$GETDVI with the number of the channel to
the device and request the name of the device with the DVI$_DEVNAM item
identifier.

The operating system also supports a device called the null device for program
development. The mnemonic for the null device is NL. Its characteristics are as
follows:

• A read from NL returns an end-of-file error (SS$_ENDOFFILE).

• A write to NL immediately returns a success message (SS$_NORMAL).

The null device functions as a virtual device to which you can direct output but
from which the data does not return.

9.16.1 Checking the Terminal Dev.ice

9-28

You are restricted to a terminal device if you use any of the special functions
described in this section. If the user of your program redirects SYS$INPUT
or SYS$0UTPUT to a file or nonterminal device, an error occurs. You can use
the SYS$GETDVIW system service to make sure the logical name is associated ·
with a terminal, as shown in Example 9-7. SYS$GETDVIW returns a status of
SS$_IVDEVNAM if the logical name is defined as a file or otherwise does not

System Service Input/Output Operations
9.16 Obtaining Information About Physical Devices

equate to a device name. The type of device is the response associated with the
DVI$_DEVCLASS request code and should be DC$_TERM for a terminal.

Example 9-7 Using SYS$GETDVIW to Verify the Device Name

RECORD /ITMLST/ DVI LIST
LOGICAL*4 STATUS -
! GETDVI buffers
INTEGER CLASS, Response buffer
2 CLASS LEN Response length
! GETDVI symbols
INCLUDE '($DCDEF)'
INCLUDE '($SSDEF)'
INCLUDE '($DVIDEF)'
! Define subprograms
INTEGER SYS$GETDVIW
! Find out the device class of SYS$INPUT
DVI LIST.BUFLEN = 4
DVI-LIST.CODE = DVI$ DEVCLASS
DVI-LIST.BUFADR = %LOC (CLASS)
DVI-LIST.RETLENADR = %LOC (CLASS LEN)
STATUS= SYS$GETDVIW (,,'SYS$INPUT',
2 DVI LIST,,,,,)
IF ((.NOT. STATUS) .AND. (STATUS .NE. SS$_IVDEVNAM)) THEN

CALL LIB$SIGNAL (%VAL (STATUS))
END IF
! Make sure device is a terminal
IF ((STATUS .NE. SS$_IVDEVNAM) .AND. (CLASS .EQ. DC$_TERM)) THEN

ELSE
TYPE *, 'Input device not a terminal'

END IF

9.16.2 Terminal Characteristics
The Open VMS I I 0 User's Reference Manual describes device-specific
characteristics associated with terminals. To examine a characteristic, issue
a call to SYS$QIO or SYS$QIOW system service with the I0$_SENSEMODE
function and examine the appropriate bit in the structure returned to the Pl
argument. To change a characteristic:

1. Issue a call to SYS$QIO or SYS$QIOW system service with the 10$_
SENSEMODE function.

2. Set or clear the appropriate bit in the structure returned to the Pl argument.

3. Issue a call to SYS$QIO or SYS$QIOW system service with the IO$_
SETMODE function passing, as the Pl argument, to modify the structure you
obtained from the sense mode operation.

Example 9-8 turns off the HOSTSYNC terminal characteristic. To check whether
NOHOSTSYNC has been set, enter the SHOW TERMINAL command.

9-29

System Service Input/Output Operations
9.16 Obtaining Information About Physical Devices

9-30

Example 9-8 Disabling the HOSTSYNC Terminal Characteristic

INTEGER*4 STATUS
! I/O channel
INTEGER*2 INPUT CHAN
! I/O status block
STRUCTURE /IOSTAT BLOCK/

INTEGER*2 IOSTAT
BYTE TRANSMIT,

2 RECEIVE,
2 CRFILL,
2 LFFILL,
2 PARITY,
2 ZERO
END STRUCTURE
RECORD /IOSTAT BLOCK/ IOSB
! Characteristics buffer
! Note: basic characteristics are first three

bytes of second longword -- length is
last byte

STRUCTURE /CHARACTERISTICS/
BYTE CLASS,

2 TYPE
INTEGER*2 WIDTH
UNION

MAP
INTEGER*4 BASIC

END MAP
MAP

BYTE LENGTH(4)
END MAP

END UNION
INTEGER*4 EXTENDED

END STRUCTURE
RECORD /CHARACTERISTICS/ CHARBUF
! Define symbols used for I/O and terminal operations
INCLUDE '($IODEF)'
INCLUDE '($TTDEF)'
! Subroutines
INTEGER*4 SYS$ASSIGN,
2 SYS$QIOW
! Assign channel to terminal
STATUS= SYS$ASSIGN ('SYS$INPUT',
2 INPUT CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get current characteristics
STATUS= SYS$QIOW (,
2 %VAL (INPUT CHAN),
2 %VAL (IO$ SENSEMODE),
2 IOSB,,, -
2 CHARBUF, ! Buffer
2 %VAL (12),,,,) ! Buffer size
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Turn off hostsync
CHARBUF.BASIC = IBCLR (CHARBUF.BASIC, TT$V_HOSTSYNC)

(continued on next page)

System Service Input/Output Operations
9.16 Obtaining Information About Physical Devices

Example 9-8 (Cont.) Disabling the HOSTSYNC Terminal Characteristic

! Set new characteristics
STATUS= SYS$QIOW (,
2 %VAL (INPUT CHAN),
2 %VAL (IO$ SETMODE),
2 IOSB,,, -
2 CHARBUF,
2 %VAL (12) , , , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))

END

If you modify terminal characteristics with set mode QIO operations, you should
save the characteristics buffer that you obtain on the first sense mode operation,
and restore those characteristics with a set mode operation before exiting.
(Resetting is not necessary if you just use modifiers on each read operation.) To
ensure that the restoration is performed if the program aborts (for example, if
the user presses Ctrl/Y), you should restore the user's environment in an exit
handler. See Chapter 13 for a description of exit handlers.

9.16.3 Record Terminators
A QIO read operation ends when the user enters a terminator or when the input
buffer fills, whichever occurs first. The standard set of terminators applies unless
you specify the 4 argument in the read QIO operation. You can examine the
terminator that ended the read operation by examining the input buffer starting
at the terminator offset (second word of the I/O status block). The length, in
bytes, of the terminator is specified by the high-order word of the I/O status
block. The third word of the I/O status block contains the value of the first
character of the terminator.

Examining the terminator enables you to read escape sequences from the
terminal, provided that you modify the QIO read operation with the IO$M_
ESCAPE modifier (or the ESCAPE terminal characteristic is set). The first
character of the terminator will be the ESC character (an ASCII value of 27). The
remaining characters will contain the value of the escape sequence.

9.16.4 File Terminators
You must examine the terminator to detect end-of-file (Ctrl/Z) on the terminal.
No error condition is generated at the QIO level. If the user presses Ctrl/Z, the
terminator will be the SUB character (an ASCII value of 26).

9.17 Device Allocation
Many I/O devices are shareable; that is, more than one process at a time can
access the device. By calling the Assign I/O Channel (SYS$ASSIGN) system
service, a process is given a channel to the device for I/O operations.

In some cases, a process may need exclusive use of a devic~ so that data is not
affected by other processes. To reserve a device for exclusive use, you must
allocate it.

Device allocation is normally accomplished with the DCL command ALLOCATE.
A process can also allocate a device by calling the Allocate Device (SYS$ALLOC)
system service. When a device has been allocated by a process, only the process

9-31

System Service Input/Output Operations
9.17 Device Allocation

9-32

that allocated the device and any subprocesses it creates can assign channels to
the device.

When you call the SYS$ALLOC system service, you must provide a device name.
The device name specified can be any of the following:

• A physical device name; for example, the tape drive MTB3:

• A logical name; for example, TAPE

• A generic device name; for example, MT:

If you specify a physical device name, SYS$ALLOC attempts to allocate the
specified device.

If you specify a logical name, SYS$ALLOC translates the logical name and
attempts to allocate the physical device name equated to the logical name.

If you specify a generic device name (that is, if you specify a device type but
do not specify a controller or unit number, or both), SYS$ALLOC attempts to
allocate any device available of the specified type. For more information about
the allocation of devices by generic names, see Section 9.15.

When you specify generic device names, you must provide fields for the
SYS$ALLOC system service to return the name and the length of the physical
device that is actually allocated so that you can provide this name as input to the
SYS$ASSIGN system service.

The following example illustrates the allocation of a tape device specified by the
logical name TAPE:

#include <stdio.h>
#include <descrip.h>
#include <ssdef .h>

main() {
unsigned int status;
char devstr[64];
unsigned short phylen, tapechan;

$DESCRIPTOR(logdev,"TAPE");
$DESCRIPTOR(devdesc,devstr);

/* Allocate a device */
status = SYS$ALLOC(&logdev,

&phylen,
&devdesc,
0' 0);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Assign a channel to the device */
status = SYS$ASSIGN(&devdesc,

&tapechan,
0' 0' 0);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Deassign the channel */
status= SYS$DASSGN(tapechan);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Descriptor for logical name */
/* Descriptor for physical name */

/* devnam - device name */ Ct
/* phylen - length device name string */
/* phybuf - buffer for devnam string */

/* devnam - device name */ f)
/* chan - channel number */

/* chan - channel number */@)

System Service Input/Output Operations
9.17 Device Allocation

/* Deallocate the device */
status = SYS$DALLOC(&devdesc,

0) i
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* devnam - device name */
/* acmode - access mode */

0 The SYS$ALLOC system service call requests allocation of a device
corresponding to the logical name TAPE, defined by the character string
descriptor LOGDEV. The argument DEVDESC refers to the buffer provided
to receive the physical device name of the device that is allocated and the
length of the name string. The SYS$ALLOC service translates the logical
name TAPE and returns the equivalence name string of the device actually
allocated into the buffer at DEVDESC. It writes the length of the string in
the first word of DEVDESC.

8 The SYS$ASSIGN command uses the character string returned by the
SYS$ALLOC system service as the input device name argument, and
requests that the channel number be written into TAPECHAN.

8 When 1/0 operations are completed, the SYS$DASSGN system service
deassigns the channel, and the SYS$DALLOC system service deallocates the
device. The channel must be deassigned before the device can be deallocated.

9.17.1 Implicit Allocation
Devices that cannot be shared by more than one process (for example, terminals
and line printers) do not have to be explicitly allocated. Because they are
nonshareable, they are implicitly allocated by the SYS$ASSIGN system service
when SYS$ASSIGN is called to assign a channel to the device.

9.17 .2 Deallocation
When the program has finished using an allocated device, it should release the
device with the Deallocate Device (SYS$DALLOC) system service to make it
available for other processes.

At image exit, the system automatically deallocates devices allocated by the
image.

9.18 Mounting, Dismounting, and Initializing Volumes
This section introduces you to using system services to mount, dismount, and
initialize disk and tape volumes.

9.18.1 Mounting a Volume
Mounting a volume establishes a link between a volume, a device, and a process.
A volume, or volume set, must be mounted before 1/0 operations can be performed
on the volume. You interactively mount or dismount a volume from the DCL

· command stream with the MOUNT or DISMOUNT command. A process can also
mount or dismount a volume or volume set programmatically using the Mount
Volume (SYS$MOUNT) or the Dismount Volume (SYS$DISMOU) system service,
respectively.

Mounting a volume involves two operations:

1. Place the volume on the device and start the device (by pressing the START
or LOAD button).

9-33

System Service Input/Output Operations
9.18 Mounting, Dismounting, and Initializing Volumes

2. Mount the volume with the $MOUNT system service.

9.18.1.1 Calling the SYS$MOUNT System Service

9-34

The Mount Volume (SYS$MOUNT) system service allows a process to mount a
single volume or a volume set. When you call the SYS$MOUNT system service,
you must specify a device name.

The SYS$MOUNT system service has a single argument, which is the address of
a list of item descriptors. The list is terminated by a longword of binary zeros.
Figure 9-8 shows the format of an item descriptor.

Figure 9-8 SYS$MOUNT Item Descriptor

31 15 0

Item code I Buffer length

Buffer address

Return length address

ZK-1705-GE

Most item descriptors do not have to be in any order. To mount volume sets,
you must specify one item descriptor per device and one item descriptor per
volume; you must specify the descriptors for the volumes in the same order as the
descriptors for the devices on which the volumes are loaded.

For item descriptors other than device and volume names, if you specify the same
item descriptor more than once, the last occurrence of the descriptor is used.

The following example illustrates a call to SYS$MOUNT. The call is equivalent to
the DCL command that precedes the example.

$ MOUNT/SYSTEM/NOQUOTA DRA4:,DRA5: USER01,USER02 USERD$

#include <stdio.h>
#include <descrip.h>
#include <mntdef .h>

struct {

}itm;

unsigned short buflen, item_code;
void *bufaddr;
int *retlenaddr;

struct {
itm5
unsigned int terminator;

}itm_lst

main() {

unsigned int status, flags;

System Service Input/Output Operations
9.18 Mounting, Dismounting, and Initializing Volumes

$DESCRIPTOR(devl,"DRA4:");
$DESCRIPTOR(voll,"USER01:");
$DESCRIPTOR(dev2,"DRA5:");
$DESCRIPTOR(vol2,"USER02:");
$DESCRIPTOR(log,"USERD$:");

flags = MNT$M_SYSTEM I MNT$M_NODISKQ;

itm lst.itm[O].buflen = 4;
itm-lst.itm[O].item code= MNT$ FLAGS;
itm-lst.itm[O].bufaddr =flags;­
itm=lst.itm[O].retlenaddr = O;

itm lst.itm[l].buflen = 5;
itm-lst.itm[l].item code= MNT$ DEVNAM;
itm-lst.itm[l].bufaddr = devl; -
itm=lst.itm[l].retlenaddr = O;

itm lst.itm[2].buflen = 6;
itm-lst.itm[2].item code= MNT$ VOLNAM;
itm-lst.itm[2].bufaddr = voll; -
itm=lst.itm[2].retlenaddr = O;

itm lst.itm[3].buflen = 5;
itm-lst.itm[3].item code= MNT$ DEVNAM;
itm-lst.itm[3].bufaddr = dev2; -
itm=lst.itm[3].retlenaddr = O;

itm lst.itm[4].buflen = 6;
itm-lst.itm[4].item code= MNT$ VOLNAM;
itm-lst.itm[4].bufaddr = vol2; -
itm=lst.itm[4].retlenaddr = O;

itm lst.itm[5].buflen = 6;
itm-lst.itm[5].item code= MNT$ LOGNAM;
itm-lst.itm[5].bufaddr =log; -
itm=lst.itm[5].retlenaddr = O;

itm 1st.terminator = O;

status = SYS$MOUNT (&itm 1st);
if ((status & 1) != 1) -

LIB$SIGNAL(status);

9.18.1.2 Calling the SYS$DISMOU System Service
The SYS$DISMOU system service allows a process to dismount a volume or
volume set. When you call SYS$DISMOU, you must specify a device name. If the
volume mounted on the device is part of a fully mounted volume set, and you do
not specify flags, the whole volume set is dismounted.

The following example illustrates a call to SYS$DISMOU. The call dismounts the
volume set mounted in the previous example.

$DESCRIPTOR(devl_desc,"DRA4:");

status= SYS$DISMOU(&devl_desc); /* devnam - device*/

9-35

System Service Input/Output Operations
9. 1-8 Mounting, Dismounting, and Initializing Volumes

9.18.2 Initializing Volumes
Initializing a volume writes a label on the volume, sets protection and ownership
for the volume, formats the volume (depending on the device type), and overwrites
data already on the volume.

You interactively initialize a volume from the DCL command stream using the
INITIALIZE command. A process can programmatically initialize a volume using
the Initialize Volume (SYS$INIT_ VOL) system service.

9.18.2.1 Calling the Initialize Volume System Service

9-36

You must specify a device name and a new volume name when you call the
SYS$INIT_ VOL system service. You can also use the itmlst argument of $INIT_
VOL to specify options for the initialization. For example, you can specify that
data compaction should be performed by specifying the INIT$_COMPACTION
item code. See the Open VMS System Services Reference Manual for more
information on initialization options.

Before initializing the volume with SYS$INIT_ VOL, be sure you have placed the
volume on the device and started the device (by pressing the START or LOAD
button).

The default format for files on disk volumes is called Files-11 On-Disk Structure
Level 2. Files-11 On-Disk Structure Level 1 format, available on VAX systems, is
used by other Digital operating systems, including RSX-llM, RSX-llM-PLUS,
RSX-HD, and IAS, but is not supported on AXP systems. For more information,
see the Open VMS System Manager's Manual.

Here are two examples of calling SYS$INIT.:_VOL programmatically: one from a
C program and one from a BASIC program.

The. following example illustrates a call to SYS$INIT_ VOL from DEC C:

#include <descrip.h>
#include <initdef .h>

struct item descrip 3
{ - -

};

unsigned short buffer size;
unsigned short item code;
void *buffer address;
unsigned short *return_length;

main ()
{

unsigned long
density code,
status;-

$DESCRIPTOR(drive dsc, "MUAO:");
$DESCRIPTOR(labeCdsc, "USEROl");
struct -
{

struct item descrip 3 density item;
long terminator; - -

init_itmlst;

/*
** Initialize the input item list.
*/

System Service Input/Output Operations
9.18 Mounting, Dismounting, and Initializing Volumes

}

density code = INIT$K DENSITY 6250 BPI;
init itmlst.density item.buffer size = 4;
init-itmlst.density-item.item code = INIT$ DENSITY;
init=itmlst.density=item.buffer_address = &density_code;

init_itmlst.terminator = O;

/*
** Initialize the volume.
*/

status= SYS$INIT_VOL (&drive_dsc, &label_dsc, &init_itmlst);

/*
** Report an error if one occurred.
*/

if ((status & 1) != 1)
LIB$STOP (status);

The following example illustrates a call to SYS$INIT_ VOL from VAX BASIC:

OPTION TYPE = EXPLICIT

%INCLUDE '$INITDEF' %FROM %LIBRARY

EXTERNAL LONG FUNCTION SYS$INIT_VOL

RECORD ITEM DESC
VARIANT
CASE

CASE

WORD BUFLEN
WORD ITMCOD
LONG BUFADR
LONG LENADR

LONG TERMINATOR
END VARIANT

END RECORD

DECLARE LONG RET STATUS, &
ITEM_DESC INIT_ITMLST(2)

! Initialize the input item list.

INIT ITMLST(O)::ITMCOD = INIT$ READCHECK
INIT=ITMLST(l)::TERMINATOR = 0-

! Initialize the volume.

RET STATUS = SYS$INIT VOL ("DJA21:" BY DESC, "USERVOLUME" BY DESC,
INIT_ITMLST() BY REF)-

9.19 Formatting Output Strings
When you are preparing output strings for a program, you may need to insert
variable information into a string prior to output, or you may need to convert
a numeric value to an ASCII string. The Formatted ASCII Output (SYS$FAO)
system service performs these functions.

Input to the SYS$FAO system service consists of the following:

• A control string that contains the fixed text portion of the output and
formatting directives. The directives indicate the position within the string
where substitutions are to be made, and describe the data type and length of
the input values that are to be substituted or converted.

9-37

System Service Input/Output Operations
9.19 Formatting Output Strings

9-38

• An output buffer to contain the string after conversions and substitutions
have been made.

• An optional argument indicating a word to receive the final length of the
formatted output string.

• Parameters that provide arguments for the formatting directives.

The following example shows a call to the SYS$FAO system service to format an
output string for a SYS$QIOW macro. Complete details on how to use SYS$FAO,
with additional examples, are provided in the description of the SYS$FAO system
service in the Open VMS System Services Reference Manual.

#include <stdio.h>
#include <descrip.h>
#include <ssdef .h>

main() {

}

unsigned int status, faolen;
char faobuf[80];
$DESCRIPTOR(faostr,"FILE !AS DOES NOT EXIST"); 0
$DESCRIPTOR(outbuf, faobuf);- f)
$DESCRIPTOR(filespec, 11 DISK$USER:MYFILE.DAT 11

); 0
status = SYS$FAO(&faostr, &outlen, &outbuf, &filespec); 8
if ((status & 1) != 1)

LIB$SIGNAL(status);

status = SYS$QIOW(• • • faobuf, outlen, • • •) ; 0
if ((status & 1) != 1)

LIB$SIGNAL(status);

0 FAOSTR provides the FAO control string. !AS is an example of an FAO
directive: it requires an input parameter tliat specifies the address of a
character string descriptor. When SYS$FAO is called to format this control
string, !AS will be substituted with the string whose descriptor address is
specified.

8 FAODESC is a character string descriptor for the output buffer; SYS$FAO
will write the string into the buffer, and will write the length of the final
formatted string in the low-order word of FAOLEN. (A longword is reserved
so that it can be used for an input argument to the SYS$QIOW macro.)

0 FILESPEC is a character string descriptor defining an input string for the
FAQ directive !AS.

8 The call to SYS$FAO specifies the control string, the output buffer and length
fields, and the parameter Pl, which is the address of the string descriptor for
the string to be substituted.

0 When SYS$FAO completes successfully, SYS$QIOW writes the following
output string:

FILE DISK$USER:MYFILE.DAT DOES NOT EXIST

System Service Input/Output Operations
9.20 Mailboxes

9.20 Mailboxes
Mailboxes are virtual devices that can be used for communication among
processes. You accomplish actual data transfer by using Open VMS RMS or I/O
services. When the Create Mailbox and Assign Channel (SYS$CREMBX) system
service creates a mailbox, it also assigns a channel to it for use by the creating
process. Other processes can then assign channels to the mailbox using either
the SYS$CREMBX or SYS$ASSIGN system service.

The SYS$CREMBX system service creates the mailbox. The SYS$CREMBX
system service identifies a mailbox by a user-specified logical name and assigns
it an equivalence name. The equivalence name is a physical device name in the
format MBAn, where n is a unit number. The equivalence name has the terminal
attribute.

When another process assigns a channel to the mailbox with the SYS$CREMBX
or SYS$ASSIGN system service, it can identify the mailbox by its logical name.
The service automatically translates the logical name. The process can obtain the
MBAn name by translating the logical name (with the SYS$TRNLNM system
service), or it can call the Get DeviceNolume Information (SYS$GETDVI) system
service to obtain the unit number and the physical device name.

On VAX systems, channels assigned to mailboxes can be either bidirectional or
unidirectional. Bidirectional channels (read/write) allow both SYS$QIO read and
SYS$QIO write requests to be issued to the channel. Unidirectional channels
(read-only or write-only) allow only a read request or a write request to the
channel. The unidirectional channels and unidirectional $QIO function modifiers
provide for greater synchronization between users of the mailbox.

The Create Mailbox and Assign Channel (SYS$CREMBX) and Assign I/O
Channel (SYS$ASSIGN) system services use the flags argument to enable
unidirectional channels. If the flags argument is not specified or is zero, then
the channel assigned to the mailbox is bidirectional (read/write). For more
information, see the discussion and programming examples in the mailbox driver
chapter in the Open VMS I I 0 User's Reference Manual. Chapter 2 of this manual
also discusses the use of mailboxes. +

Mailboxes are either temporary or permanent. You need the user privileges
TMPMBX and PRMMBX to create temporary and permanent mailboxes.

For a temporary mailbox, the SYS$CREMBX service enters the logical name and
equivalence name in the logical name table LNM$TEMPORARY_MAILBOX. This
logical name table name usually specifies the LNM$JOB logical name table name.
The system deletes a temporary mailbox when no more channels are assigned to
it.

For a permanent mailbox, the SYS$CREMBX service enters the logical name and
equivalence name in the logical name table LNM$PERMANENT_MAILBOX. This
logical name table name usually specifies the LNM$SYSTEM logical name table
name. Permanent mailboxes continue to exist until they are specifically marked
for deletion with the Delete Mailbox (SYS$DELMBX) system service.

The following example shows how processes can communicate by means of a
mailbox:

9-39

System Service Input/Output Operations
9.20 Mailboxes

9-40

/* Process ORION */

#include <stdio.h>
#include <descrip.h>
#include <ssdef .h>
#include <iodef .h>

/* I/O status block */
struct {

unsigned short iostat, iolen;
unsigned int remainder;

}mbxiosb;

main() {
void *pl, mbxast();
char mbuffer[l28], prmflg=O;
unsigned short mbxchan, mbxiosb;
unsigned int status, mbuflen=l28, bufquo=384, promsk=O, outlen;
$DESCRIPTOR(mblognam,"GROUP100_MAILBOX");

/* Create a mailbox */
status = SYS$CREMBX(prmflg,

&mbxchan,
mbuflen,
bufquo,
promsk,
o,
&mblognam,
0);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Request I/O */
status = SYS$QIO(O,

mbxchan,
IO$ READVBLK,
&mbxiosb,
&mbxast,
&mbuffer,
mbuflen);

if ((status & 1) != 1)
LIB$SIGNAL(status);

void mbxast(void) {

if (mbxiosb.iostat != SS$_NORMAL)

/* Permanent or temporary */ Ct
/* chan - channel number */
/* maxmsg - buffer length */
/* bufquo - quota */
/* promsk - protection mask */
/* acmode - access mode */
/* lognam - mailbox logical name */
/* flags - options */

/* efn - event flag */ f)
/* chan - channel number */
/* func - function modifier */
/* iosb - I/O status block */
/* astadr - AST routine */
/* pl - output buffer */
/* p2 - length of buffer */

status = SYS$QIOW(• • • , &mbuffer, &outlen, • • •)
if ((status & 1) != 1)

LIB$SIGNAL(status);

return;

/* Process Cygnus */

#include <stdio.h>
#include <descrip.h>
#include <ssdef .h>
#include <iodef .h>

main()

System Service Input/Output Operations
9.20 Mailboxes

unsigned short int mailchan;
unsigned int status, outlen;
char outbuf[l28];
$DESCRIPTOR(mailbox,"GROUP100_MAILBOX");

status= SYS$ASSIGN(&mailbox, &mailchan, O, O, O);
if ((status & 1) != 1)

LIB$SIGNAL(status);

status = SYS$QIOW(O, mailchan, O, O, O, O, &outbuf, outlen, O, O, O, 0)
if ((status & 1) != 1)

LIB$SIGNAL(status);

0 Process ORION creates the mailbox and receives the channel number at
MBXCHAN.

The prmflg argument indicates that the mailbox is a temporary mailbox.
The logical name is entered in the LNM$TEMPORARY_MAILBOX logical
name table.

The maxmsg argument limits the size of messages that the mailbox can
receive. Note that the size indicated in this example is the same size as the
buffer (MBUFFER) provided for the SYS$QIO request. A buffer for mailbox
I/O must be at least as large as the size specified in the MAXMSG argument.

When a process creates a temporary mailbox, the amount of system memory
allocated for buffering messages is subtracted from the process's buffer. quota.
Use the bufquo argument to specify how much of the process quota should
be used for mailbox message buffering.

Mailboxes are protected devices. By specifying a protection mask with the
promsk argument, you can restrict access to the mailbox. (In this example,
all bits in the mask are clear, indicating unlimited read and write access.)

8 After creating the mailbox, process ORION calls the SYS$QIO system service,
requesting that it be notified when I/O completes (that is, when the mailbox
receives a message) by means of an AST interrupt. The process can continue
executing, but the AST service routine at MBXAST will interrupt and begin
executing when a message is received.

0 When a message is sent to the mailbox (by CYGNUS), the AST is delivered
and ORION responds to the message. Process ORION gets the length of the
message from the first word of the I/O status block at MBXIOSB and places it
in the longword OUTLEN so it can pass the length to SYS$QIOW _S.

0 Process CYGNUS assigns a channel to the mailbox, specifying the logical
name the process ORION gave the mailbox. The SYS$QIOW system service
writes a message from the output buffer provided at OUTBUF.

·Note that on a write operation to a mailbox, the I/O is not complete until
the message is read, unless you specify the IO$M_NOW function modifier.
Therefore, if SYS$QIOW (without the IO$M_NOW function modifier) is used
to write the message, the process will not continue executing until another
process reads the message.

9-41

System Service Input/Output Operations
9.20 Mailboxes

9.20.1 Mailbox Name
The lognam argument to the SYS$CREMBX service specifies a descriptor that
points to a character string for the mailbox name.

Translation of the lognam argument proceeds as follows:

1. The current name string is prefixed with MBX$ and the result is subject to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3. The MBX$ prefix is stripped from the current name string that could not be
translated. This current string is made a logical name with an equivalence
name MBAn (n is a number assigned by the system).

For example, assume that you have made the following logical name assignment:

$ DEFINE MBX$CHKPNT CHKPNT_OOl

Assume also that your program contains the following statements:

$DESCRIPTOR(mbxdesc,"CHKPNT");

status = SYS$CREMBX(• • • ,&mbxdesc, . • •) ;

The following logical name translation takes place:

1. MBX$ is prefixed to CHKPNT.

2. MBX$CHKPNT is translated to CHKPNT_OOl.

Because further translation is unsuccessful, the logical name CHKPNT_OOl is
created with the equivalence name MBAn (n is a number assigned by the system).

There are two exceptions to the logical name translation method discussed in this
section:

• If the name string starts with an underscore (_), the operating system strips
the underscore and considers the resultant string to be the actual name (that
is, further translation is not performed).

• If the name string is the result of a logical name translation, then the name
string is checked to see whether it has the terminal attribute. If the name
string is marked with the terminal attribute, the operating system considers
the resultant string to be the actual name (that is, further translation is not
performed).

9.20.2 System Mailboxes

9-42

The system uses mailboxes for communication among system processes. All
system mailbox messages contain, in the first word of the message, a constant
that identifies the sender of the message. These constants have symbolic names
(defined in the $MSGDEF macro) in the following format:

MSG$_sender

System Service Input/Output Operations
9.20 Mailboxes

The symbolic names included in the $MSGDEF macro and their meanings are as
follows:

Symbolic Nam~

MSG$_TRMUNSOLIC

MSG$_CRUNSOLIC

MSG$_ABORT

MSG$_CONFIRM

MSG$_ CONNECT

MSG$_DISCON

MSG$_EXIT

MSG$_INTMSG

MSG$_PATHLOST

MSG$_PROTOCOL

MSG$_REJECT

MSG$_THIRDPARTY

MSG$_TIMEOUT

MSG$_NETSHUT

MSG$_NODEACC

MSG$_NODEINACC

MSG$_EVTAVL

MSG$_EVTRCVCHG

MSG$_INCDAT

MSG$_RESET

MSG$_LINUP

MSG$_LINDWN

MSG$_EVTXMTCHG

Meaning

Unsolicited terminal data

Unsolicited card reader data

Network partner aborted link

Network connect confirm

Network inbound connect initiate

Network partner disconnected

Network partner exited prematurely

Network interrupt message; unsolicited data

Network path lost to partner

Network protocol error

Network connect reject

Network third-party disconnect

Network connect timeout

Network shutting down

Node has become accessible

Node has become inaccessible

Events available to DECnet Event Logger

Event receiver database change

Unsolicited incoming data available

Request to reset the virtual circuit

PVC line up

PVC line down

Event transmitter database change

The remainder of the message contains variable information, depending on the
system component that is sending the message.

The format of the variable information for each message type is documented with
the system function that uses the mailbox.

9.20.3 Mailboxes for Process Termination Messages
When a process creates another process, it can specify the unit number of a
mailbox as an argument to the Create Process ($CREPRC) system service. When
you delete the created process, the system sends a message to the specified
termination mailbox.

You cannot use a mailbox in memory shared by multiple processors as a process
termination mailbox.

9-43

System Service Input/Output Operations
9.21 Example of Using 1/0 Services

9.21 Example of Using 1/0 Services

9-44

In the following Fortran example, the first program, SEND.FOR, creates a
mailbox named MAIL_BOX, writes data to it, and then indicates the end of the
data by writing an end-of-file message.

The second program, RECEIVE.FOR, creates a mailbox with the same logical
name, MAIL_BOX. It reads the messages from the mailbox into an array. It stops
the read operations when a read operation generates an end-of-file message and
the second longword of the 1/0 status block is nonzero. By checking that the 1/0
status block is nonzero, the second program confirms that the writing process
sent the end-of-file message.

The processes use common event flag number 64 to ensure that SEND.FOR
does not exit until RECEIVE.FOR has established a channel to the mailbox. (If
RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN cannot find
the mailbox.)

SEND.FOR
INTEGER STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX NAME
PARAMETER (MBX NAME= 'MAIL BOX')
INTEGER*2 MBX CHAN -

! Mailbox message
CHARACTER*80 MBX MESSAGE
INTEGER LEN -

CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE LEN (255)
INTEGER MAX MESSAGE
PARAMETER (MAX_MESSAGE = 255)

! I/O function codes and status block
INCLUDE , ($ IODEF) I .

INTEGER*4 WRITE CODE
INTEGER*2 IOSTAT,
2 MSG LEN
INTEGER READER PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG LEN,
2 READER PIO

System routines
INTEGER SYS$CREMBX,
2 SYS$ASCEFC,
2 SYS$WAITFR,
2 SYS$QIOW

Create the mailbox.
STATUS= SYS$CREMBX (,
2 MBX CHAN,
2 , , , -;
2 MBX NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Fill MESSAGES array

System Service Input/Output Operations
9.21 Example of Using 1/0 Services

! Write the messages.
DO I = 1, MAX MESSAGE

WRITE CODE ~ IO$ WRITEVBLK .OR. IO$M_NOW
MBX MESSAGE =MESSAGES(!)
LEN-= MESSAGE LEN(!)
STATUS= SYS$QIOW (,

2 %VAL(MBX CHAN),
2 %VAL(WRITE CODE),
2 IOSTAT, -

, ,

Channel
I/O code
Status block

2
2
2

%REF(MBX MESSAGE), Pl
%VAL(LEN),,,,) P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(STATUS))

END DO

! Write end of file
WRITE CODE = IO$ WRITEOF .OR. IO$M_NOW
STATUS= SYS$QIOW (,
2 %VAL(MBX CHAN), ! Channel
2 %VAL(WRITE CODE), ! End of file code
2 IOSTAT, - ! Status block
2 ,,,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(IOSTAT))

Make sure cooperating process can read the information
by waiting for it to assign a channel to the mailbox.

STATUS= SYS$ASCEFC (%VAL(64),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

INTEGER STATUS

INCLUDE '($IODEF)'
INCLUDE '($SSDEF)'

RECEIVE.FOR

! Name and channel number for mailbox
CHARACTER*(*) MBX NAME
PARAMETER (MBX NAME= 'MAIL BOX')
INTEGER*2 MBX CHAN -

! QIO function code
INTEGER READ CODE

! Mailbox message
CHARACTER*80 MBX MESSAGE
INTEGER*4 LEN-

! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE LEN (255)

! I/O status block
INTEGER*2 IOSTAT,
2 MSG. LEN
INTEGER READER PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG LEN,
2 READER PID

9-45

System Service Input/Output Operations
9.21 Example of Using 1/0 Services

9-46

! System routines
INTEGER SYS$ASSIGN,
2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$QIOW

Create the mailbox and let the other process know
STATUS = SYS$ASSIGN (MBX NAME,
2 MBX-CHAN,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$ASCEFC (%VAL(64),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$SETEF (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Read first message
READ CODE = IO$ READVBLK .OR. IO$M NOW
LEN -;- 80 - -
STATUS= SYS$QIOW (,
2 %VAL(MBX CHAN),
2 %VAL(READ CODE),
2 IOSTAT, -
2 , ,

Channel
Function code
Status block

2 %REF(MBX MESSAGE), ! Pl
2 %VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.
2 (IOSTAT .NE. SS$ ENDOFFILE)) THEN

CALL LIB$SIGNAL (%VAL(IOSTAT))
ELSE IF (IOSTAT .NE. SS$ ENDOFFILE) THEN

I = 1 -
MESSAGES(!) = MBX MESSAGE
MESSAGE LEN(I) = MSG LEN

END IF - -

! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTAT .EQ. SS$ ENDOFFILE) .AND.
2 (READER_PID .NE.-0)))

2
2
2
2
2
2

STATUS= SYS$QIOW (,
%VAL(MBX CHAN),
%VAL(READ CODE),
IOSTAT, -
,,
%REF(MBX MESSAGE),
%YAL(LEN),,,,)

Channel
Function code
Status block

Pl
! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.

2 (IOSTAT .NE. SS$ ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTAT))

ELSE IF (IOSTAT .NE. SS$_ENDOFFILE~ THEN
I=I+l t
MESSAGES(!) = MBX MESSAGE
MESSAGE LEN(I) =MSG LEN

END IF - -

END DO

10
Logical Name Services

This chapter describes how to create and use logical names. It contains the
following sections:

Section 10.1 describes how to use logical name system services, how to use logical
and equivalence names, and how to use logical name tables.

Section 10.2 describes how to create logical names.

Section 10.3 describes how to use SYS$CRELNT system service to create a logical
name table.

Section 10.4 describes how to delete entries in a logical name table.

Section 10.5 describes how to translate a logical name to its equivalence string.

Section 10.6 shows a Fortran program that uses the logical name system services.

10.1 Logical Name System Services
This section describes how to use system services to establish logical names
for general application purposes. The system performs special logical name
translation procedures for names associated with I/O services and with services
that can deal with facilities located in shared (multiport) memory. For further ,
information, see the following chapters:

• Mailbox names and device names for I/O services: Chapter 9

• Common event flag cluster names: Chapter 14

• Global section names: Chapter 19

The operating system's logical name services provide a technique for
manipulating and substituting character-string names. Logical names are
commonly used to specify devices or files for input or output operations. You can
use logical names to communicate information between processes by creating a
logical name in one process in a shared logical name table and translating the
logical name in another process. The operating system's logical name services are
as follows:

• Create Logical Name (SYS$CRELNM)

• Create Logical Name Table (SYS$CRELNT)

• Delete Logical Name (SYS$DELLNM)

• Translate Logical Name (SYS$TRNLNM)

As the names of the logical name system services imply, when you use the logical
name system services, you are concerned with creating, deleting, and translating
logical names and with creating and deleting logical name tables.

The following sections describe various concepts you should be aware of when you
use the logical name system services. For further discussion of logical names, see

10-1

Logical Name Services
10.1 Logical Name System Services

the Open VMS User's Manual.'

10.1.1 Logical Names, Equivalence Names, and Search Lists
A logical name is a user-specified character string that can represent a
file specification, device name, logical name table name, application-specific
information, or another logical name. Typically, for process-private purposes, you
specify logical names that are easy to use and to remember. System managers
and privileged users choose mnemonics for files, system devices, and search lists
that are frequently accessed by all users.

An equivalence string, or an equivalence name, is a character string that
denotes the actual file specification, device name, or character string. An
equivalence name can also be a logical name. In this case, further translation is
necessary to reveal the actual equivalence name, if permitted.

A multivalued logical name, commonly called a search list, is a logical name
that has more than one equivalence string. Each equivalence string in the search
list is assigned an index number starting at zero.

Logical names and their equivalence strings are stored in logical name tables.
Logical names can have a maximum length of 255 characters. Equivalence
strings can have a maximum of 255 characters. You can establish logical name
and equivalence string pairs as follows:

• At the command level, with the DCL commands ALLOCATE, ASSIGN,
DEFINE, or MOUNT

• In a program, with the Create Logical Name (SYS$CRELNM), Create Mailbox
and Assign Channel (SYS$CREMBX), or Mount Volume (SYS$MOUNT)
system service

For example, you could use the symbolic name TERMINAL to refer to an output
terminal in a program. For a particular run of the program, you could use the
DEFINE command to establish the equivalence name TTA2.

To perform an assignment in a program, you must define character-string
descriptors for the name strings. In addition, you must call the system service
through an external function declaration within your program, depending on the
programming language.

10.1.2 Logical Name Tables

10-2

A logical name table contains logical name and equivalence string pairs. Each
table is an independent name space. Logical name tables are referenced by
logical names.

Logical name tables can be created in process space or in system space. Tables
created in process space are accessible only by that process. Tables created in
system space are potentially shareable among many processes. Certain logical
name tables have predefined logical names that provide the environment for
creating, deleting, and translating user-specified logical names. These predefined
logical names begin with the prefix LNM$. Logical name and equivalence name
pairs are maintained in three types of logical name tables:

• Directory tables

• Default tables

• User-defined name tables

Logical Name Services
10.1 Logical Name System Services

When the process is created, the logical name directory tables and the default
logical name tables are created for each new process.

10.1.2.1 Logical Name Directory Tables
Because the names of logical name tables are logical names, table names must
reside in logical. name tables. 1\vo special tables called directories exist for this
purpose. Table names are translated from these logical name directory tables.
Logical name and equivalence name pairs for logical name tables are maintained
in the following two directory tables:

• Process directory table (LNM$PROCESS_DIRECTORY)

• System directory table (LNM$SYSTEM_DIRECTORY)

The process directory table contains the names of all process-private user-defined
logical name tables created through the SYS$CRELNT system service. In
addition, the process directory table contains system-assigned logical name table
names, the name of the process logical name table LNM$PROCESS_TABLE, and
the default logical name table search list.

The system directory table contains the names of potentially shareable logical
name tables and system-assigned logical name table names. You must have the
SYSPRV privilege to create a logical name in the system directory table. For a
discussion of privileges, see Section 10.1.4.

Logical names other than logical name table names can exist within these tables.
The length of the logical names created in either of these tables must not exceed
31 characters. Logical names created in the directory tables must consist of
alphanumeric characters, dollar signs ($), and underscores (_). Equivalence
strings must not exceed 255 characters.

10.1.2.2 Process, Job, Group, and System Default Logical Name Tables
Certain logical name tables are created for or assigned to a process at process
creation. These tables are called the default logical nanie tables. The newly
created process is provided with these tables by default. Logical name and
equivalence name pairs are maintained in the default logical name tables.

Each default logical name table has a logical name associated with it. To place
an entry in a logical name table, specify a logical name table name. The default
logical name table names and the common logical names used to refer to them
are as follows:

Table Name Logical Name .

Process LNM$PROCESS_TABLE LNM$PROCESS

Job LNM$JOB_xxxxxxxx LNM$JOB

Group LNM$GROUP _gggggg LNM$GROUP

System LNM$SYSTEM_TABLE LNM$SYSTEM

The letter x represents a numeral in an 8-digit hexadecimal number that uniquely
identifies the job logical name table. The letter g represents a numeral in a
6-digit octal number that contains the user's group number.

The length of the logical names created in these tables must not exceed 255
characters, with no restriction on the types of characters used. Equivalence
strings must not exceed 255 characters.

10-3

Logical Name Services
10.1 Logical Name System Services

10-4

Process Logical Name Table
The process logical name table LNM$PROCESS_TABLE contains names used
exclusively by the process. A process logical name table exists for each process in
the system. Some entries in the process logical name table are made by system
programs executing at more privileged access modes; these entries are qualified
by the access mode from which the entry was made. The process logical name
table contains the following process-permanent logical names:

Logical Name Meaning

SYS$INPUT

SYS$0UTPUT

SYS$COMMAND

SYS$ERROR

Default input stream

Default output stream

Original first-level (SYS$INPUT) input stream

Default device to which the system writes error messages

SYS$COMMAND is created only for processes that execute LOGINOUT.

Process-Private Logical Name Creation and Image Rundown
Usually, you create logical names only in your process logical name table. Most
entries in the process logical name table are made in user or supervisor mode.
The following example shows how process-private logical names can be created in
user mode by an image:

#include <stdio.h>
#include <lnmdef .h>
#include <ssdef .h>
#include <descrip.h>

/* Define an item descriptor */
struct 1st {

};

unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;

/* Declare an item list */
struct {

struct 1st items[l];
unsigned int terminator;

}item_lst;

/* Equivalence name strings */

static char eqvnaml[] "XYZ";
static char eqvnam2[] ="DEF";

main() {

unsigned int status;
$DESCRIPTOR(logdesc,"ABC");
$DESCRIPTOR(tabdesc,"LNM$PROCESS");

item lst.items[O].buflen = strlen(eqvnaml);
item-lst.items[O].item code= LNM$ STRING;
item-lst.items[O].bufaddr = eqvnamT;·
itenClst.items[O].retlenaddr = O;

item lst.items[l].buflen = strlen(eqvnam2);
item-lst.items[l].item code= LNM$ STRING;
item-lst.items[l].bufaddr = eqvnam2;
item-lst.items[l].retlenaddr = O;
item=lst.terminator = O;

/* Create a logical name */
status = SY$$CRELNM(O,

&tabdesc,
&logdesc,
o,

Logical Name Services
10.1 Logical Name System Services

/* attr - attributes of logical name */
/* tabnam - name of logical name table */
/* lognam - name of logical name */
/* acmode - access mode 0 means use the */
/* access mode of the caller=user mode */
/* itm 1st - item list */ &item 1st);

if((status & 1)-!= 1)
LIB$SIGNAL(status);

In the preceding example, logical name ABC was created and represents a search
list with two equivalence strings, XYZ and DEF. Each time the LNM$_STRING
item code of the itmlst argument is invoked, an index value is assigned to the
next equivalence string. The newly created logical name and its equivalence
string are contained in the process logical name table LNM$PROCESS_TABLE.

The following example illustrates the creation of a logical name in supervisor
mode through DCL:

$ DEFINE/SUPERVISOR_MODE/TABLE=LNM$PROCESS ABC XYZ,DEF

In the preceeding example, supervisor mode and /TABLE=LNM$PROCESS are
the defaults (default mode and default table) for the DEFINE command.

Process logical names that are created in user mode are deleted whenever the
creating process runs an image down. The following DCL commands illustrate
this behavior:

$ DEFINE/USER ABC XYZ
$ SHOW TRANSLATION ABC

ABC = XYZ
$ DIRECTORY
$ SHOW LOGICAL ABC

ABC = (undefined)

The DCL command DIRECTORY performs image rundown when it is finished
operating. At that time, all user-mode process-private logical names are deleted,
including the logical name ABC.

Job Logical Name Table
The job logical name table is a shareable table accessible by all processes within
the same job tree. Whenever a detached process is created, a job logical name
table is created for this process and all of its potential subprocesses. At the
same time, the process-private logical name LNM$JOB is created in the process
directory logical name table LNM$PROCESS_DIRECTORY. The logical name
LNM$JOB translates to the name of the job logical name table.

Because the job logical name table already exists for the main process, only the
process-private logical name LNM$JOB is created when a subprocess is created.

The job logical name table contains the following three process-permanent logical
names for processes that execute LOGINOUT:

Logical Names Meaning

SYS$LOGIN Original default device and directory

10-5

Logical Name Services
10.1 Logical Name System Services

Logical Names

SYS$LOGIN_DEVICE

SYS$SCRATCH

Meaning

Original default device

Default device and directory to which temporary files are
written

Thus, instead of creating these logical names within the process logical name
table LNM$PROCESS_TABLE for every process within a job tree, LOGINOUT
creates these logical names once when it is executed for the process at the root of
the job tree.

Additionally, the job logical name table contains the following logical names:

• The logical name optionally specified and associated with a newly created
temporary mailbox

• The logical name optionally specified and associated with a privately mounted
volume

You do not need special privileges to modify the job logical name table. For a
discussion of privileges, see Section 10.1.4.

Group Logical Name Table
The group logical name table contains· names that cooperating processes in
the same group can use. You need the GRPNAM privilege to add or delete a
logical name in the group logical name table. For a discussion of privileges, see
Section 10.1.4.

Group logical name tables are created as needed. However, the logical name
LNM$GROUP exists in each process's process directory LNM$PROCESS_
DIRECTORY. This logical name translates into the name of the group logical
name table.

System Logical Name Table
The system logical name table LNM$SYSTEM_TABLE contains names that all
processes in the system can access. This table includes the default names for all
system-assigned .logical names. You need the SYSNAM or SYSPRV privilege to
add or delete a logical name in the system logical name table. For a discussion of
privileges, see Section 10.1.4.

10.1.2.3 Creating User-Defined Logical Name Tables

10-6

You can create process-private tables and shareable tables by calling the
SYS$CRELNT system service in a program. However, you must have SYSPRV
privilege to create a shareable table. For a discussion of privileges, see
Section 10.1.4. Processes other than the creating process cannot use logical
names contained in process-private tables.

Logical name tables are created through the SYS$CRELNT system service either
with the DCL command CREATE/NAME_TABLE or by calling SYS$CRELNT in
a program. If granted access, processes other than the creating process can use

· shareable tables.

The length of logical names created in user-defined logical name tables must not
exceed 255 characters. Equivalence strings must not exceed 255 characters.

Logical Name Services
10.1 Logical Name System Services

10.1.3 Duplicating Logical Names
A logical name table can contain entries for the same logical name at different
access modes. Different logical name tables can contain entries for the same
logical name. In all other cases, only one entry can exist for a particular logical
name in a logical name table.

Since identical logical names can exist in more than one logical name table, the
logical name that the system uses depends on the order in which it searches the
logical name tables. For example, when the system attempts to translate a logical
name to identify the location of a file, it uses the logical name LNM$FILE_DEV
to provide the list of tables in which to look for the name. The order in which the
tables are listed is also the order in which they are searched.

By default, the precedence order defined by LNM$FILE_DEV is:

1. Process table

2. Job table

3. Group table

4. System table

If, for example, a logical name exists in both the process and the group logical
name tables, the logical name within the process table is used.

By default, the DEFINE and DEASSIGN commands place names in, and delete
names from, your process table. However, you can request a different table with
the trABLE qualifier, as shown in the following example:

$ DEFINE/TABLE=LNM$SYSTEM REVIEWERS DISK3:[PUBLIC]REVIEWERS.DIS

Any number of logical names can have the same equivalence name. Consider the
following examples of the logical name TERMINAL defined in several tables. The
logical name TERMINAL translates differently depending on the table specified.

Process Logical Name Table for Process A
The following process logical name table equates the logical name TERMINAL
to the specific terminal TTA2. The INFILE and OUTFILE logical names are
equated to disk specifications. The logical names were created from supervisor
mode.

Logical Name

INF ILE

OUTFILE

TERMINAL

Equivalence Name

DMl: [HIGGINS] TEST.DAT

DMl: [HIGGINS] TEST. OUT

TTA2:

Access Mode

Supervisor

Supervisor

Supervisor

To determine the equivalence string for the logical name TERMINAL in the
preceding table, enter the following command:

$ SHOW LOGICAL TERMINAL

The system returns the equivalence string TTA2:.

10-7

Logical Name Services
10.1 Logical Name System Services

10-8

Job Logical Name Table
The portion of the following job logical name table assigns the logical name
TERMINAL to a virtual terminal VTA14. The logical name SYS$LOGIN is the
device and directory for the process when you log in. The SYS$LOGIN logical
name is defined in executive mode.

Logical Name

SYS$LOGIN

TERMINAL

Equivalence Name

DBA9: [HIGGINS]

VTA14:

Access Mode

Executive

User

To determine the equivalence string of the logical name TERMINAL defined in
the preceding table, enter the following command:

$ SHOW LOGICAL/JOB TERMINAL

The system returns the equivalence string VTA14: as the translation.

User-Defined Logical Name Table
The following user-defined logical name table (called LOG_TBL for purposes
of this discussion) contains a definition of TERMINAL as the mailbox device
MBA407. The multivalued logical name (search list) XYZ has two translations:
DISKl and DISK3.

Logical Name

TERMINAL

XYZ

Equivalence Name

MBA407:

DISKl:

DISK3:

Access Mode

Supervisor

Supervisor

To determine the equivalence string for the logical name TERMINAL in the
preceding user-defined table, enter the following command:

$ SHOW LOGICAL/TABLE=LOG_TBL TERMINAL

The system returns the equivalence string MBA407. In order to use this
definition of TERMINAL as a device or file specification, you must redefine
the logical name LNM$FILE_DEV to reference the user-defined table, as follows:

$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV LOG TBL, -
_$ LNM$PROCESS_TABLE,LNM$JOB,LNM$GROUP,LNM$SYSTEM_TABLE

In this example, the DCL command DEFINE is. used to redefine the default
search list LNM$FILE_DEV. The /TABLE qualifier specifies the table
LNM$PROCESS_DIRECTORY that is to contain the redefined search list.
The system searches the tables defined by LNM$FILE_DEV in the following
order: LOG_TBL, LNM$PROCESS_TABLE, LNM$JOB, LNM$GROUP, and
LNM$SYSTEM_TABLE.

Logical Name Services
10.1 Logical Name System Services

System Logical Name Table
The following system logical table contains system-assigned logical names
accessible to all processes in the system. For example, the logical names
SYS$LIBRARY and SYS$SYSTEM provide logical names that all users can
access to use the device and directory that contain system files.

Logical Name

SYS$LIBRARY

SYS$SYSTEM

Equivalence Name

SYS$SYSROOT: [SYSLIB]

SYS$SYSROOT: [SYSEXE]

The Logical Names section of the Open VMS User's Manual contains a list of these
system-assigned logical names.

Logical Name Supersession
If the logical name TERMINAL is equated to TTA2 in the process table, as shown
in the previous examples, and the process subsequently equates the logical name
TERMINAL to TTA3, the equivalence of TERMINAL TTA2 is replaced by the new
equivalence name. The successful return status code SS$_SUPERSEDE indicates
that a new entry replaced an old one.

The definitions of TERMINAL in the job table and in the user-defined table LOG_
TBL are unaffected.

10.1.4 Defining Privileges
Certain functions of the logical name system services are restricted to users with
specific privileges. The system checks the privileges in the user authorization
file (UAF) granted to you when your system manager sets up your account. The
system also checks for read, write, and delete accessibility. Privileges allow users
to perform the functions shown in Table 10-1.

Table 10-1 Summary of Privileges

Privilege

GRPNAM

GRPPRV

SYS NAM

SYSPRV

Function

Creates or deletes a logical name in your group logical name table.

Creates or deletes a logical name in your group logical name table.

Creates executive- or kernel-mode logical names. Deletes a logical name
or table at an inner access mode.

Creates or deletes a logical name in your group logical name table.
Creates a shareable table.

All users can create, delete, and translate their own process-private logical names
and process-private logical name tables.

10-9

Logical Name Services
10.1 Logical Name System Services

10.1.5 Specifying Access Modes
You can specify the access mode of a logical name when you define the logical
name. If you do not specify an access mode, then the access mode defaults
to that of the caller of the SYS$CRELNM system service. If you specify the
acmode argument and the process has SYSNAM privilege, the logical name
is created with the specified access mode. Otherwise, the access mode can be
no more privileged than the caller. For information about access modes, see
Open VMS Programming Interfaces: Calling a System Routine and the discussion
of SYS$CRELNM in the Open VMS System Services Reference Manual.

A logical name table can contain multiple definitions of the same logical name
with different access modes. If a request to translate such a logical name specifies
the acmode argument, then the SYS$TRNLNM system service ignores all names
defined at a less privileged mode. A request to delete a logical name includes the
access mode of the logical name. Unless the process has the SYSNAM privilege,
the mode specified can be no more privileged than the caller.

The command interpreter places entries made from the command stream into the
process-private logical name table; these are supervisor-mode entries and are not
deleted at image exit (except for the logical names defined by the DCL commands
ASSIGN/USER and DEFINE/USER). During certain system operations, such
as the activation of an image installed with privilege, only executive- and
kernel-mode logical names are used.

Logical names or logical name table names, which either an image running
in user mode or the DCL commands ASSIGN/USER and DEFINE/USER have
placed in a process-private logical name table, are automatically deleted at
image exit. Shareable user-mode names, however, survive image exit and process
deletion.

10.1.6 Specifying Attributes

10-10

Generally, attributes specified through the logical name system services perform
two functions: they affect the creation of logical names or govern how the system
service operates, and they affect the translation of logical names and equivalence
strings.

Attributes that affect the creation of the logical names are specified optionally in
the attr argument of a system service call.

You can specify any of the following attributes:

• LNM$M_CONCEALED-Specifies that the equivalence string for the logical
name is an Open VMS RMS concealed device name.

• LNM$M_CONFINE-Prevents process-private logical names from being
copied to subprocesses. Subprocesses are created by the DCL command
SPAWN or by the run-time library LIB$SPAWN routine. This attribute is
specified only in a SYS$CRELNM or SYS$CRELNT system service call.

• LNM$M_NO_ALIAS-Prevents creation of a duplicate logical name in the
specified logical name table at an outer access mode. If another logical name
already exists in the table at an outer access mode, that name is deleted.

If specified in a SYS$CRELNT system service call, this attribute prevents
creation of a logical name table at an outer access mode in a directory table if
the table name already exists in the directory table.

This attribute is specified only in a SYS$CRELNM or SYS$CRELNT system
service call.

Logical Name Services
10.1 Logical Name System Services

• LNM$M_CREATE_IF-Prevents creation of a logical name table if the
specified table already exists at the specified access mode in the appropriate
directory table. This attribute is specified only in a SYS$CRELNT system
service call.

• LNM$M_CASE_BLIND-Governs the translation process and causes
SYS$TRNLNM to ignore uppercase and lowercase differences in letters
when searching for logical names. This attribute is specified only in a
SYS$TRNLNM system service call.

• LNM$M_TERMINAL-Prevents further translation of equivalence strings by
the logical name services.

The translation attributes LNM$M_CONCEALED and LNM$M_TERMINAL
associated with logical names and equivalence strings are specified optionally
through the LNM$_ATTRIBUTES item code in the itmlst argument of the
SYS$CRELNM system service call. When the item code LNM$_ATTRIBUTES
is specified through SYS$TRNLNM, the system returns the current attributes
assoeiated with the logical name and equivalence string at the current index
value. Since a logical name can have more than one equivalence name, each
equivalence name is identified by an index value. The item code LNM$_INDEX
of SYS$TRNLNM searches for an equivalence name that has the specified index
value.

The following attributes may be returned:

• LNM$M_CONCEALED-Indicates that the equivalence string at the current
index value for the logical name is an Open VMS RMS concealed device name.

• LNM$M_CONFINE-Indicates that the logical name cannot be used by
spawned subprocesses. Subprocesses are created by the DCL command
SPAWN or by the run-time library LIB$SPAWN routine.

• LNM$M_CRELOG-Indicates that the logical name was created by the
SYS$CRELOG system service.

• LNM$M_EXISTS-Indicates that the equivalence string at the specified index
value exists.

• LNM$M_NO_ALIAS-Indicates that if the logical name already exists in the
table, it cannot be created in that table at an outer access mode.

• LNM$M_TABLE-Indicates that the logical name is the name of a logical
name table.

• LNM$M_TERMINAL-Indicates that the equivalence strings cannot be
translated further.

The attributes of multiple equivalence strings do not have to match. For more
information about attributes, refer to the appropriate system service in the
Open VMS System Services Reference Manual.

10.1. 7 Establishing Logical Name Table Quotas
A logical name table quota is the number of bytes allocated in memory for
logical names contained in a logical name table. Logical name table quotas are
established in the following instances:

• When the system is ~initialized

• When a process is created

10-11

Logical Name Services
10.1 Logical Name System Services

• When logical name tables are created

Each logical name table has a quota associated with it that limits the number of
bytes of memory (either process pool or system paged pool) that can be occupied
by the names defined in the table. The quota for a table is established when the
table is created.

If no quota is specified, the newly created table has unlimited quota. Note that
this table can expand to consume all available process or system memory, and
all users with write access to such a shareable table can cause the unlimited
consumption of system paged pool.

10.1.7.1 Directory Table Quotas
When the system is initialized, unlimited quota is automatically established for
the system directory table LNM$SYSTEM_DIRECTORY.

When you log in to the system, unlimited quota is automatically established for
the process directory table LNM$PROCESS_DIRECTORY.

10.1.7.2 Default Logical Name Table Quotas
The process, group, and system logical name tables have unlimited quota.

10.1.7.3 Job Logical Name Table Quotas
Because the job logical name table is a shareable table, and because you do not
need special privileges to create logical names within it, the quota allocated
to this logical name table is constrained at the time the table is created. The
following three mechanisms exist to specify the quota for the job logical name
table at the time of its creation:

• For all processes that activate LOGINOUT, the quota for the job logical name
table is obtained from the system authorization file. This allows the quota for
the job to be specified on a user-by-user basis. You can modify the job logical
name table quota by specifying a value with the DCL command AUTHORIZE
/JTQUOTA.

• For all processes that do not activate LOGINOUT, the quota for the job logical
name table can be specified as a quota list item (PQL$_JTQUOTA) in the call
to the Create Process (SYS$CREPRC) system service. If a detached process is
to be created by means of the DCL command RUN/DETACHED, then you can
use the /JOB_TABLE_QUOTA qualifier to specify the SYS$CREPRC quota
list item.

• For all processes that do not activate LOGINOUT and do not specify a PQL$_
JTQUOTA quota list item in their call to SYS$CREPRC, the quota for the
job logical name table is taken from the dynamic System Generation utility
(SYSGEN) parameter PQL$_DJTQUOTA. You can use SYSGEN to display
both PQL$_DJTQUOTA and PQL$_MJTQUOTA, the default and minimum
job logical name table quotas, respectively.

10.1.7.4 User-Defined Logical Name Table Quotas

10-12

User-defined logical name tables can be created with either an explicit limited
quota or no quota limit.

The presence of user-defined logical name table quotas eliminates the need for a
privilege (for example, SYSNAM or GRPNAM) to control consumption of paged
pool when you create logical names in a shareable table.

Logical Name Services
10.1 Logical Name System Services

10.1.8 Using Logical Name and Equivalence Name Format Conventions
The operating system uses special conventions for assigning logical names to
equivalence names and for translating logical names. These conventions are
generally transparent to user programs; however, you should be aware of the
programming considerations involved.

If a logical name string presented in 1/0 services is preceded by an underscore
(_), the 1/0 services bypass logical name translation, drop the underscore, and
treat the logical name as a physical device name.

When you log in, the system creates default logical name table entries for
process-permanent files. The equivalence names for these entries (for example,
SYS$INPUT. and SYS$0UTPUT) are preceded by a 4-byte header that contains
the following information:

Byte Contents

0 AXlB (escape character)

1 AXQO

2-3 Open VMS RMS Internal File Identifier (IFI)

This header is followed by the equivalence name string. If any of your program
applications must translate system-assigned logical names, you must prepare the
program to check for the existence of this header and to use only the desired part
of the equivalence string. The following program demonstrates how to do this:

#include <stdio.h>
#include <lnmdef .h>
#include <ssdef .h>
#include <descrip.h>
#include <ctype.h>
#include <string.h>

#define HEADER 4

/* Define an item descriptor */
struct {

unsigned short buflen, item code;
void *bufaddr; -
void *retlenaddr;
unsigned int terminator;

}item_lst;

main()

unsigned int status,len,i;
char resstring[LNM$C NAMLENGTH];
$DESCRIPTOR(tabdesc,"LNM$FILE DEV");
$DESCRIPTOR(logdesc,"SYS$0UTPUT");

item lst.buflen = LNM$C NAMLENGTH;
item-1st.item code = LNM$ STRING;
item-lst.bufaddr = resstring;
item-lst.retlenaddr = O;
item=lst.terminator = O;

10-13

Logical Name Services
1 o·.1 Logical Name System Services

/* Translate the logical name */
/* attr - attributes of the logical·name */
/* tabnam - logical name table */.

/*

*/

status = SYS$TRNLNM(o,
&tabdesc,
&logdesc,
O,

/* lognam - logical name */
/* acmode - accessm mode */
/* itmlst - item list */ &item 1st);

if((status & 1)-!= 1)
LIB$SIGNAL(status);

Examine 4-byte header
Is first character an escape char?
If so, dump the header

if(resstring[O] == OxlB) {
printf("\nDumping the header ••• \n");
for(i = O; i < HEADER; i++)

}
else

printf(" Byte %d: %X\n",i,resstring[i]);

printf("\nEquivalence string: %s\n",(resstring +HEADER));

printf("Header not found\n");

10.1.9 Specifying the Logical Name Table Search List

10-14

Logical names exist as entries within logical name tables. When a logical name
is to be created, deleted, or translated, you must specify or take the default name
that designates the logical name table that contains the logical name. This name
possesses one or more of the following characteristics:

• It is the name of a logical name table.

• It is a logical name that iteratively translates in the process or system
directory table to the name of a logical name table.

• It is a multivalued logical name (search list) that iteratively translates to
the names of several logical name tables. The tables are used in the order in
which they appear.

As mentioned in Section 10.1.2, predefined logical names exist for certain logical
name tables. These predefined names begin with the prefix LNM$. You can
redefine these names to modify the search order or the tables used.

Instead of a fixed set of logical name tables and a rigidly defined order (process,
job, group, system) for searching those tables, you can specify which tables are
to be searched and the order in which they are to be searched. Logical names in
the directory tables are used to specify this searching order. By convention, each
class of logical name (for example, device or file specification) uses a particular
predefined name for this purpose.

For example, LNM$FILE_DEV is the logical name which defines the list of logical
name tables used whenever file specifications or device names are translated
by Open VMS RMS or the I/O services. LNM$FILE_DEV is the default for file
specifications and device names. This name must translate to a list of one or
more logical name table names that specify the tables to be searched when
translating file specifications.

By default, LNM$FILE_DEV specifies that the process, job, group, and system
tables are all searched, in that order, and that the first match found is returned.

Logical Name Services
10.1 Logical Name System Services

Logical name table names are translated from two tables: the process logical
name directory table LNM$PROCESS_DIRECTORY and the system logical name
directory table LNM$SYSTEM_DIRECTORY. The LNM$FILE_DEV logical name
table must be defined in one of these tables.

Thus, if identical logical names exist in the process and group tables, the process
table entry is found first, and the job and group tables are not searched. When
the process logical name table is searched, the entries are searched in order
of access mode, with user-mode entries matched first, supervisor-mode entries
second, and so on.

If you want to change the list of tables used for device and file specifications, you
can redefine LNM$FILE_DEV in the process directory table LNM$PROCESS_
DIRECTORY.

10.2 Creating a Logical Name Using SVS$CRELNM
To perform an assignment in a program, you must provide character-string
descriptors for the name strings, select the table to contain the logical name,
and use the SYS$CRELNM system service as shown in the following example.
In either case, the result is the same: the logical name DISK is equated to the
physical device name DUA2 in table LNM$JOB.

#include <stdio.h>
#include <lnmdef .h>
#include <descrip.h>
#include <string.h>
#include <ssdef .h>

/* Define an item descriptor */

struct itm {

};

unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;

/* Declare an item list */

struct {

}itm_lst;

main()

struct itm items[2];
unsigned int terminator;

static char egvnam[] = "DUA2:";
unsigned int status, lnmattr;
$DESCRIPTOR(logdesc,"DISK");
$DESCRIPTOR(tabdesc,"LNM$JOB");

lnrnattr = LNM$M_TERMINAL;

/* Initialize the item list */

itm lst.items[O].buflen = 4;
itm-lst.items[O].item code= LNM$ ATTRIBUTES;
itm-lst.items[O].bufaddr = &lnmattr;
itm=lst.items[O].retlenaddr = O;

itm lst.items[l].buflen = strlen(egvnam);
itm-lst.items[l].item code= LNM$ STRING;
itm-lst.items(l].bufaddr = egvnamT
itm-lst.items[l].retlenaddr = O;
itm=lst.terminator = O;

10-15

Logical Name Services
10.2 Creating a Logical Name Using SVS$CRELNM

/* Create the logical name */

}

status = SYS$CRELNM(O,
&tabdesc,
&logdesc,
o,
&itm 1st);

if((status & 1) != l)­
LIB$SIGNAL(status);

/* attr - attributes */
/* tabnam - logical table name */
/* lognam - logical name */
/* acmode - access mode */
/* itmlst - item list */

Note that the translation attribute is specified as terminal. This attribute
indicates that iterative translation of the logical name DISK ends when the
equivalence string DUA2 is returned. In addition, because the acmode argument
was not specified, the access mode of the logical name DISK is the access mode of
the calling image.

10.3 Creating Logical Name Tables Using SYS$CRELNT

10-16

The Create Logical Name Table (SYS$CRELNT) system service creates logical
name tables. Logical name tables can be created in any access mode depending
on the privileges of the calling process. A user-specified logical name that
identifies the newly created logical name table is stored in the process directory
table LNM$PROCESS_DIRECTORY.

The following example illustrates a call to the SYS$CRELNT system service:

#include <stdio.h>
#include <ssdef .h>
#include <lnmdef .h>
#include <descrip.h>

main()

unsigned int status, tab attr=LNM$M CONFINE, tab_quota=5000;
$DESCRIPTOR(tabdesc,"LOG-TABLE"); -
$DESCRIPTOR(pardesc,"LNM$PROCESS_TABLE");

/* Create th~ logical name table */
status = SYS$CRELNT(&tab attr,

o, -
o,
&tab_quota,

o,
&tabdesc,
&pardesc,
0);

if ((status & 1) != 1) {
LIB$SIGNAL(status);

/* attr - table attributes */
/* resnam - logical table name */
/* reslen - length of table name */
/* quota - max no. of bytes allocated */
/* for names in this table */
/* promsk - protection mask */
/* tabnam - name of new table */
/* partab - name of parent table */
/* acmode - access mode */

In this mmmple, a user-defined table LOG_TABLE is created with an explicit
quota of 5000 bytes. The name of the newly created table is an entry in the
process-private directory LNM$PROCESS_DIRECTORY. The quota of 5000
bytes is deducted from the parent table LNM$PROCESS_TABLE. Because the
CONFINE attribute is associated with the logical name table, the table cannot be
copied from the process to its spawned processes.

Logical Name Services
10.3 Creating Logical Name Tables Using SYS$CRELNT

10.3.1 Creating Shareable Logical Name Tables
If you have SYSPRV privilege, you can create shareable logical name tables.
You can assign protection to these tables through the promsk argument of the
SYS$CRELNT system service. The promsk argument allows you to specify the
type of access for system, owner, group, and world users, as follows:

• Read privileges allow access to names in the logical name table.

• Write privileges allow creation and deletion of names within the logical name
table.

• Delete privileges allow deletion of the logical name table.

~~~~~~~~~~~~- Note ~~~~~~~~~~~~-

The E protection bit is reserved by Digital Equipment Corporation. 

If the promsk argument is omitted, complete access is granted to system and 
owner, and no access is granted to group and world. 

10.4 Deleting Logical Names Using SYS$DELLNM 
The Delete Logical Name (SYS$DELLNM) system service deletes entries from a 
logical name table. When you write a call to the SYS$DELLNM system service, 
you can specify a single logical name to delete, or you can specify that you want 
to delete all logical names from a particular table. For example, the following call 
deletes the process logical name TERMINAL from the job logical name table: 

#include <stdio.h> 
#include <lnmdef .h> 
#include <ssdef .h> 
#include <descrip.h> 

main() { 

unsigned int status; 
$DESCRIPTOR(logdesc,"DISK"); 
$DESCRIPTOR(tabdesc,"LNM$JOB"); 

/* Delete the logical name */ 

} 

status = SYS$DELLNM(&tabdesc, 
&logdesc, 

0); 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

/* tabnam - logical table name */ 
/* lognam - logical name */ 
/* acmode - access mode */ 

For information about access modes and the deletion of logical names, see 
Open VMS Programming Interfaces: Calling a System Routine. 

10.5 Translating Logical Names Using SYS$TRNLNM 
The Translate Logical Name (SYS$TRNLNM) system service translates a logical 
name to its equivalence string. In addition, SYS$TRNLNM returns information 
about the logical name and equivalence string. 

The system service call to SYS$TRNLNM specifies the tables to search for the 
logical name. The tabnam argument can be either the name of a logical name 
table or a logical name that translates to a list of one or more logical name tables. 

10-17 



Logical Name Services 
10.5 Translating Logical Names Using SVS$TRNLNM 

10-18 

Because logical names can have many equivalence strings, you can specify which 
equivalence string you want to receive. 

A nu mber of system services that require a device name accept a logical name 
and translate the logical name iteratively until a physical device name is found 
(or until the system default number of logical name translations has been 
performed, typically 10). These services implicitly specify the logical name table 
name LNM$FILE_DEV. For more information about LNM$FILE_DEV, refer to 
Section 10.1.9. 

The following system services perform iterative logical name translation 
automatically: 

• Allocate Device (SYS$ALLOC) 

• Assign I/O Channel (SYS$ASSIGN) 

• Broadcast (SYS$BRDCST) 

• Create Mailbox (SYS$CREMBX) 

• Deallocate Device (SYS$DALLOC) 

• Dismount Volume (SYS$DISMOU) 

• Get DeviceNolume Information (SYS$GETDVI) 

• Mount Volume (SYS$MOUNT) 

In many cases, however, a program must perform the logical name translation 
to obtain the equivalence name for a logical name outside the context of a 
device name or file specification. In that case, you must supply the name of 
the table or tables to be searched. The SYS$TRNLNM system service searches 
the user-specified logical name tables for a specified logical name and returns 
the equivalence name. In addition, SYS$TRNLNM returns attributes that are 
specified optionally for the logical name and equivalence string. 

The following example shows a call to the SYS$TRNLNM system service to 
translate the logical name ABC: 

#include <stdio.h> 
#include <lnmdef .h> 
#include <descrip.h> 
#include <ssdef .h> 

/* Define an item descriptor */ 

struct itm 

}; 

unsigned short buflen, itern_code; 
void *bufaddr; 
void *retlenaddr; 

/* Declare an item list */ 
struct { 

}trnlst; 

main() 

struct itm items[l]; 
unsigned int terminator; 

char eqvbufl[LNM$C NAMLENGTH], eqvbuf2[LNM$C NAMLENGTH]; 
unsigned int status, trnattr=LNM$M CASE BLIND; 
unsigned int eqvdescl, eqvdesc2; - -
$DESCRIPTOR(logdesc,"ABC"); 
$DESCRIPTOR(tabdesc, "LNM$FILE_DEV") i 



Logical Name Services 
10.5 Translating Logical Names Using SVS$TRNLNM 

/* Assign values to the item list */ 

trnlst.items[O].buflen = LNM$C NAMLENGTH; 
trnlst.items[O].item code= LNM$ STRING; 
trnlst.items[O].bufaddr = eqvbufT; 
trnlst.items[O].retlenaddr = &eqvdescl; 

trnlst.items[l].buflen = LNM$C NAMLENGTH; 
trnlst.items[l].item code= LNM$ STRING; 
trnlst.items[l].bufaddr = eqvbuf2; 
trnlst.items[l].retlenaddr = &eqvdesc2; 
trnlst.terminator = O; 

/* Translate the logical name */ 
status = SYS$TRNLNM(&trnattr, 

&tabdesc, 
&logdesc, 
0, 
&trnlst); 

if((status & 1) l= 1) 
LIB$SIGNAL(status); 

/* attr - attributes */ 
/* tabnam - table name */ 
/* lognam - logical name */ 
/* acmode - access mode */ 
/* itmlst - item list */ 

This call to the SYS$TRNLNM system service results in the translation of the 
logical name ABC. In addition, LNM$FILE_DEV is specified in the tabnam 
argument as the search list that SYS$TRNLNM is to use to find the logical name 
ABC. The logical name ABC was assigned two equivalence strings. The LNM$_ 
STRING item code in the itmlst argument directs SYS$TRNLNM to look for 
an equivalence string at the current index value. Note that the LNM$_STRING 
item code is invoked twice. The equivalence strings are placed in the two output 
buffers, EQVBUFl and EQVBUF2, described by TRNLIST. 

The attribute LNM$M_CASE_BLIND governs the translation process. The 
SYS$TRNLNM system service searches for the equivalence strings without 
regard to uppercase or lowercase letters. The SYS$TRNLNM system service 
matches any of the following character strings: ABC, aBC, AbC, abc, and so forth. 

The output equivalence name string length is written into the first word of the 
character string descriptor. This descriptor can then be used as input to another 
system service. 

10.6 Example of Using the Logical Name System Services 
In the following example, the Fortran program CALC.FOR creates a spawned 
subprocess to perform an iterative calculation. The logical name REP _NUMBER 
specifies the number of times that REPEAT should perform the calculation. 
Because the two processes are part of the same job, REP _NUMBER is placed 
in the job logical name table LNM$JOB. (Note that logical name table names 
are case sensitive. Specifically, LNM$JOB is a system-defined logical name that 
refers to the job logical name table; lnm$job is not.) 

PROGRAM CALC 

Status variable and system routines 

INCLUDE '($LNMDEF)' 
INCLUDE '($SYSSRVNAM)' 
INTEGER*4 STATUS 

10-19 



Logical Name Services 
10.6 Example of Using the Logical Name System Services 

10-20 

INTEGER*2 NAME LEN, 
2 NAME CODE 

INTEGER*4 NAME ADDR, 
2 RET ADDR /0/, 
2 END-LIST /0/ 

COMMON /LIST/ NAME LEN, 
2 NAME CODE, 
2 NAME-ADDR, 
2 RET ADDR, 
2 END-LIST 

CHARACTER*3 REPETITIONS STR 
INTEGER REPETITIONS -

EXTERNAL CLI$M NOLOGNAM, 
2 CLI$M NOCLISYM, 
2 CLI$M-NOKEYPAD, 
2 CLI$M=NOWAIT 

NAME LEN = 3 
NAME-CODE = (LNM$ STRING) 
NAME-ADDR = %LOC(REPETITIONS STR) 
STATUS= SYS$CRELNM (,'LNM$JOB' ,'REP NUMBER' ,,NAME LEN) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) -

MASK = %LOC (CLI$M NOLOGNAM) .OR. 
2 %LOC (CLI$M NOCLISYM) .OR. 
2 %LOC (CLI$M-NOKEYPAD) .OR. 
2 %LOC (CLI$M-NOWAIT) 

STATUS = LIB$GET EF (FLAG) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
STATUS= LIB$SPAWN ('RUN REPEAT' ,,,MASK,,,,FLAG) 

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

END 

PROGRAM REPEAT 
INTEGER STATUS, 

2 SYS$TRNLNM,SYS$DELLNM 
INTEGER*4 REITERATE, 

2 REPEAT STR LEN 
CHARACTER*3 REPEAT STR 

! Item list for SYS$TRNLNM 
INTEGER*2 NAME LEN, 

2 NAME CoDE 
INTEGER*4 NAME ADDR, 

2 RET ADDR, 
2 END-LIST /0/ 

COMMON /LIST7 NAME LEN, 
2 NAME CODE, 
2 NAME-ADDR, 
2 RET ADDR, 
2 END-LIST 

NAME LEN = 3 
NAME-CODE = (LNM$ STRING) 
NAME-ADDR = %LOC(REPEAT STR) 
RET ADDR = %LOC(REPEAT STR LEN) 
STATUS= SYS$TRNLNM (,- -

2 'LNM$JOB', 
2 'REP NUMBER',, 
2 NAME-LEN) 
IF (.NOT. STATUS) CALL LIB$SIGNAL 

READ (UNIT = REPEAT STR, 
2 FMT = '(I3)') REITERATE 

1 Logical name table 
! Logical name 
! List requesting equivalence string 

(%VAL(STATUS)) 



Logical Name Services 
10.6 Example of Using the Logical Name System Services 

DO I = 1, REITERATE 
END DO 

STATUS= SYS$DELLNM ('LNM$JOB' I ! Logical name table 
2 'REP NUMBER',) ! Logical name 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

END 

10-21 





11 
Distributed Name Service (VAX Only) 

This chapter describes the Digital Distributed Name Service (DECdns) Clerk by 
introducing the functions of the DECdns system service (SYS$DNS) and various 
run-time library routines. It is divided into the following sections: 

Section 11.1 describes how to use the portable application programming interface 
and the operating system's system service and run-time library interface. 

Section 11.2 describes how to use the SYS$DNS system service. 

Section 11.3 describes how to use the DCL command DEFINE. 

11.1 DECdns Clerk System Service 
The DECdns Clerk (SYS$DNS) system service provides applications with a 
means of assigning networkwide names to system resources. Applications can 
use DECdns to name such resources as printers, files, disks, nodes, servers, and 
application databases. Once an application has named a resource using DECdns, 
the name is available for all users of the application. 

The SYS$DNS system service supports two programming interfaces: 

• Portable application programming interface 

• System service and run-time library 

Portable Application Interface 
Application designers should select an interface for their application based on 
programming language, application base, and specific requirements of their 
application. 

The portable interface provides support for applications .written in the C 
programming language, and it provides a high-level interface with easy-to-use 
methods of creating and maintaining DECdns names. Use the portable interface 
for applications that must be portable between VAX systems and the ULTRIX 
operating system. 

The portable interface is documented in the Guide to Programming with DECdns. 

VAX System's System Services and RTL Routines 
The VAX system's system services and run-time library routines can be used by 
applications written in the high-level and midlevel languages listed in the preface 
of this document. However, applications that use these interfaces are limited to 
the VAX system environment. Use the system service when an application meets 
any of the following requirements: 

• The application needs the full capabilities, flexibility, and functions of 
asynchronous support. 

• The application will run as part of a privileged shareable image on the 
operating system. 

11-1 



Distributed Name Service (VAX Only) 
11.1 DECdns Clerk System Service 

• The application is not written in the C programmirig language. 

The SYS$DNS system service is documented in the Open VMS System Services 
Reference Manual. Before using this system service, familiarize yourself with 
the basic operating principles, terms, and definitions used by DECdns. You can 
gain a working knowledge of DECdns by reading about the following topics in the 
Guide to Programming with DECdns: 

• DECdns component operation 

• N amespace directories, objects, soft links, groups, and clearinghouses 

• DECdns name syntax 

• Attributes 

• Clerk caching 

• Setting confidence and timeouts 

• Recommendations for DECdns application programmers 

By understanding these topics, you can proceed more easily with this chapter, 
which provides an introduction to the DECdns system service and run-time 
library routines and discusses the following topics: 

• Functions provided by the service and routines 

• How to use the SYS$DNS system service 

11.1.1 Using the DECdns System Service and Run-Time Library Routines 
You can use the SYS$DNS system service and run-time library routines together 
to assign, maintain, and retrieve DECdns names. This section describes the 
capabilities of each interface. 

11.1.1.1 Using the SYS$DNS System Service 

11-2 

DECdns provides a single system service call (SYS$DNS) to create, delete, modify, 
and retrieve DECdns names from a namespace. The SYS$DNS system service 
completes asynchronously; that is, it returns to the client immediately after 
making a name service call. The status returned to the client indicates whether a 
request was queued successfully to the name service. 

The SYS$DNSW system service is the synchronous equivalent of SYS$DNS. The 
SYS$DNSW call is identical to SYS$DNS in every way except that SYS$DNSW 
returns to the caller after the operation completes. 

The SYS$DNS call has two main parameters: 

• A function code that identifies the particular service to perform 

• An item list that specifies all the parameters for the required function 

The system service provides the following functions: 

• Create and delete DECdns names in the namespace 

• Enumerate DECdns names in a particular directory 

• Add, read, remove, and test attributes and attribute values 

• Add, create, remove, restore, and update directories 

• Create, remove, and resolve soft links 

• Create and remove groups 



Distributed Name Service (VAX Only) 
11.1 DECdns Clerk System Service 

• Add, remove, and test members in a group 

• Parse names to convert string format names to DECdns opaque format names 
and back to string 

You specify item codes as either input or output parameters in the item list. 
Input parameters modify functions, set context, or describe the information to be 
returned. Output parameters return the requested information. 

You can specify the following in input item codes: 

• An attribute name and type 

• The class of a DECdns name and, optionally, a class filter 

• The class version of a DECdns name 

• A confidence setting to indicate whether the request should be serviced from 
the clerk's cache or from a server 

• An indication that the application will repeat a read call, which forces caching 
of recently read data 

• A name or timestamp that sets the context from which to begin or restart 
enumerating or reading 

• The name and type of an object, directory, group, member, clearinghouse, or 
soft link, and the ability to suppress the namespace nickname from the full 
name 

• A simple or full name in opaque or string format 

• A request to search subgroups for a member 

• An operation, either adding or deleting an attribute 

• A value for an attribute 

• A pointer to the address of the next character in a full or simple name 

• A timeout period to wait for a call to complete 

• An expiration time and extension time for soft links 

The output item codes return the following information: 

• A creation timestamp for an object 

• A set of child directories, soft links, attribute names, attribute values, or 
object names 

• An opaque simple or full name 

• A string name and length 

• A resolved soft link 

• A name or timestamp context variable that indicates the last directory, object, 
soft link, or attribute that was enumerated or read 

11-3 



Distributed Name Service (VAX Only) 
11.1 DECdns Clerk System Service 

11.1.1.2 Using the Run-Time Library Routines 
You can use the DECdns run-time library routines to manipulate output from the 
SYS$DNS system service. The routines provide the following functions: 

• Remove a value from a set returned by an enumeration or read system service 
function 

• Compare, append, concatenate, and count opaque names that were created 
with the system service 

• Convert addresses 

To read a single attribute value using the system service and run-time library 
routines, use the following routines: 

• DNS$_ENUMERATE_OBJECTS function code to enumerate objects 

• DNS$REMOVE_FIRST_SET_VALUE run-time library routine to remove the 
first set value 

• DNS$_READ_ATTRIBUTE function code to read the first set value 

You can also use the system service and run-time library routines together to add 
an opaque simple name to a full name by performing the following steps: 

1. Obtain a string full name from a user. 

2. Use the system service DNS$_PARSE_FULLNAME_STRING function code to 
convert the string name to opaque format. 

3. Use the DNS$_APPEND_SIMPLE_TO_RIGHT run-time library routine to 
add an opaque simple name to the end of the full name. 

11.2 Using the SYS$DNS System Service Call 
The following sections describe how to create and modify an object, and then how 
to read attributes and enumerate names and attributes in the namespace. 

Each section contains a code example. These code examples are all contained 
in the sample program that resides on your distribution medium under the file 
name SYS$EXAMPLES:SYS$DNS_SAMPLE.C. 

11.2.1 Creating Objects 

11-4 

Applications that use DECdns can create an object in the namespace for 
each resource used by the application. You can create objects using either 
the SYS$DNS or the SYS$DNSW system service. 

A DECdns object consists of a name and its associated attributes. When you 
create the object, you must assign a class and a class version. You can modify 
the object to hold additional attributes, such as class-specific attributes, on an 
as-needed basis. 

Note that applications can use objects that are created by other applications. 

To create an object in the namespace with SYS$DNS: 

1. Prompt the user for a name. 

The name that an application assigns to an object should come from a user, 
a configuration file, a system logical, or some other source. The application 
never assigns an object's name because the namespace structure is uncertain. 
The name the application receives from the user is in string format. 



Distributed Name Service (VAX Only) 
11.2 Using the SYS$DNS System Service Call 

2. Use the SYS$DNS parse function to convert the full name string into an 
opaque format. Specify the DNS$_NEXTCHAR_PTR item code to obtain the 
length of the opaque name. 

3. Optionally, reserve an event flag so you can check for completion of the 
service. 

4. Build an item list that contains the following elements: 

• The opaque name for the object (resulting from the translation in step 2) 

• The class name given by the application, which should contain the facility 
code 

• The class version assigned by the application 

• An optional timeout value that specifies when the call expires 

5. Optionally, provide the address of the DECdns status block to receive status 
information from the name service. 

6. Optionally, provide the address of the asynchronous system trap (AST) service 
routine. AST routines allow a program to continue execution while waiting 
for parts of the program to complete. 

7. Optionally, supply a parameter to pass to the AST routine. 

8. Call the create object function and provide all the parameters supplied in 
steps 1 through 7. 

If a clerk call is not complete when timeout occurs, then the call completes with 
an error. The error is returned in the DECdns status block. 

An application should check for errors that are returned; it is not enough to check 
the return of the SYS$DNS call itself. You need to check the DECdns status 
block to be sure no errors are returned by the DECdns server. 

The following routine, written in C, shows how to create an object in the 
namespace with the synchronous service SYS$DNSW. The routine demonstrates 
how to construct an item list. 

#include <dnsdef .h> 
#include <dnsmsg.h> 
/* 
* Parameters: 
* class name = address of the opaque simple name of the class 
* to assign to the object 
* class len = length (in bytes) of the class opaque simple name 
* object name= address of opaque full name of the object 
* - to create in the namespace. 
* object len = length (in bytes) of the opaque full name of the 
* - object to create 
*/ 

create object(class name, class len, object name, object len) 
unsigned char *class name; /*Format is a DECdns opaque simple name*\ 
unsigned short class-len; 
unsigned char *object name; /*Format is a DECdns opaque simple name*\ 
unsigned short object-len; 
{ -

struct $dnsitmdef createitem[4]; /*Item list used by system service*/ 
struct $dnscversdef version; /* Version assigned to the object */ 
struct $dnsb iosb; /* Used to determine DECdns server status */ 
int status; /* Status return from system service */ 

11-5 



Distributed Name Service (VAX Only) 
11.2 Using the SVS$DNS System Service Call 

} 

/* 
* Construct the item list that creates the object: 
*/ 

createitem[O].dns$w itm size= class len; () 
createitem[O].dns$w-itm-code = dns$ class; 
createitem[O]~dns$a=itnCaddress = ciass_name; 

createitem[l].dns$w itm size= object len; f) 
createitem[l].dns$w-itm-code = dns$ objectname; 
createitem[l].dns$a=itnCaddress = object_name; 

version.dns$b c major = 1; 8 
version.dns$b=c=minor = O; 

createitem[2].dns$w itm size= sizeof(struct $dnscversdef); 0 
createitem[2].dns$w-itm-code = dns$ version; 
createitem[2].dns$a=itm=address =&version; 

*((int *)&createitem[3]) = O; 0 
status = sys$dnsw(O, dns$_create_object, &createitem, &iosb, O, O); 0 
if (status == SS$ NORMAL) 
{ -

status = iosb.dns$l_dnsb_status; f) 

return( status); 

() The first entry in the item list is the address of the opaque simple name that 
represents the class of the object. 

f) The second entry is the address of the opaque full name for the object. 

8 The next step is to build a version structure, which will indicate the version 
of the object. In this case, the object is version 1.0. 

0 The third entry is the address of the version structure that was just built. 

0 A value of 0 terminates the item list. 

0 The next step is to call the system service to create the object. 

f) Check to see that both the system service and DECdns were able to perform 
the operation without error. 

11.2.2 Modifying Objects and Their Attributes 

11-6 

After you create objects that identify resources, you can add or modify attributes 
that describe properties of the object. There is no limit imposed on the number of 
attributes an object can have. 

You modify an object whenever you need to add an attribute or attribute value, 
change an attribute value, or delete an attribute or attribute value. When you 
modify an attribute, DECdns updates the timestamp contained in the DNS$UTS 
attribute for that attribute. 

To modify an attribute or attribute value, use the DNS$_MODIFY _ATTRIBUTE 
function code.· Specify the attribute name in the input item code along with the 
following required input item codes: 

• DNS$_ATTRIBUTETYPE to specify a set-valued (DNS$K_SET) or single­
valued (DNS$K_SINGLE) attribute 

• DNS$_MODOPERATION to specify that the value is being added (DNS$K_ 
PRESENT) or deleted (DNS$K_ABSENT) 



Distributed Name Service (VAX Only) 
11.2 Using the SYS$DNS System Service Call 

Use the DNS$_MODVALUE item code to specify the value of the attribute. Note 
that the DNS$_MODVALUE item code must be specified to add a single-valued 
attribute. You can specify a null value for a set-valued attribute. DECdns 
modifies attribute values in the following way: 

• If the attribute exists and you specify an attribute value, the attribute value 
is removed from a set-valued attribute. All other values are unaffected. For a 
single-valued attribute, DECdns removes the attribute and its value from the 
name. 

• If you do not specify an attribute value, DECdns removes the attribute and 
all values of the attribute for both set-valued and single-valued attributes. 

To delete an attribute, use the DNS$_MODOPERATION item code. 

The following is an example of how to use the DNS$_MODIFY_ATTRIBUTE 
function code to add a new member to a group object. To do this, you add the new 
member to the DNS$Members attribute of the group object. Use the following 
function codes: 

• Specify the group object (DNS$_ENTRY) and type (DNS$_LOOKINGFOR). 
The type should be specified as object (DNS$K_OBJECT). 

• Use DNS$_MODOPERATION to add a member to the DNS$Members 
attribute (DNS$_ATTRIBUTENAME), which is a set-valued attribute (DNS$_ 
ATTRIBUTETYPE). 

• Specify the new member object name in DNS$_MODVALUE. 

• Use another DNS$_MODIFY_ATTRIBUTE call to assign access rights for the 
new member to the DNS$ACS attribute of the member object. 

Perform the following steps to modify an object with SYS$DNSW: 

1. Build an item list that contains the following elements: 

• Opaque name of the object you are modifying 

• Type of object 

• Operation to perform 

• Type of attribute you are modifying 

• Attribute name 

• Value being added to the attribute 

2. Supply any of the optional parameters described in Section 11.2.1. 

3. Call the modify attribute function, supplying the parameters established in 
steps 1 and 2. 

11-7 



Distributed Name Service (VAX Only) 
11.2 Using the SVS$DNS System Service Call 

11-8 

The following example, written in C, shows how to add a set-valued attribute and 
a value to an object: 

#include <dnsdef .h> 
#include <dnsmsg.h> 
/* 
* Parameters: 
* obj name = address of opaque full name of object 
* obj-len = length of opaque full name of object 
* att-name = address of opaque simple name of attribute to create 
* att-len = length of opaque simple name of attribute 
* att-value= value to associate with the attribute 
* val=len = length of added value (in bytes) 
*/ 

add attribute(obj name, obj len, att_name, att_len, att_value, val_len) 
unsigned char *ob] name; -
unsigned short obj-len; 
unsigned char *att-name; 
unsigned short att-len; 
unsigned char *att-value; 
unsigned short val-len; 
{ -

struct $dnsitmdef moditem[7]; /* Item list for $DNSW */ 
unsigned char objtype = dns$k object; /* Using objects */ 
unsigned char opertype = dns$k present; /* Adding an object */ 
unsigned char attype = dns$k set; /* Attribute will be type set */ 
struct $dnsb iosb; - /* Used to determine DECdns status */ 
int status; /* Status of system service */ 

/* 
* Construct the item list to add an attribute to an object. 
*/ 

moditem[O].dns$w itm size= obj len; 
moditem[O].dns$w=itm=code = dns$_entry; 
moditem[O].dns$a_itm_address = obj_name; ._ 

moditem[l].dns$w itm size= sizeof(char); 
moditem[l].dns$w-itm-code = dns$ lookingfor; 
moditem[l].dns$a=itm=address = &objtype; f) 

moditem[2].dns$w itm size= sizeof(char); 
moditem[2].dns$w-itm-code = dns$ modoperation; 
moditem[2].dns$a=itm=address = &opertype; ~ 
moditem[3].dns$w itm size= sizeof(char); 
moditem[3].dns$w-itm-code = dns$ attributetype; 
moditem[3].dns$a=itm=address = &attype; G) 

moditem[4].dns$w itm size= att len; 
moditem[4].dns$w-itm-code = dns$ attributename; 
moditern[4].dns$a=itm=address = att_name; ~ 
moditem[5].dns$w itm size= val len; 
moditern[5].dns$w=itm=code = dns$_modvalue; 
moditem[5].dns$a_itm_address = att_value; ~ 

*((int *)&moditem[6]) = O; fj 

/* 
* Call $DNSW to add the attribute to the object. 
*/ 

status= sys$dnsw(O, dns$_modify_attribute, &moditem, &iosb, O, O);«!» 

if (status == SS$ NORMAL) 
{ -
status = iosb.dns$l_dnsb_status; CO 
} 



Distributed Name Service (VAX Only) 
11.2 Using the SVS$DNS System Service Call 

return( status); 
} 

0 The first entry in the item list is the address of the opaque full name of the 
object. 

f) The second entry shows that this is an object, not a soft link or child directory 
pointer. 

8 The third entry is the operation to perform. The program adds an attribute 
with its value to the object. 

8 The fourth entry is the attribute type. The attribute has a set of values 
rather than a single value. 

0 The fifth entry is the opaque simple name of the attribute being added. 

0 The sixth entry is the value associated with the attribute. 

8 A value of 0 terminates the item list. 

0 A call is made to the SYS$DNSW system service to perform the operation. 

0 A check is made to see that both the system service and DECdns performed 
the operation without error. 

11.2.3 Requesting Information from DECdns 
Once an application adds its objects to the namespace and modifies the names to 
contain all necessary attributes, the application is ready to use the namespace. 
An application can request that the DECdns Clerk either read attribute 
information stored with an object or list all the application's objects that are 
stored in a particular directory. An application might also need to resolve all soft 
links in a name in order to identify a target. 

To request information from DECdns, use the read or enumerate function codes, 
as follows: 

• The DNS$_READ_ATTRIBUTE function reads and returns a set whose 
members are the values of the specified attribute. 

• The DNS$_ENUMERATE functions return a list of names for attributes, 
child directories, objects, and soft links. 

11.2.3.1 Using the Distributed File Service (DFS) 
The VAX Distributed File Service (DFS) uses DECdns for resource naming. 
This section gives an example of the DNS$_READ_ATTRIBUTE call as used by 
DFS. The DFS application uses DECdns to give the operating system's users 
the ability to use remote operating system disks as if the disks were attached 
to their local VAX system. The DFS application creates DECdns names for the 
operating system's directory structures (a directory and all of its subdirectories). 
Each DFS object in the namespace references a particular file access point. DFS 
creates each object with a class attribute of DFS$ACCESSPOINT and modifies 
the address attribute (DNS$Address) of each object to hold the DECnet node 
address where the directory structures reside. As a final step in registering its 
resources, DFS creates a database that maps DECdns names to the appropriate 
operating system directory structures. 

Whenever the DFS application receives the following mount request, DFS sends a 
request for information to the DECdns Clerk: 

MOUNT ACCESS_POINT dns-name vms-logical-name 

11-9 



Distributed Name Service (VAX Only) 
11.2 Using the SVS$DNS System Service Call 

To read the address attribute of the access point object, the DFS application 
performs the following steps: 

1. Translates the DECdns name that is supplied through the user to opaque 
format using the SYS$DNS parse function 

2. Reads the class attribute of the object with the $DNS read attribute function, 
indicating that there is a second call to read other attributes of the object 

3. Makes a second call to the SYS$DNS read attribute function to read the 
address attribute of the object 

4. Sends the DECdns name to the DFS server, which looks up the disk on which 
the access point is located 

5. Verifies that the DECdns name is valid on the DFS server 

The DFS client and DFS server now can communicate to complete the mount 
function. 

11.2.3.2 Reading Attributes from DNS 
When requesting information from DNS, an application always takes an object 
name from the user, translates the name into opaque format, and passes it in an 
item list to the DECdns Clerk. 

Each read request returns a set of attribute values. The DNS$_READ_ 
ATTRIBUTE service uses a context item code called DNS$_CONTEXTVARTIME 
to maintain context when reading the attribute values. The context item code 
saves the last member that is read from the set. When the next read call is 
issued, the item code sets the context to the next member in the set, reads it, and 
returns it. The context item code treats single-valued attributes as though they 
were a set of one. 

If an enumeration call returns DNS$_MOREDATA, not all matching names or 
attributes have been enumerated. If you receive this message, you should make 
further calls, setting DNS$_CONTEXTVARTIME to the last value returned until 
the procedure returns SS$_NORMAL. 

The following program, written in C, shows how an application reads an object 
attribute. The SYS$DNSW service uses an item list to return a set of objects. 
Then the application calls a run-time library routine to read each value in the 
set. 

#include <dnsdef .h> 
#include <dnsmsg.h> 
/* 
* Parameters: 
... opaque objname = address of opaque full name for the object 
* - containing the attribute to be read 
* obj len = length of opaque full name of the object 
* opaque attname = address of the opaque simple name of the 
* - attribute to be read 
* attname len = length of opaque simple name of attribute 
*/ 

read attribute(opaque objname, obj_len, opaque_attname, attname_len) 
unsigned char *opaque-objname; 
unsigned short obj len; 
unsigned char *opaque attnarne; 
unsigned short attnarne len; 
{ -

struct $dnsb iosb; 
char objtype = dns$k_object; 

11-10 

/* Used to determine DECdns status */ 
/* Using objects */ 



Distributed Name Service (VAX Only) 
11.2 Using the SYS$DNS System Service Call 

struct $dnsitmdef readitem[6]; /* Item list for system service*/ 
struct dsc$descriptor set_dsc, value_dsc, newset_dsc, cts_dsc; 

unsigned char attvalbuf[dns$k maxattribute]; /*To hold the attribute */ 
/* values returned from extraction routine. */ 

unsigned char attsetbuf[dns$k maxattribute]; /*To hold the set of */ 
/* attribute values after the return from $DNSW. */ 

unsigned char ctsbuf[dns$k_cts_length]; /* Needed for context of multiple reads */ 

int read status; /* Status of read attribute routine */ 
int set status; /* Status of remove value routine */ 
int xx;- /* General variable used by print routine */ 

unsigned short setlen; /* Contains current length of set structure */ 
unsigned short val len; /* Contains length of value extracted from set */ 
unsigned short cts=len; /* Contains length of CTS extracted from set */ 

/* Construct an item list to read values of the attribute. */ C) 
readitem[O].dns$w itm code= dns$ entry; 
readitem[O].dns$w-itm-size =obj Ien; 
readitem[O].dns$a=itm=address = opaque_objname; 

readitem[l].dns$w itm code= dns$ lookingfor; 
readitem[l].dns$w-itm-size = sizeof(char); 
readitem[l].dns$a=itm=address = &objtype; 

readitem[2].dns$w itm code= dns$ attributename; 
readitem[2].dns$a-itm-address =opaque attname; 
readitem[2].dns$w=itm=size = attname_len; 

readitem[3].dns$w itm code= dns$ outvalset; 
readitem[3].dns$a-itm-ret length~ &setlen; 
readitem[3].dns$w-itm-size = dns$k maxattribute; 
readitem[3].dns$a=itm=address = attsetbuf; 

*((int *)&readitem[4]) = O; 

do f} 
{ 

read status = sys$dnsw(O, dns$_read_attribute, &readitem, &iosb, 0, O); 

if (read status == SS$_NORMAL) 
{ -

read status iosb.dns$l_dnsb_status; 

if((read status== SS$_NORMAL) I I (read_status == DNS$_MOREDATA)) 
{ -

do 
{ 

set dsc.dsc$w length = setlen; 
set=dsc.dsc$a=pointer = attsetbuf; /* Address of set */ 

value dsc.dsc$w length = dns$k simplenamemax; 
value-dsc.dsc$a-pointer = attvalbuf; /* Buffer to hold */ 

- - /* attribute value */ 

cts dsc.dsc$w length = dns$k cts length; 
cts=dsc.dsc$a=pointer = ctsbuf; 7* Buffer to hold value's CTS*/ 

newset dsc.dsc$w length = dns$k maxattribute; 
newset-dsc.dsc$a-pointer = attsetbuf; /* Same buffer for */ 

- - I* each call *I 

set status = dns$remove first set value(&set dsc, &value dsc, 
8 - - &val len, &cts dsc, -

- &cts len, &newset dsc, 
&setien); -

11-11 



Distributed Name Service (VAX Only) 
11.2 Using the SYS$DNS System Service Call 

if (set status == SS$ NORMAL) { e- -

} 

readitem[4].dns$w itm code= dns$ contextvartime; 
readitem[4].dns$w-itm-size = cts Ien; 
readitem[4].dns$a=itm=address = ctsbuf; 

*((int *)&readitem[S]) = O; 

printf ( "\tValue: "); 0 
for(xx = O; xx < val len; xx++) 

printf("%x ", attvalbuf[xx]); 
printf ( "\n"); 

else if (set status != 0) 
{ -

} 

printf("Error %d returned when removing value from set\n", 
set status); 

exit(set_status); 

} while(set_status == SS$_NORMAL); 
} 
else. 
{ 

} 

printf("Error reading attribute= %d\n", read_status); 
exit(read_status); 

} while(read_status == DNS$_MOREDATA); 

11-12 

0 The item list contains five entries: 

• Opaque full name of the object with the attribute the program wants to 
read 

• Type of object to access 

• Opaque simple name of the attribute to read 

• Address of the buffer containing the set of values returned by the read 
operation 

• A value of 0 to terminate the item list 

8 The loop repeatedly calls the SYS$DNSW service to read the values of the 
attribute because the first call might not return all the values. The loop 
executes until $DNSW returns something other than DNS$_MOREDATA. 

8 The DNS$REMOVE_FIRST_SET_ VALUE routine extracts a value from the 
set. 

G This attribute name may be the context the routine uses to read additional 
attributes. The attribute's creation timestamp (CTS), not its value, provides 
the context. 

0 Finally, display the value in hexadecimal format. (You could also take the 
attribute name and convert it to a printable format before displaying the 
result.) 

See the discussion about setting confidence in the Guide to Programming with 
DECdns for information about obtaining up-to-date data on read requests. 



Distributed Name Service (VAX Only) 
11.2 Using the SYS$DNS System Service Call 

11.2.3.3 Enumerating DECdns Names and Attributes 
The enumerate functions return DECdns names for objects, child directories, soft 
links, groups, or attributes in a specific directory. Use either the asterisk (*) or 
question mark(?) wildcard to screen enumerated items. DECdns matches any 
single character against the specified wildcard. 

Enumeration calls return a set of simple names or attributes. If an enumeration 
call returns DNS$_MOREDATA, not all matching names or attributes have been 
enumerated. If you receive this message, use the context setting conventions 
that are described for the DNS$_READ_ATTRIBUTE call. You should make 
further calls, setting DNS$_CONTEXTVARNAME to the last value returned until 
the procedure returns SS$_NORMAL. For more information, see the SYS$DNS 
system service in the Open VMS System Services Reference Manual: A-GETMSG. 

The following program, written in C, shows how an application can read the 
objects in a directory with the SYS$DNS system service. The values that 
DECdns returns from read and enumerate functions are in different structures. 
For example, an enumeration of objects returns different structures than an 
enumeration of child directories. To clarify how to use this data, the sample 
program demonstrates how to parse any set that the enumerate objects function 
returns with a run-time library routine in order to remove the first value from 
the set. The example also demonstrates how the program takes each value from 
the set. 

#include <dnsdef .h> 
#include <dnsmsg.h> 
/* 
* Parameters: 
* f name p 
* fname-len 

opaque full name of the directory to enumerate 
length of full name of the directory 

*/ 

struct $dnsitmdef enumitem[4]; 
unsigned char setbuf[lOO]; 
struct $dnsb enum iosb; 
int synch event; -
unsigned short setlen; 

/* Item list for enumeration */ 
/* Values from enumeration */ 

/* DECdns status information */ 
/* Used for synchronous AST threads */ 
/* Length of output in setbuf */ 

enumerate objects(fname p, fname_len) 
unsigned char *fname p;-
unsigned short fname-len; 
{ -

int enumerate_objects_ast(); 

int status; /* General routine status */ 
int enum_status; /* Status of enumeration routine */ 

/* Set up item list */ 

enumitem[O].dns$w itm code= dns$ directory; /*Opaque directory name*/ 
enumitem[O].dns$w-itm-size = fname len; 
enumitem[O].dns$a=itm=address = fname_p; 

enumitem[l].dns$w itm code= dns$ outobjects; /*output buffer*/ 
enumitem[l].dns$a-itm-ret length~ &setlen; 
enumitem[l].dns$w-itm-size = 100; 
enumitem[l].dns$a=itm=address = setbuf; 

*((int *)&enumitem[2]) = O; /*Zero terminate item list*/ 

status= lib$get_ef(&synch_event); C) 

11-13 



Distributed Name Service (VAX Only) 
11.2 Using the SYS$DNS System Service Call 

11-14 

if (status != SS$ NORMAL) 
{ -

printf("Could not get event flag to synch AST threads\n"); 
exit( status); 

enum status = sys$dns(O, dns$_enumerate_objects, &enumitem, 
f) &enum_iosb, enumerate_objects_ast, setbuf); 

if (enum status != SS$ NORMAL) ~ 
{ - -

printf("Error enumerating objects = %d\n", enum_status); 
exit(enum_status); 

} 
status= sys$synch(synch_event, &enum_iosb); ~ 

if (status != SS$ NORMAL) 
{ -

printf("Synchronization with AST threads failed\n"); 
exit( status); 

/* AST routine parameter: */ 
/* outbuf : address of buffer that contains enumerated names. */ 

0 
unsigned char objnamebuf[dns$k_simplenamemax]; /*Opaque object name*/ 

enumerate objects ast(outbuf) 
unsigned char *outbuf; 
{ 

struct $dnsitmdef cvtitem[3]; /* Item list for class name */ 
struct $dnsb iosb; /* Used for name service status information */ 
struct dsc$descriptor set_dsc, value_dsc, newset_dsc; 

unsigned char simplebuf[dns$k_simplestrmax); /*Object name string*/ 

int enum status; 
int status; 

/* The status of the enumeration itself */ 
/* Used for checking immediate status returns */ 
/* Status of remove value routine */ int set_status; 

unsigned short val len; /* Length of set value */ 
unsigned short sname_len; /* Length of object name */ 

enum status = enum iosb.dns$1 dnsb status; /* Check status */ 
if((enum status !=-SS$ NORMAL) && (enum status != DNS$_MOREDATA)) 
{ - - -

do 
{ 

printf("Error enumerating.objects= %d\n", enum_status); 
sys$setef(synch event); 
exit(enum_status); 

/* 
* Extract object names from output buff er one 
* value at a time. Set up descriptors for the extraction. 
*/ 

set dsc.dsc$w length = setlen; /* Contains address of */ 
set=dsc.dsc$a=pointer = setbuf; /* the set whose values */ 

/* are to be extracted */ 

value dsc.dsc$w length = dns$k simplenamemax; 
value-dsc.dsc$a-pointer = objnamebuf; /* To contain the */ 

- - /* name of an object */ 

newset dsc.dsc$w length = 100; 
newset=dsc.dsc$a=pointer = setbuf; 

/* after the extraction */ 

/* To contain a new */ 
/* set structure after */ 
/* the extraction. */ 



} 

Distributed Name Service (VAX Only) 
11.2 Using the SYS$DNS System Service Call 

/* Call yRTL routine to extract the value from the set */ 
set status = dns$remove first set value(&set dsc, &value dsc, &val len, 

- - - - O, O ~ &newset _ dsc, & setlen f; 
if (set_status == SS$_NORMAL) 
{ 0 

} 

cvtitem[O].dns$w itm code= dns$ fromsimplename; 
cvtitem[O].dns$w-itm-size =val Ien; 
cvtitem[O].dns$a=itm=address = objnarnebuf; 

cvtitem[l].dns$w itm code= dns$ tostringname; 
cvtitem[l].dns$w-itm-size = dns$k simplestrmax; 
cvtitem[l].dns$a-itm-address = simplebuf; 
cvtitem[l].dns$a=itm=ret_length = &sname_len; 

*((int *)&cvtitem[2]) = O; 

status = sys$dnsw(O, dns$ simple_opaque_to_string, &cvtitem, 
&iosb, O, O); 

if (status == SS$ NORMAL) 
status = iosb.dns$l_dnsb_status; /* Check for errors */ 

if (status != SS$ NORMAL) /* If error, terminate processing */ 
{ -

} 
else 
{ 

printf("Converting object name to string returned %d\n", 
status); 

exit(status); 

printf("%.*s\n", sname_len,simplebuf); 

enumitem[2].dns$w itm code= dns$ contextvarname; f) 
enumitem[2].dns$w-itm-size =val Ien; 
enumitem[2].dns$a=itm=address = objnamebuf; 

*((int *)&enumitem[3]) = O; 

else if (set status != 0) 
{ -

} 

printf("Error %d returned when removing value from set\n", 
set status); 

exit(set_status); 

} while(set_status == SS$_NORMAL); 

if (enum_status == DNS$_MOREDATA) 
{ 

} 
else 

enum status = sys$dns(O, dns$ enumerate objects, &enumitem, 
- &enum_Iosb, enumerate_objects_ast, setbuf); 

if (enum status != SS$ NORMAL) /* Check status of $DNS */ 
{ - -

printf("Error enumerating objects %d\n", enum_status); 
sys$setef(synch_event); 

{ 0 
sys$setef(synch_event); 

0 Get an event flag to synchronize the execution of AST threads. 

8 Use the system service to enumerate the object names. 

8 Check the status of the system service itself before waiting for threads. 

11-15 



Distributed Name Service (VAX Only) 
11.2 Using the SYS$DNS System Service Call 

8 Use the SYS$SYNCH call to make sure the DECdns Clerk has completed and 
that all threads have finished executing. 

0 After enumerating objects, SYS$DNS calls an AST routine. The routine 
shows how DNS$REMOVE_FIRST_SET_VALUE extracts object names from 
the set returned by the DNS$_ENUMERATE_OBJECTS function. 

0 Use an item list to convert the opaque simple name to a string name so you 
can display it to the user. The item list contains the following entries: 

• Address of the opaque simple name to be converted 

• Address of the buffer that will hold the string name 

• A value of 0 to terminate the item list 

0 This object name may provide the context for continuing the enumeration. 
Append the context variable to the item list so the enumeration can continue 
from this name if there is more data. 

0 Use the system service to enumerate the object names as long as there is 
more data. 

0 Set the event flag to indicate that all AST threads have completed and that 
the program can terminate. 

11.3 Using the DCL Command DEFINE with DECdns Logical Names 

11-16 

When the DECdns Clerk is started on the operating system, the VAX system 
creates a unique logical name table for DECdns to use in translating full names. 
This logical name table, called DNS$SYSTEM, prevents unintended interaction 
with other system logical names. 

To define systemwide logical names for DECdns objects, you must have the 
appropriate privileges to use the DCL command DEFINE. Use the DEFINE 
command to create the logical RESEARCH.PROJECT_DISK, for example, by 
entering the following DCL command: 

$ DEFINE/TABLE=DNS$SYSTEM RESEARCH "ENG.RESEARCH" 

When parsing a name, the SYS$DNS service specifies the logical name 
DNS$LOGICAL as the table it uses to translate a simple name into a full name. 
This name translates to DNS$SYSTEM (by default) to access the systemwide 
DECdns logical name table. 

To define process or job logical names for SYS$DNS, you must create a process 
or job table and redefine DNS$LOGICAL as a search list, as in the following 
example (note that elevated privileges are required to create a job table): 

$ CREATE /NAME TABLE DNS PROCESS TABLE 
$ DEFINE /TABLE=LNM$PROCESS DIRECTORY DNS$LOGICAL -
_$DNS_PROCESS_TABLE,DNS$SYSTEM 

Once you have created the process or job table and redefined DNS$LOGICAL, 
you can create job-specific logical names for DECdns by using the DCL command 
DEFINE, as follows: 

$ DEFIN.E /TABLE=DNS_PROCESS_TABLE RESEARCH "ENG.RESEARCH.MYGROUP" 



12 
Using the Distributed Transaction Manager 

This chapter describes how to use the distributed transaction manager. It shows 
you how to use DECdtm services to bind together operations on several databases 
or files into a single transaction. To use DECdtm services, the resource managers 
taking part in the transaction must support DECdtm. DEC Rdb for Open VMS 
AXP, DEC Rdb for Open VMS VAX, DEC DBMS for Open VMS AXP, DEC DBMS 
for Open VMS VAX, and Open VMS RMS Journaling support DECdtm. 

This chapter is divided into the following sections: 

Section 12.1 gives an introduction to DECdtm services. 

Section 12.2 discusses how to call DECdtm services. 

Section 12.3 gives an example that shows how to use DECdtm services. 

12.1 Introduction to DECdtm Services 
A transaction performs operations on resources. Examples of resources are 
databases and files. A transaction often needs to use more than one resource on 
one or more nodes. This type of transaction is called a distributed transaction. 

Maintaining the integrity and consistency of the resources used by a distributed 
transaction can be complex. To help with this, DECdtm manages distributed 
transactions and reduces the amount of coding required in your applications. 

DECdtm uses an optimized version of the standard two-phase commit protocol. 
This ensures that transactions are atomic. If a transaction is atomic, either all 
the transaction operations take effect (the transaction is committed), or none of 
the operations take effect (the transaction is aborted). 

The two-phase commit protocol makes sure that all the operations can take effect 
before the transaction is committed. If any operation cannot take effect, for 
example if a network link is lost, then the transaction is aborted, and none of the 
operations take effect. 

12.1.1 Sample Atomic Transaction 
Edward Jessup, an employee of a computer company in Italy, is transferring to 
a subsidiary of the company in Japan. An application must remove his personal 
information from an Italian DBMS database and add them to a Japanese Rdb 
database. Both of these operations must happen, otherwise Edward may either 
end up "in limbo" (the application might remove him from the Italian database 
but then lose a network link while trying to add him to the Japanese database), 
or find that he is in both databases at the same time. Either way, the two 
databases would be out of step. 

If the application used DECdtm to execute both operations as an atomic 
transaction, then this error could never happen; DECdtm would automatically 
detect the network link failure and abort the transaction. Neither of the 
databases would be updated, and the application could then try again. 

12-1 



Using the Distributed Transaction Manager 
12.1 Introduction to DECdtm Services 

12.1.2 Transaction Participants 
A DECdtm transaction involves the following participants: 

• Application: Defines the operations that the transaction will perform. 

• Resource manager: Performs the operations on the resources. A resource 
manager must support DECdtm. Examples of those that do are Rdb, DBMS, 
and Open VMS RMS Journaling. 

• Transaction manager: Coordinates the actions of the resource managers on 
its node. Transaction managers are provided by DECdtm. 

Figure 12-1 shows the participants in the distributed transaction discussed in 
Section 12.1.1. The application is on node ITALY. 

Figure 12-1 Participants in a Distributed Transaction 

~-------------------, 
/'" ', 

I \ 

I Application \ 

Resource I 
I 

Resource 

I I 
\ I \ I 
\ I \ I 
', node ITALY ,,/ ', node JAPAN ,,/ 
'-------------------~ '-------------------~ 

ZK-4771A-GE 

12.1.3 DECdtm System Services 

12-2 

The DECdtm system services are: 

• SYS$START_TRANSW: Starts a new transaction and returns the transaction 
identifier. 

• SYS$END_TRANSW: Ends a transaction by attempting to commit it. Returns 
the outcome of the transaction (either commit or abort). 

• SYS$ABORT_TRANSW: Aborts a transaction. 

These are all synchronous system service calls. There are also asynchronous 
versions (SYS$START_TRANS; SYS$END_TRANS, and SYS$ABORT_TRANS). 
For a full description of all the DECdtm system services, see the Open VMS 
System Services Reference Manual. 



Using the Distributed Transaction Manager 
12.1 Introduction to DECdtm Services 

12.1.4 Default Transactions 
Some resource managers (such as OpenVMS RMS Journaling) support the 
concept of default transactions. This means that the application does not need 
to specify the transaction identifier when executing transaction operations. The 
resource manager checks whether the calling process has a default transaction; 
if it has, the resource manager assumes that the operation is part of the default 
transaction. 

12.2 Calling DECdtm System Services 
An application using the DECdtm system services follows these steps: 

1. Calls SYS$START_TRANSW. This starts a new transaction and returns the 
transaction identifier. 

2. Instructs the resource managers to perform the required operations on their 
resources. 

3. Ends the transaction in one of two ways: 

• Commit: To attempt to perform, or commit, the transaction, the 
application calls SYS$END_TRANSW. This checks whether all the 
participants can commit their operations. If any participant cannot 
commit an operation, the transaction is aborted. 

When SYS$END_TRANSW returns, the application finds out the outcome 
of the transaction by reading the completion status in the I/O status 
block. 

• Abort: To abort the transaction, the application calls 
SYS$ABORT_TRANSW. Typically, an application aborts a transaction 
if a resource manager returns an error or if the user enters invalid 
information during the transaction. 

12.3 Using DECdtm Services: An Example 
The following is a sample Fortran application that uses DECdtm system services. 
It can be found in SYS$EXAMPLES:DECDTM$EXAMPLE 1. 

The application opens two files, sets a counter, then enters a loop to perform the 
following steps: 

• Increments the counter by 1 

• Calls SYS$START_TRANSW to start a new transaction 

• Writes the counter value to the two files 

• Either calls SYS$END_TRANSW to attempt to commit the transaction, or 
calls SYS$ABORT_TRANSW to abort the transaction. 

The application repeats these steps until either an error occurs or the user 
requests an interrupt. Because DECdtm services are used, the two files will 
always be in step with each other. If DECdtm services were not used, one file 
could have been updated while the other was not. This would result in the files' 
being out of step. 

12-3 



Using the Distributed Transaction Manager 
12.3 Using DECdtm Services: An Example 

12-4 

This example contains numbered callouts, which are explained after the program 
listing. 

c 
c This program assumes that the files DECDTM$EXAMPLE1.FILE 1 and 
c DECDTM$EXAMPLE1.FILE 2 are created and marked for recovery unit 
C journaling using the-command file SYS$EXAMPLES:DECDTM$EXAMPLE1.COM 
c 
C To run this example, enter the following: 
C $ FORTRAN SYS$EXAMPLES:DECDTM$EXAMPLE1 
C $ LINK DECDTM$EXAMPLE1 
C $ @SYS$EXAMPLES:DECDTM$EXAMPLE1 
C $ RUN DECDTM$EXAMPLE1 
c 
c SYS$EXAMPLES also contains an example c application, DECDTM$EXAMPLE2.C 
C The C application performs the same operations as this Fortran example. 
c 

c 

IMPLICIT 

INCLUDE 
INCLUDE 

NONE 

'($SSDEF)' 
' ( $FORIOSDEF) ' 

CHARACTER*l2 STRING 
INTEGER*2 
INTEGER*4 
INTEGER*4 
EXTERNAL 
EXTERNAL 

IOSB(4) 
STATUS,COUNT,TID(4) 
SYS$START TRANSW,SYS$END TRANSW,SYS$ABORT TRANSW 
SYS$START-TRANSW,SYS$END-TRANSW,SYS$ABORT-TRANSW 
JOURNAL OPEN - -

c Open the two files 
c 

., OPEN (UNIT= 10, FILE= 'DECDTM$EXAMPLE1.FILE 1' I STATUS = 'OLD' I 

8 

.• 

c 

1 ACCESS = 'DIRECT', RECL = 3, USEROPEN =-JOURNAL OPEN) 
OPEN (UNIT = 11, FILE = 'DECDTM$EXAMPLE1.FILE 2' I STATUS = 'OLD' I 

1 ACCESS = 'DIRECT', RECL = 3, USEROPEN =-JOURNAL_OPEN) 

COUNT = 0 

TYPE *, 'Running DECdtm example program' 
TYPE *, 'Press CTRL-Y to interrupt' 

C Loop forever, updating both files under transaction control 
c 

DO WHILE (.TRUE.) 
c 
C Update the count and convert it to ASCII 
c 

8000 
c 

COUNT = COUNT + 1 
ENCODE (12,8000,STRING) COUNT 
FORMAT (Il2) 

C Start the transaction 
c 

STATUS= SYS$START TRANSW (%VAL(l),,IOSB,,,TID) 
IF (STATUS .NE. ss$_NORMAL .OR. IOSB(l) .NE. SS$_NORMAL) GO TO 9040 

c 
c Update the record in each file 
c 

., WRITE (UNIT = 10, REC = 1, ERR = 9000, IOSTAT = STATUS) STRING 
WRITE (UNIT = 11, REC = 1, ERR = 9010, IOSTAT = STATUS) STRING 

c 
c Attempt to commit the transaction 
c 

~ STATUS= SYS$END TRANSW (%VAL(l),,IOSB,,,TID) 
IF (STATUS .NE. SS$_NORMAL .OR. IOSB(l) .NE. SS$_NORMAL) GO TO 9050 



Using the Distributed Transaction Manager 
12.3 Using DECdtm Services: An Example 

0 

END DO 
c 
C Errors that should cause the transaction to abort 
c 

9000 TYPE *, 'Failed to update DECDTM$EXAMPLE1.FILE 1' 
GO TO 9020 -

9010 TYPE *, 'Failed to update DECDTM$EXAMPLE1.FILE 2' 
9020 STATUS= SYS$ABORT TRANSW (%VAL(l),,IOSB,,,TID) 

IF (STATUS .NE. SS$ NORMAL .OR. IOSB(l) .NE. SS$ NORMAL) GO TO 9060 
STOP - -

c 
C Errors from DECdtm system services 
c 
9040 

9050 

9060 
9070 

c 

TYPE *, 'Unable to start a transaction' 
GO TO 9070 
TYPE *, 'Failed to conunit the transaction' 
GO TO 9070 
TYPE *, 'Failed to abort the transaction' 
TYPE *, 'Status = ', STATUS, ' IOSB = ', IOSB(l) 
END 

C Switch off TRUNCATE access and PUT with truncate on OPEN for RU Journaling 
c 

INTEGER FUNCTION JOURNAL OPEN (FAB, RAB, LON) 

INCLUDE '($FABDEF)' 
INCLUDE '($RABDEF)' 
INCLUDE '($SYSSRVNAM)' 

RECORD /FABDEF/ FAB, /RABDEF/ RAB 

FAB.FAB$B FAC = FAB.FAB$B FAC .AND •• NOT. FAB$M TRN 
RAB.RAB$L=ROP = RAB.RAB$L=ROP .AND •• NOT. RAB$M=TPT 

JOURNAL OPEN = SYS$0PEN (FAB) 
IF (.NOT. JOURNAL OPEN) RETURN 
JOURNAL_OPEN = SYS$CONNECT (RAB) 

RETURN 
END 

0 The application opens DECDTM$EXAMPLE1.FILE1 and 
DECDTM$EXAMPLE1.FILE2 for writing. It then zeroes the variable 
COUNT and enters an infinite loop. 

8 The application increments the count by one and converts it to an ASCII 
string. 

0 The application calls SYS$START_TRANSW to start a transaction. The 
application checks the immediate return status and service completion status 
to see whether they signify an error. 

0 The application attempts to write the string to the two files. If it cannot, 
the application aborts the transaction. Because the files are Open VMS RMS 
journaled files, the default transaction is assumed. 

0 The application calls SYS$END_TRANSW to attempt to commit the 
transaction. It checks the immediate return status and service completion 
status to see whether they signify an error. If they do, the application reports 
the error and exits. If there are no errors, the transaction is committed and 
the application continues with the loop. 

12-5 



Using the Distributed Transaction Manager 
12.3 Using DECdtm Services: An Example 

12-6 

0 If either of the two files could not be updated, the application calls 
SYS$ABORT_TRANSW to abort the transaction. It checks the immediate 
return status and service completion status to see whether they signify an 
error. If they do, the application reports the error and exits. 



13 
Condition-Handling Routines and Services 

This chapter describes the Open VMS Condition Handling Facility. It contains the 
following sections: 

Section 13.1 gives an overview of run-time errors. 

Section 13.2 gives an overview of the Open VMS Condition Handling Facility, 
presenting condition-handling terminology and functionality. 

Section 13.3 describes VAX systems and AXP systems exceptions, arithmetic 
exceptions, and unaligned access traps on AXP systems, 

Section 13.4 describes how run-time library routines handle exceptions. 

Section 13.5 describes the condition value field and the testing and modifying of 
values. 

Section 13.6 describes the exception dispatcher. 

Section 13. 7 describes the argument list that is passed to a condition handler. 

Section 13.8 describes signaling. 

Section 13.9 describes types of condition handlers. 

Section 13.10 describes types of actions performed by condition handlers. 

Section 13.11 describes messages and how to use them. 

Section 13.12 describes how to write a condition handler. 

Section 13.13 describes how to debug a condition handler. 

Section 13.14 describes several run-time library routines that can be established 
as condition handlers. 

Section 13.15 describes how to establish, write, and debug an exit handler. 

13.1 Overview of Run-Time Errors 
Run-time errors are hardware- or software-detected events, usually errors, that 
alter normal program execution. Examples of run-time errors are as follows: 

• System errors-for example, specifying an invalid argument to a system­
defined procedure 

• Language-specific errors-for example, in Fortran, a data type conversion 
error during an I/O operation 

• Application-specific errors-for example, attempting to use invalid data 

13-1 



Condition-Handling Routines and Services 
13.1 Overview of Run-Time Errors 

When an error occurs, the operating system either returns a condition code or 
value identifying the error to your program or signals the condition code. If 
the operating system signals the condition code, typically an error message is 
displayed, and program execution continues or terminates, depending on the 
severity of the error. See Section 13.5 for details about condition values. 

When unexpected errors occur, your program should display a message identifying 
the error and then either continue or stop, depending on the severity of the error. 
If you know that certain run-time errors might occur, you should provide special 
actions in your program to handle those errors. 

Both an error message and its associated condition code identify an error by 
the name of the facility that generated it and an abbreviation of the message 
text. Therefore, if your program displays an error message, you can identify 
the condition code that was signaled. For example, if your program displays the 
following error message, you know that the condition code SS$_NOPRIV was 
signaled: 

%SYSTEM-F-NOPRIV, no privilege for attempted operation 

13.2 Overview of the OpenVMS Condition Handling Facility 
The operating system provides a set of signaling and condition-handling routines 
and related system services to handle exception conditions. This set of services 
is called the Open VMS Condition Handling Facility (CHF). The Open VMS 
Condition Handling Facility is a part of the common run-time environment of 
Open VMS, which includes run-time library (RTL) routines and other components 
of the operating system. 

The Open VMS Condition Handling Facility provides a single, unified method to 
enable condition handlers, signal conditions, print error messages, change the 
error behavior from the system default, and enable or disable detection of certain 
hardware errors. The RTL and all layered products of the operating sytem use 
the CHF for condition handling. 

See the Open VMS Calling Standard for a detailed description of Open VMS 
condition handling. 

13.2.1 Condition-Handling Terminology 

13-2 

This section defines terms used to describe condition handling. 

exception 
An event detected by the hardware or software that changes the normal flow 
of instruction execution. An exception is a synchronous event caused by the 
execution of an instruction and often means something generated by hardware. 
When an exception occurs, the processor transfers control by forcing a change 
in the flow of control from that explicitly indicated in the currently executing 
process. 

Some exceptions are relevant primarily to the current process and normally 
invoke software in the context of the current process. An integer overflow 
exception detected by the hardware is an example of an event that is reported to 
the process. Other exceptions, such as page faults, are handled by the operating 
system and are transparent to the user. 

An exception may also be signaled by a routine (software signaling) by calling the 
RTL routines LIB$SIGNAL or LIB$STOP. 



lvtjw 

Condition-Handling Routines and Services 
13.2 Overview of the OpenVMS Condition Handling Facility 

condition 
An informational state that exists when an exception occurs. Condition is a more 
general term than exception; a condition implies either a hardware exception or a 
software-raised condition. Often, the term condition is preferred because the term 
exception implies an error. Section 13.3.1 and Section 13.3.1.1 further define the 
differences between exceptions and conditions. 

condition handling 
When a condition is detected during the execution of a routine, a signal can be 
raised by the routine. The routine is then permitted to respond to the condition. 
The routine's response is called handling the condition. 

On VAX systems, an address of 0 in the first longword of a procedure call frame 
or in an exception vector indicates that a condition handler does not exist for that 
call frame or vector. + 

On AXP systems, the handler valid flag bit in the procedure descriptor is cleared 
to indicate that a condition handler does not exist. + 

The condition handlers are themselves routines; they have their own call frames. 
Because they are routines, condition handlers can have condition handlers of 
their own. This allows condition handlers to field exceptions that might occur 
within themselves in a modular fashion. 

On VAX systems, a routine can enable a condition handler by placing the address 
of the condition handler in the first longword of its stack frame. + 

On AXP systems, the association of a handler with a procedure is static and must 
be specified at the time a procedure is compiled (or assembled). Some languages 
that lack their own exception-handling syntax, however, may support emulation 
of dynamic specified handlers by means of built-in routines. + 

If you determine that a program needs to be informed of particular exceptions so 
that it can take corrective action, you can write and specify a condition handler. 
This condition handler, which receives control when any exception occurs, can 
test for specific exceptions. 

If an exception occurs and you have not specified a condition handler, the default 
condition handler established by the operating system is given control. If the 
exception is a fatal error, the default condition handler issues a descriptive 
message and causes the image that incurred the exception to exit. 

To declare or enable a condition handler, use the following system services: 

• Set Exception Vector (SYS$SETEXV) 

• Set System Service Failure Exception Mode (SYS$SETSFM) 

• Unwind from Condition Handler Frame (SYS$UNWIND) 

• Declare Change Mode or Compatibility Mode Handler (SYS$DCLCMH) 

Parallel mechanisms exist for uniform dispatching of hardware and software 
exception conditions. Exceptions that are detected and signaled by hardware 
transfer control to an exception service routine in the executive. Software­
detected exception conditions are generated by calling the run-time library 
routines LIB$SIGNAL or LIB$STOP. Hardware- and software-detected exceptions 
eventually execute the same exception dispatching code. Therefore, a condition 
handler may handle an exception condition generated by hardware or by software 
identically. 

13-3 



Condition-Handling Routines and Services 
13.2 Overview of the OpenVMS Condition Handling Facility 

The Set Exception Vector (SYS$SETE:XV) system service allows you to specify 
addresses for a primary exception handler, a secondary exception handler, and 
a last-chance exception handler. You can specify handlers for each access mode. 
The primary exception vector is reserved for the debugger. In general, you should 
avoid using these vectored handlers unless absolutely necessary. If you use a 
vectored handler, it must be prepared for all exceptions occurring in that access 
mode. 

13.2.2 Functions of the Condition Handling Facility 

13-4 

The Open VMS Condition-Handling Facility and the related run-time library 
routines and system services perform the following functions: 

• Establish and call condition-handler routines 

You can establish condition handlers to receive control in the event of an 
exception in one of the following ways: 

On VAX systems, by specifying the address of a condition handler in the 
first longword of a procedure call frame. + 
On AXP systems, the method for establishing a dynamic (that is, 
nonvectored) condition handler is specified by the language. + 

By establishing exception handlers with the Set Exception Vector 
(SYS$SETE:XV) system service. 

The first of these methods is the preferred way to specify a condition handler 
for a particular image. The use of dynamic handlers is also the most efficient 
way in terms of declaration. Vectored handlers should be used for special 
purposes, such as writing debuggers. 

The VAX MACRO programmer can use the following single-move address 
instruction to place the address of the condition handler in the longword 
pointed to by the current frame pointer ( FP ): 

MOVAB HANDLER,(FP) 

You can associate a condition handler for the currently executing routine by 
specifying an address pointing to the handler, either in the routine's stack 
frame on VAX systems or in one of the exception vectors. (The MACR0-32 
compiler for Open VMS AXP systems generates the appropriate Alpha AXP 
code from this VAX instruction to establish a dynamic condition handler.) 

On VAX systems, the high-level language programmer can call the common 
run-time library routine LIB$ESTABLISH (see the Open VMS RTL 
Library (LIB$) Manual), using the name of the handler as an argument. 
LIB$ESTABLISH returns as a function value the address of the former 
handler established for the routine or 0 if no handler existed. 

The new condition handler remains in effect for your routine until 
you call LIB$REVERT or control returns to the caller of the caller of 
LIB$ESTABLISH. Once this happens, you must call LIB$ESTABLISH 
again if the same (or a new) condition handler is to be associated with the 
caller of LIB$ESTABLISH. 

Some languages provide access to condition handling as part of the language. 
The ON ERROR GOTO statement in BASIC and the ON statement in PUI 
can be used to define condition handlers. If you· are using a language that 
does provide access to condition handling, use its language mechanism rather 
than LIB$ESTABLISH. Each procedure can declare a condition handler. + 



Condition-Handling Routines and Services 
13.2 Overview of the OpenVMS Condition Handling Facility 

When the routine signals an exception, the Open VMS Condition Handling 
Facility calls the condition handler associated with the routine. See 
Section 13.8 for more information about exception vectors. Figure 13-5 
shows a sample stack scan for a condition handler. 

The following DEC Fortran program segment establishes the condition 
handler ERRLOG. Because the condition handler is used as an actual 
argument, it must be declared in an EXTERNAL statement. 

INTEGER*4 OLD HANDLER 
EXTERNAL ERRLOG 

OLD_HANDLER = LIB$ESTABLISH (ERRLOG) 

As its function value, LIB$ESTABLISH returns the address of the previous 
handler. If only part of a program unit requires a special condition handler, 
you can reestablish the original handler by invoking LIB$ESTABLISH and 
specifying the saved handler address as follows: 

CALL LIB$ESTABLISH (OLD_HANDLER) 

The run-time library provides several condition handlers and routines that 
a condition handler can call. These routines take care of several common 
exception conditions. Section 13.14 describes these routines. 

On AXP systems, LIB$ESTABLISH and LIB$REVERT are not supported, 
though a high-level language may support them for compatibility. (Table 13-4 
lists other run-time library routines supported and not supported on AXP 
systems.) + 

• Remove an established condition-handler routine 

Using LIB$REVERT, you can remove a condition handler from a routine's 
stack frame by setting the frame's handler address to 0. If your high-level 
language provides condition-handling statements, you should use them rather 
than LIB$REVERT. 

• Enable or disable the detection of arithmetic hardware exceptions 

Using run-time library routines, you can enable or disable the signaling of 
floating point underflow, integer overflow, and decimal overflow, which are 
detected by the VAX hardware. + 

• Signal a condition 

When the hardware detects an exception, such as an integer overflow, a 
signal is raised at that instruction. A routine may also raise a signal by 
calling LIB$SIGNAL or LIB$STOP. Signals raised by LIB$SIGNAL allow 
the condition handler either to terminate or to resume the normal flow of the 
routine. Signals raised by LIB$STOP require termination of the operation 
that raises the condition. The condition handler will not be allowed to 
continue from the point of call to LIB$STOP. 

• Display an informational message 

The system establishes default condition handlers before it calls the main 
program. Because these default condition handlers provide access to the 
system's standard error messages, the standard method for displaying a 
message is by signaling the severity of the condition: informational, warning, 
or error. See Section 13.5 for the definition of the severity field of a condition 
vector. The system default condition handlers resume execution of the 

13-5 



Condition-Handling Routines and Services 
13.2 Overview of the Open VMS Condition Handling Facility 

instruction after displaying the messages associated with the signal. If the 
condition value indicates a severe condition, then the image exits after the 
message is displayed. 

• Display a stack traceback on errors 

The default operations of the LINK and RUN commands provide a system­
supplied handler (the traceback handler) to print a symbolic stack traceback. 
The traceback shows the state of the routine stack at the point where the 
condition occurred. The traceback information is displayed along with the 
messages associated with the signaled condition. 

• Compile customer-defined messages 

The Message utility allows you to define your own exception conditions and 
the associated messages. Message source files contain the condition values 
and their associated messages. See Section 13.11.3 for a complete description 
of how to define your own messages. 

• Unwind the stack 

A condition handler can cause a signal to be dismissed and the stack to 
be unwound to the establisher or caller of the establisher of the condition 
handler when it returns control to the Open VMS Condition Handling 
Facility (CHF). During the unwinding operation, the CHF scans the stack. 
If a condition handler is associated with a frame, the system calls that 
handler before removing the frame. Calling the condition handlers during 
the unwind allows a routine to perform cleanup operations specific to a 
particular application, such as recovering from noncontinuable errors or 
deallocating resources that were allocated by the routine (such as virtual 
memory, event flags, and so forth). See Section 13.12.3 for a description of the 
SYS$UNWIND system service. 

• Log error messages to a file 

The Put Message (SYS$PUTMSG) system service permits any user-written 
handler to include a message in a listing file. Such message logging can be 
separate from the default messages the user receives. See Section 13.11 for a 
detailed description of the SYS$PUTMSG system service. 

13.3 Exception Conditions 

13-6 

Exceptions can be generated by any of the following: 

• Hardware 

• Software 

• System service failures 

Hardware-generated exceptions always result in conditions that require special 
action if program execution is to continue. 

Software-generated exceptions may result in error or warning conditions. These 
conditions and their message descriptions are documented in the online Help 
Message' utility and in the Open VMS system messages documentation. To access 
online message descriptions, use the HELP/MESSAGE command. 

More information on using the Help Message utility is available in _Qpen VMS 
System Messages: Companion Guide for Help Message Users. That document 
describes only those messages that occur when the system is not fully operational 
and you cannot access Help Message. 



Condition-Handling Routines and Services 
13.3 Exception Conditions 

Some examples of exception conditions are as follows: 

• Arithmetic exception condition in a user-written program detected and 
signaled by hardware (for example, floating point overflow) 

• Error in a user argument to a run-time library routine detected by software 
and signaled by calling LIB$STOP (for example, a negative square root) 

• Error in a run-time library language-support routine, such as an 1/0 error or 
an error in a data type conversion 

• RMS success condition stating that the record is already locked 

• RMS success condition stating that the created file superseded an existing 
version 

There are two standard methods for a Digital- or user-written routine to indicate 
that an exception condition has occurred: 

• Return a completion code to the calling program using the function value 
mechanism 

• 

Most general-purpose run-time library routines indicate exception conditions 
by returning a condition value in RO. The calling program then tests bit 0 of 
RO for success or failure. This method allows better programming structure, 
because the flow of control can be changed explicitly after the return from 
each call. If the actual function value returned is greater than 32 bits, then 
use both RO and Rl. 

On AXP systems, if the actual function returned is a floating point value, the 
floating point value is returned in FO, or FO and Fl. + 

Signal the exception condition 

A condition can be signaled by calling the RTL routine LIB$SIGNAL or 
LIB$STOP. Any condition handlers that were enabled are then called by the 
CHF. See Figure 13-5 for the order in which CHF invokes condition handlers. 

Exception conditions raised by hardware or software are signaled to the 
routine identically. 

For more details, see Section 13.8 and Section 13.8.1. 

13.3.1 System Service Exception Conditions 
System service failure exceptions occur when an error or severe error status is 
returned from a call to a system service. You can choose to handle error returns 
from system services by using the condition-handling mechanism rather than 
other error-checking methods. If you want to handle exceptions generated by 
service failures, you must enable system service failure exception mode with the 
Set System Service Failure Mode (SYS$SETSFM) system service. For example: 

$SETSFM_S ENBFLG=#l 

System service failure exception mode is initially disabled, and it can be enabled 
or disabled at any time during the execution of an image. 

13-7 



Condition-Handling Routines and Services 
13.3 Exception Conditions 

13.3.1.1 Conditions Caused by Exceptions 
Table 13-1 summarizes common conditions caused by exceptions. The condition 
names are listed in the first column. The second column explains the condition 
more fully by giving information about the type, meaning, and arguments relating 
to the condition. The condition type is either trap or fault. For more information 
about traps and faults, refer to the VAX Architecture Reference Manual and Alpha 
Architecture Reference Manual. The meaning of the exception condition is a short 
description of each condition. The arguments for the condition handler are listed 
where applicable; they give specific information about the condition. 

Table 13-1 Summary of Exception Conditions 

Condition Name Explanation 

SS$_ACCVIO Type: 

Description: 

Arguments: 

tSS$_ARTRES Type: 

Description: 

Arguments: 

Fault. 

Access violation. 

1. Reason for access violation. This is a mask with the 
following format: 

Bit <0> = type of access violation 

Bit <0> = page table entry protection code did 
not permit intended access 
t Bit <1> = POLR, PlLR, or SLR length 
violation 

Bit <1> =page table entry reference 

Bit <0> = specified virtual address not 
accessible 
Bit <1> = associated page table entry not 
accessible 

Bit <2> = intended access 

Bit <0> = read 
Bit <1> = modify 

2. Virtual address to which access was attempted or, on 
some processors, virtual address within the page to 
which access was attempted. 

Trap. 

Reserved arithmetic trap. 

None. 

tOn VAX systems, this condition is generated by hardware. 

(continued on next page) 

13-8 



Condition-Handling Routines and Services 
13.3 Exception Conditions 

Table 13-1 (Cont.) Summary of Exception Conditions 

Condition Name Explanation 

SS$_ASTFLT Type: 

Description: 

Arguments: 

SS$_BREAK Type: 

Description: 

Arguments: 

SS$_CMODSUPR Type: 

Description: 

Arguments: 

SS$_CMODUSER Type: 

Description: 

Arguments: 

Trap. 

Stack invalid during attempt to deliver an AST. 

1. Stack pointer value when fault occurred. 

2. AST parameter of failed AST. 

3. Program counter (PC) at AST delivery interrupt. 

4. Processor status longword (PSL) for VAX or processor 
status (PS) for AXP at AST delivery interrupt.1 For PS, 
it is the low-order 32 bits. 

5. Program counter (PC) to which AST would have been 
delivered.1 

6. Processor status longword (PSL) for VAX or processor 
status (PS) for AXP to which AST would have been 
delivered. 1 For PS, it is the low-order 32 bits. 

Fault. 

Breakpoint instruction encountered. 

None. 

Trap. 

Change mode to supervisor instruction encountered. 2 

Change mode code. The possible values are -32, 768 through 
32,767. 

Trap. 

Change mode to user instruction encountered.2 

Change mode code. The possible values are -32, 768 through 
32,767. 

1The PC and PSL (or PS) normally included in the signal array are not included in this argument list. The stack pointer 
of the access mode receiving this exception is reset to its initial value. 
2If a change mode handler has been declared for user or supervisor mode with the Declare Change Mode or Compatibility 
Mode Handler (SYS$DCLCMH) system service, that routine receives control when the associated trap occurs. 

(continued on next page) 

13-9 



Condition-Handling Routines and Services 
13.3 Exception Conditions 

Table 13-1 (Cont.) Summary of Exception Conditions 

Condition Name Explanation 

tSS$_COMPAT Type: Fault. 

Description: 

Arguments: 

Compatibility-mode exception. This exception condition can 
occur only when executing in compatibility mode.3 

t:j:SS$_DECOVF Type: 

Description: 

Arguments: 

HSS$_FLTDIV Type: 

Description: 

Arguments: 

tSS$_FLTDIV _F Type: 

Description: 

Arguments: 

t:j:SS$_FLTOVF Type: 

Description: 

Arguments: 

tSS$_FLTOVF .:...F Type: 

Description: 

Arguments: 

t:j:SS$_FLTUND Type: 

Description: 

Arguments: 

tSS$_FLTUND_F Type: 

Description: 

Arguments: 

t:j:SS$_INTDIV Type: 

Description: 

Arguments: 

Type of compatibility exception. The possible values are as . 
follows: 

0 = Reserved instruction execution. 

1 = BPT instruction executed. 

2 = IOT instruction executed. 

3 = EMT instruction executed. 

4 =TRAP instruction executed. 

5 = Illegal instruction executed. 

6 = Odd address fault. 

7 = TBIT trap. 

Trap. 

Decimal overflow. 

None. 

Trap. 

Floating/decimal divide-by-zero. 

None. 

Fault. 

Floating divide-by-zero. 

None. 

Trap. 

Floating-point overflow. 

None. 

Fault. 

Floating-point overflow fault. 

None. 

Trap. 

Floating-point underflow. 

None. 

Fault. 

Floating-point underflow fault. 

None. 

Trap. 

Integer divide-by-zero. 

None. 

31f a compatibility-mode handler has been declared with the Declare Change Mode or Compatibility Mode Handler 
(SYS$DCLCMH) system service, that routine receives control when this fault occurs. 
tOn VAX systems, this condition is generated by hardware. 
:j:On AXP systems, this condition is generated by software. 

(continued on next page) 

13-10 



Condition-Handling Routines and Services 
13.3 Exception Conditions 

Table 13-1 (Cont.) Summary of Exception Conditions 

Condition Name Explanation 

t:J:SS$_INTOVF Type: 

Description: 

Arguments: 

tSS$_0PCCUS Type: 

Description: 

Arguments: 

SS$_0PCDEC Type: 

Description: 

Arguments: 

SS$_PAGRDERR Type: 

Description: 

Arguments: 

tSS$_RADRMOD Type: 

Description: 

Arguments: 

SS$_ROPRAND Type: 

Description: 

Arguments: 

SS$_SSFAIL Type: 

Description: 

Arguments: 

t:J:SS$_SUBRNG Type: 

Description: 

Arguments: 

Trap. 

Integer overflow. 

None. 

Fault. 

Opcode reserved for customer fault. 

None. 

Fault. 

Opcode reserved for Digital fault. 

None. 

Fault. 

Read error occurred during an attempt to read a faulted 
page from disk. 

1. Translation not valid reason. This is a mask with the 
following format: 

Bit <0> = 0 
Bit <1> =page table entry reference 

Bit <0> = specified virtual address not valid 
Bit <1> =associated page table entry not valid 

Bit <2> = intended access 

Bit <0> = read 
Bit <1> = modify 

2. Virtual address of referenced page. 

Fault. 

Attempt to use a reserved addressing mode. 

None. 

Fault. 

Attempt to use a reserved operand. 

None. 

Fault. 

System service failure (when system service failure exception 
mode is enabled). 

Status return from system service (RO). (The same value is 
in RO of the mechanism array.) 

Trap. 

Subscript range trap. 

None. 

tOn VAX systems, this condition is generated by hardware. 
*On AXP systems, this condition is generated by software. 

(continued on next page) 

13-11 



Condition-Handling Routines and Services 
13.3 Exception Conditions 

Table 13-1 (Cont.) Summary of Exception Conditions 

Condition Name 

tSS$_TBIT 

Explanation 

Type: 

Description: 

Arguments: 

Fault. 

Trace bit is pending following an instruction. 

None. 

tOn VAX systems, this condition is generated by hardware. 

Change-Mode and Compatibility-Mode Handlers 
'I\vo types of hardware exception can be handled in a way different from the 
normal condition-handling mechanism described in this chapter. The two types of 
hardware exception are as follows: 

• Traps caused by change-mode-to-user or change-mode-to-supervisor 
instructions 

• Compatibility mode faults + 

You can use the Declare Change Mode or Compatibility Mode Handler 
(SYS$DCLCMH) system service to establish procedures to receive control when 
one of these conditions occurs. The SYS$DCLCMH system service is described in 
the Open VMS System Services Reference Manual. 

13.3.2 Exception Conditions 

13-12 

On AXP systems, the condition values that your condition-handling routine 
expects to receive on VAX systems may no longer be meaningful, even though 
the format of the 32-bit condition value and its location in the signal array are 
the same as they are on VAX systems. Because of architectural differences, some 
exception conditions that are returned on VAX systems are not supported on AXP 
systems. 

Because hardware exceptions are more architecture specific than software 
exceptions, only a subset of the hardware exceptions supported on VAX systems 
are also supported on AXP systems. In addition, the Alpha AXP architecture 
defines several additional exceptions that are not supported on VAX systems. + 

Table 13-2 lists the VAX hardware exceptions that are not supported on AXP 
systems and the AXP exceptions that are not supported on VAX systems. 

Table 13-2 Architecture-Specific Hardware Exceptions 

Exception Condition Code 

New AXP Excepiions 

SS$_HPARITH-High-performance arithmetic 
exception 

SS$_ALIGN-Data alignment trap 

Comment 

Generated for all AXP arithmetic 
exceptions (see Section 13.3.3) 

No VAX equivalent 



Condition-Handling Routines and Services 
13.3 Exception Conditions 

Exception Condition Code 

VAX-Specific Hardware Exceptions 

SS$_ARTRES-Reserved arithmetic trap 

SS$_COMPAT-Compatibility fault 

:j:SS$_DECOVF-Decimal overflow 

:j:SS$_FLTDIV-Float divide-by-zero (trap) 

SS$_FLTDIV _F-Float divide-by-zero (fault) 

:j:SS$_FLTOVF-Float overflow (trap) 

SS$_FLTOVF _F-Float overflow (fault) 

:j:SS$_FLTUND-Float underflow (trap) 

SS$_FLTUND_F-Float underflow (fault) 

:j:SS$_INTDIV-Integer divide-by-zero 

:j:SS$_INTOVF-Integer overflow 

SS$_TBIT-Trace pending 

SS$_0PCCUS-Opcode reserved to customer 

SS$_RADMOD-Reserved addressing mode 

SS$_SUBRNG-INDEX subscript range check 

Comment 

No AXP system equivalent 

No AXP system equivalent 

Replaced by SS$_HPARITH 
(see Section 13.3.3) 

Replaced by SS$_HPARITH 
(see Section 13.3.3) 

Replaced by SS$_HPARITH 
(see Section 13.3.3) 

Replaced by SS$_HPARITH 
(see Section 13.3.3) 

Replaced by SS$_HPARITH 
(see Section 13.3.3) 

Replaced by SS$_HPARITH 
(see Section 13.3.3) 

Replaced by SS$_HPARITH 
(see Section 13.3.3) 

Replaced by SS$_HPARITH 
(see Section 13.3.3) 

Replaced by SS$_HPARITH 
(see Section 13.3.3) 

No AXP system equivalent 

No AXP system equivalent 

No AXP system equivalent 

No AXP system equivalent 

:j:On AXP systems, this condition may be generated by software. 

13.3.3 Arithmetic Exceptions 

Ila 

On VAX systems, the architecture ensures that arithmetic exceptions are reported 
synchronously; that is, a VAX arithmetic instruction that causes an exception 
(such as an overflow) enters any exception handlers immediately, and subsequent 
instructions are not executed. The program counter (PC) reported to the exception 
handler is that of the failing arithmetic instruction. This allows application 
programs, for example, to resume the main sequence, with the failing operation 
being emulated or replaced by some equivalent or alternative set of operations. + 

On AXP systems, arithmetic exceptions are reported asynchronously; that is, 
implementations of the architecture can allow a number of instructions (including 
branches and jumps) to execute beyond that which caused the exception. These 
instructions may overwrite the original operands used by the failing instruction, 
thus causing the loss of information that is integral to interpreting or rectifying 
the exception. The program counter (PC) reported to the exception handler is not 
that of the failing instruction, but rather is that of some subsequent instruction. 
When the exception is reported to an application's exception handler, it may be 
impossible for the handler to fix up the input data and restart the instruction. 

13-13 



Condition-Handling Routines and Services 
13.3 Exception Conditions 

13-14 

Because of this fundamental difference in arithmetic exception reporting, AXP 
systems define a new, single condition code, SS$_HPARITH, to indicate all 
arithmetic exceptions. Thus, if your application contains a condition-handling 
routine that performs processing when an integer overflow exception occurs, on 
VAX systems the application expects to receive the SS$_INTOVF condition code. 
On AXP systems, this exception is indicated by the condition code SS$_HPARITH. 
In this way, condition-handling routines in VAX applications cannot mistake an 
AXP system arithmetic exception for the corresponding VAX exception. This is 
important because the processing performed by the VAX application assumes that 
the exception is reported synchronously, which is not the case on AXP systems. 

Figure 13-1 shows the format of the SS$_HPARITH exception signal array. 

Figure 13-1 SS$_HPARITH Exception Signal Array 

31 0 

Argument Count 

Condition Code (SS$_HPARITH) 

Integer Register Write Mask 

Floating Register Write Mask 

Exception PC 

Exception PS 

ZK-5206A-GE 

This signal array contains three arguments that are specific to the SS$_HPARITH 
exception: the integer register write mask, floating register write mask, 
and exception summary arguments of the exception pc and exception 
ps. The integer register write mask and floating register write mask 
arguments indicate the registers that were targets of instructions that set bits in 
the exception summary argument. Each bit in the mask represents a register. 
The exception summary argument indicates the type of exceptions that are 
being signaled by setting flags in the first 7 bits. Table 13-3 lists the meaning of 
each of these bits when set. 



C~ndition-Handling Routines and Services 
13.3 Exception Conditions 

Table 13-3 Exception Summary Argument Fields 

Bit Meaning When Set 

0 Software completion. 

1 Invalid floating arithmetic, conversion, or comparison operation. 

2 Invalid attempt to perform a floating divide operation with a divisor of zero. 
Note that integer divide-by-zero is not reported. 

3 Floating arithmetic or conversion operation overflowed the destination 
exponent. 

4 Floating arithmetic or conversion operation underflowed the destination 
exponent. 

5 Floating arithmetic or conversion operation gave a result that differed from the 
mathematically exact result. 

6 Integer arithmetic or conversion operation from floating point to integer 
overflowed the destination precision. 

For more information and recommendations about using arithmetic exceptions 
on AXP systems, see Migrating to an Open VMS AXP System: Recompiling and 
Relinking Applications. + 

13.3.4 Unaligned Access Traps (AXP Only) 
On AXP systems, an unaligned access trap is generated when an attempt is made 
to load or store a longword or quadword to or from a register using an address 
that does not have the natural alignment of the particular data reference and not 
using an Alpha AXP instruction that takes an unaligned address. as an operand 
(LDQ_U). For more information about data alignment, see Section 13.4.2. 

AXP compilers typically avoid triggering alignment faults by: 

• Aligning static data on natural boundaries by default. (This default behavior 
can be overridden by using a compiler qualifier.) 

• Generating special inline code sequences for data that is known to be 
unnaturally aligned at compile time. 

Nate, however, that compilers cannot align dynamically defined data. Thus, 
alignment faults may be triggered. 

An alignment exception is identified by the condition code SS$_ALIGN. 
Figure 13-2 illustrates the elements of the signal array returned by the SS$_ 
ALIGN exception. 

13-15 



Condition-Handling Routines and Services 
13.3 Exception Conditions 

Figure 13-2 SS$_ALIGN Exception Signal Array 

31 0 

Argument Count 

Condition Code (SS$_ALIGN) 

Virtual Address 

Register Number 

Exception PC 

Exception PS 

ZK-5205A-GE 

This signal array contains two arguments specific to the SS$_ALIGN exception: 
the virtual address argument and the register number argument. The 
virtual address argument contains the address of the unaligned data being 
accessed. The register number argument identifies the target register of the 
operation. + 

13.4 How Run-Time Library Routines Handle Exceptions 
Most general-purpose run-time library routines handle errors by returning a 
status in RO. In some cases, however, exceptions that occur during the execution 
of a run-time library routine are signaled. This section tells how run-time library 
routines signal exception conditions. 

Some calls to the run-time library do not or cannot specify an action to be taken. 
In this case, the run-time library signals the proper exception condition by using 
the operating system's signaling mechanism. 

In order to maintain modularity, the run-time library does not use exception 
vectors, which are processwide data locations. Thus, the run-time library itself 
does not establish handlers by using the primary, secondary, or last-chance 
exception vectors. 

13.4.1 Exception Conditions Signaled from Mathematics Routines (VAX Only) 
On VAX systems, mathematics routines return function values in register RO 
or registers RO and Rl, unless the return values are larger than 64 bits. For 
this reason, mathematics routines cannot use RO to return a completion status 
and must signal all errors. In addition, all mathematics routines signal an error 
specific to the MTH$ facility rather than a general hardware error. 

13.4.1.1 Integer Overflow and Floating-Point Overflow 

13-16 

Although the hardware normally detects integer overflow and floating-point 
overflow errors, run-time library mathematics routines are programmed with a 
software check to trap these conditions before the hardware signaling process can 
occur. This means that they call LIB$SIGNAL instead of allowing the hardware 
to initiate signaling. 



Condition-Handling Routines and Services 
13.4 How Run-Time Library Routines Handle Exceptions 

The software check is needed because JSB routines cannot set up condition 
handlers. The check permits the JSB mathematics routines to add an extra 
stack frame so that the error message and stack traceback appear as if a CALL 
instruction had been performed. Because of the software check, JSB routines 
do not cause a hardware exception condition even when the calling program 
has enabled the detection of integer overflow. On the other hand, detection of 
floating-point overflow is always enabled and cannot be disabled. 

If an integer or floating-point overflow occurs during a CALL or a JSB routine, 
the routine signals a mathematics-specific error such as MTH$_FLOOVEMAT 
(Floating Overflow in Math Library) by calling LIB$SIGNAL explicitly. 

13.4.1.2 Floating-Point Underflow 
All mathematics routines are programmed to avoid floating-point underflow 
conditions. Software checks are made to determine if a floating-point underflow 
condition would occur. If so, the software makes an additional check: 

• If the immediate calling program (CALL or JSB) has enabled floating-point 
underflow traps, a mathematics-specific error condition is signaled. 

• Otherwise, the result is corrected to zero and execution continues with no 
error condition. 

The user can enable or disable detection of floating-point underflow at run time 
by calling the routine LIB$FLT_UNDER. + 

13.4.2 System-Defined Arithmetic Condition Handlers 
On VAX systems, you can use the following run-time library routines as 
arithmetic condition handlers to enable or disable the signaling of decimal 
overflow, floating-point underflow, and integer overflow: 

• LIB$DEC_OVER-Enables or disables the signaling of a decimal overflow. By 
default, signaling is disabled. 

• LIB$FLT_UNDER-Enables or disables the signaling of a floating-point 
underflow. By default, signaling is disabled. 

• LIB$INT_OVER-Enables or disables the signaling of an integer overflow. By 
default, signaling is enabled. 

You can establish these handlers in one of two ways: 

• Invoke the appropriate handler as a function specifying the first argument as 
1 to enable signaling. 

• Invoke the handler with command qualifiers when you compile your program. 
(Refer to your program language manuals.) 

You cannot disable the signaling of integer divide-by-zero, floating-point overflow, 
and floating-point or decimal divide-by-zero. 

When the signaling of a hardware condition is enabled, the occurrence of the 
exception condition causes the operating system to signal the condition as 
a severe error. When the signaling of a hardware condition is disabled, the 
occurrence of the condition is ignored, and the processor executes the next 
instruction in the sequence. 

13-17 



Condition-Handling Routines and Services 
13.4 How Run-Time Library Routines Handle Exceptions 

13-18 

The signaling of overflow and underflow detection is enabled independently 
for activation of each routine, since the call instruction saves the state of the 
calling program's hardware enable operations in the stack and then initializes the 
enable operations for the called routine. A return instruction restores the calling 
program's enable operations. 

These run-time library routines are intended primarily for high-level languages, 
since you can achieve the same effect in MACRO with the single Bit Set PSW 
(BISPSW) or Bit Clear PSW (BICPSW) VAX instructions. 

These routines allow you to enable and disable detection of decimal overflow, 
floating-point underflow, and integer overflow for a portion of your routine's 
execution. Note that the VAX BASIC and DEC Fortran compilers provide a 
compile-time qualifier that permits you to enable or disable integer overflow for 
your entire routine. + 

On AXP systems, certain RTL routines that process conditions do not exist 
because the exception conditions defined by the Alpha AXP architecture differ 
somewhat from those defined by the VAX architecture. Table 13-4 lists the 
run-time library condition-handling support routines available on VAX systems 
and indicates which are supported on AXP systems. + 

Table 13-4 Run-Time Library Condition-Handling Support Routines 

Routine 

Arithmetic Exception Support Routines 

Availability on AXP 
Systems 

LIB$DEC_OVER-Enables or disables signaling of decimal Not supported 
overflow 

LIB$FIXUP _FLT-Changes floating-point reserved operand to a Not supported 
specified value 

LIB$FLT_UNDER-Enables or disables signaling of floating- Not supported 
point underflow 

LIB$INT_OVER-Enables or disables signaling of integer Not supported 
overflow 

General Condition~Handling Support Routines 

LIB$DECODE_FAULT-Analyze instruction context for fault 

LIB$ESTABLISH-Establish a condition handler 

LIB$MATCH_COND-Matches condition value 

LIB$REVERT-Deletes a condition handler 

LIB$SIG_TO_STOP-Converts a signaled condition to a 
condition that cannot be continued 

LIB$SIG_TO_RET-Converts a signal to a return status 

LIB$SIM_TRAP-Simulates a floating-point trap 

LIB$SIGNAL-Signals an exception condition 

LIB$STOP-Stops execution by using signaling 

Not supported 

Not supported 
(languages may support 
for compatibility) 

Supported 

Not supported 
(languages may support 
for compatibility) 

Supported 

Supported 

Not supported 

Supported 

Supported 



13.5 Condition Values 

Condition-Handling Routines and Services 
13.5 Condition Values 

Error conditions are identified by integer values called condition codes or 
condition values. The operating system defines condition values to identify 
errors that might occur during execution of system-defined procedures. Each 
exception condition has associated with it a unique, 32-bit condition value 
that identifies the exception condition, and each condition value has a unique, 
systemwide symbol and an associated message. The condition value is used in 
both methods of indicating exception conditions, returning a status and signaling. 

From a condition value you can determine whether an error has occurred, which 
error has occurred, and the severity of the error. Table 13-5 describes the fields 
of a condition value. 

Table 13-5 Fields of a Condition Value 

Field Bits 

FAC_NO <27:16> 

Meaning 

Indicates the system facility in which the 
condition occurred 

Indicates the condition that occurred MSG_NO 

SEVERITY 

<15:3> 

<2:0> Indicates whether the condition is a success (bit 
<0> = 1) or a failure (bit <0> = O) as well as the 
severity of the error, if any 

Figure 13-3 shows the format of a condition value. 

Figure 13-3 Format of a Condition Value 

31 2827 

Control Condition identification 

27 

I Facility number 

*S=Success 

Condition Value Fields 

severity 

1615 

I Message number 

3 2 a· 

Severity 

y 
2 1 0 

D 
3 

ZK-1795-GE 

The severity of the error condition. Bit <0> indicates success (logical true) when 
set and failure (logical false) when clear. Bits <1> and <2> distinguish degrees of 
success or failure. The 3 bits, when taken as an unsigned integer, are interpreted 
as described in Table 13-6. The symbolic names are defined in module $STSDEF. 

13-19 



Condition-Handling Routines and Services 
13.5 Condition Values 

13-20 

Table 13-6 Severity of Error Conditions 

Value Symbol Severity 

0 STS$K_ WARNING Warning 

1 STS$K_SUCCESS Success 

2 STS$K_ERROR Error 

3 STS$K_INFO Information 

4 STS$K_SEVERE Severe error 

5 

6 

7 

condition identification 

Response 

Execution continues, 
unp:redictable results 

Execution continues, expected 
results 

Execution continues, erroneous 
results 

Execution continues, 
informational message 
displayed 

Execution terminates, no 
output 

Reserved for Digital 

Reserved for Digital 

Reserved for Digital 

Identifies the condition uniquely on a systemwide basis. 

control 
Four control bits. Bit <28> inhibits the message associated with the condition 
value from being printed by the SYS$EXIT system service. After using the 
SYS$PUTMSG system service to display an error message, the system default 
handler sets this bit. It is also set in the condition value returned by a routine 
as a function value, if the routine has also signaled the condition, so that the 
condition has been either printed or suppressed. Bits <29:31> must be zero; they 
are reserved for Digital. 

When a software component completes execution, it returns a condition value in 
this format. When a severity value of warning, error, or severe error has been 
generated, the status value returned describes the·nature of the problem. Your 
program can test this value to change the flow of control or to generate a message. 
Your program can also generate condition values to be examined by other routines 
and by the command language interpreter. Condition values defined by customers 
must set bits <27> and <15> so that these values do not conflict with values 
defined by Digital. 

message number 
The number identifying the message associated with the error condition. It is a 
status identification, that is, a description of the hardware exception condition 
that occurred or a software-defined value. Message numbers with bit <15> set are 
specific to a single facility. Message numbers with bit <15> clear are systemwide 
status values. 

facility number 
Identifies the software component generating the condition value. Bit <27> is set 
for user facilities and clear for Digital facilities. 



Condition-Handling Routines and Services 
13.5 Condition Values 

13.5.1 Return Status Convention 
Most system-defined procedures are functions of longwords, where the function 
value is equated to a condition value. In this capacity, the condition value is 
referred to as a return status. You can write your own routines to follow this 
convention. See Section 13.14.2 for information about how to change a signal 
to a return status. Each routine description in the Open VMS System Services 
Reference Manual, Open VMS RTL Library (LIB$) Manual, Open VMS Record 
Management Utilities Reference Manual, and Open VMS Utility Routines Manual 
lists the condition values that can be returned by that procedure. 

13.5.1.1 Testing Returned Condition Values 
When a function returns a condition value to your program unit, you should 
always examine the returned condition value. To check for a failure condition 
(warning, error, or severe error), test the returned condition value for a logical 
value of false. The following program segment invokes the run-time library 
procedure LIB$DATE_TIME, checks the returned condition value (returned in 
the variable STATUS), and, if an error has occurred, signals the condition value 
by calling the run-time library procedure LIB$SIGNAL (Section 13.8 describes 
signaling): 

INTEGER*4 STATUS, 
2 LIB$DATE TIME 
CHARACTER*23 DATE -

STATUS = LIB$DATE TIME (DATE) 
IF (.NOT. STATUS)-CALL LIB$SIGNAL (%VAL (STATUS)) 

To check for a specific error, test the return status for a particular condition value. 
For example, LIB$DATE_TIME returns a success value (LIB$_STRTRU) when it 
truncates the string. If you want to take special action when truncation occurs, 
specify the condition as shown in the following example (the special action would 
follow the IF statement): 

INTEGER*4 STATUS, 
2 LIB$DATE TIME 
CHARACTER*23 DATE -

INCLUDE '($LIBDEF)' 

STATUS = LIB$DATE TIME (DATE) 
IF (STATUS .EQ. LIB$_STRTRU) THEN 

13.5.1.2 Testing SS$_NOPRIV and SS$_EXQUOTA Condition Values 
The SS$_NOPRIV and SS$_EXQUOTA condition values returned by a number 
of system service procedures require special checking. Any system service that 
is listed as returning SS$_NOPRIV or SS$_EXQUOTA can instead return a 
more specific condition value that indicates the privilege or quota in question. 
Table 13-7 list the specific privilege errors, and Table 13-8 lists the quota errors. 

13-21 



Condition-Handling Routines and Services 
13.5 Condition Values 

13-22 

Table 13-7 Privilege Errors 

SS$_NOACNT 

SS$_NOBUGCHK 

SS$_NOCMKRNL 

SS$_NODOWNGRADE 

SS$_NOGRPNAM 

SS$_NOMOUNT 

SS$_NOPFNMAP 

SS$_NOPRMGBL 

SS$_NOREADALL 

SS$_NOSHARE 

SS$_NOSYSLCK 

SS$_NOTMPMBX 

SS$_NOWORLD 

Table 13-8 Quota Errors 

SS$_EXASTLM 

SS$_EXDIOLM 

SS$_EXPGFLQUOTA 

SS$_NOALLSPOOL 

SS$_NOBYPASS 

SS$_NODETACH 

SS$_NOEXQUOTA 

SS$_NOGRPPRV 

SS$_NONETMBX 

SS$_NOPHYIO 

SS$_NOPRMMBX 

SS$_NOSECURITY 

SS$_NOSHMEM 

SS$_NOSYSNAM 

SS$_NOUPGRADE 

SS$_EXBIOLM 

SS$_EXENQLM 

SS$_EXPRCLM 

SS$_NOALTPRI 

SS$_NOCMEXEC 

SS$_NODIAGNOSE 

SS$_NOGROUP 

SS$_NOLOGIO 

SS$_NOOPER 

SS$_NOPRMCEB 

SS$_NOPSWAPM 

SS$_NOSETPRV 

SS$_NOSYSGBL 

SS$_NOSYSPRV 

SS$_NOVOLPRO 

SS$_EXBYTLM 

SS$_EXFILLM 

SS$_EXTQELM 

Because either a general or a specific value can be returned, your program must 
test for both. The following four symbols provide a starting and ending point with 
which you can compare the returned condition value: 

• SS$_NOPRIVSTRT-First specific value for SS$_NOPRIV 

• SS$_NOPRIVEND-Last specific value for SS$_NOPRIV 

• SS$_NOQUOTASTRT-First specific value for SS$_EXQUOTA 

• SS$_NOQUOTAEND-Last specific value for SS$_EXQUOTA 

The following DEC Fortran example tests for a privilege error by comparing 
STATUS (the returned condition value) with the specific condition value SS$_ 
NOPRIV and the range provided by SS$_NOPRIVSTRT and 
SS$_NOPRIVEND. You would test for SS$_NOEXQUOTA in a similar fashion. 



Condition-Handling Routines and Services 
13.5 Condition Values 

Declare status and status values 
INTEGER STATUS 
INCLUDE '($SSDEF)' 

IF (.NOT. STATUS) THEN 
IF ((STATUS .EQ. SS$ NOPRIV) .OR. 

2 ((STATUS .GE. SS$ NOPRIVSTRT) .AND. 
2 (STATUS .LE. SS$=NOPRIVEND))) THEN 

ELSE 
CALL LIB$SIGNAL (%VAL(STATUS)) 

END IF 
END IF 

13.5.2 Modifying Condition Values 
To modify a condition value, copy a series of bits from one longword to another 
longword. For example, the following statement copies the first 3 bits (bits <2:0>) 
of STS$K_INFO to the first 3 bits of the signaled condition code, which is in the 
second element of the signal array named SIGARGS. As shown in Table 13-6, 
STS$K_INFO contains the symbolic severity code for an informational message. 

! Declare STS$K symbols 
INCLUDE '($STSDEF)' 

Change the severity of the condition code 
in SIGARGS(2) to informational 

CALL MVBITS (STS$K INFO, 
2 O, -
2 3, 
2 SIGARGS(2), 
2 0) 

Once you modify the condition value, you can resignal the condition value and 
either let the default condition handler display the associated message or use the 
SYS$PUTMSG system service to display the message. If your condition handler 
displays the message, do not resignal the condition value, or the default condition 
handler will display the message a second time. 

In the following example, the condition handler verifies that the signaled 
condition value is LIB$_NOSUCHSYM. If it is, the handler changes its severity 
from error to informational and then resignals the modified condition value. As 
a result of the handler's actions, the program displays an informational message 
indicating that the specified symbol does not exist, and then continues executing. 

INTEGER FUNCTION SYMBOL (SIGARGS, 
2 MECHARGS) 
! Changes LIB$_NOSUCHSYM to an informational message 

! Declare dummy arguments 
INTEGER*4 SIGARGS(*), 
2 MECHARGS(*) 
! Declare index variable for LIB$MATCH COND 
INTEGER INDEX -

13-23 



Condition-Handling Routines and Services 
13.5 Condition Values 

! Declare condition codes 
INCLUDE '($LIBDEF)' 
INCLUDE '($STSDEF)' 
INCLUDE '($SSDEF)' 
! Declare library procedures 
INTEGER LIB$MATCH COND 
INDEX= LIB$MATCH-COND (SIGARGS(2), 
2 - LIB$NO SUCHSYM) 
! If the signaled condition code is LIB$NO SUCHSYM, 
! change its severity to informational. -
IF (INDEX .GT. 0) 
2 CALL MVBITS (STS$K INFO, 
2 O, -
2 3, 
2 SIGARGS(2), 
2 0) 

SYMBOL = SS$_RESIGNAL 

END 

13.6 Exception Dispatcher 

13-24 

When an exception occurs, control is passed to the operating system's exception­
dispatching routine. The exception dispatcher searches for a condition-handling 
routine invoking the first handler it finds and passes the information to the 
handler about the condition code and the state of the program when the condition 
code was signaled. If the handler resignals, the operating system searches for 
another handler; otherwise, the search for a condition handler ends. 

The operating system searches for condition handlers in the following sequence: 

1. Primary exception vectors-Four vectors (lists) of one or more condition 
handlers; each vector is associated with an access mode. By default, all of the 
primary exception vectors are empty. Exception vectors are used primarily for 
system programming, not application programming. The debugger uses the 
primary exception vector associated with user mode. 

When an exception occurs, the operating system searches the primary 
exception associated with the access mode at which the exception occurred. 
To enter or cancel a condition handler in an exception vector, use the 
SYS$SETEXV system service. Condition handlers that are entered into the 
exception vectors associated with kernel, executive, and supervisor modes 
remain in effect until they are canceled or until you log out. Condition 
handlers that are entered into the exception vector associated with user mode 
remain in effect until they are canceled or until the image that entered them 
exits. 

2. Secondary exception vectors-A set of exception vectors with the same 
structure as the primary exception vectors. Exception vectors are primarily 
used for system programming, not application programming. By default, all 
of the secondary exception vectors are empty. 

3. Call frame condition handlers-Each program unit can establish one condition 
handler (the address of the handler is placed in the call frame of the program 
unit). The operating system searches for condition handlers established 
by your program, beginning with the current program unit. If the current 
program unit has not established a condition handler, the operating system 
searches for a handler that was established by the program unit that invoked 
the current program unit, and so on back to the main program. 



Condition-Handling Routines and Services 
13.6 Exception Dispatcher 

4. Traceback handler-If you do not establish any condition handlers and link 
your program with the trRACEBACK qualifier of the LINK command (the 
default), the operating system finds and invokes the traceback handler. 

5. Catchall handler-If you do not establish any condition handlers and you link 
your program with the /NOTRACEBACK qualifier to the LINK command, the 
operating system finds and invokes the catchall handler. The catchall handler 
is at the bottom of the user stack and in the last-chance exception vector. 

6. Last-chance exception vectors-A set of exception vectors with the same 
structure as the primary and secondary exception vectors. Exception vectors 
are used primarily for system programming, not application programming. 
By default, the user- and supervisor-mode last-chance exception vectors are 
empty. The executive- and kernel-mode last-chance exception vectors contain 
procedures that cause a bugcheck (a nonfatal bugcheck results in an error log 
entry; a fatal bugcheck results in a system shutdown). The debugger uses the 
user-mode last-chance exception vector, and DCL uses the supervisor-mode 
last-chance exception vector. 

The search is terminated when the dispatcher finds a condition handler. If the 
dispatcher cannot find a user-specified condition handler, it calls the condition 
handler whose address is stored in the last-chance exception vector. If the image 
was activated by the command language interpreter, the last-chance vector points 
to the catchall condition handler. The catchall handler issues a message and 
either continues program execution or causes the image to exit, depending on 
whether the condition was a warning or an error condition, respectively. 

You can call the catchall handler in two ways: 

• _If the last-chance exception vector returns to the dispatcher or if the last­
chance exception vector is empty, the last-chance exception vector calls 
the catchall condition handler and exits with the return status code SS$_ 
NO HANDLER. 

• If the exception dispatcher detects an access violation, it calls the catchall 
condition handler and exits with the return status code SS$_ACCVIO. 

Figure 13-4 illustrates the exception dispatcher's search of the call stack for a 
condition handler. 

13-25 



Condition-Handling Routines and Services 
13.6 Exception Dispatcher 

13-26 

Figure 13-4 Searching the Stack for a Condition Handler 

C Runsa d 
Incurs C o~dition 1 

0 

FP 

B cause l 
0 

FP 

ites (FP) l 
allsB 

AWr 
andC 

Handler A 

FP 

x CallsA j 

~ 

--~ 

+ 

.- Condition 
Occurs 

Condition 
.- Handler Found 

The illustration of the call stack indicates the calling sequence: 
Procedure A calls procedure B, and procedure B calls procedure C. 
Procedure A establishes a condition handler. 

2 An exception occurs while procedure C is executing. The exception 
dispatcher searches for a condition handler. 

3 After checking for a condition handler declared in the exception vectors 
(assume that none has been specified for the process), the dispatcher 
looks at the first longword of procedure C's call frame. A value of O 
indicates that no condition handler has been specified. The dispatcher 
locates the call'frame for procedure B by using the frame pointer (FP) 
in procedure C's call frame. Again, it finds no condition handler, and 
locates procedure A's call frame. 

4 The dispatcher locates and gives control to handler A. 

ZK-0858-GE 



Condition-Handling Routines and Services 
13.6 Exception Dispatcher 

In cases where the default condition handling is insufficient, you can establish 
your own handler by one of the mechanisms described in Section 13.2.1. 
Typically, you need condition handlers only if your program must perform one of 
the following operations: 

• Respond to condition values that are signaled rather than returned, such 
as an integer overflow error. (Section 13.14.2 describes the system-defined 
handler LIB$SIG_TO _RET that allows you to treat signals as return values; 
Section 13.4.2 describes other useful system-defined handlers for arithmetic 
errors.) 

• Modify part of a condition code, such as the severity. See Section 13.5.2 for 
more information. If you want to change the severity of any condition code to 
a severe error, you can use the run-time library procedure LIB$STOP instead 
of writing your own condition handler. 

• Add messages to the one associated with the originally signaled condition 
code or log the messages associated with the originally signaled condition 
code. 

13.7 Argument List Passed to a Condition Handler 

lvtjw 

On VAX systems, the argument list passed to the condition handler is constructed 
on the stack and consists of the addresses of two argument arrays, signal and 
mechanism, as illustrated in Section 13.8.2 and Section 13.8.3. + 

On AXP systems, the arrays are set up on the stack, but any argument is passed 
in registers. + 

On VAX systems, you can use the $CHFDEF macro instruction to define the 
symbolic names to refer to the arguments listed in Table 13-9. 

Table 13-9 $CHFDEF Symbolic Names and Arguments on VAX Systems 

Symbolic Name 

CHF$L_SIGARGLST 

CHF$L_MCHARGLST 

CHF$L_SIG_ARGS 

CHF$L_SIG_NAME 

CHF$L_SIG_ARG 1 

CHF$L_MCH_ARGS 

CHF$L_MCH_FRAME 

CHF$L_MCH_DEPTH 

CHF$L_MCH_SAVRO 

CHF$L_MCH_SAVR1 

Related Argument 

Address of signal array 

Address of mechanism array 

Number of signal arguments 

Condition name 

First signal-specific argument 

Number of mechanism arguments 

Establisher frame address 

Frame depth of establisher 

Saved register RO 

Saved register Rl + 

On AXP systems, you can use the $CHFDEF2 macro instruction to define the 
symbolic names to refer to the arguments listed in Table 13-10. 

13-27 



Condition-Handling Routines and Services 
13.7 Argument List Passed to a Condition Handler 

Table 13-10 $CHFDEF2 Symbolic Names and Arguments on AXP Systems 

Symbolic Name 

CHF$L_SIGARGLST 

CHF$L_MCHARGLST 

CHF$IS_SIG_ARGS 

CHF$IS_SIG_NAME 

CHF$IS_SIG_ARG 1 

CHF$IS_MCH_ARGS 

CHF$IS_MCH_FLAGS 

CHF$PH_MCH_FRAME 

CHF$IS_MCH_DEPTH 

CHF$PH_MCH_DADDR 

CHF$PH_MCH_ESF _ADDR 

CHF$PH_MCH_SIG_ADDR 

CHF$IH_MCH_SAVRnn 

CHF$FH_MCH_SAVFnn 

Related Argument 

Address of signal array 

Address of mechanism array 

Number of signal arguments 

Condition name 

First signal-specific argument 

Number of mechanism arguments 

Flag bits <63:0> for related argument mechanism 
information 

Establisher frame address 

Frame depth of establisher 

Address of the handler data quadword if the exception 
handler data field is present 

Address of the exception stack frame 

Address of the signal array 

Contains a copy of the saved integer registers at the 
time of the exception 

Contains a copy of the saved floating-point registers at 
the time of the exception + 

13.8 Signaling 

13-28 

Signaling can be initiated when hardware or software detects an exception 
condition. In either case, the exception condition is said to be signaled by the 
routine in which it occurred. If hardware detects the error, it passes control 
to a condition dispatcher. If software detec.ts the error, it calls one of the run­
time library signal-generating routines: LIB$SIGNAL or LIB$STOP. The RTL 
signal-generating routines pass control to the same condition dispatcher. When 
LIB$STOP is called, the severity code is forced to severe, and control cannot 
return to the routine that signaled the condition. See Section 13.12.1 for a 
description of how a signal can be dismissed and how normal execution from the 
point of the exception condition can be continued. 

When a routine signals, it passes to the Open VMS Condition Handling Facility 
(CHF) the condition value associated with the exception condition, as well as 
optional arguments that can be passed to a condition handler. The CHF uses 
these arguments to build two data structures on the stack: 

• The signal argument vector. This vector contains the information describing 
the nature of the exception condition. 

• The mechanism argument vector. This vector describes the state of the 
process at the time the exception condition occurred. 

These two vectors become the arguments that the CHF passes to condition 
handlers. 

These argument vectors are described in detail in Section 13.8.2 and 
Section 13.8.3. 



Condition-Handling Routines and Services 
13.8 Signaling 

After the signal and mechanism argument vectors are set up, the CHF searches 
for enabled condition handlers. A condition handler is a separate routine that 
has been associated with a routine in order to take a specific action when an 
exception condition occurs. The CHF searches for condition handlers to handle 
the exception condition, beginning with the primary exception vector of the 
access mode in which the exception condition occurred. If this vector contains 
the address of a handler, that handler is called. If the address is 0 or if the 
handler resignals, then the CHF repeats the process with the secondary exception 
vector. Enabling vectored handlers is discussed in detail in the Open VMS Calling 
Standard. Because the exception vectors are allocated in static storage, they are 
not generally used by modular routines. 

If neither the primary nor secondary vectored handlers handle the exception 
condition by continuing program execution, then the CHF looks for stack frame 
condition handlers. It looks for the address of a condition handler in the first 
longword of the routine stack frame on VAX systems, or in the procedure 
descriptor (in which the handler valid bit is set) for the routine stack frame 
on AXP systems where the exception condition occurred. At this point, several 
actions are possible, depending on the results of this search: 

• If this routine has not set up a condition handler, the CHF continues the 
stack scan by moving to the previous stack frame (that is, the stack frame of 
the calling routine). · 

• If a condition handler is present, the CHF then calls this handler, which may 
resignal, continue, or unwind. See Section 13.10. 

The Open VMS Condition Handling Facility searches for and calls condition 
handlers from each frame on the stack until the frame pointer is zero (indicating 
the end of the call sequence). At that point, the CHF calls the vectored catchall 
handler, which displays an error message and causes the program to exit. Note 
that, normally, the frame containing the stack catchall handler is at the end 
of the calling sequence or at the bottom of the stack. Section 13.9 explains the 
possible actions of default and user condition handlers in more detail. 

Figure 13-5 illustrates a stack scan for condition handlers in which the main 
program calls procedure A, which then calls procedure B. A stack scan is 
initiated when a hardware exception condition occurs or when a call is made to 
LIB$SIGNAL or LIB$STOP. 

13-29 



Condition-Handling Routines and Services 
13.8 Signaling· 

Figure 13-5 Sample Stack Scan for Condition Handlers 

Process Statically / .. · Stack Scan 
I 

Allocated Storage / 

I ~<' 
Primary Exception Vector\ 

I 
I 

I 

_______ r·-<, 
Secondary Exception Vector\ 

' I 
I 

I 
I 

T 
I 

' \ 
\ 
\ 
\ 

I 
I 

I 
I 

T 
\ 
\ 

\ 
/ 

I 

\· 
' 
/ 

Top of Stack 

Routine B 
Stack Frame 

Routine A 
Stack Frame 

0 

I..__ _____ _. 

I 
I 

I 
I 

t 
\ 
\ 
\ 

\ 

'~ / 

Main 
Program 

Stack Frame 

0 
I..__ _____ _. 

I 
I 

I 
I 

t 
\ 
\ 
\ 

\ 

I 
I 

I 
I 

t 
\ 
\ 
\ 

' ,/..._ _____ .... 

\ 

' 

:SP 

:FP 

User 
Handler 

Traceback 
Handler 

Catchall Vector 

Last-Chance 
Handler 

ZK-1935-GE 

13.8.1 Generating Signals with LIB$SIGNAL and LIB$STOP 

13-30 

When software detects an exception condition, the software normally calls one of 
the run-time library signal-generating routines, LIB$SIGNAL or LIB$STOP, to 
initiate the signaling mechanism. This call indicates to the calling program that 
the exception condition has occurred. Your program can also call one of these 
routines explicitly to indicate an exception condition. 



Condition-Handling Routines and Services 
13.8 Signaling 

You can signal a condition code by invoking the run-time library procedure 
LIB$SIGNAL and passing the condition code as the first argument. (The 
Open VMS RTL Library (LIB$) Manual contains the complete specifications for 
LIB$SIGNAL.) The following statement signals the condition code contained in 
the variable STATUS: 

CALL LIB$SIGNAL (%VAL(STATUS)) 

When an error occurs in a subprogram, the subprogram can signal the 
appropriate condition code rather than return the condition code to the invoking 
program unit. In addition, some statements also signal condition codes; for 
example, an assignment statement that attempts to divide by zero signals the 
condition code SS$_INTDIV. 

When your program wants to issue a message and allow execution to continue 
after handling the condition, it calls the standard routine, LIB$SIGNAL. The 
calling sequence for LIB$SIGNAL is the following: 

LIB$SIGNAL condition-value1 [,number1] [,FAO-arg1 ... ,FAO-argn1] 
[,condition-value2] [, number2] [, FAO-arg2 ... , FAO-argn2] 

Only the condition-valuel argument must be specified; other arguments are 
optional. The numberl argument, if specified, contains the number of FAO 
(formatted ASCII output) arguments that are associated with condition-valuel. 
The condition-value2 argument may be specified with or without the number2 
or FAO-arg2 argument. The number2 argument, if specified, contains the 
number of FAO arguments that are associated with condition-value2. You may 
specify condition-value3, condition-value4, condition-value5, and so on, 
along with their corresponding number and FAQ arguments. 

condition-value 

Operating system 
usage: 

type: 

access: 

mechanism: 

cond_value 

longword (unsigned) 

read only 

by value 

A VAX 32-bit condition value. The condition-value argument is an unsigned 
longword that contains this condition value. Section 13.5 explains the format of a 
VAX condition value. 

number1 

Operating system 
usage: 

type: 

access: 

mechanism: 

longword_signed 

longword integer (signed) 

read only 

by value 

The number of FAO arguments associated with the condition value. The number 
argument is a signed longword integer that contains this number. If you omit the 
number argument or specify it as zero, no FAO arguments follow. 

The maximum number of FAO arguments specified must not exceed 253. See 
Section 13.11 and Section 13.11.3 for more information about FAO arguments. 

13-31 



Condition-Handling Routines and Services 
13.8 Signaling 

FAO-arg 

Operating system 
usage: 

type: 

access: 

mechanism: 

varying_arg 

unspecified 

read only 

by value 

Additional FAQ (formatted ASCII output) arguments that are associated with 
the specified condition value. The FAO-arg argument is the address of either a 
signed longword integer or a character string that contains these additional FAQ 
arguments. Section 13.11 explains the message format. 

When your program wants to issue a message and stop execution unconditionally, 
it calls LIB$STOP. The calling sequence for LIB$STOP is as follows: 

LIB$STOP condition-value1 [,number1] [,FAO-arg1 ... ,FAO-argn1] 
[,condition-value2] [,number2] [,FAO-arg2 ... ,FAO-argn2] 

Only the condition-value! argument must be specified; other arguments are 
optional. The numberl argument, if specified, contains the number of FAQ 
arguments that are associated with condition-value!. The condition-value2 
argument can be specified with or without the number2 or FAO-arg2 argument. 
The number2 argument, if specified, contains the number of FAQ arguments 
that are associated with condition-value2. You can specify condition-value3, 
condition-value4, condition-value5, and so on, along with their corresponding 
number and FAO-arg arguments. 

In both cases, condition-value indicates the condition that is being signaled. 
However, LIB$STOP always sets the severity of condition-value to severe before 
proceeding with the stack-scanning operation. 

The FAQ arguments describes the details of the exception condition. These are 
the same arguments that are passed to the Open VMS Condition Handling Facility 
as part of the signal argument vector. The system default condition handlers pass 
them to SYS$PUTMSG, which uses them to issue a system message. 

Unlike most routines, LIB$SIGNAL and LIB$STOP preserve RO and Rl as well 
as the other registers. Therefore, a call to LIB$SIGNAL allows the debugger to 
display the entire state of the process at the time of the exception condition. This 
is useful for debugging checks and gathering statistics. 

The behavior of LIB$SIGNAL is the same as that of the exception dispatcher that 
performs the stack scan after hardware detects an exception condition. That is, 
the system scans the stack in the same way, and the same arguments are passed 
to each condition handler. This allows a user to write a single condition handler 
to detect both hardware and software conditions. 

13.8.2 Signal Argument Vector 

13-32 

Signaling a condition value causes both VAX and AXP systems to pass control to 
a special subprogram called a condition handler. The operating system invokes 
a default condition handler unless you have established your own. The default 
condition handler displays the associated error message and continues or, if the 
error is a severe error, terminates program execution. 

The signal argument vector contains information describing the nature of the 
hardware or software condition. Figure 13-6 illustrates the open-ended structure 
of the signal argument vector, which can be from 3 to 257 longwords in length. 



*43• 

Condition-Handling Routines and Services 
13.8 Signaling 

The format of the signal argument array and the data it returns is the same on 
VAX systems and AXP systems, with the exception of the processor status (PS) 
returned on AXP systems and the processor status longword (PSL) returned on 
VAX systems. On AXP systems, it is the low-order 32 bits of the PS. 

On AXP systems, CHF$IS_SIG_ARGS and CHF$IS_SIG_NAME are aliases for 
CHF$L_SIG_ARGS and CHF$L_SIG_NAME, as shown in Figure 13-6, and the 
PSL field for VAX systems is the processor status (PS) field for AXP 
systems. + 

Figure 13-6 Format of the Signal Argument Vector 

n = Additional Longwords 

Condition Value 

Optional Additional 
Arguments Making Up One 
or More Message Sequences 

PC 

PSL 

MACRO and BLISS 

CHF$L_SIG_ARGS 

CHF$L_SIG_NAME 

Fields of the Signal Argument Vector 
SIGARGS(1) 

High-Level languages 

SIGARGS(1) 

SIGARGS(2) 

SIGARGS(n) 

SIGARGS(n + 1) 

ZK-1963-GE 

An unsigned integer (n) designating the number oflongwords that follow in the 
vector, not counting the first, including PC and PSL. (On AXP systems, the value 
used for the PSL is the low-order half of the AXP processor status [PS] register.) 
For example, the first entry of a 4-longword vector would contain a 3. 

SIGARGS(2) 
On both VAX systems and AXP systems, this argument is a 32-bit value that 
uniquely identifies a hardware or software exception condition. The format of 
the condition code, which is the same for both VAX systems and AXP systems, 
is shown and described in Figure 13-3. However, AXP systems do not support 
every condition returned on VAX systems, and AXP systems define several new 
conditions that cannot be returned on VAX systems. Table 13-2 lists VAX system 
condition codes that cannot be returned on AXP systems. 

If more than one message is associated with the error, this is the condition value 
of the first message. Handlers should always check whether the condition is the 
one that they expect by examining the STS$V _COND_ID field of the condition 
value (bits <27:3>). Bits <2:0> are the severity field. Bits <31:28> are control 
bits; they may have been changed by an intervening handler and so should not 
be included in the comparison. You can use the RTL routine LIB$MATCH_COND 
to match the correct fields. If the condition is not expected, the handler should 
resignal by returning false (bit <0> = 0). The possible exception conditions and 
their symbolic definitions are listed in Table 13-1. 

13-33 



Condition-Handling Routines and Services 
13.8 Signaling 

13-34 

SIGARGS(3 to n -1) 
Optional arguments that provide additional information about the condition. 
These arguments consist of one or more message sequences. The format of the 
message description varies depending on the type of message being signaled. For 
more information, see the SYS$PUTMSG description in the Open VMS System 
Services Reference Manual. The format of a message sequence is described in 
Section 13.11. 

SIGARGS(n) 
The program counter (PC) of the next instruction to be executed if any 
handler (including the system-supplied handlers) returns with the status SS$_ 
CONTINUE. For hardware faults, the PC is that of the instruction that caused 
the fault. For hardware traps, the PC is that of the instruction following the 
one that caused the trap. The error generated by LIB$SIGNAL is a trap. For 
conditions signaled by calling LIB$SIGNAL or LIB$STOP, the PC is the location 
following the CALLS or CALLG instruction. See the VAX Architecture Reference 
Manual or Alpha Architecture Reference Manual for a detailed description of 
faults and traps. 

SIGARGS(n+ 1) 
The processor status longword (PSL), or on AXP systems the processor status 
(PS) register, of the program at the time that the condition was signaled. 

For information about the PSL on VAX systems, and the PS on AXP systems, 
see the VAX Architecture Reference Manual and the Alpha Architecture Reference 
Manual. 

Note ~~~~~~~~~~~~ 

LIB$SIGNAL and LIB$STOP copy the variable-length argument list 
passed by the caller. Then, before calling a condition handler, they append 
the PC and PSL, or on AXP systems the processor status (PS) register, 
entries to the end of the list. 

The formats for some conditions signaled by the operating system and the run­
time library are shown in Figure 13-7 and Figure 13-8. These formats are the 
same on VAX systems and AXP systems, except for the PSL, or on AXP systems, 
the PS register. · 

Figure 13-7 Signal Argument Vector for the Reserved Operand Error 
Conditions 

3 

SS$_ROPRAND 

PC 

PSL 

Additional Longwords 

Condition Value 

PC of Instruction Causing Fault 

ZK-1964-GE 



Condition-Handling Routines and Services 
13.8 Signaling 

Figure 13-8 Signal Argument Vector for RTL Mathematics Routine Errors 

5 

MTH$_abcmnoxyz 

1 

Caller's PC 

PC 

PSL 

Additional Longwords 

Math Condition Value 

Number of FAQ Arguments 

PC Following JSB or CALL 

PC Following Call to LIB$SIGNAL 

ZK-1965-GE 

The caller's PC is the PC following the calling program's JSB or CALL to the 
mathematics routine that detected the error. The PC is that following the call to 
LIB$SIGNAL. 

13.8.3 VAX Mechanism Argument Vector (VAX Only) 
On VAX systems, the mechanism argument vector is a 5-longword vector that 
contains all of the information describing the state of the process at the time of 
the hardware or software signaled condition. Figure 13-9 illustrates a mechanism 
argument vector for VAX systems. 

Figure 13-9 Format of a VAX Mechanism Argument Vector 

4 = Additional Longwords 

Frame 

Depth 

Saved RO 

Saved R1 

MACRO and BLISS 

CHF$L_MCH_ARGS 

CHF$L_MCH_FRAME 

CHF$L_MCH_DEPTH 

CHF$L_MCH_SAVRO 

CHF$L_MCH_SAVR1 

Fields of the VAX Mechanism Argument Vector 
MCHARGS(1) 

High-Level languages 

MCHARGS(1) 

MCHARGS(2) 

MCHARGS(3) 

MCHARGS(4) 

MCHARGS(5) 

ZK-1966-GE 

An unsigned integer indicating the number of longwords that follow, not counting 
the first, in the vector. Currently, this number is always 4. 

MCHARGS(2) 
The address of the stack frame. of the routine that established the handler being 
called. This address can be used as a base from which to reference the local 
stack-allocated storage of the establisher, as long as the restrictions on the 
handler's use of storage are observed. For example, if the call stack is as shown 
in Figure 13-4, this argument points to the call frame for procedure A. 

13-35 



Condition-Handling Routines and Services 
13.8 Signaling 

13-36 

This value can be used to display local variables in the procedure that established 
the condition handler if the variables are at known offsets from the frame pointer 
(FP) of the procedure. 

MCHARGS(3) 
The stack depth, which is the number of stack frames between the establisher 
of the condition handler and the frame in which the condition was signaled. To 
ensure that calls to LIB$SIGNAL and LIB$STOP appear as similar as possible 
to hardware exception conditions, the call to LIB$SIGNAL or LIB$STOP is not 
included in the depth. 

If the routine that contained the hardware exception condition or that called 
LIB$SIGNAL or LIB$STOP also handled the exception condition, then the depth 
is zero; if the exception condition occurred in a called routine and its caller 
handled the exception condition, then the depth is 1. If a system service signals 
an exception condition, a handler established by the immediate caller is also 
entered with a depth of 1. 

The following table shows the stack depths for the establishers of condition 
handlers: 

Depth 

-3 

-2 

-1 

0 

1 

2 

Meaning 

Condition handler was established in the last-chance exception vector. 

Condition handler was established in the primary exception vector. 

Condition handler was established in the secondary exception vector. 

Condition handler was established by the frame that was active when the 
exception occurred. 

Condition handler was established by the caller of the frame that was active 
when the exception occurred. 

Condition handler was established by the caller of the caller of the frame that 
was active when the exception occurred. 

For example, if the call stack is as shown in Figure 13-4, the depth argument 
passed to handler a would have a value of 2. 

The condition handler can use this argument to determine whether to handle the 
condition. For example, the handler might not want to handle the condition if the 
exception that caused the condition did not occur in the establisher frame. 

MCHARGS(4) and MCHARGS(5) 
Copies of the contents of registers RO and Rl at the time of the exception 
condition or the call to LIB$SIGNAL or LIB$STOP. When execution continues or 
a stack unwind occurs, these values are restored to RO and Rl. Thus, a handler 
can modify these values to change the function value returned to a caller. + 



Condition-Handling Routines and Services 
13.8 Signaling 

13.8.4 AXP Mechanism Argument Vector (AXP Only) 
On AXP systems, the mechanism array returns much the same data as it does on 
VAX systems, though its format is changed. The mechanism array returned on 
AXP systems preserves the contents of a larger set of integer scratch registers as 
well as the Alpha AXP floating-point scratch registers. In addition, because Alpha 
AXP registers are 64 bits long, the mechanism array is constructed of quadwords 
(64 bits), not longwords (32 bits) as it is on VAX systems. Figure 13-10 shows the 
format of the mechanism array on AXP systems. 

13-37 



Condition-Handling Routines and Services 
13.8 Signaling 

Figure 13-10 Mechanism Array on AXP Systems 

mechanism args - quadword aligned 

MCH_ARGS 
: 0 

MCH_FLAGS 
•4 

MCH_FRAME 
: 8 

MCH_DEPTH 
: 16 

MCH_RESVD1 
: 20 

MCH_DADDR 
: 24 

MCH_ESF _ADDR : 32 

MCH_SIG_ADDR 
: 40 

MCH_SAVRO : 48 

MCH_SAVRO_LOW 

MCH_SAVRO_HIGH 

MCH_SAVR1 : 56 

MCH_SAVR1_LOW 

MCH_SAVR1_HIGH 

: 64 

MCH_SAVR16 

~ Integer registers 17-27 ~ 

: 160 

MCH_SAVR28 

: 168 

MCH_SAVFO 

: 176 

MCH_SAVF1 

: 184 

MCH_SAVF10 

I'\. Floating registers 11-29 I'\. 

1~ __ ]'344 - MCH_SAVF30 -

CHF$S_CHFDEF2 = 352 
ZK-4645A-GE 

13-38 



Condition-Handling Routines and Services 
13.8 Signaling 

Table 13-11 describes the arguments in the mechanism array. 

Table 13-11 Fields in the AXP Mechanism Array 

·Argument 

CHF$IS_MCH_ARGS 

CHF$IS_MCH_FLAGS 

CHF$PH_MCH_FRAME 

CHF$IS_MCH_DEPTH 

CHF$PS_MCH_DADDR 

CHF$PH_MCH_ESF _ADDR 

CHF$PH_MCH_SIG_ADDR 

CHF$IH_MCH_SAVRnn 

CHF$FM_MCH_SAVFnn 

Description 

Represents the number of quadwords in the mechanism 
array, not counting the argument count quadword. (The 
value contained in this argument is always 43.) 

Flag bits <63:0> for related argument mechanism 
information· defined as follows for CHF$V _FPREGS: 

Bit <0>: When set, the process has already performed a 
floating-point operation and the floating-point registers 
stored in this structure are valid. 

If this bit is clear, the process has not yet performed any 
floating point operations, and the values in the floating­
point register slots in this structure are unpredictable. 

Contains the frame pointer (FP) in the procedure context 
of the establisher. 

Positive count of the number of procedure activation stack 
frames between the frame in which the exception occurred 
and the frame depth that established the handler being 
called. 

Address of the handler data quadword if the exception 
handler data field is present (as indicated by 
PDSC.FLAGS.HANDLER_DATA_ VALID); otherwise, 
contains zero. 

Address of the exception stack frame (see the Alpha 
Architecture Reference Manual). 

Address of the signal array. The signal array is a 32-bit 
(longword) array. 

Contains a copy of the saved integer registers at the time 
of the exception. The following registers are saved: RO, 
Rl, and Rl6-R28. Registers R2-R15 are implicitly saved 
in the call chain. 

Contains a copy of the saved floating-point registers at the 
time of the exception or may have unpredictable data as 
described in CHF$IS_MCH_FLAGS. If the floating-point 
register fields are valid, the following registers are saved: 
FO, Fl, and F10-F30. Registers F2-F9 are implicitly 
saved in the call chain. 

For more information and recommendations about using the mechanism 
argument vector on AXP systems, see Migrating to an Open VMS AXP System: 
Recompiling and Relinking Applications. + 

13.8.5 Multiple Active Signals 
A signal is said to be active until the routine that signaled regains control or 
until the stack is unwound or the image exits. A second signal can occur while 
a condition handler or a routine it has called is executing. This situation is 
called multiple active signals or multiple exception conditions. When 
this situation occurs, the stack scan is not performed in the usual way. Instead, 
the frames that were searched while processing all of the previous exception 
conditions are skipped when the current exception condition is processed. This is 
done in order to avoid recursively reentering a routine that is not reentrant. For 
example, Fortran code typically is not recursively reentrant. If a Fortran handler 

13-39 



Condition-Handling Routines and Services 
13.8 Signaling 

13-40 

were called while another activation of that handler was still going, the results 
would be unpredictable. 

A second exception may occur while a condition handler or a procedure that it 
has called is still executing. In this case, when the exception dispatcher searches 
for a condition handler, it skips the frames that were searched to locate the first 
handler. 

The search for a second handler terminates in the same manner as the initial 
search, as described in Section 13.6. 

If the SYS$UNWIND system service is issued by the second active condition 
handler, the depth of the unwind is determined according to the same rules 
followed in the exception dispatcher's search of the stack: all frames that were 
searched for the first condition handler are skipped. 

Primary and secondary vectored handlers, on the other hand, are always entered 
when an exception occurs. 

If an exception occurs during the execution of a handler that was established 
in the primary or secondary exception vector, that handler must handle the 
additional condition. Failure to do so correctly might result in a recursive 
exception loop in which the vectored handler is repeatedly called until the user 
stack is exhausted. 

The modified search routine is best illustrated with an example. Assume the 
following calling sequence: 

1. Routine A calls routine B, which calls routine C. 

2. Routine C signals an exception condition (signal S), and the handler for 
routine C (CH) resignals. 

3. Control passes to BH, the handler for routine B. The call frame for handler 
BH is located on top of the signal and mechanism arrays for signal S. The 
saved frame pointer in the call frame for BH points to the frame for routine 
c. 

4. BH calls routine X; routine X calls routine Y. 

5. Routine Y signals a second exception condition (signal T). Figure 13-11 
illustrates the stack contents after the second exception condition is signaled. 



Condition-Handling Routines and Services 
13.8 Signaling 

Figure 13-11 Stack After Second Exception Condition Is Signaled 

<SignalT> 

b§ 
<Signal S > 

~ 
ZK-1968-GE 

Normally, the Open VMS Condition Handling Facility (CHF) searches all 
currently active frames for condition handlers, including B and C. If this 
happens, however, BH is called again. At this point, you skip the condition 
handlers that have already been called. Thus, the search for condition 
handlers should proceed in the following order: 

YH 
XH 
BHH (the handler for routine B's handler) 
AH 

6. The search now continues in its usual fashion. The CHF examines the 
primary and secondary exception vectors, then frames Y, X, and BH. Thus, 
handlers YH, XH, and BHH are called. Assume that these handlers resignal. 

7. The CHF now skips the frames that have already been searched and resumes 
the search for condition handlers in routine .Ns frame. The depths that are 
passed to handlers as a result of this modified search are 0 for YH, 1 for XH, 
2 for BHH, and 3 for AH. 

Because of the possibility of multiple active signals, you should be careful if you 
use an exception vector to establish a condition handler. Vectored handlers are 
called, not skipped, each time an exception occurs. 

13.9 Types of Condition Handlers 

··- On VAX systems, when a routine is activated, the first longword in its stack 
frame is set to 0. This longword is reserved to contain an address pointing to 
another routine called the condition handler. If an exception condition is signaled 
during the execution of the routine, the Open VMS Condition Handling Facility 
uses the address in the first longword of the frame to call the associated condition 
handler. + 

On AXP systems, each procedure, other than a null frame procedure, can have 
a condition handler potentially associated with it, identified by the HANDLER_ 
VALID, STACK_HANDLER, or REG_HANDLER field of the associated procedure 
descriptor. You establish a handler by including the procedure value of the 
handler procedure in that field. + 

The arguments passed to the condition-handling routine are the signal and 
mechanism argument vectors, described in Section 13.8.2, Section 13.8.3, and 
Section 13.8.4. 

13-41 



Condition-Handling Routines and Services 
13.9 Types of Condition Handlers 

Various types of condition handlers can be called for a given routine: 

• 

• 

User-supplied condition handlers 

You can write your own condition handler and set up its address in the stack 
frame of your routine using the run-time library routine LIB$ESTABLISH or 
the mechanism supplied by your language. 

On AXP systems, LIB$ESTABLISH is not supported, though high-level 
languages may support it for compatibility. + 

Language-supplied condition handlers 

Many high-level languages provide a means for setting up handlers that are 
global to a single routine. If your language provides a condition-handling 
mechanism, you should always use it. If you also try to establish a condition 
handler using LIB$ESTABLISH, the two methods of handling exception 
conditions conflict, and the results are unpredictable. 

• System default condition handlers 

The operating system provides a set of default condition handlers. These take 
over if there are no other condition handler addresses on the stack, or if all 
the previous condition handlers have passed on (resignaled) the indication of 
the exception condition. 

13.9.1 Default Condition Handlers 

13-42 

The operating system establishes the following default condition handlers each 
time a new image is started. The default handlers are shown in the order they 
are encountered when the operating system processes a signal. These three 
handlers are the only handlers that output error messages. 

• Traceback handler 

The traceback handler is established on the stack after the catchall handler. 
This enables the traceback handler to get control first. This handler performs 
three functions in the following order: 

1. Outputs an error message using the Put Message (SYS$PUTMSG) system 
service. SYS$PUTMSG formats the message using the Formatted ASCII 
Output (SYS$FAO) system service and sends the message to the devices 
SYS$ERROR and SYS$0UTPUT (if it differs from SYS$ERROR). That 
is, it displays the message associated with the signaled condition code, 
the traceback message, the program unit name and line number of the 
statement that signaled the condition code, and the relative and absolute 
program counter values. (On a warning or error, the number of the next 
statement to be executed is displayed.) 

2. Issues a symbolic traceback, which shows the state of the routine stack 
at the time of the exception condition. That is, it displays the names of 
the program units in the calling hierarchy and the line numbers of the 
invocation statements. 



Condition-Handling Routines and Services 
13.9 Types of Condition Handlers 

3. Decides whether to continue executing the image or to force an exit based 
on the severity field of the condition value: 

Severity Error Type Action 

1 Success Continue 

3 Information Continue 

0 Warning Continue 

2 Error Continue 

4 Severe Exit 

The traceback handler is in effect if you link your program with the 
trRACEBACK qualifier of the LINK command (the default). Once you 
have completed program development, you generally link your program 
with the /NOTRACEBACK qualifier and use the catchall handler. 

• Catchall handler 

The operating system establishes the catchall handler in the first stack 
frame and thus calls it last. This handler performs the same functions as the 
traceback handler except for the stack traceback. That is, it issues an error 
message and decides whether to continue execution. The catchall is called 
only if you link with the /NOTRACEBACK qualifier. It displays the message 
associated with the condition code and then continues program execution or, 
if the error is severe, terminates execution. 

• Last-chance handler 

The operating system establishes the last-chance handler with a system 
exception vector. In most cases, this vector contains the address of the 
catchall handler, so that these two handlers are actually the same. The 
last-chance handler is called only if the stack is invalid or all the handlers 
on the stack have resignaled. If the debugger is present, the debugger's own 
last-chance handler replaces the system last-chance handler. 

Displays the message associated with the condition code and then continues 
program execution or, if the error is severe, terminates execution. The catchall 
handler is not invoked if the traceback handler is enabled. 

In the following example, if the condition code INCOME_LINELOST is signaled 
at line 496 of GET_STATS, regardless of which default handler is in effect, the 
following message is displayed: 

%INCOME-W-LINELOST, Statistics on last line lost due to CTRL/Z 

If the traceback handler is in effect, the following text is also displayed: 

%TRACE-W-TRACEBACK, symbolic stack dump follows 
module name routine name line rel PC abs PC 

GET STATS 
INCOME 

GET STATS 
INCOME 

497 
148 

00000306 00008DA2 
0000015A 0000875A 
0000A5BC OOOOA5BC 
00009BDB 00009BDB 
OOOOA599 OOOOA599 

Because INCOME_LINELOST is a warning, the line number of the next 
statement to be executed ( 497), rather than the line number of the statement 
that signaled the condition code, is displayed. Line 148 of the program unit 
INCOME invoked GET_STATS. 

13-43 



Condition-Handling Routines and Services 
13.9 Types of Condition Handlers 

13.9.2 Interaction Between Default and User-Supplied Handlers 

13-44 

Several results are possible after a routine signals, depending on a number of 
factors, such as the severity of the error, the method of generating the signal, and 
the action of the condition handlers you have defined and the default handlers. 
Given the severity of the condition and the method of signaling, Figure 13-12 
lists all combinations of interaction between user condition handlers and default 
condition handlers. 

Figure 13-12 Interaction Between Handlers and Default Handlers 

User User Default 
Severity Handler Handler Handler No Handler 

of Specifies Specifies Gets Found 
Condition CONTINUE UNWIND Control (Bad Stack) 

Exception Condition Is Signaled by a Call to LIB$SIGNAL or 
Detected by Hardware 

Issue Call Last-
WARNING, Condition Chance 
INFO, or RETURN UNWIND Message Handler 
ERROR 

RETURN EXIT 

Issue Call Last-
Condition Chance 

SEVERE RETURN UNWIND Message Handler 

EXIT EXIT 

Exception Condition Is Signaled by a Call to LIB$STOP 

LIB$STOP Message: Issue Call Last-
Forces 11Attempt to Condition Chance 
Severity continue UNWIND Message Handler 
to from stop 11 

SEVERE EXIT EXIT EXIT 

ZK-4257-GE 



Condition-Handling Routines and Services 
13.10 Types of Actions Performed by Condition Handlers 

13.1 O Types of Actions Performed by Condition Handlers 
When a condition handler returns control to the Open VMS Condition Handling 
facility (CHF), the facility takes one of the following types of actions, depending 
on the value returned by the condition handler: 

• Signal a condition 

Signaling a condition initiates the search for an established condition handler. 

• Continue 

The condition handler may or may not be able to fix the problem, but the 
program can attempt to continue execution. The handler places the return 
status value SS$_CONTINUE in RO and issues a RET instruction to return 
control to the dispatcher. If the exception was a fault, the instruction that 
caused it is reexecuted; if the exception was a trap, control is returned at 
the instruction following the one that caused it. A condition handler cannot 
continue if the exception condition was signaled by calling LIB$STOP. 

Section 13.12.1 contains more information about continuing. 

• Resignal 

The handler cannot fix the problem, or this condition is one that it does not 
handle. It places the return status value SS$_RESIGNAL in RO and issues a 
RET instruction to return control to the exception dispatcher. The dispatcher 
resumes its search for a condition handler. If it finds another condition 
handler, it passes control to that routine. A handler can alter the severity of 
the signal before resignaling. 

Section 13.12.2 contains more information about resignaling 

• Unwind 

The condition handler cannot fix the problem, and execution cannot continue 
while using the current flow. The handler issues the Unwind Call Stack 
(SYS$UNWIND) system service to unwind the call stack. Call frames can 
then be removed from the stack and the flow of execution modified, depending 
on the arguments to the SYS$UNWIND service. 

When a condition handler has already called SYS$UNWIND, any return 
status from the condition handler is ignored by the CHF. The CHF now 
unwinds the stack. 

Unwinding the routine call stack removes call frames, starting with the frame 
in which the condition occurred, and returns control to an earlier routine 
in the calling sequence. You can unwind the stack whether the condition 
was detected by hardware or signaled using LIB$SIGNAL or LIB$STOP. 
Unwinding is the only way to continue execution after a call to LIB$STOP. 

Section 13.12.3 describes how to write a condition handler that unwinds the 
call stack. 

• Perform a nonlocal GOTO unwind 

On AXP systems, a GOTO unwind operation is a transfer of control that 
leaves one procedure invocation and continues execution in a prior (currently 
active) procedure. This unified GOTO operation gives unterminated procedure 
invocations the opportunity to clean up in an orderly way. See Section 13.10.2 
for more information about GOTO unwind operations. + 

13-45 



Condition-Handling Routines and Services 
13.10 Types of Actions Performed by Condition Handlers 

13.10.1 Unwinding the Call Stack 

13-46 

One type of action a condition handler can take is to unwind the procedure call 
stack. The unwind operation is complex and should be used only when control 
must be restored to an earlier procedure in the calling sequence. Moreover, use 
of the SYS$UNWIND system service requires the calling condition handler to be 
aware of the calling sequence and of the exact point to which control is to return. 

SYS$UNWIND accepts two optional arguments: 

• The depth to which the unwind is to occur. If the depth is 1, the call stack 
is unwound to the caller of the procedure that incurred the exception. If the 
depth is 2, the call stack is unwound to the caller's caller, and so on. By 
specifying the depth in the mechanism array, the handler can unwind to the 
procedure that established the handler. 

• The address of a location to receive control when the unwind operation is 
complete, that is, a PC to replace the current PC in the call frame of the 
procedure that will receive control when all specified frames have been 
removed from the stack. 

If no argument is supplied to SYS$UNWIND, the unwind is performed to the 
caller of the procedure that established the condition handler that is issuing the 
SYS$UNWIND service. Control is returned to the address specified in the return 
PC for that procedure. Note that this is the default and the normal case for 
unwinding. 

Another common case of unwinding is to unwind to the procedure that declared 
the handler. On VAX systems, this is done by using the depth value from the 
exception mechanism array (CHF$L_MCH_DEPTH) as the depth argument to 
SYS$UNWIND. On AXP systems, this is done by using the depth value from the 
exception mechanism array (CHF$IS_MCH_DEPTH) as the depth argument to 
SYS$UNWIND. 

Therefore, it follows that the default unwind (no depth specified) is equivalent to 
specifying CHF$L_MCH_DEPTH plus 1 on VAX systems. On AXP systems, the 
default unwind (no depth specified) is equivalent to specifying CHF$IS_MCH_ 
DEPTH plus 1. In certain instances of nested exceptions, however, this is not the 
case. Digital recommends that you omit the depth argument when unwinding to 
the caller of the routine that established the condition handler. 

Figure 13-13 illustrates an unwind situation and describes some of the possible 
results. 

The unwind operation consists of two parts: 

1. In the call to SYS$UNWIND, the return PCs saved in the stack are modified 
to point into a routine within the SYS$UNWIND service, but the entire stack 
remains present. 

2. When the handler returns, control is directed to this routine by the modified 
PCs. It proceeds to return to itself, removing the modified stack frames, until 
the stack has been unwound to the proper depth. 

For this reason, the stack is in an intermediate state directly after calling 
SYS$UNWIND. Handlers should, in general, return immediately after calling 
SYS$UNWIND. 



«D 

Condition-Handling Routines and Services 
13.10 Types of Actions Performed by Condition Handlers 

During the actual unwinding of the call stack, the unwind routine examines each 
frame in the call stack to see whether a condition handler has been declared. If a 
handler has been declared, the unwind routine calls the handler with the status 
value SS$_UNWIND (indicating that the call stack is being unwound) in the 
condition name argument of the signal array. When a condition handler is called 
with this status value, it can perform any procedure-specific cleanup operations 
required. For example, the handler should deallocate any processwide resources 
that have been allocated. Then, the handler returns control to the Open VMS 
Condition Handling facility. After the handler returns, the call frame is removed 
from the stack. 

When a condition handler is called during the unwinding operation, the 
condition handler must not generate a new signal. A new signal would result in 
unpredictable behavior. 

Thus, in Figure 13-13, handler B can be called a second time, during the unwind 
operation. Note that handler B does not have to be able to interpret 'the SS$_ 
UNWIND status value specifically; the RET instruction merely returns control to 
the unwind procedure, which does not check any status values. 

Handlers established by the primary, secondary, or last-chance vector are not 
called, because they are not removed during an unwind operation. 

While it is unwinding the stack, the Open VMS Condition Handling facility 
ignores any function value returned by a condition handler. For this reason, a 
handler cannot both resignal and unwind. Thus, the only way for a handler to 
both issue a message and perform an unwind is to call LIB$SIGNAL and then 
call $UNWIND. If your program calls $UNWIND before calling LIB$SIGNAL, the 
result is unpredictable. 

When the OpenVMS Condition Handling facility calls the condition handler 
that was established for each frame during unwind, the call is of the standard 
form, described in Section 13.2. The arguments passed to the condition handler 
(the signal and mechanism argument vectors) are shown in Section 13.8.2, 
Section 13.8.3, and Section 13.8.4. 

On VAX systems, if the handler is to specify the function value of the last function 
to be unwound, it should modify the saved copies of RO and Rl (CHF$L_MCH_ 
SAVRO and CHF$L_MCH_SAVR1) in the mechanism argument vector. + 

On AXP systems, the handler should modify the saved copies of RO and Rl 
(CHF$IH_MCH_SAVRnn). + 

RO and Rl are restored from the mechanism argument vector at the end of the 
unwind. 

13-47 



Condition-Handling Routines and Services 
13.10 Types of Actions Performed by Condition Handlers 

13-48 

Figure 13-13 Unwinding the Call Stack 

D Runs and 
Incurs Condition 

CCallsD 

B Writes (FP} 
andCallsC 

0 

FP 

0 

FP 

Handler B 

FP 

ACallsB 

0 

FP 

XCallsA 

The procedure call stack is as shown. Assume that no exception vectors are 
declared for the process and that the exception occurs during the execution of 
procedure D. 

2 Because neither procedure D nor procedure C has established a condition 
handler, handler B receives control. 

3 If handler B issues the $UNWIND system service with no arguments, the 
call frames for B, C, and D are removed from the stack (along with the call 
frame for handler B itself}, and control returns to procedure A. Procedure 
A receives control at the point following its call to procedure B. 

4 If handler B issues the $UNWIND system service specitying a depth of 2, 
call frames for C and D are removed, and control returns to procedure B. 

ZK-0860-GE 



Condition-Handling Routines and Services 
13.1 O Types of Actions Performed by Condition Handlers 

13.10.2 GOTO Unwind Operations (AXP Only) .,. A current procedure invocation is one in whose context the thread of execution is 
currently executing. At any instant, a thread of execution has exactly one current 
procedure. If code in the current procedure calls another procedure, then the 
called procedure becomes the current procedure. As each stack frame or register 
frame procedure is called, its invocation context is recorded in a procedure frame. 
The invocation context is mainly a snapshot of process registers at procedure 
invocation. It is used during return from the called procedure to restore the 
calling procedure's state. The chain of all procedure frames starting with the 
current procedure and going all the way back to the first procedure invocation for 
the thread is called the call chain. While a procedure is part of the call chain, it 
is called an active procedure. 

When a current procedure returns to its calling procedure, the most recent 
procedure frame is removed from the call chain and used to restore the now 
current procedure's state. As each current procedure returns to its calling 
procedure, its associated procedure frame is removed from the call chain. This is 
the normal unwind process of a call chain. 

You can bypass the normal return path by forcibly unwinding the call chain. 
The Unwind Call Chain (SYS$UNWIND) system service allows a condition 
handler to transfer control from a series of nested procedure invocations to a 
previous point of execution, bypassing the normal return path. The Goto Unwind 
(SYS$GOTO_UNWIND) system service allows any procedure to achieve the same 
effect. SYS$GOTO _UNWIND restores saved register context for each nested 
procedure invocation, calling the condition handler, if any, for each procedure 
frame that it unwinds. Restoring saved register context from each procedure 
frame from the most recent one to the target procedure frame ensures that the 
register context is correct when the target procedure gains control. Also, each 
condition handler called during unwind can release any resources acquired by its 
establishing procedure. 

For information about the GOTO unwind operations and how to use the 
SYS$GOTO_UNWIND system service, see the Open VMS Calling Standard 
and the Open VMS System Services Reference Manual. + 

13.11 Displaying Messages 
The standard format for a message is as follows: 

%facility-l-ident, message-text 

facility Abbreviated name of the software component that issued the 
message 

Indicator showing the severity level of the exception condition that 
caused the message 

ident 

message-text 

Symbol of up to 9 characters representing the message 

Brief definition of the cause of the message 

The message can also include up to 255 formatted ASCII output (FAO) 
arguments. These arguments can be used to display variable information 
about the condition that caused the message. In the following examples, the file 
specification is an FAO argument: 

%TYPE-W-OPENIN, error opening _DBO:[FOSTER]AUTHOR.DAT; as input 

For information about specifying FAO parameters, see Section 13.11.4.3. 

13-49 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

13-50 

Signaling 
Signaling provides a consistent and unified method for displaying messages. This 
section describes how the Open VMS Condition Handling Facility translates the 
original signal into intelligible messages. · 

Signaling is used to signal exception conditions generated by Digital software. 
When software detects an exception condition, it signals the exception condition 
to the user by calling LIB$SIGNAL or LIB$STOP. The signaling routine passes a 
signal argument list to these run-time library routines. This signal argument list 
is made up of the condition value and a set of optional arguments that provide 
information to condition handlers. 

You can use the signaling mechanism to signal messages that are specific to your 
application. Further, you can chain your own message to a system message. For 
more information, see Section 13.11.3. 

LIB$SIGNAL and LIB$STOP copy the signal argument list and use it to create 
the signal argument vector. The signal argument vector serves as part of the 
input to the user-established handlers and the system default handlers. 

If all intervening handlers have resignaled, the system default handlers take 
control. The system-supplied default handlers are the only handlers that should 
actually issue messages, whether the exception conditions are signaled by Digital 
software or your own programs. That is, a routine should signal exception 
conditions rather than issue its own messages. In this way, other applications can 
call the routine and override its signal in order to change the messages. Further, 
this technique decides formatting details, and it also keeps wording centralized 
and consistent. 

The system default handlers pass the signal argument vector to the Put Message 
(SYS$PUTMSG) system service. SYS$PUTMSG formats and displays the 
information in the signal argument vector. 

SYS$PUTMSG performs the following steps: 

1. Interprets the signal argument vector as a series of one or more message 
sequences. Each message sequence starts with a 32-bit, systemwide condition 
value that identifies a message in the system message file. SYS$PUTMSG 
interprets the message sequences according to type defined by the facility of 
the condition. 

2. Obtains the text of the message using the Get Message (SYS$GETMSG) 
system service. The message text definition is actually a SYS$FAO control 
string. It may contain embedded FAO directives. These directives determine 
how the FAO arguments in the signal argument vector are formatted. 
(For more information about SYS$FAO, see the Open VMS System Services 
Reference Manual.) 

3. Calls SYS$FAO to format the message, substituting the values from the 
signal argument list. 

4. Issues the message on device SYS$0UTPUT. If SYS$ERROR is different from 
SYS$0UTPUT, and the severity field in the condition value is not success, 
$PUTMSG also issues the message on device SYS$ERROR. 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

You can use the signal array that the operating system passes to the condition 
handler as the first argument of the SYS$PUTMSG system service. The signal 
~rray contains the condition code, the number of required FAO arguments 
for each condition code, and the FAO arguments (see Figure 13-14). The 
Open VMS System Services Reference Manual contains complete specifications 
for SYS$PUTMSG. 

See Section 13.11.2 for information about how to create and suppress messages 
on a running log using SYS$PUTMSG. 

The last two array elements, the PC and PSL, are not FAO arguments and 
should be deleted before the array is passed to SYS$PUTMSG. Because the first 
element of the signal array contains the number of longwords in the array, you 
can effectively delete the last two elements of the array by subtracting 2 from the 
value in the first element. Before exiting from the condition handler, you should 
restore the last two elements of the array by adding 2 to the first element in case 
other handlers reference the array. 

In the following example, the condition handler uses the SYS$PUTMSG system 
service and then returns a value of SS$_CONTINUE so that the default handler 
is not executed. 

INTEGER*4 FUNCTION SYMBOL (SIGARGS, 
2 MECHARGS) 

INDEX= LIB$MATCH COND (SIGARGS(2), 
2 - LIB$_NOSUCHSYM) 
IF (INDEX .GT. 0) THEN 

! If condition code is LIB$ NOSUCHSYM, 
! change the severity to informational 
CALL MVBITS (STS$K INFO, 

2 o, -
2 3, 
2 SIGARGS(2), 
i 0) 

Display the message 
SIGARGS(l) = SIGARGS(l) - 2 
CALL SYS$PUTMSG (SIGARGS,,,) 
SIGARGS(l) = SIGARGS(l) + 2 

! Continue program execution; 
SYMBOL = SS$ CONTINUE 

ELSE -

Subtract last two elements 

Restore last two elements 

! Otherwise, resignal the condition 
SYMBOL = SS$ RESIGNAL 

END IF -

END 

Each message sequence in the signal argument list produces one line of output. 
Figure 13-14 illustrates the three possible message sequence formats. 

13-51 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

13-52 

Figure 13-14 Formats of Message Sequences 

No FAQ (Formatted ASCII Output) Arguments 

Condition Value 

Variable Number of FAQ Arguments 

Condition Value 

FAO_count 

FAQ arg1 

FAQ arg2 

• • 
• 

FAQ argn 

VAX-11 RMS Error with STV (Status Value) 

VAX-11 RMS Condition Value (STS) 

Associated Status Value (STV) 

Note that a condition value of 
zero results in no message. 

Condition Value 

Number of FAQ Arguments 

Condition Value 

One FAQ Argument or 
SS$_ ... Condition Value 

ZK-1967-GE 

Open VMS RMS system services return two related completion values: the 
completion code and the associated status value. The completion code is returned 
in RO using the function value mechanism. The same value is also placed in the 
Completion Status Code field of the RMS file access block (FAB) or record access 
block (RAB) associated with the file (FAB$L_STS or RAB$L_STS). The status 
value is returned in the Status Value field of the same FAB or RAB (FAB$L_ 
STV or RAB$L_STV). The meaning of this secondary value is based on the 
corresponding STS (Completion Status Code) value. Its meaning could be any of 
the following: 

• An operating system condition value of the form SS$_ ... 

• .An RMS value, such as the size of a record that exceeds the buffer size 

• Zero 

Rather than have each calling program determine the meaning of the STV value, 
SYS$PUTMSG performs the necessary processing. Therefore, this STV value 
must always be passed in place of the FAQ argument count. In other words, a 
RMS message sequence always consists of two arguments (passed by immediate 
value): an STS value and an STV value. 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

13.11.1 Chaining Messages 
You can use a condition handler to add condition values to an originally signaled 
condition code. For example, if your program calculates the standard deviation 
of a series of numbers and the user only enters one value, the operating system 
signals the condition code SS$_INTDIV when the program attempts to divide 
by zero. (In calculating the standard deviation, the divisor is the number of 
values entered minus 1.) You could use a condition handler to add a user-defined 
message to the original message to indicate that only one value was entered. 

To display multipl~ messages, pass the condition values associated with the 
messages to the RTL routine LIB$SIGNAL. To display the message associated 
with an additional condition code, the handler must pass LIB$SIGNAL the 
condition code, the number of FAQ arguments used, and the FAQ arguments. To 
display the message associated with the originally signaled condition codes, the 
handler must pass LIB$SIGNAL each element of the signal array as a separate 
argument. Because the signal array is a variable-length array and LIB$SIGNAL 
cannot accept a variable number of arguments, when you write your handler 
you must pass LIB$SIGNAL more arguments than you think will be required. 
Then, during execution of the handler, zero the arguments that you do not need 
(LIB$SIGNAL ignores zero values), as described in the following steps: 

1. Declare an array with one element for each argument that you plan to pass 
LIB$SIGNAL. Fifteen elements are usually sufficient. 

INTEGER*4 NEWSIGARGS(l5) 

2. Transfer the condition values and FAQ information from the signal array to 
your new array. The first element and the last two elements of the signal 
array do not contain FAQ information and should not be transferred. 

3. Fill any remaining elements of your new array with zeros. 

The following example demonstrates steps 2 and 3: 

DO I = 1, 15 

IF (I .LE. SIGARGS(l) - 2) THEN 
NEWSIGARGS(I) = SIGARGS(I+l) Start with SIGARGS(2) 
ELSE 
NEWSIGARGS(I) = 0 Pad with zeros 

END IF 

END DO 

Because the new array is a known-length array, you can specify each element as 
an argument to LIB$SIGNAL. 

The following condition handler ensures that the signaled condition code is SS$_:_ 
INTDN. If it is, the user-defined message ONE_ VALUE is added to SS$_INTDIY, 
and both messages are displayed. 

INTEGER FUNCTION HANDLER (SIGARGS, 
2 MECHARGS) 

! Declare dummy arguments 
INTEGER SIGARGS(*), 
2 MECHARGS(*) 
! Declare new array for SIGARGS 
INTEGER NEWSIGARGS (15) 
! Declare index variable for LIB$MATCH COND 
INTEGER INDEX -
! Declare procedures 
INTEGER LIB$MATCH_COND 

13-53 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

13-54 

! Declare condition codes 
EXTERNAL ONE VALUE 
INCLUDE '($SSDEF)' 
INDEX= LIB$MATCH COND (SIGARGS(2), 
2 - SS$_INTDIV) 
IF (INDEX .GT. 0) THEN 

DO I=l,15 
IF (I .LE. SIGARGS(l) - 2) THEN 

NEWSIGARGS(I) = SIGARGS(I+l) ! Start with SIGARGS(2) 
ELSE 

NEWSIGARGS(I) = 0 ! Pad with zeros 
END IF 

END DO 

! Signal messages 
CALL LIB$SIGNAL (%VAL(NEWSIGARGS(l)), 

2 %VAL(NEWSIGARGS(2)), 
2 %VAL(NEWSIGARGS(3)), 
2 %VAL(NEWSIGARGS(4)), 
2 %VAL(NEWSIGARGS(5)), 
2 %VAL(NEWSIGARGS(6)), 
2 %VAL(NEWSIGARGS(7)), 
2 %VAL(NEWSIGARGS(8)), 
2 %VAL(NEWSIGARGS(9)), 
2 %VAL(NEWSIGARGS(10)), 
2 %VAL(NEWSIGARGS(ll)), 
2 %VAL(NEWSIGARGS(12)), 
2 %VAL(NEWSIGARGS(l3)), 
2 %VAL(NEWSIGARGS(l4)), 
2 %VAL(NEWSIGARGS(l5)), 
2 %VAL(%LOC(ONE VALUE)), 
2 %VAL(O)) -

HANDLER = SS$ CONTINUE 
ELSE -

HANDLER = SS$_RESIGNAL 

END IF 

END 

A signal argument list may contain one or more condition values and FAO 
arguments. Each condition value and its FAO arguments is "chained" to the next 
condition value and its FAO arguments. You can use chained messages to provide 
more specific information about the exception condition being signaled, along with 
a general message. 

The following message source file defines the exception condition 
PROG __ FAIGETMEM: 

.FACILITY PROG,1 /PREFIX=PROG 

.SEVERITY FATAL 

.BASE 100 

FAIGETMEM <failed to get !UL bytes of rnernory>/FAO_COUNT=l 

.END 

This source file sets up the exception message as follows: 

• The .FACILITY directive specifies the facility, PROG, and its number, 1. It 
also adds the /PREFIX qualifier to determine the prefix to be used in the 
message. 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

• The .SEVERITY directive specifies that PROG __ FAIGETMEM is a fatal 
exception condition. That is, the SEVERITY field in the condition value for 
PROG __ FAIGETMEM is set to severe (bits <0:3> = 4). 

• The BASE directive specifies that the condition identification numbers in the 
PROG facility will begin with 100. 

• FAIGETMEM is the symbol name. This name is combined with the prefix 
defined in the facility definition to make the message symbol. The message 
symbol becomes the symbolic name for the condition value. 

• The text in angle brackets is the message text. This is actually a SYS$FAO 
control string. When $PUTMSG calls the $FAO system service to format the 
message, $FAO includes the FAO argument from the signal argument vector 
and formats the argument according to the embedded FAO directive (!UL). 

• The .END statement terminates the list of messages for the PROG facility. 

13.11.2 Logging Error Messages to a File 
You can write a condition handler to obtain a copy of a system error message text 
and write the message into an auxiliary file, such as a listing file. In this way, 
you can receive identical messages at the terminal (or batch log file) and in the 
auxiliary file. 

To log messages, you must write a condition handler and an action subroutine. 
Your handler calls the Put Message (SYS$PUTMSG) system service explicitly. 
The operation of SYS$PUTMSG is described in Section 13.11. The handler 
passes to SYS$PUTMSG the signal argument vector and the address of the action 
subroutine. SYS$PUTMSG passes to the action subroutine the address of a string 
descriptor that contains the length and address of the formatted message. The 
action subroutine can scan the message or copy it into a log file, or both. 

It is important to keep the display messages centralized and consistent. Thus, 
you should use only SYS$PUTMSG to display or log system error messages. 
Further, because the system default handlers call SYS$PUTMSG to display error 
messages, your handlers should avoid displaying the error messages. You can do 
this in two ways: 

• Your handler should not call SYS$PUTMSG directly to display an error 
message. Instead, your handler should resignal the error. This allows other 
calling routines to change or suppress the message or to recover from the 
error. The system default condition handlers display the message. 

• If the action subroutine that you supply to SYS$PUTMSG returns a success 
code, SYS$PUTMSG displays the error message on SYS$0UTPUT or 
SYS$ERROR, or both. When a program executes interactively or from within 
a command procedure, the logical names SYS$0UTPUT and SYS$ERROR 
are both equated to the user's terminal by default. Thus, your action 
routine should process the message and then return a failure code so that 
SYS$PUTMSG does not display the message at this point. 

To write the error messages displayed by your program to a file as well as 
to the terminal, equate SYS$ERROR to a file specification. When a program 
executes as. a batch job, the logical names SYS$0UTPUT and SYS$ERROR 
are both equated to the batch log by default. To write error messages to the 
log file and a second file, equate SYS$ERROR to the second file. 

13-55 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

Figure 13-15 shows the sequence of events involved in calling SYS$PUTMSG to 
log an error message to a file. 

Figure 13-15 Using a Condition Handler to Log an Error Message 

CALL 

Handler A 

Procedure A 

RETURN 

Handler B resignals the error. The CHF continues the 
stack scan by calling the handler established for pro­
cedure A. The error messages are displayed by the 
default handlers. 

Procedure A calls procedure B. 

Handlers 

An exception occurs during procedure B. CHF calls 
handler B. 

Procedure B $PUTMSG returns to handler B. 

Handler B calls $PUTMSG and passes signal argument 
vector and address of action subroutine. 

$PUTMSG 

$PUTMSG obtains error message text and passes one 
line at a time to action subroutine. 

Action subroutine returns FAILURE status to 
$PUTMSG. No error message is displayed. 

Action subroutine logs the line of message text to a 
file. 

User's 
Action 

Subroutine 

ZK-1934-GE 

13.11.2.1 Creating a Running Log of Messages Using SYS$PUTMSG 
To keep a running log (that is, a log that is resumed each time your program 
is invoked) of the messages displayed by your program, use SYS$PUTMSG. 
Create a condition handler that invokes SYS$PUTMSG regardless of the 
signaled condition code. When you invoke SYS$PUTMSG, specify a function that 
writes the formatted message to your log file and then returns with a function 
value of 0. Have the condition handler resignal the condition code. One of the 
arguments of SYS$PUTMSG allows you to specify a user-defined function that 
SYS$PUTMSG invokes after formatting the message and before displaying the 
message. SYS$PUTMSG passes the specified function the formatted message. If 
the function returns with a function value of 0, SYS$PUTMSG does not display 
the message; if the function returns with a value of 1, SYS$PUTMSG displays 
the message. The Open VMS System Services Reference Manual contains complete 
specifications for SYS$PUTMSG. 

13.11.2.2 Suppressing the Display of Messages in the Running Log 

13-56 

To keep a running log of messages, you might have your main program open a 
file for the error log, write the date, and then establish a condition handler to 
write all signaled messages to the error log. Each time a condition is signaled, a 
condition handler like the one in the following example invokes SYS$PUTMSG 
and specifies a function that writes the message to the log file and returns with 
a function value of 0. SYS$PUTMSG writes the message to the log file but does 
not display the message. After SYS$PUTMSG writes the message to the log file, 
the condition handler resignals to continue program execution. (The condition 
handler uses LIB$GET_COMMON to read the unit number of the file from the 
per-process common block.) 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

ERR.FOR 
INTEGER FUNCTION ERRLOG (SIGARGS, 
2 MECHARGS) 
! Writes the message to file opened on the 
! logical unit named in the per-process common block 
! Define the dummy arguments 
INTEGER SIGARGS(*), 
2 MECHARGS(*) 
INCLUDE '($SSDEF)' 

EXTERNAL PUT LINE 
INTEGER PUT LINE 
! Pass signal array and PUT LINE routine to SYS$PUTMSG 
SIGARGS(l) = SIGARGS(l) - 2- ! Subtract PC/PSL from signal array 
CALL SYS$PUTMSG (SIGARGS, 
2 PUT LINE, ) 
SIGARGS(l) = SIGARGS(l) + 2 Replace PC/PSL 

ERRLOG = SS$_RESIGNAL 

END 

PUT _LINE.FOR 
INTEGER FUNCTION PUT LINE (LINE) 

Writes the formatted message in LINE to 
! the file opened on the logical unit named 
! in the per-process common block 
! Dummy argument 
CHARACTER*(*) LINE 
! Logical unit number 
CHARACTER*4 LOGICAL UNIT 
INTEGER UNIT NUM -
l Indicates that SYS$PUTMSG is not to display the message 
PUT LINE = 0 
! Get logical unit number and change to integer 
STATUS = LIB$GET COMMON (LOGICAL UNIT) 
READ (UNIT = LOGICAL UNIT, -
2 FMT = '(I4)') UNIT NUMBER 
! The main program opens-the error log 
WRITE (UNIT = UNIT NUMBER, 
2 . . FMT = , (A) , T LINE 

END 

13.11.3 Using the Message Utility to Signal and Display User-Defined 
Messages 

Section 13.11 explains how the Open VMS Condition Handling facility displays 
messages. The signal argument list passed to LIB$SIGNAL or LIB$STOP can 
be seen as one or more message sequences. Each message sequence consists of 
a condition value; an FAO count, which specifies the number of FAQ arguments 
to come; and the FAQ arguments themselves. (The FAQ count is omitted in the 
case of system and RMS messages.) The message text definition itself is actually 
a SYS$FAO control string, which may contain embedded $FAQ directives. The 
Open VMS System Services Reference Manual describes the Formatted ASCII 
Output (SYS$FAO) system service in detail. 

The Message utility is provided for compiling message sequences specific to your 
application. When you have defined an exception condition and used the Message 
utility to associate a message with that exception condition, your program can 
call LIB$SIGNAL or LIB$STOP to signal the exception condition. You signal 
a message that is defined in a message source file by calling LIB$SIGNAL or 
LIB$STOP, as for any software-detected exception condition. Then the system 

13-57 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

default condition handlers display your error message in the standard operating 
system format. 

To use the Message utility, follow these steps: 

1. Create a source file that specifies the information used in messages, message 
codes, and message symbols. 

2. Use the MESSAGE command to compile this source file. 

3. Link the resulting object module, either by itself or with another object 
module containing a program. 

4. Run your program so that the messages are accessed, either directly or 
through the use of pointers. 

See also the description of the Message utility in the Open VMS Command 
Definition, Librarian, and Message Utilities Manual. 

13.11.3.1 Creating the Message Source File 

13-58 

A message source file contains definition statements and directives. The following 
source message file defines the error messages generated by the sample INCOME 
program: 

INCMSG.MSG 
.FACILITY INCOME, 1 /PREFIX=INCOME 

.SEVERITY WARNING 
LINELOST "Statistics on last line lost due to Ctrl/Z" 

.SEVERITY SEVERE 
BADFIXVAL "Bad value on /FIX" 
CTRLZ "Ctrl/Z entered on terminal" 
FORIOERR "Fortran I/O error" 
INSFIXVAL ,;Insufficient values on /FIX" 
MAXSTATS "Maximum number of statistics already entered" 
NOACTION "No action qualifier specified" 
NOHOUSE "No such house number" 
NOSTATS "No statistics to report" 

.END 

The default file type of a message source file is .MSG. For a complete description 
of the Message utility, see the Open VMS Command Definition, Librarian, and 
Message Utilities Manual. 

13.11.3.1.1 Specifying the Facility To specify the name and number of the 
facility for which you are defining the error messages, use the .FACILITY 
directive. For instance, the following .FACILITY directive specifies the facility 
(program) INCOME and a facility number of 1: 

.FACILITY INCOME, 1 

In addition to identifying the program associated with the error messages, the 
.FACILITY directive specifies the facility prefix that is added to each condition 
name to create the symbolic name used to reference the message. By default, 
the prefix is the facility name followed by an underscore. For example, a 
condition name BADFIXVAL defined following the previous .FACILITY directive 
is referenced as INCOME_BADFIXVAL. You can specify a prefix other than the 
specified program name by specifying the /PREFIX qualifier of the .FACILITY 
directive. 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

By convention, system-defined condition values are identified by the facility 
name, followed by a dollar sign($), an underscore(_), and the condition name. 
User-defined condition values are identified by the facility name, followed by two 
underscores (_ _), and the condition name. To include two underscores in the 
symbolic name, use the /PREFIX qualifier to specify the prefix: 

.FACILITY INCOME, 1 /PREFIX=INCOME~ 

A condition name BADFIXVAL defined following this .FACILITY directive is 
referenced as INCOME __ BADFIXVAL. 

The facility number, which must be between 1 and 204 7, is part of the condition 
code that identifies the error message. To prevent different programs from 
generating the same condition values, the facility number must be unique. A 
good way to ensure uniqueness is to have the system manager keep a list of 
programs and their facility numbers in a file. 

All messages defined after a .FACILITY directive are associated with the specified 
program. Specify either an .END directive or another .FACILITY directive to 
end the list of messages for that program. It is recommended that you have one 
.FACILITY directive per message file. 

13.11.3.1.2 Specifying the Severity Use the .SEVERITY directive and one of 
the following keywords to specify the severity of one or more condition values: 

Success 
Informational 
Warning 
Error 
Severe or fatal 

All condition values defined after a .SEVERITY directive have the specified 
severity (unless you use the /SEVERITY qualifier with the message definition 
statement to change the severity of one particular condition code). Specify an 
.END directive or another .SEVERITY directive to end the group of errors with 
the specified severity. Note that when the .END directive is used to end the list 
of messages for a .SEVERITY directive, it also ends the list of messages for the 
previous .FACILITY directive. The following example defines one condition code 
with a severity of warning and two condition values with a severity of severe. 
The optional spacing between the lines and at the beginning of the lines is used 
for clarity . 

• SEVERITY WARNING 
LINELOST "Statistics on last line lost due to Ctrl/Z" 

.SEVERITY SEVERE 
BADFIXVAL "Bad value on /FIX" 
INSFIXVAL "Insufficient values on /FIX" 

.END 

13.11.3.1.3 Specifying Condition Names and Messages To define a condition 
code and mess'age, specify the condition name and the message text. The 
condition name, when combined with the facility prefix, can contain up to 31 
characters. The message text can be up to 255 characters but only one line 
long. Use quotation marks (" 11

) or angle brackets (<>)to enclose the text of 
the message. For example, the following line from INCMSG.MSG defines the 
condition code INCOME __ BADFIXVAL: 

BADFIXVAL "Bad value on /FIX" 

13-59 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

13-60 

13.11.3.1.4 Specifying Variables in the Message Text To include variables in 
the message text, specify formatted ASCII output (FAO) directives. For details, 
see the description of the Message utility in the Open VMS Command Definition, 
Librarian, and Message Utilities Manual. Specify the /FAO_COUNT qualifier 
after either the condition name or the message text to indicate the number of 
FAO directives that you used. The following example includes an integer variable 
in the message text: 

NONUMBER <No such house number: lUL. Try again.>/FAO_COUNT=l 

The FAO directive !UL converts a longword to decimal notation. To include a 
character string variable in the message, you could use the FAO directive !AS, as 
shown in the following example: 

NOFILE <No such file: lAS. Try again.>/FAO_COUNT=l 

If the message text contains FAO directives, you must specify the appropriate 
variables when you signal the condition code (see Section 13.11.4). 

13.11.3.1.5 Compiling and Linking the Messages Use the DCL command 
MESSAGE to compile a message source file into an object module. The following 
command compiles the message source file INCMSG.MSG into an object module 
named INCMSG in the file INCMSG.OBJ: 

$ MESSAGE INCMSG 

To specify an object file name that is different from the source file name, use 
the /OBJECT qualifier of the MESSAGE command. To specify an object module 
name that is different from the source file name, use the .TITLE directive in the 
message source file. 

13.11.3.1.6 Linking the Message Object Module The message object module 
must be linked with your program so that the system can reference the messages. 
To simplify linking a program with the message object module, include the 
message object module in the program's object library. For example, to include 
the message module in INCOME's object library, enter the following: 

$ LIBRARY INCOME.OLB INCMSG.OBJ 

13.11.3.1.7 Accessing the Message Object Module from Multiple Programs 
Including the message module in the program's object library does not allow other 
programs access to the module's condition values and messages. To allow several 
programs access to a message module, create a default message library as follows: 

1. Create the message library-Create an object module library and enter all of 
the message object modules into it. 

2. Make the message library a default library-Equate the complete 
file specification of the object module library with the logical name 
LNK$LIBRARY. (If LNK$LIBRARY is already assigned a library name, 
you can create LNK$LIBRARY_l, LNK$LIBRARY_2, and so on.) By default, 
the linker searches any libraries equated with the LNK$LIBRARY logical 
names. 

The following example creates the message library MESSAGLIB.OLB, enters the 
message object module INCMSG.OBJ into it, and makes MESSAGLIB.OLB a 
default library: 

$ LIBRARY/CREATE MESSAGLIB 
$ LIBRARY/INSERT MESSAGLIB INCMSG 
$ DEFINE LNK$LIBRARY SYS$DISK:MESSAGLIB 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

13.11.3.1.8 Modifying a Message Source Module To modify a message in the 
message library, modify and recompile the message source file, and then replace 
the module in the object module library. To access the modified messages, a 
program must relink against the object module library (or the message object 
module). The following command enters the module INCMSG into the message 
library MESSAGLIB; if MESSAGLIB already contains an INCMSG module, it is 
replaced: 

$ LIBRARY/REPLACE MESSAGLIB INCMSG 

13.11.3.1.9 Accessing Modified Messages Without Relinking To allow a 
program to access modified messages without relinking, create a message pointer 
file. Message pointer files are useful if you need to provide messages in more 
than one language or frequently change the text of existing messages. See 
the description of the Message utility in the Open VMS Command Definition, 
Librarian, and Message Utilities Manual. 

13.11.4 Signaling User-Defined Values and Messages with Global and Local 
Symbols 

To signal a user-defined condition value, you use the symbol formed by the 
facility prefix and the condition name (for example, INCOME __ BADFIXVAL). 
Typically, you reference a condition value as a global symbol; however, you 
can create an include file (similar to the modules in the system library 
SYS$LIBRARY:FORSTSDEF.TLB) to define the condition values as local symbols. 
If the message text contains FAQ arguments, you must specify parameters for 
those arguments when you signal the condition value. 

13.11.4.1 Signaling with Global Symbols 
To signal a user-defined condition value using a global symbol, declare the 
appropriate condition value in the appropriate section of the program unit, 
and then invoke the RTL routine LIB$SIGNAL to signal the condition value. The 
following statements signal the condition value INCOME __ NOHOUSE when the 
value of FIX_HOUSE_NO is less than 1 or greater than the value of TOTAL_ 
HOUSES: 

EXTERNAL INCOME NOHOUSE 

IF ((FIX HOUSE NO .GT. TOTAL HOUSES) .OR. 
2 FIX-HOUSE-NO .LT. 1)) THEN 

CALL LIB$SIGNAL (%VAL (%LOC (INCOME~NOHOUSE))) 
END IF 

13.11.4.2 Signaling with Local Symbols 
To signal a user-defined condition value using a local symbol, you must first 
create a file containing PARAMETER statements that equate each condition 
value with its user-defined condition value. To create such a file, do the following: 

1. Create a listing file-Compile the message source file with the /LIST qualifier 
to the MESSAGE command. The /LIST qualifier produces a listing file with 
the same name as the source file and a file type of .LIS. The following line 
might appear in a listing file: 

08018020 11 NOHOUSE "No such house number" 

13-61 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

The hexadecimal value in the left column is the value of the condition value, 
the decimal number in the second column is the line number, the text in the 
third column is the condition name, and the text in quotation marks is the 
message text. 

2. Edit the listing file-For each condition name, define the matching condition 
value as a longword variable, and use a language statement to equate the 
condition value to its hexadecimal condition value. 

Assuming a prefix of INCOME __ , editing the previous statement results in 
the following statements: 

INTEGER INCOME NOHOUSE 
PARAMETER (INCOME_NOHOUSE = '08018020'X) 

3. Rename the listing file-Name the edited listing file using the same name as 
the source file and a file type for your programming language (for example, 
.FOR for DEC Fortran). 

In the definition section of your program unit, declare the local symbol definitions 
by naming your edited listing file in an INCLUDE statement. (You must still link 
the message object file with your program.) Invoke the RTL routine LIB$SIGNAL 
to signal the condition code. The following statements signal the condition code 
INCOME __ NOHOUSE when the value of FIX_HOUSE_NO is less than 1 or 
greater than the value of TOTAL_HOUSES: 

1 Specify the full file specification 
INCLUDE '$DISKl:[DEV.INCOME]INCMSG.FOR' 

IF ((FIX HOUSE NO .GT. TOTAL HOUSES) .OR. 
2 FIX-HOUSE-NO .LT. 1)) THEN 

CALL LIB$SIGNAL (%VAL (INCOME_NOHOUSE)) 
END IF 

13.11.4.3 Specifying FAO Parameters 

13-62 

If the message contains FAO arguments, you must specify the number of FAO 
arguments as the second argument of LIB$SIGNAL, the first FAO argument as 
the third argument, the second FAO argument as the fourth argument, and so on. 
Pass string FAO arguments by descriptor (the default). For example, to signal 
the condition code INCOME __ NONUMBER, where FIX_HOUSE_NO contains 
the erroneous house number, specify the following: 

EXTERNAL INCOME NONUMBER 

IF ((FIX HOUSE NO 
2 FIX-HOUSE-NO 

CALL LIB$SIGNAL 
2 
2 

END IF 

.GT. TOTAL HOUSES) .OR. 
• LT. 1 ) ) THEN 
(%VAL (%LOC (INCOME NONUMBER)), 

%VAL (1), -
%VAL (FIX_HOUSE_NO)) 



Condition-Handling Routines and Services 
13.11 Displaying Messages 

To signal the condition code NOFILE, where FILE_NAME contains the invalid 
file specification, specify the following: 

EXTERNAL INCOME NOFILE 

IF (IOSTAT .EQ. FOR$IOS FILNOTFOU) 
2 CALL LIB$SIGNAL (%VAL (%LOC (INCOME NOFILE)), 
2 %VAL (1), -
2 FILE_NAME) 

Both of the previous examples use global symbols for the condition values. 
Alternatively, you could use local symbols, as described in Section 13.11.4.2. 

13.12 Writing a Condition Handler 
When you write a condition handler into your program, the process involves one 
or more of the following actions: 

• Establish the handler in the stack frame of your routine. 

• Write a condition-handling routine, or choose one of the run-time library 
routines that handles exception conditions. 

• Include a call to a run-time library signal-generating routine. 

• Use the Message utility to define your own exception conditions. 

• Include a call to the SYS$PUTMSG system service to modify or log the 
system error message. 

You can write a condition handler to take action when an exception condition is 
signaled. When the exception condition occurs, the Open VMS Condition Handling 
facility sets up the signal argument vector and mechanism argument vector and 
begins the search for a condition handler. Therefore, your condition-handling 
routine must declare variables to contain the two argument vectors. Further, the 
handler must indicate the action to be taken when it returns to the Open VMS 
Condition Handling facility. The handler uses its function value to do this. Thus, 
the calling sequence for your condition handler has the following format: 

handler signal-args ,mechanism-args 

signal-args 
The address of a vector of longwords indicating the nature of the condition. See 
Section 13.8.2 for a detailed description. 

mechanism-args 
The address of a vector of longwords that indicate the state of the process at the 
time of the signal. See Section 13.8.3 and Section 13.8.4 for more details. 

result 
A condition value. Success (bit <0> = 1) causes execution to continue at the 
PC; failure (bit <0> = O) causes the condition to be resignaled. That is, the 
system resumes the search for other handlers. If the handler calls the Unwind 
(SYS$UNWIND) system service, the return value is ignored and the stack is 
unwound. (See Section 13.12.3.) 

Handlers can modify the contents of either the signal-args vector or the 
mechanism-args vector. 

13-63 



Condition-Handling Routines and Services 
13.12 Writing a Condition Handler 

In order to protect compiler optimization, a condition handler and any routines 
that it calls can reference only arguments that are explicitly passed to handlers. 
They cannot reference COMMON or other external storage, and they cannot 
reference local storage in the routine that established the handler unless the 
compiler considers the storage to be volatile. Compilers that do not adhere to this 
rule must ensure that any variables referenced by the handler are always kept in 
memory, not in a register. 

As mentioned previously, a condition handler can take one of three actions: 

• Continue execution 

• Resignal the exception condition and resume the stack scanning operation 

• Call SYS$UNWIND to unwind the call stack to an earlier frame 

The sections that follow describe how to write condition handlers to perform these 
three operations. 

13.12.1 Continuing Execution 

na• 

To continue execution from the instruction following the signal, with no error 
messages or traceback, the handler returns with the function value SS$_ 
CONTINUE (bit <0> = 1). If, however, the condition was signaled with a call 
to LIB$STOP, the SS$_CONTINUE return status causes an error message 
(Attempt To Continue From Stop), and the image exits. The only way to continue 
from a call to LIB$STOP is for the condition handler to request a stack unwind. 

If execution is to continue after a hardware fault (such as a reserved operand 
fault), the condition handler must correct the cause of the condition before 
returning the function value SS$_CONTINUE or requesting a stack unwind. 
Otherwise, the instruction that caused the fault executed again. 

On most VAX systems, hardware floating-point traps have been changed 
to hardware faults. If you still want floating-point exception conditions 
to be treated as traps, use LIB$SIM_TRAP to simulate the action of 
floating-point traps. + 

On AXP systems, LIB$SIM_TRAP is not supported. Table 13-4 lists the run-time 
library routines that are supported and not supported on AXP systems. • 

13.12.2 Resignaling 
Condition handlers check for specific errors. If the signaled condition is not one 
of the expected errors, the handler resignals. That is, it returns control to the 
Open VMS Condition Handling facility with the function value SS$_RESIGNAL 
(with bit <0> clear). To alter the severity of the signal, the handler modifies the 
low-order 3 bits of the condition value and resignals. 

For an example of resignaling, see Section 13.8.5. 

13.12.3 Unwinding the Call Stack 

13-64 

A condition handler can dismiss the signal by calling the system service 
SYS$UNWIND. The stack unwind is initiated when a condition handler that 
has called SYS$UNWIND returns to Open VMS Condition Handling Facility. 
For an explanation of unwinding, see Section 13.10.1; for an example of using 
SYS$UNWIND to return control to the program, see Section 13.12.4.5. 



Condition-Handling Routines and Services 
13.12 Writing a Condition Handler 

13.12.4 Example of Writing a Condition Handler 
The operating system passes two arrays to a condition handler. Any condition 
handler that you write should declare two dummy arguments as variable-length 
arrays, as in the following: 

INTEGER*4 FUNCTION HANDLER (SIGARGS, 
2 MECHARGS) 

INTEGER*4 SIGARGS(*), 
2 MECHARGS(*) 

13.12.4.1 Signal Array 
The first dummy argument, the signal array, describes the signaled condition 
codes that indicate which error occurred and the state of the process when 
the condition code was signaled. For the structure of the signal array, see 
Section 13.8.2. 

13.12.4.2 Mechanism Array 
The second dummy argument, the mechanism array, describes the state of the 
process when the condition code was signaled. Typically, a condition handler 
references only the call depth and the saved function value. Currently, the 
mechanism array contains exactly five elements; however, because its length is 
subject to change, you should declare the dummy argument as a variable-length 
array. For the structure of the mechanism array, see Section 13.8.3. 

Usually you write a condition handler in anticipation of a particular set of 
condition values. Because a handler is invoked in response to any signaled 
condition code, begin your handler by comparing the condition code passed to 
the handler (element 2 of the signal array) against the condition codes expected 

, by the handler. If the signaled condition code is not one of the expected codes, 
resignal the condition code by equating the function value of the handler to the 
global symbol SS$_RESIGNAL. 

13.12.4.3 Comparing the Signaled Condition with an Expected Condition 
You can use the RTL routine LIB$MATCH_COND to compare the signaled 
condition code to a list of expected condition values. The first argument passed 
to LIB$MATCH_COND is the signaled condition code, the second element of the 
signal array. The rest of the arguments passed to LIB$MATCH_ COND are the 
expected condition values. LIB$MATCH_ COND compares the first argument 
with each of the remaining arguments and returns the number of the argument 
that matches the first one. For example, if the second argument matches the first 
argument, LIB$MATCH_COND returns a value of 1. If the first argument does 
not match any of the other arguments, LIB$MATCH_COND returns 0. 

The following condition handler determines whether the signaled condition code 
is one of four DEC Fortran I/O errors. If it is not, the condition handler resignals 
the condition code. Note that, when a DEC Fortran I/O error is signaled, the 
signal array describes operating system's condition code, not the DEC Fortran 
error code. 

13-65 



Condition-Handling Routines and Services 
13.12 Writing a Condition Handler 

INTEGER FUNCTION HANDLER (SIGARGS, 
2 MECHARGS) 

! Declare dummy arguments 
INTEGER*4 SIGARGS(*), 
2 MECHARGS(*) 
INCLUDE '($FORDEF)' 
INCLUDE '($SSDEF)' 
INTEGER INDEX 
! Declare procedures 
INTEGER LIB$MATCH COND 
INDEX = LIB$MATCH-COND 
2 -
2 
2 
2 
IF (INDEX .EQ. 0) THEN 

Declare the FOR$ symbols 
Declare the SS$_-symbols 

(SIGARGS(2), 
FOR$ FILNOTFOU, 
FOR$-OPEFAI, 
FOR$-NO SUCDEV, 
FORCFILNAMSPE) 

! Not an expected condition code, resignal 
HANDLER = SS$ RESIGNAL 

ELSE IF (INDEX :GT. 0) THEN 
1 Expected condition code, handle it 

END IF 

END 

13.12.4.4 Exiting from the Condition Handler 

13-66 

You can exit from a condition handler in one of three ways: 

• Continue execution of the program-If you equate the function value of the 
condition handler to SS$_CONTINUE, the condition handler returns control 
to the program at the statement that signaled the condition (fault) or the 
statement following the one that signaled the condition (trap). The RTL 
routine LIB$SIGNAL generates a trap so that control is returned to the 
statement following the call to LIB$SIGNAL. 

In the following example, if the condition code is one of the expected codes, 
the condition handler displays a message and then returns the value SS$_ 
CONTINUE to resume program execution. (Section 13.11 describes how to 
display a message.) 

INTEGER FUNCTION HANDLER (SIGARGS, 
2 MECHARGS) 

! Declare dummy arguments 
INTEGER*4 SIGARGS(*), 
2 MECHARGS(*) 
INCLUDE '($FORDEF)' 
INCLUDE '($SSDEF)' 
INTEGER* 4 INDEX I 
2 LIB$MATCH COND 
INDEX= LIB$MATCH COND (SIGARGS(2), 
2 - FOR$ FILNOTFOU, 
2 FOR$-OPEFAI, 
2 FOR$-NO SUCDEV, 
2 FOR$=FILNAMSPE) 



Condition-Handling Routines and Services 
13.12 Writing a Condition Handler 

IF (INDEX .GT. 0) THEN 

Display the message 

HANDLER = SS$ CONTINUE 
END IF -

• Resignal the condition code-If you equate the function value of the condition 
handler to SS$_RESIGNAL or do not specify a function value (function 
value of 0), the handler allows the operating system to execute the next 
condition handler. If you modify the signal array or mechanism array before 
resignaling, the modified arrays are passed to the next condition handler. 

In the following example, if the condition code is not one of the expected 
codes, the handler resignals: 

INDEX = LIB$MATCH COND 
2 -
2 
2 
2 

(SIGARGS(2), 
FOR$ FILNOTFOU, 
FOR$-OPEFAI, 
FOR$-NO SUCDEV, 
FORCFILNAMSPE) 

IF (INDEX .EQ. 0) THEN 
HANDLER = SS$ RESIGNAL 

END IF -

• Continue execution of the program at a previous location-If you call the 
SYS$UNWIND system service, the condition handler can return control to 
any point in the program unit that incurred the exception, the program unit 
that invoked the program unit that incurred the exception, and so on back to 
the program unit that established the condition handler. 

13.12.4.5 Returning Control to the Program 
Your handlers should return control either to the program unit that established 
the handler or to the program unit that invoked the program unit that established 
the handler. 

To return control to the program unit that established the handler, invoke 
SYS$UNWIND and pass the call depth (third element of the mechanism array) 
as the first argument with no second argument. 

! Declare dummy arguments 
INTEGER*4 SIGARGS(*), 
2 MECHARGS(*) 

CALL SYS$UNWIND (MECHARGS(3),) 

To return control to the caller of the program unit that established the handler, 
invoke SYS$UNWIND without passing any arguments. 

! Declare dummy arguments 
INTEGER*4 SIGARGS(*), 
2 MECHARGS(*) 

CALL SYS$UNWIND (,) 

13-67 



Condition-Handling Routines and Services 
13.12 Writing a Condition Handler 

13-68 

The first argument SYS$UNWIND specifies the number of program units to 
unwind (remove from the stack). If you specify this argument at all, you should 
do so as shown in the previous example. (MECHARGS(3) contains the number of 
program units that must be unwound to reach the program unit that established 
the handler that invoked SYS$UNWIND.) The second argument SYS$UNWIND 
contains the location of the next statement to be executed. Typically, you omit 
the second argument to indicate that the program should resume execution at 
the statement following the last statement executed in the program unit that is 
regaining control. 

Each time SYS$UNWIND removes a program unit from the stack, it invokes 
any condition handler established by that program unit and passes the condition 
handler the SS$_ UNWIND condition code. To prevent the condition handler from 
resignaling the SS$_ UNWIND condition code (and so complicating the unwind 
operation), include SS$_UNWIND as an expected condition code when you invoke 
LIB$MATCH_COND. When the condition code is SS$_UNWIND, your condition 
handler might perform necessary cleanup operations or do nothing. 

In the following example, if the condition code is SS$_ UNWIND, no action is 
performed. If the condition code is another of the expected codes, the handler 
displays the message and then returns control to the program unit that called the 
program unit that established the condition handler. 

INTEGER FUNCTION HANDLER (SIGARGS, 
2 MECHARGS) 

l Declare dummy arguments 
INTEGER*4 SIGARGS(*), 
2 MECHARGS(*) 
INCLUDE '($FORDEF)' 
INCLUDE '($SSDEF)' 
INTEGER*4 INDEX, 
2 LIB$MATCH COND 
INDEX= LIB$MATCH COND (SIGARGS(2), 
2 - SS$ UNWIND, 
2 FOR$ FILNOTFOU, 
2 FOR$-OPEFAI I 
2 FOR$-NO SUCDEV, 
2 FOR$-FILNAMSPE) 
IF (INDEX .EQ. 0) THEN -

! Unexpected condition, resignal 
HANDLER = SS$ .RESIGNAL 

ELSE IF (INDEX :EQ. 1) THEN 
l Unwinding, do nothing 

ELSE IF (INDEX .GT. 1) THEN 

Display the message 

CALL SYS$UNWIND (,) 
END IF 



Condition-Handling Routines and Services 
13.12 Writing a Condition Handler 

13.12.5 Example of Condition-Handling Routines 
The following example shows two procedures, A and B, that have declared 
condition handlers. The notes describe the sequence of events that would occur if 
a call to a system service failed during the execution of procedure B. 

/* PGMA */ 

#include <stdio.h> 
#include <ssdef .h> 

unsigned int sigargs[],mechargs[]; 

main() { 
unsigned int status, vector=O, old_handler; 

old_handler = LIB$ESTABLISH( handlera ); 

status = pgmb (arglst); 

} 

/* PGMB */ 

#include <stdio.h> 
#include <ssdef .h> 

main() { 

old_handler = LIB$ESTABLISH( handlerb ); 

} 

/* Handler A */ 

int handlera( sigargs, mechargs ) { 

/* Compare condition value signalled with expected value */ 

/* Signal to continue */ 

/* Signal to resignal */ 
no fail: 

/* Handler B */ 

if (sigargs[2] != SS$ SSFAIL) 
goto no_fail;-

return SS$_CONTINUE; 

return SS$_RESIGNAL; 

int handlerb( sigargs, mechargs ) { 

/* Compare condition value signalled with expected value */ 
if (sigargs[2] != SS$ BREAK) 

goto no_fail;-

return SS$_CONTINUE; 

0 
f} 

13-69 



Condition-Handling Routines and Services 
13.12 Writing a Condition Handler 

no fail: 
return SS$_RESIGNAL; 

0 Procedure A executes and establishes condition handler HANDLERA. 
HANDLERA is set up to respond to exceptions caused by failures in system 
service calls. 

f) During its execution, procedure A calls procedure B. 
\ 

0 Procedure B establishes condition handler HANDLERB. HANDLERB is set 
up to respond to breakpoint faults. 

0 While procedure Bis executing, an exception occurs caused by a system 
service failure. 

0 The dispatcher returns control to procedure B, and execution of procedure B 
resumes at the instruction following the system service failure. 

0 The exception dispatcher resumes its search for a condition handler and calls 
HANDLE RA. 

0 HANDLERA handles the system service failure exception, corrects the 
condition, places the return value SS$_CONTINUE in RO, and returns control 
to the exception dispatcher. 

13.13 Debugging a Condition Handler 
You can debug a condition handler as you would any subprogram, except that 
you cannot use the DEBUG command STEP/INTO to enter a condition handler. 
You must set a breakpoint in the handler and wait for the debugger to invoke the 
handler. 

Typically, to trace execution of a condition handler, you set breakpoints at the 
statement in your program that should signal the condition code, at the statement 
following the one that should signal, and at the first executable statement in your 
condition handler. 

13.14 Run-Time Library Condition-Handling Routines 
The run-time library provides several routines that can be established as 
condition handlers or called from a condition handler to handle signaled exception 
conditions. This section shows how to use these routines. 

13.14.1 Converting a Floating-Point Fault to a Floating-Point Trap (VAX Only) ... I 

13-70 

On VAX systems, a trap is an exception condition that is signaled after the 
instruction that caused it has finished executing. A fault is an exception condition 
that is signaled during the execution of the instruction. When a trap is signaled, 
the program counter (PC) in the .signal argument vector ·points to the next 
instruction after the one that caused the exception condition. When a fault is 
signaled, the PC in the signal argument vector points to the instruction that 
caused the exception condition. See the VAX Architecture Reference Manual for 
more information about faults and traps. 



Condition-Handling Routines and Services 
13.14 Run-Time Library Condition-Handling Routines 

LIB$SIM_TRAP can be established as a condition handler or be called from a 
condition handler to convert a floating-point fault to a floating-point trap. After 
LIB$SIM_TRAP is called, the PC points to the instruction after the one that 
caused the exception condition. Thus, your program can continue execution 
without fixing up the original condition. LIB$SIM_TRAP intercepts only floating 
point overflow, floating-point underflow, and divide-by-zero faults. + 

13.14.2 Changing a Signal to a Return Status 

•• 

When it is preferable to detect errors by signaling but the calling routine expects 
a returned status, LIB$SIG_TO_RET can be used by the routine that signals. 
For instance, if you expect a particular condition code to be signaled, you can 
prevent the operating system from invoking the default condition handler by 
establishing a different condition handler. LIB$SIG_TO_RET is a condition 
handler that converts any signaled condition to a return status. The status is 
returned to the caller of the routine that established LIB$SIG_TO_RET. You may 
establish LIB$SIG_TO_RET as a condition handler by specifying it in a call to 
LIB$ESTABLISH. 

On AXP systems, LIB$ESTABLISH is not supported, though high-level languages 
may support it for compatibility. + 

LIB$SIG_TO_RET can also be called from another condition handler. If 
LIB$SIG_TO_RET is called from a condition handler, the signaled condition 
is returned as a function value to the caller of the establisher of that handler 
when the handler returns to the Open VMS Condition Handling facility. When a 
signaled exception condition occurs, LIB$SIG_TO_RET routine does the following: 

• Places the signaled condition value in the image of RO that is saved as part of 
the mechanism argument vector. 

• Calls the Unwind (SYS$UNWIND) system service with the default 
arguments. After returning from LIB$SIG_TO_RET (when it is established 
as a condition handler) or after returning from the condition handler that 
called LIB$SIG_TO_RET (when LIB$SIG_TO_RET is called from a condition 
handler), the stack unwinds to the caller of the routine that established the 
handler. 

Your calling routine can now test RO, as if the called routine had returned a 
status, and specify an error recovery action. 

The following paragraphs describe how to establish and use the system-defined 
condition handler LIB$SIG_TO_RET, which changes a signal to a return status 
that your program can examine. 

To change a signal to a return status, you must put any code that might signal 
a condition code into a function where the function value is a return status. The 
function containing the code must perform the following operations: 

• Declare LIB$SIG_TO_RET-Declare the condition handler 
LIB$SIG_TO_RET. 

• Establish LIB$SIG_TO_RET-Invoke the run-time library procedure 
LIB$ESTABLISH to establish a condition handler for the current program 
unit. Specify the name of the condition handler LIB$SIG_TO_RET as the 
only argument. 

• Initialize the function value-Initialize the function value to 
SS$_NORMAL so that, if no condition code is signaled, the function returns a 
success status to the invoking program unit. 

13-71 



Condition-Handling Routines and Services 
13.14 Run-Time Library Condition-Handling Routines 

• Declare necessary dummy arguments-If any statement that might signal 
a condition code is a subprogram that requires dummy arguments, pass the 
necessary arguments to the function. In the function, declare each dummy 
argument exactly as it is declared in the subprogram that requires it and 
specify the dummy arguments in the subprogram invocation. 

If the program unit GET_l_STAT in the following function signals a condition 
code, LIB$SIG_TO_RET changes the signal to the return status of the 
INTERCEPT_SIGNAL function and returns control to the program unit that 
invoked INTERCEPT_SIGNAL. (If GET_l_STAT has a condition handler 
established, the operating system invokes that handler before invoking LIB$SIG_ 
TO_RET.) 

FUNCTION INTERCEPT SIGNAL (STAT, 
2 - ROW, 
2 COLUMN) 

1 Dununy arguments for GET 1 STAT 
INTEGER STAT, 
2 ROW, 
2 COLUMN 
1 Declare SS$ NORMAL 
INCLUDE '($SSDEF)' 
1 Declare condition handler 
EXTERNAL LIB$SIG TO RET 
1 Declare user routine 
INTEGER GET 1 STAT 
1 Establish-LIB$SIG TO RET 
CALL LIB$ESTABLISH (LIB$SIG TO RET) 
1 Set return status to success­
INTERCEPT SIGNAL = SS$ NORMAL 
1 Statements and/or subprograms that 
1 signal expected error condition codes 
STAT = GET 1 STAT (ROW, 
2 - - COLUMN) 

END 

When the program unit that invoked INTERCEPT_SIGNAL regains control, it 
should check the return status (as shown in Section 13.5.1) to determine which 
condition code, if any, was signaled during execution of INTERCEPT_SIGNAL. 

13.14.3 Changing a Signal to a Stop 
LIB$SIG_TO_STOP causes a signal to appear as though it had been signaled by 
a call to LIB$STOP. 

LIB$SIG_TO_STOP can be enabled as a condition handler for a routine or be 
called from a condition handler. When a signal is generated by LIB$STOP, the 
severity code is forced to severe, and control cannot return to the routine that 
signaled the condition. See Section 13.12.1 for a description of continuing normal 
execution after a signal. 

13.14.4 Matching Condition Values 

13-72 

LIB$MATCH_COND checks for a match between two condition values to allow 
a program to branch according to the condition found. If no match is found, the 
routine returns zero. The routine matches only the condition identification field 
(STS$V_COND_ID) of the condition value; it ignores the control bits and the 
severity field. If the facility-specific bit (STS$V _FAC_SP = bit <15>) is clear in 
cond-val (meaning that the condition value is systemwide), LIB$MATCH_COND 
ignores the facility code field (STS$V_FAC_NO =bits <27:17>) and compares only 
the STS$V _MSG_ID fields (bits <15:3> ). 



Condition-Handling Routines and Services 
13.14 Run-Time Library Condition-Handling Routines 

13.14.5 Correcting a Reserved Operand Condition (VAX Only) 
On VAX systems, after a signal of SS$_ROPRAND during a floating-point 
instruction, LIB$FIXUP _FLT finds the operand and changes it from -0.0 to a new 
value or to +0.0. + 

13.14.6 Decoding the Instruction That Generated a Fault (VAX Only) 
On VAX systems, LIB$DECODE_FAULT locates the operands for an instruction 
that caused a fault and passes the information to a user action routine. When 
called from a condition handler, LIB$DECODE_FAULT locates all the operands 
and calls an action routine that you supply. Your action routine performs 
the steps necessary to handle the exception condition and returns control to 
LIB$DECODE_FAULT. LIB$DECODE_FAULT then restores the operands and 
the environment, as modified by the action routine, and continues execution of 
the instruction. + 

13.15 Exit Handlers 
When an image exits, the operating system performs the following operations: 

• Invokes any user-defined exit handlers. 

• Invokes the system-defined default exit handler, which closes any files that 
were left open by the program or by user-defined exit handlers. 

• Executes a number of cleanup operations collectively known as image 
rundown. The following is a list of some of these cleanup operations: 

Canceling outstanding ASTs and timer requests. 

Deassigning any channel assigned by your program and not already 
deassigned by your program or the system. 

Deallocating devices allocated by the program. 

Dissociating common event flag clusters associated with the program. 

Deleting user-mode logical names created by the program. (Unless you 
specify otherwise, logical names created by SYS$CRELNM are user-mode 
logical names.) 

Restoring internal storage (for example, stacks or mapped sections) to its 
original state. 

If any exit handler exits using the EXIT (SYS$EXIT) system service, none of 
the remaining handlers is executed. In addition, if an image is aborted by the 
DCL command STOP (the user presses Ctrl/Y and then enters STOP), the system 
performs image rundown and does not invoke any exit handlers. (The DCL 
command EXIT invokes the exit handlers before running down the image.) 

Use exit handlers to perform any cleanup that your program requires in addition 
to the normal rundown operations performed by the operating system. In 
particular, if your program must perform some final action regardless of whether 
it exits normally or is aborted, you should write and establish an exit handler to 
perform that action. 

13-73 



Condition-Handling Routines and Services 
13.15 Exit Handlers 

13.15.1 Establishing an Exit Handler 

13-74 

To establish an exit handler, use the SYS$DCLEXH system service. The 
SYS$DCLEXH system service requires one argument-a variable-length data 
structure that describes the exit handler. Figure 13-16 illustrates the structure 
of an exit handler. 

Figure 13-16 Structure of an Exit Handler 

31 8 7 0 

Returned; Address of Next Exit Handler 

Address of Exit Handler 

0 l n 

Exit Status of the Image 

"- ,..._ 

~~'~~~~o-t_h_e_rA~rg_u_m_e_n_ts~B-e_m_g_P_a_s_s_e_d~~~~_.f 
n = The number of arguments being passed to 

the exit handler; the exit status counts 
as the first argument. 

ZK-2053-GE 

The first longword of the structure contains the address of the next handler. 
The operating system uses this argument to keep track of the established exit 
handlers; do not modify this value. The second longword of the structure contains 
the address of the exit handler being established. The low-order byte of the third 
longword contains the number of arguments to be passed to the exit handler. 
Each of the remaining longwords contains the address of an argument. 

The first argument passed to an exit handler is an integer value containing the 
final status of the exiting program. The status argument is mandatory. However, 
do not supply the final status value; when the operating system invokes an exit 
handler, it passes the handler the final status value of the exiting program. 

To pass an argument with a numeric data type, use programming language 
statements to assign the address of a numeric variable to one of the longwords in 
the eYit-handler data structure. To pass an argument with a character data type, 
create a descriptor of the following form: 

31 0 

Number of Characters 

Address 

ZK-2054-GE 

Use the language statements to assign the address of the descriptor to one of the 
longwords in the exit-handler data structure. 



Condition-Handling Routines and Services 
13.15 Exit Handlers 

The following program segment establishes an exit handler with two arguments, 
the mandatory status argument and a character argument: 

Arguments for exit handler 
INTEGER EXIT STATUS ! Status 
CHARACTER*l2-STRING ! String 
STRUCTURE /DESCRIPTOR/ 

INTEGER SIZE, 
2 ADDRESS 
END STRUCTURE 
RECORD /DESCRIPTOR/ EXIT STRING 
! Setup for exit handler­
STRUCTURE /EXIT DESCRIPTOR/ 

INTEGER LINK, -
2 ADDR, 
2 ARGS /2/, 
2 STATUS ADDR, 
2 STRING-ADDR 
END STRUCTURE -
RECORD /EXIT DESCRIPTOR/ HANDLER 
! Exit handler 
EXTERNAL EXIT HANDLER 

Set up descriptor 
EXIT STRING.SIZE = 12 ! Pass entire string 
EXIT-STRING.ADDRESS = %LOC (STRING) 
! Enter the handler and argument addresses 
! into the exit handler description 
HANDLER.ADDR = %LOC(EXIT HANDLER) 
HANDLER.STATUS ADDR = %LOC(EXIT STATUS) 
HANDLER.STRING-ADDR = %LOC(EXIT-STRING) 
! Establish the exit handler -
CALL SYS$DCLEXH (HANDLER) 

An exit handler can be established at any time during your program and remains 
in effect until it is canceled (with SYS$CANEXH) or executed. If you establish 
more than one handler, the handlers are executed in reverse order: the handler 
established last is executed first; the handler established first is executed last. 

13.15.2 Writing an Exit Handler 
Write an exit handler as a subroutine, because no function value can be returned. 
The dummy arguments of the exit subroutine should agree in number, order, and 
data type with the arguments you specified in the call to SYS$DCLEXH. 

In the following example, assume that two or more programs are cooperating 
with each other. To keep track of which programs are executing, each has been 
assigned a common event flag (the common event flag cluster is named ALIVE). 
When a program begins, it sets its flag; when the program terminates, it clears 
its flag. Because it is important that each program clear its flag before exiting, 
you create an exit handler to perform the action. The exit handler accepts two 
arguments, the final status of the program and the number of the event flag 
to be cleared. In this example, since the cleanup operation is to be performed 
regardless of whether the program completes successfully, the final status is not 

13-75 



Condition-Handling Routines and Services 
13.15 Exit Handlers 

examined in the exit routine. (This subroutine would not be used with the exit 
handler declaration in the previous example.) 

CLEAR_FLAG.FOR 
SUBROUTINE CLEAR FLAG (EXIT STATUS, 
2 - FLAG) 
! Exit handler clears the event flag 

! Declare dummy argument 
INTEGER EXIT STATUS, 
2 FLAG-
! Declare status variable and system routine 
INTEGER STATUS, 
2 SYS$ASCEFC, 
2 SYS$CLREF 
! Associate with the common event flag 
! cluster and clear the flag 
STATUS= SYS$ASCEFC (%VAL(FLAG), 
2 'ALIVE',,) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
STATUS= SYS$CLREF (%VAL(FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 

END 

If for any reason you must perform terminal I/O from an exit handler, use 
appropriate RTL routines. Trying to access the terminal from an exit handler 
using language I/O statements may cause a redundant I/O error. 

13.15.3 Debugging an Exit Handler 
To debug an exit handler, you must set a breakpoint in the handler and wait 
for the operating system to invoke that handler; you cannot use the DEBUG 
command STEP/INTO to enter an exit handler. In addition, when the debugger 
is invoked, it establishes an exit handler that exits using the SYS$EXIT system 
service. If you invoke the debugger when you invoke your image, the debugger's 
exit handler does not affect your program's handlers because the debugger's 
handler is established first and so executes last. However, if you invoke the 
debugger after your program begins executing (the user presses Ctrl/Y and then 
types DEBUG), the debugger's handler may affect the execution of your program's 
exit handlers, because one or more of your handlers may have been established 
before the debugger's handler and so is not executed. 

13.15.4 Example of an Exit Handler 

13-76 

As in the example in Section 13.15.2, write the exit handler as a subroutine 
because no function value can be returned. The dummy arguments of the exit 
subroutine should agree in number, order, and data type with the arguments you 
specify in the call to SYS$DCLEXH. 

In the following example, assume that two or more programs are cooperating. To 
keep track of which programs are executing, each has been assigned a common 
event flag (the common event flag cluster is named ALIVE). When a program 
begins, it sets its flag; when the program terminates, it clears its flag. Because 
each program must clear its flag before exiting, you create an exit handler to 
perform the action. The exit handler accepts two arguments: the final status of 
the program and the number of the event flag to be cleared. 



Condition-Handling Routines and Services 
13.15 Exit Handlers 

In the following example, because the cleanup operation is to be performed 
regardless of whether the program completes successfully, the final status is not 
examined in the exit routine. 

! Arguments for exit handler 
INTEGER*4 EXIT STATUS Status 
INTEGER*4 FLAG-/64/ 
! Setup for exit handler 
STRUCTURE /EXIT DESCRIPTOR/ 

INTEGER LINK, -
2 ADDR, 
2 ARGS /2/, 
2 STATUS ADDR, 
2 FLAG ADDR 
END STRUCTURE-
RECORD /EXIT DESCRIPTOR/ HANDLER 

! Exit handler 
EXTERNAL EXIT HANDLER 

INTEGER*4 STATUS, 
2 SYS$ASCEFC, 
2 SYS$SETEF 

! Associate with the common event flag 
! cluster and set the flag. 
STATUS= SYS$ASCEFC (%VAL(FLAG), 
2 'ALIVE' I I) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
STATUS= SYS$SETEF (%VAL(FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 
! Do not exit until cooperating program has a chance to 

associate with the common event flag cluster. 

Enter the handler and argument addresses 
into the exit handler description. 

HANDLER.ADDR = %LOC(EXIT HANDLER) 
HANDLER.STATUS ADDR = %LOC(EXIT STATUS) 
HANDLER.FLAG ADDR = %LOC(FLAG) -
! Establish the exit handler. 
CALL SYS$DCLEXH (HANDLER) 

Continue with program 

END 

! Exit Subroutine 

SUBROUTINE CLEAR FLAG (EXIT STATUS, 
2 FLAG) 
! Exit handler clears the event flag 

! Declare dummy argument 
INTEGER EXIT STATUS, 
2 FLAG-

! Declare status variable and system routine 
INTEGER STATUS, 
2 SYS$ASCEFC, 
2 SYS$CLREF 

13-77 



Condition-Handling Routines and Services 
13.15 Exit Handlers 

13-78 

! Associate with the common event flag 
! cluster and clear the flag 
STATUS = SYS$ASCEFC (%VAL(FLAG), 
2 I ALIVE I I , ) 

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
STATUS= SYS$CLREF (%VAL(FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS)) 



14 
Synchronizing Data Access and Program 

Operations 

This chapter describes the operating system's synchronization features. It focuses 
on how the operating system synchronizes the sequencing of events to perform 
memory operations. Memory access synchronization techniques are based on 
synchronization techniques that other types of storage use, whether to share 
hardware resources or data in files. 

This chapter contains the following sections: 

Section 14.1 describes synchronization, execution of threads, and atomicity. 

Section 14.2 describes alignment, granularity, ordering of read and write 
operations, and performing memory read and write operations on VAX and AXP 
systems in uniprocessor and multiprocessor environments. 

Section 14.3 describes how to perform memory read-modify-write operations on 
VAX and AXP systems in uniprocessor and multiprocessor environments. 

Section 14.4 describes hardware-level synchronization methods, such as interrupt 
priority level, load-locked/store-conditional and interlocked instructions, memory 
barriers, and PALcode routines. 

Section 14.5 describes software-level synchronization methods, such as process­
private synchronization techniques, process priority, and spin locks. It also 
describes how to write applications for a multiprocessor environment using 
higher-level synchronization methods and how to write to global sections. 

Section 14.6 describes how to use local and common event flags for 
synchronization. 

Section 14. 7 describes how to use the PPL$ routines for synchronization in a 
multiprocessor configuration. 

Section 14.8 describes how to use SYS$SYNCH system service for 
synchronization. 

14.1 Overview of Synchronization 
Software synchronization refers to the coordination of events in such a way that 
only one event happens at a time. This kind of synchronization is a serialization 
or sequencing of events. Serialized events are assigned an order and processed 
one at a time in that order. While a serialized event is being processed, no other 
event in the series is allowed to disrupt it. 

By imposing order on events, synchronization allows reading and writing of 
several data items indivisibly, or atomically, in order to obtain a consistent set of 
data. For example, all of process Ns writes to shared data must happen before 
or after process B's writes or reads, but not during process B's writes or reads. 
In this case, all of process Ns writes must happen indivisibly for the operation to 

14-1 



Synchronizing Data Access and Program Operations 
14.1 Overview of Synchronization 

be correct. This includes process Ns updates-reading of a data item, modifying 
it, and writing it back (read-modify-write sequence). Other synchronization 
techniques are used to ensure the completion of an asynchronous system service 
before the caller tries to use the results of the service. 

14.1.1 Threads of Execution 

14-2 

Code threads that can execute within a process include the following: 

• Mainline code in an image being executed 

• Asynchronous system traps (ASTs) that interrupt the image 

• Condition handlers established by the image and that run after exceptions 
occur 

• Inner access-mode threads of execution that run as a result of system service, 
Open VMS Record Management Services (RMS), and command language 
interpreter (CLI) callback requests 

Process-based threads of execution can share any data in the PO and Pl address 
space and must synchronize access to any data they share. A thread of execution 
can incur an exception, which results in passing of control to a condition handler. 
Alternatively, the thread can receive an AST, which results in passing of control 
to an AST procedure. Further, an AST procedure can incur an exception, and a 
condition handler's execution can be interrupted by an AST delivery. If a thread 
of execution requests a system service or RMS service, control passes to an inner 
access-mode thread of execution. Code that executes in the inner mode can also 
incur exceptions, receive ASTs, and request services. 

Multiple processes, each with its own set of threads of execution, can execute 
concurrently. Although each process has private PO and Pl address space, 
processes can share data in a global section mapped into each process's address 
spaces. You need to synchronize access to global section data because a thread 
of execution accessing the data in one process can be rescheduled, allowing a 
thread of execution in another process to access the same data before the first 
process completes its work. Although processes access the same system address 
space, the protection on system space pages usually prevents outer mode access. 
However, process-based code threads running in inner access modes can access 
data concurrently in system space and must synchronize access to it. 

Interrupt service routines access only system space. They must synchronize 
access to shared system space data among themselves and with process-based 
threads of execution. 

A CPU-based thread of execution and an 1/0 processor must synchronize access 
to shared data structures, such as structures that contain descriptions of I/O 
operations to be performed. 

Multiprocessor execution increases synchronization requirements when the 
threads that must synchronize can run concurrently on different processors. 
Because a process executes on only one processor at a time, synchronization 
of threads of execution within a process is unaffected by whether the process 
runs on a uniprocessor or on a symmetric multiprocessing (SMP) system. 
However, multiple processes can execute simultaneously on different processors. 
Because of this, processes sharing data in a global section can require additional 
synchronization for SMP system execution. Further, process-based inner mode 
and interrupt-based threads can execute simultaneously on different processors 
and can require synchronization of access to system space beyond what is 
sufficient on a uniprocessor. 



Synchronizing Data Access and Program Operations 
14.1 Overview of Synchronization 

14.1.2 Atomicity 
Atomicity is a type of serialization that refers to the indivisibility of a small 
number of actions, such as those occurring during the execution of a single 
instruction or a small number of instructions. With more than one action, no 
single action can occur by itself. If one action occurs, then all the actions occur. 
Atomicity must be qualified by the viewpoint from which the actions appear 
indivisible: an operation that is atomic for threads running on the same processor 
can appear as multiple actions to a thread of execution running on a different 
processor. 

An atomic memory reference results in one indivisible read or write of a data 
item in memory. No other access to any part of that data can occur during the 
course of the atomic reference. Atomic memory references are important for 
synchronizing access to a data item that is shared by multiple writers or by one 
writer and multiple readers. References need not be atomic to a data item that is 
not shared or to one that is shared but is only read. 

14.2 Memory Read and Memory Write Operations 
This section presents the important concepts of alignment and granularity 
and how they affect the access of shared data on VAX and AXP systems. It also 
discusses the importance of the order of reads and writes are completed on VAX 
and AXP systems, and how VAX and AXP system perform memory reads and 
writes. 

14.2.1 Alignment 

•• 

The term alignment refers to the placement of a data item in memory. For a 
data item to be naturally aligned, its lowest-addressed byte must reside at an 
address that is a multiple of the size of the data item in bytes. For example, 
a naturally aligned longword has an address that is a multiple of 4. The term 
naturally aligned is usually shortened to "aligned". 

On VAX systems, a thread on a VAX uniprocessor or multiprocessor can read 
and write aligned byte, word, and longword data atomically with respect to other 
threads of execution accessing the same data. + 

On AXP systems, in contrast to the variety of memory accesses allowed on VAX 
systems, an AXP processor allows atomic access only to an aligned longword 
or an aligned quadword. Reading or writing an aligned longword or quadword 
of memory is atomic with respect to any other thread of execution on the same 
processor or on other processors. + 

14.2.2 Granularity 

.... 
VAX and AXP systems differ in granularity of data access. The phrase 
granularity of data access refers to the size of neighboring units of memory 
that can be written independently and atomically by multiple processors. 
Regardless of the order in which the two units are written, the results must 
be identical. 

VAX systems have byte granularity: individual adjacent or neighboring bytes 
within the same longword can be written by multiple threads of execution on one 
or more processors, as can aligned words and longwords. 

VAX systems provide instructions that can manipulate byte-sized and aligned 
word-sized memory data in a single, noninterruptible operation. On VAX 
systems, a byte-sized or word-sized data item that is shared can be manipulated 
individually. + 

14-3 



Synchronizing Data Access and Program Operations 
14.2 Memory Read and Memory Write Operations 

AXP systems have longword and quadword granularity. That is, only adjacent 
aligned longwords or quadwords can be written independently. Because AXP 
systems support only instructions that load or store longword-sized and 
quadword-sized memory data, the manipulation of byte-sized and word-sized 
data on AXP systems requires that the entire longword or quadword that contain 
the byte- or word-sized item to be manipulated. Thus, simply because of its 
proximity to an explicitly shared data item, neighboring data might become 
shared unintentionally. Manipulation of byte-sized and word-sized data on AXP 
systems requires multiple instructions that: 

1. Fetch the longword or quadword that contains the byte or word 

2. Mask the nontargeted bytes 

3. Manipulate the target byte or word 

4. Store the entire longword or quadword 

Because this sequence is interruptible, operations on byte and word data are not 
atomic on AXP sytems. Also, this change in the granularity of memory access can 
affect the determination of which data is actually shared when a byte or word is 
accessed. 

The absence of byte and word granularity on AXP systems has important 
implications for access to shared data. In effect, any memory write of a data 
item other than an aligned longword or quadword must be done as a multiple­
instruction read-modify-write sequence. Also, because the amount of data read 
and written is an entire longword or quadword, programmers must ensure that 
all accesses to fields within the longword or quadword are synchronized with each 
other. • 

14.2.3 Ordering of Read and Write Operations 
On VAX uniprocessor and multiprocessor systems, write operations and read 
operations appear to occur in the same order in which you specify them from the 
viewpoint of all types of external threads of execution. AXP uniprocessor systems 
also guarantee that read and write operations appear ordered for multiple 
threads of execution running within a single process or within multiple processes 
running on a uniprocessor. 

On AXP multiprocessor systems, you must order reads and writes explicitly 
to ensure that they occur in a specific order from the viewpoint of threads 
of execution on other processors. To provide the necessary operating system 
primitives and compatibility with VAX systems, AXP systems support instructions 
that impose an order on read and write operations. • 

14.2.4 Memoiy Reads and Memory Writes 

14-4 

On VAX systems, most instructions that read or write memory are 
noninterruptible. A memory write done with a noninterruptible instruction 
is atomic from the viewpoint of other threads on the same CPU. 

On a uniprocessor system, reads and writes of bytes, words, longwords, and 
quadwords are atomic with respect to any thread on the processor. On a 
multiprocessor, not all of those accesses are atomic with respect to any thread on 
any processor; only reads and writes of bytes, aligned words, aligned longwords 
are atomic. Accessing unaligned data can require multiple operations. As a 
result, even though an unaligned longword is written with a noninterruptible 
instruction, if it requires multiple memory accesses, a thread on another CPU 



Synchronizing Data Access and Program Operations 
14.2 Memory Read and Memory Write Operations 

might see memory in an intermediate state. VAX systems do not guarantee 
multiprocessor atomic access to quadwords. + 

On AXP systems, there is no instruction that performs multiple memory accesses. 
Each load or store instruction performs a maximum of one load from or one store 
to memory. A load can occur only from an aligned longword or quadword. A store 
can occur only to an aligned longword or quadword. 

Although reads and writes from one thread appear to occur ordered from the 
viewpoint of other threads on the same processor, there is no implicit ordering of 
reads and writes as seen by threads on other processors. + 

14.3 Memory Read-Modify-Write Operations 
A fundamental synchronization primitive for accessing shared data is an atomic 
read-modify-write operation. This operation consists of reading the contents of 
a memory location and replacing them with new contents based on the old. Any 
intermediate memory state is not visible to other threads. Both VAX systems and 
AXP systems provide this synchronization primitive, but they implement it in 
significantly different ways. 

14.3.1 Uniprocessor Operations 
On VAX systems, many instructions are capable of performing a read-modify­
write operation in a single, noninterruptible (atomic) sequence from the viewpoint 
of multiple application threads executing on a single processor. VAX systems 
provide synchronization among multiple threads of execution running on a 
uniprocessor system. 

On VAX systems, the implicit dependence on the atomicity of VAX instructions is 
not recommended. Because of the optimizations they perform, the VAX compilers 
do not guarantee that a certain type of program statement, such as an increment 
operation (x=x+l), is implemented using a VAX atomic instruction, even if one 
exists. + 

On AXP systems, there is no single instruction that performs an atomic read­
modify-write ooperation. As a result, even uniprocessing applications in which 
processes access shared data must provide explicit synchronization of these 
accesses, usually through compiler semantics. 

Read-modify-write operations that can be performed atomically on VAX systems 
require a sequence of instructions on AXP systems. Because this sequence can 
be interrupted, the data may be left in an unstable state. For example, the VAX 
increment long (INCL) instruction fetches the contents of a specified longword, 
increments its value, and stores the value back in the longword, performing 
the operations without interruption. On AXP systems, each step-fetching, 
incrementing, storing-must be explicitly performed by a separate instruction. 
Therefore, another thread in the process (for example, an AST routine) could 
execute before the sequence completes. However, because atomic updates are the 
basis of synchronization, and to provide compatibility with VAX systems, AXP 
systems provide the following mechanisms to enable atomic read-modify-write 
updates: 

• Privileged architecture library (PALcode) routines perform queue insertions 
· and removals. 

14-5 



Synchronizing Data Access and Program Operations 
14.3 Memory Read-Modify-Write Operations 

• Load-locked and store-conditional instructions create a sequence of 
instructions that implement an atomic update. 

The load-locked and store-conditional instructions also create a sequence 
of instructions that are atomic in a multiprocessor system. In contrast, a 
VAX INCL instruction is atomic only in a uniprocessor environment. + 

14.3.2 Multiprocessor Operations 

a+J.1:• 
I 

14-6 

On multiprocessor systems, you must use special methods to ensure that a 
read-modify-write sequence is atomic. On VAX systems, interlocked instructions 
provide synchronization; on AXP systems, load-locked and store-conditional 
instructions provide synchronization. 

On VAX systems, a number of uninterruptible instructions are provided that 
both read and write memory with one instruction. When used with an operand 
type that is accessible in a single memory operation, each instruction provides 
an atomic read-modify-write sequence. The sequence is atomic with respect to 
threads of execution on the same VAX processor, but it is not atomic to threads 
on other processors. For instance, when a VAX CPU executes the instruction 
INCL x, it issues two separate commands to memory: a read, followed by a write 
of the incremented value. Another thread of execution running concurrently on 
another processor could issue a command to memory that reads or writes location 
x between the INCL's read and write. Section 14.4.3 describes read-modify-write 
sequences that are atomic with respect to threads on all VAX CPUs in an SMP 
system. 

On a VAX multiprocessor system, an atomic update requires an interlock 
at the level of the memory subsystem. To perform that interlock, the VAX 
architecture provides a set of interlocked instructions that include Add Aligned 
Word Interlocked (ADAWI), Remove from Queue Head Interlocked (REMQHI), 
and Branch on Bit Set and Set Interlocked (BBSSI). 

If you code in VAX MACRO, you use the assembler to generate whatever 
instructions you tell it. If you code in a high-level language, you cannot assume 
that the compiler will compile a particular language statement into a specific code 
sequence. That is, you must tell the compiler explicitly to generate an atomic 
update. For further information, see the documentation for your high-level 
language. + 

On AXP systems, there is no single instruction that performs an atomic read­
modify-write operation. An atomic read-modify-write operation is only possible 
through a sequence that includes load-locked and store-conditional instructions, 
(see Section 14.4.2). Use of these instructions provides a read-modify-write 
operation on data within one aligned longword or quadword that is atomic with 
respect to threads on all AXP CPUs in an SMP system. + 



Synchronizing Data Access and Program Operations 
14.4 Hardware-Level Synchronization 

14.4 Hardware-Level Synchronization 
On VAX systems, the following features assist with synchronization at the 
hardware level: 

• Atomic memory references 

• Noninterruptible instructions 

• Interrupt priority level (IPL) 

• Interlocked memory accesses 

On VAX systems, many read-modify-write instructions, including queue 
manipulation instructions, are noninterruptible. These instructions provide 
an atomic update capability on a uniprocessor. A kernel-mode code thread can 
block interrupt and process-based threads of execution by raising the IPL. Hence, 
it can execute a sequence of instructions atomically with respect to the blocked 
threads on a uniprocessor. Threads of execution that run on multiple processors 
of an SMP system synchronize access to shared data with read-modify-write 
instructions that interlock memory. + 

On AXP systems, some of these mechanisms are present, while others have been 
implemented in PALcode routines. 

AXP processors provide several features to assist with synchronization. Even 
though all instructions that access memory are noninterruptible, no single one 
performs an atomic read-modify-write. A kernel-mode thread of execution can 
raise the IPL in order to block other threads on that processor while it performs 
a read-modify-write sequence or while it executes any other group of instructions. 
Code that runs in any access mode can execute a sequence of instructions that 
contains load-locked (LDx_L) and store-conditional (STx_C) instructions to 
perform a read-modify-write sequence that appears atomic to other threads of 
execution. Memory barrier instructions order a CPU's memory reads and writes 
from the viewpoint of other CPUs and 1/0 processors. Other synchronization 
mechanisms are provided by PALcode routines. + 

The sections that follow describe the features of interrupt priority level, load­
locked (LDx_L) and store-conditional (STx_C) instructions, memory barriers, 
interlocked instructions, and PALcode routines. 

14.4.1 Interrupt Priority Level 
The operating system in a uniprocessor system synchronizes access to systemwide 
data structures by requiring that all threads sharing data run at the highest­
priority IPL of the highest-priority interrupt that causes any of them to execute. 
Thus, a thread's accessing of data cannot be interrupted by any other thread that 
accesses the same data. 

The IPL is a processor-specific mechanism. Raising the IPL on one processor 
has no effect on another processor. You must use a different synchronization 
technique on SMP systems where code threads run concurrently on different 
CPUs that must have synchronized access to shared system data. 

On VAX systems, the code threads that run concurrently on different processors 
synchronize through instructions that interlock memory in addition to raising 
the IPL. Memory interlocks also synchronize access to data shared by an 1/0 
processor and a code thread. + 

14-7 



Synchronizing Data Access and Program Operations 
14.4 Hardware-Level Synchronization 

On AXP systems, access to a data structure that is shared either by executive 
code running concurrently on different CPUs or by an I/O processor and a code 
thread must be synchronized through a load-locked/store-conditional sequence. + 

14.4.2 LDx_L and STx_C Instructions 

14-8 

Because AXP systems do not provide a single instruction that both reads and 
writes memory or mechanism to interlock memory against other interlocked 
accesses, you must use other synchronization techniques. AXP systems 
provide the load-locked/store-conditional mechanism that allows a sequence 
of instructions to perform an atomic read-modify-write operation. 

Load-locked (LDx_L) and store-conditional (STx_C) instructions guarantee 
atomicity that is functionally equivalent to that of VAX systems. The LDx_L and 
STx_ C instructions can be used only on aligned longwords or aligned quadwords. 
The LDx_L and STx_C instructions do not provide atomicity by blocking access to 
shared data by competing threads. Instead, when the LDx_L instruction executes, 
a CPU-specific lock bit is set. Before the data can be stored, the CPU uses the 
STx_C instruction to check the lock bit. If another thread has accessed the data 
item in the time since the load operation began, the lock bit is cleared and the 
store is not performed. Clearing the lock bit signals the code thread to retry the 
load operation. That is, a load-locked/store-conditional sequence tests the lock bit 
to see whether the store succeeded. If it did not succeed, the sequence branches 
back to the beginning to start over. This loop repeats until the data is untouched 
by other threads during the operation. 

By using the LDx_L and STx_C instructions together, you can construct a code 
sequence that performs an atomic read-modify-write operation to an aligned 
longword or quadword. Rather than blocking other threads' modifications of the 
target memory, the code sequence determines whether the memory locked by 
the LDx_L instruction could have been written by another thread during the 
sequence. If it is written, the sequence is repeated. If it is not written, the store 
is performed. If the store succeeds, the sequence is atomic with respect to other 
threads on the same processor and on other processors. The LDx_L and STx_C 
instructions can execute in any access mode. 

Traditional VAX usage is for interlocked instructions to be used for multiprocessor 
synchronization. On AXP systems, LDx_L and STx_ C instructions implement 
interlocks and can be used for uniprocessor synchronization. To achieve protection 
similar to the VAX interlock protection, you need to use memory barriers along 
with the load-locked and store-conditional instructions. 

Some AXP system compilers make the LDx_L and STx_ C instruction mechanism 
explicitly available as language built-in functions. For example, DEC C on AXP 
systems includes a set of built-in functions that provide for atomic addition 
and for logical AND and OR operations. Also, AXP system compilers make 
the mechanism available implicitly, because they use the LDx_L and STx_C 
instructions to access declared data as requiring atomic accesses in a language­
specific way. + 



Synchronizing Data Access and Program Operations 
14.4 Hardware-Level Synchronization 

14.4.3 Interlocked Instructions 
On VAX systems, seven instructions interlock memory. A memory interlock 
enables a VAX CPU or 1/0 processor to make an atomic read-modify-write 
operation to a location in memory that is shared by multiple processors. The 
memory interlock is implemented at the level of the memory controller. On a VAX 
multiprocessor system, an interlocked instruction is the only way to perform an 
atomic read-modify-write on a shared piece of data. The seven interlock memory 
instructions are as follows: 

• ADAWI-Add aligned word, interlocked· 

• BBCCI-Branch on bit clear and clear, interlocked 

• BBSSI-Branch on bit set and set, interlocked 

• INSQHI-Insert entry into queue at head, interlocked 

• INSQTI-Insert entry into queue at tail, interlocked 

• REMQHI-Remove entry from queue at head, interlocked 

• REMQTI-Remove entry from queue at tail, interlocked 

The VAX architecture interlock memory instructions are described in detail in the 
VAX Architecture Reference Manual. 

The following description of the interlocked instruction mechanism assumes that 
the interlock is implemented by the memory controller and that the memory 
contents are fresh. 

When a VAX CPU executes an interlocked instruction, it issues an interlock-read 
command to the memory controller. The memory controller sets an internal 
flag and responds with the requested data. While the flag is set, the memory 
controller stalls any subsequent interlock-read commands for the same aligned 
longword from other CPUs and 1/0 processors, even though it continues to process 
ordinary reads and writes. Because interlocked instructions are noninterruptible, 
they are atomic with respect to threads of execution on the same processor. 

When the VAX processor that is executing the interlocked instruction issues a 
write-unlock command, the memory controller writes the modified data back and 
clears its internal flag. The memory interlock exists for the duration of only one 
instruction. Execution of an interlocked instruction includes paired interlock-read 
and write-unlock memory controller commands. 

When you synchronize data with interlocks, you must make sure that all 
accessors of that data use them. This means that memory references of an 
interlocked instruction are atomic only with respect to other interlocked memory 
references. 

On VAX systems, the granularity of the interlock depends on the type of VAX 
system. A given VAX implementation is free to implement a larger interlock 
granularity than that which is required by the set of interlocked instructions 
listed above. On some processors, for example, while an interlocked access to a 
location is in progress, interlocked access to any other lo~ation in memory is not 
allowed. + 

14-9 



Synchronizing Data Access and Program Operations 
14.4 Hardware-Level Synchronization 

14.4.4 Memory Barriers 

wa• On AXP systems, there are no implied memory barriers except those performed by 
the PALcode routines that emulate the interlocked queue instructions. Wherever 
necessary, you must insert explicit memory barriers into your code to impose an 
order on memory references. Memory barriers are required to ensure both the 
order in which other members of an SMP system or an I/O processor see writes to 
shared data and the order in which reads of shared data complete. 

There are two types of memory barrier: 

• The MB instruction 

• The instruction memory barrier (IMB) PALcode routine 

The MB instruction guarantees that all subsequent loads and stores do not access 
memory until after all previous loads and stores have accessed memory from the 
viewpoint of multiple threads of execution. Even in a multiprocessor system, all 
of the instruction's reads of one processor always return the data from the most 
recent writes by that processor, assuming no other processor has written to the 
location. AXP compilers provide semantics for generating memory barriers when 
needed for specific operations on data items. 

The instruction memory barrier (IMB) PALcode routine must be used after 
a modification to the instruction stream to flush prefetched instructions. In 
addition, it also provides the same ordering effects as the MB instruction. 

Code that modifies the instruction stream must be changed to synchronize the old 
and new instruction streams properly. Use of an REI instruction to accomplish 
this does not work on Open VMS AXP systems. 

If a kernel mode code sequence changes the expected instruction stream, it must 
issue an IMB instruction after changing the instruction stream and before the 
time the change is executed. For example, if a device driver stores an instruction 
sequence in an extension to the unit control block (UCB) and then transfers 
control there, it must issue an IMB instruction after storing the data in the UCB 
but before transferring control to the UCB data. 

The MACR0-32 compiler for Open VMS AXP provides the EVAX_IMB built-in to 
insert explicitly an IMB instruction in the instruction stream. + 

14.4.5 PALcode Routines 
Privileged architecture library (PALcode) routines include AXP instructions that 
emulate VAX queue and interlocked queue instructions. PALcode executes 
in a special environment with interrupts blocked. This feature results in 
noninterruptible updates. A PALcode routine can perform the multiple memory 
reads and memory writes that insert or remove a queue element without 
interruption. + 

14.5 Software-Level Synchronization 

14-10 

The operating system uses the synchronization primitives provided by the 
hardware as the basis for several different synchronization techniques. The 
following sections summarize the operating system's synchronization techniques 
available to application software. 



Synchronizing Data Access and Program Operations 
14.5 Software-Level Synchronization 

14.5.1 Synchronization Within a Process 

*-D• 

Because only one thread of execution can execute within a process at a time, 
synchronizaton of threads that execute simultaneously is not a concern. However, 
a delivery of an AST or the occurrence of an exception can intervene in a 
sequence of instructions in one thread of execution. Because these conditons can 
occur, application design must take into account the need for synchronization 
with condition handlers and AST procedures. 

On AXP systems, writing bytes or words or performing a read-modify-write 
operation requires a sequence of AXP instructions. If the sequence incurs an 
exception or is interrupted by AST delivery or an exception, another process code 
thread can run. If that thread accesses the same data, it can read incompletely 
written data or cause data corruption. Aligning data on natural boundaries and 
unpacking word and byte data reduce this risk. 

An application written in a language other than VAX MACRO must identify to 
the compiler data accessed by any combination of mainline code, AST procedures, 
and condition handlers to ensure that the compiler generates code that is atomic 
with respect to other threads. Also, data shared with other processes must be 
identified. + 

With process-private data accessed from both AST and non-AST threads of 
execution, the non-AST thread can block AST delivery by using the Set AST 
Enable (SYS$SETAST) system service. If the code is running in kernel mode, 
it can also raise IPL to block AST delivery. The Guide to Creating Open VMS 
Modular Procedures describes the concept of AST reentrancy. 

On a uniprocessor or in a symmetric multiprocessing (SMP) system, access to 
multiple locations with a read or write instructions or with a read-modify-write 
sequence is not atomic on VAX and AXP systems. Additional synchronization 
methods are required to control access to the data. See Section 14.5.3 and the 
sections following it, which describe the use of higher-level synchronization 
techniques. 

14.5.2 Synchronization Using Process Priority 
In some applications (usually real-time applications), a number of processes 
perform a series of tasks. In such applications, the sequence in which a process 
executes can be controlled or synchronized by means of process priority. The basic 
method of synchronization by priority involves executing the process with the 
highest priority while preventing all other processes from executing. 

If you use process priority for synchronization, be aware that if the higher-priority 
process is blocked, either explicitly or implicitly (for example, when doing an 1/0), 
the lower-priority process can run, resulting in corruption on the data of the 
higher process's activities. 

Because each processor in a multiprocessor system, when idle, schedules its own 
work load, it is impossible to prevent all other processes in the system from 
executing. Moreover, because the scheduler guarantees only that the highest­
priority and computable process is scheduled at any given time, it is impossible to 
prevent another process in an application from executing. 

Thus, application programs that synchronize by process priority must be modified 
to use a different serialization method to run correctly in a multiprocessor system. 

14-11 



Synchronizing Data Access and Program Operations 
14.5 Software-Level Synchronization 

14.5.3 Synchronizing Multiprocess Applications 
The operating system provides the following techniques to synchronize 
multiprocess applications: 

• Common event flags 

• Lock management system services 

• Parallel processing (PPL$) run-time library procedures 

The operating system provides basic event synchronization through event flags. 
Common event flags can be shared among cooperating processes running on a 
uniprocessor or in an SMP system, though the processes must be in the same 
user identification code (UIC) group. Thus, if you have. developed an application 
that requires the concurrent execution of several processes, you can use event 
flags to establish communication among them and to synchronize their activity. 
A shared, or common, event flag can represent any event that is detectable and 
agreed upon by the cooperating processes. See Section 14.6 for information about 
using event flags. 

The lock management system services-Enqueue Lock Request (SYS$ENQ), 
and Dequeue Lock Request (SYS$DEQ)-provide multiprocess synchronization 
tools that can be requested from all access modes. For details about using lock 
management system services, see Chapter 15. 

The parallel processing run-time library procedures provide support for a number 
of different synchronization techniques suitable for user access-mode applications. 
These techniques include the following: 

• Mutual exclusion implemented through an application-created semaphore or 
spin lock 

• Event synchronization, in which one or more processes can wait for the 
occurrence of a user-defined event that is triggered by another process 

• Barrier synchronization, in which multiple processes wait until a specified 
number of them have all reached a designated point in their execution 

Section 14. 7 describes the various PPL$ routines. The Open VMS RTL Parallel 
Processing (PPL$) Manual provides more information. 

Synchronization of access to shared data by a multiprocess application should be 
designed to support processes that execute concurrently on different members of 
an SMP system. Applications that share a global section can use VAX MACRO 
interlocked instructions or the equivalent in other languages to synchronize 
access to data in the global section. These applications can also/Use the lock 
management system services for synchronization. 

14.5.4 Writing Applications for an Operating System Running in a 

14-12 

Multiprocessor Environment 
Most application programs that run on an operating system in a uniprocessor 
system also run without modification in a multiprocessor system. However, 
applications that access writable global sections or that rely on process priority 
for synchronizing tasks should be reexamined and modified according to the 
information contained in this section. 



Synchronizing Data Access and Program Operations 
14.5 Software-Level Synchronization 

In addition, some applications may execute more efficiently on a multiprocessor 
if they are specifically adapted to a multiprocessing environment. Application 
programmers may want to decompose an application into several processes and 
coordinate their activities by means of event flags or a shared region in memory. 
See the Open VMS RTL Parallel Processing (PPL$) Manual for more information 
about performing these tasks. 

14.5.5 Synchronization Using Spin Locks 
· A spin lock is a device used by a processor to synchronize access to data that is 

shared by members of a symmetric multiprocessing (SMP) system. A spin lock 
enables a set of processors to serialize their access to shared data. The basic form 
of a spin lock is a bit that indicates the state of a particular set of shared data. 
When the bit is set, it shows that a processor is accessing the data. A bit is either 
tested and set or tested and cleared; it is atomic with respect to other threads of 
execution on the same or other processors. 

A processor that needs access to some shared data tests and sets the spin lock 
associated with that data. To test and set the spin lock, the processor uses an 
interlocked bit-test-and-set instruction. If the bit is clear, the processor can have 
access to the data. This is called locking or acquiring the spin lock. If the bit is 
set, the processor must wait because another processor is already accessing the 
data. 

Essentially, a waiting processor spins in a tight loop; it executes repeated bit test 
instructions to test the state of the spin lock. The term spin lock derives from 
this spinning. When the spin lock is in a loop, repeatedly testing the state of the 
spin lock, the spin lock is said to be in a state of busy wait. The busy wait ends 
when the processor accessing the data clears the bit with an interlocked operation 
to indicate that it is done. When the bit is cleared, the spin lock is said to be 
unlocked or released. 

Spin locks are used by the operating system executive, along with the interrupt 
priority level (IPL), to control access to system data structures in a multiprocessor 
system. 

See Section 14. 7 for descriptions of how to use spin locks in your applications. 

14.5.6 Writable Global Sections 
A writable global section is an area of memory that can be accessed (read and 
modified) by more than one process. On uniprocessor or SMP systems, access to 
a single global section with an appropriate read or write instruction is atomic on 
VAX and AXP systems. Therefore, no other synchronization is required. 

An appropriate read or write on VAX systems is an instruction that is a naturally 
aligned byte, word, or longword, such as a MOVx instruction, where xis a B for 
a byte, W for a word, or L for a longword. On AXP systems, an appropriate read 
or write instruction is a naturally aligned longword or quadword, for instance, a 
LDx or write STx instruction where xis an L for an aligned longword or Q for an 
aligned quadword. 

On both VAX and AXP multiprocessor systems, for a read-modify-write sequence 
on a multiprocessor system, two or more processes can execute concurrently, one 
on each processor. As a result, it is possible that concurrently executing processes 
can access the same locations simultaneously in a writable global section. If 
this happens, only partial updates may occur, or data could be corrupted or lost, 
because the operation is not atomic. Unless proper interlocked instructions are 
used on VAX systems or load-locked/store-conditional instructions are used on 

14-13 



Synchronizing Data Access and Program Operations 
14.5 Software-Level Synchronization 

AXP systems, invalid data may result. You must use interlocked or load-locked 
/store-conditional instructions or other synchronizing techniques, such as locks or 
event flags. 

On a uniprocessor or SMP system, access to multiple locations within a global 
section with read or write instructions or a read-modify-write sequence is not 
atomic on VAX and AXP systems. On a uniprocessor system, an interrupt can 
occur that causes process preemption, allowing another process to run and access 
the data before the first process completes its work. On a multiprocessor system, 
two processes can access the global section simultaneously on different processors. 
You must use a synchronization technique such as a spin lock or event flags to 
avoid these problems. 

Check existing programs that use writable global sections to ensure that proper 
synchronization techniques are in place. Review the program code itself; do not 
rely on testing alone, because an instance of simultaneous access by more than 
one process to a location in a writable global section is rare. 

If an application must use queue instructions to control access to writable global 
sections, ensure that it uses interlocked queue instructions. 

14.6 Synchronizing Operations with Event Flags 
Event flags are status-posting bits maintained by the operating system for 
general programming use. Programs can use event flags to perform a variety of 
signaling functions. Event flag services clear, set, and read event flags. They also 
place a process in a wait state pending the setting of an event flag or flags. 

To synchronize events with event flags, a process sets an event flag bit when it 
has completed a section of code. Another process examines the value of the event 
flag bit. If the event flag bit is set, the second process can resume execution. 

14.6.1 General Guidelines for Using Event Flags 
To use event flags, follow these general steps: 

14-14 

1. Allocate local event flags or associate common event flags for your use. 

2. Set or clear the event flag. 

3. Read the event flag. 

4. Suspend program execution until an event flag is set. 

5. Deallocate the local event flags or dissociate common event flags when they 
no longer needed. 

Use run-time library routines and· system services to accomplish these event flag 
tasks. Table 14-1 summarizes the event flag routines and services. 

Table 14-1 Event Flag Routines and Services 

Routine or Service 

LIB$GET_EF 

LIB$RESERVE_EF 

SYS$ASCEFC 

Task 

Allocate any local event flag 

Allocate a specific local event flag 

Associate a common event flag cluster 

(continued on next page) 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

Table 14-1 (Cont.) Event Flag Routines and Services 

Routine or Service 

SYS$CLREF 

SYS$SETEF 

SYS$READEF 

SYS$WAITFR 

SYS$WFLOR 

SYS$WFLAND 

SYS$SYNCH 

LIB$FREE_EF 

SYS$DACEFC 

SYS$DLCEFC 

Task 

Clear a local or common event flag 

Set a local or common event flag 

Read a local or common event flag 

Wait for a specific local or common event flag to be set 

Wait for one of several local or common event flags to be 
set-logical OR of event flags 

Wait for several local or common event flags to be set-logical 
AND of event flags 

Wait for a local or common event flag to be set and for nonzero 
I/O status block 

Deallocate a local event flag 

Dissociate a common event flag cluster 

Delete common event flag cluster 

Some system services set an event flag to indicate the completion or the 
occurrence of an event; the calling program can test the flag. Refer to Table 14-2 
for some of the system services that use event flags to signal events to the calling 
process. 

TabJe 14-2 Services Using Event Flags to Signal a Calling Process 

Service 

SYS$ENQ(W) 

SYS$GETDVI(W) 

SYS$GETJPI(W) 

SYS$GETSYI(W) 

SYS$QIO(W) 

SYS$SETIMR 

SYSUPDSEC 

SYS$UPDSECW 

Task 

Enqueue Lock Request 

Get DeviceNolume Information 

Get Job/Process Information 

Get Systemwide Information 

Get Queue I/O Request 

Set Timer 

Update Section File on Disk 

Update Section File on Disk and Wait 

14.6.2 Event Flag Numbers and Event Flag Clusters 
Each event flag has a unique decimal number; event flag arguments in system 
service calls refer to these numbers. For example, if you specify event flag 1 
in a call to the SYS$QIO system service, then event flag 1 is set when the I/O 
operation completes. 

To allow manipulation of groups of event flags, the flags are ordered in clusters of 
32, numbered from right to left and corresponding to bits 0 through 31 (<31:0>) 
in a longword. The clusters are also numbered from 0 to 3. The range of event 
flag numbers encompasses the flags in all clusters: event flag 0 is the first flag in 
cluster 0, event flag 32 is the first flag in cluster 1, and so on. 

The same system services manipulate flags in both local and common event flag 
clusters. Because the event flag number implies the cluster number, you need not 
specify the cluster number when you call a system service that refers to an event 
flag. 

14-15 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

When a system service requires an event flag cluster number as an argument, 
you need only specify the number of any event flag in the cluster. Thus, to read 
the event flags in cluster 1, you could specify any number in the range 32 through 
63. 

Event flags are divided into four clusters: two for local event flags and two for 
common event flags. 

• A local event flag cluster can only be used internally by a single process. 
Local clusters are automatically available to each process. Local event flags 
are process specific and are used to synchronize events within a program or 
to pass information from the current image to an image executed later by the 
same process. 

• A common event flag cluster can be shared by cooperating processes in the 
same group. Before a process can refer to a common event flag cluster, 
it must explicitly "associate" with the cluster. (Association is described 
in Section 14.6.4.1.) Common event flags are group specific. Use them to 
synchronize events among images executing in different processes (provided 
that the processes are in the same group). 

Table 14-3 summarizes the ranges of event flag numbers and the clusters to 
which they belong. 

Table 14-3 Event Flags 

Cluster Number Flag Number 

0 0 

0 1 to 23 

0 24 to 31 

1 32 to 63 

2 64 to 95 

3 96 to 127 

Type 

Local 

Local 

Local 

Local 

Common 

Common 

Usage 

Default flag used by system 
routines. 

May be used in system routines. 
When an event flag is requested, 
it is not returned unless it has 
been previously and specifically 
freed. 

Reserved for Digital use only. 

Available for general use. 

Available for general use. 

Available for general use. 

14.6.3 Using Local Event Flags 

14-16 

Local event flags are automatically available to each program. They are not 
automatically initialized. However, if an event flag is passed to a system service 
such as SYS$GETJPI, the service initializes the flag before using it. 

When using local event flags, use the event flag routines as follows: 

1. To ensure that the event flag you are using is not accessed and changed by 
other users, allocate and deallocate local event flags. The Open VMS RTL 
Library (LIB$) Manual describes routines you can use to allocate an arbitrary 
event flag (LIB$GET_EF), to allocate a particular event flag (LIB$RESERVE_ 
EF), and to deallocate an event flag (LIB$FREE_EF) from the processwide 
pool of available local event flags. Similar routines do not exist for common 
event flags. If free, these routines return an event flag number. 

2. Before using the event flag, initialize it using the SYS$CLREF system service, 
unless you pass the event flag to a routine that clears it for you. 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

3. When an event that is relevant to other program components is completed, 
set the event flag with the SYS$SETEF system service. 

4. A program component can read the event flag to determine what has 
happened and act accordingly. Use the SYS$READEF system service to 
read the event flag. 

5. The program components that evaluate event flag status can be placed in a 
wait state. Then, when the event flag is set, execution is resumed. Use the 
SYS$WAITFR, SYS$WFLOR, SYS$WFLAND, or SYS$SYNCH routine to 
accomplish this task. 

6. When the event flag is no longer required, free it by using the LIB$~REE_EF 
routine. 

The following Fortran example uses LIB$GET_EF to choose a local event flag and 
then uses SYS$CLREF to set the event flag to 0 (clear the event flag). (Note that 
run-time library routines require an event flag number to be passed by reference, 
and system services require an event flag number to be passed by value.) 

INTEGER FLAG, 
2 STATUS, 
2 LIB$GET EF, 
2 SYS$CLREF 

STATUS = LIB$GET EF (FLAG) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
STATUS= SYS$CLREF (%VAL(FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

14.6.3.1 Example of Event Flag Services 
Local event flags are used most commonly in conjunction with other system 
services. For example, you can use the Set Timer (SYS$SETIMR) system service 
to request that an event flag be set at a specific time of day or after a specific 
interval of time has passed. If you want to place a process in a wait state for 
a specified period of time, specify an event flag number for the SYS$SETIMR 
service and then use the Wait for Single Event Flag (SYS$WAITFR) system 
service, as shown in the C example that follows: 

main() 

unsigned int status, daytim[l], efn=3; 

/* Set the timer */ 
status = SYS$SETIMR( efn, 

&daytim, 
o, 
o, 
0); 

/* efn - event flag */ 
/* daytim - expiration time */ 
/* astadr - AST routine */ 
/* reqidt - timer request id */ 
/* flags */ 

if ((status & 1) != 1) 
LIB$SIGNAL( status ); 

14-17 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

/* Wait until timer expires */ 
status = SYS$WAITFR( efn ); 
if ((status & 1) != 1) 

LIB$SIGNAL( status ); 

In this example, the daytim argument refers to a 64-bit time value. For details 
about how to obtain a time value in the proper format for input to this service, 
see Chapter 5. 

14.6.4 Using Common Event Flags 
Common event flags are manipulated like local event flags. Before any processes 
can use event flags in a common event flag cluster, the cluster must be created. 
The Associate Common Event Flag Cluster (SYS$ASCEFC) system service 
creates a common event flag cluster. After a cluster is created, other processes 
in the same group can call SYS$ASCEFC to establish their association with the 
cluster so they can access flags in it. 

However, common event flag clusters are not automatically allocated to a 
program. Before referencing a common event flag, a program must identify the 
common event flag cluster by associating it with a name. Once the name is 
associated with the cluster, the program can reference any flag in the cluster. 

Common event flags act as a communication link between images executing in 
different processes in the same group. Common event flags are often used as a 
synchronization tool for other, more complicated communication techniques, such 
as logical names and global sections. For more information about using event 
flags to synchronize communication between processes, see Chapter 2. 

If every cooperating process that is going to use a common event flag cluster has 
the necessary privilege or quota to create a cluster, the first process to call the 
SYS$ASCEFC system service creates the cluster. 

14.6.4.1 Associating a Name with a Common Event Flag Cluster 

14-18 

When a common event flag cluster is created, it must be identified by a name 
string. (Section 14.6.4.2 explains the format of this string.) Each process 
that associates with the cluster must use the same name to refer to it; the 
SYS$ASCEFC system service establishes correspondence between the cluster 
name and the cluster number that a process assigns to the cluster. 

The first program to name a common event flag cluster creates it; all flags in 
a newly created cluster are clear. Other processes that have the same UIC 
group number as the creator of the cluster can reference the cluster by invoking 
SYS$ASCEFC and specifying the cluster name. 

Different processes may associate the same name with different common event 
flag numbers; as long as the name and UIC group are the same, the processes 
reference the same cluster. It is the bit offset within the cluster rather than the 
number of the bit that is used to identify the flag. 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

The following example shows how a process might create a common event flag 
cluster named COMMON_CLUSTER and assign it a cluster number of 2: 

#include <descrip.h> 

unsigned int status, efn=65; 
$DESCRIPTOR(name,"COMMON_CLUSTER"); /*Cluster name*/ 

/* Create cluster 2 */ 
status= SYS$ASCEFC( efn, &name, O, O); 

Other processes in the same group can now associate with this cluster. Those 
processes must use the same character string name to refer to the cluster; 
however, the cluster numbers they assign do not have to be the same. 

14.6.4.2 Using the name Argument with SYS$ASCEFC 
The name argument to the Associate Common Event Flag Cluster 
(SYS$ASCEFC) system service identifies the cluster that the process is creating 
or associating with. The name argument specifies a descriptor pointing to a 
character string. 

Translation of the name argument proceeds in the following manner: 

1. CEF$ is prefixed to the current name string, and the result is subjected to 
logical name translation. 

2. If the result is a logical name, step 1 is repeated until translation does not 
succeed or until the number of translations performed exceeds the number 
specified by the SYSGEN parameter LNM$C_MAXDEPTH. 

3. The CEF$ prefix is stripped from the current name string that could not be 
translated. This current string is the cluster name. 

For example, assume that you have made the following logical name assignment: 

$ DEFINE CEF$CLUS_RT CLUS_RT_001 

Assume also that your program contains the following statements: 

#include <ssdef .h> 
#include <descrip.h> 

unsigned int status; 
$DESCRIPTOR(name,"CLUS_RT"); /*Logical name of cluster*/ 

status= SYS$ASCEFC( •.• ,&name, .•• ); 

The following logical name translation takes place: 

1. CEF$ is prefixed to CLUS_RT. 

14-19 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

2. CEF$CLUS_RT is translated to CLUS_RT_OOl. (Further translation is 
unsuccessful. When logical name translation fails, the string is passed to the 
service.) 

There are two exceptions to the logical name translation method discussed in this 
section: 

• If the name string starts with an underscore ( _ ), the operating system strips 
the underscore and considers the resultant string to be the actual name (that 
is, further translation is not performed). 

• If the name string is the result of a logical name translation, the name 
string is checked to see whether it has the terminal attribute. If it does, the 
operating system considers the resultant string to be the actual name (that is, 
further translation is not performed). 

14.6.4.3 Temporary Common Event Flag Clusters 
Common event flag clusters are either temporary or permanent. The perm 
argument to the SYS$ASCEFC system service defines whether the cluster is 
temporary or permanent. 

Temporary clusters require an element of the creating process's quota for timer 
queue entries (TQELM quota). They are deleted when all processes associated 
with the cluster have disassociated. When the last image associated with a 
cluster is dissociated, the common event flag cluster is deleted. Clusters that 
are deleted after all images are dissociated are called temporary clusters. 
Dissociation can be performed explicitly with the Disassociate Common Event 
Flag Cluster (SYS$DACEFC) system service, or implicitly when the image that 
called SYS$ASCEFC exits. 

14.6.4.4 Permanent Common Event Flag Clusters 

14-20 

If you have the PRMCEB privilege, you can create a permanent common event 
flag cluster (set the perm argument to 1 when you invoke SYS$ASCEFC). A 
permanent event flag cluster continues to exist until it is marked explicitly for 
deletion with the Delete Common Event Flag Cluster (SYS$DLCEFC) system 
service (requires the PRMCEB privilege). Once a permanent cluster is marked 
for deletion, it is like a temporary cluster; when the last image associated with 
the cluster is dissociated, the cluster is deleted. 

In the following examples, the first program segment associates common event 
flag cluster 3 with the name CLUSTER and then clears the second event flag in 
the cluster. The second program segment associates common event flag cluster 2 
with the name CLUSTER then sets the second event flag in the cluster (the flag 
cleared by the first program segment). 

Example 1 
STATUS= SYS$ASCEFC (%VAL(96), 
2 'CLUSTER',,) 
STATUS= SYS$CLREF (%VAL(98)) 

Example 2 
STATUS= SYS$ASCEFC (%VAL(64), 
2 'CLUSTER',,) 
STATUS= SYS$SETEF (%VAL(66)) 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

For clearer code, rather than using a specific event flag number, use one variable 
to contain the bit offset you need and one variable to contain the number of the 
first bit in the common event flag cluster that you are using. To reference the 
common event flag, add the offset to the number of the first bit. The following 
examples accomplish the same result as the preceding two examples: 

Example 1 
INTEGER*4 BASE, 
2 OFFSET 
PARAMETER (BASE = 96) 

OFFSET=2 
STATUS = SYS$ASCEFC (%VAL(BASE), 
2 'CLUSTER',,) 
STATUS= SYS$CLREF (%VAL(BASE+OFFSET)) 

Example 2 
INTEGER*4 BASE, 
2 OFFSET 
PARAMETER (BASE = 64) 

OFFSET=2 
STATUS= SYS$ASCEFC (%VAL(BASE), 
2 'CLUSTER',,) 
STATUS= SYS$SETEF (%VAL(BASE+OFFSET)) 

Common event flags are often used for communicating between a parent process 
and a created subprocess. The following parent process associates the name 
CLUSTER with a common event flag cluster, creates a subprocess, and then waits 
for the subprocess to set event flag 64: 

INTEGER*4 BASE, 
2 OFFSET 
PARAMETER (BASE = 64, 
2 OFFSET = 0) 

Associate common event flag cluster with name 
STATUS= SYS$ASCEFC (%VAL(BASE), 
2 'CLUSTER',,) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

! Create subprocess to execute concurrently 
MASK = IBSET (MASK,O) 
STATUS= LIB$SPAWN ('RUN REPORTSUB' I ! Image 
2 'INPUT.DAT' I ! SYS$INPUT 
2 I OUTPUT. DAT I I ! SYS$0UTPUT 
2 MASK) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

! Wait for response from subprocess 
STATUS= SYS$WAITFR (%VAL(BASE+OFFSET)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

REPORTSUB, the program executing in the subprocess, associates the name 
CLUSTER with a common event flag cluster, performs some set of operations, 
sets event flag 64 (allowing the parent to continue execution), and continues 
executing: 

14-21 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

INTEGER*4 BASE, 
2 OFFSET 
PARAMETER (BASE = 64, 
2 OFFSET = 0) 

Do operations necessary for 
continuation of parent process 

Associate common event flag cluster with name 
STATUS= SYS$ASCEFC (%VAL(BASE), 
2 'CLUSTER',,) 
IF (.NOT. STATUS) 
2 CALL LIB$SIGNAL (%VAL(STATUS)) 

! Set flag for parent process to resume 
STATUS= SYS$SETEF (%VAL(BASE+OFFSET)) 

14.6.5 Event Flag Waits 

14-22 

The following three system services place the process in a wait state until an 
event flag or a group of event flags is set: 

• The Wait for Single Event Flag (SYS$WAITFR) system service places the 
process in a wait state until a single flag has been set. 

• The Wait for Logical OR of Event Flags (SYS$WFLOR) system service places 
the process in a wait state until any one of a specified group of event flags has 
been set. 

• The Wait for Logical AND of Event Flags (SYS$WFLAND) system service 
places the process in a wait state until all of a specified group of event flags 
have been set. 

Another system service that accepts an event flag number as an argument is the 
Queue I/O Request (SYS$QIO) system service. The following example shows a 
program segment that issues two SYS$QIO system service calls and uses the 
SYS$WFLAND system service to wait until both I/O operations complete before it 
continues execution: 

unsigned int status, efnl=l, efn2=2, mask; 

/* Issue first I/O request and check for error */ 
status = SYS$QIO( efnl, • . • ) 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

/* Issue second I/O request and check for error */ 
status = SYS$QIO( efn2, • • • ) 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

0 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

. /* Wait until both complete and check for error */ 
mask = efnl I I efn2; 
status= SYS$WFLAND( efnl, mask ); 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

0 The event flag argument is specified in each SYS$QIO request. Both of thest: 
event flags are in cluster 0. 

8 After both I/O requests are queued successfully, the program calls the 
SYS$WFLAND system service to wait until the I/O operations complete. 
In this service call, the efn argument can specify any event flag number in 
the cluster containing the event flags to be waited for. The mask argument 
specifies to wait for flags 1 and 2. 

8 Note that the SYS$WFLAND system service (and the other wait system 
services) waits for the event flag to be set; it does not wait for the I/O 
operation to complete. If some other event were to set the required event 
flags, the wait for event flag would complete prematurely. Use of event flags 
must be coordinated carefully. 

14.6.6 Setting and Clearing Event Flags 
System services that use event flags clear the event flag specified in the system 
service call before they queue the timer or I/O request. This ensures that the 
process knows the state of the event flag. If you are using event flags in local 
clusters for other purposes, be sure the flag's initial value is what you want before 
you use it. 

The Set Event Flag (SYS$SETEF) and Clear Event Flag (SYS$CLREF) system 
services set and clear specific event flags. For example, the following system 
service call clears event flag 32: 

$CLREF_S EFN=#32 

The SYS$SETEF and SYS$CLREF services return successful status codes that 
indicate whether the specified flag was set or cleared when the service was called. 
The caller can thus determine the previous state of the flag, if necessary. The 
codes returned are SS$_ WASSET and SS$_ WASCLR. 

All event flags in a common event flag cluster are initially clear when the cluster 
is created. Section 14.6. 7 describes the creation of common event flag clusters. 

14.6.7 Example of Using a Common Event Flag Cluster 
The following is an example of four cooperating processes that share a common 
event flag cluster. The processes named ORION, CYGNUS, LYRA, and PEGASUS 
are in the same group. 

/* **** Process ORION **** */ 

14-23 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

14-24 

unsigned int status, efn=64; 
$DESCRIPTOR(name,"TITUS"); 

/* Create a common cluster */ 

status = SYS$ASCEFC(efn, &name, • • • ) ; 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

mask = efnl I I efn2 I I efn3; 

/* Wait for flags 1, 2, and 3 */ 

status = SYS$WFLAND(efn, mask); 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

/* Dissociated cluster */ 

status= SYS$DACEFC(efn); 

/* **** Process CYGNUS **** */ 

unsigned int status, efn1=64,efn2=64; 
$DESCRIPTOR(name, 11 TITUS 11

); 

status = SYS$ASCEFC ( efnl, &name, • • . ) ; 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

/* Set event flag 1 and check for error */ 
status = SYS$SETEF(efn2); 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

status= SYS$DACEFC(efnl); 

/* **** Process LYRA **** */ 
$DESCRIPTOR(name, 11 TITUS 11

); 

/* Associate with cluster 3 */ 
status = SYS$ASCEFC(efn, &name); 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

0 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with. Event Flags 

/* Set event flag 3 and check for error */ 
status= SYS$SETEF(efn2); 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

status = SYS$DACEFC(efhl); 

/* **** Process PEGASUS **** */ 

/* Associate with cluster */ 
status= SYS$ASCEFC(efn, &name); 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

/* Wait for flag 1 and check for error */ 
status= SYS$WAITFR(efn2); 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

/* Set event flag 2 and check for error */ 
status= SYS$SETEF(efn2); 
if ((status & 1) != 1) 

LIB$SIGNAL(status); 

status= SYS$DACEFC(efnl); 

0 Assume that ORION is the first process to issue the SYS$ASCEFC system 
service and, therefore, is the creator of the cluster. Because this is a newly 
created cluster, all event flags in it are clear. 

f} The argument name in the SYS$ASCEFC system service call is a pointer 
to the descriptor CNAME for the name to be assigned to the cluster; in this 
example, the cluster is named TITUS. This service call associates this name 
with cluster 2 of process ORION and contains event flags 64 through 95. 
Cooperating processes CYGNUS, LYRA, and PEGASUS must use the same 
character string name to refer to this cluster. 

0 The continuation of process ORION depends on work done by processes 
CYGNUS, LYRA, and PEGASUS. The SYS$WFLAND system service call 
specifies a mask indicating the event flags that must be set before process 
ORION can continue. The mask in this example ("BlllO) indicates that the 
second, third, and fourth flags in the cluster must be set. 

8 When all three event flags are set, process ORION continues execution and 
calls the SYS$DACEFC system service. Because ORION did not specify the 
perm argument when it created the cluster, TITUS is deleted. 

0 Process CYGNUS executes, associates with the cluster, sets event flag 65 (flag 
1 in the cluster), and dissociates. 

0 Process LYRA associates with the cluster, but instead of referring to it as 
cluster 2, it refers to it as cluster 3 (with event flags in the range 96 through 
127). Thus, when process LYRA sets flag 99, it sets flag 3 in TITUS. 

t) Process PEGASUS associates with the cluster, waits for an event flag set by 
process CYGNUS, and sets an event flag itself. 

14-25 



Synchronizing Data Access and Program Operations 
14.6 Synchronizing Operations with Event Flags 

14.6.8 Example of Using Event Flag Routines and Services 

14-26 

This section contains an example of how to use event flag services. 

Common' event flags are often used for communicating between a parent process 
and a created subprocess. In. the following example, REPORT.FOR creates a 
subprocess to execute REPORTSUB.FOR, which performs a number of operations. 

After REPORTSUB.FOR performs its first operation, the two processes can 
perform in parallel. REPORT.FOR and REPORTSUB.FOR use the common event 
flag cluster named JESSIER to communicate. 

REPORT.FOR associates the cluster name with a common event flag cluster, 
creates a subprocess to execute REPORTSUB.FOR and then waits for 
REPORTSUB.FOR to set the first event flag in the cluster. REPORTSUB.FOR 
performs its first operation, associates the cluster name JESSIER with a common 
event flag cluster, and sets the first flag. From then on, the processes execute 
concurrently. 

REPORT.FOR 

Associate common event flag cluster 
STATUS= SYS$ASCEFC (%VAL(64), 
2 'JESSIER' ,,) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

! Create subprocess to execute concurrently 
MASK = IBSET (MASK,O) 
STATUS= LIB$SPAWN ('RUN REPORTSUB', ! Image 
2 'INPUT.DAT', ! SYS$INPUT 
2 'OUTPUT.DAT' I ! SYS$0UTPUT 
2 MASK 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

! Wait for response from subprocess. 
STATUS= SYS$WAITFR (%VAL(64)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

REPORTSUB.FOR 

Do operations necessary for 
continuation of parent process. 

Associate common event flag cluster 
STATUS= SYS$ASCEFC (%VAL(64), 
2 'JESSIER' ,,) 
IF (.NOT. STATUS) 
2 CALL LIB$SIGNAL (%VAL(STATUS)) 

! Set flag for parent process to resume 
STATUS= SYS$SETEF (%VAL(64)) 



Synchronizing Data Access and Program Operations 
14.7 Synchronizing Operations with Parallel Processing Run-Time Routines 

14.7 Synchronizing Operations with Parallel Processing Run-Time 
Routines 

The Parallel Processing facility (PPL$) consists of routines for synchronizing 
program processing in a synchronous multiprocessing configuration. The routines 
provide for the following capabilities: 

• Creating subprocesses 

• Synchronizing program execution using spin locks 

• Synchronizing program execution using semaphores 

• Synchronizing program execution using barriers 

• Setting up global sections of memory for shared use 

To use the PPL$ routines, you must call the PPL$ initialization routine 
(PPL$INITIALIZE) that sets up data structures and memory areas required 
for parallel processing run-time routines. Then, when use of the PPL$ routines is 
no longer required, you must free those data structures and memory areas with 
PPL$TERMINATE before exiting from the program. 

Refer to the Open VMS RTL Parallel Processing (PPL$) Manual for more 
information. 

14.7.1 Using Subprocesses 
·Once you have initialized the parallel processing environment, you can create one 
or more subprocesses to execute images. You may execute the same or different 
images within each subprocess. Even though you can create a subprocess with 
PPL$SPAWN that will run outside of a parallel processing environment, you 
should limit its use to subprocesses within a parallel processing environment. 

To delete one or more subprocesses created with PPL$SPAWN, use PPL$STOP. 

14. 7 .2 Using Spin Locks 
To ensure that only one process at a time can access a critical region or physical 
resource of a parallel task, you can use spin locks. A spin lock is a lock on a 
critical region where the lock constantly tests to determine whether access to 
that region is available. Because of the constant testing, this technique is CPU 
intensive. An alternative technique to ensure single access is to use semaphores. 
Refer to Section 14. 7 .3 for more information on using semaphores. 

The three spinlock routines are as follows: 

• PPL$CREATE_SPIN_LOCK-Creates and initializes a simple lock. An 
identifier is returned for subsequent reference to this spin lock. 

• PPL$SEIZE_SPIN_LOCK-Acquires a spin lock that has been created with 
PPL$CREATE_SPIN_LOCK. Use the identifier returned by PPL$CREATE_ 
SPIN_LOCK to refer to the lock you want to acquire. 

• PPL$RELEASE_SPIN_LOCK-Releases a spin lock. Use the identifier 
returned by PPL$CREATE_SPIN_LOCK to refer to the lock you want to 
release. Once this routine has freed the lock, another process can acquire the 
lock. 

14-27 



Synchronizing Data Access and Program Operations 
14.7 Synchronizing Operations with Parallel Processing Run-Time Routines 

14.7.3 Using Semaphores 
Semaphores also synchronize access to a critical region or physical device by 
controlling the number of processes that have access. Unlike spin locks, using 
semaphores is not CPU intensive: 

There are two type of semaphores: binary and counting. A binary semaphore 
has a value of 0 or 1 and allows only one process to access a resource. A process 
can access the resource when the semaphore value is 1. A process waits for the 
resource when the semaphore value is 0. A counting semaphore can have any 
positive value, thereby allowing you to control access to multiple resources. 

The semaphore routines are as follows: 

• PPL$CREATE_SEMAPHORE-Creates and initializes a semaphore and 
creates a waiting queue that keeps track of processes waiting for the 
semaphore. 

• PPL$DECREMENT_SEMAPHORE-Decrements the value of a semaphore. 
If the value of the semaphore is 0, the process requesting the semaphore can 
be placed in a wait state until the semaphore value increases. 

• PPL$INCREMENT_SEMAPHORE-Increments the value of a semaphore 
to indicate that the resource can be accessed. If a process is waiting for the 
semaphore, PPL$INCREMENT_SEMAPHORE wakes up the process and 
removes it from the wait queue. 

• PPL$READ_SEMAPHORE-Returns the value of the requested semaphore. 

14.7.4 Using Barrier Synchronization 
Barrier synchronization specifies a point in a program that all parallel paths 
must reach before any are allowed to continue. Only one barrier can be set up 
within a program. 

The barrier routines are as follows: 

• PPL$CREATE_BARRIER-Specifies the point that all paths must reach 
before continuation. 

• PPL$WAIT_AT_BARRIER-Suspends execution of the program path until all 
program paths have reached the specified barrier. 

Once you specify a barrier point, all program paths must call PPL$WAIT_AT_ 
BARRIER in order to be included in the barrier synchronization. 

14.8 Synchronizing Operations with Synchronous and 
Asynchronous System Services 

14-28 

A number of system services can be executed either synchronously or 
asynchronously (for example, SYS$GETJPI and SYS$GETJPIW). The Wat 
the end of the system service name indicates the synchronous version of the 
service. 

The asynchronous version of a system service queues a request and returns 
control to your program. You can perform operations while the system service 
executes; however, do not attempt to access information returned by the service 
until the system service has completed. 



Synchronizing Data Access and Program Operations 
14.8 Synchronizing Operations with Synchronous and Asynchronous System Services 

Typically, you pass an event flag and an I/O status block to an asynchronous 
system service. When the system service completes, it sets the event flag 
and places the final status of the request in the I/O status block. Use the 
SYS$SYNCH system service to ensure that the system service has completed. 
You pass to SYS$SYNCH the event flag and I/O status block that you passed to 
the asynchronous system service; SYS$SYNCH waits for the event flag to be set 
and then examines the I/O status block to be sure that the system service rather 
than some other program set the event flag. If the I/O status block is still 0, 
SYS$SYNCH waits until the I/O status block is filled. 

The following example show the use of the SYS$GETJPI system service: 

Data structure for SYS$GETJPI 

INTEGER*4 STATUS, 
2 FLAG, 
2 PID VALUE 
! I/O status block 
STRUCTURE /STATUS BLOCK/ 

INTEGER*2 JPISTATUS, 
2, LEN 

INTEGER*4 ZERO /0/ 
END STRUCTURE 
RECORD /STATUS BLOCK/ IOSTATUS 

Call SYS$GETJPI and wait for information 
STATUS = LIB$GET EF (FLAG) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
STATUS= SYS$GETJPI (%VAL(FLAG), 
2 PID VALUE, 
2 , -
2 NAME BUF LEN, 
2 IOSTATus-; 
2 , ) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

STATUS= SYS$SYNCH (%VAL(FLAG), 
2 IOSTATUS) 
IF (.NOT. IOSTATUS.JPISTATUS) THEN 

CALL LIB$SIGNAL (%VAL(IOSTATUS.JPISTATUS)) 
END IF 

END 

The synchronous version of a system service acts as if you had used the 
asynchronous version followed immediately by a call to SYS$SYNCH; however, 
it behaves this way only if you specify a status block. If you omit the I/O status 
block, the result is as though you called the asynchronous version followed 
by a call to SYS$WAITFR. Regardless of whether you use the synchronous or 
asynchronous version of a system service, if you omit the efn argument, the 
service uses event flag 0. 

14-29 





15 
Synchronizing Access to Resources 

This chapter describes the use of the lock manager to synchronize access to 
shared resources. It contains the following sections: 

Section 15.1 describes how the lock manager synchronizes processes to a specified 
resource. 

Section 15.2 describes the concepts of resources and locks. 

Section 15.3 describes how to use the SYS$ENQ and SYS$ENQW system services 
to queue lock requests. 

Section 15.4 describes specialized features of locking techniques. 

Section 15.5 describes how to use the SYS$DEQ system service to dequeue the 
lock. 

Section 15.6 describes how applications can perform local buffer caching. 

Section 15. 7 presents a code example of how to use lock management services. 

15.1 Synchronizing Operations with the Lock Manager 
Cooperating processes can use the lock manager to synchronize access to a 
shared resource (for example, a file, program, or device). This synchronization 
is accomplished by allowing processes to establish locks on named resources. 
All processes that access the shared resources must use the lock management 
services; otherwise, the resources are not effective. 

Note ~~~~~~~~~~~~ 

The use of the term resource throughout this chapter means shared 
resource. 

To synchronize access to resources, the lock management services provide a 
mechanism that allows processes to wait in a queue until a particular resource is 
available. 

The lock manager does not ensure proper access to the resource; rather, the 
programs must respect the rules for using the lock manager. The rules required 
for proper synchronization to the resource are as follows: 

• The resource must always be referred to by an agreed-upon name. 

• Access to the resource is always accomplished by queuing a lock request with 
the SYS$ENQ or SYS$ENQW system service. 

• All lock requests that are placed in a wait queue must wait for access to the 
resource. 

15-1 



Synchronizing Access to Resources 
15.1 Synchronizing Operations with the Lock Manager 

A process can choose to lock a resource and then create a subprocess to operate on 
this resource. In this case, the program that created the subprocess (the parent 
program) should not exit until the subprocess has exited. To ensure that the 
parent program does not exit before the subprocess, specify an event flag to be set 
when the subprocess exits (use the completion-efn argument of LIB$SPAWN). 
Before exiting from the parent program, use SYS$WAITFR to ensure that the 
event flag is set. (You can suppress the logout message from the subprocess 
by using the SYS$DELPRC system service to delete the subprocess instead of 
allowing the subprocess to exit.) 

Table 15-1 summarizes the lock manager services. 

Table 15-1 Lock Manager Services 

Routine Description 

SYS$ENQ(W) Queues a new lock or lock conversion on a resource 

SYS$DEQ Releases locks and cancel lock requests 

SYS$GETLKI(W) Gets information about the lock database 

15.2 Concepts of Resources and Locks 

15-2 

A resource can be any entity on the operating system (for example, files, data 
structures, databases, executable routines). When two or more processes access 
the same resource, you often need to control their access to the resource. You 
do not want to have one process reading the resource while another process 
writes new data, because a writer can quickly invalidate anything being read by 
a reader. The lock management system services allow processes to associate a 
name with a resource and request access to that resource. Lock modes enable 
processes to indicate how they want to share access with other processes. 

To use the lock management system services, a process must request access to 
a resource (request a lock) using the Enqueue Lock Request (SYS$ENQ) system 
service. Three arguments are required to the SYS$ENQ system service for new 
locks: 

• Resource name-The lock management services use the resource name to 
look for other lock requests that use the same name. 

• Lock mode to be associated with the requested lock-The lock mode indicates 
how the process wants to share the resource with other processes. 

• Address of a lock status block-The lock status block receives the completion 
status for a lock request and the lock identification. The lock identification is 
used to refer to a lock request after it has been queued. 

The lock management services compare the lock mode of the newly requested lock 
to the mode of other locks with the same resource name. New locks are granted 
in the following instances: 

• If no other process has a lock on the resource. 

• If another process has a lock on the resource and the mode of the new request 
is compatible with the existing lock. 



Synchronizing Access to Resources 
15.2 Concepts of Resources and Locks 

• If another process already has a lock on the resource and the mode of the 
new request is not compatible with the lock mode of the existing lock, the 
new request is placed in a queue, where it waits until the resource becomes 
available. When the resource becomes available, the process is notified that 
the lock has been granted. 

Processes can also use the SYS$ENQ system service to change the lock mode of a 
lock. This is called a lock conversion. 

15.2.1 Resource Granularity 
Many resources can be divided into smaller parts. As long as a part of a resource 
can be identified by a resource name, the part can be locked. The term resource 
granularity describes the part of the resource being locked. 

Figure 15-1 depicts a model of a database. The database is divided into areas, 
such as a file, which in turn are subdivided into records. The records are further 
divided into items. 

Figure 15-1 Model Database 

-----Vdu~-------

/FE~ /T~ 
Record Record Record Record Record 

/\\ /\ /\ /\ /\\ 
Item Item Item Item Item Item Item Item Item Item Item Item 

ZK-0373-GE 

The processes that request locks on the database shown in Figure 15-1 may lock 
the whole database, an area in the database, a record, or a single item. Locking 
the entire database is considered locking at a coarse granularity; locking a 
single item is considered locking at a fine granularity. 

In this example, overall access to the database can be represented by a root 
resource name. Access to areas in the database or records within areas can be 
represented by sublocks. 

Root resources consist of the following: 

• Resource domain 

• Resource name 

• Access mode 

Subresources consist of the following: 

• Parent resource 

• Resource name 

• Access mode 

15-3 



Synchronizing Access to Resources 
15.2 Concepts of Resources and Locks 

15.2.2 Resource Domains 
Because resource names are arbitrary names chosen by applications, one 
application may interfere (either intentionally or unintentionally) with another 
application. Unintentional interference can be easily avoided by careful design, 
such as using a registered facility name as a prefix for all root resource names 
used by an application. 

Intentional interference can be prevented by using resource domains. A 
resource domain is a namespace for root resource names and is identified by 
a number. Resource domain 0 is used as a system resource domain. Usually, 
other resource domains are used by the UIC group corresponding to the domain 
number. 

By using the SYS$SET_RESOURCE_DOMAIN system service, a process can gain 
access to any resource domain subject to normal operating system access control. 
By default, each resource domain allows read, write, and lock access by members 
of the corresponding UIC group. See the Open VMS Guide to System Security for 
more information about access control. 

15.2.3 Resource Names 

15-4 

The lock management system services refer to each resource by a name composed 
of the following four parts: 

• A name specified by the caller 

• The caller's access mode 

• The caller's UIC group number (unless the resource is systemwide) 

• The identification of the lock's parent (optional) 

For two resources to be considered the same, these four parts must be identical 
for each resource. 

The name specified by the process represents the resource being locked. Other 
processes that need to access the resource must refer to it using the same name. 
The correlation between the name and the resource is a convention agreed upon 
by the cooperating processes. 

The access mode is determined by the caller's access mode unless a less privileged 
mode is specified in the call to the SYS$ENQ system service. Access modes, their 
numeric values, and their symbolic names are discussed in the Open VMS Calling 
Standard. 

The default resource domain is selected by the UIC group number for the process. 
The system domain can be accessed by setting the LCK$M_SYSTEM when you 
request a new root lock. Other domains can be accessed using the optional 
RSDM_ID parameter to SYS$ENQ. You need the SYSLCK user privilege to 
request systemwide locks from user or supervisor mode. No additional privilege 
is required to request systemwide locks from executive or kernel mode. 

When a lock request is queued, it can specify the identification of a parent lock, 
at which point it becomes a sublock (see Section 15.4.8). However, the parent lock 
must be granted, or the lock request is not accepted. This enables a process to 
lock a resource at different degrees of granularity. 



15.2.4 Choosing a Lock Mode 

Synchronizing Access to Resources 
15.2 Concepts of Resources and Locks 

The mode of a lock determines whether the resource can be shared with other 
lock requests. Table 15-2 describes the six lock modes. 

Table 15-2 Lock Modes 

Mode Name 

LCK$K_NLMODE 

LCK$K_CRMODE 

LCK$K_CWMODE 

LCK$K_PRMODE 

LCK$K_PWMODE 

LCK$K_EXMODE 

Meaning 

Null mode. This mode grants no access to the resource. The null 
mode is typically used as an indicator of interest in the resource 
or as a placeholder for future lock conversions. 

Concurrent read. This mode grants read access to the resource 
and allows sharing of the resource with other readers. The 
concurrent read mode is generally used when additional locking 
is being performed at a finer granularity with sublocks or to 
read data from a resource in an "unprotected" fashion (allowing 
simultaneous writes to the resource). 

Concurrent write. This mode grants write access to the resource 
and allows sharing of the resource with other writers. The 
concurrent write mode is typically used to perform additional 
locking at a finer granularity, or to write in an "unprotected" 
fashion. 

Protected read. This mode grants read access to the resource 
and allows sharing of the resource with other readers. No 
writers are allowed access to the resource. This is the traditional 
"share lock." 

Protected write. This mode grants write access to the resource 
and allows sharing of the resource with users at concurrent read 
mode. No other writers are allowed access to the resource. This 
is the traditional "update lock." 

Exclusive. The exclusive mode grants write access to the 
resource and prevents the sharing of the resource with any 
other readers or writers. This is the traditional "exclusive lock." 

15.2.5 Levels of Locking and Compatibility 
Locks that allow the process to share a resource are called low-level locks; 
locks that allow the process almost exclusive access to a resource are called 
high-level locks. Null and concurrent read mode locks are considered low-level 
locks; protected write and exclusive mode locks are considered high-level. The 
lock modes, from lowest- to highest-level access, are: 

• Null 

• Concurrent read 

• Concurrent write 

Protected read 

• Protected write 

• Exclusive 

Note that the concurrent write and protected read modes are considered to be of 
equal level. 

15-5 



Synchronizing Access to Resources 
15.2 Concepts of Resources and Locks 

Locks that can be shared with other locks are said to have compatible lock 
modes. High-level lock modes are less compatible with other lock modes than are 
low-level lock modes. Table 15-3 shows the compatibility of the lock modes. 

Table 15-3 Compatibility of Lock Modes 

Mode of 

Requested 
Lock NL 

NL Yes 

CR Yes 

cw Yes 

PR Yes 

PW Yes 

EX Yes 

Key to Lock Modes: 

NL-Null 
CR-Concurrent read 
CW-Concurrent write 
PR-Protected read 
PW-Protected write 
EX-Exclusive 

CR 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Mode of Currently Granted Locks 

cw PR PW 

Yes Yes Yes 

Yes Yes Yes 

Yes No No 
No Yes No 
No No No 
No No No 

EX 

Yes 

No 
No 
No 
No 
No 

15.2.6 Lock Management Queues 

15-6 

A lock on a resource can be in one of the following three states: 

• Granted-The lock request has been granted. 

• Waiting-The lock request is waiting to be granted. 

• Conversion-The lock request has been granted at one mode and is waiting to 
be granted a high-level lock mode. 

A queue is associated with each of the three states (see Figure 15-2). 

When you request a new lock, the lock management services first determine 
whether the resource is currently known (that is, if any other processes have 
locks on that resource). If the resource is new (that is, if no other locks exist on 
the resource), the lock management services create an entry for the new resource 
and the requested lock. If the resource is already known, the lock management 
services determine whether any other locks are waiting in either the conversion 
or the waiting queue. If other locks are waiting in either queue, the new lock 
request is queued at the end of the waiting queue. If both the conversion and 
waiting queues are empty, the lock management services determine whether 
the new lock is compatible with the other granted locks. If the lock request is 
compatible, the lock is granted; if it is not compatible, it is placed in the waiting 
queue. You can use a flag bit to direct the lock management services not to queue 
a lock request if one cannot be granted immediately. 



Figure 15-2 Three Lock Queues 

New 
Lock 
Granted 

Conversions 
Granted 

Waiting Locks 
Granted 

New Lock Queued 

15.2. 7 Concepts of Lock Conversion 

Synchronizing Access to Resources 
1 s~2 Concepts of Resources and Locks 

GRANTED 

CONVERSION 

WAITING 

Compatible 
Conversions 

Incompatible 
Conversions 

ZK-0374-GE 

Lock conversions allow processes to change the level of locks. For example, a 
process can maintain a low-level lock on a resource until it limits access to the 
resource. The process can then request a lock conversion. 

You specify lock conversions by using a flag bit (see Section 15.4.6) and a lock 
status block. The lock status block must contain the lock identification of the lock 
to be converted. If the new lock mode is compatible with the currently granted 
locks, the conversion request is granted immediately. If the new lock mode is 
incompatible with the existing locks in the granted queue, the request is placed 
in the conversion queue. The lock retains its old lock mode and does not receive 
its new lock mode until the request is granted. 

When a lock is dequeued or is converted to a lower-level lock mode, the lock 
management services inspect the first conversion request on the conversion 
queue. The conversion request is granted if it is compatible with the locks 
currently granted. Any compatible conversion requests immediately following are 
also granted. If the conversion queue is empty, the waiting queue is checked. The 
first lock request on the waiting queue is granted if it is compatible with the locks 
currently granted. Any compatible lock requests immediately following are also 
granted. 

15-7 



Synchronizing Access to Resources 
15.2 Concepts of Resources and Locks 

15.2.8 Deadlock Detection 
A deadlock occurs when any group of locks are waiting for each other in a circular 
fashion. 

In Figure 15-3, three processes have queued requests for resources that cannot 
be accessed until the current locks held are dequeued (or converted to a lower 
lock mode). 

Figure 15-3 Deadlock 

A B 

Waiting for Waiting for 
the Resource ...... the Resource --That B Has That C Has 

4~ 

c 

Waiting for 
the Resource i.... 

1......-

That A Has 

ZK-0375-GE 

If the lock management services determine that a deadlock exists, the services 
choose a process to break the deadlock. The chosen process is termed the. victim. 
If the victim has requested a new lock, the lock is not granted; if the victim has 
requested a lock conversion, the lock is returned to its old lock mode. In either 
case, the status code SS$_DEADLOCK is placed in the lock status block. Note 
that granted locks are never revoked; only waiting lock requests can receive the 
status code SS$_DEADLOCK. 

Note ~~~~~~~~~~~~~ 

Programmers must not make assumptions regarding which process is to 
be chosen to break a deadlock. 

15.3 Queuing Lock Requests 

15-8 

You use the SYS$ENQ or SYS$ENQW system service to queue lock requests. 
SYS$ENQ queues a lock request and returns; SYS$ENQW queues a lock request, 
waits until the lock is granted, and then returns. When you request new locks, 
the system service call must specify the lock mode, address of the lock status 
block, and resource name. 



Synchronizing Access to Resources 
15.3 Queuing Lock Requests 

The format for SYS$ENQ is as follows: 

SYS$ENQ ([efn], lkmode, lksb, [flags], [resnam], [parid], [astadr] 
,[astprm], [blkast], [acmode], nullarg) 

The following example illustrates a call to SYS$ENQW: 

#include <stdio.h> 
#include <descrip.h> 
#include <lckdef .h> 

/* Declare a lock status block */ 

struct lock blk 

}lksb; 

unsigned short condition,reserved; 
unsigned int lock_id; 

unsigned int status, lkmode=LCK$K PRMODE; 
$DESCRIPTOR(resource,"STRUCTURE_l~); 

/* Queue a request for protected read mode lock */ 
status = SYS$ENQW(O, /* efn - event flag */ 

lkmode, /* lkmode - lock mode requested */ 
&lksb, /* lksb - lock status block */ 
O, /* flags */ 
&resource, /* resnam - name of resource */ 
O, /* parid - parent lock id */ 
O, /* astadr - AST routine */ 
O, /* astprm - AST parameter */ 
O, /* blkast - blocking AST */ 
O, /* acmode - access mode */ 
O); /* rsdm_id - resource domain id*/ 

In this example, a number of processes access the STRUCTURE_l data structure. 
Some processes read the data structure; others write to the structure. Readers 
must be protected from reading the structure while it is being updated by 
writers. The reader in the example queues a request for a protected read mode 
lock. Protected read mode is compatible with itself, so all readers can read the 
structure at the same time. A writer to the structure uses protected write or 
exclusive mode l9cks. Because protected write mode and exclusive mode are not 
compatible with protected read mode, no writers can write the data structure 
until the readers have released their locks, and no readers can read the data 
structure until the writers have released their locks. 

Table 15-3 shows the compatibility of lock modes. 

15.3.1 Example of Requesting a Null Lock 
The program segment in Example 15-1 requests a null lock for the resource 
named TERMINAL. After the lock is granted, the program requests that the 
lock be converted to an exclusive lock. Note that, after SYS$ENQW returns, the 
program checks the status of the system service and the status returned in the 
lock status block to ensure that the request completed successfully. (The lock 
mode symbols are defined in the $LCKDEF module of the system macro library.) 

15-9 



Synchronizing Access to Resources 
15.3 Queuing Lock Requests 

Example 15-1 Requesting a Null Lock 

! Define lock modes 
INCLUDE '($LCKDEF)' 
! Define lock status block 
STRUCTURE /STATUS BLOCK/ 

INTEGER*2 LOCK STATUS, 
2 NULL-

INTEGER*4 LOCK ID 
END STRUCTURE -
RECORD /STATUS BLOCK/ IOSTATUS 

Request a null lock 
STATUS= SYS$ENQW (, 
2 %VAL(LCK$K NLMODE), 
2 IOSTATUS, -

2 ' 
2 'TERMINAL' , 
2 ,,,,,) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
IF (.NOT. IOSTATUS.LOCK STATUS) 
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.LOCK_STATUS)) 
! Convert the lock to an exclusive lock 
STATUS= SYS$ENQW (, 
2 %VAL(LCK$K EXMODE), 
2 IOSTATUS, -
2 %VAL(LCK$M CONVERT), 
2 'TERMINAL'-; 
2 ,,,,,) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
IF (.NOT. IOSTATUS.LOCK STATUS) 
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.LOCK_STATUS)) 

For more complete information on the use of SYS$ENQ, refer to the Open VMS 
System Services Reference Manual. 

15.4 Advanced Locking Techniques 
The previous sections discuss locking techniques and concepts that are useful to 
all applications. The following sections discuss specialized features of the lock 
manager. 

15.4.1 Synchronizing Locks 

15-10 

The SYS$ENQ system service returns control to the calling program when the 
lock request is queued. The status code in RO indicates whether the request was 
queued successfully. After the request is queued, the procedure cannot access 
the resource until the request is granted. A procedure can use three methods to 
check that a request has been granted: 

• Specify the number of an event flag to be set when the request is granted, 
and wait for the event flag. 

• Specify the address of an AST routine to be executed when the request is 
granted. 

• Poll the lock status block for a return status code that indicates that the 
request has been granted. 

These methods of synchronization are identical to the synchronization techniques 
used with the SYS$QIO system services (described in Chapter 9). 



Synchronizing Access to Resources 
15.4 Advanced Locking Techniques 

The $ENQW macro performs synchronization by combining the functions of the 
SYS$ENQ system service and the Synchronize (SYS$SYNCH) system service. 
The $ENQW macro has the same argu

1

ments as the $ENQ macro. It queues the 
lock request and then places the program in an event flag wait state CLEF) until 
the lock request is granted. 

15.4.2 Notification of Synchronous Completion 
The lock management services provide a mechanism that allows processes to 
determine whether a lock request is granted synchronously, that is, if the lock 
is not placed on the conversion or waiting queue. This feature can be used to 
improve performance in applications where most locks are granted synchronously 
(as is normally the case). 

If the flag bit LCK$M_SYNCSTS is set and a lock is granted synchronously, the 
status code SS$_SYNCH is returned in RO; no event flag is set, and no AST is 
delivered. 

If the request is not completed synchronously, the success code SS$_NORMAL is 
returned; event flags or AST routines are handled normally (that is, the event 
flag is set, and the AST is delivered when the lock is granted). 

15.4.3 Expediting Lock Requests 
A request can be expedited (granted immediately) if its requested mode, when 
granted, does not block any currently queued requests from being granted. The 
LCK$M_EXPEDITE flag is specified in the SYS$ENQ operation to expedite 
a request. Currently, only NLMODE requests can be expedited. A request to 
expedite any other lock mode fails with SS$_UNSUPPORTED status. 

15.4.4 Lock Status Block 
The lock status block receives the final completion status and the lock 
identification, and optionally contains a lock value block (see Figure 15-4). 
When a request is queued, the lock identification is stored in the lock status 
block even if the lock has not been granted. This allows a procedure to dequeue 
locks that have not been granted. For more information about the Dequeue Lock 
Request (SYS$DEQ) system service, see Section 15.5. 

Figure 15-4 Lock Status Block 

31 15 0 

Reserved l Condition value 

Lock identification 

16-byte lock value block 

(Used only when the LCK$M_ VALBLK flag is set) 

ZK-1708-GE 

The status code is placed in the lock status block only when the lock is granted or 
when errors occur in granting the lock. 

The uses of the lock value block are described in Section 15.6.1. 

15-11 



Synchronizing Access to Resources 
15.4 Advanced Locking Techniques 

15.4.5 Blocking ASTs 
In some applications that use the lock management services, a process must 
know whether it is preventing another process from locking a resource. The lock 
management services inform processes of this through the use of blocking ASTs. 
When the lock prevents another lock from being granted, the blocking routine is 
delivered as an AST to the process. Blocking ASTs are not delivered when the 
state of the lock is either Conversion or Waiting. 

To enable blocking ASTs, the blkast argument of the SYS$ENQ system service 
must contain the address of a blocking AST service routine. The astprm 
argument is used to pass a parameter to the blocking AST. For more information 
about ASTs and AST service routines, see Chapter 4. Some uses of blocking ASTs 
are also described in that chapter. 

15.4.6 Lock Conversions 

15-12 

Lock conversions perform three main functions: 

• Maintaining a low-level lock and converting it to a higher lock mode when 
necessary 

• Maintaining values stored in a resource lock value block (described in the 
following paragraphs) 

• Improving performance in some applications 

A procedure normally needs an exclusive (or protected write) mode lock while 
writing data. The procedure should not keep the resource exclusively locked all 
the time, however, because writing might not always be necessary. Maintaining 
an exclusive or protected write mode lock prevents other processes from accessing 
the resource. Lock conversions allow a process to request a low-level lock at first 
and convert the lock to a high-level lock mode (protected write mode, for example) 
only when it needs to write data. 

Some applications of locks require the use of the lock value block. If a version 
number or other data is maintained in the lock value block, you need to maintain 
at least one lock on the resource so that the value block is not lost. In this case, 
processes convert their locks to null locks, rather than dequeuing them when they 
have finished accessing the resource. 

In order to improve performance in some applications, all resources that might be 
locked are locked with null locks during initialization. You can convert the null 
locks to higher-level locks as needed. Usually a conversion request is faster than 
a new lock request because the necessary data structures have already been built. 
However, maintaining any lock for the life of a procedure uses system dynamic 
memory. Therefore, the approach of creating all necessary locks as null locks and 
converting them as needed improves performance at the expense of increased 
storage requirements. 

Note ___________ _ 

If you specify the flag bit LCK$M_NOQUEUE on a lock conversion 
and the conversion fails, the new blocking AST address and parameter 
specified in the conversion request replace the blocking AST address and 
parameter specified in the previous SYS$ENQ request. 



Synchronizing Access to Resources 
15.4 Advanced Locking Techniques 

Queuing Lock Conversions 
To perform a lock conversion, a procedure calls the SYS$ENQ system service with 
the flag bit LCK$M_CONVERT. Lock conversions do not use the resnam, parid, 
acmode, or prot argument. The lock being converted.is identified by the lock 
identification contained in the lock status block. The following program shows 
a simple lock conversion. Note that the lock must be granted before it can be 
converted. 

#include <stdio.h> 
#include <descrip.h> 
#include <lckdef .h> 

/* Declare a lock status block */ 

struct lock blk { 

}lksb; 

- unsigned short lkstat, reserved; 
unsigned int lock_id; 

unsigned int status, lkmode, flags; 
$DESCRIPTOR(resource,"STRUCTURE_l"); 

lkmode = LCK$K_NLMODE; 

/* Queue a request for protected read mode lock */ 
status = SYS$ENQW(O, /* efn - event flag */ 

lkmode, /* lkmode - lock mode */ 
&lksb, /* lksb - lock status block */ 
O, /* flags */ 
&resource, /* resnam - name of resource */ 

O, O, O, O, O, O); 

lkmode = LCK$K PWMODE; 
flags = LCK$M_CONVERT; 

/* Queue a request for protected write mode lock */ 
status = SYS$ENQW(O, /* efn - event flag */ 

lkmode, /* lkmode - lock mode */ 
&lksb, /* lksb - lock status block */ 
flags, /* flags */ 
O, O, O, O, O, O, O); 

15.4. 7 Forced Queuing of Conversions 
It is possible to force certain conversions to be queued that would otherwise be 
granted. A conversion request with the LCK$M_QUECVT flag set is forced to 
wait behind any already queued conversions. 

The conversion request is granted immediately if no conversions are already 
queued. 

15-13 



Synchronizing Access to Resources 
15.4 Advanced Locking Techniques 

15.4.8 

15-14 

The QUECVT behavior is valid only for a subset of all possible conversions. 
Table 15-4 defines the legal set of conversion requests for LCK$M_ QUECVT. 
Illegal conversion requests fail with SS$_BADPARAM returned. 

Table 15-4 Legal QUECVT Conversions 

Lock Mode to Which Lock Is Converted 

Lock Mode 
at Which 
Lock Is Held NL CR cw PR PW EX 

NL No Yes Yes Yes Yes Yes 

CR No No Yes Yes Yes Yes 

cw No No No Yes Yes Yes 

PR No No Yes No Yes Yes 

PW No No No No No Yes 

EX No No No No No No 

Key to Lock Modes: 

NL-Null 
CR-Concurrent read 
CW-Concurrent write 
PR-Protected read 
PW-Protected write 
EX-Exclusive 

Parent Locks 
When a lock request is queued, you can declare a parent lock for the new lock. 
A lock that has a parent is called a sublock. To specify a parent lock, the lock 
identification of the parent lock is passed in the parid argument to the SYS$ENQ 
system service. A parent lock must be granted before the sublocks belonging to 
the parent can be granted. 

The benefits of specifying parent locks are as follows: 

• Low-level locks (concurrent read or concurrent write) can be held at a coarse 
granularity, such as files, whereas high-level (protected write or exclusive 
mode) sublocks are held on resources of a finer granularity,' such as records or 
data items. 

• Resources names are unique with each parent; parent locks are part of the 
resource name. 

The following paragraphs describe the use of parent locks. 

Assume that a number of processes need to access a database. The database 
can be locked at two levels: the file and individual records. For updating all 
the records in a file, locking the whole file and updating the records without 
additional locking is faster and more efficient. But for updating selected records, 
locking each record as it is needed is preferable. 

To use parent locks in this way, all processes request locks on the file. Processes 
that need to update all records must request protected write or exclusive mode 
locks on the file. Processes that need to update individual records request 
concurrent write mode locks on the file and then use sublocks to lock the 
individual records in protected write or exclusive mode. 



Synchronizing Access to Resources 
15.4 Advanced Locking Techniques 

In this way, the processes that need to access all records can do so by locking the 
file, while processes that share the file can lock individual records. A number 
of processes can share the file-level lock at concurrent write mode while their 
sublocks update selected records. 

On VAX systems, the number of levels of sublocks is limited by the size of the 
interrupt stack. If the limit is exceeded, the error status SS$_EXDEPrH is 
returned. The size of the interrupt stack is controlled by the SYSGEN parameter 
INTSTKPAGES. The default value for INTSTKPAGES allows 32 levels of 
sublocks. For more information about SYSGEN and INTSTKPAGES, see the 
Open VMS System Manager's Manual. + 

On AXP systems, the number of levels of sublocks is limited by the size of 
the kernel stack. If the limit is exceeded, the error status SS$_EXDEPTH is 
returned. The size of the kernel stack is controlled by the SYSGEN parameter 
KSTACKPAGES. + 

15.4.9 Lock Value Blocks 
The lock value block is an optional, 16-byte extension of a lock status block. The 
first time a process associates a lock value block with a particular resource, the 
lock management services create a resource lock value block for that resource. 
The lock management services maintain the resource lock value block until there 
are no more locks on the resource. 

To associate a lock value block with a resource, the process must set the flag bit 
LCK$M_ VALBLK in calls to the SYS$ENQ system service. The lock status block 
lksb argument must contain the address of the lock status block for the resource. 

When a process sets the flag bit LCK$M_ VALBLK in a lock request (or conversion 
request) and the request (or conversion) is granted, the contents of the resource 
lock value block are written to the lock value block of the process. 

When a process sets the flag bit LCK$M_ VALBLK on a conversion from protected 
write or exclusive mode to a lower mode, the contents of the process's lock value 
block are stored in the resource lock value block. 

In this manner, processes can pass the value in the lock value block along with 
the ownership of a resource. 

Table 15-5 shows how lock conversions affect the contents of the process's and 
the resource's lock value block. 

15-15 



Synchronizing Access to Resources 
15.4 Advanced Locking Techniques 

Table 15-5 Effect of Lock Conversion on Lock Value Block 

Lock Mode 
at Which 
Lock Is Held NL 

NL Return 

CR Neither 

cw Neither 

PR Neither 

PW Write 

EX Write 

Key to Lock Modes: 

NL-Null 
CR-Concurrent read 
CW-Concurrent write 
PR-Protected read 
PW-Protected write 
EX-Exclusive 

Key to Effects: 

Lock Mode to Which Lock Is Converted 

CR cw PR PW 

Return Return Return Return 

Return Return Return Return 

Neither Return Return Return 

Neither Neither Return Return 

Write Write Write Write 

Write Write Write Write 

EX 

Return 

Return 

Return 

Return 

Return 

Write 

Return-The contents of the resource lock value block are returned to the lock value block of the 
process. 
Neither-The lock value block of the process is not written; the resource lock value block is not 
returned. 
Write-The contents of the process's lock value block are written to the resource lock value block. 

Note that when protected write or exclusive mode locks are dequeued using the 
Dequeue Lock Request (SYS$DEQ) system service and the address of a lock value 
block is specified in the valblk argument, the contents of that lock value block 
are written to the resource lock value block. 

15.5 Dequeuing Locks 

15-16 

When a process no longer needs a lock on a resource, you can dequeue the lock 
by using the Dequeue Lock Request (SYS$DEQ) system service. Dequeuing 
locks means that the specified lock request is removed from the queue it is 
in. Locks are dequeued from any queue: Granted, Waiting, or Conversion 
(see Section 15.2.6). When the last lock on a resource is dequeued, the lock 
management services delete the name of the resource from its data structures. 

The four arguments to the SYS$DEQ macro (lkid, valblk, acmode, and flags) 
are optional. The lkid argument allows the process to specify a particular lock to 
be dequeued, using the lock identification returned in the lock status block. 

The valblk argument contains the address of a 16-byte lock value block. If the 
lock being dequeued is in protected write or exclusive mode, the contents of the 
lock value block are stored in the lock value block associated with the resource. 
If the lock being dequeued is in any other mode, the lock value block is not used. 
The lock value block can be used only if a particular lock is being dequeued. 

Three flags are available: 

• LCK$M_DEQUALL-The LCK$M_DEQALL flag indicates that all locks of 
the access mode specified with the acmode argument and less privileged 
access modes are to be dequeued. The access mode is maximized with the 



Synchronizing Access to Resources 
15.5 Dequeuing Locks 

access mode of the caller. If the flag LCK$M_DEQALL is specified, then the 
lkid argument must be 0 (or not specified). 

• LCK$M_CANCEL-When LCK$M_CANCEL is specified, SYS$DEQ attempts 
to cancel a lock conversion request that was queued by SYS$ENQ. This 
attempt can succeed only if the lock request has not yet been granted, in 
which case the request is in the conversion queue. The LCK$M_CANCEL 
flag is ignored if the LCK$M_DEQALL flag is specified. For more information 
about the LCK$M_CANCEL flag, see the description of the SYS$DEQ service 
in the Open VMS System Services Reference Manual. 

• LCK$M_INVVALBLK-When LCK$M_INVVALBLK is specified, $DEQ 
marks the lock value block, which is maintained for the resource in the lock 
database, as invalid. See the descriptions of SYS$DEQ and SYS$ENQ in the 
Open VMS System Services Reference Manual for more information about the 
LCK$M_INVVALBLK flag. 

The following is an example of dequeuing locks: 

#include <stdio.h> 
#include <descrip.h> 
#include <lckdef .h> 

/* Declare a lock status block */ 

struct lock blk { 

}lksb; 

- unsigned short lkstat ,reserved; 
unsigned int lock_id; 

void read updates(); 
unsigned Int status, lkmode=LCK$K CRMODE, lkid; 
$DESCRIPTOR(resnam,"STRUCTURE_l")7 /* resource*/ 

/* Queue a request for concurrent read mode lock */ 
status = SYS$ENQW(O, /* efn - event flag */ 

lkmode, /* lkmode - lock mode */ 
&lksb, /* lksb - lock status block */ 
O, /* flags */ 
&resnam, /* resnam - name of resource */ 
O, /* parid - lock id of parent */ 
&read updates,/* astadr - AST routine */ 
O, 0,-0, O); 

if((status & 1) != 1) 
LIB$SIGNAL(status); 

lkid = lksb.lock id; 
status = SYS$DEQ( lkid, /* lkid - id of lock to be dequeued */ 

0, 0, 0); 
if((status & 1) != 1) 

LIB$SIGNAL(status); 

User-mode locks are automatically dequeued when the image exits. 

15-17 



Synchronizing Access to Resources 
15.6 Local Buffer Caching with the Lock Management Services 

15.6 Local Buffer Caching with the Lock Management Services 
The lock management services provide methods for applications to perform 
local buffer caching (also called distributed buffer management). Local buffer 
caching allows a number of processes to maintain copies of data (disk blocks, 
for example) in buffers local to each process and to be notified when the buffers 
contain invalid data because of modifications by another process. In applications 
where modifications are infrequent, substantial I/O can be saved by maintaining 
local copies of buffers. Either the lock value block or blocking ASTs (or both) can 
be used to perform buffer caching. 

15.6.1 Using the Lock Value Block 
To support local buffer caching using the lock value block, each process 
maintaining a cache of buffers maintains a null mode lock on a resource that 
represents the current contents of each buffer: (For this discussion, assume that 
the buffers contain disk blocks.) The value block associated with each resource is 
used to contain a disk block "version number." The first time a lock is obtained on 
a particular disk block, the current version number of that disk block is returned 
in the lock value block of the process. If the contents of the buffer are cached, 
this version number is saved along with the buffer. To reuse the contents of the 
buffer, the null lock must be converted to protected read mode or exclusive mode, 
depending on whether the buffer is to be read or written. This conversion returns 
the latest version number of the disk block. The version number of the disk block 
is compared with the saved version number. If they are equal, the cached copy is 
valid. If they are not equal, a fresh copy of the disk block must be read from disk. 

Whenever a procedure modifies a buffer, it writes the modified buffer to disk and 
then increments the version number before to converting the corresponding lock 
to null mode. In this way, the next process that attempts to use its local copy of 
the same buffer finds a version number mismatch and must read the latest copy 
from disk rather than use its cached (now invalid) buffer. 

15.6.2 Using Blocking ASTs 
Blocking ASTs are used to notify processes with granted locks that another 
process with an incompatible lock mode has been queued to access the same 
resource. 

Blocking ASTs can be used to support local buffer caching in two ways. One 
technique involves deferred buffer writes; the other technique is an alternative 
method of local buffer caching without using value blocks. 

15.6.2.1 Deferring Buffer Writes 

15-18 

When local buffer caching is being performed, a modified buffer must be written 
to disk before the exclusive mode lock can be released. If a large number of 
modifications are expected (particularly over a short period of time), you can 
reduce disk I/Oby maintaining the exclusive mode lock for the entire time that 
the modifications are being made and by writing the buffer once. However, this 
prevents other processes from using the same disk block during this interval. 
This problem can be avoided if the process holding the exclusive mode lock has 
a blocking AST. The AST notifies the process if another process needs to use the 
same disk block. The holder of the exclusive mode lock can then write the buffer 
to disk and convert its lock to null mode (thereby allowing the other process to 
access the disk block). However, if no other process needs the same disk block, 
the first process can modify it many times but write it only once. 



Synchronizing Access to Resources 
15.6 Local Buffer Caching with the Lock Management Services 

15.6.2.2 Buffer Caching 
To perform local buffer caching using blocking ASTs, processes do not convert 
their locks to null mode from protected read or exclusive mode when finished 
with the buffer. Instead, they receive blocking ASTs whenever another process 
attempts to lock the same resource in an incompatible mode. With this technique, 
processes are notified that their cached buffers are invalid as soon as a writer 
needs the buff er, rather than the next time the process tries to use the buffer. 

15.6.3 Choosing a Buffer-Caching Technique 
The choice between using version numbers or blocking ASTs to perform local 
buffer caching depends on the characteristics of the application. An application 
that uses version numbers performs more lock conversions, whereas one that uses 
blocking ASTs delivers more ASTs. Note that these techniques are compatible; 
some processes can use one technique, and other processes can use the other 
at the same time. Generally, blocking ASTs are preferable in a low-contention 
environment, whereas version numbers are preferable in a high-contention 
environment. You can even invent combined or adaptive strategies. 

In a combined strategy, the applications use specific techniques. If a process 
is expected to reuse the contents of a buffer in a short amount of time, the 
application uses blocking ASTs; if there is no reason to expect a quick reuse, the 
application uses version numbers. 

In an adaptive strategy, an application makes evaluations based on the rate of 
blocking AS Ts and conversions. If blocking ASTs arrive frequently, the application 
changes to using version numbers; if many conversions take place and the same 
cached copy remains valid, the application changes to using blocking ASTs. 

For example, suppose one process continually displays the state of a database, 
while another occasionally updates it. If version numbers are used, the displaying 
process must always make sure that its copy of the database is valid (by 
performing a lock conversion); if blocking ASTs are used, the display process 
is informed every time the database is updated. On the other hand, if updates 
occur frequently, the use of version numbers is preferable to continually delivering 
blocking ASTs. 

15.7 Example of Using Lock Management Services 
The following program segment requests a null lock for the resource named 
TERMINAL. After the lock is granted, the program requests that the lock be 
converted to an exclusive lock. Note that, after SYS$ENQW returns, the program 
checks both the status of the system service and the condition value returned in 
the lock status block to ensure that the request completed successfully. 

15-19 



Synchronizing Access to Resources 
15. 7 Example of Using Lock Management Services 

15-20 

! Define lock modes 
INCLUDE '($LCKDEF)' 
! Define lock status block 
INTEGER*2 LOCK STATUS, 
2 NULL-
INTEGER LOCK ID 
COMMON /LOCK-BLOCK/ LOCK STATUS, 
2 - NULL~ 
2 LOCK ID 

Request a null lock 
STATUS= SYS$ENQW (, 
2 %VAL(LCK$K NLMODE), 
2 LOCK_STATUS, 
2 
2 
2 
IF 
IF 

I 

I TERMINAL I I 

,,,,,) 
(.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
(.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS)) 

! Convert the lock to an exclusive lock 
STATUS= SYS$ENQW (, 
2 %VAL(LCK$K EXMODE), 
2 LOCK STATUS, 
2 %VAL(LCK$M CONVERT), 
2 'TERMINAL'~ 
2 ,,,,,) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
IF (.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS)) 

To share a terminal between a parent process and a subprocess, each process 
requests a null lock on a shared resource name. Then, each time one of the 
processes wants to perform terminal I/O, it requests an exclusive lock, performs 
the I/O, and requests a null lock. 

Because the lock manager is effective only between cooperating programs, 
the program that created the subprocess should not exit until the subprocess 
has exited. To ensure that the parent does not exit before the subprocess, 
specify an event flag to be set when the subprocess exits (the num argument 
of LIB$SPAWN). Before exiting from the parent program, use SYS$WAITFR to 
ensure that the event flag has been set. (You can suppress the logout message 
from the subprocess by using the SYS$DELPRC system service to delete the 
subprocess instead of allowing the subprocess to exit.) 

After the parent process exits, a created process cannot synchronize access to 
the terminal and should use the SYS$BRKTHRU system service to write to the 
terminal. 



16 
Image Initialization 

This chapter describes the system declaration mechanism, including 
LIB$INITIALIZE, which performs calls to any initialization routine declared 
for the image by the user. However, use of LIB$INITIALIZE is discouraged and 
should be used only when no other method is suitable. This chapter contains the 
following sections: 

Section 16.1 describes the steps to perform image initialization. 

Section 16.2 describes the argument list that is passed from the command 
interpreter, the debugger, or LIB$INITIALIZE to the main program. 

Section 16.3 describes how a library or user program can declare an initialization 
routine. 

Section 16.4 describes how the LIB$INITIALIZE dispatcher calls the initialization 
routine in a list. 

Section 16.5 describes the options available to an initialization routine. 

Section 16.6 illustrates with a code example several functions of an initialization 
routine on both VAX and AXP systems. 

16.1 Initializing an Image 
In most cases, both user and library routines are self-initializing. This means 
that they can process information with no special action required by the calling 
program. Initialization is automatic in two situations: 

• When the routine's statically allocated data storage is initialized at compile or 
link time. 

• When a statically allocated flag is tested and set on each call so that 
initialization occurs only on the first call. 

Any special initialization, such as a call to other routines or to system services, 
can be performed on the first call before the main program is initialized. For 
example, you can establish a new environment to alter the way errors are 
handled or the way messages are printed. 

Such special initialization is required only rarely; however, when it is required, 
the caller of the routine does not need to make an explicit initialization call. The 
run-time library provides a system declaration mechanism that performs all such 
initialization calls before the main program is called. Thus, special initialization 
is invisible to later callers of the routine. 

On VAX systems, before the main program or main routine is called, a number 
of system initialization routines are called as specified by a 1-, 2-, or 3-longword 
initialization list set up by the linker. + 

16-1 



Image Initialization 
16.1 Initializing an Image 

143• 

--
IJ:Ja 

.. ,. 
WM• 

16-2 

On AXP systems, before the main program or main routine is called, a number 
of system initialization routines are called as specified by a 1-, 2-, or 3-quadword 
initialization list set up by the linker. + 

On VAX systems, the initialization list consists of the following (in order): 

• The addresses of the debugger (if present) 

• The LIB$INITIALIZE routine (if present) 

• The entry point of the main program or main routine • 

On AXP systems, the initialization list consists of the following (in order): 

• The procedure value addresses of the debugger (if present) 

• The LIB$INITIALIZE routine (if present) 

• The entry point of the main program or main routine + 

The following initialization steps take place: 

1. The image activator maps the user program into the address space of the 
process and sets tip useful information, such as the program name. Then it 
starts the command language interpreter (CLI). 

2. The CLI sets up an argument list and calls the next routine in the 
initialization list (debugger, LIB$INITIALIZE, main program, or main 
routine). 

3. 

4. 

On VAX systems, the debugger, if present, initializes itself and calls the next 
routine in the initialization list (LIB$INITIALIZE, main program, or main 
routine). + 
On AXP systems, the CLI calls the debugger, if present, to set the initial 
breakpoints. Then the CLI calls the next entry in the vector. + 

The LIB$INITIALIZE library routine, if present, calls each library and user 
·initialization routine declared using the system LIB$INITIALIZE mechanism. 
Then it calls the main program or main routine. 

5. The main program or main routine executes and, at the user's discretion, 
accesses its argument list to scan the command or to obtain information about 
the image. The main program or main routine can then call other routines. 

6. Eventually, the main program or main routine terminates by executing a 
return instruction (RET) with RO set to a standard completion code to indicate 
success or failure, where bit <0> equals 1 (success) or 0 (failure). 

7. The completion code is returned to LIB$INITIALIZE (if present), the 
debugger (if present), and, finally, to the CLI, which issues a SYS$EXIT 
system service with the completion status as an argument. Any declared exit 
handlers are called at this point. 

Note 

Main programs should not call the SYS$Ef{IT system service directly. If 
they do, other programs cannot call them as routines. 



Image Initialization 
16.1 Initializing an Image 

Figure 16-1 and Figure 16-2 illustrate the sequence of calls and returns in a 
typical image initialization. Each box is a routine activation as represented 
on the image stack. The top of the stack is at the top of the figure. Each 
upward arrow represents the result of a call instruction that creates a routine 
activation on the stack to which control is being transferred. Each downward 
arrow represents the result of a RET (return) instruction. A RET instruction 
removes the routine activation from the stack and causes control to be transferred 
downward to the next box. 

A user program can alter the image initialization sequence by making a program 
section (PSECT) contribution to PSECT LIB$INITIALIZE and by declaring 
EXTERNAL LIB$INITIALIZE. This adds the optional initialization steps 
shown in Figure 16-1 and Figure 16-2 labeled "Program Section Contribution 
to LIB$INITIALIZE." (A program section is a portion of a program with a 
given protection and set of storage management attributes. Program sections 
that have the same attributes are gathered together by the linker to form 
an image section.) If the initialization routine also performs a coroutine call 
back to LIB$INITIALIZE, the optional steps labeled "Coroutine Call Back to 
LIB$INITIALIZE" in Figure 16-1 and Figure 16-2 are added to the image 
initialization sequence. 

Figure 16-1 shows the call instruction calling the debugger, if present, and the 
debugger then directly calling LIB$INITIALIZE and the main program. + 

16-3 



Image Initialization 
16.1 Initializing an Image 

Figure 16-1 Sequence of Events During Image Initialization on VAX Systems 

Initialization 
Procedure* 

-... -. -.. --... --. ------.. 
Initialization 
Procedure* , 

Main Program* 

L ••••• ••••••••• ••••: 

LIB$1NITIALIZE 

I 

I :+-- Coroutine Call Back to 
: LIB$1NITIALIZE 

, ... ------------ ____ _j (Optional) 
I 
I 

I 

I I , _____ ·----------·- --··"" 
-------- ·------------ ---------------·-"' 

LIB$1NITIALIZE :.._Program Section 
......_ ______ --... : Contribution to 

.. • • • . . • • •. . • •• . . •• • . .. • • . . • • •. . • • . . • • • • . . •• • • •••..•••...•••. . 1 LIB$1NITIALIZE 

Command 
Language 
Interpreter 

(Optional) 

*These procedures are (or can be) user supplied. 

User 
Procedure* 

ZK-1977-GE 

Figure 16-2 shows the call instruction calling the debugger, if present, to set a 
breakpoint at the main program's entry point. • 

16-4 



Image Initialization 
16.1 Initializing an Image 

Figure 16-2 Sequence of Events During Image Initialization on AXP Systems 

Initialization 
Procedure* 

.,.. -- --- -- -- -.. -------------. 
Initialization 
Procedure* 

I 

._ _____ --------- ......... 
. I 

Main Program* 

LIB$INITIALIZE :.-- Coroutine Call Back to 
: LIB$1NITIALIZE 
: (Optional) 

... -- -- .......... -...... -- .... ---

---·- ------------- ----~ 

-------- ................................................... "' 

LIB$1NITIALIZE :._Program Section 
: Contribution to 

User 
Procedure* 

_ .. ___ .. -- ___ . ___ --- ____ --- __ _ _ __ __ _ _ __ _ _ _ _ _ _ _ ________________ .l LIB$1NITIALIZE 

Debugger 
(If Present) 

Command 
Language 
Interpreter 

(Optional) 

*These procedures are (or can be) user supplied. 

ZK-5911A-GE 

16.2 Initializing an Argument List 
The following argument list is passed from the CLI, the debugger, or 
LIB$INITIALIZE to the main program. This argument list is the same for 
each routine activation. 

(start ,cli-coroutine [,image-info]) 

The start argument is the address of the entry in the initialization vector that is 
used to perform the call. 

The cli-routine argument is the address of a CLI coroutine to obtain command 
arguments. For more information, see the Open VMS Utility Routines Manual. 

The image-info argument is useful image information, such as the program 
name. 

16-5 



Image Initialization 
16.2 Initializing an Argument List 

The debugger or LIB$INITIALIZE, or both, can call the next routine in the 
initialization chain using the following coding sequence: 

ADDL 
MOVL 
CAL LG 

#4, 4(AP) 
@4(AP), RO 
(AP), (RO) 

Step to next initialization list entry 
RO = next address to call 
Call next initialization routine 

This coding sequence modifies the contents of an argument list entry. Thus, the 
sequence does not follow the Open VMS calling standard. However, the argument 
list can be expanded in the future without requiring any change either to the 
debugger or to LIB$INITIALIZE. 

16.3 Declaring Initialization Routines 
Any library or user program module can declare an initialization routine. This 
routine is called when the image is started. The declaration is made by making 
a contribution to the LIB$INITIALIZE program section, which contains a list 
of routine entry point addresses to be called before the main program or main 
routine is called. 

The following VAX MACRO example declares an initialization routine by placing 
the routine entry address INIT_PROC in the list: 

.EXTRN LIB$INITIALIZE ; Cause library initialization 
; Dispatcher to be loaded 

.PSECT LIB$INITIALIZE, NOPIC, USR, CON, REL, GBL, NOSHR, NOEXE, RD, NOWRT, LONG 

.LONG !NIT PROC ; Contribute entry point address of 
; initialization routine • 

• PSECT ••• 

The .EXTRN declaration links the initialization routine dispatcher, 
LIB$INITIALIZE, into your program's image. The reference contains a definition 
of the special global symbol LIB$INITIALIZE, which is the routine entry point 
address of the dispatcher. The linker stores the value of this special global symbol 
in the initialization list along with the starting address of the debugger and the 
main program. The GBL specification ensures that the PSECT LIB$INITIALIZE 
contribution is not affected by any clustering performed by the linker. 

16.4 Dispatching to Initialization Routines 

16-6 

The LIB$INITIALIZE dispatcher calls each initialization routine in the list with 
the following argument list: 

CALL init-proc (init-coroutine ,cli-coroutine [, image-info]) 

The init-coroutine argument is the address of a library coroutine to be called to 
effect a coroutine linkage with LIB$INITIALIZE. 

The cli-coroutine is the address of a CLI coroutine used to obtain command 
arguments. 

The image-info argument is useful image information, such as the program 
name. 



Image Initialization 
16.5 Initialization Routine Options 

16.5 Initialization Routine Options 
An initialization routine can be used to do the following: 

• Set up an exit handler by calling the Declare Exit Handler ($DCLEXH) 
system service, although exit handlers are generally set up by using a 
statically allocated first-time flag. 

• Initialize staticaliy allocated storage, although this is done preferably at 
image activation time using compile-time and link-time data initialization 
declarations or by using a first-time call flag in its statically allocated storage. 

• Call the initialization dispatcher (instead of returning to it) by calling the 
init-coroutine argument. This achieves a coroutine link. Control returns to 
the initialization routine when the main program returns control. Then the 
initialization routine should also return control to pass back the completion 
code returned by the main program (to the debugger or CLI, or both). 

• Establish a condition handler in the current frame before performing the 
preceding actions. This leaves the initialization routine condition handler on 
the image stack for the duration of the image execution. This occurs after the 
CLI sets up the catchall stack frame handler and after the debugger sets up 
its stack frame handler. Thus, the initialization routine handler can override 
either of these handlers, because it will receive signals before they do. 

16.6 Initialization Example 
The following VAX MACRO code fragment, which works on both VAX and AXP 
systems, shows how an initialization routine does the following: 

• Establishes a handler 

• Calls the init-coroutine argument routine, so that the coroutine calls the 
initialization dispatcher 

• Gains control after the main program returns 

• Returns to the normal exit processing 

10$: 

.ENTRY INIT PROC, AM<> 
MOVAL HANDLER, (FP) 

No registers used 
Establish handler 

CALLG (AP), 

RET 

Perform any other initialization 

@!NIT CO ROUTINE(AP) 
- - Continue initialization which 

then calls main program or 
routine. 
Return here when main program 
returns with RO = completion 
Status return to normal exit 
processing with RO = completion 
status 

.ENTRY HANDLER, AM< ... > Register mask 
handle condition 
could unwind to 10$ 

MOVL # ••• , RO 

RET 

Set completion status with a 
condition value 
Resignal or continue depending 
on RO being SS$ RESIGNAL or 
SS$_CONTINUE. -

16-7 





17 
Shareable Resources 

This chapter describes the techniques available for sharing data and program 
code among programs. It contains the following sections: 

Section 17 .1 describes how to share code among programs. 

Section 17 .2 describes shareable images. 

Section 17 .3 defines and describes using local and global symbols to share images. 

The operating system provides the following techniques for sharing data and 
program code among programs: 

• DCL symbols and logical names 

• Libraries 

• Shareable images 

• Global sections 

• Common blocks installed in a shareable image 

• Open VMS Record Management Services (RMS) shared files 

Symbols and logical names are also used for intraprocess and interprocess 
communication; therefore, they are discussed in Chapter 10. 

Libraries and shareable images are used for sharing program code. 

Global sections, common blocks stored in shareable images, and RMS shared 
files are used for sharing data. You can also use common blocks for interprocess 
communication. For more information, refer to Chapter 2. 

17.1 Sharing Program Code 
To share code among programs, you can use the following operating system 
resources: 

• Text, macro, or object libraries that store sections of code. Text and macro 
libraries store source code; object libraries store object code. You can create 
and manage libraries using the Librarian utility (LIBRARIAN). Refer to the 
Open VMS Command Definition, Librarian, and Message Utilities Manual for 
complete information about using the Librarian utility. 

• Shareable images, which are images that have been compiled and linked but 
cannot be run independently. These images can also be stored in libraries. 

17-1 



Shareable Resources 
17.1 Sharing Program Code 

17.1.1 Object Libraries 
You can use object libraries to store frequently used routines, thereby avoiding 
repeated recompiling, minimizing the number of files you must maintain, and 
simplifying the linking process. The source code for the object modules can be 
in any VAX supported language, and the object modules can be linked with any 
other modules written in any VAX supported language. 

Use the .OLB file extension for any object library. All modules stored in an object 
library must have the file extension .OBJ. 

17.1.1.1 System- and User-Defined Default Object Libraries 
The operating system provides a default system object library, STARLET.OLE. 
You can also define one or more default object libraries to be automatically 
searched before the system object library. The logical names for the default object 
libraries are LNK$LIBRARY and LNK$LIBRARY _1 through LNK$LIBRARY _ 
999. To use one of these default libraries, first define the logical name. The 
libraries are searched sequentially starting at LNK$LIBRARY. Do not skip any 
numbers. If you store object modules in the default libraries, you do not have to 
specify them at link time. However, you do have to maintain and manage them 
as you would any library. 

The following example defines the library in the file PROCEDURES.OLE (the file 
type defaults to .OLB, meaning object library) in $DISK1:[DEV] as a default user 
library: 

$DEFINE LNK$LIBRARY $DISKl:[DEV]PROCEDURES 

17.1.1.2 How the Linker Searches Libraries 
When the linker is resolving global symbol references, it searches user default 
libraries at the process level first, then libraries at the group and system level. 
Within levels, the library defined as LNK$LIBRARY is searched first, then 
LNK$LIBRARY_l, LNK$LIBRARY_2, and so on. 

17.1.1.3 Creating an Object Library 
To create an object library, invoke the Librarian utility by entering the LIBRARY 
command with the /CREATE qualifier and the name you are assigning the library. 
The following example creates a library in a file named INCOME.OLE (.OLB is 
the default file type): 

$ LIBRARY/CREATE INCOME 

17.1.1.4 Managing an Object Library 

17-2 

To add or replace modules in a library, enter the LIBRARY command with the 
/REPLACE qualifier followed by the name of the library (first parameter) and 
the names of the files containing the (second parameter). After you put object 
modules in a library, you can delete the object file. The following example adds 
or replaces the modules from the object file named GETSTATS.OBJ to the object 
library named INCOME.OLE and then deletes the object file: 

$ LIBRARY/REPLACE INCOME GETSTATS 
$ DELETE GETSTATS.OBJ;* 

You can examine the contents of an object library with the /LIST qualifier. Use 
the /ONLY qualifier to limit the display. The following command displays all the 
modules in INCOME.OLE that start with GET: 

$ LIBRARY/LIST/ONLY=GET* INCOME 



Shareable Resources 
17.1 Sharing Program Code 

Use the /DELETE qualifier to delete a library module and the /EXTRACT 
qualifier to recreate an object file. If you delete many modules, you should 
also compress (!COMPRESS qualifier) and purge (PURGE command) the library. 
Note that the /ONLY, /DELETE, and /EXTRACT qualifiers require the names of 
modules-not file names-and that the names are specified as qualifier values, 
not parameter values. 

17.1.2 Text and Macro Libraries 
Any frequently used routine can be stored in libraries as source code. Then, when 
you need the routine, it can be called in from your source program. 

Source code modules are stored in text libraries. The file extension for a text 
library is .TLB. 

When using VAX MACRO assembly language, any source code module can be 
stored in a macro library. The file extension for a macro library is .MLB. Any 
source code module stored in a macro library must have the file extension .MAR. 

You also use LIBRARIAN to create and manage text and macro libraries. Refer 
to Sections Section 17 .1.1.3 and Section 17 .1.1.4 for· a summary of LIBRARIAN 
commands. herex 

17.2 Shareable Images 
A shareable image is a nonexecutable image that can be linked with executable 
images. If you have a program unit that is invoked by more than one program, 
linking it as a shareable image provides the following benefits: 

• Saves disk space-The executable images to which the shareable image is 
linked do not physically include the shareable image. Only one copy of the 
shareable image exists. 

• Simplifies maintenance-If you use transfer vectors and the GSMATCH (on 
VAX systems) or symbol vectors (on AXP systems) option, you can modify, 
recompile, and relink a shareable image without having to relink any 
executable image that is linked with it. 

Shareable images can also save memory, provided that they are installed as 
shared images. See the Open VMS Linker Utility Manual for more information 
about creating shareable images and shareable image libraries. 

17.3 Symbols 
Symbols are names that represent locations (addresses) in virtual memory. More 
precisely, a symbol's value is the address of the first, or low-order, byte of a 
defined area of virtual memory, while the characteristics of the defined area 
provide the number of bytes referred to. For example, if you define TOTAL_ 
HOUSES as an integer, the symbol TOTAL_HOUSES is assigned the address of 
the low-order byte of a 4-byte area in virtual memory. Some system components 
(for example, the debugger) permit you to refer to areas of virtual memory by 
their actual addresses, but symbolic references are always recommended. 

17.3.1 Defining Symbols 
A symbolic name can consist of up to 31 letters, digits, underscores (_), and 
dollar signs ( $ ). Uppercase and lowercase letters are equivalent. By convention, 
dollar signs are restricted to symbols used in system components. (If you do not 
use the dollar sign in your symbolic names, you will never accidentally duplicate 
a system-defined symbol.) 

17-3 



Shareable Resources 
17.3 Symbols 

17.3.2 Local and Global Symbols 
Symbols are either local or global in scope. A local symbol can only be 
referenced within the program unit in which it is defined. Local symbol names 
must be unique among all other local symbols within the program unit but not 
within other program units in the program. References to local symbols are 
resolved at compile time. 

A global symbol can be referenced outside the program unit in which it is 
defined. Global symbol names must be unique among all other global symbols 
within the program. References to global symbols are not resolved until link time. 

References to global symbols in the executable portion of a program unit are 
usually invocations of subprograms. If you reference a global symbol in any other 
capacity (as an argument or data value-see the following paragraph), you must 
define the symbol as external or intrinsic in the definition portion of the program 
unit. 

System facilities, such as the Message utility and the VAX MACRO assembler, 
use global symbols to define data values. 

The following program segment shows how to define and reference a global 
symbol, RMS$_EOF (a condition code that may be returned by LIB$GET_ 
INPUT): 

CHARACTER*255 NEW TEXT 
INTEGER STATUS 
INTEGER*2 NT SIZ 
INTEGER LIB$GET_INPUT 
EXTERNAL RMS$ EOF 
STATUS = LIB$GET INPUT (NEW TEXT, 
2 - 'New text: ' 
2 NT SIZ) 
IF ((.NOT. STATUS) .AND. -
2 (STATUS .NE. %LOC (RMS$ EOF))) THEN 

CALL LIB$SIGNAL (RETURN STATUS BY VALUE) 
END IF -

17 .3.3 Resolving Global Symbols 

17-4 

References to global symbols are resolved by including the module that defines 
the symbol in the link operation. When the linker encounters a global symbol, it 
uses the following search method to find the defining module: 

1. Explicitly named modules and libraries-Generally used to resolve user­
defined global symbols, such as subprogram names and condition codes. 
These modules and libraries are searched in the order in which they are 
specified. 

2. System default libraries-Generally used to resolve system-defined global 
symbols, such as procedure names and condition codes. 

3. User default libraries-Generally used to avoid explicitly naming libraries, 
thereby simplifying linking. 

If the linker cannot find the symbol, the symbol is said to be unresolved and 
a warning results. You can run an image containing unresolved symbols. The 
image runs successfully as long as it does not access any unresolved symbol. For 
example, if your code calls a subroutine but the subroutine call is not executed, 
the image runs successfully. 



Shareable Resources 
17.3 Symbols 

If an image accesses an unresolved global symbol, results are unpredictable. 
Usually the image fails with an access violation (attempting to access a physical 
memory location outside those assigned to the program's virtual memory 
addresses). 

17.3.3.1 Explicitly Named Modules and Libraries 
You can resolve a global symbol reference by naming the defining object module 
in the link command. For example, if the program unit INCOME references the 
subprogram GET_STATS, you can resolve the global symbol reference when you 
link INCOME by including the file containing the object module for GET_STATS, 
as follows: 

$ LINK INCOME, GETSTATS 

If the modules that define the symbols are in an object library, name the library 
in the link operation. In the following example, the GET_STATS module resides 
in the object module library INCOME.OLE: 

$ LINK INCOME,INCOME/LIBRARY 

17.3.3.2 System Default Libraries 
Link operations automatically check the system object and shareable image 
libraries for any references to global symbols not resolved by your explicitly 
named object modules and libraries. The system object and shareable image 
libraries include the entry points for the RTL routines and system services, 
condition codes, and other system-defined values. Invocations of these modules do 
not require any explicit action by you at link time. 

17.3.3.3 User Default Libraries 
If you write general-purpose procedures or define general-purpose symbols, you 
can place them in a user default library. (You can also make your development 
library a user default library.) In this way, you can link to the modules containing 
these procedures and symbols without explicitly naming the library in the DCL 
LINK command. To name a single-user library, equate the file name of the 
library to the logical name LNK$LIBRARY. For subsequent default libraries, use 
the logical names LNK$LIBRARY_l through LNK$LIBRARY_999, as described 
in Section 17 .1.1. 

17 .3.3.4 Making a Library Available for Systemwide Use 
To make a library available to everyone using the system, define it at the system 
level. To restrict use of a library or to override a system library, define the library 
at the process or group level. The following command line defines the default 
user library at the system level: 

$DEFINE/SYSTEM LNK$LIBRARY $DISKl:[DEV]PROCEDURES 

17.3.3.5 Macro Libraries 
Some system symbols are not defined in the system object and shareable image 
libraries. In such cases, the Open VMS System Services Reference Manual notes 
that the symbols are defined in the system macro library and tell you the name 
of the macro containing the symbols. To access these symbols, you must first 
assemble a macro routine with the following source code. The keyword GLOBAL 
must be in uppercase. The . TITLE directive is optional but recommended. 

17-5 



Shareable Resources 
17.3 Symbols 

.TITLE macro-name 
macro-name GLOBAL 

.END 

The following example is a macro program that includes two system macros: 

LBRDEF.MAR 
.TITLE $LBRDEF 
$LBRDEF GLOBAL 
$LHIDEF GLOBAL 
.END 

Assemble the routine containing the macros with the MACRO command. You can 
place the resultant object modules in a default library or in a library that you 
specify in the LINK command, or you can specify the object modules in the LINK 
command. The following example places the $LBRDEF and $LHIDEF modules in 
a library before performing a link operation: 

$ MACRO LBRDEF 
$ LIBRARY/REPLACE INCOME LBRDEF 
$ DELETE LBRDEF.OBJ;* 
$ LINK INCOME,INCOME/LIBRARY 

The following LINK command uses the object file directly: 

$ LINK INCOME,LBRDEF,INCOME/LIBRARY 

17.3.4 Sharing Data 
Typically, you use an installed common block for interprocess communication 
or for allowing two or more processes to access the same data simultaneously. 
However, you must have the CMKRNL privilege to install the common block. If 
you do not have the CMKRNL privilege, global sections allow you to perform the 
same operations. 

17.3.4.1 Installed Common Blocks 

17-6 

To share data among processes by using a common block, you must install the 
common block as a shared shareable image and link each program that references 
the common block against that shareable image. 

To install a common block as a shared image: 

1. Define a common block-Write a program that declares the variables in 
the common block and defines the common block. This program should 
not contain executable code. The following DEC Fortran program defines a 
common block: 

INC_ COMMON.FOR 
INTEGER TOTAL HOUSES 
REAL PERSONS HOUSE (2048), 
2 ADULTS HOUSE (2048), 
2 INCOME-HOUSE (2048) 
COMMON /INCOME DATA/ TOTAL HOUSES, 
2 - PERSONS HOUSE, 
2 ADULTS HOUSE, 
2 INCOME-HOUSE 

END 



Shareable Resources 
17.3 Symbols 

2. Create the shareable image-Compile the program containing the common 
block. Use the LINK/SHAREABLE command to create a shareable image 
containing the common block. 

$ FORTRAN INC COMMON 
$ LINK/SHAREABLE INC_COMMON 

3. Install the shareable image-Use the DCL command SET PROCESS 
/PRIVILEGE to give yourself CMKRNL privilege (required for use of the 
Install utility). Use the DCL command INSTALL to invoke the interactive 
Install utility. When the INSTALL prompt appears, enter CREATE, followed 
by the complete file specification of the shareable image that contains the 
common block (the file type defaults to .EXE) and the qualifiers /WRITEABLE 
and /SHARED. The Install utility installs your shareable image and 
reissues the INSTALL prompt. Enter EXIT to exit. Remember to remove 
CMKRNL privilege. (For complete documentation of the Install utility, see 
the Open VMS System Management Utilities Reference Manual.) 

The following example shows how to install a shareable image: 

$ SET PROCESS/PRIVILEGE=CMKRNL 
$ INSTALL 
INSTALL> CREATE DISK$USER:[INCOME.DEV]INC COMMON -

INSTALL> /WRITEABLE/SHARED -
INSTALL> EXIT 
$ SET PROCESS/PRIVILEGE=NOCMKRNL 

A disk containing an installed image cannot be dismounted; To remove an 
installed image, invoke the Install utility and enter DELETE followed by 
the complete file specification of the image. The DELETE subcommand 
does not delete the file from the disk; it removes the file from the list of 
known installed images. 

Perform the following steps to write or read the data in an installed common 
block from within any program: 

1. Include the same variable and common block definitions in the program. 

2. Compile the program. 

3. Link the program against the shareable image that contains the common 
block. (Linking against a shareable image requires an options file.) 

$ LINK INCOME, DATA/OPTION 
$ LINK REPORT, DATA/OPTION 

DATA.OPT 
INC COMMON/SHAREABLE 

4. Execute the program. 

In the previous series of examples, the two programs INCOME and REPORT 
access the same area of memory through the installed common block INCOME_ 
DATA (defined in INC_COMMON.FOR). 

Typically, programs that access shared data use common event flag clusters to 
synchronize read and write access to the data. Refer to Chapter 15 for more 
information about using event flags. for program synchronization. 

17-7 



Shareable Resources 
17.3 Symbols 

17.3.4.2 Global Sections 

17-8 

To share data by using global sections, each process that plans to access the data 
includes a common block of the same name, which contains the variables for 
the data. The first process to reference the data declares the common block as a 
global section and, optionally, maps data to the section. (Data in global sections, 
as in private sections, must be page aligned) 

To create a global section, invoke SYS$CRMPSC and add the following: 

• Additional argument-Specify the name of the global section (argument 5). A 
program uses this name to access a global section. 

• Additional flag-Set the SEC$V _GBL bit of the flags argument to indicate 
that the section is a global section. 

As other programs need to reference the data, each can use either SYS$CRMPSC 
or SYS$MGBLSC to map data into the global section. If you know that the global 
section exists, the best practice is to use the SYS$MGBLSC system service. 

The format for SYS$MGBLSC is as follows: 

SYS$MGBLSC (inadr,[retadr],[acmode],[flags],gsdnam,[ident],[relpag]) 

Refer to the Open VMS System Services Reference Manual for complete 
information about this system service. 

In Example 17-1, one image, DEVICE.FOR, passes device names to another 
image, GETDEVINF.FOR. GETDEVINF.FOR returns the process name and 
the terminal associated with the process that allocated each device. The two 
processes use the global section GLOBAL_SEC to communicate. GLOBAL_SEC is 
mapped to the common block named DATA, which is page aligned by the options 
file DATA.OPT. Event flags are used to synchronize the exchange of information. 
UFO_CREATE.FOR, DATA.OPT, and DEVICE.FOR are included here for easy 
reference. Refer to Section 8.4 for additional information about global sections. 

Example 17-1 Interprocess Communication Using Global Sections 

1UFO CREATE.FOR 

INTEGER FUNCTION UFO CREATE (FAB, 
2 - RAB, 
2 L~) 

Include RMS definitions 
INCLUDE ' ( $FABDEF) ' 
INCLUDE '($RABDEF)' 

1 Declare dummy arguments 
RECORD /FABDEF/ FAB 
RECORD /RABDEF/ RAB 
INTEGER LUN 

1 Declare channel 
INTEGER*4 CHAN 
COMMON /CHANNEL/ CHAN 

(continued on next page) 



Shareable Resources 
17.3 Symbols 

Example 17-1 (Cont.) Interprocess Communication Using Global Sections 

! Declare status variable 
INTEGER STATUS 

! Declare system procedures 
INTEGER SYS$CREATE 

! Set useropen bit in the FAB options longword 
FAB.FAB$L_FOP = FAB.FAB$L_FOP .OR. FAB$M_UFO 
! Open file 
STATUS = SYS$CREATE (FAB) 

! Read channel from FAB status word 
CHAN = FAB.FAB$L_STV 

! Return status of open operation 
UFO CREATE = STATUS 

END 

DATA.OPT 

PSECT_ATTR = DATA, PAGE 

DEVICE.FOR 

! Define global section flags 
INCLUDE '($SECDEF)' 
! Mask for section flags 
INTEGER SEC MASK 
! Logical unit number for section file 
INTEGER INFO LUN 
! Channel nuinber for section file 
INTEGER SEC CHAN 
COMMON /CHANNEL/ SEC CHAN 
! Length for the section file 
INTEGER SEC LEN 
! Data for the section file 
CHARACTER*l2 DEVICE, 
2 PROCESS 
CHARACTER*6 TERMINAL 
COMMON /DATA/ DEVICE, 
2 PROCESS, 
2 TERMINAL 
! Location of data 
INTEGER PASS ADDR (2), 
2 RET ADDR (2) 
! Two common event flags 
INTEGER REQUEST FLAG, 
2 INFO FLAG 
DATA REQUEST-FLAG /70/ 
DATA INFO FLAG /71/ 

(continued on next page) 

17-9 



Shareable Resources 
17.3 Symbols 

17-10 

Example 17-1 (Cont.) Interprocess Communication Using Global Sections 
! User-open routines 
INTEGER UFO CREATE 
EXTERNAL UFO CREATE 

Open the section file 
STATUS = LIB$GET LUN (INFO LUN) 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
SEC MASK = SEC$M WRT .OR. SEC$M DZRO .OR. SEC$M GBL 
! (last address =- first address + length of last element + 511)/512 
SEC LEN = ( (%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512 ) 
OPEN (UNIT=INFO LUN, 
2 FILE='INFO.TMP' I 

2 STATUS=' NEW' I 

2 INITIALSIZE = SEC LEN, 
2 USEROPEN = UFO CREATE) 

Free logical unit number and map section 
CLOSE (INFO LUN) 
! Get location of data 
PASS ADDR (1) = %LOC (DEVICE) 
PASS-ADDR (2) = %LOC (TERMINAL) 
STATUS = SYS$CRMPSC (PASS ADDR, 
2 RET ADDR, 
2 I -

Address of section 
Addresses mapped 

2 %VAL(SEC MASK), Section mask 
2 'GLOBAL_ SEC' , Section name 
2 II 

2 %VAL(SEC CHAN), ! I/O channel 
2 II I) -
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
! Create the subprocess 
STATUS= SYS$CREPRC (, 
2 'GETDEVINF' I Image 
2 ,,,,,. 
2 'GET DEVICE' , Process name 
2 %VAL(4) 11 ,) Priority 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
! Write data to section 
DEVICE = '$FLOPPY1' 
! Get common event flag cluster and set flag 
STATUS= SYS$ASCEFC (%VAL(REQUEST FLAG), 
2 , CLUSTER, I I ) -

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
STATUS= SYS$SETEF (%VAL(REQUEST FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
! When GETDEVINF has the information, INFO FLAG is set 
STATUS= SYS$WAITFR (%VAL(INFO FLAG)) -
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 

(continued on next page) 



Shareable Resources 
17.3 Symbols 

Example 17-1 {Cont.) Interprocess Communication Using Global Sections 

GETDEVINF.FOR 

1 Define section flags 
INCLUDE '($SECDEF)' 
1 Mask for section flags 
INTEGER SEC MASK 
1 Data for the section file 
CHARACTER*l2 DEVICE, 
2 PROCESS 
CHARACTER*6 TERMINAL 
COMMON /DATA/ DEVICE, 
2 PROCESS, 
2 TERMINAL 
! Location of data 
INTEGER PASS ADDR (2), 
2 RET ADDR (2) 
1 Two common event flags 
INTEGER REQUEST FLAG, 
2 INFO FLAG 
DATA REQUEST-FLAG /70/ 
DATA INFO FLAG /71/ 

Get common event flag cluster and wait 
for GBLl.FOR to set REQUEST FLAG 

STATUS= SYS$ASCEFC (%VAL(REQUEST FLAG), 
2 'CLUSTER',,)-
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
STATUS= SYS$WAITFR (%VAL(REQUEST FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL-(%VAL(STATUS)) 
1 Get location of data 
PASS ADDR (1) = %LOC (DEVICE) 
PASS-ADDR (2) = %LOC (TERMINAL) 
1 Set write flag 

. SEC MASK = SEC$M WRT 
, 1 Map the section 
STATUS = SYS$MGBLSC (PASS ADDR, 
2 RET_ADDR, 

I 

Address of section 
Address mapped 

2 
2 
2 
IF 

%VAL(SEC MASK), Section mask 
'GLOBAL SEC',,) Section name 

(.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
Call GETDVI to get the process ID of the 
process that allocated the device, then 
call GETJPI to get the process name and terminal 
name associated with that process ID. 
Set PROCESS equal to the process name and 
set TERMINAL equal to the terminal name. 

After information is in GLOBAL SEC 
STATUS= SYS$SETEF (%VAL(INFO FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

END 

17-11 



Shareable Resources 
17.3 Symbols 

By default, a global section is deleted when no image is mapped to it. Such global 
sections are called temporary global sections. If you have the PRMGBL privilege, 
you can create a permanent global section (set the SEC$V _PERM bit of the flags 
argument when you invoke SYS$CRMPSC). A permanent global section is not 
deleted until after it is marked for deletion with the SYS$DGBLSC system service 
(requires PRMGBL). Once a permanent section is marked for deletion, it is like a 
temporary section; when no image is mapped to it, the section is deleted. 

17.3.4.3 RMS Shared Files 

17-12 

RMS allows concurrent access to a file. Shared files can be one of the following 
formats: 

• Indexed files 

• Relative files 

• Sequential files with 512-byte fixed-length records 

To coordinate access to a file, RMS uses the lock manager. You can override the 
RMS lock manager by controlling access yourself. Refer to Chapter 15 for more 
information about synchronizing access to resources. 



18 
Creating User-Written System Services 

This chapter describes how to create user-written system services. It contains the 
following sections: 

Section 18.1 describes privileged routines and privileged shareable images. 

Section 18.2 describes how to write a privileged routine. 

Section 18.3 describes how to create a privileged shareable image on VAX 
systems. 

Section 18.4 describes how to create a privileged shareable image on AXP 
systems. 

18.1 Overview 
Your application may contain certain routines that perform privileged functions, 
called user-written system services. To create these routines, put them in 
a privileged shareable image. User-mode routines in other modules can call 
the routines in the privileged shareable image to perform functions in a more 
privileged mode. 

You create a privileged shareable image as you would any other shareable image, 
using the /SHAREABLE qualifier with the linker. (For more information about 
how to create a shareable image, see the Open VMS Linker Utility Manual.) 
However, because a call to a routine in a more privileged mode must be vectored 
through the system service dispatch routine, you must perform some additional 
steps. The following steps outline the basic procedure. Section 18.3 provides 
more detail about requirements specific to VAX systems. Section 18.4 describes 
the necessary steps for AXP systems. 

1. Create the source file. The source file for a privileged shareable image 
contains the routines that perform privileged functions. In addition, because 
user-written system services are called using the system service dispatcher, 
you must include a privileged library vector (PLV) in your shareable image. 
A PLV is an operating system-defined data structure that communicates the 
location of the privileged routines to the operating system. 

On VAX systems, the PLV contains the addresses of dispatch routines for 
each access mode used in the image. You must write these dispatch routines 
and include them in your shareable image. Section 18.3.1 provides more 
information. + 

18-1 



Creating User-Written System Services 
18.1 Overview .,. 

18-2 

On AXP systems, you list in the PLV the names of the privileged routines in 
the PLV, sorted by access mode. You do not need to create dispatch routines; 
the image activator creates them for you automatically. + 
Section 18.2 provides guidelines for creating privileged routines. 

2. Compile or assemble the source file. 

3. Create the shareable image. You create a privileged shareable image as you 
would any other shareable image: by specifying the /SHAREABLE qualifier 
to the LINK command. Note, however, that creating privileged shareable 
images has some additional requirements. The following list summarizes 
these requirements. See the Open VMS Linker Utility Manual for additional 
information about linker qualifiers and options. 

• Declare the privileged routine entry points as universal symbols. 
Privileged shareable images use the same mechanisms to declare 
universal symbols as other shareable images: transfer vectors on VAX 
and symbol vectors on AXP systems. However, because calls to user­
written system services must be vectored through the system service 
dispatcher, you must use extensions to these mechanisms for privileged 
shareable images. Section 18.3.3 describes how to declare a universal 
symbol in a VAX privileged shareable image. Section 18.4.2 describes 
how to declare a universal symbol in an AXP system privileged shareable 
image. 

• Prevent the linker from processing the system .default shareable image 
library, SYS$LIBRARY:IMAGELIB.OLB, by specifying the /NOSYSSHR 
linker qualifier. Otherwise, the linker processes this library by default. 

• Protect the shareable image from user-mode access by specifying the 
/PROTECT linker qualifier. If you want to protect only certain portions 
of the shareable image, instead of the entire image, use the PROTECT= 
linker option. 

• Set the VEC attribute of the program section containing the PLV by 
using the PSECT_ATTR= linker option. Modules written in MACRO can 
specify this attribute in the .PSECT directive. The PLV must appear in a 
program section with the VEC attribute set. 

• Set the shareable image identification numbers using the GSMATCH= 
option. 

If your privileged application requires that you link against the system 
executive, see the Open VMS Linker Utility Manual for more information. 

4. Install the privileged shareable image as a protected permanent global 
section. Privileged shareable images must be installed to be available to 
nonprivileged programs. The following procedure is recommended: 

a. Move the privileged shareable image to a protected directory, such as 
SYS$SHARE. 

b. Invoke the Install utility, specifying the /PROTECT, /OPEN, and 
/SHARED qualifiers. You can also specify the /HEADER_RESIDENT 
qualifier. The following entry could be used to install a user-written 
system service whose image name is MY_PRIV_SHARE: 

$ INSTALL 
INSTALL> ADD SYS$SHARE:MY_PRIV_SHARE/PROTECT/OPEN/SHARED/HEADER_RES 



Creating User-Written System Services 
18.1 Overview 

To use a privileged shareable image, you include it in a link operation as you 
would any other shareable image: specifying the shareable image in a linker 
options file with the /SHAREABLE qualifier appended to the file specification to 
identify it as a shareable image. 

18.2 Writing a Privileged Routine (User-Written System Service) 
On both VAX systems and AXP systems, the routines that implement user-written 
system services must enable any privileges they need that the nonprivileged user 
of the user-written system service lacks. The user-written system service must 
also disable any such privileges before the nonprivileged user receives control 
again. To enable or disable a set of privileges, use the Set Privileges ($SETPRV) 
system service. The following example shows the operator (OPER) and physical 
IIO (PHY_IO) privileges being enabled. (Any code executing in executive or kernel 
mode is granted an implicit SETPRV privilege so it can enable any privileges it 
needs.) 

PRVMSK: .LONG <l@PRV$V OPER>!<l@PRV$V PHY IO> ;OPER and PHY IO 
.LONG o ;quadword mask required. No bits set in 

;high-order longword for these privileges. 

$SETPRV_S ENBFLG=#l,­
PRVADR=PRVMSK 

;l=enable, O=disable 
;Identifies the privileges 

When you design your system service, you must carefully define the boundaries 
between the protected subsystem and the user who calls the service. A protected 
image has privileges to perform tasks on its own behalf. When your image 
performs tasks on behalf of the user, you must ensure that your image performs 
only those tasks the user could not have done on his or her own. Always keep the 
following coding principles in mind: 

• Keep privileges off, and turn them on only when necessary. 

• Make sure privileges are off on all exit paths. When you perform a task for 
the user, operate in user mode whenever possible and operate at all times 
with the user's privileges, identity, and so on. Make sure that operating in 
an inner mode does not give you any special privileges with respect to the 
operation being performed. Resume a privileged state only when you are 
about to resume operation on your own behalf. 

• If user input can affect an operation executed with privilege, you have to 
carefully validate the input. Never pass user parameters directly to an 
operation executed in an inner mode or with privilege. When designing your 
program, keep in mind that the inner modes implicitly provide a user with 
the system privileges SETPRV, CMKRNL, SYSNAM, and SYSLCK. (See the 
Open VMS Guide to System Security for descriptions.) 

• As a protected image, your program does not have the entire operating system 
programming environment at its disposal. Unless a module has the prefix 
SYS$ or EXE$, you must avoid calling it from an inner mode. In particular, 
do not call LIB$GET_ VM or LIB$RET_ VM from an inner mode. You can call 
Open VMS RMS routines from executive mode but not from kernel mode. 

18-3 



Creating User-Written System Services 
18.2 Writing a Privileged Routine (User-Written System Service) 

--

••• 

.. 
• 

On VAX systems, Version 5.4 or later of the operating system, any Open VMS 
RMS files that were opened with privilege from an inner mode can be left 
open during user execution; however, this is not acceptable on earlier versions 
of the operating system. + 

Never make subroutine calls to other shareable images from kernel or 
executive mode. 

When a protected subsystem opens a file on its own behalf, it should specify 
executive-mode logical names only by naming executive mode explicitly in the 
FAB$V _LNM_MODE subfield of the file access block (FAB). This prevents a 
user's logical name from redirecting a file specification. 

On VAX systems, refer to SYS$EXAMPLES:USSDISP.MAR and USSTEST.MAR 
for listings of modules in a user-written system service and of a module that calls 
the user-written system service. + 

On AXP systems, refer to SYS$EXAMPLES:UWSS.B32 and 
SYS$EXAMPLES:UWSSTST.B32. + 

18.3 Creating a Privileged Shareable Image {VAX Only) 

•m:• On VAX systems, you must create dispatch routines that transfer control to the 
privileged routines in your shareable image. You then put the addresses of these 
dispatch routines in a privileged library vector (PLV). Section 18.3.1 describes 
how to create a dispatch routine. Section 18.3.2 describes how to create a PLV. 

18.3.1 Creating User-Written Dispatch Routines on VAX Systems 

18-4 

On VAX systems, you must create kernel-mode and executive-mode dispatching 
routines that transfer control to the routine entry points. You must supply one 
dispatch routine for all your kernel mode routines and a separate routine for all 
the executive mode routines. The dispatcher is usually written using the CASE 
construct, with each routine identified by a code number. Make sure that the 
identification code you use in the dispatch routine and the code specified in the 
transfer vector identify the same routine. 

The image activator, when it activates a privileged shareable image, obtains the 
addresses of the dispatch routines from the PLV and stores these addresses at a 
location known to the system service dispatcher. When a call to a privileged 
routine is initiated by a CHME or CHMK instruction, the system service 
dispatcher attempts to match the code number with a system service code. If 
there is no match, it transfers control to the location where the image activator 
has stored the address of your dispatch routines. 

A dispatch routine must validate the CHMK or CHME operand identification 
code number, handling any invalid operands. In addition, the dispatching routine 
must transfer control to the appropriate routine for each identification code if 
the user-written system service contains functionally separate coding segments. 
The CASE instruction in VAX MACRO or a computed GOTO-type statement in a 
high-level language provides a convenient mechanism for determining where to 
transfer control. 



Creating User-Written System Services 
18.3 Creating a Privileged Shareable Image (VAX Only) 

Users of your privileged shareable image must specify the same code 
number to identify a privileged routine as you used to identify it in the 
dispatch routine. Users specify the code number in their CHMK or CHME 
instruction. See Section 18.3.3 for information about transfer vectors. 

In your source file, a dispatch routine must precede the routines that implement 
the user-written system service. 

Example 18-1 illustrates a sample dispatching routine, taken from the sample 
privileged shareable image in SYS$EXAMPLES named USSDISP.MAR. 

Example 18-1 Sample Dispatching Routine 

KERNEL DISPATCH:: 
MOVAB WA-KCODE BASE(RO),Rl 
BLSS KNOTME -
CMPW Rl,#KERNEL COUNTER 
BGEQU KNOTME -

Entry to dispatcher 
Normalize dispatch code value 
Branch if code value too low 
Check high limit 
Branch if out of range 

The dispatch code has now been verified as being handled by this dispatcher, 
now the argument list will be probed and the required number of arguments 
verified. 

MOVZBL 
MOVAL 
IFNORD 
CMPB 
BLSSU 
MOVL 
CASEW 

WAKERNEL NARG[Rl],Rl ; Get required argument count 
@#4[Rl],Rl ; Compute byte count including argcount 
Rl,(AP),KACCVIO ; Branch if arglist not readable 
(AP),WA<KERNEL NARG-KCODE BASE>[RO] ; Check for required number 
KINSFARG - - of arguments 
FP,SP ; Reset stack for service routine 
RO,- ; Case on change mode 

18.3.2 Creating a PLV on VAX Systems 
On VAX systems, a call to a privileged routine goes to the transfer vector which 
executes a change mode instruction (CHMx) specifying the identification code of 
the privileged routine as the operand to the instruction. The operating system 
routes the change mode instruction to the system service dispatch routine, which 
attempts to locate the system service with the code specified. Because the code is 
a negative number, the system service dispatcher drops through its list of known 
services and transfers control to a user-written dispatch routine, if any have been 
specified. 

18-5 



Creating User-Written System Services 
18.3 Creating a Privileged Shareable Image (VAX .Only) 

18-6 

The image activator has already placed at this location the address of whatever 
user-written dispatch routines it found in the privileged shareable image's PLV 
when it activated the PLV. The dispatch routine transfers control to the routine in 
the shareable image identified by the code. (You must ensure that the code used 
in the transfer vector and the code specified in the dispatch routine both identify 
the same routine.) Figure 18-1 illustrates this flow of control. 

Figure 18-1 Flow of Control Accessing a Privileged Routine on VAX Systems 

Executable Image 
(mytest.exe) 

Privileged Shareable 
Image (my_share.exe) 

r;:::! CHMK <change=mode=code> Vector 
CHMK <change mode code> }Transfer 

J I CHME <change mode code> 
my_serv --+----' !-····································· .. 

kernel-mode dispatcher address ·: '>. . Privileged 

.:~~~~~~~'=-~~s?.~~:~~~~~~~::' •••• r~ 1f Library Vector 

r--;-. my_share_k_dispatcher: --

my_share_e_dispatcher: 

my_serv_int: i.--

return 

OpenVMS Change Mode Dispatcher 

exe$cmdxxxx: 
[code does not 
match OpenVMS codes] 
JSB 

Image Activator Vector 
of User-Written Dispatchers 

~ JSB my_share_k_dispatcher ~ 

JSB my_share_e_dispatcher 14"·· 

OpenVMS Common 
Exit Path 

SRVEXIT: 

REI: 

Image activator 
set these fields to 
addresses of user­
written dispatchers 
when it activates a 
privileged shareable 
image. 

ZK-5071A-GE 



Creating User-Written System Services 
18.3 Creating a Privileged Shareable Image (VAX Only) 

Figure 18-2 shows the components of the PLV in VAX shareable images. 

Figure 18-2 Components of the Privileged Library Vector on VAX Systems 

31 0 

Vector Type Code 

Reserved 

Kernel-Mode Dispatcher 

Executive-Mode Entry 

User Rundown Service 

Reserved 

RMS Dispatcher 

Address Check 

ZK-5401A-GE 

Table 18-1 describes each field in the PLV on a VAX processor, including the 
symbolic names the operating system defines to access each field. These names 
are defined by the $PLVDEF macro in SYS$LIBRARY:STARLET.MLB. 

Table 18-1 Components of the VAX Privileged Library Vector 

Component Symbol Description 

Vector type code PLV$L_TYPE 

Kernel-mode dispatcher PLV$L_KERNEL 

Executive-mode P.LV$L_EXEC 
dispatcher 

Identifies the type of vector. For PLVs, you must specify 
the symbolic constant defined by the operating system, 
PLV$C_TYP _CMOD, which identifies a privileged 
library vector. 

Contains the address of the user-supplied kernel-mode 
dispatching routine if your privileged library contains 
routines that run in kernel mode. The address is 
expressed as an offset relative to the start of the data 
structure (self-relative pointer). A value of 0 indicates 
that a kernel-mode dispatcher does not exist. 

Contains the address of the user-supplied executive­
mode dispatching routine if your privileged library 
contains routines that run in executive mode. The 
address is expressed as an offset relative to the start of 
the data structure (self-relative pointer). A value of 0 
indicates that a kernel-mode dispatcher does not exist. 

(con~inued on next page) 

18-7 



Creating User-Written System Services 
18.3 Creating a Privileged Shareable Image (VAX Only) 

Table 18-1 (Cont.) Components of the VAX Privileged Library Vector 

Component Symbol Description 

User-supplied rundown 
routine 

PLV$L_USRUNDWN Contains the address of a user-supplied rundown 
routine that performs image-specific cleanup and 
resource deallocation if your privileged library contains 
such a routine. When the image linked against the 
user-written system service is run down by the system, 
this run-time routine is invoked. Unlike exit handlers, 
the routine is always called when a process or image 
exits. (The image rundown code calls this routine with 
a JSB instruction;1 it returns with an RSB instruction 
called in kernel mode at IPL 0.) 

RMS dispatcher 

Address check 

18-8 

PLV$L_RMS Contains the address of a user-supplied dispatcher for 
Open VMS RMS services. A value of 0 indicates that a 
user-supplied Open VMS RMS dispatcher does not exist. 
Only one user-written system service should specify the 
Open VMS RMS vector, because only the last value is 
used. This field is intended for use only by Digital. 

PLV$L_CHECK Contains a value to verify that a user-written system 
service that is not position independent is located at 
the proper virtual address. If the image is position 
independent, this field should contain a zero. If the 
image is not position independent, this field should 
contain its own address. 

Example 18-2 illustrates how the sample privileged shareable image in 
SYS$EXAMPLES assigns values to the PLV. 

Example 18-2 Assigning Values to a PLV on a VAX System 

.PAGE 

0 

$PLVDEF ; Define PLV fields 
.SBTTL Change Mode Dispatcher Vector Block 
.PSECT USER_SERVICES,PAGE,VEC,PIC,NOWRT,EXE 

.LONG PLV$C TYP CMOD 
.LONG 0 - -
.LONG KERNEL DISPATCH- . 
. LONG EXEC DlSPATCH-. 
.LONG USER-RUNDOWN-. 
. LONG 0 
.LONG 0 
.LONG 0 

Set type of vector to change mode 
Reserved 
Off set to kernel mode dispatcher 
Offset to executive mode dispatcher 
Off set to user rundown service 
Reserved • 
No RMS dispatcher 
Address check - PIC image 

0 The sample program sets the VEC attribute of the program section containing 
the PLV. 

8 Values are assigned to each field of the PLV. 



Creating User-Written System Services 
18.3 Creating a Privileged Shareable Image (VAX Only) 

18.3.3 Declaring Privileged Routines as Universal Symbols Using Transfer 
Vectors on VAX Systems 

On VAX systems, you use the transfer vector mechanism to declare universal 
symbols (described in the Open VMS Linker Utility Manual). However, for 
privileged shareable images, the transfer vector must also contain a CHM.x 
instruction because the target routine operates in a more privileged mode. You 
identify the privileged routine by its identification code, supplied as the only 
operand to the CHMx instruction. Note that the code number used must match 
the code used to identify the routine in the dispatch routine. The following 
example illustrates a typical transfer vector for a privileged routine: 

.TRANSFER my serv 

.MASK rny-serv 
CHMK <code number> 
RET -

Because the Open VMS system services codes are all positive numbers and 
since the call to a privileged routine is initially handled by the system service 
dispatcher, you should assign negative code numbers to identify your privileged 
routines so that they do not conflict with system services identification codes. + 

18.4 Creating a User-Written System Service (AXP. Only) 

11• On AXP systems, in addition to the routines that perform privileged functions, 
you must also include a PLV in your source file. However, on AXP systems, 
you list the privileged routines by name in the PLV. You do not need to create a 
dispatch routine that transfers control to the routine; the routine is identified by 
a special code. 

18.4.1 Creating a PLV on AXP Systems 
On AXP systems, the PLV contains a list of the actual addresses of the privileged 
routines. The image activator creates the dispatch routines. Figure 18-3 
illustrates the linkage for a privileged routine on AXP systems. 

18-9 



Creating User-Written System Services 
18.4 Creating a User-Written System Service (AXP Only) 

Figure 18-3 Linkage for a Privileged Routine after Image Activation 

PLV 

KERNEL_ROUTINE_UST 1--..... 

List of Kernel Mode Procedure Values 

,....---t-e .ADDRESS K_RTN1_1NT I-" 

t-e r-- .ADDRESS K_RTN2_1NT 

Linkage Section 

L__. Procedure descriptor for K_RTN2_1NT CTL$_DISPVEC:: I 

l ~ Procedure descriptor for K_RTN1_1NT 

'1 

f K RTN1 INT:: J : 5ervice:specific procedure 
-w BASE/CMOD_ TABLE 

t f 
K RTN2 INT:: CMOD_TABLE_END 
; service:specific procedure -

-. PLV_LIST APLD 

Symbol Vector PLV _FLAGS_LIST =0 

* ~ MAXCODE=65,536*2 

r---1 re Linkage pair for K_RTN2_EXT 

r--1 re Linkage pair for K_RTN1_EXT t J 
System Service Transfer Routines and Procedure Descriptors 

~ Procedure descriptor for K_RTN1_EXT j4---..J 

~ Procedure descriptor for K_RTN2_EXT 

K_RTN1_EXT:: 
BIS SP,R31,R28 
LDAH R0,1(R31) 
CALL_PAL CHMK 
RET 

K_RTN2_EXT:: 
BIS SP,R31,R28 
LDAH R0,2(R31) 
CALL_PAL CHMK 
RET 

LL. 

ZK-591 OA-GE 

Figure 18-4 shows the components of a PLV on AXP systems. 

18-10 



Creating User-Written System Services 
18.4 Creating a User-Written System Service (AXP Only) 

Figure 18-4. Components of the Privileged Library Vector on AXP Systems 

63 31 0 

System Version Number Vector Type Code 

Executive-Mode Routine Count Kernel-Mode Routine Count 

Address of Kernel-Mode Routines List 

Address of Executive-Mode Routines List 

Address of Kernel-Mode Rundown Routine 

Reserved 

Address of Alternate RMS Dispatching Routine 

Reserved 

Reserved 

ZK-5402A-GE 

Table 18-2 describes the components of the privileged library vector on AXP 
systems. 

18-11 



Creating User-Written System Services 
18.4 Creating a User-Written System Service (AXP Only) 

Table 18-2 Components of the AXP Privileged Library Vector 

Component 

Vector type code 

System version number 

Kernel-mode routine 
count 

Executive-mode routine 
count 

Kernel-mode routine list 

Executive-mode routine 
list 

User-supplied rundown 
routine 

Reserved 

RMS dispatcher 

Reserved 

Reserved 

Symbol 

PLV$L_TYPE 

PLV$L_ VERSION 

PLV$L_KERNEL_ROUTINE_ 
COUNT 

PLV$L_EXEC_ROUTINE_ 
COUNT 

PLV$PS_KERNEL_ROUTINE_ 
LIST 

PLV$PS_EXEC_ROUTINE_ 
LIST 

PLV$PS_KERNEL_ 
RUNDOWN_HANDLER 

PLV$PS_RMS_DISPATCHER 

Description 

Identifies the type of vector. You must specify 
the symbolic constant, PLV$C_TYP _CMOD, 
to identify a privileged library vector. 

System version number (unused). 

Specifies the number of user-supplied kernel­
mode routines listed in the kernel-mode 
routine list. The address of this list is 
specified in PLV$PS_KERNEL_ROUTINE_ 
LIST. 

Specifies the number of user-supplied 
executive-mode routines listed in the 
executive-mode routine list. The address 
of this list is specified in PLV$PS_EXEC_ 
ROUTINE_ LIST. 

Specifies the address of a list of user-supplied 
kernel-mode routines. 

Specifies the address of a list of user-supplied 
executive-mode routines. 

May contain the address of a user-supplied 
rundown routine that performs image-specific 
cleanup and resource deallocation. When 
the image linked against the user-written 
system service is run down by the system, 
this run-time routine is invoked. Unlike exit 
handlers, the routine is always called when 
a process or image exits. (Image rundown 
code calls this routine with a JSB instruction; 
it returns with an RSB instruction called in 
kernel mode at IPL 0.) 

Address of an alternative RMS dispatching 
routine. 

Example 18-3 illustrates how to create a PLV on AXP systems. 

18-12 



Creating User-Written System Services 
18.4 Creating a User-Written System Service (AXP Only) 

Example 18-3 Creating a PLV on AXP Systems 

What follows is the definition of the PLV. The PLV lives 
in its own PSECT, which must have the VEC attribute. The 
VEC attribute is forced in the linker. The PLV looks like 
this: 

+-------------------------------------+ 
I Vector Type Code I PLV$L_TYPE 

(PLV$C TYP CMOD) 
+---------------~---~-----------------+ 

I 
System Version Number I PLV$L_VERSION 

(unused) 
+-------------------------------------+ I Count of Kernel Mode Services I PLV$L_KERNEL_ROUTINE_COUNT 

+-------------------------------------+ I Count of Exec Mode Services I PLV$L_EXEC_ROUTINE_COUNT 

+-------------------------------------+ 
I 

Address of a List of Entry Points J PLV$PS_KERNEL_ROUTINE_LIST 
for Kernel Mode Services r · 

+-------------------------------------+ 
I 

Address of a List of Entry Points J PLV$PS_EXEC_ROUTINE_LIST 
for Exec Mode Services r 

+-------------~-----------------------+ 

I 
Address of Kernel.Mode I PLV$PS_KERNEL_RUNDOWN_HANDLER 

Rundown Routine 
+-------------------------------------+ I I Reserved 

+-------------------------------------+ . 
I 

Addre~s of A~ternati~e RMS I PLV$PS_RMS_DISPATCHER 
Dispatching Routine 

+-------------------------------------+ I Kernel Routine Flags Vector I PLV$PS_KERNEL_ROUTINE_FLAGS 

+-------------------------------------+ I Exec Routine Flags Vector I PLV$PS_EXEC_ROUTINE_FLAGS 

+-------------------------------------+ 
SECT OWN = USER_SERVICES (NOWRITE, NOEXECUTE); 

OWN PLV STRUCT: $BBLOCK[PLV$C LENGTH] INITIAL (LONG (PLV$C TYP CMOD,1 Type 
- - 1 of vector-

o, 
(KERNEL_TABLE_END - KERNEL_TABLE_START) / %UPVAL, 

(EXEC_TABLE_END - EXEC_TABLE_START) / %UPVAL, 

1 System version number 
1 Number of kernel mode 
1 services 
1 Number of exec mode 
1 services 

KERNEL TABLE START, 
EXEC TABLE START, 
RUNDOWN HANDLER, 

1 Address of list of kernel mode service routine 
Address of list of exec mode service routine 
Address of list of kernel mode rundown routine 
Reserved longword o, -

O, 
o, 
0)) i 

PSECT OWN = $OWN$; 

Address of alternate RMS dispatcher 
reserved 
reserved 

18-13 



Creating User-Written System Services 
18.4 Creating a User-Written System Service (AXP Only) 

18.4.2 Declaring Privileged Routines as Universal Symbols Using Symbol 

18-14 

Vectors on AXP Systems 
On AXP systems, you declare a user-written system service to be a universal · 
symbol by using the symbol vector mechanism. (See the Open VMS Linker Utility 
Manual for more information about creating symbol vectors.) However, because 
user-written system services must be accessed by using the privileged library 
vector (PLV), you must specify an alias for the user-written system service. Use 
the following syntax for the SYMBOL_ VECTOR= option to specify an alias that 
can be universal: 

SYMBOL_ VECTOR = ([universal_alias_name/]internal_name = {PROCEDURE I I 
DATA}) 

In a privileged shareable image, calls from within the image that use the alias 
name result in a fix-up and subsequent vectoring through the PLV, which results 
in a mode change. Calls from within the shareable image that use the internal 
name are made in the caller's mode. (Calls from external images always result in 
a fixup.) 

The linker command procedures and options file shown in Example 18-4 
illustrate how to declare universal symbols in an AXP system privileged shareable 
image. 

Example 18-4 Declaring Universal Symbols for Privileged Shareable Image on 
an AXP System 

$ 
$ Link the protected shareable image containing 
$ the user-written system services 
$ 
$ LINK /ALPHA -

/SHARE=UWSS -
/PROTECT -
/MAP=UWSS -
/SYSEXE -
/FULL/CROSS/NOTRACE -
uwss, -
SYS$INPUT:/OPTIONS 

Set the GSMATCH options 

GSMATCH=LEQUAL,1,1 

! 
! Define transfer vectors for protected shareable image 

SYMBOL VECTOR = ( -
- FIRST SERVICE 

SECOND SERVICE 
THIRD SERVICE 
FOURTH SERVICE 
) -

= PROCEDURE, -
= PROCEDURE, -
= PROCEDURE, -
= PROCEDURE -

Need to add the VEC attribute to the PLV psect 

PSECT=USER_SERVICES,VEC + 



19 
Memory Management Services and Routines 

(VAX Only) 

This chapter describes the use of system services and run-time routines that VAX 
systems use to manage memory. It contains the following sections: 

Section 19.1 describes the page size on VAX systems. 

Section 19.2 describes the layout of virtual address space. 

Section 19.3 describes extended addressing enhancements on selected VAX 
systems. 

Section 19.4 describes the three levels of memory allocation routines. 

Section 19.5 discusses how to use system services to add virtual address space, 
adjust working sets, control process swapping, and create and manage sections. 

19.1 Virtual Page Size 
To facilitate memory protection and mapping, the virtual addresss space on 
VAX systems is subdivided into segments of 512-byte sizes called pages. (On 
AXP systems, memory page sizes are much larger and vary from system to 
system. See Chapter 20 for information about AXP page sizes.) Versions of 
system services and run-time library routines that accept page-count values 
as arguments interpret these arguments in 512-byte quantities. Services and 
routines automatically round the specified addresses to page boundaries. 

19.2 Virtual Address Space 
The initial size of a process's virtual address space depends on the size of the 
image being executed. The virtual address space of an executing program consists 
of the following three regions: 

• Process program region (PO) 

The process program region is also referred to as PO space. PO space contains 
the instructions and data for the current image. 

Your program can dynamically allocate storage in the process program region 
by calling run-time library (RTL) dynamic memory allocation routines or 
system services. 

• Process control region (Pl) 

The process control region is also referred to as Pl space. Pl space contains 
system control information and the user-mode process stack. The user mode 
stack expands as necessary toward the lower-addressed end of Pl space. 

19-1 



Memory Management Services and Routines (VAX Only) 
19.2 Virtual Address Space 

19-2 

• Common system region (SO) 

The common system region is also referred to as SO space. SO space contains 
the operating system. Your program cannot allocate or free memory within 
the common system region from the user access mode. 

This common system region (SO) of system virtual address space can have 
appended to it additional virtual address space, known as a reserved region, 
or Sl space, that creates a single region of system space. As a result, the 
system virtual address space increases from 1 GB to 2 GB. 

A summary of these regions appears in Figure 19-1. 

Figure 19-1 Virtual Address Overview on VAX Systems 

PO 

- Instructions 
- Data 

P1 

- User-Mode 
Process Stack 

- System Control 
Information 

so 

-OpenVMS VAX 

Process 
Program 
Region 

Process 
Control 
Region 

Common 
System 
Region 

ZK-4145-GE 

The memory management routines map and control the relationship between 
physical memory and the virtual address space of a process. These activities 
are, for the most part, transparent to you and your programs. In some cases, 
however, you can make a program more efficient by explicitly controlling its 
virtual memory usage. 

The maximum size to which a process can increase its address space is controlled 
by the system parameter VIRTUALPAGECNT. 

Using memory management system services, a process can add a specified 
number of pages to the end of either the program region or the control region. 
Adding pages to the program region provides the process with additional space 
for image execution, for example, for the dynamic creation of tables or data 
areas. Adding pages to the control region increases the size of the user stack. 



Memory Management Services and Routines (VAX Only) 
19.2 Virtual Address Space 

As new pages are referenced, the stack is automatically expanded, as shown in 
Figure 19-2. (By using the STACK= option in a linker options file, you can also 
expand the user stack when you link the image.) 

Figure 19-2 illustrates the layout of a process's virtual memory. The initial 
size of a process's virtual address space depends on the size of the image being 
executed. 

Figure 19-2 Layout of VAX Process Virtual Address Space 

Virtual 
Address 
00000000 

3FFFFFFF 
40000000 

Program Region 
(PO) 

T 
I 
I 
I 
I 

Direction of 
Growth 

I 
I 
I 
I 
I 
I 

~ Length ---------------------1 

1-------------------------------------1 
Control Region 

(P1) 

Length --------------------_, 
t 
I 
I 
I 
I 
I 
I 

Direction of 
Growth 

I 
I 
I 
I 

7FFFFFFF ---------------------'l ___ ___. 
ZK-0861-GE 

19.3 Extended Addressing Enhancements on Selected VAX 
Systems 

Selected VAX systems have extended addressing (XA) as part of the Memory 
Management Subsystem. Extended addressing enhancement is supported on the 
VAX6000-600, VAX7000-600, and VAXl0000-600 systems. Extended addressing 
contains the following two major enhancements that affect system images, system 
integrated products (SIPs), privileged layered products (LPs), and device drivers: 

• Extended physical addressing CXPA) 

• Extended virtual addressing (:XVA) 

19-3 



Memory Management Services and Routines (VAX Only) 
19.3 Extended Addressing Enhancements on Selected VAX Systems 

19-4 

Extended physical addressing increases the size of a physical address from 30 
bits to 32 bits. This increases the capacity for physical memory from 512 MB to 
3.5 GB as shown in Figure 19-3. The 512 MB is still reserved for 1/0 and adapter 
space. 

Figure 19-3 Physical Address Space for VAX Systems with XPA 

VAX without 
Extended Addressing 
30-bit Address Space 

0 0000 0000 

512 MB 
Memory 
Space 

------ 2000 0000 

512 MB 
1/0 

1 GB------ 3FFF FFFF 

VAX with 
Extended Addressing 
32-bit Address Space 

0 0000 0000 

Memory 
Space 

3.5 GB------ EOOO 0000 

512 MB 
1/0 

4 GB .....__ ____ ........ FFFF FFFF 

ZK-5065A-GE 

Extended virtual addressing CXVA) increases the size of the virtual page number 
field in the format of a system space address from 21 bits to 22 bits. The region 
of system virtual address space, known as the reserved region or Sl space, is 
appended to the existing region of system virtual address space known as SO 
space, thereby creating a single region of system space. As a result, the system 
virtual address space increases from 1 GB to 2 GB as shown in Figure 19-4. 



Memory Management Services and Routines (VAX Only) 
19.3 Extended Addressing Enhancements on Selected VAX Systems 

Figure 19-4 Virtual Address Space for VAX Systems with XVA 

VAX without 
Extended Addressing 

Virtual Space 

PO 
Space 

P1 
Space 

1 GB 
System 
Region 

(SO) 

Reserved 
Region 
(S1) 

0000 0000 

4000 0000 

8000 0000 

cooo 0000 

FFFFFFFF 

VAX with 
Extended Addressing 

Virtual Space 

PO 
Space 

P1 
Space 

2GB 
System 
Space 

0000 0000 

4000 0000 

8000 0000 

FFFFFFFF 

ZK-5066A-GE 

19.3.1 Page Table Entry for Extended Addresses on VAX Systems 
As shown in Figure 19-3, extended addressing increases the maximum physical 
address space supported by VAX systems from 1 gigabyte to 4 gigabytes. This is 
accomplished by expanding the page frame number (PFN) field in a page table 
entry (PTE) from 21 bits to 23 bits, and implementing changes in the memory 
management arrays that are indexed by PFN. Both the process page table entry 
and system page table entry are changed. 

19.4 Levels of Memory Allocation Routines 
Sophisticated software systems must often create and manage complex data 
structures. In these systems, the size and number of elements are not always 
known in advance. You can tailor the memory allocation for these elements 
by using dynamic memory allocation. By managing the memory allocation, 
you can avoid allocating fixed tables that may be too large or too small for your 
program. Managing memory directly can improve program efficiency. By allowing 
you to allocate specific amounts of memory, the operating system provides a 
hierarchy of routines and services for memory management. Memory allocation 
and deallocation routines allow you to allocate and free storage within the virtual 
address space available to your process. 

There are three levels of memory allocation routines: 

1. Memory management system services 

The memory management system services comprise the lowest level of 
memory allocation routines. These services include, but are not limited to, 
the following: 

SYS$EXPREG (Expand Region) 
SYS$CRETVA (Create Virtual Address Space) 
SYS$DELTVA (Delete Virtual Address Space) 

19-5 



Memory Management Services and Routines (VAX Only) 
19.4 Levels of Memory Allocation Routines 

19-6 

SYS$CRMPSC (Create and Map Section) 
SYS$MGBLSC (Map Global Section) 
SYS$DGBLSC (Delete Global Section) 

For most cases in which a system service is used for memory allocation, the 
Expand Region (SYS$EXPREG) system service is used to create pages of 
virtual memory. 

Because system services provide more control over allocation procedures than 
RTL routines, you must manage the allocation precisely. System services 
provide extensive control over address space allocation by allowing you to do 
the following types of tasks: 

• Add or delete virtual address space to the process program region (PO) or 
process control region (Pl) 

• Add or delete virtual address space at a specific range of addresses 

• Increase or decrease the number of pages in a program's working set 

• Lock or delete pages of a program's working set in memory 

• Lock the entire program's working set in memory (by disabling process 
swapping) 

• Define disk files containing data or shareable images and map the files 
into the virtual address space of a process 

2. RTL page management routines 

RTL routines are available for creating, deleting, and accessing information 
about virtual address space. You can either allocate a specified number of 
contiguous pages or create a zone of virtual address space. A zone is a logical 
unit of the memory pool or subheap that you can control as an independent 
area. It can be any size required by your program. Refer to Chapter 21 for 
more information about zones. 

The RTL page management routines LIB$GET_VM_PAGE and LIB$FREE_ 
VM_PAGE provide a convenient mechanism for allocating and freeing pages 
of memory. 

These routines maintain a processwide pool of free pages. If unallocated 
pages are not available when LIB$GET_ VM_PAGE is called, it calls 
SYS$EXPREG to create the required pages in the program region (PO 
space). 

3. RTL heap management routines 

The RTL heap management routines LIB$GET_ VM and LIB$FREE_ VM 
provide a mechanism for allocating and freeing blocks of memory of arbitrary 
size. 

The following are heap management routines based on the concept of zones: 

LIB$CREATE_ VM_ZONE 
LIB$CREATE_USER_ VM_ZONE 
LIB$DELETE_ VM_ZONE 
LIB$FIND_VM_ZONE 
LIB$RESET_ VM_ZONE 
LIB$SHOW _ VM_ZONE 
LIB$VERIFY_ VM_ZONE 

If an unallocated block is not available to satisfy a call to LIB$GET_ VM, 
LIB$GET_ VM calls LIB$GET_ VM_PAGE to allocate additional pages. 



Memory Management Services and Routines (VAX Only) 
19.4 Levels of Memory Allocation Routines 

Modular application programs can call routines at any or all levels of the 
hierarchy, depending on the kinds of services the application program needs. You 
must observe the following basic rule when using multiple levels of the hierarchy: 

• Memory that is allocated by an allocation routine at one level of the hierarchy 
must be freed by calling a deallocation routine at the same level of the 
hierarchy. For example, if you allocated a page of memory by calling 
LIB$GET_ VM_PAGE, you can free it only by calling LIB$FREE_ VM_PAGE. 

Figure 19-5 shows the three levels of memory allocation routines. 

Figure 19-5 Hierarchy of VAX Memory Management Routines 

RTL Heap Management Routines 

LIB$CREATE_USER_ VM_ZONE 
LIB$CREATE_ VM_ZONE 
LIB$DELETE_ VM_ZONE 
LIB$FIND_ VM_ZONE 
LIB$FREE_ VM 

LIB$GET_VM 
LIB$RESET _ VM_lONE 
LIB$SHOW_ VM_ZONE 
LIB$VERIFY _ VM_ZONE 

RTL Page Management Routines 

LIB$FREE_ VM_PAGE LIB$GET _ VM_PAGE 

Memory Management System Services 

$CRETVA 
$CRMPSC 

$DEL TVA 
$DGBLSC 

$EXP REG 
$MGBLSC 

ZK-4146-GE 

For information about using memory management RTLs, see Chapter 21. 

19.5 Using System Services for Memory Allocation 
This section describes how to use system services to perform the following tasks: 

• Increase and decrease virtual address space 

• Input and return address arrays 

• Control page ownership and protection 

• Control working set paging 

• Control process swapping 

19-7 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

19.5.1 Increasing and Decreasing Virtual Address Space 

19-8 

The system services allow you to add address space anywhere within the process's 
program region (PO) or control region (Pl). To add address space at the end of PO 
or Pl, use the Expand Program/Control Region (SYS$EXPREG) system service. 
SYS$EXPREG optionally returns the range of virtual addresses for the new 
pages. To add address space in other portions of PO or Pl, use SYS$CRETVA. 

The format for SYS$EXPREG is as follows: 

SYS$EXPREG (pagcnt,[retadr],[acmode],[region]) 

Specifying the Number of Pages 
Use the pagcnt argument to specify the number of pages to add to the end of 
the region. The range of addresses where the new pages are added is returned in 
retadr. 

Specifying the Access Mode 
Use the acmode argument to specify the access to be assigned to the newly 
created pages. 

Specifying the Region 
Use the region argument to specify whether to add the pages to the end of the 
PO or Pl region. This argument is optional. 

To deallocate pages allocated with SYS$EXPREG, use SYS$DELTVA. 

The following example illustrates how to add 4 pages to the program region of a 
process by writing a call to the SYS$EXPREG system service: 

#include <stdio.h> 
#include <ssdef .h> 

main () { 
unsigned int status, retadr[l],pagcnt=4, region=O; 

/* Add 4 pages to PO space */ 
status= SYS$EXPREG( pagcnt, &retadr, O, region); 
if ( ( status & 1) l= 1) 

else 
LIB$SIGNAL( status ); 

printf("Starting address: %d Ending address: %d\n", 
retadr.lower,retadr.upper); 

The value 0 is passed in the region argument to specify that the pages are to 
be added to the program region. To add the same number of pages to the control 
region, you would specify REGION=#l. 

Note that the region argument to SYS$EXPREG is optional; if it is not specified, 
the pages are added to or deleted from the program region by default. 

The SYS$EXPREG service can add pages only to the end of a particular region. 
When you need to add pages to the middle of these regions, you can use the 
Create Virtual Address Space (SYS$CRETVA) system service. Likewise, when 
you need to delete pages created by either SYS$EXPREG or SYS$CRETVA, you 
can use the Delete Virtual Address Space (SYS$DELTVA) system service. For 
example, if you have used the SYS$EXPREG service twice to add pages to the 
program region and want to delete the first range of pages but not the second, you 
could use the SYS$DELTVA system service, as shown in the following example: 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

#include <stdio.h> 
#include <ssdef .h> 

struct { 
unsigned int lower, upper; 

}retadrl, retadr2, retadr3; 

main() { 
unsigned int status, pagcnt=4, region=O; 

/* Add 4 pages to PO space */ 
status= SYS$EXPREG( pagcnt, &retadrl, O, region); 
if (( status & 1) != 1) 

else 
LIB$SIGNAL( status ); 

printf("Starting address: %d ending address: %d\n", 
retadrl.lower,retadrl.upper); 

/* Add 3 more pages to PO space */ 

pagcnt = 3; 
status= SYS$EXPREG( pagcnt, &retadr2, O, region); 
if (( status & 1) != 1) 

LIB$SIGNAL( status ); 
else 

printf("Starting address: %d ending address: %d\n", 
retadr2.lower,retadr2.upper); 

/* Delete original allocation */ 
status= SYS$DELTVA( &retadrl, &retadr3, 0 ); 
if (( status & 1) != 1) 

else 
LIB$SIGNAL( status ); 

printf("Starting address: %d ending address: %d\n", 
retadrl.lower,retadrl.upper); 

In this example, the first call to SYS$EXPREG adds 4 pages to the program 
region; the virtual addresses of the created pages are returned in the 2-longword 
array at BEGSPACEA. The second call adds 3 pages and returns the addresses at 
BEGSPACEB. The call to SYS$DELTVA deletes the first 4 pages that were added. 

Caution ------------­

Be aware that using SYS$CRETVA presents some risk because it can 
delete pages that already exist if those pages are not owned by a more 
privileged access mode. Further, if those pages are deleted, no notification 
is sent. Therefore, unless you have complete control over an entire 
system, use SYS$EXPREG or the RTL routines to allocate address space. 

19.5.2 Input Address Arrays and Return Address Arrays 
When SYS$EXPREG adds pages to a region, it adds them in the normal direction 
of growth for the region. The return address array, if requested, indicates the 
order in which the pages were added. For example: 

• If the program region is expanded, the starting virtual address is smaller 
than the ending virtual address. 

• If the control region is expanded, the starting virtual address is larger than 
the ending virtual address. 

19-9 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

The addresses returned indicate the first byte in the first page that was added or 
deleted and the last byte in the last page that was added or deleted. 

When input address arrays are specified for the Create and Delete Virtual 
Address Space (SYS$CRETVA and SYS$DELTVA, respectively) system services, 
these services add or delete pages beginning with the address specified in the 
first longword and ending with the address specified in the second longword. 

Note ~~~~~~~~~~~~~ 

The operating system always adjusts the starting and ending virtual 
addresses up or down to fit page boundaries. 

The order in which the pages are added or deleted does not have to be in the 
normal direction of growth for the region. Moreover, because these services add 
or delete only whole pages, they ignore the low-order 9 bits of the specified virtual 
address (the low-order 9 bits contain the byte offset within the page). The virtual 
addresses returned indicate the byte offsets. 

Table 19-1 shows some sample virtual addresses that may be specified as input 
to SYS$CRETVA or SYS$DELTVA and shows the return address arrays if all 
pages are successfully added or deleted. 

Table 19-1 Sample Virtual Address Arrays on VAX Systems 

Input Array Output Array 

Number 
of 

Start End Region Start End Pages 

1010 1670 PO 1000 17FF 4 

1450 1451 PO 1400 15FF 1 

1200 1000 PO 1000 13FF 2 

1450 1450 PO 1400 15FF 1 

7FFEC010 7FFEC010 Pl 7FFEC1FF 7FFECOOO 1 

7FFEC010 7FFEBCAO Pl 7FFEC1FF 7FFEBCOO 3 

Note that if the input virtual addresses are the same, as in the fourth and fifth 
items in Table 19-1, a single page is added or deleted. The return address array 
indicates that the page was added or deleted in the normal direction of growth for 
the region. 

19.5.3 Page Ownership and Protection 

19-10 

Each page in the virtual address space of a process is owned by the access mode 
that created the page. For example, pages in the program region that are initially 
provided for the execution of an image are owned by user mode. Pages that the 
image creates dynamically are also owned by user mode. Pages in the control 
region, except for the pages containing the user stack, are normally owned by 
more privileged access modes. 

Only the owner access mode or a more privileged access mode can delete the 
page or otherwise affect it. The owner of a page can also indicate, by means of a 
protection code, the type of access that each access mode will be allowed. 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

The Set Protection on Pages (SYS$SETPRT) system service changes the 
protection assigned to a page or group of pages. The protection is expressed 
as a code that indicates the specific type of access (none, read-only, read/write) 
for each of the four access modes (kernel, executive, supervisor, user). Only the 
owner access mode or a more privileged access mode can change the protection 
for a page. 

When an image attempts to access a page that is protected against the access 
attempted, a hardware exception called an access violation occurs. When an 
image calls a system service, the service probes the pages to be used to determine 
whether an access violation would occur if the image attempts to read or write 
one of the pages. If an access violation would occur, the service exits with the 
status code SS$_ACCVIO. 

Because the memory management services add, delete, or modify a single page at 
a time, one or more pages can be successfully changed before an access violation 
is detected. If the retadr argument is specified in the service call, the service 
returns the addresses of pages changed (added, deleted, or modified) before the 
error. If no pages are affected, that is, if an access violation would occur on the 
first page specified, the service returns a value of -1 in both longwords of the 
return address array. 

If the retadr argument is not specified, no information is returned. 

19.5.4 Working Set Paging 
When a process is executing an image, a subset of its pages resides in physical 
memory; these pages are called the working set of the process. The working set 
includes pages in both the program region and the control region. The initial size 
of a process's working set is usually defined by the process's working set default 
(WSDEFAULT) quota. The maximum size of a process's working set is normally 
defined by the process's working set quota (WSQUOTA). When ample memory 
is available, a process's working-set upper growth limit can be expanded by its 
working set extent (WSEXTENT). 

When the image refers to a page that is not in memory, a page fault occurs and 
the page is brought into memory, replacing an existing page in the working set. 
If the page that is going to be replaced is modified during the execution of the 
image, that page is written into a paging file on disk. When this page is needed 
again, it is brought back into memory, again replacing a current page from the 
working set. This exchange of pages between physical memory and secondary 
storage is called paging. 

The paging of a process's working set is transparent to the process. However, if 
a program is very large or if pages in the program image that are used often are 
being paged in and out frequently, the overhead required for paging may decrease 
the program's efficiency. The SYS$ADJWSL, SYS$PURGWS,and SYS$LKWSET 
system services allow a process, within limits, to counteract these potential 
problems. 

SYS$ADJWSL System Service 
The Adjust Working Set Limit (SYS$ADJWSL) system service increases or 
decreases the maximum number of pages that a process can have in its working 
set. The format for this routine is as follows: 

SYS$ADJWSL ([pagcnt],[wsetlm]) 

Use the pagcnt argument to specify the number of pages to add or subtract from 
the current working set size. The new working set size is returned in wsetlm. 

19-11 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

SYS$PURGWS System Service 
The Purge Working Set (SYS$PURGWS) system service removes one or more 
pages from the working set. 

SYS$LKWSET System Service 
The Lock Pages in Working Set (SYS$LKWSET) system service makes one 
or more pages in the working set ineligible for paging by locking them in the 
working set. Once locked into the working set, those pages remain until they are 
explicitly unlocked with the Unlock Pages in Working Set (SYS$ULWSET) system 
service or until program execution ends. The format is as follows: 

SYS$LKWSET (inadr,[retadr],[acmode]) 

Specifying a Range of Addresses Use the inadr argument to specify the range 
of addresses to be locked. The range of addresses of the pages actually locked are 
returned in the retadr argument. 

Specifying the Access Mode Use the acmode argument to specify the access 
mode to be associated with the pages you want locked. 

19.5.5 Process Swapping 

19-12 

The operating system balances the needs of all the processes currently executing, 
providing each with the system resources it requires on an as-needed basis. The 
memory management routines balance the memory requirements of the process. 
Thus, the sum of the working sets for all processes currently in physical memory 
is called the balance set. 

When a process whose working set is in memory becomes inactive-for example, 
to wait for an I/O request or to hibernate-the entire working set or part of it 
may be removed from memory to provide space for another process's working set 
to be brought in for execution. This removal from memory is called swapping. 

The working set may be removed in two ways: 

• Partially-Also called swapper trimming. Pages are removed from the 
working set of the target process so that the number of pages in the working 
set is fewer, but the working set is not swapped. 

• Entirely-Called swapping. All pages are swapped out of memory. 

When a process is swapped out of the balance set, all the pages (both modified 
and unmodified) of its working set are swapped, including any pages that had 
been locked in the working set. 

A privileged process may lock itself in the balance set. While pages can still be 
paged in and out of the working set, the process remains in memory even when 
it is inactive. To lock itself in the balance set, the process issues the Set Process 
Swap Mode (SYS$SETSWM) system service, as follows: 

$SETSWM_S SWPFLG=#l 

This call to SYS$SETSWM disables process swap mode. You can also disable 
swap mode by setting the appropriate bit in the STSFLG argument to the 
Create Process (SYS$CREPRC) system service; however, you need the PSWAPM 
privilege to alter process swap mode. 

A process can also lock particular pages in memory with the Lock Pages in 
Memory (SYS$LCKPAG) system service. These pages are not part of the process's 
working set, but they are forced into the process's working set. When pages are 
locked in memory with this service, the pages remain in memory even when the 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

remainder of the process's working set is swapped out of the balance set. These 
remaining pages stay in memory until they are unlocked with SYS$ULKPAG. 
SYS$LCKPAG can be useful in special circumstances, for example, for routines 
that perform I/O operations to devices without using the operating system's I/O 
system. 

You need the PSWAPM privilege to issue SYS$LCKPAG or SYS$ULKPAG. 

19.5.6 Sections 
A section is a disk file or a portion of a disk file containing data or instructions 
that can be brought into memory and made available to a process for 
manipulation and execution. A section can also be one or more consecutive 
page frames in physical memory or I/O space; such sections, which require you to 
specify page frame number (PFN) mapping, are discussed in Section 19.5.6.15. 

Sections are either private or global (shared). 

• Private sections are accessible only by the process that creates them. A 
process can define a disk data file as a section, map it into its virtual address 
space, and manipulate it. 

• Global sections can be shared by more than one process. One copy of the 
global section resides in physical memory, and each process sharing it refers 
to the same copy. A global section can contain shareable code or data that can 
be read, or read and written, by more than one process. Global sections are 
either temporary or permanent and can be defined for use within a group or 
on a systemwide basis. Global sections can be either mapped to a disk file or 
created as a global page-file section. 

When modified pages in writable disk file sections are paged out of memory 
during image execution, they are written back into the section file rather than 
into the paging file, as is the normal case with files. (However, copy-on-reference 
sections are not written back into the section file.) 

The use of disk file sections involves these two distinct operations: 

• The creation of a section defines a disk file as a section and informs the 
system what portions of the file contain the section. 

• The mapping of a section makes it available to a process and establishes the 
correspondence between virtual blocks in the file and specific addresses in the 
virtual address space of a process. 

The Create and Map Section (SYS$CRMPSC) system service creates and maps 
a private section or a global section. Because a private section is used only by a 
single process, creation and mapping are simultaneous operations. In the case of 
a global section, one process can create a permanent global section and not map 
to it; other processes can map to it. A process can also create and map a global 
section in one operation. 

The following sections describe the creation, mapping, and use of disk file 
sections. In each case, operations and requirements that are common to both 
private sections and global sections are described first, followed by additional 
notes and requirements for the use of global sections. Section 19.5.6.9 discusses 
global page-file sections. 

19-13 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

19.5.6.1 Creating Sections 
To create a disk file section, follow these steps: 

1. Open or create the disk file containing the section. 

2. Define which virtual blocks in the file comprise the section. 

3. Define the characteristics of the section. 

19.5.6.2 Opening the Disk File 

19-14 

Before you can use a file as a section, you must open it using Open VMS Record 
Management Services (RMS). The following example shows the Open VMS RMS 
file access block ($FAB) and $OPEN macros used to open the file and the channel 
specification to the SYS$CRMPSC system service necessary for reading an 
existing file: 

#include <rms.h> 
#include <rmsdef .h> 
#include <string.h> 
#include <secdef .h> 

struct FAB secfab; 

main() { 
unsigned short chan; 
unsigned int status, retadr[l], pagcnt=l, flags; 
char *fn = "SECTION.TST"; 

/* Initialize FAB fields */ 
secfab = cc$rms fab; 
secfab.fab$1 fna = fn; 
secfab.fab$b-fns = strlen(fn); 
secfab.fab$1-fop = FAB$V CIF; 
secfab.fab$b=rtv = -1; -

/* Create a file if none exists */ 
status= SYS$CREATE( &secfab, O, 0 ); 
if ( (status & 1) 1 = 1) 

LIB$SIGNAL( status ); 

flags = SEC$M EXPREG; 
chan = secfab:fab$1 stv; 
status= SYS$CRMPSC(O, &retadr, O, O, O, O, flags, chan, pagcnt, O, O, O); 
if ((status & 1) 1= 1) 

LIB$SIGNAL( status ); 

In this example, the file options parameter (FOP) indicates that the file is to be 
opened for user I/O; this parameter is required so that Open VMS RMS assigns 
the channel using the access mode of the caller. Open VMS RMS returns the 
channel number on which the file is accessed; this channel number is specified as 
input to SYS$CRMPSC (chan argument). The same channel number can be used 
for multiple create and map section operations. 

The option RTV =-1 tells the file system to keep all of the pointers to be mapped 
in memory at all times. If this option is omitted, SYS$CRMPSC requests the file 
system to expand the pointer areas, if necessary. Storage for these pointers is 
charged to the BYTLM quota, which means that opening a badly fragmented file 
can fail with an EXBYTLM failure status. Too many fragmented sections may 
cause the byte limit to be exceeded. 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

The file may be a new file that is to be created while it is in use as a section. In 
this case, use the $CREATE macro to open the file. If you are creating a new file, 
the file access block (FAB) for the file must specify an allocation quantity (ALQ 
parameter). 

You can also use SYS$CREATE to open an existing file; if the file does not exist, 
it is created. The following example shows the required fields in the FAB for the 
conditional creation of a file: 

GBLFAB: $FAB FNM=<GLOBAL.TST>, -
ALQ=4, -
FAC=PUT,­
FOP=<UFO,CIF ,CBT>, -
SHR=<PUT,UPI> 

$CREATE FAB=GBLFAB 

When the $CREATE macro is invoked, it creates the file GLOBAL.TST if the 
file does not currently exist. The CBT (contiguous best try) option requests that, 
if possible, the file be contiguous. Although section files are not required to be 
contiguous, better performance can result if they are. 

19.5.6.3 Defining the Section Extents 
After the file is opened successfully, SYS$CRMPSC can create a section either 
from the entire file or from certain portions of it. The following arguments to 
SYS$CRMPSC define the extents of the file that comprise the section: 

• pagcnt (page count). This argument is required. It indicates the number of 
virtual blocks that will be mapped. These blocks correspond to pages in the 
section. 

• vbn (virtual block number). This argument is optional. It defines the number 
of the virtual block in the file that is the beginning of the section. If you do 
not specify this argument, the value 1 is passed (the first virtual block in the 
file is the beginning of the section). If you have specified physical page frame 
number (PFN) mapping, the vbn argument specifies the starting PFN. The 
system does not allow you to specify a virtual block number outside of the file. 

19.5.6.4 Defining the Section Characteristics 
The :Hags argument to SYS$CRMPSC defines the following section 
characteristics: 

• Whether it is a private section or a global section. The default is to create a 
private section. 

• How the pages of the section are to be treated when they are copied into 
physical memory or when a process refers to them. The pages in a section can 
be either or both of the following: 

Read/write or read-only 

Created as demand-zero pages or as copy-on-reference pages, depending 
on how the processes are going to use the section and whether the file 
contains any data (see Section 19.5.6.10) 

• Whether the section is to be mapped to a disk file or to specific physical page 
frames (see Section 19.5.6.15). 

19-15 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

Table 19-2 shows the flag bits that must be set for specific characteristics. 

Table 19-2 Flag Bits to Set for Specific Section Characteristics on VAX Systems 

Section to Be Created 

Correct Flag PFN PFN Shared 
Combinations Private Global Private Global Memory 

SEC$M_GBL 0 1 0 1 1 

SEC$M_CRF Optional Optional 0 0 0 

SEC$M_DZRO Optional Optional 0 0 Optional 

SEC$M_WRT Optional Optional Optional Optional Optional 

SEC$M_PERM Not used Optional Optional 1 1 

SEC$M_SYSGBL Not used Optional Not used Optional Optional 

SEC$M_PFNMAP 0 0 1 1 0 

SEC$M_EXPREG Optional Optional Optional Optional Optional 

SEC$M_PAGFIL 0 Optional 0 0 0 

When you specify section characteristics, the following restrictions apply: 

• Global sections cannot be both demand-zero and copy-on-reference. 

• Demand-zero sections must be writable. 

• Shared memory private sections are not allowed. 

19.5.6.5 Defining Global Section Characteristics 

19-16 

If the section is a global section, you must assign it a character string name 
(gsdnam argument) so that other processes can identify it when they map it. 
The format of this character string name is explained in Section 19.5.6.6. 

The flags argument specifies the following types of global sections: 

• Group temporary (the default) 

• Group permanent 

• System temporary 

• System permanent 

Group global sections can be shared only by processes executing with the same 
group number. The name of a group global section is implicitly qualified by the 
group number of the process that created it. When other processes map it, their 
group numbers must match. 

A temporary global section is automatically deleted when no processes are 
mapped to it, but a permanent global section remains in existence even when 
no processes are mapped to it. A permanent global section must be explicitly 
marked for deletion with the Delete Global Section (SYS$DGBLSC) system 
service. 

You need the user privileges PRMGBL and SYSGBL to create permanent group 
global sections or system global sections (temporary or permanent), respectively. 

A system gl?bal section is available to all processes in the system. 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

Optionally, a process creating a global section can specify a protection mask (prot 
argument), restricting all access or a type of access (read, write, execute, delete) 
to other processes. 

19.5.6.6 Global Section Name 
The gsdnam argument specifies a descriptor that points to a character string. 

Translation of the gsdnam argument proceeds in the following manner: 

1. The current name string is prefixed with GBL$ and the result is subject to 
logical name translation. 

2. If the result is a logical name, step 1 is repeated until translation does not 
succeed or until the number of translations performed exceeds the number 
specified by the system parameter LNM$C_MAXDEPTH. 

3. The GBL$ prefix is stripped from the current name string that could not be 
translated. This current string is the name of the global section. 

For example, assume that you have made the following logical name assignment: 

$ DEFINE GBL$GSDATA GSDATA_OOl 

Your program contains the following statements. 

#include <descrip.h> 

$DESCRIPTOR(gsdnam,"GSDATA"); 

status = sys$crmpsc ( &gsdnam, • • . ) ; 

The following logical name translation takes place: 

1. GBL$ is prefixed to GDSDATA. 

2. GBL$GSDATA is translated to GSDATA_OOl. (Further translation is not 
successful. When logical name translation fails, the string is passed to the 
service.) 

There are three exceptions to the logical name translation method discussed in 
this section: 

• If the name string starts with an underscore ( _ ), the operating system strips 
the underscore and considers the resultant string to be the actual name (that 
is, further translation is not performed). 

• If the name string is the result of a logical name translation, then the name 
string is checked to see whether it has the terminal attribute. If the name 
string is marked with the terminal attribute, the operating system considers 
the resultant string to be the actual name (that is, further translation is not 
performed). 

• If the global section has a name in the format name_nnn, the operating 
system first strips the underscore and the digits (nnn), then translates the 
resultant name according to the sequence discussed in this section, and 
finally reappends the underscore and digits. The system uses this method 

19-17 



Memory Management Services and Routines {VAX Only) 
19.5 Using System Services for Memory Allocation 

in conjunction with known images and shared files installed by the system 
manager. 

19.5.6.7 Mapping Sections 
When you call SYS$CRMPSC to create or map a section, or both, you must 
provide the service with a range of virtual addresses Cinadr argument) into 
which the section is to be mapped. 

If you know specifically which pages the section should be mapped into, you 
provide these addresses in a 2-longword array. For example, to map a private 
section of 10 pages into virtual pages 10 through 19 of the program region, 
specify the input address array as follows: 

unsigned int rnaprange[l]; 

rnaprange[O]= Ox1400; /* Address (hex) of page 10 */ 
rnaprange[l]= Ox2300; /* Address (hex) of page 19 */ 

You do not need to know the explicit addresses to provide an input address range. 
If you want the section mapped into the first available virtual address range in 
the program region (PO ) or the control region (Pl ), you can specify the SEC$M_ 
EXPREG flag bit in the flags argument. In this case, the addresses specified by 
the inadr argument control whether the service finds the first available space in 
PO or Pl. The value specified or defaulted for the pagcnt argument determines 
the number of pages mapped. The following example shows part of a program 
used to map a section at the current end of the program region: 

unsigned int status, inadr[l], retadr[l], flags; 

inadr[O]= Ox200; /* Any program (PO) region address */ 
inadr[l]= Ox200; /* Any PO address (can be same) */ 

/* Address range returned in retadr */ 

flags = SEC$M EXPREG; 
status = sys$crrnpsc ( &inadr, &retadr, flags, . • . ) ; 

The addresses specified do not have to be currently in the virtual address space of 
the process. SYS$CRMPSC creates the required virtual address space during the 
mapping of the section. If you specify the retadr argument, the service returns 
the range of addresses actually mapped. 

After a section is mapped successfully, the image can refer to the pages using one 
of the following: 

• A base register or pointer and predefined symbolic offset names 

• Labels defining offsets of an absolute program section or structure 

The following example shows part of a program used to create and map a process 
section: 

#include <rrns.h> 
#include <rrnsdef .h> 
#include <string.h> 
#include <secdef .h> 

struct FAB secfab; 

19-18 



Memory Management Services and Routines (VAX Only} 
19.5 Using System Services for Memory Allocation 

main() { 
unsigned short chan; 
unsigned int status, inadr[l], retadr[l], pagcnt=l, flags; 
char *fn = "SECTION.TST"; 

/* Initialize FAB fields */ 

secfab = cc$rms fab; 
secfab.fab$b fac = FAB$V PUT; 
secfab.fab$b-shr = FAB$V-SHRGET I I FAB$V_SHRPUT I I FAB$V_UPI; 
secfab.fab$1-fna = fn; -
secfab.fab$b-fns = strlen(fn); 
secfab.fab$1-fop = FAB$V CIF; 
secfab.fab$b=rtv = -1; -

/* Create a file if none exists */ 

status= SYS$CREATE( &secfab, O, 0 ); 
if ((status & 1) != 1) 

} 

LIB$SIGNAL( status ); 

inadr[O] = Xl400; 
inadr[l] = X2306; 
flags = SEC$M WRT; 
chan = secf ab:fab$1 stv; 
status= SYS$CRMPSC(&inadr, &retadr, O, O, O, O, flags, chan, pagcnt, O, O, O); 
if ((status & 1) != 1) 

LIB$SIGNAL( status ); 

Notes on Example 

1. The OPEN macro opens the section file defined in the file access block 
SECFAB. (The FOP parameter to the $FAB macro must specify the UFO 
option.) 

2. SYS$CRMPSC uses the addresses specified at MAPRANGE to specify an 
input range of addresses into which the section will be mapped. The pagcnt 
argument requests that only 4 pages of the file be mapped. 

3. The flags argument requests that the pages in the section have read/write 
access. The symbolic flag definitions for this argument are defined in the 
$SECDEF macro. Note that the file access field (FAC parameter) in the FAB 
also indicates that the file is to be opened for writing. 

4. When SYS$CRMPSC completes, the addresses of the 4 pages that were 
mapped are returned in the output address array at RETRANGE. The 
address of the beginning of the section is placed in general register 6, which 
serves as a pointer to the section. 

19.5.6.8 Mapping Global Sections 
A process that creates a global section can map that global section. Then other 
processes can map it by calling the Map Global Section (SYS$MGBLSC) system 
service. 

When a process maps a global section, it must specify the global section name 
assigned to the section when it was created, whether it is a group or system 
global section, and whether it wants read-only or read/write access. The process 
may also specify the following: 

• A version identification (ident argument), indicating the version number of 
the global section (when multiple versions exist) and whether more recent 
versions are acceptable to the process. 

19-19 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

• A relative page number (relpag argument) that specifies the page number 
relative to the beginning of the section to begin mapping the section. In this 
way, processes can use only portions of a section. Additionally, a process can 
map a piece of a section into a particular address range and subsequently 
map a different piece of the section into the same virtual address range. 

To specify that the global section being mapped is located in physical memory that 
is being shared by multiple processors, you can include the shared memory name 
in the gsdnam argument character string (see Section 19.5.6.6). A demand-zero 
global section in memory shared by multiple processors must be mapped when it 
is created. 

Cooperating processes can issue a call to SYS$CRMPSC to create and map 
the same global section. The first process to call the service actually creates 
the global section; subsequent attempts to create and map the section result 
only in mapping the section for the caller. The successful return status code 
SS$_CREATED indicates that the section did not already exist when the 
SYS$CRMPSC system service was called. If the section did exist, the status 
code SS$_NORMAL is returned. 

The example in Section 19.5.6.10 shows one process (ORION) creating a global 
section and a second process (CYGNUS) mapping the section. 

19.5.6.9 Global Page-File Sections 
Global page-file sections are used to store temporary data in a global section. A 
global page-file section is a section of virtual memory that is not mapped to a file. 
The section can be deleted when processes have finished with it. (Contrast this to 
demand-zero pages, where initialization is not necessary but the pages are saved 
in a file.) The system parameter GBLPAGFIL controls the total number of global 
page-file pages in the system. 

To create a global page-file section, you must set the flag bits SEC$M_GBL 
and SEC$M_PAGFIL in the flags argument to the Create and Map Section 
(SYS$CRMPSC) system service. The channel (chan argument) must be 0. 

You cannot specify the flag bit SEC$M_CRF with the flag bit SEC$M_PAGFIL. 

19.5.6.10 Section Paging 

19-20 

The first time an image executing in a process refers to a page that was created 
during the mapping of a disk file section, the page is copied into physical memory. 
The address of the page in the virtual address space of a process is mapped to 
the physical page. During the execution of the image, normal paging can occur; 
however, pages in sections are not written into the page file when they are paged 
out, as is the normal case. Rather, if they have been modified, they are written 
back into the section file on disk. The next time a page fault occurs for the page, 
the page is brought back from the section file. 

If the pages in a section were defined as demand-zero pages or copy-on-reference 
pages when the section was created, the pages are treated differently, as follows: 

• If the call to SYS$CRMPSC requested that pages in the section be treated as 
demand-zero pages, these pages are initialized to zero when they are created 
in physical memory. If the file is either a new file being created as a section 
or a file being completely rewritten, demand-zero pages provide a convenient 
way of initializing the pages. The pages are paged back into the section file. 

• When the virtual address space is deleted, all unreferenced pages are written 
back to the file as zeros. This causes the file to be initialized, no matter how 
few pages were modified. 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

• If the call to SYS$CRMPSC requested that pages in the section be copy-on­
reference pages, each process that maps to the section receives its own copy of 
the section, on a page-by-page basis from the file, as it refers to them. These 
pages are never written back into the section file but are paged to the paging 
file as needed. 

In the case of global sections, more than one process can be mapped to the same 
physical pages. If these pages need to be paged out or written back to the disk 
file defined as the section, these operations are done only when the pages are not 
in the working set of any process. 

In the following example, process ORION creates a global section, and process 
CYGNUS maps to that section: 

/* Process ORION */ 

#include <rms.h> 
#include <rmsdef .h> 
#include <string.h> 
#include <secdef .h> 
#include <descrip.h> 

struct FAB gblf ab; 

main() { 
unsigned short chan; 
unsigned int status, flags, efn=65; 
char *fn = "SECTION.TST"; 
$DESCRIPTOR(name, "FLAG CLUSTER"); /*Common event flag cluster name*/ 
$DESCRIPTOR(gsdnam, "GLOBAL_SECTION"); /*Global section name*/ 

(tstatus = SYS$ASCEFC(efn, &name, O); 
if ((status & 1) != 1) 

LIB$SIGNAL( status ); 

/* Initialize FAB fields */ 

gblfab = cc$rms fab; 
gblfab.fab$1 alq = 4; 
gblfab.fab$b-fac = FAB$V PUT; 
gblfab.fab$1-fnm = fn; -
gblfab.fab$l=fop = FAB$V_CIF I I FAB$V_CBT; 

/* Create a file if none exists */ 

f}status = SYS$CREATE( &gblfab, O, 0 ); 
if ((status & 1) != 1) 

LIB$SIGNAL( status ); 

flags = SEC$M_GBL I I SEC$M_WRT; 
status = SYS$CRMPSC ( 0, 0, 0, flags, &gsdnam, • • • ) ; 
if ((status & 1) != 1) 

LIB$SIGNAL( status ); 

status = SYS$SETEF(efn); 
if ((status & 1) != 1) 

LIB$SIGNAL( status ); 

19-21 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

/* Process CYGNUS */ 

unsigned int status, efn=65; 
$DESCRIPTOR(cluster,"FLAG CLUSTER"); 
$DESCRIPTOR(section,"GLOBAL_SECTION"); 

0status = SYS$ASCEFC(efn, &cluster, O); 
if ((status & 1) != 1) 

} 

LIB$SIGNAL( status ); 

status = SYS$WAITFR(efn); 
if ((status & 1) != 1) 

LIB$SIGNAL( status ); 

status = SYS$MGBLSC(&inadr, &retadr, O, flags, &section, O, O); 
if ((status & 1) != 1) 

LIB$SIGNAL( status ); 

0 The processes ORION and CYGNUS are in the same group. Each process 
first associates with a common event flag cluster named FLAG_CLUSTER to 
use common event flags to synchronize its use of the section. 

8 The process ORION creates the gl9bal section named GLOBAL_SECTION, 
specifying section flags that indicate that it is a global section (SEC$M_GBL) 
and has read/write access. Input and output address arrays, the page count 
parameter, and the channel number arguments are not shown; procedures for 
specifying them are the same, as shown in this example. 

0 The process CYGNUS associates with the common event flag cluster and 
waits for the flag defined as FLGSET; ORION sets this flag when it has 
finished creating the section. To map the section, CYGNUS specifies the input 
and output address arrays, the flag indicating that it is a global section, and 
the global section name. The number of pages mapped is the same as that 
specified by the creator of the section. 

19.5.6.11 Reading and Writing Data Sections 

19-22 

Read/write sections provide a way for a process or cooperating processes to share 
data files in virtual memory. 

The sharing of global sections may involve application-dependent synchronization 
techniques. For example, one process can create and map to a global section 
in read/write fashion; other processes can map to it in read-only fashion and 
interpret data written by the first process. Alternatively, two or more processes 
can write to the section concurrently. (In this case, the application must provide 
the necessary synchronization and protection.) 

After a file is updated, the process or processes can release (or unmap) the 
s.ection. The modified pages are then written back into the disk file defined as a 
section. 

When this is done, the revision number of the file is incremented, and the version 
number of the file remains unchanged. A full directory listing indicates the 
revision number of the file and the date and time that the file was last updated. 



Memory Management Services and Routines {VAX Only) 
19.5 Using System Services for Memory Allocation 

19.5.6.12 Releasing and Deleting Sections 
A process unmaps a section by deleting the virtual addresses in its own virtual 
address space to which it has mapped the section. If a return address range was 
specified to receive the virtual addresses of the mapped pages, this address range 
can be used as input to the Delete Virtual Address Space (SYS$DELTVA) system 
service, as follows: 

$DELTVA_S INADR=RETRANGE 

When a process unmaps a private section, the section is deleted; that is, all 
control information maintained by the system is deleted. A temporary global 
section is deleted when all processes that have mapped to it have unmapped it. 
Permanent global sections are not deleted until they are specifically marked for 
deletion with the Delete Global Section (SYS$DGBLSC) system service; they are 
then deleted when no more processes are mapped. 

Note that deleting the pages occupied by a section does not delete the section 
file but rather cancels the process's association with the file. Moreover, when a 
process deletes pages mapped to a read/write section and no other processes are 
mapped to it, all modified pages are written back into the section file. 

After a section is deleted, the channel assigned to it can be deassigned. The 
process that created the section can deassign the channel with the Deassign 1/0 
Channel (SYS$DASSGN) system service, as follows: 

$DASSGN_S CHAN=GBLFAB+FAB$L_STV 

19.5.6.13 Writing Back Sections 
Because read/write sections are not normally updated on disk until the 
physical pages they occupy are paged out or until all processes referring to 
the section have unmapped it, a process should ensure that all modified pages are 
successfully written back into the section file at regular intervals. 

The Update Section File on Disk (SYS$UPDSEC) system service writes the 
modified pages in a section into the disk file. SYS$UPDSEC is described in the 
Open VMS System Services Reference Manual. 

19.5.6.14 Image. Sections 
Global sections can contain shareable code. The operating system uses global 
sections to implement shareable code, as follows: 

1. The object module containing code to be shared is linked to produce a 
shareable image. The shareable image is not, in itself, executable. It contains 
a series of sections called image sections. 

2. You link private object modules with the shareable image to produce an 
executable image. No code or data from the shareable image is put into the 
executable image. 

3. The system manager uses the INSTALL command to create a permanent 
global section from the shareable image file, making the image sections 
available for sharing. 

4. When you run the executable image, the operating system automatically 
maps the global sections created by the INSTALL command into the virtual 
address space of your process. · 

19-23 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

For details about how to create and identify shareable images and how to link 
them with private object modules, see the Open VMS Linker Utility Manual. For 
information about how to install shareable images and make them available for 
sharing as global sections, see the Open VMS System Manager's Manual. 

19.5.6.15 Page Frame Sections 

19-24 

A page frame section is one or more contiguous pages of physical memory or 1/0 
space that have been mapped as a section. One use of page frame sections is to 
map to an 1/0 page, thus allowing a process to read device registers. A process 
mapped to an 1/0 page can also connect to a device interrupt vector. 

A page frame section differs from a disk file section in that it is not associated 
with a particular disk file and is not paged. However, it is similar to a disk 
file section in most other respects: you create, map, and define the extent and 
characteristics of a page frame section in essentially the same manner as you do 
for a disk file section. 

To create a page frame section, you must specify page frame number .mapping by 
setting the SEC$M_PFNMAP flag bit in the flags argument to the Create and 
Map Section (SYS$CRMPSC) system service. The vbn argument is now used to 
specify that the first page frame is to be mapped instead of the first virtual block. 
You must have the user privilege PFNMAP to create or delete a page frame 
section but not to map to an existing one. 

Because a page frame section is not associated with a disk file, you do not use.the 
relpag, chan, and pfc arguments to the SYS$CRMPSC service to create or map 
this type of section. For the same reason, the SEC$M_CRF (copy-on-reference) 
and SEC$M_DZRO (demand-zero) bit settings in the flags argument do not apply. 
Pages in page frame sections are not written back to any disk file (including the 
paging file). 

Caution 

You must use caution when working with page frame sections. If you 
permit write access to the section, each process that writes to it does 
so at its own risk. Serious errors can occur if a process writes incorrect 
data or writes to the wrong page, especially if the page is also mapped by 
the system or by another process. Thus, any user who has the PFNMAP 
privilege can damage or violate the security of a system. 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

19.5.7 Example of Using Memory Management System Services 
In the following example, two programs are communicating through a global 
section. The first program creates and maps a global section (by using 
SYS$CRMPSC) and then writes a device name to the section. This program 
also defines the device terminal and process names and sets the event flags that 
synchronize the processes. 

The second program maps the section (by using SYS$MGBLSC) and then reads 
the device name and the process that allocated the device and any terminal 
allocated to that process. This program also writes the process named to the 
terminal global section where the process name can be read by the first program. 

Th~ common event cluster is used to synchronize access to the global section. The 
first program sets REQ_FLAG to indicate that the device name is in the section. 
The second program sets INFO _FLAG to indicate that the process and terminal 
names are available. 

Data in a section must be page aligned. The following is the option file used 
at link time that causes the data in the common area named DATA to be page 
aligned: 

PSECT_ATTR = J?ATA, PAGE 

For high-level language usage, use the solitary attribute of the linker. See the 
Open VMS Linker Utility Manual for an explanation of how to use the solitary 
attribute. 

Before executing the first program, you need to write a user-open routine that 
sets the user open bit (FAB$V_UFO) of the FAB options longword (FAB$L_FOP). 
The user-open routine would then read the channel number that the file is opened 

. on from the status longword (FAB$L_STV) and return that channel number to 
the main program by using a common block (CHANNEL in this example). 

!This is the program that creates the global section. 

! Define global section flags 
INCLUDE '($SECDEF)' 
! Mask for section flags 
INTEGER SEC MASK 

! Logical unit number for section file 
INTEGER INFO LUN 
! Channel nuffiber for section file 
! (returned from useropen routine) 
INTEGER SEC CHAN 
COMMON /CHANNEL/ SEC CHAN 
! Length for the section file 
INTEGER SEC LEN 
! Data for the section file 
CHARACTER*l2 DEVICE, 
2 PROCESS 
CHARACTER*6 TERMINAL 
COMMON /DATA/ DEVICE, 
2 PROCESS, 
2 TERMINAL 
! Location of data 
INTEGER PASS ADDR (2), 
2 RET_ADDR (2) 

19-25 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

19-26 

! Two common event flags 
INTEGER REQUEST FLAG, 
2 INFO FLAG 
DATA REQUEST-FLAG /70/ 
DATA INFO FLAG /71/ 

! User-open routines 
INTEGER UFO CREATE 
EXTERNAL UFO CREATE 

Open the section file 
STATUS = LIB$GET LUN (INFO LUN) 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
SEC MASK = SEC$M WRT .OR. SEC$M DZRO .OR. SEC$M GBL 
! (Last element= first element-+ size of last element + 511)/512 
SEC LEN = ( (%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512 ) 
OPEN (UNIT=INFO LUN, 
2 FILE='INFO.TMP' I 

2 STATUS='NEW' I 

2 INITIALSIZE = SEC LEN, 
2 USEROPEN = UFO CREATE) 

Free logical unit number and map section 
CLOSE (INFO_LUN) 

! Get location of data 
PASS ADDR (1) = %LOC (DEVICE) 
PASS=ADDR (2) = %LOC (TERMINAL) 

STATUS = SYS$CRMPSC (PASS ADDR, ! Address of section 
2 RET_ADDR, ! Addresses mapped 
2 I 

2 %VAL(SEC MASK), 
2 'GLOBAL_SEC' I 

2 I I 

2 %VAL(SEC_CHAN), 
2 ",, 

Section mask 
Section name 

I/O channel 

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 

! Create the subprocess 
STATUS= SYS$CREPRC (, 
2 'GETDEVINF' , Image 

2 ""' 2 'GET DEVICE' , Process name 
2 %VAL(4),,,) Priority 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 

! Write data to section 
DEVICE = '$FLOPPY1' 

! Get common event flag cluster and set flag 
STATUS= SYS$ASCEFC (%VAL(REQUEST FLAG), 
2 'CLUSTER',,)-
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 
STATUS= SYS$SETEF (%VAL(REQUEST FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 

! When GETDEVINF has the information, INFO FLAG is set 
STATUS= SYS$WAITFR (%VAL(INFO FLAG)) -
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS)) 

This is the program that maps to the global section 
created by the previous program. 



Memory Management Services and Routines (VAX Only) 
19.5 Using System Services for Memory Allocation 

Define section flags 
INCLUDE '($SECDEF)' 
! Mask for section flags 
INTEGER SEC MASK 
! Data for the section file 
CHARACTER*l2 DEVICE, 
2 PROCESS 
CHARACTER*6 TERMINAL 
COMMON /DATA/ DEVICE, 
2 PROCESS, 
2 TERMINAL 

! Location of data 
INTEGER PASS ADDR (2), 
2 RET_ADDR (2) 

! Two common event flags 
INTEGER REQUEST FLAG, 
2 INFO FLAG 
DATA REQUEST-FLAG /70/ 
DATA INFO_FLAG /71/ 

Get common event flag cluster and wait 
for GBLl.FOR to set REQUEST FLAG 

STATUS= SYS$ASCEFC (%VAL(REQUEST FLAG), 
2 I CLUSTER I I I ) -

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 
STATUS= SYS$WAITFR (%VAL(REQUEST FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL-(%VAL(STATUS)) 

! Get location of data 
PASS ADDR (1) = %LOC (DEVICE) 
PASS=ADDR (2) = %LOC (TERMINAL) 

! Set write. flag 
SEC_MASK = SEC$M_WRT 

! Map the section 
STATUS = SYS$MGBLSC (PASS ADDR, ! Address of section 
2 RET_ADDR, ! Address mapped 
2 I 

2 %VAL(SEC MASK), ! Section mask 
2 'GLOBAL SEC',,) ! Section name 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

Call GETDVI to get the process ID of the 
process that allocated the device, then 
call GETJPI to get the process name and terminal 
name associated with that process ID. 
Set PROCESS equal to the process name and 
set TERMINAL equal to the terminal name. 

After information is in GLOBAL SEC 
STATUS= SYS$SETEF (%VAL(INFO FLAG)) 
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

END 

19-27 





20 
Memory Management Services and Routines 

(AXP Only) 

This chapter describes the use of memory management system services and 
run-time routines on AXP systems. Although the operating system's memory 
management concepts are much the same on VAX systems and AXP systems, 
details of the memory management system are different. These details may 
be critical to certain uses of the operating system's memory management 
system services and routines on an AXP system. This chapter highlights those 
differences by using the AXP icon. 

This chapter contains the following sections: 

Section 20.1 describes the page sizes of AXP systems. 

Section 20.2 describes the layout of virtual address space. 

Section 20.3 describes the three levels of the operating system's memory 
allocation routines. 

Section 20.4 discusses how to use system services to add virtual address space, 
adjust working sets, control process swapping, and create and manage 
sections. + 

20.1 Virtual Page Sizes 

MU• On AXP systems, in order to facilitate memory protection and mapping, the 
virtual address space is subdivided into segments of 8 KB, 16 KB, 32 KB, or 64 
KB sizes called CPU-specific pages. On VAX systems, the page sizes are 512 
bytes. 

Wherever possible, the AXP system's versions of the system services and run-time 
library routines that manipulate memory attempt to preserve compatibility 
with the VAX system's services and routines. The AXP system's versions of 
the routines that accept page count values as arguments still interpret these 
arguments in 512-byte quantities, which are called pagelets to distinguish 
them from CPU-specific page sizes. The routines convert pagelet values into 
CPU-specific pages. The routines that return page count values convert from 
CPU-specific pages to pagelets, so that return values expected by applications are 
still measured in the same 512-byte units. 

This difference in page size does not affect memory allocation using higher-level 
routines, such as run-time library routines that manipulate virtual memory 
zones or language-specific memory allocation routines such as the malloc and free 
routines in C. 

To determine system page size, you make a call to the SYS$GETSYI system 
service, specifying the SYI$__:PAGE_SIZE item code. See the description of 
SYS$GETSYI and SYI$_PAGE_SIZE in the Open VMS System Services Reference 
Manual for details. + 

20-1 



Memory Management Services and Routines (AXP Only) 
20.2 Virtual Address Space 

20.2 Virtual Address Space 

20-2 

The AXP system defines the same virtual address space layout as the VAX 
system. The AXP system virtual address space allows for growth of the PO and 
Pl regions in the same directions as on VAX systems. 

The initial size of a process's virtual address space depends on the size of the 
image being executed. The virtual address space of an executing program consists 
of the following three regions: 

• Process program region (PO) 

The process program region is also referred to as PO space. PO space contains 
the instructions and data for the current image. 

Your program can dynamically allocate storage in the process program region 
by calling run-time library (RTL) dynamic memory allocation routines or the 
operating system's system services. 

• Process control region (Pl) 

The process control region is also referred to as Pl space. Pl space contains 
system control information and the user-mode process stack. The user mode 
stack expands as necessary toward the lower-addressed end of Pl space. 

• Common system region (SO) 

The common system region is also referred to as SO space, or system space. 
SO space contains the operating system. Your program cannot allocate or free 
memory within the common system region from the user access mode. 

The operating system's memory management routines map and control the 
relationship between physical memory and the virtual address space of a process. 
These activities are, for the most part, transparent to you and your programs. 
In some cases, however, you can make a program more efficient by explicitly 
controlling its virtual memory usage. 

The maximum size to which a process can increase its address space is controlled 
by the system parameter VIRTUALPAGECNT. 

Using memory management system services, a process can add a specified 
number of pages to the end of either the program region or the control region. 
Adding pages to the program region provides the process with additional space 
for image execution, for example, for the dynamic creation of tables or data areas. 
Adding pages to the control region increases the size of the user stack. As new 
pages are referenced, the stack is automatically expanded (see Figure 20-1). (By 
using the STACK= option in a linker options file, you can also expand the user 
stack when you link the image.) 

Figure 20-1 illustrates the layout of a process's virtual memory. The initial 
size of a process's virtual address space depends on the size of the image being 
executed. 



Memory Management Services and Routines (AXP Only) 
20.2 Virtual Address Space 

Figure 20-1 Layout of AXP Process Virtual Address Space 

Virtual 
Address 

00000000 
Program Region 

(PO) 

Control Region 
(P1) 

T 
I 
I 
I 
I 

Direction of 
Growth 

I 
I 
I 
I 
I 
I 
I 

+ Length ---------------------1 

Length ---------------------1 
t 
I 
I 
I 
I 
I 
I 

Direction of 
Growth 

I 
I 
I 
I 

7FFFFFFF ......_ _____________ ___.l __ ____. 

ZK-0861-GE 

20.3 Levels of Memory Allocation Routines 
Sophisticated software systems must often create and manage complex data 
structures. In these systems, the size and number of elements are not always 
known in advance. You can tailor the memory allocation for these elements 
by using dynamic memory allocation. By managing the memory allocation, 
you can avoid allocating fixed tables that may be too large or too small for your 
program. Managing memory directly can improve program efficiency. By allowing 
you to allocate specific amounts of memory, the operating system provides a 
hierarchy of routines and services for memory management. Memory allocation 
and deallocation routines allow you to allocate and free storage within the virtual 
address space available to your process. 

There are three levels of memory allocation routines: 

1. Memory management system services 

The memory management system services comprise the lowest level of 
memory allocation routines. These services include, but are not limited to, 
the following: 

SYS$EXPREG (Expand Region) 
SYS$CRETVA (Create Virtual Address Space) 
SYS$DELTVA (Delete Virtual Address Space) 
SYS$CRMPSC (Create and Map Section) 
SYS$MGBLSC (Map Global Section) 

20-3 



Memory Management Services and Routines (AXP Only) 
20.3 Levels of Memory Allocation Routines 

20-4 

SYS$DGBLSC (Delete Global Section) 

For most cases in which a system service is used for memory allocation, the 
Expand Region (SYS$EXPREG) system service is used to create pages of 
virtual memory. 

Because system services provide more control over allocation procedures than 
RTL routines, you must manage the allocation precisely. System services 
provide extensive control over address space allocation by allowing you to do 
the following types of tasks: 

• Add or delete virtual address space to the process's program region (PO) 
or control region (Pl) 

• Add or delete virtual address space at a specific range of addresses 

• Increase or decrease the number of pages in a program's working set 

• Lock or delete pages of a program's working set in memory 

• Lock the entire program's working set in memory (by disabling process 
swapping) 

• Define disk files containing data or shareable images and map the files 
into the virtual address space of a process 

2. RTL page management routines 

The RTL routines exist for creating, deleting, and accessing information 
about virtual address space. You can either allocate. a specified number of 
contiguous pages or create a zone of virtual address space. A zone is a logical 
unit of the memory pool or subheap that you can control as an independent 
area. It can be any size required by your program. Refer to Chapter 21 for 
more information about zones. 

The RTL page management routines LIB$GET_ VM_PAGE and LIB$FREE_ 
VM_PAGE provide a convenient mechanism for allocating and freeing pages 
of memory. 

These routines maintain a processwide pool of free pages. If unallocated 
pages are not available when LIB$GET_ VM_PAGE is called, it calls 
SYS$EXPREG to create the required pages in the program region (PO 
space). 

3. RTL heap management routines 

The RTL heap management routines LIB$GET_ VM and LIB$FREE_ VM 
provide a mechanism for allocating and freeing blocks of memory of arbitrary 
size. 

The following are heap management routines based on the concept of zones: 

LIB$CREATE_ VM_ZONE 
LIB$CREATE_ USER_ VM_ZONE 
LIB$DELETE_ VM_ZONE 
LIB$FIND_ VM_ZONE 
LIB$RESET_ VM_ZONE 
LIB$SHOW _ VM_ZONE 
LIB$VERIFY_ VM_ZONE 

If an unallocated block is not available to satisfy a call to LIB$GET_ VM, 
LIB$GET_ VM calls LIB$GET_ VM_PAGE to allocate additional pages. 



Memory Management Services and Routines (AXP Only) 
20.3 Levels of Memory Allocation Routines 

Modular application programs can call routines in any or all levels of the 
hierarchy, depending on the kinds of services the application program needs. You 
must observe the following basic rule when using multiple levels of the hierarchy: 

• Memory that is allocated by an allocation routine at one level of the hierarchy 
must be freed by calling a deallocation routine at the same level of the 
hierarchy. For example, if you allocated a page of memory by calling 
LIB$GET_ VM_PAGE, you can free it only by calling LIB$FREE_ VM_PAGE. 

Figure 20-2 shows the three levels of memory allocation routines. 

Figure 20-2 Hierarchy of AXP Memory Management Routines 

RTL Heap Management Routines 

LIB$CREATE_USER_ VM_ZONE 
LIB$CREATE_ VM_ZONE 
LIB$DELETE_ VM_ZONE 
LIB$FIND_ VM_ZONE 
LIB$FREE_ VM 

LIB$GET_VM 
LIB$RESET _ VM_ZONE 
LIB$SHOW_ VM_ZONE 
LIB$VERIFY _ VM_ZONE 

RTL Page Management Routines 

LIB$FREE_ VM_PAGE LIB$GET _VM_PAGE 

Memory Management System Services 

$CRETVA 
$CRMPSC 

$DEL TVA 
$DGBLSC 

$EXP REG 
$MGBLSC 

ZK-4146-GE 

For information about using memory management RTLs, see Chapter 21. 

20.4 Using System Services for Memory Allocation 
This section describes how to use system services to perform the following tasks: 

• Increase and decrease virtual address space 

• Input and return address arrays 

• Control page ownership and protection 

• Control working set paging 

• Control process swapping 

20-5 



Memory Management Services and Routines (AXP Only) 
20.4 Using System Services for Memory Allocation 

20.4.1 Increasing and Decreasing Virtual Address Space 

20-6 

The system services allow you to add address space anywhere within the process's 
program region (PO) or control region (Pl). To add address space at the end of PO 
or Pl, use the Expand Program/Control Region (SYS$EXPREG) system service. 
SYS$EXPREG optionally returns the range of virtual addresses for the new 
pages. To add address space in other portions of PO or Pl, use SYS$CRETVA. 

The format for SYS$EXPREG is as follows: 

SYS$EXPREG (pagcnt,[retadr],[acmode],[region]) 

Specifying the Number of Pages 
On AXP systems, use the pagcnt argument to specify the number of pagelets to 
add to the end of the region. The AXP system rounds the specified pagelet value 
to the next integral number of AXP pages for the system where it is executing. 
To check the exact boundaries of the memory allocated by the system, specify the 
optional retadr argument. The retadr argument contains the start address and 
the end address of the memory allocated by the system service. + 

Specifying the Access Mode 
Use the acmode argument to specify the access to be assigned to the newly 
created pages. 

Specifying the Region 
Use the region argument to specify whether to add the pages to the end of the 
PO or Pl region. 

To deallocate pages allocated with SYS$EXPREG and SYS$CRETVA, use 
SYS$DELTVA. 

For AXP systems, the following example illustrates the addition of 4 pagelets to 
the program region of a process by writing a call to the SYS$EXPREG system 
service. 

#include <stdio.h> 
#include <ssdef .h> 

main() { 
un.signed int status, retadr [ 1) , pagcnt=4, region=O; 

/* Add 4 pages to PO space */ 

} 

status= SYS$EXPREG( pagcnt, &retadr, O, region); 
if (( status & 1) != 1) 

LIB$SIGNAL( status ); 
else 

printf("Starting address: %d Ending address: %d\n", 
retadr.lower,retadr.upper); 

The value 0 is passed in the region argument to specify that the pages are to 
be added to the program region. To add. the same number of pages to the control 
region, you would specify REGION =#1. 

Note that the region argument to the SYS$EXPREG service is optional; if it 
is not specified, the pages are added to or deleted from the program region by 
default.+ 



Memory Management Services and Routines (AXP Only) 
20.4 Using System Services for Memory Allocation 

The SYS$EXPREG service can add pagelets only in the direction of growth of a 
particular region. When you need to add pages to the middle of these regions, 
you can use the Create Virtual Address Space (SYS$CRETVA) system service. 
Likewise, when you need to delete pages created by either SYS$EXPREG or 
SYS$CRETVA, you can use the Delete Virtual Address Space (SYS$DELTVA) 
system service. For example, if you have used the SYS$EXPREG service twice to 
add pages to the program region and want to delete the first range of pages but 
not the second, you could use the SYS$DELTVA system service, as shown in the 
following example: 

#include <stdio.h> 
#include <ssdef .h> 

struct { 
unsigned int lower, upper; 

}retadrl, retadr2, retadr3; 

main() { 
unsigned int status, pagcnt=4, region=O; 

/* Add 4 pages to PO space */ 
status = SYS$EXPREG( pagcnt, &retadrl, O, region); 
if (( status & 1) != 1) 

else 
LIB$SIGNAL( status ); 

printf("Starting address: %d ending address: %d\n", 
retadrl.lower,retadrl.upper); 

/* Add 3 more pages to PO space */ 

pagcnt = 3; 
status= SYS$EXPREG( pagcnt, &retadr2, O, region); 
if ( ( status & 1) ! = 1) 

LIB$SIGNAL( status ); 
else 

printf("Starting address: %d ending address: %d\n", 
retadr2.lower,retadr2.upper); 

/* Delete original allocation */ 
status= SYS$DELTVA( &retadrl, &retadr3, 0 ); 
if ( ( status & 1) != 1) 

else 
LIB$SIGNAL( status ); 

printf("Starting address: %d ending address: %d\n", 
retadrl.lower,retadrl.upper); 

In this example, the first call to SYS$EXPREG rounds up the requested pagelet 
count to an integral number of CPU-specific pages and adds that number of pages 
to the program region; the virtual addresses of the created pages are returned in 
the 2-longword array at BEGSPACEA. The second request converts the pagelet 
count to pages, adds them to the program region, and returns the addresses at 
BEGSPACEB. The call to SYS$DELTVA deletes the area created by the first 
SYS$ExPREG call. 

20-7 



Memory Management Services and Routines (AXP Only) 
20.4 Using System Services for Memory Allocation 

~~~~~~~~~~~~- Caution ~~~~~~~~~~~~­

Be aware that using SYS$CRETVA presents some risk because it can
delete pages that already exist if those pages are not owned by a more
privileged access mode. Further, if those pages are deleted, notification
is not sent. Therefore, unless you have complete control over an entire
system, use SYS$EXPREG or the RTL routines to allocate address space.

Section 20.4.3 mentions some other possible risks in using SYS$CRETVA for
allocating memory. +

20.4.2 Input Address Arrays and Return Address Arrays

20-8

When the SYS$EXPREG system service adds pages to a region, it adds them
in the normal direction of growth for the region. The return address array, if
requested, indicates the order in which the pages were added. For example:

• If the program region is expanded, the starting virtual address is smaller
than the ending virtual address.

• If the control region is expanded, the starting virtual address is larger than
the ending virtual address.

The addresses returned indicate the first byte in the first page that was added or
deleted and the last byte in the last page that was added or deleted, respectively.

When input address arrays are specified for the Create and Delete Virtual
Address Space (SYS$CRETVA and SYS$DELTVA, respectively) system services,
these services add or delete pages beginning with the address specified in the
first longword and ending with the address specified in the second longword.

On AXP systems, the order in which the pages are added or deleted does not
have to be in the normal direction of growth for the region. Moreover, because
these services add or delete only whole pages, they ignore the low-order bits of
the specified virtual address (the low-order bits contain the byte offset within the
page). Table 20-1 shows the page size and byte offset.

Table 20-1 Page and Byte Offset Within Pages on AXP Systems

Page Size
(Bytes)

SK

16K

32K

64K

Byte Within Page
(Bits)

13

14

15

16

Table 20-2 shows some sample virtual addresses in hexadecimal that may be
specified as input to SYS$CRETVA or SYS$DELTVA and· shows the return
address arrays if all pages are successfully added or deleted. Table 20-2 assumes
a page size of 8 KB = 2000 hex.

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

Table 20-2 Sample Virtual Address Arrays on AXP Systems

Input Array Output Array

Number
of

Start End Region Start End Pages

1010 1670 PO 0 lFFF 1

2450 2451 PO 2000 3FFF 1

4200 A500 PO 4000 BFFF 5

9450 9450 PO 8000 9FFF 1

7FFEC010 7FFEC010 Pl 7FFEDFFF 7FFECOOO 1

7FFEC010 7FFEBCAO Pl 7FFEDFFF 7FFEAOOO 2

For SYS$CRETVA and SYS$DELTVA, note that if the input virtual addresses are
the same, as in the fourth and fifth items in Table 19-1, a single page is added or
deleted. The return address array indicates that the page was added or deleted
in the normal direction of growth for the region.

Note that for SYS$CRMPSC and SYS$MGBLSC, which are discussed in
Section 20.4.7, the sample virtual address arrays in Table 19-1 do not apply.
The reason is that the lower address value has to be an even multiple of the
machine page size; that is, it must be rounded down to an even multiple page
size. In addition, the higher address value must be one less than the even
multiple page size, representing the last byte on the last page. That is, it must
be rounded up to an even multiple page size, minus 1.

The procedure for determining start and end virtual addresses is as follows:

1. Get the page size in bytes.

2. Subtract 1 to get the byte-with-page mask.

3. Mask the low bits of lower virtual address, which is a round-down operation
to round it to the next lower page boundary.

4. Perform a logical OR operation on the higher virtual address, which is a
round-up operation to round it to the highest address in the last page. +

20.4.3 Allocating Memory in Existing Virtual Address Space on AXP Systems
(AXP Only)

On AXP systems, if you reallocate memory that is already in its virtual address
space by using the SYS$CRETVA system service, you may need to modify the
values of the following arguments to SYS$CRETVA:

• If your application explicitly rounds the lower address specified in the inadr
argument to be a multiple of 512 in order to align on a page boundary, you
need to modify the address. The AXP system's version of the SYS$CRETVA
system service rounds down the start address to a CPU-specific page
boundary, which will vary with different implementations. It also rounds
up the end address to the last byte in a CPU-specific page boundary.

• The size of the reallocation, specified by the address range in the inadr
argument, may be larger on an AXP system than on a VAX system because
the request is rounded up to CPU-specific pages. This can cause the

20-9

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

unintended destruction of neighboring data, which may also occur with single­
page allocations. (When the start address and the end address specified in
the inadr argument match, a single page is allocated.)

To determine whether you must modify the address as specified in inadr, specify
the optional retadr argument to determine the exact boundaries of the memory
allocated by the call to SYS$CRETVA. +

20.4.4 Page Ownership and Protection
Each page in the virtual address space of a process is owned by the access
mode that created the page. For example, pages in the program region initially
provided for the execution of an image are owned by user mode. Pages that the
image creates dynamically are also owned by user mode. Pages in the control
region, except for the pages containing the user stack, are normally owned by
more privileged access modes.

Only the owner access mode or a more privileged access mode can delete the
page or otherwise affect it. The owner of a page can also indicate, by means of a
protection code, the type of access that each access mode will be allowed.

The Set Protection on Pages (SYS$SETPRT) system service changes the
protection assigned to a page or group of pages. The protection is expressed
as a code that indicates the specific type of access (none, read-only, read/write)
for each of the four access modes (kernel, executive, supervisor, user). Only the
owner access mode or a more privileged access mode can change the protection
for a page.

When an image attempts to access a page that is protected against the access
attempted, a hardware exception called an access violation occurs. When an
image calls a memory management system service, the service probes the pages
to be used to determine whether an access violation would occur if the image
attempts to read or write one of the pages. If an access violation occurs, the
service exits with the status code SS$_ACCVIO.

Because the memory management services add, delete, or modify a single page at
a time, one or more pages can be successfully changed before an access violation
is detected. If the retadr argument is specified in the service call, the service
returns the addresses of pages changed (added, deleted, or modified) before the
error. If no pages are affected, that is, if an access violation occurs on the first
page specified, the service returns a -1 in both longwords of the return address
array.

If the retadr argument is not specified, no information is returned.

20.4.5 Working Set Paging ,.,.

20-10

On AXP systems, when a process is executing an image, a subset of its pages
resides in physical memory; these pages are called the working set of the
process. The working set includes pages in both the program region and the
control region. The initial size of a process's working set is defined by the
process's working set default (WSDEFAULT) quota, which is specified in pagelets.
When ample physical memory is available, a process's working-set upper growth
limit can be expanded to its working set extent (WSEXTENT). +

When the image refers to a page that is not in memory, a page fault occurs,
and the page is brought into memory, possibly replacing an existing page in
the working set. If the page that is going to be replaced is modified during the
execution of the image, that page is written into a paging file on disk. When this
page is needed again, it is brought back into memory, again replacing a current

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

page from the working set. This exchange of pages between physical memory and
secondary storage is called paging.

The paging of a process's working set is transparent to the process. However, if
a program is very large or if pages in the program image that are used often are
being paged in and out frequently, the overhead required for paging may decrease
the program's efficiency. The SYS$ADJWSL, SYS$PURGWS, and SYS$LKWSET
system services allow a process, within limits, to counteract these potential
problems.

SVS$ADJWSL System Service
The Adjust Working Set Limit (SYS$ADJWSL) system service increases or
decreases the maximum number of pages that a process can have in its working
set. The format for this routine is as follows:

SYS$ADJWSL ([pagcnt],[wsetlm])

On AXP systems, use the pagcnt argument to specify the number of pagelets to
add or subtract from the current working set size. The AXP system rounds the
specified number of pagelets to a multiple of the system's page size. The new
working set size is returned in wsetlm in units of pagelets. +

SVS$PURGWS System Service
The Purge Working Set (SYS$PURGWS) system service removes one or more
pages from the working set.

SVS$LKWSET System Service
The Lock Pages in Working Set (SYS$LKWSET) system service makes one
or more pages in the working set ineligible for paging by locking them in the
working set. Once locked into the working set, those pages remain in the working
set until they are unlocked explicitly with the Unlock Pages in Working Set
(SYS$ULWSET) system service, or program execution ends. The format is as
follows:

SYS$LKWSET (inadr,[retadr],[acmode])

Specifying a Range of Addresses On AXP systems, use the inadr argument to
specify the range of addresses to be locked. SYS$LKWSET rounds the addresses
to CPU-specific page boundaries, if necessary. The range of addresses of the pages
actually locked are returned in the retadr argument.

However, because the AXP system's instructions cannot contain full virtual
addresses, the AXP system's images must reference procedures and data
indirectly through a pointer to a procedure descriptor. The procedure descriptor
contains information about the procedure, including the actual code address.
These pointers to procedure descriptors and data are collected into a program
section called a linkage section. Therefore, it is not sufficient simply to lock
a section of code into memory to improve performance. You must also lock the
associated linkage section into the working set.

To lock the linkage section into memory, you must determine the start and end
addresses that encompass the linkage section and pass these addresses as values
in the inadr argument to a call to SYS$LKWSET. For more information about
linking, see Migrating to an Open VMS AXP System: Recompiling and Relinking
Applications. +

Specifying the Access Mode Use the acmode argument to specify the access
mode to be associated with the pages you want locked.

20-11

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

20.4.6 Process Swapping
The operating system balances the needs of all the processes currently executing,
providing each with the system resources it requires on an as-needed basis. The
memory management routines balance the memory requirements of the process.
Thus, the sum of the working sets for all processes currently in physical memory
is called the balance set.

When a process whose working set is in memory becomes inactive-for example,
to wait for an I/O request or to hibernate-the entire working set or part of it
may be removed from memory to provide space for another process's working set
to be brought in for execution. This removal from memory is called swapping.

The working set may be removed in two ways:

• Partially-Also called swapper trimming. Pages are removed from the
working set of the target process so that the number of pages in the working
set is fewer, but the working set is not swapped.

• Entirely-Called swapping. All pages are swapped out of memory.

When a process is swapped out of the balance set, all the pages (both modified
and unmodified) of its working set are swapped, including any pages that had
been locked in the working set.

A privileged process may lock itself in the balance set. While pages can still be
paged in and out of the working set, the process remains in memory even when
it is inactive. To lock itself in the balance set, the process issues the Set Process
Swap Mode (SYS$SETSWM) system service, as follows:

$SETSWM_S SWPFLG=#l

This call to SYS$SETSWM disables process swap mode. You can also disable
swap mode by setting the appropriate bit in the STSFLG argument to the
Create Process (SYS$CREPRC) system service; however, you need the PSWAPM
privilege to alter process swap mode.

A process can also lock particular pages in memory with the Lock Pages in
Memory (SYS$LCKPAG) system service. These pages are forced into the process's
working set if they are not already there. When pages are locked in memory
with this service, the pages remain in memory even when the remainder of the
process's working set is swapped out of the balance set. These remaining pages
stay in memory until they are unlocked with SYS$ULKPAG. The SYS$LCKPAG
system service can be useful in special circumstances, for example, for routines

' that perform I/O operations to devices without using the operating system's I/O
system.

You need the PSWAPM privilege to issue the SYS$LCKPAG or SYS$ULKPAG
system service.

20.4.7 Sections

20-12

A section is a disk file or a portion of a disk file containing data or instructions
that can be brought into memory and made available to a process for
manipulation and execution. A section can also be one or more consecutive
page frames in physical memory or I/O space; such sections, which require you
to specify page frame number (PFN) mapping, are discussed in the Chapter 19,
Section 19.5.6.15.

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

Sections are either private or global (shared).

• Private sections are accessible only by the process that creates them. A
process can define a disk data file as a section, map it into its virtual address
space, and manipulate it.

• Global sections can be shared by more than one process. One copy of
the global section resides in physical memory, and each process sharing it
refers to the same copy, except for copy-on-reference sections. For a copy­
on-reference section, each process refers to the same global section, but each
process gets its own copy of each page upon reference. A global section can
contain shareable code or data that can be read, or read and written, by more
than one process. Global sections are either temporary or permanent and can
be defined for use within a group or on a systemwide basis. Global sections
can be mapped to a disk file or created as a global page-file section, or they
can be a PFN mapped section.

When modified pages in writable disk file sections are paged out of memory
during image execution, they are written back into the section file rather than
into the paging file, as is the normal case with files. (However, copy-on-reference
sections are not written back into the section '-file.)

The use of disk file sections involves these two distinct operations:

1. The creation of a section defines a disk file as a section and informs the
system what portions of the file contain the section.

2. The mapping of a section makes it available to a process and establishes the
correspondence between virtual blocks in the file and specific addresses in the
virtual address space of a process.

The Create and Map Section (SYS$CRMPSC) system service creates and maps
a private section or a global section. Because a private section is used only by a
single process, creation and mapping are simultaneous operations. In the case of
a global section, one process can create a permanent global section and not map
to it; other processes can i:nap to it. A process can also create and map a global
section in one operation.

The following sections describe the creation, mapping, and use of disk file
sections. In each case, operations and requirements that are common to both
private sections and global sections are described first, followed by additional
notes and requirements for the use of global sections. Section 20.4.7.9 discusses
global page-file sections.

20.4.7.1 Creating Sections
To create a disk file section, you must follow these steps:

1. Open or create the disk file containing the section.

2. Define which virtual blocks in the file comprise the section.

3. Define the characteristics of the section.

20-13

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

20.4.7.2 Opening the Disk File

20-14

Before you can use a file as a section, you must open it using Open VMS RMS. The
following example shows the Open VMS RMS file access block ($FAB) and $OPEN
macros used to open the file and the channel specification to the SYS$CRMPSC
system service necessary for reading an existing file:

SECFAB: $FAB FNM=<SECTION.TST>, ; File access block
FOP= UFO
RTV= -1

$OPEN FAB=SECFAB
$CRMPSC S -

-CHAN=SECFAB+FAB$L_STV, .••

The file options parameter (FOP) indicates that the file is to be opened for user
1/0; this option is required so that Open VMS RMS assigns the channel using
the access mode of the caller. Open VMS RMS returns the channel number
on which the file is accessed; this channel number is specified as input to the
SYS$CRMPSC system service (chan argument). The same channel number can
be used for multiple create and map section operations.

The option RTV=-1 tells the file system to keep all of the pointers to be mapped
in memory at all times. If this option is omitted, the SYS$CRMPSC service
requests the file system to expand the pointer areas if necessary. Storage for
these pointers is charged to the BYTLM quota, which means that opening a badly
fragmented file can fail with an EXBYTLM failure status. Too many fragmented
sections may cause the byte limit to be exceeded.

The file may be a new file that is to be created while it is in use as a section. In
this case, use the $CREATE macro to open the file. If you are creating a new file,
the file access block (FAB) for the file must specify an allocation quantity (ALQ
parameter).

You can also use SYS$CREATE to open an existing file; if the file does not exist,
it is created. The following example shows the required fields in the FAB for the
conditional creation of a file:

GBLFAB: $FAB FNM=<GLOBAL.TST>, -
ALQ=4, -
FAC=PUT,­
FOP=<UFO,CIF ,CBT>, -
SHR=<PUT,UPI>

$CREATE FAB=GBLFAB

When the $CREATE macro is invoked, it creates the file .GLOBAL.TST if the
file does not currently exist. The CBT (contiguous best try) option requests that,
if possible, the file be contiguous. Although section files are not required to be
contiguous, better performance can result if they are.

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

20.4.7.3 Defining the Section Extents
After the file is opened successfully, the SYS$CRMPSC system service can create
a section from the entire file or from only certain portions of it. The following
arguments to SYS$CRMPSC define the extents of the file that comprise the
section:

• pagcnt (page count). On AXP systems, this argument is optional. It indicates
the size of the space that will be mapped. The pagcnt argument is in units
of page frames (PFNs) for a PFN-mapped section and in units of pagelets
(512-byte blocks) for disk-backed sections, including page file sections.

If pagcnt is not supplied, then the section size defaults to the file size for a
section being created and not mapped or defaults to the minimum of the file
size and the size specified by inadr for a section being created and mapped
simultaneously. You can map only what you have access to. Once a starting
point is established, you can map pagcnt more space as long as you do not
exceed the total size of the item you are mapping, such as the remaining
blocks of a file or the remaining space in a global section. +

• vbn (virtual block number). This argument is optional. It defines the number
of the virtual block in the file that is the beginning of the section. If you do
not specify this argument, the value 1 is passed (the first virtual block in the
file is the beginning of the section). If you have specified mapping, the vbn
argument specifies the starting PFN.

20.4.7.4 Defining the Section Characteristics
The flags argument to the SYS$CRMPSC system service defines the following
section characteristics:

• Whether it is a private section or a global section. The default is to create a
private section.

• How the pages of the section are to be treated when they are copied into
physical memory or when a process refers to them. The pages in a section can
be either or both of the following:

Read/write or read-only

Created as demand-zero pages or as copy-on-reference pages, depending
on how the processes are going to use the section and whether the file
contains any data (see Section 19.5.6.10)

• Whether the section is to be mapped to a disk file or to specific physical page
frames (see Section 20.4.7.17).

· Table 20-3 shows the flag bits that must be set for specific characteristics on AXP
systems.

20-15

Memory Management Services and.Routines (AXP Only)
20.4 Using System Services for Memory Allocation

Table20-3 Flag Bits to Set for Specific Section Characteristics on AXP
Systems

Section to Be Created

Correct Flag PFN PFN
Combinations Private Global Private Global

SEC$M_GBL 0 1 0 1

SEC$M_CRF Optional Optional 0 0

SEC$M_DZRO Optional Optional 0 0

SEC$M_WRT Optional Optional Optional Optional

SEC$M_PERM Not used Optional Not used 1

SEC$M_SYSGBL Not used Optional Not used Optional

SEC$M_pFNMAP 0 0 1 1

SEC$M_EXPREG Optional Optional Optional Optional

SEC$M_PAGFIL 0 Optional 0 0

When you specify section characteristics, the following restrictions apply:

• Global sections cannot be both demand-zero and copy-on-reference.

• Demand-zero sections must be writable. +

20.4.7.5 Defining Global Section Characteristics

20-16

If the section is a global section, you must assign a character string name
(gsdnarn argument) to it so that other processes can identify it when they
map it. The format of this character string name is explained in Section 20.4. 7 .6.

The flags argument specifies the following types of global section:

• Group temporary (the default)

• Group permanent

• System temporary

• System permanent

Group global sections can be shared only by processes executing with the same
group number. The name of a group global section is implicitly qualified by the
group number of the process that created it. When other processes map it, their
group numbers must match.

A temporary global section is automatically deleted when no processes are
mapped to it, but a permanent global section remains in existence even when
no processes are mapped to it. A permanent global section must be explicitly
marked for deletion with the Delete Global Section (SYS$DGBLSC) system
service.

You need the user privileges PRMGBL and SYSGBL to create permanent group
global sections or system global sections (temporary or permanent), respectively.

A system global section is available to all processes in the system.

Optionally, a process creating a global section can specify a protection mask (prot
argument) to restrict all access or a type of access (read, write, execute, delete) to
other processes.

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

20.4.7.6 Global Section Name
The gsdnam argument specifies a descriptor that points to a character string.

Translation of the gsdnam argument proceeds in the following manner:

1. The current name string is prefixed with GBL$ and the result is subject to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the system parameter LNM$C_MAXDEPTH.

3. The GBL$ prefix is stripped from the current name string that could not be
translated. This current string is the global section name.

For example, assume that you have made the following logical name assignment:

$ DEFINE GBL$GSDATA GSDATA_OOl

Your program contains the following statements.

#include <descrip.h>

$DESCRIPTOR(gsdnarn,"GSDATA");

status = sys$crrnpsc (&gsdnarn, • . •) ;

The following logical name translation takes place:

1. GBL$ is prefixed to GSDATA.

2. GBL$GSDATA is translated to GSDATA_OOl. (Further translation is not
successful. When logical name translation ·fails, the string is passed to the
service.)

There are three exceptions to the logical name translation method discussed in
this section:

• If the name string starts with an underscore (_), the operating system strips
the underscore and considers the resultant string to be the actual name (that
is, further translation is not performed).

• If the name string is the result of a logical name translation, then the name
string is checked to see if it has the terminal attribute. If the name string
is marked with the terminal attribute, the operating system considers the
resultant string to be the actual name (that is, further translation is not
performed).

• If the global section has a name in the format name_nnn, the operating
system first strips the underscore and the digits (nnn), then translates the
resultant name according to the sequence discussed in this section, and
finally reappends the underscore and digits. The system uses this method
in conjunction with known images and shared files installed by the system
manager.

20-17

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

20.4.7.7 Mapping Sections

Ila

20-18

When you call the 8Y8$CRMP8C system service to create or map a section,
or both, you must provide the service with a range of virtual addresses Cinadr
argument) into which the section is to be mapped.

On AXP systems, the inadr argument specifies the size and location of the section
by its start and end addresses. 8Y8$CRMP8C interprets the inadr argument in
the following ways:

• If both addresses specified in the inadr argument are the same and the
8EC$M_EXPREG bit is set in the flags argument, 8Y8$CRMP8C allocates
the memory in whichever program region the addresses fall but does not use
the specified location.

• If both addresses are different, 8Y8$CRMP8C maps the section into memory
using the boundaries specified.

If you know specifically which pages the section should be mapped into, you
provide these addresses in a 2-longword array. For example, to map a private
section of 10 pages into virtual pages 10 through 19 of the program region,
specify the input address array as follows: +

unsigned int maprange[l]; /* Assume page size = 8 KB */

maprange[O] = Ox14000; /* Address (hex) of page 10 */
maprange[l] = Ox27FFF; /* Address (hex) of page 19 */

On AXP systems, the inadr argument range must have a lower address on an
even page boundary and a higher address exactly one less than a page boundary.
For example, the range can be expressed as the following on an 8 KB page
system:

0--> lFFF
2000 --> 7FFF
or

. inadr[O] =first byte in range
inadr[l] =last byte in range

If the range is not expressed in terms of page-inclusive boundaries, then an 88$_
INVARG condition value is returned. +

You do not need to know the explicit addresses to provide an input address range.
If you want the section mapped into the first available virtual address range in
the program region (PO) or control region (Pl), you can specify the 8EC$M_
EXPREG flag bit in the flags argument. In this case, the addresses specified
by the inadr argument control whether the service finds the first available
space in the PO or Pl. The value specified or defaulted for the pagcnt argument
determines the amount of space mapped.

On AXP systems, the relpag argument specifies the location in the section file at
which you want mapping to begin.

The 8Y8$CRMP8C and 8Y8$MGBL8C system services map a minimum of one
CPU-specific page. If the section file does not fill a single page, the remainder of
the page is filled with zeros after faulting the page into memory. The extra space
on the page should not be used by your application because only the data that fits
into the section file will be written back to the disk.

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

The following example shows part of a program used to map a section at the
current end of the program region:

/*

*/

unsigned int status, inadr[l], retadr[l], flags;

This range used merely to indicate PO space since SEC$M_EXPREG
is specified

inadr[O]= Ox200; /* Any program (PO) region address */
inadr[l]= Ox200; /* Any PO address (can be same) */

/* Address range returned in retadr */

flags = SEC$M EXPREG;
status = sys$crmpsc (&inadr, &retadr, flags, • . .) ;

The addresses specified do not have to be currently in the virtual address space
of the process. The SYS$CRMPSC system service creates the required virtual
address space during the mapping of the section. If you specify the retadr
argument, the service returns the range of addresses actually mapped.

On AXP systems, the starting retadr address should match inadr, plus relpag
if specified. The ending (higher) address will be limited by the lower of:

• The value of the pagcnt argument

• The actual remaining block count in the file starting with specified starting
vbn, or relpag

• The bound dictated by the inadr argument +

After a section is mapped successfully, the image can refer to the pages using one
of the following:

• A base register or pointer and predefined symbolic offset names

• Labels defining offsets of an absolute program section or structure

The following example shows part of a program used to create and map a process
section on AXP systems:

SECFAB: $FAB

i
MAPRANGE:

.LONG

.LONG
RETRANGE:

.BLKL
ENDRANGE:

.BLKL

$OPEN
BLBS
BSBW

FNM=<SECTION.TST>, -
FOP=UFO, -
FAC=PUT, -
SHR=<GET,PUT,UPI>

"X14000
"X27FFF

1

1

FAB=SECFAB
R0,10$
ERROR

; First 8 KB page
; Last page

First page mapped

Last page mapped

Open section file

20-19

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

10$:

20$:

$CRMPSC S -

BLBS
BSBW
MOVL

-INADR=MAPRANGE,­
RETADR=RETRANGE,­
PAGCNT=#4,­
FLAGS=#SEC$M WRT,-
CHAN=SECFAB+FAB$L STV
R0,20$ -
ERROR
RETRANGE,R6

Notes on Example

Input address array
Output array
Map four pagelets
Read/write section
Channel number

Point to start of section

1. The OPEN macro opens the section file defined in the file access block
SECFAB. (The FOP parameter to the $FAB macro must specify the UFO
option.)

2. The SYS$CRMPSC system service uses the addresses specified at
MAPRANGE to specify an input range of addresses into which the section
will be mapped. The pagcnt argument requests that only 4 pagelets of the
file be mapped.

3. The Hags argument requests that the pages in the section have read/write
access. The symbolic flag definitions for this argument are defined in the
$SECDEF macro. Note that the file access field (FAC parameter) in the FAB
also indicates that the file is to be opened for writing.

4. When SYS$CRMPSC completes, the addresses of the 4 pagelets that were
mapped are returned in the output address array at RETRANGE. The
address of the beginning of the section is placed in register 6, which serves as
a pointer to the section. +

20.4.7.8 Mapping Global Sections

20-20

A process that creates a global section can map that global section. Then other
processes can map it by calling the Map Global Section (SYS$MGBLSC) system
service.

When a process maps a global section, it must specify the global section name
assigned to the section when it was created, whether it is a group or system
global section, and whether it desires read-only or read/write access. The process
may also specify the following:

• A version identification (ident argument), indicating the version number of
the global section (when multiple versions exist) and whether more recent
versions are acceptable to the process.

• A relative pagelet number (relpag argument), specifying the pagelet number,
relative to the beginning of the section, to begin mapping the section. In this
way, processes can use only portions of a section. Additionally, a process can
map a piece of a section into a particular address range and subsequently
map a different piece of the section into the same virtual address range.

On AXP systems, you should specify the retadr argument to determine the
exact boundaries of the memory that was mapped by the call. If your application
specifies the relpag argument, you must specify the retadr argument. In this
case, it is not an optional argument. +

Cooperating processes can both issue a SYS$CRMPSC system service to create
and map the same global section. The first process to call the service actually
creates the global section; subsequent attempts to create and map the section
result only in mapping the section for the caller. The successful return status
code SS$_CREATED indicates that the section did not already exist when the

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

SYS$CRMPSC system service was called. If the section did exist, the status code
SS$_NORMAL is returned.

The example in Section 20.4.7.12 shows one process (ORION) creating a global
section and a second process (CYGNUS) mapping the section.

20.4.7.9 Global Page-File Sections
Global page-file sections are used to store temporary data in a global section. A
global page-file section is a section of virtual memory that is not mapped to a file.
The section can be deleted when processes have finished with it. (Contrast this
with demand-zero section file pages where no initialization is necessary, but the
pages are saved in a file.) The system parameter GBLPAGFIL controls the total
number of global page-file pages in the system.

To create a global page-file section, you must set the flag bits SEC$M_GBL
and SEC$M_PAGFIL in the flags argument to the Create and Map Section
(SYS$CRMPSC) system service. The channel (chan argument) must be 0.

You cannot specify the flag bit SEC$M_CRF with the flag bit SEC$M_PAGFIL.

20.4.7.10 Mapping into a Defined Address Range
Ww\9:W On AXP systems, SYS$CRMPSC and SYS$MGBLSC interpret some of the
-····- arguments differently than on VAX systems if you are mapping a section into a

defined area of virtual address space. The differences are as follows:

• The addresses specified as values in the inadr argument must be aligned
on CPU-specific page boundaries. On VAX systems, SYS$CRMPSC and the
SYS$MGBLSC round these addresses to page boundaries for you. On AXP
systems, SYS$CRMPSC does not round the addresses you specify to page
boundaries, because rounding to CPU-specific page boundaries on AXP system
affects a much larger portion of memory that it does on VAX systems, where
page sizes are much smaller. Therefore, on AXP systems, you must explicitly
state where you want the virtual memory space mapped. If the addresses
you specify are not aligned on CPU-specific page boundaries, SYS$CRMPSC
returns an invalid arguments error (SS$_INVARG).

In particular, the lower inadr address must be on a CPU-specific page
boundary, and the higher inadr address must be one less than a CPU-specific
page; that is, it indicates the highest-addressed byte of the inadr range.

• The addresses returned in the retadr argument reflect only the usable
portion of the actual memory mapped by the call, not the entire amount
mapped. The usable amount is either the value specified in the pagcnt
argument (measured in pagelets) or the size of the section file, whichever
is smaller. The actual amount mapped depends on how many CPU-specific
pages are required to map the section file. If the section file does not fill a
CPU-specific page, the remainder of the page is filled with zeros. The excess
space on this page should not be used by your application. The end address
specified in the retadr argument specifies the upper limit available to your
application. Also note that, when the relpag argument is specified, the
retadr argument must be included. It is not optional on AXP systems. +

20-21

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

20.4.7.11 Mapping from an Offset into a Section File

1!!3# On AXP systems, you can map a portion of a section file by specifying the address
at which to start the mapping as an offset from the beginning of the section
file. You, specify this offset by supplying a value to the relpag argument of
SYS$CRMPSC. The value of the relpag argument specifies the pagelet number
relative to the beginning of the file at which the mapping should begin.

To preserve compatibility, SYS$CRMPSC interprets the value of the relpag
argument in 512-byte units on both VAX systems and AXP systems. However,
because the CPU-specific page size on the AXP system is larger than 512 bytes,
the address specified by the offset in the relpag argument probably does not
fall on a CPU-specific page boundary on an AXP system. SYS$CRMPSC can
map virtual memory in CPU-specific page increments only. Therefore, on AXP
systems, the mapping of the section file will start at the beginning of the CPU­
specific page that contains the offset address, not at the address specified by the
offset.

Note --~~~~~~~~~~~~­

Even though the routine starts mapping at the beginning of the CPU­
specific page that contains the address specified by the offset, the start
address returned in the retadr argument is the address specified by the
offset, not the address at which mapping actually starts.

If you map from an offset into a section file, you must still provide an inadr
argument that abides by the requirements presented in Section 20.4.7.10 when
mapping into a defined address range. +

20.4.7.12 Section Paging

20-22

The first time an image executing in a process refers to a page that was created
during the mapping of a disk file section, the page is copied into physical memory.
The address of the page in the virtual address space of a process is mapped to
the physical page. During the execution of the image, normal paging can occur;
however, pages in sections are not written into the page file when they are paged
out, as is the normal case. Rather, if they have been modified, they are written
back into the section file on disk. The next time a page fault occurs for the page,
the page is brought back from the section file.

If the pages in a section were defined as demand-zero pages or copy-on-reference
pages when the section was created, the pages are treated differently, as follows:

• If the call to SYS$CRMPSC requested that pages in the section be treated as
demand-zero pages, these pages are initialized to zeros when they are created
in physical memory. If the file is either a new file being created as a section
or a file being completely rewritten, demand-zero pages provide a convenient
way of initializing the pages. The pages are paged back into the section file.

• When the virtual address space is deleted, all unreferenced pages are written
back to the file as zeros. This causes the file to be initialized, no matter how
few pages were modified.

• If the call to SYS$CRMPSC requested that pages in the section be copy-on­
reference pages, each process that maps to the section receives its own copy of
the section, on a page-by-page basis from the file, as it refers to them. These
pages are never written back into the section file but are paged to the paging
file as needed.

Memory Management Services and Routines {AXP Only)
20.4 Using System Services for Memory Allocation

In the case of global sections, more than one process can be mapped to the same
physical pages. If these pages need to be paged out or written back to the disk
file defined as the section, these operations are done only when the pages are not
in the working set of any process.

In the following example for AXP systems, process ORION creates a global section
and process CYGNUS maps to that section:

/* Process ORION */

#include <rms.h>
#include <rmsdef .h>
#include <string.h>
#include <secdef .h>
#include <descrip.h>

struct FAB gblfab;

main() {
unsigned short chan;
unsigned int status, flags, efn=65;
char *fn = "SECTION.TST";
$DESCRIPTOR(name, "FLAG CLUSTER"); /*Common event flag cluster name*/
$DESCRIPTOR(gsdnam, "GLOBAL_SECTION"); /*Global section name*/

Ctstatus = SYS$ASCEFC(efn, &name, O);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Initialize FAB fields */

gblfab = cc$rms fab;
gblfab.fab$1 alq = 4;
gblfab.fab$b-fac = FAB$V PUT;
gblfab.fab$1-fnm = fn; -
gblfab.fab$l=fop = FAB$V_CIF I I FAB$V_CBT;

/* Create a file if none exists */

f1status = SYS$CREATE(&gblfab, O, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

flags = SEC$M_GBL I I SEC$M_WRT;
status = SYS$CRMPSC (0, 0, 0, flags, &gsdnam, . • •) ;
if ((status & 1) != 1)

LIB$SIGNAL(status);

status = SYS$SETEF(efn);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Process CYGNUS */

unsigned int status, efn=65;
$DESCRIPTOR(cluster,"FLAG CLUSTER");
$DESCRIPTOR(section, "GLOBAL _SECTION");

20-23

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

0status = SYS$ASCEFC(efn, &cluster, O);
if ((status & 1) != 1)

LIB$SIGNAL(status);

status= SYS$WAITFR(efn);
if ((status & 1) ! = 1)

LIB$SIGNAL(status);

status= SYS$MGBLSC(&inadr, &retadr, O, flags, §ion, O, O);
if ((status & 1) ! = 1)

LIB$SIGNAL(status);

0 The processes ORION and CYGNUS are in the same group. Each process
first associates with a common event flag cluster named FLAG_CLUSTER to
use common event flags to synchronize its use of the section.

8 The process ORION creates the global section named GLOBAL_SECTION,
specifying section flags that indicate that it is a global section (SEC$M_GBL)
and has read/write access. Input and output address arrays, the page count
parameter, and the channel number arguments are not shown; procedures for
specifying them are the same, as shown in this example.

0 The process CYGNUS associates with the common event flag cluster and
waits for the flag defined as FLGSET; ORION sets this flag when it has
finished creating the section. To map the section, CYGNUS specifies the input
and output address arrays, the flag indicating that it is a global section, and
the global section name. The number of pages mapped is the same as that
specified by the creator of the section. +

20.4.7.13 Reading and Writing Data Sections
Read/write sections provide a way for a process or cooperating processes to share
data files in virtual memory.

The sharing of global sections may involve application-dependent synchronization
techniques. For example, one process can create and map to a global section
in read/write fashion; other processes can map to it in read-only fashion and
interpret data written by the first process. Alternatively, two or more processes
can write to the section concurrently. (In this case, the application must provide
the necessary synchronization and protection.)

After a file is updated, the process or processes can release (or unmap) the
section. The modified pages are then written back into the disk file defined as a
section.

When this is done, the revision number of the file is incremented, and the version
number of the file remains unchanged. A full directory listing indicates the
revision number of the file and the date and time that the file was last updated.

20.4.7.14 Releasing and Deleting Sections

20-24

A process unmaps a section by deleting the virtual addresses in its own virtual
address space to which it has mapped the section. If a return address range was
specified to receive the virtual addresses of the mapped pages, this address range
can be used as input to the Delete Virtual Address Space (SYS$DELTVA) system
service, as follows:

$DELTVA_S INADR=RETRANGE

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

When a process unmaps a private section, the section is deleted; that is, all
control information maintained by the system is deleted. A temporary global
section is deleted when all processes that have mapped to it have unmapped it.
Permanent global sections are not deleted until they are specifically marked for
deletion with the Delete Global Section (SYS$DGBLSC) system service; they are
then deleted when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the section
file, but rather cancels the process's association with the file. Moreover, when a
process deletes pages mapped to a read/write section and no other processes are
mapped to it, all modified pages are written back into the section file.

After a section is deleted, the channel assigned to it can be deassigned. The
process that created the section can deassign the channel with the Deassign 1/0
Channel (SYS$DASSGN) system service, as follows:

$DASSGN_S CHAN=GBLFAB+FAB$L_STV

20.4.7.15 Writing Back Sections
Because read/write sections are not normally updated on disk until the
physical pages they occupy are paged out, or until all processes referring to
the section have unmapped it, a process should ensure that all modified pages are
successfully written back into the section file at regular intervals.

The Update Section File on Disk (SYS$UPDSEC) system service writes the
modified pages in a section into the disk file. The SYS$UPDSEC system service
is described in the Open VMS System Services Reference Manual.

20.4.7.16 Image Sections
Global sections can contain shareable code. The operating system uses global
sections to implement shareable code, as follows:

1. The object module containing code to be shared is linked to produce a
shareable image. The shareable image is not, in itself, executable. It contains
a series of sections, called image sections.

2. You link private object modules with the shareable image to produce an
executable image. No code or data from the shareable image is put into the
executable image.

3. The system manager uses the INSTALL command to create a permanent
global section from the shareable image file, making the image sections
available for sharing.

4. When you run the executable image, the operating system automatically
maps the global sections created by the INSTALL command into the virtual
address space of your process.

For details on how to create and identify shareable images and how to link
them with private object modules, see the Open VMS Linker Utility Manual. For
information about how to install shareable images and make them available for
sharing as global sections, see the Open VMS System Manager's Manual.

20-25

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

20.4.7.17 Page Frame Sections
A page frame section is one or more contiguous pages of physical memory or
I/O space that have been mapped as a section. One use of page frame sections is
to map to an I/O page, thus allowing a process to read device registers.

A page frame section differs from a disk file section in that it is not associated
with a particular disk file and is not paged. However, it is similar to a disk
file section in most other respects: you create, map, and define the extent and
characteristics of a page frame section in essentially the same manner as you do
for a disk file section.

To create a page frame section, you must specify page frame number (PFN)
mapping by setting the SEC$M_PFNMAP flag bit in the flags argument to the
Create and Map Section (SYS$CRMPSC) system service. The vbn argument is
now used to specify that the first page frame is to be mapped instead of the first
virtual block. You must have the user privilege PFNMAP to create or delete a
page frame section but not to map to an existing one.

Because a page frame section is not associated with a disk file, you do not use
the chan, and pfc arguments to the SYS$CRMPSC service to create or map this
type of section. For the same reason, the SEC$M_CRF (copy-on-reference) and
SEC$M_DZRO (demand-zero) bit settings in the flags argument do not apply.
Pages in page frame sections are not written back to any disk file (including the
paging file). The pagcnt and relpag arguments are in units of CPU-specific
pages for page frame sections.

Caution

You must use caution when working with page frame sections. If you
permit write access to the section, each process that writes to it does
so at its own risk. Serious errors can occur if a process writes incorrect
data or writes to the wrong page, especially if the page is also mapped by
the system or by another process. Thus, any user who has the PFNMAP
privilege can damage or violate the security of a system.

20.4.7.18 Partial Sections

20-26

On AXP systems, a partial section is one where not all of the defined section,
whether private or global, is entirely backed up by disk blocks. In other words, a
partial section is where a disk file does not map completely onto an AXP system
page.

For example, suppose a file for which you wish to create a section consists of 17
virtual blocks on disk. To map this section, you would need 2 whole AXP 8 KB
pages, the smallest size AXP page available. The first AXP page would map the
first 16 blocks of the section, and the second AXP page would map the 17th block
of the section. (A block on disk is 512 bytes, same as on Open VMS VAX.) This
results in 15/16ths of the second AXP page not being backed up by the section
file. This is called a partial section because the second AXP page of the section is
only partially backed up.

When the partial page is faulted in, a disk read is issued for only as many blocks
as actually back up that page, which in this case is 1. When that page is written
back, only the one block is actually written.

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

If the upper portion of the second AXP page is used, it is done so at some risk,
because only the first block of that page is saved on a write back operation.
This upper portion of the second AXP page is not really useful space to the
programmer, because it is discarded during page faulting. +

20.4.8 Example of Using Memory Management System Services

*!fa• In the following example, two programs are communicating through a global
section. The first program creates and maps a global section (by using
SYS$CRMPSC) and then writes a device name to the section. This program
also defines the device terminal and process names and sets the event flags that
synchronize the processes.

The second program maps the section (by using SYS$MGBLSC) and then reads
the device name and the process that allocated the device and any terminal
allocated to that process. This program also writes the process named to the
terminal global section where the process name can be read by the first program.

The common event cluster is used to synchronize access to the global section. The
first program sets REQ_FLAG to indicate that the device name is in the section.
The second program sets INFO _FLAG to indicate that the process and terminal
names are available.

Data in a section must be page aligned. The following is the option file used
at link time that causes· the data in the common area named DATA to be page
aligned:

PSECT_ATTR = DATA, PAGE

For high-level language usage, use the solitary attribute of the linker. See
the Open VMS Linker Utility Manual for an explanation of how to use the
solitary attribute. The address range requested for a section must end on a page
boundary, so SYS$GETSYI is used to obtain the system page size.

Before executing the first program, you need to write a user-open routine that
sets the user-open bit (FAB$V _UFO) of the FAB options longword (FAB$L_FOP).
Because the Fortran OPEN statement specifies that the file is new, $CREATE
should be used to open it rather than $OPEN. No $CONNECT should be issued.
The user-open routine reads the channel number that the file is opened on from
the status longword (FAB$L_STV) and returns that channel number to the main
program by using a common block (CHANNEL in this example).

!This is the program that creates the global section.

! Define global section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC MASK

20-27

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

20-28

! Logical unit number for section file
INTEGER INFO LUN
! Channel nuinber for section file
! (returned from useropen routine)
INTEGER SEC CHAN
COMMON /CHANNEL/ SEC CHAN
! Length for the section file
INTEGER SEC LEN
! Data for the section file
CHARACTER*l2 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST FLAG,
2 INFO FLAG
DATA REQUEST-FLAG /70/
DATA INFO FLAG /71/

! Data for SYS$GETSYI
INTEGER PAGE SIZE
INTEGER*2 BUFF-LEN, ITEM CODE
INTEGER BUFF-ADDR, LENGTH, TERMINATOR
EXTERNAL SYI$-PAGE SIZE
COMMON /GETSYI-ITEMLST/ BUFF LEN,
2 - ITEM-CODE,
2 BUFF-ADDR,
2 LENGTH,
2 TERMINATOR

User-open routines
INTEGER UFO CREATE
EXTERNAL UFO CREATE

Open the section file
STATUS = LIB$GET LUN (INFO LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC MASK = SEC$M WRT .OR. SEC$M DZRO .OR. SEC$M GBL
! (Last element ~ first element-+ size of last element + 511)/512
SEC LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512)
OPEN (UNIT=INFO LUN,
2 FILE='INFO.TMP',
2 STATUS='NEW',
2 INITIALSIZE = SEC LEN,
2 USEROPEN = UFO CREATE)

Free logical unit number and map section
CLOSE (INFO_LUN)

! Get the system page size
BUFF LEN = 4
ITEM-CODE = %LOC(SYI$ PAGE SIZE)
BUFF-ADDR = %LOC(PAGE-SIZE)
LENGTH = 0 -
TERMINATOR = 0

STATUS= SYS$GETSYI(,,,BUFF_LEN,,,)

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

Get location of data
PASS ADDR (1) = %LOC (DEVICE)
PASS=ADDR (2) = PASS_ADDR(l) + PAGE_SIZE - 1

STATUS = SYS$CRMPSC (PASS ADDR, ! Address of section
2 RET_ADDR, ! Addresses mapped
2 '
2 %VAL(SEC MASK),
2 'GLOBAL_SEC',
2 "

Section mask
Section name

2 %VAL(SEC CHAN), I/O channel
2 "') -
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create the subprocess
STATUS= SYS$CREPRC (,
2 'GETDEVINF' , Image

2 ""' 2 'GET DEVICE' , Process name
2 %VAL(4),,,) Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Write data to section
DEVICE = '$DISK1'

! Get common event flag cluster and set flag
STATUS= SYS$ASCEFC (%VAL(REQUEST FLAG),
2 'CLUSTER',,)-
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS= SYS$SETEF (%VAL(REQUEST FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! When GETDEVINF has the information, INFO FLAG is set
STATUS= SYS$WAITFR (%VAL(INFO FLAG)) -
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

This is the program that maps to the global section
created by the previous program.

Define section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC MASK
! Data for the section file
CHARACTER*l2 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL

! Location of data
INTEGER PASS ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST FLAG,
2 INFO FLAG
DATA REQUEST-FLAG /70/
DATA INFO FLAG /71/

20-29

Memory Management Services and Routines (AXP Only)
20.4 Using System Services for Memory Allocation

20-30

! Data for SYS$GETSYI
INTEGER PAGE SIZE
INTEGER*2 BUFF-LEN, ITEM CODE
INTEGER BUFF-ADDR, LENGTH, TERMINATOR
EXTERNAL SYI$-PAGE SIZE
COMMON /GETSYI-ITEMLST/ BUFF LEN,
2 - ITEM-CODE,
2 BUFF-ADDR,
2 LENGTH,
2 TERMINATOR

Get the system page size
BUFF LEN = 4
ITEM-CODE = %LOC(SYI$ PAGE SIZE)
BUFF-ADDR = %LOC(PAGE-SIZE)
LENGTH = 0 -
TERMINATOR = 0

STATUS= SYS$GETSYI(,,,BUFF_LEN,,,)

! Get conunon event flag cluster and wait
! for GBLl.FOR to set REQUEST FLAG
STATUS= SYS$ASCEFC (%VAL(REQUEST FLAG),
2 'CLUSTER',,)-
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$WAITFR (%VAL(REQUEST FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL-(%VAL(STATUS))

! Get location of data
PASS ADDR (1) = %LOC (DEVICE)
PASS=ADDR (2) = PASS_ADDR(l) + PAGE_SIZE - 1

! Set write flag
SEC_MASK = SEC$M_WRT

! Map the section
STATUS = SYS$MGBLSC (PASS ADDR, ! Address of section
2 RET_ADDR, ! Address mapped
2 ,
2 %VAL(SEC MASK), ! Section mask
2 'GLOBAL SEC',,) ! Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Call GETDVI to get the process ID of the
process that allocated the device, then
call GETJPI to get the process name and terminal
name associated with that process ID.
Set PROCESS equal to the process name and
set TERMINAL equal to the terminal name.

After information is in GLOBAL SEC
STATUS= SYS$SETEF (%VAL(INFO FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

•

21
Using Run-Time Routines for Memory

Allocation

This chapter describes the use of run-time routines (RTLs) to allocate and
deallocate pages. It contains the following sections:

Section 21.1 describes the allocating and freeing of pages.

Section 21.2 describes the interactions with other RTL routines.

Section 21.3 describes the interactions with system services.

Section 21.4 describes how to use zones.

Section 21.5 describes the mechanism for allocating and freeing blocks of memory.

Section 21.6 describes the RTL algorithms used to allocate and free memory.

Section 21. 7 describes how to create and manage user-defined zones.

Section 21.8 describes the methods of debugging programs that use virtual
memory zones.

Note ~~~~~~~~~~~~

In this chapter, all references to pages include both the 512-byte page
size on VAX systems and the 512-byte pagelet size on AXP systems. See
Chapter 19 and Chapter 20 for a discussion of page sizes on VAX and
AXP systems.

21.1 Allocating and Freeing Pages
The run-time library page management routines LIB$GET_VM_PAGE and
LIB$FREE_ VM_PAGE provide a flexible mechanism for allocating and freeing
pages (pagelets on AXP systems) of memory. In general, modular routines should
use these routines rather than direct system service calls to manage memory.
The page or pagelet management routines maintain a processwide pool of free
pages or pagelets and automatically reuse free pages or pagelets. If your program
calls system services directly, it must do the bookkeeping to keep track of free
memory.

LIB$GET_ VM_PAGE and LIB$FREE_ VM_PAGE are fully reentrant. They can
be called by code running at AST level or in an Ada multitasking environment.

Memory space allocated by LIB$GET_ VM_PAGE are created with user-mode
read-write access, even if the call to LIB$GET_ VM_PAGE is made from a more
privileged access mode.

21-1

Using Run-Time Routines for Memory Allocation
21.1 Allocating and Freeing Pages

21-2

LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE are designed for request sizes
ranging from one page to a few hundred pages. If you are usi'ng very large
request sizes of contiguous space in a single request, the bitmap allocation
method that is used may cause fragmentation of your virtual address space
because allocated pages are contiguous. For very large request sizes, use direct
calls to SYS$EXPREG and do not use LIB$GET_ VM_PAGE.

The format for LIB$GET_ VM_PAGE is as follows:

LIB$GET _ VM_PAGE (num-pages, base-adr, [zone-id])

With this routine, you need to specify only the number of pages you need in the
num-pages argument. The routine returns the base address of the contiguous
block of pages that have been allocated in the base-adr argument.

The rules for using LIB$GET_ VM_PAGE and LIB$FREE_ VM_PAGE are as
follows:

• Any memory you free by calling LIB$FREE_ VM_PAGE must have been
allocated by a previous call to LIB$GET_ VM_PAGE. You cannot allocate
memory by calling SYS$EXPREG or SYS$CRETVA and then free it using
LIB$FREE_ VM_PAGE.

• All memory allocated by LIB$GET _ VM_PAGE is page aligned; that is, the
low-order 9 bits of the address are all zero. All memory freed by LIB$FREE_
VM_PAGE must also be page aligned; an error status is returned if you
attempt to free a block of memory that is not page aligned.

• You can free a smaller group of pages than you allocated. That is, if you
allocated a group of 4 contiguous pages by a single call to LIB$GET_ VM_
PAGE, you can free the memory by using several calls to LIB$FREE_ VM_
PAGE; for example, free 1 page, 2 pages, and 1 page.

• You can combine contiguous groups of pages that were allocated by several
calls to LIB$GET_ VM_PAGE into one group of pages that are freed by a
single call to LIB$FREE_ VM_PAGE. Before doing this, however, you must
compare the addressses to ensure that the pages you are combining are
indeed contiguous. Of course, you must ensure that a routine frees only pages
that it has previously allocated and still owns.

• Be especially careful that you do not attempt to free a set of pages twice. You
might free a set of pages in one routine and reallocate those same pages from
another routine. If the first routine then deallocates those pages a second
time, any information that the second routine stored in them is lost. Because
the pages are still allocated to your program (even though to a different
routine), this type of programming mistake does not generate an error.

• The contents of memory allocated by LIB$GET_ VM_PAGE are unpredictable.
Your program must assign values to all locations that it uses.

• You should try to minimize the number of request sizes your program uses
to avoid fragmentation of the free page pool. This concept is shown in
Figure 21-1.

Using Run-Time Routines for Memory Allocation
21.1 Allocating and Freeing Pages

Figure 21-1 Memory Fragmentation

l-s-t3-l --2s----1s-------40----2f2~

Bl....___ _ ___. .___ __ _____., 0
ZK-4150-GE

The straight line running across Figure 21-1 represents the memory
allocated to your program. The blocks represent memory that has already
been allocated. At this point, if you request 16 pages, memory will have to be
allocated at the far right end of the memory line shown in this figure, even
though there are 20 free pages before that point. You cannot use 16 of these
20 pages because the 20 free pages are "fragmented" into groups of 15, 3, and
2 pages.

Fragmentation is discussed further in Section 21.4.1.

21.2 Interactions with Other Run-Time Library Routines
Chapter 19 and Chapter 20 describe a three-level hierarchy of memory allocation
routines consisting of the following:

1. Memory management system services

2. Run-time library page management routines LIB$GET_ VM_PAGE and
LIB$FREE_ VM_PAGE

3. Run-time library heap management routines LIB$GET_ VM and LIB$FREE_
VM

The run-time library and various programming languages provide another level
of more specialized allocation routines.

• The run-time library dynamic string package provides a set of routines for
allocating and freeing dynamic strings. The set of routines includes the
following:

LIB$SGET1_DD, LIB$SFREE1_DD
LIB$SFREEN_DD
STR$GETl_DX, STR$FREE1_DX

• VAX Ada provides allocators and the UNCHECKED_DEALLOCATION
package for allocating and freeing memory.

• VAX Pascal provides the NEW and DISPOSE routines for allocating and
freeing memory.

• VAX PUI provides ALLOCATE and FREE statements for allocating and
freeing memory.

A program containing routines written in several operating system languages
may use a number of these facilities at the same time. This does not cause any
problems or impose any restrictions on the user because all of these are layered
on the run-time library heap management routines.

21-3

Using Run-Time Routines for Memory Allocation
21.2 Interactions with Other Run-Time Library Routines

To ensure correct operation, memory that is allocated by one of the
higher-level allocators in the preceding list can be freed only by using
the corresponding deallocation routine. That is, memory allocated by
PASCAL NEW must be freed by calling PASCAL DISPOSE, and a
dynamic string can be freed only by calling one of the string package
deallocation routines.

21.3 Interactions with System Services

21-4

The run-time library page management and heap management routines are
implemented as layers built on the memory management system services. In
general, modular routines should use the run-time library routines rather than
directly call memory management system services. However, in some situations
you must use both. This section describes relationships between the run-time
library and memory management. See the Open VMS System Services Reference
Manual for descriptions of the memory management system services.

You can use the Expand Region (SYS$EXPREG) system service to create pages
of virtual memory in the program region (PO space) for your process. The
operating system keeps track of the first free page address at the end of PO
space, and it updates this free page address whenever you call SYS$EXPREG or
SYS$CRETVA. The LIB$GET_ VM_PAGE routine calls SYS$EXPREG to create
pages, so there is no conflicting address assignments when you call SYS$EXPREG
directly.

Avoid using the Create Virtual Address Space (SYS$CRETVA) system service,
because you must specify the range of virtual addresses when it is called. If
the address range you specify contains pages that already exist, SYS$CRETVA
deletes those pages and recreates them as demand-zero pages. You may have
difficulty avoiding conflicting address assignments if you use run-time library
routines and SYS$CRETVA.

You must not use the Contract Region (SYS$CNTREG) system service, because
other routines or the Open VMS Record Management Services (RMS) may have
allocated pages at the end of the program region.

You can change the protection on pages your program has allocated by calling the
Set Protection (SYS$SETPRT) system service. All pages allocated by LIB$GET _
VM_PAGE have user-mode read/write access. If you change protection on pages
allocated by LIB$GET_ VM_PAGE, you must reset the protection to user-mode
read/write before calling LIB$FREE_ VM_PAGE to free the pages.

You can use the Create and Map Section (SYS$CRMPSC) system service to map
a file into your virtual address space. To map a file, you provide a range of
virtual addresses for the file. One way to do this is to specify the Expand Region
option (SEC$M_EXPREG) when you call SYS$CRMPSC. This method assigns
addresses at the end of PO space, similar to the SYS$EXPREG system service.
Alternatively, you can provide a specific range of virtual addresses when you call
SYS$CRMPSC; this is similar to allocating pages by calling SYS$CRETVA. If you
assign a specific range of addresses, you must avoid conflicts with other routines.
One way to do this is to allocate memory by calling LIB$GET_ VM_PAGE and
then use that memory to map the file.

Using Run-Time Routines for Memory Allocation
21.3 Interactions with System Services

The complete sequence of steps is as follows:

1. Call LIB$GET_ VM_PAGE to allocate a contiguous group of (n+l) pages. The
first n pages is used to map the file; the last page serves as a guard page.

2. Call SYS$CRMPSC using the first n pages to map the file into your process
address space.

3. Process the file.

4. Call SYS$DELTVA to delete the first n pages and unmap the file.

5. Call SYS$CRETVA to recreate the n pages of virtual address space as
demand-zero pages.

6. Call LIB$FREE_VM_PAGE to free (n+l) pages of memory and return them to
the processwide page pool.

This sequence is satisfactory when mapping small files of a few hundred pages,
but it has severe limitations when mapping very large files. As discussed in
Section 21.1, you should not use LIB$GET_VM_PAGE to allocate very large
groups of contiguous pages in a single request. In addition, when you allocate
memory by calling LIB$GET_VM_PAGE (and thus SYS$EXPREG), the pages are
charged against your process page file quota. Your page file quota is not charged
if you call SYS$CRMPSG with the SEC$M_EXPREG option.

You can process very large files using SYS$CRMPSC by first providing a pool
of pages that is sufficient for your program and then by using SYS$CRMPSC
and SYS$DELTVA to map and unmap the file. Use LIB$SHOW _ VM to obtain
an estimate of how much dynamically allocated memory your program requires;
round this number up and allow for increased memory usage in the future. You
can then use the memory estimate as follows:

1. At the beginning of your program, include code to call LIB$GET_VM_PAGE
and allocate the estimated number of pages. You should not request a large
number of pages in one call to LIB$GET_ VM_PAGE, because this would
require contiguous allocation of the pages.

2. Call LIB$FREE_ VM_PAGE to free all the pages allocated in step 1; this
establishes a pool of free pages for your program.

3. Open files that your program needs; note that RMS may allocate buffers in
PO space.

4. Call SYS$CRMPSC specifying SEC$M_EXPREG to map the file into your
process address space at the end of PO space.

5. Process the file.

6. Call SYS$DELTVA, specifying the address range to release the file. If
additional pages were not created after you mapped the file, SYS$DELTVA
contracts your address space. Your program can repeat the process of
mapping a file ·without continually expanding its address space.

21-5

Using Run-Time Routines for Memory Allocation
21.4 Zones

21.4 Zones

21-6

The run-time library heap management routines LIB$GET_ VM and LIB$FREE_
VM are based on the concept of zones. A zone is a logically independent memory
pool or subheap that you can control as one unit. A program may use several
zones to structure its heap memory management. You might use a zone to:

• Store short-lived data structures that you can subsequently delete all at once

• Store a program that does not reference a wide range of addresses

• Specify a memory allocation algorithm specific to your program

• Specify attributes, like block size and alignment, specific to your program

You create a zone with specified attributes by calling the routine LIB$CREATE_
VM_ZONE. LIB$CREATE_ VM_ZONE returns a zone identifier value that you
can use in subsequent calls to the routines LIB$GET_ VM and LIB$FREE_ VM.
When you no longer need the zone, you can delete the zone and free all the
memory it controls by a single call to LIB$DELETE_ VM_ZONE.

The format for this routine is as follows:

LIB$CREATE_ VM_ZONE (zone_id,[algorithm],[algorithm_arg] [,flags]
[,extend_ size], [in itial_size]
,[block_size] ,[alignment],[page_limit],[p1])

For more information about LIB$CREATE_ VM_ZONE, refer to the Open VMS
RTL Library (LIB$) Manual.

Allocating Address Space

Use the algorithm argument to specify how much space should be allocated-as
a linked list of free blocks, as a set of lookaside list indexes by request size, as a
set of lookaside lists for some block sizes, or as a single queue of free blocks.

Allocating Pages Within the Zone
Use the initial_size argument to allocate a specified number of pages from
the zone when it is created. After zone creation, you can use LIB$GET_ VM to
allocate space.

Specifying the Block Size

Use the block_size argument to specify, in bytes, the block size.

Specifying Block Alignment

Use the alignment argument to specify, in bytes, the alignment for each block
allocated.

Once a zone has been created and used, use LIB$DELETE_ VM_ZONE to
delete the zone and return the pages allocated to the processwide page pool.
LIB$RESET_ VM_ZONE frees pages for subsequent allocation but does not delete
the zone or return the pages to the processwide page pool. Use LIB$SHOW _ VM_
ZONE to get information about a specific zone.

If you want a program to deal with each VM zone created during the invocation,
including those created outside of the program, you can call LIB$FIND_ VM_
ZONE. At each call, LIB$FIND_ VM_ZONE scans the heap management database
and returns the zone identifier of the next valid zone.

Using Run-Time Routines for Memory Allocation
21.4 Zones

LIB$SHOW _ VM_ZONE returns formatted information about a specified zone,
detailing such information as the zone's name, characteristics, and areas,
and then passes the information to the specified or default action routine.
LIB$VERIFY_VM_ZONE verifies the zone header and scans all of the queues
and lists maintained in the zone header.

If you call LIB$GET_ VM to allocate memory from a zone and the zone has no
free memory to satisfy the request, LIB$GET_ VM calls LIB$GET_ VM_PAGE to
allocate a block of contiguous pages for the zone. Each such block of contiguous
pages is called an area. You control the number of pages in an area by specifying
the area extension size attribute when you create the zone.

The systematic use of zones provides the following benefits:

• Structuring heap memory management

Data structures in your program may have different life spans or dynamic
scopes. Some structures may continue to grow during the entire execution of
your program, while others exist for a very short time and are then discarded
by the program. You can create a separate zone in which you allocate a
particular type of short-lived structure. When the program no longer needs
any of those structures, you can delete all of them in a single operation by
calling LIB$DELETE_ VM_ZONE.

• Program locality

Program locality is a characteristic of a program that indicates the distance
between the references and virtual memory over a period of time. A program
with a high degree of program locality does not refer to many widely scattered
virtual addresses in a short period of time. Maintaining a high degree of
program locality reduces the number of page faults and improves program
performance.

It is important to minimize the number of page faults to obtain best
performance in a virtual memory system such as VAX and AXP systems.
For example, if your program creates and searches a symbol table, you can
reduce the number of page faults incurred by the search operation by using
as few pages as possible to hold all the symbol table entries. If you allocate
symbol table entries and other items unrelated to the symbol table in the
same zone, each page of the symbol table contains both symbol table entries
and other items. Because of the extra unrelated entries, the symbol table
takes up more pages than it actually needs. A search of the symbol table then
accesses more pages, and performance is lower as a result. You may be able
to reduce the number of page faults by creating a separate symbol table zone
so that pages that contain symbol table entries do not contain any unrelated
items.

• Specialized allocation algorithms

No single memory allocation algorithm is ideal for all applications.
Section 21.6 describes the run-time library memory allocation algorithms
and their performance characteristics so that you can select an appropriate
algorithm for each zone that you create.

• Performance tuning

You can specify a number of attributes that affect performance when you
create a zone. The allocation algorithm you select can have a significant effect
on performance. By specifying the allocation block size, you can improve
performance and reduce fragmentation within the zone at the cost of some
extra memory. Boundary tags can also be used to improve the speed of

21-7

Using Run-Time Routines for Memory Allocation
21.4 Zones

LIB$FREE_ VM at the cost of some extra memory. Boundary tags are further
discussed in Section 21.4.1.

21.4.1 Zone Attributes

21-8

You can specify a number of zone attributes when you call LIB$CREATE_ VM_
ZONE to create the zone. The attributes that you specify are permanent; that is,
you cannot change the attribute values. They remain constant until you delete
the zone. Each zone that you create can have a different set of attribute values.
Thus, you can tailor each zone to optimize program locality, execution time, and
memory usage.

This section describes each of the zone attributes, suggested values for the
attribute, and the effects of the attribute on execution time and memory usage.
If you do not specify a complete set of attribute values, LIB$CREATE_ VM_ZONE
provides defaults for many of the attributes. More detailed information about
argument names and the encoding of arguments is given in the description of
LIB$CREATE_ VM_ZONE in the Open VMS RTL Library (LIB$) Manual.

The zone attributes are as follows:

• Allocation algorithms

The run-time library heap management routines provide four algorithms
to allocate and free memory and to manage blocks of free memory. The
algorithms are listed here. (See Section 21.6 for more details.)

The First Fit algorithm (LIB$K_ VM_FIRST_FIT) maintains a linked list
of free blocks, sorted in order of increasing memory address.

The Quick Fit algorithm (LIB$K_ VM_QUICK_FIT) maintains a set of
lookaside lists indexed by request size for request sizes in a specified
range. For request sizes that are not in the specified range, a First Fit
list of free blocks is maintained by the heap management routines.

The Frequent Sizes algorithm (LIB$K_ VM_FREQ_SIZES) is similar to
Quick Fit in that it maintains a set of lookaside lists for some block
sizes. You specify the number of lists when you create the zone; the sizes
associated with those lists are determined by the actual sizes of blocks
that are freed.

The Fixed Size algorithm (LIB$K_ VM_FIXED) maintains a single queue
of free blocks.

• Boundary-tagged .blocks

You can specify the use of boundary tags (LIB$M_VM_BOUNDARY_TAGS)
with any of the algorithms that handle variable-sized blocks. The algorithms
that handle variable-sized blocks are First Fit, Quick Fit, and Frequent Sizes.

If you specify boundary tags, LIB$GET_ VM appends two additional longwords
to each block that you allocate. LIB$FREE_ VM uses these tags to speed up
the process of merging adjacent free blocks on the First Fit free list. Using
the standard First Fit insertion and merge, the execution time and number of
page faults to free a block are proportional to the number of items on the list;
freeing n blocks takes time proportional to n squared. When boundary tags
are used, LIB$FREE_ VM does not have to keep the free list in sorted order.
This reduces the time and the number of page faults for freeing one block to
a constant value that is independent of the number of free blocks. By using
boundary tags, you can improve execution time at the cost of some additional
memory for the tags.

Using Run-Time Routines for Memory Allocation
21.4 Zones

The use of boundary tags can have a significant effect on execution time if all
of the following three conditions are present: ·

You are using the First Fit algorithm.

There are many calls to LIB$FREE_ VM.

The free list is long.

Boundary tags do not improve execution time if you are using Quick Fit or
Frequent Sizes and if all the blocks being freed use one of the lookaside lists.
Merging or searching is not done for free blocks on a lookaside list.

The boundary tags specify the length of each block that is allocated, so you do
not need to specify the length of a tagged block when you free it. This reduces
the bookkeeping that your program must perform. Figure 21-2 shows the
placement of boundary tags.

Figure 21-2 Boundary Tags

Boundary Tag

Boundary Tag

:A Address of first
usable byte.
This address is
returned by
LIB$GET _ VM.

T
Block of Memory
Marked Off by iundartTags

ZK-4149-GE

Boundary tags are not visible to the calling program. The request size
you specify when calling LIB$GET_ VM is the number of usable bytes your
program needs. The address returned by LIB$GET_ VM is the address of the
first usable byte of the block, and this same address is used when you call
LIB$FREE_ VM.

• Area extension size

Pages of memory are allocated to a zone in contiguous groups called areas. By
specifying area extension parameters for the zone, you can tailor the zone to
achieve a satisfactory balance between locality, memory usage, and execution
time for allocating pages. If you specify a large area size, you improve locality
for blocks in the zone, but you may waste a large amount of virtual memory.
Pages can be allocated to an area of a zone, but the memory might never be
used to satisfy a LIB$GET_ VM allocation request. If you specify a small area
extension size, you reduce the number of pages used, but you may reduce
locality and you increase the amount of overhead for area control blocks.

21-9

Using Run-Time Routines for Memory Allocation
21.4 Zones

21-10

You can specify two area extension size values: an initial size and an extend
size. If you specify an initial area size, that number of pages is allocated to
the zone when you create the zone. If you do not specify an initial size, no
pages are allocated until the first call to LIB$GET _ VM that references the
zone. When an allocation request cannot be satisfied by blocks from the free
list or from memory in any of the areas owned by the zone, a new area is
added to the zone. The size of this area is the maximum of the area extend
size and the current request size. The extend size does not limit the size of
blocks you can allocate. If you do not specify extend size when you create the
zone, a default of 16 pages is used.

Choose a few area extension sizes, and use them throughout your program.
It is also desirable to choose extension sizes that are multiples of each
other. Memory for areas is allocated by calling LIB$GET_ VM_PAGE. You
should choose the area extension sizes in order to minimize fragmentation.
Digital-supplied software generally uses extension sizes that are a power of 2.

Also consider the overhead for area control blocks when choosing the area
extension parameters. Each area control block is 64 bytes long. Table 21-1
shows the overhead for various extension sizes.

Table 21-1 Overhead for Area Control Blocks

Area Size (Pages) Overhead Percentage

1

2

4

16

128

12.5%

6.3%

3.1%

0.8%

0.1%

You can also control the way in which zones are extended by using the
LIB$M_ VM_EXTEND_AREA attribute. This attribute specifies that when
new pages are allocated for a zone, they should be appended to an existing
area if the pages are adjacent to an existing area.

• Block size

The block size attribute specifies the number of bytes in the basic allocation
quantum for the zone.

All allocation requests are rounded up to a multiple of the block size.

The block size must be a power of 2 in the range of 8 to 512. Table 21-2 lists
the possible block sizes.

Table 21-2 Possible Values for the Block Size Attribute

Block Size
(Power of 2) Actual Block Size

8

16

32

(continued on next page)

Using Run-Time Routines for Memory Allocation
21.4 Zones

Table 21-2 (Cont.) Possible Values for the Block Size Attribute

Block Size
(Power of 2) Actual Block Size

64

128

256

512

By adjusting the block size, you can control the effects of internal
fragmentation and external fragmentation. Internal fragmentation occurs
when the request size is rounded up and more bytes are allocated than are
required to satisfy the request. External fragmentation occurs when there are
many small blocks on the free list, but none of them is large enough to satisfy
an allocation request.

If you do not specify a value for block size, a default of 8 bytes is used.

• Alignment

•

The alignment attribute specifies the required address boundary alignment
for each block allocated. The alignment value must be a power of 2 in the
range of 4 to 512.

The block size and alignment values are closely related. If you are not using
boundary-tagged blocks, the larger value of block size and alignment controls
both the block size and alignment. If you are using boundary-tagged blocks,
you can minimize the overhead for the boundary tags by specifying a block
size of 8 and an alignment of 4 (longword alignment).

Note that the VAX interlocked queue instructions require quadword
alignment, so you should not specify longword alignment for blocks that
will be inserted on an interlocked queue. +
If you do not specify an alignment value, a default of 8 is used (alignment on
a quadword boundary).

Page limit

You can specify the maximum number of pages that can be allocated to the
zone. If you do not specify a limit, the only limit is the total process virtual
address limit imposed by process quotas and system parameters.

• Fill on allocate

If you do ·not specify the allocation fill attribute, LIB$GET_ VM does not
initialize the contents of the blocks of memory that it supplies. The contents
of the memory are unpredictable, and you must assign a value to each
location your program uses.

In many applications, it is convenient to initialize every byte of dynamically
allocated memory to the value 0. You can request that LIB$GET_ VM do
this initialization by specifying the allocation fill attribute LIB$M_ VM_GET_
FILLO when you create the zone.

If your program does not use the allocation fill attribute, it may be very
difficult to locate bugs where the program does not properly initialize
dynamically allocated memory. As a debugging aid, you can request that
LIB$GET_ VM initialize every byte to FF (hexadecimal) by specifying the
allocation fill attribute LIB$M_ VM_GET_FILL1 when you create the zone.

21-11

Using Run-Time Routines for Memory Allocation
21.4 Zones

• Fill on free

In complex programs using heap storage, it can be very difficult to locate
bugs where the program frees a block of memory but continues to make
references to that block of memory. As a debugging aid, you can request that
LIB$FREE_ VM write bytes containing 0 or FF (hexadecimal) into each block
of memory when it is freed; specify one of the attributes LIB$M_ VM_FREE_
FILLO or LIB$M_ VM_FREE_FILLl.

21.4.2 Default Zone

21.4.3

21-12

The run-time library provides a default zone that is used if you do not specify
a zone-id argument when you call LIB$GET_ VM or LIB$FREE_ VM. The
default zone provides compatibility with earlier versions of LIB$GET_ VM and
LIB$FREE_ VM, which did not support multiple zones.

Programs that do not place heavy demands on heap storage can simply use
the default zone for all heap storage allocation. They do not need to call
LIB$CREATE_ VM_ZONE and LIB$DELETE_ VM_ZONE, and they can omit
the zone-id argument when calling LIB$GET_ VM and LIB$FREE_ VM. The
zone-id for the default zone has the value 0.

The default zone has the values shown in Table 21-3.

Table 21-3 Attribute Values for the Default Zone

Attribute Value

Algorithm First Fit

Area extension size 128 pages

Block size 8 bytes

Alignment Quadword boundary

Boundary tags No boundary tags

Page limit No limit

Fill on allocate No fill on allocate

Fill on free No fill on free

Zone Identification
A zone is a logically independent memory pool or subheap. You can create zones
by calling LIB$CREATE_VM_ZONE or LIB$CREATE_USER_VM_ZONE. These
routines return as an output argument a unique 32-bit zone identifier (zone-id)
that is used in subsequent routine calls where a zone identification is needed.

You can specify the zone-id argument as an optional argument when you call
LIB$GET_ VM to allocate a block of memory. If you do specify zone-id when
you allocate memory, you must specify the same zone-id value when you call
LIB$FREE_ VM to free the memory. LIB$FREE_ VM returns an error status if
you do not provide the correct value for zone-id.

Modular routines that allocate and free heap storage must use zone identifications
in a consistent fashion. You can use one of several approaches in designing a set
of modular routines to ensure consistency in using zone identifications:

• Each routine that allocates or frees heap storage has a zone-id argument so
the caller can specify the zone to be used.

Using Run-Time Routines for Memory Allocation
21.4 Zones

• The modular routine package provides ALLOCATE and FREE routines
for each type of dynamically allocated object. These routines keep track
of zone identifications in an implicit argument, in static storage, or in the
dynamically allocated objects. The caller need not be concerned with the
details of zone identifications.

• By convention, the set of modular routines could do all allocate and free
operations in the default zone.

The zone identifier for the default zone has the value 0 (see Section 21.4.2
for more information on the default zone). You can allocate and free blocks of
memory in the default zone by specifying a zone-id value of 0 or by omitting the
zone-id argument when you call LIB$GET_VM and LIB$FREE_VM. You cannot
use LIB$DELETE_ VM_ZONE or LIB$RESET_ VM_ZONE on the default zone;
these routines return an error status if the value for zone-id is 0.

21.4.4 Creating a Zone
The LIB$CREATE_ VM_ZONE routine creates a new zone and sets zone
attributes according to arguments that you supply. LIB$CREATE_ VM_ZONE
returns a zone-id value for the new zone that you use in subsequent calls to
LIBGET_VM, LIBFREE_VM, and LIB$DELETE_VM_ZONE.

21.4.5 Deleting a Zone
The LIB$DELETE_ VM_ZONE routine deletes a zone and returns all pages
owned by the zone to the processwide page pool managed by LIB$GET_VM_
PAGE. Your program must not perform any more operations on the zone after you
call LIB$DELETE_ VM_ZONE.

It takes less execution time to free memory in a single operation by calling
LIB$DELETE_ VM_ZONE than to account individually for and free every block of
memory that was allocated by calling LIB$GET_ VM. Of course, you must be sure
that your program is no longer using the zone or any of the memory in the zone
before you call LIB$DELETE_ VM_ZONE.

If you have specified deallocation filling, LIB$DELETE_ VM_ZONE fills all of the
allocated blocks that are freed.

21.4.6 Resetting a Zone
The LIB$RESET_ VM_ZONE routine frees all the blocks of memory that were
previously allocated from the zone. The memory becomes available to satisfy
further allocation requests for the zone; the memory is not returned to the
processwide page pool managed by LIB$GET_ VM_PAGE. Your program can
continue to use the zone after you call LIB$RESET_ VM_ZONE.

It takes less execution time to free memory in a single operation by calling
LIB$RESET_ VM_ZONE than to account individually for and free every block of
memory that was allocated by calling LIB$GET_ VM. Of course, you must be sure
that your program is no longer using any of the memory in the zone before you
call LIB$RESET_ VM_ZONE.

If you have specified deallocation filling, LIB$RESET_ VM_ZONE fills all of the
allocated blocks that are freed.

Because LIB$RESET_ VM_ZONE does not return any pages to the processwide
page pool, you should reset a zone only if you expect to reallocate almost all of
the memory that is currently owned by the zone. If the next cycle of reallocation

21-13

Using Run-Time Routines for Memory Allocation
21.4 Zones

may use much less memory, it is better to delete the zone (with LIB$DELETE_
VM_ZONE) and create it (with LIB$CREATE_ VM_ZONE) again.

21.5 Allocating and Freeing Blocks
The run-time library heap management routines LIB$GET_ VM and LIB$FREE_
VM provide the mechanism for allocating and freeing blocks of memory.

The LIB$GET_ VM and LIB$FREE_ VM routines are fully reentrant, so they can
be called by code running at AST level or in an Ada multitasking environment.
Several threads of execution can be allocating or freeing memory simultaneously
in the same zone or in different zones. ·

All memory allocated by LIB$GET_ VM has user-mode read/write access, even if
the call to LIB$GET_ VM is made from a more privileged access mode.

The rules for using LIB$GET_ VM and LIB$FREE_ VM are as follows:

• Any memory you free by calling LIB$FREE_ VM must have been allocated
by a previous call to LIB$GET_ VM. You cannot allocate memory by calling
SYS$EXPREG or SYS$CRETVA and then free it using LIB$FREE_ VM.

• When you free a block of memory by calling LIB$FREE_ VM, you must use
the same zone-id value as when you called LIB$GET_ VM to allocate the
block. If the block was allocated from the default zone, you must either
specify a zone-id value of 0 or omit the zone-id argument when you call
LIB$FREE_ VM.

• You cannot free part of a block that was allocated by a call to LIB$GET_ VM;
the whole block must be freed by a single call to LIB$FREE_ VM.

• You cannot combine contiguous blocks of memory that were allocated by
several calls to LIB$GET_ VM into one larger block that is freed by a single
call to LIB$FREE_ VM.

• All memory allocated by LIB$GET_ VM is aligned according to the alignment
attribute for the zone; all memory freed by LIB$FREE_ VM must have the
correct alignment for the zone. An error status is returned if you attempt to
free a block that is not aligned properly.

21.6 Allocation Algorithms

21-14

The run-time library heap management routines provide four algorithms, listed
in Table 21-4, that are used to allocate and free memory and that are used to
manage blocks of free memory.

Table 21-4 Allocation Algorithms

Code

1

2

3

4

Symbol

LIB$K_VM_FIRST_FIT

LIB$K_ VM_QUICK_FIT

LIB$K_ VM_FREQ_SIZES

LIB$K_ VM_FIXED

Description

First Fit

Quick Fit (maintains lookaside list)

Frequent Sizes (maintains lookaside list)

Fixed Size Blocks

The Quick Fit and Frequent Sizes algorithms use lookaside lists to speed
allocation and freeing for certain request sizes. A lookaside list is the software

Using Run-Time Routines for Memory Allocation
21.6 Allocation Algorithms

analog of a hardware cache. It takes less time to allocate or free a block that is
on a lookaside list.

For each of the algorithms, LIB$GET_ VM performs one or more of the following
operations:

• Tries to allocate a block from an appropriate lookaside list.

• Scans the list of areas owned by the zone. For each area, it tries to allocate
a block from the free list and then tries to allocate a block from the block of
unallocated memory at the end of the area.

• Adds a new area to the zone and allocates the block from that area.

For each of the algorithms, LIB$FREE_ VM performs one or more of the following
operations:

• Places the block on a lookaside list associated with the zone if there is an
appropriate list.

• Locates the area that contains the block. If the zone has boundary tags, the
tags encode the area; otherwise, it scans the list of areas owned by the zone
to find the correct area.

• Inserts the block on the area free list and checks for merges with adjacent
free blocks.

If the zone has boundary tags, LIB$FREE_ VM checks the tags of adjacent
blocks; if a merge does not occur, it inserts the block at the tail of the free list.

If the zone does not have boundary tags, LIB$FREE_ VM scans the sorted
free list to find the correct insertion point. It also checks the preceding and
following blocks for merges.

21.6.1 First Fit Algorithm
The First Fit algorithm (LIB$K_ VM_FIRST_FIT) maintains a linked list of free
blocks. If the zone does not have boundary tags, the free list is kept sorted in
order of increasing memory address. An allocation request is satisfied by the first
block on the free list that is large enough; if the first free block is larger than the
request size, it is split and the fragment is kept on the free list. When a block is
freed, it is inserted in the free list at the appropriate point; adjacent free blocks
are merged to form larger free blocks.

21.6.2 Quick Fit Algorithm
The Quick Fit algorithm (LIB$K_ VM_QUICK_FIT) maintains a set of lookaside
lists indexed by request size for request sizes in a specified range. For request
sizes that are not in the specified range, a First Fit list of free blocks is
maintained. An allocation request is satisfied by removing a block from the
appropriate lookaside list; if the lookaside list is empty, a First Fit allocation is
done. When a block is freed, it is placed on a lookaside list or the First Fit list
according to its size.

Free blocks that are placed on a lookaside list are neither merged with adjacent
free blocks nor split to satisfy a request for a smaller block.

21-15

Using Run-Time Routines for Memory Allocation
21.6 Allocation Algorithms

21.6.3 Frequent Sizes Algorithm
The Frequent Sizes algorithm (LIB$K_ VM_FREQ_SIZES) is similar to the Quick
Fit algorithm in that it maintains a set of lookaside lists for some block sizes.
You specify the number of lookaside lists when you create the zone; the sizes
associated with those lists are determined by the actual sizes of blocks that are
freed. An allocation request is satisfied by searching the lookaside lists for a
matching size; if no match is found, a First Fit allocation is done. When a block
is freed, the block is placed on a lookaside list with a matching size,. on an empty
lookaside list, or on the First Fit list if no lookaside list is available. As with the
Quick Fit algorithm, free blocks on lookaside lists are not merged or split.

21.6.4 Fixed Size Algorithm
The Fixed Size algorithm (LIB$K_ VM_FIXED) maintains a single queue of free
blocks. There is no First Fit free list, and splitting or merging of blocks does not
occur.

21.7 User-Defined Zones

21-16

When you create a zone by calling LIB$CREATE_ VM_ZONE, you must select
an allocation algorithm from the fixed set provided by the run-time library. You
can tailor the characteristics of the zone by specifying various zone attributes.
User-defined zones provide additional flexibility and control by letting you supply
routines for the allocation and deallocation algorithms.

You create a user-defined zone by calling LIB$CREATE_USER_VM_ZONE.
Instead of supplying values for a fixed set of zone attributes, you provide routines
that perform the following operations for the zone:

• Allocate a block of memory

• Free a block of memory

• Reset the zone

• Delete the zone

Each time that one of the run-time library heap management routines (LIB$GET_
VM, LIB$FREE_ VM, LIB$RESET_ VM_ZONE, LIB$DELETE_ VM_ZONE) is
called to perform an operation on a user-defined zone, the corresponding routine
that you specified is called to perform the actual operation. You need not make
any changes in the calling program to use user-defined zones; their use is
transparent.

You do not need to provide routines for all four of the preceding operations if
you know that your program will not perform certain operations. If you omit
some of the operations and your program attempts to use them, an error status is
returned.

Applications of user-defined zones include the following:

• You can provide your own specialized allocation algorithms. These algorithms
can in turn invoke LIB$GET_ VM, LIB$GET_ VM_PAGE, SYS$EXPREG, or
other system services.

• You can use a user-defined zone to monitor memory allocation operations.
Example 21-1 shows a monitoring program that prints a record of each call
to allocate or free memory in a zone.

Using Run-Time Routines for Memory Allocation
21. 7 User-Defined Zones

Example 21-1 Monitoring Heap Operations with a User-Defined Zone

Ct
c This is the main program that creates a zone and exercises it.
c
c Note that the main program simply calls LIB$GET VM and LIB$FREE VM.
c It contains no special coding for user-defined zones. -
C-

Ct

PROGRAM MAIN
IMPLICIT INTEGER(A-Z)

CALL MAKE_ZONE(ZONE)

CALL LIB$GET VM(lO, Il, ZONE)
CALL LIB$GET-VM(20, I2, ZONE)
CALL LIB$FREE VM(lO, Il, ZONE)
CALL LIB$RESET VM ZONE(ZONE)
CALL LIB$DELETE VM ZONE(ZONE)
END - -

c This is the subroutine that creates a user-defined zone for monitoring.
c Each GET, FREE, or RESET prints a line of output on the terminal.
c Errors are signaled.
C-

Ct

SUBROUTINE MAKE ZONE(ZONE)
IMPLICIT INTEGER (A-Z)
EXTERNAL GET_RTN, FREE_RTN, RESET_RTN, LIB$DELETE_VM_ZONE

c Create the primary zone. The primary zone supports
C the actual allocation and freeing of memory.
C-

STATUS = LIB$CREATE VM ZONE(REAL ZONE)
IF (.NOT. STATUS) CALL-LIB$SIGNAL(%VAL(STATUS))

Ct
c Create a user-defined zone that monitors operations on REAL ZONE.
C- -

STATUS = LIB$CREATE USER VM ZONE(USER ZONE, REAL_ZONE,
1 GET RTN, - - - -
1 FREE RTN,
1 RESET RTN,
1 LIB$DELETE VM ZONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

Ct
c Return the zone-id of the user-defined zone to the caller to use.
C-

ZONE = USER ZONE
END -

Ct
C GET routine for user-defined zone.
C-

FUNCTION GET RTN(SIZE, ADDR, ZONE)
IMPLICIT INTEGER(A-Z)

STATUS = LIB$GET_VM(SIZE, ADDR, ZONE)

(continued on next page)

21-17

Using Run-Time Routines for Memory Allocation
21. 7 User-Defined Zones

21-18

Example 21-1 (Cont.) Monitoring Heap Operations with a User-Defined Zone

IF (.NOT. STATUS) THEN

10

Ct

CALL LIB$SIGNAL(%VAL(STATUS))
ELSE

TYPE 10, SIZE, ADDR
FORMAT(' Allocated' ,I4,' bytes at ',ZS)

ENDIF
GET RTN = STATUS
END-

c FREE routine for user-defined zone.
C-

20

Ct

FUNCTION FREE RTN(SIZE, ADDR, ZONE)
IMPLICIT INTEGER(A-Z)

STATUS = LIB$FREE_VM(SIZE, ADDR, ZONE)

IF (.NOT. STATUS) THEN
CALL LIB$SIGNAL(%VAL(STATUS))

ELSE
TYPE 20, SIZE, ADDR
FORMAT(' Freed ',I4,' bytes at ',ZS)

ENDIF
FREE RTN = STATUS
END -

c RESET routine for user-defined zone.
C-

30

FUNCTION RESET RTN(ZONE)
IMPLICIT INTEGER(A-Z)

STATUS = LIB$RESET VM ZONE(ZONE)
IF (.NOT. STATUS) THEN

CALL LIB$SIGNAL(%VAL(STATUS))
ELSE

TYPE 30, ZONE
FORMAT(' Reset zone at ', ZS)

ENDIF

RESET RTN = STATUS
END -

Using Run-Time Routines for Memory Allocation
21.8 Debugging Programs That Use Virtual Memory Zones

21.8 Debugging Programs That Use Virtual Memory Zones
This section discusses some methods and aids for debugging programs that use
virtual memory zones. Note that this information is implementation dependent
and may change at any time.

The following list offers some suggestions for discovering and tracking problems
with memory zone usage:

• Run the program with both free-fill-zero and free-fill~one set. The results
from both executions of the program should be the same. If the results differ,
this could mean that you are referencing a zone that is already deallocated.
It could also mean that, after deallocating a zone, you created a new zone at
the same location, so that you now have two pointers pointing to the same
zone.

• Call LIB$FIND_ VM_ZONE at image termination. If a virtual memory zone is
not deleted, LIB$FIND_ VM_ZONE returns its zone identifier.

• Use LIB$SHOW_VM_ZONE and LIB$VERIFY_VM_ZONE to print zone
information and check for errors in the internal data structures. LIB$SHOW _
VM_ZONE allows you to determine whether any linkage pointers for the
virtual memory zones are corrupted. LIB$VERIFY_ VM_ZONE allows you
to request verification of the contents of the free blocks, so that if you call
LIB$VERIFY_VM_ZONE with free-fill set, you can determine whether you
are writing to any deallocated zones.

• For zones created with the Fixed Size, Quick Fit, or Frequent Size algorithm,
some types of errors cannot be detected. For example, in a zone that
implements the Fixed Size algorithm (or in a Quick Fit or Frequent Size
algorithm when the block is cached on a lookaside list), freeing a block
more than once returns SS$_NORMAL, but the internal data structures
are invalid. In this case, change the algorithm to First Fit. The First Fit
algorithm checks whether you are freeing a block that is already on the free
list and, if so, returns the .error LIB$_BADBLOADR.

21-19

22
Alignment on OpenVMS VAX and AXP Systems

This chapter describes the importance and techniques of alignment for both
OpenVMS VAX and OpenVMS AXP systems.1 It contains the following
subsections:

Section 22.1 describes alignment on Open VMS VAX and Open VMS AXP systems.

Section 22.2 describes using compilers for alignment.

Section 22.3 describes using various tools to uncover unaligned data.

22.1 Alignment
Alignment is an aspect of a data item that refers to its placement in memory. The
mixing of byte, word, longword, and quadword data types can lead to data that
is not aligned on natural boundaries. A naturally aligned datum of size 2**N is
stored in memory at a starting byte address that is a multiple of 2**N; that is,
an address that has N low-order zero bits. Data is naturally aligned when its
address is an integral multiple of the size of the data in bytes (for example, when
the following occurs):

• A byte is aligned at any address.

• A word is aligned at any address that is a multiple of 2.

• A longword is aligned at any address that is a multiple of 4.

• A quadword is aligned at any address that is a multiple of 8.

Data that is not aligned is referred to as unaligned. Throughout this chapter, the
term aligned is used instead of naturally aligned.

Table 22-1 shows examples of common data sizes, their alignment, the number
of zero bits in an aligned address for that data, and a sample aligned address in
hexadecimal.

1 Reprinted from an article in the March/April 1993 issue of Digital Systems Journal,
Volume 15, Number 2, titled "Alpha AXP(TM) Migration: Understanding Data
Alignment on OpenVMS AXP Systems" by Eric M. LaFranchi and Kathleen D. Morse.
Copyright 1993 by Cardinal Business Media, Inc., 101 Witmer Road, Horsham, PA
19044.

22-1

Alignment on OpenVMS VAX and AXP Systems
22.1 Alignment

Table 22-1 Aligned Data Sizes

Zero
Data Size Alignment Bits Aligned Address Example

Byte Byte 0 10001, 10002, 10003, 10004

Word Word 1 10002, 10004, 10006, 10008

Longword Longword 2 10004, 10008, lOOOC, 10010

Quadword Quadword 4 10008, 10010, 10018, 10020

An aligned structure has all its members aligned. An unaligned structure has
one or more unaligned members. Figure 22-1 shows examples of aligned and
unaligned structures.

Figure 22-1 Aligned and Unaligned Structures

Aligned Structure:

7 6 5 4 3 2 O Bytes

63 55 31 23 7 0 Bits
:aaao

aligned longword aligned word byte byte

:aaa8
aligned quadword

Unaligned Structure:

7 6 5 4 3 2 O Bytes

63 55 31 23 7 0 Bits
:aaao

unaligned longword unaligned word byte

:aaa8

l < : I = unaligned quadword

ZK-6999A-GE

22.1.1 Alignment and Performance

22-2

To achieve optimal performance, use aligned instruction sequence references
and naturally aligned data. When unaligned data is referenced, more overhead
is required than when referencing aligned data. This condition is true for both
Open VMS VAX and AXP systems. On both VAX and AXP systems, data need
not be aligned to obtain correct processing results. Alignment is a concern for
performance, not program correctness. Because natural alignment is not always
possible, both Open VMS VAX and AXP systems provide help to manage the
impact of unaligned data references.

Alignment on OpenVMS VAX and AXP Systems
22.1 Alignment

Although alignment is not required on VAX systems for stack, data, or instruction
stream references, AXP systems require that the stack and instructions be
longword aligned.+

22.1.1.1 Alignment on OpenVMS VAX
On VAX systems, memory references that are not longword aligned result in
a transparent performance degradation. The full effect of unaligned memory
references is hidden by microcode, which detects the unaligned reference and
generates a microtrap to handle the alignment correction. This fix of alignment
is done entirely in microcode. Aligned references, on the other hand, avoid the
microtraps to handle fixes. Even with this microcode fix, an unaligned reference
can take up to four times longer than an aligned reference. +

22.1.1.2 Alignment on OpenVMS AXP

*4:!• On AXP systems, you can check and correct alignment the following three ways:

• Allow privileged architecture library code (PALcode) to fix the alignment
faults for you.

• Use directives to the compiler.

• Fix the data yourself to make sure data is aligned.

Though AXP systems do not use microcode to automatically handle unaligned
references, PALcode traps the faults and corrects unaligned references as the
data is processed. If you use the shorter load/store instruction sequences and
your data in unaligned, then you incur an alignment fault PALcode fixup. The
use of PALcode to correct alignment faults results in the slowest of the three ways
to process your data.

By using directives to the compiler, you can tell your compiler to create a safe set
of instructions. If is unaligned, the compiler uses a set of unaligned load/store
instructions. These unaligned load/store instructions are called safe sequences
because they never generate unaligned data exceptions. Code sequences that
use the unaligned load/store instructions are longer than the aligned load/store
instruction sequences. By using unaligned load/store instructions and longer
instruction sequences, you can obtain the desired results without incurring an
alignment trap. This technique allows you to avoid the significant performance
impact of a trap and subsequent data fixes.

By fixing the data yourself so that it is aligned, you can use a short instruction
stream. This results in the fastest way to process your data. When aligning data,
the following recommendations are suggested:

• If references to the data must be made atomic, then the data must be aligned.
Otherwise, an unaligned fault causes a fatal reserved operand fault in this
case.

• If you fix alignment problems in public interfaces, then you could break
existing programs.

To detect unaligned reference information, you can use utilities such as the
Open VMS Debugger and Performance and Coverage Analyzer (PCA). You
can also use the Open VMS AXP handler to generate optional informational
exceptions for process space references. This allows condition handlers to track
unaligned references. Alignment fault system services allow you to enable and
disable the delivery of these informational exceptions. Section 22.3.3 discusses
system services that you can use to report both image and systemwide alignment
problems. +

22-3

Alignment on OpenVMS VAX and AXP Systems
22.2 Using Compilers for Alignment

22.2 Using Compilers for Alignment
On AXP systems, compilers automatically align data by default. If alignment
problems are not resolved, they are at least flagged. The following sections
present how the compilers for DEC C, Bliss, DEC Fortran, and MACR0-32 deal
with alignment. +

22.2.1 The DEC C Compiler (AXP Only)

22-4

On AXP systems, the DEC C compiler naturally aligns all explicitly declared data,
including the elements of data structures. The pragmas member_alignment
and nomember _alignment allow data structures to be aligned or packed
(putting the next piece of data on the next byte boundary) in the same manner
as the VAX C compiler. Additional pragmas of member_alignment save and
member_alignment restore exist to save and restore the state of member
alignment. These are useful to prevent alignment assumptions in one include file
from affecting other source code. The following program examples show the use
of these pragmas:

#pragma mernber_alignment save C»
#pragma nomernber_alignment f}

struct
{

char byte;
short word;
long longword;

} mystruct;
#pragma mernber_alignment restore 8

C» Saves the current alignment setting.

f} Sets nomember_alignment, which means that the data is to be packed in the
structure mystruct.

8 Resets the alignment setting for the code that follows.

The base alignment of a data structure is set to be the alignment of the largest
member in the structure. If the largest element of a data structure is a longword,
for example, then the base alignment of the data structure is longword alignment.

The malloc() function of the DEC C Run-Time Library retrieves pointers that
are at least quadword aligned. Because it is the exception rather than the rule
to encounter unaligned data in C programs, the compiler assumes most data
references are aligned. Pointers, for example, are always assumed to be aligned;
only data structures declared with the pragma nomember _alignment are
assumed to contain unaligned data. If the DEC C compiler believes the data
might be unaligned, it generates the safe instruction sequences; that is, it uses
the unaligned load/store instructions. Also, the /WARNING=ALIGNMENT
compiler qualifier can be used to turn on alignment checking by the compiler.
This results in a compiler warning for unaligned data references. +

Alignment on OpenVMS VAX and AXP Systems
22.2 Using Compilers for Alignment

22.2.1.1 Compiler Example of Memory Structure of VAX C and DEC C

•. ,.

The following code examples, and Figure 22-2, and Figure 22-3 illustrate a C
data structure containing byte, word, and longword data and how it would be laid
out in memory by VAX C and DEC C.

struct
{

char byte;
short word;
long longword;

}mystruct;

On VAX systems, when compiled using the VAX C compiler, the previous structure
has a memory layout as shown in Figure 22-2, where each piece of data begins
on the next byte boundary. +

Figure 22-2 Alignment Using VAX C Compiler

63 55 31 23 7 0

longword word byte

ZK-7000A-GE

On AXP systems, when compiled using the DEC C compiler, the structure is
padded to achieve natural alignment, if needed, as shown in Figure 22-3.

Figure 22-3 Alignment Using DEC C Compiler

63 55 31 23 7 0

longword word byte

ZK-7001A-GE

Note where DEC C places some padding to align naturally all the data structure
elements. DEC C would also align the structure itself on a longword boundary.
The DEC C compiler aligns the structure on a longword boundary because the
largest element in the structure is a longword. +

22.2.2 The Bliss Compiler
On AXP systems, the Bliss compiler provide greater control over alignment than
the DEC C compiler does. The Bliss compiler also makes different assumptions
about alignment.

Digital does not ship the Bliss compiler on AXP systems. +

The AXP Bliss compiler, like the VAX Bliss compiler, allows explicit specification
of program section (PSECT) alignment.

22-5

Alignment on OpenVMS VAX and AXP Systems
22.2 Using Compilers for Alignment

On AXP systems, Bliss compilers align all explicitly declared data on naturally
aligned boundaries.

Declared data in Bliss source code can be aligned with the ALIGN attribute,
although the alignment specified cannot be greater than that for the PSECT in
which the data is contained. The alignment attribute indicates a specific address
boundary by means of a boundary value, N, which specifies that the binary
address of the data segment must end in at least N Os. To specify the static
byte datum A to be aligned on a longword boundary, for example, the following
declaration might be used:

OWN
A:BYTE ALIGN(2)

When the Bliss compiler cannot determine the base alignment of a BLOCK, it
assumes full word alignment, unless told otherwise by a command qualifier or
switch declaration. Like the DEC C compiler, if the Bliss compilers believe that
the data is unaligned, they generate safe instruction sequences. If you specify
the qualifier /CHECK=ALIGNMENT in the Bliss command line, then warning
information is provided when they detect unaligned memory references. +

22.2.3 The DEC Fortran Compiler (AXP Only)

22-6

On AXP systems, the defaults for the DEC Fortran compiler emphasize
compatibility and standards conformance. Normal data declarations (data
declared outside of COMMON block statements) are aligned on natural
boundaries by default. COMMON block statement data is not aligned by default,
which conforms to the FORTRAN-77 and FORTRAN-90 standards.

The qualifier /ALIGN=(COMMONS=STANDARD) causes COMMON block data
to be longword aligned. This adheres with the FORTRAN-77 and FORTRAN-
90 standards, which state that the compiler is not allowed to put padding
between INTEGER*4 and REAL*S data. This can cause REAL*S data to
be unaligned. To correct this, apply the NATURAL rule; for instance, apply
/ALIGN=(COMMONS=NATURAL) to get natural alignment up to quadwords
and the best performance, though this is not standards conforming.

To pack COMMON block and RECORD statement data, specify /ALIGN=NONE.
The qualifier /ALIGN=NONE is equivalent to /NOALIGN, /ALIGN=PACKED,
or /ALIGN=(COMMON=PACKED,RECORD=PACKED). To pack just RECORD
statement data, specify /ALIGN=(RECORD=PACKED).

Besides command line qualifiers, DEC Fortran provides two directives to
control the alignment of RECORD statement data and COMMON block data.
The CDEC$0PTIONS directive controls whether the DEC Fortran compiler
naturally aligns fields in RECORD statements or data items in COMMON blocks
for performance reasons, or whether the compiler packs those fields and data
items together on arbitrary byte boundaries. The CDEC$0PTIONS directive,
like the /ALIGN command qualifier, takes class and rule parameters. Also, the
CDE$0PTIONS directive overrides the compiler option /ALIGN.

By default, the DEC Fortran compiler emits alignment warnings, but these can
be turned off by using the qualifier /WARNINGS=NOALIGNMENT. +

Alignment on OpenVMS VAX and AXP Systems
22.2 Using Compilers for Alignment

22.2.4 The MACR0-32 Compiler (AXP Only)

1 43• As with the C, Bliss, and DEC Fortran languages, unaligned data references
in MACR0-32 code work correctly, though they perform slower than aligned
references. The MACR0-32 language provides you with direct control over
alignment. There is no implicit padding for alignment done by the MACR0-32
compiler; data remains at the alignment you specify.

The MACR0-32 compiler recognizes the alignment of all locally declared data and
flags all references to declared data that is unaligned. By default, the MACR0-32
compiler assumes that addresses in registers used as base pointers are longword
aligned at routine entry.

For the MOVQ instruction, the compiler assumes that the base address is
longword aligned, unless the compiler determines by its register-tracking logic
that the address can not be longword aligned. Only longword alignment is
tracked; quadword register alignment is not tracked. If you use the Open VMS
AXP MOVQ instruction, the data must be quadword aligned, because the
compiler does not translate it into unaligned loads.

External data is data that is not contained in the current source being compiled.
External data is assumed to be longword aligned by the MACR0-32 compiler.
The compiler detects and flags unaligned global label references. This enables
you to locate external data that is not aligned.

To preserve atomicity, the compiler assumes that the data is longword aligned.
Unaligned data causes a trap and voids the atomicity. Therefore, you must
ensure that such data is aligned.

To fix unaligned data references, the easiest way is for you to align the data,
if possible. If you cannot align the data, the data address can be moved into
a register and then the register declared as unaligned. When you compile with
/UNALIGNED, you tell the compiler to treat all data references as unaligned and
to generate safe unaligned sequences. You can also use the .SET _REGISTERS
directive, which affects data references only for the specified registers for a
section of code.

The .PSECT and .ALIGN directives are supported. The compiler knows the
alignment of locally declared data. The compiler makes certain assumptions
about the alignment, but does allow programmer control over those assumptions.
The MACR0-32 compiler provides two directives for changing the compiler's
assumptions about alignment, which results in letting the compiler produce more
efficient code. These two directives are as follows:

• .SET_REGISTERS allows you to specify whether a register points to aligned
or unaligned data. You use this directive when the result of an operation is
the opposite of what the compiler expects. Also, use the same directive to
declare registers that the compiler would not otherwise detect as input or
output registers.

For example, consider the DIVL instruction. After executing this instruction
in the following example, the MACR0-32 compiler assumes that Rl is
unaligned. A future attempt at using Rl as a base register will cause the
compiler to generate an unaligned fetch sequence. However, suppose you
know that Rl is always aligned after the DIVL instruction. You can then
use the .SET_REGISTERS directive to inform the compiler of this. When
the compiler sees the MOVL from 8(rl), it knows that it can use the shorter
aligned fetch (LDL) to retrieve the data. At run time, however, if Rl is not

22-7

Alignment on OpenVMS VAX and AXP Systems
22.2 Using Compilers for Alignment

really aligned, then this results in an alignment trap. The following example
show the setting of a register to be aligned:

divl rO,rl ;Compiler now thinks Rl unaligned

.set_registers aligned=rl

movl 8(rl),r2 ;Compiler now treats Rl as aligned

• .SYMBOL_ALIGNMENT allows you to specify the alignment of any memory
reference that uses a symbolic offset. The .SYMBOL_ALIGNMENT directive
associates an alignment attribute with a symbol definition used as a register
offset; it can be used when you know the base register will be aligned for
every use of the symbolic offset. This attribute guarantees to the compiler
that the base register has that alignment, and this enables the compiler to
generate optimal code.

In the example that follows, QUAD_ OFF has a symbol alignment of QUAD,
LONG_OFF, a symbol alignment of LONG, and NONE_OFF has no symbol
alignment. In the first MOVL instruction, the compiler assumes that RO,
since it is used as a base register with QUAD_OFF, is quadword aligned.
Since QUAD_OFF has a value of 4, the compiler knows it can generate an
aligned longword fetch. For the second MOVL, .RO is assumed to be longword
aligned, but since LONG_OFF has a value of 5, the compiler realizes that
offset+ base is not longword aligned and would generate a safe unaligned
fetch sequence. In the third MOVL, RO is assumed to be unaligned,
unless the compiler knows otherwise from other register tracking, and
would generate a safe unaligned sequence. The .SYMBOL_ALIGNMENT
alignment remains in effect until the next occurrence of the directive .

• symbol alignment QUAD
quad of f=4

.symbol alignment LONG
long off =5
.symbol alignment NONE
none off =6

movl quad off(rO),rl
movl long-off(r0),r2
movl none=off(r0),r3

•

;Assumes RO quadword aligned
;Assumes RO longword aligned
;No presumed alignment for RO

22.2.5 The VAX Environment Software Translator-VEST (AXP Only)

22-8

The DECmigrate for Open VMS AXP VAX Environment Software Translator
utility (VEST) is a tool that translates binary Open VMS VAX image files into
Open VMS AXP image files. Image files are also called executable files. Though it
is similar to compiler, VEST is for binaries instead of sources.

VEST deals with alignment in two different modes: pessimistic and optimistic.
VEST is optimistic by default; but whether optimistic or pessimistic, the
alignment of program counter (PC) relative data is known at translation time,
and the appropriate instruction sequence can be generated.

In pessimistic mode, all non PC-relative references are treated as unaligned
using the safe access sequences. In optimistic mode, the emulated VAX registers
(RO-R14) are assumed to be quadword aligned upon entry to each basic block.
Autoincrement and autodecrement changes to the base registers are tracked. The
offset plus the base register alignment are used to determine the alignment and
the appropriate access sequence is generated.

Alignment on OpenVMS VAX and AXP Systems
22.2 Using Compilers for Alignment

The /OPTIMIZE=NOALIGN qualifier on the VEST command tells VEST to be
pessimistic; it assumes that base registers are not aligned, and should generate
the safe instruction sequence. Doing this can slow execution speed by a factor
of two or more, if there are no unaligned data references. On the other hand, it
can result in a performance gain if there are a significant number of unaligned
references, since safe sequences avoid any unaligned data traps.

There exist additional controls to preserve atomicity in longword data that is not
naturally aligned. Wherever possible, data should be aligned in the VAX source
code and the image rebuilt before translating the image with" DECmigrate. This
results in better performance on both VAX and AXP systems. +

22.3 Using Tools for Finding Unaligned Data
Tools that aid the uncovering of unaligned data include the Open VMS Debugger,
Performance and Coverage Analyzer (PCA), and eight system services. These
tools are discussed in the following sections.

22.3.1 The OpenVMS Debugger
By using the Open VMS Debugger, you can turn on and off unaligned data
exception breakpoints by using the commands SET BREAK/UNALIGNED_
DATA and CANCEL BREAK/UNALIGNED_DATA. These commands must be
used with the SET BREAK/EXCEPTION command. When the debugger breaks
at the unaligned data exception, the context is like any other exception. You can
examine the program counter (PC), processor status (PS), and virtual address of
the unaligned data exception. Example 22-1 shows the output from the debugger
using the SET OUTPUT LOG command of a simple program.

Example 22-1 OpenVMS Debugger Output from SET OUTPUT LOG Command

#include <stdio.h>
#include <stdlib.h>

main()
{

char *p;
long *lp;

/* malloc returns at least quadword aligned printer */
p = (char *)malloc(32);

/* construct unaligned longword pointer and place into lp */
lp = (long *)((char *)(p+l));

/* load data into unaligned longword */
lp[O] = 123456;

printf("data - %d\n", lp[O]);
return;

(continued on next page)

22-9

Alignment on OpenVMS VAX and AXP Systems
22.3 Using Tools for Finding Unaligned Data

Example 22-1 (Cont.) OpenVMS Debugger Output from SET OUTPUT LOG
Command

------- Compile and Link commands ------­
$ cc/debug debug example
$ link/debug debug example
$ run debug example
------- DEBUG session using set output log ------­
Go
! break at routine DEBUG EXAMPLE\main
! 598: p --(char *)malloc(32);
set break/unaligned data
set break/exception-
set radix hexadecimal
Go
!Unaligned data access: virtual address - 003CEEA1, PC - 00020048
!break on unaligned data trap preceding DEBUG EXAMPLE\main\%LINE 602
! 602: printf("data - %d\n", l~[O]);
ex/inst 00020048-4
!DEBUG EXAMPLE\main\%LINE 600+4: STL Rl,(RO)
ex rO -
!DEBUG EXAMPLE\main\%RO: 00000000 003CEEA1

22.3.2 The Performance and Coverage Analyzer-· PCA
The PCA allows you to detect and fix performance problems. Because unaligned
data handling can significantly increase overhead, PCA has the capability to
collect and present information on aligned data exceptions. PCA commands that
collect and display unaligned data exceptions are:

• SET UNALIGNED_DATA

• PLOT/UNALIGNED_DATA PROGRAM BY LINE

Also, PCA can display data according to the PC of the fault, or by the virtual
address of the unaligned data.

22.3.3 System Services (AXP Only)

w43M

22-10

There are eight system services to help locate unaligned data. The first
three system services establish temporary image reporting; the next two
provide process-permanent reporting; and the last three provide for system
alignment fault tracking. The symbols used in calling all eight of these system
services are located in $AFRDEF in the Open VMS AXP MACR0-32 library,
SYS$LIBRARY:STARLET.MLB. You can also call these system services in C with
#include <afrdef.h>.

The first three system services can be used together; they report on the currently
executing image. They are as follows:

• SYS$START_ALIGN_FAULT_REPORT. This service enables unaligned data
exception for the current image. You can use either a buffered or an exception
method of reporting, but you can enable only one method at a time.

Buffered method. This method requires that the buffer address and size
be specified. You use the SYS$GET_ALIGN_FAULT_DATA service to
retrieve buffered alignment data under program control.

Alignment on OpenVMS VAX and AXP Systems
22.3 Using Tools for Finding Unaligned Data

Exception method. This method requires no buffer. Unaligned data
exceptions are signaled to the image, at which point a user-written
condition handler takes whatever action is desired. If no user-written
handler is set up, then an informational exception message is broadcast
for each unaligned data trap, and the program continues to execute.

• SYS$STOP _ALIGN_FAULT_REPORT. This service cancels unaligned data
exception reporting for the current image if it were previously enabled. If you
do not explicitly call this routine, then reporting is disabled by the operating
systems' image rundown logic.

• SYS$GET_ALIGN_FAULT_DATA. This service retrieves the accumulated,
buffered alignment data when using the buffered collection method.

You can use two of the eight system services to report unaligned data exceptions
for the current process. The two services are as follows:

• SYS$PERM_REPORT_ALIGN_FAULT. This service enables unaligned
data exception reporting for the process. Once you enable this service, the
reporting remains in effect for the process until you explicitly disable it.
Once enabled, the SS$_ALIGN condition is signaled for all unaligned data
exceptions while the process is active. By default, if no user-written exception
handler handles the condition, this results in an information display message
for each unaligned data exception.

This service provides a convenient way of running a number of images
without modifying the code in each image, and also of recording the unaligned
data exception behavior of each image.

• SYS$PERM_DIS_ALIGN_FAULT_REPORT. This service disables unaligned
data exception reporting for the process.

The three system services that allow you to track systemwide alignment faults
are as follows:

• SYS$INIT_SYS_ALIGN_FAULT_REPORT. This service initializes system
process alignment fault reporting.

• SYS$STOP _SYS_ALIGN_FAULT_REPORT. This service disables systemwide
alignment fault reporting.

• SYS$GET_SYS_ALIGN_FAULT_DATA. This service obtains data from the
system alignment fault buffer.

These services require CMKRNL privilege. Alignment faults for all modes and all
addresses can be reported using these services. The user can also set up masks
to report only certain types of alignment faults. For example, you can get reports
on only kernel modes, only user PC, or only data in system space.

22-11

23
System Security Services

This chapter describes the security system services that provide various
mechanisms to enhance the security of operating systems. It contains the
following sections:

Section 23.1 provides an overview of the protection scheme.

Section 23.2 describes identifiers and how they are used in security.

Section 23.3 describes the rights database.

Section 23.4 describes how to create, translate, and maintain access control
entries (ACEs).

Section 23.5 describes protected subsystems.

Section 23.6 describes security auditing.

Section 23. 7 describes how to determine a user's access to an object.

Section 23.8 describes SYS$CHECK_PRMLEGE system service.

Section 23.9 describes how to implement site-specific security policies.

23.1 Overview of the Operating System's Protection Scheme
The basis of the security scheme is an identifier, which is a 32-bit binary value
that represents a set of users to the system. An identifier can represent an
individual user, a group of users, or some aspect of the environment in which
a user is operating. A process is a holder of an identifier when that identifier
can represent that process to the system. The protection scheme also includes
the user identification code (UIC), the authorization database, and access control
lists.

Authorization Database
The authorization database consists of the system authorization file
(SYSUAF.DAT), the network proxy database, and the rights list database
(RIGHTSLISTS.DAT). Note that the network proxy database is called
NETPROXY.DAT on AXP systems and NET$PROXY.DAT on VAX systems. (The
file NETPROXY.DAT on VAX systems is maintained for platform compatibility,
translation of DECnet Phase IV node names, and layered product support.)
The system rights database is an indexed file consisting of identifier and
holder records. These records define the identifiers and the holders of those
identifiers on a system. When a user logs in to the system, a process is created
and LOGINOUT creates a rights list for the process from the applicable entries
in the rights database. The process rights list contains all the identifiers that
the process holds. A process can be the holder of a number of identifiers. These
identifiers determine the access rights of the list holder. The process rights list
becomes part of the process and is propagated to any created subprocesses.

23-1

System Security Services
23.1 Overview of the Operating System's Protection Scheme

Access Protection
When a process without special privileges attempts to access an object (protected
by an ACL) in the system, the operating system uses the rights list when
performing a protection check. The system compares the identifiers in the rights
list to the protection attributes of the object and grants or denies access to the
object based on the comparison. In other words, the entries in the rights list
do not specifically grant access; instead, the system uses them to perform a
protection check when the process attempts to access an object.

Access Control Lists
The protection scheme provides security with the mechanism of the access control
list (ACL). An ACL consists of access control entries (ACEs) that specify the
type of access an identifier has to an object like a file, device, or queue. When a
process attempts to access an object with an associated ACL, the system grants
or denies access based on whether an exact match for the identifier in the ACL
exists in the process rights list.

The following sections describe each of the components of the security scheme­
identifiers, rights database, process and system rights lists, protection codes, and
ACLs-and the system services affecting those components.

23.2 Identifiers
The basic component of the protection scheme is an identifier. An identifier
represents various types of agents using the system. The types of agents
represented include individual users, groups of users, and environments in which
a process is operating. Identifiers and their attributes apply to both processes
and objects. An identifier name consists of 1 to 31 alphanumeric characters
with no embedded blanks and must contain at least one nonnumeric character. It
can include the uppercase letters A through Z, dollar signs ($), and underscores
(_), as well as the numbers 0 through 9. Any lowercase letters are automatically
converted to uppercase.

23.2.1 Identifier Format
Each of the three types of identifier has an internal format in the rights database:
user identification code (UIC) format, identification (ID) format, and facility­
specific format. The high-order bits <31:28> of the identifier value specify the
format of the identifier.

23.2.2 General Identifiers

23-2

You can define general identifiers to meet the specific needs of your site. You
grant these identifiers to users by establishing holder records in the rights
database. General identifiers can identify a single user, a single UIC group, a
group of users, or a number of groups.

Bit <31>, which is set to 1, specifies ID format used by general identifiers as
shown in Figure 23-1. Bits <30:28> are reserved by Digital. The remaining bits
specify the identifier value.

System Security Services
23.2 Identifiers

Figure 23-1 ID Format

31 27 0

1000 System-generated value

ZK-5908A-G E

You define identifiers and their holders in the rights database with the Authorize
utility or with the appropriate system services. Each user can hold multiple
identifiers. This allows you to create a different kind of group designation from
the one used with the user's UIC.

The alternative grouping described here permits each user to be a member of
multiple overlapping groups. Access control lists (ACLs) define the access to
protected objects based on the identifiers the user holds rather than on the user's
UIC. See Section 23.4.3.1 for information on creating ACLs.

You can also define identifiers to represent particular terminals, times of day, or
other site-specific environmental attributes. These identifiers are not given holder
records in the rights database but may be granted to users by customer-written
privileged software. This feature of the security system allows each site flexibility
and, because the identifiers can be specific to the site, enhanced security. For a
programming example demonstrating this technique, see Section 23.3.2.4. For
more information, also see the Open VMS Guide to System Security.

23.2.3 System-Defined Identifiers
System-defined identifiers, or environmental identifiers, are general identifiers
that are automatically defined when the rights database is initialized. The
following system-defined identifiers correspond directly with the login classes and
relate to the environment in which the process operates:

BATCH

NETWORK

INTERACTIVE

LOCAL

DIAL UP

REMOTE

All attempts at access made by batch jobs

All attempts at access made across the network

All attempts at access made by interactive processes

All attempts at access made by users logged in at local terminals

All attempts at access made by users logged in at dialup terminals

All attempts at access made by users logged in on a network

Depending on the environment in which the process is operating, the system
includes one or more of these identifiers when creating the process rights list.

23.2.4 UIC Identifiers
Each UIC identifier is unique and represents a system user. By default, when an
account is created, its UIC is associated with the account's user name generating
an identifier value. When the high-order bit <31> of the identifier value is zero,
the value identifies a UIC format identifier as shown in Figure 23-2.

23-3

System Security Services
23.2 Identifiers

Figure 23-2 UIC Identifier Format

31 27 16 15 0

0000 UIC group UIC member

ZK-5907A-GE

Bits <27:16> and <15:0> designate a group field and member field. Group
numbers range from 1through16,382; member numbers range from 0 through
65,534.

23.2.5 Facility Identifiers

23-4

Facility-specific rights identifiers allow a range of unique binary identifier values
to be reserved for a particular software product or application. Compare the
format of facility-specific identifiers with the format of general identifiers and
UIC identifiers, as shown in Section 23.2.1. The system normally determines the
binary values of general identifiers when the system manager creates them; the
system manager determines the binary values of UIC identifiers.

Figure 23-3 shows the facility-specific identifiers.

Figure 23-3 Facility-Specific Identifiers

31 27 16 15 0

100 1 Facility code Facility-specific value

ZK-5909A-GE

The binary value of a facility-specific identifier is determined at the time the
application is designed. The facility number of the identifier must match
the facility number the application has chosen for its condition and message
codes. The remaining 16-bit facility-specific value may be assigned at will by
the application designer. By reserving specific binary identifier values, the
application designer may code fixed identifier values into an application's calls to
$CHECK_PRIVILEGE, $GRANT_ID, and so forth. It avoids the added complexity
of first having to translate an identifier name to binary with $ASCTOID.

An application can choose to register the identifiers in the rights database or
not, depending on its needs. If the identifiers are registered, they are visible
to the system manager who may grant them to users. In any case, they will
be displayed properly if they appear on access control lists. If they are not
registered, they will remain invisible to the system manager. Unregistered
identifiers that appear on access control lists are displayed as a hexidecimal
value.

To register its identifiers, the installation procedure of the application must
run a program that enters the identifiers into the rights database using the
$ADD _!DENT service. You cannot specify facility-specific identifier values to
AUTHORIZE with the ADD/IDENTIFIER command.

System Security Services
23.2 Identifiers

Typically, facility-specific identifiers serve to extend the Open VMS privilege
mechanism for an application. For example, consider a database manager that
includes a function to allow appropriately privileged users to modify a schema.
Access to this function could be controlled through a facility-specific identifier
named, for example, DBM$MOD_SCHEMA. The system manager grants the
identifier to authorized persons using the AUTHORIZE command GRANT/ID.
The database services that modify schemas use the $CHECK_PRIVILEGE service
to check that the caller holds the identifier.

In another example, a privileged program run by users when they log in uses
$GRANT_ID to grant the user certain facility-specific identifiers, depending on
conditions determined by the program; for example, time of day or access port
name. These identifiers can be placed on the ACLs of files to control file access,
or they might be checked by other software with $CHECK_PRIVILEGE.

23.2.6 Identifier Attributes
An identifier has attributes associated with it in the rights database. The process
rights list includes the attributes of any identifiers that the process holds.

The use of rights identifiers can be extended with the following identifier attribute
keywords: ·

DYNAMIC

HOLDER_HIDDEN

NAME_HIDDEN

NO_ACCESS

RESOURCE

SUBSYSTEM

Allows unprivileged holders of an identifier to add or remove
the identifier from the process rights list using the DCL SET
RIGHTS command. Conversely, an unprivileged user who does
not have the attribute cannot modify the identifier.

Prevents someone from using the SYS$FIND_HOLDER system
service to get a list of users who hold an identifier, unless that
person holds the identifier.

Allows only the holders of an identifier to have it translated,
either from binary to ASCII or from ASCII to binary.

Specifies that the identifier does not affect the access rights of
the user holding the identifier.

Allows the holder of an identifier to charge resources, such as
disk blocks, to an identifier.

Allows holders of the identifier to create and maintain protected
subsystems.

Using the Resource Attribute
The following example demonstrates the advantages of defining an identifier and
holders for a project.

The Physics department of a school has a common library with an associated disk
quota on the system. In order to use the Resource attribute, you must enable disk
quotas and establish a quota file entry using the SYSMAN utility. You want to
allow the faculty members to charge disk quota that they use in conjunction with
the library to the identifier PHYSICS associated with the common library and to
prevent the students from charging resources to that identifier.

• Define an identifier PHYSICS with the Resource attribute in the rights
database using the SYS$ADD _IDENT service.

• Enable disk quotas using SYSMAN as shown in the example.

23-5

System. Security Services
23.2 Identifiers

23-6

$ MCR SYSMAN
SYSMAN> DISKQUOTA CREATE/DEVICE=DKBO:
SYSMAN> DISKQUOTA MODIFY/DEVICE=DKBO: PHYSICS /PERMQUOTA=150000 -

SYSMAN> /OVERDRAFT=5000
SYSMAN> EXIT

• Create the common library and assign the identifier PHYSICS using the
run-time library routine LIB$CREATE_DIR.

• Grant the identifier PHYSICS to holders FRED, a faculty member, and
GEORGE, a student using the SYS$ADD_HOLDER service.

If you specify the Resource attribute for identifier FRED, he can charge disk
resources to the PHYSICS identifier; if you do not specify the Resource attribute
for identifier GEORGE, he will not inherit the Resource attribute associated
with the identifier PHYSICS and cannot charge disk resources to the PHYSICS
identifier. The following input file, USERLIST.DAT, contains valid UIC identifiers
of students and faculty members:

FRED NORESOURCE
GEORGE RESOURCE
NANCY NORESOURCE
HAROLD RESOURCE
SUSAN RESOURCE
CHERYL NORESOURCE
MARVIN NORESOURCE

The following program reads USERLIST.DAT and associates the UIC identifiers
with the identifier PHYSICS:

#include <stdio.h>
#include <descrip.h>
#include <ssdef .h>
#include <lib$routines.h>
#include <kgbdef .h>
#include <nam.h>
#include <string.h>
#include <stdlib.h>

#define IDENT LEN 31
#define NO ATTR 0

#define RESOURCE 1
#define NORESOURCE 0

unsigned int sys$asctoid(),
sys$add ident(),
sys$add-holder(),
sys$idtoasc(),
convert_id(struct dsc$descriptor_s, unsigned int);

void add_holder(unsigned int, unsigned int, unsigned int);

struct {
unsigned int uic;
unsigned int terminator;

}holder;

static char ascii ident[IDENT LEN],
abuffer[IDENT LEN],
dirbuf[NAM$C MAXRSS],
targbuf[IDENT_LEN];

$DESCRIPTOR(target,targbuf);

unsigned int status;

main() {

System Security Services
23.2 Identifiers

FILE *ptr;
char attr [11] ;
unsigned int owner uic, attrib, resid, bin_id;
$DESCRIPTOR(dirspec~dirbuf);
$DESCRIPTOR(aident, .abuffer);

printf(11 \nEnter directory spec: 11
);

gets(dirbuf);
dirspec.dsc$w_length = strlen(dirbuf);

printf("\nEnter its owner identifier: ");
gets(targbuf);
target.dsc$w_length = strlen(targbuf);

/* Add target identifier WITH resource attribute to the rights database */

attrib = KGB$M RESOURCE;
status= sys$add ident(&target, o, attrib, &resid);
if((status & 1) T= SS$ NORMAL)

lib$signal(status-);
else

printf("\nAdding identifier %s to rights database .•• \n",
target.dsc$a_pointer);

/* Create the common directory with the target id as owner */

owner uic = resid;
status= lib$create dir(&dirspec, &owner_uic, O, O);

if((status & 1) !=SS$ NORMAL)
lib$signal(status-);

else
printf("Creating the directory %s ••• \n",dirspec.dsc$a_pointer);

/* Open an input file of UIC identifiers and attribute types */
if((ptr = fopen(11 USERLIST.DAT 11

,
11 r 11

)) ==NULL) {
perror("OPEN");
exit(EXIT_FAILURE);

/* Read the input file of UIC identifiers */
while((fscanf(ptr,"%s %s\n",abuffer,attr)) != EOF) {

aident.dsc$w length= strlen(abuffer);

}

attrib = (strcmp(attr,"RESOURCE")) == 0 ? KGB$M_RESOURCE NO_ATTR;
bin id= convert id(aident, attrib);
add=holder(bin_Id, resid, attrib);

/* Close the input file */
fclose(ptr);

}

unsigned int convert id(struct dsc$descriptor s uic_id,
unsigned int attr) { -

unsigned int bin_id;

status= sys$asctoid(&uic id, &bin id, &attr);
'if((status & 1) !=SS$ NORMAL) -

lib$signal(status-);
else {

}

printf("Converting identifier %s to binary format ..• \n",
uic id.dsc$a pointer);

return bin=id; -

void add_holder(unsigned int bin id, unsigned int resid,
unsigned int attrib) {

23-7

System Security Services
23.2 Identifiers

int i;
$DESCRIPTOR(nambuf, ascii _ ident) ;

holder.uic = bin id;
holder.terminator= O;

status = sys$add holder(resid, &holder, attrib);
if((status & 1) T= SS$ NORMAL)

lib$signal(status-);
else {

status= sys$idtoasc(bin id, O, &nambuf, O, O, O);
if((status & 1) !=SS$ NORMAL)

lib$signal(status-);
/* Remove padding */

}

nambuf.dsc$w length= strlen(ascii ident);
for(i=O;i < nambuf .dsc$w length + T; it+)

if (ascii ident[i] =~ Ox20)
ascii-ident[i] = '\0';

printf("\nAddTng holder %s to target identifier %s ••• \n", \
nambuf.dsc$a_pointer,target.dsc$a_pointer);

23.3 Rights Database

23-8

The rights database is an indexed file containing two types of records that define
all identifiers: identifier records and holder records.

One identifier record appears in the rights database for each identifier. The
identifier record associates 'the identifier name with its 32-bit binary value and
specifies the attributes of the identifier. Figure 23-4 depicts the format of the
identifier record.

Figure 23-4 Format of the Identifier Record

Identifier Value

Attributes

0

0

Identifier Name

Identifier Name

Identifier Name

Identifier Name

ZK-1904-GE

System Security Services
23.3 Rights Database

One holder record exists in the rights database for each holder of each identifier.
The holder record associates the holder with the identifier, specifies the attributes
of the holder, and identifies the UIC identifier of the holder. Figure 23-5 depicts
the format of the holder record.

Figure 23-5 Format of the Holder Record

Identifier Value

Attributes

UIC Identifier of Holder

(Reserved)

(Reserved)

(Reserved)

(Reserved)

ZK-1907-GE

The rights database is an indexed file with three keys. The primary key is the
identifier value, the secondary key is the holder ID, and the tertiary key is the
identifier name. Through the use of the secondary key of the holder ID, all the
identifiers held by a process can be retrieved quickly when the system creates the
process's rights list.

23.3.1 Initializing a Rights Database
You initialize the rights database in one of the following ways:

• When a system is installed

• With the Authorize utility

• With the SYS$CREATE_RDB system service

When you call SYS$CREATE_RDB, you can use the sysid argument to pass the
system identification value associated with the rights database. If you omit sysid,
the system uses the current system time in 64-bit format. If the rights database
already exists, SYS$CREATE_RDB fails with the error code RMS$_FEX. To
create a new rights database when one already exists, you must explicitly delete
or rename the old one.

You can specify the location and name of the rights database by defining the
logical name RIGHTSLIST as a system logical name in executive mode; its
equivalence string must contain the device, directory, and file name of the rights
database.

The file RIGHTSLIST.DAT has the protection of (S:RWED,O:RWED,G:R,W).

23-9

System Security Services
23.3 Rights Database

In order to use SYS$CREATE_RDB, write access to the database is necessary.
If the database is in SYS$SYSTEM, which is the default, you need the SYSPRV
privilege to grant write access to the directory.

When SYS$CREATE_RDB initializes a rights database, system-defined
identifiers, which describe the environment in which a process can operate,
are automatically created.

To add any other identifiers to the rights database, you must define them with
the Authorize utility or with the appropriate system service.

23.3.2 Using System Services to Affect a Rights Database

23-10

The identifier and holder records in the rights database contain the following
elements:

• Identifier binary value

• Identifier name

• Holders of each identifier

• Attribute of each identifier and each holder of each identifier

You can use the Authorize utility or one of the system services described in
Table 23-1 to add, delete, display, modify, or translate the various ele:q.ients of the
rights database.

Table 23-1 Using System Services to Manipulate Elements of the Rights
Database

Action

Translate

Add

Find

Modify

Delete

Element Service Used

Identifier name to identifier binary value SYS$ASCTOID

Identifier binary value to identifier name SYS$IDTOASC

Identifier holder record SYS$ADD_HOLDER

New identifier record SYS$ADD _IDENT

Identifier value held by holder SYS$FIND_HELD

Holders of an identifier

All identifiers

Attribute in holder record

Attribute in identifier record

Holder from identifier record

Identifier and all its holders

SYS$FIND_HOLDER

SYS$IDTOASC

SYS$MOD_HOLDER

SYS$MOD_IDENT

SYS$REM_HOLDER

SYS$REM_IDENT

The following table shows what access you need for which services:

Service

SYS$ADD_HOLDER

SYS$ADD_IDENT

SYS$ASCTOID

Required Access

Write

Write

Readt

tOn VAX systems, read access is required when certain restrictions are present (for example, if the
identifiers have the name hidden or holder hidden attributes).

Service

SYS$CREATE_RDB

SYS$FIND_HELD

SYS$FIND_HOLDER

SYS$FINISH_RDB

SYS$IDTOASC

SYS$MOD_HOLDER

SYS$MOD_IDENT

SYS$REM_HOLDER

SYS$REM_IDENT

1 File creation access.

Required Access

Write1

Readt

Readt

Readt

Readt

Write

Write

Write

Write

System Security Services
23.3 Rights Database

tOn VAX systems, read access is required when certain restrictions are present (for example, if the
identifiers have the name hidden or holder hidden attributes).

23.3.2.1 Translating Identifier Values and Identifier Names
To the system, an identifier is a 32-bit binary value; however, to make identifiers
easy to use, each binary value has an associated identifier name. The identifier
value and the ASCII identifier name string are associated in the rights database.
You can use the SYS$ASCTOID and SYS$IDTOASC system services to translate
from one format to another. When you pass to SYS$ASCTOID the address of
a string descriptor pointing to an identifier name, the corresponding identifier
binary value is returned. Conversely, you use the SYS$IDTOASC service to
translate a binary identifier value tc;> an ASCII identifier name string.

Preventing a Translation
You can prevent a translation operation by unauthorized users by specifying the
KGB$V _NAME_HIDDEN within an attributes mask.

Listing Identifiers in the Rights Database
You can also use the SYS$IDTOASC service to list the identifier names of all of
the identifiers in the rights database. Specify the id argument as -1, initialize
the context argument to 0, and repeatedly call SYS$IDTOASC until the status
code SS$_NOSUCHID is returned. The SYS$IDTOASC service returns the
identifier names in alphabetical order. When SS$_NOSUCHID is returned,
SYS$IDTOASC clears the context longword and deallocates the record stream. If
you complete your calls to SYS$IDTOASC before SS$_NOSUCHID is returned,
use SYS$FINISH_RDB to clear the context longword and to deallocate the record
stream.

The following programming example uses SYS$IDTOASC to identify all
identifiers in a rights database:

Program ID_LIST

*
* Produce a list of all the identifiers
*

integer SYS$IDTOASC
external SS$_NORMAL, SS$_NOSUCHID

character*31 NAME
integer IDENTIFIER, ATTRIBUTES

integer ID/-1/, LENGTH, CONTEXT/0/
integer NAME_DSC(2)/31, 0/

23-11

System Security Services
23.3 Rights Database

integer STATUS
* * Initialization
*

*

NAME DSC(2) = %loc(NAME)
STATUS = %loc(SS$_NORMAL)

* Scan through the entire RDB •••
*

*

do while (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID)))

STATUS= SYS$IDTOASC(%val(ID), LENGTH, NAME DSC,
+ IDENTIFIER, ATTRIBUTES, CONTEXT)

if (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID))) then

NAME(LENGTH+l:LENGTH+l) = I,'

print 1, NAME, IDENTIFIER, ATTRIBUTES
1 forrnat(lX, 'Name: ',A31,' Id: ',ZS,', Attributes: ',ZS)

end if

end do

* Do we need to finish the RDB ???
*

if (STATUS .ne. %loc(SS$ NOSUCHID)) then
call SYS$FINISH RDB(CONTEXT)

end if -

end

23.3.2.2 Adding Identifiers and Holders to the Rights Database

23-12

To add identifiers to the rights database, use the SYS$ADD _IDENT service in a
program. When you call SYS$ADD_IDENT, use the name argument to pass the
identifier name you want to add. You can specify an identifier value with the id
argument; however, if you do not specify a value, the system selects an identifier
value from the general identifier space.

In addition to defining the identifier value and identifier name, you use
SYS$ADD _IDENT to specify attributes in the identifier record. Attributes are
enabled for a holder of an identifier only when they are set in both the identifier
record and the holder record. The attrib argument is a longword containing a bit
mask specifying the attributes. The symbol KGB$V _RESOURCE, defined in the
system macro library $KGBDEF, sets the Resource bit in the attribute longword,
and the symbol KGB$V _DYNAMIC sets the Dynamic bit. (You can use the prefix
KGB$M rather than KGB$V.) See the description of SYS$ADD_IDENT in the
Open VMS System Services Reference Manual for a complete list of symbols.

When SYS$ADD _IDENT successfully completes execution, a new identifier record
containing the identifier value, the identifier name, and the attributes of the
identifier exists in the rights database.

When the identifier record exists in the rights database, you define the holders of
that identifier with the SYS$ADD _HOLDER system service. You pass the binary
identifier value with the id argument and you specify the holder with the holder
argument, which is the address of a quadword data structure in the following
format. Figure 23-6 shows the format of the holder argument.

Figure 23-6 Format of the holder Argument

31

UIC identifier of holder

0

System Security Services
23.3 Rights Database

0

ZK-1903-GE

In the rights database, the holder identifier is in UIC format. You specify the
attributes of the holder with the attrib argument in the same manner as with
SYS$ADD _IDENT.

After SYS$ADD_HOLDER completes execution, a new holder record containing
the binary value of the identifier that the holder holds, the attributes of the
holder, and the UIC of the holder exists in the rights database.

23.3.2.3 Determining Holders of Identifiers
To determine the holders of a particular identifier, use the SYS$FIND_HOLDER
service in a program. When you call SYS$FIND_HOLDER, use the id argument
to pass the binary value of the identifier whose holder you want to determine. On
successful execution, SYS$FIND_HOLDER returns the holder identifier with the
holder argument and the attributes of the holder with the attrib argument.

You can identify all of the identifier's holders by initializing the context
argument to 0 and repeatedly calling SYS$FIND _HOLDER, as detailed in
Section 23.3.3. Because SYS$FIND_HOLDER identifies the records by the same
key (holder ID), it returns the records in the order in which they were written.

23.3.2.4 Determining Identifiers Held by a Holder
To determine the identifiers held by a holder, use the SYS$FIND_HELD service
in a program. When you call SYS$FIND_HELD, use the holder argument to
specify the holder whose identifier is to be found.

On successful execution, SYS$FIND _HELD returns the identifier's binary
identifier value and attributes.

You can identify all the identifiers held by the specified holder by initializing the
context argument to 0 and repeatedly calling SYS$FIND_HELD, as detailed in
Section 23.3.3. Because SYS$FIND_HELD identifies the records by the same key
(identifier), it returns the records in the order in which they were written.

23.3.2.5 Modifying the Identifier Record
To modify an identifier record by changing the identifier's name, value, or
attributes, or all three in the rights database, use the SYS$MOD_IDENT service
in a program. Use the id argument to pass the binary value of the identifier
whose record you want to modify. To enable attributes, use the set_attrib
argument, which is a longword containing a bit mask specifying the attributes.
The symbol KGB$V _RESOURCE, defined in the system macro library $KGBDEF,
sets the Resource bit in the attribute longword. The symbol KGB$V _DYNAMIC
sets the Dynamic bit. (You can use the prefix KGB$M rather than KGB$V.) See
the description of SYS$MOD_IDENT in the Open VMS System Services Reference
Manual for a complete list of symbols.

23-13

System Security Services
23.3 Rights Database

If you want to disable the attributes for the identifier, use the clr_attrib
argument, which is a longword containing a bit mask specifying the attributes.
If the same attribute is specified in set_attrib and clr _attrib, the attribute is
enabled.

You can also change the identifier name, value, or both with the new _name and
new_ value arguments. The new _name argument is the address of a descriptor
pointing to the identifier name string; new_ value is a longword containing the
binary identifier value. If you change the value of an identifier that is the holder
of other identifiers (a UIC, for example), SYS$MOD_IDENT updates all the
corresponding holder records with the new holder identifier value.

When SYS$MOD_IDENT successfully completes execution, a new identifier
record containing the identifier value, the identifier name, and the attributes of
the identifier exists in the rights database.

23.3.2.6 Modifying a Holder Record

23-14

To modify a holder record, use the SYS$MOD_HOLDER service in a program.
When you call SYS$MOD_HOLDER, use the id argument and the holder
argument to pass the binary identifier value and the UIC holder identifier whose
holder record you want to modify.

Use the SYS$MOD_HOLDER service to enable or disable the attributes of an
identifier in the same way as with SYS$MOD_HOLDER.

When SYS$MOD_HOLDER completes execution, a new holder record containing
the identifier value, the identifier name, and the attributes of the identifier exists
in the rights database.

The following programming example uses SYS$MOD_HOLDER to modify holder
records in the rights database:

Program MOD_HOLDER

*
* Modify the attributes of all the holders of identifiers to reflect
* the current attribute setting of the identifiers themselves.
*

*

external SS$ NOSUCHID
parameter KGB$M RESOURCE = 1, KGB$M DYNAMIC = 2
integer SYS$IDTOASC, SYS$FIND_HELD,-SYS$MOD_HOLDER

* Store information about the holder here.
*

*

integer HOLDER(2)/2*0/
equivalence (HOLDER(l), HOLDER ID)
integer HOLDER NAME(2)/31, 0/ -
integer HOLDER-ID, HOLDER CTX/O/
character*31 HOLDER STRING

* Store attributes here.
*

integer OLD_ATTR, NEW_ATTR, ID_ATTR, CONTEXT

*
* Store information about the identifier here.
*

integer IDENTIFIER, ID NAME(2)/31, 0/
character*31 ID STRING-

System Security Services
23.3 Rights Database

integer STATUS
*
* Initialize the descriptors.
*

*

HOLDER NAME(2) = %loc(HOLDER STRING)
ID_NAME(2) = %loc(ID_STRING)-

* Scan through all the identifiers.
*

do while
+ (SYS$IDTOASC(%val(-l),, HOLDER NAME, HOLDER_ID,, HOLDER_CTX)
+ .ne. %loc(SS$_NOSUCHID)) -

*
*Test all the identifiers held by this identifier (our HOLDER).
*

*

if (HOLDER_ID .le. 0) go to 2

CONTEXT = 0

do while
+ (SYS$FIND HELD(HOLDER, IDENTIFIER, OLD_ATTR, CONTEXT)
+ .ne. %loc(SS$_NOSUCHID))

* Get name and attributes .of held identifier.
*

STATUS= SYS$IDTOASC(%val(IDENTIFIER),, ID_NAME,, ID_ATTR,)

*
* Modify the holder record to reflect the state of the identifier itself.
*

*

if ((ID ATTR .and. KGB$M RESOURCE) .ne. 0) then
STATUS = SYS$MOD HOLDER

+ . (%val(IDENTIFIER), HOLDER, %val(KGB$M RESOURCE),)
NEW ATTR = OLD ATTR .or. KGB$M RESOURCE -

else - - -
STATUS = SYS$MOD HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M RESOURCE))
NEW ATTR =OLD ATTR .and. (.not. KGB$M RESOURCE)

end iC - -

if ((ID ATTR .and. KGB$M DYNAMIC) .ne. 0) then
STATUS = SYS$MOD HOLDER

+ (%val(IDENTIFIER), HOLDER, %val(KGB$M DYNAMIC),)
NEW ATTR = OLD ATTR .or. KGB$M DYNAMIC -

else - - -
STATUS = SYS$MOD HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M DYNAMIC))
NEW ATTR =OLD ATTR .and. (.not. KGB$M DYNAMIC)

end iC - -

* Was it successful?
*

*

if (.not. STATUS) then
NEW ATTR = OLD ATTR
call LIB$SIGNAL(%val(STATUS))

end if

* Report it all.
*

23-15

System Security Services
23.3 Rights Database

print 1, HOLDER STRING, ID STRING,
+ OLDJ.\.TTR, ID ATTR, NEW ATTR

1 forrnat(lX, 'Holder: ', AJl, ' Id: 7 , A31,
+ ' Old: ', ZS, ' Id: ', ZS, ' New: ' ZS)

end do

2 continue

end do

end

23.3.2. 7 Removing Identifiers and Holders from the Rights Database
To remove an identifier and all of its holders, use the SYS$REM_IDENT service
in a program. When you call SYS$REM_IDENT, use the id argument to pass
the binary value of the identifier you want to remove. When SYS$REM_IDENT
completes execution, the identifier and all of its associated holder records are
removed from the rights database.

To remove a holder from the list of an identifier's holders, use the SYS$REM_
HOLDER service in a program. When you call SYS$REM_HOLDER, use the id
argument and the holder argument to pass the binary ID value and the UIC
identifier of the holder whose holder record you want to delete.

On successful execution, SYS$REM_HOLDER removes the holder from the list of
the identifier's holders.

23.3.3 Search Operations

23-16

You can search the entire rights database when you use the SYS$IDTOASC,
SYS$FIND_HELD, and SYS$FIND_HOLDER services. You initialize the context
longword to 0 and repeatedly call one of the three services until the status code
SS$_NOSUCHID is returned. When SS$_NOSUCHID is returned, the service
clears the context longword and deallocates the record stream. If you complete
your calls to one of these services before SS$_NOSUCHID is returned, you must
use SYS$FINISH_RDB to clear the context longword and to deallocate the record
stream.

The structure of the rights database affects the order in which each of these
services returns the records when you search the rights database. The rights
database is an indexed file with three keys. The primary key is the identifier
binary value, the secondary key is the holder UIC identifier, and the tertiary key
is the identifier name.

During a searching operation, the service obtains the first record with an indexed
Open VMS RMS GET operation. The key used for the GET operation depends on
the service. The SYS$FIND_HOLDER service uses the identifier binary value;
SYS$FIND_HELD uses the holder UIC identifier. After the indexed GET, the
service returns the records with sequential RMS GET operations. Consequently,
the file organization, the key used for the first GET operation, and the order in
which the records were originally written in the database determine the order of
records returned.

Table 23-2 summarizes how records are returned by the SYS$IDTOASC,
SYS$FIND_HELD, and SYS$FIND_HOLDER services when used in a searching
operation.

System Security Services
23.3 Rights. Database

Table 23-2 Returned Records of SYS$1DTOASC, SYS$FIND_HELD, and
SYS$FIND_HOLDER

Service

SYS$IDTOASC

SYS$FIND_HELD

SYS$FIND_HOLDER

Record Order

Identifier name order.

First GET operation-holder key. Subsequent records are
returned in the order in which they were written.

First GET operation-identifier key. Subsequent records are
returned in the order in which they were written.

The following programming example uses SYS$IDTOASC, SYS$FINISH_RDB,
and SYS$FIND_HOLDER to search the entire rights database for identifiers with
holders and produces a list of those identifiers and their holders:

Module ID HOLDER
(main = MAIN ,

addressing mode(external=GENERAL)
begin -

Produce a list of all the identifiers, that have holders,
with their respective holders.

Declarations:

library

'SYS$LIBRARY:LIB';

forward routine

MAIN;

external routine

LIB$PUT_OUTPUT,

SYS$FAO,
SYS$IDTOASC,
SYS$FINISH RDB,
SYS$FIND_HOLDER;

To create static descriptors

macro S_DESCRIPTOR[NAME, SIZE] =
own

%name(NAME, ' BUFFER'): block[%nurnber(SIZE), byte],
%name(NAME): block[DSC$K s BLN, byte]

preset([DSC$B CLASS] = DSC$K CLASS S,
[DSC$W-LENGTH] = %nurnber(SIZE),
[DSC$~POINTER] = %narne(NAME, '_BUFFER')); %;

Descriptors for ID, holder NAME, and output LINE

S DESCRIPTOR('ID NAME', 31);
S-DESCRIPTOR('NAME', 31);
S=DESCRIPTOR('LINE', 76);

own

STATUS,

23-17

System Security Services
23.3 Rights Database

ID,
ID LENGTH,
ID-CONTEXT: initial(O),

HOLDER,
LENGTH,
CONTEXT: initial(O),

ATTRIBS,
VALUE,
LINE : block[DSC$K s BLN, byte]

preset([DSC$B CLASS] = DSC$K CLASS S,
[DSC$A=POINTER] = LINE°_BUFFER);

To check for existence of an ID or HOLDER

macro CHECK(EXPRESSION) =
(STATUS= %remove(EXPRESSION)) and (.STATUS neq SS$_NOSUCHID) %;

List all the identifiers, which have holders, with their holders.

routine MAIN =
begin

Examine all IDs (-1).

while
CHECK(<SYS$IDTOASC(-l, ID_LENGTH, ID_NAME, ID, ATTRIBS, ID_CONTEXT)>)

do
begin

CONTEXT = O;

Find all holders of ID.

while CHECK(<SYS$FIND HOLDER(.ID, HOLDER, ATTRIBS, CONTEXT)>) do
begin -

Translate the HOLDER to find its NAME.

SYS$IDTOASC(.HOLDER, LENGTH, NAME, VALUE, ATTRIBS, O);

Print a message reporting ID and HOLDER.

end;

SYS$FAO(%ascid'Id: !AD, Holder: !AD''
LINE [DSC$W LENGTH], LINE,
.ID LENGTH,-.ID NAME[DSC$A POINTER],
.LENGTH, .NAME[DSC$A_POINTER]);

LIB$PUT_OUTPUT(LINE_);

end;

return SS$_NORMAL;

end;

end

eludom

23-18

23.3.4 Modifying a Rights List

System Security Services
23.3 Rights Database

When a process is created, LOGINOUT builds a rights list for the process
consisting of the identifiers the user holds and any appropriate environmental
identifiers. A system rights list is the default rights list used in addition to
any process rights list. Modifications to the system rights list effectively become
modifications to the rights of each process.

A privileged user can alter the process or system rights list with the
SYS$GRANTID or SYS$REVOKID services. These services are not intended
for the general system user. Use of these services requires CMKRNL privilege.
The SYS$GRANTID service adds an identifier to a rights list or, if the identifier is
already part of the rights list, the SYS$GRANTID service modifies the attributes
of the identifier. The SYS$REVOKID service removes an identifier from a rights
list.

The SYS$GRANTID and SYS$REVOKID services treat the pidadr and prcnam
arguments the same way all other process control services treat these arguments.
For more details, see the Open VMS Guide to System Security.

You can also modify the process or system rights list with the DCL command
SET RIGHTS_LIST. Additionally, you can use SET RIGHTS_LIST to modify
the attributes of the identifier if the identifier is glready part of the rights list.
Note that you cannot use the SET RIGHTS_LIST command to modify the rights
database from which the rights list was created. For more information about
using the SET RIGHTS_LIST command, see the Open VMS DCL Dictionary.

23.4 Managing Object Protection
An ACL is a list of entries defining the type of access allowed to an object in the
system such as a file, device, or mailbox. An access control entry (ACE) consists
of an identifier and one or more access types.

(IDENTIFIER=GREEN,ACCESS=WRITE+READ+CONTROL)
(IDENTIFIER=YELLOW,ACCESS=READ)
(IDENTIFIER=RED,ACCESS=NOACCESS)

Managing object protection involves using system services to manipulate
protection codes, UICs, and ACEs; that is, creating, translating, and maintaining
ACEs, establishing object ownership, and manipulating the protection codes of
protected objects.

23.4.1 Protected Objects
A protected object is an entity that can contain or receive information. When
such information is not considered shareable, access to those objects can be
restricted. The system recognizes eleven classes of protected objects as shown in
the following table:

Class Name

Capability1

Common event flag cluster

Description

A resource to which the system controls access;
currently, the only defined capability is the vector
processor.

A set of 32 event flags that enable cooperating
processes to post event notifications to each other.

1 Exists only on systems with vector processors

23-19

System Security Services·
23.4 Managing Object Protection

Class Name

Device

File

Group global section

Logical name table

Queue

Resource domain

Security class

System global section

Volume

Description

A class of peripherals connected to a processor that are
capable of receiving, storing, or transmitting data.

Files-11 On-Disk Structure Level 2 (ODS-2) files and
directories.

A shareable memory section potentially available to all
processes in the same group.

A shareable table of logical names and their
equivalence names for the system or a particular
group.

A set of jobs to be processed in a batch, terminal,
server, or print job queue.

A namespace controlling access to the lock manager's
resources.

A data structure containing the elements and
management routines for all members of the·security
class.

A shareable memory section potentially available to all
processes in the system.

A mass storage medium, such as a disk or tape, that
is in ODS-2 format. Volumes contain files and may be
mounted on devices.

23.4.2 Object Security Profile
The security profile summarizes the various types of protection mechanisms
applied to a protected object. The security profile associates a protected object
with an owner, a protection code, and optionally an ACL. When a user or process
requests access to a protected object, the system compares the user's privileges
and identifiers in the system authorization database with appropriate elements
in the object's security profile.

23.4.2.1 Displaying the Security Profile

23-20

You can display an object's security profile by using the SYS$GET_SECURITY
system service. On your first call to SYS$GET_SECURITY, be sure to initialize
the context variable to 0. Use the OSS$M_RELCTX flag to release any locks
on the context structure when the routine completes execution. The following
example illustrates the type of information contained in the security profile of a
logical name table:

LNM$GROUP object of class LOGICAL_NAME_TABLE

Owner: [ACCOUNTING]
Protection: (System: RWCD, owner: RWCD, Group: R, world: R)
Access Control List:

(IDENTIFIER=[USER,CHEHKOV],ACCESS=CONTROL)
(IDENTIFIER=[USER,VANNEST],ACCESS=READ+WRITE)

After you have returned owner and protection code information, you can call
SYS$GET_SECURITY iteratively to return each ACE in the ACL (if it exists) or
you can read the entire ACL. In addition, you can perform iterative searches to
retrieve objects and their templates.

23.4.2.2 Modifying the Security Profile

System Security Services
23.4 Managing Object Protection

You can modify all the security characteristics listed in a protected object's profile
by using the SYS$SET_SECURITY system service. You can add or delete ACEs
in the ACL selectively or you can delete the entire ACL. You have the option of
modifying a local copy of the profile without altering the master copy using the
OSS$M_LOCAL flags or you can modify the master copy directly. Also, use the
context to release the context structure after the service completes execution.

23.4.3 Types of Access Control Entries
There are seven types of security-related ACEs as described in the following
table:

ACE

Alarm

Application

Audit

Creator

Default Protection

Identifier

Subsystem

Description

Sets an alarm

Contains application-dependent information

Sets a security audit

Controls access to an object based on creators

Specifies the default protection for all files and subdirectories
created in the directory

Controls the type of access allowed based on identifiers

Maintains protected subsystems

For information about the structure of specific types of ACEs, see the
SYS$FORMAT_ACL system service in Open VMS System Services Reference
Manual.

You use SYS$FORMAT_ACL and SYS$PARSE_ACL to translate ACEs from one
format to another in the same way that SYS$IDTOASC and SYS$ASCTOID
translate identifiers from binary to text format and text to binary format.

To create and manipulate ACLs, use the ACL editor, the DCL command SET
ACL, or the SYS$GET_SECURITY and SYS$SET_SECURITY system services in
a program. The following table lists services that manipulate ACEs:

Service

SYS$FORMAT_ACL

SYS$GET_SECURITY

SYS$PARSE_ACL

SYS$SET_SECURITY

23.4.3.1 Design Considerations

Description

Converts an ACE from binary format to ASCII text

Retrieves the security characteristics of an object

Converts an ACE from ASCII text to binary format

Modifies the security characteristics of a protected
object

Before you attempt to manipulate ACLs, you should understand the meaning and
relationship among existing identifiers. If you are populating a previously empty
ACL, you need to plan the access types and position of each ACE within the ACL.

The position of the ACE within the ACL is an important consideration when
creating an ACE. By default, ACEs are added to the top of an ACL. The ACL
management services accept options allowing you to control the placement of
ACEs. The system compares the identifiers granted to the process requesting
access with those associated with the object starting with the top ACE in the

23-21

System Security Services
23.4 Managing Object Protection

object's ACL. Once a matching identifier name is found in the object's ACL, the
search stops.

23.4.3.2 Translating ACEs

To translate ACEs from binary format to a text string, use the SYS$FORMAT_
ACL service. The aclent argument is the address of a descriptor pointing to a
buffer containing the description of the ACE. The first byte of the buffer contains
the length of the ACE and the second byte contains the type, which in turn
defines the format of the ACE.

The acllen argument specifies the length of the text string written to the buffer
pointed to by aclstr. You use the width, trmdsc, and indent arguments to
specify a particular width, termination character, and number of blank characters
for an ACE. The accnam argument contains the address of an array of 32
quadword descriptors called an access name table. The access name table
defines the names of the bits in the access mask of the ACE. The access mask
defines the access types associated with a protected object. Use run-time library
(RTL) routine LIB$GET_ACCNAM described in the Open VMS RTL Library
(LIB$) Manual to obtain the address of the access name table. If nccnam is
omitted, the following names are used:

Bit <0>
Bit <1>
Bit <2>
Bit <3>
Bit <4>
Bit <5>
Bit <6>

Bit <31>

READ
WRITE
EXECUTE
DELETE
CONTROL
BIT 5
BIT-6

BIT 31

The SYS$PARSE_ACL service translates an ACE from text string format to
binary format. The aclstr argument is the address of a string descriptor pointing
to the ACE text string. As with SYS$FORMAT_ACL, the aclent argument is the
address of a descriptor pointing to a buffer containing the description of the ACE.
The first byte of the buffer contains the length of the ACE and the second byte
contains the type, which in turn defines the format of the ACE. If SYS$PARSE_
ACL fails, the errpos argument points to the failing point in the string. The
accnam argument contains the address of an array of 32 quadword descriptors
that define the names of the bits in the access mask of the ACE. If accnam is
omitted, the names specified in the description of SYS$FORMAT_ACL are used.

23.4.3.3 Creating and Maintaining ACEs

23-22

The SYS$GET_SECURITY and SYS$SET_SECURITY system services replace the
SYS$CHANGE_ACL system service. The Open VMS System Services Reference
Manual: A-GETMSG and the Open VMS System Services Reference Manual:
GETQUI-Z describe these system services.

To create or modify an ACL associated with a protected object, you use the
SYS$SET_SECURITY service. You specify the object whose ACL is to be modified
with either the objhan argument, which specifies the I/O channel associated
with the object, or the objnam argument, which specifies the object name. If
you specify objnam, objhan must be omitted or specified as 0. The clsnam
argument specifies the type of object.

System Security Services
23.4 Managing Object Protection

Use the acmode argument to specify the access mode used when checking file
access protection. By default, kernel mode is used, but the system compares
acmode against the caller's access mode and uses the least privileged mode.
Digital recommends that this argument be omitted (passed as zero).

The item code specifies the change to be made to the ACL. Table 23-3 describes
the symbols for the item codes that are defined in the system macro library
($ACLDEF). Note that without the itmlst argument, you can manipulate only
the security profile locks or release contxt resources.

Table 23-3 Item Code Symbols and Meanings

Item Code

OSS$_ACL_ADD_ENTRY

OSS$_ACL_DELETE

OSS$_ACL_DELETE_ALL

OSS$_ACL_DELETE_ENTRY

OSS$_ACL_FIND_ENTRY

OSS$_ACL_FIND_NEXT

OSS$_ACL_FIND_TYPE

OSS$_ACL_MODIFY_ENTRY

OSS$_ACL_POSITION_BOTTOM

OSS$_ACL_POSITION_ TOP

OSS$_0WNER

OSS$_PROTECTION

23.5 Protected Subsystems

Description

Adds an access control entry (ACE)

Deletes all unprotected ACEs from an ACL

Deletes the ACL, including protected ACEs

Deletes an ACE

Locates an ACE

Moves the current position to the next ACE in
the ACL

Locates an ACE of the specified type

Replaces an ACE at the current position

Sets a marker that points to the end of the
ACL

Sets a marker that points to the beginning of
the ACL

Sets the UIC or general identifier of the
object's owner

Sets the protection code of the object

A protected subsystem is a set of application programs that allow controlled
access to objects. It has under its control one or more protected objects and a
gatekeeper application. Users cannot access the objects within the subsystem
unless they execute the gatekeeper application. Once users have successfully
executed the application, their process rights list acquires the identifiers
necessary to access objects owned by the subsystem. The identifiers allow
processes to use the resources of the subsystem. When the application completes
execution or the user exits, the identifiers are removed from the user's process
rights list. Protected subsystems are an alternative to creating privileged images
and protected shareable images (user-written system services), and help prevent
the overuse of privileges.

Roles and Responsibilities
You should think of a protected subsystem as an isolated security domain where
the system manager creates and grants SUBSYSTEM identifiers using the
Authorize utility as shown in the following example:

UAF> ADD/IDENTIFIER FOO/ATTRIBUTES=SUBSYSTEM
UAF> GRANT/IDENTIFIER FOO FRANK /ATTRIBUTES=SUBSYSTEM

23-23

System Security Services
23.5 Protected Subsystems

The system manager can delegate responsibility for the maintenance of the
subsystem to subsystem managers who can associate existing identifiers with the
subsystem executable and its data. In the following example, the manager of a
protected subsystem creates an ACE in a subsystem's image and data files:

$ SET SECURITY BLOP.EXE -
$ /ACL=(SUBSYSTEM, IDENTIFIER=FOO) -

$ SET SECURITY BLOP.DAT -
$ /ACL=(IDENTIFIER=FOO, ACCESS=READ+WRITE) -

$ SET SECURITY BLOP.EXE -
_$ /ACL=(IDENTIFIER=HARRY, ACCESS=EXECUTE) -

Finally, a user uses the protected subsystem to access data available only through
the subsystem.

Subsystem Security
During the execution of a protected subsystem, $IMGACT adds subsystem
identifiers to the image rights list. What happens if the user presses the
Ctrl/Y key sequence during execution? Will the user retain whatever privileges
were granted by the subsystem? If Ctrl/Y is pressed, image identifiers are
removed from the process. Also, subprocesses do not inherit image identifiers
by default. However, SYS$CREPRC and LIB$SPAWN do contain flags PRC$M_
SUBSYSTEM and SUBSYSTEM, respectively, that allow subprocesses to inherit
image identifiers.

23.6 Security Auditing
Auditing is the recording of security-relevant activity as it occurs on a system.
See the Open VMS Guide to System Security for a list of all types of security­
relevant activity or classes of events that are audited. The following table
describes the security services that provide security auditing:

Service

SYS$AUDIT_EVENT

SYS$CHECK_PRIVILEGE

Description

Appends an event message to the system audit log file
or sends an alarm to a security operator terminal

Determines whether the caller has the specified
privileges or identifiers

The system service SYS$AUDIT_EVENT is used to report security events to the
auditing system. It examines the settings of the DCL command SET AUDIT to
determine if an event is enabled for auditing. If the event is enabled for alarms
or audits, SYS$AUDIT_EVENT generates an audit record and appends it to the
system audit log file (or sends an alarm to a security operator terminal) that
identifies the process involved and lists information supplied by its caller.

23.7 Checking Access Protection

23-24

The operating system provides two system services that allow a process to check
access to objects on the system: SYS$CHKPRO and SYS$CHECK_ACCESS.
The SYS$CHKPRO service performs the system access protection check on a
user attempting direct access to an object on the system; SYS$CHECK_ACCESS
performs a similar check on a third party attempting access to an object. The
following table describes the security services that provide access checking:

Service

SYS$CHECK_ACCESS

SYS$CHKPRO

System Security Services
23. 7 Checking Access Protection

Description

Invokes a system access protection check on behalf of
another user

Invokes a system access protection check

The SYS$CHKPRO and SYS$CHECK_ACCESS system services have been
extended to support auditing. The Open VMS Guide to System Security describes
how to use the auditing function. The Open VMS System Services Reference
Manual: A-GETMSG describes how to use the two system services. These
services are described in the following sections.

23.7.1 Creating a Security Profile
The SYS$CREATE_ USER_PROFILE system service returns a user profile,
using information in the rights database and the system authorization
database to generate the profile. The system services SYS$CHECK_ACCESS or
SYS$CHKPRO accept as input the profile from SYS$CREATE_ USER_PROFILE.

23.7.2 SYS$CHKPRO System Sevice
The SYS$CHKPRO service invokes the access protection check used by the
system. The service does not grant or deny access; rather, it performs the
protection check. Subsequently, an application might grant or deny access to the
specified object.

To pass the input and output information to SYS$CHKPRO, use the itmlst
argument, which is the address of an item list of descriptors. The SYS$CHKPRO
service compares the item list of the rights and privileges of the accessor to a list
of the protection attributes of the object to be accessed. If the accessor can access
the object, SYS$CHKPRO returns the status SS$_NORMAL; if the accessor
cannot access the object, SYS$CHKPRO returns the status SS$_NOPRiv. The
SYS$CHKPRO service does not grant or deny access. The subsystem itself must
grant or deny access based on the output (SS$_NORMAL or SS$_NOPRIV) from
SYS$CHKPRO.

The SYS$CHKPRO service also returns an item list of the rights or privileges
that allowed the accessor access to the object, as well as the names of security
alarms raised by the access attempt. For information about the item codes
defined for SYS$CHKPRO, see the description of SYS$CHKPRO in the Open VMS
System Services Reference Manual.

See the Open VMS Guide to System Security for a flowchart describing how
SYS$CHKPRO evaluates an access request attempt.

23.7.3 SYS$CHECK_ACCESS System Service
The SYS$CHECK_ACCESS service performs a protection check on a third-party
accessor. An example of this is a file server program that uses SYS$CHECK_
ACCESS to ensure that an accessor (the third party) requesting a file has the
required privileges to do so.

You pass the input and output information to SYS$CHECK_ACCESS by using
the itmlst argument, which is the address of an item list of descriptors. You
also pass the name of the accessor and the name and type of the object being
accessed by using the usrnam, objnam, and objtyp arguments, respectively.
The SYS$CHECK_ACCESS service compares the rights and privileges of the
accessor to a list of the protection attributes of the object to be accessed. If
the accessor can access the object, SYS$CHECK_ACCESS returns the status

23-25

System Security Services
23.7 Checking Access Protection

SS$_NORMAL; if the accessor cannot access the object, SYS$CHECK_ACCESS
returns the status SS$_NOPRIV.

The SYS$CHECK_ACCESS service does not grant or deny access. The subsystem
itself must explicitly grant or deny access based on the output (SS$_NORMAL or
SS$_NOPRIV) from SYS$CHECK_ACCESS.

The SYS$CHECK_ACCESS service also returns an item list of the rights or
privileges that allowed the accessor to access the object, as well as the names of
security alarms raised by the access attempt. For information about the item
codes defined for SYS$CHECK_ACCESS, see the description of SYS$CHECK_
ACCESS in the Open VMS System Services Reference Manual.

23.8 SYS$CHECK_PRIVILEGE
The SYS$CHECK_PRIVILEGE system service determines whether the caller
has the specified privileges or identifiers. The service performs the privilege
check and looks at the SET AUDIT settings to determine whether the system
administrator enabled privilege auditing. When privilege auditing is enabled,
SYS$CHECK_PRIVILEGE generates an audit record. The audit record identifies
the process (subject) and privilege involved, provides the result of the privilege
check, and lists supplemental event information supplied by its caller. Privilege
audit records usually contain the DCL command line or the system service name
associated with the privilege check.

SYS$CHECK_PRIVILEGE completes asynchronously; that is, it does not wait for
final status. For synchronous completion, use the SYS$CHECK_PRIVILEGEW
service.

23.9 Implementing Site-Specific Security Policies {VAX Only)
Occasionally, you may need to write routines that implement site-specific policies
or special algorithms. The routines that you write can either replace or augment
built-in operating system policies. This section contains instructions for replacing
key operating system security routines with routines that are specific to your
site. 1\vo types of routines are discussed: loadable system services and shareable
images.

23.9.1 Creating Loadable Security Services

23-26

This section describes how to create a system service image and how to update
the SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA file, which
controls site-specific loading of system images. These procedures update the
loading of system images for all nodes of a cluster.

Currently, you can replace the following three system services with services
specific to your site:

Service

SYS$ERAPAT

SYS$MTACCESS

SYS$HASH_PASSWORD

Description

Generates a security erasure pattern

Controls magnetic tape access

Applies a hash algorithm to an ASCII password

When you create the system service, you code the source module and define the
vector offsets, the entry point, and the program sections for the system service.
Then, you can assemble and link the module to create a loadable image.

System Security Services
23.9 Implementing Site-Specific Security Policies (VAX Only)

Once you have created the loadable image, you install it. First, you copy the
image into the SYS$LOADABLE_IMAGES directory and add an entry for it
in the operating system's images file using the System Management utility
(SYSMAN). Next, you invoke the system images command procedure to generate
a new system image data file. Finally, you reboot the system to load your service.

The following sections describe how to create and load the the Get Security Erase
Pattern (SYS$ERAPAT) system. service.

On VAX systems, you can find an example of the SYS$ERAPAT system service in
SYS$EXAMPLES:DOD_ERAPAT.MAR on the operating system. The description
here also applies to the Hash Password (SYS$HASH_PASSWORD) and
Magnetic Tape Accessibility (SYS$MTACCESS) system services. You can find
an example of how to prepare and load the SYS$HASH_PASSWORD service in
SYS$EXAMPLES:HASH_PASSWORD.MAR.

23.9.1.1 Preparing and Loading a System Service
On VAX systems, use the following procedure to prepare and load a system
service, in this case SYS$ERAPAT:

1. Create the source module.

a. Include the following macro to define system service vector offsets:

$SYSVECTORDEF ; Define system service vector off sets

b. Use the following macro to define the system service entry point:

SYSTEM SERVICE ERAPAT, -
- <R4>, -

MODE=KERNEL,­
NARG=3

Entry point name
Register to save
; Mode of system service
; Number of arguments

(The code immediately following this macro is the first instruction of the
SYS$ERAPAT system service.)

c. Use the following macros to declare the desired program sections:

DECLARE PSECT EXEC$PAGED_CODE ; Pageable code PSCET

DECLARE PSECT EXEC$PAGED_DATA ; Pageable data PSECT

DECLARE PSECT EXEC$NONPAGED_DATA Nonpageable data PSECT

DECLARE PSECT EXEC$NONPAGED_CODE Nonpageable code PSCET

2. Assemble the source module by using the following command:

$ MACRO DOD_ERAPAT+SYS$LIBRARY:LIB.MLB/LIB

3. Link the module to create a SYS$ERAPAT.EXE executive loaded image. You
can link the module using the command procedure DOD_ERAPAT_LNK.COM
in SYS$EXAMPLES. (A command procedure is also available to link the
SYS$HASH_PASSWORD example.) To link the SYS$ERAPAT module, enter
the following command:

$ @SYS$EXAMPLES:DOD_ERAPAT_LNK.COM

4. Prepare the operating system image to be loaded.

a. Copy the SYS$ERAPAT.EXE image produced by the link command into
the SYS$COMMON:[SYS$LDR] directory. Note that privilege is required
to put files into this directory.

b. Add an entry for the SYS$ERAPAT.EXE image in the
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX data file.

23-27

System Security Services
23.9 Implementing Site-Specific Security Policies (VAX Only)

You add an entry by using the SYSMAN command SYS_LOADABLE
ADD. (See the Open VMS System Management Utilities Reference Manual
for a description of this command.) For example, the following commands
add an entry in VMS$SYSTEM_IMAGES.IDX for SYS$ERAPAT.EXE:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> SYS LOADABLE ADD LOCAL SYS$ERAPAT -

SYSMAN> /LOAD STEP = SYSINIT -­
-SYSMAN> /SEVERITY = WARNING -
=SYSMAN> /MESSAGE = "failure to load SYS$ERAPAT.EXE"

This entry specifies that the SYS$ERAPAT.EXE image is to be loaded by
the SYSINIT process during the bootstrap. If there is an error loading the
image, the following messages are printed on the console terminal:

%SYSINIT-E-failure to load SYS$ERAPAT.EXE
-SYSINIT-E-error loading <SYS$LDR>SYS$ERAPAT.EXE, status = "status"

The following table shows other error messages that may be returned:

Message Meaning User Action

NO_PHYSICAL - Physical memory is not Check SYSGEN
MEMORY available. parameters.

NO_POOL Amount of nonpaged Check SYSGEN
pool is insufficient. parameters.

MULTIPLE_ISDS Encountered more than Check link options.
one image section of a
given type.

BAD_GSD An inconsistency was Verify that the image was
detected. linked properly.

NO_SUCH_IMAGE The requested image Check image name
cannot be located. against images in

SYS$LOADABLE_
IMAGES.

c. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file (VMS$SYSTEM_
IMAGES.DATA). The system bootstrap uses this image data file to load
the appropriate images into the system.

d. Reboot the system, which loads the original SYS$ERAPAT.EXE image
into the system. Subsequent calls to the SYS$ERAPAT system service use
the normal operating system routine.

As the default, the system bootstrap loads all images described in
VMS$SYSTEM_IMAGES.DATA. You can disable this feature by setting
the special system parameter LOAD_SYS_IMAGES to 0.

23.9.1.2 Removing an Executive Loaded Image

23-28

On VAX systems, use the following procedure to remove an executive loaded
image; in this case, SYS$ERAPAT.EXE:

1. Enter the following SYSMAN command:

SYSMAN> SYS_LOADABLE REMOVE _LOCAL_ SYS$ERAPAT

2. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file (VMS$SYSTEM_
IMAGES.DATA). The system bootstrap uses this image data file to load
the appropriate images into the system.

System Security Services
23.9 Implementing Site-Specific Security Policies (VAX Only)

3. Reboot the system, which loads the installation-specific SYS$ERAPAT.EXE
image into the system. Subsequent calls to the SYS$ERAPAT system service
use the installation-specific routine.

As the default, the system bootstrap loads all images described in the
system image data file (VMS$SYSTEM_IMAGES.DATA). You can disable this
functionality by setting the special system parameter LOAD_SYS_IMAGES
to 0.

23.9.2 Installing Filters for Site-Specific Password Policies
A site security administrator can screen new passwords to make sure they comply
with a site-specific password policy. (See the Open VMS Guide to System Security
for more information.) This section describes how a security administrator can
encode the policy, create a shareable image and install it in SYS$LIBRARY, and
enable the policy by setting a SYSGEN parameter.

Installing and enabling a site-specific password policy image requires both
SYSPRV and CMKRNL privileges.

23.9.2.1 Creating a Shareable Image
To compile and link a shareable image that filters passwords for words that are
sensitive to your site, perform the following steps:

1. Create the source module VMS$PASSWORD_POLICY.*.

Bliss and Ada examples of the policy module's interface, called
VMS$PASSWORD_POLICY.*, are located in SYS$EXAMPLES.

Define two routine names in the source module: POLICY_PLAINTEXT and
POLICY _HASH. These routines must be global (see your language reference
for instructions on defining a global routine). The Set Password utility looks
for these routine names and displays the message SYMNOTFOU if the names
are missing or if the routines are not defined as global.

2. Link the source file.

On VAX systems, use the VMS$PASSWORD_POLICY_LNK.COM command
procedure, located in SYS$EXAMPLES.

23.9.2.2 Installing a Shareable Image
To install a shareable image, perform the following steps:

1. Copy the file to SYS$LIBRARY and install it using the following commands:

$COPY VMS$PASSWORD POLICY.EXE SYS$COMMON:[SYSLIB]/PROTECTION=(W:RE)
$ INSTALL ADD SYS$LlBRARY:VMS$PASSWORD_POLICY/OPEN/HEAD/SHARE

2. Set the system parameter LOAD_PWD_POLICY to 1 as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> USE ACTIVE
SYSGEN> SET LOAD PWD POLICY 1
SYSGEN> WRITE ACTIVE­
SYSGEN> WRITE CURRENT

23-29

System Security Services
23.9 Implementing Site-Specific Security Policies (VAX Only)

23-30

3. To make the changes permanent, add the INSTALL command from step 1
to the SYS$SYSTEM:SYSTARTUP _VMS.COM file and modify the system
parameter file, MODPARAMS.DAT, so that the LOAD_PWD_POLICY
parameter is set to 1.

4. Run AUTOGEN as follows to ensure that the system parameters are set
correctly on subsequent system startups:

$ @SYS$UPDATE:AUTOGEN SAVPARAMS SETPARAMS

A
Absolute time, 5-1

in system format, 5-6
Access

physical 1/0, 9-6
Access control entries

See ACEs
Access control lists

See ACLs
Access mask, 23-22
Access modes

effect on AST delivery, 4-8
with AST, 4-5
with logical names, 10-10

Access name table, 23-22
ACEs (access control entries)

creating, 23-21, 23-22
maintaining, 23-21, 23-22
translating, 23-21, 23-22

ACLs (access control lists), 23-2
Address space

allocating by page, 19-8, 20-6
allocating in zones, 21-6
deallocating by page, 19-8, 20-6, 21-2
zones, 21-6

Addresses
virtual memory, 17-3

Algorithms
for memory allocation, 21-7

Aligning data, 8-4
Alignment, 22-1

natural, 22-2
on AXP systems, 14-3
on VAX systems, 14-3
Open VMS AXP, 22-3
Open VMS VAX, 22-3
system services, 22-10
with Bliss compiler, 22-5
with compilers, 22-4
with DEC C compiler, 22-4
with DEC Fortran compiler, 22-6
with MACR0-32 compiler, 22-7
with Open VMS Debugger, 22-9
with PCA, 22-10
with tools, 22-9
with VEST translator, 22-8

Alignment attribute, 21-11
Area extension size, 21-9
Argument lists

for AST service routine, 4-6
for condition handler, 13-27

Arguments
mechanism vector, 13-35

Arithmetic exceptions
on AXP systems, 13-13

Arrays
mechanism, 13-35
virtual address, 19-10, 20-8

ASCII time, 5-7
ASSIGN command, 10-2
AST routines

overview, 4-3

Index

ASTs (asynchronous system traps), 4-1, 6-22
See also Synchronization
access mode, 4-5
blocking, 15-12, 15-18
declaring, 4-6
delivery, 4-5, 4-8
example, 4-8
execution, 4-1
in target process, 3-24
parameter, 4-7
process wait state, 4-5
quota, 9-3
service routine, 4-6
system service, 4-1
writing, 4-4

Asynchronous input/output, 9-20
Asynchronous system traps

See ASTs
Atomic instructions

effect on synchronization, 14-5
Atomic memory reference, 14-3
Atomicity

definition, 14-3
Attributes

Dynamic, 23-5
Holder Hidden, 23-5
Name Hidden, 23-5
No access,. 23-5
Resource, 23-5
Subsystem, 23-5

lndex-1

B
Balance sets

swapping, 19-12, 20-12
Barrier synchronization

See also Parallel processing
See Parallel processing

Binary semaphores, 14-28
BIOLM (buffered 1/0 limit) quota, 9-3
Bliss compiler

alignment, 22-5
Block sizes, 21-10
Blocking ASTs

description, 15-12
using, 15-18

Borders
virtual display, 7-11

Boundary tags, 21-8
Broadcast messages, 7-42

alternate handler, 7-42
default handler, 7-42

Buffered 1/0 operations, 5-18
BYPASS privilege, 9-5
BYTELM (buffered 1/0 byte count) quota, 9-3

c
Caching, 15-18
Call stacks

unwinding, 13-46
Call-frame condition handlers, 13-24
Catchall handlers, 13-25, 13-43
Chaining, 6-5
Change-mode handlers, 13-12
Channels, 2-10

assigning 1/0, 9-11
deassigning, 9-24

Character string routines, 6-14
Character string translation routines, 6-14
$CHFDEF macro, 13-27
$CHFDEF2 macro, 13-27
CLI (command language interpreter), 6-2
CLI access routine, 6-2
Clocks

setting system, 5-11
Command language interpreter

See CLI
Common areas, 2-6

per-process, 2-6
Common blocks

aligning, 8-4
installing as a shared image, 17-6
interprocess, 17-6
modifying, 2-6

lndex-2

Common event flag clusters, 14-18
permanent, 14-20
temporary, 14-20

Compatibility mode handlers, 13-12
Compilers

alignment, 22-4
Composed input

See also Key tables
terminating, 7-28

Condition codes
chaining, 13-53
signaling, 13-32
SS$_EXQUOTA, 13-21
SS$_NOPRIV, 13-21

Condition handlers
See also Signal argument vectors
argument list, 13-27
arithmetic, 13-17
call frame, 13-24
catchall, 13-25, 13-43
condition code, 13-65
continuing execution of, 13-64
debugging, 13-70
default, 13-42
establishing, 13-5
example, 13-69
exiting, 13-66
last-chance, 13-43
last-chance exception vector, 13-25
mechanism argument vectors, 13-35
primary exception vector, 13-24
resignaling, 13-64
searching for, 13-24
secondary exception vectors, 13-24
signal argument array, 13-32
software supplied, 13-42
specifying, 13-4
traceback, 13-25, 13-42
types, 13-41
types of action, 13-45
unwinding, 13-64
use of, 13-27
user-supplied, 13-42
writing, 13-63

Condition handling, 13-3
See also Condition handlers
See also Condition Handling Facility
See also Condition values
See also Exception conditions
See also Exceptions
See also Message utility (MESSAGE)
alignment fault reporting, 13-15
arithmetic exceptions, 13-13
continuing, 13-45
displaying messages, 13-49
GOTO unwind, 13-45
hardware exception conditions, 13-12

Condition handling (cont'd)
logging error messages, 13-6
logging error messages to a file, 13-55
mechanism argument vectors, 13-35, 13-37
mechanism array format, 13-37
resignaling, 13-45, 13-67
return status, 13-21
run-time library support routines, 13-18
signal argument vectors, 13-32
signaling a condition, 13-45
stack traceback, 13-6
stack unwind, 13-6, 13-45
unwinding, 13-67
user-defined messages, 13-6
VAX hardware exceptions, 13-12

Condition Handling Facility (CHF), 13-41
definition, 13-1
function, 13-4

Condition values, 13-19 to 13-20, 13-31
definition, 13-63
severity, 13-19

Conditions
for exception, 13-6

Control actions
inhibiting, 7-41

Coordinated Universal Time
See UTC system services

Counting semaphores, 14-28
CPU-specific pages, 20-1
Create Mailbox and Assign Channel system service

See also SYS$CREMBX system service
Ctrl/C key sequence, 7-32
Ctrl/Y key sequence, 7-32
Ctrl/Z key sequence, 7-5, 9-31
Current procedure, 13-48
Current time, 5-9
Cursor movement, 7-20

D
Data

aligning, 8-4
interprocess, 17-6
sharing, 17-6

Data alignment, 22-1
exception reporting, 13-15

Databases
record, 8-12

Dates
64-bit system format, 5-1
128-bit system format, 5-34
getting current system, 5-10
Smithsonian base, 5-1

Date/time manipulation
converting, 5-7

Deadlock detection, 15-8
Debugging

coµdition handler, 13-70
exit handler, 13-70

DEC C compiler
alignment, 22-4

DEC Fortran compiler
alignment, 22-6

DEC Text Processing Utility
See DECTPU

DECdns call
timeout, 11-5

DECdns naming conventions
defining logicals, 11-16
logical names, 11-16

DECdns objects
creating, 11-4
reading attributes, 11-10

DECdtm services
aborted, 12-1
atomic, 12-1
committed, 12-1
distributed transaction, 12-1
introduction to programming, 12-1

DECforms, 7-2
DECTPU (DEC Text Processing Utility), 7-1
DECwindows Motif, 7-7
Default logical name tables

group, 10-6
job, 10-5
process, 10-4
system, 10-6

DEFINE command, 10-2
/DELETE qualifier

LIBRARY command, 17-2
Delta time, 5-1

example, 5-6
in system format, 5-6

Detached processes, 1-1
creating, 1-10

Device types, 9-28
Devices

allocating, 9-31
deallocating, 9-33
default name, 9-27
getting information about, 9-28
implicit allocation, 9-33
names, 9-26
protection, 9-5

DIOLM (direct I/O limit) quota, 9-3
Direct I/O operation, 5-18
Directives

See also Message utility (MESSAGE)
.END, 13-59
.FACILITY, 13-58
.SEVERITY, 13-59
.TITLE, 13-60

lndex-3

Directory logical name tables
process, 10-3
system, 10-3

Disk files
opening, 19-14, 20-14

Disk volumes
mounting, 9-33

Disks
initializing from within a program

example, 9-36
Dispatcher

exception, 13-24
Documentation comments, sending to Digital, iii
Double-width characters

See also Screen management
See also Virtual displays
specifying, 7-20

Dynamic attribute, 23-5
Dynamic memory allocation, 20-5

E
Echo

terminal, 7-39
terminators, 7-24

.END directive, 13-59
EOF (end-of-file), 7-5
Equivalence names

defining, 10-2
format convention, 10-13

Error handling
See also Condition handling
See Condition handling

Error recovery, 9-11
Errors

signaling, 13-5
Escape sequences

read, 9-31
Event flag clusters

deleting, 14-20
dissociating, 14-20
specifying name for, 14-19

Event flag numbers, 14-15
Event flag service

example using, 14-26
Event flags, 14-14

See also Synchronization
allocation of, 6-17
clearing, 14-23
cluster, 14-15
common, 14-15
for interprocess communication, 2-8
local, 2-2, 14-15
setting, 14-23
specifying, 14-15
wait, 14-22

lndex-4

Exception conditions, 13-2, 13-6
returning condition value, 13-7
signaling of, 13-6, 13-7, 13-16, 13-28, 13-49

Exceptions
definition, 13-2
dispatcher, 13-24
floating-point underflow, 13-17
handling by run-time library, 13-16
type, 13-6

Execution context, 1-2
Exit handlers, 3-42, 9-31, 13-73

debugging, 13-76
establishing, 13-74
writing, 13-75

Exits
See also Exit handlers
forced, 3-42
image, 3-40, 13-73

Extended address space, 19-3, 19-4
physical address space, 19-3
virtual address space, 19-4

Extents
defining section, 19-15, 20-15

/EXTRACT qualifier
LIBRARY command, 17-2

F
FABs (file access blocks), 8-15
.FACILITY directive, 13-58
Facility identifiers, 23-4
FAO argument

signaling, 13-62
FAO parameter

specifying, 13-62
/FAO_COUNT qualifier

Message utility (MESSAGE), 13-60
Feedback on documentation, sending to Digital, iii
File access strategies, 8-2
File attributes, 8-1
File terminators, 9-31
Files

attributes, 8-1, 8-2
complete access, 8-2
discrete records access, 8-2
mapping, 8-4
record-by-record access, 8-2
sequential, 8-12
sequential and indexed access, 8-2

Flags
See also Event flags

Floating-point overflow, 13-16
Floating-point underflow, 13-17
Forced exit, 3-42
Foreign commands, 6-3

Foreign devices, 9-5
Foreign volumes, 9-4, 9-6
Function codes, 9-10
Function modifiers, 9-11

G

IO$M_INHERLOG, 9-5
types of

IO$M_DATACHECK, 9-11
IO$M_INHRETRY, 9-11

Global sections, 17-8, 19-16, 20-16
characteristics, 19-16, 20-16
definition, 19-13, 20-13
for interprocess communication, 2-8
mapping, 19-19, 20-20
multiprocessing, 14-13
name, 19-17,20-17
paging file, 19-20, 20-21
permanent, 17-12
temporary, 17-12
writable, 14-13

Global symbols, 17-4
resolving, 17-4
signaling with, 13-61

GOTO unwind operations, 13-49
Granularity

of resources, 15-3
on AXP systems, 14-3
on VAX systems, 14-3

Greenwich Mean Time (GMT), 5-34
Group logical name tables, 10-6

H
Handlers

change and compatibility modes, 13-12
Hibernation, 3-35

alternate method, 3-38
andAST, 4-6
compared with suspension, 3-36

Holder Hidden attribute, 23-5
Holder records, 23-8

adding, 23-12
format, 23-9
modifying, 23-14
removing, 23-16

1/0 (input/output)
asynchronous, 9-20
checking device type, 9-28
complex, 7-2
echo, 7-39
exit handler, 9-31
lowercase, 7-41
reading a single line, 7-4

1/0 (input/output) (cont'd)
reading several lines, 7-5
screen updates, 7-30
simple, 7-2
status, 9-22
synchronous, 9-18
terminator, 7-4

end of file, 9-31
record, 9-31

timeout, 7-40
unsolicited input, 7-35
uppercase, 7-41
using SYS$QIO system service, 9-22
using SYS$QIOW system service, 9-22
writing simple character data, 7-6

1/0 channels, 9-11
deassigning, 9-24

1/0 completion
recommended test, 9-16
status, 9-23
synchronizing, 9-13

1/0 functions
codes, 9-10, 9-12
modifier, 9-11

1/0 operations
logical, 9-6
overview, 9-2
physical, 9-5
quotas, privileges, and protection, 9-2
virtual, 9-6

1/0 requests
canceling, 9-26
queuing, 9-12

1/0 services
asynchronous version, 9-18
synchronous version, 9-18

Identifier attributes, 23-5
Identifier names

translating, 23-11
Identifier records, 23-8

adding to rights database, 23-12
format, 23-8
modifying, 23-13
removing from rights database, 23-16

Identifier values
translating, 23-11

Identifiers, 23-1, 23-2
adding to rights database, 23-12
attributes, 23-4, 23-5
defining, 23-1
determining holders of, 23-13
facility, 23-4
facility-specific, 23-4
format, 23-2
general, 23-2
new attributes, 23-5
removing from rights database, 23-16
system-defined, 23-3

lndex-5

If states
composed input, 7-28

IFI (internal file identifier)
removing, 10-13

Image rundown, 13-73
effect on logical names, 10-5

Image sections, 19-23, 20-25
IMAGELIB.OLB file, 17-5
Images

exit, 3-40
exiting, 13-73
for subprocess, 1-9
loading site-specific, 23-26
rundown activity, 3-41
shareable, 17-3

Initialization
argument list, 16-5
volume from within a program, 9-36

example, 9-36
Initialization routines

declaring, 16-6
dispatching, 16-6
options, 16-7

Input address arrays, 19-9, 20-8
Instruction memory barriers, 14-10
Instructions

queue, 14-14
Integer and floating-point routines, 6-12
Interlocked instructions, 14-6, 14-9, 14-13
Internal file identifiers

See IFI
Interprocess communication, 2-1, 2-7

event flags, 2-8
global sections, 2-8
lock management services, 2-8
logical names, 2-8
mailboxes, 2-8

using, 2-8
Interprocess control, 2-1
Interrupt priority level, 14-7
Intraprocess communication, 2-1

common area, 2-6
global symbols, 2-5

IOSBs (110 status blocks)
in synchronization, 9-13
return condition value field, 9-23

J
Jacket routines, 6-1
Job logical name tables, 10-5

lndex-6

K
Key tables

reading from, 7-28
Keypads

reading from, 7-25

L
Last-chance exception vectors, 13-25
LIB$ADDX routine, 5-7
LIB$ADD_TIME routine, 5-7
LIB$ASN_ WTH_MBX routine, 2-10
LIB$AST_IN_PROG routine, 6-22
LIB$ATTACH routine, 6-9
LIB$CALLG routine, 6-15
LIB$CRC routine, 6-16
LIB$CRC_TABLE routine, 6-16
LIB$CREATE_DIR routine, 6-22
LIB$CREATE_USER_ VM_ZONE routine, 21-12,

21-16
. LIB$CREATE_VM_ZONE routine, 21-7, 21-16

LIB$DATE_TIME routine, 5-9
LIB$DAY routine, 5-5
LIB$DECODE_FAULT routine, 13-73
LIB$DEC_OVER routine, 13-17
LIB$DELETE_LOGICAL routine, 6-8
LIB$DELETE_SYMBOL routine, 6-8
LIB$DELETE_ VM_ZONE routine, 21-7, 21-13
LIB$DISABLE_CTRL routine, 6-9
LIB$DO_COMMAND routine, 6-7
LIB$ENABLE_CTRL routine, 6-9
LIB$ESTABLISH routine, 13-4, 13-42
LIB$FIND_VM_ZONE routine, 21-7
LIB$FIXUP _FLT routine, 13-72
LIB$FLT_UNDER routine, 13-17
LIB$FREE_TIMER routine, 5-19
LIB$FREE_ VM routine, 19-6, 20-4
LIB$FREE_ VM_PAGE routine, 19-6, 20-4
LIB$GETQUI routine, 5-21
LIB$GET_COMMON routine, 2-6, 6-5
LIB$GET_FOREIGN routine, 6-3
LIB$GET_INPUT routine, 7-4

example, 7-4
obtaining several lines of input, 7-5
obtaining single line of input, 7-4
prompt, 7-4

LIB$GET_SYMBOL routine, 6-8
LIB$GET_ VM routine, 19-6, 20-4
LIB$GET_VM_PAGE routine, 19-6, 20-4
LIB$INITIALIZE routine, 16-1
LIB$INIT_TIMER routine, 5-18
LIB$INSERT_TREE routine, 6-29
LIB$INT_OVER routine, 13-17
LIB$LOOKUP _TREE routine, 6-29

LIB$MATCH_COND routine, 13-33, 13-65,
13-72

LIB$MULTF _DELTA_TIME routine, 5-7
LIB$MULT_DELTA_TIME routine, 5-7
LIB$PUT_COMMON routine, 2-6, 6-5
LIB$PUT_OUTPUT routine, 7-4

example, 7-7
writing simple output, 7-6

LIB$RESET_ VM_ZONE routine, 21-6, 21-13
LIB$REVERT routine, 13-4, 13-5
LIB$RUN_PROGRAM routine, 6-5
LIB$SET_LOGICAL routine, 6-8
LIB$SET_SYMBOL routine, 6-8
LIB$SHOW _TIMER routine, 5-19
LIB$SHOW _ VM_ZONE routine, 21-7
LIB$SIGNAL routine, 13-3, 13-5, 13-16, 13-28,

13-34, 13-35, 13-50, 13-57, 13-64
generating signals, 13-30
invoking, 13-30

LIB$SIG_TO_RET routine, 13-71
establishing, 13-71

LIB$SIG_TO_STOP routine, 13-71
LIB$SIM_TRAP routine, 13-64, 13-70
LIB$SPAWN routine, 6-9
LIB$STAT_TIMER routine, 5-19
LIB$STOP routine, 13-3, 13-5, 13...:.7, 13-28,

13-34, 13-35, 13-45, 13-50, 13-57, 13-64
generating signals, 13-30

LIB$SUBX routine, 5-7
LIB$SUB_TIME routine, 5-7
LIB$TRAVERSE_TREE routine, 6-29
LIB$VERIFY_VM_ZONE routine, 21-7
Libraries

default object, 17-2
macro, 17-3, 17-5
message object module, 13-60
object, 17-2, 17-5

adding modules, 17-2
creating, 17-2
deleting a module, 17-2
extracting a module, 17-2
listing modules, 17-2
replacing modules, 17-2
system default, 17-2
user default, 17-2

system default, 17-5
text, 17-3
user default, 17-5

LIBRARY command
/CREATE qualifier, 17-2
/DELETE qualifier, 17-3
/EXTRACT qualifier, 17-3
/LIST qualifier, 17-2
/REPLACE qualifier, 17-2

Line editing
inhibiting, 7-41

Linkage sections, 20-11
Linker utility (LINK)

searching object libraries, 17-2
LINK/SHAREABLE command, 17-7
/LIST qualifier

LIBRARY command, 17-2
LNK$LIBRARY routine, 17-2

See also Libraries
See also Linker utility (LINK)

Load-locked instructions, 14-8, 14-13
Local buffer caching

with lock management service, 15-18
Local symbols, 17-4

signaling with, 13-61
Lock management system services

for interprocess communication, 2-8
Lock manager, 15-1

See also Synchronization
Lock requests

queuing, 15-6
queuing a lock request, 15-8
synchronizing, 15-10

Lock status blocks, 15-11
Lock value blocks

description, 15-15
using, 15-18

Locks
choice of mode, 15-5
concept of, 15-2
conversion, 15-7, 15-12, 15-13
deadlock detection, 15-8
dequeuing, 15-16
level, 15-5
mode, 15-5

Logical I/Os
operations, 9-6
privilege, 9-4, 9-5, 9-6

Logical name system service calls
SYS$CRELNM system service, 10-15
SYS$CRELNT system service, 10-16
SYS$DELLNM system service, 10-17
SYS$TRNLNM system service, 10-18

Logical name tables
creating, 10-16
default, 10-3
directory, 10-3
group, 10-6
job, 10-5
predefined logical names, 10-2
process, 10-4
process-private, 10-6
quotas, 10-11
search list, 10-14

modifying, 10-14
shareable, 10-6, 10-17
system, 10-6
types, 10-2

lndex-7

Logical name tables (cont'd)
user-defined, 10-6

Logical names, 9-26, 11-16
attributes of, 10-10
creating, 10-15
defining, 10-2
deleting, 10-17
duplicating, 10-7
for interprocess communication, 2-8
format convention, 10-13
image rundown, 10-5
multivalued, 10-2
superseding, 10-9
translating, 10-17

Logical unit numbers
allocating, 6-16

M
Macro libraries, 17-5
MACR0-32 compiler

alignment, 22-7
Magnetic tapes

initializing within program, 9-36
example, 9-36

Mailboxes, 2-8, 2-10, 9-39
creating, 2-9
for interprocess communication, 2-8
input/output

asynchronous, 2-11
immediate, 2-11
synchronous, 2-11
using SYS$QIO, 2-11
using SYS$QIOW, 2-11

name, 9-42
permanent, 2-9
protection, 9-4
reading data from, 2-11
system, 9-42

messages, 9-43
temporary, 2-9
termination, ,3-46
writing data to, 2-11

Mapped file, 8-4
closing, 8-11
saving, 8-11

Mechanism argument vectors, 13-28, 13-35,
13-63

on AXP systems, 13-37
on VAX systems, 13-35

Mechanism arrays
format, 13-37

Memory
allocating and freeing blocks, 21-1
allocating and freeing pages, 21-1
allocation algorithms, 21-7
locking page into, 19-13, 20-12

lndex-8

Memory barriers, 14-10
instructions, 14-10

Memory fragmentation, 21-2
Memory management system services, 19-5, 20-3
Memory reads and writes

on AXP systems, 14-5
on VAX systems, 14-4

Menus
creating with SMG$ routines, 7-22 ·
reading, 7-24

Message text
specifying variables in, 13-60

Message utility (MESSAGE), 13-56, 13-63
accessing message object module, 13-60
associating messages with exception conditions,

13-57
compiling message file, 13-60
creating a message object library, 13-60
.END directive, 13-59
.FACILITY directive, 13-58
facility name, 13-58
facility number, 13-59
FAQ parameters, 13-62
/FAO_COUNT, 13-60
logging messages, 13-56
message object module, 13-60
message text, 13-59
message text variables, 13-60
modifying a message source file, 13-61
.SEVERITY directive, 13-59
source module, 13-58
. TITLE directive, 13-60

Messages
chaining, 13-53
displaying, l3-50
logging, 13-56

Modularity
virtual displays, 7-30

MOUNT privilege, 9-4
Multiprocess applications

synchronizing, 14-12
Multiprocessor environment, 14-12

See also Synchronization
scheduling, 14-11

Multistreamed work load, 14-13

N
Name Hidden attribute, 23-5
Name services, 10-1, 11-1
Namespaces

listing information, 11-13
Natural alignment, 22-2

performance, 22-2
No Access attribute, 23-5

Null devices, 9-28
Numeric time, 5-7

0
Object libraries, 17-2, 17-5

adding a module, 17-2
creating, 17-2
deleting a module, 17-2
extracting a module, 17-2
including message object module, 13-60
listing modules, 17-2
replacing a module, 17-2

Objects
DECdns, 11-4
modifying, 11-6
protected, 23-19

OpenVMS Debugger utility, 22-3
alignment, 22-9

Open VMS RMS
See RMS

Output formatting control routine, 6-20

p
Page faults, 5-18
Page frame number (PFN), 19-5
Page frame sections, 19-24, 20-26
Page table entry (PTE)

extended addresses, 19-5
Pagelets, 20-1
Pages, 19-3, 20-2

copy-on-reference, 19-16, 20-16
demand-zero, 19-16, 20-16
locking into memory, 19-13, 20-12
owner, 19-10, 20-10
ownership and protection, 19-10, 20-10

Paging file sections, 19-20, 20-22
global, 19-20, 20-21

PALcode (privileged architecture library) code,
14-10, 22-3

Parallel processing, 14-27
initializing, 14-27
subprocess

creating, 14-27
deleting, 14-27

terminating, 14-27
using semaphores, 14-28
using spin locks, 14-27

Parentlock, 15-14
Partial sections, 20-26
Pasteboards, 7-9

creating, 7-9
deleting, 7-9, 7-10
ID, 7-31
sharing, 7-31

PCA
See Performance and Coverage Analyzer

Per-process common areas, 2-6
Performance and Coverage Analyzer (PCA)

alignment, 22-3
Performance measurement routine, 6-17
PFN

See Page frame number
Physical I/Os

access checks, 9-6
operations, 9-5
privilege, 9-3, 9-5, 9-6

Physical names, 9-26
PID (process identification)

See PID numbers
PID numbers, 3-3, 3-5

definition, 3-5, 3-8
referencing remote processes, 3-8

PPL$ routines, 14-27
PPL$SPAWN routine, 14-27
Predefined logical name

LNM$FILE_DEV, 10-14
Primary exception vector, 13-24
Printer device widths, 7-6
Private sections

definition, 19-13, 20-13
Privileged architecture library code

See PALcode
Privileged shareable images

creating, 18-1
definition, 18-1

Privileges, 10-9
BYPASS, 9-5
I/O operations, 9-2
logical I/Os, 9-4 to 9-6
MOUNT, 9-4
physical I/Os, 9-3, 9-5, 9-6
SS$_NOPRIV, 13-21
SYSTEM, 9-5

Process contexts
using with $GETJPI system service, 3-8

Process controls, 3-1
Process directory tables, 10-3
Process identification numbers

See PID numbers
Process logical name tables, 10-4
Process names

length of for remote processes, 3-6
obtain information about remote processes

example, 3-11
specifying for local processes, 3-6
specifying for remote processes, 3-6
using to obtain information about remote

processes, 3-6, 3-8, 3-18
Process rights lists, 23-1

lndex-9

Process searches
obtaining information about

calling process, 3-8
one process, 3-8

searching on all nodes, 3-19
searching on specific nodes, 3-19, 3-20
using item list with remote procedures, 3-21
using item-specific flags to control selection

information, 3-14
using SYS$PROCESS_SCAN system service

item list to specify processes
example, 3-17

using SYS$PROCESS_SCAN system service
item list to specify selection criteria, 3-14

using SYS$PROCESS_SCAN system service
item list to specify selection criteria about
processes, 3-15, 3-18

using wildcard on local system, 3-11
Process threads, 1-1
Processes

See also SYS$GETJPI system service
See also SYS$PROCESS_SCAN system service
communicating between, 2-7
communicating within, 2-1

using logical names, 2-2
using symbols, 2-5

creating
restrictions, 3-2

deleting, 3-43, 3-46
detached, 1-1, 1-10
disabling swap mode, 19-12, 20-12
disallowing swapping, 19-12, 20-12
execution, 3-35
hibernating, 3-35
identification, 3-3
lock information, 3-28
modes of execution, 1-2
modifying name, 3-30
obtaining information about

calling process, 3-8
example, 3-8
processes on specific nodes, 3-19, 3-20
synchronously, 3-21
using LIB$GETJPI routine, 3-5
using PIDs, 3-5, 3-8
using process name, 3-6, 3-8
using SYS$GETJPI system service, 3-5
using SYS$GETJPIW system service, 3-5

one process, 3-8
priority

modifying, 3-29
privileges

setting, 3-29
scheduling, 3-29
spawned, 1-1
subprocess, 1-1
suspending, 3-35, 3-39
swapping, 19-12, 20-12

lndex-10

Processes (cont'd)
SYS$PROCESS_SCAN system service

item list
to specify selection criteria about

processes, 3-17, 3-18
with remote procedures, 3-21

item-specific flags to control selection
information, 3-14

search, 3-13
SYS$PROCESS_SCAN system service item list

to specify selection criteria about processes,
3-14

termination mailboxes, 3-46, 9-43
wildcard search, 3-11

Program decomposition, 14-13
Program execution

See also Synchronization
specifying a time, 3-30, 3-32
timed intervals, 3-33

Program regions, 19-8, 20-6
Prompt for input

with LIB$GET_INPUT routine, 7-4
Protection

devices, 9-5
I/O operations, 9-2
mailboxes, 9-4
page, 19-10, 20-10
volumes, 9-4

Protection masks, 9-4
PTE

See Page table entry

Q
Queue access routines, 6-13
Queue information

obtaining, 5-21
Queues, 6-12

lock management, 15-6
self-relative, 6-12

Quotas

R

AST, 9-3
buffered I/O, 9-3
buffered I/O byte count, 9-3
direct I/O, 9-3
establishing, 10-11
I/O operations, 9-2
SS$_EXQUOTA condition value, 13-21

RABs (record access blocks), 8-15
Read and write operations

ordering, 14-4
Read-modify-write operations

atomic, 14-5

Records
110, 8-12

/REPLACE qualifier
LIBRARY command, 17-2

Resource attribute, 23-5
Resource granularity

in lock, 15-3
Resources

lock management concept, 15-2
name, 15-4

Return address arrays, 19-9, 20-8
Return status, 13-21

from signal, 13-71
Rights databases, 23-1, 23-8, 23-16

adding to, 23-12
default protection, 23-9
elements of, 23-10
holder record, 23-8
identifier records, 23-8
initializing, 23-9
keys, 23-9
modifying, 23-13, 23-14, 23-16

Rights lists
process, 23-19
system, 23-19

RMS
opening file for mapping, 19-14, 20-14
structures, 8-15

Routines
processwide resource allocation, 6-16
variable-length bit field, 6-10

RTL routines
See Run-time library routines

Run-time libraries
condition handling, 13-1
queue access, 6-12

Run-time library routines

s

accessing command language interpreter, 6-2
accessing operating system components, 6-1
accessing VAX instruction set, 6-9
integer and floating-point, 6-12
interaction with operating system, 6-1
jacket routine, 6-1
manipulating character string, 6-14
on AXP systems, 13-18
output formatting control, 6-20
performance measurement, 6-17
return status, 13-21
system service access, 6-1
variable-length bit field instruction, 6-10

Screen management, 7-7
See also Key tables
See also Pasteboards
See also Video attributes

Screen management (cont'd)
See also Viewports
See also Virtual displays
See also Virtual keyboards
deleting text, 7-22
double-width characters, 7-19, 7-20
drawing lines, 7-21
inserting characters, 7-19
menus

creating, 7-22
reading, 7-24
types of, 7-22

reading data, 7-23
scrolling, 7-20
setting background color, 7-10
setting screen dimensions, 7-10
video attributes, 7-21
viewports, 7-18

Scrolling
backward, 7-20
down, 7-20
forward, 7-20
output, 7-20
up, 7-20

Search lists, 10-2
Search operations, 23-16
Secondary exception vectors, 13-24
Sections, 19-13, 20-12

characteristic, 19-15, 20-15
creating, 19-14, 20-13
defining extent, 19-15, 20-15
deleting, 8-11, 19-23, 20-24, 20-25
global, 17-8
global paging file, 19-20, 20-21
image, 19-23, 20-25
mapping, 8-4, 19-18, 20-18
page frame, 19-24, 20-26
paging, 19-20, 19-21, 20-22, 20-23
private, 8-5
releasing, 19-23, 20-24
sharing data, 19-22, 20-24
unmapping, 19-23, 20-24
updating, 8-11
writing back, 19-23, 20-25

Security profile, 23-20
displaying, 23-20
modifying, 23-21

Semaphores, 14-28
See also Synchronization
binary, 14-28
counting, 14-28

Sequential files
creating, 8-12
updating, 8-13

Service routines
AST, 4-6

lndex-11

.SEVERITY directive, 13-59
Shareable images, 17-3

privileged, 18-1
Shared files, 17-12
Sharing data

RMS shared files, 17-12
Signal argument vectors, 13-28, 13-32, 13-63
Signaling, 13-32

changing to return status, 13-71
SMG$ADD_KEY_DEF routine, 7-28
SMG$CHANGE_ VIRTUAL_DISPLAY routine,

7-16
SMG$CHECK_FOR_OCCLUSION routine, 7-13
SMG$CREATE_KEY_ TABLE routine, 7-28
SMG$CREATE_PASTEBOARD routine, 7-9
SMG$CREATE_SUBPROCESS routine, 7-17
SMG$CREATE_ VIRTUAL_DISPLAY routine, 7-9
SMG$CREATE_ VIRTUAL_KEYBOARD routine,

7-24
SMG$DELETE_CHARS routine, 7-22
SMG$DELETE_LINE routine, 7-22
SMG$DELETE_PASTEBOARD routine, 7-9
SMG$DELETE_SUBPROCESS routine, 7-17
SMG$DELETE_ VIRTUAL_DISPLAY routine,

7-15 -
SMG$DRAW _LINE routine, 7-21
SMG$DRAW _RECTANGLE routine, 7-21
SMG$ERASE_CHARS routine, 7-22
SMG$ERASE_COLUMN routine, 7-22
SMG$ERASE_DISPLAY routine, 7-22
SMG$ERASE_LINE routine, 7-22
SMG$ERASE_PASTEBOARD routine, 7-9
SMG$EXECUTE_COMMAND routine, 7-17
SMG$HOME_CURSOR routine, 7-18
SMG$INSERT_CHARS routine, 7-19
SMG$INSERT_LINE routine, 7-20
SMG$LABEL_BORDER routine, 7-11
SMG$LIST_PASTING_ORDER routine, 7-15
SMG$PASTE_ VIRTUAL_DISPLAY routine, 7-9
SMG$POP _ VIRTUAL_DISPLAY routine, 7-31
SMG$PUT_CHARS_HIGHWIDE routine, 7-19
SMG$PUT_LINE routine, 7-20
SMG$PUT_LINE_ WIDE routine, 7-20
SMG$PUT_ WITH_SCROLL routine, 7-20
SMG$READ_COMPOSED_LINE routine, 7-28
SMG$READ_FROM_DISPLAY routine, 7-24
SMG$READ_STRING routine, 7-24
SMG$RESTORE_PHYSICAL_SCREEN routine,

7-30
SMG$RETURN_CURSOR_POS routine, 7-18
SMG$SAVE_PHYSICAL_SCREEN routine, 7-30
SMG$SCROLL_DISPLAY_AREA routine, 7-20
SMG$SET_CURSOR_ABS routine, 7-18
SMG$SET_CURSOR_REL routine, 7-18
SMG$SET_DISPLAY_SCROLL_REGION routine,

7-20

lndex-12

SMG$SET_PHYSICAL_CURSOR routine,. 7-18
SMG$UNPASTE_ VIRTUAL_DISPLAY routine,

7-15
Spin locks, 14-27

See also Synchronization
SS$_ALIGN exception, 13-12

signal array format, 13-15
SS$_HPARITH exception, 13-12

signal array format, 13-14
STARLET.OLE file, 17-2, 17-5
Store-conditional instructions, 14-8
Sublock, 15-14
Subprocesses, 1-1

connecting to using LIB$ATTACH routine, 6-9
creating

with LIB$SPAWN, 1-3
with PPL$ routines, 14-27
with PPL$SPAWN, 1-5
with SMG$ routines, 7-17
with SYS$CREPRC, 1-5

creation of using LIB$SPAWN routine, 6-9
deleting with PPL$ routines, 14-27
disk and directory default, 1-9
image, 1-9
input, output, and error device, 1-6
priority setting, 3-29
program debugging, 1-10

Subsystem attribute, 23-5
Suspension, 3-35, 3-39

compared with hibernation, 3-36
Swapping

by suspension, 3-39
Symbols

defining, 17-3
global, 17-4
local, 17-4
referring to, 17-3
storage, 17-3
unresolved, 17-4

Synchronization
See also Parallel processing
asynchronous system traps, 4-1
barrier, 14-28
definition of, 14-1
hardware-level, 14-7
passing control to another image, 3-39
software-level, 14-10
using detached processes, 3-30
using events flags, 14-14
using PPL$ routines with spin locks, 14-27
using process priority, 14-11
using semaphores with PPL$ routines, 14-28
using spin locks, 14-13
using subprocesses, 3-30

Synchronous input/output, 9-18

SYS$ABORT_TRANS system service, 12-2
SYS$ABORT_TRANSW system service, 12-2,

12-3
SYS$ADD_HOLDER system service, 23-12
SYS$ADD_IDENT system service, 23-12
SYS$ADJWSL system service, 19-11, 20-11
SYS$ALLOC system service

example, 9-33
SYS$ASCTIM system service, 5-6

example, 5-10
SYS$ASCTOID system service, 23-11
SYS$ASCUTC system service, 5-2 to 5-4
SYS$ASSIGN system service

example, 9-11
SYS$BINTIM system service, 5-2 to 5-4, 5-6
SYS$BINUTC system service, 5-2 to 5-4
SYS$CANCEL system service

example, 9-26
SYS$CANTIM system service, 5-13

example, 5-16
SYS$CANWAK system service, 5-13, 5-17
SYS$CHECK_ACCESS system service, 23-25
SYS$CHKPRO system service, 23-25
SYS$CLREF system service, 14-23
SYS$CREATE system service, 8-10
SYS$CREATE_RDB system service, 23-9
SYS$CREMBX system service, 1-6, 2-9, 3-48
SYS$CREPRC system service

example, 1-9
SYS$CRETVA system service, 19-9, 20-8
SYS$CRMPSC system service, 8-4, 8-5
SYS$DASSGN system service, 8-11

example, 9-24
SYS$DCLAST system service

example, 4-8
SYS$DCLEXH system service, 13-7 4

example, 3-42
SYS$DELTVA system service, 8-11
SYS$DEQ system service

example, 15-17
SYS$DISMOU system service, 9-35
SYS$END_TRANS system service, 12-2
SYS$END_TRANSW system service, 12-2, 12-3
SYS$ENQ system service

example, 15-9
SYS$ERROR system service, 13-56
SYS$EXIT system service, 3-41
SYS$EXPREG system service, 19-8, 20-6

example, 19-8, 20-6
SYS$FAO system service, 5-2 to 5-4, 13-42,

13-50, 13-55
example, 9-38

SYS$FIND_HELD system service, 23-13, 23-16
SYS$FIND_HOLDER system service, 23-13,

23-16
SYS$FORCEX system service

example, 3-42

SYS$FORMAT_ACL system service, 23-22
SYS$GETDVI system service, 9-28
SYS$GETJPI system service, 3-5, 3-8

See also SYS$PROCESS_SCAN system service
AST in target process, 3-24
buffer, 3-22, 3-23
control flags, 3-24
item list, 3-14, 3-21

specifying criteria to select processes
example, 3-17

item-specific flags, 3-14
obtaining information about

all processes on the local system, 3-11
obtaining information about all processes on the

local system, 3-8
obtaining information about one process, 3-8
obtaining information with wildcard search

example, 3-12
packing information in buffers, 3-22, 3-23
searching for processes on all nodes, 3-19
searching for processes on specific nodes, 3-19,

3-20
searching for selected processes, 3-13
specifying buffer size, 3-22, 3-23
specifying criteria to select processes

example, 3-18
swapping processes, 3-24
synchronizing calls, 3-19, 3-20, 3-21
using item list with remote procedures, 3-21
using multiple $PROCESS_SCAN service

contexts, 3-20
using synchronous calls, 3-21
using SYS$PROCESS_SCAN system service

item list to specify selection criteria about
processes, 3-14, 3-15, 3-17, 3-18

item-specific flags to control selection
information, 3-14

search, 3-13
using wildcard

example, 3-12
using wildcard as pidadr, 3-8, 3-11
using wildcard search, 3-11

SYS$GETMSG system service, 13-50
SYS$GETQUI system service, 5-21
SYS$GETSYI system service, 5-21
SYS$GETTIM system service, 5-2 to 5-4, 5-10
SYS$GETUTC system service, 5-2 to 5-4
SYS$GET_ALIGN_FAULT_DATA system service,

22-10
SYS$GET_SECURITY system service, 23-21,

23-22
SYS$GET_SYS_ALIGN_FAULT_DATA system

service, 22-11
SYS$GOTO_UNWIND system service, 13-45,

13-49

lndex-13

SYS$HIBER system service, 3-36
example, 3-38

SYS$1DTOASC system service, 23-11, 23-16
SYS$INIT_SYS_ALIGN_FAULT _REPORT system

service, 22-11
SYS$INIT_VOL system service, 9-36

example, 9-36
SYS$INPUT system service, 13-56

default value, 7-3
redefining value, 7-3
using with LIB$GET_INPUT routine, 7-4
using with LIB$PUT_OUTPUT routine, 7-4

SYS$LCKPAG system service, 19-12, 20-12
SYS$LKWSET system service, 19-12, 20-11
SYS$MGBLSC system service, 17-8
SYS$MOD_HOLDER system service, 23-14
SYS$MOD_IDENT system service, 23-13
SYS$MOUNT system service, 9-34
SYS$NUMTIM system service, 5-2 to 5-4, 5-7
SYS$NUMUTC system service, 5-2 to 5-4
SYS$0PEN system service, 8-10
SYS$0UTPUT system service

default value, 7-3
redefining value, 7-3
using with LIB$GET_INPUT routine, 7-4
using with LIB$PUT_OUTPUT routine, 7-4

SYS$PARSE_ACL system service, 23-22
SYS$PERM_DIS_ALIGN_FAULT_REPORT

system service, 22-11
SYS$PERM_REPORT_ALIGN_FAULT system

service, 22-11
SYS$PROCESS_SCAN system service, 3-5, 3-8

See also SYS$GETJPI system service
obtaining information about processes on all

nodes, 3-19
obtaining information about processes on

specific nodes, 3-19, 3-20
searching on all nodes, 3-19
searching on specific nodes, 3-19, 3-20
setting up multiple contexts, 3-20
using item list to specify selection criteria about

processes, 3-14, 3-15, 3-18
example, 3-17

using item list with remote procedures, 3-21
using item-specific flags to control selection

information, 3-14
SYS$PUTMSG system service, 13-6, 13-42,

13-50, 13-55
SYS$QIO system service, 9-12

example, 9-12
SYS$REM_HOLDER system service, 23-16
SYS$REM_IDENT system service, 23-16
SYS$SCHDWK system service, 5-13

canceling, 5-17
example, 5-17
request, 5-16

lndex-14

SYS$SETEF system service, 14-23
SYS$SETEXV system service, 13-24

example, 13-4
SYS$SETIME system service, 5-11
SYS$SETIMR system service, 5-13

example with ASTs, 4-2
SYS$SETRWM system service, 9-2
SYS$SETSWM system service, 19-12, 20-12

example, 19-12, 20-12
SYS$SET_SECURITY system service, 23-21,

23-22
SYS$START_ALIGN_FAULT_REPORT system

service, 22-10
SYS$START_TRANS system service, 12-2
SYS$START_TRANSW system service, 12-2,

12-3
SYS$STOP _ALIGN_FAULT_REPORT system

service, 22-10
SYS$STOP _SYS_ALIGN_FAULT_REPORT system

service, 22-11
SYS$SYNCH system service, 9-16, 9-18
SYS$TIMCON system service, 5-2 to 5-4
SYS$ULKPAG system service, 19-12, 20-12
SYS$ULWSET system service, 19-12, 20-11
SYS$UNWIND system service, 13-45, 13-47,

13-49, 13-64, 13-67, 13-71
example, 13-48

SYS$UPDSEC system service, 8-11
SYS$WAKE system service, 3-36

example, 3-38
SYSPRV privilege, 9-5
System clock

setting, 5-11
System directory table, 10-3
System information

See Timers statistics
System logical name tables, 10-6
System routines

system services
asynchronous, 14-28
synchronous, 14-28

System service access, 6-1, 6-2
System services

Initializing volumes, 9-36
loading site-specific, 23-26
obtaining information about processes, 3-5,

3-8
return status, 13-21

System timer
canceling, 3-35
setting, 3-34

Systems
exception dispatcher, 13-24
mailbox, 9-42

T
Tape volumes

mounting, 9-33
Tapes

initializing from within a program
example, 9-36

Terminal characteristics, 9-29
Terminal device widths, 7-6
Terminal echo, 7-39

disabling, 7-40
Terminal I/Os

example, 9-24
Terminal timeouts, 7-40
Termination mailboxes, 3-46, 9-43
Terminators

See also 1/0 (input/output)
echos, 7-24
file, 9-31
record, 9-31

Threads, 1-2, 13-48
Time

See also Current time
64-bit system format, 5-1
128-bit system format, 5-34
absolute, 5-1
conversions, 5-2
converting ASCII to binary, 5-6
delta, 5-1
getting current system, 5-10
internal format, 5-2
numeric and ASCII, 5-7
obtaining

using SYS$ASCTIM system service, 5-2 to
5-4

using SYS$ASCUTC system service, 5-2
to 5-4

using SYS$BINTIM system service, 5-2 to
5-4

using SYS$FAO system service, 5-2 to 5-4
using SYS$GETTIM system service, 5-2 to

5-4
using SYS$GETUTC system service, 5-2

to 5-4
using SYS$NUMUTC system service, 5-2

to 5-4
using SYS$TIMCON system service, 5-2

to 5-4
using SYS%BINUTC system service, 5-2

to 5-4
setting system, 5-11

Time conversions
formatting, 5-4

Time manipulation
using LIB$ADDX routine, 5-7
using LIB$ADD_TIMES routine, 5-7
using LIB$DAY routine, 5-5

Time manipulation (cont'd)
using LIB$MULTF _DELTA_TIME, 5-7
using LIB$MULT_DELTA_TIME routine, 5-7
using LIB$SUBX routine, 5-7
using LIB$SUB_TIMES routine, 5-7

Timer requests, 5-13
canceling, 5-16

Timers
deallocating, 5-19
initializing, 5-18
obtaining statistics, 5-19
statistics

buffered input/output, 5-18
CPU time, 5-18
direct input/output, 5-18
elapsed time, 5-18
page faults, 5-18

. TITLE directive, 13-60
Tools

alignment, 22-9
Traceback handlers, 13-25
Transactions

default, 12-3
programming, 12-1

TRM$M_TM_ESCAPE routine, 7-25
TRM$M_TM_NOECHO routine, 7-25
TRM$M_TM_NOTRMECHO routine, 7-24
TRM$M_TM_PURGE routine, 7-25
Type-ahead buffers, 7-38

u
UFO (user-file open), 8-10

See also User-open routine
Unalignment, 22-1
Uniprocessor operations, 14-5
Unwind condition handlers, 13-67
User-defined condition values

signaling, 13-61
User-defined logical name tables, 10-6
User-file open

See UFO
User-open routines, 8-15
UTC system services, 5-34

v
Variable-length bit field routine, 6-10
VAX Environment Software Translator (VEST)

alignment, 22-8
VAX instruction. set

accessing through run-time library, 6-9
Video attributes, 7-11, 7-17, 7-21

current, 7-17
default, 7-17

lndex-15

Viewports, 7-18
Virtual address space, 19-1, 19-8, 20-2, 20-7

increasing and decreasing, 19-8, 20-6
mapping section of, 19-18, 20-19
specifying array, 19-10, 20-8

Virtual displays, 7-10
See also Viewports
checking occlusion, 7-13
creating, 7-11
creating a subprocess from, 7-17
cursor movement, 7-20
deleting, 7-15
deleting text, 7-22
drawing lines, 7-21
erasing, 7-15
ID, 7-11, 7-32
inserting text, 7-19, 7-20
list pasting order of, 7-15
logical cursor position, 7-18
modifying, 7-16
obtaining the pasting order, 7-15
overwriting text, 7-19, 7-20
pasting, 7-11
physical cursor position, 7-18
popping, 7-15
reading data from, 7-23
rearranging, 7-14
scrolling, 7-20
sharing, 7-32
specifying double-size characters, 7-20
specifying video attributes, 7-11
viewports, 7-18
writing double-width characters, 7-19
writing text to, 7-18

Virtual 1/0, 9-6
Virtual keyboards

reading data from, 7-23, 7-24
Virtual page size, 19-1
Volume protection, 9-4
Volumes

initializing from within a program, 9-36
example, 9-36

mounting, 9-33

w
Wakeups

scheduling, 5-16
Wildcard searches

obtaining information about processes
example, 3-12

using SYS$GETJPI system service, 3-11
Working sets

adjusting size, 19-11, 20-11
paging, 19-11, 20-10

lndex-16

Write-back sections, 19-23, 20-25
writing

example, 13-65

z
Zones, 21-6

allocation algorithm, 21-14
attributes, 21-8
creating, 21-7
default, 21-12
deleting, 21-7
identifier, 21-12
resetting, 21-13
user-created, 21-6

NOTES

NOTES

2

NOTES

3

NOTES

4

NOTES

5

NOTES

6

NOTES

7

NOTES

8

NOTES

9

NOTES

10

NOTES

11

NOTES

12

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
and press 2 for technical assistance.

Electronic Orders
If you wish to place an order through your account at the Electronic Store, dial 800-234-1998, using a
modem set to 2400- or 9600-baud. You must be using a VT terminal or terminal emulator set at 8 bits, no
parity. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an
Electronic Store specialist.

Telephone and Direct Mail Orders

From

U.S.A.

Puerto Rico

Canada

International

Internal Orders1

(for software
documentation)

Internal Orders
(for hardware
documentation)

Call

DEC direct
Phone: 800-DIGITAL
(800-344-4825)
Fax: (603) 884-5597

Phone: (809) 781-0505
Fax: (809) 749-8377

Phone: 800-267-6215
Fax: (613) 592-1946

DTN: 264-3030
(603) 884-3030
Fax: (603) 884-3960

DTN: 264-3030
(603) 884-3030
Fax: (603) 884-3960

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street
Suite 200
Metro Office Park
San Juan, Puerto Rico 00920

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

1Call to request an Internal Software Order Form (EN-01740-07).

Reader's Comments

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual's: Excellent Good

Accuracy (product works as manual says) D D
Completeness (enough information) D D
Clarity (easy to understand) D D
Organization (structure of subject matter) D D
Figures (useful) D D
Examples (useful) D D
Index (ability to find topic) D D
Page layout (easy to find information) D D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

OpenVMS Programming
Concepts Manual

AA-PV67B-TK

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

For software manuals, please indicate which version of the software you are using:

Nametritle

Company

Mailing Address

Dept.

Phone

Date

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OpenVMS Documentation
110 SPIT BROOK ROAD ZK03-4/U08
NASHUA, NH 03062-2642

lll11111ll1ll1111ll1111l1l11l1l1ll111l11l11l1l1l1l1I

No Postage
Necessary
if Mailed

in the
United States

DoN~Tu~-F~dHe~ ---

