OpenVMS Programming Concepts Manual

Part Number: AA-PV67B-TK

OpenVMS Programming Concepts
Manual

Order Number;: AA-PV67B-TK

March 1994

This manual describes the features that the OpenVMS operating system
provides to programmers.

Revision/Update Information: This manual supersedes the OpenVMS
Programming Concepts Manual,
OpenVMS AXP Version 1.5 and
OpenVMS VAX Version 6.0.

Software Version: OpenVMS AXP Version 6.1
OpenVMS VAX Version 6.1

Digital Equipment Corporation
Maynard, Massachusetts

March 1994

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994. All rights reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader, DEC
Fortran, DECdtm, DECforms, DECnet, DECwindows, Digital, FORTRAN77, FORTRAN90, IAS,
LinkWorks, MACRO-32, OpenVMS, RSX-11M, RSX-11M-PLUS, VAX, VAX C, VAX DOCUMENT,
VAXcluster, VAX MACRO, VMS, VMScluster, and the DIGITAL logo.

The- following are third-party trademarks:

Intel is a trademark of Intel Corporation.

Internet is a registered trademark of Internet, Inc.

Xerox is a registered trademark of Xerox Corporation.

All other trademarks and registered trademarks are the property of their respective holders.
ZK5841

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Send Us Your Comments

We welcome your comments on this or any other OpenVMS manual. If you have suggestions for
improving a particular section or find any errors, please indicate the title, order number, chapter,
section, and page number (if available). We also welcome more general comments. Your input is
valuable in improving future releases of our documentation.

You can send comments to us in the following ways:

Internet electronic mail: OPENVMSDOCEZKO.MTS.DEC.COM
Fax: 603-881-0120 Attn: OpenVMS Documentation, ZK03-4/U08

A completed Reader’s Comments form (postage paid, if mailed in the United States), or a
letter, via the postal service. Two Reader’s Comments forms are located at the back of each
printed OpenVMS manual. Please send letters and forms to:

Digital Equipment Corporation
Information Design and Consulting
OpenVMS Documentation

110 Spit Brook Road, ZK03-4/U08
Nashua, NH 03062-2698

Usa

You may also use an online questionnaire to give us feedback. Print or edit the online file
SYS$HELP:OPENVMSDOC_SURVEY.TXT. Send the completed online file by electronic mail to our
Internet address, or send the completed hardcopy survey by fax or through the postal service.

Thank you.

Conte_nts

Preface,

1 Process Creation

1.1

1.2
1.3
1.4
1.41
1.4.2
143
1.4.3.1
144
1.5

Processes and Process Threads
Execution Context of a Process
Modes of Execution of a Process.
Creating a Subprocess

..........................

..........................

..........................

Using LIB§SPAWN to Create a Spawned Subprocess
Using PPL$SPAWN to Create a Spawned Subprocess
Using SYS$CREPRC to Create a Subprocess

Disk and Directory Defaults for Created Processes

Debugging Within a Subprocess. . ..
Creating a Detached Process

2 Process Communication

2.1
2.1.1
21.2
2.1.2.1
2122
2123
213
2.1.31
2132
214
2.1.441
2142
2143
2144
2.2
2.21
22141
2212
2213
2214
2215
22.1.6
2217

Communication Within a Process.
Using Local Event Flags
Using Logical Names

Using Logical Name Tables
Using Access Modes

..........................

..........................

..........................

..........................

..........................

Creating and Accessing Logical Names
Using Command Language Interpreter Symbols

Local and Global Symbols

..........................

Creating and Using Global Symbols.

Using the Common Area

..........................

Creating the Process Common Area........................

Common I/O Routines

..........................

Modifying or Deleting Data in the Common Block

Specifying Other Types of Data .
Communication Between Processes
Mailboxesocvii....
Creating a Mailbox

..........................

..........................

Creating Temporary and Permanent Mailboxes
Assigning an I/O Channel Along with a Mailbox
Reading and Writing Data to a Mailbox.....................

Using Synchronous Mailbox I/0 .
Using Immediate Mailbox I/O ..
Using Asynchronous Mailbox I/0

..........................

..........................

..........................

XXV

2-1
2-2
2-2
2-2
2-2
2-2
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-6
2-7
2-8
2-9
2-9
2-10
2-11
2-12
2-14
2-17

3 Process Control

vi

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
322
3.2.3
3.2.3.1
3.2.3.2

3.24
3.2.4.1

3242
3.24.3
3.24.4

3.25

3.2.5.1
3.25.2
3.25.3

3.2.6
3.2.6.1
3.2.6.2

3.2.6.3
3.2.6.4
3.2.7
3.2.8
3.3

3.4

3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.2
3.6
3.6.1
3.6.1.1
3.6.1.2
3.6.1.3
3.6.2
3.6.2.1
3.6.2.2
3.6.3
3.6.3.1
3.6.3.2
3.6.3.3

.3.6.34

Using Process Control for Programming Tasks
Determining Privileges for Process Creation and Control
Determining Process Identification
Qualifying Process Naming Within Groups¢

Obtaining Process Information............ ... it
Using the PID to Obtain Information
Using the Process Name to Obtain Information..................
Using SYS$GETJPI and LIB$GETJPI.covnnnn..

Requesting Information About a Single Process...............
Requesting Information About All Processes on the Local
5] 75 4+ O N
Using SYS$GETJPI with SYS$PROCESS SCAN
Using SYS$PROCESS_SCAN Item List and Item-Specific
Flags ..o e
Requesting Information About Processes That Match One
(030173 0 1) N
Requesting Information About Processes That Match Multiple
Values for One Criteriont iivennninnnnnnn
Requesting Information About Processes That Match Multiple
_ Criteria e
Specifying a Node as Selection Criterion
Checking All Nodes on the Cluster for Processes
Checking Specific Nodes on the Cluster for Processes
Conducting Multiple Simultaneous Searches with
SYSSPROCESS _SCAN . ..ottt ittt et it et e e e et
Programming with SYS$GETJPIci vt ..
Using Item Lists Correctly
Improving Performance by Using Buffered $GETJPI
L8] 07=3 7217 T) Y-
Fulfilling Remote SYS$GETJPI Quota Requirements
Using the SYS$GETJPI Control Flags
Using SYSSGETLRIttt ittt e eiieannn
Setting Process Privileges,
Changing Process Scheduling.
"Changing Process Nameuttiiiiimnt e innneeens

Synchronizing Programs by Specifying a Time for Program Execution ...

Obtaining the System Timeottt
Executing a Program at a Specified Time
Executing a Program at Timed Intervals

Placing Entries in the System Timer Queue

Suspending, Resuming, and Stopping Process Execution..............

Process Hibernation and Suspensioncciivven..
Using Process Hibernation............ ...,
Using Alternative Methods of Hibernation...................
Using SYS$SUSPNDottt

Passing Control to AnotherImage
Invoking a Command Imageco....
Invoking a Noncommand Image..............cvviiunna..

Performing Image Exit......... ... i,
Performing Image Rundown
Inmitiating Rundown
Performing Cleanup and Rundown Operations
Initiating Image Rundown for Another Process

3-1
3-2
3-3

3-5
3-5
3-6

3-11
3-13

3-14

3-15

3-18
3-19
3-19
3-20

3-20
3-21
3-21

3-22
3-23
3-24
3-28
3-29
3-29
3-30
3-30
3-31

3-32

3-33
3-34
3-35
3-35
3-36
3-38
3-39
3-39 .
3-39
3-40
3—40
3—41
3—41
3-42
3-42

3.6.4
3.6.4.1
3.6.4.2

Deletinga Processty
Deleting a Process By Using System Services
Terminating Mailboxesccoviieno...

4 Using Asynchronous System Traps

4.1
42
43
4.3.1
432
4.3.3
4.4
4.5
4.6
4.7

Overview of AST Routines ittt it
Access Modes for AST Execution iiiiiinnennn.
ASTs and Process Wait States

Event FlagWaits,

Hibernation it

Resource Waits and Page Faults
How ASTs Are Declaredc it it et
The AST Service Routine i
AST Delivery ..ottt i i e e e e
Example of Using AST Servicesttt iinneenn.

5 System Time Operations

5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.1.1

5.21.2

5.2.1.3
5.2.14
5.22
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.4.3
5.44
5.45
5.5

5.6
5.6.1
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.2.4
5.6.2.5
5.6.2.6
5.6.2.7
5.6.3

System Time Format i,
Absolute Time Format
DeltaTime Format.oiui .

Time Conversion and Date/Time Manipulation
Time Conversion Routines0itivreinernnnennn.

Calculating and Displaying Time with SYS$GETTIM and

SYSESUBX . ..ottt e

Obtaining Absolute Time with SYS$ASCTIM and

SYSSBINTIMoit ittt et eeeenennn
Obtaining Delta Time with SYS$BINTIM
Obtaining Numeric and ASCII Time with SYS§NUMTIM .
Date/Time Manipulation Routines
Timer Routines Used to Obtain and Set Current Time
Obtaining Current Time and Date with LIB$DATE_TIME . . .
Obtaining Current Time and Date with SYS$GETTIM
Setting the Current Time with SYS$SETIME
Routines Used for Timer Requests
Setting Timer Requests with SYS$SETIMR
Canceling a Timer Request with SYS$CANTIM
Scheduling Wakeups with SYSSWAKE
Canceling a Scheduled Wakeup with SYS§CANWAK.
Executing a Program at Timed Intervals
Routines Used for Timer Statistics
Date/Time Formatting Routines
Performing Date/Time Logical Initialization
Selectinga Format...............,
Formatting Run-Time Mnemonics
Specifying Formats at Run Time
Specifying Input Formats at Run Time
Specifying Output Formats at Run Time
Specifying Formats at Compile Time
Specifying Input Format Mnemonics at Compile Time ...
Specifying Output Formats at Compile Time

Converting with the LIBSCONVERT_DATE_STRING Routine

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

4-3
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-8
4-9

5-1
5-1
5-2
5-2
5-2

5-4

5-6

5-6

5-7

57

5-8

5-9
5-10
5-11
5-13
5-14
5-16
5-16
5-17
5-18
5-18
5-21
5-21
5-22
5-23
5-24

. 5-24

5-27
5-29
5-30
5-31
5-31

vii

5.6.4
5.6.4.1
5.7

Retrieving with LIB§GET_DATE_FORMAT Routine
Using User-Defined Output Formats
Coordinated Universal Time Format (VAXOnly)

6 Using Run-Time Library Routines to Access Operating System

Components
6.1 System Service Access Routines............ ..ot
6.2 Access to the Command Language Interpreter
6.2.1 Obtaining the Command Line oo,
6.2.2 Chaining from One Program to Another
6.2.3 Executinga CLICommand0 it
6.2.4 Using Symbols and Logical Names
6.2.5 Disabling and Enabling Control Characters.....................
6.2.6 Creating and Connecting to a Subprocess
6.3 Access to VAX Machine Instructions,
6.3.1 Variable-Length Bit Field Instruction Routines
6.3.2 Integer and Floating-Point Routines
6.3.3 Queue Access Routines i,
6.3.4 Character String Routines iiiiioa..
6.3.5 Miscellaneous Instruction Routines
6.4 Processwide Resource Allocation Routines
6.4.1 Allocating Logical Unit Numbers i
6.4.2 Allocating Event Flag Numberso i,
6.5 Performance Measurement Routines
6.6 Output Formatting Control Routines
6.7 Miscellaneous Interface Routines ot
6.7.1 Indicating Asynchronous System Trap in Progress [
6.7.2 Create a Directory or Subdirectory
6.7.3 File Searching Routines i
6.7.4 Inserting an Entry into a Balanced Binary Tree

7 Run-Time Library Input/Output Operations

viii

71

7.2
7.2.1
722
7.3
7.3.1
7.3.2
7.3.3
7.34
7.4
7.41
7411
74.1.2
7413
7.4.2
7421
7422
7.42.3
7424
7.425

Choosing I/0 Techniques

..............................

Using SYS$INPUT and SYSSOUTPUTcoviiiiennnnnnn
Default Input and Output Devicescivrinnn...
Reading and Writing to Alternate Devices and External Files

Working with Simple User I/O
Default Devices for Simple I/0 .
Getting a Line of Input
Getting Several Lines of Input .
Writing Simple Output.......

Working with Complex User I/O ..
Pasteboards

Erasing a Pasteboard
Deleting a Pasteboard

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

Setting Screen Dimensions and Background Color

Virtual Displays
Creating a Virtual Display .
Pasting Virtual Displays . .

..............................

..............................

..............................

Rearranging Virtual Displays

Removing Virtual Displays.
Modifying a Virtual Display

..............................

..............................

6-1
6-2
6-3
6-5
6-7
6-8
6-8
6-9
6-9

6-10

6-12

6-12

6-14

6-15

6-16

6-16

6-17

6-17

6-20

6-21

6-22

6-22

6-23

6-29

7-1
7-3
7-3
7-4
7-4
7-4
7-4
7-5
7-6
-7
7-9
7-9
7-10
7-10
7-10
7-11
7-11
7-14
7-15
7-16

7426
743
7.4.4
7.4.4.1
7.44.2
7.44.3
7.4.4.4
7.445
7.45
7.46
7.4.6.1
7.46.2
7.46.3
7.46.4
7.47
7.48
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.55
756
7.5.7
758
7.5.8.1
7.5.8.2

Using Spawned Subprocesses
Viewports
Writing Text to Virtual Display .

Positioning the Cursor

.............................

.............................

.............................

.............................

Writing Data Character by Character

Writing Data Line by Line . .
Drawing Lines
Deleting Text
UsingMenus
ReadingData
Reading from a Display

.............................

.............................

.............................

.............................

.............................

.............................

Reading from a Virtual Keyboard

Reading from the Keypad. . .
Reading Composed Input . . .
Controlling Screen Updates
Maintaining Modularity

.............................

.............................

.............................

.............................

Performing Special Input/Output Actions
Using Ctrl/C and Ctrl/Y Interruptsc.coviiiiienninnn..

Detecting Unsolicited Input
Using the Type-Ahead Buffer. . .
Using Echo.................
Using Timeout

.............................

.............................

.............................

.............................

Converting Lowercase to Uppercase.civvueeee. ..
Performing Line Editing and Control Actions

Using Broadcasts

.............................

Default Handling of Broadeasts
How to Create Alternate Broadcast Handlers

8 File Operations

8.1
8.1.1
8.2

8.3
8.3.1
8.3.2
8.4
8.4.1
8.4.11
8.4.1.2
8.4.1.3
8.41.4
8.5

8.6
8.6.1
8.6.1.1
8.6.1.2
8.6.1.3

File Attributes
Specifying File Attributes
File Access Strategies
File Protection and Access
Read-Only Access
Shared Access
File Access and Mapping
Using SYS$CRMPSC
MappingaFile...........

Using the User-Open Routine

.............................

.............................

.............................

.............................

.............................

.............................

.............................

.............................

............................

Initializing a Mapped Database

Saving a Mapped File

.............................

Opening and Updating a Sequential File

User-Open Routines
OpeningaPFile..............
Specifying USEROPEN

.............................

.............................

.............................

Writing the User-Open Routine

Setting FAB and RAB Fields

.............................

7-17
7-18
7-18
7-18
7-19
7-20
7-21
7-22
7-22
7-23
7-23
7-24
7-25
7-28
7-30
7-30
7-32
7-32
7-35
7-38
7-39
7-40
7-41
7-41
7-42
7-42
7-42

8-1
8-2
8-2
8-2
8-2
8-3
8-4
84
8-5
8-10
811
8-11
8-12
8-15
8-15
8-15
8-16
8-17

9 System Service Input/Output Operations

9.1 Overview of OpenVMS QIO Operations e
9.2 Quotas, Privileges, and Protection
9.2.1 Buffered /O Quota. ittt it
9.22 Buffered /O Byte Count Quotacvviiiirennnnn..
9.2.3 Direct JOQuota i it
9.24 AST QUOta . .ot ottt i e e e e e
9.2.5 Physical /O Privilegeo oot
9.2.6 Logical /O Privilege.ottt e e e e
9.2.7 Mount Privilegeot i e e
9.2.8 Volume Protection i,
9.29 Device Protection i i
9.2.10 System Privilege i
9.2.1 Bypass Privilege. o i
9.3 Physical, Logical, and Virtual /O
9.3.1 Physical /O Operationsttt eeeennnn
9.3.2 Logical /O Operationso v i iin ittt et i ienennneenn
9.3.3 Virtual /O Operationsttt ieieie i eienneannns
9.4 I/O Function Encoding 0.ttt it i et
9.4.1 Function Codesc..iiiiiiiniit ittt enennnnnenonns
9.4.2 Function Modifiers e e
9.5 Assigning Channels it i
9.6 Queuing /O Requeststtt ennennannnnn
9.7 Synchronizing Service Completion
9.8 Recommended Method for Testing Asynchronous Completion
9.9 Synchronous and Asynchronous Forms of Input/Output Services
9.9.1 Reading Operations with SYS$QIOWciienn.
9.9.2 Reading Operations with SYS$QIOciitiiinn.
9.9.3 Write Operations with SYS$QIOWt
9.10 T/O Completion Statuscoii ittt
9.11 Deassigning /O Channelso it
9.12 Using Complete Terminal /O. i
9.13 Canceling /O Requestsottt inn e nenneennenn
9.14 Logical Names and Physical Device Names
9.15 Device Name Defaults it iiiiinnnnenens
9.16 Obtaining Information About Physical Devices
9.16.1 Checking the Terminal Device i
9.16.2 Terminal Characteristicsiititiierinnenneeennns
9.16.3 Record Terminatorsciiuriiiiie i nnnnnn.
9.16.4 File Terminatorsttt
9.17 Device Allocationcuiiiiiiiiniiiii i
9.17 1 Implicit Allocationcc.iiir it ereennn.
9.17.2 Deallocationci ittt
9.18 Mounting, Dismounting, and Initializing Volumes
9.18.1 Mountinga Volumettt
9.18.1.1 Calling the SYS$MOUNT System Servicecc0cn...
9.18.1.2 Calling the SYS$DISMOU System Service
9.18.2 Initializing Volumes i i e
9.18.2.1 Calling the Initialize Volume System Service.................
9.19 Formatting Output Strings it
9.20 MailboXes e e e e e e
9.20.1 Mailbox Nameo ittt it it e et iiiianneneaenn
9.20.2 System Mailboxesc.uuiiirern ittt
9.20.3 Mailboxes for Process Termination Messages....................

9-2
9-2
9-3
9-3
9-3
9-3
9-3
94
9-4
94
9-56
9-5
9-56
9-5
9-5
9-6
9-6
9-10
9-10
9-11
9-11,
9-12
9-13
9-16
9-18
9-18
9-20
9-22
9-23
9-24
9-24
9-26
9-26
9-27
9-28
9-28
9-29
9-31
9-31
9-31
9-33
9-33
9-33
9-33
9-34
9-35
9-36
9-36
9-37
9-39
9-42
9-42
9-43

9.21

Example of Using /O Services.o oottt i e i iee v

10 Logical Name Services

10.1 Logical Name System Services.c.outeiiiiiiiiininnnnenans
10.1.1 Logical Names, Equivalence Names, and Search Lists
10.1.2 Logical Name Tables
10.1.2.1 Logical Name Directory Tables
10.1.2.2 Process, Job, Group, and System Default Logical Name Tables . . .
10.1.2.3 Creating User-Defined Logical Name Tables
10.1.3 Duplicating Logical Namescc0iiiiiiiininnnn.
10.1.4 Defining Privilegeso i e e
10.1.5 Specifying Access Modescovtit it ineiniii
10.1.6 Specifying Attributes i
10.1.7 Establishing Logical Name Table Quotas.......................
10.1.7.1 Directory Table Quotas,
10.1.7.2 Default Logical Name Table Quotas.
10.1.7.3 Job Logical Name Table Quotas
10.1.7.4 User-Defined Logical Name Table Quotas
10.1.8 Using Logical Name and Equivalence Name Format Conventions. . . .
10.1.9 Specifying the Logical Name Table Search List
10.2 Creating a Logical Name Using SYS$CRELNM
10.3 Creating Logical Name Tables Using SYS$CRELNT
10.3.1 Creating Shareable Logical Name Tables.......................
10.4 Deleting Logical Names Using SYS$DELLNM
10.5 Translating Logical Names Using SYSSTRNLNM
10.6 Example of Using the Logical Name System Services

11 Distributed Name Service (VAX Only)

11.1
11.1.1

11.1
1.2
11.2.1
11.2.2
11.2.3

11.2.3.1
11.2.3.2
11.2.3.3

1.3

11.1.1.
.1

DECdns Clerk System Servicecviiiin it
Using the DECdns System Service and Run-Time Library

Routines......... .o i e

Using the SYS$DNS System Serviceccuveuenn...

Using the Run-Time Library Routines

Using the SYS$DNS System Service Call

Creating Objectsiiiiiii i e

Modifying Objects and Their Attributes

Requesting Information from DECdns

Using the Distributed File Service DFS)....................

Reading Attributes from DNS

Enumerating DECdns Names and Attributes

Using the DCL Command DEFINE with DECdns Logical Names

12 Using the Distributed Transaction Manager

121
12.1.1
12.1.2
12.1.3
12.1.4
12.2
12.3

Introduction to DECdtm Services.cciviiiiiiiiiiiiienenn.
Sample Atomic Transactioncciiiiiiiiiinninnn.
Transaction Participants i,

DECdtm System Services.ccurvutininueeennnneennnnnn ’

Default Transactionsc.cuiitttinnnninnnnnnnnnnnnns
Calling DECdtm System Servicesviiiiminnnnnnnnnnnns
Using DECdtm Services: AnExample............................

9-44

10—1
10-2
10-2
10-3
10-3
10-6
10-7
10-9

10-10

10-10

10-11

10-12

10-12

10-12

10-12

10-13

10-14

10-15

10-16

10-17

10-17

10-17

10-19

121
12-1
12-2
12-2
12-3
12-3
12-3

xi

13 Condition-Handling Routines and Services

13.1 Overview of Run-Time Errors i, . 13-1
13.2 Overview of the OpenVMS Condition Handling Facility 13-2
13.2.1 Condition-Handling Terminologyc.iiteiin. .. 13-2
13.2.2 Functions of the Condition Handling Facility 134
13.3 Exception Conditions i, I 13-6
13.3.1 System Service Exception Conditions 13-7
13.3.1.1 Conditions Caused by Exceptions.coiviiia.... 13-8
13.3.2 Exception Conditions innnnnnn. 13-12
13.3.3 Arithmetic Exceptions i, 13-13
13.34 Unaligned Access Traps (AXPOnly)c.ciiiiininnnnnn. 13-15
13.4 How Run-Time Library Routines Handle Exceptions 13-16
13.4.1 Exception Conditions Signaled from Mathematics Routines (VAX

Only) . e e e 13-16
13.4.1.1 Integer Overflow and Floating-Point Overflow 13-16
134.1.2 Floating-Point Underflowot iiiinnnnnn. 13-17
13.4.2 System-Defined Arithmetic Condition Handlers 13-17
135 Condition Values 0 ittt 13-19
13.5.1 Return Status Conventiont nnnnnnn. 13-21
13.5.1.1 Testing Returned Condition Values 13-21
13.6.1.2 Testing SS$_NOPRIV and SS$_EXQUOTA Condition Values 13-21
13.5.2 Modifying Condition Values, 13-23
13.6 Exception Dispatcher i i 13-24
13.7 Argument List Passed to a Condition Handler 13-27
138 Signalingi i e e e e e e 13-28
13.8.1 Generating Signals with LIB§SIGNAL and LIB$STOP 13-30
13.8.2 Signal Argument Vector i 13-32
13.8.3 VAX Mechanism Argument Vector (VAX Only)................... 13-35
13.8.4 AXP Mechanism Argument Vector (AXPOnly) 13-37
13.8.5 Multiple Active Signalsc.ciiiiiiien e annnn 13-39
13.9 Types of Condition Handlers 13-41
13.9.1 Default Condition Handlerso, .. 1342
13.9.2 Interaction Between Default and User-Supplied Handlers 13-44
13.10 Types of Actions Performed by Condition Handlers 1345
13.10.1 Unwinding the Call Stack 0ttt 1346
13.10.2 GOTO Unwind Operations (AXPOnly)c.cviiiin.. 1349
13.11 Displaying Messages vvt it eenneterereeeereeaeaenennnnnnns 1349
13.11.1 Chaining Messagesvvt ittt ittt e iennnnnns 13-53
13.11.2 Logging Error MessagestoaFile 13-55
13.11.2.1 Creating a Running Log of Messages Using SYS$PUTMSG 13-56
13.11.2.2 Suppressing the Display of Messages in the Running Log 13-56
13.11.3 Using the Message Utility to Signal and Display User-Defined

P T Y- e 13-57
13.11.3.1 Creating the Message Source File 13-58
13.11.3.1.1 Specifying the Facility 0 .. 13-58
13.11.3.1.2 Specifying the Severity i it 13-59
13.11.3.1.3 Specifying Condition Names and Messages 13-59
13.11.3.14 Specifying Variables in the Message Text................. 13-60
13.11.3.1.5 Compiling and Linking the Messages 13-60
13.11.3.1.6 Linking the Message Object Module 13-60
13.11.3.1.7 Accessing the Message Object Module from Multiple Programs

... 13-60

13.11.3.1.8 Modifying a Message Source Module 13-61
13.11.3.1.9 Accessing Modified Messages Without Relinking 13-61

xii

13.11.4 Signaling User-Defined Values and Messages with Global and Local
Symbols . .. e e
13.11.4.1 Signaling with Global Symbols
13.11.4.2 Signaling with Local Symbols
13.11.4.3 Specifying FAO Parameterscciiiiiinininnennnn
13.12 Writing a Condition Handler ooin.
13.12.1 Continuing Execution.
13.12.2 Resignalingiiiiiiiiieinintneeneereonannnnans
13.12.3 Unwinding the Call Stack
13.124 Example of Writing a Condition Handler
13.12.41 Signal Arrayo e e e
13.12.4.2 Mechanism Array.coieiiiit ittt ineernnnennnens
13.124.3 Comparing the Signaled Condition with an Expected Condition
13.12.4.4 Exiting from the Condition Handler.
13.12.4.5 Returning Control to the Program
13.125 Example of Condition-Handling Routines
13.13 Debugging a Condition Handler.
13.14 Run-Time Library Condition-Handling Routines
13.14.1 Converting a Floating-Point Fault to a Floating-Point Trap (VAX
Only) . e e e,
13.14.2 Changing a SignaltoaReturn Status
13.14.3 Changing a SignaltoaStopc.i e
13.14.4 Matching Condition Valuesc. 0 iiiiiiininnnnn.
13.145 Correcting a Reserved Operand Condition (VAX Only)
13.14.6 Decoding the Instruction That Generated a Fault (VAX Only)
1315 ExitHandlers. i it it ieaaaeean
13.15.1 Establishing an Exit Handler
13.15.2 Writing an Exit Handler00 ittt iininnnennns
13.15.3 Debuggingan ExitHandler iiiiinnnn..
13.15.4 Example of an Exit Handler,

14 Synchronizing Data Access and Program Operations

14.1

14.11
14.1.2
14.2

14.2.1
14.2.2
14.2.3
14.2.4
14.3

14.3.1
14.3.2
14.4

14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.5

14.5.1
14.5.2

Overview of Synchronizationt iiinnnn..
Threads of Execution i,
ALOMICItY . .. it i e e e it e

Memory Read and Memory Write Operations
Alignment e e e e
Granularity 0ttt i e e e e e
Ordering of Read and Write Operations
Memory Reads and Memory Writes

Memory Read-Modify-Write Operationscc0viven...
Uniprocessor Operationsc0iiiiiitiinennnnnnnns
Multiprocessor Operationscciiiiinnnneieenannns

Hardware-Level Synchronization it
Interrupt Priority Level
LDx_Land STx_C Instructionscotiiinieinnneennn
Interlocked Instructionsot itiiin i iiniinnnennn
Memory Barriersttt et
PALcode Routinesiiiiriiiniinnnnnnnnnnnans

Software-Level Synchronization et e et e e e
Synchronization Within a Process,
Synchronization Using Process Prioritycciiu...

13-61
13-61
13-61
13-62
13-63
13-64
13-64
13-64
13-65
13-65
13-65

13-65
13-66
13-67
13-69
13-70
13-70

13-70
13-71
13-72
13-72
13-73
13-73
13-73
13-74
13-75
13-76
13-76

14-1
14-2
14-3
14-3
14-3
14-3
14-4
14-4
14-5
14-5
14-6
14-7
14-7
14-8
14-9

14-10

14-10

14-10

14-11

14-11

Xiii

1453 Synchronizing Multiprocess Applications . . .Y 14-12
1454 Writing Applications for an Operating System Running in a

Multiprocessor Environment i 14-12
145.5 Synchronization Using Spin Locksovi i, 14-13
14.5.6 Writable Global Sections 0., 14-13
14.6 Synchronizing Operations with Event Flags T 14-14
14.6.1 General Guidelines for Using Event Flags 14-14
14.6.2 Event Flag Numbers and Event Flag Clusters. 14-15
14.6.3 Using Local Event Flagsc.00 i, 14-16
14.6.3.1 Example of Event Flag Services, 14-17
14.6.4 Using Common Event Flags. v, 14-18
14.6.4.1 Associating a Name with a Common Event Flag Cluster........ 14-18
14.6.4.2 Using the name Argument with SYS$ASCEFC 14-19
14.6.4.3 Temporary Common Event Flag Clusters 14-20
14.6.4.4 Permanent Common Event Flag Clusters 14-20
14.6.5 Event FlagWaits e 14-22
14.6.6 Setting and Clearing Event Flags, 14-23
14.6.7 Example of Using a Common Event Flag Cluster 14-23
" 14.6.8 Example of Using Event Flag Routines and Services.............. 14-26
14.7 Synchronizing Operations with Parallel Processing Run-Time
Routines i e e 14-27
14.7 1 Using Subprocessesv vttt ittt i ie ittt e 14-27
14.7.2 Using Spin Locks i i i i e e e 14-27
14.7.3 Using Semaphoresottt ittt et 14-28
14.7.4 Using Barrier Synchronization., 14-28
14.8 Synchronizing Operations with Synchronous and Asynchronous System
T i 1o =Y T 14-28

15 Synchronizing Access to Resources

15.1 Synchronizing Operations with the Lock Manager................... 15-1
156.2 Concepts of Resourcesand Locks 152
15.2.1 Resource Granularity i ittt 15-3
15.2.2 Resource Domains ittt itnnnns 154
15.2.3 Resource Names.ovvin ittt i e ie e 154
15.24 ChoosingaLock Modet .15-5
15.2.5 Levels of Locking and Compatibility e 15-5
15.2.6 Lock Management QUeEUEs ovve vttt et eennnn 15-6
15.2.7 Concepts of Lock Conversionivitiiinnennnneeennn 15-7
15.2.8 Deadlock Detectiont 15-8
15.3 Queuing Lock Requeststtt . 15-8
15.3.1 Example of Requestinga Null Lock 15-9
15.4 Advanced Locking Techniques0 ennnn. 15-10
15.4.1 Synchronizing Locksttt ittt 15-10
15.4.2 Notification of Synchronous Completion........................ 15-11
15.4.3 Expediting Lock Requeststtt 15-11
15.4.4 Lock Status Blockciiiiin it iei it 15-11
15.4.5 Blocking ASTsciiiiiiineen. .. e 15-12
15.4.6 Lock Conversionscvvi vttt ittt i e et iaananeens 15-12
15.4.7 Forced Queuing of Conversionsc.coiveteiinnnnnenan. 15-13
15.4.8 Parent Locksttt e e 15-14
15.4.9 Lock Value Blockscvieee e 15-15
155 Dequetting LocKSovte ittt it ei et e 15-16
15.6 Local Buffer Caching with the Lock Management Services 15-18

Xiv

15.6.1 Using the Lock Value Block 15-18

15.6.2 Using Blocking ASTsottt it e e 15-18
15.6.2.1 Deferring Buffer Writes 15-18
15.6.2.2 Buffer Caching i i 15-19
15.6.3 Choosing a Buffer-Caching Technique 15-19
15.7 Example of Using Lock Management Services 15-19

16 Image Initialization

16.1 InitializinganImage ittt 16-1
16.2 Initializing an Argument List 16-5
16.3 Declaring Initialization Routines, 16-6
16.4 Dispatching to Initialization Routines 166
16.5 Initialization Routine Options, 16-7
16.6 Initialization Example i, 16-7

17 Shareable Resources

17.1 Sharing Program Codeottt it i iieee e, 17-1
17.1.1 Object Libraries vttt it ettt i e 17-2
17111 System- and User-Deﬁned Default Object Libraries............ 17-2
17.1.1.2 How the Linker Searches Libraries 17-2
17113 Creating an Object Librarycciiiiiiiinnnnnnn. 17-2
17114 Managing an Object Libraryc.ciiinn.. 172
17.1.2 Text and Macro Libraries.ccoiiieinniiennnnnn. 17-3
17.2 Shareable Images. vv ittt ittt it it e e 17-3
17.3 Symbols . ..o e e e e e 17-3
17.3.1 Defining Symbolso e 17-3
17.3.2 Local and Global Symbols 17-4
17.3.3 Resolving Global Symbols 174
17.3.31 Explicitly Named Modules and Libraries 17-5
17.3.3.2 System Default Librariescviiiiiiiiiiiieennn. 17-5
17.3.3.3 User Default Libraries i 17-5
17.3.3.4 Making a Library Available for Systemwide Use 17-5
17.3.3.5 Macro Librariesco ittt i i e e 17-5
17.3.4 Sharing Data i i, 17-6
17.3.41 Installed Common Blockso i, 17-6
17.34.2' Global Sectionsvviiiir ittt i 17-8
17.34.3 RMS Shared Filescoiiiiiiiiiiiiiiiiiinnnn 17-12

18 Creating User-Written System Services

181 OVEIVIEW ..ttt i et e e e e 18-1
18.2 Writing a Privileged Routine (User-Written System Service) 18-3
18.3 Creating a Privileged Shareable Image (VAXOnly).................. 184
18.3.1 Creating User-Written Dispatch Routines on VAX Systems 184
18.3.2 Creatinga PLVon VAX Systemsc0iiiiiiiinnennn 18-5
18.3.3 Declaring Privileged Routines as Universal Symbols Using Transfer

Vectors on VAX Systems.ttt 18-9
18.4 Creating a User-Written System Service (AXPOnly)................. 18-9
18.4.1 Creatinga PLVon AXP Systemscvviternnnnnnennn. 18-9
18.4.2 Declaring Privileged Routines as Universal Symbols Using Symbol

Vectors on AXP Systemsoviiiiiieteeenenneennnnnnn 18-14

XV

19 Memory Management Services and Routines (VAX Only)

20

XVi

191 Virtual Page Size ittt i e i e ienennn
19.2 Virtual Address Space ittt e e e
19.3 Extended Addressing Enhancements on Selected VAX Systems.........
19.3.1 Page Table Entry for Extended Addresses on VAX Systems
19.4 Levels of Memory Allocation Routines
19.5 Using System Services for Memory Allocation
19.5.1 Increasing and Decreasing Virtual Address Space
19.5.2 Input Address Arrays and Return Address Arrays
19.5.3 Page Ownership and Protection
19.5.4 Working Set Pagingcoi ittt i
19.5.5 Process SWappPing.ttt e e e e e
19.5.6 SeCtions e e e e e e e
19.5.6.1 Creating Sectionsoiiiiiiiiii it iii i
19.5.6.2 OpeningtheDisk File i,
19.5.6.3 Defining the Section Extents
19.5.6.4 Defining the Section Characteristics
19.5.6.5 Defining Global Section Characteristics
19.5.6.6 Global Section Namec0iiuiiiiiinnnnnennnn
19.5.6.7 Mapping Sectionso v vt ittt e e e
19.5.6.8 Mapping Global Sectionsttt
19.5.6.9 Global Page-File Sections.cvuiiiinnn..
19.5.6.10 Section Pagingottt i e e
19.5.6.11 Reading and Writing Data Sections
19.5.6.12 Releasing and Deleting Sections
19.5.6.13 Writing Back Sectionscit i iinrennn..
19.5.6.14 Image Sectionsot .
19.56.6.15 Page Frame Sections e et
19.5.7 Example of Using Memory Management System Services

Memory Management Services and Routines (AXP Only)

20.1 Virtual Page Sizesottt i i e e
20.2 Virtual Address Spacecv vttt ittt i e e e e
20.3 Levels of Memory Allocation Routines
20.4 Using System Services for Memory Allocation
20.4.1 Increasing and Decreasing Virtual Address Space
20.4.2 Input Address Arrays and Return Address Arrays
20.4.3 Allocating Memory in Existing Virtual Address Space on AXP
Systems (AXP Only) . .o vii ittt et
20.4.4 Page Ownership and Protection
20.4.5 Working Set Paging0 i,
20.4.6 Process SWappIng. . ..o v vt e e e
20.4.7 1=t o3 oYU
20.4.7 1 Creating Sectionsttt ittt
20.4.7.2 Opening the Disk File i, ‘
20.4.7.3 Defining the Section Extents
20.4.7.4 Defining the Section Characteristics
204.75 Defining Global Section Characteristics
20.4.7.6 Global Section Namec0 ittt innnnnennn
204.7.7 Mapping Sectionsttt et
20.4.7.8 Mapping Global Sections,
20.4.7.9 Global Page-File Sections.ttt
20.4.7.10 Mapping into a Defined Address Range

19-1

19-1

19-3

19-5

19-5

19-7

19-8

19-9
19-10
19-11
1912
19-13
19-14
19-14
19-15
19-15
19-16
19-17
19-18
19-19
19-20
19-20
19-22
19-23
19-23
19-23
19-24
19-25

201
20-2
20-3
20-5
20-6
20-8

20-9
20-10
20-10
20-12
20-12
20-13
20-14
20-15
20-15
20-16
20-17
20-18
20-20
20-21
20-21

21

22

20.4.7.1
20.4.7.1
20.4.7.1
20.4.7.1
20.4.71

1 Mapping from an Offset into a Section File
2 Section Pagingoviiiiiiiii it i e
3 Reading and Writing Data Sections
4 Releasing and Deleting Sectionscoveo...
5 Writing Back Sections i,

20.4.7.16 Image Sectionsvvtit et

204.71
20.4.71
20.4.8

Using

211
21.2
21.3
21.4
21.4.1
2142
2143
2144
21.45
2146
215
21.6
21.6.1
21.6.2
21.6.3
2164
21.7
21.8

7 Page Frame Sectionst iiiinnnnnn
8 Partial Sections i i
Example of Using Memory Management System Services

Run-Time Routines for Memory Allocation

Allocating and Freeing Pages.
Interactions with Other Run-Time Library Routines
Interactions with System Services
/70 4 1=

Creating @ Zomneiiiiiiin ittt
DeletingaZonec.oiiiiiiiiiii i et
ResettingaZone 00ttt
Allocating and Freeing Blocks
Allocation Algorithms i e
First Fit Algorithm
Quick Fit Algorithm
Frequent Sizes Algorithm
Fixed Size Algorithm i
User-Defined Zonesuutuiinmmmnineeeeiniannnaannn

Alignment on OpenVMS VAX and AXP Systems

221 Alignment e
2211 Alignment and Performance...............
22111 Alignment on OpenVMS VAX. i,
221.1.2 Alignment on OpenVMS AXP,
22,2 Using Compilers for Alignment,
22.2.1 The DEC C Compiler (AXPOnly),
22211 Compiler Example of Memory Structure of VAX C and DEC C . ..
2222 The Bliss Compiler. ittt
2223 The DEC Fortran Compiler (A XPOnly)............ooviviinn..
2224 The MACRO-32 Compiler (AXPOnly)o
2225 The VAX Environment Software Translator—VEST (AXP Only)
22.3 Using Tools for Finding Unaligned Data
22.3.1 The OpenVMS Debugger e
22.3.2 The Performance and Coverage Analyzer—PCA
22.3.3 System Services (AXPOnly)

20-22
20-22
20-24
20-24
20-25
20-25
20-26
20-26
20-27

21-1

21-3

214

21-6

21-8
21-12
21-12
21-13
21-13
21-13
21-14
21-14
21-15
21-15
21-16
21-16
21-16
21-19

Xvii

23 System Security Services

23.7.1 Creating a Security Profile.
23.7.2 SYS$CHKPRO System Sevice . .o vvvv vt ieiieirnnneennnn.
23.7.3 SYS$CHECK_ACCESS System Service vvvieennnnennnn.
23.8 SYS$CHECK PRIVILEGEc0itiitiiniinnnnnnnn.
23.9 Implementing Site-Specific Security Policies (VAX Only)
23.9.1 Creating Loadable Security Servicesc.ccivvevinnnnnnn.
23.9.11 Preparing and Loading a System Service....................
23.9.1.2 Removing an Executive Loaded Image '
23.9.2 Installing Filters for Site-Specific Password Policies
23.9.2.1 Creating a ShareableImage..............,
23.9.2.2 Installing a Shareable Image
Index

xviii

23.1 Overview of the Operating System’s Protection Scheme
232 Identifiersiiiii it i e e e e e
23.2.1 Identifier Format0ttt
23.2.2 General Identifierso i i .
23.2.3 System-Defined Identifiers
23.24 UIC Identifiers . . . oo vttt ittt et et et e i ie e eeenns
23.2.5 Facility Identifiersttt ittt i
23.2.6 Identifier Attributes vt e e
23.3 RightsDatabase....... ...ttt i
23.3.1 Initializing a Rights Database e et e e
23.3.2 Using System Services to Affect a Rights Database...............
23.3.2.1 Translating Identifier Values and Identifier Names
23.3.2.2 Adding Identifiers and Holders to the Rights Database
23.3.2.3 Determining Holders of Identifiers.
23.3.2.4 Determining Identifiers Held bya Holder
23.3.2.5 Modifying the Identifier Record
23.3.2.6 Modifying a Holder Recordciieininennnn..
23.3.2.7 Removing Identifiers and Holders from the Rights Database.
23.3.3 Search Operationsouiiiiiintr e ininnnnnennn.
23.34 Modifyinga Rights List
23.4 Managing Object Protection
23.4.1 Protected Objectsc i it
234.2 Object Security Profile i
23.4.2.1 Displaying the Security Profile
23.4.22 Modifying the Security Profile
2343 Types of Access Control Entriesccv....
23.4.3.1 Design Considerationscoieirieetininnnnnenn..
23.4.3.2 Translating ACEs.o ittt e ittt i e
23.4.3.3 Creating and Maintaining ACEsccoiviiinnnnn.

23.5 Protected Subsystems

23.6

Security Auditing

23.7 Checking Access Protection

...........

...............

.............................

.............................

.............................

23-1

23-2

23-2

23-2

23-3

23-3

234

23-5

23-8

23-9
23-10
23-11
23-12
23-13
23-13
23-13
23-14
23-16
23-16
23-19
23-19
23-19
23-20
23-20
23-21
23-21
23-21
23-22
23-22
23-23
23-24
23-24
23-25
23-25
23-25
23-26
23-26
23-26
23-27
23-28
23-29
23-29
23-29

Examples

21
2-2
2-3
2-4
2-5
31
3-2

3-3
3-4

3-5

3-6

7-10
7-11
7-12
7-13
7-14
7-15

Performing an Iterative Calculation with a Spawned Subprocess
Opening a Mailbox ooiiiii it e s e i
Synchronous I/O Usinga Mailbox
Immediate I/O Using a Mailbox o L.
Asynchronous I/O Using a MailboxXo.vvvvnen e,
Obtaining Different Types of Process Information

Using SYS$GETJPI to Obtain Information About the Calling
Process . oo v e e e e

Obtaining the Process Namecoiiiiiiiiiinnnnnnnn

Using SYS$GETJPI and the Process Name to Obtain Information
About @ Processo ittt e

Using SYS$GETJPI to Request Information About All Processes on
the Local Systemottt it

Using SYS$GETJIPI and SYS$PROCESS_SCAN to Select Process
Information by User Namecctiiieieennnnn..

Using SYS$GETJPI and SYS$PROCESS_SCAN with Multiple Values

for One Criterion it

Selecting Processes That Match Multiple Criteria ‘

Searching the Cluster for Process Information.
Searching for Process Information on Specific Nodes in the Cluster ..
Using a SYS$GETJPI Buffer to Improve Performance.............

Using SYS$GETJPI Control Flags to Avoid Swapping a Process into
the Balance Set i

Procedure for Obtaining Process Lock Information
Executing a Program Using Delta Time
Executing a Program at Timed Intervals
Calling the SYS$SETIMR System Serviceovvuueenn....
Calculating and Displaying the Timeccvveu..
Settingan Event Flag
Specifying an AST Service Routine
Displaying and Writing Timer Statistics
Readinga Lineof Data
Reading a Varying Number of Input Records
Associating a Pasteboard with a Terminal
Creating a Pasteboardcc it
Modifying Screen Dimensions and Background Color
Defining and Pasting a Virtual Display
Scrolling Forward Through a Display
Scrolling Backward Through a Display
Creating a Statistics Display,
Reading Data from a Virtual Keyboard
Reading Data fromthe Keypad,
Redefining Keyso i ittt e et i e
Using Interrupts to Perform I/O

" Receiving Unsolicited Input from a Virtual Keyboard

Trapping Broadcast Messagesciiiiintiiiiinnnnnnnn

2-3
2-12
2-12

2-15

2-18

3-8
3-10

3-11

3-12

3-15

3-17
3-18
3-20
3-20
3-22

3-25
3-28
3-32
3-34

4-2

5-5
5-14
5-15
5-19

7-5

7-5

7-8

7-9
7-10
7-12
7-20
7-20
7-21
7-24
7-26
7-28
7-34
7-36
7-43

Xix

8-1 Mapping-a Data File to the Common Block on a VAX System 8-6

8-2 Mapping a Data File to the Common Block on an AXP System 8-8
8-3 Using a User-Open Routine 8-10
8-4 ClosingaMapped File ittt 8-12
8-5 Creating a Sequential File of Fixed-Length Records 8-13
8-6 Updating a Sequential File ‘ 8-14
91 Event Flags it it ittt iinenean 9-14
9-2 ASTRoutinecciiiiiiiiiinnnerennn e 9-15
9-3 VO Status Block. . ..o i i i i e e 9-16
94 Reading Data from the Terminal Synchronously 9-19
9-5 Reading Data from the Terminal Asynchronously 9-21
9-6 Writing Character DatatoaTerminal 9-22
9-7 Using SYS$GETDVIW to Verify the Device Name 9-29
9-8 Disabling the HOSTSYNC Terminal Characteristic............... 9-30
15-1 Requestinga Null Lockot iinnenn. 15-10
171 Interprocess Communication Using Global Sections 17-8
18-1 Sample Dispatching Routineccciiiiin.., 18-5
18-2 Assigning Values toa PLVona VAX System 18-8
18-3 Creatinga PLVon AXPSystemsviiiiiniinnn.. 18-13
184 Declaring Universal Symbols for Privileged Shareable Image on an

AXP Systemo e e e e e e e e 18-14
21-1 Monitoring Heap Operations with a User-Defined Zone............ 2117
221 OpenVMS Debugger Output from SET OUTPUT LOG Command 22-9

Figures

3-1 Image Exit and Process Deletion 345
6-1 Format of a Variable-Length Bit Field - 6-1
7-1 Defining and Pasting Virtual Displaysc.... 7-13
7-2 Movinga Virtual Displayo vttt it i i e e 7-14
7-3 Repastinga Virtual Displayottt 7-15
7-4 Poppinga Virtual Display, 7-16
7-5 Statistics Display oo vttt e e e e e 7-21
9-1 Mailbox Protection Fields., 94
9-2 Physical I/O Access Checkscooveeerererenennn. . 9-7
9-3 Logical /O Access Checksiiitiien e 9-8
94 Physical, Logical, and Virtual /O 9-9
9-5 I/OFunction Format 9-10
9-6 Function Modifier Format 9-11
9-7 VO Status Block. i i e 9-23
9-8 SYS$SMOUNT Item Descriptor . . . oo oo ee e i e eee e ieieee e - 9-34
12—1 Participants in a Distributed Transaction 12-2
13-1 SS$_HPARITH Exception Signal Arrayc.ooieiuenenn.nn 13-14
13-2 SS$_ALIGN Exception Signal Arrayc.ccuiieinerennnn. 13-16
13-3 Format of a Condition Value, 13-19
13-4 Searching the Stack for a Condition Handler.................... 13-26
13-5 Sample Stack Scan for Condition Handlers 13-30

XX

13-6
13-7

13-8

13-10
13-11
13-12
13-13
13-14
13-15
13-16
15-1
152
15-3
154
161
16-2
18-1
18-2
18-3
18—4
19-1
19-2
19-3
194
19-5
201
20-2
21-1
21-2
22-1
22-2
22-3
231
232
23-3
234
23-5
236

Format of the Signal Argument Vector 13-33
Signal Argument Vector for the Reserved Operand Error Conditions

... 13-34
Signal Argument Vector for RTL Mathematics Routine Errors 13-35
Format of a VAX Mechanism Argument Vector 13-35
Mechanism Array on AXP Systemsovvvvineneeeennnnnn. 13-38
Stack After Second Exception Condition Is Signaled 13-41
Interaction Between Handlers and Default Handlers 13-44
Unwinding the Call Stack 13-48
Formats of Message Sequencesc.cuureuneeennnnnnenans 13-52
Using a Condition Handler to Log an Error Message 13-56
Structure of an Exit Handler i, 13-74
Model Database e e e e e e 15-3.
Three Lock Queues iiiiiiiiiieennnnnnnens 157
Deadlockc. i i i e 15-8
Lock Status Blockt 15-11
Sequence of Events During Image Initialization on VAX Systems 164
Sequence of Events During Image Initialization on AXP Systems 16-5
Flow of Control Accessing a Privileged Routine on VAX Systems. 18-6
Components of the Privileged Library Vector on VAX Systems 187
Linkage for a Privileged Routine after Image Activation 18-10
Components of the Privileged Library Vector on AXP Systems 18-11
Virtual Address Overview on VAX Systems 19-2
Layout of VAX Process Virtual Address Space 19-3
Physical Address Space for VAX Systems with XPA. 194
Virtual Address Space for VAX Systems with XVA 19-5
Hierarchy of VAX Memory Management Routines 197
Layout of AXP Process Virtual Address Space 20-3
Hierarchy of AXP Memory Management Routines 20-5
Memory Fragmentationt iiiiinnnann 21-3
Boundary Tagscoiiii i e 21-9
Aligned and Unaligned Structures 22-2.
Alignment Using VAX CCompileroiitiiiiiiennnenn 22-5
Alignment Using DEC C Compiler.ououeeennnnennnn... 22-5
IDFormat0iiiiii ittt e eenannanens 23-3
UIC Identifier Formatttt inennnnnn. 23-4
Facility-Specific Identifiers. 23—4
Format of the Identifier Record 23-8
Format of the Holder Record 23-9
Format of the holder Argument 23-13

xxi

Tables

XXii

1-1
1-2

4-1
4-2
4-3
5-1
5-2
5-3
5-4

5-6
5-7
5-8
5-9
5-10
5-11
5-12
6-1
6-2

6-4
6-5
6-6
67
6-8

" 6-9

6-10

6-11
6-12
7-1

- 72

9-1
9-2

94
10-1

Characteristics of Subprocesses and Detached Processes

Comparison of LIB§SPAWN, PPL$SPAWN, and SYS$CREPRC
Context Values oottt i e e e e

Routines and Commands for Controlling Processes
Process Identification e e
Item-Specific Flags [P
Time Manipulation System Services and Routines
Process Hibernation and Suspensioncc oo,

System Services and Routines Used for Hibernation and
R D) 01=3 4153 L)« K

AST System Servicesiiiinen ittt iiiinennaneeens
System Services That Use ASTs.,
AST Arguments for VAX Systems and AXP Systems
Time Conversion Routines and System Services
Date/Time Manipulation Routines
Timer RTLs and System Servicescoiiiinnn...
Timer System Services oottt et
Available Languages for Date/Time Formatting..................
Format Mnemonicsc.coiiiiiiiiiie e,
Input String Punctuation and Defaults
Predefined Output Date Formats
Predefined Output Time Formats...............
Available Components for Specifying Formats at Compile Time
Legible Format Mnemonicsc.uueiiienereereennannn.
Sample Input Format Strings
System Service Access Routines.
CLI Access Routines i
Variable-Length Bit Field Routines
Integer and Floating-Point Routines
Queue Access Routinescviiiiitennnnt e .
Character String Routines
Miscellaneous Instruction Routines
Processwide Resource Allocation Routines
Performance Measurement Routines

The code Argument in LIB§SHOW_TIMER and
LIBSSTAT TIMER ittt it et it eiee e

Routines for Customizing Output.............
Miscellaneous Interface Routines
SYS$INPUT and SYS$OUTPUT Valuesccvvvuvreennn.
Setting Video Attributes. i i
Read and Write /O Functions
Asynchronous Input/Output Services and Their Synchronous Versions

...

System Services for Translating Logical Names..................
Default Device Names for /O Servicesvvvviinnnn..
Summary of Privilegeso it i e e

3-36

3-14
3-31
3-36

41
4-2
4-6
5-3
5-8
5-8

5-13

5-21

5-23

5-26

5-27

5-29

5-30

5-30

5-32
6-2
6-2

6-10

6-12

6-13

6-14

6-15

6-16

6-17

6-18
6-20
6-21

7-3
7-17
9-10

9-18
9-27
9-28
10-9

131
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
14-1
14-2
14-3
151
15-2
15-3
15-4
15-5
18-1
18-2
19-1
19-2

201
20-2
20-3

21-1
21-2
21-3
214
221
231

23-2

23-3

Summary of Exception Conditions
Architecture-Specific Hardware Exceptions
Exception Summary Argument Fields
Run-Time Library Condition-Handling Support Routines
Fields of a Condition Value
Severity of Error Conditions,
Privilege BErrors i e e e
Quota Errors i e e
$CHFDEF Symbolic Names and Arguments on VAX Systems

$CHFDEF2 Symbolic Names and Arguments on AXP Systems

Fields in the AXP Mechanism Array,
Event Flag Routines and Servicesccuu...
Services Using Event Flags to Signal a Calling Process...........
Event Flags i e e e
Lock Manager Servicesc.itiiineinineeennannnn
Lock Modes . ..o v in i ittt et e ettt e e e
Compatibility of Lock Modest iean...
Legal QUECVT Conversionsouuitumeneaeeennnn.
Effect of Lock Conversion on Lock Value Block
Components of the VAX Privileged Library Vector
Components of the AXP Privileged Library Vector...............
Sample Virtual Address Arrays on VAX Systems

Flag Bits to Set for Specific Section Characteristics on VAX

251 7=3 4 1=
Page and Byte Offset Within Pages on AXP Systems.............
Sample Virtual Address Arrays on AXP Systems................

Flag Bits to Set for Specific Section Characteristics on AXP

173 ¢ U= J
Overhead for Area Control Blocks
Possible Values for the Block Size Attribute
Attribute Values for the Default Zone
Allocation Algorithms. i,
Aligned Data Sizes.ttt iinnannn.

Using System Services to Manipulate Elements of the Rights

Databaset e e e e

Returned Records of SYS$IDTOASC, SYS$FIND_HELD, and

SYSSFIND_HOLDER. oottt e e
Item Code Symbols and Meanings v

xXiii

Preface

Intended Audience

This manual is intended for system and application programmers. It presumes
that its readers have some familiarity with the OpenVMS programming
environment, derived from the OpenVMS Programming Environment Manual
and OpenVMS high-level language documentation.

Document Structure

This manual’s chapters provide information about the programming features of
OpenVMS. A list of the chapters and a summary of their content is as follows:

Chapter 1, Process Creation, defines the two types of processes, what constitutes
the context of a process, and the modes of execution of a process. It also describes
the creation of a subprocess and a detached process.

Chapter 2, Process Communication, describes communication within a process
and between processes.

Chapter 3, Process Control, describes how to use the creation and control of a
process for programming tasks. It also describes how to gather information about
a process and how to synchronize a program by using time.

Chapter 4, Using Asynchronous System Traps, describes how to use asynchronous
traps (ASTs). It describes access modes and service routines for ASTs and how
ASTs are declared and delivered.

Chapter 5, System Time Operations, describes the system time format, and the
manipulation of date/time and time conversion. It further describes how to obtain
and set the current date and time, how to set and cancel timer requests, and how
to schedule and cancel wakeups. The Coordinated Universal Time (UTC) system
is also described.

Chapter 6, Using Run-Time Library Routines to Access Operating System
Components, describes using RTLs with system services, the command language
interpreter, and allowing high-level programs to use VAX machine instructions.
Also, this chapter describes using RTLs to allocate processwide resources to a
single process, perform performance evaluation, and control output formatting.

Chapter 7, Run-Time Library Input/Output Operations, describes using
RTLs for input-output operations within a program, using SYS$INPUT,-
and SYS$OUTPUT, as well as LIB$GET_INPUT and LIB$PUT_OUTPUT.
Additionally, this chapter describes using the SMG$ routine for managing
terminal screens, and for managing screen management routines.

XXV

XXVi

Chapter 8, File Operations, describes file attributes, strategies to access files, and
file protection techniques.

Chapter 9, System Service Input/Output Operations, describes using the
SYS$QIO and SYS$QIOW system services for establishing quotas, privileges,
and protection. It also describes assigning and deassigning I/O channels, queuing
requests, and synchronizing I/O completions. This chapter describes how to use
logical names and physical device names for I/O operations; how to use device
name defaults; obtain information about physical devices; and how to allocate
devices. Functions such as mounting, dismounting and initializing disk and tape
volumes, along with using mailboxes are explained.

Chapter 10, Logical Name Services, describes how to create and use logical name
services, how to use logical and equivalence names, and how to add and delete
entries to a logical name table.

Chapter 11, Distributed Name Service (VAX Only), describes the use of the
SYS$DNS system service to provide applications with a method to assign
networkwide names to system resources such as printers, files, application
databases, disks, nodes, and servers.

Chapter 12, Using the Distributed Transaction Manager, describes the use of the
DECdtm system services to ensure the integrity and consistency of distributed
transactions by implementing a two-phase commit protocol.

Chapter 13, Condition-Handling Routines and Services, describes the OpenVMS
Condition Handling facility. It describes VAX system and AXP system exceptions,
arithmetic exceptions, and AXP system unaligned access traps. It describes

the condition value field, exception dispatcher, signaling, and the argument list
passed to a condition handler. Additionally, types of condition handlers and
various types of action performed by them are presented. This chapter also
describes how to write and debug a condition handler, and how to use an exit
handler.

Chapter 14, Synchronizing Data Access and Program Operations, describes
synchronization concepts and differences between the VAX system and AXP
system synchronization techniques. It presents methods of synchronization such
as event flags, asynchronous system traps (ASTs), parallel processing RTLs, and
process priorities. It also describes using synchronous and asynchronous system
services, and how to write applications in a multiprocessing environment.

Chapter 15, Synchronizing Access to Resources, describes the use of the lock
manager system services to synchronize access to shared resources. This chapter
presents the concept of resources and locks; and also describes the use of the
SYS$ENQ and SYS$DEQ system services to queue and dequeue locks.

Chapter 16, Image Initialization, describes how to use the LIB$INITIALIZE
routine to initialize an image.

Chapter 17, Shareable Resources, describes how to share data and program code
among programs. It defines shareable images; it defines and describes how to use
local and global symbols to share images.

Chapter 18, Creating User-Written System Services, describes how to create
user-written system services with privileged shareable images for both VAX
systems and AXP systems.

Chapter 19, Memory Management Services and Routines (VAX Only), describes
the use of system services and RTLs of VAX systems to manage memory. It
describes the page size and layout of virtual address space of VAX systems. This
chapter also describes how to add virtual address space, adjust working sets,
control process swapping, and create and manage sections on VAX systems.

Chapter 20, Memory Management Services and Routines (AXP Only), describes
the use of system services and RTLs of AXP systems to manage memory. It
describes the page size, and layout of virtual address space of AXP systems. This
chapter also describes how to add virtual address space, adjust working sets,
control process swapping, and create and manage sections on AXP systems.

Chapter 21, Using Run-Time Routines for Memory Allocation, describes the use
of RTLs to allocate and free pages and blocks of memory, and how to use RTLs
for the creation, managing and debugging of virtual memory zones.

Chapter 22, Alignment on OpenVMS VAX and AXP Systems, describes the
importance and techniques of instruction and data alignment.

Chapter 23, System Security Services, describes the system services that
establish protection by using identifiers, rights databases, and access control
entries. This chapter also describes how to modify a rights list as well as check
access protection.

Associated Documents

For a detailed description of each run-time library and system service routine
mentioned in this manual, see the OpenVMS Run-Time Library documentation
and the OpenVMS System Services Reference Manual.

You can find additional information about calling VMS system services and
Run-Time Library routines in OpenVMS Programming Interfaces: Calling a
System Routine and in your language processor documentation. The following
documents may also be useful:

e OpenVMS DCL Dictionary

e QOpenVMS User’s Manual

e Guide to OpenVMS File Applications

* OpenVMS Guide to System Security

e DECnet for OpenVMS Networking Manual

e OpenVMS Record Management Services documentation
e OpenVMS Utility Routines Manual

o OpenVMS I/0 User’s Reference Manual

For a complete list and description of the manuals in the VMS document set, see
the Overview of OpenVMS Documentation.

Conventions

In this manual, every use of OpenVMS AXP means the OpenVMS AXP operating
system, every use of OpenVMS VAX means the OpenVMS VAX operating system,
and every use of OpenVMS means both the OpenVMS AXP operating system and
the OpenVMS VAX operating system.

XXVii

The following conventions are used to identify information specific to OpenVMS
AXP or to OpenVMS VAX:

AXP

>

.

The AXP icon denotes the beginning of information
specific to OpenVMS AXP.

The VAX icon denotes the beginning of information
specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of
information specific to OpenVMS AXP or to OpenVMS
VAX,

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x
PF1x

GOLD x

O

xxviii

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

A sequence such as GOLD x indicates that you must first
press and release the key defined as GOLD and then press
and release another key. GOLD key sequences can also have
a slash (/), dash (-), or underscore (_) as a delimiter in EVE
commands.

The GOLD key definition is often mapped to the PF1 key on
the keypad.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

Horizontal ellipsis points in examples indicate one of the
following possibilities:

e Additional optidnal arguments in a statement have been
omitted.

¢ The preceding item or items can be repeated one or more
times.

¢ Additional parameters, values, or other information can be
entered.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{1

boldface text

italic text

UPPERCASE TEXT

struct

numbers

mouse

MB1, MB2, MB3

PB1, PB2, PB3, PB4
SB1, SB2, SB3

In command format descriptions, braces surround a required
choice of options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason (user action
that triggers a callback).

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information and indicates
complete titles of manuals and variables. Variables include
information that varies in system messages (Internal error
number), in command lines (/PRODUCER=name), and in
command parameters in text (where device-name contains up
to five alphanumeric characters).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type in text identifies the following C programming
language elements: keywords, the names of independently
compiled external functions and files, syntax summaries, and
references to variables or identifiers introduced in an example.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

The term mouse refers to any pointing device, such as a mouse,
a puck, or a stylus.

MBI indicates the left mouse button, MB2 indicates the middle
mouse button, and MB3 indicates the right mouse button. (The
user can redefine the buttons.)

PB1, PB2, PB3, and PB4 indicate buttons on the puck.
SB1, SB2, and SB3 indicate buttons on the stylus.

XXix

1

Process Creation

This chapter describes process creation and the different types of processes. This
chapter contains the following sections:

Section 1.1 describes what a process is and the two types of processes.
Section 1.2 describes the execution context of a process.

Section 1.3 describes the modes of execution of a process.

Section 1.4 describes the creation of a subprocess.

Section 1.5 describes the creation of a detached process.

1.1 Processes and Process Threads

A process is the environment in which an image executes. Two types of processes
can be created with the operating system: spawned subprocesses, or detached
processes.

A spawned subprocess is dependent on the process that created it (its parent),
and receives a portion of its parent process’s resource quotas. The system deletes
the spawned subprocess when the parent process exits.

A detached process is independent of the process that created it. The process
the system creates when you log in is, for example, a detached process. If

you want a created process to continue after the parent exits, or not to share
resources with the parent, use a detached process.

Table 1-1 compares the characteristics of subprocesses and detached processes.

Table 1-1 Characteristics of Subprocesses and Detached Processes

Characteristic Subprocess Detached Process
Privileges Received from creating process Specified by creating process
Quotas and limits Shared with creating process Specified by creating process, but
not shared with creating process
User authorization file Used for information not given Used for most information not given
by creating process by creating process
User identification code Received from creating process Specified by creating process
Restrictions Exist as long as creating process None
exists
How created SYS$CREPRC, LIB$SPAWN SYS$CREPRC from another process
or PPL$SPAWN from another
process

(continued on next page)

Process Creation
1.1 Processes and Process Threads

Table 1-1 (Cont.) Characteristics of Subprocesses and Detached Processes

Characteristic Subprocess Detached Process
When deleted At image exit, or when creating‘ At image exit
process exits
Command language interpreter Usually not if created with Usually not (though interactive
present SYS$CREPRC; usually if user processes have CLI present,
spawned and they are created with
SYS$CREPRC)

A thread is a single, sequential flow of control within a program. A single
process contains an address space wherein a single thread or multiple threads
execute concurrently. Within a single thread, there is a single point of execution.
Since threads execute concurrently, a multithread program has multiple points
of execution at any one time. For more information about the concepts and
implementation of threads, see the Guide to DECthreads.

1.2 Execution Cohtext of a Process

The execution context of a process defines a process to the system. It includes the

following:

¢ Image that the process is executing

¢ Input and output streams for the image executing in the process

e Disk and directory defaults for the process

¢ System resource quotas and user privileges available to the process

When the system creates a detached process as the result of a login, it uses
the system user authorization file (SYSUAF.DAT) to determine the process’s
execution context.

For example, the following occurs when you log in to the system:
1. The process created for you executes the image LOGINOUT.

2. The terminal you are using is established as the input, output, and error
stream device for images that the process executes.

Your disk and directory defaults are taken from the user authorization file.

4. The resource quotas and privileges you have been granted by the system
manager are associated with the created process.

5. A command language interpreter (CLI) is mapped into the created process.

1.3 Modes of Execution of a Process

A process executes in one of the following modes:

» Interactive—Receives input from a record-oriented device, such as a terminal
or mailbox

e Batch—Is created by the job controller and is not interactive
* Network—Is created by the network ancillary control program (ACP)

¢ Other—Is not running in any of the other modes (for example, a spawned
" subprocess where input is received from a command procedure)

Process Creation
1.4 Creating a Subprocess

1.4 Creating a Subprocess

You can create a subprocess using the LIB$SPAWN and PPL$SPAWN run-time
library routines or the SYS§CREPRC system service. A subprocess created with
LIB$SPAWN or PPL$SPAWN is called a spawned subprocess.

Table 1-2 lists the context values provided by LIB§SPAWN, PPL$SPAWN, and
SYS$CREPRC for a subprocess when using the default values in the routine
calls.

Table 1-2 Comparison of LIB§SPAWN, PPL$SPAWN, and SYS$SCREPRC
Context Values

Context LIB$SPAWN PPL$SPAWN SYS$CREPRC
DCL Yes Yes No!

Default device and Parent’s Parent’s Parent’s
directory

Symbols Parent’s Parent’s No

Logical Names Parent’s? Parent’s? No?

Privileges Parent’s Parent’s Parent’s
Priority Parent’s Parent’s 0

IThe created subprocess can include DCL by executing the system image
SYS$SYSTEM:LOGINOUT.EXE.

2Plus group and job logical name tables.

1.4.1 Using LIB$SPAWN to Create a Spawned Subprocess

The LIB$SPAWN routine enables you to create a subprocess and to set some
context options for the new subprocess. LIB§SPAWN creates a subprocess with
the same priority as the parent process (generally priority 4). The format for
LIB$SPAWN is:

LIBSSPAWN ([command_string],[input_file],
J[output_file],[flags],[process-name],[process_id],[completion_status]
,[completion_efn],[completion_astadr],[completion_astarg],[prompt],[cli])

For complete information on using each argument, refer to the LIBSSPAWN
routine in OpenVMS RTL Library (LIB$) Manual.

Specifying a Command String

Use the command_string argument to specify a single DCL command to execute
once the subprocess is initiated. You can also use this argument to execute a
command procedure that, in turn, executes several DCL commands (@command_
procedure_name). ‘

Redefining SYS$ERROR, SYS$INPUT, and SYSSOUTPUT

Use the error, input, and output arguments to specify alternate input, output,
and error devices for SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. Using
alternate values for SYS$INPUT, SYS$OUTPUT and SYS$ERROR can be
particularly useful when you are synchronizing processes that are executing
concurrently.

Process Creation
- 1.4 Creating a Subprocess

1-4

Passing Parent Process Context Information to the Subprocess

Use the flags argument to specify which characteristics of the parent process are
to be passed on to the subprocess. With this argument, you can reduce the time
required to create a subprocess by passing only a part of the parent’s context. You
can also specify whether the parent process should continue to execute (execute
concurrently) or wait until the subprocess has completed execution (execute in
line).

After the Subprocess Completes Execution

Use the completion_status, completion_efn, and completion_. astadr
arguments to specify the action to be taken when the subprocess completes
execution (send a completion status, set a local event flag, or invoke an AST
procedure). For more information about event flags and ASTs, refer to Chapter 4.

Specifying an Alternate Prompt String
Use the prompt argument to specify a prompt string for the subprocess.

Specifying an Alternate Command Language Interpreter

Use the cli argument to specify a command language interpreter for the
subprocess.

Examples of Creating Subprocesses

The following example creates a subprocess that executes the commands

in the COMMANDS.COM command procedure, which must be a command
procedure on the current default device in the current default directory. The
created subprocess inherits symbols, logical names (including SYS$INPUT and
SYS$OUTPUT), keypad definitions, and other context information from the
parent. The subprocess executes while the parent process hibernates.

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS = LIB$SPAWN ('@COMMANDS’)

The following Fortran program segment creates a subprocess that does not inherit
the parent’s symbols, logical names, or keypad definitions. The subprocess reads
and executes the commands in the COMMANDS.COM command procedure.

(The CLI$symbols are defined in the $CLIDEF module of the system object or in
shareable image library. See Chapter 17 for more information.

! Mask for LIBS$SPAWN

INTEGER MASK

EXTERNAL CLI$M_NOCLISYM,

2 CLI$M_NOLOGNAM,

2 CLISM_NOKEYPAD

! Declare status and library routine
INTEGER STATUS, LIBS$SPAWN

! Set mask and call LIBS$SPAWN
MASK = 3LOC(CLISM NOCLISYM) .OR.

2 $L0C(CLI$M_NOLOGNAM) .OR

2 $LOC(CLI$M NOKEYPAD)

STATUS = LIB$SPAWN ('QCOMMANDS.COM',
2 '

2 MASK)

The following Fortran program segment creates a subprocess to execute the image
$DISK1:[USER.MATH]CALC.EXE. CALC reads data from DATA84.IN and writes
the results to DATA84.RPT. The subprocess executes concurrently. (CLI$M_
NOWAIT is defined in the $CLIDEF module of the system object or shareable
image library; see Chapter 17.)

Process Creation
1.4 Creating a Subprocess

! Mask for LIB$SPAWN

EXTERNAL CLI$M_NOWAIT

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS = LIB$SPAWN ('RUN $DISK1:[USER.MATH]CALC', ! Image

2 'DATA84.IN', ! Input
2 'DATA84 .RPT', ! Output
2 $LOC(CLISM NOWAIT)) ! Concurrent

1.4.2 Using PPL$SPAWN to Create a Spawned Subprocess

The PPL$SPAWN routine works similarly to LIB§SPAWN in that it creates one
or more subprocesses with the same context as the parent process on the same
node (or system) as the parent process. You can specify the name of an image to
be executed in the subprocess. However, you should limit use of PPL§SPAWN to
creating subprocesses specifically for parallel processing.

Before using PPL$SPAWN, you must set up special PPL$ data structures with
the PPLSINITIALIZE routine; otherwise, unpredictable results may occur. Also,
after you create a process with PPLS$CREATE_PROCESS and the process has
completed its activity, you must explicitly delete it with PPL$STOP.

For more information about using these PPL$ routines, see the OpenVMS RTL
Parallel Processing (PPL$) Manual.

1.4.3 Using SYS$CREPRC to Create a Subprocess

The Create Process (SYS$CREPRC) system service creates both subprocesses
and detached processes. This section discusses creating a subprocess; Section 1.5
describes creating a detached process. When you call the SYS$CREPRC system
service to create a process, you define the context by specifying arguments to
the service. The number of subprocesses a process can create is controlled by
its PQL$_PRCLM subprocess quota, an individual quota description under

the quota argument. The DETACH privilege controls your ability to create a
detached process with a user identification code (UIC) that is different from the
UIC of the creating process.

With SYS$CREPRC, you must usually specify the priority because the default
priority is zero. Though SYS$CREPRC does not set many context values for
the subprocess by default, it does allow you to set many more context values
than LIB$SPAWN. For example, you cannot specify separate privileges for a
subprocess with LIBSSPAWN directly, but you can with SYS$CREPRC.

By default, SYS$CREPRC creates a subprocess rather than a detached process.
The format for SYS$CREPRC is as follows:

SYS$CREPRC ([pidadr],[image],[input],[output],[error],[prvadr],[quota]
J[prcnam], [baspri}, [uic] ,imbxunt],[stsflg])

Ordinarily, when you create a subprocess, you need only assign it an image

to execute and, optionally, the SYS$INPUT, SYS$OUTPUT, and SYS$ERROR
devices. The system provides default values for the process’s privileges, resource
quotas, execution modes, and priority. In some cases, however, you may want
to define these values specifically. The arguments to the SYS$CREPRC system
service that control these characteristics follow. For details, see the descriptions
of arguments to the SYS§CREPRC system service in the OpenVMS System
Services Reference Manual.

1-5

Process Creation
1.4 Creating a Subprocess

The default values passed into the subprocess might not be complete enough for
your use. The following sections describe how to modify these default values with
SYS$CREPRC.

Redefining SYSSINPUT, SYS$SOUTPUT, and SYSSERROR

Use the input, output, and error arguments to specify alternate input, output,

. and error devices for SYS$INPUT, SYS$OUTPUT, and SYSSERROR. Using

alternate values for SYS$INPUT, SYS$OUTPUT, and SYS$ERROR can be
particularly useful when you are synchronizing processes that are executing
concurrently. By providing alternate or equivalent names for the logical names
SYS$INPUT, SYS$OUTPUT, and SYS$ERROR, you can place these logical name
/equivalence name pairs in the process logical name table for the created process.

The following C program segment is an example of defining input, output, and
error devices for a subprocess:

#include <stdio.h>
#include <ssdef.h>
#include <descrip.h>

main() {
unsigned int status;

$DESCRIPTOR(input,"SUB MAIL BOX"); /* Descriptor for input stream */

$DESCRIPTOR(output,"COﬁPUTE:OUT") ; /* Descriptor for output and error*/
/* streams */

$DESCRIPTOR(image, "COMPUTE.EXE"); /* Descriptor for image name */

/* Create the subprocess */

status = SYS$CREPRC(0, /* process id */
&image, /* image */
ginput, @ /* input SYSSINPUT device */
soutput, @ /* output SYSSOUTPUT device*/
soutput, @ /* error SYSSERROR device*/
0,0,0,0,0,0,0);

}

© The input argument equates the equivalence name SUB_MAIL_BOX to the
logical name SYS$INPUT. This logical name may represent a mailbox that
the calling process previously created with the Create Mailbox and Assign
Channel (SYS$CREMBX) system service. Any input the subprocess reads
from the logical device SYS$INPUT are read from the mailbox.

® The output argument equates the equivalence name COMPUTE_OUT to the
logical name SYS$OUTPUT. All messages the program writes to the logical
device SYS$OUTPUT are written to this file.

© The error argument equates the equivalence name COMPUTE_OUT to
the logical name SYS$ERROR. All system-generated error messages will be
written into this file. Because this is the same file as that used for program
output, the file effectively contains a complete record of all output produced
during the execution of the program image.

The SYS$CREPRC system service does not provide default equivalence names
for the logical names SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. If none

are specified, any entries in the group or system logical name tables, if any, may
provide equivalences. If, while the subprocess executes, it reads or writes to one
of these logical devices and no equivalence name exists, an error condition results.

Process Creation
1.4 Creating a Subprocess

In a program that creates a subprocess, you can cause the subprocess to share the
input, output, or error device of the creating process. You must first follow these
steps:

1. Use the Get Device/Volume Information (SYS$GETDVI) system service to
- obtain the device name for the logical name SYS$INPUT, SYS$OUTPUT, or
SYS$ERROR.

2. Specify the address of the descriptor returned by the SYS$GETDVI service
when you specify the input, output, or error argument to the SYS$CREPRC
system service.

This procedure is illustrated in the following example:

#include <stdio.h>
#include <ssdef.h>
#include <prcdef.h>
$include <dvidef.h>
#include <descrip.h>

/* Item list to return device name */

struct {
unsigned short buflen, item code;
void *bufaddr;
void *retlenaddr;
unsigned int terminator;
}itm 1st;

main() {

char term[64];
unsigned int baspri=4, status, *termlen;

/* Descriptors for SYSSGETDVI */
$DESCRIPTOR (lognam, "SYS$INPUT") ;

/* Descriptors for SYS$SCREPRC */
$DESCRIPTOR(image,"SYS$SYSTEM: LOGINOUT.EXE");
$DESCRIPTOR(termdesc, term);

/* BAssign values to the item list */

itm lst.buflen = 64;
itm lst.item code = DVI$_DEVNAM;
itm lst.bufaddr = term;

itm lst.retlenaddr = &termlen;

itm lst.terminator = 0;

/* Determine the terminal name */

status = SYSSGETDVI(O, /* efn (event flag) */
0, /* channel */
&lognam, /* devnam */
&itm lst, /* item list */
0,0,0,0);

if((status & 1) != 1)
LIB$SIGNAL(status);

/* Create the subprocess */

Process Creation
1.4 Creating a Subprocess

status = SYS$CREPRC(0, &image, /* image to be run */
&termdesc, /* input (SYS$INPUT device) */
&termdesc, /* output (SYSSOUTPUT device) */
&termdesc, /* error (SYS$ERROR device) */
0,0,0,
sbaspri, /* base priority */
0,0,0);

if((status & 1) != 1)
LIBSSIGNAL(status);

}

In this example, the subprocess executes, and the logical names SYS$INPUT,
SYS$OUTPUT, and SYSSERROR are equated to the device name of the creating
process’s logical input device. The subprocess can then do one of the following:

e Use OpenVMS RMS to open the device for reading or writing, or both.

e TUse the Assign I/O Channel (SYS$ASSIGN) system service to assign an I/O
channel to the device for input/output operations.

In the following example, the program assigns a channel to the device specified
by the logical name SYS$OUTPUT:

unsigned int status;
unsigned short chan;
$DESCRIPTOR(devnam, "SYSSOUTPUT");

status = SYS$ASSIGN(&devnam, /* Device name */
&chan, /* Channel */
0, 0, 0);

For more information about channel assignment for I/O operations, see Chapter 9.

Setting Privileges

Set different privileges by defining the privilege list for the subprocess using
the prvadr argument. This is particularly useful when you want to dedicate

a subprocess to execute privileged or sensitive code. If you do not specify this
argument, the privileges of the calling process are used. If you specify the
prvadr argument, only the privileges specified in the bit mask are used; the
privileges of the calling process are not used. For example, a creating process
has the user privileges GROUP and TMPMBX. It creates a process, specifying
the user privilege TMPMBX. The created process receives only the user pr1v1lege
TMPMBYX; it does not have the user privilege GROUP.

If you need to create a process that has a privilege that is not one of your current
process’s privileges, you must have the user privilege SETPRV.

Symbols associated with privileges are defined by the $PRVDEF macro. Each
symbol begins with PRV$V_ and identifies the bit number that must be set to
specify a given privilege. The following example shows the data definition for a
bit mask specifying the GRPNAM and GROUP privileges:

struct {
unsigned int privs = PRV$M_GRPNAM || PRV$M_GROUP;
unsigned int terminator;

}prvmsk;

Process Creation
1.4 Creating a Subprocess

Setting Process Quotas

Set different process quotas by defining the quota list of system resources for the
subprocess using the quota argument. This option can be useful when managing
a subprocess to limit use of system resources (such as AST usage, I/O, CPU time,
lock requests, and working set size and expansion). If you do not specify this
argument, the system defines default quotas for the subprocess.

Setting the Subprocess Priority

Set the subprocess priority by setting the base execution priority with the baspri
argument. If you do not set the subprocess priority, the priority defaults to 2 for
VAX MACRO and VAX BLISS-32 and to 0 for all other languages. If you want

a subprocess to have a higher priority than its creator, you must have the user
privilege ALTPRI to raise the priority level.

Specifying Additional Processing Options

Enable and disable parent and subprocess wait mode, control process

swapping, control process accounting, control process dump information, control
authorization checks, and control working set adjustments using the stsflg
argument. This argument defines the status flag, a set of bits that control some
execution characteristics of the created process, including resource wait mode and
process swap mode.

Defining an Image for a Subprocess to Execute

When you call the SYS$CREPRC system service, use the image argument
to provide the process with the name of an image to execute. For example,
the following lines of C create a subprocess to execute the image named
CARRIE.EXE:

$DESCRIPTOR (image, "CARRIE") ;

status = SYS$CREPRC(0, &image, ...);

In this example, only a file name is specified; the service uses current disk and
directory defaults, performs logical name translation, uses the default file type
.EXE, and locates the most recent version of the image file. When the subprocess
completes execution of the image, the subprocess is deleted. Process deletion is
described in Chapter 3.

1.4.3.1 Disk and Directory Defaults for Created Processes

When you use the SYS§CREPRC system service to create a process to execute
an image, the system locates the image file in the default device and directory of
the created process. Any created process inherits the current default device and
directory of its creator.

If a created process runs an image that is not in its default directory, you must
identify the directory and, if necessary, the device in the file specification of the
image to be run.

There is no way to define a default device or directory for the created process
that is different from that of the creating process in a call to SYS$CREPRC.

The created process can, however, define an equivalence for the logical device
SYS$DISK by calling the Create Logical Name (SCRELNM) system service.

Process Creation
1.4 Creating a Subprocess

If the process is a subprocess, you, in the creating process, can define an
equivalence name in the group logical name table, job logical name table, or

any logical name table shared by the creating process and the subprocess. The
created process then uses this logical name translation as its default directory.
The created process can also set its own default directory by calling the OpenVMS
RMS default directory control routine, SYS$SETDDIR.

A process can create a process with a default directory that is different from its
own by completing the following steps in the creating process:

1. Make a call to SYS$SETDDIR to change its own default directory
2. Make a call to SYS$CREPRC to create the new process

3. Make a call to SYS$SETDDIR to change its own default directory back to the
default directory it had before the first call to SYS$SETDDIR

The creating process now has its original default directory. The new process has
the different default directory that the creating process had when it created the
new process. For details on how to call SYS$SETDDIR, see the OpenVMS System
Services Reference Manual.

1.4.4 Debugging Within a Subprocess

You can allow a program to be debugged within a subprocess. To allow debug
operations, equate the subprocess logical names DBG$INPUT and DBG$OUTPUT
to the terminal. When the subprocess executes the program, which has

been compiled and linked with the debugger, the debugger reads input from
DBGSINPUT and writes output to DBGSOUTPUT.

If you are executing the subprocess concurrently, you should restrict debugging to
the program in the subprocess. The debugger prompt DBG> should enable you
to differentiate between input required by the parent process and input required
by the subprocess. However, each time the debugger displays information, you
must press the Return key to display the DBG> prompt. (By pressing the Return
key, you actually write to the parent process, which has regained control of the
terminal following the subprocess’s writing to the terminal. Writing to the parent
process allows the subprocess to regain control of the terminal.)

1.5 Creating a Detached Process

1-10

The creation of a detached process is primarily a task the operating system
performs when you log in. In general, an application creates a detached process
only when a program must continue executing after the parent process exits.
To do this, you should use the SYS$CREPRC system service. You can also

use detached processes to write to another process’s terminal by using the
SYS$BREAKTHRU system service.

The DETACH privilege controls the ability to create a detached process with

a UIC that is different from the UIC of the creating process. You can use the
uic argument to the SYS$CREPRC system service to define whether a process
is a subprocess or a detached process. The uic argument provides the created
process with a user identification code (UIC). If you omit the uic argument, the
SYS$CREPRC system service creates a subprocess that executes under the UIC
of the creating process.

You can also create a detached process with the same UIC as the creating
process by specifying the detach flag in the stsflg argument. You do not need
the DETACH privilege to create a detached process with the same UIC as the
creating process.

Process Creation
1.5 Creating a Detached Process

Examples of Creating a Detached Process

The following Fortran program segment creates a process that executes the
image SYS$USER:[ACCOUNTIINCTAXES.EXE. INCTAXES reads input from
the file TAXES.DAT and writes output to the file TAXES.RPT. (TAXES.DAT and
TAXES.RPT are in the default directory on the default disk.) The last argument
specifies that the created process is a detached process (the UIC defaults to that
of the parent process). (The symbol PRC$M_DETACH is defined in the $PRCDEF
module of the system macro library.)

EXTERNAL PRC$M DETACH

! Declare status and system routines
INTEGER STATUS,SYS$CREPRC

STATUS = SYSSCREPRC (,

2 'SYS$USER: [ACCOUNT JINCTAXES', ! Image

2 'TAXES.DAT', ! SYS$INPUT
2 'TAXES.RPT', ! SYSSOUTPUT
2 rree L.

2 $VAL(4), ! Priority

2 r

2 $VAL (3LOC(PRCSM_DETACH)) ! Detached

The following program segment creates a detached process to execute the DCL
commands in the command file SYS$USER:[TEST|COMMANDS.COM. The
system image SYS$SYSTEM:LOGINOUT.EXE is executed to include DCL in the
created process. The DCL commands to be executed are specified in a command
procedure that is passed to SYSSCREPRC as the input file. Output is written to
the file SYS$USER:[TEST]OUTPUT.DAT.

STATUS = SYSSCREPRC (,

2 'SYS$SYSTEM: LOGINOUT', ! Image

2 'SYSSUSER: [TEST]COMMANDS.COM’,! SYSSINPUT
2 'SYSSUSER: [TEST]OUTPUT.DAT', ! SYS$SOUTPUT
2 rere

2 $VAL(4), ! Priority

2 r

2 $VAL ($LOC (PRC$M_DETACH)) ! Detached

1-11

2

Process Communication

This chapter describes communication mechanisms used within a process and
between processes. It contains the following sections:

Section 2.1 describes communication within a process.
Section 2.2 describes communication between processes.

The operating system allows your process to communicate within itself and with
other processes. Processes can be either wholly independent or cooperative.
This chapter presents considerations for developing applications that require
the concurrent execution of many programs, and how you can use process
communication to perform the following functions:

e Synchronize events
e Share data

¢ Obtain information about events important to the program you are executing

2.1 Communication Within a Process

Communicating within a process, from one program component to another, can be
performed using the following methods:

® Local event flags

® Logical names (in supervisor mode)

¢ Global symbols (command language interpreter symbols)
e Common area

For passing information among chained images, you can use all four methods
because the image reading the information executes immediately after the image
that deposited it. Only the common area allows you to pass data reliably from
one image to another in the event that another image’s execution intervenes
between the two communicating images.

For communicating within a single image, you can use event flags, logical names,
and symbols. For synchronizing events within a single image, use event flags.
See Chapter 14 for more information about synchronizing events.

Since permanent mailboxes and permanent global sections are not deleted when
the creating image exits, they also can be used to pass information from the
current image to a later executing image. However, use of the common area

is recommended because it uses fewer system resources than the permanent
structures and does not require privilege. (You need the PRMMBX privilege to
create a permanent mailbox and the PRMGBL privilege to create a permanent
global section.)

Process Communication
2.1 Communication Within a Process

2.1.1 Using Local Event Flags

Event flags are status posting bits maintained by the operating system for general
programming use. Programs can set, clear, and read event flags. By setting and
clearing event flags at specific points, one program component can signal when an
event has occurred. Other program components can then check the event flag to
determine when the event has been completed. For more information about using
local and common event flags for synchronizing events, refer to Chapter 14.

2.1.2 Using Logical Names

Logical names can store up to 255 bytes of data. When you need to pass
information from one program to another within a process, you can assign

data to a logical name when you create the logical name; then, other programs
can access the contents of the logical name. See Chapter 10 for more information
about logical name system services.

2.1.2.1 Using Logical Name Tables

If both processes are part of the same job, you can place the logical name in

the process logical name table (LNM$PROCESS) or in the job logical name table
(LNM$JOB). If a subprocess is prevented from inheriting the process logical name
table, you must communicate using the job logical name table. If the processes
are in the same group, place the logical name in the group logical name table
LNM$GROUP (requires GRPNAM or SYSPRYV privilege). If the processes are
not in the same group, place the logical name in the system logical name table
LNM$SYSTEM (requires SYSNAM or SYSPRYV privilege). Symbols can also be
used, but only between a parent and a spawned subprocess that has inherited the
parent’s symbols.

2.1.2.2 Using Access Modes

You can create a logical name under three access modes—user, supervisor, or
executive. If you create a process logical name in user mode, it is deleted after
the image exits. If you create a logical name in supervisor or executive mode, it is
retained after the image exits. Therefore, to share data within the process from
one image to the next, use supervisor-mode or executive-mode logical names.

2.1.2.3 Creating and Accessing Logical Names

2-2

Perform the following steps to create and access a logical name:

1. Create the logical name and store data in it. Use LIB$SET_LOGICAL to
create a supervisor logical name. No special privileges are required. You can
also use the system service SYS$CRELNM, but you need SYSNAM privilege
to create a supervisor logical name. SYS$CRELNM also allows you to create
a logical name for the system or group table and to create a logical name in
any other mode, assuming you have appropriate privileges.

2. Access the logical name. Use the system service SYS$TRNLNM.
SYS$TRNLNM searches for the logical name and returns information about
it.

3. Once you have finished using the logical name, delete it. Use the routine
LIB$DELETE_LOGICAL or SYS$DELLNM. LIB$DELETE_LOGICAL
deletes the supervisor logical name without requiring any special privileges.
SYS$DELLNM requires special privileges to delete logical names for
privileged modes. However, you can also use this routine to delete loglcal
name tables or a logical name within a system or group table.

Process Communication
2.1 Communication Within a Process

Example 2-1 creates a spawned subprocess to perform an iterative calculation.
The logical name REP_NUMBER specifies the number of times that REPEAT, the
program executing in the subprocess, should perform the calculation. Since both
the parent process and the subprocess are part of the same job, REP_NUMBER
is placed in the job logical name table LNM$JOB. (Note that logical names are
case sensitive; specifically, LNM$JOB is a system-defined logical name that refers
to the job logical name table, whereas Inm$job is not.) To satisfy the references to
LNM$_STRING, the example includes the file $LNMDEF.

Example 2-1 Performing an Iterative Calculation with a Spawned Subprocess

PROGRAM CALC

! Status variable and system routines
INTEGER*4 STATUS,

2 SYS$CRELNM,
2 LIB$GET EF,
2 LIB$SPAWN

! Define itmlst structure
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR
END MAP
MAP
INTEGER*4 END LIST
END MAP
END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ LNMLIST(2)
! Number to pass to REPEAT.FOR
CHARACTER*3 REPETITIONS STR
INTEGER REPETITIONS -
! Symbols for LIB$SPAWN and SYS$CRELNM
! Include FORSYSDEF symbol definitions:

INCLUDE ' (SLNMDEF) '
EXTERNAL CLI$M NOLOGNAM,

2 CLI$M NOCLISYM,

2 CLISM NOKEYPAD,

2 CLI$M NOWAIT,

2 LNM$_STRING

. ! Set REPETITIONS_ STR

! Set up and create logical name REP_NUMBER in job table
LNMLIST(1).BUFLEN 3

LNMLIST(1).CODE LNM$ STRING

LNMLIST(1).BUFADR $LOC(REPETITIONS STR)

LNMLIST(1).RETLENADR 0

LNMLIST(2).END_LIST 0

STATUS = SYS$CRELNM (,

2 'LNM$JOB’, ! Logical name table
2 'REP NUMBER’,, ! Logical name

2 LNMLIST) ! List specifying

! equivalence string
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

(continued on next page)

2-3

Process Communication
2.1 Communication Within a Process

2-4

Example 2-1 (Cont.) Performing an lterative Calculation with a Spawned

Subprocess

! Execute REPEAT.FOR in a subprocess
MASK = %LOC (CLI$M NOLOGNAM) .OR.

2 $L0C (CLI$M NOCLISYM) .OR.
2 $L0C (CLI$M NOKEYPAD) .OR.
2 $L0C (CLIS$M NOWAIT)

STATUS = LIB$GET EF (FLAG)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
STATUS = LIB$SPAWN (‘RUN REPEAT',,,MASK,,,,FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (S$VAL(STATUS))

REPEAT.FOR

PROGRAM REPEAT
! Repeats a calculation REP_NUMBER of times,
! where REP_NUMBER is a logical name

! Status variables and system routines
INTEGER STATUS,

2 SYSSTRNLNM,

2 SYSSDELLNM

! Number of times to repeat
INTEGER*4 REITERATE,
2 REPEAT STR LEN
CHARACTER*3 REPEAT STR
{ Item list for SYSSTRNLNM
! Define itmlst structure
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR
END MAP
MAP
INTEGER*4 END_LIST
END MAP
END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ LNMLIST (2)
! Define item code
EXTERNAL LNM$_STRING
! Set up and translate the logical name REP_NUMBER
LNMLIST(1) .BUFLEN 3
LNMLIST(1).CODE LNM$_STRING
LNMLIST(1).BUFADR $LOC(REPEAT STR)
LNMLIST(1).RETLENADR %LOC(REPEAT_STR_LEN)

nowononn

LNMLIST(2) .END_LIST = 0
STATUS = SYSSTRNLNM (,
2 'LNM$JOB’, ! Logical name table
2 'REP_NUMBER’,, ! Logical name
2 LNMLIST) ! List requesting
!

equivalence string
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))

(continued on next page)

Process Communication
2.1 Communication Within a Process

Example 2-1 (Cont.) Performing an Ilterative Calculation with a Spawned
Subprocess

! Convert equivalence string to integer

! BN causes spaces to be ignored

READ (UNIT = REPEAT STR (1:REPEAT STR LEN),
2 FMT = ' (BN,I3)’) REITERATE

! Calculations

DO I = 1, REITERATE

END DO

! Delete logical name

STATUS = SYS$DELLNM ('LNM$JOB’, ! Logical name table
2 'REP_NUMBER',) ! Logical name

IF (.NOT. STATUS) CALL LIB$SIGNAL ($%VAL(STATUS))

END

2.1.3 Using Command Language Interpreter Symbols

The symbols you create and access for process communication are command
language interpreter (CLI) symbols. These symbols are stored in symbol tables
maintained for use within the context of DCL, the default command language
interpreter. They can store up to 255 bytes of information. The use of these
symbols is limited to processes using DCL. If the process is not using DCL, an
error status is returned by the symbol routines.

2.1.3.1 Local and Global Symbols
The two kinds of CLI symbols and their definitions are as follows:

e Local—A local symbol is available to the command level that defined it, any
command procedure executed from that command level, and lower command
levels.

¢ Global—A global symbol can be accessed from any command level, regardless
of the level at which it was defined.

2.1.3.2 Creating and Using Global Symbols
If you need to pass information from one program to another within a process,
you can assign data to a global symbol when you create the symbol. Then, other
programs can access the contents of the global symbol. You should use global
symbols so that the value within the symbol can be accessed by other programs.

To use DCL global symbols, follow this procedure:

1. Create the symbol and assign data to it using the routine LIB§SET SYMBOL.
Make sure you specify that the symbol will be placed in the global symbol
table in the tbl-ind argument. If you do not specify the global symbol table,
the symbol will be a local symbol.

2. Access the symbol with the LIB§GET_SYMBOL routine. This routine uses
DCL to return the value of the symbol as a string.

3. Once you have finished using the symbol, delete it with the LIBSDELETE_
SYMBOL routine. If you created a global symbol, make sure you specify the
global symbol table in the tbl-ind argument. By default, the system searches
the local symbol table.

Process Communication
2.1 Communication Within a Process

2.1.4 Using the Common Area

Use the common area to store data from one image to the next. Such data is
unlikely to be corrupted between the time one image deposits it in a common area
and another image reads it from the area. The common area can store 252 bytes
of data. The LIB$PUT_COMMON routine writes information to this common
area; the LIB$GET_COMMON routine reads information from this common area.

2.1.41 Creating the Process Common Area

The common area for your process is automatically created for you; no special
declaration is necessary. To pass more than 255 bytes of data, put the data
into a file instead of in the common area and use the common area to pass the
specification.

2.1.4.2 Common I/O Routines

The LIB$PUT_COMMON routine allows a program to copy a string into the
process’s common storage area. This area remains defined during multiple image
activations. LIBSGET_COMMON allows a program to copy a string from the
common area into a destination string. The programs reading and writing the
data in the common area must agree upon its amount and format. The maximum

“length of the destination string is defined as follows:

[min(256, the length of the data in the common storage area) - 4]
This maximum length is normally 252.

In BASIC and Fortran, you can use these routines to allow a USEROPEN
routine to pass information back to the routine that called it. A USEROPEN
routine cannot write arguments. However, it can call LIB§PUT_COMMON to put

information into the common area. The calling program can then use LIB$GET _
COMMON to retrieve it.

You can also use these routines to pass information between images run
successively, such as chained images run by LIBSRUN_PROGRAM.

2.1.4.3 Modifying or Deleting Data in the Common Block

You cannot modify or delete data in the process common area unless LIB§PUT_
COMMON is invoked. Therefore, you can execute any number of images between
one image and another, provided that LIBSPUT_COMMON has not been invoked.
Each subsequent image reads the correct data. Invoking LIB§GET _COMMON to
read the common block does not modify the data.

2.1.4.4 Specifying Other Types of Data

Although the descriptions of the LIB$PUT_COMMON and LIB$GET _COMMON
routines in the OpenVMS RTL Library (LIB$) Manual specify a character string
for the argument containing the data written to or read from the common area,
you can specify other types of data. However, you must pass both noncharacter
and character data by descriptor.

The following program segment reads statistics from the terminal and enters
them into a binary file. After all of the statistics are entered into the file, the
program places the name of the file into the per-process common area and exits.

Process Communication
2.1 Communication Within a Process

! Enter statistics

{ Put the name of the stats file into common
STATUS = LIB$PUT COMMON (FILE NAME (1:LEN))

The following program segment reads the file name from the per-process common
block and compiles a report using the statistics from that file.

! Read the name of the stats file from common
STATUS = LIB$GET_COMMON (FILE_NAME,
2 LEN)

! Compile the report

2.2 Communication Between Processes

Communication between processes, or interprocess communication, can be
performed in the following ways:

¢ Shared files

¢ Common event flags

¢ Logical names

® Mailboxes

* Global sections

¢ Lock management system services

Each approach offers different possibilities in terms of the speed at which it
communicates information and the amount of information it can communicate.
For example, shared files offer the possibility of sharing an unlimited amount
of information; however, this approach is the slowest because the disk must be
accessed to share information.

Like shared files, global sections offer the possibility of sharing large amounts of
information. Because sharing information through global sections requires only
memory access, it is the fastest communication method.

Logical names and mailboxes can communicate moderate amounts of information.
Because each method operates through a relatively complex system service, each
is faster than files, but slower than the other communication methods.

The lock management services and common event flag cluster methods can
communicate relatively small amounts of information. With the exception of
global sections, they are the fastest of the interprocess communication methods.

2-7

Process Communication
2.2 Communication Between Processes

Common event flags: Processes executing within the same group can use
common event flags to signal the occurrence or completion of particular activities.
For details about event flags, and an example of how cooperating processes in the
same group use a common event flag, see Chapter 14.

Logical name tables: Processes executing in the same job can use the job
logical name table to provide member processes with equivalence names for
logical names. Processes executing in the same group can use the group logical
name table. A process must have the GRPNAM or SYSPRN privilege to place
names in the group logical name table. All processes in the system can use

the system logical name table. A process must have the SYSNAM or SYSPRV
privilege to place names in the system logical name table. Processes can also
create and use user-defined logical name tables. For details about logical names
and logical name tables, see Chapter 10.

Mailboxes: You can use mailboxes as virtual input/output devices to pass
information, messages, or data among processes. For additional information on
how to create and use mailboxes, see Section 2.2.1. Mailboxes may also be used
to provide a creating process with a way to determine when and under what
conditions a created subprocess was deleted. For an example of a termination
mailbox, see Section 3.6.4.2.

Global sections: Global sections can be either disk files or page-file sections
that contain shareable code or data. Through the use of memory management
services, these files can be mapped to the virtual address space of more than one
process. In the case of a data file on disk, cooperating processes can synchronize
reading and writing the data in physical memory; as data is updated, system
paging results in the updated data being written directly back into the disk file.
Global page-file sections are useful for temporary storage of common data; they
are not mapped to a disk file. Instead, they page only to the system default page
file. Global sections are described in more detail in Chapter 19 and Chapter 20.

Lock management system services: Processes can use the lock management
system services to control access to resources (any entity on the system that
the process can read, write, or execute). In addition to controlling access,
the lock management services provide a mechanism for passing information
among processes that have access to a resource (lock value blocks). Blocking
ASTs can be used to notify a process that other processes are waiting for a
resource. Using lock value blocks is a practical technique for communicating
in cluster environments. With lock value blocks, communication between two
processes from node to node in a distributed environment is an effective way
of implementing cluster communication. For more information about the lock
management system services, see Chapter 15.

While common event flags and lock management services establish
communication, they are most useful for synchronizing events and are discussed
in Chapter 14. Global sections and shared files are best used for sharing data
and are discussed in Chapter 17.

2.2.1 Mailboxes

A mailbox is a virtual device used for communication among processes. You must
call OpenVMS RMS services, language I/O statements, or /O system services to
perform actual data transfers.

Process Communication
2.2 Communication Between Processes

2.2.1.1 Creating a Mailbox
To create a mailbox, use the SYS$CREMBX system service. SYS$SCREMBX
creates the mailbox and returns the number of the I/O channel assigned to the
mailbox.

The format for the SYS$CREMBX system service is as follows:
SYS$CREMBX ([prmflg], chan, [maxmsg], [bufquo), [promsk], [acmode], [lognam])

When you invoke SYS$CREMBX, you usually specify the following two
arguments:

® Specify a variable to receive the I/O channel number using the chan
argument. This argument is required.

® Specify the logical name to be associated with the mailbox using the lognam
argument. The logical name identifies the mailbox for other processes and for
input/output statements.

The SYS$CREMBX system service also allows you to specify the message size,
buffer size, mailbox protection code, and access mode of the mailbox; however, the
default values for these arguments are usually sufficient. For more information
on SYS$CREMBYX, refer to the OpenVMS System Services Referénce Manual.

2.2,1.2 Creating Temporary and Permanent Mailboxes

By default, a mailbox is deleted when no I/O channel is assigned to it. Such

a mailbox is called a temporary mailbox. If you have PRMMBX privilege, you
can create a permanent mailbox (specify the prmflg argument as 1 when you
invoke SYS$CREMBX). A permanent mailbox is not deleted until it is marked
for deletion with the SYS$DELMBX system service (requires PRMMBX). Once a
permanent mailbox is marked for deletion, it is like a temporary mailbox; when
the last I/O channel to the mailbox is deassigned, the mailbox is deleted.

The following statement creates a mailbox named MAIL_BOX. The I/O channel
assigned to the mailbox is returned in MBX_CHAN.

! I/0 channel
INTEGER*2 MBX_CHAN

! Mailbox name
CHARACTER™ (*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX’)

STATUS = SYS$CREMBX (,

2 MBX CHAN, ! I/0 channel

2 rrr

2 MBX NAME) ! Mailbox name
Note

Do not use MAIL as the logical name for a mailbox or the system will not
execute the proper image in response to the DCL command MAIL.

Process Communication
2.2 Communication Between Processes

The following program segment creates a permanent mailbox, then creates a
subprocess that marks that mailbox for deletion:

INTEGER STATUS,
2 SYS$CREMBX
INTEGER*2 MBX CHAN

! Create permanent mailbox

STATUS = SYS$CREMBX (%VAL(1), ! Permanence flag
2 MBX_CHAN, ! Channel

2 rert .

2 'MAIL BOX') ! Logical name

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))
! Create subprocess to delete it

STATUS = LIB$SPAWN ('RUN DELETE MBX')

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

The following program segment executes in the subprocess. Notice that the
subprocess must assign a channel to the mailbox and then use that channel to
delete the mailbox. Any process that deletes a permanent mailbox, unless it is
the creating process, must use this technique. (Use SYS$ASSIGN to assign the
channel to the mailbox to ensure that the mailbox already exists. SYSSCREMBX
system service assigns a channel to a mailbox; however, SYSSCREMBX also
creates the mailbox if it does not already exist.)

INTEGER STATUS,

2 SYS$DELMBX,
2 SYSSASSIGN
INTEGER*2 MBX CHAN

! Assign channel to mailbox

STATUS = SYS$SASSIGN ('MAIL BOX',

2 MBX CHAN,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Delete the mailbox

STATUS = SYS$DELMBX ($VAL(MBX CHAN))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

2.2.1.3 Assigning an I/0 Channel Along with a Mailbox

2-10

A mailbox is a virtual device used for communication between processes. A
channel is the communication path that a process uses to perform I/O operations
to a particular device. The LIBSASN_WTH_MBX routine assigns a channel to a
device and associates a mailbox with the device.

Normally, a process calls the SYSSCREMBX system service to create a mailbox
and assign a channel and logical name to it. In the case of a temporary mailbox,
this service places the logical name corresponding to the mailbox in the job logical
name table. This implies that any process running in the same job and using the
same logical name uses the same mailbox.

Sometimes it is not desirable to have more than one process use the same
mailbox. For example, when a program connects explicitly with another process
across a network, the program uses a mailbox to obtain the data confirming the
connection and to store the asynchronous messages from the other process. If
that mailbox is shared with other processes in the same group, there is no way
to determine which messages are intended for which processes; the processes
read each other’s messages, and the original program does not receive the correct
information from the cooperating process across the network link.

Process Communication
2.2 Communication Between Processes

The LIB$ASN_WTH_MBX routine avoids this situation by associating the
physical mailbox name with the channel assigned to the device. To create

a temporary mailbox for itself and other processes cooperating with it, your
program calls LIBSASN_WTH_MBX. The run-time library routine assigns

the channel and creates the temporary mailbox by using the system services
$GETDVI, $ASSIGN, and $CREMBX. Instead of a logical name, the mailbox is
identified by a physical device name of the form MBcu. The elements that make
up this device name are as follows:

MB indicates that the device is a mailbox.
c is the controller.

u is the unit number.

The routine returns this device name to the calling program, which then must
pass the mailbox channel to the other programs with which it cooperates. In this
way, the cooperating processes access the mailbox by its physical name instead of
by its jobwide logical name.

The calling program passes the routine a device name, which specifies the device
to which the channel is to be assigned. For this argument (called dev-nam), you
can use a logical name. If you do so, the routine attempts one level of logical
name translation.

The privilege restrictions and process quotas required for using this routine are
those required by the $GETDVI, $CREMBX, and $ASSIGN system services.

2.2.1.4 Reading and Writing Data to a Mailbox
The following list describes the three ways you can read and write to a mailbox:

® Synchronous I/O—Reads or writes to a mailbox and then waits for the
cooperating image to perform the other operation. Use I/O statements for
your programming language. This is the recommended method of addressing
a mailbox.

* Immediate I/O—Queues a read or write operation to a mailbox and continues
program execution after the operation completes. To do this, use the
SYS$QIOW system service.

¢ Asynchronous I/O—Queues a read or write operation to a mailbox and
continues program execution while the request executes. To do this, use
the SYS$QIO system service. When the read or write operation completes,
the I/O status block (if specified) is filled, the event flag (if specified) is set,
and the AST routine (if specified) is executed.

Chapter 9 describes the SYS$QIO and SYS$QIOW system services and provides
further discussion of mailbox I/O. See the OpenVMS System Services Reference
Manual for more information. Digital Equipment Corporation recommends that
you supply the optional I/O status block parameter when you use these two
system services. The contents of the status block varies depending on the QIO
function code; refer to the function code descriptions in the OpenVMS I/0 User’s
Reference Manual for a description of the appropriate status block.

2-11

Process Communication
2.2 Communication Between Processes

2.2.1.5 Using Synchronous Mailbox I/O

2-12

Use synchronous I/O when you read or write information to another image and
cannot continue until that image responds.

The program segment shown in Example 2—2 opens a mailbox for the first time.
To open a mailbox for Fortran I/O, use the OPEN statement with the following
specifiers: UNIT, FILE, CARRIAGECONTROL, and STATUS. The value for the
keyword FILE should be the logical name of a mailbox (SYS$CREMBX allows
you to associate a logical name with a mailbox when the mailbox is created). The
value for the keyword CARRIAGECONTROL should be "LIST’. The value for the
keyword STATUS should be 'NEW’ for the first OPEN statement and ’OLD’ for
subsequent OPEN statements.

Example 2-2 Opening a Mailbox

! Status variable and values
INTEGER STATUS

! Logical unit and name for mailbox

INTEGER MBX LUN

CHARACTER(*) MBX NAME

PARAMETER (MBX NAME = MAIL BOX)

! Create mailbox

STATUS = SYS$SCREMBX (,

2 MBX CHAN, ! Channel

2 rrre

2 MBX NAME) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = MBX LUN,

2 FILE = MBX NAME,

2 CARRIAGECONTROL = 'LIST’,

2 STATUS = 'NEW')

In Example 2-3, one image passes device names to a second image. The second
image returns the process name and the terminal associated with the process
that allocated each device. A WRITE statement in the first image does not
complete until the cooperating process issues a READ statement. (The variable
declarations are not shown in the second program because they are very similar
to those in the first program.)

Example 2-3 Synchronous I/O Using a Mailbox

! DEVICE.FOR
PROGRAM PROCESS_DEVICE

! Status variable
INTEGER - STATUS

! Name and I/0 channel for mailbox
CHARACTER* (*) MBX NAME

PARAMETER (MBX NAME = 'MAIL BOX')
INTEGER*2 MBX CHAN -

! Logical unit number for FORTRAN I/0
INTEGER MBX_LUN

(continued on next page)

Process Communication
2.2 Communication Between Processes

Example 2-3 (Cont.) Synchronous 1/O Using a Mailbox

! Character string format
CHARACTER* (*) CHAR_FMT
PARAMETER (CHAR_FMT = ’(A50)’)
! Mailbox message
CHARACTER*50 MBX MESSAGE

! Create the mailbox
STATUS = SYSSCREMBX (,

2 MBX CHAN, ! Channel
2 trrs .
2 MBX NAME) ! Logical name

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIBSGET LUN (MBX LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($%VAL(STATUS))
OPEN (UNIT = MBX LUN,

2 FILE = MBX NAME,

2 CARRIAGECONTROL = 'LIST’,

2 STATUS = 'NEW’)

! Create subprocess to execute GETDEVINF.EXE
STATUS = SYSSCREPRC (,

2 'GETDEVINF', ! Image

2 rreea

2 'GET_DEVICE’, ! Process name
2 $VAL(4),,,) ! Priority

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Pass device names to GETDEFINF

WRITE (UNIT=MBX_LUN,

2 FMT=CHAR_FMT) "SYSSDRIVEO'

! Read device information from GETDEFINF

READ (UNIT=MBX LUN,

2 FMT=CHAR_FMT) MBX_MESSAGE

.
.

END
GETDEVINF.FOR

.

! Create mailbox
STATUS = SYSSCREMBX (,

2 MBX CHAN, ! I/0 channel
2 rrrs .
2 MBX NAME) ! Mailbox name

IF (.NOT. STATUS) CALL LIBS$SIGNAL (VAL (STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT=MBX LUN,

2 FILE=MBX NAME,

2 CARRIAGECONTROL='LIST’,

2 STATUS = 'OLD’)

! Read device names from mailbox

READ (UNIT=MBX LUN,

2 FMT=CHAR_FMT) MBX MESSAGE

(continued on next page)

2-13

Process Communication
2.2 Communication Between Processes

Example 2-3 (Cont.) Synchronous I/O Using a Mailbox

! Use SYS$GETJPI to find process and terminal
! Process name: PROC _NAME (1:P_LEN)
! Terminal name: TERM (1:T LEN)

MBX MESSAGE = MBX MESSAGE//' '//

2 PROC NAME(1:P LEN)//' '//
2 TERM(1:T_LEN)~

! Write device information to DEVICE
WRITE (UNIT=MBX LUN,

2 FMT=CHAR_FMT) MBX_ MESSAGE

END

2.2.1.6 Using Immediate Mailbox I/0

2-14

Use immediate I/O to read or write to another image without waiting for
a response from that image. To ensure that the other process receives the
information that you write, either do not exit until the other process has a
channel to the mailbox, or use a permanent mailbox.

Queueing an Immmediate I/0 Request

To queue an immediate I/O request, invoke the SYS$QIOW system service. See
the OpenVMS System Services Reference Manual for more information.

Reading Data from the Mailbox

Since immediate I/O is asynchronous, a mailbox may contain more than one
message or no message when it is read. If the mailbox contains more than one
message, the read operation retrieves the messages one at a time in the order in
which they were written. If the mailbox contains no message, the read operation
generates an end-of-file error.

To allow a cooperating program to differentiate between an empty mailbox

and the end of the data being transferred, the process writing tle messages
should use the I0$_WRITEOF function code to write an end-of-file message to
the mailbox as the last piece of data. When the cooperating program reads an
empty mailbox, the end-of-file message is returned and the second longword of
the I/O status block is 0. When the cooperating program reads an end-of-file
message explicitly written to the mailbox, the end-of-file message is returned and
the second longword of the I/O status block contains the process identification
number of the process that wrote the message to the mailbox.

In Example 24, the first program creates a mailbox named MAIL_BOX, writes
data to it, and then indicates the end of the data by writing an end-of-file
message. The second program creates a mailbox with the same logical name,
reads the messages from the mailbox into an array, and stops the read operations
when a read operation generates an end-of-file message and the second longword
of the I/O status block is nonzero, confirming that the writing process sent the
end-of-file message. The processes use common event flag 64 to ensure that
SEND.FOR does not exit until RECEIVE.FOR has established a channel to the
mailbox. (If RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN
cannot find the mailbox.)

Process Communication
2.2 Communication Between Processes

Example 2-4 Immediate I/O Using a Mailbox

ISEND. FOR

.
.

INTEGER*4 STATUS

! Name and channel number for mailbox
CHARACTER* (%) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)
INTEGER*2 MBX CHAN

! Mailbox message
CHARACTER*80 MBX_MESSAGE

INTEGER LEN
CHARACTER*80 MESSAGES (255)

INTEGER MESSAGE_LEN (255)

INTEGER MAX_MESSAGE
PARAMETER (MAX MESSAGE = 255)

! I/0 function codes and status block
INCLUDE ' ($IODEF)’

INTEGER*4 WRITE_CODE

STRUCTURE /STATUS BLOCK/

INTEGER*2 IOSTATT

2 MSG_LEN

INTEGER*4 READER PID

END STRUCTURE

RECORD /STATUS_BLOCK/ IQOSTATUS

! System routines .
INTEGER SYSS$SCREMBX,

2 SYS$ASCEFC,
2 SYSSWAITFR,
2 SYSSQIOW

! Create the mailbox
STATUS = SYSSCREMBX (s

2 MBX_CHAN,
2 rrrg
2 'MBX_NAME)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Fill MESSAGES array

! Write the messages
DO I = 1, MAX MESSAGE
WRITE_CODE = IO$ WRITEVBLK .OR. IO$M NOW
MBX MESSAGE = MESSAGES(I)
LEN = MESSAGE LEN(I)
STATUS = SYS$QIOW (,

2 $VAL (MBX_CHAN), ! Channel
2 $VAL(WRITE CODE), ! I/O code
2 IOSTATUS, ~ ! Status block
2 r
2 $REF (MBX_MESSAGE), ! Pl
2 $VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.STATUS))
END DO

(continued on next page)

2-15

Process Communication
2.2 Communication Between Processes

2-16

Example 2-4 (Cont.) Immediate /O Using a Mailbox

! Write end-of-file
WRITE_CODE = IOS_WRITEOF .OR. IO$M_NOW
STATUS = SYS$QIOW (,

2 $VAL (MBX_CHAN), ! Channel
2 %VAL(WRITE_CODE), ! End-of-file code
2 IOSTATUS, ! Status block

2 IIIIIII)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL ($VAL(IOSTATUS.IOSTAT))

! Make sure cooperating process can read the information
! by waiting for it to assign a channel to the mailbox
STATUS = SYS$ASCEFC ($VAL(64),

2 'CLUSTER', ;)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

STATUS = SYS$WAITFR (SVAL(64))

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))

END

RECEIVE.FOR
INTEGER STATUS

INCLUDE ' ($IODEF)’
INCLUDE ' ($SSDEF)’

! Name and channel number for mailbox
CHARACTER* (*) MBX_NAME ¢
PARAMETER (MBX NAME = 'MAIL_BOX’)
INTEGER*2 MBX CHAN

! QIO function code

INTEGER READ CODE

! Mailbox message
CHARACTER*80 MBX MESSAGE
INTEGER*4 LEN

! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE_LEN (255)
! I/0 status block

STRUCTURE /STATUS_BLOCK/
INTEGER*2 IOSTAT,

2 MSG_LEN

INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! System routines

INTEGER SYSS$SASSIGN,

2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYSSQIOW

(continued on next page)

Process Communication
2.2 Communication Between Processes

Example 2-4 (Cont.) Immediate I/O Using a Mailbox

! Create the mailbox and let the other process know
STATUS = SYS$SASSIGN (MBX NAME,

2 MBX_CHAN,,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (S$VAL({STATUS))
STATUS = SYSSASCEFC ($VAL(64),

2 'CLUSTER’, ,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
STATUS = SYS$SETEF (%VAL(64))

IF (.NOT. STATUS) CALL LIB$SIGNAL (3%VAL(STATUS))

! Read first message

READ CODE = IO$_READVBLK .OR. IO$M_NOW

LEN = 80

STATUS = SYS$QIOW (,

%VAL(MBX CHAN), ! Channel
%VAL(READ CODE), ! Function code
IOSTATUS, ! Status block

r .
$REF(MBX MESSAGE), ! Pl
$VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (S$VAL(STATUS))
IF ((.NOT. IOSTATUS.IOSTAT) .AND.
2 (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))
ELSE IF (IOSTATUS.IOSTAT .NE. S ENDOFFILE) THEN
I=1
MESSAGES(I) = MBX MESSAGE
MESSAGE_LEN(I) = TOSTATUS.MSG_LEN
END IF

! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTATUS.IOSTAT .EOQ. SS$_ENDOFFILE) .AND.
2 (IOSTATUS.READER PID .NE. 0)))

STATUS = SYS$QIOW (,

(NS 2N SO0 JS I S I (S I oV]

2 %VAL (MBX_CHAN), ! Channel

2 %VAL(READ_CODE), ! Function code
2 IOSTATUS, ! Status block
2 1

2 SREF (MBX_MESSAGE), ! Pl

2 $VAL(LEN),,,,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTATUS.IOSTAT) .AND.
2 (IOSTATUS.IOSTAT .NE. SS$ ENDOFFILE)) THEN

CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

ELSE IF (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE) THEN
I=I+1
MESSAGES(I) = MBX MESSAGE
MESSAGE_LEN(I) = TOSTATUS.MSG_LEN

END IF

END DO

2.2.1.7 Using Asynchronous Mailbox I/O
Use asynchronous I/O to queue a read or write request to a mailbox. To ensure
that the other process receives the information you write, either do not exit the
other process until the other process has a channel to the mailbox, or use a
permanent mailbox.

2-17

Process Communication
2.2 Communication Between Processes

To queue an asynchronous I/O request, invoke the SYS$QIO system service;
however, when specifying the function codes, do not specify the IO$M_NOW
modifier. The SYS$QIO system service allows you to specify an AST to be
executed or an event flag to be set when the I/O operation completes.

Example 2-5 calculates gross income and taxes and then uses the results

to calculate net income. INCOME.FOR uses SYS$CREPRC, specifying a
termination mailbox, to create a subprocess to calculate taxes (CALC_TAXES)
while INCOME calculates gross income. INCOME issues an asynchronous read
to the termination mailbox specifying an event flag to be set when the read
completes. (The read completes when CALC_TAXES completes terminating the
created process and causing the system to write to the termination mailbox.)
After finishing its own gross income calculations, INCOME.FOR waits for the flag
that indicates CALC_TAXES has completed and then figures net income.

CALC_TAXES.FOR passes the tax information to INCOME.FOR using the
installed common block created from INSTALLED.FOR.

Example 2-5 Asynchronous I/0 Using a Mailbox

! INSTALLED.FOR

Installed common block to be linked with INCOME.FOR and
CALC_TAXES.FOR.
Unless the shareable image created from this file is
in SYS$SHARE, you must define a group logical name
INSTALLED and equivalence it to the full file specification
of the shareable image.
NTEGER*4 INCOME (200),
TAXES (200),
NET (200)
OMMON /CALC/ INCOME,
TAXES,
NET

NN QNN o= o= o= oo o o

END

{ INCOME, FOR
! Status and system routines

INCLUDE ' ($SSDEF)’
INCLUDE ' ($IODEF)’
INTEGER STATUS,
LIBSGET_LUN,
LIBSGET EF,
SYSSCLREF,
SYSSCREMBX,
SYSSCREPRC,
SYS$GETDVIW,
SYS$Q10,
SYSSWAITFR

DN NN

(continued on next page)

2-18

Process Communication
2.2 Communication Between Processes

Example 2-5 (Cont.) Asynchronous I/O Using a Mailbox

! Set up for SYSSGETDVI
! Define itmlst structure
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR
END MAP
MAP
INTEGER*4 END LIST
END MAP -
END UNION
END STRUCTURE
{ Declare itmlst
RECORD /ITMLST/ DVILIST (2)
INTEGER*4 UNIT BUF,
2 UNIT_LEN
EXTERNAL DVI$_UNIT
! Name and I/0 channel for mailbox
CHARACTER* (*) MBX NAME
PARAMETER (MBX NAME = 'MAIL BOX')
INTEGER*2 MBX CHAN B
INTEGER*4 MBX LUN ! Logical unit number for I/0
CHARACTER*84 MBX MESSAGE ! Mailbox message
INTEGER*4 READ CODE,
2 LENGTH
! I/0 status block
STRUCTURE /STATUS_BLOCK/
INTEGER*2 IOQSTAT,
2 MSG_LEN
INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS BLOCK/ IOSTATUS
! Declare calculation variables in installed common
INTEGER*4 INCOME (200),

2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,

2 NET

! Flag to indicate taxes calculated

INTEGER*4 TAX_DONE

! Get and clear an event flag

STATUS = LIB$GET_EF (TAX DONE)

IF (.NOT. STATUS) CALL LIB$SIGNAL($VAL(STATUS))
STATUS = SYS$CLREF (%VAL(TAX DONE))

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create the mailbox

STATUS = SYS$CREMBX (,

2 MBX_CHAN,
2 IR N
2 MBX NAME)

IF (.NOT. STATUS) CALL LIB$SIGNAL (3VAL(STATUS))

(continued on next page)

2-19

Process Communication
2.2 Communication Between Processes

Example 2-5 (Cont.) Asynchronous I/O Using a Mailbox

! Get unit number of the mailbox
DVILIST(1).BUFLEN 4
DVILIST(1).CODE $LOC(DVI$_UNIT)
DVILIST(1).BUFADR $LOC(UNIT BUF)
DVILIST(1).RETLENADR = $LOC(UNIT_LEN)
DVILIST(2).END LIST 0

STATUS = SYS$GETDVIW (,

wouwowouon

2 $VAL(MBX_CHAN), ! Channel

2 MBX_NAME, ! Device

2 DVILIST, ! Item list
2

11t

)

IF (.NOT. STATUS) CALL LIBS$SIGNAL($%VAL(STATUS))

! Create subprocess to calculate taxes

STATUS = SYS$CREPRC (,

'CALC_TAXES', ! Image

rrrri

'CALC_TAXES', ! Process name
$VAL(4), ! Priority

NN NN

’

$VAL (UNIT BUF),)

IF (.NOT. STATUS) CALL LIB$SIGNAL(S$VAL(STATUS))

! Asynchronous read to termination mailbox

! sets flag when tax calculations complete

READ CODE = IO$ READVBLK

LENGTH = 84

STATUS = SYS$QIO (RVAL(TAX DONE), ! Indicates read complete

$VAL(MBX CHAN), ! Channel

$VAL(READ CODE), ! Function code
1

NN DN

I0STATUS, ,, Status block
$REF (MBX_MESSAGE),! Pl
$VAL(LENGTH),,,,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
! Calculate incomes

! Wait until taxes are calculated

STATUS = SYSSWAITFR (¥VAL(TAX_DONE))

IF (.NOT. STATUS) CALL LIBSSIGNAL(%VAL(STATUS))
! Check mailbox I/0

IF (.NOT. IOSTATUS.IOSTAT)

2 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

! Calculate net income after taxes

END
CALC_TAXES.FOR

! Declare calculation variables in installed common
INTEGER*4 INCOME (200),

2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,

2 " NET

(continued on next page)

2-20

Process Communication
2.2 Communication Between Processes

Example 2-5 (Cont.) Asynchronous I/O Using a Mailbox

! Calculate taxes

END

2-21

3

Process Control

This chapter describes how to use operating system features to control a process
or set of cooperating processes. It contains the following sections:

Section 3.1 describes the creation and control of a process to complete a
programming task.

Section 3.2 describes how to use the operating system’s process information
services to gather information about a process.

Section 3.3 describes how to change a process’s scheduling.
Section 3.4 describes how to change a process’s name.

Section 3.5 describes how to synchronize programs by setting specific times for
program execution.

Section 3.6 describes how to suspend, resume, and stop program execution.

3.1 Using Process Control for Programming Tasks

Process control features in the operating system allow you to employ the following
techniques to design your application:

¢ Modularize application programs so that each process of the application
executes a single task

e Perform parallel processing, in which one process executes one part of a
program while another process executes another part

* Implement application program control, in which one process manages and
coordinates the activities of several other processes

e Schedule program execution

¢ Dedicate a process to execute DCL commands ‘

e Isolate code for one or more of the following reasons:
— To debug logic errors
— To execute privileged code
— To execute sensitive code

Among the services and routines the operating system provides to help you
monitor and control the processes involved in your application are those that
perform the following functions:

¢ Obtaining process information
e Setting process privileges
® Setting process name

¢ Setting process scheduling

3-1

Process Control
3.1 Using Process Control for Programming Tasks

¢ Hibernating or suspending a process
¢ Deleting a process
¢ Synchronizing process execution

You can use system routines and DCL commands to accomplish these tasks.
Table 3-1 summarizes which routines and commands to use. You can use
the DCL commands in a command procedure that is executed as soon as the
subprocess (or detached process) is created.

For process synchronization techniques other than specifying a time for program
execution, refer to Chapter 4, Chapter 14, and Chapter 15.

Table 3-1 Routines and Commands for Controlling Processes

Routine DCL Command Task

LIB$GETJPI SHOW PROCESS Return process information
SYS$GETJPI

SYS$GETJPIW

SYS$SETPRV SET PROCESS Set process privileges
SYS$SETPRI SET PROCESS Set process priority
SYS$SETSWM SET PROCESS Control swapping of process
SYS$HIBER SET PROCESS Hibernate and suspend process
SYS$SUSPND

SYS$RESUME

SYS$SETPRN SET PROCESS Set process name
SYS$FORCEX EXIT and STOP Initiate process and image
SYS$EXIT rundown

SYS$DELPRC Delete process

By default, the routines and commands reference the current process. To
reference another process, you must specify either the process identification
number (PID) or the process name when you call the routine or with a command
qualifier when you enter commands. You must have the GROUP privilege to
reference a process with the same group number and a different member number
in its UIC and WORLD privilege to reference a process with a different group
number in its UIC.

The information presented in this section covers using the routines. If you want
to use the DCL commands in a command procedure, refer to the OpenVMS DCL
Dictionary. '

3.1.1 Determining Privileges for Process Creation and Control
There are three levels of process control privilege.

® Processes with the same UIC can always issue process control services for one
another.

¢ You need the GROUP privilege to issue process control services for other
processes executing in the same group.

® You need the WORLD privilege to issue process control services for any
process in the system.

You need additional privileges to perform some specific functions; for example,
raising the base priority of a process requires ALTPRI privilege.

3-2

Process Control
3.1 Using Process Control for Programming Tasks

3.1.2 Determining Process Identification
There are two types of process identification:

® Process identification number (PID)

The system assigns this unique 32-bit number to a process when it is created.
If you provide the pidadr argument to the SYS$CREPRC system service, the
system returns the process identification number at the location specified.
You can then use the process identification number in subsequent process
control services.

¢ Process name

There are two types of process names:

= Process name

A process name is a 1- to 15-character name string. Each process name
must be unique within its group (processes in different groups can have
the same name). You can assign a name to a process by specifying the
prcnam argument when you create it. You can then use this name to
refer to the process in other system service calls. Note that you cannot
use a process name to specify a process outside the caller’s group; you
must use a process identification number (PID).

— Full process name

The full process name is unique for each process in the cluster. Full
process name strings can be up to 23 characters long and are configured
in the following way:

1-6 characters for the node name .
2 characters for the colons (::) that follow the node name
1-15 characters for the local process name

For example, you could call the SYS$CREPRC system service, as follows:

unsigned int oriohid=0, status;
$DESCRIPTOR(orion, "ORION"); .

status = SYS$CREPRC(&orionid, - /* pidadr (process id returned) */
&orion, /* prcnam - process name */

e e)

The service returns the procéss identification in the longword at ORIONID. You
can now use either the process name (ORION) or the PID (ORIONID) to refer to
this process in other system service calls.

A process can set or change its own name with the Set Process Name ($SETPRN‘)
system service. For example, a process can set its name to CYGNUS, as follows:

/* Descriptor for process name */
$DESCRIPTOR (cygnus, "CYGNUS") ;

status = SYS$SETPRN(&cygnus); /* prcnam - process name */

Most of the process control services accept the prenam or the pidadr argument
or both. However, you should identify a process by its process identification
number for the following reasons:

e The service executes faster because it does not have to search a table of
process names.

3-3

Process Control
3.1 Using Process Control for Programming Tasks

¢ For a process not in your group, you must use the process identification
number (see the following section, Section 3.1.3).

If you specify the PID address, the service uses the PID address. If you specify
the process name without a PID address, the sevice uses the process name. If
you specify both—the process name and PID address—the PID address is used

. unless the contents of the PID is 0. In that case, the process name is used. If you
specify a PID address of 0 without a process name, then the service is performed
for the calling process.

If you specify neither the process name argument nor the process identification
number argument, the service is performed for the calling process. If the PID
address is specified, the service returns the PID of the target process in it.
Table 3-2 summarizes the possible combinations of these arguments and explains
how the services interpret them.

Table 3-2 Process Identification

Process PID Resultant

Name Address Contents of Action

Specified? Specified? PID by Services

No No - The process identification of the

calling process is used, but is
not returned.

No Yes 0 The process identification of
the calling process is used and
returned.

No Yes PID The process identification is
used and returned.

Yes No - The process name is used. The
process identification is not
returned.

Yes Yes 0 The process name is used and
the process identification is
returned.

Yes Yes PID The process identification is
used and returned; the process
name is ignored.

3.1.3 Qualifying Process Naming Within Groups

Process names are always qualified by their group number. The system maintains
a table of all process names and the UIC associated with each. When you use the
prcnam argument in a process control service, the table is searched for an entry
that contains the specified process name and the group number of the calling
process.

To use process control services on processes within its group, a calling process
must have the GROUP user privilege; this privilege is not required when you
specify a process with the same UIC as the caller.

The search for a process name fails if the specified process name does not have
the same group number as the caller. The search fails even if the calling process
has the WORLD user privilege. To execute a process control service for a process
that is not in the caller’s group, the requesting process must use a process
identification and must have the WORLD user privilege.

Process Control
3.2 Obtaining Process Information

3.2 Obtaining Process Information

The operating system’s process information procedures enable you to gather
information about processes. You can obtain information about one process or

a group of processes on the local system or on remote nodes in a VMScluster
system. You can also obtain process lock information. DCL commands such as
SHOW SYSTEM and SHOW PROCESS use the process information procedures
to display information about processes. You can also use the process information
procedures within your programs.

The following are process information procedures:
* Get Job/Process Information (SYS$GETJPI(W))
¢ Get Job/Process Information (LIB$GETJPI)

e Process Scan (SYS$PROCESS_SCAN)

¢ Get Lock Information (SYS$GETLKI)

For more information about SYS$GETJIPI, SYS$PROCESS_SCAN, and
SYS$GETLKI, see the OpenVMS System Services Reference Manual.

The differences among these procedures are as follows:
e SYS$GETJPI operates asynchronously.
o SYS$GETJPIW and LIB$GETJIPI operate synchronously.

¢ SYS$GETJIPI and SYS$GETJIPIW can obtain one or more pieces of
information about a process in a single call.

e LIB$GETJPI can obtain only one piece of information about a process in a
single call. .

¢ SYS$GETJPI and SYS$GETJIPIW can specify an AST to execute at the
completion of the routine.

* SYS$GETJPI and SYS$GETJIPIW can use an I/O status block (IOSB) to test
for completion of the routine.

e LIB$GETJPI can return some items either as strings or as numbers. It is
often the easiest to call from a high-level language because the caller is not
require the caller to construct an item list.

o SYS$GETLKI returns information about the lock database.
3.2.1 Using the PID to Obtain Information

The process information procedures return information about processes by using
the process identification (PID) or the process name. The PID is a 32-bit number
that is unique for each process in the cluster. Specify the PID by using the
pidadr argument. All the significant digits of a PID must be specified; only
leading zeros can be omitted.

Process Control
3.2 Obtaining Process Information

3.2.2 Using the Process Name to Obtain Information.

3-6

To obtain information about a process using the process name, specify the
prcnam argument. Although a PID is unique for each process in the cluster, a
process name is unique (within a UIC group) only for each process on a node.

To locate information about processes on the local node, specify a process name
string of 1 to 15 characters. To locate information about a process on a particular
node, specify the full process name, which can be up to 23 characters long. The
full process name is configured in the following way:

e 1 to 6 characters for the node name
e 2 characters for the colons (::) that follow the node name
¢ 1 to 15 characters for the local process name

Note that a local process name can look like a remote process name. Therefore,
if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a process
named SMITH.

OpenVMS Programming Interfaces: Calling a System Routine and the OpenVMS
System Services Reference Manual describe these routines completely, listing

all items of information that you can request. LIBSGETJPI, SYS$GETJPI, and
SYS$GETJIPIW share the same item codes with the following exception: LIB$K_
items can be accessed only by LIB$GETJPI.

In the following example, the string argument rather than the numeric argument
is specified, causing LIBSGETJPI to return the UIC of the current process as a
string: .

! Define request codes
INCLUDE ' ($JPIDEF)’

! Variables for LIB$GETJPI
CHARACTER*9 UIC
INTEGER LEN

STATUS = LIB$GETJPI (JPI$_UIC,

2 rrr
2 uIC,
2 LEN)

To specify a list of items for SYS$GETJIPI or SYS$GETJPIW (even if that
list contains only one item), use a record structure. Example 3-1 uses
SYS$GETJIPIW to request the process name and user name associated with
the process whose process identification number is in SUBPROCESS_PID.

Example 3—1 Obtaining Different Types of Process Information

.

! PID of subprocess
INTEGER SUBPROCESS PID

! Include the request codes
INCLUDE ' ($JPIDEF)’

(continued on next page)

Process Control

3.2 Obtaining Process Information

Example 3—1 (Cont.) Obtaining Different Types of Process Information

! Define itmlst structure
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR -
INTEGER*4 RETLENADR
END MAP
MAP
INTEGER*4 END_LIST
END MAP
END UNION
END STRUCTURE
! Declare GETJPI itmlst
RECORD /ITMLST/ JPI_LIST(3)
! Declare buffers for information
CHARACTER*15 PROCESS NAME
CHARACTER*12 USER_NAME
INTEGER*4 PNAME LEN,
2 UNAME_LEN
! Declare I/0 status structure
STRUCTURE /IO0SB/
INTEGER*2 STATUS,
2 COUNT
INTEGER*4 $FILL
END STRUCTURE
! Declare I/0 status variable
RECORD /IOSB/ JPISTAT
! Declare status and routine
INTEGER*4 STATUS,
2 SYSSGETJPIW

. | Define SUBPROCESS_PID
! Set up itmlst
JPI_LIST(1).BUFLEN
JPI_LIST(1).CODE
JPI_LIST(1).BUFADR
JPI_LIST(1).RETLENADR
JPT LIST(2).BUFLEN
JPI LIST(2).CODE
JPI_LIST(2).BUFADR
JPI LIST(2).RETLENADR
JPI_LIST(3).END_LIST

15

JPI$_PRCNAM
$LOC{PROCESS_NAME)
$LOC(PNAME_LEN)

12

JPI$ USERNAME
SLOC(USER_NAME)
$LOC(UNAME_LEN)

0

wow ooy nonn

(continued on next page)

3-7

Process Control
3.2 Obtaining Process Information

Example 3—1 (Cont.) Obtaining Different Types of Process Information

! Request information and wait for it
STATUS = SYSSGETJPIW (,
SUBPROCESS_PID,

1
JPI_LIST,
JPISTAT,

DO NN

1
)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Check final return status
IF (.NOT. JPISTAT.STATUS) THEN
CALL LIB$SIGNAL (%VAL(JPISTAT.STATUS))
END IF

.

3.2.3 Using SYS$GETJPI and LIB$GETJPI

SYS$GETJIPI uses the PID or the process name to obtain information about

one process and the —1 wildeard as the pidadr to obtain information about

all processes on the local system. If a PID or process name is not specified,
SYS$GETJPI returns information about the calling process. SYS$GETJPI cannot
perform a selective search—it can search for only one process at a time in the
cluster or for all processes on the local system. If you want to perform a selective -

search for information or get information about processes across the cluster, use
SYS$GETJPI with SYS$PROCESS_SCAN.

3.2.3.1 Requesting Information About a Single Process
Example 3-2 is a Fortran program that displays the process name and the PID of
the calling program. If you want to get the same information about each process
on the system, specify the initial process identification argument as —1 when you
invoke LIB$GETJPI or SYS$GETJIPI(W). Call the GETJPI routine (whichever
you choose) repeatedly until it returns a status of SS$_NOMOREPROC,
indicating that all processes on the system have been examined.

Example 3-2 Using SYS$GETJPI to Obtain Information About the Calling
Process

! No process name or PID is specified; $GETJPI returns data on the
! calling process.

PROGRAM CALLING PROCESS

IMPLICIT NONE ! Implicit none
INCLUDE ' ($jpidef) /nolist’ ! Definitions for $GETJPI
INCLUDE ’($ssdef) /nolist’ ! System status codes
STRUCTURE /JPIITMLST/ ! Structure declaration for
UNION ! $GETJPI item lists
MAP

INTEGER*2 BUFLEN,
2 CODE

INTEGER*4 BUFADR,
2 RETLENADR

(continued on next page)

3-8

Process Control
3.2 Obtaining Process Information

Example 3-2 (Cont.) Using SYS$GETJPI to Obtain Information About the

1010

Calling Process

END MAP
MAP ! A longword of 0 terminates
INTEGER*4 END LIST ! an item list
END MAP B
END UNION
END STRUCTURE
RECORD /JPIITMLST/ ! Declare the item list for
2 JPILIST(3) ! $GETJPI
INTEGER*4 SYSSGETJPIW ! System service entry points
INTEGER*4 STATUS, ! Status variable
2 PID ! PID from $GETJPI
INTEGER*2 IOSB(4) ! 1/0 status Block for $GETJPI
CHARACTER*16
2 PRCNAM ! Process name from $GETJPI
INTEGER*2 PRCNAM LEN ! Process name length
! Initialize $GETJPI item list
JPILIST(1).BUFLEN =4
JPILIST(1).CODE = JPIS_PID
JPILIST(1).BUFADR = $LOC(PID)
JPILIST(1).RETLENADR =
JPILIST(2).BUFLEN = LEN(PRCNAM)
JPILIST(2).CODE = JPI$_PRCNAM
JPILIST(2).BUFADR = $LOC(PRCNAM)
JPILIST(2).RETLENADR = $LOC(PRCNAM LEN)
JPILIST(3).END LIST = 0 -

! Call $GETJPI to get data for this process
STATUS = SYS$GETJIPIW (

[(S

! No event flag
2 ! No PID

2 ' ! No process name
2 JPILIST, ! Ttem list
2 I0SB, ! Always use IOSB with $GETJPI!
2 !
2 !
!

!

]
1

, No AST
) No AST arg

Check the status in both STATUS and the IOSB, if
STATUS is OK then copy IOSB(1) to STATUS

IF (STATUS) STATUS = IOSB(1l)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
TYPE 1010, PID, PRCNAM(1:PRCNAM LEN)

FORMAT (' ’,28.8," ',A)
ELSE
CALL LIB$SIGNAL ($VAL(STATUS))
END IF :
END

3-9

Process Control
3.2 Obtaining Process Information

3-10

Example 3-3 creates the file PROCNAME.RPT that lists, using LIB§GETJPI, the
process name of each process on the system. If the process running this program
does not have the privilege necessary to access a particular process, the program
writes the words NO PRIVILEGE in place of the process name. If a process

is suspended, LIB$GETJPI cannot access it and the program writes the word
SUSPENDED in place of the process name. Note that, in either of these cases,
the program changes the error value in STATUS to a success value so that the
loop calling LIB$GETJPI continues to execute.

Example 3—-3 Obtaining the Process Name

! Status variable and error codes
INTEGER STATUS,

2 STATUS_OK,
2 LIBSGET LUN,
2 LIBS$GETJIPI

INCLUDE ' ($SSDEF)’
PARAMETER (STATUS OK = 1)

! Logical unit number and file name
INTEGER*4 LUN

CHARACTER*(*) FILE NAME

PARAMETER (FILE NAME = 'PROCNAME.RPT')
! Define item codes for LIBSGETJPI
INCLUDE ' ($JPIDEF)’

! Process name
CHARACTER*15 NAME
INTEGER LEN

! Process identification
INTEGER PID /-1/

! Get logical unit number and open the file
STATUS = LIB$GET LUN (LUN)
OPEN (UNIT = LUN,
2 FILE = 'PROCNAME.RPT’,
2 STATUS = 'NEW')
! Get information and write it to file
DO WHILE (STATUS)
STATUS = LIB$GETJPI(JPI$_PRCNAM,
PID,

i
NAME,
LEN)

NN N

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-3 (Cont.) Obtaining the Pfocess Name

! Extra space in WRITE commands is for
! FORTRAN carriage control
IF (STATUS) THEN
WRITE (UNIT = LUN,
2 FMT = '(2A)') ' ', NAME(1:LEN)
STATUS = STATUS OK
ELSE IF (STATUS .EQ. SS$_NOPRIV) THEN
WRITE (UNIT = LUN,
2 FMT = '(2A)') ' ', 'NO PRIVILEGE'
STATUS = STATUS OK
ELSE IF (STATUS .EQ..SS$_SUSPENDED) THEN
WRITE (UNIT = LUN,

2 FMT = '(2A)') ' ', 'SUSPENDED’
STATUS = STATUS_OK
END IF
END DO
! Close file

IF (STATUS .EQ. SS$_NOMOREPROC)
2 CLOSE (UNIT = LUN)

Example 3-4 demonstrates how to use the process name to obtain information
about a process.

Example 3-4 Using SYS$GETJPI and the Process Name to Obtain Information
About a Process

! To find information for a particular process by name,
! substitute this code, which includes a process name,
! to call $GETJPI in Example 3-2

! Call $GETJPI to get data for a named process

STATUS = SYSSGETJPIW (
' ! No event flag
' ! No PID
"SMITH 1’, ! Process name
JPILIST, ! Item list
I0SB, ! Always use IOSB with $GETJPI!
, ! No AST
|

) ! No AST arg

MDD NN

3.2.3.2 Requesting Information About All Processes on the Local System

You can use SYS$GETJPI to perform a wildcard search on all processes on the
local system. When the initial pidadr argument is specified as —1, SYS$GETJPI
returns requested information for each process that the program has privilege
to access. The requested information is returned for one process per call to
SYS$GETJPI.

To perform a wildcard search, call SYS$GETJPI in a loop, testing the return
status.

3-1

Process Control
3.2 Obtaining Process Information

When performing wildcard searches, SYS$GETJPI returns an error status for
processes that are inaccessible. When a program that uses a —1 wildeard checks
the status value returned by SYS$GETJPI, it should test for the following status

codes:

Status Explanation

SS$_NOMOREPROC All processes have been returned.

SS$_NOPRIV The caller lacks sufficient privilege to examine a process.
SS$_SUSPENDED The target process is being deleted or is suspended and

cannot return the information.

Example 3-5 is a C program that demonstrates how to use the SYS$GETJIPI —1
wildcard to search for all processes on the local system.

Example 3-5 Using SYS$GETJPI to Request Information About All Processes
on the Local System

#include <stdio.h>
#include <jpidef.h>
#include <stdlib.h>
#include <ssdef.h>

/* Item descriptor */

struct {
unsigned short buflen, item code;
void *bufaddr;
void *retlenaddr;
unsigned int terminator;
}itm lst;

/* I/0 Status Block */

struct {
unsigned short iostat;
unsigned short iolen;
unsigned int device info;
}iosb;

main() {

unsigned short len;
unsigned int efn=1,pidadr = -1,status, usersize;
char username[12];

/* Initialize the item list */

itm lst.buflen = 12;

itm lst.item code = JPI$_USERNAME;
itm lst.bufaddr = username;

itm lst.retlenaddr = susersize;
itm lst.terminator = 0;

do{

(continued on next page)

3-12

Process Control
3.2 Obtaining Process Information

Example 3-5 (Cont.) Using SYS$GETJPI to Request Information About All
Processes on the Local System

status = SYSSGETJIPIW(O, /* no event flag */
&pidadr, /* process id */
0, /* process name */
&itm lst, /* item list */
&iosb, /* 1/0 status block */
0, /* astadr (AST routine) */
0); /* astprm (AST parameter) */
switch(status)

case SS$_NOPRIV:
printf("\nError: No privileges for attempted operation");
break;
case SS$_SUSPENDED:
prlntf("\nError Process is suspended");
break; ’
case SS$_NORMAL:
if (iosb.iostat == SS$_NORMAL)
printf("\nUsername: %s",username);
else
printf("\nIOSB condition value %d returned",iosb.iostat);

}
}while(status != SS$_NOMOREPROC);

}

3.24 Usmg SYS$GETJPI with SYSSPROCESS_SCAN

Using the SYS$PROCESS_SCAN system service greatly enhances the power

of SYS$GETJPI. With this combination, you can search for selected groups of
processes on the local system as well as for processes on remote nodes or across
the cluster. When you use SYS$GETJPI alone, you specify the pidadr or the
prcnam argument to locate information about one process. When you use
SYS$GETJIPI with SYS$PROCESS_SCAN, the pidetx argument generated by
SYS$PROCESS_SCAN is used as the pidadr argument to SYS$GETJPI. This
process context allows SYS$GETJPI to use the selection criteria set up in the call
to SYS$PROCESS_SCAN.

You can use SYS$PROCESS_SCAN only with SYS$GETJIPI; you cannot use

it alone. The process context generated by SYS$PROCESS_SCAN is used like
the —1 wildcard except that it is initialized by calling the SYS$PROCESS_
SCAN service instead of by a simple assignment statement. However, the
SYS$PROCESS_SCAN context is more powerful and more flexible than the —1
wildcard. SYS$PROCESS_SCAN uses an item list to specify selection criteria to
be used in a search for processes and produces a context longword that describes
a selective search for SYS$§GETJPIL.

Using SYS$GETJPI with SYS$PROCESS_SCAN to perform a selective search

is a more efficient way to locate information because only information about

the processes you have selected is returned. For example, you can specify a
search for processes owned by one user name, and SYS$GETJPI returns only
the processes that match the specified user name. You can specify a search for
all batch processes and SYS$GETJIPI returns only information about processes
running as batch jobs. You can specify a search for all batch processes owned by
one user name and SYS$GETJPI returns only information about processes owned
by that user name that are running as batch jobs.

3-13

Process Control
3.2 Obtaining Process Information

3.2.4.1 Using SYS$PROCESS_SCAN Item List and ltem-Specific Flags =
SYS$PROCESS_SCAN uses an item list to specify the selection criteria for the

SYS$GETJPI search.

Each entry in the SYS$PROCESS_SCAN item list contains the following:

e The attribute of the process to be examined

o The value of the attribute or a pointer to the value

e Item-specific flags to control how to interpret the value

Item-specific flags enable you to control selection information. For example,
you can use flags to select only those processes that have attribute values that
correspond to the value in the item list, as shown in Table 3-3.

Table 3-3 Hem-Specific Flags

Item-Specific Flag

Description

PSCAN$M_OR
PSCAN$M_EQL
PSCAN$M_NEQ
PSCAN$M_GEQ
PSCAN$M_GTR
PSCAN$M_LEQ
PSCAN$M_LSS

Match this value or the next value.
Match value exactly (the default.)

Match if value is not equal.

Match if value is greater than or equal to.
Match if value is greater than.

Match if value is less than or equal to.

Match if value is less than.

3-14

PSCAN$M_CASE_BLIND Match without regard to case of letters.
PSCAN$M_PREFIX_MATCH

PSCAN$M_WILDCARD

Match on the leading substring.
Match string is a wildcard pattern.

The PSCAN$M_OR flag is used to connect entries in an item list. For example,
in a program that searches for processes owned by several specified users, each
user name must be specified in a separate item list entry. The item list entries
are connected with the PSCAN$M_OR flag as shown in the following Fortran
example. This example connects all the processes on the local node that belong to
SMITH, JONES, or JOHNSON.

PSCANLIST(1) .BUFLEN LEN(’SMITH')
PSCANLIST(1).CODE PSCANS$ USERNAME
PSCANLIST(1).BUFADR $LOC("SMITH')
PSCANLIST(1).ITMFLAGS = PSCANSM OR
PSCANLIST(2) .BUFLEN LEN(' JONES ')

PSCANLIST(2) .CODE
PSCANLIST(2) .BUFADR
PSCANLIST(2).ITMFLAGS
PSCANLIST(3).BUFLEN
PSCANLIST(3).CODE
PSCANLIST(3).BUFADR
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END LIST = 0

Use the PSCAN$M_WILDCARD flag to specify that a character string is to be
treated as a wildcard. For example, to find all process names that begin with the
letter A and end with the string ER, use the string A*ER with the PSCAN$M_
WILDCARD flag. If the PSCAN$M_WILDCARD flag is not specified, the search
looks for the 4-character process name A*ER.

PSCAN$_USERNAME
$LOC ("JONES’)
PSCAN$M_OR

LEN(* JOENSON')
PSCAN$_USERNAME
$L.0C ("JOHNSON)

v Process Control
3.2 Obtaining Process Information

The PSCAN$M_PREFIX MATCH defines a wildcard search to match the initial
characters of a string. For example, to find all process names that start with
the letters AB, use the string AB with the PSCAN$M_PREFIX_MATCH flag. If
you do not specify the PSCAN$M_PREFIX_MATCH flag, the search looks for a
process with the 2-character process name AB.

3.2.4.2 Requesting Information About Processes That Match One Criterion

You can use SYS$GETJIPI with SYS$PROCESS_SCAN to search for processes
that match an item list with one criterion. For example, if you specify a search
for processes owned by one user name, SYS$GETJPI returns only those processes
that match the specified user name.

Example 3-6 demonstrates how to perform a SYS$PROCESS_SCAN search on
the local node to select all processes that are owned by user SMITH.

Example 3-6 Using SYS$GETJPI and SYS$SPROCESS_SCAN to Select Process
Information by User Name

PROGRAM PROCESS_SCAN

IMPLICIT NONE ! Implicit none
INCLUDE ' (S$jpidef) /nolist’ ! Definitions for $GETJPI
INCLUDE ' ($pscandef) /nolist’ ! Definitions for $PROCESS_SCAN
INCLUDE ’($ssdef) /nolist’ ! Definitions for SS$ NAMES
STRUCTURE /JPIITMLST/ ! Structure declaration for
UNION ! S$GETJPI item lists
MAP
INTEGER*2 BUFLEN,
2 CODE
INTEGER*4 BUFADR,
2 RETLENADR
END MAP
MAP ! A longword of 0 terminates
INTEGER*4 END LIST ! an item list
END MAP -
END UNION
END STRUCTURE
STRUCTURE /PSCANITMLST/ ! Structure declaration for
UNION ! $PROCESS_SCAN item lists
MAP
INTEGER*2 BUFLEN,
2 CODE
INTEGER*4 BUFADR,
2 ITMFLAGS
END MAP
MAP ! A longword of 0 terminates
INTEGER*4 END LIST ! an item list
END MAP
END UNION

END STRUCTURE

(continued on next page)

3-15

Process Control

3.2 Obtaining Process Information

3-16

Example 3-6 (Cont.) Using SYS$GETJPI and SYS$SPROCESS_SCAN to Select

Process Information by User Name

RECORD /PSCANITMLST/ ! Declare the item list for

2 PSCANLIST(12) ! $PROCESS_SCAN

RECORD /JPIITMLST/ ! Declare the item list for

2 JPILIST(3) ! $GETJPI

INTEGER*4 SYS$GETJPIW, ! System service entry points
2 SYS$PROCESS_SCAN

INTEGER*4 STATUS, ! Status variable

2 CONTEXT, ! Context from $PROCESS_SCAN
2 PID ! PID from $GETJPI

INTEGER*2 IOSB(4) ! I/0 Status Block for $GETJPI
CHARACTER*16

2 PRCNAM ! Process name from $GETJPI
INTEGER*2 PRCNAM LEN ! Process name length
LOGICAL*4 DONE ! Done with data loop

Irdkkkhdhhhhhhddhhhhhddhhhkdhhhhddhhhhhddbrdt

I* Initialize item list for $PROCESS SCAN *

!************************************;*******

! Look for processes owned by user SMITH

PSCANLIST(1) .BUFLEN LEN('SMITH')
PSCANLIST(1) .CODE PSCAN$_USERNAME
PSCANLIST(1) . BUFADR $L.OC("SMITH')
PSCANLIST(1) . ITMFLAGS
PSCANLIST(2).END LIST = 0

!***************;****************************

L* End of item list initialization *
!**

STATUS = SYSSPROCESS_SCAN (! Set up the scan context
2 CONTEXT,
2 PSCANLIST)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Loop calling $GETJPI with the context

DONE = ,FALSE.
DO WHILE (.NOT. DONE)

! Initialize $GETJPI item list

JPILIST(1).BUFLEN = 4
JPILIST(1).CODE = JPI$_PID
JPILIST(1).BUFADR = $LOC(PID)
JPILIST(1).RETLENADR =
JPILIST(2).BUFLEN = LEN(PRCNAM)
JPILIST(2).CODE = JPI$_PRCNAM
JPILIST(2).BUFADR = $LOC(PRCNAM)
JPILIST(2).RETLENADR = $LOC(PRCNAM LEN)
JPILIST(3).END LIST = 0

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-6 (Cont.) Using SYSSGETJPI and SYS$SPROCESS_SCAN to Select
Process Information by User Name

! Call $GETJPI to get the next SMITH process
STATUS = SYSSGETJPIW (

2 ' ! No event flag
2 CONTEXT, ! Process context
2 ’ ! No process name
2 JPILIST, ! Item list
2 I0SB, ! Always use IOSB with $GETJPI!
2 , ! No AST
2) ! No AST arg
! Check the status in both STATUS and the I0SB, if
! STATUS is OK then copy IOSB(1l) to STATUS
IF (STATUS) STATUS = IOSB(1)
! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error
IF (STATUS) THEN
TYPE 1010, PID, PRCNAM(1:PRCNAM LEN)
1010 FORMAT (' ',28.8,' ',A)
ELSE IF (STATUS .EQ. SS$_NOMOREPROC) THEN
DONE = .TRUE.
ELSE ’
CALL LIB$SIGNAL(%VAL(STATUS))
" END IF
END DO
END

3.2.4.3 Requesting Information About Processes That Match Multiple Values for One Criterion

You can use SYS$PROCESS_SCAN to search for processes that match one of
a number of values for a single criterion, such as processes owned by several
specified users.

Each value must be specified in a separate item list entry, and the item
list entries must be connected with the PSCAN$M_OR item-specific flag.
SYS$GETJPI selects each process that matches any of the item values.

For example, to look for processes with user names SMITH, JONES, or
JOHNSON, substitute code such as that shown in Example 3-7 to initialize
the item list in Example 3-6.

Example 3-7 Using SYS$SGETJPI and SYS$PROCESS_SCAN with Multiple
Values for One Criterion

!**
!* TInitialize item list for $PROCESS SCAN *

!************************************?*******

! Look for users SMITH, JONES and JOHNSON

(continued on next page)

3-17

Process Control
3.2 Obtaining Process Information

Example 3-7 (Cont.) Using SYS$SGETJPI and SYS$PROCESS_SCAN with
Multiple Values for One Criterion

PSCANLIST(1).BUFLEN
PSCANLIST(1).CODE
PSCANLIST(1).BUFADR
PSCANLIST(1).ITMFLAGS
PSCANLIST(2).BUFLEN
PSCANLIST(2).CODE
PSCANLIST (2) .BUFADR
PSCANLIST(2) . ITMFLAGS
PSCANLIST(3) .BUFLEN
PSCANLIST(3).CODE

LEN('SMITH')
PSCANS_USERNAME
$L0C("SMITH')
PSCANSM_OR

LEN (' JONES')
PSCAN$_USERNAME
$1.0C("JONES')
PSCANSM_OR
LEN(' JOHNSON')
PSCAN$ USERNAME

LT T L T O T { S [L 1}

PSCANLIST(3).BUFADR $L0C ("JOHNSON')
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

Ihkkdkkhhkkhhhhhhhhhhhhddhhhhhhhkhkddkhhhkdkkd

1% End of item list initialization *
!**

3.2.4.4 Requesting Information About Processes That Match Multiple Criteria

3-18

You can use SYS$PROCESS_SCAN to search for processes that match values for
more than one criterion. When multiple criteria are used, a process must match
at least one value for each specified criterion.

Example 3-8 demonstrates how to find any batch process owned by either SMITH
or JONES. The program uses syntax like the following logical expression to
initialize the item list:

((username = "SMITH") OR (username = "JONES"))
AND
(MODE = JPISK_BATCH)

Example 3-8 Selecting Processes That Match Multiple Criteria

Ihkdkkhkhkhdddhhhddhhhhhhkhhhdkhrhdddhhrhhddhhk

1* Initialize item list for $PROCESS SCAN *
!************************************;*******

! Look for BATCH jobs owned by users SMITH and JONES

PSCANLIST(1) . BUFLEN LEN(’SMITH')
PSCANLIST(1).CODE PSCAN$_USERNAME
PSCANLIST(1).BUFADR $LOC("SMITH')
PSCANLIST(1).ITMFLAGS = PSCANS$M OR
PSCANLIST(2) . BUFLEN LEN('JONES')
PSCANLIST(2).CODE PSCAN$_USERNAME
PSCANLIST(2) . BUFADR $1.0C("JONES')
PSCANLIST(2).ITMFLAGS
PSCANLIST(3) .BUFLEN
PSCANLIST(3).CODE
PSCANLIST(3).BUFADR

0
PSCAN$_MODE
JPIS$K BATCH

[T L T T [O (O [O { O | Y 1

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-8 (Cont.) Selecting Processes That Match Muitiple Criteria

PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END LIST = 0

PThkhkkhhhhhhhhhhhrhhhhhhhhhdhhhhhhkhhhkhdrkdhdd

1 End of item list initialization *
!**

See the OpenVMS System Services Reference Manual for more information about
SYS$PROCESS_SCAN item codes and flags.

3.2.5 Specifying a Node as Selection Criterion

Several SYS$PROCESS_SCAN item codes do not refer to attributes of a
process, but to the VMScluster node on which the target process resides. When
SYS$PROCESS_SCAN encounters an item code that refers to a node attribute, it
creates an alphabetized list of node names. SYS$PROCESS_SCAN then directs
SYS$GETJPI to compare the selection criteria against processes on these nodes.

SYS$PROCESS_SCAN ignores a node specification if it is running on a node
that is not part of a VMScluster system. For example, if you request that
SYS$PROCESS_SCAN select all nodes with the hardware model name VAX 6360,
this search returns information about local processes on a nonclustered system,
even if it is a MicroVAX system.

A remote SYS$GETJPI operation currently requires the system to send a message
to the CLUSTER_SERVER process on the remote node. The CLUSTER_SERVER
process then collects the information and returns it to the requesting node. This
has several implications for clusterwide searches:

¢ All remote SYS$GETJPI operations are asynchronous and must be
synchronized properly. Many applications that are not correctly synchronized
might seem to work on a single node because some SYS$GETJPI operations
are actually synchronous; however, these applications fail if they attempt
to examine processes on remote nodes. For more information on how to
synchronize SYS$GETJPI operations, see Chapter 14.

¢ The CLUSTER_SERVER process is always a current process, because it is
executing on behalf of SYS§GETJPI.

e Attempts by SYS$GETJPI to examine a node do not succeed during a brief
period between the time a node joins the cluster and the time that the
CLUSTER_SERVER process is started. Searches that occur during this
period skip such a node. Searches that specify only such a booting node fail
with a SYS$GETJPI status of SS$_UNREACHABLE.

e SS$_NOMOREPROC is returned after all processes on all specified nodes
have been scanned.

3.2.5.1 Checking All Nodes on the Cluster for Processes
The SYS$PROCESS_SCAN system service can scan the entire cluster for
processes. For example, to scan the cluster for all processes owned by SMITH,
use code like that in Example 3-9 to initialize the item list to find all processes
"“with a nonzero cluster system identifier (CSID) and a user name of SMITH.

3-19

Process Control
3.2 Obtaining Process Information

Example 3-9 Searching the Cluster for Process Information

lhkdkdkdkdkhdhhhdhdhdkhhdhkhkrkkhhhkhkkdhhkhhdrrkrd

1* Initialize item list for $PROCESS SCAN *
!************************************;*******

! Search the cluster for jobs owned by SMITH

PSCANLIST(1).BUFLEN 0
PSCANLIST(1).CODE PSCANS$ NODE CSID
PSCANLIST(1).BUFADR 0 -7
PSCANLIST(1).ITMFLAGS = PSCANS$M NEQ
PSCANLIST(2) .BUFLEN LEN('SMITH')

PSCAN$ USERNAME

PSCANLIST(2).CODE A
$LOC("SMITH')

PSCANLIST(2).BUFADR
PSCANLIST(2) . ITMFLAGS
PSCANLIST(3) .END LIST = 0

Phdkdkhkkhdhhhhhhrhhhhhhkhhhhhkdhdhhrrrhhrhrrkdh

1 End of item list initialization *
'!**

3.2,5.2 Checking Specific Nodes on the Cluster for Processes

You can specify a list of nodes as well. Example 3-10 demonstrates how to design
an item list to search for batch processes on node TIGNES, VALTHO, or 2ALPES.

Example 3-10 Searching for Process Information on Specific Nodes in the
Cluster

PThkhkkkkkhhkhkhkkhkdhkhhhhhhkhhkhhkkkhkkkkhkhkkkkk

t* TInitialize item list for $PROCESS SCAN *

!***********************************f;*******

! Search for BATCH jobs on nodes TIGNES, VALTHO and 2ALPES

PSCANLIST(1).BUFLEN LEN('TIGNES')
PSCANLIST(1) .CODE PSCANS NODENAME
PSCANLIST (1) .BUFADR $1.0C("TIGNES')
PSCANLIST(1).ITMFLAGS = PSCANSM OR
PSCANLIST(2) . BUFLEN LEN('VALTHO')
PSCANLIST(2) .CODE PSCAN$_NODENAME
PSCANLIST(2).BUFADR $1.0C('VALTHO')
PSCANLIST(2).ITMFLAGS = PSCANSM OR
PSCANLIST(3) .BUFLEN LEN (' 2ALPES')
PSCANLIST(3).CODE PSCANS NODENAME
PSCANLIST(3).BUFADR $1.0C('2ALPES')
PSCANLIST(3).ITMFLAGS = 0

PSCANLIST(4) .BUFLEN 0

PSCANLIST(4).CODE PSCAN$_MODE

PSCANLIST(4) .BUFADR JPI$K_BATCH
PSCANLIST(4).ITMFLAGS 0

PSCANLIST(5).END LIST = 0
!** .
I End of item list initialization *

PThdkdhhdkhhkkhhhhrhhhhkhdhhhdkhhkhkkhhhkrkkkkk

3.2.5.3 Conducting Multiple Simultaneous Searches with SYS$PROCESS_SCAN

3-20

Only one asynchronous remote SYS$GETJPI request per SYS$PROCESS_SCAN

context is permitted at a time. If you issue a second SYS$GETJPI request using

a context before a previous remote request using the same context has completed,
your process stalls in a resource wait until the previous remote SYS$GETJPI

Process Control
3.2 Obtaining Process Information

request completes. This stall in the RWAST state prevents your process from
executing in user mode or receiving user-mode ASTs.

If you want to run remote searches in parallel, create multiple contexts by calling
SYS$PROCESS_SCAN once for each context. For example, you can design a
program that calls SYS$GETSYI in a loop to find the nodes in the VMScluster
system and creates a separate SYS$PROCESS_SCAN context for each remote
node. Each of these separate contexts can run in parallel. The DCL command
SHOW USERS uses this technique to obtain user information more quickly.

Only requests to remote nodes must wait until the previous search using the
same context has completed. If the SYS$PROCESS_SCAN context specifies
the local node, any number of SYS$GETJPI requests using that context can be
executed in parallel (within the limits implied by the process quotas for ASTLM
and BYTLM).

Note

When you use SYS$GETJPI to reference remote processes, you must
properly synchronize all SYS$GETJPI calls. Before the operating system’s
Version 5.2, if you did not follow these synchronization rules, your
programs might have appeared to run correctly. However, if you attempt
to run such improperly synchronized programs using SYS$GETJPI

with SYS$PROCESS_SCAN with a remote process, your program might
attempt to use the data before SYS$GETJPI has returned it.

To perform a synchronous search in which the program waits until all requested
information is available, use SYS$GETJPIW with an iosb argument.

See the OpenVMS System Services Reference Manual for more information about
process identification, SYS$GETJIPI, and SYS$PROCESS_SCAN.

3.2.6 Programming with SYS$SGETJPI

The following sections describe some important considerations for programming
with SYS$GETJPL.

3.2.6.1 Using Item Lists Correctly

When SYS$GETJIPI collects data, it makes multiple passes through the item list.
If the item list is self-modifying—that is, if the addresses for the output buffers
in the item list point back at the item list—SYS$GETJPI replaces the item list
information with the returned data. Therefore, incorrect data might be read or
unexpected errors might occur when SYS$GETJPI reads the item list again. To
prevent confusing errors, Digital recommends that you do not use self-modifying
item lists.

The number of passes that SYS$GETJIPI needs depends on which item codes
are referenced and the state of the target process. A program that appears to
work normally might fail when a system has processes that are swapped out of
memory, or when a process is on a remote node.

3-21

Process Control
3.2 Obtaining Process Information

3.2.6.2 Improving Performance by Using Buffered $GETJPI Operations

3-22

To request information about a process located on a remote node, SYS$GETJIPL
must send a message to the remote node, wait for the response, and then
extract the data from the message received. When you perform a search on a
remote system, the program must repeat this sequence for each process that
SYS$GETJPI locates.

To reduce the overhead of such a remote search, use SYS$PROCESS_SCAN
with the PSCAN$_GETJPI_BUFFER_SIZE item code to specify a buffer size
for SYS$GETJPIL. When the buffer size is specified by SYS$PROCESS_SCAN,
SYS$GETJPI packs information for several processes into one buffer and
transmits them in a single message. This reduction in the number of messages
improves performance.

For example, if the SYS$GETJIPI item list requests 100 bytes of information,
you might specify a PSCAN$_GETJPI_BUFFER_SIZE of 1000 bytes so that

the service can place information for at least 10 processes in each message.
(SYS$GETJPI does not send fill data in the message buffer; therefore, information
for more than 10 processes can be packed into the buffer.)

The SYS$GETJIPI buffer must be large enough to hold the data for at least one
process. If the buffer is too small, the error code SS$_IVBUFLEN is returned
from the SYS$GETJPI call.

You do not have to allocate space for the SYS$GETJPI buffer; buffer space

is allocated by SYS$PROCESS_SCAN as part of the search context that it
creates. Because SYS$GETJPI buffering is transparent to the program that
calls SYS$GETJPI, you do not have to modify the loop that calls SYS$GETJIPI.

If you use PSCAN$_GETJPI_BUFFER_SIZE with SYS$PROCESS_SCAN, all
calls to SYS$GETJPI using that context must request the same item code
information. Because SYS$GETJPI collects information for more than one
process at a time within its buffers, you cannot change the item codes or the
lengths of the buffers in the SYS$GETJPI item list between calls. SYS$GETJIPI
returns the error SS$_BADPARAM if any item code or buffer length changes
between SYS$GETJPI calls. However, you can change the buffer addresses in the
SYS$GETJPI item list from call to call.

The SYS$GETJPI buffered operation is not used for searching the local node.
When a search specifies both multiple nodes and SYS$GETJPI buffering, the
buffering is used on remote nodes but is ignored on the local node. Example 3-11
demonstrates how to use a SYS$GETJPI buffer to improve performance.

Example 3-11 Using a SYS$SGETJPI Buffer to Improve Performance

Ihdkkhkdkdhhhhhhhhkhdhhhkkhkhhkhhhhhhhhkhhkkhhk

I* Initialize item list for $PROCESS SCAN *
!************************************;*******

! Search for jobs owned by users SMITH and JONES
! across the cluster with S$GETJPI buffering

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-11 (Cont.) Using a SYS$GETJPI Buffer to Improve Performance

PSCANLIST(1).BUFLEN 0
PSCANLIST(1).CODE PSCANS$ NODE_CSID
PSCANLIST(1).BUFADR 0
PSCANLIST(1).ITMFLAGS = PSCANSM NEQ
PSCANLIST(2) .BUFLEN LEN('SMITH')

PSCANLIST(2).CODE
PSCANLIST(2).BUFADR
PSCANLIST(2).ITMFLAGS
PSCANLIST(3).BUFLEN
PSCANLIST(3).CODE
PSCANLIST(3).BUFADR
PSCANLIST(3) . ITMFLAGS

PSCAN$_USERNAME
$LOC ("SMITH')
PSCANS$M_OR
LEN('JONES')
PSCAN$_USERNAME
$LOC ("JONES')

0

PSCANLIST(4).BUFLEN 0

PSCANLIST(4).CODE PSCAN$_GETJ PI_BUFFER_SIZE
PSCANLIST(4).BUFADR 1000
PSCANLIST(4).ITMFLAGS 0

PSCANLIST(5) .END LIST = 0
!**

1% End of item list initialization *

Phkhkkdkhhhhkhhhhhkhhhhhkkhhhdkhkhrhhkrhhdkkkhk

3.2.6.3 Fulfilling Remote SYS$GETJPI Quota Requirements

A remote SYS$GETJIPI request uses system dynamic memory for messages.
System dynamic memory uses the process quota BYTLM. Follow these steps to
determine the number of bytes required by a SYS$GETJPI request:

1. Add the following together:

The size of the SYS$PROCESS_SCAN item list

The total size of all reference buffers for SYS$PROCESS_SCAN (the sum
of all buffer length fields in the item list)

The size of the SYS$GETJPI item list

The size of the SYS$GETJPI buffer

The size of the calling process RIGHTSLIST
Approxirﬁately 300 bytes for message overhead

2. Double this total.

The total is doubled because the messages consume system dynamic memory
on both the sending node and the receiving node.

This formula for BYTLM quota applies to both buffered and nonbuffered
SYS$GETJPI requests. For buffered requests, use the value specified in the
SYS$PROCESS_SCAN item, PSCAN$_GETJPI_BUFFER_SIZE, as the size of the
buffer. For nonbuffered requests, use the total length of all data buffers specified
in the SYS$GETJPI item list as the size of the buffer.

If the BYTLM quota is insufficient, SYS$GETJIPI (not SYS$PROCESS_SCAN)
returns the error SS$_EXBYTLM.

3-23

Process Control
3.2 Obtaining Process Information

3.2.6.4 Using the SYSSGETJPI Control Flags

3-24

The JPI$_GETJPI_CONTROL_FLAGS item code, which is specified in the
SYS$GETJPI item list, provides additional control over SYS$GETJPI. Therefore,
SYS$GETJPI may be unable to retrieve all the data requested in an item list
because JPI$_GETJPI_CONTROL_FLAGS requests that SYS$GETJPI not
perform certain actions that may be necessary to collect the data. For example,
a SYS$GETJPI control flag may instruct the calling program not to retrieve a
process that has been swapped out of the balance set.

If SYS$GETJPI is unable to retrieve any data item because of the restrictions
imposed by the control flags, it returns the data length as 0. To verify that
SYS$GETJPI received a data item, examine the data length to be sure that it
is not 0. To make this verification possible, be sure to specify the return length
for each item in the SYS$GETJPI item list when any of the JPI$_GETJPI_
CONTROL_FLAGS flags is used.

Unlike other SYS$GETJPI item codes, the JPI$_GETJPI_CONTROL_FLAGS
item is an input item. The item list entry should specify a longword buffer. The
desired control flags should be set in this buffer.

Because the JPI$ GETJPI CONTROL_FLAGS item code tells SYS$GETJPI how
to interpret the item list, it must be the first entry in the SYS$GETJPI item list.
The error code SS$_BADPARAM is returned if it is not the first item in the list.

The following are the SYS$GETJPI control flags.

JPISM_NO_TARGET_INSWAP

When you specify JPI$M_NO_TARGET_INSWAP, SYS$GETJPI does not retrleve
a process that has been swapped out of the balance set. Use JPI$M_NO_
TARGET_INSWAP to avoid the additional load of swapping processes into a
system. For example, use this flag with SHOW SYSTEM to avoid bringing
processes into memory to display their accumulated CPU time.

If you specify JPI$SM_NO_TARGET_INSWAP and request information from a
process that has been swapped out, the following consequences occur:

* Data stored in the virtual address space of the process is not accessible.
¢ Data stored in the process header (PHD) may not be accessible.

e Data stored in resident data structures, such as the process control block
(PCB) or the job information block (JIB), is accessible.

You must examine the return length of an item to verify that the item was
retrieved. The information may be located in a different data structure in another
release of the operating system,

JPISM_NO_TARGET_AST

When JPI$M_NO_TARGET_AST is specified, SYS$GETJPI does not deliver a
kernel-mode AST to the target process. JPI$M_NO_TARGET _AST is used to
avoid executing a target process in order to retrieve information.

If you specify JPISM_NO_TARGET_AST and cannot dehver an AST to a target
process, the following consequences occur:

e Data stored in the virtual address space of the process is not accessible.

¢ Data stored in system data structures, such as the process header (PHD), the
process control block (PCB), or the job information block (JIB), is accessible.

Process Control
3.2 Obtaining Process Information

You must examine the return length of an item to verify that the item was
retrieved. The information may be located in a different data structure in another
release of the operating system.

The use of the flag JPISM_NO_TARGET_AST also implies that SYS$GETJIPI
does not swap in a process, because SYS$GETJIPI would only bring a process into
memory to deliver an AST to that process.

JPISM_IGNORE_TARGET_STATUS

When JPI$M_IGNORE_TARGET_STATUS is specified, SYS$GETJPI attempts

to retrieve as much information as possible, even if the process is suspended or
being deleted. JPI$M_IGNORE_TARGET_STATUS is used to retrieve all possible
information from a process. For example, this flag is used with SHOW SYSTEM
to display processes that are suspended, being deleted, or in miscellaneous wait
states.

Example 3-12 demonstrates how to use SYS$GETJPI control flags to avoid
swapping processes during a SYS$GETJIPI call.

Example 3-12 Using SYS$SGETJPI Control Flags to Avoid Swapping a Process
into the Balance Set

PROGRAM CONTROL FLAGS

IMPLICIT NONE ! Implicit none
INCLUDE ' ($jpidef) /nolist’ ! Definitions for $GETJPI
INCLUDE ' ($pscandef) /nolist’ ! Definitions for $PROCESS_SCAN
INCLUDE ' ($ssdef) /nolist’ ! Definitions for SS$_ names
STRUCTURE /JPIITMLST/ ! Structure declaration for
UNION ! $GETJPI item lists
MAP
INTEGER*2 BUFLEN,
2 CODE
INTEGER*4 BUFADR,
2 RETLENADR
END MAP
MAP ! A longword of 0 terminates
INTEGER*4 END LIST ! an item list
END MAP -
END UNION

END STRUCTURE
STRUCTURE /PSCANITMLST/

-

Structure declaration for

UNION ! $PROCESS SCAN item lists
MAP
INTEGER*2 BUFLEN,
2 CODE
INTEGER*4 BUFADR,
2 ITMFLAGS
END MAP
MAP ' ! A longword of 0 terminates
INTEGER*4 END LIST ! an item list
END MAP -
END UNION
END STRUCTURE
RECORD /PSCANITMLST/ ! Declare the item list for
2 PSCANLIST(5) ! $PROCESS_SCAN
RECORD /JPIITMLST/ ! Declare the item list for
2 JPILIST(6) ! $GETJPI

(continued on next page)

3-25

Process Control
3.2 Obtaining Process Information

Example 3—-12 (Cont.) Using SYS$GETJPI Control Flags to Avoid Swapping a
Process into the Balance Set

INTEGER*4 SYS$GETJPIW, ! System service entry points
2 SYS$PROCESS_SCAN

INTEGER*4 STATUS, ! Status variable

2 CONTEXT, ! Context from $PROCESS_SCAN
2 PID, ! PID from $GETJPI

2 JPIFLAGS ! Flags for $GETJPI

INTEGER*2 IO0SB(4) ! I/0 status Block for $GETJPI
CHARACTER*16

2 PRCNAM, { Process name from $GETJPI

2 NODENAME ! Node name from $GETJPI
INTEGER*2 PRCNAM LEN, ! Process name length

2 NODENAME LEN ! Node name length
CHARACTER*80

2 IMAGNAME ! Image name from $GETJPI
INTEGER*2 IMAGNAME LEN ! Image name length

LOGICAL*4 DONE { Done with data loop

Phkkdkdkdkdhkkkkhhhkhkhhkhdhhhkhkkhkhrkkdhhhrkdkhr

I* Initialize item list for $PROCESS SCAN *

!************************************;*******

! Look for interactive and batch jobs across
! the cluster with $GETJPI buffering

PSCANLIST(1).BUFLEN 0
PSCANLIST(1).CODE PSCAN$_NODE_CSID
PSCANLIST(1).BUFADR 0
PSCANLIST(1).ITMFLAGS = PSCANSM NEQ
PSCANLIST(2) .BUFLEN 0
PSCANLIST(2).CODE PSCANS MODE
PSCANLIST(2).BUFADR JPISK INTERACTIVE
PSCANLIST(2).ITMFLAGS PSCANgM_OR
PSCANLIST(3).BUFLEN 0
PSCANLIST(3).CODE PSCANS MODE

PSCANLIST(3) .BUFADR JPISK_BATCH
PSCANLIST(3) . ITMFLAGS = 0

PSCANLIST(4).BUFLEN 0

PSCANLIST(4).CODE PSCAN$_GETJPI_BUFFER SIZE
PSCANLIST(4).BUFADR 1000
PSCANLIST(4).ITMFLAGS = 0

PSCANLIST(5).END LIST = 0

Thkdkhkhdhhhhhhkhhdhhhhhhhhhkhhhhhkdkdhhhkhhhrd

tx End of item list initialization *
!**

STATUS = SYS$PROCESS SCAN (! Set up the scan context
2 CONTEXT,
2 PSCANLIST)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Initialize $GETJPI item list

JPILIST(1) .BUFLEN = 4

JPILIST(1).CODE = IAND ('FFFF’X, JPI$ GETJPI CONTROL FLAGS)
JPILIST(1).BUFADR = 3$LOC(JPIFLAGS)

JPILIST(1) .RETLENADR =

(continued on next page)

3-26

Process Control
3.2 Obtaining Process Information

Example 3-12 (Cont.) Using SYS$GETJPI Control Flags to Avoid Swappmg a
Process into the Balance Set

1010
1020

JPILIST(2).BUFLEN
JPILIST(2).CODE
JPILIST(2).BUFADR
JPILIST(2).RETLENADR
JPILIST(3).BUFLEN
JPILIST(3).CODE
JPILIST(3).BUFADR
JPILIST(3).RETLENADR
JPILIST(4).BUFLEN
JPILIST(4).CODE
JPILIST(4).BUFADR
JPILIST(4).RETLENADR
JPILIST(5) .BUFLEN
JPILIST(5).CODE
JPILIST(5).BUFADR
JPILIST(5).RETLENADR
JPILIST(6).END LIST
! Loop calling $GETJPI

DONE = .FALSE.
JPIFLAGS =
DO WHILE (.NOT. DONE)

! Call $GETJPI
STATUS =

I

PN

!
CONTEXT,

I
JPILIST,
1088,

4
JPI$_PID
$LOC(PID)

LEN(PRCNAM)
JPI$_PRCNAM

$LOC (PRCNAM)

$LOC (PRCNAM_LEN)
LEN (IMAGNAME)

JPIS IMAGNAME

$LOC (IMAGNAME)
$LOC(IMAGNAME LEN)
LEN (NODENAME)
JPI$_NODENAME

%LOC (NODENAME)
$LOC(NODENAME LEN)
0

with the context

IOR (JPI$M NO TARGET INSWAP, JPISM IGNORE_TARGET STATUS)

to get the next process

SYS$GETJPIW (

! No event flag
! Process context
! No process name
! Ttemlist
! Always use IOSB with $GETJPI!
! No AST

! No AST arg

)
! Check the status in both STATUS and the IOSB, if
! STATUS is OK then copy IOSB(l) to STATUS

IF (STATUS) STATUS = IOSB(1)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
IF (IMAGNAME LEN .EQ. 0) THEN
TYPE 1010, PID, NODENAME, PRCNAM
ELSE
TYPE 1020, PID, NODENAME, PRCNAM,
2 IMAGNAME (1: IMAGNAME LEN)
END IF -
ELSE IF (STATUS .EQ. SS$_NOMOREPROC) THEN
DONE = .TRUE.
ELSE
CALL LIB$SIGNAL($VAL(STATUS))
END IF

END DO

FORMAT (' ',28.8,'
FORMAT (' ',Z8.8,’

END

",A6,':: ',A,’ (no image)'’)
',A6,":: ',A," ',A)

3-27

Process Control
3.2 Obtaining Process Information

3.2.7 Using SYS$SGETLKI

The SYS$GETLKI system service allows you to obtain process lock information.
Example 3-13 is a C program that illustrates the procedure for obtaining process
lock information for both AXP and VAX systems. However, to compile on AXP
systems, you need to supply the /DEFINE=AXP=1 qualifier.

3-28

Example 3-13 Procedure for Obtaining Process Lock Information

#pragma nostandard

$ifdef AXP

#pragma module LOCK_SCAN
telse /* AXP */

#module LOCK SCAN
$endif /* BXP */ B
#pragma standard

#include <gsdef.h>
#include <lkidef.h>

#pragma nostandard
globalvalue

ss$_normal, ss$_nomorelock;
#pragma standard

struct lock_item list

{

short int buffer length;
short int item code;
void *bufaddress;
void *retaddress;

Y

typedef struct lock item list lock item list type;

unsigned long lock_id;
long int value block[4];

#pragma nostandard
static lock item list type
getlki item list[] = {
{sizeof(value block), LKI$ VALBIK,
{sizeof(lock_1id), LKI$_LOCKID,
{0,0,0,0}

b

globalvalue ss$ normal, ss$_nomorelock;
#pragma standard

main()

int status = ss$_normal;
unsigned long lock context = -1; /*

&value block, 0},
&lock_Id, 0},

init for wild-card operation */

(continued on next page)

Process Control
3.2 Obtaining Process Information

Example 3-13 (Cont.) Procedure for Obtaining Process Lock Information

while (status == ss$_normal) {
status = sys$getlkiw(1, &lock context, getlki item list,0,0,0,0);
/* ' - - K

*/
/* Dequeue the lock if the value block contains a 1 */
/* */

if ((status == ss$_normal) & (value block[0] == 1)){
status = sys$deq(lock id, 0, 0, 0);
}

if (status != ss$_nomorelock){
exit(status);
}

}

3.2.8 Setting Process Privileges

Use the SYS$SETPRV system service to set process privileges. Setting process
privileges allows you to limit executing privileged code to a specific process, to
limit functions within a process, and to limit access from other processes. You can
either enable or disable a set of privileges and assign privileges on a temporary
or permanent basis. To use this service, the creating process must have the
appropriate privileges.

3.3 Changing Process Scheduling

To alter the system’s process scheduling, you can change the base priority of a
process and lock a process into physical memory so that it is not swapped out.
Processes with higher priority levels or those that have been locked are executed
first.

If you create a subprocess with the LIBSSPAWN routine, you can set the priority
of the subprocess by executing the DCL command SET PROCESS/PRIORITY as
the first command in a command procedure. You can also use the SYS$SETPRI
system service to change the priority of any process, regardless of how you
created it. You must have the ALTPRI privilege to increase a process’s base
priority above the base priority of the creating process.

If you create a subprocess with the LIB$SPAWN routine, you can inhibit
swapping by executing the DCL command SET PROCESS/NOSWAP as the first
command in a command procedure. Use the SYS$SETSWM system service to
inhibit swapping for any process. A process must have the PSWAPM privilege to
inhibit swapping.

Altering process scheduling must be done with care. Review the following
considerations before you attempt to alter the standard process scheduling with
either SYS$SETPRI or SYS$SETSWM:

¢ Priority—Increasing a process’s base priority gives that process more
processor time at the expense of processes that execute at lower priorities.
This is not recommended unless you have a program that must respond
immediately to events (for example, a real-time program). If you must
increase your base priority, return it to normal as soon as possible. If the
entire image must execute at an increased priority, reset the base priority
before exiting; image termination does not reset the base priority.

3-29

Process Control
3.3 Changing Process Scheduling

® Swapping—Inhibiting swapping keeps your process in physical memory. This
is not recommended unless the effective execution of your image depends on
it (for example, if the image executing in the process is collecting statistics on
processor performance).

3.4 Changing Process Name

Use the system service SYS$SETPRN to change the name of your process.
SYS$SETPRN can be used only on the calling process. Changing process names
might be useful when a lengthy image is being executed. You can change names
at significant points in the program; then monitor program execution through the
change in process names. You can obtain a process name by calling a GETJPI
routine from within a controlling process, by pressing the Ctrl/T key sequence

if the image is currently executing in your process, or by entering the DCL
command SHOW SYSTEM if the program is executing in a detached process.

The following program segment calculates the tax status for a number of
households, sorts the households according to tax status, and writes the results
to a report file. Since this is a time-consuming process, the program changes the
process name at major points so that progress can be monitored.

! Calculate approximate tax rates

STATUS = SYS$SETPRN ('INCTAXES')

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = TAX RATES (TOTAL HOUSES,

2 PERSONS HOUSE,

2 ADULTS_HOUSE,

2 INCOME_HOUSE,

2 TAX_PER HOUSE)

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Sort

STATUS = SYS$SETPRN (’INCSORT')

IF (.NOT. STATUS) CALL LIB$SIGNAL(RVAL(STATUS))
STATUS = TAX SORT (TOTAL_ HOUSES,

2 TAX PER HOUSE)

IF (.NOT. STATUS) CALL LIBSSIGNAL(%VAL(STATUS))

“

! Write report
STATUS = SYSS$SETPRN (’INCREPORT')
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

.

3.5 Synchronizing Programs by Specifying a Time for Program
Execution ,
You can synéhronize timed program execution in the following ways:
e Executing a program at a specific time '

¢ Executing a program at timed intervals

3-30

Process Control

3.5 Synchronizing Programs by Specifying a Time for Program Execution

3.5.1 Obtaining the System Time

The process control procedures that allow you to synchronize timed program
execution require you to supply a system time value.

You can use either system services or RTL routines for obtaining and reading
time. They are summarized in Table 3—4. With these routines, you can determine
the system time, convert it to an external time, and pass a time back to the
system. The system services use the operating system’s default date format. With
the RTL routines, you can use the default format or specify your own date format.

However, if you are just using the time and date for program synchronization,
using the operating system’s default format is probably sufficient.

When using the RTL routines to change date/time formats, initialization routines
are required. Refer to the OpenVMS RTL Library (LIB$) Manual for more

information.

See Chapter 5 for a further discussion of using timing operations with the

operating system.

Table 3-4 Time Manipulation System Services and Routines

Routine Description

SYS$GETTIM Obtains the current date and time in 64-bit binary format

SYS$NUMTIM Converts system date and time to numeric integer values

SYS$ASCTIM Converts an absolute or delta time from 64-bit system time
format to an ASCII string

SYS$ASCUTC Converts an absolute time from 128-bit UTC format to an

LIB$SYS_ASCTIM
SYS$BINTIM
SYS$BINUTC

SYS$FAO

SYS$GETUTC
SYS$NUMUTC

SYS$TIMCON

LIB$SADD_TIMES

LIB$CONVERT_DATE_STRING

LIB$CVT_FROM_INTERNAL_TIME
LIB$CVTF_FROM_INTERNAL_TIME
LIB$CVT_TO_INTERNAL_TIME
LIB$CVTF_TO_INTERNAL TIME

ASCII string
Converts binary time to ASCII string
Converts a date and time from ASCII to system format

Converts an ASCII string to an absolute time value in the
128-bit UTC format

Converts a binary value into an ASCII character string in
decimal, hexadecimal, or octal notation and returns the
character string in an output string ’

Returns the current time in 128-bit UTC format

Converts an absolute 128-bit binary time into its numeric
components. The numeric components are returned in local
time

Converts 128-bit Coordinated Universal Time (UTC) to 64-
bit system format or 64-bit system format to 128-bit UTC
based on the value of the convert flag

Adds two quadword times

Converts an input date/time string to an operating system
internal time

Converts internal time to external time
Converts internal time to external time (F-floating value)
Converts external time to internal time
Converts external time to internal time (F-floating value)

(continued on next page)

3-31

Process Control
3.5 Synchronizing Programs by Specifying a Time for Program Execution

Table 3-4 (Cont.) Time Manipulation System Services and Routines

Routine Description

LIB$CVT_VECTIM Converts 7-word vector to internal time

LIB$DAY Obtains offset to current day from base time, in number of
days

LIB$DATE_TIME Obtains the date and time in user-specified format

LIB$FORMAT_DATE_TIME Formats a date and/or time for output

LIB$FREE_DATE_TIME_CONTEXT Frees date/time context

LIB$GET_DATE_FORMAT Returns the user’s specified date/time input format

LIB$GET_MAXIMUM_DATE_LENGTH Returns the maximum possible length of an output date
/time string

LIB$GET_USERS_LANGUAGE Returns the user’s selected langauge

LIB$INIT DATE_TIME_CONTEXT Initializes the date/time context with a user-specified format

LIB$SUB_TIMES Subtracts two quadword times

3.5.1.1 Executing a Program at a Specified Time

3-32

To execute a program at a specified time, use LIBSPAWN to create a process that
executes a command procedure containing two commands—the DCL command
WAIT and the command that invokes the desired program. Since you do not want
the parent process to remain in hibernation until the process executes, execute
the process concurrently.

You can also use the SYS$CREPRC system service to execute a program at a
specified time. However, since a process created by SYS$CREPRC hibernates
rather than terminates after executing the desired program, the LIB§SPAWN
routine is recommended unless you need a detached process.

Example 3-14 executes a program at a specified delta time. The parent program
prompts the user for a delta time, equates the delta time to the symbol
EXECUTE_TIME, and then creates a subprocess to execute the command
procedure LATER.COM. LATER.COM uses the symbol EXECUTE_TIME as

the parameter for the WAIT command. (You might also allow the user to enter an
absolute time and have your program change it to a delta time by subtracting the
current time from the specified time. Chapter 5 discusses time manipulation.)

Example 3-14 Executing a Program Using Delta Time

! Delta time
CHARACTER*17 TIME
INTEGER LEN

! Mask for LIBS$SSPAWN
INTEGER*4 MASK

! Declare status and library routine
INTEGER STATUS, LIBS$SPAWN

! Get delta time

STATUS = LIB$GET_INPUT (TIME,

2 'Time (delta): ',

2 LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

Process Control
3.5 Synchronizing Programs by Specifying a Time for Program Execution

Example 3-14 (Cont.) Executing a Program Using Delta Time

! Equate symbol to TIME

STATUS = LIB$SET SYMBOL ('EXECUTE TIME',

2 TIME(1:LEN))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Set the mask and call LIB$SPAWN

MASK = IBSET (MASK,0) ! Execute subprocess concurrently
STATUS = LIB$SPAWN('@LATER',

2 'DATA84.IN’,

2 'DATA84.RPT',

2 MASK)

END

LATER.COM

$ WAIT 'EXECUTE TIME'
$ RUN SYSSDRIVEOQ:[USER.MATH]CALC
$ DELETE/SYMBOL EXECUTE_TIME

3.5.1.2 Executing a Program at Timed Intervals

To execute a program at timed intervals, you can use either LIB§SPAWN or
SYS$CREPRC.

.Using LIB$SPAWN

Using LIB$SPAWN, you can create a subprocess that executes a command
procedure containing three commands: the DCL command WAIT, the command
that invokes the desired program, and a GOTO command that directs control
back to the WAIT command. Since you do not want the parent process to remain

in hibernation until the subprocess executes, execute the subprocess concurrently.
See Section 3.5.1.1 for an example of LIBSSPAWN.

Using SYS$CREPRC

Using SYS$CREPRC, create a detached process to execute a program at timed
intervals as follows:

1. Create and hibernate a process—Use SYS$CREPRC to create a process
that executes the desired program. Set the PRC$V_HIBER bit of the stsflg
argument of the SYS$CREPRC system service to indicate that the created
process should hibernate before executing the program.

2. Schedule a wakeup call for the created subprocess—Use the SYS§SCHDWK
system service to specify the time at which the system should wake up
the subprocess, and a time interval at which the system should repeat the
wakeup call.

Example 3-15 executes a program at timed intervals. The program creates

a subprocess that immediately hibernates. (The identification number of the
created subprocess is returned to the parent process so that it can be passed
to SYS$SCHDWK.) The system wakes up the subprocess at 6:00 a.m. on the
23rd (month and year default to system month and year) and every 10 minutes
thereafter.

3-33

Process Control
3.5 Synchronizing Programs by Specifying a Time for Program Execution

Example 3—15 Executing a Program at Timed Intervals

! SYS$CREPRC options and values
INTEGER OPTIONS

EXTERNAL PRCS$V_HIBER

! ID of created subprocess
INTEGER CR_ID

! Binary times

INTEGER TIME(2),

2 INTERVAL(2)

! Set the PRC$V_HIBER bit in the OPTIONS mask and
! create the process
OPTIONS = IBSET (OPTIONS, %LOC(PRC$V_HIBER))

STATUS = SYSSCREPRC (CR_ID, ! PID of created process
2 ‘CHECK', ! Image

2 : rrrer

2 ' SLEEP’, ! Process name

2 $VAL(4), ! Priority

2 t

2 %VAL(OPTIONS)) ! Hibernate

IF (.NOT. STATUS) CALL LIB$SIGNAL (3%VAL(STATUS))

! Translate 6:00 a.m. (absolute time) to binary
STATUS = SYSSBINTIM ('23-- 06:00:00.00’, ! 6:00 a.m.
2 TIME)

IF (.NOT. STATUS) CALL LIB$SIGNAL (3%VAL(STATUS))

! Translate 10 minutes (delta time) to binary

STATUS = SYSSBINTIM ('0 :10:00.00', t 10 minutes
2 INTERVAL)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Schedule wakeup calls

STATUS = SYS$SCHDWK (CR_ID, ! ID of created process
2 '

2 TIME, ! Initial wakeup time

2 INTERVAL) ! Repeat wakeup time

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))

3.5.2 Plaéing Entries in the System Timer Queue

When you use the system timer queue, you use the timer expiration to signal
when an image is to be executed. You can use an event flag or AST for the actual
signal. With this method, you do not need a separate process to control program
execution. However, you do use up your process’s quotas for ASTs and timer
queue requests.

Use the system service SYS$SETIMR to place a request in the system timer
queue. The format of this service is as follows:

SYSS$SETIMR ([efn],daytim,[astadr],[reqgidt])

3-34

Process Control
3.5 Synchronizing Programs by Specifying a Time for Program Execution

Specifying the Starting Time

Specify the absolute or delta time at which you want the program to begin
execution using the daytim argument. Use the SYS$BINTIM system service to
convert an ASCII time to the binary system format required for this argument.
Signaling Timer Expiration

Once the system has reached this time, the timer expires. To signal timer
expiration, set an event flag in the efn argument or specify an AST routine to be
executed in the astadr argument. Refer to Section Section 14.6 and Chapter 4
for more information about using event flags and ASTs.

How Timer Requests Are Identified

The reqidt argument identifies each system time request uniquely. Then, if you
need to cancel a request, you can refer to each request separately.

To cancel a timer request, use the SYS$CANTIM system service.

3.6 Suspending, Resuming, and Stopping Process Execution
You can control process execution in the following ways:
* Suspending a process
¢ Hibernating a process
e Stopping a process
¢ Resuming a process
e Passing control to another image
¢ Exiting an image

¢ Deleting a process

- 3.6.1 Process Hibernation and Suspension

There are two ways to halt the execution of a process temporarily: hibernation,
performed by the Hibernate (SYS$HIBER) system service, and suspension,
performed by the Suspend Process (SYS$SUSPND) system service. The
process can continue execution normally only after a corresponding Wake from
Hibernation (SYS$WAKE) system service (if it is hibernating) or after a Resume
Process (SYSSRESUME) system service, if it is suspended.

" Suspending or hibernating a process puts it into a dormant state; the process
is not deleted, but the image within it is not being executed. A process in
hibernation can control itself; a process in suspension requires another process to
control it. Table 3-5 compares hibernating and suspended processes.

3-35

Process Control :
3.6 Suspending, Resuming, and Stopping Process Execution

Table 3-5 Process Hibernation and Suspension

Hibernation Suspension

Can only cause self to hibernate =~ Can suspend self or another process, depending on
privilege

Reversed by SYS$WAKE system Reversed by SYSSRESUME system service
service

Interruptible; can receive ASTs Noninterruptible; cannot receive ASTs!

Can wake self Cannot cause self to resume
Can schedule wakeup at an Cannot schedule resumption
absolute time or at a fixed time

interval

Requires little system overhead Requires system dynamic memory

17f a process is suspended at kernel mode (a hard suspension), it cannot receive any ASTs. If a process
is suspended at supervisor mode (a soft suspension), it can receive executive or kernel mode ASTs. See
the description of SYS$SUSPND in the OpenVMS System Services Reference Manual: GETQUI-Z.

Table 3-6 summarizes the system services and routines that can place a process
in or remove from hibernation or suspension.

Table 3-6 System Services and Routines Used for Hibernation and Suspension

Routine Function

Hibernating Processes

SYS$HIBER Places a process in hibernation

SYS$WAKE Resumes execution of a process in hibernation

SYS$SCHDWK Eesumes execution of a process in hibernation at a specified
ime

LIB$WAIT Places a process in hibernation for a specified number of
seconds

SYS$CANWAK Cancels a scheduled wakeup issued by SYS$SCHDWK

Suspended Processes

SYS$SUSPEND Places a process in a suspended state
SYS$RESUME Resumes execution of a process in a suspended state

3.6.1.1 Using Process Hibernation

The hibernate/wake mechanism provides an efficient way to prepare an image for
execution and then to place it in a wait state until it is needed. When you issue
the wakeup request, the image is reactivated with little delay or system overhead.

Process Control

3.6 Suspending, Resuming, and Stopping Process Execution

If you create a subprocess that must execute the same function repeatedly and
must execute immediately when it is needed, you could use the SYS$HIBER and
SYS$WAKE system services, as shown in the following example:

/* Process TAURUS */

#include <stdio.h>
#include <descrip.h>

main() {

unsigned int status;
$DESCRIPTOR (prcnam, "ORION");
$DESCRIPTOR (image, "COMPUTE . EXE") ;

/* Create ORION */
status = SYS$CREPRC(O,
&image,
0, 0, 0, 0, O,
&prcnam,
0, 0, 0, 0);
if ((status & 1) != 1)
LIB$SIGNAL(status);

.

/* Wake ORION */
status = SYS$WAKE(0, &prcnam);
if ((status & 1) != 1)
LIBSSIGNAL(status);

.

/* Wake ORION again */
status = SYSSWAKE(0, &prcnam);
if ((status & 1) != 1)
LIB$SIGNAL(status);

}
/* Process ORION and image COMPUTE */

#include <stdio.h>
#include <ssdef.h>

sleep:
status = SYSSHIBER();
if ((status & 1) != 1)
LIB$SIGNAL(status);
goto sleep;
}

/* Process id */
/* Image */

/* Process name */

© Process TAURUS creates the process ORION, specifying the descriptor for the

image named COMPUTE.

@ At an appropriate time, TAURUS issues a SYS$WAKE request for ORION.
ORION continues execution following the SYS$HIBER service call. When it
finishes its job, ORION loops back to repeat the SYS$HIBER call and to wait

for another wakeup.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

©® The image COMPUTE is initialized, and ORION issues the SYS$HIBER
system service. ,

The Schedule Wakeup (SYS$SCHDWK) system service, a variation of the
SYS$WAKE system service, schedules a wakeup for a hibernating process at

a fixed time or at an elapsed (delta) time interval. Using the SYS$SCHDWK
service, a process can schedule a wakeup for itself before issuing a SYSSHIBER
call. For an example of how to use the SYS$SCHDWK system service, see
Chapter 5.

Hibernating processes can be interrupted by asynchronous system traps (ASTs),
as long as AST delivery is enabled. The process can call SYS$WAKE on its own
behalf in the AST service routine, and continue execution following the execution
of the AST service routine. For a description of ASTs and how to use them, see
Chapter 4.

3.6.1.2 Using Alternative Methods of Hibernation

3-38

You can use two additional methods to cause a process to hibernate:

e Specify the stsflg argument for the SYS$CREPRC system service, setting
the bit that requests SYS$CREPRC to place the created process in a state of
hibernation as soon as it is initialized.

e Specify the /DELAY, /SSCHEDULE, or /INTERVAL qualifier to the RUN
command when you execute the image from the command stream.

When you use the SYSSCREPRC system service, the creating process can
control when to wake the created process. When you use the RUN command,
its qualifiers control when to wake the process.

If you use the /INTERVAL qualifier and the image to be executed does not call
the SYS$HIBER system service, the image is placed in a state of hibernation
whenever it issues a return instruction (RET). Each time the image is awakened,
it begins executing at its entry point. If the image does call SYS$HIBER, each
time it is awakened it begins executing at either the point following the call to
SYS$HIBER or at its entry point (if it last issued a RET instruction).

If wakeup requests are scheduled at time intervals, the image can be terminated
with the Delete Process (SYS$DELPRC) or Force Exit (SYS$FORCEX) system
service, or from the command level with the STOP command. The SYS$DELPRC
and SYS$FORCEX system services are described in Section 3.6.3.4 and in
Section 3.6.4. The RUN and STOP commands are described in the OpenVMS
DCL Dictionary.

These methods allow you to write programs that can be executed once, on request,
or cyclically. If an image is executed more than once in this manner, normal
image activation and termination services are not performed on the second and
subsequent calls to the image. Note that the program must ensure both the
integrity of data areas that are modified during its execution and the status of
opened files.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.1.3 Using SYS$SUSPND

Using the Suspend Process (SYS$SUSPND) system service, a process can place
itself or another process into a wait state similar to hibernation. Suspension,
however, is a more pronounced state of hibernation. The operating system
provides no system service to force a process to be swapped out, but the
SYS$SUSPND system service can accomplish the task in the following way.
Suspended processes are the first processes to be selected for swapping. A
suspended process cannot be interrupted by ASTs, and it can resume execution
only after another process calls a Resume Process (SYSSRESUME) system service
on its behalf. If ASTs are queued for the process while it is suspended, they
are delivered when the process resumes execution. This is an effective tool for
blocking delivery of all ASTs.

At the DCL level, you can suspend a process by issuing the SET PROCESS
command with the /SUSPEND qualifier. This command temporarily stops the
process’s activities. The process remains suspended until another process resumes

or deletes it. To allow a suspended process to resume operation, use either the
/NOSUSPEND or /RESUME qualifier.

3.6.2 Passing Control to Another Image

The RTL routines LIB§DO_COMMAND and LIB$RUN_PROGRAM allow you to
invoke the next image from the current image. That is, they allow you to perform
image rundown for the current image and pass control to the next image without
returning to DCL command level. Which routine you use depends on whether the
next image is a command image or a noncommand image.

3.6.2.1 Invoking a Command Image
The following DCL command executes the command image associated with the
DCL command COPY:
$ COPY DATA.TMP APRIL.DAT

To pass control from the current image to a command image, use the RTL routine
LIB$DO_COMMAND. If LIB$DO_COMMAND executes successfully, control

is not returned to the invoking image, and statements following the LIB$DO_
COMMAND statement are not executed. The following statement causes the
current image to exit and executes the DCL command in the preceding example:

STATUS = LIB$DO_COMMAND (’COPY DATA.TMP APRIL.DAT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

To execute a number of DCL commands, specify a DCL command procedure.
The following statement causes the current image to exit and executes the DCL
command procedure [STATS. TEMP]JCLEANUP.COM:

STATUS = LIB$DO_COMMAND ('@[STATS.TEMP]CLEANUP’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END \

3-39

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.2.2 Invoking a Noncommand Image

You invoke a noncommand image at DCL command level with the DCL

command RUN. The following command executes the noncommand image
[STATISTICS. TEMP]TEST.EXE:

$ RUN [STATISTICS.TEMP]TEST

To pass control from the current image to a noncommand image, use the run-
time library routine LIBSRUN_PROGRAM. If LIBSRUN_PROGRAM executes
successfully, control is not returned to the invoking image, and statements
following the LIBSRUN_PROGRAM statement are not executed. The following
program segment causes the current image to exit and passes control to the
noncommand image [STATISTICS. TEMP]TEST.EXE on the default disk:

STATUS = LIBSRUN PROGRAM ('[STATISTICS.TEMP}TEST.EXE')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

3.6.3 Performing Image Exit

3-40

When image execution completes normally, the operating system performs a
variety of image rundown functions. If the image is executed by the command
interpreter, image rundown prepares the process for the execution of another
image. If the image is not executed by the command interpreter—for example, if
it is executed by a subprocess—the process is deleted.

Main programs and main routines terminate by executing a return instruction
(RET). This instruction returns control to the caller, which could have been
LIB$INITIALIZE, the debugger, or the command interpreter. The completion
code, SS$_NORMAL, which has the value 1, should be used to indicate normal
successful completion.

Any other condition value can be used to indicate success or failure. The
command language interpreter uses the condition value as the parameter to
the Exit (SYS$EXIT) system service. If the severity field (STS$V_SEVERITY) is
SEVERE or ERROR, the continuation of a batch job or command procedure is
affected.

These exit activities are also initiated when an image completes abnormally as a
result of any of the following conditions:

® Specific error conditions caused by improper specifications when a process
is created. For example, if an invalid device name is specified for the
SYSS$INPUT, SYS$OUTPUT, or SYS$ERROR logical name, or if an invalid
or nonexistent image name is specified, the error condition is signaled in the
created process.

® An exception occurring during execution of the image. When an exception
occurs, any user-specified condition handlers receive control to handle the
exception. If there are no user-specified condition handlers, a system-declared
condition handler receives control, and it initiates exit activities for the image.
Condition handling is described in Chapter 13.

* A Force Exit (SYS$FORCEX) system service issued on behalf of the process
by another process.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.3.1 Performing Image Rundown

The operating system performs image rundown functions that release system
resources obtained by a process while it is executing in user mode. These
activities occur in the following order:

1. Any outstanding I/O requests on the IO channels are canceled, and I/O
channels are deassigned.

2. Memory pages occupied or allocated by the image are deleted, and the
working set size limit of the process is readjusted to its default value.

3. All devices allocated to the process at user mode are deallocated (devices
allocated from the command stream in supervisor mode are not deallocated).

Timer-scheduled requests, including wakeup requests, are canceled.
Common event flag clusters are disassociated.

Locks are dequeued as a part of rundown.

Noe g

User mode ASTs that are queued but have not been delivered are deleted, and
ASTs are enabled for user mode.

8. Exception vectors declared in user mode, compatibility mode handlers, and
change mode to user handlers are reset.

9. System service failure exception mode is disabled.

10. All process private logical names and logical name tables created for user
mode are deleted. Deletion of a logical name table causes all names in that
table to be deleted. Note that names entered in shareable logical name tables,
such as the job or group table, are not deleted at image rundown, regardless
of the access mode for which they were created.

3.6.3.2 Initiating Rundown
To initiate the rundown activities described in Section 3.6.3.1, the system calls
the Exit (SYS$EXIT) system service on behalf of the process. In some cases,
a process can call SYS$EXIT to terminate the image itself (for example, if an
unrecoverable error occurs).

You should not call the SYS$EXIT system service directly from a main program.
By not calling SYS$EXIT directly from a main program, you allow the main
program to be more like ordinary modular routines and therefore usable by other
programmers as callable routines.

The SYS$EXIT system service accepts a status code as an argument. If you use
SYS$EXIT to terminate image execution, you can use this status code argument
to pass information about the completion of the image. If an image returns
without calling SYS$EXIT, the current value in RO is passed as the status code
when the system calls SYS$EXIT.

This status code is used as follows:

* The command interpreter uses the status code to display optionally an error
message when it receives control following image rundown.

e If the image has declared an exit handler, the status code is written in the
address specified in the exit control block.

¢ If the process was created by another process, and the creator has specified a
mailbox to receive a termination message, the status code is wrltten into the
termination mailbox when the process is deleted.

3-41

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.3.3 Performing Cleanup and Rundown Operations

Use exit handlers to perform image-specific cleanup or rundown operations. For
example, if an image uses memory to buffer data, an exit handler can ensure that
the data is not lost when the image exits as the result of an error condition.

To establish an exit-handling routine, you must set up an exit control block and
specify the address of the control block in the call to the Declare Exit Handler
(SYS$DCLEXH) system service. You can call an exit handler by using standard
calling conventions; you can provide arguments to the exit handler in the exit
control block. The first argument in the control block argument list must specify
the address of a longword for the system to write the status code from SYS$EXIT.

If an image declares more than one exit handler, the control blocks are linked
together on a last-in, first-out (LIFO) basis. After an exit handler is called and
returns control, the control block is removed from the list. You can remove
exit control blocks prior to image exit by using the Cancel Exit Handler
(SYS$CANEXH) system service.

Exit handlers can be declared from system routines executing in supervisor or
executive mode. These exit handlers are also linked together in other lists, and
they receive control after exit handlers that are declared from user mode are
executed.

Exit handlers are called as a part of the SYS$EXIT system service. While a call
to the SYS$EXIT system service often precedes image rundown activities, the call
is not a part of image rundown. There is no way to ensure that exit handlers will
be called if an image terminates in a nonstandard way.

3.6.3.4 Initiating Image Rundown for Another Process

3-42

The Force Exit (SYS$FORCEX) system service provides a way for a process to
initiate image rundown for another process. For example, the following call to
SYS$FORCEX causes the image executing in the process CYGNUS to exit:

$DESCRIPTOR (prcnam, "CYGNUS") ;

status = SYS$FORCEX(O0, /* pidadr - Process id */
&prcnam, /* prcnam - Process name */
0); /* code - Completion code */

Because the SYS$FORCEX system service calls the SYS$EXIT system service,
any exit handlers declared for the image are executed before image rundown.
Thus, if the process is using the command interpreter, the process is not deleted
and can run another image. Because the SYS$FORCEX system service uses
the AST mechanism, an exit cannot be performed if the process being forced to
exit has disabled the dehvery of ASTs. AST dehvery and how it is disabled and
reenabled is described in Chapter 4.

The following program segment shows an example of an exit-handling routine:

#include <stdio>
#include <ssdef>

/* Exit control block */

| Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

struct {.

unsigned int *desblk;
unsigned int (*exh)();
unsigned int argcount;
unsigned int *cond value; (1)

}exitblock = {0, &exitrtn,” 1, 0};

main() {

unsigned int status;

/* Declare the exit handler */

status = SYS$DCLEXH(&exitblock); (2]
if ((status & 1) != 1)
LIB$SIGNAL(status);

}
int exitrtn (int condition) { (3]
if ((status & 1) != 1)
{
/* Clean up */
return 1;
}
else
/* Normal exit */
return 0;

}

@ EXITBLOCK is the exit control block for the exit handler EXITRTN. The
third longword indicates the number of arguments to be passed. In this
example, only one argument is passed: the address of a longword for the
system to store the return status code. This argument must be provided in an
exit control block.

® The SYS$DCLEXH system service call designates the address of the exit
control block, thus declaring EXITRTN as an exit handler.

©® The EXITRTN exit handler checks the status code. If this is a normal exit,

EXITRTN returns control. Otherwise, it handles the error condition.

3.6.4 Deleting a Process

Process deletion completely removes a process from the system. A process can be
deleted by any of the following events:

The Delete Process (SYS$DELPRC) system service is called.
A proceés that created a subprocess is deleted.

An interactive process uses the DCL command LOGOUT.

A batch job reaches the end of its command file.

An interactive process uses the DCL command STOP/ID=pid or STOP
username.

A process that contains a single image calls the Exit (SYS$EXIT) system
service.

The‘ Force Exit (SYS$FORCEX) system service forces image exit on a process
that contains a single image.

3-43

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3-44

When the system is called to delete a process as a result of any of these
conditions, it first locates all subprocesses, and searches hierarchically. No
process can be deleted until all the subprocesses it has created have been deleted.

The lowest subprocess in the hierarchy is a subprocess that has no descendant
subprocesses of its own. When that subprocess is deleted, its parent subprocess
becomes a subprocess that has no descendant subprocesses and it can be deleted
as well. The topmost process in the hierarchy becomes the parent process of all
the other subprocesses.

The system performs each of the following procedures, beginning with the lowest
process in the hierarchy and ending with the topmost process:

¢ The image executing in the process is run down. The image rundown that
~occurs during process deletion is the same as that described in Section 3.6.3.1.
When a process is deleted, however, the rundown releases all system
resources, including those acquired from access modes other than user
mode.

¢ Resource quotas are released to the creating process, if the process being
deleted is a subprocess.

e If the creating process specifies a termination mailbox, a message indicating
that the process is being deleted is sent to the mailbox. For detached
processes created by the system, the termination message is sent to the
system job controller.

® The control region of the process’s virtual address space is deleted. (The
control region consists of memory -allocated and used by the system on behalf
of the process.)

e All system-maintained information about the process is deleted.

Figure 3-1 illustrates the flow of events from image exit through process
deletion.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

Figure 3-1 Image Exit and Process Deletion

—> Image Exit

Any
Exit Handlers
for User

Mode
?

Call Them, in LIFO Order,
Using Argument List in Exit
Control Block

Call the Delete Process
($DELPRC) System Service
to Delete the Process

Process Using

the Command

Interpreter
?

Yes

Did

Creator Specify

a Termination

Mailbox
2

Call the Exit Handler
Declared by the
Command Interpreter”

No

Yes
Retumn to Command Send a Termination Message
Interpreter to Execute to the Mailbox Specified by
the Next Image , the Process’s Creator

Deletion
Complete

*This exit handler is declared from supervisor mode and is
located during the normal search for exit handlers.

ZK-0857-GE

3-45

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

3.6.4.1 Deleting a Process By Using System Services

A process can delete itself or another process at any time, depending on the
restrictions outlined in Section 3.1.1. Any one of the following system services
can be used to delete a subprocess or a detached process. Some services terminate
execution of the image in the process; others terminate the process itself.

¢ SYS$EXIT—Initiates normal exit in the current image. Control returns to the
command language interpreter. If there is no command language interpreter,
the process is terminated. This routine cannot be used to terminate an image
in a detached process.

* SYS$FORCEX—Initiates a normal exit on the image in the specified process.
GROUP or WORLD privilege may be required, depending on the process
specified. An AST is sent to the specified process. The AST calls on the
SYS$EXIT routine to complete the image exit. Because an AST is used, you
cannot use this routine on a suspended process. You can use this routine on a
subprocess or detached process. See Section 3.6.3.4 for an example.

¢ SYS$DELPRC—Deletes the specified process. GROUP or WORLD privilege
may be required, depending on the process specified. A termination message
is sent to the calling process’s mailbox. You can use this routine on a
subprocess, a detached process, or the current process. For example, if a
process has created a subprocess named CYGNUS, it can delete CYGNUS, as
follows:

$DESCRIPTOR (prcnam, "CYGNUS");

status = SYS$EDLPRC(O, /* Process id */
&prcnam) ; /* Process name */

Because a subprocess is automatically deleted when the image it is executing
terminates (or when the command stream for the command interpreter
reaches end of file), you normally do not need to call the SYS$DELPRC
system service explicitly.

3.6.4.2 Terminating Mailboxes

3-46

A termination mailbox provides a process with a way of determining when, and
under what conditions, a process that it has created was deleted. The Create
Process (SYS$CREPRC) system service accepts the unit number of a mailbox as
an argument. When the process is deleted, the mailbox receives a termination
message.

The first word of the termination message contains the symbolic constant,
MSG$_DELPROC, which indicates that it is a termination message. The second
longword of the termination message contains the final status value of the image.
The remainder of the message contains system accounting information used by
the job controller and is identical to the first part of the accounting record sent
to the system accounting log file. The description of the SYS$CREPRC system
service in the OpenVMS System Services Reference Manual provides the complete
format of the termination message.

If necessary, the creating process can determine the process identification of the
process being deleted from the I/O status block (IOSB) posted when the message
is received in the mailbox. The second longword of the IOSB contains the process
identification of the process being deleted.

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

A termination mailbox cannot be located in memory shared by multiple
processors.

The following example illustrates a complete sequence of process creation, with a
termination mailbox:

#include <stdio.h>
$include <descrip.h>
#include <ssdef.h>
#include <msgdef.h>
$include <dvidef.h>
#include <iodef.h>
#include <accdef.h>

unsigned short unitnum;
unsigned int pidadr;

/* Create a buffer to store termination info */
struct accdef exitmsg;
/* Define and initialize the item list for S$GETDVI */

static struct { (1)
unsigned short buflen,item code;
void *bufaddr;
void *retlenaddr;
unsigned int terminator;
ymbxinfo = { 4, DVI$ UNIT, &unitnum, 0, 0};

/* I/0 Status Block for QIO */

struct {
unsigned short iostat, mblen;
unsigned int mbpid;

}ymbxiosb;

main() {

void exitast(void);

unsigned short exchan;

unsigned int status,maxmsg=84,bufquo=240,promsk=0;
unsigned int func=I0$_ READVBLK;

$DESCRIPTOR(image, "LYRA");

/* Create a mailbox */

status = SYS$CREMBX(O0, /* prmflg (permanent or temporary) */ (2]
&exchan, /* channel */
maxmsg, /* maximum message size */
bufquo, /* no. of bytes used for buffer */
promsk, /* protection mask */
0,0,0,0);

if ((status & 1) !=1)
LIB$SIGNAL(status);

/* Get the mailbox unit number */

status = SYS$GETDVI(O, /* efn - event flag */ (3]
exchan, /* chan - channel */
0, /* devnam - device name */
&mbxinfo, /* item list */
0,0,0,0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

/* Create a subprocess */
status = SYSSCREPRC(&pidadr, /* process id */

&image, /* image to be run */

0,0,0,0,0,0,0,0,

unitnum, /* mailbox unit number */
0); /* options flags */

if ((status & 1) !=1)
LIBSSIGNAL(status);

/* Read from mailbox */

status = SYSSQIOW(O, /* efn - event flag */ (4]
exchan, ' /* chan - channel number */
func, /* function modifier */
smbxiosb, /* iosb - I/0 status block */
sexitast, /* astadr - astadr AST routine */
0, /* astprm - astprm AST parameter */
sexitmsg, /* pl - buffer to receive message*/
ACC$K _TERMLEN, /* p2 - length of buffer */
0,0,0,0); /* p3, p4, p5, p6 */

if ((status & 1) !=1)
LIB$SIGNAL(status);

}
void exitast(void) {
if (mbxiosb.iostat == SS$ NORMAL) (5]

printf("\nMailbox successfully written...");
if (exitmsg.acc$w_msgtyp == MSG$_DELPROC)

printf("\nProcess deleted...");
if (pidadr == mbxiosb.mbpid)
{

printf("\nPIDs are equal...");
if (exitmsg.acc$l finalsts == SS$ NORMAL)
printf("\nNormal termination...");
else
printf("\nAbnormal termination status: %d",
exitmsg.acc$l finalsts);

}

else
printf("\nPIDs are not equal");

else
printf("\nTermination message not received... status: %d",
exitmsg.acc$w_msgtyp);
}

else
printf("\nMailbox I/O status block: %d",mbxiosb.iostat);

return;

© The item list for the Get Device/Volume Information (SYS$GETDVI) system
service specifies that the unit number of the mailbox is to be returned.

® The Create Mailbox and Assign Channel (SYS$CREMBX) system service
creates the mailbox and returns the channel number at EXCHAN.

© The Create Process (SYS$CREPRC) system service creates a process to
execute the image LYRA EXE and returns the process identification at
LYRAPID. The mbxunt argument refers to the unit number of the mailbox,
obtained from the Get Device/Volume Information (SYS$GETDVI) system
service.

3-48

Process Control
3.6 Suspending, Resuming, and Stopping Process Execution

O The Queue I/O Request (SYS$QIO) system service queues a read request to
the mailbox, specifying both an AST service routine to receive control when
the mailbox receives a message and the address of a buffer to receive the
message. The information in the message can be accessed by the symbolic
offsets defined in the $ACCDEF macro. The process continues executing.

©® When the mailbox receives a message, the AST service routine EXITAST
receives control. Because this mailbox can be used for other interprocess
communication, the AST routine does the following:

¢ Checks for successful completion of the I/O operation by examining the
first word in the IOSB

® Checks that the message received is a termination message by examining
the message type field in the termination message at the offset ACC$W_
MSGTYPE

® Checks for the process identification of the process that has been deleted
by examining the second longword of the IOSB

¢ Checks for the completion status of the process by examining the status
field in the termination message at the offset ACC$L_FINALSTS

In this example, the AST service routine performs special action when the
subprocess is deleted. All other messages or error conditions cause a branch
to the label 20$.

The Create Mailbox and Assign Channel (SYS$CREMBX), Get Device/Volume
Information (SYS$GETDVI), and Queue I/O Request (SYS$QIO) system services
are described in greater detail in Chapter 9.

3-49

4

Using Asynchronous System Traps

This chapter describes the use of asynchronous system traps (ASTs). It contains
the following sections:

Section 4.1 provides an overview of AST routines.

Section 4.2 describes access modes for ASTs.

Section 4.3 describes ASTs and process wait states.

Section 4.4 describes how ASTs are declared.

Section 4.5 describes the AST service routine.

Section 4.6 describes how ASTs are delivered.

Section 4.7 presents a code example of how to use AST services.

Asynchronous system traps (ASTs) are interrupts that occur asynchronously (out
of sequence) with respect to the process’s execution. The trap provides a transfer
of control to a user-specified procedure that handles the event. For example,
you can use them to signal a program to execute a routine whenever a certain
condition occurs.

Some system services allow a process to request that it be interrupted when
a particular event occurs. Table 4-1 shows the system services that are AST
services.

Table 4-1 AST System Services

System Service Task Performed
SYS$SETAST Set AST Enable
SYS$DCLAST Declare AST
SYS$SETPRA Set Power Recovery AST

The system services that use the AST mechanism accept as an argument the
address of an AST service routine, that is, a routine to be given control when the
event occurs.

Table 4-2 shows some of the services that use ASTs.

4-1

Using Asynchronous System Traps

Table 4-2 System Services That Use ASTs

System Service Task Performed

SYS$DCLAST Declare AST

SYS$ENQ Enqueue Lock Request
SYS$GETDVI Get Device/Volume Information
SYS$GETJIPI ‘ Get Job/Process Information
SYS$GETSYI Get Systemwide Information
SYS$QIO Queue I/O Request
SYS$SETIMER Set Timer

SYS$SETPRA Set Power Recovery AST
SYS$UPDSEC Update Section File on Disk

For example, if you call the Set Timer (SYS$SETIMR) system service, you can
specify the address of a routine to be executed when a time interval expires or at
a particular time of day. The service schedules the execution of the routine and
returns; the program image continues executing. When the requested timer event
occurs, the system “delivers” an AST by interrupting the process and calling the
specified routine.

Example 4-1 shows a typical program that calls the SYS$SETIMR system service
with a request for an AST when a timer event occurs.

Example 4-1 Calling the SYS$SETIMR System Service

#include <stdio.h>
#include <stdlib.h>
#include <ssdef.h>
#include <descrip.h>

struct {
unsigned int lower, upper;
}daytim;

/* BAST routine */
void time ast(void);

main() {
unsigned int status;
$DESCRIPTOR(timbuf,"0 ::10.00"); /* 10-second delta */

/* Convert ASCII format time to binary format */

status = SYS$BINTIM(&timbuf, /* buffer containing ASCII time */
&daytim); /* timadr (buffer to receive */
/* binary time) */
if ((status & 1) != 1)
LIB$SIGNAL(status);
else
printf("Converting time to binary format...\n");

/* Set the timer */

(continued on next page)

Using Asynchronous System Traps

Example 4-1 (Cont.) Calling the SYS$SETIMR System Service

status = SYS$SETIMR(O, /* efn (event flag) */ (1]
&daytim, /* expiration time */
&time ast, /* astadr (AST routine) */
0, /* reqidt (timer request id) */
0); /* flags */

14
if ((status & 1) != 1)
LIB$SIGNAL(status);
else
printf("Setting the timer to expire in 10 secs...\n"); @

/* Hibernate the process until the timer expires */

status = SYSSHIBER();
if ((status & 1) !=1)
LIBSSIGNAL(status);
}
void time ast (void) {
unsigned int status;

status = SYSSWAKE(O, /* process id */
0); /* process name */

if ((status & 1) != 1)
LIBSSIGNAL(status);

printf("Executing AST routine to perform wake up...\n"); ©

return;

}

@ The call to the SYS$SETIMR system service requests an AST at 10 seconds
from the current time.

The daytim argument refers to the quadword, which must contain the time
in system time (64-bit) format. For details on how this is accomplished, see
Chapter 5. The astadr argument refers to TIME_AST, the address of the
AST service routine.

When the call to the system service completes, the process continues
execution.

® The timer expires in 10 seconds and notifies the system. The system
interrupts execution of the process and gives control to the AST service
routine.

© The user routine TIME_AST handles the interrupt. When the AST routine
completes, it issues a RET instruction to return control to the program. The
program resumes execution at the point at which it was interrupted.

The following sections describe in more detail how ASTs work and how to use
them.
4.1 Overview of AST Routines

The routine executed upon delivery of an AST is called an AST routine. It
is coded and referenced like any other subroutine. The differences are that
it is executed only after an AST is received by the program and is called
asynchronously by the operating system, not by the current image.

4-3

Using Asynchronous System Traps
4.1 Overview of AST Routines

When the AST routine is finished, the program that was interrupted resumes
execution from the point of interruption.

To deliver an AST, you use system services that specify the address of the AST
routine. Then, the system delivers the AST (that is, transfers control to your
subprogram) at a particular time or in response to a particular event.

The AST routine must observe the following restrictions:

Arguments—The queuing mechanism for an AST does not provide for
returning a function value or passing arguments. Therefore, you should write
an AST routine as a subroutine, and use common blocks to pass arguments
between an AST routine and the program that queues it.

In some cases, a system service that queues an AST allows you to specify an
argument for the AST routine (for example, SYS$GETJPI). If you choose to
pass the argument, the AST routine must be written to accept the argument.

Terminal I/O—If you try to access the terminal with language I/O statements
using SYS$INPUT or SYS$OUTPUT, you may receive a redundant I/O error.
You must establish another channel to the terminal by explicitly opening the
terminal (or by using the SMG$ routines).

Shared routines—An AST routine might invoke a subprogram that is also
invoked by another program unit in the program. To prevent conflicts, a
program unit should use the SYS$SETAST system service to disable AST
interrupts before calling a routine that might be invoked by an AST. Once the
shared routine has executed, the program unit can use the same service to
reenable AST interrupts.

Invocation—You should never directly call an AST routine as a subroutine or
a function.

Iteration—You should never allow an AST routine to be delivered iteratively.

The system service used to queue the AST routine determines whether the AST
is delivered after a specified event or time.

4-4

Event—The following system routines allow you to specify an AST routine to
be delivered when the system routine completes:

— LIB$SPAWN—Signals when the subprocess has been created.

— SYS$ENQ and SYS$ENQW—Signal when the resource lock is blocking a
request from another process.

— SYS$GETDVI and SYS$GETDVIW—Indicate that device information has
been received.

— SYS$GETJPI and SYS$GETJPIW—Indicate that process information has
been received.

— SYS$GETSYI and SYS$GETSYIW—Indlcate that system information has
been received.

— SYS$QIO and SYS$QIOW—Signal when the requested I/O is completed.
— SYS$UPDSEC—Signals when the section file has been updated.

Event—The SYS$SETPRA system service allows you to specify an AST to be
delivered when the system detects a power recovery.

Using Asynchronous System Traps
4.1 Overview of AST Routines

e Time—The SYS$SETIMR system service allows you to specify a time for the
AST to be delivered.

¢ Time—The SYS$DCLAST system service delivers a specified AST
immediately. This makes it an ideal tool for debugging AST routines.

If a program queues an AST and then exits before the AST is delivered, the AST
is deleted from the queue. If a process is hibernating when an AST is delivered,
the AST executes and the process continues hibernating.

If a suspended process receives an AST, the execution of the AST depends on the
AST mode and the mode at which the process was suspended, as follows:

e If the process was suspended from a SYS$SUSPEND call at supervisor mode,
user-mode ASTs are executed as soon as the process is resumed. If more
than one AST is delivered, they are executed in the order in which they were
delivered. Supervisor-, executive-, and kernel-mode ASTs are executed upon
delivery.

e If the process was suspended from a SYS$SUSPEND call at kernel mode, all
ASTs are blocked and are executed as soon as the process is resumed.

Generally, AST routines are used with the SYS$QIO or SYS$QIOW system
service for handling Ctrl/C, Ctrl/Y, and unsolicited input.

4.2 Access Modes for AST Execution

Each request for an AST is associated with the access mode from which the AST
is requested. Thus, if an image executing in user mode requests notification of an
event by means of an AST, the AST service routine executes in user mode.

Because the ASTs you use almost always execute in user mode, you do not need
to be concerned with access modes. However, you should be aware of some
system considerations for AST delivery. These considerations are described in
Section 4.6.

4.3 ASTs and Process Wait States

A process in a wait state can be interrupted for the delivery of an AST and the
. execution of an AST service routine. When the AST service routine completes
execution, the process is returned to the wait state, if the condition that caused
the wait is still in effect.

With the exception of suspended waits (SUSP) and suspended outswapped waits
(SUSPO), any wait states can be interrupted.
4.3.1 Event Flag Waits

If a process is waiting for an event flag and is interrupted by an AST, the wait
state is restored following execution of the AST service routine. If the flag is set
at completion of the AST service routine (for example, by completion of an I/O
operation), then the process continues execution when the AST service routine
completes.

Event flags are described in Section 14.6.

4-5

Using Asynchronous System Traps
4.3 ASTs and Process Wait States

4.3.2 Hibernation

A process can place itself in a wait state with the Hibernate (SYS$HIBER) system
service. This wait state can be interrupted for the delivery of an AST. When the
AST service routine completes execution, the process continues hibernation. The
process can, however, “wake” itself in the AST service routine or be awakened by
another process or as the result of a timer-scheduled wakeup request. Then, it
continues execution when the AST service routine completes.

Process suspension is another form of wait; however, a suspended process cannot
be interrupted by an AST. Process hibernation and suspension are described in
Chapter 3.

4.3.3 Resource Waits and Page Faults

When a process is executing an image, the system can place the process in a
wait state until a required resource becomes available, or until a page in its
virtual address space is paged into memory. These waits, which are generally
transparent to the process, can also be interrupted for the delivery of an AST.

4.4 How ASTs Are Declared

Most ASTs occur as the result of the completion of an asynchronous event
initiated by a system service (for example, a SYS$QIO or SYS$SETIMR request)
when the process requests notification by means of an AST.

The Declare AST (SYS$DCLAST) system service creates ASTs. With this service,
a process can declare an AST only for the same or for a less privileged access
mode.

You may find occasional use for the SYS$DCLAST system service in your
programming applications; you may also find the SYS$DCLAST service useful
when you want to test an AST service routine.

4.5 The AST Service Routine

4-6

An AST service routine must be a separate procedure. The AST must use the
standard call procedure, and the routine must return using a RET instruction.
If the service routine modifies any registers other than the standard scratch
registers, it must set the appropriate bits in the entry mask so that the contents
of those registers are saved.

Because you cannot know when the AST service routine will begin executing, you
must take care when you write the AST service routine that it does not modify
any data or instructions used by the main procedure (unless, of course, that is its
function).

On entry to the AST service routine, the arguments shown in Table 4-3 are
passed.

Table 4-3 AST Arguments for VAX Systems and AXP Systems
VAX System Arguments AXP System Arguments

AST parameter AST parameter
RO RO

(continued on next page)

Using Asynchronous System Traps
4.5 The AST Service Routine

Table 4-3 (Cont.) AST Arguments for VAX Systems and AXP Systems
VAX System Arguments AXP System Arguments

R1 R1
PC PC
PSL PS

Registers RO and R1, the program counter (PC), and the processor status
longword (PSL) on VAX systems, or processor status (PS) on AXP systems were
saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine so that
it can identify the event that caused the AST. When you call a system service
requesting an AST, or when you call the SYS$DCLAST system service, you
can supply a value for the AST parameter. If you do not specify a value, the
parameter defaults to 0.

The following example illustrates an AST service routine. In this example, the
ASTs are queued by the SYS$DCLAST system service; the ASTs are delivered
to the process immediately so that the service routine is called following each

SYS$DCLAST system service call.

#include <stdio.h>
#include <ssdef.h>

/* Declare the AST routine */

void astrtn (int);

main()
{
unsigned int status, valuel=1l, value2=2;
status = SYS$DCLAST(&astrtn, /* astadr - AST routine */ (1]
valuel, /* astprm - AST parameter */
0); /* acmode */
if((status & 1) != 1)
LIB$SIGNAL(status);
status = SYS$DCLAST(&astrtn, value2, 0);
if((status & 1) != 1)
LIB$SIGNAL(status);
}
void astrtn (int value) { (2]

/* Evaluate AST parameter */
switch (value)

{
case 1: printf("Executing AST routine with value 1...\n");
goto handler 1;
break;
case 2: printf("Executing AST routine with value 2...\n");
goto handler 2;
break;
default: printf("Error\n");
}i

/* Handle first AST */

4-7

Using Asynchronous System Traps
4.5 The AST Service Routine

handler 1:

return;
/* Handle second AST */
handler 2:

return;

}

@ The program CELESTEF calls the SYS$DCLAST AST system service twice to
queue ASTs. Both ASTs specify the AST service routine, ASTRTN. However,
a different parameter is passed for each call.

@ The first action this AST routine takes is to check the AST parameter so
that it can determine if the AST being delivered is the first or second one
declared. The value of the AST parameter determines the flow of execution.
If a number of different values are determining a number of different paths
of execution, Digital recommends that you use the VAX MACRO instruction
CASE.

4.6 AST Delivery

When a condition causes an AST to be delivered, the system may not be able to
deliver the AST to the process immediately. An AST cannot be delivered under
any of the following conditions:

¢ An AST service routine is currently executing at the same or at a more
privileged access mode.

Because ASTs are implicitly disabled when an AST service routine executes,
one AST routine cannot be interrupted by another AST routine declared for
the same access mode. It can, however, be interrupted for an AST declared

for a more privileged access mode.

e AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the Set AST Enable
(SYS$SETAST) system service. This service may be useful when a program
is executing a sequence of instructions that should not be interrupted for the
execution of an AST routine.

AXP On AXP systems, SYS$SETAST is often used in a main program that shares
data with an AST routine in order to block AST delivery while the program
accesses the shared data. ¢

¢ The process is executing or waiting at an access mode more privileged than
that for which the AST is declared.

For example, if a user-mode AST is declared as the result of a system service
but the program is currently executing at a higher access mode (because of
another system service call, for example), the AST is not delivered until the
program is once again executing in user mode.

4-8

Using Asynchronous System Traps
4.6 AST Delivery

If an AST cannot be delivered when the interrupt occurs, the AST is queued
until the conditions disabling delivery are removed. Queued ASTs are ordered
by the access mode from which they were declared, with those declared from
more privileged access modes at the front of the queue. If more than one AST is
queued for an access mode, the ASTs are delivered in the order in which they are
queued.

4.7 Example of Using AST Services

The following is an example of a DEC Fortran program that finds the process
identification number (PID) of any user working on a particular disk and delivers
an AST to notify the user that the disk is coming down:

PROGRAM DISK_DOWN
! Implicit none
! Status variable
INTEGER STATUS
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN,
2 CODE
INTEGER*4 BUFADR,
2 RETLENADR
END MAP
MAP
INTEGER*4 END_LIST
END MAP
END UNION
END STRUCTURE
RECORD /ITMLST/ DVILIST(2),
2 JPILIST(2)
! Information for GETDVI call
INTEGER PID BUF,
2 PID LEN
! Information for GETJPI call
CHARACTER*7 TERM NAME
INTEGER TERM LEN
EXTERNAL DVI$_PID,
2 JPI$_TERMINAL
! AST routine and flag
INTEGER AST FLAG
PARAMETER (AST_FLAG = 2)
EXTERNAL NOTIFY_USER

INTEGER SYSSGETDVIW,
2 SYS$GETJPI,
2 SYSSWAITFR

Using Asynchronous System Traps
4.7 Example of Using AST Services

! Set up for SYSS$GETDVI

‘ DVILIST(1).BUFLEN = 4
DVILIST(1).CODE $LOC(DVI$ PID)
DVILIST(1).BUFADR = $LOC(PID_BUF)
DVILIST(1).RETLENADR = $LOC(PID LEN)
DVILIST(2).END LIST = 0 B
! Find PID number of process using SYS$DRIVEG
STATUS = SYSSGETDVIW (,

mouwn

2 '

2 '_MTAQ:', ! device

2 DVILIST, t item list
2

rrr

)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL(STATUS))
! Get terminal name and fire AST
JPILIST(1).CODE = %LOC(JPI$_TERMINAL)
JPILIST(1).BUFLEN = 7
JPILIST(1).BUFADR = %LOC(TERM_NAME)
JPILIST(1) .RETLENADR = %LOC(TERM LEN)
JPILIST(2).END_LIST = 0 -
STATUS = SYSSGETJPI (,

2 PID BUF, !process id
2 '

2 JPILIST, litemlist

2 ’

2 NOTIFY USER, {AST

2 TERM NAME) IAST arg

IF (.NOT. STATUS) CALL LIB$SIGNAL($VAL(STATUS))

! Ensure that AST was executed

STATUS = SYS$WAITFR(SVAL(AST FLAG))

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

SUBROUTINE NOTIFY USER (TERM STR)

! AST routine that broadcasts a message to TERMINAL
! Dummy argument

CHARACTER*(*) TERM STR

CHARACTER*8 TERMINAL

INTEGER LENGTH

! Status variable

INTEGER STATUS

CHARACTER* (*) MESSAGE

PARAMETER (MESSAGE =

2 'SYSSTAPE going down in 10 minutes’)
! Flag to indicate AST executed

INTEGER AST_FLAG

! Declare system routines
INTRINSIC LEN
INTEGER SYS$BRDCST,

2 SYS$SETEF
EXTERNAL SYS$BRDCST,
2 SYS$SETEF,
2 LIB$SIGNAL

t Add underscore to device name
LENGTH = LEN (TERM_STR)
TERMINAL(2:LENGTH+1) = TERM_STR
TERMINAL(1:1) = '_'

4-10

Using Asynchronous System Traps
4.7 Example of Using AST Services

! Send message

STATUS = SYS$BRDCST (MESSAGE,

2 TERMINAL (1:LENGTH+1))

IF (.NOT. STATUS) CALL LIB$SIGNAL($VAL(STATUS))
! Set event flag

STATUS = SYS$SETEF (3VAL(AST_FLAG))

IF (.NOT. STATUS) CALL LIB$SIGNAL(3%VAL(STATUS))

END

4-1

O

System Time Operations

This chapter describes the types of system time operations performed by the
operating system. It contains the following sections:

Section 5.1 describes the system time format.
Section 5.2 describes time conversion and date/time manipulation.

Section 5.3 describes how to get the current date and time and set the current
time.

Section 5.4 describes how to set and cancel timer requests and how to schedule
and cancel wakeups.

Section 5.5 describes using run-time library (RTL) routines to collect timer
statistics.

Section 5.6 describes using date/time formatting routines.

Section 5.7 describes the Coordinated Universal Time (UTC) system.

5.1 System Time Format

The operating system maintains the current date and time in 64-bit format.
The time value is a binary number in 100-nanosecond (ns) units offset from

the system base date and time, which is 00:00 o’clock, November 17, 1858 (the
Smithsonian base date and time for the astronomic calendar). Time values must
be passed to or returned from system services as the address of a quadword
containing the time in 64-bit format. A time value can be expressed as either of
the following:

® An absolute time that is a specific date or time of day, or both. Absolute times
are always positive values (or 0).

e A delta time that is an offset from the current time to a time or date in the
future. Delta times are always expressed as negative values.

If you specify 0 as the address of a time value, the operating system supplies the
current date and time.

5.1.1 Absolute Time Format

The operating system uses the following format for absolute time. The full date
and time require a character string of 23 characters. The punctuation is required.

dd-MMM-yyyy hh:mm:ss.cc

dd Day of the month (2 characters)
MMM Month (first 3 characters of the month in uppercase)
yyyy Year (4 characters)

5-1

System Time Operations
5.1 System Time Format

hh Hours of the day in 24-hour format (2 characters)
mm Minutes (2 characters)
ss.cc Seconds and hundredths of a second (5 characters)

5.1.2 Delta Time Format

The operating system uses the following format for delta time. The full date and
time require a character string of 16 characters. The punctuation is required.

dddd hh:mm:ss.cc

dddd Day of the month (4 characters)

hh Hour of the day (2 characters)
mm Minutes (2 characters)
ss.cc Seconds and hundredths of a second (5 characters)

A delta time is maintained as an integer value representing an amount of time in
100-ns units.

5.2 Time Conversion and Date/Time Manipulation

This section presents information about time conversion and date/time
manipulation features, and the routines available to implement them.

5.2.1 Time Conversion Routines

Since the timer system services require you to specify the time in a 64-bit format,

5-2

you

can use time conversion run-time library and system service routines to work

with time in a different format. Run-time library and system services do the
following:

Obtain the current date and time in an ASCII string or in system format.
Convert an ASCII string into the system time format.
Convert a system time value into an ASCII string.

Convert the time from system format to integer values.

Table 5-1 shows time conversion run-time and system service routines.

System Time Operations

5.2 Time Conversion and Date/Time Manipulation

Table 5-1 Time Conversion Routines and System Services

Routine

Function

Time Conversion Run-Time Library (LIB$) Routines

LIB$CONVERT_DATE_STRING

LIB$CVT_FROM_INTERNAL_TIME

LIB$CVTF_FROM_INTERNAL_TIME

LIB$CVT_TO_INTERNAL_TIME

LIB$CVTF_TO_INTERNAL_TIME

LIB$CVT_VECTIM

LIB$FORMAT DATE_TIME

LIB$SYS_ASCTIM

Converts an input date/time string to an
operating system internal time.

Converts an operating system standard
internal binary time value to an external
integer value. The value is converted
according to a selected unit of time
operation.

Converts an operating system standard
internal binary time to an external
F-floating point value. The value is
converted according to a selected unit of
time operation.

Converts an external integer time value
to an operating system standard internal
binary time value. The value is converted
according to a selected unit of time
operation.

Converts an F-floating point time value
to an internal binary time value.

Converts a 7-word array (as returned
by the SYS$NUMTIM system service)
to an operating system standard format
internal time.

Allows you to select at run time a specific
output language and format for a date or
time, or both.

Provides a simplified interface between
higher-level languages and the $ASCTIM
system service.

(continued on next page)

5-3

System Time Operations
- 5.2 Time Conversion and Date/Time Manipulation

Table 5-1 (Cont.) Time Conversion Routines and System Services

Routine Function

Time Conversion System Service Routines

SYS$ASCTIM Converts an absolute or delta time from
64-bit binary time format to an ASCII
string.

SYS$ASCUTC Converts an absolute time from 128-

bit Coordinated Universal Time (UTC)
format to an ASCII string.

SYS$BINTIM Converts an ASCII string to an absolute
or delta time value in a binary time
format.

SYS$BINUTC Converts an ASCII string to an absolute
time value in the 128-bit UTC format.

SYS$FAO Converts a binary value into an ASCII

character string in decimal, hexadecimal,
or octal notation and returns the
character string in an output string.

SYS$GETUTC Returns the current time in 128-bit UTC
format.
SYS$NUMTIM Converts an absolute or delta time from

64-bit system time format to binary
integer date and time values.

SYS$NUMUTC Converts an absolute 128-bit binary
time into its numeric components. The
numeric components are returned in local
time.

SYS$TIMCON Converts 128-bit UTC to 64-bit system
format or 64-bit system format to 128-bit
UTC based on the value of the convert
flag.

You can use the SYS$GETTIM system service to get the current time in internal
format, or you can use SYS$BINTIM to convert a formatted time to an internal
time, as shown in Section 5.3.2. You can also use the LIB§DATE_TIME routine to
obtain the time, LIB§CVT_FROM_INTERNAL_TIME to convert an internal time
to an external time, and LIB$CVT _TO_INTERNAL to convert from an external
time to an internal time.

5.2.1.1 Calculating and Displaying Time with SYS$GETTIM and SYS$SUBX

5-4

Example 5-1 calculates differences between the current time and a time input
in absolute format, and then displays the result as delta time. If the input time
is later than the current time, the difference is a negative value (delta time) and
can be displayed directly. If the input time is an earlier time, the difference is a
positive value (absolute time) and must be converted to delta time before being
displayed. To change an absolute time to a delta time, negate the time array
by subtracting it from O (specified as an integer array) using the LIB§SUBX
routine, which performs subtraction on signed two’s complement integers of
arbitrary length. For the absolute or delta time format, see Section 5.1.1 and
Section 5.1.2.

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

Example 5-1 Calculating and Displaying the Time

Internal times
Input time in absolute format, dd-mmm-yyyy hh:mm:ss.ss

NTEGER*4 CURRENT TIME (2),

H o= o= o

2 PAST TIME (2),
2 TIME DIFFERENCE (2),
2 ZERO (2)

DATA ZERO /0,0/

! Formatted times

CHARACTER*23 PAST TIME F

CHARACTER*16 TIME DIFFERENCE F

! Status

INTEGER*4 STATUS

! Integer functions

INTEGER*4 SYSSGETTIM,

LIB$GET_INPUT,

SYSSBINTIM,

LIB$SUBX,

SYS$ASCTIM

! Get current time

STATUS = SYSSGETTIM (CURRENT TIME)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Get past time and convert to internal format

STATUS = LIBSGET_INPUT (PAST_TIME F,

2 'Past time (in absolute format): ')

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

STATUS = SYSSBINTIM (PAST TIME F,

2 PAST TIME)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

{ Subtract past time from current time

STATUS = LIB$SUBX (CURRENT _TIME,

2 PAST TIME,

2 TIME_DIFFERENCE)

IF (.NOT. STATUS) CALL LIB$SIGNAL (S$VAL (STATUS))

! If resultant time is in absolute format (positive value means

! most significant bit is not set), convert it to delta time

IF (.NOT. (BTEST (TIME DIFFERENCE(2),31))) THEN
STATUS = LIB$SUBX (ZERO,

NN NN

2 TIME DIFFERENCE,
2 TIME DIFFERENCE)
END IF

! Format time difference and display

STATUS = SYS$ASCTIM (, TIME DIFFERENCE F,

2 TIME_DIFFERENCE,)”

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, 'Time difference = ’, TIME DIFFERENCE F
END

If you are ignoring the time portion of date/time (that is, working just at the date

level), the LIB$DAY routine might simplify your calculations. LIB$DAY returns
to you the number of days from the base system date to a given date.

5-5

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

5.2.1.2 Obtaining Absolute Time with SYSSASCTIM and SYS$BINTIM

The Convert Binary Time to ASCII String (SYS$ASCTIM) is the converse of

the Convert ASCII String to Binary Time (SYS$BINTIM) system service. You
provide the service with the time in the ASCII format shown in Section 5.3.2.
The service then converts the string to a time value in 64-bit format. You can use
this returned value as input to a timer scheduling service.

When you specify the ASCII string buffer, you can omit any of the fields, and
the service uses the current date or time value for the field. Thus, if you want a
timer request to be date independent, you could format the input buffer for the
SYS$BINTIM service as shown in the following example. The two hyphens that
are normally embedded in the date field must be included, and at least one blank
must precede the time field.

#include <stdio.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buffl, buff2;
}binary noon;

main() {

unsigned int status;
$DESCRIPTOR(ascii noon,"-- 12:00:00.00"); /* noon (absolute time) */

/* Convert time */
status = SYS$BINTIM(&ascii noon, /* timbuf - ASCII time */
&binary noon); /* timadr - binary time */

}

When the SYS$BINTIM service complétes, a 64-bit time value representing “noon
today” is returned in the quadword at BINARY_NOON.

5.2.1.3 Obtaining Delta Time with SYS$BINTIM

5-6

The SYS$BINTIM system service also converts ASCII strings to delta time values
to be used as input to timer services. The buffer for delta time ASCII strings has
the following format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0 if you are
specifying a delta time for the current day.

The following example shows how to use the SYS$BINTIM service to obtain a
delta time in system format:

#include <stdio.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buffl, buff2;
tbtenmin;

main() {

unsigned int status;
$DESCRIPTOR(atenmin,"0 00:10:00.00"); /* 10-min delta */

/* Convert time from ASCII to binary */
status = SYS$BINTIM(&atenmin, /* timbuf - time in ASCII */
sbtenmin); /* timadr - binary time */

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

If you are programming in VAX MACRO, you can also specify approximate
delta time values when you assemble a program, using two MACRO .LONG
directives to represent a time value in 100-ns units. The arithmetic is based on
the following formula:

1 second = 10 million * 100 ns
For example, the following statement defines a delta time value of 5 seconds:
FIVESEC: .LONG -10*1000%1000*5,-1 ; Five seconds

The value 10 million is expressed as 10¥1000*1000 for readability. Note that the
delta time value is negative. '

If you use this notation, however, you are limited to the maximum number of
100-ns units that can be expressed in a longword. In time values this is slightly
more than 7 minutes.

5.2.1.4 Obtaining Numeric and ASCIl Time with SYS$NUMTIM
The Convert Binary Time to Numeric Time (SYS§NUMTIM) system service
converts a time in the system format into binary integer values. The service
returns each of the components of the time (year, month, day, hour, and so on)
into a separate word of a 7-word buffer. The SYSSNUMTIM system service and
the format of the information returned are described in the OpenVMS System
Services Reference Manual.

You use the SYS$ASCTIM system service to format the time in ASCII for
inclusion in an output string. The SYS$ASCTIM service accepts as an argument
the address of a quadword that contains the time in system format and returns
the date and time in ASCII format.

If you want to include the date and time in a character string that contains
additional data, you can format the output string with the Formatted ASCII
Output (SYS$FAO) system service. The SYS$FAO system service converts binary
values to ASCII representations, and substitutes the results in character strings
according to directives supplied in an input control string. Among these directives
are 1%T and !%D, which convert a quadword time value to an ASCII string and
substitute the result in an output string. For examples of how to do this, see the
discussion of $FAO in the OpenVMS System Services Reference Manual.

5.2.2 Date/Time Manipulation Routines

The run-time LIB$ facility provides several date/time manipulation routines.
These routines let you add, subtract, and multiply dates and times. Use the
LIB$ADDX and LIB$SUBX routines to add and subtract times, since the times
are defined in integer arrays. Use LIB$ADD_TIMES and LIB$SUB_TIMES

to add and subtract two quadword times. When manipulating delta times,
remember that they are stored as negative numbers. For example, to add a delta
time to an absolute time, you must subtract the delta time from the absolute time.
Use LIBSMULT _DELTA_TIME and LIBSMULTF_DELTA_TIME to multiply delta
times by scalar and floating scalar.

Table 5-2 lists all the LIB$ routines that perform date/time manipulation.

5-7

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

Table 5-2 Date/Time Manipulation Routines

Routine Function
LIB$ADD_TIMES ’ Adds two quadword times
LIB$FORMAT _DATE_TIME Formats a date and/or time for output
LIB$FREE_DATE_TIME_CONTEXT Frees the date/time context
LIB$GET _MAXIMUM_DATE_LENGTH " Returns the maximum possible length of
an output date/time string
LIB$GET_USERS_LANGUAGE Returns the user’s selected language
LIB$INIT_DATE_TIME_CONTEXT Initializes the date/time context with a
user-specified format
LIB$MULT_DELTA_TIME Multiplies a delta time value by an
integer scalar value
LIB$MULTF_DELTA_TIME Multiplies a delta time value by an
F-floating point scalar value
LIB$SUB_TIMES Subtracts two quadword times

5.3 Timer Routines Used to Obtain and Set Current Time

5-8

This section presents information about getting the current date and time, and
setting current time. The run-time library (LIB$) facility provides date/time
utility routines for languages that do not have built-in time and date functions.
These routines return information about the current date and time or a date/time
specified by the user. You can obtain the current time by using the LIB$DATE_
TIME routine or by implementing the SYS$GETTIM system service. To set the
current time, use the SYS$SETTIME system service.

Table 5-3 describes the date/time routines.

Table 5-3 Timer RTLs and System Services

Routine Function

Timer Run-Time Library (LIB$) Routines

LIB$DATE_TIME Returns, using a string descriptor, the
operating system date and time in the
semantics of a string that the user provides.

(continued on next page)

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

Table 5-3 (Cont.) Timer RTLs and System Services

Routine Function

Timer Run-Time Library (LIB$) Routines

LIB$DAY Returns the number of days since the system
zero date of November 17, 1858. This routine
takes one required argument and two optional
arguments:

e The address of a longword to contain the
number of days since the system zero date
(required)

¢ A quadword passed by reference
containing a time in system time format
to be used instead of the current system
time (optional)

e A longword integer to contain the number
of 10-millisecond units since midnight
(optional)

LIB$DAY_OF_WEEK Returns the numeric day of the week for an
input time value. If the input time value is 0,
the current day of the week is returned. The
days are numbered 1 through 7: Monday is
day 1 and Sunday is day 7.

System Service Routine

SYS$SETIME Changes the value of or recalibrates the
system time.

5.3.1 Obtaining Current Time and Date with LIBSDATE_TIME

The LIB$DATE_TIME routine returns a character string containing the current
date and time in absolute time format. The full string requires a declaration of 23
characters. If you specify a shorter string, the value is truncated. A declaration of
16 characters obtains only the date. The following example displays the current
date and time:

! Formatted date and time

CHARACTER*23 DATETIME

! Status and library procedures

INTEGER*4 STATUS,

2 LIB$DATE_TIME

EXTERNAL LIBSDATE TIME

STATUS = LIB$DATE_TIME (DATETIME)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
TYPE *, DATETIME

5-9

System Time Operations
5.(3 Timer Routines Used to Obtain and Set Current Time

5.3.2 Obtaining Current Time and Date with SYS$GETTIM

You can obtain the current date and time in internal format with the
SYS$GETTIM system service. You can convert from internal to character
format with the SYS$ASCTIM system service or a directive to the SYS$FAO
system service and convert back to internal format with the SYS$BINTIM system
service. The Get Time (SYS$GETTIM) system service places the time into a
quadword buffer. For example:

/* Buffer to receive the binary time */
struct {

unsigned int buffl, buff2;
}time;

.

main() {
unsigned status;

This call to SYSSGETTIM returns the current date and time in system format in
the quadword buffer TIME.

The Convert Binary Time to ASCII String (SYS$ASCTIM) system service converts
a time in system format to an ASCII string and returns the string in a 23-byte
buffer. You call the SYS$ASCTIM system service as follows:

#include <stdio.h>
#include <descrip.h>

struct {
unsigned int buffl, buff2;
}time value;

main() {

unsigned int status;
char timestr[23];
$DESCRIPTOR (atimenow, timestr);

/* Get binary time */
status = SYS$GETTIM(&timadr);
if ((status & 1) != 1)
LIB$SSIGNAL(status);

/* Convert binary time to ASCII */
status = SYS$ASCTIM(O, /* timlen - Length of ASCII string */
&atimenow, /* timbuf - ASCII time buffer */
&time_value, /* timadr - Binary time */
0); /* cvtflags - Conversion indicator */
if ((status & 1) != 1)
LIB$SIGNAL(status);

}

Because the address of a 64-bit time value is not supplied, the default value, 0, is used.
The string the service returns has the following format:

dd-MMM-yyyy hh:mm:ss.cc

dd ~ Day of the month

5-10

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

mmm Month (a 3-character alphabetic abbreviation)
yyyy Year
hh:mm:ss.cc Time in hours, minutes, seconds, and hundredths of a second

5.3.3 Setting the Current Time with SYS$SETIME

The Set System Time (SYS$SETIME) system service allows a user with the
operator (OPER) and logical /O (LOG_IO) privileges to set the current system
time. You can specify a new system time (using the timadr argument), or you
can recalibrate the current system time using the processor’s hardware time-of-
year clock (omitting the timadr argument). If you specify a time, it must be an
absolute time value; a delta time (negative) value is invalid.

The system time is set whenever the system is bootstrapped. Normally you do not
need to change the system time between system bootstrap operations; however, in
certain circumstances you may want to change the system time without rebooting.
For example, you might specify a new system time to synchronize two processors,
or to adjust for changes between standard time and Daylight Savings Time. Also,
you may want to recalibrate the time to ensure that the system time matches the
hardware clock time (the hardware clock is more accurate than the system clock).

The DCL command SET TIME calls the SYS$SETIME system service.

If a process issues a delta time request and then the system time is changed, the
interval remaining for the request does not change; the request executes after the
specified time has elapsed. If a process issues an absolute time request and the
system time is changed, the request executes at the specified time, relative to the
new system time.

@ On VAX systems that are running the distributed time synchronization
service (DECdts), the SYS$SETIME system service is disabled and an error
SS$_TIMENOTSET is returned. You must either disable DECdts to use the
SYS$SETIME system service, or use DECdts to set the system time. ¢

The following example shows the effect of changing the system time on an
existing timer request. In this example, two set timer requests are scheduled:
one is to execute after a delta time of 5 minutes and the other specifies an
absolute time of 9:00.

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <stdlib.h>

void gemini (int x);
unsigned int status;

/* Buffers to receive binary times */
struct {’

unsigned int buffl, buff2;
}abs_binary, delta binary;

main() {
$DESCRIPTOR(abs_time,"-- 19:37:00.00"); /* 9 am absolute time */
$DESCRIPTOR (delta_time,"0 :00:30"); /* 5-min delta time */
/* Convert ASCII absolute time to binary format */
status = SYS$SBINTIM(&abs time, /* ASCII absolute time */

&abs_binary); /* Converted to binary */

5-11

System Time Operations

5.3 Timer Routines Used to Obtain and Set Current Time

if (status == SS$_NORMAL)

/* efn - event flag */

/* daytim - expiration time */
/* astadr - AST routine */

/* reqidt - timer request id */
/* flags */

printf("Setting system timer A\n");

{
status = SYS$SETIMR(O,
&abs_binary,
&gemini,
1,
0);
if (status == SS$ NORMAL)
}
else

LIBSSIGNAL(status);

/* Convert ASCII delta time to binary format */

status = SYS$BINTIM(&delta time,

&delta binary);

if (status == SS$_NORMAL)

/* ASCII delta time */
/* Converted to binary */

printf("Converting delta time to binary format\n");

/* efn - event flag */

/* daytim - expiration time */
/* astadr - AST routine */

/* reqidt - timer request id */
/* flags */

|
status = SYS$SSETIMR(O,
&delta binary,
&gemini,
2,
0);
if (status == 55§ NORMAL)
printf("Setting system timer B\n");
else
LIB$SIGNAL(status);
}
else

LIB$SIGNAL(status);

status = SYS$HIBER();
}

void gemini (int reqidt) {

unsigned short outlen;
unsigned int cvtflg=1;

char timenow[12];

char fao str([80];
$DESCRIPTOR(nowdesc, timenow);

$DESCRIPTOR(fao in, "Request ID !UB answered at !AS");

$DESCRIPTOR(fao_out, fao_str);

/* Returns and converts the current time */

status = SYS$ASCTIM(O, /* timlen - length of ASCII string */
&nowdesc, /* timbuf - receives ASCII string */
0, /* timadr - time value to convert */
cvtflyg); /* cvtflg - conversion flags */

if ((status & 1) t= 1)
LIB$SIGNAL(status);

/* Receives the formatted output string */

status = SYS$FAO(&fao_in, /* srcstr - control FAO string */
&outlen, /* outlen - length in bytes */
&fao out, /* outbuf - output buffer */
reqidt, /* pl - param needed for lst FAO dir */
&nowdesc) ; /* p2 - param needed for 2nd FAO dir */

if ((status & 1) != 1)
LIB$SIGNAL(status);

status = LIBSPUT OUTPUT(&fao out);

return;

5-12

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

The following example shows the output received from the preceding program.
Assume the program starts execution at 8:45. Seconds later, the system time is
set to 9:15. The timer request that specified an absolute time of 9:00 executes
immediately, because 9:00 has passed. The request that specified a delta time of
5 minutes times out at 9:20.

$ SHOW TIME ’

30-DEC-1993 8:45:04.56 e et +
$ RUN SCORPIO | operator sets system
< - - ---| time to 9:15
Request ID number 1 executed ‘at 09:15:00.00 R e L +
Request ID number 2 executed at 09:20:00.02
$

5.4 Routines Used for Timer Requests

This section presents information about setting and canceling timer requests,
and scheduling and canceling wakeups. Since many applications require the
scheduling of program activities based on clock time, the operating system allows
an image to schedule events for a specific time of day or after a specified time
interval. For example, you can use timer system services to schedule, convert,
or cancel events. For example, you can use the timer system services to do the
following:

¢ Schedule the setting of an event flag or the queuing of an asynchronous
system trap (AST) for the current process, or cancel a pendmg request that
has not yet been processed

® Schedule a wakeup request for a hibernating process, or cancel a pending
wakeup request that has not yet been processed

e Set or recalibrate the current system time, if the caller has the proper user
privileges

Table 54 system services that set, cancel, and schedule timer requests.

Table 5-4 Timer System Services

Timer System Service Routine Function v
SYS$SETIMR Sets the timer to expire at a specified time.
SYS$CANTIM Cancels all or a selected subset of the Set Timer

requests previously issued by the current image
executing in a process.

SYS$SCHDWK Schedules the awakening (restarting) of a process
that has placed itself in a state of hibernation
with the Hibernate (SYS$HIBER) service.

SYS$CANWAK Removes all scheduled wakeup requests for a
: process from the timer queue, including those
made by the caller or by other processes. The
Schedule Wakeup ($SCHDWK) service makes
scheduled wakeup requests.

5-13

System Time Operations .
5.4 Routines Used for Timer Requests

5.4.1 Setting Timer Requests with SYS$SETIMR

5-14

Timer requests made with the Set Timer (SYS$SETIMR) system service are
queued; that is, they are ordered for processing according to their expiration
times. The quota for timer queue entries (TQELM quota) controls the number of
entries a process can have pending in this timer queue.

When you call the SYS$SETIMR system service, you can specify either an
absolute time or a delta time value. Depending on how you want the request
processed, you can specify either or both of the following:

¢ The number of an event flag to be set when the time expires. If you do not
specify an event flag, the system sets event flag 0.

¢ The address of an AST service routine to be executed when the time expires.

Optionally, you can specify a request identification for the timer request. You
can use this identification to cancel the request, if necessary. The request
identification is also passed as the AST parameter to the AST service routine, if
one is specified, so that the AST service routine can identify the timer request.

Example 5-2 and Example 5-3 show timer requests using event flags and ASTs,
respectively. Event flags, event flag services, and ASTs are described in more
detail in the Chapter 4.

Example 5-2 Setting an Event Flag

#include <stdio.h>
#include <ssdef.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buffl, buff2;
}b30sec;

main() {

unsigned int efn = 4,status;
$DESCRIPTOR(a30sec,"0 00:00:30.00");

/* Convert time to binary format */
status = SYS$BINTIM(&a30sec, /* timbuf - ASCII time */
&b30sec);/* timadr - binary time */
if ((status & 1) != 1)
LIB$SIGNAL(status);
else
printf("Converting ASCII to binary time...\n");

/* Set timer to wait */
status = SYSSSETIMR(efn, /* efn - event flag */
&b30sec,/* daytim - binary time */
0, /* astadr - AST routine */
0, /* regidt - timer request */
0); /* flags */
if ((status & 1) != 1)
LIBSSIGNAL(status);
else
printf("Request event flag be set in 30 seconds...\n");

(continued on next page)

System Time Operations
5 4 Routines Used for Timer Requests

Example 5-2 (Cont.) Setting an Event Flag

/* Wait 30 seconds */
status = SYSSWAITFR(efn); (2]
if ((status & 1) !=1)
LIB$SIGNAL(status);
else
printf("Timer expires...\n");

}

© The call to SYS$SETIMR requests that event flag 4 be set in 30 seconds
(expressed in the quadword B30SEC).

® The Wait for Single Event Flag (SYS$WAITFR) system service places the
process in a wait state until the event flag is set. When the timer expires, the
flag is set and the process continues execution.

Example 5-3 Specifying an AST Service Routine

#include <stdio.h>
#include <descrip.h>

#define NOON 12

struct {
unsigned int buffl, buff2;
}bnoon;

/* Define the AST routine */
void astserv(int);

main() {
unsigned int status, reqidt=12;
$DESCRIPTOR(anoon, "-- 12:00:00.00");

/* Convert ASCII time to binary */
status = SYS$BINTIM(&anoon, /* timbuf - ASCII time */ @
&bnoon) ; /* timadr - binary time buffer */
if((status & 1) t= 1)
LIB$SIGNAL(status);
else
printf("Converting ASCII to binary...\n");

/* Set timer */

.status = SYS$SETIMR(O, /* efn - event flag */ @
&bnoon, /* daytim - timer expiration */
sastserv, /* astadr - AST routine */
reqidt, /* reqidt - timer request id */
0); /* cvtflg - conversion flags */

if((status & 1) !=
LIB$SIGNAL(status);
else
printf("Setting timer expiration...\n");

status = SYS$HIBER();
}

void astserv(int astprm) { (3]

(continued on next page)

5-15

System Time Operations
5.4 Routines Used for Timer Requests

Example 5-3 (Cont.) Specifying an AST Service Routine

/* Do something if it’s a "noon" request */
if (astprm == NOON)
printf("This is a noon AST request\n");
else
printf("Handling some other request\n");

status = SCHDWK(0, /* pidadr - process id */
0);/* prcnam - process name */

return;

© The call to SYS$BINTIM converts the ASCII string representing 12:00
noon to format. The value returned in BNOON is used as input to the
SYS$SETIMR system service.

@® The AST routine specified in the SYS$SETIMR request will be called when
the timer expires, at 12:00 noon. The reqidt argument identifies the timer
request. (This argument is passed as the AST parameter and is stored
at offset 4 in the argument list. See Chapter 4.) The process continues
execution; when the timer expires, it is interrupted by the delivery of the
AST. Note that if the current time of day is past noon, the timer expires
immediately.

© This AST service routine checks the parameter passed by the reqidt
argument to determine whether it must service the 12:00 noon timer request
or another type of request (identified by a different reqidt value). When the
AST service routine completes, the process continues execution at the point of
interruption.

5.4.2 Canceling a Timer Request with SYSSCANTIM

The Cancel Timer Request (SYS$CANTIM) system service cancels timer requests
that have not been processed. The SYS$CANTIM system service removes the
entries from the timer queue. Cancellation is based on the request identification
given in the timer request. For example, to cancel the request illustrated in
Example 5-3, you would use the following call to SYS$CANTIM:

unsigned int status, reqgidt=12;

status = SYSSCANTIM(reqidt, 0);

If you assign the same identification to more than one timer request, all requests
with that identification are canceled. If you do not specify the reqidt argument,
all your requests are canceled.

5.4.3 Scheduling Wakeups with SYSSWAKE

5-16

Example 5-2 shows a process placing itself in a wait state using the
SYS$SETIMR and SYS$WAITFR services. A process can also make itself inactive
by hibernating. A process hibernates by issuing the Hibernate (SYS$HIBER)
system service. Hibernation is reversed by a wakeup request, which can be put
into effect immediately with the SYS§WAKE system service or scheduled with the
Schedule Wakeup (SYS$SCHDWK) system service. For more information about
the SYS$HIBER and SYS$WAKE system services, see Chapter 3.

System Time Operations
5.4 Routines Used for Timer Requests

The following example shows a process scheduling a wakeup for itself prior to
hibernating:

#include <stdio.h>
#include <descrip.h>

struct {
unsigned int buffl, buff2;
}btensec;

main() {

unsigned int status;
$DESCRIPTOR (atensec,"0 00:00:10.00");

/* Convert time */
status = SYS$BINTIM(&atensec, /* timbuf - ASCII time */
&btensec);/* timadr - binary time */
if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Schedule wakeup */
status = SYS$SCHDWK(0, /* pidadr - process id */
0, /* prcnam - process name */
&btensec, /* daytim - wake up time */
0); /* reptim - repeat interval */
if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Sleep ten seconds */
status = SYS$HIBER();
if ((status & 1) !=1)
LIBSSIGNAL(status);
}

Note that a suitably privileged process can wake or schedule a wakeup request
for another process; thus, cooperating processes can synchronize activity using
hibernation and scheduled wakeups. Moreover, when you use the SYS$SCHDWK
system service in a program, you can specify that the wakeup request be repeated
at fixed time intervals. See Chapter 3 for more information on hibernation and
wakeup.

5.4.4 Canceling a Scheduled Wakeup with SYS$CANWAK

You can cancel scheduled wakeup requests that are pending but have not yet
been processed with the Cancel Wakeup (SYS$CANWAK) system service.

The following example shows the scheduling of wakeup requests for the process
CYGNUS and the subsequent cancellation of the wakeups. The SYS$SCHDWK
system service in this example specifies a delta time of 1 minute and an interval
time of 1 minute; the wakeup is repeated every minute until the requests are
canceled.

#include <stdio.h>
#include <descrip.h>

/* Buffer to hold one minute */

struct {
unsigned int buffl, buff2;
}interval;

main() {

unsigned int status;
$DESCRIPTOR(one_min,"0 00:01:00.00"); /* One minute delta */
$DESCRIPTOR(cygnus, "CYGNUS"); /* Process name */

5-17

System Time Operations
5.4 Routines Used for Timer Requests

/* Convert time to binary */
status = SYS$BINTIM(&one min, /* timbuf - ASCII delta time */
&interval); /* timadr - Buffer to hold binary time */
if((status & 1) != 1)
LIB$SIGNAL(status);
else
printf("Converting time to binary format...\n");

/* Schedule wakeup */

Status = SYS$SCHDWK(O, /* pidadr
&cygnus, /* prcnam
&interval, /* daytim
ginterval); /* reptim

if((status & 1) != 1)

LIB$SIGNAL(status);
}

else

process id */

process name */

time to be awakened */
repeat interval */

printf("Scheduling wakeup...\n");

/* Cancel wakeups */
status = SYS$CANWAK(O, /* pidadr - process id */
&cygnus); * /* prcnam - process name */

}

5.4.5 Executing a Program at Timed Intervals

To execute a program at timed intervals, you can use either the LIB§SPAWN
routine or the SYS$CREPRC system service. With LIB§SPAWN, you can create
a subprocess that executes a command procedure containing three commands:
the DCL command WAIT, the command that invokes the desired program, and a
GOTO command that directs control back to the WAIT command. To prevent the
parent process from remaining in hibernation until the subprocess executes, you
should execute the subprocess concurrently; that is, you should specify CLI$M_
NOWAIT.

For more information about using LIB$SPAWN and SYS$CREPRC, see
Chapter 3.

5.5 Routines Used for Timer Statistics

5-18

This section presents information about the LIB$INIT TIMER, LIB$SHOW_
TIMER, LIB$STAT TIMER, and LIB$FREE_TIMER routines. By calling these
run-time library routines, you can collect the following timer statistics from the
system:

e Elapsed time—Actual time that has passed since setting a timer
e CPU time—CPU time that has passed since setting a timer

¢ Buffered I/O—Number of buffered I/O operations that have occurred since
setting a timer

¢ Direct I/O—Number of direct I/O operations that have occurred since setting
a timer

¢ Page faults—Number of page faults that have occurred since setting a timer
Following are descriptions of each routine:

e LIBSINIT_TIMER—Allocates and initializes space for collecting the statistics.
You should specify the handle-adr argument as a variable with a value of 0
to ensure the modularity of your program. When you specify the argument,
the system collects the information in a specially allocated area in dynamic
storage. This prevents conflicts with other timers used by the application.

System Time Operations
5.5 Routines Used for Timer Statistics

¢ LIB$SHOW_TIMER—Obtains one or all of five statistics (elapsed time, CPU
time, buffered I/O, direct I/O, and page faults); the statistics are formatted for
output. The handle-adr argument must be the same value as specified for
LIBSINIT_TIMER (do not modify this variable). Specify the code argument
to obtain one particular statistic rather than all the statistics.

You can let the system write the statistics to SYS$OUTPUT (the default),

or you can process the statistics with a routine of your own. To process

the statistics yourself, specify the name of your routine in the action-rtn
argument. You can pass one argument to your routine by naming it in the
user-arg argument. If you use your own routine, it must be written as an
integer function and return an error code (return a value of 1 for success).
This error code becomes the error code returned by LIB$SHOW_TIMER. Two
arguments are passed to your routine: the first is a passed-length character
string containing the formatted statistics, and the second is the value of the
fourth argument (if any) specified to LIBSSHOW_TIMER.

e LIB$STAT _TIMER—Obtains one of five unformatted statistics. Specify the
statistic you want in the code argument. Specify a storage area for the
statistic in value. The handle-adr argument must be the same value as you
specified for LIBSINIT TIMER.

e LIB$FREE_TIMER—You should invoke this procedure when you are done
with the timer to ensure the modularity of your program. The value in the
handle-adr argument must be the same as that specified for LIB$INIT
TIMER.

You must invoke LIBSINIT_TIMER to allocate storage for the timer. You should
invoke LIBSFREE_TIMER before you exit from your program unit. In between,
you can invoke LIB$SHOW_TIMER or LIB$STAT TIMER, or both, as often as
you want. Example 5—4 invokes LIB$SHOW_TIMER and uses a user-written
subprogram either to display the statistics or to write them to a file.

Example 5-4 Displaying and Writing Timer Statistics

.

! Timer arguments

INTEGER*4 TIMER ADDR,

2 TIMER DATA,

2 TIMER ROUTINE

EXTERNAL TIMER:ROUTINE

! Declare library procedures as functions
INTEGER*4 LIBSINIT TIMER,

2 LIB$SHOW_TIMER
EXTERNAL LIB$INIT TIMER,
2 LIB$SHOW_TIMER

! Work variables

CHARACTER*5 REQUEST

INTEGER*4 STATUS

! User request - either WRITE or FILE
INTEGER*4 WRITE,

2 FILE
PARAMETER (WRITE = 1,
2 FILE = 2)

(continued on next page)

5-19

System Time Operations
5.5 Routines Used for Timer Statistics

5-20

Example 5-4 (Cont.) Displaying and Writing Timer Statistics

! Get user request

WRITE (UNIT=*, FMT='($,A)’) ' Request: '

ACCEPT *, REQUEST

IF (REQUEST .EQ. 'WRITE’) TIMER DATA = WRITE

IF (REQUEST .EQ. 'FILE') TIMER_ﬁATA = FILE

! Set timer

STATUS = LIBSINIT TIMER (TIMER ADDR)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

! Get statistics

STATUS = LIB$SHOW_IIMER (TIMER_ADDR,,

2 TIMER _ROUTINE,

2 TIMER_DATA)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Free timer
STATUS = LIB$FREE_TIMER (TIMER_ADDR)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

INTEGER FUNCTION TIMER ROUTINE (STATS,

2 TIMER DATA)
! Dummy arguments

CHARACTER* (*) STATS

INTEGER TIMER DATA

! Logical unit number for file

INTEGER STATS FILE

! User request

INTEGER WRITE,

2 FILE
PARAMETER (WRITE = 1,
2 FILE = 2)

! Return code
INTEGER SUCCESS,

2 FAILURE
PARAMETER (SUCCESS = 1,
2 FAILURE = 0)

! Set return status to success

TIMER_ROUTINE = SUCCESS

! Write statistics or file them in STATS.DAT

IF (TIMER DATA .EQ. WRITE) THEN
TYPE *, STATS

ELSE IF (TIMER DATA .EQ. FILE) THEN
CALL LIBSGET_LUN (STATS_FILE)
OPEN (UNIT=STATS FILE,

2 FILE='STATS.DAT')
WRITE (UNIT=STATS_FILE,

2 FMT='(A) ') STATS

ELSE
TIMER ROUTINE = FAILURE

END IF

END

System Time Operations
5.5 Routines Used for Timer Statistics

You can use the SYS$GETSYI system service to obtain more detailed system
information on boot time, the cluster, processor type, emulated instructions,
nodes, paging files, swapping files, and hardware and software versions. With
SYS$GETQUI and LIB§GETQUI, you can obtain queue information.

5.6 Date/Time Formatting Routines

This section provides information about using date/time formatting routines that
allow you to specify input and output formats other than the standard operating
system format for dates and times. These include international formats with
appropriate language spellings for days and months.

If the desired language is English (the default language) and the desired format
is the standard operating system format, then initialization of logical names is
not required in order to use the date/time input and output routines. However,
if the desired language and format are not the defaults, the system manager (or
any user having CMEXEC, SYSNAM, and SYSPRYV privileges) must initialize the
required logicals.

5.6.1 Performing Date/Time Logical Initialization
' Note

You must complete the initialization steps outlined in this section
before you can use any of the date/time input and output routines with
languages and formats other than the defaults.

As an alternative to the standard operating system format, the command
procedure SYS$MANAGER:LIB$DT_STARTUP.COM defines several output
formats for dates and times. This command procedure must be executed by the
system manager prior to using any of the run-time library date/time routines for
input or output formats other than the default. Ideally, this command procedure
should be executed from a site-specific startup procedure.

In addition to defining the date/time formats, the LIB$DT STARTUP.COM
command procedure also defines spellings for date and time elements in
languages other than English. If different language spellings are required,

the system manager must define the logical name SYS$LANGUAGES before
invoking LIB$DT_STARTUP.COM. The translation of SYS$LANGUAGES is then
used to select which languages are defined.

Table 5-5 shows the available languages and their logical names.

Table 5-5 Available Languages for Date/Time Formatting

Language Logical Name
Austrian AUSTRIAN
Danish DANISH
Dutch DUTCH
Finnish FINNISH
French FRENCH

(continued on next page)

5-21

System Time Operations
5.6 Date/Time Formatting Routines

Table 5-5 (Cont.) Available Languages for Date/Time Fbrmatting

Language Logical Name
French Canadian ‘ CANADIAN
German GERMAN
Hebrew HEBREW

Italian ITALIAN
Norwegian NORWEGIAN
Portuguese ‘ PORTUGUESE
Spanish SPANISH
Swedish SWEDISH

Swiss French SWISS_FRENCH
Swiss German SWISS_GERMAN

For example, if the system manager wants the spellings for French, German,
and Italian languages to be defined, he or she must define SYSSLANGUAGES as
shown, prior to invoking LIB$DT_STARTUP.COM:

$ DEFINE SYS$LANGUAGES FRENCH, GERMAN, ITALIAN

If the user requires an additional language, for example FINNISH, then the
system manager must add FINNISH to the definition of SYS$LANGUAGES and
reexecute the command procedure.

5.6.2 Selecting a Format

5-22

There are two methods by which date/time input and output formats can be
selected:

* The language and format are determined at run time through the translation
of the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_
INPUT_FORMAT.

¢ The language and format are programmable at compile time through the use
of the LIB$INIT DATE_TIME_CONTEXT routine.

In general, if an application accepts text from a user or formats text for
presentation to a user, the logical name method of specifying language and
format should be used. With this method, the user assigns equivalence names to
the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_INPUT_
FORMAT, thereby selecting the language and input or output format of the date
and time at run time.

If an application reads text from internal storage or formats text for internal
storage or transmission, the language and format should be specified at compile
time. If this is the case, the routine LIB$INIT_DATE_TIME_CONTEXT is used
to specify the language and format of choice.

System Time Operations
5.6 Date/Time Formatting Routines

5.6.2.1 Formatting Run-Time Mnemonics

The format mnemonics listed in Table 5-6 are used to define both input and
output formats at run time.

Table 5-6 Format Mnemonics

Date Explanation

DO Day; zero-filled

DD Day; no fill

DB Day; blank-filled

WU Weekday; uppercase

IWAU Weekday; abbreviated, uppercase
IWC Weekday; capitalized

IWAC Weekday; abbreviated, capitalized
WL Weekday; lowercase

WAL Weekday; abbreviated, lowercase
IMAU Month; alphabetic, uppercase
IMAAU Month; alphabetic, abbreviated, uppercase
IMAC Month; alphabetic, capitalized
IMAAC Month; alphabetic, abbreviated, capitalized
'MAL Month; alphabetic, lowercase
IMAAL Month; alphabetic, abbreviated, lowercase
IMNO Month; numeric, zero-filled
MNM Month; numeric, no fill

'MNB Month; numeric, blank-filled

Y4 Year; 4 digits

Y3 Year; 3 digits

Y2 Year; 2 digits

Y1 Year; 1 digit

Time Explanation

'HO4 Hours; zero-filled, 24-hour clock
'HH4 Hours; no fill, 24-hour clock

IHB4 Hours; blank-filled, 24-hour clock
'HO2 Hours; zero-filled, 12-hour clock
HH2 Hours; no fill, 12-hour clock

IHB2 Hours; blank-filled, 12-hour clock
MO Minutes; zero-filled

MM Minutes; no fill

'MB Minutes; blank-filled

1S0O Seconds; zero-filled

1SS Seconds; no fill

(continued on next page)

5-23

System Time Operations
5.6 Date/Time Formatting Routines

'Table 5-6 (Cont.) Format Mnemonics

Time Explanation

ISB Seconds; blank-filled

1C7 Fractional seconds; 7 digits
1C6 Fractional seconds; 6 digits
1C5 Fractional seconds; 5 digits
1C4 Fractional seconds; 4 digits
1C3 Fractional seconds; 3 digits
1C2 Fractional seconds; 2 digits
IC1 Fractional seconds; 1 digit
IMIU Meridiem indicator; uppercase
IMIC Meridiem indicator; capitalized (mixed case)
!MIL Meridiem indicator; lowercase

5.6.2.2 Specifying Formats at Ruh Time

If an application accepts text from a user or formats text for presentation to

a user, the logical name method of specifying language and format should be
used. With this method, the user assigns equivalence names to the logical names
SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT INPUT_FORMAT, thereby
selecting the language and format of the date and time at run time. LIB$DT_
INPUT_FORMAT must be defined using the mnemonics listed in Table 5-6. The
possible choices for SYSSJLANGUAGE and LIB$DT_FORMAT are defined in the
SYS$MANAGER:LIB$DT_STARTUP.COM command procedure that is executed
by the system manager prior to using these routines.

The following actions occur when any translation of a logical name fails:

e If the translation of SYSSLANGUAGE or any logical name relating to text
fails, then English is used and a status of LIB$_ENGLUSED is returned.

e If the translation of LIB$DT _FORMAT, LIB$DT INPUT_FORMAT, or
any logical name relating to format fails, the operating system standard
(SYS$ASCTIM) representation of the date and time is used, that is, dd-
MMM-yyyy hh:mm:ss.cc, and a status of LIB§_DEFFORUSE is returned.

Since English is the default language and must therefore always be available,
English spellings are not taken from logical name translations, but rather are
looked up in an internal table.

5.6.2.3 Specifying Input Formats at Run Time

5-24

Using the logical name LIB$DT_INPUT _FORMAT, the user can define his or her
own input format at run time using the mnemonics listed in Table 5-6. Once an
input format is defined, any dates or times that are input to the application are
parsed against this format. For example:

$ DEFINE LIB$DT_ INPUT FORMAT -
_$ "IMAU !DD, !Y4 !H02:!MO:!SO:!C2 IMIU"

A valid input date string would be as follows:

JUNE 15, 1993 08:45:06:50 PM

System Time Operations
5.6 Date/Time Formatting Routines

If the user has selected a language other than English, then the translation
of SYS$LANGUAGE is used by the parser to recognize alphabetic months and
meridiem indicators in the selected language.

Input Format String

The input format string used to define the input date/time format must contain
at least the first seven of the following eight fields:

¢ Month (either alphabetic or numeric)

¢ Day of the mdnth (numeric)

® Year (from 1 to 4 digits)

e Hour (12- or 24-hour clock)

e Minute of the hour

e Second of the minute

¢ Fractional seconds

¢ Meridiem indicator (required for 12-hour clock; illegal for 24-hour clock)

If the input format string specifies a 24-hour clock, the string will contain only
the first seven fields in the preceding list. If a 12-hour clock is specified, the
eighth field (the meridiem indicator) is required.

The format string fields must appear in two groups: one for date and one for time
(date and time fields cannot be intermixed within a group). For the input format,
alphabetic case distinctions and abbreviation-specific codes have no significance.
For example, the following format string specifies that the month name will be
uppercase and spelled out in full:

!MAU IDD, !Y4 !H02:!MO:!S0:!C2 IMIU

If the input string corresponding to this format string contains a month name
that is abbreviated and lowercase, the parse of the input string still works
correctly. For example:

feb 25, 1988 04:39:02:55 am

If this input string is entered, the parse still recognizes “feb” as the month name
and “am” as the meridiem indicator, even though the format string specified both
of these fields as uppercase, and the month name as unabbreviated.

Punctuation in the Format and Input Strings

One important aspect to consider when formatting date/time input strings is
punctuation. The punctuation referred to here is the characters that separate the
various date/time fields or the date and time groups. Punctuation in these strings
is important because it is used as an outline for the parser, allowing the parser to
synchronize the input fields to the format fields.

There are three distinct classes of punctuation:

e None

Although it is common for no punctuation to begin or end an input format
string, you can specify a date/time format that also has no punctuation
between the fields or groups of the format string. If this is the case, the
corresponding input string must not have any punctuation between the
respective fields or groups, although white space (see the next item in this
list) may appear at the beginning or end of the input string.

5-25

System Time Operations
5.6 Date/Time Formatting Routines

5-26

White space

White space includes any combination of spaces and tabs. In the
interpretation of the format string, any white space is condensed to a single
space. When parsing an input string, white space is generally noted as
synchronizing punctuation and is skipped; however, white space is significant
in some situations, such as with blank-filled numbers.

Explicit

Explicit punctuation refers to any string of one or more characters that is
used as punctuation and is not solely comprised of white space. Any white
space appearing within an explicit punctuation string is interpreted literally;
in other words, the white space is not compressed. In the format string, you
can use explicit punctuation to denote a particular format and to guide the
parser in parsing the input string. In the input string, you can use explicit
punctuation to synchronize the parse of the input string against the format
string. The explicit punctuation used should not be a subset of the valid input
of any field that it precedes or follows it.

Punctuation is especially important in providing guidelines for the parser to
translate the input date/time string properly.

Default Date/Time Fields

Punctuation in a date/time string is also useful for specifying which fields you
want to omit in order to accept the default values. That is, you can control the
parsing of the input string by supplying punctuation without the appropriate
field values. If only the punctuation is supplied and a user-supplied default is not
specified, the value of the omitted field defaults according to the following rules:

For the date group, the default is the current date.
For the time group, the default is 00:00:00.00.

Table 5-7 gives some examples of input strings (using punctuation to indicate
defaulted fields) and their full translations (assuming a current date of 25-FEB-
1993 and using the default input format).

Table 5-7 Input String Punctuation and Defaults

Input Full Date/Time Input String
31 31-FEB-1993 00:00:00.00
-MAR 25-MAR-1993 00:00:00.00
-SEPTEMBER 25-SEP-1993 00:00:00.00
-1993 25-FEB-1993 00:00:00.00
23: 25-FEB-1993 23:00:00.00
:45; 25-FEB-1993 00:45:00.00
123 25-FEB-1993 00:00:23.00
.01 25-FEB-1993 00:00:00.01

Note on the Changing Century

Because the default is the current date for the date group, if you specify a value
of 00 with the Y2 format, the year is interpreted as 1900. After January 1, 2000,

the

value 00 will be interpreted as 2000.

System Time Operations
5.6 Date/Time Formatting Routines

For example, 02/29/00 is interpreted as 29-FEB-1900, which results in LIB$_
INVTIME because 1900 is not a leap year. After the turn of the century (the year
2000), 02/29/00 will be 29-FEB-2000, which is a valid date because 2000 is a leap
year.

5.6.2.4 Specifying Output Formats at Run Time
_ If the logical name method is used to specify an output format at run time,

the translations of the logical names SYS$LANGUAGE and LIB$DT_FORMAT
specify one or more executive mode logicals which in turn must be translated to
determine the actual format string. These additional logicals supply such things
as the names of the days of the week and the months in the selected language
(as determined by SYSSLANGUAGE). All of these logicals are predefined, so
that a nonprivileged user can select any one of these languages and formats. In
addition, a user can create his or her own languages and formats; however, the
CMEXEC, SYSNAM and SYSPRYV privileges are required.

To select a particular format for a date or time, or both, you must define the
LIB$DT_FORMAT logical name using the following logicals:

¢ LIB$DATE_FORMAT nnn, where nnn ranges from 001 to 040
e LIB$TIME_FORMAT nnn, where nnn ranges from 001 to 020

The order in which these logical names appear in the definition of LIB$DT_
FORMAT determines the order in which they are output. A single space is
inserted into the output string between the two elements, if the definition
specifies that both are output. For example:

$ DEFINE LIBSDT FORMAT LIBSDATE FORMAT 006, LIBSTIME FORMAT 012

This definition causes the date to be output in the specified format, followed by a
space and the time in the specified format, as follows:

13 JAN 93 9:13 AM

Table 5-8 lists all predefined date format logical names, their formats, and
examples of the output generated using those formats. (The mnemonics used to
specify the formats are listed in Table 5-6.)

Table 5-8 Predefined Output Date Formats

Date Format Logical Format Example
LIB$DATE_FORMAT 001 IDB-IMAAU-1Y4 13-JAN-1993
LIB$DATE_FORMAT_002 DB IMAU !Y4 13 JANUARY 1993
LIB$DATE_FORMAT_003 IDB.IMAU Y4 13.JANUARY 1993
LIB$DATE_FORMAT_004 !DB.IMAU.!Y4 13.JANUARY.1993
LIB$DATE_FORMAT_005 DB IMAU !Y2 13 JANUARY 93
LIB$DATE_FORMAT_006 IDB IMAAU !Y2 13 JAN 93
LIB$DATE_FORMAT 007 IDB.IMAAU !Y2 13.JAN 93
LIB$DATE_FORMAT_008 IDB.IMAAU.!Y2 13.JAN.93
LIB$DATE_FORMAT_009 IDB IMAAU !Y4 13 JAN 1993
LIB$SDATE_FORMAT_010 IDB.IMAAU !Y4 13.JAN 1993

(continued on next page)

5-27

System Time Operations
5.6 Date/Time Formatting Routines

Table 5-8 (Cont.) Predefined Output Date Formats

Date Format Logical Format Example
LIB$DATE_FORMAT_011 IDB.MAAU.IY4 13.JAN.1993
LIB$DATE_FORMAT 012 IMAU DD, Y4 JANUARY 13, 1993
LIB$DATE_FORMAT_013 IMNO/!D0/'Y2 01/13/93
LIB$DATE_FORMAT 014 IMNO-!DO-Y2 01-13-93
LIB$DATE_FORMAT_015 IMNO.!DO.IY2 01.13.93
LIB$DATE_FORMAT_016 IMNO DO Y2 011393
LIB$DATE_FORMAT _017 IDO/IMNO/'Y2 13/01/93
LIB$DATE_FORMAT_018 !DO/IMNO-1Y2 13/01-93
LIB$DATE_FORMAT_019 IDO-IMNO-1Y2 13-01-93
LIB$DATE_FORMAT_020 !DO.IMNO.!Y2 13.01.93
LIB$DATE_FORMAT_021 " 1DO IMNO 1Y2 13 01 93
LIB$DATE_FORMAT_022 1Y2/IMNO/!DO 93/01/13
LIB$DATE_FORMAT_023 1Y2-IMNO-!DO 93-01-13
LIB$DATE_FORMAT_024 1Y2.IMNO.!DO 93.01.13
LIB$DATE_FORMAT_025 Y2 IMNO DO 93 01 13
LIB$DATE_FORMAT_026 IY2IMNO!DO 930113
LIB$DATE_FORMAT_027 /1Y2.IMNO.!DO /93.01.13
LIB$DATE_FORMAT_028 IMNO0/!D0/'Y4 01/13/1993
LIB$DATE_FORMAT_029 IMNO-!DO-Y4 01-13-1993
LIB$DATE_FORMAT_030 'MNO0.!DO0.!Y4 01.13.1993
LIB$DATE_FORMAT_031 IMNO !DO Y4 01 13 1993
LIB$DATE_FORMAT 032 IDO/'IMNO/'Y4 13/01/1993
LIB$DATE_FORMAT_033 !D0-IMNO-Y4 13-01-1993
LIB$DATE_FORMAT_034 !D0.IMNO.!Y4 13.01.1993
LIB$DATE_FORMAT 035 DO IMNO Y4 13 01 1993
LIB$DATE_FORMAT_036 1Y4/IMNO0/!DO 1993/01/13
LIB$DATE_FORMAT_037 1Y4-IMNO-!DO 1993-01-13
LIB$DATE_FORMAT_038 1Y4.IMNO.!DO 1993.01.13
LIB$DATE_FORMAT_039 Y4 IMNO !DO 1993 01 13
LIB$DATE_FORMAT_040 I'Y4!MNO!DO 19930113

Table 5-9 lists all predefined time format logical names, their formats, and
examples of the output generated using those formats.

5-28

System Time Operations
5.6 Date/Time Formatting Routines

Table 5-9 Predefined Output Time Formats

Time Format Logical Format Example
LIB$TIME_FORMAT_001 1HO04:!'MO0:!S0.1C2 09:13:25.14
LIB$TIME_FORMAT 002 1HO04:!MO0:1S0 09:13:25
LIB$TIME_FORMAT_003 1H04.!M0.!S0 09.13.25
LIB$TIME_FORMAT_004 'HO04 MO !SO 09 13 25
LIB$TIME_FORMAT_005 1HO04:!MO 09:13
LIB$TIME_FORMAT_006 'H04.!MO 09.13
LIB$TIME_FORMAT 007 1HO04 MO 09 13
LIB$TIME_FORMAT 008 IHH4:!MO 9:13
LIB$TIME_FORMAT_009 'HH4.!MO 9.13
LIB$TIME_FORMAT_010 'HH4 MO 913
LIB$TIME_FORMAT 011 'HO02:!MO 'MIU 09:13 AM
LIB$TIME_FORMAT 012 IHH2:!IM0 IMIU 9:13 AM
LIB$TIME_FORMAT 013 TH04!MO 0913
LIB$TIME_FORMAT 014 IHO4H!MOm 09H13m
LIB$TIME_FORMAT 015 kl 'H04.1MO k1 09.13
LIB$TIME_FORMAT 016 IHO4H!MO’ 09H13
LIB$TIME_FORMAT 017 1HO04.IMO h 09.13 h
LIB$TIME_FORMAT_018 h 'H04.IMO h 09.13
LIB$TIME_FORMAT 019 IHH4 h MM 9h 13

LIB$TIME_FORMAT_020

!HH4 h !MM min !SS s

9h 13 min 25 s

5.6.2.5 Specifying Formats at Compile Time

If an application reads text from internal storage or formats text for internal

storage or transmission, the language and format should be specified at compile
time. The routine LIB$INIT_DATE_TIME_CONTEXT allows the user to specify
the language and format at compile time by initializing the context area used by
LIB$FORMAT_DATE_TIME for output or LIBSCONVERT_DATE_STRING for
input with specific strings, instead of through logical name translations. Note
that when the text will be parsed by another program, LIB$INIT_DATE_TIME_
CONTEXT expects all required context information (including spellings) to be
specified. For applications where the context specifies a user’s preferred format
style, the spellings can be looked up from the logical name tables.

Only one context component can be initialized per call to LIB§INIT_DATE_
TIME_CONTEXT. Table 5-10 lists the available components and their number
of elements. (_ABB indicates an abbreviated version of the month and weekday
names.)

5-29

System Time Operations
5.6 Date/Time Formatting Routines

Table 5-10 Available Components for Specifying Formats at Compile Time

Available Component Number of Elements

LIB$K_MONTH_NAME 12
LIB$K_MONTH_NAME_ABB
LIB$K_FORMAT_MNEMONICS
LIB$K_WEEKDAY_NAME
LIB$K_WEEKDAY NAME_ABB
LIB$K_RELATIVE_DAY_NAME
LIB$K_MERIDIEM_INDICATOR
LIB$K_OUTPUT_FORMAT
LIB$K_INPUT_FORMAT
LIB$SK_LANGUAGE

-t
[\V]

o= NN W~ 3 ©

To specify the actual values for these elements, you must use an initialization
string in the following format:
"[delim][string-1][delim][string-2][delim]...[delim][string-n][delim]"

In this format, [-] is a delimiting character that is not in any of the strings, and
[string-n] is the spelling of the nth instance of the component.

For example, a string passed to this routine to specify the English spellings of the
abbreviated month names might be as follows:

"| JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | "

The string must contain the exact number of elements for the associated
component; otherwise the error LIB§_ NUMELEMENTS is returned. Note that
the string begins and ends with a delimiter. Thus, there is one more delimiter
than the number of string elements in the initialization string.

5.6.2.6 Specifying Input Format Mnemonics at Compile Time

5-30

To specify the input format mnemonics at compile time, the user must initialize
the component LIBSK_FORMAT MNEMONICS with the appropriate values.
Table 5-11 lists the nine fields that must be initialized, in the appropriate order,
along with their default (English) values.

Table 5-11 Legible Format Mnemonics

Order Format Field Legible Mnemonic (Default)
1 Year YYYY

2 Numeric month MM

3 Numeric day DD

4 Hours (12- or 24-hour) HH

5 Minutes MM

6 Seconds SS

7 Fractional seconds CC

(continued on next page)

System Time Operations
5.6 Date/Time Formatting Routines

Table 5-11 (Cont.) Legible Format Mnemonics

Order Format Field Legible Mnemonic (Default)
8 Meridiem indicator AM/PM
9 Alphabetic month MONTH

For example, the following is a valid definition of the component LIB$K_
FORMAT_MNEMONICS, using English as the natural language:

| YYYY |MM|DD|HH |MM|SS|CC|AM/PM|MONTH|

If the user were entering the same string using Austrian as the natural language,
the definition of the component LIBSK_FORMAT _MNEMONICS would be as
follows:

| 3333 |mM|TT|SS |MM|SS|HH| |MONAT|

5.6.2.7 Specifying Output Formats at Compile Time

To specify an output format at compile time, the user must preinitialize the
component LIBSK_OUTPUT_FORMAT. Two elements are associated with this
output format string. One describes the date format fields, the other the time
format fields. The order in which they appear in the string determines the order
in which they are output. A single space is inserted into the output stream
between the two elements, if the call to LIBSFORMAT_DATE_TIME specifies
that both be output. For example:

" | 'DB-'MAAU-!Y4 | 'HO04:!MO0:1S0.!1C2 | "

(These mnemonics are listed in Table 5-6.) This format string represents the
format used by the $ASCTIM system service for outputting times. Note that the
middle delimiter is replaced by a space in the resultant output.

13-JAN-1993 14:54:09:24

5.6.3 Converting with the LIBSCONVERT_DATE_STRING Routine

The LIB$CONVERT _DATE_STRING routine converts an absolute date/time
string into an operating system internal format date/time quadword. You can
optionally specify which fields of the input string can be defaulted (using the
input-flags argument), and what the default values should be (using the
defaults argument). By default, the time fields can be defaulted but the date
fields cannot. Table 5-7 gives some examples of these default values.

The optional defaulted-fields argument to LIBSCONVERT_DATE_STRING
can be used to determine which input fields were defaulted. That is, the
defaulted-fields argument is a bit mask in which each set bit indicates that
the corresponding field was defaulted in the input date/time string.

If you want to use LIBJCONVERT_DATE_STRING to return the current time as
well as the current date, you can call the $NUMTIM system service and pass the
timbuf argument, which contains the current date and time, to LIBSCONVERT_
DATE_STRING as the defaults argument. This tells the LIBPSCONVERT_
DATE_STRING routine to take the default values for the date and time fields
from the 7-word array returned by $NUMTIM.

5-31

System Time Operations
5.6 Date/Time Formatting Routines

5.6.4 Retrieving with LIBSGET_DATE_FORMAT Routine

The LIB$GET_DATE_FORMAT routine enables you to retrieve information about
the currently selected input format. The string returned by LIB§GET_DATE_
FORMAT parallels the currently defined input format string, consisting of the
format punctuation (with most white space compressed) and legible mnemonics
representing the various format fields.

Based on the currently defined input date/time format, LIB§GET_DATE_
FORMAT returns a string comprised of the mnemonics that represent the current
format. These mnemonics are listed in Table 5-11.

Table 5-12 gives some examples of input format strings and their resultant
mnemonic strings (using English as the default language).

Table 5-12 Sample Input Format Strings

Sample Format String LIBSGET_DATE_FORMAT Value

IMAU DD, Y4 !H04:!M0:1S0:!1C2 ‘ MONTH DD, YYYY4 HH:MM:SS:CC2
IMNO-IDO0-Y2 1H04:!M0:!S0.!C2 MM-DD-YYYY2 HH:MM:SS.CC2
IMNO0/!D0/IY2 'H02:!M0:1S0.!C2 IMIU MM/DD/YYYY2 HH:MM:SS.CC2 AM/PM

5.6.4.1 Using User-Defined Output Formats

5-32

In addition to the 40 date output formats and 20 time output formats provided,
users can define their own date and time output formats using the logical names
LIB$DATE_FORMAT _nnn and LIB$TIME_FORMAT_nnn, where nnn ranges
from 501 to 999. (That is, values of nnn from 001 to 500 are reserved for use by
Digital Equipment Corporation.) The mnemonics used to define output formats
are listed in Table 5-6.

User-defined output formats must be defined as executive-mode logicals, and
they must be defined in the table LNM$DT FORMAT TABLE. These formats
are normally defined from the site-specific startup command procedure. The
following example illustrates the steps required of the system manager to create
a particular output format using French as the language:

$ DEFINE/EXEC/TABLE=LNM$DT_FORMAT_TABLE LIB$DATE_FORMAT_501 -
_$ "{WL, le !DD !IMAL !Y4"

S DEFINE/EXEC/‘I‘ABLE=LNM$DT_FORMAT_TABLE LIB$TIME_FORMAT_501 -
_$ "!HO04 heures et !M0 minutes"

After the system manager defines the desired formats, the user can access them
by using the following commands:

$ DEFINE SYS$LANGUAGE FRENCH
$ DEFINE LIB$DT FORMAT LIBSDATE_FORMAT 501, LIBSTIME FORMAT 501

After completing these steps, a program outputting the date and time provides
the following results:

mardi, le 20 janvier 1993 13 heures et 50 minutes

In addition to creating their own date and time formats, users can also define
their own language tables (provided they have the SYSNAM, SYSPRV and
CMEXEC privileges). To create a language table, a user must define all the
logical names required.

System Time Operations
5.6 Date/Time Formatting Routines

The .following example defines a portion of the Dutch language table. This table
is included in its entirety in the set of predefined languages provided with the
international date/time formatting routines.

$ CREATE/NAME/PARENT=LNM$SYSTEM_DIRECTORY/EXEC/PROT= (S:RWED,G:R,W:R) -

_$ LNM$LANGUAGE DUTCH

§ DEFINE/EXEC/TABLE= LNM$LANGUAGE DUTCH LIB$WEEKDAYS L -

$ "maandag”, "dinsdag", "woensdag", "donderdag", "vrijdag",

~$ "zaterdag", "zondag"

S DEFINE/EXEC/ TABLE=LNM$LANGUAGE_DUTCH LIB$WEEKDAY_ABBREVIATIONS_L -

_$ "maa", "din", "woe", "don", "vri", "zat", "zon"

S EFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$MONTHS_L "januari", -

_$ "februari", "maart", "april", "mei", "juni", "juli", "augustus", -

_$ “"september", "oktober", "november", "december"

$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$MONTH_ABBREVIATIONS_L -
"jan", "feb", "mrt", "apr", "mei", "jun", "jul", "aug", "sep", -

$ "okt", "nov", "dec"

$ DEFINE/EXEC/TABLE—LNM$LANGUAGE AUSTRIAN LIB$RELATIVE DAYS L -

_$ ‘"gisteren", "vandaag", "morgen"

All logicals that are used to build a language are as follows:

LIBSWEEKDAYS_[UILIC]

These logicals supply the names of the weekdays, spelled out in full (uppercase,
lowercase, or mixed case). Weekdays must be defined in order, starting with
Monday.

LIBSWEEKDAY_ABBREVIATIONS_[UILIC]

These logicals supply the abbreviated names of the weekdays (uppercase,
lowercase, or mixed case). Weekday abbreviations must be defined in order,
starting with Monday.

LIBSMONTHS_[UILIC]

These logicals supply the names of the months, spelled out in full (uppercase,
lowercase, or mixed case). Months must be defined in order, starting with
January.

LIBSMONTH_ABBREVIATIONS_[UILIC]

These logicals supply the abbreviated names of the months (uppercase, lowercase,
or mixed case). Month abbreviations must be defined in order, starting with
January.

LIBSMI_[UILIC]

These logicals supply the spellings for the meridiem indicators (uppercase,
lowercase, or mixed case). Meridiem indicators must be defined in order; the first
indicator represents the hours 0:00:0.0 to 11:59:59.99, and the second indicator
represents the hours 12:00:00.00 to 23:59:59.99.

LIBSRELATIVE_DAYS_[UILIC]

These logicals supply the spellings for the relative days (uppercase, lowercase,
or mixed case). Relative days must be defined in order: yesterday, today, and
tomorrow, respectively.

LIBSFORMAT_MNEMONICS

This logical supplies the abbreviations for.the appropriate format mnemonics.
That is, the information supplied in this logical is used to specify a desired input
format in the user-defined language. The format mnemonics, along with their
English values, are listed in the order in which they must be defined.

5-33

System Time Operations
5.6 Date/Time Formatting Routines

Year (YYYY)

Numeric month (MM)

Day of the month (DD)

Hour of the day (HH)

Minutes of the hour (MM)

Seconds of the minute (SS)

Parts of the second (CC)

Meridiem indicator (AM/PM)

Alphabetic month (MONTH)

The English definition of LIBSFORMAT MNEMONIC is therefore as follows:

$ DEFINE/EXEC/TABLE=LNM$LANGUAGE ENGLISH LIB$FORMAT MNEMONICS -
_$ "YYYY", "MM", "DD", "HH", "MMII’ "SS", IICCII' IIAM7PM ll, "MONTH"

© ® N e ok ® N

5.7 Coordinated Universal Time Format (VAX Only)

>

5-34

This section provides information about VAX systems that supply system base
date and time format other than the Smithsonian base date and time system.
The other base date and time format system is the Coordinated Universal Time
(UTC) system. UTC time is determined by a network of atomic clocks that are
maintained by standard bodies in several countries. Formerly, applications that
spanned time zones often used Greenwich Mean Time (GMT) as a time reference.

UTC binary timestamps are opaque octawords of 128-bits that contain several
fields. Important fields of the UTC format are an absolute time value, a time
differential factor (TDF) that contains the offset of the host node’s clock from
UTC, and an inaccuracy, or tolerance, that can be applied to the absolute time
value. Unlike UTC, the operating system binary date and timestamps in the
Smithsonian base date and time format represent only the local time of the host
node; they do not contain TDF values or inaccuracy values.

The UTC system services allow applications to gain the benefits of a Coordinated
Universal Time reference. The UTC system services enable applications to
reference a common time standard independent of the host’s location and local
date and time value.

By calling the UTC system services, applications can perform the following
functions:

¢ Obtain binary representations of UTC in the binary UTC format

¢ Convert the binary operating system format date and time to binary
UTC-format date and time

e Convert binary UTC-format date and time to the binary operating system
date and time

¢ Convert ASCII-format date and time to binary UTC-format date and time
* Convert binary UTC-format date and time to ASCII format date and time
System services that implement the UTC format date and time are:

e SYS$ASCUTC—Convert UTC to ASCII

e SYS$BINUTC—Convert ASCII String to UTC Binary Time

System Time Operations
5.7 Coordinated Universal Time Format (VAX Only)

s SYS$GETUTC—Get UTC Time
o SYS$NUMUTC—Convert UTC Time to Numeric Components
o SYS$TIMCON—Time Converter

For specific implementation information about the UTC system services, see the
OpenVMS System Services Reference Manual. ¢

5-35

6

Using Run-Time Library Routines to Access
Operating System Components

This chapter describes the run-time library (RTL) routines that allow access to
various operating system components. It contains the following sections:

Section 6.1 describes how to use RTL routines to make system services return
different types of strings.

Section 6.2 describes how to use RTL routines to provide access to the command
language interpreter.

Section 6.3 describes how to use RTL routines to allow high-level language
programs to use most VAX machine instructions or their AXP equivalent.

Section 6.4 describes how to use RTL routines to allocate processwide resources
to a single operating system process.

Section 6.5 describes how to use RTL routines to measure performance.
Section 6.6 describes how to use RTL routines to control output formatting.

Secti_on 6.7 describes how to use RTL routines for miscellaneous interface
routines.

Run-time library routines allow access to the following operating system
components:

e System services
e Command language interpreter

¢ Some VAX machine instructions

6.1 System Service Access Routines

You can usually call the operating system’s system services directly from your
program. However, system services return only fixed-length strings. In some
applications, you may want the result of a system service to be returned as a
character array, dynamic string, or variable-length string. For this reason, the
RTLs provides jacket routines for the system services that return strings.

You call jacket routines exactly as you would the corresponding system service,
but you can pass an output argument of any valid string class. The routines write
the output string using the semantics (fixed, varying, or dynamic) associated with
the string’s descriptor.

The jacket routines follow the conventions established for all RTL routines, except
that the arguments are listed in the order of the arguments for the corresponding
system service. Thus, they may not be listed in the standard RTL order (read,
modify, write).

'Using Run-Time Library Routines to Access Operating System Components
6.1 System Service Access Routines

For example, the LIB$SYS_ASCTIM routine calls the SYS$ASCTIM system

service to convert a binary date and time value to ASCII text. It returns the
resulting string using the semantics that the calling program specifies in the
destination string argument.

For further information about the operations of the system services, see the
OpenVMS System Services Reference Manual.

The RTL routines provide access to only the system services that produce output
strings, which are listed in Table 6-1. The corresponding RTL routines recognize
all VAX string classes.

The RTL does not provide jacket routines for all the system services that accept
strings as input. Your program should pass only fixed-length or dynamic input
strings to all system services and RTL jacket routines.

Table 6-1 System Service Access Routines

Entry Point System Service Function

LIB$SYS_ASCTIM $ASCTIM Converts system time in binary form
to ASCII text

LIB$SYS_FAO $FAO Converts a binary value to ASCII text

LIB$SYS_FAOL $FAOL Converts a binary value to ASCII text,
using a list argument

LIB$SYS_GETMSG $GETMSG Obtains a system or user-defined
message text

LIB$SYS_TRNLOG $TRNLOG Returns the translation of the specified

logical name

6.2 Access to the Command Language Interpreter

6~2

Two command language interpreters (CLIs) are available on the operating
system: DCL and MCR. The run-time library provides several routines that
provide access to the CLI callback facility. These routines allow your program to
call the current CLI. In most cases, these routines are called from programs that
execute as part of a command procedure. They allow the command procedure and
the CLI to exchange information.

These routines call the CLI associated with the current process to perform the
specified function. In some cases, however, a CLI is not present. For example,
the program may be running directly as a subprocess or as a detached process. If
a CLI is not present, these routines return the status LIB$_NOCLI. Therefore,
you should be sure that these routines are called when a CLI is active. Table 6-2
lists the RTL routines that access the CLI.

Table 6-2 CLI Access Routines

Entry Point Function ,

LIB$GET_FOREIGN Gets a command line

LIB$DO_COMMAND Executes a command line after exiting the current
program

(continued on next page)

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

Table 6-2 (Cont.) CLI Access Routines

Entry Point Function

LIB$RUN_PROGRAM Runs another program after exiting the current program
(chain)

LIB$GET_SYMBOL Returns the value of a CLI symbol as a string

LIB$DELETE_SYMBOL Deletes a CLI symbol

LIB$SET_SYMBOL Defines or redefines a CLI symbol

LIB$DELETE_LOGICAL Deletes a supervisor-mode process logical name

LIB$SET_LOGICAL Defines or redefines a supervisor-mode process logical
name

LIB$DISABLE_CTRL Disables CLI interception of control characters

LIB$ENABLE_CTRL Enables CLI interception of control characters

" LIBS$ATTACH Attaches a terminal to another process
LIB$SPAWN Creates a subprocess of the current process

The following routines execute only when the current CLI is DCL:

LIB$GET_SYMBOL
LIB$SET_SYMBOL
LIB$DELETE_SYMBOL
LIB$DISABLE_CTRL
LIBSENABLE_CTRL
LIB$SPAWN
LIB$ATTACH

6.2.1 Obtaining the Command Line

The LIB$GET_FOREIGN routine returns the contents of the command line that
you use to activate an image. It can be used to give your program access to the
qualifiers of a foreign command or to prompt for further command line text.

A foreign command is a command that you can define and then use as if it
were a DCL or MCR command in order to run a program. When you use the
foreign command at command level, the CLI parses the foreign command only
and activates the image. It ignores any options or qualifiers that you have defined
for the foreign command. Once the CLI has activated the image, the program can
call LIBSGET _FOREIGN to obtain and parse the remainder of the command line
(after the command itself) for whatever options it may contain.

The OpenVMS DCL Dictionary describes how to define a foreign command.

The action of LIB§GET_FOREIGN depends on the environment in which the
image is activated:

¢ If you use a foreign command to invoke the image, you can call LIB§GET_
FOREIGN to obtain the command qualifiers following the foreign command.
You can also use LIBSGET_FOREIGN to prompt repeatedly for more
qualifiers after the command. This technique is illustrated in the following
example.

e If the image is in the SYS$SYSTEM: directory, the image can be invoked
by the DCL command MCR or by the MCR CLI. In this case, LIB§GET_
FOREIGN returns the command line text following the image name.

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

6-4

e If the image is invoked by the DCL command RUN, you can use LIB§GET_
FOREIGN to prompt for additional text. '

e If the image is not invoked by a foreign command or by MCR, or if there is no
information remaining on the command line, and the user-supplied prompt
is present, LIBSGET_INPUT is called to prompt for a command line. If the
prompt is not present, LIBSGET_FOREIGN returns a zero-length string.

Example

The following PL/I example illustrates the use of the optional force-prompt
argument to permit repeated calls to LIB§GET _FOREIGN. The command line
text is retrieved on the first pass only; after this, the program prompts from
SYS$INPUT.

EXAMPLE: ROUTINE OPTIONS (MAIN); »
$INCLUDE $STSDEF; /* Status-testing definitions */

DECLARE COMMAND LINE CHARACTER(80) VARYING,
PROMPT FLAG FIXED BINARY(31) INIT(O0),
LIB$SGET FOREIGN ENTRY (CHARACTER(*) VARYING,
- CHARACTER(*) VARYING,
FIXED BINARY(15),
FIXED BINARY(31))
OPTIONS(VARIABLE) RETURNS (FIXED BINARY(31)),
RMS$ EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Call LIB$GET_FOREIGN repeatedly to obtain and print
subcommand text. Exit when end-of-file is found. */

DO WHILE (’1'B); /* Do while TRUE */
STSSVALUE = LIB$GET_FOREIGN
(COMMAND LINE,’Input: ',,
PROMPT FLAG);
IF STS$SUCCESS THEN
PUT LIST (' Command was " COMMAND LINE);
ELSE DO;
IF STSS$VALUE "= RMS$ EOF THEN
PUT LIST ('Error encountered’);

RETURN;
END;
PUT SKIP; /* Skip to next line */
END; /* End of DO WHILE loop */
END;

Assuming that this program is present as SYS$SYSTEM:EXAMPLE.EXE, you
can define the foreign command EXAMPLE to invoke it, as follows:

$ EXAM*PLE :== $EXAMPLE

Note the optional use of the asterisk in the symbol name to denote an abbreviated
command name. This permits the command name to be abbreviated as EXAM,
EXAMP, EXAMPL or to be specified fully as EXAMPLE. See the OpenVMS DCL
Dictionary for information about abbreviated command names.

Note that the use of the dollar sign ($) before the image name is required in
foreign commands.

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

Now assume that a user runs the image by typing the foreign command and
giving “subcommands” that the program displays:

$ EXAMP Subcommand 1

Command was SUBCOMMAND 1
Input: Subcommand 2

Command was SUBCOMMAND 2
Input: “Z g
$

In this example, Subcommand 1 was obtained from the command line; the
program prompts the user for the second subcommand. The program terminated
when the user pressed the Ctrl/Z key sequence (displayed as *Z) to indicate
end-of-file.

6.2.2 Chaining from One Program to Another

The LIBSRUN_PROGRAM routine causes the current image to exit at the point
of the call and directs the CLI, if present, to start running another program.

If LIBSRUN_PROGRAM executes successfully, control passes to the second
program; if not, control passes to the CLI. The calling program cannot regain
control. This technique is called chaining.

This routine is provided primarily for compatibility with PDP-11 systems, on
which chaining is used to extend the address space of a system. Chaining may
also be useful in an operating system environment where address space is
severely limited and large images are not possible. For example, you can use
chaining to perform system generation on a small virtual address space because
disk space is lacking.

With LIBSRUN_PROGRAM, the calling program can pass arguments to the next
program in the chain only by using the common storage area. One way to do
this is to direct the calling program to call LIBSPUT_COMMON in order to pass
the information into the common area. The called program then calls LIB§GET_
COMMON to retrieve the data.

In general, this practice is not recommended. There is no convenient way

to specify the order and type of arguments passed into the common area, so
programs that pass arguments in this way must know about the format of the
data before it is passed. Fortran COMMON or BASIC MAP/COMMON areas
are global OWN storage. When you use this type of storage, it is very difficult
to keep your program modular and AST reentrant. Further, you cannot use
LIB$RUN_PROGRAM if a CLI is present, as with image subprocesses and
detached subprocesses.

Examples

The following PL/I example illustrates the use of LIBSRUN_PROGRAM. It
prompts the user for the name of a program to run and calls the RTL routine to
execute the specified program.

6-5

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

6-6

CHAIN: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));
DECLARE LIB$RUN PROGRAM ENTRY (CHARACTER (*)) /* Address of string
- /* descriptor */
RETURNS (FIXED BINARY (31)); /* Return status */
$INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE COMMAND CHARACTER (80);
GET LIST (COMMAND) OPTIONS (PROMPT('Program to run: '));
STS$VALUE = LIBSRUN_PROGRAM (COMMAND) ;
/*
If the function call is successful, the program will terminate
here. Otherwise, return the error status to command level.
*/ :
RETURN (STS$VALUE);
END CHAIN;

The following COBOL program also demonstrates the use of LIBSRUN_
PROGRAM. When you compile and link these two programs, the first calls
LIB$RUN_PROGRAM, which activates the executable image of the second. This
call results in the following screen display:

THIS MESSAGE DISPLAYED BY PROGRAM PROG2
WHICH WAS RUN BY PROGRAM PROG1
USING LIBSRUN_PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGI.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 PROG-NAME PIC X(9) VALUE "PROG2.EXE".
01 STAT PIC 9(9) COMP.
88 SUCCESSFUL VALUE 1.
ROUTINE DIVISION.
001-MAIN.

CALL "LIB$RUN PROGRAM"
USING BY DESCRIPTOR PROG-NAME
GIVING STAT.
IF NOT SUCCESSFUL
DISPLAY "ATTEMPT TO CHAIN UNSUCCESSFUL"
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG2.
ENVIRONMENT DIVISION.
DATA DIVISION.

ROUTINE DIVISION.

001-MAIN.
DISPLAY " ".
DISPLAY "THIS MESSAGE DISPLAYED BY PROGRAM PROG2".
DISPLAY " ".
DISPLAY "WHICH WAS RUN BY PROGRAM PROGL".
DISPLAY " ".
DISPLAY "USING LIBSRUN PROGRAM".
STOP RUN.

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

6.2.3 Executing a CLI Command

The LIB$DO_COMMAND routine stops program execution and directs the CLI to
execute a command. The routine’s argument is the text of the command line that
you want to execute.

This routine is especially useful when you want to execute a CLI command after
your program has finished executing. For example, you could set up a series of
conditions, each associated with a different command. You could also use the
routine to execute a SUBMIT or PRINT command to handle a file that your
program creates.

Because of the following restrictions on LIB$DO_COMMAND, you should be
careful when you incorporate it in your program.

e After the call to LIB$DO_COMMAND, the current image exits, and control
cannot return to it.

® The text of the command is passed to the current CLI. Because you can define
your own CLI in addition to DCL and MCR, you must make sure that the
command is handled by the intended CLI.

e If the routine is called from a subprocess and a CLI is not associated with
that subprocess, the routine does execute correctly.

You can also use LIB$DO_COMMAND to execute a DCL command file. To do
this, include the at sign (@) along with a command file specification as the input
argument to the routine.

Some DCL CLI$ routines perform the functions of LIBSDO_COMMAND. See the
OpenVMS DCL Dictionary for more information.

Example

The following PL/I example prompts the user for a DCL command to execute after
the program exits: '

EXECUTE: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

DECLARE LIB$D0_COMMAND ENTRY (CHARACTER (*)) /* Pass DCL command */
/* Dby descriptor */

RETURNS (FIXED BINARY (31)); /* Return status */

$INCLUDE $STSDEF; /* Include definition of return status values */

DECLARE COMMAND CHARACTER (80);

GET LIST (COMMAND) OPTIONS (PROMPT('DCL command to execute: '));
STSSVALUE = LIBSDQ_COMMAND (COMMAND) ;
/*
If the call to LIBSDO COMMAND is successful, the program will terminate
here. Otherwise, it will return the error status to command level.

*/
RETURN (STS$VALUE);
END EXECUTE;

This example displays the following prompt:

DCL command to execute:

6—7

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

What you type after this prompt determines the action of LIBSDO_COMMAND.
LIB$DO_COMMAND executes any command that is entered as a valid string
according to the syntax of PL/I. If the command you enter is incomplete, you
are prompted for the rest of the command. For example, if you enter the SHOW
command, you receive the following prompt:

§_Show what?:

6.2.4 Using Symbols and Logical Names

The RTL provides seven routines that give you access to the CLI callback facility.
These routines allow a program to “call back” to the CLI to perform functions that
normally are performed by CLI commands. These routines perform the following
functions:

LIB$GET_SYMBOL Returns the value of a CLI symbol as a string.

Optionally, this routine also returns the length of the
returned value and a value indicating whether the symbol
was found in the local or global symbol table. This routine
executes only when the current CLI is DCL.

LIB$SET _SYMBOL Causes the CLI to define or redefine a CLI symbol.

The optional argument specifies whether the symbol is to
be defined in the local or global symbol table; the default
is local. This routine executes only when the current CLI
is DCL.

LIB$DELETE_SYMBOL Causes the CLI to delete a symbol.

An optional argument specifies the local or global symbol
table. If the argument is omitted, the symbol is deleted
from the local symbol table. This routine executes only
when the current CLI is DCL.

LIB$SET LOGICAL Defines or redefines a supervisor-mode process logical
name.

Supervisor-mode logical names are not deleted when

an image exits. This routine is equivalent to the DCL
command DEFINE. LIB$SET _LOGICAL allows the
calling program to define a supervisor-mode process
logical name without itself executing in supervisor mode.

LIB$DELETE_LOGICAL Deletes a supervisor-mode process logical name.

This routine is equivalent to the DCL command
DEASSIGN. LIB$DELETE_LOGICAL does not require
the calling program to be executing in supervisor mode to
delete a supervisor-mode logical name.

For information about using logical names, see Chapter 10.

6.2.5 Disabling and Enabling Control Characters

6-8

Two run-time library routines, LIBSENABLE_CTRL and LIB$DISABLE_CTRL,
allow you to call the CLI to enable or disable control characters. These routines
take a longword bitmask argument that specifies the control characters to be
disabled or enabled. Acceptable values for this argument are LIB§M_CLI_CTRLY
and LIB$M_CLI_CTRLT.

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

LIB$DISABLE_CTRL Disables CLI interception of control characters.

This routine performs the same function as the DCL
command SET NOCONTROL=n, where n is T or Y.

It prevents the currently active CLI from intercepting the
control character specified during an interactive session.

For example, you might use LIB$DISABLE_CTRL to
disable CLI interception of Ctrl/Y. Normally, Ctrl/Y
interrupts the current command, command procedure,

or image. If LIB§DISABLE_CTRL is called with LIB$M_
CLI_CTRLY specified as the control character to be
disabled, Ctrl/Y is treated like Ctrl/U followed by a
carriage return.

LIB$ENABLE_CTRL Enables CLI interception of control characters.

This routine performs the same function as the DCL
command SET CONTROL=n, where n is T or Y.

LIB$ENABLE_CTRL restores the normal operation of
Ctrl/Y or Ctrl/T.

6.2.6 Creating and Connecting to a Subprocess

You can use LIB$SPAWN and LIBSATTACH together to spawn a subprocess and
attach the terminal to that subprocess. These routines will execute correctly only
if the current CLI is DCL. For more information on the SPAWN and ATTACH
commands, see the OpenVMS DCL Dictionary. For more information on creating
processes, see Chapter 1.

LIB$SPAWN Spawns a subprocess.

This routine is equivalent to the DCL command SPAWN. It requests
the CLI to spawn a subprocess for executing CLI commands.

LIB$ATTACH Attaches the terminal to another process.

This routine is equivalent to the DCL command ATTACH. It requests
the CLI to detach the terminal from the current process and reattach it
to a different process.

6.3 Access to VAX Machine Instructions

The VAX instruction set was designed for efficient use by high-level languages
and, therefore, contains many functions that are directly useful in your programs.
However, some of these functions cannot be used directly by high-level languages.

The run-time library provides routines that allow your high-level language
program to use most VAX machine instructions that are otherwise unavailable.
On Alpha AXP machines, these routines execute a series of Alpha AXP
instructions that emulate the operation of the VAX instructions. In most
cases, these routines simply execute the instruction, using the arguments you
provide. Some routines that accept string arguments, however, provide some
additional functions that make them easier to use.

These routines fall into the following categories:

e Variable-length bit field instruction routines (Section 6.3.1)
¢ Integer and floating-point instructions (Section 6.3.2)

®* Queue instructions (Section 6.3.3)

® Character string instructions (Section 6.3.4)

6-9

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

¢ Routine call instructions (Section 6.3.5)
e Cyclic redundancy check (CRC) instruction (Section 6.3.5)

The VAX Architecture Reference Manual describes the VAX instruction set in
detail.

6.3.1 Variable-Length Bit Field Instruction Routines

6-10

The variable-length bit field is a VAX data type used to store small integers
packed together in a larger data structure. It is often used to store single flag
bits.

The run-time library contains five routines for performing operations on variable-
length bit fields. These routines give higher-level languages that do not have the
inherent ability to manipulate bit fields direct access to the bit field instructions
in the VAX instruction set. Further, if a program calls a routine written in a
different language to perform some function that also involves bit manipulation,
the called routine can include a call to the run-time library to perform the bit
manipulation.

Table 6-3 lists the run-time library variable-length bit field routines.

Table 6-3 Variable-Length Bit Field Routines

Entry Point Function

LIB$EXTV Extracts a field from the specified variable-length blt field and returns
it in sign-extended longword form.

LIB$EXTZV Extracts a field from the specified variable-length bit field and returns
it in zero-extended longword form.

LIB$FFC Searches the specified field for the first clear bit. If it finds one, it

returns SS$_NORMAL and the bit position (find-pos argument) of
the clear bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

LIB$FFS Searches the specified field for the first set bit. If it finds one, it
returns SS$_NORMAL and the bit position (find-pos argument) of
the set bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

LIB$INSV Replaces the specified field with bits 0 through [size -1] of the source
(src argument). If the size argument is 0, nothing is inserted.

Three scalar attributes define a variable bit field:

. Ba.se address—The address of the byte in memory that serves as a reference
point for locating the bit field.

¢ Bit position—The signed longword containing the displacement of the least
significant bit of the field with respect to bit 0 of the base address.

e Size—A byte integer indicating the size of the bit field in bits (in the range
0 <= size <= 32). That is, a bit field can be no more than one longword in
length.

Figure 6-1 shows the format of a variable-length bit field. The shaded area
indicates the field.

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

Figure 6-1 Format of a Variable-Length Bit Field

P+S-1 P 8 7 0
A
\ A /
Y Y
S = Size of Field in Bits ?
P = Bit Displacement of Field
from Bit O of Address A
ZK-1981-GE

Bit fields are zero-origin, which means that the routine regards the first bit in
the field as being the zero position. For more detailed information about VAX bit
numbering and data formats, see the VAX Architecture Reference Manual.

The attributes of the bit field are passed to an RTL routine in the form of three
arguments in the following order:

pos

Operating system usage: longword_signed
type: longword integer (signed)

access: read only

mechanism: by reference

Bit position relative to the base address. The pos argument is the address of a
signed longword integer that contains this bit position.

size

Operating system usage: byte_unsigned
type: byte (unsigned)

access: read only

mechanism: by reference

Size of the bit field. The size argument is the address of an unsigned byte which
contains this size.

base

Operating system usage: longword_unsigned
type: longword (unsigried)

access: read only

mechanism: by reference

Base address. The base argument contains the address of the base address.

Example

The following BASIC example illustrates three RTL routines. It opens the
terminal as a file and specifies HEX> as the prompt. This prompt allows you to
get input from the terminal without the question mark that VAX BASIC normally
adds to the prompt in an INPUT statement. The program calls OTS$CVT_TZ_L
to convert the character string input to a longword. It then calls LIBSEXTZV
once for each position in the longword to extract the bit in that position. Because
LIB$EXTVZ is called with a function reference within the PRINT statement, the
bits are displayed.

6-11

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

10 EXTERNAL LONG FUNCTION
OTSS$CVT TZ L, ! Convert hex text to LONG
LIBSEXTZV ! Extract zero-ended bit field
20 OPEN "TT:" FOR INPUT AS FILE #1% ! Open terminal as a file
INPUT #1%, "HEX>"; HEXINS ! Prompt for input
STAT%=0TS$CVT_¢Z L(HEXINS, BINARY%) ! Convert to longword
IF (STAT% AND 1%) <> 1% ! Failed?
THEN

PRINT "Conversion failed, decimal status ";STAT%
GO TO 20 ! Try again
ELSE
PRINT HEXINS,
PRINT STR$(LIBSEXTZV(N%, 1%, BINARY%));
FOR N%=31% to 0% STEP -1%

6.3.2 Integer and Floating-Point Routines

Integer and floating-point routines give a high-level language program access
to the corresponding machine instructions. For a complete description of these
instructions, see the VAX Architecture Reference Manual. Table 6—4 lists the
integer and floating-point routines once up front.

Table 6-4 Integer and Floating-Point Routines

Entry Point Function
LIB$EMUL Multiplies integers with extended precision
LIB$EDIV Divides integers with extended precision

6.3.3 Queue Access Routines

6-12

A queue is a doubly linked list. A run-time library routine specifies a queue entry
by its address. Two longwords, a forward link and a backward link, define the
location of the entry in relation to the preceding and succeeding entries. A self-
relative queue is a queue in which the links between entries are displacements;
the two longwords represent the displacements of the current entry’s predecessor
and successor. The VAX instructions INSQHI, INSQTI, REMQHI, and REMQTI
allow you to insert and remove an entry at the head or tail of a self-relative
queue. Each queue instruction has a corresponding RTL routine.

The self-relative queue instructions are interlocked and cannot be interrupted,

so that other processes cannot insert or remove queue entries while the current
program is doing so. Since the operation requires changing two pointers at the
same time, a high-level language cannot perform this operation without calling
the RTL queue access routines.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an asynchronous system trap.

The remove queue instructions (REMQHI or REMQTI), return the address of the
removed entry. Some languages, such as BASIC, COBOL, and Fortran, do not
provide a mechanism for accessing an address returned from a routine. Further,
BASIC and COBOL do not allow routines to be arguments.

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

Table 6-5 lists the queue access routines.

Table 6-5 Queue Access Routines

Entry Point Function

LIB$INSQHI Inserts queue entry at head
LIB$INSQTI Inserts queue entry at tail
LIB$REMQHI Removes queue entry at head
LIB$REMQTI Removes queue entry at tail
Examples

LIBSINSQHI

In BASIC and Fortran, queues can be quadword aligned in a named COMMON
block by using a linker option file to specify alignment of program sections. The
LIB$GET_VM routine returns memory that is quadword aligned. Therefore,
you should use LIBSGET_VM to allocate the virtual memory for a queue. For
instance, to create a COMMON block called QUEUES, use the LINK command
with the FILE/OPTIONS qualifier, where FILE.OPT is a linker option file
containing the line:

PSECT = QUEUES, QUAD
A Fortran application using processor-shared memory follows:

INTEGER*4 FUNCTION INSERT Q (QENTRY)
COMMON/QUEUES/QHEADER

INTEGER*4 QENTRY(10), QHEADER(2)
INSERT Q = LIB$INSQHI (QENTRY, QHEADER)
RETURN

END

A BASIC application using processor-shared memory follows:

COM (QUEUES) QENTRY%(9), QHEADER%(1)

EXTERNAL INTEGER FUNCTION LIB$INSQHI

IF LIB$INSQHI (QENTRY$() BY REF, QHEADER%() BY REF) AND 1%
THEN GOTO 1000

1000 REM INSERTED OK

LIBSREMQHI

In Fortran, the address of the removed queue entry can be passed to another
routine as an array using the %VAL built-in function.

6-13

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

In the following example, queue entries are 10 longwords, including the two
longword pointers at the beginning of each entry:

COMMON/QUEUES/QHEADER
INTEGER*4 QHEADER(2), ISTAT
ISTAT = LIBSREMQHI (QHEADER, ADDR)
IF (ISTAT) THEN
CALL PROC (%VAL (ADDR)) ! Process removed entry

GO TO ...
ELSE IF (ISTAT .EQ. %LOC(LIB$_QUEWASEMP)) THEN
GO TO ... ! Queue was empty
ELSE IF
ves ! Secondary interlock failed
END IF
END

SUBROUTINE PROC (QENTRY)
INTEGER*4 QENTRY(10)

RETURN
END

6.3.4' Character String Routines

The character string routines listed in Table 6-6 give a high-level language
program access to the corresponding VAX machine instructions. For a complete
description of these instructions, see the VAX Architecture Reference Manual. For
each instruction, the VAX Architecture Reference Manual specifies the contents of
all the registers after the instruction executes. The corresponding RTL routines
do not make the contents of all the registers available to the calling program.

Table 6-6 lists the LIB$ character string routines and their functions.

Table 6-6 Character String Routines

Entry Point Function

LIB$LOCC Locates a character in a string

LIB$MATCHC Returns the relative position of a substring

LIB$SCANC Scans characters

LIB$SKPC Skips characters

LIB$SPANC - Spans characters

LIB$MOVC3 Moves characters

LIB$MOVC5 Moves characters and fills

LIB$MOVTC Moves translated characters

LIB$MOVTUC Move translated characters until specified character is found

The OpenVMS RTL String Manipulation (STR$) Manual describes STR$ string
manipulation routines.

6-14

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

Example

This COBOL program uses LIBSLOCC to return the position of a given letter of
the alphabet.

IDENTIFICATION DIVISION.
PROGRAM-ID. LIBLOC.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 SEARCH-STRING PIC X(26)
VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
01 SEARCH-CHAR PIC X.

01 IND-POS PIC 9(9) USAGE IS COMP.
01 DISP-IND PIC 9(9).
ROUTINE DIVISION.
001-MAIN.
MOVE SPACE TO SEARCH-CHAR.
DISPLAY " ".

DISPLAY "ENTER SEARCH CHARACTER: " WITH NO ADVANCING.
ACCEPT SEARCH-CHAR.
CALL "LIB$LOCC"
USING BY DESCRIPTOR SEARCH-CHAR, SEARCH-STRING
GIVING IND-POS.
IF IND-POS = ZERO
DISPLAY
"CHAR ENTERED (" SEARCH~CHAR ") NOT A VALID SEARCH CHAR"
STOP RUN.
MOVE IND-POS TO DISP-IND.
DISPLAY
"SEARCH CHAR (" SEARCH-CHAR ") WAS FOUND IN POSITION "
DISP-IND.
GO TO 001-MAIN.

6.3.5 Miscellaneous Instruction Routines

Table 6-7 lists additional routines that you can use.

Table 6—-7 Miscellaneous Instruction Routines

Entry Point Function

LIB$CALLG Calls a routine using an array argument list
LIB$CRC Computes a cyclic redundancy check
LIB$CRC_TABLE Constructs a table for a cyclic redundancy check
LIBSCALLG

The LIB$CALLG routine gives your program access to the CALLG instruction.
This instruction calls a routine using an argument list stored as an array in
memory, as opposed to the CALLS instruction, in which the argument list is
pushed on the stack.

6-15

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

LIBSCRC

The LIB$CRC routine allows your high-level language program to use the CRC
instruction, which calculates the cyclic redundancy check. This instruction checks
the integrity of a data stream by comparing its state at the sending point and the
receiving point. Each character in the data stream is used to generate a value
based on a polynomial. The values for each character are then added together.
This operation is performed at both ends of the data transmission, and the two
result values are compared. If the results disagree, then an error occurred during
the transmission.

LIBSCRC_TABLE

The LIB§CRC_TABLE routine takes a polynomial as its input and builds the
table that LIBSCRC uses to calculate the CRC. You must specify the polynomial
to be used.

For more details, see the VAX Architecture Reference Manual.

6.4 Processwide Resource Allocation Routines

This section discusses routines that allocate processwide resources to a single
operating system process. The processwide resources discussed here are:

¢ Local event flags
e BASIC and Fortran logical unit numbers (LUNs)

The resource allocation routines are provided so that user routines can use the
processwide resources without conflicting with one another.

In general, you must use run-time library resource allocation routines when your
program needs processwide resources. This allows RTL routines, Digital-supplied
routines, and user routines that you write to perform together within a process.

If your called routine includes a call to any RTL routine that frees a processwide
resource, and that called routine fails to execute normally, the resource will not
be freed. Thus, your routine should establish a condition handler that frees

the allocated resource before resignaling or unwinding. For information about
condition handling, see Chapter 13.

Table 6-8 list routines that perform processwide resource allocation.

Table 6-8 Processwide Resource Allocation Routines

Entry Point Function

LIB$FREE_LUN Deallocates a specific logical unit number
LIB$GET_LUN Allocates next arbitrary logical unit number
LIB$FREE_EF Frees a local event flag

LIB$GET_EF Allocates a local event flag
LIB$RESERVE_EF Reserves a local event flag

6.4.1 Allocating Logical Unit Numbers

6-16

BASIC and Fortran use a logical unit number (LUN) to define the file or device
a program uses to perform input and output. For a routine to be modular, it
does not need to know the LUNSs being used by other routines that are running
at the same time. For this reason, logical units are allocated and deallocated at
run time. You can use LIB$GET_LUN and LIB$FREE_LUN to obtain the next

Using Run-Time Library Routines to Access Operating System Components
6.4 Processwide Resource Allocation Routines

available number. This ensures that your BASIC or Fortran routine does not
use a logical unit that is already being used by a calling program. Therefore,
you should use this routine whenever your program calls or is called by another
program that also allocates LUNs. Logical unit numbers 100 to 119 are available
to modular routines through these entry points.

To allocate an LUN, call LIB$GET _LUN and use the value returned as the LUN
for your I/O statements. If no LUNs are available, an error status is returned
and the logical unit is set to —1. When the program unit exits, it should use
LIB$FREE_LUN to free any LUNs that have been allocated by LIB§GET_LUN.
If it does not free any LUNs, the available pool of numbers is freed for use.

If your called routine contains a call to LIB§FREE_LUN to free the LUNs upon
exit, and your routine fails to execute normally, the LUNs will not be freed.

For this reason, you should make sure to establish a condition handler to call
LIB$FREE_LUN before resignaling or unwinding. Otherwise, the allocated LUN
is lost until the image exits. '

6.4.2 Allocating Event Flag Numbers

The LIB§GET_EF and LIB$FREE_EF routines operate in a similar way to
LIB$GET_LUN and LIB$FREE_LUN. They cause local event flags to be allocated
and deallocated at run time, so that your routine remains independent of other
routines executing in the same process.

Local event flags numbered 32 to 63 are available to your program. These event
flags allow routines to communicate and synchronize their operations. If you
use a specific event flag in your routine, another routine may attempt to use the
same flag, and the flag will no longer function as expected. Therefore, you should
call LIB$GET_EF to obtain the next arbitrary event flag and LIBSFREE_EF

to return it to the storage pool. You can obtain a specific event flag number by
calling LIBSRESERVE_EF. This routine takes as its argument the event flag
number to be allocated.

For information about using event flags, see Chapter 2 and Chapter 14.

6.5 Performance Measurement Routines

The run-time library timing facility consists of four routines to store count and
timing information, display the requested information, and deallocate the storage.
Table 6-9 lists these routines and their functions.

Table 6-9 Performance Measurement Routines

Entry Point Function

LIB$INIT TIMER Stores the values of the specified times and counts in units of
static or heap storage, depending on the value of the routine’s
argument

LIB$SHOW_TIMER Gets and formats for output the specified times and counts
that are accumulated since the last call to LIBSINIT_TIMER

LIB$STAT TIMER Gets one of the times and counts since the last call to
LIB$INIT_TIMER and returns it as an unsigned quadword
or longword

LIB$FREE_TIMER Frees the storage allocated by LIB$INIT_TIMER

6-17

Using Run-Time Library Routines to Access Operating System Components
6.5 Performance Measurement Routines

6-18

Using these routines, you can access the following statistics:
o Elapsed time

¢ CPU time

e Buffered I/O count

* Direct I/O count

e Page faults

The LIB$SHOW_TIMER and LIB$STAT_TIMER routine are relatively simple
tools for testing the performance of a new application. To obtain more detailed
information, use the system services SYS$GETTIM (Get Time) and SYS$GETJPI
(Get Job/Process Information).

The simplest way to use the run-time library routines is to call LIB§INIT_TIMER
with no arguments at the beginning of the portion of code to be monitored. This
will cause the statistics to be placed in OWN storage. To get the statistics from
OWN storage, call LIB§SHOW_TIMER (with no arguments) at the end of the
portion of code to be monitored.

If you want a particular statistic, you must include a code argument with a call
to LIB$SHOW_TIMER or LIB$STAT TIMER. LIB$SHOW_TIMER returns the
specified statistic(s) in formatted form and sends them to SYS$OUTPUT. On
each call, LIB$STAT TIMER returns one statistic to the calling program as an
unsigned longword or quadword value.

Table 6-10 shows the code argument in LIB§SHOW_TIMER or LIB$STAT _
TIMER.

Table 6-10 The code Argument in LIBSSHOW_TIMER and LIB$STAT_TIMER

Argument LIB$SHOW_TIMER LIB$STAT_TIMER
Value Meaning Format Format
1 Elapsed real time dddd hh:mm:ss.cc Quadword, in
system time
format
2 Elapsed CPU time hhhh:mm:ss.cc Longword, in
10-millisecond
increments
3 Number of buffered /O nnnn Longword
operations
4 Number of direct I/O nnnn Longword
operations
5 Number of page faults nnnn , Longword

When you call LIB$INIT_TIMER, you must use the optional handler argument
only if you want to keep several sets of statistics simultaneously. This argument
points to a block in heap storage where the statistics are to be stored. You need to
call LIB$FREE_TIMER only if you have specified handler in LIBSINIT TIMER
and you want to deallocate all heap storage resources. In most cases, the implicit
deallocation when the image exits is sufficient.

Using Run-Time Library Routines to Access Operating System Components
6.5 Performance Measurement Routines

The LIB$STAT_TIMER routine returns only one of the five statistics for each call,
and it returns that statistic in the form of an unsigned quadword or longword.
LIB$SHOW_TIMER returns the virtual address of the stored information,

which BASIC cannot directly access. Therefore, a BASIC program must call
LIB$STAT_TIMER and format the returned statistics, as the following example
demonstrates.

Example

The following BASIC example uses the run-time library performance analysis
routines to obtain timing statistics. It then calls the $ASCTIM system service to
translate the 64-bit binary value returned by LIB§STAT TIMER into an ASCII

text string.

100 EXTERNAL INTEGER FUNCTION LIBSINIT TIMER
EXTERNAL INTEGER FUNCTION LIB$STAT:TIMER
EXTERNAL INTEGER FUNCTION LIBSFREE TIMER
EXTERNAL INTEGER CONSTANT SS$ NORMAL

200 DECLARE LONG COND_VALUE, RANDOM SLEEP
DECLARE LONG CODE, HANDLE
DECLARE STRING TIME BUFFER
HANDLE = 0 -
TIME BUFFER = SPACE$(50%)

300 MAP (TIMER) LONG ELAPSED TIME, FILL
MAP (TIMER) LONG CPU TIME
MAP (TIMER) LONG BUFIO
MAP (TIMER) LONG DIRIO
MAP (TIMER) LONG PAGE FAULTS

400 PRINT "This program returns information about:"
PRINT "Elapsed time (1)"
PRINT "CPU time (2)"
PRINT "Buffered I/0 (3)"
PRINT "Direct I/0 (4)"
PRINT "Page faults (5)"
PRINT "Enter zero to exit program"
PRINT "Enter a number from one to"
PRINT "five for performance information"
INPUT "One, two, three, four, or five"; CODE
PRINT

450 GOTO 32766 IF CODE = 0
500 COND_VALUE = LIBSINIT TIMER(HANDLE)

550 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT @
"Error in initialization"
GOTO 32767
!
1 to 100000 ! This code merely uses some CPU time
1 !
NEXT I !

700 COND VALUE = LIB$SSTAT TIMER(CODE, ELAPSED TIME, HANDLE)

750 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT @
"Error in statistics routine"
GOTO 32767

800 GOTO 810 IF CODE <> 1%
CALL SYS$ASCTIM (, TIME BUFFER, ELAPSED TIME, 1% BY VALUE)
PRINT "Elapsed time: "; TIME BUFFER

650

(] W "
o
+

A
FO!
A

6-19

Using Run-Time Library Routines to Access Operating System Components
6.5 Performance Measurement Routines

810 PRINT "CPU time in seconds: "; .01 * CPU_TIME IF CODE = 2%
PRINT "Buffered I/0: ";BUFIO IF CODE = 3%
PRINT "Direct I/0: ";DIRIO IF CODE = 4%
PRINT "Page faults: ";PAGE_FAULTS IF CODE = 5%
PRINT

900 GOTO 400

32765 COND VALUE = LIB$FREE TIMER(HANDLE)
32766 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT @
"Error in LIB$FREE TIMER"
GOTO 32767

32767 END

For information about using system time, see Chapter 5.

6.6 Output Formatting Control Routines

6-20

Table 6-11 lists the run-time library routines that customize output.

Table 6-11 Routines for Customizing Output

Entry Point Function

LIB$CURRENCY Defines the default currency symbol for process
LIB$DIGIT_SEP Defines the default digit separator for process
LIB$LP_LINES Defines the process default size for a printed page
LIB$RADIX_POINT Defines the process default radix point character

The LIBSCURRENCY, LIB$DIGIT_SEP, LIB$LP_LINES, and LIBSRADIX_
POINT routines allow you to customize output. Using them, you can define

the logical names SYS§CURRENCY, SYS$DIGIT_SEP, SYS$LP_LINES, and
SYS$RADIX_POINT to specify your own currency symbol, digit separator, radix
point, or number of lines per printed page. Each routine works by attempting
to translate the associated logical name as a process, group, or system logical
name. If you have redefined a logical name for a specific local application, then
the translation succeeds, and the routine returns the value that corresponds to
the option you have chosen. If the translation fails, the routine returns a default
value provided by the run-time library, as follows:

$ SYS$CURRENCY

, SYS$DIGIT_SEP

. SYS$RADIX_POINT

66 SYS$LP_LINES

For example, if you want to use the British pound sign (£) as the currency symbol
within your process, but you want to leave the dollar sign ($) as the system
default, define SYSSCURRENCY to be in your process logical name table. Then,

any calls to LIBSCURRENCY within your process return “€”, while any calls
outside your process return “$”.

You can use LIB$LP_LINES to monitor the current default length of the line
printer page. You can also supply your own default length for the current process.
United States standard paper stock permits 66 lines on each physical page.

Using Run-Time Library Routines to Access Operating System Components

6.6 Output Formatting Control Routines

If you are writing programs for a utility that formats a listing file to be printed
on a line printer, you can use LIB§LP_LINES to make your utility independent
of the default page length. Your program can use LIB$LP_LINES to obtain the
current length of the page. It can then calculate the number of lines of text per
page by subtracting the lines used for margins and headings.

The following is one suggested format:

e Three lines for the top margin

e Three lines for the bottom margin

¢ Three lines for listing heading information, consisting of:

— Language-processor identification line

— Source program identification line

— One blank line

6.7 Miscellaneous Interface Routines

There are several other RTL routines that permit high-level access to components
of the operating system. Table 6-12 lists these routines and their functions. The
sections that follow give further details about some of these routines.

Table 6-12 Miscellaneous Interface Routines

Entry Point

Function

LIB$AST_IN_PROG

LIB$ASN_WTH_MBX

LIB$CREATE_DIR

LIB$FIND_IMAGE_SYMBOL

LIB$ADDX

LIB$SUBX

LIB$FILE_SCAN

LIB$FILE_SCAN_END
LIB$FIND_FILE
LIBSFIND_FILE_END

Indicates whefher an asynchronous system trap is in
progress

Assigns an IO channel and associates it with a
mailbox

Creates a directory or subdirectory

Reads a global symbol from the shareable image file
and dynamically activates a shareable image into the
PO address space of a process

Performs addition on signed two’s complement
integers of arbitrary length (multiple-precision
addition)

Performs subtraction on signed two’s complement
integers of arbitrary length (multiple-precision
subtraction)

Finds file names given OpenVMS RMS file access
block (FAB)

End of file scan
Finds file names given string
End of find file

(continued on next page)

6-21

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

Table 6-12 (Cont.) Miscellaneous Interface Routines

Entry Point Function

LIB$INSERT TREE Inserts an element in a binary tree

LIB$LOOKUP_TREE Finds an element in a binary tree

LIB$TRAVERSE_TREE Traverses a binary tree

LIB$GET_COMMON Gets a record from the process’s COMMON storage
area

LIB$PUT_COMMON Puts a record to the process’s COMMON storage area

6.7.1 Indicating Asynchronous System Trap in Progress

An asynchronous system trap (AST) is a mechanism for providing a software
interrupt when an external event occurs, such as when a user presses the Ctrl/C
key sequence. When an external event occurs, the operating system interrupts
the execution of the current process and calls a routine that you supply. While
that routine is active, the AST is said to be in progress, and the process is said to
be executing at AST level. When your AST routine returns control to the original
process, the AST is no longer active and execution continues where it left off.

The LIB$AST_IN_PROG routine indicates to the calling program whether an
AST is currently in progress. Your program can call LIB$AST IN_PROG to
determine whether it is executing at AST level, and then take appropriate action.
This routine is useful if you are writing AST-reentrant code.

For information about using ASTs, see Chapter 4.

6.7.2 Create a Directory or Subdirectory

6-22

‘'The LIB§CREATE_DIR routine creates a directory or a subdirectory. The calling

program must specify the directory specification in standard OpenVMS RMS
format. This directory specification may also contain a disk specification.

In addition to the required directory specification argument, LIB§CREATE_DIR
takes the following five optional arguments:

¢ The user identification code (UIC) of the owner of the created directory or
subdirectory

¢ The protection enable mask
¢ The protection value mask

¢ The maximum number of versions allowed for files created in this directory or
subdirectory

e The relative volume number within the volume set on which the directory or
subdirectory is created

See the OpenVMS RTL Library (LIB$) Manual for a complete description of
LIB$CREATE_DIR.

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

6.7.3 File Searching Routines

The run-time library provides two routines that your program can call to search
for a file and two routines that your program can call to end a search sequence.

* When you call LIB$FILE_SCAN with a wildcard file specification and an
action routine, the routine calls the action routine for each file or error, or
both, found in the wildcard sequence. LIB$FILE_SCAN allows the search
sequence to continue even though certain errors are present.

¢ When you call LIB§FIND_FILE with a wildcard file specification, it finds the
next file specification that matches the wildcard specification.

In addition to the wildcard file specification, which is a required argument,
LIB$FIND_FILE takes the following four optional arguments:

¢ The default specification.
¢ The related specification.
¢ The OpenVMS RMS secondary status value from a failing RMS operation.

¢ A longword containing two flag bits. If bit 1 is set, LIBSFIND_FILE performs
temporary defaulting for multiple input files and the related specification
argument is ignored. See the OpenVMS RTL Library (LIB$) Manual for a
complete description of LIB§FIND_FILE in template format.

The LIB$FIND_FILE_END routine is called once after each call to LIB§FIND_
FILE in interactive use. LIBSFIND_FILE_END prevents the temporary default
values retained by the previous call to LIB§FIND_FILE from affecting the next
file specification.

The LIB$FILE_SCAN routine uses an optional context argument to perform
temporary defaulting for multiple input files. For example, a command such as
the following would specify A, B, and C in successive calls, retaining context, so
that portions of one file specification would affect the next file specification:

$ COPY [smith]A,B,C *

The LIBSFILE_SCAN_END routine is called once after each sequence of calls to
LIB$FILE_SCAN. LIB$FILE_SCAN_END performs a parse of the null string to
deallocate saved OpenVMS RMS context and to prevent the temporary default
values retained by the previous call to LIBSFILE_SCAN from affecting the next
file specification. For instance, in the previous example, LIB$FILE_SCAN_END
should be called after the C file specification is parsed, so that specifications from
the $COPY files do not affect file specifications in subsequent commands. '

The following Bliss example illustrates the use of LIBSFIND_FILE. It prompts
for a file specification and default specification. The default specification indicates
the default information for the file for which you are searching. Once the routine
has searched for one file, the resulting file specification determines both the
related file specification and the default file specification for the next search.
LIB$FIND_FILE_END is called at the end of the following Bliss program to
deallocate the virtual memory used by LIB$FIND_FILE.

$TITLE 'FILE_EXAMPLEL - Sample program using LIBSFIND FILE’

MODULE FILE EXAMPLEI(! Sample program using LIB$FIND FILE
IDENT = ’1-001',
MAIN = EXAMPLE START
) =

BEGIN

6-23

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

6-24

$SBTTL 'Declarations’
1+
! SWITCHES:

-
.

SWITCHES ADDRESSING MODE (EXTERNAL = GENERAL, NONEXTERNAL = WORD RELATIVE);

1+
! TABLE OF CONTENTS:

FORWARD ROUTINE
EXAMPLE START; ! Main program

1+
! INCLUDE FILES:
|

LIBRARY 'SYSSLIBRARY:STARLET.L32'; ! System symbols

I+
! Define facility-specific messages from shared system messages.
-
$SHR_MSGDEF(CLI,3,LOCAL,
(PARSEFAIL,WARNING));
I+
! EXTERNAL REFERENCES:
|

EXTERNAL ROUTINE

LIB$GET INPUT, ! Read from SYS$INPUT
LIBSFIND FILE, ! Wildcard scanning routine
LIBSFIND FILE END, ! End find file
LIBSPUT OUTPUT, ! Write to SYS$OUTPUT
STR$COPY DX; ! String copier

LITERAL
TRUE = 1, ! Success
FALSE = 0; ! Failure

%SBTTL 'EXAMPLE START - Sample program main routine’;

ROUTINE EXAMPLE START =

BEGIN

'+

! This program reads a file specification and default file

! specification from SYSSINPUT. It then prints all the files that

! match that specification and prompts for another file specification.

! After the first file specification no default specification is requested,
! and the previous resulting file specification becomes the related

! file specification.
1

L

OCAL
LINEDESC : §BBLOCK[DSC$C_§_BLN], ! String desc. for input line
RESULT DESC : $BBLOCK[DSCS$C S BLN], ! String desc. for result file
CONTEXT, ! LIB$FIND FILE context pointer

DEFAULT DESC
RELATED_DESC
HAVE_DEFAULT,
STATUS ;

$BBLOCK[DSCSC S BLN],

S String desc. for default spec
$BBLOCK[DSCSC_S BLN],

!
! String desc. for related spec

.
.
.
.

1+
! Make all string descriptors dynamic.

1=

CH$FILL(0,DSC$C_S_ﬁLN,LINEDESC);
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D;
CH$MOVE(DSC$C_S_BLN,LINEDESC,RESULT_DESC);
CHSMOVE(DSC$C_$_BLN,LINEDESC,DEFAULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,RELATED_DESC);
HAVE DEFAULT = FALSE;

CONTEXT = 0;

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

+
Read file specification, default file specification, and
related file specification.

o= o= o o

WHILE (STATUS = LIB$GET INPUT(LINEDESC,
$DESCRIPTOR('FILE SPECIFICATION: ‘))) NEQ RMS$_EOF
DO BEGIN :
IF NOT .STATUS
THEN SIGNAL_ STOP(.STATUS);
I+
! If default file specification was not obtained, do so now.
1~
IF NOT .HAVE DEFAULT
THEN BEGIN
STATUS = LIBSGET INPUT(DEFAULT DESC,
SDESCRIPTOR('DEFAULT FILE SPECIFICATION: '));
IF NOT ,STATUS
THEN SIGNAL STOP(.STATUS);
HAVE DEFAULT = TRUE;
END;
1+
! CALL LIBSFIND FILE until RMS$ NMF (no more files) is returned.
! If an error other than RMS$ NMF is returned, it is signaled.
! Print out the file specification if the call is successful.
1=
WHILE (STATUS = LIB$FIND_FILE(LINEDESC,RESULT_DESC,CONTEXT,
DEFAULT DESC,RELATED DESC)) NEQ RMS$_NMF
DO IF NOT .STATUS
THEN SIGNAL(CLIS_PARSEFAIL,1,RESULT DESC,.STATUS)
ELSE LIBSPUT OUTPUT(RESULT DESC),
'+
! Make this resultant file specification the related file
! specification for next file.
|-
STRSCOPY_DX(RELATED_DESC,LINEDESC);
END; ! End of loop
! reading file specification

1+

! Call LIB$FIND FILE END to deallocate the virtual memory used by LIBSFIND FILE.
! Note that we do this outside of the loop. Since the MULTIPLE bit of the

! optional user flags argument to LIB$FIND FILE wasn't used, it is not

! necessary to call LIBSFIND FILE END after each call to LIB$FIND FILE.

! (The MULTIPLE bit would have caused temporary defaulting for multiple input

t files.)

1

STATUS = LIBSFIND FILE END (CONTEXT);

IF NOT .STATUS
THEN SIGNAL STOP (.STATUS);

RETURN TRUE

END; ‘ ! End of main program
END ! End of module
ELUDOM

The following Bliss example illustrates the use of LIB§FILE_SCAN and
LIB$FILE_SCAN_END.

6-25

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

. 3TITLE 'FILE EXAMPLE2 - Sample program using LIB$FILE_SCAN’

MODULE FILE_EXAMPLE](! Sample program using LIBSFILE SCAN
IDENT = ’1-001',
MAIN = EXAMPLE_START
) =

BEGIN

%SBTTL 'Declarations’

'+ ’

! SWITCHES:
-

SWITCHES ADDRESSING MODE (EXTERNAL = GENERAL,

NONEXTERNAL = WORD_RELATIVE);

+
TABLE OF CONTENTS:

= tem o=

FORWARD ROUTINE
EXAMPLE_START, ! Main program
SUCCESS_RTN, ! Success action routine
ERROR_RTN; ! Error action routine

1+
! INCLUDE FILES:

LIBRARY 'SYS$SLIBRARY:STARLET.L32’; ! System symbols

1+
! Define VMS block structures (BLOCK[,BYTE]).
.
STRUCTURE
BBLOCK [0, P, S, E; N] =
[N]
(BBLOCK + 0) <P, S, E>;
1+
! EXTERNAL REFERENCES:
1

EXTERNAL ROUTINE
LIB$GET_INPUT, ! Read from SYSSINPUT
LIBSFILE_SCAN, ! Wildcard scanning.routine
LIBSFILE SCAN END, ! End of file scan
LIB$PUT_OUTPUT; ! Write to SYSSOUTPUT

6-26

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

$SBTTL 'EXAMPLE START - Sample program main routine’;
ROUTINE EXAMPLE START =
BEGIN B
1+
! This program reads the file specification, default file specification,
! and related file specification from SYSSINPUT and then displays on
! SYS$OUTPUT all files which match the specification.
-
LOCAL
RESULT_BUFFER : VECTOR[NAM$C MAXRSS,BYTE], !Buffer for resultant
! name string
EXPAND BUFFER : VECTOR[NAMSC MAXRSS,BYTE], !Buffer for expanded

! name string -
LINEDESC : BBLOCK[DSC$C_S BLN], !String descriptor
! for input line
RESULT DESC : BBLOCK[DSC$C_S_BLN], tString descriptor
4 ! for result file
DEFAULT DESC : BBLOCK[DSC$C_S_BLN}, - 18tring descriptor _
! for default specification
RELATED DESC : BBLOCK[DSC$C_S BLN], !String descriptor
- - .+ ! for related specification
IFAB : $FAB DECL, IFAB for file scan
INAM : $NAM DECL, ! and a NAM block
RELNAM : $NAM DECL, ! and a related NAM block
STATUS;

1+
! Make all descriptors dynamic.
1.
CH$FILL(0,DSC$C_S_BLN,LINEDESC);
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D;
CH$MOVE(DSC$C S BLN,LINEDESC,RESULT DESC);
CH$MOVE (DSC$C_S_BLN, LINEDESC, DEFAULT DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,RELATED_DESC);
I+
! Read file specification, default file specification, and related
! file specification
| .
STATUS = LIB$GET_INPUT(LINEDESC,
SDESCRIPTOR(‘File specification: '}));
IF NOT .STATUS
THEN SIGNAL STOP(.STATUS);
STATUS = LIB$GET_INPUT(DEFAULT DESC,
SDESCRIPTOR('Default file specification: ’));
IF NOT .STATUS
THEN SIGNAL STOP(.STATUS);
STATUS = LIB$GET_INPUT(RELATED DESC,
SDESCRIPTOR(‘Related file specification: ’));
IF NOT .STATUS
THEN SIGNAL STOP(.STATUS);
I+
! Initialize the FAB, NAM, and related NAM blocks.
1=
$FAB_INIT(FAB=IFAB,
FNS=.LINEDESC[DSC$W_LENGTH],
FNA=.LINEDESC[DSC$A_POINTER],
DNS=.DEFAULT DESC[DSC$W_LENGTH],
DNA=.DEFAULT_DESC[DSC$A_POINTER],
NAM=INAM) ;

$NAM INIT(NAM=INAM,
~ RSS=NAM$C MAXRSS,
RSA=RESULT BUFFER,
ESS=NAM$C_MAXRSS,
ESA=EXPAND BUFFER,

RLF=RELNAM) ;

6-27

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

$NAM INIT(NAM=RELNAM);

RELNAM[NAM$B_RSL] = .RELATED DESC[DSC$W_LENGTH];
RELNAM[NAMSL RSA] = .RELATED DESC[DSC$A POINTER];

+

! Call LIBSFILE SCAN. Note that errors need not be checked
! here because LIBSFILE SCAN calls error rtn for all errors.
-

LIBSFILE SCAN(IFAB,SUCCESS_RTN,ERROR RTN);

A+

! Call LIBSFILE_SCAN_END to deallocate virtual memory used for
! file scan structures.

[

.

STATUS = LIBSFILE_SCAN END (IFAB);

IF NOT .STATUS
THEN SIGNAL STOP (.STATUS);

RETURN 1
END; ! End of main program

ROUTINE SUCCESS RTN (IFAB : REF BBLOCK) =

BEGIN

'+

! This routine is called by LIBSFILE SCAN for each file that it
successfully finds in the search sequence.

1 n

Inputs:
IFAB Address of a fab

Outputs:

tm= tem o= o= emm s o= sme o= o

file specification printed on SYS$OUTPUT
[.
LOCAL

DESC : BBLOCK[DSC$C_S BILN]; ! A local string descriptor
BIND
INAM

.IFAB[FAB$L_NAM] ¢ BBLOCK; ! Find NAM block
! from pointer in FAB
CH$FILL(0,DSC$C_S_BLN,DESC); ! Make static

, ! string descriptor
DESC[DSC$W_LENGTH] = .INAM[NAM$B RSL]; ! Get string length

from NAM block

o~

DESC[DSC$A POINTER] = .INAM[NAMSL RSA]; ! Get pointer to the string

RETURN LIB$PUT_OUTPUT(DESC) ! Print name on SYSSOUTPUT
! and return

END;

ROUTINE ERROR RTN (IFAB : REF BBLOCK) =

BEGIN

'+

! This routine is called by LIBSFILE_SCAN for each file specification that
! produces an error. ‘

Inputs:
ifab Address of a fab
Outputs:

Error message is signaled

= pem pem um pme bmm = gom G=m

LOCAL
DESC : BBLOCK[DSCSC_ S BLN]; ! A local string descriptor

6-28 .

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

BIND
INAM = .IFAB[FAB$L_NAM] : BBLOCK; ! Get NAM block pointer
! from FAB
CH$FILL(0,DSC$C_S_BLN,DESC); ! Create static

! string descriptor
DESC[DSC$W_LENGTH] = .INAM[NAMS$B RSL];
DESC[DSC$A_POINTER] = .INAM[NAMSL RSA];
1+
! Signal the error using the shared message PARSEFAIL
! and the CLI facility code. The second part of the SIGNAL
! is the RMS STS and STV error codes.
1=
RETURN SIGNAL((SHR$_PARSEFAIL+3A16),1,DESC,
.IFAB[FABSL_STS],.IFAB[FABSL STV])

END;
END ! End of module

ELUDOM

6.7.4 Inserting an Entry into a Balanced Binary Tree

Three routines allow you to manipulate the contents of a balanced binary tree:
e LIB$INSERT_TREE adds an entry to a balanced binary tree.

¢ LIBSLOOKUP_TREE looks up an entry in a balanced binary tree.

e LIB$TRAVERSE_TREE calls an action routine for each node in the tree.

. Example

The following Bliss example illustrates all three routines. The program prompts
for input from SYS$INPUT and stores each data line as an entry in a binary tree.
When the user enters end-of-file character (Ctrl/Z), the tree will be printed in
sorted order. The program includes three subroutines:

® The first subroutine allocates virtual memory for a node.
¢ The second subroutine routine compares a key with a node.

e The third subroutine is called during the tree traversal. It prints out the left
and right subtree pointers, the current node balance, and the name of the

node.

RTITLE 'TREE_EXAMPLE - Sample program using binary tree routines’

MODULE TREE_ EXAMPLE (! Sample program using trees
IDENT = '1-001',
MAIN = TREE START
) =

BEGIN

$SBTTL ‘Declarations’

1+

! SWITCHES:

SWITCHES ADDRESSING MODE (EXTERNAL = GENERAL, NONEXTERNAL = WORD RELATIVE);

1+
! LINKAGES:
!

! NONE
!

! TABLE OF CONTENTS:

6-29

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

- FORWARD ROUTINE
TREE_START, ! Main program
ALLOC_NODE, ! Allocate memory for a node
COMPARE NODE, ! Compare two nodes
PRINT NODE; ! Print a node (action routine
! for LIBSTRAVERSE TREE)

1+
! INCLUDE FILES:
|

LIBRARY ’'SYS$LIBRARY:STARLET.L32'; ! System symbols

1+

! Define VMS block structures (BLOCK[,BYTE]).
[.

.

STRUCTURE
BBLOCK [0, P, S, E; N] =
[N]
(BBLOCK + 0) <P, S, E>;
[
! MACROS:
| .
MACRO .
NODESL LEFT = 0,0,32,0%, ! Left subtree pointer in node
NODESL_RIGHT = 4,0,32,0%, ! Right subtree pointer
NODE$W_BAL = 8,0,16,08%, ! Balance this node
NODE$B_NAMLNG = 10,0,8,0%, ! Length of name in this node
NODEST NAME = 11,0,0,0%; ! Start of name (variable length)
LITERAL
NODE$C_LENGTH = 11; ! Length of fixed part of node

1+
! EXTERNAL REFERENCES:
1

EXTERNAL ROUTINE
LIBSGET INPUT,
LIBSGET VM,
LIBSINSERT TREE,
LIBSLOOKUP_TREE,
LIBSPUT OUTPUT,
LIBSTRAVERSE TREE,
STR$UPCASE,
SYS$FAO;

Read from SYS$INPUT

Allocate virtual memory

Insert into binary tree

Lookup in binary tree

Write to SYS$OUTPUT

Traverse a binary tree

Convert string to all uppercase
Formatted ASCII output routine

o= o= o= o tmw o= tmm e

$SBTTL 'TREE START - Sample program main routine’;

ROUTINE TREE_START =

BEGIN

I+

! This program reads from SYSS$SINPUT and stores each data line

as an entry in a binary tree. When end-of-file character (CTRL/Z)
is entered, the tree will be printed in sorted order.

1
!
!
L

OCAL
NODE : REF BBLOCK, ! Address of allocated node
TREEHEAD, ! List head of binary tree
LINEDESC : BBLOCK[DSC$C_S BLN], ! String descriptor for input line
STATUS ;

6-30

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

TREEHEAD = 0; ! Zero binary tree head
CHS$FILL(0,DSCSC_S_BLN,LINEDESC); ! Make a dynamic descriptor
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS D; ! ...

1+

! Read input lines until end of file seen.

1=
.

WHILE (STATUS = LIB$GET_INPUT(LINEDESC, ! Read input line
$DESCRIPTOR('Text: '))) ! with this prompt
NEQ RMS$_EOF
DO IF NOT .STATUS ! Report any errors found
THEN SIGNAL(.STATUS)
ELSE BEGIN
STR$UPCASE (LINEDESC,LINEDESC); ! Convert string

! to uppercase
IF NOT (STATUS = LIB$INSERT_TREE(
TREEHEAD, ! Insert good data into the tree
LINEDESC, ! Data to insert
$REF(1), ! Insert duplicate entries
COMPARE NODE, ! Addr. of compare routine
ALLOC_NODE, ! Addr. of node allocation routine
1
!

NODE, Return addr. of
0)) allocated node here
THEN SIGNAL(.STATUS);

END;

1+

! End of file character encountered. Print the whole tree and exit.

1=

IF NOT (STATUS = LIBSTRAVERSE_IREE(:
TREEHEAD, ! Listhead of tree
PRINT NODE, ! Action routine to print a node
0))

THEN SIGNAL(.STATUS);

RETURN SS$_NORMAL

END; ! End of routine tree start
ROUTINE ALLOC_NODE (KEYDESC,RETDESC, CONTEXT) =

BEGIN

14

! This routine allocates virtual memory for a node.

Memory address returned in longword pointed to by retdesc

1

! INPUTS:

!

! KEYDESC Address of string descriptor for key

! (this is the linedesc argument passed
! to LIB$INSERT_TREE)

! RETDESC Address of location to return address of
! allocated memory

! CONTEXT Address of user context argument passed
! to LIBSINSERT TREE (not used in this

! example)

1

! OUTPUTS:

1

!

!

MAP
KEYDESC : REF BBLOCK,
RETDESC : REF VECTOR[,LONG];

LOCAL
NODE : REF BBLOCK,
STATUS;

6-31

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

STATUS = LIB$GET VM(RREF(NODE$C_LENGTH+.KEYDESC[DSC$W_LENGTH]) ,NODE);
IF NOT ,STATUS
THEN RETURN .STATUS

ELSE BEGIN
NODE[NODE$B_NAMLNG] = .KEYDESC[DSC$W_LENGTH]; ! Set name length
CH$MOVE (. KEYDESC[DSCSW_LENGTH], ! Copy in the name
.KEYDESC[DSC$A_POINTER],
NODE[NODE$T NAME]);
RETDESC[0] = .NODE; ! Return address to caller
END;
RETURN ,STATUS
END;
ROUTINE COMPARE NODE (KEYDESC,NODE,CONTEXT) =
BEGIN
1+

! This routine compares a key with a node.

1

! INPUTS:

!

! KEYDESC Address of string descriptor for new key

! (This is the linedesc argument passed to

! LIB$INSERT_TREE)

! NODE Address of current node

! CONTEXT User context data (Not used in this example)
.

MAP

KEYDESC : REF BBLOCK,
NODE : REF BBLOCK;

RETURN CH$COMPARE(.KEYDESC[DSC$W_LENGTH], ! Compare key with
! current node
.KEYDESC[DSCS$A POINTER],
.NODE[NODE$B_NAMLNG],
NODE[NODE$T NAME])

END;

ROUTINE PRINT NODE (NODE,CONTEXT) =

BEGIN -

1+

! This routine is called during the tree traversal. It
! prints out the left and right subtree pointers, the

! current node balance, and the name of the node.

|-
.

MAP
NODE : REF BBLOCK;

6-32

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

LOCAL
OUTBUF : BBLOCK[512], ! FAO output buffer
OUTDESC : BBLOCK[DSC$C_S_BLN], ! Output buffer descriptor
STATUS;

CH$FILL(0,DSCSC S BLN,OUTDESC); ! Zero descriptor

OUTDESC[DSC$W_LENGTH] = 512;
OUTDESC[DSC$A_POINTER] = OUTBUF; :
IF NOT (STATUS = SYS$FAO(SDESCRIPTOR('!XL !XL !XL !XW !AC'),
OUTDESC, OUTDESC,
.NODE, . NODE[NODE$L_LEFT],
.NODE[NODESL RIGHT],
.NODE[NODE$W_BAL],
NODE([NODE$B_NAMLNG]))
THEN SIGNAL(.STATUS)
ELSE BEGIN
STATUS = LIB$PUT OUTPUT(OUTDESC); ! Output the line
IF NOT .STATUS '
THEN SIGNAL(.STATUS);
END;

RETURN SS$_NORMAL

END;
END ! End of module TREE _EXAMPLE
ELUDOM

6-33

7

Run-Time Library Input/Output Operations

This chapter déscribes the different I/O programming capabilities provided by the
run-time library and illustrates these capabilities with examples of common I/O
tasks. This chapter contains the following sections:

Section 7.1 describes the input and output operations within a program.
Section 7.2 describes using SYS$INPUT and SYS$OUTPUT.

Section 7.3 describes using LIB§GET_INPUT and LIB$PUT_OUTPUT for simple
user I/O. ‘

Section 7.4 describes using the SMG$ run-time library routines for managing the
appearance of terminal screens.

Section 7.5 describes using screen management input routines and the SYS$QIO
and SYS$QIOW system services to perform special actions.
7.1 Choosing I/O Techniques

The operating system and its compilers provide the following methods for
completing input and output operations within a program:

¢ DEC Text Processing Utility
¢ DECforms software
¢ Program language I/O statements

* OpenVMS Record Management Services (RMS) and Run-Time Library (RTL)
routines ’

¢ SYS$QIO and SYS$QIOW system services
* Non-Digital-supplied device drivers to control the I/O to the device itself

The DEC Text Processing Utility (DECTPU) is a text processor that can be used
to create text editing interfaces. DECTPU has the following features:

¢ High-level procedure language with several data types, relational operators,
error interception, looping, case language statements, and built-in procedures

¢ Compiler for the DECTPU procedure language
¢ Interpreter for the DECTPU procedure language

e Extensible Versatile Editor (EVE) editing interface which, in addition to the
EVE keypad, provides EDT, VT100, WPS, and numeric keypad emulation

In addition, DECTPU offers the following special features:
e Multiple buffers
e Multiple windows

® Multiple subprocesses

7-1

Run-Time Library Input/Output Operations
7.1 Choosing I/O Techniques

¢ Text processing in batch mode
¢ Insert or overstrike text entry
¢ Free or bound cursor motion
e Learn sequences

e Pattern matching

¢ Key definition

The method you select for I/O operations depends on the task you want to
accomplish, ease of use, speed, and level of control you want.

The DECforms software is a forms management product for transaction
processing. DECforms integrates text and graphics into forms and menus

that application programs use as an interface to users. DECforms software offers
application developers software development tools and a run-time environment
for implementing interfaces.

DECforms software integrates with the Application Control and Management
System (ACMS), a transaction process (TP) monitor that works with other Digital
commercial applications to provide complete customizable development and
run-time environments for TP appli