
OpenVMS Developer's Guide to VMSINSTAL

Part Number: AA-PWBXA-TE

Open VMS Developer's Guide to
VMSINSTAL
Order Number: AA-PWBXA-TE

May 1993

This manual describes the VMSINSTAL command procedure and
gives developers information about using VMSINSTAL to design their
own installation procedures. Digital recommends that all installation
procedures for products that layer on the Open VMS operating system
use VMSINSTAL. The Open VMS Developer's Guide to VMSINSTAL
is available as an optional Open VMS manual; it is not included in the
standard Open VMS documentation set.

Revision/Update Information: This document supersedes the
Open VMS Developer's Guide to
VMSINSTAL, Version 5.5. It also
supersedes the Open VMS AXP
Version 1.5.

Operating System and Version: Open VMS VAX Version 6.0
Open VMS AXP Version 1.5

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader,
DECnet, DECwindows, Digital, Open VMS, VAX, VAX DOCUMENT, VMS, the AXP logo, and the
DIGITAL logo.

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

ZK4529

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . vii

1 Introduction

1.1
1.1.1
1.1.2
1.2
1.3
1.4
1.4.1
1.4.2
1.5
1.6
1.7
1.8
1.9

Product Kits
Files Included in a Product Kit
Building a Product Kit

VMSINSTAL Functional Overview
Invoking VMSINSTAL
Choosing VMSINSTAL Options

Installer's Options
Developer's Options .

VMS IN STAL History File (AXP Only)
VMSINSTAL Product Installation File (AXP Only)
List Installed Products Procedure (AXP Only)
Safety Mode
Recovery from System Failure

2 Guidelines and Conventions

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

Product Identification String
Save Set Identification
Volume Labeling

Diskette Kits
TU58 Cartridge Kits
Magnetic Tape Kits

Logical Names and Global Symbols
Error Handling .. .
Compatibility Mode (VAX Only)
Referencing Other Products
Changing Global State
Verifying Installation .. .
Prompting the Installer for Input
Internationalization of VMSINSTAL Messages
Release Notes .

3 KITINSTAL Command Procedure

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2

Guidelines for Writing a KITINSTAL Command Procedure
Installation Phase .
IVP Phase

Using Callbacks .. .
Accessing Files .
Moving Files from the Kit's Working Directory

1-2
1-2
1-2
1-5
1-6
1-8
1-8

1-11
1-12
1-12
1-12
1-13
1-13

2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-6

3-1
3-1
3-2
3-3
3-4
3-4

iii

3.2.3
3.2.3.1
3.2.3.2
3.2.4
3.2.5
3.2.6
3.3
3.4

Updating Files .. .
Updating an Existing File Version
Updating a File by Creating a New Version

Updating a Library
Deleting a File .
Creating a Directory .

Summary of KITINSTAL Design Specifications
Basic KITINSTAL Command Procedure

4 VMSINSTAL Functional Description

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.3
4.3.1
4.3.2

Overview
Functional Steps .

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
Step 9
Step 10 .. .
Step 11 .. .
All Done

Special Steps .
Step 12 .. .
Step 13 .. .

5 VMSINSTAL Callbacks

iv

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.10.1
5.10.2
5.10.3
5.10.4
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

ADD_IDENTIFIER Callback
ASK Callback .. .
CHECK_NETWORK Callback
CHECK_NET_UTILIZATION Callback
CHECK_PRODUCT_ VERSION Callback
CHECK_VMS_VERSION Callback
COMPARE_IMAGE Callback
CONTROL_Y Callback
CREATE_ACCOUNT Callback
CREATE_DIRECTORY Callback

Creating a System Directory
Creating a System-Specific Directory
Creating a Common Directory
Creating a User Directory .

DELETE_FILE Callback
FIND _FILE Callback .. .
GET_IMAGE_ID Callback
GET_PASSWORD Callback
GET_SYSTEM_PARAMETER Callback
MESSAGE Callback
PATCH_IMAGE Callback (VAX Only)
PRINT_FILE Callback
PRODUCT Callback

3-4
3-4
3-4
3-5
3-5
3-5
3-6
3-7

4-1
4-2
4-2
4-3
4-4
4-4
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-7
4-8
4-8

4-10

5-2
5-2
5-5
5-5
5-7
5-8
5-9

5-10
5-11
5-11
5-12
5-12
5-13
5-13
5-14
5-15
5-16
5-17
5-17
5-18
5-19
5-20
5-21

5.20 PROVIDE_DCL_COMMAND Callback . 5-21
5.21 PROVIDE_DCL_HELP Callback . 5-22
5.22 PROVIDE_FILE Callback . 5-23
5.23 PROVIDE_IMAGE Callback . 5-24
5.24 RENAME_FILE Callback . 5-27
5.25 RESTORE_SAVESET Callback . 5-27
5.26 RUN_IMAGE Callback . 5-28
5.27 SECURE_FILE Callback . 5-29
5.28 SET Callback . 5-30
5.28.1 SET ACL Option . 5-30
5.28.2 SET ASK_ CASE Option . 5-31
5.28.3 SET_FILE Option (AXP Only) . 5-31
5.28.4 SET IVP Option.. 5-32
5.28.5 SET POSTINSTALL Option . 5-33
5.28.6 SET PRODUCT_NAME Option (AXP Only)..................... 5-33
5.28. 7 SET PURGE Option. 5-34
5.28.8 SET REBOOT Option . 5-35
5.28.9 SET SAFETY Option . 5-35
5.28.10 SET_SEMANTICS Option (AXP Only)......................... 5-36
5.28.11 SET SHUTDOWN Option . 5-36
5.28.12 SET STARTUP Option . 5-37
5.29 SUMSLP _TEXT Callback . 5-38
5.30 TELL_QA Callback . 5-40
5.31 UNWIND Callback . 5-40
5.32 UPDATE_ACCOUNT Callback . 5-40
5.33 UPDATE_FILE Callback ·. 5-41
5.34 UPDATE_IDENTIFIER Callback . 5-42
5.35 UPDATE_LIBRARY Callback . 5-43

A Symbols and Logical Names

B Sample OpenVMS Installation Procedure

C Product-Specific Callback Conventions

D How to Use the VMl$VMS_ VERSION Symbol

E Product Registration

Index

Examples

3-1
B-1
C-1

D-1

Basic KITINSTAL.COM
Sample DIGITAL Open VMS KITINSTAL.COM
Product_Specific Callback Procedure
Template for Using the VMI$VMS_VERSION Symbol

3-7
8-2
C-2
D-1

v

Preface

Intended Audience
This manual is intended for developers who design installation procedures for
optional products that layer on the Open VMS operating system.

Document Structure
Information in this manual is organized as follows:

• Chapter 1 presents an overview of the VMSINSTAL command procedure,
including the command line for invoking it, and a description of the available
installation options.

• Chapter 2 discusses the various guidelines and conventions used to design
installation procedures that are compatible with VMSINSTAL.

• Chapter 3 describes the basic steps of the installation procedure. Because
KITINSTAL has a generic structure, the specifics might differ slightly from
one product to another.

• Chapter 4 describes the eleven functional steps and the two special steps of
the VMSINSTAL logical sequence.

• Chapter 5 describes the VMSINSTAL callbacks, which are specialized
subroutines that execute the various installation tasks.

• Appendix A lists and briefly describes the symbols and logical names used by
VMSINSTAL.

• Appendix B provides an example of a KITINSTAL.COM installation procedure
for an actual Digital product. This command procedure serves as a sample for
writing product-specific command procedures.

• Appendix C provides an example of a product-specific callback. Installation
designers can develop their own product-specific callbacks, as long as they
follow the explicit guidelines.

• Appendix D provides a template for using VMI$VMS_ VERSION, a symbolic
value used to verify that the product being installed is compatible with the
target system.

• Appendix E explains how to register a product.

Associated Documents
For information on specific system installation and upgrade procedures, see the
installation and operations guide for your processor.

For information about writing Open VMS command procedures, see the Open VMS
User's Manual.

vii

Conventions

viii

In this manual, every use of Open VMS AXP means the Open VMS AXP operating
system, every use of Open VMS VAX means the Open VMS VAX operating system,
and every use of Open VMS means both the Open VMS AXP operating system and
the Open VMS VAX operating system.

The following conventions are used to identify information specific to Open VMS
AXP or to Open VMS VAX:

•

The AXP icon denotes the beginning of information
specific to Open VMS AXP.

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS AXP or to Open VMS
VAX.

The following conventions are also used in this manual:

Ctrllx

PFlx

GOLDx

()

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PFl x indicates that you must first press
and release the key labeled PFl, then press and release
another key or a pointing device button.

A sequence such as GOLD x indicates that you must first press
and release the key defined GOLD, then press and release
another key. GOLD key sequences can also have a slash (I),
dash (-), or underscore (_) as a delimiter in EVE commands.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

[]

{}

boldface text

italic text

UPPERCASE TEXT

numbers

In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an Open VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, IPRODUCER=name), and command parameters
in text.

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

All numbers in text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes-binary, octal, or
hexadecimal-are explicitly indicated.

ix

1
Introduction

The VMSINSTAL command procedure is the primary tool used by Digital to
install Open VMS updates and optional (layered) software products. This manual
provides the installation designer with information about using VMSINSTAL to
develop procedures for installing products that layer on the Open VMS operating
system.

VMSINSTAL lets the Open VMS developer create installation procedures that
conform to uniform standards and are compatible with other Digital products.
Digital recommends that others who design layered products observe these same
standards.

By using VMSINSTAL and following the guidelines provided in this manual, you
can achieve the following installation procedure design goals:

• Build product kits as BACKUP save sets by using the Software Product Kit
Building command procedure (SPKITBLD.C9M). As a result, you can include
larger files in the kit. In addition, the use of checksum blocks increases the
chances of recovering from media errors that occur during the installation.

• Install products from a wide variety of media, including console media,
magnetic tapes, disks, and both local and remote disk directories (installing
products from remote directories requires DECnet software, an optional
Open VMS product).

• Minimize the effects of changes in Open VMS from one version to the next on
software product installation procedures.

• Include multiple products on a single distribution volume.

• Develop software product installations that are more uniform and consistent.

This chapter discusses the functional components and concepts required for using
VMSINSTAL. The chapters that follow describe VMSINSTAL in more detail,
including guidelines and conventions for its use, a description of the KITINSTAL
command procedure, an outline of VMSINSTAL functional steps, and a reference
section describing the VMSINSTAL callbacks.

The term callback is used throughout this manual to refer to a recursive
invocation of a specialized subroutine within VMSINSTAL. For example,
VMSINSTAL provides callbacks that move files, create directories, and delete
files. Your KITINSTAL.COM procedure invokes a specific callback within
VMSINSTAL. When VMSINSTAL has completed execution of the callback, it
returns control back to the KITINSTAL.COM procedure. (See Appendix B.)

1-1

Introduction
1.1 Product Kits

1.1 Product Kits
Software products that layer on Open VMS are assembled into product kits that
are physically distributed as one or more save sets (files created by the Backup
utility).

The file name of each save set must be identical to the product name and
be assigned a unique file type that reflects the order in which the save sets
are installed. The first 26 product save-set files are assigned file types using
alphabetic characters (for example, TESTOll.A). See Chapter 2 for detailed
information on product identification conventions.

1.1.1 Files Included in a Product Kit
A product kit includes some or all of the following files:

• KITINSTAL command procedure-The kit must include a command
procedure that installs your product. The command procedure must be
named KITINSTAL.COM, and it must be included in the kit's primary save
set (assigned file type A). See Chapter 3 for an outline of how to write a
KITINSTAL command procedure for your product.

• Release notes file-If online release notes are provided with your product and
you select the N option, the release notes file must be included in save set A.
(See Section 1.4.1 for more information on the N option.)

• Command language description (CLD) files-These files contain the command
language descriptions that allow a user to invoke your product from the
Digital Command Language (DCL) level.

• Product image files-These are the images that execute when a user invokes
your product from the DCL level.

• Source help files-These files describe how to invoke your product and how to
assign parameters and qualifiers most effectively.

• Help library files-These files contain the various modules of help text for
your product. (See the Open VMS Command Definition, Librarian, and
Message Utilities Manual for more information on creating help files.)

• Other product files-Any other files required to use your product.

• Installation Verification Procedure (IVP)-This is a procedure that you design
to check whether the product was installed properly. The procedure should
display or write the results of the verification.

1.1.2 Building a Product Kit

1-2

You build your product kit by using the Software Product Kit Building command
procedure (SPKITBLD.COM), located in the SYS$UPDATE directory. When you
invoke SPKITBLD, you have the option of including required parameters on the
command line, or you can have the command procedure prompt you for them.

If you include the required parameters on the command line, use the following
format to invoke SPKITBLD:

@SYS$UPDATE:SPKITBLD product-name device product-files data-file

product-name

Introduction
1.1 Product Kits

The product-name parameter (Pl) is used to label the save sets. See Chapter 2
for details on the conventions for naming your product. This parameter must be
null if you are specifying a data file.

device
The device parameter (P2) identifies the device that contains the media on which
the product save sets are to be built.

product-files
The product-files parameter (P3) identifies the files that are being converted into
save sets. Typically, you put the files for a particular save set in a dedicated
directory and then use a wildcard input specifier for the BACKUP command.
This parameter must be null if you are specifying a data file.

data-file
The data-file parameter (P4) is an optional parameter that identifies a data file
that SPKITBLD can use to obtain necessary information. The following symbols
can be defined in the data file:

1. SPKITBLD$KITNAME-The name of the kit that SPKITBLD is to build. Kit
names have the following format:

facwu

where:

fac is the facility name

vv is the major version number

u l.s the update number

2. SPKITBLD$REWIND_TAPE-A Boolean flag that tells SPKITBLD whether
save sets already exist on the media. The default is Yes.

3. SPKITBLD$SAVESET_n-One or more symbols that represent the files
to be placed in the respective save sets. The variable n starts with
the alphabet from A to Zand then proceeds from VMI_0027 through
VMI_9999 (for example, the first symbol is SPKITBLD$SAVESET_A,
the second is SPKITBLD$SAVESET_B, the twenty seventh symbol is
SPKITBLD$SAVESET_VMI_0027, and so on.)

4. SPKITBLD$NEW_MEDIA_FOR_SAVE SET_n-A Boolean flag that tells
SPKITBLD that save set n should begin on a new piece of media. This
symbol applies only to small disks; kits being built on large disks or tapes
must reside on the same piece of media. The default is No.

5. SPKITBLD$AUTOINIT_TAPE-A Boolean flag that tells SPKITBLD to
reinitialize a tape that does not have the correct volume label. The default is
Yes.

6. SPKITBLD$SKIP _FIRST_TAPE_READY_PROMPT-A Boolean flag that tells
the SPKITBLD procedure to skip the first prompt, which asks if the tape is
ready. The default is No.

7. SPKITBLD$SKIP _FIRST_DISK_READY_PROMPT-A Boolean flag that tells
the SPKITBLD procedure to skip the first prompt, which asks if the disk is
ready. The default is No.

1-3

Introduction
1.1 Product Kits

1-4

The following are examples of data files :

! This data file builds a Pascal kit

SPKITBLD$KITNAME = 11 PASCAL038 11

SPKITBLD$SAVESET A = 11 PASCAL038.RELEASE NOTES,KITINSTAL.COM"
SPKITBLD$SAVESET=B = 11 PASCAL.EXE,PAScAL:-c1D 11

! This data file builds a FORTRAN kit on the same media with Pascal

SPKITBLD$KITNAME = 11 FORTOS0 11

SPKITBLD$REWIND MEDIA = No
SPKITBLD$SKIP FIRST TAPE READY PROMPT = Yes !Just use existing tape
SPKITBLD$SAVESET A-;; 11 [.FORTOSOA]*.* 11

SPKITBLD$SAVESET-B = 11 [.FORTOSOB]*.* 11

SPKITBLD$NEW MEDIA FOR SAVE SET C = Yes !Needs new media
SPKITBLD$SAVESET_C-= 11(.FORTOSOC]*.* 11

When you invoke SPKITBLD, it prompts you for any additional data it needs
and, if applicable, it prompts you to physically manipulate media.

Following is an example of how to invoke SPKITBLD by including required
parameters on the command line:

$ @SYS$UPDATE:SPKITBLD TESTOlO DUAO DUBO:[SCRATCH]FRED.DAT,FRED.EXE,FRED.COM

Note that this example includes a list of files to be converted into save sets. The
files in a list must be separated by commas, with no intervening spaces.

If you choose to have the SPKITBLD procedure prompt you for the required
information, perform the following steps:

1. Invoke SPKITBLD as follows:

$ @SYS$UPDATE:SPKITBLD

A version message is returned.

2. The following prompt appears:

* Do you want to use a kit building data file? [N]

If you want to use a kit building data file, perform the following steps:

a. Enter Y in response to the prompt.

b. Specify the name of the data file in response to the following prompt:

* Enter name of data file to use:

c. Proceed to step 3.

If you do not want to use a kit building data file, perform the following steps:

a. Enter N or press Return in response to the prompt. The following
message appears:

Kits have names in the format 11 facvvu 11
, where

fac is the facility name
vv is the major version number
u is the update number

b. Specify the name of the kit in response to the prompt:

*Enter name of kit you want to build (facvvu):

Introduction
1.1 Product Kits

3. Specify the destination device in response to the prompt:

* On which device is the kit to be built?

4. The following message appears:

* Are you ready (Y/N)?

Enter Y when you are ready to proceed. The device is then mounted and
allocated. The following message appears:

Save set A must contain the KITINSTAL.COM procedure.

5. If you specified a data file for SPKITBLD to use, proceed to step 7. Otherwise,
the following prompt appears:

* Which files:

Respond to this prompt by specifying the files to be included in the save set,
and press Return.

The following message appears:

Resetting protection on all files to (S:RWED,O:RWED,G:RWED,and W:RE)

6. After the save set has been created, the following prompt appears:

*ls there another save set to create (Y/N)[N]?

If another save set is to be created, specify Y. Then, specify Y or N in response
to the following prompt:

*Does it need to start on a new volume (Y/N)[N]?

If no other save set is to be created, press Return.

7. After all save sets have been created, the following message is returned to
indicate a successful product kit build:

Kit Build Completed Successfully

1.2 VMSINSTAL Functional Overview
The following list provides an overview of the functions performed by
VMSINSTAL when it installs a layered product:

1. VMSINSTAL initializes the software environment, defines logical names and
symbols, makes validity checks, and gives you an opportunity to back up your
current system disk. All user-defined global and local symbols are deleted at
this point.

2. VMSINSTAL then prompts for the distribution device, if you do not include it
in the command line, and verifies that it is a valid device.

3. It then prompts for the product to be installed, if you do not include it in the
command line, mounts the volume, and checks for the presence of the correct
save sets.

4. Next, the environment needed to install the product is set up, including
a work directory dedicated to the storage of the product files during the
installation. The directory name reflects the product name and is logically
referred to as VMI$KWD. VMI$KWD is either a subdirectory of the system­
specific update directory, VMI$SPECIFIC:[SYSUPD], or a subdirectory of the
device and directory specified by the alternate working device (AWD) option.
The VMI$KWD subdirectory is deleted when the installation is completed.

1-5

Introduction
1.2 VMSINSTAL Functional Overview

5. The primary save set (save_set_name.A) is restored to the work directory
VMI$KWD.

6. Next, the KITINSTAL command procedure, restored from the primary
save set, is invoked. KITINSTAL uses callbacks to VMSINSTAL to do the
installation.

7. When the installation is completed, the product's Installation Verification
Procedure (IVP) is invoked, if applicable.

8. After doing any necessary housekeeping, VMSINSTAL prompts for the next
product to install, if applicable.

9. If you specified an asterisk (*) when VMSINSTAL prompted you for
the product, all products found on the distribution device are installed.
VMSINSTAL then prompts for additional product kits.

1.3 Invoking VMSINSTAL
Invoke VMSINSTAL using the following command line format:

@SYS$UPDATE:VMSINSTAL product_list source: [options] [option-list] [alternate_dir] [qualifiers]

1-6

product_list
Use this parameter (Pl) to enter a list of the products to be installed. Separate
multiple entries in Pl with commas. If you use a wildcard character (*) as
the product_list parameter, all versions and updates of all products from the
distribution source are installed in alphabetical order.

If you do not specify a product using this parameter, VMSINSTAL prompts for it. ·

This parameter is required.

source
Use this parameter (P2) to identify the source of the software product as one of
the following:

• A device that holds the distribution medium.

• A storage directory where the product save set has been transferred from the
distribution media for later installation (this occurs when you specify the get
save set option described in Section 1.4.1).

• A disk directory on another node, if DECnet software is installed on both
nodes.

If you do not specify the source, VMSINSTAL prompts for it.

You can use a logical name to specify the source.

This parameter is required.

options
Use this parameter (P3) to enter the keyword OPTIONS when VMSINSTAL
options are to be listed in the next parameter (P4). The installation aborts if P4
contains an option list and the options keyword is omitted. Using this keyword
minimizes that possibility.

Introduction
1.3 Invoking VMSINSTAL

option-list
Use this parameter (P4) to select VMSINSTAL options by entering the
appropriate option letter. See Section 1.4 for more information on available
options.

If you list more than one option, the letters representing the options must
be separated by commas. Do not include spaces between letters; spaces are
interpreted as parameter delimiters.

The following example of a command line for invoking VMSINSTAL specifies the
alternate working device (AWD), file log (L), and release notes (N) options.

$ @SYS$UPDATE:VMSINSTAL TEST042 DUAO:[KITS] OPTIONS -
_$ AWD=DUA2:[INSTALL],L,N

This parameter is optional.

alternate_dir
By default, VMSINSTAL assumes that the product is to be installed in the
common directory of the system on which you are running VMSINSTAL.

In the following instances, you can use this parameter (P5) to further qualify the
destination for the product software:

1. If you select the alternate root option (R), the product is restored to a
common directory in a system disk other than that on which the target
system is running. In this case, P5 must identify the alternate system root
using the following form:

ddcu:[SYSn.]

where:

ddcu: is the destination disk device.

SYSn. is the top-level directory of the alternate system root.

VMSINSTAL will accept a previously defined logical name for the alternate
root.

2. If you select the get save set option (G) to copy the product kit save sets
into a storage directory for later installation, P5 must specify the directory in
the following format:

[node::]ddcu:[directory]

where:

node:: is a node remote from the target system. (You must have DECnet
software installed to use this option.) If no node is specified, VMSINSTAL
assumes that the product save sets are to be stored on the local node.

ddcu: is the destination disk device.

directory is usually a directory dedicated to product save sets on the specified disk.

This parameter is optional.

qualifiers
Where applicable, use this parameter in conjunction with the get save set (G)
option to further qualify the BACKUP command that copies the save sets to the
destination directory. (See Section 1.4.1 for more information on the get save set
option.)

1-7

Introduction
1.3 Invoking VMSINSTAL

The following example of a command line for invoking VMSINSTAL includes
option G and BACKUP qualifiers:

$ @SYS$UPDATE:VMSINSTAL TEST042 DUAO:[KITS] OPTIONS -
_$ G DUBO:[KITS] "/VERIFY/LOG/CONFIRM"

The following example of a command line for invoking VMSINSTAL uses a
wildcard character (*)as the product-list parameter to install all products from
the distribution source:

$ @SYS$UPDATE:VMSINSTAL * DUAO:[KITS] OPTIONS N,L

The following example specifies a product name, TEST, as the product_list to
install all versions of a product from the distribution source:

$ @SYS$UPDATE:VMSINSTAL TEST DUAO:[KITS] OPTIONS N,L

This parameter is optional.

VMSINSTAL only prompts the installer for options when both of the following
conditions are true:

• Options are not specified on the command line.

• VMSINSTAL must also prompt for either the product or source device
parameters.

1.4 Choosing VMSINSTAL Options
The VMSINSTAL command procedure permits the use of twelve options, six that
apply to the installer and six that are used for testing the installation procedures
during development and acceptance testing. When invoking VMSINSTAL, specify
options by entering the appropriate letters in the option-list parameter of the
command line.

1.4.1 Installer's Options

1-8

Following is a description of the six VMSINSTAL installer's options. These
options can also be used when testing an installation procedure.

• A-The auto-answer option makes it easier to reinstall a product by
providing responses to VMSINSTAL questions and prompts during the
reinstallation. The auto-answer option is used most often for reinstalling
products after a system is upgraded.

If you specify the auto-answer option when initially installing the product,
VMSINSTAL creates an answer file in the SYS$UPDATE directory. The
name of the answer file is in the following format:

product_name.ANS

where:

product_name is a file name that reflects the product-list parameter in the
call to VMSINSTAL.

The answer file records responses to questions and prompts from
VMSINSTAL during the installation. When you subsequently reinstall the
product and specify the auto-answer option (typically after a system upgrade),
VMSINSTAL reads the answer file instead of prompting the installer for
responses.

Introduction
1.4 Choosing VMSINSTAL Options

You should be familiar with the questions asked during a particular product
installation before using the auto-answer option. Many products ask different
questions depending on the environment. If the questions change format,
or if questions are added or skipped when you are using answer files, the
installation terminates.

To create a new answer file when reinstalling a product, you must first delete
or rename the existing answer file.

• AWD-The alternate working device option lets you specify an alternate
working device for the temporary working directory (defined as the logical
VMI$K.WD). This option enables you to perform an installation with fewer
free blocks on the VMI$ROOT device than is otherwise required.

If you do not specify this option, VMSINSTAL creates the temporary working
directory in the following location:

SYS$SPECIFIC:[SYSUPD.facvvu)

The variable facvvu represents the product identification string.

Specify this option using the following format:

AWD=dev:[dir)

dev:
Specifies the alternate working device.

dir
Specifies the directory under which the facvvu subdirectory will be created.
Specifying a directory is optional. If you do not specify a directory,
VMSINSTAL creates the working directory on the specified device with the
following directory specification: [000000.facvvu]. If you specify a directory,
VMSINSTAL creates the working directory as a subdirectory to the directory
that you specify (for example, [WORK.facvvu]). The directory that you specify
must already exist. If it does not exist, VMSINSTAL will not create it.

For example, to create the working directory [INSTALL.facvvu] on the
alternate device DUA2, specify the following:

AWD=DUA2:[INSTALL]

• G-The get save set option is used to copy the product kit save sets into
a disk directory or other storage device (such as a magnetic tape) for later
installation. When option G is selected, all kit save sets are copied, but no
installation is performed. When save sets are copied using this option, the
directory structure originally assigned to files within the save set are not
maintained. Because the directory structure is lost, this option cannot be
used to copy Open VMS operating system kits. (See Section 4.3.2 for more
information on this option.)

• L--The file log option is used to log all file activity to the controlling
terminal during installation. File activity is defined as any action that alters
the disposition of a file, such as creating a new file, updating a library, or
deleting a file.

• N-The release notes option is used to display or print the release notes file
supplied by the layered product.

The release notes file is named by the person who builds the product kit. It
is given the file-name fac_ vvu.release_notes, where fac_vvu represents the
product facility code, version and update numbers. The release note file must

1-9

Introduction
1.4 Choosing VMSINSTAL Options

1-10

be included in the primary save set, that is the save set containing the file
extension .A (for example, TEST042.A).

See Section 2.12 for more information on product release notes. During
the installation of a product, VMSINSTAL moves release notes files to the
SYS$HELP directory. See Chapter 2 for more information about product
naming conventions.

If release notes are available and the N option is specified, VMSINSTAL
prompts the installer with the following questions (the default answers are
indicated in brackets):

Release notes included with this kit are always copied to SYS$HELP.

Additional Release Notes Options:

1. Display release notes
2. Print release notes
3. Both 1 and 2
4. None of the above

*Select option [2]:

*Queue name [SYS$PRINT]:

*Do you want to continue the installation [N]:

The first prompt (* Select option:) allows the installer to (1) display the
release notes on a terminal, (2) print the release notes, (3) print and display
the notes, or (4) choose none of these options.

The second prompt(* Queue name:) is displayed only if option 2 or 3 is
selected. If you enter the name of a print queue, the system returns a
message indicating that the release notes have been successfully queued
to the printer. If a print queue is not specified, the output is directed to
SYS$PRINT by default.

The third prompt(* Do you want to continue the installation:) allows you to
either continue or terminate the installation. The default is to terminate the
installation at this point.

If no release notes are supplied with the product, VMSINSTAL returns
two error messages, followed by the prompt to continue or terminate the
installation, as follows:

%VMSINSTAL-W-NOFILE, New file *.RELEASE NOTES does not exist.
%VMSINSTAL-W-NORELNOTE, Unable to locate release notes.

*Do you want to continue the installation [N]:

You can continue the installation by entering Y in response to this prompt,
regardless of whether or not release notes are available.

• R-The alternate root option is used to install the product on a system disk
other than that of the running system. This option makes it possible to test a
new product without disturbing the running system.

The Open VMS system in the alternate root must be complete and at the same
version level as the running system. Also, all files and software products
referenced by the product installation must be present in the alternate root.

All files are installed under the common directory of the alternate root.

Introduction
1.4 Choosing VMSINSTAL Options

1.4.2 Developer's Options
Following is a description of the six VMSINSTAL options that are not normally
used by the installer. These options are usually used for test purposes.

• C-The callback trace option traces all callbacks to VMSINSTAL during the
installation and lists them in the file [SYSUPD]facvvu.CBT. See Chapter 2 for
an explanation of the product identification facility code (facvvu).

• I-The inhibit initial prompts option is used to suppress the following
initial VMSINSTAL prompts:

* Do you want to continue anyway [NO]?

* Are you satisfied with the backup of your system disk [YES]?

* Where will the distribution volumes be mounted:

• K-The kit debug option directs VMSINSTAL to pass a Boolean value that
may be used as a debugging tool by KITINSTAL.

The kit debug option disables verificati6n (SET NOVERIFY) while
VMSINSTAL processes callbacks. Verification is reactivated after callbacks
are processed.

• Q-The quality assurance mode (QA mode) option specifies that the
installation is being done in test mode. It enables various functions that
are peculiar to the test environment and ignores other functions that are
not required in the test environment. For example, TELL_QA callbacks are
performed and logged to the controlling terminal.

• RSP-The restore save set and pause option is a debugging option that
causes the installation procedure to pause after restoring each save set. At
the pause you can either press Return at the prompt to resume, or log in to
another terminal if you want to create a subprocess.

This option lets you test a kit without rebuilding the kit after each minor
fix. For example, during the pause, you might edit a file that was previously
restored, or replace one version of a file with another.

You can also pause the installation procedure after a particular save set is
restored by specifying the option in the following format; s indicates the save
set to be restored before pausing.

RSP=s

For example, to pause after the installation procedure restores save set C
specify the following option:

RSP=C

If you do not specify a save set with the RSP option, the installation procedure
pauses after each save set is restored.

• S---The statistics option produces a statistics report in the file
[SYSUPD]facvvu.ANL. This report contains a description of the hardware and
software on which the installation was performed, disk usage statistics, and a
list of files added, deleted, modified, and accessed by the installation. Correct
disk usage statistics require that the system disk contain a full complement
of Open VMS software and enough free blocks for an installation in safety
mode. See the following section for more information about safety mode.

1-11

Introduction
1.5 VMSINSTAL History File (AXP Only)

1.5 VMSINSTAL History File (AXP Only)
On AXP systems, a VMSINSTAL history file,
SYS$UPDATE:VMSINSTAL.HISTORY, is updated when VMSINSTAL
terminates. The new file entry indicates the product for which installation
was attempted, and the status of the installation. To view this history file, use
the TYPE or PRINT commands.+

1.6 VMSINSTAL Product Installation File (AXP Only)

+43• On AXP systems, a log file named SYS$UPDATE:facvvu.VMI_DATA is created
following a successful product installation. This file contains the following
information:

• Product that was installed

• Who installed the product

• Names of files that were added, deleted, or modified during installation

To view this log file, use the TYPE or PRINT commands.+

1.7 List Installed Products Procedure (AXP Only)

1-12

On AXP systems, the procedure SYS$UPDATE:INSTALLED_PRDS.COM lets you
check what products have been installed. This procedure lists the product name
and version, date of installation, and who installed the product. The procedure

. has an optional parameter to specify a restricted search of installed products.

Use the following format to invoke this procedure:

@SYS$U PD ATE: INSTALLED _PRDS [product-mnemonic]

where:

product_mneumonic is an optional string that specifies one or more product save set
names to search for. This string can contain a save set name
(product name and version), a product name only, or wildcard
characters. Installation data is displayed only for product log files
that are found on the system.

For example:

$ @SYS$UPDATE:INSTALLED_PRDS RDBVMS030

This procedure lists information only if a data file for RDBVMS V3.0 is found.

$ @SYS$UPDATE:INSTALLED_PRDS RDBVMS

This procedure lists information for all versions of RDBVMS for which a data file
exists.

$ @SYS$UPDATE:INSTALLED_PRDS R*

This procedure lists information for all versions of products whose name begins
with the letter R.

Introduction
1. 7 List Installed Products Procedure (AXP Only)

The following is a sample listing:

$ @SYS$UPDATE:INSTALLED_PRDS RDBVMS

Node: AZSUN

Installed products: 2-APR-1992 13:13

Product: AXP RDB/VMS
Mnemonic: RDBVMS Version: 3.0
Installed: 12-SEP-1992
Installed by: SOMMER on node AZSUN+

1.8 Safety Mode
On both AXP and VAX systems, VMSINSTAL is designed to minimize the risk
of installation failure by executing the installation in two phases. A safety mode
feature allows the installer to defer critical operations until the second phase of
the installation.

During the initial installation phase, operations that may severely impact your
system if a failure occurs are deferred until the second phase. These critical
operations include moving new files into the system directories, updating existing
files, and patching system images. Note, however, that system libraries are
updated immediately because they may be required by the installation process
itself.

The primary tool for deferring critical operations is called the defer file. This
is a command file (VMIDEFER.COM) that VMSINSTAL creates in the work
directory to record deferred commands.

If the installation is in safety mode, VMSINSTAL checks to see whether or not
an installation command is critical. If it is, VMSINSTAL records the command
in VMIDEFER.COM (logically referred to as VMI$DEFER_FILE); otherwise, the
command is executed immediately.

When the installation progresses to the second phase, each of the deferred
commands is executed in the order in which it was originally issued.

You set the required level of safety for the installation by specifying the SAFETY
option with the SET callback. By default, VMSINSTAL automatically implements
safety mode operations "unconditionally," regardless of whether you use the SET
SAFETY option. However, unconditional safety mode requires a higher peak
disk space. If you use the SET SAFETY option, you can specify the keyword
CONDITIONAL to implement safety mode only if there is sufficient disk space to
support it.

Your installation procedure should use the SET SAFETY option to help the
installers of your product select a feasible level of safety for their particular
situation. See Section 5.28.9 for more information on this option.

1.9 Recovery from System Failure
In addition to providing the safety feature implemented through deferred
operations, VMSINSTAL creates a marker file in the system update directory
to aid in recovery from system failures that occur during the installation.
The marker file is named VMIMARKERpid.DAT, where pid is the process
identification, and logically referred to as VMI$MARKER_FILE. This file
periodically records state information as the installation progresses. By opening

1-13

Introduction
1.9 Recovery from System Failure

1-14.

the marker file for brief periods, the possibility that this file will be impacted by
a system failure is minimized.

When the system startup procedure detects a marker file as it attempts to
recover from a system failure, it calls VMSINSTAL with the booting option (B).
This option (reserved for Digital use only) indicates that an installation was in
progress when the failure occurred. VMSINSTAL responds by branching to a
subroutine that determines what action is needed. Depending on the information
in the marker file, VMSINSTAL performs one of the following actions:

• If the failure occurred before KITINSTAL was invoked, the installer is told to
start the installation again.

• If the failure occurred while KITINSTAL was installing the product, the
following conditions are evaluated:

· If a library was being updated at the time of the failure, the installer is
told to restore the library from the backup copy of the system and to start
the installation again.

If the installation was in unsafe mode at the time of the failure, the
installer is told to restore the entire system from the backup copy and to
start again.

For all other conditions, the installer is told to start the installation
again.

• If KITINSTAL has executed the deferred callbacks, the installation should
complete satisfactorily.

• If KITINSTAL has completed the installation, the installer is told that the
installation was completed satisfactorily.

2
Guidelines and Conventions

This chapter describes guidelines and conventions for developing products to be
installed with VMSINSTAL. All VMSINSTAL users should closely adhere to the
product naming conventions presented in the sections that follow.

2.1 Product Identification String
Each software product must be identified by a product identification string.
The product identification string consists of the facility code (fac), the version
number (vu), and the update number (u). The facility code can have up to 36
alphanumeric characters.

The following example gives the format of the product identification string:

facvvu

where:

fac is the facility code.

vv is the current version number.

u is the current update number.

For example, you would identify Version 1.1 of a product named TEST as
TESTOll.

As new versions and updates of your product are released, they must be assigned
a new product identification string that reflects the current version and update.
For example, the next update after CHECKTRAN Version 1.1 would be assigned
the product identifica~ion string CHECKTRAN012.

Do not give your product the name of an existing product or component on the
target system. You can check the names of existing system and user images by
entering the following DCL command:

$ DIRECTORY SYS$SYSTEM:*.EXE

To avoid potential conflicts with other layered products, you must register the
facility code for each product with the Digital Open VMS Product Registrar. For
more information about product registration, see Appendix E.

2.2 Save Set Identification
Optional Open VMS software products are distributed in product kits. A kit is
made up of one or more save sets created by the Backup utility, each with a name
that reflects the product facility code.

The file name of each save set must be identical to the product identification
string, with the addition of a unique file type (the sequence identifier) that
reflects the installation order of the product.

2-1

Guidelines and Conventions
2.2 Save Set Identification

The first 26 product save-set files are assigned file types using alphabetic
characters. That is, you assign file type A to the save set you want installed first,
file type B to the second, and so forth.

If your product requires more than 26 save sets, the additional save sets must
begin with VMI_0027, VMl_0028, and so forth ranging from
VMI_0027 through VMl_9999. The sequence identifier (file type) specifies the
restoration order for your product save sets and can handle up to 9999 save sets
per kit.

Following is a summary of the save-set naming format:

facvvu.s

where:

fac is the facility code.

vv is the current version number.

u is the current update number.

s is the sequence identifier.

The primary save set (save set A) must include the KITINSTAL command
procedure. If release notes are supplied with the product kit and you use option
N, the release notes file must also be included in save set A.

2.3 Volume Labeling
Product save sets can be distributed on disk or tape media, including console
media. It is strongly recommended that you adhere to the conventions for volume
labeling given under the kit descriptions that follow. Note that the owner user
identification code (UIC) of files in the save sets is irrelevant. File protection
must be set as follows:

• System-read, write, execute, delete

• Owner-read, write, execute, delete

• Group-read, write, execute, delete

• World-read, execute

2.3.1 Diskette Kits

2-2

Each volume label for a diskette kit should be in the format facs, where the
variable fac represents the facility code, and the variable s represents the save­
set sequence identifier. The kit must be created directly on master distribution
volumes using BACKUP to create sequential disk save sets. The following
qualifiers are required:

/INTERCHANGE
NERIFY
/BLOCK_SIZE=9000
/GROUP _SIZE=25

The specified block and group size result in optimal use of the blocks on the
diskettes. Be sure to initialize double-density diskettes for single-density use so
that they can be used on VAXll-780 RXOl console diskette drives.

Guidelines and Conventions
2.3 Volume Labeling

2.3.2 TU58 Cartridge Kits
TU58 kits follow the same rules and conventions as diskette kits.

2.3.3 Magnetic Tape Kits
Magnetic tape volume labels must consist of no more than six characters, in the
format fac, where the variable fac represents the facility code. To create save
sets, the kit must be created directly on the master volume, using BACKUP with
the /INTERCHANGE and NERIFY qualifiers. Save sets must be placed on the
tape in sequential order. There is no restriction to the number of kits that can
be placed on one magnetic tape. Save set names cannot exceed 17 characters,
including the period and file type fields.

2.4 Logical Names and Global Symbols
All logical names and global symbols assigned by VMSINSTAL begin with
the prefix VMI$. KITINSTAL.COM logical names and global symbols must
be prefixed with your product facility code followed by an underscore (_). For
example, a FORTRAN product might use the prefix FORT_. Local s:Ymbols can
use any name.

Avoid using abbreviations in the KITINSTAL procedure's DCL commands.
Do not abbreviate verbs because special symbols may be defined for them by
VMSINSTAL. Qualifiers should also be spelled out, but you can truncate them to
a minimum of four characters where it is absolutely necessary.

2.5 Error Handling
The KITINSTAL.COM file must include an ON WARNING statement to handle
errors that might be detected within the kit's procedures or that might pe
returned by a callback. (For example, VMI$_FAILURE is a warning status.) If
no housekeeping is needed, the ON WARNING statement can exit, propagating
the status up to the next level:

$ ON WARNING THEN EXIT $STATUS

If some housekeeping is needed, the error routine could be structured as follows:
, ..

$ ON WARNING THEN GOTO ERROR

$ERROR:
$ S = $STATUS
$
$
$
$
$
$
$ EXIT S

Use this routine to do your housekeeping,
to close any files that are open, and
to handle errors that might occur during
housekeeping.

2-3

Guidelines and Conventions
2.6 Compatibility Mode (VAX Only)

2.6 Compatibility Mode {VAX Only)
On VAX systems, the KITINSTAL procedure must sometimes check for
compatibility mode. Compatibility mode was distributed as a separate
layered product on VAX systems beginning with VMS Version 4.0. See the
following section for more information about referring to other products in your
KITINSTAL procedure.

To check for compatibility mode, add the following line to your KITINSTAL.COM
file:

$ VMI$CALLBACK FIND_FILE rsx vmi$root:[sysexe)rsx.exe 1111 se

If this file is present, you can assume that compatibility mode can be used on the
system.+

2.7 Referencing Other Products
On AXP and VAX systems, your installation procedure may need to refer to other
products in one of the following ways:

• If the installation procedure must alter its logical flow because of the
existence of another product but does not need to refer to that product, you
can use the FIND_FILE callback to verify the existence of the product. See
Section 5.12 for more information on this callback.

• If the procedure refers to another product's files but does not invoke the
product, you can use the FIND_FILE callback to verify the product's existence
and to set up a logical name for accessing the file.

• If the procedure must invoke another product, you can use the FIND _FILE
callback to determine the existence of the product, then invoke the product
with the appropriate command. Because this usually involves implicit
references to the other product's files, VMSINSTAL assumes that these files
are in the system root or on a user disk.

• If a product requires a minimum version of another product to be installed on
the system, use the CHECK_PRODUCT_ VERSION callback. See Section 5.5
for more information on this callback.

2.8 Changing Global State
If your installation procedure changes the global state of the system (except
in reference to callbacks), it must restore that state before terminating. For
example, if the installation procedure needs to invoke the Install utility to install
an image that is needed for completing the installation, it must deinstall the
image before exiting. Any use of the Install utility following installation of the
product should be provided by a product-specific startup command procedure.
(For more information, refer to the the SET STARTUP option description in
Section 5.28.12.)

2.9 Verifying Installation

2-4

Your product kit should include an Installation Verification Procedure (IVP),
which is a procedure for checking the completeness and accuracy of the
installation.

The IVP may consist of many separate files but it should be invoked by one
command procedure that can be run independently of the installation procedure.

Guidelines and Conventions
2.9 Verifying Installation

The IVP command procedure should adhere to the following naming convention:

facility-name_IVP. COM

For example, the IVP command procedure for the product CHECKTRAN would
be named CHECKTRAN_IVP.COM.

The IVP may be invoked from KITINSTAL.COM but the installer must be able
to invoke it any time after the installation. Therefore, the IVP must remain
available after the installation. Digital suggests that the IVP be placed in the
SYS$TEST directory.

The kit's installation procedure prompts the installer on whether to execute the
IVP. If the installer wants to execute the IVP, then VMSINSTAL will run it when
the installation is complete by invoking the kit installation procedure with the
VMI$IVP request code.

VMSINSTAL tries to set up a realistic work environment before running the IVP
by doing the following:

• It assumes that KITINSTAL has put all product files in place.

• If the installation procedure specified. a product-specific startup procedure
with the SET STARTUP callback, VMSINSTAL invokes it immediately before
running the IVP.

• VMSINSTAL sets the default directory to the kit's working directory, thus
simulating a real user's environment.

• The IVP should not use callbacks or the VMI$_SUCCESS or VMI$_FAILURE
symbols.

At the completion of the IVP, KITINSTAL.COM exits back to VMSINSTAL with
VMI$_SUCCESS if the IVP is successful, or with VMI$_FAILURE if the IVP was
unsuccessful. VMSINSTAL does not attempt to undo an installation if the IVP
fails.

For specific guidelines for creating an IVP see Section 3.1.2.

2.10 Pro.mpting the Installer for Input
When you design an installation procedure, keep in mind that the procedure
should prompt the installer for most input at the beginning of the installation.
This minimizes installer interaction when the installation is in progress.

2.11 Internationalization of VMSINSTAL Messages
All messages generated by VMSINSTAL are defined as symbols in the file
SYS$MESSAGE:VMSINSTAL_LANGUAGE.COM. Customers developing
applications for non-English speaking markets might want to change these
symbol values to make installations understandable for the intended market.

On AXP systems, you can specify a language file that is appropriate for your
needs. To specify a special language file, define the logical VMSINSTAL_
LANGUAGE to point to that specific language file. For example:

$ DEFINE VMSINSTAL_LANGUAGE SYS$MESSAGE:VMSINSTAL_LANGUAGE_GERMAN.COM

This file must be compatible with the provided VMSINSTAL_LANGUAGE file.
Message numbers must not be reassigned to different functions. Only the text
portion of the messages should be modified.

2-5

Guidelines and Conventions
2.11 Internationalization of VMSINSTAL Messages

If the specified language cannot be found or is not valid, VMSINSTAL uses the
default language file.+

2.12 Release Notes

2-6

Release notes provide information on changes made to a product since the
previous release of that product. Digital recommends that all product kits
include both a printed and online version of release notes. This section provides
guidelines for including online release notes.

The Release Notes (N) option of VMS IN STAL enables the installer to display or
print online release notes before beginning an installation. To use this option,
the installer must invoke VMSINSTAL. However, once VMSINSTAL has been
invoked and the release notes are printed or displayed, the installer has the
option to continue or cancel the installation. Product files do not have to be
restored from the kit at that time. See Section 1.4.1 for more information on the
N option.)

The instructions for displaying and printing release notes should be identical for
all products. Provide these instructions in both the product's installation guide
and the cover letter.

The online release notes file should be a machine-readable, printable file. The
name of this file must adhere to the following format:

fac_vvu.RELEASE_NOTES

The variable fac is the product's facility name, and uuu is the version number.
For example, TEST_042.RELEASE_NOTES is the name of the release notes file
for TEST Version 4.2.

If your file name follows the recommended format, VMSINSTAL can construct
the correct name of the release notes file. The file can then be restored and
copied to the SYS$HELP directory without adding a callback statement to
KITINSTAL to provide the name of the file. VMSINSTAL relies on this file name
format when purging the release notes files, if the installer chooses this option.
This recommended format also helps users to easily find release notes files in
SYS$HELP, or to find all files for a particular product.

Do not include the release notes text in the product Help files. Instead, include
the release notes file in the kit's primary saveset (saveset-name.A) along with
the KITINSTAL procedure (and any other command procedures invoked by
KITINSTAL) . This permits the user to view or print the information at the
beginning of the installation.

The product's Help library may contain selected release note topics. However,
the entire text of the release notes should still be supplied in a separate file. The
product's Help file might contain a reference that points to this file. For example,
a user might enter the command HELP CHECKTRAN RELEASE_NOTES to see
the following Help text:

release notes for CHECKTRAN, are contained in the file:

SYS$HELP:CHECKTRAN_042.RELEASE_NOTES

You can type or print this file to read the release note
information.

The product-specific Help file could also include directions for using the
DIRECTORY command to find the file (and earlier versions of it.)

Guidelines and Conventions
2.12 Release Notes

To eliminate the need to reload the Help library with each release, Help text on
release notes may be written generically, that is, without specific reference to
version number.

Note

Digital recommends that your product's documentation advise users
to keep previous editions of online release notes after receiving a new
release of a product.

2-7

3
KITINSTAL Command Procedure

After your primary product save set is restored to the installation working
directory, VMSINSTAL invokes the KITINSTAL command procedure to direct the
installation. KITINSTAL issues a series of callbacks to VMSINSTAL by using the
following callback command line format:

VMl$CALLBACK callback [parameter-2 ...]

The symbol VMI$CALLBACK invokes VMSINSTAL, which in turn uses the first
parameter (the name of the callback) to execute the appropriate subroutine.
The remaining parameters are the arguments for the particular callback. (See
Chapter 5 for detailed descriptions of the callbacks.)

3.1 Guidelines for Writing a KITINSTAL Command Procedure
When you design the KITINSTAL command procedure for your product, be sure
to observe the guidelines and conventions described in this section. They apply to
both the installation phase and the IVP phase of KITINSTAL.

3.1.1 Installation Phase
This section provides guidelines and conventions for the installation phase of
KITINSTAL.COM. See Section 3.1.2 for guidelines governing the IVP phase.

• Naming conventions-All global symbols and logical names created by
VMSINSTAL have the prefix VMI$. Your product global symbols and logical
names must use a prefix consisting of the product name followed by an
underscore. For example, each global symbol and logical name created by the
product CHECKTRAN requires the CHECKTRAN_ prefix. Local symbols can
take any name.

• Logical references-Your installation procedure must use the following logical
references:

VMI$KWD-The logical name VMSINSTAL creates for the kit working
directory. Any reference your product makes to the kit working directory
must use this logical name.

VMI$ROOT-The logical name VMSINSTAL creates for the target
system's root directory. Again, all references to this directory must use
the logical name assigned by VMSINSTAL, not the usual system logical
names. For example, your installation procedure must refer to the system
library directory using VMI$ROOT:[SYSLIB] rather than SYS$LIBRARY.

VMI$SPECIFIC-The logical name VMSINSTAL creates to reference the
target system's system-specific top-level directory. VMI$SPECIFIC points
to the system-specific top-level system directory, whereas VMI$ROOT
points to the common top-level system directory. Your installation
procedure must use this reference instead of using SYS$SPECIFIC.

3-1

KITINSTAL Command Procedure
3.1 Guidelines for Writing a KITINSTAL Command Procedure

• Subprocedures-You can include product-specific callbacks in the installation
kit and invoke them from KITINSTAL (see Appendix C for information
about product-specific callbacks). However, you can invoke the VMSINSTAL
callbacks only from KITINSTAL and subprocedures from one level below
KITINSTAL.

• Defaults-The following defaults are in effect when KITINSTAL is invoked:

The UIC is [1,4].

The default file protection is [s:rwed,o:rwed,g:rwed,w:re].

The default device and directory are MISSING:[MISSING]. VMSINSTAL
sets the default to this nonexistent directory to prevent products from
assuming a default device and directory. To move or update any files, a
full file specification must be given, otherwise VMSINSTAL will try to do
the work in MISSING:[MISSING] and fail.

All privileges except BYPASS are in effect.

Messages appear in full format.

• SET commands-In the installation portion of KITINSTAL.COM (as opposed
to the IVP portion), you are restricted from using the SET commands so that
you do not alter the environment that VMSINSTAL has set up. Exceptions to
this rule are as follows:

You can use the SET ON and SET NOON commands without restriction.

You can use the SET VERIFY command only if the installer specifies the
debug option.

You can use the SET FILE command only with files in VMI$KWD.

• SHOW command-Your KITINSTAL command procedure must not rely on
the output format of the SHOW command or the output format of any utility.

3.1.2 IVP Phase

3-2

This section provides guidelines and conventions for the IVP phase of
KITINSTAL.COM.

• The IVP may be invoked by KITINSTAL.COM but the installer must be able
to invoke it any time after the installation. If you follow the guidelines listed
here, you will ensure that the installer can consistently invoke the IVP by
using the following command line format:

@SYS$TEST:facility-name_IVP

• Put the IVP in a separate file. This allows the IVP to run independently
of the installation procedure. The IVP may consist of separate files, but it
should be invoked by one controlling command procedure.

• Name the IVP according to the following format:

facility_IVP.COM.

For example, you might name a procedure CHECKTRAN_IVP.COM.

KITINSTAL Command Procedure
3.1 Guidelines for Writing a KITINSTAL Command Procedure

• The KITINSTAL.COM should tell the installer the location of the IVP.

Digital recommends that the IVP be located in the SYS$TEST directory If
other files are required to perform the installation verification, for example,
a data file or executable image, these files must be placed in a subdirectory
of the SYS$TEST directory. The name of the subdirectory should be the
same as the facility name of the product. For example, a subdirectory named
SYS$SYSDEVICE:[SYSTEST.CHECKTRAN] would hold additional files for
the IVP for the product CHECKTRAN.

Use the CREATE_DIRECTORY callback to create the subdirectory. For
example, the following command creates a subdirectory for a product called
CHECKTRAN:

$ VMI$CALLBACK CREATE_DIRECTORY USER VMI$ROOT:[SYSTEST.CHECKTRAN]

• Digital recommends that the IVP define a logical name that points to the
subdirectory holding supplementary IVP files. This logical name can be used
throughout the IVP to refer to these files.

• The KITINSTAL.COM must ask the installer whether to run the IVP. To do
so, use the SET callback as follows:

$ VMI$CALLBACK SET IVP ASK

If the installer wants to run the IVP, then VMSINSTAL will perform it after
the installation is complete, by invoking the KITINSTAL procedure as follows:

$ @VMI$KWD:KITINSTAL VMI$_IVP

• The kit installation procedure must handle the request code
VMI$_IVP.

• The IVP cannot use VMSINSTAL callbacks.

• The IVP should not use the VMI$_FAILURE and VMI$_SUCCESS symbols.

• The IVP should issue a message indicating the success or failure of its
execution. This message should include the product name and version. For
example, an IVP might issue the following message:

IVP for CHECKTRAN V3.0 completed successfully.

• At the completion of the IVP, the IVP must exit with a status back to the
installation procedure.

• If the IVP fails, VMSINSTAL does not attempt to undo the installation. The
installation procedure must ensure that the product installs correctly.

For general information on the IVP see Section 2.9.

3.2 Using Callbacks
This section describes how to execute functions from KITINSTAL using callbacks
to VMSINSTAL.

3-3

KITINSTAL Command Procedure
3.2 Using Callbacks

3.2.1 Accessing Files
While the product is being installed, the only files that KITINSTAL can access
directly ·are those in VMI$KWD. All other files must be accessed by using logical
names supplied by various callbacks.

To gain read-only access to a file outside of VMI$KWD, first invoke the FIND_
FILE callback. Then use the logical name provided by FIND _FILE to access
the file. For example, the following shows how you would access a file in
VMI$ROOT:[SYSTEST] from KITINSTAL:

$ VMI$CALLBACK FIND FILE TSTFILE TEST.DAT VMI$ROOT:[SYSTEST] S
$ TYPE TSTFILE -

See Section 5.12 for more information on the FIND_FILE callback.

3.2.2 Moving Files from the Kit's Working Directory
To move a file from the kit working directory (VMI$KWD) to a system directory
or a user directory, use the PROVIDE_FILE callback. The following KITINSTAL
command moves a file to VMI$ROOT:[SYSUPD] and assigns a logical name to the
file for future reference:

$ VMI$CALLBACK PROVIDE_FILE CHECKTXT CHECKTRAN.TXT VMI$ROOT:[SYSUPD]

See Section 5.22 for more information on the PROVIDE_FILE callback.

3.2.3 Updating Files
There are two ways to update a file. You can either update an existing version or
create another version.

3.2.3.1 Updating an Existing File Version
To update an existing version of a file, use the UPDATE_FILE callback to copy
the file to VMI$KWD. Then use the logical name assigned by the callback to
modify the file as needed. The callback provides for the subsequent return of the
updated file to the source directory.

If the installation is set for safety operation, the callback provides for the return
of the updated file when the installation progresses beyond safety mode. However,
if the installation is not set for safety operation, you must provide an explicit
callback command to return it to the source directory after you modify it. If
the file is found in VMI$KWD, the file is not copied or returned to the source
directory.

Following is an example of how to access an existing file during safety mode:

$ VMI$CALLBACK UPDATE_FILE CHECKTRAN VMI$ROOT:[SYSEXE]CHECKTRAN.DAT

3.2.3.2 Updating a File by Creating a New Version

3-4

To update a file by creating another version, you must find the file, copy it to
VMI$KWD, update it, and then move the updated version back to the original
directory with the PROVIDE_FILE callback. Use the SET PURGE callback or
the K option to specify whether you want to keep the original version of the file
after the updated version is created.

KITINSTAL Command Procedure
3.2 Using Callbacks

The following example upd.ates a file in VMI$ROOT:[SYSTEST] by creating a new
version:

! Find the file
$ VMI$CALLBACK FIND FILE OLD OLDCHECK.DAT VMI$ROOT:[SYSTEST] S
! Use the logical name to copy it' to vmi$kwd
$ COPY OLD VMI$KWD:OLDCHECK.DAT
! Update the file
$ OPEN OLDCHECK VMI$KWD:OLDCHECK.DAT
$ OPEN NEWCHECK VMI$KWD:NEWCHECK.DAT/WRITE

$ CLOSE OLDCHECK
$ CLOSE NEWCHECK
! Move the file back to the source directory
$ VMI$CALLBACK PROVIDE_FILE NEW NEWCHECK.DAT VMI$ROOT:[SYSTEST]

Be careful not to use the same logical name in the PROVIDE_FILE callback as
that used in the FIND_FILE callback.

3.2.4 Updating a Library
Use the UPDATE_LIBRARY callback to update libraries. The following example
updates the library in [SYSLIB] named CHECKTRAN.TLB, by adding a text file
from the product kit:

! Using the logical name (CHECKDOC), update the library
$ VMI$CALLBACK UPDATE LIBRARY CHECKTLB -
_$ VMI$ROOT:[SYSLIB]CHECKTRAN.TLB TEXT "/INSERT" CHECKDOC

3.2.5 Deleting a File
Use the DELETE_FILE callback to delete a file. For example, if you want to
delete the command language description file CHECKTRAN.CLD after you use it
to update the DCL tables, use the following command:

$ VMI$CALLBACK DELETE_FILE VMI$ROOT:[SYSHLP]CHECKTRAN.HLP

Where applicable, the DELETE_FILE callback automatically removes known
images created by INSTALL.

3.2.6 Creating a Directory
Use the CREATE_DIRECTORY callback to create a directory. Note the following
restrictions:

• You cannot create a top-level directory on the system disk.

• You cannot create a directory or a subdirectory beginning with the string
SYS.

The following example creates a new directory under the system manager
directory:

$ VMI$CALLBACK CREATE_DIRECTORY SYSTEM SYSMGR.CHECKTRAN

3-5

KITINSTAL Command Procedure
3.3 Summary of KITINSTAL Design Specifications

3.3 Summary of KITINSTAL Design Specifications

3-6

As a minimum requirement, your KITINSTAL.COM must do the following:

• Handle errors and Ctrl/Y interrupts.

• Process the request code passed to it in the first parameter (Pl); it should exit
with VMI$_UNSUPPORTED status if it does not recognize the request code.

Currently, VMSINSTAL may pass one of three request codes:

VMI$_INSTALL to initiate the installation

VMI$_POSTINSTALL to initiate work required after the installation
phase is complete

VMI$_IVP to initiate the IVP.

However, because additional request codes may be implemented by
VMSINSTAL in the future, your KITINSTAL should make explicit tests
on Pl. For example, do not assume that if VMSINSTAL is not passing
VMl$_1NSTALL or VMI$_POSTINSTALL, it must be passing VMl$_IVP.

Also, note that subprocedures can be used to invoke KITINSTAL for services
by passing the appropriate string in Pl. For example, the ASK callback may
use KITINSTAL to get some help text from the HELP _DEVICE subroutine by
passing the string "HELP _DEVICE" in Pl.

• Verify that it is compatible with the version of Open VMS running on the
target system.

• Determine whether the target system has sufficient free disk space for the
product and for specified safety mode operations.

• Determine whether to retain old copies of files that have been replaced.

• Where applicable, restore secondary save sets to the kit working directory in
the correct order.

• Determine whether the product has an IVP and, if so, whether the installer
wants the IVP to run after the installation.

• Move the product's image files to the system directories using the PROVIDE_
IMAGE callback.

• Update the DCL command tables (if applicable) so that the product can be
invoked from the DCL level.

• Move any product help files to [SYSHLP].

• Move the product-specific startup command file to [SYS$STARTUP]; it should
be invoked before running the IVP, where applicable.

• Move any product data files to the appropriate system directory.

• Return the KITINSTAL exit status to VMSINSTAL when the installation
terminates.

• Where applicable, run the IVP and indicate to VMSINSTAL whether the IVP
was successful.

KITINSTAL Command Procedure
3.3 Summary of KITINSTAL Design Specifications

Note

Currently, VMSINSTAL support for Digital's Distributed Software License
Architecture (DDSLA) and License Management Facility (LMF) is not
available to third-party (non-Digital) developers oflayered products.

3.4 Basic KITINSTAL Command Procedure
Example 3-1 demonstrates a basic KITINSTAL.COM for a product called
CHECKTRAN.

Example 3-1 Basic KITINSTAL.COM

!**
*

CHECKTRAN KITINSTAL.COM *
*

!**
$!
$! Take care of interrupts
$
$ ON CONTROL Y THEN VMI$CALLBACK CONTROL Y
$! - -
$! Process errors
$!
$ ON WARNING THEN EXIT $STATUS
$
$ Determine course of action
$
$ IF Pl .EQS. "VMI$ INSTALL" THEN GOTO CHECKTRAN INSTALL
$ IF Pl .EQS. "VMI$=POSTINSTALL" THEN GOTO CHECKTRAN_POSTINSTALL
$ IF Pl .EQS. "VMI$!VP" THEN GOTO CHECKTRAN !VP
$ EXIT VMI$ UNSUPPORTED -
$! -
$! Set the product name (AXP Systems Only)
$!
$ VMI$CALLBACK SET PRODUCT NAME "CHECKTRAN"
$! -
$! Install the product
$!
$CHECKTRAN INSTALL:
$ -
$ Check that OpenVMS version is 5.0 or later for OpenVMS VAX,
$ or 1.0 for OpenVMS AXP.
$
$ For VAX systems only:
$
$ RODUCT$VERSION = "5.0"
$
$ For AXP systems only:
$
$ PRODUCT$VERSION = "1.0"

$ VMI$CALLBACK CHECK VMS VERSION CHECKTRAN$VERSION 'PRODUCT$VERSION'
$ IF CHECKTRAN$VERSION THEN GOTO V_OK

(continued on next page)

3-7

KITINSTAL Command Procedure
3.4 Basic KITINSTAL Command Procedure

3-8

Example 3-1 (Cont.) Basic KITINSTAL.COM
$!
$! Indicate wrong version and exit
$!
$ WRONG VERSION:
$ VMI$CALLBACK MESSAGE E VERSION -

"This kit must be installed on an existing OpenVMS''product$version'
system."

$ EXIT VMI$ FAILURE
$ V OK: -
$ -
$! Check for disk space, exit if not enough
$!

$ VMI$CALLBACK CHECK NET UTILIZATION CHECKTRAN SPACE 1000 500 600
$ IF .NOT. CHECKTRAN=SPACE THEN EXIT VMI$_FAILURE

$!
$! Set up for a conditional safe installation
$!
$ VMI$CALLBACK SET SAFETY CONDITIONAL 3000
$!
$! Restore secondary savesets
$!
$ VMI$CALLBACK RESTORE SAVESET B
$ VMI$CALLBACK RESTORE-SAVESET C N
$! -
$! Check for purging and for IVP
$!
$ VMI$CALLBACK SET PURGE ASK
$ VMI$CALLBACK SET !VP ASK
$!
$! Move the product image to [SYSEXE]
$!
$ VMI$CALLBACK PROVIDE IMAGE CHECKTRAN IMAGE CHECKTRAN.EXE VMI$ROOT:[SYSEXE]
$! - -
$! Make the product callable from DCL
$!
$ VMI$CALLBACK PROVIDE DCL COMMAND CHECKTRAN.CLD
$! - -
$! Move the help files
$!
$ VMI$CALLBACK PROVIDE DCL HELP CHECKTRAN.HLP
$ - -
$! Move the startup command
$!

$ VMI$CALLBACK PROVIDE FILE CHECKTRAN STARTUP CHECKTRAN STARTUP.COM -
VMI$ROOT: [SYS$STARTUP] - -

$!
$! Create IVP dirctory
$!
$ VMI$CALLBACK CREATE DIRECTORY COMMON SYSTEST.CHECKTRAN
$! -
$! Move IVP file
$!
$ VMI$CALLBACK PROVIDE_FILE CHECKTRAN_ CHECKTRAN_IVP.COM VMI$ROOT:[SYSTEST]

$
$! Identify the startup command file
$!

$ VMI$CALLBACK SET STARTUP CHECKTRAN_STARTUP.COM

(continued on next page)

KITINSTAL Command Procedure
3.4 Basic KITINSTAL Command Procedure

Example 3-1 (Cont.) Basic KITINSTAL.COM

$!
$! Move data file
$!
$ VMI$CALLBACK PROVIDE FILE CHECKTRAN DATA CHECKTRAN.DAT VMI$ROOT:[SYSEXE]
$! - -
$! Installation completed, exit
$!
$ EXIT VMI$ SUCCESS
$! -

$! Post-install phase
$!
$ CHECKTRAN POSTINSTALL
$! -
$! No postinstall work
$!
$ EXIT VMS$ SUCCESS
$! -
$! Verify installation
$!
$ CHECKTRAN IVP:
$ -
$! run the ivp
$!

$ @VMI$KWD:CHECKTRAN_IVP.COM

$!
$! ivp completed, indicate results
$!
$ EXIT $STATUS

See Appendix B for a KITINSTAL command procedure for an actual Digital
product.

3-9

4
VMSINSTAL Functional Description

VMSINSTAL is structured in a sequence of 11 functional steps. These steps are
labeled in the command procedure. Two additional steps apply only to special
installation conditions: Step 12 attempts to recover from system failures that
occur during the installation, and Step 13 implements the GET save set option.
This chapter provides a functional overview of VMSINSTAL and a summary of
the 13 steps.

4.1 Overview
When you invoke VMSINSTAL, it announces itself, gives the time and date, and
provides instructions for getting help if you need it during the installation. It also
does the following initial tasks, all of which are transparent to the installer:

• Deletes all user DCL symbols.

• Assigns symbols and defines logical names needed to do the installation.
These are all prefixed by VMI$.

• Verifies that you are running the installation from the SYSTEM account and
that you have sufficient privileges and quotas.

• Verifies that there are no other users on the system.

• Checks the validity of parameters that you include in the calling command.

If any of the checks fail, VMSINSTAL displays an appropriate message.

If VMSINSTAL is called by the system startup procedure, indicating an aborted
previous attempt at installation, the procedure branches to a special crash
recovery routine (Step 12).

At this point, VMSINSTAL gives the installer the opportunity to back up the
system disk before doing the installation. Then VMSINSTAL asks for the name
of the device that will hold the distribution volumes during the installation, and
verifies the validity of the device.

On VAX systems, if the distribution kit is to be mounted on the console device,
VMSINSTAL connects it using the System Generation utility (SYSGEN),
dismounts the console volume (if necessary), and then allocates the console device
for the installation. VMSINSTAL also sets a flag to remount the console volume
when the installation is completed.+

On both AXP and VAX systems, VMSINSTAL next asks for the name of the
products to be installed. If a product is distributed on tape or disk, VMSINSTAL
asks you to physically mount the distribution volume and then waits for an
indication that you are ready to continue.

Next, VMSINSTAL asks for any options that you might want to invoke.

4-1

VMSINSTAL Functional Description
4.1 Overview

VMSINSTAL then installs the kit and checks to see if any other kits are to be
installed. The installation follows this general sequence:

1. VMSINSTAL sets up the environment needed to install the product, including
the creation of a working directory for the installation procedure.

2. VMSINSTAL restores the first save set (save set A). This save set must
include the KITINSTAL command procedure described in Chapter 3. If
release notes are supplied with the product kit and you want to use option N,
the release notes file must also be included in save set A.

3. VMSINSTAL calls KITINSTAL to direct the installation, and KITINSTAL in
turn uses callbacks to VMSINSTAL to do the installation. Note that certain
callbacks can be deferred until the installation is at a point where it is safe
to do the callback functions. (See Chapter 5 for detailed descriptions of the
VMSINSTAL callbacks.)

4. When all callbacks are completed, VMSINSTAL invokes the product's
Installation Verification Procedure (IVP) if one exists.

5. Finally, VMSINSTAL cleans up the files created for doing the installation,
remounts the console device, and restores the normal work environment.
If the product requires rebooting the system, VMSINSTAL shuts down and
reboots it.

Two special installation scenarios are detailed at the end of this chapter. One
describes how VMSINSTAL recovers from system failures that may occur during
the installation (Section 4.3.1); the other pertains to copying save sets into a disk
directory for later installation (Section 4.3.2).

4.2 Functional Steps

4.2.1 Step 1

4-2

The following sections describe in detail the functional steps executed by
VMSINSTAL when it is invoked.

In this step, VMSINSTAL provides overall initialization of the installation
program. VMSINSTAL begins by setting up two symbols, one to represent the
current version of VMSINSTAL (VMI$VERSION) and one to represent the
booting option (VMI$BOOTING).

Assuming the program is not in booting mode, VMSINSTAL deletes all of
the user's currently-defined global symbols to avoid any possible conflicts.
VMSINSTAL executes SYS$MESSAGE:VMSINSTAL_LANGUAGE.COM to define
symbols that have been equated to VMSINSTAL internal error messages. (For
more information about SYS$MESSAGE:VMSINSTAL_LANGUAGE.COM, see
Section 2.11.) VMSINSTAL then displays a welcome message that invites the
installer to invoke help by entering a question mark(?) when needed.

After temporarily disabling the CtrIN function, VMSINSTAL sets up the
installation environment and records the current environment in related symbols.
Then VMSINSTAL opens a file with the symbol definition VMI$TERMINAL_
FILE to read input from the terminal.

Next, VMSINSTAL assigns symbols for both internal use and the product
installation procedures and equates a symbol called VMI$VMS_ VERSION to
the Open VMS version running on the target system. See Appendix D for more
information about the VMI$VMS_ VERSION symbol.

4.2.2 Step 2

VMSINSTAL Functional Description
4.2 Functional Steps

After enabling Ctrl/Y, VMSINSTAL checks for the OPTION keyword in P3 before
testing for the booting option. If the booting option (B) is active (VMI$BOOTING
set true), VMSINSTAL is attempting to recover from a crash that occurred during
a previous installation attempt. At this point, the procedure branches to step 12
to perform appropriate crash recovery procedures.

Then, VMSINSTAL determines whether the product is being installed in an
alternate system root and sets up appropriate logical names (VMI$ROOT and
VMI$SPECIFIC) as follows:

• VMI$ROOT represents the common top-level directory for the target system
and, all references to common system directories must be in the form
VMI$ROOT:[SYSxxx].

• VMI$SPECIFIC represents the system-specific top-level directory for the
target system, and all references to system-specific directories must be in the
form VMI$SPECIFIC:[SYSxxx].

Note

It is recommended that you use VMI$SPECIFIC or VMI$ROOT for all
references to the system disk, rather than logical names prefixed with
SYS$. Failure to do this will result in your product being installable only
on the system disk.

If the file log option (L) is specified in P4, the /LOG qualifier is appended to a set
of appropriate DCL command verbs.

VMSINSTAL then checks various environmental items to ensure that it can
perform the installation. If the installer has opted for the GET save set option
(G), these checks are omitted. The product is not going to be immediately
installed, but the save sets are to be copied to a save-set directory.

The checks include the installer's account, privileges and quotas, and the
status of other system processes. If necessary, after making the various checks,
VMSINSTAL warns the installer of any unacceptable conditions and ask if the
installer wants to continue. This warning is not issued if the installation is under
internal Digital QA test.

Finally, after giving the installer an opportunity to back up the current system
disk, VMSINSTAL goes to step 2.

In this step, VMSINSTAL determines the location of the distribution volume,
which may or may not be included as the second parameter (P2) in the command
line. If the parameter is omitted, VMSINSTAL prompts for it using the ASK
callback. VMSINSTAL also appends the colon (:) following the device designation
if it is omitted.

On VAX systems, VMSINSTAL then tests the device designation to determine
whether it is configured, and to establish the proper processing path. If the
distribution volume is located on the console device, VMSINSTAL connects the
console device using SYSGEN, dismounts the console volume if it is mounted,
and allocates the console device for the installation. If the device is not properly
configured, a message is generated saying that the device must be either a disk
or tape drive.+

4-3

VMSINSTAL Functional Description
4.2 Functional Steps

On AXP and VAX systems, when VMSINSTAL determines that the device
is configured and connected properly it finishes parsing P2 into the symbol
VMI$PLACE.

4.2.3 Step 3
This step is a loop point for each product kit. When all of the products in
a kit have been processed or if a kit installation is prematurely terminated,
VMSINSTAL returns here to check for more product kits.

In step 3, VMSINSTAL determines the products to be. installed and the proper
installation order if there are multiple products in the kit. If a product is listed
in the first parameter (Pl) of the call to VMSINSTAL, it is equated to VMI$LIST;
if not, the ASK callback is used to prompt for it. The installer can terminate the
installation at this point by entering a Ctrl/Z or the word EXIT in response to the
prompt.

VMSINSTAL then determines whether it needs to prompt the installer for
options. VMSINSTAL only prompts for this information when both of the
following conditions are true:

• Options are not specified on the command line.

• VMSINSTAL must also prompt for the product_list or source device
parameters .

. Next, VMSINSTAL checks to see if the distribution volume is mounted and, if
it is not, prompts the installer to mount it. Then VMSINSTAL checks that the
distribution device specific~tion is correct before continuing. If either of these
requirements is not met, the procedure branches back to step 2.

VMSINSTAL then checks the products on the distribution volume against the
list of products entered by the installer. If the product's primary save set is not
found, an appropriate message is displayed, the installation of the kit is aborted,
and VMSINSTAL branches back to step 3 for the next product kit.

If the primary save set is found, VMSINSTAL loops to build a product list
from the distribution volume. Following this, VMSINSTAL sorts the products
alphabetically to build an ordered installation product list.

Next, the volume is dismounted and remounted for BACKUP operations, the
actual installation mechanism. If the installer specified the GET save set option,
VMSINSTAL branches to step 13; if not, it proceeds to step 4.

4.2.4 Step 4

4-4

In this step, VMSINSTAL sets up the environment for restoring the kit's save
sets.

VMSINSTAL determines if the RSP (restore save set and pause) option was
specified, and if this option specified an individual save set or all save sets.

VMSINSTAL also checks if the AWD (alternate working device) option was
specified. If so, it defines the logical VMI$KWD to point to the specified device.

VMSINSTAL Functional Description
4.2 Functional Steps

4.2.5 Step 5

4.2.6 Step 6

This step is a loop point for obtaining listed products from the distribution
volume.

The marker file is kept current to allow for recovery from system crashes.
Information maintained in the marker file includes the following:

• Target system root (VMI$ROOT)

• Facility and version (VMI$PRODUCT)

• State B (before)

• Library being updated

• State of the alternate root flag (VMI$ALTERNATE_ROOT)

• State of the common root flag (VMI$COMMON_ROOT)

• Name of the system-specific root (VMI$SPECIFIC)

• Additional information necessary to recover from a crash.

VMSINSTAL ends step 5 by announcing the product that will be installed.

In step 6, VMSINSTAL begins by deleting any previous kit working directory to
make space for the product's working directory. It then records, in the symbol
VMI$FREE_BLOCKS, the number of free blocks available on the target system
disk. The symbol VMI$KWD_FREE_BLOCKS records the number of free blocks
available on the disk used for the kit working directory.

Next, VMSINSTAL checks for and processes the statistics option (S), the auto­
answer option (A), and the callback trace option (C). Last, VMSINSTAL creates
the new kit working directory, before giving control to step 7.

If the installer has chosen the statistics option (S), VMSINSTAL displays the
following message as it starts the statistics subprocess (referred to from here on
as the statistics demon):

Waiting for demon to record initial state ••.

This subprocess monitors the installation and produces a statistics report. The
subprocess is executed from VMI$ROOT:[SYSUPD] and is started with a process
priority greater than the parent process. The statistics demon follows this
sequence of steps:

1. Records the system directories, the number of free blocks available, and the
current time.

2. Opens a statistics report file.

3. Sets the file retention on the target volume so that all file accesses are
marked with an expiration date.

4. Loops, while monitoring the free block count, and returns control to the
parent process.

5. When the installation is completed, takes control to turn off the file retention
function and report the various block statistics.

4-5

VMSINSTAL Functional Description
4.2 Functional Steps

4.2.7 Step 7

4.2.8 Step 8

4.2.9 Step 9

4-6

6. Reports the files added, deleted, modified, and accessed during the
installation.

7. When the report is completed, the demon returns control to VMSINSTAL.

VMSINSTAL then checks for the auto-answer option (A). If the A option was
specified, VMSINSTAL checks for the existence of an auto-answer file for the
product. If an auto-answer file exists, VMSINSTAL reads it for information
relating to installing the product. Otherwise, VMSINSTAL creates an auto­
answer file to record information relating to installing the product, and generates
an appropriate message to the installer.

If the callback trace option (C) was selected, VMSINSTAL creates a file
(SYS$UPDATE:facvvu.CBT) to contain the trace information.

Step 7 uses the RESTORE_SAVESET callback to restore the product's primary
save set (save set A) to the kit's working directory.

When the primary save set is restored, VMSINSTAL checks to see if it includes
the KITINSTAL command procedure, and (if the installer selected option N
when VMSINSTAL was invoked) it checks for the existence of a release notes file
(fac_ vvu.RELEASE_NOTES).

If the restoration fails or if the restored primary save set does not include the
KITINSTAL command procedure, the installation is aborted. The program
branches to step 11 for general housekeeping before looking for the next product
to be installed.

Step 8 begins by updating the marker file to indicate that the installation of the
current product has begun and to establish the appropriate safety level.

Then, VMSINSTAL invokes KITINSTAL to install the product. If the installation
succeeds, the program proceeds to step 9. If not, an appropriate message is
displayed. The program branches to step 11 for general housekeeping before
looking for the next product in the kit.

Step 9 is used to execute any callbacks that were deferred if the installation was
done in safety mode. VMSINSTAL then informs the installer that the deferred
files are being moved to their target directories. The marker file is updated to
indicate that the deferred callbacks are being executed. ·

Next, safety mode terminates, and the deferred callback file is opened for reading
deferred callback records. If any deferred callback fails, the installation is
aborted, an appropriate message is displayed, and the program prepares to install
the next product.

If the deferred callbacks execute properly, the deferred callback file is closed, and
the marker file is updated to indicate that the product installation is essentially
complete.

If the product installation indicated a postinstall phase, then KITINSTAL.COM is
invoked again so the procedure can do additional work after all files are in place.

VMSINSTAL Functional Description
4.2 Functional Steps

4.2.10 Step 10
Step 10 begins by setting the default directory to the installation working
directory. VMSINSTAL then removes the VMI$CALLBACK symbol to avoid any
unintentional invocation of callbacks.

Next, the product-specific startup procedure is called, if applicable.

On completion of the startup procedure, VMSINSTAL invokes the IVP (if
applicable). At the completion of the IVP, VMSINSTAL resets the default
directory to MISSING:[MISSING] and redefines VMI$CALLBACK. VMSINSTAL
reports the results of the IVP before going on to step 11.

4.2.11 Step 11
In Step 11, VMSINSTAL performs the following tasks, then branches to
step 5 for the next product:

1. It closes the deferred callback file and deletes the kit's working directory.

2. If applicable, it pauses to wait for the completion of the statistics report, while
displaying an appropriate message.

3. On completion of the statistics report, VMSINSTAL closes any deferred
working files that may be open and deletes the marker file.

4. At this point, the procedure checks to see if the installed product requires a
reboot of the system. If reboot is not required, the procedure branches to step
5 to get the next product from the list.

5. If a reboot is required, VMSINSTAL must terminate the installation even if
some products have not been installed.

6. After displaying a message stating that the system will be rebooted,
VMSINSTAL determines whether all products have been installed. If
some products have not been installed, the procedure displays the message,
"Products that have not been installed will be skipped."

7. VMSINSTAL then proceeds to the ALL_DONE subroutine.

4.2.12 All Done
The ALL_DONE subroutine provides the functions required for normal
completion of a product kit installation. The subroutine begins by disabling the
command interpreter error-checking function and then turning off the statistics
generator, if applicable. After allowing time for the completion of the statistics
report, VMSINSTAL closes any working files that may still be open, including the
following:

• VMI$CALL_FILE

• VMI$DEFER_FILE

• VMI$MARKER_FILE

• VMI$PRODUCT_FILE

• VMI$TEMP _FILE

It then searches for and deletes any existing marker data files and restores the
user's original file environment.

4-7

VMSINSTAL Functional Description
4.2 Functional Steps

Following this, the distribution volume is dismounted. If the kit was installed
from the console device, ALL_DONE remounts the console volume. The following
files are closed after the console volume is remounted:

• VMI$AUTO_FILE

• VMI$TERMINAL_FILE

Next, ALL_DONE restores the rest of the user's environment that was saved at
the beginning of the installation, including the following:

• Default directory (VMI$SAVED_DIR)

• Default protection (VMI$SAVED_PROT)

• UIC (VMI$SAVED_UIC)

• Privileges (VMI$SAVED_PRIVS)

• The system message format (VMI$SAVED_MSG)

If the last product installed requires a system reboot, ALL_DONE does a minimal
shutdown after alerting the installer. It then executes the reboot.

VMSINSTAL returns a status in the DCL symbol $STATUS. If the installation
failed, a failure status is returned; if it succeeded, a success status is returned.

As its final task, VMSINSTAL deassigns the installation-specific logical names
(VMI$ROOT, VMI$SPECIFIC, VMI$KWD) if applicable, and displays the
completion message.

4.3 Special Steps
Steps 12 and 13 are invoked only under certain conditions. The normal
logical sequence has step 11 yielding control to ALL_DONE, which finishes
the installation.

When the system is booting, if the startup procedures find a marker data file
in SYS$UPDATE, it assumes that the system crashed during an installation
and immediately invokes VMSINSTAL with the booting option (B). Step 1 tests
for the booting option in symbol VMI$BOOTING and branches to step 12 if
VMI$BOOTING is true.

· VMSINSTAL is invoked with the GET save set option (G) if the installer chooses
to copy the kit save sets rather than installing the kit. After determining the
product list, step 3 tests the option parameter and immediately branches to step
13 if the G option is active.

4.3.1 Step 12

4-8

Step 12 is a special step that performs recovery procedures if the system crashes
during an installation. It is called from the system startup procedures if a marker
file is discovered during booting.

Step 12 begins by opening a file (VMI$TERMINAL_FILE) to read data input from
the terminal. It then opens another file (VMI$MARKER_FILE) to read data from
the marker data file (VMIMARKERpid.DAT). The data from this file is used to
determine the manner in which the recovery will proceed. VMSINSTAL does this
by assigning values, found in the marker file, to the following symbols:

• VMI$PRODUCT

• VMI$ALTERNATE_ROOT

VMSINSTAL Functional Description
4.3 Special Steps

• VMI$COMMON_ROOT

• VMI$SPECIFIC

After setting up the default directory and the product working directory, step 12
disables the VMSINSTAL purge function and turns off safety mode.

Next, an appropriate message is displayed, explaining the situation and providing
directions for continuing (or discontinuing) the installation, depending on the
state of the installation at the time of the crash, as follows:

• If the system disk was unchanged at the time of the crash, the following
message is displayed:

Nothing on your system disk had been changed before the crash.
Simply begin the installation again.

• If insignificant changes have been made to the system disk, the following
message is displayed:

Although files on your system disk may have been changed, the system
should be in a usable state. Simply begin the installation again.

• If a library was being updated when the crash occurred, the following message
is displayed:

The following library was being updated when the system crashed.
Other than that, the system should be in a usable state. Restore
the library from backup and then begin the installation again.

• If the installation was not in safety mode when the crash occurred, the
following message is displayed:

The installation was being performed in such a way as to minimize
disk usage. One or more files may now be in an unusable state.
Please restore your system disk from backup and then begin the
installation again.

• If the installation was nearly completed when the crash occurred, the
following message is displayed:

VMSINSTAL will attempt to complete the installation, because it was
almost done before the crash. Please ignore any error messages listed
below. After booting is completed, you MUST boot the system again.

In this situation, step 12 opens the defer file to begin the deferred callback
executions.

• If the installation was completed when the crash occurred, the following
message is displayed:

The installation was completed satisfactorily.

From here, VMSINSTAL proceeds to do a normal completion after displaying the
following message:

Please read your documentation for a complete description of
installation crash recovery. There may be additional things that you
need to do manually, such as purging the system disk or deleting
certain layered product files.

4-9

VMSINSTAL Functional Description
4.3 Special Steps

4.3.2 Step 13

4-10

Step 13 is a special step that handles the GET save set option (G). This option is
used when the installer does not want to install a product immediately. Instead,
the product save sets are copied from the distribution volume into a disk directory
where they are available for future installation.

When save sets are copied using the G option, the directory structure originally
assigned to files within the save set are not maintained. Because the directory
structure is lost, this option cannot be used to copy Open VMS operating system
kits.

First, step 13 determines the target directory; that is, the directory into which
the product save sets are to be copied. It then verifies that the disk or magnetic
tape is mounted and ready. If the installer omits the target directory in P5 of the
VMSINSTAL command line, Step 13 prompts for it. If no such directory exists,
step 13 provides a suitable display and prompts for the proper directory.

Then the procedure parses the answer to determine the full device specification.
If necessary, the procedure creates a top-level work directory, [VMIWORKpid],
where pid is the current process ID. This directory is created on the system
disk to restore the save sets, so that new save sets can be created in the target
directory.

Following this, the installer is told to ignore redundant BACKUP error messages:

Because VMSINSTAL does not know how many save sets comprise a software
product, it will simply copy as many as it can find. Do not be
concerned about error messages from BACKUP after all save sets have
been copied.

Next, a loop is used to copy the product save sets for each product in the product
list, appending any additional BACKUP qualifiers specified in P6. The two
qualifiers appended by VMSINSTAL are /INTERCHANGE and NERIFY.

The loop begins by telling the installer which product is being copied. Then each
of the product save sets is copied to the target directory. The loop concludes by
indicating the number of save sets copied for the product.

If an error occurs while any product save set is being copied, the contents of the
scratch directory. are deleted, and the program branches to an appropriate error­
handling routine before looking for the next product. When all of a product's save
sets are copied, VMSINSTAL deletes the product work directory and branches to
step 3 for more products.

If an error occurs while any product save set is being copied, the following
message is returned at the end of the installation. This message is displayed
regardless of whether any products were copied successfully:

Installation terminated due to unexpected event.

5
VMSINSTAl Callbacks

This chapter describes the VMSINSTAL callbacks and gives guidelines for using
them in your installation command procedures. The callbacks are presented in
alphabetical order.

Following are rules and guidelines for using VMSINSTAL callbacks:

• Add callbacks only to KITINSTAL.COM or to files directly invoked from it.

• Specify keywords in uppercase. Do not abbreviate them.

• Begin all logical names to be defined by the callback with a prefix that
consists of your product facility code followed by an underscore (for example,
CHECKTRAN_). If the logical name is never referenced after being specified
in the callback, use only the prefix.

• You must refer to the kit's working directory using the logical name
VMI$KWD. Refer to system directories using the logical name VMI$ROOT
and an explicit directory, such as VMI$ROOT:[SYSLIB].

When referring to other directories, you must specify either an explicit device
logical name (not a device number) and a directory, or a logical name for
the entire file specification. Any referenced disk must be mounted and must
include the specified directory.

• When a callback parameter requires only the file name and type, it
automatically includes the device and directory portions of the file
specification. In these instances, you are not allowed to specify the device or
the directory, and you cannot use logical names or wildcards.

• When a callback parameter requires a complete file specification (disk,
directory, name, and type), you can use a logical name. Use of wildcards is
not allowed.

• When a parameter permits multiple options represented by single-character
codes, do not use embedded spaces.

• All callbacks return an exit status. VMl$_SUCCESS is returned if the
callback executed without error. VMI$_FAILURE is returned if errors
occurred.

• Begin each invocation of a callback with the symbol VMI$CALLBACK,
followed by the callback's name as the first parameter.

• Separate all parameters with spaces.

The following is an example of a command line for invoking a VMSINSTAL
callback:

$ VMI$CALLBACK FIND_FILE CHECKTRAN_ VMI$ROOT:[SYSEXE]FED.EXE S CHECKTRAN VlFED

5-1

VMSINSTAL Callbacks

See Example 3-1 and Example B-1 for KITINSTAL command procedures that
demonstrate the use of callbacks.

Note ~~~~~~~~~~~~~

Currently, VMSINSTAL callbacks related to Digital's Distributed Software
License Architecture (DDSLA) and License Management Facility (LMF)
are not supported for third-party (non-Digital) developers of layered
products.

5.1 ADD_IDENTIFIER Callback
The ADD_IDENTIFIER callback adds an identifer to the rights database. You
can use this callback with the SET ACL DEVICE, SET ACL DIRECTORY, and
SET ACL FILE callbacks to allow access to devices and files. See Section 5.28.1
for information on the SET ACL callback options.

See the Open VMS System Management Utilities Reference Manual for more
information about identifiers.

Use the following command line format to invoke the ADD_IDENTIFIER
callback:

VMl$CALLBACK ADD_IDENTIFIER id_name qualifiers

Parameters on the command line indicate the following:

id_name
Use this parameter (P2) to specify the name of the identifier you are creating.

qualifiers
Use this parameter (P3) to specify qualifiers. You can specify any qualifiers of the
ADD/IDENTIFIER command in the Authorize utility. Enclose a list of qualifiers
in quotation marks.

Following is an example of a command line that invokes the ADD_IDENTIFIER
callback:

$ VMI$CALLBACK ADD_IDENTIFIER nodea$ident 11 /ATTRIBUTES=(RESOURCE)"

In the previous example, the ADD_IDENTIFIER callback adds identifier
nodea$ident and marks it as a resource.

The ADD_IDENTIFIER callback returns VMI$_SUCCESS if the identifier is
successfully added; otherise, the callback returns VMI$_FAILURE.

5.2 ASK Callback

5-2

Use the ASK callback to get information from the installer. The callback prompts
the installer for a response, verifies and evaluates it, and then assigns it to the
global symbol you specify. The callback also provides help when the installer
presses the question mark key.

Use the following command line format to invoke the ASK callback:

VMl$CALLBACK ASK symbol prompt [default_response] [options] [help]

VMSINSTAL Callbacks
5.2 ASK Callback

Parameters on the command line indicate the following:

symbol
Use this parameter (P2) to specify a global symbol that is equated to the
installer's response. It is a numeric value if the response is integer or Boolean
data; it is a string value if the response is string data. In formatting the
installer's response, the callback automatically reduces multiple blanks to a
single blank, removes all leading and trailing blanks, removes comments, and
changes the response to the required case. Uppercase is the default.

prompt
Use this parameter (P3) to specify in a quoted string the question to be asked.
The prompt should not indicate the default value of the response. Do not include
trailing spaces, a backslash (\), a colon (:), or a question mark (?) because these
are added automatically.

default_response
Where applicable, use this parameter (P4) to specify a default response to a
prompt. For example, you might specify the letter Y as an acceptable default
response to a prompt seeking a positive Boolean data-type response.

If you do not want to specify a default response, enter a null string (11 11
) in this

parameter.

If you specify a default response, the installer accepts it by pressing the Return
key. If you do not specify a default response, the callback will continue to prompt
for a response until the installer makes a valid entry.

options
Where applicable, use this parameter (P5) to specify options, choosing the
appropriate letters from the following list. If you specify more than one option,
do not enter spaces between the selected letters. For example, to ring a bell at
the installer's terminal and to require a Boolean data-type response, enter the
characters RB.

Note that options U, L, and M control the case in which input is returned from
the installer (for example, uppercase or lowercase). These options override the
previous default case, including any default set by the SET ASK_CASE callback.
After this callback executes, the default case returns to the previous value.

Following are options:

• A-Turns auto-answer off; does not record prompts and responses in the
auto-answer file. This option always requires input from the installer.

• B-The answer must be in Boolean form, YES or NO (Y or N is also
acceptable); if it is not, the question repeats until the installer responds with
a Boolean entry.

• D-Generates a blank line immediately preceding the prompt.

• E-Turns terminal echo off for this prompt. Additionally, this option disables
writing of the prompt and response to an auto-answer file if one is being
created. This option always requires input from the installer. If reading from
an auto-answer file, this option causes a read timeout if a response is not
received within a predetermined time. Responses are thereby handled as
classified data.

5-3

VMSINSTAL Callbacks
5.2 ASK Callback

5-4

• H-Displays appropriate help text before displaying the prompt.

• I-The answer must be an integer; if it is not, the question repeats until the
installer responds with an integer entry.

• L-Returns input from the installer in lowercase.

• M-Returns input from the installer in the same case entered by the installer.

• N-A null string response is acceptable; applies to situations where a string
response is requested but no default value is specified.

• R-Rings the bell before displaying the prompt.

• S-The response can be any character string; this is the default response
data-type.

• U-Returns input from the installer in uppercase.

• Z-Allows the installer to respond with Ctrl/Z. The return value is the
two-character string AZ.

help
Use this parameter (P6) to specify help text that may be used in conjunction with
the prompt. Either you can enter actual help text, or you .can enter a call to a
command procedure. (typically KITINSTAL) to provide the text by way of a help
callback. If you enter a call to a command procedure, you must also specify the
name of the help callback that is found in Pl (request code) of the call, as follows:

@VMI$KWD:KITINSTAL HELP_WHATEVER

There is no conflict with VMSINSTAL request codes because the request code is
not prefixed with the string VMI$.

To illustrate the use of the ASK callback, following is an example of a typical
command line that includes all six parameters:

Pl P2 P3 P4 PS P6
\ \ \ \ \ \

$ VMI$CALLBACK ASK TST_DIGIT "Enter a number" 3 I "@VMI$KWD:KITINSTAL help_type"

In response to the preceding command line, the callback displays the following
prompt:

Enter a number [3]:

If the installer enters ?, the following help message appears:

Type a digit:

The global symbol TST_DIGIT (P2) is assigned the value of the entered integer.
If the installer presses the Return key, TST_DIGIT is assigned the default integer
value (3).

If the installer enters a data type other than integer, the callback repeats the
original prompt; that is:

Enter a number [3]:

The ASK callback returns VMI$_SUCCESS unless the installation is using
an auto-answer file and encounters a prompt mismatch. The auto-answer file
includes both the prompt and the proper response. If the prompt entered in

VMSINSTAL Callbacks
5.2 ASK Callback

P3 of the callback command line does not match the prompt in the auto-answer
file, a fatal error condition exists. The installation terminates, and the installer's
terminal displays the following message:

Auto-answer file is not in synch with questions.

In addition to this message, the callback displays the mismatched prompts; that
is, the prompt in P3 of the command line and the prompt in the auto-answer file.

5.3 CHECK_NETWORK Callback
Use the CHECK_NETWORK callback to determine whether the network is
running. The installation can then either proceed, or terminate, based on the
status of the network. Products should display messages that indicate whether
the network should be running while performing the installation.

Use the following command line format to invoke the CHECK_NETWORK
callback:

VMl$CALLBACK CHECK_NETWORK symbol

The parameter on the command line indicates the following:

symbol
Use this parameter (P2) to specify a global symbol whose value reflects the status
of the network. This symbol returns a value of true (1) if the network is running
and false (0) if the network is not running.

Following is an example of a command line that invokes the CHECK_NETWORK
callback:

$ VMI$CALLBACK CHECK_NETWORK TST_NETSTAT

In the previous example, the CHECK_NETWORK callback defines the symbol
TST_NETSTAT as true when the network is running and false when the network
is not running.

The CHECK_NETWORK callback always returns VMI$_SUCCESS.

5.4 CHECK_NET _UTILIZATION Callback
The CHECK_NET_UTILIZATION callback determines whether the peak number
of free blocks on the VMI$ROOT device is sufficient to successfully complete the
installation and then returns the result in a global Boolean symbol. You can
obtain the net block usage for a product by using the statistics option when you
invoke VMSINSTAL. The net block usage refers to the total number of blocks
required by the installation.

When a product is installed with the alternate working device option (AWD), the
installer specifies an alternate device for the creation of the temporary working
area. (The temporary working area is the location where temporary files are
created and save sets are restored.) The CHECK_NET_UTILIZATION callback
can be used in conjunction with the AWD option, to specify the following:

• The number of free blocks that must be available on the device associated
with the alternate working directory.

• The number of free blocks that must be available to complete the installation
on the target device (the device that will hold the images and command files
associated with the product).

5-5

VMSINSTAL Callbacks
5.4 CHECK_NET_UTILIZATION Callback

5-6

If you choose the highest safety level for your installation, the disk must have
sufficient space to accommodate the highest number of blocks used at one time
(peak utilization). (See Section 5.28.9 for more information on the SET SAFETY
option.)

Use the following command line format to invoke the CHECK_NET_
UTILIZATION callback:

VMl$CALLBACK CHECK_NET _UTILIZATION symbol blocks [trg-blocks] [awd-blocks]

Parameters on the command line indicate the following:

symbol
Use this parameter (P2) to specify a global symbol that the callback uses to
indicate whether the disk or disks have sufficient net free space to install your
product. The callback returns the value true (1) for this symbol if there are
sufficient net free blocks available; otherwise, its value is false (0).

blocks
Use this parameter (P3) to specify the number of net free blocks required for your
product. The figure should be equal to the total number of blocks required to
perform the installation, including the temporary working directory, on the target
device.

trg-blocks
Use this parameter (P4) to specify the number of free blocks that must be
available on the target device (VMI$ROOT) in order to accommodate the
completed installation. This number does not include the number of blocks
required for the temporary working area; this number is specified in P5. The
values specified in P4 and P5 are used only when the product is installed using
the alternate working device (AWD) option.

awd-blocks
Use this parameter (P5) to specify the number of free blocks that must be
available on the device associated with the alternate working _directory.

Following is an example of the command line used to invoke the CHECK_NET_
UTILIZATION callback:

$ VMI$CALLBACK CHECK_NET_UTILIZATION CHECK_ 20000 12000 10000

The preceding callback can function in the following ways, depending on whether
the installer specifies the AWD option:

• If the installer does not specify the AWD option, the callback returns the
value true (1) in the symbol CHECK$ when the system has at least 20000
free blocks on the VMI$ROOT device. If the system does not have at least
20000 free blocks, the callback returns a value of false (0).

• If the installer specifies the AWD option, the callback returns the value
1 (true) when the VMI$ROOT device has at least 12000 blocks, and the
alternate working device has at least 10000 blocks. If either of these devices
has less than the specified number of free blocks, the callback returns a value
of 0 for the CHECK$ symbol.

This callback always returns VMI$_SUCCESS.

VMSINSTAL Callbacks
5.5 CHECK_PRODUCT_VERSION Callback

5.5 CHECK_PRODUCT _VERSION Callback
Use the CHECK_PRODUCT_ VERSION callback to check the version of another
layered product installed on the system. VMSINSTAL extracts the version
number from the image file identification string of the image file associated with
the product. VMSINSTAL then compares this version number to the minimum
version specified in the command line.

You can use this callback if your product requires the existence of a specific
version of another product.

Use the following command line format to invoke the CHECK_PRODUCT_
VERSION callback:

VMl$CALLBACK CHECK_PRODUCT _VERSION symbol filespec minimum_version [option]

Parameters on the command line indicate the following:

symbol
Use this parameter (P2) to specify a global symbol that returns a value of true (1)
when the product meets the minimum version requirement specified in P4. When
the product does not meet the minimum version requirement, this symbol returns
a value of false (0).

files pee
Use this parameter (P3) to indicate the full file specification of the prerequisite
product's image file. This is the file from which VMSINSTAL extracts the version
number.

minimum_ version
Use this parameter (P4) to specify the minimum version required to install your
product. Specify minimum version using the following format:

tvv.u-m

where:·

t is the type of release (for example V for released-version, T for field test version)

vv is the major version number

u is the update number

m is the maintenance number

For example, you might specify the following minimum version: V3.0-5.

option
Use this parameter (P5) to specify the name of the product for which you are
performing the version check. If the product does not meet the minimum version
requirement specified in P4, VMSINSTAL displays the following message to the
installer:

This kit requires at least: product name minimum version
Please install a proper version of product name -
before installing this product. -

Enclose the product name with quotation marks.

Following is an example of a command line that invokes the CHECK_PRODUCT_
VERSION callback:

$ VMI$CALLBACK CHECK_PRODUCT_VERSION TST_CHECK VMI$ROOT:[SYSEXE]RDO.EXE V3.0 "OpenVMS AXP Rdb"

5-7

VMSINSTAL Callbacks
5.5 CHECK_PRODUCT_VERSION Callback

In the previous example, VMSINSTAL determines whether the RDO image is
version 3.0 or higher. If the image is version 3.0 or higher, VMSINSTAL defines
symbol TST_CHECK as true.

This callback always returns VMI$_SUCCESS.

5.6 CHECK_VMS_VERSION Callback
Use the CHECK_ VMS_ VERSION callback to limit the installation of a product to
specified versions of the Open VMS operating system. When invoked, this callback
tests the version of the running system against the minimum and maximum
versions necessary to install the product. If the version number of the running
system does not meet the specified criteria, notify the installer. To do this, use
the MESSAGE callback to display a message that specifies the current Open VMS
version of the installing system and the Open VMS version necessary to install
the product. Section 5.16 describes how to use the MESSAGE callback to display
a message.

Digital recommends using the CHECK_ VMS_ VERSION callback instead of the
VMI$VMS_ VERSION symbol to test the version of the operating system.

This callback is useful when the developer knows that specific versions of
Open VMS will break the product.

Use the following command line format to invoke the CHECK_ VMS_ VERSION
callback:

VMl$CALLBACK CHECK_ VMS_ VERSION symbol minimum_version [option][maximum_version]

Parameters on the command line indicate the following:

5-8

symbol
Use this parameter (P2) to specify a global symbol that VMSINSTAL defines as
true (1) when the running version meets the criterion specified in P3 (minimum_
version) and P5 (maximum_ version). When the running system does not meet the
criteria, VMSINSTAL defines this symbol as false (0).

minimum_ version
Use this parameter (P3) to specify the minimum Open VMS version required to
install the product. Specify minimum version in the following format:

w.u-m

where:

vv indicates a version

u indicates an update

m indicates a maintenance release

For example, 5.2-1 would indicate that the version is 5, the update is 2, and the
maintenance level is 1. To specify Version 5.2, you would enter 5.2.

This parameter continues to accept the old format, vvu (for example, you can
specify 052 to indicate Version 5.2); however, to specify a particular maintenance
release, you must use the new format. Digital recommends you use the new
format whenever possible.

VMSINSTAL Callbacks
5.6 CHECK_ VMS_ VERSION Callback

option
The following options are currently available for P4:

• F-Limits the product installation to a specific field test version. This
option is intended for use only if a layered product is conducting field test in
conjunction with an Open VMS field test. If you choose option F, use P3 to
specify the field test version to which the product installation is limited.

• S-Suppresses message output during installation. This option is intended
for range checking of the Open VMS version; messages are not output to the
screen.

maximum_ version
Use this parameter, where appropriate, to specify the maximum Open VMS
version required to install the product. Specify maximum version in the following
format:

vv.u-m

where:

vv indicates a version

u indicates an update

m indicates a maintenance release

For example, 5.2-1 would indicate that the version is 5, the update is 2, and the
maintenance level is 1. To specify Version 5.2, you would enter 5.2.

This parameter continues to accept the old format, vvu (for example, you can
specify 052 to indicate Version 5.2); however, to specify a particular maintenance
release, you must use the new format. Digital recommends you use the new
format whenever possible.

The following is an example of the command line for the CHECK_ VMS_ VERSION
callback:

$ VMI$CALLBACK CHECK_VMS_VERSION for_version 5.0 1111 5.2

In this example, the CHECK_ VMS_ VERSION callback limits product installation
to Open VMS Versions 5.0 through 5.2.

This callback always returns VMI$_SUCCESS.

5.7 COMPARE_IMAGE Callback
The COMPARE_IMAGE callback compares the image file identification string
of two image files and returns a value that indicates which file is a more recent
version. The image identification is specified in the following format:

fac tvv.u-m

where:

fac is the product's registered facility name (for example, RDB)

t is the type of release (for example V for released-version, T for field test version)

vv is the major version number

u is the update number

m is the maintenance number

5-9

VMSINSTAL Callbacks
5.7 COMPARE_IMAGE Callback

Use the following command line format to invoke the COMPARE_IMAGE
callback:

VMl$CALLBACK COMPARE_IMAGE symbol filespec1 filespec2

Parameters on the command line indicate the following:

symbol
Use this parameter (P2) to specify a global symbol that returns one of the
following values:

• VMI$K_KIT_ VER_OLDER-indicates that the image file specified in P4 is an
older version than the image file specified in P3

• VMI$K_KIT_ VER_NEWER-indicates that the image file specified in P4 is a
newer version than the image file specified in P3

• VMI$K_KIT_ VER_SAME-indicates that the image files specified in P3 and
P4 are the same version

• VMI$K_KIT_ VER_NOMATCH-indicates that the facility names of the files
specified in P3 and P4 do not match

filespec1
Use this parameter to indicate the full file specification of the image file currently
installed on the system.

filespec2
Use this parameter to indicate the full file specification of the image file that is
part of the kit.

The following is an example of a command line that invokes the COMPARE_
IMAGE callback:

$ VMI$CALLBACK COMPARE_IMAGE TST_CHECK VMI$ROOT:[SYSEXE]RDO.EXE VMI$KWD:RDO.EXE

The previous example compares two RDO images to determine which is the
newest version and defines symbol TST_CHECK accordingly.

This callback returns VMI$_SUCCESS if the file specified in P4 is found.
Otherwise, it returns VMI$_FAILURE.

5.8 CONTROL_ Y Callback

5-10

This callback, invoked without parameters, performs housekeeping chores that
must be invoked when the installer presses Ctrl/Y.

Note ~~~~~~~~~~~~

The CONTROL_Y callback returns a warning status, which executes
your ON WARNING statement. If you omit this statement in your
installation command procedure and the installer presses Ctrl/Y, results
are unpredictable.

VMSINSTAL Callbacks
5.8 CONTROL_ Y Callback

The installation procedure must either include an ON WARNING statement, or
it must provide a branch to a label that performs cleanup and then invokes the
CONTROL_Y callback. The following is an example of the required command
line:

$ ON CONTROL_Y THEN VMI$CALLBACK CONTROL_Y

5.9 CREATE_ACCOUNT Callback
The CREATE_ACCOUNT callback creates a new account in SYSUAF.DAT (and
in NETPROXY.DAT if it is a proxy account). You are not permitted to use this
callback if you are installing the product in an alternate directory root.

In most instances, new software products do not need to create new accounts.
For example, it is usually unnecessary to create a system management account
for a product, because the system manager can perform all management from the
standard SYSTEM account.

Your installation procedure should prompt the installer for the UIC of the new
account before you invoke this callback.

Use the following command line format to invoke the CREATE_ACCOUNT
callback:

VMl$CALLBACK CREATE_ACCOUNT username qualifiers

Parameters on the command line indicate the following:

username
Use this parameter (P2) to associate a user name with the new account.

qualifiers
Use this parameter (P3) to list the qualifiers of the ADD command in the
Authorize utility. (See the Open VMS System Management Utilities Reference
Manual for more information on the qualifiers to the DCL command ADD.)
Enclose a list of qualifiers with quotation marks.

The following is an example of the command line for the CREATE_ACCOUNT
callback:

$ VMI$CALLBACK CREATE_ACCOUNT SMITH/PASSWORD=FCDREG/UIC=[360,103]"

The CREATE_ACCOUNT callback returns VMI$_SUCCESS if the. account is
successfully created; otherwise, it returns VMI$_FAILURE.

5.10 CREATE_DIRECTORY Callback
Use the CREATE_DIRECTORY callback to create system directories, system­
specific directories, common directories, user directories for your product.

System directories are created in the common area and the specific area. System­
specific directories are created in the system root of the installing system (not the
common area). Common directories are created in the common area only.

The prefix SYS is reserved and should not be used to specify a product directory.

The way you invoke -the callback depends on the type of directory you are
creating.

5-11

VMSINSTAL Callbacks
5.10 CREATE_DIRECTORY Callback

5.10.1 Creating a System Directory
To create a system directory, use the following command line format:

VMl$CALLBACK CREATE_DIRECTORY SYSTEM name [qualifiers]

Parameters on the command line indicate the following:

SYSTEM
When you enter the keyword SYSTEM in this parameter (P2), the product
directory is created under the system root directory and the common directory.

name
Use this parameter to specify the name of the system directory. The callback
recognizes the keyword SYSTEM and makes it a rooted directory. Therefore, do
not specify the system device designation, and do not include the brackets usually
used in directory name specifications.

qualifiers
Use this parameter (P4) to specify one or more of the CREATE/DIRECTORY
command qualifiers: /OWNER_UIC, /PROTECTION, NERSION_LIMIT. The
entire parameter must be specified as a character string; that is, within quotation
marks.

For example, to create a system directory called NEWPRODUCT, enter the
following command line:

$ VMI$CALLBACK CREATE_DIRECTORY SYSTEM NEWPRODUCT "/OWNER_UIC=[SMITH)"

The callback displays this message:

If you intend to execute this layered product on other nodes in your
VAXcluster, and you have the appropriate software license, you must
prepare the system-specific roots on the other nodes by issuing the
following command on each node (using a suitably privileged account):

$CREATE /DIRECTORY SYS$SPECIFIC: ,,,

This callback always returns VMI$_SUCCESS.

5.10.2 Creating a System-Specific Directory

5-12

To create a system-specific directory, use the following command line format:

VMl$CALLBACK CREATE_DIRECTORY SPECIFIC name [qualifiers]

Parameters on the command line indicate the following:

SPECIFIC
When you enter the keyword SPECIFIC in this parameter (P2), the product
directory is created in the system-specific root for the installing system. The
directory is not created in the common area but is created in the system root on
the disk for the installing system.

name
Use this parameter to specify the name of the system-specific directory. The
callback recognizes the keyword SPECIFIC and makes the directory a rooted
directory. Therefore, do not specify the system device designation, and do not
include the brackets usually used in directory name specifications.

VMSINSTAL Callbacks
5.10 CREATE_DIRECTORY Callback

qualifiers
Use this parameter (P4) to specify one or more of the CREATE/DIRECTORY
command qualifiers: /OWNER_UIC, /PROTECTION, NERSION_LIMIT. The
entire parameter must be specified as a character string enclosed by quotation
marks.

For example, to create a system-specific directory called OLDPRODUCT, enter
the following command line:

$ VMI$CALLBACK CREATE_DIRECTORY SPECIFIC OLDPRODUCT 11 /0WNER_UIC=[SMITH]"

In most cases, Digital recommends you create user directories rather than system­
specific directories. Create system-specific directories only where absolutely
necessary.

This callback always returns VMI$_SUCCESS.

5.10.3 Creating a Common Directory
To create a system directory in the common area only, use the following command
line format:

VMl$CALLBACK CREATE_DIRECTORY COMMON name [qualifiers]

Parameters on the command line indicate the following:

COMMON
When you enter the keyword COMMON in this parameter (P2), the product
directory is created under the system common area only.

name
Use this parameter to specify the name of the directory. The callback recognizes
the keyword COMMON and makes the directory a rooted directory. Therefore, do
not specify the system device designation, and do not include the brackets usually
used in directory name specifications.

qualifiers
Use this parameter (P4) to specify one or more of the CREATE/DIRECTORY
command qualifiers: /OWNER_UIC, /PROTECTION, NERSION_LIMIT. The
entire parameter must be specified as a character string enclosed by quotation
marks; for example, you might specify "/OWNER_UIC=[SMITH]".

The following is an example of a command line that creates the directory
[VMS$COMMON.MYPROD.LOGS]:

$ VMI$CALLBACK CREATE_DIRECTORY COMMON MYPROD.LOGS

This callback always returns VMI$_SUCCESS.

5.10.4 Creating a User Directory
To create a user directory, use the following command line format:

VMl$CALLBACK CREATE_DIRECTORY USER name [qualifiers]

5-13

VMSINSTAL Callbacks
5.10 CREATE_DIRECTORY Callback

Parameters on the command line indicate the following:

USER
When you enter the keyword USER in this parameter (P2), you must specify
whether the directory is being created on the system disk or a user disk.

Since most optional software products are associated with a particular system
root and should reside in that root, avoid creating product directories on user
disks unless absolutely necessary.

name
Use this parameter to specify the user directory. The device portion of the
specification must be a valid device specification.

qualifiers
Use this parameter (P4) to specify one or more of the CREATE/DIRECTORY
command qualifiers: /OWNER_UIC, /PROTECTION, NERSION_LIMIT. The
entire parameter must be specified as a character string; that is, within quotation
marks.

For example, to create a directory called USERl on user disk DISKl, enter the
following command line:

$ VMI$CALLBACK CREATE_DIRECTORY USER DISKl:[USERl] "/PROTECTION=(S:RD,O:RW)"

If you specify the VMI$ROOT value for the user directory, the callback alerts the
installer by displaying the following message:

This product creates system disk directory .••

This callback always returns VMI$_SUCCESS.

5.11 DELETE_FILE Callback

5-14

The DELETE_FILE callback deletes all versions of the specified file, typically an
obsolete file created by a previous installation. You may need to set privileges or
change the protection to delete certain files because the BYPASS privilege is not
enabled for callbacks.

Do not include the version number of the specified file name. All versions
of a file are deleted.

If the callback is invoked while the installation is in safety mode, the command
line is written to the defer file for subsequent execution.

If you are deleting a file that has been installed with the Install utility, the
callback uses the Install utility to delete the image from the known file data base.
(See the Open VMS System Management Utilities Reference Manual for more
information.)

Use the following command line format to invoke the DELETE_FILE callback:

VMl$CALLBACK DELETE_FILE filename

VMSINSTAL Callbacks
5.11 DELETE_FILE Callback

Parameters on the command line indicate the following:

filename
Use this parameter (P2) to enter the complete file specification (device, directory,
name, and type) of the file to be deleted. Wildcard characters may be used in the
filename.

This callback returns VMI$_SUCCESS unless it is unable to find the specified
file, in which case a VMI$_FAILURE status is returned.

5.12 FIND_FILE Callback
VMSINSTAL uses the FIND _FILE callback to locate files either in a system
directory or in the installation working directory. Typically, this callback is used
to assign a logical name to the located file or to indicate whether the file exists
and, if so, where it is located.

Files in the kit's working directory (VMI$KWD) may be referenced without using
the FIND_FILE callback, but any attempt to reference a system file without
using a callback is likely to fail.

Use the following command line format to invoke the FIND _FILE callback:

VMl$CALLBACK FIND_FILE logical filespec [default-spec] locate [symbol]

Parameters on the command line indicate the following:

logical
Use this parameter (P2) to assign a process logical name to the located file and
use this logical name in all subsequent references to the file.

filespec
Use this parameter (P3) to specify, either fully or partly, the file to be located.

default-spec
Where applicable, use this parameter (P4) to provide a default for partially
specifying the file to be located. Typically, this parameter provides a default value
for the device, directory, and type parts of the file specification. The parameter
value is then used with the previous parameter (P3) value to derive the full file
specification. If you do not use this parameter, be sure to specify a null string
(

1111
) in P3.

locate
Use this parameter (P5) to specify how the file is to be located by choosing the
appropriate characters from the following list. If you list more than one character,
do not use any intervening spaces.

• W-Look in the kit's working directory for a file with the matching name and
type.

• S-Look in the directory specified by the file specification (P3) and default
(P4) parameters.

• E-If the file is not found, the callback displays an error message and returns
VMI$_FAILURE status.

• 0-Look in the system-specific directory.

5-15

VMSINSTAL Callbacks
5.12 FIND_FILE Callback

symbol
Where applicable, use this parameter (P6) to assign a symbol whose return value
will be a single-character code from the following list:

• W-The file was found in the kit's working directory.

• . S-The file was found in the specified directory.

• E-The file was not found and an error was reported.

• ""-None of the above.

The following is an example of the command line of the FIND_FILE callback:

$ VMI$CALLBACK FIND_FILE SYSUAF VMI$ROOT:[SYSEXE]SYSUAF.DAT 1111 SE

In this example, the callback is used to search for the SYSUAF file in the system
area. A default device, directory, and type are provided in P4 and the file is
assigned the logical name SYSUAF. P5 returns an error message sequence if the
file is not found.

Note that you can also use the logical name VMI$FIND to invoke the FIND _FILE
callback. VMSINSTAL equates VMI$FIND to VMI$CALLBACK FIND_FILE, as
illustrated in the following command line:

$ VMI$FIND SYSUAF VMI$ROOT:[SYSEXE]SYSUAF.DAT SE

If the specified file is found, or if no error message is returned when the file
is not found, the callback exits with VMI$_SUCCESS. If the file specification
parameters, P3 and P4, cannot be parsed, or if the file is not found and an error
message is returned, the callback exits with VMI$_FAILURE.

5.13 GET _IMAGE_ID Callback

5-16

The GET_IMAGE_ID callback extracts the image file identification string data
for a file.

Use the following command line format to invoke the GET_IMAGE_ID callback:

VM !$CALLBACK GET _I MAG E_I D symbol filespec

Parameters on the command line indicate the following:

symbol
Use this parameter (P2) to specify a global symbol that VMSINSTAL equates to
the image file identification string from the image header section.

files pee
Use this parameter (P3) to specify the full file specification of the file for which
you want the file identification string.

The following is an example of a command line that invokes the GET_IMAGE_ID
callback:

$.VMI$CALLBACK GET_IMAGE_ID TST_IMAGE_ID VMI$ROOT:[SYSEXE]RDO.EXE

This callback returns VMI$_SUCCESS if the file is found; if the file is not found,
it returns VMI$_FAILURE.

VMSINSTAL Callbacks
5.14 GET_PASSWORD Callback

5.14 GET _PASSWORD Callback
The GET_PASSWORD callback obtains a system generated or installer specified
password. The password is returned through a global symbol. Passwords are not
echoed on the installer's terminal.

This callback should be used in the question portion of the product installation
procedure.

Use the following command line format to invoke the GET_PASSSWORD
callback:

VMl$CALLBACK GET_PASSWORD symbol [keyword] [min-size]

Parameters on the command line indicate the following:

symbol
Use this parameter (P2) to specify a global symbol that VMSINSTAL defines with
the obtained password. If a password cannot be obtained, the symbol is defined
as the null string.

keyword
Use this parameter (P3) to make the appropriate selection:

• AUTO-Use this keyword to indicate that you want the system to generate
the password to be used. The password selected is not made known to the
installer. This is the default if you do not specify a keyword.

• SPECIFY-Use this keyword to indicate that you want the installer to specify
the password to be used. The prompt and password will not be entered into
the auto-answer file if one is being created. This prompt always requires
input.

min-size
Use this parameter (P4) to specify the minimum length of the password. For
AUTO, this must be a number from 1 to 10; the default value is 10. For
SPECIFY, this must be a number from 1 to 31; the default value is 8.

The GET_PASSWORD callback always returns VMS$_SUCCESS.

5.15 GET_SYSTEM_PARAMETER Callback
The GET_SYSTEM_PARAMETER callback returns the current value of any
system (SYSGEN) parameter by using the F$GETSYI lexical function. (See the
Open VMS System Management Utilities Reference Manual for a list of system
parameters, and the Open VMS DCL Dictionary for more information on the
F$GETSYI lexical function.)

Use the following command line format to invoke the GET_SYSTEM_
PARAMETER callback:

VMl$CALLBACK GET _SYSTEM_PARAMETER symbol/filename_type name [option]

Parameters on the command line indicate the following:

symbol/filename_type
Use this parameter (P2) to equate a global symbol to the value of the SYSGEN
parameter. If you specify the T option in P4, use parameter (P2) to specify a file
name.

5-17

VMSINSTAL Callbacks
5.15 GET_SYSTEM PARAMETER Callback

name
Use this parameter (P3) to specify the full name of the SYSGEN parameter being
evaluated. If you specify the T option in P4, enter a null string (11 11

) in P3.

option
Where applicable, use this parameter (P4) to specify options by entering the
appropriate option letter. Currently, the only available option for this callback is
the T option.

Use the T option to supply an input file (filename_type in P2) containing a list of
global symbols and names. The input file must conform to the following rules:

• The file must reside in VMI$KWD.

• Each symbol and name must be separated by a space.

• Each symbol and name entry must be on a separate line in the input file.

• You can include comment lines and blank lines in the input file.

The following is an example of the contents of an input file:

fac_GBL GBLPAGES fac_NODE SCSNODE fac_ VAXC VAXCLUSTER

Following are two examples of the command line for the GET_SYSTEM_
PARAMETER callback:

$ VMI$CALLBACK GET_SYSTEM_PARAMETER TST_MAX WSMAX

In this example, the symbol TST_MAX is equated to the value of the SYSGEN
parameter WSMAX.

$ VMI$CALLBACK GET_SYSTEM_PARAMETER INPUT.DAT 1111 T

The preceding example shows how to use the T option to specify an input file.

This callback returns VMI$_SUCCESS. If the input file is not found, it returns
VMI$_FAILURE.

5.16 MESSAGE Callback

5-18

The MESSAGE callback displays a message in the standard Open VMS format on
the terminal controlling the installation.

Use this callback only to display important messages about the status of the
installation. To display large blocks of tutorial text, direct output to SYS$INPUT.

Use the following command line format to invoke the MESSAGE callback:

VMl$CALLBACK MESSAGE severity_code id text

Parameters on the command line indicate the following:

severity _code
Use this parameter (P2) to specify the severity level for the message. Following
are the severity level choices:

• S-severe

• I-information

• W-warning

• E-error

VMSINSTAL Callbacks
5.16 MESSAGE Callback

id
Use this parameter (P3) to specify the message identification. The message
identification enables cross-referencing in the product installation guide.

text
Use these parameters (P4 through PB) to specify (in quotation marks) up to
five message lines. The first line is prefixed with a percent sign (%), and the
remaining lines are prefixed with a hyphen (-). The hyphen serves as a line
delimiter. Use P5, P6, P7, and P8 as quoted parameters for additional message
lines.

Following is an example of the command line for the MESSAGE callback:

$ VMI$CALLBACK MESSAGE W NOFILE "File does not exist" "Please read the manual"

The preceding example produces the following output for a product named
PAIXOlO:

%PAIX010-W-NOFILE, File does not exist
-PAIXOlO-W-NOFILE, Please read the manual

This callback always returns VMI$_SUCCESS.

5.17 PATCH_IMAGE Callback {VAX Only)
On VAX systems, the PATCH_IMAGE callback patches existing native-mode
images as part of the product installation., For each patch, the installation
kit must contain a patch file that includes the commands needed to patch the
specified image. Specify the image to be patched either in the image parameter
or as a comment on the first line of the patch file.

The PATCH_IMAGE callback invokes the following callbacks:

• UPDATE_FILE-to update an existing patch journal file

• PROVIDE_FILE-to store a newly created patch journal file in a system
directory

• PROVIDE_IMAGE-to store the patched image in a system directory

Use the following command line format to invoke the PATCH_IMAGE callback:

VMl$CALLBACK PATCH_IMAGE logical patch_file [image] [options]

Parameters on the command line indicate the following:

logical
Use this parameter (P2) to assign a process logical name to the image being
patched. Use this logical name in all subsequent references to the file.

patch_file
Use this parameter (P3) to enter a partial file specification of the patch file, its
name and type. The patch file must include only the commands needed to patch
the image. Since the device and directory are not included in the file specification,
the file must reside in the kit's working directory. If disk space is critical, the file
can be deleted upon completion of the callback.

image
Where applicable, use this parameter (P4) to specify the image being patched. If
the image is specified as a comment in the patch file, enter a null string (11 11

) in
this parameter.

5-19

VMSINSTAL Callbacks
5.17 PATCH_IMAGE Callback (VAX Only)

options
Where applicable, use this parameter (P5) to specify options for patching and
subsequent disposition of the image. Select the options from the following list of
characters. If you specify multiple options, do not use spaces between them.

• I-Use this option to move a shareable image's symbol table to the system's
shareable image library (SYS$LIBRARY:IMAGELIB.OLB) when the patch is
completed.

• J-Use this option to create a journal file of the patch or update an existing
journal file in the same directory as the image.

• K-Use this option to keep old copies of the image file (do not purge).

• 0-Use this option to move the file to SYS$SPECIFIC. However, you should
only use this option if absolutely necessary. If your product requires the
option, be sure to use the TELL_ QA callback to inform the Digital Open VMS
Software Quality Management group.

• R-U se this option to reinstall the image when the patch is completed.

The options can either be specified in P5 of the call to PATCH_IMAGE, or be
included as an argument on the first line of the patch file using the following
format:

! filespec options

You must separate the image name and the options with a space. When this
format is used, the option list on the first line of the patch file is merged with the
one specified in the callback, if applicable.

Following is an example of the command line for the PATCH_IMAGE callback:

$ VMI$CALLBACK PATCH_IMAGE NEWIMAGE IMAGE.FIX

This callback returns VMI$_SUCCESS. It returns VMI$_FAILURE if the patch
file or the image is not found or if the calls to UPDATE_FILE or PROVIDE_FILE
return failure status.+

5.18 PRINT _FILE Callback

5-20

The PRINT_FILE callback queues a print job to SYS$PRINT. The print job is
named after the product, and multiple copies can be specified.

Use the following command line format to invoke the PRINT_FILE callback:

VMl$CALLBACK PRINT _FILE filespec [copies]

Parameters on the command line indicate the following:

files pee
Use this parameter (P2) to enter the specification of the file to be printed. Do not
include a node name in the file specification.

copies
Where applicable, use this parameter (P3) to specify the number of copies to be
printed. Its default value is 1.

Following is an example of the command line for the PRINT_FILE callback:

$ VMI$CALLBACK PRINT_FILE VMI$KWD:CHECKTRAN.TXT 3

This callback returns VMI$_SUCCESS unless the callback cannot find the file.

VMSINSTAL Callbacks
5.19 PRODUCT Callback

5.19 PRODUCT Callback
When a layered product requires additional product-specific callbacks, include
a command procedure .in SYS$UPDATE that includes those product-specific
callbacks. The PRODUCT callback provides access to these callbacks by invoking
the command procedure. The callback command procedure acts as an extension
of VMSINSTAL and is structured like it.

Use the following command line format to invoke the PRODUCT callback:

VMl$CALLBACK PRODUCT procedure:callback parameter ...

Parameters on the command line indicate the following:

procedure: callback
Use this parameter (P2) to specify the command procedure (default type is COM)
in SYS$UPDATE that contains the product-specific callback, together with the
name of the callback itself. For example, the entry might be as follows:

$ VMI$CALLBACK PRODUCT CHECKTRAN:FIND_CHECK parameter •••

parameter ...
Use the remaining parameters on the command line to pass the appropriate
values to the desired product-specific callback.

The status returned by the PRODUCT callback is the status returned by the
product-specific callback. Conventions for coding a product-specific callback
procedure are given in Appendix C.

5.20 PROVIDE_DCL_COMMAND Callback
The PROVIDE_DCL_COMMAND callback either adds a command to the system
DCL command tables and the command tables for the current process or replaces
an existing DCL command. The callback does this by creating an updated
version of DCLTABLES.EXE in the installation working directory using the
appropriate command language description (CLD) file, which you must include in
the installation kit.

On AXP systems, PROVIDE_DCL_CALLBACK checks for the logical definition
DCLTABLES. If a logical definition for DCLTABLES is present, this callback uses
the table defined by this logical. +

On both AXP and VAX systems, when the installation progresses beyond safety
mode, the callback moves the updated version of DCLTABLES.EXE to the system
directory.

The callback can be invoked as often as needed to add more commands. If the
callback finds an existing version of DCLTABLES.EXE in the working directory,
it assumes the image was created by a previous call that has already provided for
transfer of the image when the installation is completed. In this way, multiple
updates can be made to the DCLTABLES.EXE image during the installation
without requiring redundant transfers of the image to the system directory.

Use the following command line format to invoke the PROVIDE_DCL_
COMMAND callback:

VMl$CALLBACK PROVIDE_DCL_COMMAND name_type

5-21

VMSINSTAL Callbacks
5.20 PROVIDE_DCL_COMMAND Callback

Parameters on the command line indicate the following:

name_type
Use this parameter (P2) to enter the name and type of the CLD file used to
update the tables. Only the name and type are required because the file must
reside in the installation working directory. The file can be deleted when the
callback returns if space is critical.

Following is an example of the command line for the PROVIDE_DCL_COMMAND
callback:

$ VMI$CALLBACK PROVIDE_DCL_COMMAND CHECKTRAN.CLD

The callback returns VMI$_SUCCESS unless the CLD file or DCLTABLES.EXE
is not found, or where applicable, the PROVIDE_IMAGE callback returns failed
status.

5.21 PROVIDE_DCL_HELP Callback

5-22

The PROVIDE_DCL_HELP callback adds help, appropriate for the installed
product, to the DCL help library (SYS$HELP:HELPLIB.HLB). The callback does
this by having the UPDATE_LIBRARY callback update the library using a help
file provided with the kit.

On AXP systems, PROVIDE_DCL_HELP checks for the logical definition
HELPLIB. If a logical definition for HELPLIB is present, this callback uses the
table defined by this logical. +

On AXP and VAX systems, multiple help entries can be added to the library using
this callback as needed, but only top-level help entries are allowed.

Use the following command line format to invoke the PROVIDE_DCL_HELP
callback:

VMl$CALLBACK PROVIDE_DCL_HELP name_type

The parameters on the command line indicate the following:

name_type
Use this parameter (P2) to specify the name and type of the file used to update
the library. The file must reside in the kit's working directory and can be deleted
after the callback returns.

Following is an example of the command line for the PROVIDE_DCL_HELP
callback:

$ VMI$CALLBACK PROVIDE_DCL_HELP CHECKTRAN.HLP

The PROVIDE_DCL_HELP callback cannot be invoked while the help library is
in use. If the library is in use, PROVIDE_DCL_HELP tries to access the library
for five minutes; a message that states that the library is in use appears on the
screen.

On VAX systems, if the DCL help library is still in use at the end of five minutes,
PROVIDE_DCL_HELP exits with a failure status.+

On AXP systems, if the DCL help library is still in use at the end of five
minutes, PROVIDE_DCL_HELP provides new help files and informs the installer.
PROVIDE_DCL_HELP then exits with a success status.+

On both AXP and VAX systems, this callback exits with the status returned by
the UPDATE_LIBRARY callback.

VMSINSTAL Callbacks
5.22 PROVIDE_FILE Callback

5.22 PROVIDE_FILE Callback
The PROVIDE_FILE callback adds a new file to the system from the product kit
by accessing a source file in the installation working directory.

If the installation is in safety mode, the addition is deferred until the installation
progresses beyond safety mode.

The new file takes the name and type of the source file. If the system previously
included a file with the same name, the new file becomes the current version.

Note ~~~~~~~~~~~~~

You cannot issue the PROVIDE_FILE callback more than once per file
unless you specify the C option described in this section under Options.
Do not use this callback to add new product images; instead, use the
PROVIDE_IMAGE callback. See Section 5.23 for more information on the
PROVIDE_IMAGE callback.

Use the following command line format to invoke the PROVIDE_FILE callback:

VMl$CALLBACK PROVIDE_FILE logical filename_type destination [options]

Parameters on the command line indicate the following:

logical
Use this parameter (P2) to assign a process logical name to the new file. Use the
logical name in all subsequent references to the file. If you specify the T option in
P5, enter a null string ("") in P2 because the logical name assignment for each
file is included in the input file.

filename_type
Use this parameter (P3) to specify the source file. Only the name and type are
required because the procedure assumes that the file resides in the installation
working directory. Do not specify a version number. If you specify the T option in
P5, enter the name of the input file in P3.

destination
Use this parameter (P4) to specify the disk and directory name where the new file
is to reside. You must specify the null string ("") for this parameter, if you also
specify the T option.

options
Where applicable, use this parameter (P5) to specify options using the appropriate
letters from the following list. If you list more than one option, do not use
intervening spaces between the selected letters.

• C-U se this option if the file must reside in more than one location. When
you specify option C, the file is copied from VMI$KWD to its destination. A
copy of the file remains in VMI$KWD.

• K-Use this option to keep old copies of the file (do not purge).

• 0-Use this option to add the file to SYS$SPECIFIC. You should only use
this option if absolutely necessary. If your product requires the option, be
sure to use the TELL_ QA callback to inform the Digital Open VMS Software
Quality Management group.

5-23

VMSINSTAL Callbacks
5.22 PROVIDE_FILE Callback

• T-Use this option to specify an input file that contains a list of logical
names for the source files and their respective destinations. This option offers
faster file processing; however, the system does not return file-specific error
messages. That is, if there is an error in one of the files listed in the input
file, the system only returns the general message "File Not Found" rather
than identifying the specific file that contains the error.

The input file must conform to the following rules:

The file must reside in VMI$KWD.

Each source file entry must use the same format as the command line, as
follows:

logical filename_type destination [options]

Each source file entry must be on a separate line in the input file.

You can include comment lines and blank lines in the input file.

The following is an example of the contents of an input file for a product
named TEST:

! PROVIDE FILE data file
TEST FREDE FREDE.TXT VMI$ROOT:[SYSEXE] C
TEST-FREDC FREDC.COM VMI$ROOT:[SYSUPD] K
TEST-FREDH FREDH.DAT VMI$ROOT:[SYSHLP]
TEST=FREDM FREDM.NTS VMI$ROOT:[SYSLIB]

Following are two examples of the command line for the PROVIDE_FILE
callback:

$ VMI$CALLBACK PROVIDE FILE CHECKTRAN CHECKTRAN.OLD -
VMI$ROOT:[SYSLIB] CK - -

The preceding example shows how to specify more than one option in the
command line.

$ VMI$CALLBACK PROVIDE _FILE 1111 INPUT. DAT 1111 T

The preceding example shows how to use the T option to specify an input file.

The callback returns VMI$_SUCCESS unless the new file is not found in the
working directory or the transfer fails.

5.23 PROVIDE_IMAGE Callback

5-24

The PROVIDE_IMAGE callback adds a new image file to the system from the
product kit by accessing a source image file in the installation working directory.

If the installation is in safety mode, the addition is deferred until the installation
progresses beyond safety mode.

The new file takes the name and type of the source image file. If the system
previously included an image file with the same name, the new file becomes the
current version. If a previous version of the file was known by the Install utility,
the new version will replace it.

You cannot issue the PROVIDE_IMAGE callback more than once per image
unless you specify the C option described in this section under Options.

The file can be either an executable image or a shareable (nonexecutable)
image. If it is a shareable image, you can specify the I option in P5 to direct
a copy of the image's system table to the system's shareable image library
(SYS$LIBRARY:IMAGELIB.OLB).

VMSINSTAL Callbacks
5.23 PROVIDE_IMAGE Callback

The E option provides for patching outstanding Engineering Change Orders
(ECOs) into the image, if applicable. This function should be used very carefully
and only when necessary. It is preferable to use the PATCH_IMAGE callback for
this purpose or to add images that do not require patching.

Use the following command line format to invoke the PROVIDE_IMAGE callback:

VMl$CALLBACK PROVIDE_IMAGE logical name_type destination [options] [ECO_list]

Parameters on the command line indicate the following:

logical
Use this parameter (P2) to assign a process logical name to the new image file.
Use the logical name in all subsequent references to the file. If you specify the T
option in P5, use a null string (11 11

) in P2 because the logical name assignment
for each file is included in the input file.

name_type
Use this parameter (P3) to specify the name and type of the source image file.
Only the name and type are required because the callback assumes that the file
resides in the installation working directory. Do not specify a version number. If
you specify the T option in P5, enter the name of the input file in P3.

destination
Use this parameter (P4) to specify the disk and directory where the new image
file is to reside. You must specify the null string ("") for this parameter if you also
specify the T option.

options
Where applicable, use this parameter (P5) to specify options using the appropriate
letters from the following list. If you list more than one option, do not use spaces
between the selected letters.

• C-U se this option if the file must reside in more than one location. When
you specify option C, the file is copied from VMI$KWD to its destination. A
copy of the file remains in VMl$KWD.

• E-Outstanding ECOs listed in the next parameter (P6) are to be patched
dynamically into the new image file. The callback builds a temporary file
containing the patch commands in the following form:

SET ECO nnn
UPDATE

SET ECO nnn
UPDATE

It extracts the variable values (nnn) from the ECO list in P6. Then the
completed file is used as the input to the Patch utility, which sets the ECO
numbers in the specified image. Only ECO numbers are set. You must use
the PATCH callback to apply instruction or data patches.

• I-Use this option to move a shareable image's symbol table to the system's
shareable image library (SYS$LIBRARY:IMAGELIB.OLB).

5-25

VMSINSTAL Callbacks
5.23 PROVIDE_IMAGE Callback

5-26

• K-Use this option to keep old copies of the image file (do not purge).

• 0-Use this option to move the file to SYS$SPECIFIC. However, you should
only use this option if absolutely necessary. If your product requires the
option, be sure to use the TELL_ QA callback to inform the Digital Open VMS
Software Quality Management group.

• T-Use this option to specify an input file that contains a list oflogical names
for the source image files and their respective destinations. This option offers
faster file processing; however, the system does not return file-specific error
messages. That is, if there is an error in one of the files listed in the input
file, the system only returns the general message "File Not Found" rather
than identifying the specific file that contains the error.

The input file must conform to the following rules:

The file must reside in VMI$KWD.

Each source file entry must use the same format as the command line, as
follows:

logical filename_type destination [options] [ECO_list]

Each source file entry must be on a separate line in the input file.

You can include comment lines and blank lines in the input file.

The following is an example of the contents of an input file for the product
named TEST:

! PROVIDE IMAGE data file
TEST FRED-FRED.EXE VMI$ROOT:[SYSEXE] CKE 1,2,3
TEST-RALPH RALPH.EXE VMI$ROOT:[SYSEXE]
TEST=JULIE JULIE.EXE VMI$ROOT:[SYSEXE] KO

ECO_list
Where applicable, use this parameter (P6) to enter a comma-separated list of
ECOs that you want applied to the new image file. The ECO numbers are
maintained in the image header and can be examined using the DCL command
ANALYZE/IMAGE. (See the Open VMS DCL Dictionary for more information on
the ANALYZE/IMAGE command.)

The callback ignores this parameter if P5 does not specify the E option.

Following are two examples of the command line for the PROVIDE_IMAGE
callback:

$ VMI$CALLBACK PROVIDE IMAGE TEST TEST.EXE -
VMI$ROOT:[SYSMSG] KE 1~2,3 -

This example includes options K and E, and ECOs 1, 2, and 3.

$ VMI$CALLBACK PROVIDE_IMAGE 1111 INPUT.DAT 1111 T

This example shows how to use the T option to include an input file.

This callback returns VMI$_SUCCESS unless the callback cannot find the source
image file or a subordinate callback fails.

VMSINSTAL Callbacks
5.24 RENAME_FILE Callback

5.24 RENAME_FILE Callback
The RENAME_FILE callback changes the file name and type for all versions of
the designated file. You can use this callback to rename a file within a directory
or to relocate a file in another directory on the same device by changing its
directory specification.

You cannot use the RENAME_FILE callback to relocate a file from one device to
another.

If the installation is in safety mode, the name change is deferred until the
installation progresses beyond safety mode.

Use the following command line format to invoke the RENAME_FILE callback:

VMl$CALLBACK RENAME_FILE filespec new_filespec

The parameters on the command line indicate the following:

files pee
Use this parameter (P2) to enter the complete specification of the file being
renamed.

new_filespec
Use this parameter (P3) to specify the new directory, name and type of the file
being renamed. You may omit the directory specification if the file will remain in
the same directory. Wildcards may be used.

Following is an example of the command line for the RENAME_FILE callback:

$ VMI$CALLBACK RENAME_FILE VMI$KWD:CHECKTRAN.OLD CHECKTRAN.NEW

The callback returns VMI$_SUCCESS unless it cannot find the file.

5.25 RESTORE_SAVESET Callback
Where applicable, use the RESTORE_SAVESET callback to restore secondary
save sets. Secondary save sets are recommended for installations where only
part of the product is being installed, or for larger products where it is more
practical to package the product in multiple save sets. Using secondary save sets
also ensures that the CHECK_NET_UTILIZATION callback functions properly.
Selective structuring of the save sets can reduce the peak disk utilization and
simplify the installation.

The following conventions govern the use of multiple save sets:

• The save sets must be restored in alphabetical order, regardless of whether all
of the save sets are restored. Note that save set A is automatically restored
first.

• All of the save sets for a particular product must be restored from the same
physical device and directory. For example, if the primary save set is restored
from MFAO, all of the remaining save sets must be restored from MFAO. Save
sets can span multiple volumes, however.

• The installation command procedure KITINSTAL.COM must be part of the
primary save set (A).

If the distribution media is magnetic tape, the callback will rewind the
distribution media once to look for a save set. If the save set is not found
following the rewinding of the tape, the callback returns VMI$_FAILURE.

5-27

VMSINSTAL Callbacks
5.25 RESTORE_SAVESET Callback

Restored files are assigned owner UIC [1,4] but retain the protection assigned
them when they were saved. This protection should be the same as the default
value for the installation process. If applicable, the owner UIC and protection
should be changed after files are restored, using the SECURE_FILE callback. If
the RSP (restore save set and pause) option is specified, the procedure will pause
if appropriate.

Use the following command line format to invoke the RESTORE_SAVESET
callback:

VMl$CALLBACK RESTORE_SAVESET saveset [option]

Parameters on the command line indicate the following:

saveset
Use this parameter (P2) to identify the save set you want to restore. The
secondary save set is identified using the file type B, the next save set using C,
and so forth.

For the first 26 save sets, use the alphabetic characters A through Z as file types.
If your product requires more than 26 save sets, the addition file types must
begin with VMI_0027, VMI_0028, and so forth up to a maximum of VMI_9999.

option
Where applicable, use this parameter (P3) to specify options by entering the
appropriate option letter. Currently, the only available option for this callback is
the N option (next volume).

The N option is used to indicate that the save set begins on the next volume of
the distribution volume set, and the callback responds by prompting for the next
volume. Even if you do not specify this option, the callback may prompt for the
next volume if it cannot locate the save set on the current volume.

Following is an example of the command line for the RESTORE_SAVESET
callback:

$ VMI$CALLBACK RESTORE_SAVESET B N

The callback returns VMI$_SUCCESS if it successfully restores the save set. If
the attempt is unsuccessful, the callback returns VMI$_FAILURE and displays
the appropriate message from the following list:

• Save set cannot be restored.

• Null save-set name specified to RESTORE_SAVESET.

• Illegal save-set name specified to RESTORE_SAVESET.

5.26 RUN_IMAGE Callback

••
5-28

Use the RUN_IMAGE callback when your product installation requires running
an image. If the image requires input, provide an input file in the kit working
directory because interactive input is not permitted.

Where applicable, the callback defines SYS$INPUT as the input file before it
executes the image.

On VAX systems, use the following command line format to invoke the RUN_
IMAGE callback:

VMl$CALLBACK RUN_IMAGE image-spec [input-file] +

VMSINSTAL Callbacks
5.26 RUN_IMAGE Callback

On AXP systems, use the following command line format to invoke the RUN_
IMAGE callback:

VMl$CALLBACK RUN_IMAGE image-spec [input-file] [option] +

Parameters on the command line indicate the following:

image-spec
Use this parameter (P2) to specify the required image. If the image is not in the
kit working directory, use a full file specification to identify it.

input-file
Use this parameter (P3) to specify a file to provide inputs to the image. During
image execution, the callback defines this file as SYS$INPUT.

option
On AXP systems, use this parameter (P4) to specify when image execution should
occur. Valid values are:

• D-Image execution is deferred if the installation is in safety mode.

• I-Image executes immediately. This is the default.

The following is an example of an Open VMS AXP command line for the RUN_
IMAGE callback:

$ VMI$CALLBACK RUN_IMAGE CHECKTRAN.EXE 1111 D+

If the image or a specified input file is not found, the callback exits returning
VMI$_FAILURE; otherwise, it returns VMI$_SUCCESS.

5.27 SECURE_FILE Callback
The SECURE_FILE callback is used to specify the UIC and file protection code
for product files. Typically, you use this callback to restore special security values
to a file that has been assigned default values by another callback.

If the installation is in safety mode, this action is deferred until the installation
has progressed beyond safety mode.

When the callback looks for the specified file, it looks first in the installation
working directory. It then goes to the system area to ensure the proper protection
of the file regardless of the safety mode.

Use the following command line format to invoke the SECURE_FILE callback:

VMl$CALLBACK SECURE_FILE filespec [owner] [protection]

Parameters on the command line indicate the following:

filespec
Use this parameter (P2) to enter the specification of the file being assigned special
security.

owner
Where applicable, use this parameter (P3) to assign the file a specific owner UIC
value using the standard [group,member] format.

5-29

VMSINSTAL Callbacks
5.27 SECURE_FILE Callback

protection
Where applicable, use this parameter (P4) to assign the file a specific protection
code. Use the standard format, but omit the parentheses.

Following is an example of the command line for the SECURE_FILE callback:

$ VMI$CALLBACK SECURE_FILE VMI$ROOT:CHECKTRAN.DAT [111,333] S:RED,O:RWED,G,W

This callback returns VMI$_SUCCESS unless it cannot find the file.

5.28 SET Callback
Use the SET callback to specify installation conditions by supplying the
appropriate SET option in parameter 2. Currently, VMSINSTAL provides
the following SET options:

• SETACL

• SET ASK_CASE

• SET FILE (AXP only)

• SET IVP

• SET POSTINSTALL

• SET PRODUCT_NAME (AXP only)

• SET PURGE

• SET REBOOT

• SET SAFETY

• SET SEMANTICS (AXP only)

• SET SHUTDOWN

• SET STARTUP

The options are invoked using SET as the first parameter and the appropriate
option name (for example, IVP) as the second parameter.

5.28.1 SET ACL Option

5-30

The SET ACL option invokes the DCL command SET ACL to modify the access
control list (ACL) of a device, directory, or file. For information about modifying
ACLs, see the. SET ACL command in the Open VMS DCL Dictionary.

Use the following command line format to invoke the SET ACL option:

VMl$CALLBACK SET AGL object_type aces object_name qualifiers

Parameters on the command line indicate the following:

object_type
Use this parameter (P3) to specify the object for which you are modifying an ACL.
You can specify the following objects:

• DEVICE-To modify the ACL of a device.

• DIRECTORY-To modify the ACL of a directory.

• FILE-To modify the ACL of a file.

VMSINSTAL Callbacks
5.28 SET Callback

aces
Use this parameter (P4) to list the ACEs that you are adding or modifying.
Enclose the list with quotation marks.

object_name
Use this parameter (P5) to specify the name of the device, directory, or file for
which you are modifying the ACL. If you specify multiple file names or directory
specifications, separate them with commas. You cannot specify multiple device
names.

qualifiers
Use this parameter (P6) to list qualifiers. You can specify any of the qualifiers
available for the DCL command, SET ACL. Enclose the qualifier list with
quotation marks.

Following is an example of the command line for the SET ACL option:

$ VMI$CALLBACK SET ACL FILE -
_$ 11 (identifier=NODEA$IDENT,ACCESS=NONE) 11 VMI$ROOT:[SYSUPD]FRED.DAT 1111

In this example, the SET ACL option adds an ACE to the ACL for the file
FRED.DAT.

This callback returns VMI$_SUCCESS if the ACL is successfully modified. The
callback returns VMI$_FAILURE if the ACL is not successfully modified.

5.28.2 SET ASK_CASE Option
The SET ASK_CASE option determines the default case (for example, upper or
lower) in which input from the installer is returned to the installation procedure.
By default, input is returned in uppercase.

You can override the default case for a specific ASK callback by specifying the
appropriate ASK option (U, L, or M).

Use the following command line format to invoke the SET ASK_CASE option:

VMl$CALLBACK SET ASK_CASE case

case
Use this parameter (P3) to specify the default case. You can specify the following
values for case:

• UPPER-When you specify UPPER, all input is returned in uppercase.

• LOWER-When you specify LOWER, all input is returned in lowercase.

• MAINTAIN-When you specify MAINTAIN, all input is returned in the same
case as that entered by the installer.

The SET ASK_CASE option always returns VMI$_SUCCESS.

5.28.3 SET_FILE Option (AXP Only)
On AXP systems, the SET_FILE option applies the passed qualifiers for the
specified file.

Use the following command line format to invoke the SET_FILE option:

SET _FILE file-spec qualifiers [options]

5-31

VMSINSTAL Callbacks
5.28 SET Callback

Parameters on the command line indicate the following:

file_spec
Use this parameter (P2) to specify the full file specification.

qualifiers
Use this parameter (P3) to specify qualifiers. Enclose a list of qualifiers in
quotation marks.

options
Where applicable, use this parameter (P4) to specify the following option.

• T-Use this option to indicate that the file-spec parameter represents a data
file that contains the input file and qualifier information. This option offers
faster file processing; however, the system does not return file-specific error
messages. That is, if there is an error in one of the files listed in the input
file, the system only returns the general message "File Not Found" rather
than identifying the specific file that contains the error.

The input file must conform to the following rules:

The file must reside in VMI$KWD.

Each source file entry must use the same format as the command line, as
follows:

logical filename_type destination [options]

Each source file entry must be on a separate line in the input file.

You can include comment lines and blank lines in the input file.

The following is an example of the contents of an input file for a product named
TEST:

! PROVIDE FILE data file
TEST FREDE FREDE.TXT VMI$ROOT:[SYSEXE] C
TEST-FREDC FREDC.COM VMI$ROOT:[SYSUPD) K
TEST-FREDH FREDH.DAT VMI$ROOT:[SYSHLP]
TEST=FREDM FREDM.NTS VMI$ROOT:[SYSLIB)

Following are examples of command lines that invoke the SET_FILE option:

$ VMI$CALLBACK SET FILE VMI$ROOT:[SYSUPD]DUMMY.DAT "/VERSION=2/ERASE"
$ VMI$CALLBACK SET=FILE FILE-LIST.DAT "" T

This SET_FILE option returns VMI$_FAILURE if the file is not found; otherwise,
it returns VMI$_SUCCESS. +

5.28.4 SET IVP Option

5-32

The SET IVP option specifies whether an Installation Verification Procedure (IVP)
is to be used with the product installation, assuming that the product includes an
IVP. If you do not enter a SET IVP command, VMSINSTAL specifies that the IVP
does not run.

Use the following command line format to invoke the SET IVP option:

VMl$CALLBACK SET IVP keyword [help]

VMSINSTAL Callbacks
5.28 SET Callback

The parameters on the command line indicate the following:

keyword
Use this parameter (P3) to make the appropriate selection from the following list:

• ASK-Use this keyword to prompt the installer for a decision on whether
to run the IVP. If help is specified in P4, the prompt is prefaced by a help
message.

The IVP will run if the installer responds by entering a YES or presses the
Return key.

• YES-Use this keyword to specify that the IVP will run at the completion of
the installation.

• NO-Use this keyword to specify that the IVP will not run at the completion
of the installation.

help
Enter the letter H in this parameter (P4) if you want to precede the ASK prompt
with the following help message:

Most products provide an Installation Verification Procedure (IVP),
which verifies the completeness and accuracy of the installation.
You may wish to run the IVP immediately after installation.

The SET IVP option always returns VMI$_SUCCESS.

5.28.5 SET POSTINSTALL Option
Use the SET POSTINSTALL option when you want a product's KITINSTAL.COM
procedure to be called after all files have been moved to their target directories.
This callback is useful when you must have all new files in place before
completing an installation. By default, there is no postinstall phase.

This callback passes the string VMI$_POSTINSTALL to the KITINSTAL.COM
procedure in Pl. The KITINSTAL.COM procedure is executed immediately before
the IVP phase.

Use the following command line format to invoke the SET POSTIN STALL option:

VMl$CALLBACK SET POSTINSTALL keyword

keyword
Use this parameter (P3) to make the appropriate selection from the following list:

• YES-Use this keyword to indicate the postinstall phase will be called when
all files have been moved.

• NO-Use this keyword to disable the postinstall phase.

The SET POSTINSTALL option always returns VMI$_SUCCESS.

5.28.6 SET PRODUCT _NAME Option (AXP Only)
On AXP systems, the SET PRODUCT_NAME option defines the global symbol
VMI$PRODUCT_NAME as the value of the passed parameter. Use this value in
the name column of the history file.

Use the following command line format to invoke the SET PRODUCT_NAME
option:

SET PRODUCT _NAME string

5-33

VMSINSTAL Callbacks
5.28 SET Callback

Parameters on the command line indicate the following:

string
Use this parameter (P3) to specify a string that represents the value you want
to assign to VMI$PRODUCT_NAME. This string can be one word or several
words. If the string is more than one word, or if the string is case-sensitive, this
parameter must be passed to VMI$PRODUCT_NAME as a quoted string.

Following are examples of command lines for the SET PRODUCT_NAME option:

$ VMI$CALLBACK SET PRODUCT NAME RDB
$ VMI$CALLBACK SET PRODUCT=NAME "OpenVMS AXP Rdb"

This option always returns VMI$_SUCCESS. +

5.28.7 SET PURGE Option

5-34

The SET PURGE option specifies whether files replaced during the installation
are to be purged. Files accessed by callbacks that specify the KEEP (K)
option are not purged by the installation procedure, regardless of whether
the SET PURGE option was selected. If you do not use the SET PURGE option,
VMSINSTAL purges replacement files.

Use the following command line format to invoke the SET PURGE option:

VMl$CALLBACK SET PURGE keyword [help]

Parameters on the command line indicate the following:

keyword
Use this parameter (P3) to make the appropriate selection from the following list:

• ASK-Use this keyword to prompt the installer for a decision on whether
replaced files are to be purged. If help is specified in P4, the prompt is
prefaced by a help message.

Replaced files will be purged if the installer responds with YES or presses the
Return key.

• YES-Use this keyword to specify that the replaced files will be purged.

• NO-Use this keyword to specify that the replaced files will not be purged.

help
Enter the letter Hin this parameter (P4) if you want to precede the ASK prompt
with the following help message:

During this installation, new files will be provided to replace existing
versions. You may purge older versions to save disk space, or keep
them if you feel they may be of use. Purging is recommended.

The SET PURGE option always returns VMI$_SUCCESS.

~~~~~~~~~~~~- Note ~~~~~~~~~~~~-

The SET PURGE option must precede all PROVIDE callbacks. 



5.28.8 SET REBOOT Option 

VMSINSTAL Callbacks 
5.28 SET Callback 

The SET REBOOT option, which was supported in previous releases of 
VMSINSTAL, is obsolete. The SET SHUTDOWN option should be used in 
its place (see Section 5.28.11). 

On AXP systems, VMSINSTAL issues a message stating that SET REBOOT is 
obsolete and automatically calls SET SHUTDOWN.+ 

5.28.9 SET SAFETY Option 
The SET SAFETY option establishes the safety level of the installation; that is, 
the installation's ability to recover from a system failure. Because implementation 
of the safety feature requires a higher peak utilization of disk space, parameters 
should be selected only after weighing the need for installation safety against 
anticipated space availability. 

The SET SAFETY option also records the level of safety in the marker file to 
establish appropriate crash recovery procedures. 

If you omit this option, VMSINSTAL automatically specifies safety mode 
unconditionally; that is, without regard to available disk space. If the system 
does not have sufficient disk space to support it, the installation terminates with 
failure status. 

Use the following command line format to invoke the SET SAFETY option: 

VMl$CALLBACK SET SAFETY keyword [peak] 

Parameters on the command line indicate the following: 

keyword 
Use this parameter (P3) to specify the required safety level for the installation 
from the following list. Note that an entry is required in P4 if you select 
CONDITIONAL. 

• YES-Specifies safety mode. You may specify a required peak disk 
space utilization as the fourth parameter in the command line. If there 
is insufficient disk space, the option returns VMI$_FAILURE and the 
installation terminates. 

If you enter YES, note that the safety sensitive callbacks will defer action 
that would otherwise jeopardize the safety level of the installation. For 
example, the PROVIDE_FILE callback defers movement of the new file until 
the installation progresses beyond safety mode. 

Deferred action on files by the safety-sensitive callbacks occurs only if safety 
is set to on; otherwise, the action occurs immediately. For small-disk systems, 
you may want to invoke these callbacks only after the affected file is no longer 
needed for the installation. 

• CONDITIONAL-Specifies safety mode only if there is enough space to 
support it. You must specify required peak disk space utilization as the 
fourth parameter in the command line. This is the suggested method for 
setting the safety level. 

• NO- Indicates that you do not want to specify safety mode. 

5-35 



VMSINSTAL Callbacks 
5.28 SET Callback 

peak 
Use this parameter (P4) to enter the peak disk utilization level in blocks required 
for your installation. If you omit this parameter and have entered either YES 
or CONDITIONAL in P3, the option responds as though there is sufficient disk 
space for safety operations. 

The SET SAFETY option returns VMI$_SUCCESS unless you specify safety 
mode without sufficient disk space to support it, in which case VMI$_FAILURE is 
returned. 

5.28.10 SET _SEMANTICS Option {AXP Only) 
On AXP systems, the SET_SEMANTICS option sets a semantic (file 
characteristic) for the specified file. You can specify only one semantic. 

Use the following command line format to invoke the SET_SEMANTICS option: 

SET _SEMANTICS file-spec semantic 

Parameters on the command line indicate the following: 

file_spec 
Use this parameter (P2) to specify the full file specification. 

semantic 
Use this parameter (P3) to specify the semantic to be set for the specified file. 

Following is an example of a command line that invokes the SET _SEMANTICS 
option: 

$ vmi$callback SET_SEMANTICS VMI$ROOT:[SYSUPD]DUMMY.DDIF DDIF 

This SET_SEMANTICS option returns VMI$_FAILURE if the file is not found; 
otherwise, it returns VMI$_SUCCESS. + 

5.28.11 SET SHUTDOWN Option 

5-36 

The SET SHUTDOWN option specifies that a reboot is necessary to complete the 
product installation. This option allows you to indicate: 

• if a system reboot is allowed at this time 

• how long to wait before system is shutdown 

• whether to do an automatic reboot 

Use this option in the question portion of the product installation procedure. If 
you are updating or upgrading in an alternate root directory, or if you omit a SET 
SHUTDOWN command from your installation procedure, the system will not be 
shut down following the installation. 

Note ~~~~~~~~~~~~~ 

This callback should replace the SET REBOOT option. 

Use the following command line format to invoke the SET SHUTDOWN option: 

VMl$CALLBACK SET SHUTDOWN keyword symbol [installation-action] 



VMSINSTAL Callbacks 
5.28 SET Callback 

Parameters on the command line indicate the following: 

keyword 
Use this parameter (P3) to make the appropriate selection: 

• ASK-Use this keyword to specify a system shutdown is required and to 
prompt the installer for shutdown information. 

• NO-Use this keyword to specify a system shutdown is not required or 
cancelled. 

symbol 
Use this parameter (P4) to specify a global symbol that indicates whether the 
installer is allowing the system to shut down. VMSINSTAL defines this symbol 
as a Boolean true or false. 

installation-action 
Use this parameter (P5) to specify the action the installation procedure will take 
if the shutdown is not allowed. This parameter is only required with the keyword 
option ASK. 

• EXIT-Use this keyword to indicate that the product installation procedure 
will exit immediately thereby not placing the product files on the system. 

• CONTINUE-Use this keyword to indicate that the product installation 
procedure will continue installing the product on the system but requires the 
system to be rebooted before the product is completely installed and available 
for use. 

The SET SHUTDOWN option always returns VMI$_SUCCESS. 

5.28.12 SET STARTUP Option 
The SET STARTUP option specifies a product-specific startup command 
procedure. VMSINSTAL executes the product-specific startup command 
procedure immediately following the installation and just prior to running 
the IVP, where applicable. 

Before invoking this option, use the PROVIDE_FILE callback to store the 
product-specific startup command procedure in the SYS$STARTUP directory. 

Use the following command line format to invoke the SET STARTUP option: 

VMl$CALLBACK SET STARTUP filename [parameters] 

The parameters on the command line indicates the following: 

filename 
Use this parameter (P3) to specify the file name and type of the product startup 
command procedure. 

parameters 
Use this parameter (P4) to pass parameters to the startup procedure. Separate 
parameters with a space and enclose the list in quotation marks. For example, to 
pass VMSINSTAL as Pl and DOALL as P2, type the following command line: 

$ VMI$CALLBACK SET STARTUP CHECKTRAN_STARTUP.COM "VMSINSTAL DOALL" 

The SET STARTUP option always returns VMI$_SUCCESS. 

5-37 



VMSINSTAL Callbacks 
5.29 SUMSLP _TEXT Callback 

5.29 SUMSLP _TEXT Callback 

5-38 

The SUMSLP _TEXT callback is used to edit text files with the SUMSLP batch 
mode line editor and an appropriate editing file. (See the Open VMS SUMSLP 
Utility Manual for more information.) In addition to the editing function, 
the SUMSLP _TEXT callback supports the use of the checksum function to 
determinine whether the file has been incompatibly altered. 

After you build the editing input file, the editing input file must reside in the 
installation kit working directory. In addition to editing standard data files, you 
can use the callback to edit modules of the following ASCII-based library types: 
help, macro, and text. 

With library editing, the callback extracts the appropriate library module, edits 
it, and then returns it to the library using the UPDATE_LIBRARY callback. For 
nonlibrary files, the callback returns the file to the source directory using the 
PROVIDE_FILE callback. 

To utilize the checksum functions, you must provide two checksums: one 
representing the file prior to editing and one representing the file after editing. 
To determine the appropriate values, run the CHECKSUM program on the 
current version of the file, and then run it on the new version of the file. 
In each case, the program stores the checksum value in the DCL symbol 
CHECKSUM$CHECKSUM. Use the value from the current version of the file as 
P6 in the SUMSLP _TEXT callback command line. Use the value from the new 
version of the file as P7. 

The callback begins by looking for the editing file in the installation working 
directory. After finding the editing file, the callback checks to see if the target 
(file or module to be edited) is specified in the command line. If it is not, the 
callback builds the target specification together with the rest of the command line 
from the first line of the editing file. 

Next, the callback determines whether the target is a data file or a library 
module. 

If it is a data file, the callback parses P4 to make the file specification format 
compatible with the PROVIDE_FILE command structure. Then the callback 
runs a checksum on the file, edits it and, if the edited file was found in a system 
directory, returns it with a PROVIDE_FILE callback. 

If the target is a library module, the callback looks for the specified library, 
extracts the specified module into a file in the installation work directory, and 
then runs the CHECKSUM program on the file. 

If the checksum agrees with the value in P6, the callback invokes the SUMSLP 
editor to edit the file. It then uses the UPDATE_LIBRARY callback to put the 
new version of the file in the library. 

Use the following command format line to invoke the SUMSLP _TEXT callback: 

VMl$CALLBACK SUMSLP _TEXT logical edit-file target type 
current-checksum [new-checksum] [option] 



VMSINSTAL Callbacks 
5.29 SUMSLP _TEXT Callback 

Parameters on the command line indicate the following: 

logical 
Use this parameter (P2) to assign a logical name to the file or library module 
being edited. Use the logical name in all subsequent references to the file or 
library module. 

edit-file 
Use this parameter (P3) to specify the name and type of the editing file. Do 
not specify the device or directory because the callback assumes that the file is 
located in the installation working directory. To save disk space, you can delete 
this file after the callback returns. 

target 
If the callback is editing a file, use this parameter (P4) to specify the file being 
edited. 

If the callback is editing a library module, use this parameter to identify the 
target by entering the full library specification, followed by a comma and then the 
name of the library module. For example, if the callback is editing the CONVERT 
module in the help library, enter the following line: 

$ VMI$ROOT:[SYSHLP]HELPLIB.HLB,CONVERT 

type 
If the callback is editing a file, use this parameter (P5) to enter the keyword 
FILE. 

If the callback is editing a library module, enter one of the following to describe 
the type of library module being edited: 

• HELP 

• TEXT 

• MACRO 

current-checksum 
Use this parameter (P6) to specify the checksum for the current version of the 
target. If the target checksum does not agree with tJ::iis value, the callback checks 
to see if the target was previously edited; that is, it matches new-checksum. If 
the target was not previously edited, the callback assumes the target has been 
tampered with, displays an appropriate message, and returns VMI$_FAILURE. 

new-checksum 
Where applicable, use this parameter (P7) to specify the checksum for the new 
version of the target. If the target checksum agrees with this value, the callback 
assumes the target has already been edited and returns 
VMI$_SUCCESS. 

option 
Where applicable, use this parameter (PS) to specify options by entering the 
appropriate option letter. Currently, only the K option is available. 

• K-U se this option to retain the current version of the edited file. 

5-39 



VMSINSTAL Callbacks 
5.29 SUMSLP _TEXT Callback 

Instead of using the callback command line, you can specify the target, checksum 
data, and parameters P4 through PB on the first line of the edit file. If you do 
this, use the following command line format: 

-;! target type current-checksum new-checksum options 

Following is an example of the command line for the SUMSLP _TEXT callback: 

$ VMI$CALLBACK SUMSLP TEXT NEW$FILE TEXT.FIX -
_$ VMI$KWD:CHECKTRAN.DOC FILE 1627371981 1563932641 K 

The callback returns VMI$_SUCCESS if it succeeds in editing the target or if 
it finds that editing was done by a previous callback. The callback exits with 
VMI$_FAILURE if either the editing file or the target cannot be found, if it 
detects file tampering, or if the attempt to move the edited target back to its 
source fails. 

5.30 TELL_QA Callback 
The TELL_ QA callback allows you to identify peculiarities in your product that 
should be noted if special technical considerations exist. The TELL_QA callback 
generates specific messages for test environments only. 

These messages appear only if the installation is being done in quality assurance 
(QA) mode. Therefore, to use this callback, you must specify the QA mode option 
( Q ) in the command line when you invoke VMSINSTAL. 

Use the following command line format to invoke the TELL_QA callback: 

VMl$CALLBACK TELL_QA message 

message 
Use this parameter (P2) to enter the message in the form of a quoted string. In 
some situations, it may be advisable to preface the installation software with 
appropriate TELL_ QA callbacks. 

The TELL_QA callback always returns VMI$_SUCCESS. 

5.31 UNWIND Callback 
The UNWIND callback provides a quick way to exit the installation. When 
UNWIND is invoked, VMSINSTAL runs through its cleanup code, signals that 
the installation has failed, and executes a STOP command to return control to 
the user. 

Use the UNWIND callback to exit the installation after errors or CtrlN 
interrupts, where the installation is several levels deep into DCL; you do 
not have to return status back up a list of invoked command procedures. 

Use the following command line format to invoke the UNWIND callback: 

VMl$CALLBACK UNWIND 

5.32 UPDATE_ACCOUNT Callback 

5-40 

The UPDATE_ACCOUNT callback uses the Authorize utility to update accounts 
in SYSUAF and NETPROXY. It should be used only on accounts created through 
the CREATE_ACCOUNT callback. 



VMSINSTAL Callbacks 
5.32 UPDATE_ACCOUNT Callback 

Use the following command line format to invoke the UPDATE_ACCOUNT 
callback: 

VMl$CALLBACK UPDATE_ACCOUNT username qualifiers 

Parameters on the command line indicate the following: 

username 
Use this parameter (P2) to identify the account being updated. 

qualifiers 
Use this parameter (P3) to list appropriate qualifiers; that is, qualifiers related 
to the AUTHORIZE command MODIFY, such as /DEVICE and /DIRECTORY. 
(See the Open VMS System Management Utilities Reference Manual for more 
information about the MODIFY command qualifiers.) Enclose the qualifier string 
in quotation marks. 

Following is an example of the command line for the UPDATE_ACCOUNT 
callback: 

$ VMI$CALLBACK UPDATE_ACCOUNT SMITH 11 /PASSWORD=FCDAUX 11 

The UPDATE_ACCOUNT callback returns VMI$_SUCCESS unless it does not 
find the SYSUAF file. 

5.33 UPDATE_FILE Callback 
The UPDATE_FILE callback makes a system file available for subsequent 
updating by copying it to the installation working directory if a copy is not 
currently there. 

Note ~~~~~~~~~~~~~ 

Do not use this callback to update library files (see the UPDATE_ 
LIBRARY callback). If a new version of an existing library file is needed, 
create the new version in the working directory and then use the 
PROVIDE_FILE callback to replace the current version. 

If the installation is in safety mode and a copy of the file is needed in the 
installation working directory, the callback copies the file to the working directory 
using the Backup utility. The file retains the original file ownership. 

If the installation is not in safety mode, or if the file is found in the installation 
working directory, the callback exits without taking any action other than 
assigning P2 to its file specification. 

When the update is completed, the file is moved back to the system directory. 
Note, however, that the move can be deferred if the installation is in safety mode. 

Use the following command line format to invoke the UPDATE_FILE callback: 

VMl$CALLBACK UPDATE_FILE logical filespec [option] 

5-41 



VMSINSTAL Callbacks 
5.33 UPDATE_FILE Callback 

Parameters on the command line indicate the following: 

logical 
Use this parameter (P2) to assign a logical name to the file being updated. Use 
the logical name in ali subsequent references to the file. 

files pee 
Use this parameter (P3) to enter the complete specification of the file being 
updated. 

option 
Where applicable, use this parameter (P4) to specify options by entering the 
appropriate option letter. Currently, only the K option is available. 

Use the K option to move the updated file to a location other than that specified 
in P3. Normally, when the update is completed, the file is moved back to the 
system directory. When you specify the K option, the file is kept in the kit 
working directory (VMI$KWD) after the update is completed. 

Following is an example of the command line for the UPDATE_FILE callback: 

$ VMI$CALLBACK UPDATE_FILE FORMAT VMI$ROOT:[SYSEXE]FORMAT.EXE 

The UPDATE_FILE callback returns VMI$_SUCCESS unless the file is not found 
or any internal callbacks are unsuccessful. 

5.34 UPDATE_IDENTIFIER Callback 

5-42 

The UPDATE_IDENTIFIER callback modifies an identifier in the rights database. 

Use the following command line format to invoke the UPDATE_IDENTIFIER 
callback: 

VMl$CALLBACK UPDATE_IDENTIFIER id-name qualifiers 

Parameters on the command line indicate the following: 

id-name 
Use this parameter (P2) to specify the name of the identifier to be modified. 

qualifiers 
Use this parameter (P3) to specify qualifiers for the UPDATE_IDENTIFIER 
callback. You can specify the same qualifiers that are available for the MODIFY 
/IDENTIFIER command of the Authorize utility. For more information about 
the MODIFY/IDENTIFIER command, see the Open VMS System Management 
Utilities Reference Manual. 

Following is an example of a command line that invokes the UPDATE_ 
IDENTIFIER callback: 

$ VMI$CALLBACK UPDATE_IDENTIFIER ACCOUNTING 11 /VALUE=UIC:[300,21] 11 

In this example, the UPDATE_IDENTIFIER callback specifies a new value for 
the ACCOUNTING identifier. 

This callback returns VMI$_SUCCESS if the identifier is successfully modified. 
The callback returns VMI$_FAILURE if the identifier is not successfully modified. 



VMSINSTAL Callbacks 
5.35 UPDATE_LIBRARY Callback 

5.35 UPDATE_LIBRARY Callback 
The UPDATE_LIBRARY callback is used to immediately update an existing 
library. It can be used with either the Open VMS Librarian or the RSX LBR 
utility. The callback records the update in the marker file immediately to aid in 
crash recovery procedures if needed. 

Use the following command line format to invoke the UPDATE_LIBRARY 
callback: 

VMl$CALLBACK UPDATE_LIBRARY logical filespec type qualifiers source_file 

Parameters on the command line indicate the following: 

logical 
Use this parameter (P2) to assign a process logical name to the library file being 
updated. Use the logical name in all subsequent references to the file. 

filespec 
Use this parameter (P3) to enter the complete specification of the library file 
being updated. 

type 
Use this parameter (P4) to enter the LIBRARY command qualifier that identifies 
the type of library being updated. If an RSX library is being updated, enter 
"RSX." If the library type is RSX, the target system must have VAX-11 RSX 
installed. 

If a Open VMS library is being updated, enter one of the following: 

• HELP 

• MACRO 

• OBJECT 

• SHARE 

• TEXT 

You must make an entry in this parameter. 

qualifiers 
Use this parameter (P5) to list qualifiers for the LIBRARY command. Enclose the 
list in quotation marks. (See the Open VMS Command Definition, Librarian, and 
Message Utilities Manual for more information on the Librarian utility.) 

source_file 
Where applicable, use this parameter (P6) to enter the full specification for the 
source file being used to update the library. You can use wildcards. If you need to 
save disk space, you can delete this file when the callback finishes. 

Following is an example of the command line for the UPDATE_LIBRARY 
callback: 

$ VMI$CALLBACK UPDATE LIBRARY VAXFMS$STARLET VMI$ROOT:[SYSLIB]STARLET.OLB -
OBJECT "/DELETE=(FDV,FDVMSG,FDVDAT,FDVERR,FDVTIO,FDVXFR,HLL,HLLDFN)" 

The UPDATE_LIBRARY callback returns VMI$_SUCCESS. If the file is not 
found, it returns VMI$_FAILURE. 

5-43 





A 
Symbols and Logical Names 

This appendix lists and briefly describes the symbols and logical names used by 
VMSINSTAL. 

VMI$ 

VMI$ALTERNATE_ROOT 

VMI$ARCHITECTURE 

VMI$AUTO_FILE 

VMI$AUTO_OPTION 

VMI$BACKUP _OPENIN 

VMI$BOOTING 

VMI$CALLBACK 

VMI$CALL_FILE 

VMI$CLD 

VMI$COM 

VM1$COMMAND_Pl 

VMI$COMMON_ROOT 

VMI$CONSOLE 

VM1$DEBUG 

VMI$DEFER_FILE 

VMI$DEMON 

VMSINSTAL assigns this variable global symbol to user 
responses and to command line parameters that will have only 
short-term use. 

When active, this local symbol indicates that the product is being 
installed in a root on a disk other than the running system disk. 

VMSINSTAL uses this global symbol to indicate the architecture 
(Alpha AXP or VAX) of the target disk. 

VMSINSTAL uses this logical name to access the auto-answer 
file. 

VMSINSTAL stores the value of the auto-answer mode (read or 
write) in this local symbol. 

This global symbol is used to store the value of the target 
system's BACKUP-E-OPENIN error message. 

This local Boolean symbol is true only if the startup procedure 
calls VMSINSTAL to recover from a crash during the 
installation. 

VMSINSTAL equates this local symbol to 
@SYS$UPDATE:VMSINSTAL. The KITINSTAL command 
procedure uses it to call various VMSINSTAL subroutines (also 
referred to as callbacks). 

VMSINSTAL uses this logical name to access the callback trace 
file. 

When a new command is to be added to the system, VMSINSTAL 
assigns this process logical name to the command table file that 
is to be modified. 

This is the process logical name assigned to the patch file when 
it is found by the PATCH_IMAGE callback. 

VMSINSTAL uses this local symbol to determine when all 
products have been installed. 

VMSINSTAL uses this Boolean symbol to determine the root 
directory for the installation. 

This Boolean symbol is set true if the installation is being done 
from a console device, and is used to initiate console-related 
functions. 

When this local Boolean symbol is set true, the installer has 
included the kit debug option in the VMSINSTAL command line. 

VMSINSTAL uses this logical name to access the defer file. 

VMSINSTAL uses this logical name when the statistics report 
subprocess is running. 

A-1 



Symbols and Logical Names 

VMI$DEVICE 

VMl$_FAILURE 

VMI$FIL 

VMI$FIND 

VMI$FIRST_NEXT 

VMI$FREE_BLOCKS 

VMI$INPUT 

VMI$INS 

VMI$INSTALLATION_STATUS 

VMI$INSTALLING 

VMI$1VP 

VMI$JNL 

VMI$KWD 

VMI$KWD_DELETE 

VMI$LIB 

VMI$LIST 

VMI$LIST_COUNT 

VMI$LIST_DONE 

VMI$LIST_FILE 

VMI$MARKER_FILE 

VMI$MSG 

VMI$NEW 

A-2 

This local symbol is equated to the name of the device that 
contains the distribution volume during the installation. 

This local symbol, equated to %X10F50000, indicates that the 
installation was unsuccessful. 

This local symbol stores the results of file searches done by the 
UPDATE_FILE subroutine. 

VMSINSTAL equates this local symbol to 
@SYS$UPDATE:VMSINSTAL FIND_FILE. KITINSTAL uses 
it to call the frequently invoked FIND _FILE routine. 

VMSINSTAL uses this local symbol as a flag for prompting the 
user to enter the product from the first or next distribution · 
volume. 

VMSINSTAL assigns this local symbol to the number of free 
blocks available for the installation. 

This local symbol is defined to be the file name for the input file 
to the callback. See the VMI$TABLE symbol. 

This local symbol is used by the DELETE_FILE callback to 
determine if the file was installed. 

This local symbol is used to indicate the status of the installation. 

When the installation begins, VMSINSTAL sets this local 
Boolean symbol to logical true. 

When this global Boolean symbol is set true, the Installation 
Verification Process (IVP) is in progress. 

VMSINSTAL assigns this process logical name to the journal file 
used in image patching, where applicable. 

This is the process logical name VMSINSTAL assigns to the kit 
working directory. VMI$KWD is the subdirectory of [SYSUPD] 
used to store the installation files. 

This global symbol specifies a boolean value indicating whether 
or not the working directory will be deleted at the end of the 
installation. 

This process logical name is assigned to library modules being 
updated by the SUMSLP _TXT subroutine. 

VMSINSTAL uses this local symbol to store the string value 
of the command line parameter that lists the products to be 
installed. 

VMSINSTAL uses this local symbol as a counter to determine 
the number of products in the distribution kit. 

VMSINSTAL compares the value of this counter with 
VMI$LIST_COUNT to determine when the product kit is 
installed. 

This local symbol is used to open and read the file defined by the 
VMI$LIST symbol. 

VMSINSTAL uses this logical name to access the marker file. 

This local symbol is equated to @SYS$UPDATE:VMSINSTAL 
MESSAGE VMSINSTAL. VMSINSTAL uses this symbol to call 
the MESSAGE callback when an error message is required. 

When an image is moved from the installation directory to a 
system directory, VMSINSTAL assigns this process logical name 
to the specified image. 



VMI$NO_ERROR 

VMI$NO_OUTPUT 

VMI$NO_SUCH_SAVESET 

VMI$0LD 

VMI$PID 

VMI$PLACE 

VMI$PRETTY 

VMI$PRODUCT 

VMI$PRT 

VMI$PURGE 

VMI$QA 

VMI$QA_FAIL 

VMI$QUE 

VMI$REBOOT 

VMI$REL 

VMI$REMOTE 

VMI$REMOUNT 

VMI$REN 

VMI$ROOT 

VMI$SAFETY 

Symbols and Logical Names 

This local symbol is equated to DEFINE I USER SYS$ERROR 
NL: and is used by VMSINSTAL to turn off error messages until 
the next DCL image executes. 

This local symbol is equated to DEFINE I USER SYS$0UTPUT 
NL: and is used by VMSINSTAL to turn off the output until the 
next DCL image executes. 

VMSINSTAL sets this Boolean flag to true when it cannot find 
the first save set for a product. 

When a file is copied from the installation working directory to a 
system directory, VMSINSTAL assigns this process logical name 
to the specified file. 

This local symbol contains the process ID of the current process. 

VMSINSTAL uses this global symbol to indicate the location of 
the distribution volume. 

VMSINSTAL equates this local symbol to the name of the 
product being installed. VMI$PRETTY is structured as 
formatted ASCII output and is used primarily for outputting 
product-related messages during the installation. 

This local symbol is also equated to the name of the product 
being installed; however, it is implemented for internal logic 
functions only. 

When a file is to be printed, VMSINSTAL assigns this process 
logical name to the specified file before issuing the PRINT 
command. 

When this global Boolean symbol is set true, files that have been 
replaced during the installation should be deleted. 

This Boolean symbol is set true if the Q option has been selected 
in the command that calls VMSINSTAL. 

This global Boolean symbol is set true if the installation fails. 

This symbol is defined to be the queue to which release notes 
are printed. See the RELEASE_NOTES callback for more 
information. 

When this global Boolean symbol is true, VMSINSTAL will 
automatically reboot the system upon completion of the 
installation. 

This local symbol is defined to be the name of the release notes 
file. 

This local Boolean symbol is set true when the distribution 
volume is located on a remote node. 

This local Boolean symbol is set true when the console 
distribution volume is mounted on a console device or mounted 
/FOREIGN on a disk device. Upon completion of the installation, 
the console distribution volume must be remounted. 

This process logical name is assigned to a subroutine used by 
KITINSTAL to clean up files using minimal overhead. 

This logical name is assigned the value of the root directory being 
used for the installation. The value is SYS$COMMON if you do 
not select the alternate root option. 

This global Boolean symbol is set true if the installation is 
being done in safety mode. The decision to install the product 
in safety mode is in part determined by the amount of disk 
space available. Your KITINSTAL procedure must make this 
determination. 

A-3 



Symbols and Logical Names 

VMI$SAVED_DIR 

VMI$SAVED_MSG 

VMI$SAVED_PRIVS 

VMI$SAVED_PROT 

VMI$SAVED_UIC 

VMI$SET_MSG_OFF 

VMI$SET_MSG_ON 

VMI$SPECIFIC 

VMI$STARTUP 

VMI$STAT_FILE 

VMl$_SUCCESS 

VMI$SYS_ARCHITECTURE 

VMI$TABLE 

VMl$TEMP _FILE 

VMI$TERMINAL_FILE 

VMI$TXT 

VMI$_UNSUPPORTED 

VMl$UNWIND 

VMI$UPDATE_MARKER 

VMI$VERSION 

VMI$VMS_ VERSION 

A-4 

This local symbol is used to store the default device and directory 
of the current process during the installation. 

VMSINSTAL uses this local symbol to store the message format 
of the current process during the installation. 

This local symbol is used to store the privileges of the current 
process during the installation. 

VMSINSTAL uses this local symbol to store the default 
protection code of the current process during the installation. 

This local symbol is used to store the UIC of the current process 
during the installation. 

VMSINSTAL equates this local symbol to the following: SET 
MESSAGE/NOFACILITY/NOSEVERITY/NOIDENT/NOTEXT. 

VMSINSTAL equates this local symbol to the following: SET 
MESSAGE/FACILITY/SEVERITY/IDENT/TEXT. 

VMSINSTAL uses this logical name to reference the target 
system's system-specific top-level directory. 

This global symbol is equated to the name of the product startup 
command procedure, typically part of SYSTARTUP.COM. 

VMSINSTAL uses this logical name to access the statistics file. 

This local symbol, equated to %X10F50001, indicates a successful 
installation. 

VMSINSTAL uses this global symbol to indicate the architecture 
(Alpha AXP or VAX) of the system that is running VMSINSTAL. 

This local symbol determines whether or not the input to a 
callback is in a file. This symbol is used for the following 
callbacks: GET_SYSTEM_PARAMETER, PROVIDE_FILE, 
and PROVIDE_IMAGE. 

VMSINSTAL uses this logical name to access the temporary file; 
which in turn reads the patch file. 

VMSINSTAL assigns this process logical name to the file used 
for terminal operations. 

This process logical name is assigned to the target file in text 
correction operations. 

This local symbol, equated to %X10F50000, indicates that the 
installation was unsuccessful because it attempted to execute an 
unsupported feature. 

This symbol is defined as true if the UNWIND callback is 
invoked. 

This local symbol is used to transfer marker data during the 
installation. 

This local symbol stores the version number of the operating 
system. 

This local symbol contains the value of the operating system 
version level. It is used to determine whether or not the product 
being installed is compatible with the operating system. 



B 
Sample OpenVMS Installation Procedure 

Example B-1 shows a sample Open VMS installation procedure. The product 
used in the sample is DECRam_for_OpenVMS. 

Note ___________ _ 

Until the VMI$ARCHITECTURE logical is implemented on Open VMS 
systems, you must use one of the following mechanisms to determine the 
architecture of the system running a KITINSTAL.COM that is common 
for Open VMS VAX and Open VMS AXP systems. 

For an Open VMS VAX or Open VMS AXP product that requires Open VMS 
Version 5.5 or later, use the following code sequence to determine the 
system architecture: 

$ SYM = F$GETSYI("ARCH TYPE") 
$ IF SYM .EQ. 1 THEN DO VAX TASKS 
$ IF SYM .EQ. 2 THEN DO=AXP=TASKS 

This F$GETSYI("ARCH_TYPE")lexical call returns 1 for Open VMS VAX 
platforms and 2 for Open VMS AXP platforms. 

For an Open VMS VAX or Open VMS AXP product that requires a version 
of Open VMS prior to Open VMS Version 5.5, use the following sequence: 

$ SYM = F$GETSYI("HW MODEL") 
$ IF SYM .LE. 1023 THEN DO VAX TASKS 
$ ELSE DO_AXP_TASKS - -

The F$GETSYI("HW _MODEL") lexical returns a value greater than 1023 
for processors designed under the Open VMS Alpha AXP architecture. 

B-1 



Sample OpenVMS Installation Procedure 

Example 8-1 Sample DIGITAL OpenVMS KITINSTAL.COM 

$ .TITLE KITINSTAL - DECRam for OpenVMS Installation Procedure 
$ .IDENT /V2.l/ - -
$ 
$ COPYRIGHT (C) 1985, 1987, 1988, 1989, 1990, 1991, 1992 BY 
$ DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. 
$ t ALL RIGHTS RESERVED 
$ 
$ THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED 
$ ONLY IN ACCORDANCE OF THE TERMS OF SUCH LICENSE AND WITH THE 
$ INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER 
$ COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY 
$ OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY 
$ TRANSFERRED. 
$ 
$ THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE 
$ AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT 
$ CORPORATION. 
$ 
$ DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS 
$ SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. 
$ ! 
$ ! 
$ !++ 
$ 
$ FACILITY: VMSINSTAL 
$ I 

$ ABSTRACT: 
$ 
$ This procedure installs the DECRam_for_OpenVMS Product using VMSINSTAL 
$ 
$ ENVIRONMENT: DCL 
$ 
$ Setup error handling 
$ 
$ ON CONTROL Y THEN GOTO CONTROL Y 
$ ! - -
$ ! Handle INSTALL, IVP and unsupported parameters passed by VMSINSTAL 
$ ! 
$ DECRAM$VERSION :== "Tl. l" 
$ IF Pl .EQS. "VMI$ INSTALL" THEN GOTO INSTALL 
$ IF Pl .EQS. "VMI$-IVP" then goto DECRAM RUN IVP 
$ EXIT VMI$ UNSUPPORTED - -
$ ! -
$ INSTALL: 
$ ! 
$ DECRAM TMP = F$TYPE(VMI$ARCHITECTURE) 
$ DECRAM-ARCH = 0 ! Initialize to VAX 
$ IF DECRAM TMP .EQS. "" THEN DECRAM ARCH = 0 
$ IF DECRAM-TMP .EQS. "INTEGER" THEN-DECRAM ARCH = 0 
$ IF DECRAM-TMP .NES. "STRING" THEN GOTO DONE ARCH 
$ IF VMI$ARCHITECTURE .EQS. "AXP" THEN DECRAM-ARCH = 1 
$ IF VMI$ARCHITECTURE .EQS. "VAX" THEN DECRAM-ARCH = 0 
$ ! -
$ DONE ARCH: 
$! At this point DECRAM ARCH is = 0 if VAX or = 1 if AXP 
$! -
$ WRITE SYS$0UTPUT 
$WRITE SYS$0UTPUT "$! Copyright (c) 1992 Digital Equipment Corporation. All rights reserved." 
$ WRITE SYS$0UTPUT "" 
$ ! 
$ ! Before starting anything OpenVMS version 
$ ! 
$ !********************************************************************** 
$ !*Must be OpenVMS VS.2 or later ••• 
$ !********************************************************************** 
$ 

B-2 

(continued on next page) 



Sample OpenVMS Installation Procedure 

Example 8-1 (Cont.) Sample DIGITAL OpenVMS KITINSTAL.COM 
$ IF DECRAM ARCH .EQ. 1 THEN GOTO DECRAM VERSION DONE 
$ ! - - -
$ CHECK VMS VERSION: 
$ ON ERROR THEN GOTO DECRAM VERSION ERROR 
$ ! Version check may blow up on pre-V4 system 

Check OpenVMS version for supported release. 
$ 
$ 
$ 
$ 
$ 

Define earliest released version of OpenVMS supported by DECRAM 

$ DECRAM$REL_VERSION = "052" 
$ 
$ 
$ 

Define earliest field test version of OpenVMS supported by DECRAM 

$ DECRAM$FT_VERSION = "052" 
$ 
$ 
$ 
$ 
$ 
$ 

Extract current running version number of OpenVMS 

DECRAM$VMS VERSION = II II F$ELEMENT( 0, II, II, VMI$VMS VERSION)"' 
DECRAM$VMI=VERSION == F$ELEMENT(l, 11

,
11 ,VMI$VMS_vERSION) 

$ DECRAM RELEASED: 
$ -
$ Check for RELEASED version. 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

NOTE: use String comparison to check in case version number contains 
characters. 

IF "''DECRAM$VMS VERSION'" .NES. "RELEASED" THEN GOTO DECRAM UPDATE 
VER= "V" + ""F$EXTRACT(l,l,DECRAM$REL VERSION)"'+"." +'"1 F$EXTRACT(2,2,DECRAM$REL VERSION)"' 
TVER = II I I F$ELEMENT( 1, II, II, VMI$VMS VERSION) I II -

VVER = "V" + ""F$EXTRACT(l,1,TVER)'" + "," + ""F$EXTRACT(2,2,TVER)"' 
IF 11

' 'TVER' " • GES. " ' 'DECRAM$REL VERSION'" then goto DECRAM VERSION OK 
GOTO DECRAM VERSION ERROR - - -- -

$ DECRAM UPDATE: 
$ -
$ Check for Field Test version. 
$ 
$ 
$ 

IF "''DECRAM$VMS VERSION'" .NES. "UPDATE FT" then goto DECRAM BASELEVEL 
VER= "T" + "''F$EXTRACT(l,1,DECRAM$FT VERSION)'"+"."+ - -

"''F$EXTRACT(2,2,DECRAM$FT VERSION)'" 
$ 
$ 
$ 
$ 

TVER = "''F$ELEMENT(l, 11
,

11 ,F$ELEMENT(l, 11 ",VMI$VMS VERSION))'" 
VVER = "T" + ""F$EXTRACT(l,l,TVER)"' + "." + ""F$EXTRACT(2,2,TVER)"' 
IF "''TVER'" .GES. "''DECRAM$FT_VERSION'" THEN GOTO DECRAM_VERSION_OK 

$DECRAM VERSION ERROR: 
$ - -
$ VMI$CALLBACK MESSAGE E BADVMSVER -

"DECram ''DECRAM$VERSION' requires OpenVMS version ''VER' or 
later to install" 

$ EXIT VMI$_FAILURE 
$ 
$DECRAM BASELEVEL: 
$ -
$ Always allow installations on baselevels of OpenVMS. 
$ early testing of the product by Digital 

Required to ensure 

$ 
$ 
$ 
$ 
$ 

VER= "''F$ELEMENT(l,", 11 ,F$ELEMENT(l, 11 ",VMI$VMS VERSION))'" 
VVER = ""F$EXTRACT(l,1,VER)"' + "." + 11 "F$EXTRACT(2,2,VER)"' 
IF '"DECRAM$VMS VERSION"' .NES. "UPGRADE FT" THEN EXIT VMI$ FAILURE 
VMI$CALLBACK -MESSAGE I VMBLOK - -

"Installing DECram ''DECRAM$VERSION' on OpenVMS baselevel ''VVER' 11 

$ DECRAM LATEST = 1 
$ ! Set-LATEST to TRUE force installation of V54 version of DECRAM 
$ GOTO DECRAM VERSION DONE 
$ I - -

(continued on next page) 

B-3 



Sample OpenVMS Installation Procedure 

Example B-1 (Cont.) Sample DIGITAL OpenVMS KITINSTAL.COM 
$ DECRAM VERSION OK: 
$ ! - -
$ VMI$CALLBACK MESSAGE I VMSOK -

"Installing DECram ''DECRAM$VERSION' on OpenVMS Version ''VVER'" 
$ DECRAM LATEST = 0 
$ ! Set-LATEST to False use VVER to determine what to install 
$ VMI$CALLBACK CHECK VMS VERSION DECRAM ADDCLD 5.3-1 S 5.3-2 
$ - - -
$DECRAM VERSION DONE: 
$ ON WARNING THEN GOTO ERR EXIT 
$ ON ERROR THEN GOTO ERR EXIT ! back to normal error mode 
$ -
$ Check for enough free blocks on system disk. 
$ Need a minimum of (?). 
$ 
$ DECRAM$MIN BLOCK == 1300 
$ VMI$CALLBACK CHECK NET UTILIZATION DECRAM$ 'DECRAM$MIN BLOCK' 
$ IF .NOT. DECRAM$ THEN VMI$CALLBACK MESSAGE E NOSPACE --

$ IF 
$ 
$ ! 
$ ! 
$ ! 

"This kit requires at least ''DECRAM$MIN BLOCK' free disk blocks." 
.NOT. DECRAM$ THEN EXIT VMI$_FAILURE -

Let VMSINSTAL ask about the files to be purged. 

$ VMI$CALLBACK SET PURGE ASK 
$ vmi$callback SET IVP ASK 
$ ! 
$ ! License Management Facility Registration 
$ ! 
$ IF DECRAM ARCH .EQ. 1 THEN GOTO DECRAM AXP LICENSE 
$ ON ERROR THEN GOTO license err ! don't quit if license not installed 
$ vmi$callback CHECK LICENSE -

DECRAM$license confirmed -
DECRAM - -
DEC -
1.0- ! Version (updated every release) 
24-Jun-1991 ! Product Release Date 

if DECRAM$license_confirmed then goto license_confirmed $ 
$ ! 
$ license err: 
$ ON ERROR THEN GOTO ERR EXIT ! back to normal error mode 
$ TYPE SYS$INPUT -

A license for DECram has not been registered and loaded. 

DECram will not be installed. 

$ 
$ 
$! 

goto DECRAM_NO_INSTALL 

$ DECRAM AXP LICENSE: 
$ ON ERROR THEN GOTO license err ! don't quit if license not installed 
$ vmi$callback CHECK LICENSE -

DECRAM$license confirmed -
AV-DECRAM - -
DEC -
1.0- ! Version (updated every release) 
24-Jun-1991 ! Product Release Date 

$ 
$ 

if DECRAM$license_confirmed then goto license_confirmed 

$ goto license err 
$! -
$license confirmed: 
$ ON ERROR THEN GOTO ERR EXIT 
$license not confirmed: -

! back to normal error mode 

$ ON WARNING THEN GOTO DECRAM NOT INSTALLED 
$ TYPE SYS$INPUT - -

B-4 

(continued on next page) 



Sample OpenVMS Installation Procedure 

Example B-1 (Cont.) Sample DIGITAL OpenVMS KITINSTAL.COM 

The installation will check for the DECram driver already 
installed in the system. If there is no driver installed in the 
system you will receive the following message: 

"%SYSTEM-W-NOSUCHDEV, no such device available" 

This message can be ignored, the installation will proceed normally. 

$ SHOW DEVICE MD: 
$ DECRAM INSTALLED = 1 
$ GOTO DECRAM CONTINUE 
$ 
$DECRAM NOT INSTALLED: 
$ DECRAM INSTALLED = 0 
$ ! -
$DECRAM CONTINUE: 
$ ON WARNING THEN GOTO ERR EXIT 
$ IF .not. DECRAM INSTALLED THEN GOTO DECRAM ASK IVP 
$ - - -
$ TYPE SYS$INPUT 

A DECram Driver is already installed on the system. 

It is recommended that you reboot your system, rather than 
doing a SYSGEN RELOAD to cause the new DECram Driver 
software to be invoked. 

$! 
$ DECRAM IVP = 0 
$ GOTO DECRAM_NO_ASK_IVP 
$ ! 
$DECRAM ASK IVP: 
$ ! - -
$DECRAM NO ASK IVP: 
$! - - -
$ DECRAM DOCS: 
$! Here's where we move in the documentation 
$ VMI$CALLBACK RESTORE SAVESET B 
$ VMI$CALLBACK PROVIDE-FILE FUD3 DECRAM INSTAL GUIDE.PS -

VMI$ROOT:[SYSHLP]- -
$ VMI$CALLBACK PROVIDE FILE FUD4 DECRAM INSTAL GUIDE.TXT -

VMI$ROOT:[SYSHLP]- -
$ VMI$CALLBACK PROVIDE FILE FUDS DECRAM DRIVER MANUAL.PS -

VMI$ROOT:[SYSHLP]- -
$ VMI$CALLBACK PROVIDE FILE FUD6 DECRAM DRIVER MANUAL.TXT -

VMI$ROOT:[SYSHLP]- -
$! Here's where we move in the examples 
$ VMI$CALLBACK RESTORE SAVESET C 
$! Don't do EXAMPLES for File Test 
$! VMI$CALLBACK PROVIDE FILE FUD7 RAMDISK$STARTUP.COM -
$! VMI$ROOT:[SYSHLP.EXAMPLES] 
$! VMI$CALLBACK PROVIDE FILE FUD8 RAMDISK$NODE.DAT -
$! VMI$ROOT:[SYSHLP.EXAMPLES] 
$! VMI$CALLBACK PROVIDE FILE FUD8 SCRATCHRAM$STARTUP.COM -
$! VMI$ROOT:[SYSHLP.EXAMPLES] 
$! VMI$CALLBACK PROVIDE FILE FUD8 SCRATCHRAM$NODE.DAT -
$! vMI$ROOT:[SYSHLP.EXAMPLES] 
$! VMI$CALLBACK PROVIDE FILE FUD9 DECRAM$CONFIG.COM -
$! vMI$ROOT:[SYSHLP.EXAMPLES] 
$! 
$ IF DECRAM ARCH .EQ. 1 THEN GOTO DECRAM AXP 
$ DECRAM LINK = 1 -
$ IF DECRAM LATEST THEN GOTO DECRAM LOADLATEST 
$ I.F VVER • EQS. "VS. 2" THEN GOTO DECRAM _LOADS 2 
$ IF VVER .EQS. "VS.3" THEN GOTO DECRAM LOADS3 
$ DECRAM LOADLATEST: -
$ VMI$CALLBACK RESTORE SAVESET F 
$ DECRAM CLO = 0 -
$ GOTO DECRAM_INST_COM 

(continued on next page) 

8-5 



Sample OpenVMS Installation Procedure 

Example B-1 (Cont.) Sample DIGITAL OpenVMS KITINSTAL.COM 
$ DECRAM LOAD53: 
$ VMI$C1LLBACK RESTORE SAVESET E 
$ DECRAM CLO = 1 -
$! VMI$CALLBACK RENAME FILE V53X !NIT.CLO !NIT.CLO 
$ GOTO DECRAM INST COM- -
$ DECRAM LOAD52: -
$ VMI$CALLBACK RESTORE SAVESET D 
$ DECRAM CLO = 1 -
$ GOTO DECRAM INST COM 
$ DECRAM AXP: - -
$ VMI$CALLBACK RESTORE SAVESET G 
$ DECRAM CLO = 0 -
$ DECRAM-LINK = 0 
$ GOTO DECRAM INST COM 
$ DECRAM INST COM: -
$ VMI$CALLBACK TELL QA "DECRam Executables/IVP are placed in SYS$SPECIFIC." 
$ IF DECRAM LINK .EQ. 0 THEN GOTO DECRAM NOLINK 
$ LINK/NOSYSSHR/NOTRACEBACK/NODEBUG/SHARE=VMI$KWD:MDDRIVER/CONTIGUOUS -

/MAP=VMI$KWD:MDDRIVER/FULL/CROSS -
VMI$KWD:MDDRIVER, -
sys$system:SYS.STB/SELECTIVE,VMI$KWD:MDDRIVER/OPTION 

$ DECRAM NOLINK: 
$ IF .NOT. DECRAM CLO THEN GOTO DECRAM INST COMOS 
$ IF .NOT. DECRAM-ADDCLD THEN GOTOT DECRAM INST COMOl 
$ VMI$CALLBACK PROVIDE DCL COMMAND V53X !NIT.CLO 
$ GOTO DECRAM INST COM02 - -
$ DECRAM INST COMOl: 
$ VMI$CALLBACK PROVIDE DCL COMMAND !NIT.CLO 
$ DECRAM INST COM02: - -
$ VMI$CALLBACK PROVIDE IMAGE FUDl DECRAM$SIZE.EXE VMI$ROOT:[SYSEXE] 0 
$ DECRAM INST COMOS: -
$ VMI$CALLBACK PROVIDE FILE FUD2A DECRAM$IVP.COM VMI$ROOT:[SYSTEST] 0 
$ IF DECRAM ARCH .EQ. T THEN GOTO DECRAM INST AXP 
$ VMI$CALLBACK PROVIDE IMAGE FUD2 MDDRIVER.EXE VMI$ROOT:[SYS$LDR) 0 
$ GOTO INST SUCCESS -
$ DECRAM INST AXP: 
$ VMI$CALLBACK PROVIDE IMAGE FUD2 SYS$MDDRIVER.EXE VMI$ROOT:[SYS$LDR] 0 
$ GOTO INST SUCCESS -
$ INST SUCCESS: 
$ -
$ ! Successful exit 
$ 
$ EXIT VMI$ SUCCESS 
$ ! -
$ DECRAM NO INSTALL: 
$ EXIT VMI$-FAILURE 
$ ERR EXIT:-
$ S =-$STATUS 
$ EXIT S 
$ ! 
$ CONTROL Y: 
$ VMI$CALLBACK CONTROL Y 
$ ! -
$ DECRAM RUN IVP: 
$ @sys$test:decram$ivp 
$ if $status then exit vmi$ success 
$ exit vmi$_failure -

8-6 



c 
Product-Specific Callback Conventions 

A callback is a recursive invocation of a specialized subroutine in VMSINSTAL. 
Example C-1 in this appendix provides a product-specific callback procedure 
used with the VMSINSTAL PRODUCT callback. (See Section 5.19 for more 
information about the PRODUCT callback.) 

Assume that NEWAID is the hypothetical base product for a product 
group. NEWAID must provide a command procedure containing a callback 
(INCREMENT), which increments quantities passed to it. 

The command procedure should be named NEWAIDINSTALL.COM to reflect the 
product name, followed by the word INSTALL. The command procedure should 
be stored in SYS$UPDATE. 

To enable another product to invoke the INCREMENT callback, it must include 
the following line in its installation procedure: 

$ VMI$CALLBACK PRODUCT NEWAIDINSTALL:INCREMENT PROD$INC -
_$ COUNTFILE.DAT VMI$ROOT:[SYSUPD] 2 

In this example, NEWAIDINSTALL.COM parses the following parameters: 

• Pl-INCREMENT 

• P2-PROD$INC 

• P3-COUNTFILE.DAT 

• P4-VMI$ROOT:[SYSUPD] 

• P5-2 

• P6-"" 

• P7-"" 

• PB-"" 

The parameter order for product-specific callbacks should follow those of standard 
callbacks. Use a standard callback that is similar to the one you are designing as 
a model for parameter order. 

The following conventions must be adhered to when designing a product-specific 
callback procedure: · 

• The procedure must establish a Ctrl/Y handler that (eventually) invokes the 
CONTROL_Y callback. 

• The procedure must establish an error handler that (eventually) exits with 
the status that caused the handler to be invoked. Warnings are not trapped, 
because they are routinely returned from other callbacks. 

• The first parameter to the procedure is the callback request code. Use a 
GOTO statement with this parameter to branch to the appropriate callback. 

C-1 



Product-Specific Callback Conventions 

C-2 

• The code to implement a callback must follow all of the conventions outlined 
elsewhere in this manual. In particular, files must be referenced with 
standard callbacks. The FIND_FILE callback can be used to determine the 
existence and location of a file. Logical names and global symbols must begin 
with VMI$, the VMSINSTAL facility code, because the callback procedure is a 
logical extension of VMSINSTAL. 

• The return status from a standard callback must be checked with an IF 
statement to determine success or failure. Because a failure indication is 
limited to a warning, the error handler will not be invoked. 

• The callback must return either a VMI$_SUCCESS or VMI$_FAILURE 
status. 

Example C-1 demonstrates a product-specific callback procedure. 

Example C-1 Product_Specific Callback Procedure 

$! First, set up a CTRL/Y handler 
$! and an error handler. We don't want to trap 
$! warnings because they can happen legitimately. 
$ 
$ ON CONTROL Y THEN VMI$CALLBACK CONTROL Y 
$ ON ERROR THEN EXIT $STATUS -
$ 
$! Use the first parameter to branch to the desired callback. 
$! 
$ GOTO 'Pl 
$ 
$! INCREMENT logical name-type directory integer 
$! 
$! This callback will increment the number stored in 
$! the file by the specified integer. A new file 
$! will be created and put back in the original 
$! place, with the logical name defined to point at it. 
$ 
$INCREMENT: 
$ 
$! Begin by finding the file with the number to be 
$! incremented. If the find fails, then return a 
$! status to inform the caller. 
$ 
$ VMI$FIND 'P2 'P3 'P4 S,E 
$ IF .NOT. $STATUS THEN EXIT $STATUS 
$ 
$! Read the record in the file, which contains the number 
$! to be incremented. 
$ 
$ OPEN/READ VMI$PRODUCT FILE 'P2 
$ READ VMI$PRODUCT FILE-NUMBER 
$ CLOSE VMI$PRODUCT FILE 
$ -

(continued on next page) 



Product-Specific Callback Conventions 

Example C-1 (Cont.) Product_Specific Callback Procedure 

$! Create a new version of the file in the working directory, 
$! and put the incremented number in it. 
$ 
$OPEN/WRITE VMI$PRODUCT FILE VMI$KWD:'P3 
$WRITE VMI$PRODUCT FILE-'F$INT(F$INT(NUMBER) + F$INT(P5)) 
$ CLOSE VMI$PRODUCT-FILE 
$ -
$! Provide the new file, which will replace the old one. 
$! Also define the logical name to point at the final file. 
$ 
$ VMI$CALLBACK PROVIDE FILE 'P2 'P3 'P4 
$ EXIT $STATUS -

C-3 





D 
How to Use the VMl$VMS_ VERSION Symbol 

Example D-1 shows some techniques for using the VMI$VMS_ VERSION symbol 
to determine whether your product is compatible with the version level of the 
target system. Although this example only checks for a specific version, the 
techniques shown here may be adapted to check for a range of versions. 

For more information about the CHECK_ VMS_ VERSION callback, see 
Section 5.6. 

Example D-1 Template for Using the VMl$VMS_VERSION Symbol 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

**************************************************** 
* 
* 
* 

VMI$VMS_VERSION Template 
* 
* 
* 

**************************************************** 

Modify the definitions of PRODUCT$REL VERSION and 
PRODUCT$FT VERSION to define any version restrictions required 
for your product. 

Define earliest released version of OpenVMS supported by the product 

PRODUCT$REL_VERSION = 11 040 11 

Define earliest field test version of OpenVMS supported by the product 

PRODUCT$FT_VERSION = 11 041 11 

Extract current running version number of OpenVMS 

PRODUCT$TYPE = F$ELEMENT(0, 11
,

11 ,VMI$VMS_VERSION) 

$V RELEASED: 
$ T 

(continued on next page) 

D-1 



How to Use the VMl$VMS_ VERSION Symbol 

Example D-1 {Cont.) Template for Using the VMl$VMS_ VERSION Symbol 

$ Check for RELEASED version of OpenVMS 
$ 
$ 
$ 
$ 
$ 

$ 

NOTE: use String comparison to check in case version number contains 
characters. 

IF PRODUCT$TYPE .NES. "RELEASED" THEN GOTO V UPDATE 
IF F$ELEMENT( 1, II II ,F$ELEMENT( 1, II, II, VMI$VMS VERSION)) .GES. -

PRODUCT$REL_VERSION THEN GOTO V_OK -

$V RELlO: 
$ T 
$ 

$ 

$ 
$ 

VER="V"+F$EXTRACT(l,l,PRODUCT$REL VERSION) -
+11

•
11 +F$EXTRACT(2,2,PRODUCT$REL VERSION) 

VMI$CALLBACK MESSAGE E VERSION - -
"THIS PRODUCT REQUIRES OpenVMS VERSION ''VER' OR LATER TO INSTALL" 

EXIT VMI$_FAILURE 

$V UPDATE: 
$ T 
$ ! 
$ ! 
$ 

$ 

Check for Field Test version of OpenVMS 

IF PRODUCT$TYPE .NES. "UPDATE FT" THEN GOTO V BASELEVEL 
IF F$ELEMENT( 1, II II ,F$ELEMENT( 1, II, II, VMI$VMS VERSION)) .GES. -

PRODUCT$FT_VERSION THEN GOTO V_OK -

$V UPDlO: 
$ T 
$ 

$ 

$ 
$ 
$ 

VER="T"+F$EXTRACT(l,l,PRODUCT$FT VERSION) -
+"."+F$EXTRACT(2,2,PRODUCT$FT VERSION) 

VMI$CALLBACK MESSAGE E FIELDTEST - -
"THIS PRODUCT REQUIRES OpenVMS VERSION 

EXIT VMI$_FAILURE 
''VER' OR LATER TO INSTALL" 

$V BASELEVEL: 
$ T 
$ ! 
$ 
$ 
$ 
$ 
$ 

$ 
$ 
$ V_OK: 

D-2 

Always allow installations on baselevels of OpenVMS. 
early testing of the product by Digital 

Required to ensure 

BASELEVEL = F$ELEMENT(l, 11 11 ,F$ELEMENT(l, 11 ,",VMI$VMS VERSION)) 
IF PRODUCT$TYPE .NES. "UPGRADE FT" THEN EXIT VMI$ FAILURE 
VMI$CALLBACK MESSAGE I BASELEVEL - -
II INSTALLING ON Open VMS BASELEVEL , , BASELEVEL, , INSTALLATION CONTINUING. II 



E 
Product Registration 

Product registration is a free service offered by Digital to customers. Product 
registration prevents software conflicts among layered products by ensuring that 
the following elements of each product are unique: 

• Facility code 

• Logical name prefixes 

• Shareable image names 

Participation in registration is voluntary. However, Digital cannot guarantee that 
nonregistered products will not conflict with other products. 

For more information about product registration (including an application form), 
contact the Registrar at the following address: 

Digital Equipment Corporation 
Attn: Open VMS Product Registrar 
110 Spit Brook Road 
Nashua, NH 03062-9987 

E-1 





A 
ADD_IDENTIFIER callback, 5-2 
ALL DONE subroutine, 4-7 
Alte;nate root option (R), 1-7, 1-10 
Alternate working device option (AWD), 1-9 
Answer file, 1-8 
ASK callback, 5-2 
Auto-answer option (A), 1-8, 4-6 

B 
Booting option (B), 1-14 

c 
Callbacks 

accessing files, 3-3 
ADD_IDENTIFIER, 5-2 
ASK, 5-2 
CHECK_NETWORK, 5-5 
CHECK_NET_UTILIZATION, 5-5 
CHECK_PRODUCT_VERSION, 5-7 
CHECK_ VMS_ VERSION, 5-8 
COMPARE_IMAGE, 5-9 
CONTROL_Y, 5-10 
CREATE_ACCOUNT, 5-11 
CREATE_DIRECTORY, 5-11 
definition, 1-1 
DELETE_FILE, 5-14 
examples, 3-7 
FIND_FILE, 5-15 
for creating directories, 3-5 
for deleting files, 3-5 
for moving files, 3-4 
for updating files, 3-4 
for updating libraries, 3-5 
GET_IMAGE_ID, 5-16 
GET PASSWORD, 5-17 
GET=SYSTEM_PARAMETER, 5-17 
guidelines for, 5-1 
invoking, 3-1 
MESSAGE, 5-18 
parameter restrictions, 5-1 
PATCH_IMAGE, 5-19 
PRINT_FILE, 5-20 
PRODUCT, 5-21 

Callbacks (cont'd) 
product-specific, 3-1 

conventions for, C-1 
PROVIDE_DCL_COMMAND, 5-21 
PROVIDE_DCL_HELP, 5-22 
PROVIDE_FILE, 5-23 
PROVIDE_IMAGE, 5-24 
RENAME_FILE, 5-27 
RESTORE_SAVESET, 5-27 
RUN_IMAGE, 5-28 
SECURE_FILE, 5-29 
SET, 5-30 
SET PRODUCT_NAME, 5-33 
SET_SEMANTICS, 5-36 
specifying keywords for, 5-1 
SUMSLP _TEXT, 5-38 
TELL_ QA, 5-40 
tracing, 1-11, 4-6 
UNWIND, 5-40 
UPDATE_ACCOUNT, 5-40 
UPDATE_FILE, 5-41 
UPDATE_IDENTIFIER, 5-42 
UPDATE_LIBRARY, 5-43 

Index 

Callback trace option (C), 1-11, 4-6 
CHECK NETWORK callback, 5-5 
CHECK - NET UTILIZATION callback, 5-5 
CHECK-PRODUCT_ VERSION callback, 5-7 
CHECK= VMS_ VERSION callback, 5-8 
Command abbreviation restriction, 2-3 
COMPARE_IMAGE callback, 5-9 
Compatibility mode, 2-4 
CONTROL_Y callback, 5-10 
CREATE_ACCOUNT callback, 5-11 
CREATE_DIRECTORY callback, 5-11 

restrictions, 3-5 
Creating diskette kit, 2-2 
Creating magnetic tape kit, 2-3 
Creating TU58 cartridge kit, 2-3 

D 
DCL command abbreviation 

restriction, 2-3 
Debugging tools, 1-11 
Defaults 

KITINSTAL, 3-2 

lndex-1 



Defer file, 1-13 
DELETE_FILE callback, 5-14 
Device number 

restriction, 5-1 
Directory 

creating using callbacks, 3-5 
restrictions on creating, 3-5 

Diskette kit, 2-2 
specifying BACKUP qualifiers, 2-2 

Disk space utilization, 1-11, 1-13, 5-5, 5-35 

E 
Error handling 

KITINSTAL, 2-3 

F 
Facility code, 2-1 

registration, 2-1 
Failures, 1-13, 4-8 
File log option (L), 1-9 
File protection, 2-2 
Files 

marker, 1-13, 4-5 
using callbacks to access, 3-3 
using callbacks to delete, 3-5 
using callbacks to move, 3-4 
using callbacks to update, 3-4 

FIND_FILE callback, 5-15 

G 
, Get save set option (G), 1-7, 1-9, 4-10 

GET_IMAGE_ID callback, 5-16 
GET_PASSWORD callback, 5-17 
GET_SYSTEM_PARAMETER callback, 5-17 
Global state 

changing, 2-4 

H 
Help libraries, 2-6 
History file, 1-12 

Inhibit initial prompts option (I), 1-11 
Installation 

achieving design goals, 1-1 
creating a work directory, 1-5 
installation phase, 3-1 
IVP phase, 2-4, 3-2 

Installation Verification Procedure 
See IVP 

Install utility (INSTALL), 2-4 

lndex-2 

Internationalization 
generating VMSINSTAL messages for, 2-5 

IVP (installation verification procedure) 
definition, 1-2 

IVP (Installation Verification Procedure), 3-2 
exit requirements, 3-3 
guidelines for, 2-4 

K 
Kit debug option (K), 1-11 
KITINSTAL procedure 

compatibility mode, 2-4 
defaults, 3-2 
design specifications, 3-6 
error handling requirement, 2-3 
example, 3-7, B-1 
guidelines and conventions, 3-1 

IVP phase, 3-2 
installation for, 3-1 
location in kit, 4-2 
logical references, 3-1 
name prefixes, 2-3 
request codes, 3-6 
requirements of, 3-6 

Kits 

L 

diskette, 2-2 
magnetic tape, 2-3 
TU58 cartridge, 2-3 

Libraries 
using callbacks to update, 3-5 

Logical names 
definitions, A-1 

M 

naming conventions, 2-3 
prefixing, 5-1 
use restrictions, 5-1 
VM1$AUTO_FILE, 4-8 
VMI$CALL_FILE, 4-7 
VMI$DEFER_FILE, 1-13, 4-7 
VMI$K\VD, 1-5,3-1,5-1 
VMI$MARKER_FILE, 1-13,4-7,4-8 
VMI$PRODUCT_FILE, 4-7 
VMI$ROOT, 3-1, 4-3, 4-5, 5-1 
VMI$SPECIFIC, 3-1, 4-3 
VMI$TEMP _FILE, 4-7 
VM1$TERMINAL_FILE, 4-8 

Magnetic tape kit 
specifying BACKUP qualifiers, 2-3 

Marker file, 1-13, 4-5 
MESSAGE callback, 5-18 



Messages 
internationalization of, 2-5 

Modes 
compatibility, 2-4 

N 
Naming convention 

global symbol and logical name, 2-3, 3-1 
KITINSTAL, 3-1 
product, 2-1 
release notes, 2-6 
save set, 2-1 
subroutine, 2-3 

Network 
checking status of, 5-5 

0 
Options 

See VMSINSTAL command procedure, Options 

p 
PATCH_IMAGE callback, 5-19 
PRINT_FILE callback, 5-20 
Procedure 

checking products installed, 1-12 
PRODUCT callback, 5-21 
Product file 

protection code, 2-2 
Product identification, 2-1 
Product installation file, 1-12 
Product kit, 1-2, 2-1 
Product name registration, 2-1 
Product referencing 

options, 2-4 
Product save set identification, 2-1 
Product-specific callback, 3-1, C-1 
Prompting for input, 2-5, 5-2 
Protection code 

for product files, 2-2 
PROVIDE_DCL_COMMAND callback, 5-21 
PROVIDE_DCL_HELP callback, 5-22 
PROVIDE_FILE callback, 5-23 
PROVIDE_IMAGE callback, 5-24 

Q 
QA (Quality Assurance) mode option (Q), 1-11 

R 
Release notes 

guidelines for including, 2-6 
in Help library, 2-6 

Release notes option (N), 1-2, 1-9, 2-2, 2-6 
RENAME_FILE callback, 5-27 
Request code 

KITINSTAL, 3-6 
VMI$_IVP, 3-3 

Restore save set and pause option (RSP), 1-11 
RESTORE_SAVESET callback, 5-27 
Restrictions 

callback, 2-3, 3-1 
CREATE_DIRECTORY callback, 3-5 
logical name use, 5-1 

Root 
specifying alternate, 1-7 

RSP option 
See Restore save set and pause option (RSP) 

RUN_IMAGE callback, 5-28 

s 
Safety mode, 1-13 
Save set 

copying to disk, 1-9, 4-10 
identification, 1-2 
naming, 2-1 
restoring, 1-11, 4-6 
sequence identifier, 2-2 

SECURE_FILE callback, 5-29 
Sequence identifier 

See Save set 
SET ACL option, 5-2, 5-30 
SET ASK_CASE option, 5-31 
SET callback, 5-30 to 5-37 
SET command 

restriction, 3-2 
SET IVP option, 5-32 
SET POSTINSTALL option, 5-33 
SET PRODUCT_NAME option, 5-33 
SET PURGE option, 5-34 
SET REBOOT option, 5-35 
SET SAFETY option, 5-35 
SET SHUTDOWN option, 5-36 
SET STARTUP option, 5-37 
SET _FILE option, 5-31 
SET_SEMANTICS option, 5-36 
SHOW command 

restriction, 3-2 
SPKITBLD command procedure, 1-2 

invoking, 1--4 
Statistics option (S), 1-11, 4-5 
Statistics subprocess, 4-5 
Subroutines 

See also Callbacks 
ALL_DONE, 4-7 
limitations, 2-3 
naming conventions, 2-3 

lndex-3 



SUMSLP _TEXT callback, 5-38 
Symbols 

definitions, A-1 
naming conventions, 2-3 

SYS$HELP, 2-6 
SYS$LIBRARY 

restriction, 3-1 
SYS$SPECIFIC 

restriction, 3-1 
System failure 

recovery, 4-8 
Recovery, 1-13 

T 
TELL_ QA callback, 5-40 
TU58 cartridge kit 

specifying BACKUP qualifiers, 2~3 

u 
UNWIND callback, 5-40 
UPDATE_ACCOUNT callback, 5-40 
UPDATE_FILE callback, 5-41 
UPDATE_IDENTIFIER callback, 5-42 
UPDATE_LIBRARY callback, 3-5, 5-43 

v 
Verification 

disabling, 1-11 
using SET commands, 3-2 

VM1$, 4-1 
VMI$ALTERNATE_ROOT, 4-5 
VMI$BOOTING, 4-2, 4-8 
VMI$CALLBACK, 3-1, 4-7 

for invoking callbacks, 5-1 
VMI$COMMON_ROOT, 4-5 
VMI$DEFER_FILE, 1-13 
VMl$FREE_BLOCKS, 4-5 
VMI$K\VD, 3-1,5-1 
VMI$K\VD_FREE_BLOCKS, 4-5 
VMl$LIST, 4-4 
VMI$MARKER_FILE, 1-13 
VMl$PLACE, 4-4 
VMI$ prefix, 2-3 
VMl$PRODUCT, 4-5 
VM1$ROOT, 3-1, 5-1 
VMI$SAVED_DIR, 4-8 
VMI$SAVED_MSG, 4-8 
VMI$SAVED_PRIVS, 4-8 
VMI$SAVED_PROT, 4-8 
VMI$SAVED_UIC, 4-8 
VMI$SPECIFIC, 3-1, 4-5 
VMI$TERMINAL_FILE, 4-2 
VMI$VERSION, 4-2 

lndex-4 

VMI$VMS_VERSION, 4-2 
guidelines for using, D-1 

VMI$_FAILURE status, 5-1 
VMI$_IVP request code, 3-3 
VMI$_SUCCESS status, 5-1 
VMIDEFER.COM, 1-13 
VMIMARKERpid.DAT, 1-13 
VMSINSTAL command procedure 

alternate root, 1-10 
answer file, 1-8 
functional steps, 4-1 to 4-10 
guidelines and conventions, 2-1 to 2-5 
history file, 1-12 
installation phase, 1-13, 3-1 
invoking, 1-6 
IVP phase, 2-4 
list installed products procedure, 1-12 
logic sequence, 4-1 
name prefixes, 2-3 
options, 1-8 to 1-11 

developer's, 1-11 
installer's, 1-8 

OPTIONS keyword, 1-6 
outline of logic, 1-5 
parameter, 1-6 to 1-7 
product installation file, 1-12 
recovery procedure, 4-8 
safety mode, 1-13 

Volume labeling 
conventions, 2-2 

w 
Wild cards 

restrictions, 5-1 
Work directory 

installation, 1-5 
on an alternate device, 1-9 
VM1$K\VD, 1-5 



NOTES 



NOTES 

2 



NOTES 

3 



NOTES 

4 



NOTES 

5 



NOTES 

6 



NOTES 

7 



NOTES 

8 



NOTES 

9 



NOTES 

10 



NOTES 

11 



NOTES 

12 



How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825) 
and press 2 for technical assistance. 

Electronic Orders 
If you wish to place an order through your account at the Electronic Store, dial 800-234-1998, using a 
modem set to 2400- or 9600-baud. You must be using a VT terminal or terminal emulator set at 8 bits, no 
parity. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an 
Electronic Store specialist. 

Telephone and Direct Mail Orders 

From 

U.S.A. 

Puerto Rico 

Canada 

International 

Internal Orders1 

(for software 
documentation) 

Internal Orders 
(for hardware 
documentation) 

Call 

DECdirect 
Phone: 800-DIGITAL 
( 800-344-4825) 
FAX: (603) 884-5597 

Phone: (809) 781-0505 
FAX: (809) 749-8377 

Phone: 800-267-6215 
FAX: (613) 592-1946 

DTN: 241-3023 
(508) 874-3023 

DTN: 234-4325 
(508) 351-4325 
FAX: (508) 351-4467 

Write 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, NH 03061 

Digital Equipment Caribbean, Inc. 
3 Digital Plaza, 1st Street 
Suite 200 
Metro Office Park 
San Juan, Puerto Rico 00920 

Digital Equipment of Canada Ltd. 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 
Attn: DECdirect Sales 

Local Digital subsidiary or 
approved distributor 

Software Supply Business (SSB) 
Digital Equipment Corporation 
1 Digital Drive 
Westminster, MA 014 73 

Publishing & Circulation Services 
Digital Equipment Corporation 
NR02-2 
444 Whitney Street 
Northboro, MA 01532 

1Call to request an Internal Software Order Form (EN-01740-07). 





Reader's Comments OpenVMS Developer's Guide to VMSINSTAL 
AA-PWBXA-TE 

Your comments and suggestions help us improve the quality of our publications. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair 

Accuracy (product works as manual says) D D D 
Completeness (enough information) D D D 
Clarity (easy to understand) D D D 
Organization (structure of subject matter) D D D 
Figures (useful) D D D 
Examples (useful) D D D 
Index (ability to find topic) D D D 
Page layout (easy to find information) D D D 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

For software manuals, please indicate which version of the software you are using: 

Namefl'itlc 

Company 

Mailing Address 

Dept. 

Phone 

Date 

Poor 

D 
D 
D 
D 
D 
D 
D 
D 



Do Not Tear - Fold Here and Tape 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
OpenVMS Documentation 
110 SPIT BROOK ROAD ZK03-4/U08 
NASHUA, NH 03062-2642 

lll11111ll1ll1111ll1111l1l11l1l1ll111l11l11l1l1l1l1I 

No Postage 
Necessary 
if Mailed 

in the 
United States 

--- Do Not Tear- Fold Here -----------------------------------------------



Reader's Comments OpenVMS Developer's Guide to VMSINSTAL 
AA-PWBXA-TE 

Your comments and suggestions help us improve the quality of our publications. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair 

Accuracy (product works as manual says) D D D 
Completeness (enough information) D D D 
Clarity (easy to understand) D D D 
Organization (structure of subject matter) D D D 
Figures (useful) D D D 
Examples (useful) D D D 
Index (ability to find topic) D D D 
Page layout (easy to find information) D D D 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

For software manuals, please indicate which version of the software you are using: 

Namcfl'itlc 

Company 

Mailing Address 

Dept. 

Phone 

Date 

Poor 

D 
D 
D 
D 
D 
D 
D 
D 



Do Not Tear - Fold Here and Tape 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
OpenVMS Documentation 
110 SPIT BROOK ROAD ZK03-4/U08 

NASHUA, NH 03062-2642 

I I I 11111lI1lI1111lI1111l1l11l1l1lI111l11l11l1l1l1l1 l 

No Postage 
Necessary 
if Mailed 

in the 
United States 

... . . ~ 

"' .~ 11 ~ ,• 1, '<l 

Do Not Tear- Fold Here -----------------------------------------------


