
OpenVMS RTL General Purpose (OTS$) Manual

Part Number: AA-PV6HA-TK

Open VMS RTL General Purpose
(OTS$) Manual
Order Number: AA-PV6HA-TK

May 1993

This manual documents the general purpose routines contained in the
OTS$ facility of the Open VMS Run-Time Library.

Revision/Update Information: This manual supersedes the VMS
RTL General Purpose (OTS$) Manual,
Version 5.2.

Software Version: Open VMS AXP Version 1.5
Open VMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader,
CDA, DDIF, DEC, DECdtm, DECnet, DECUS, DECwindows, DECwriter, DEQNA, Digital, GIGI,
HSC, LiveLink, LN03, MASSBUS, MicroVAX, OpenVMS, PrintServer 40, Q-bus, ReGIS, ULTRIX,
UNIBUS, VAX, VAXcluster, VAX RMS, VAXserver, VAXstation, VMS, VT, XUI, the AXP logo, and
the Digital logo.

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems Incorporated.

All other trademarks and registered trademarks are the property of their respective holders.

ZK5933

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . v

1 Overview of the OTS$ Facility

OTS$ Reference Section

OTS$CNVOUT . OTS-3
OTS$CVT_L_TB. OTS-5
OTS$CVT_L_TI . OTS-7
OTS$CVT_L_TL. OTS-9
OTS$CVT_L_ TO . OTS-11
OTS$CVT_L_ TU . OTS-13
OTS$CVT_L_ TZ . OTS-15
OTS$CVT_TB_L... OTS-17
OTS$CVT_ TI_L . OTS-20
OTS$CVT_TL_L.... OTS-22
OTS$CVT_TO_L . OTS-24
OTS$CVT_TU_L . OTS-26
OTS$CVT_ T_z . OTS-28
OTS$CVT_ T_z . OTS-32
OTS$CVT_ TZ_L . OTS-35
OTS$DIVCx . OTS-38
OTS$DIV_PK_LONG... OTS-41
OTS$DIV _PK_SHORT . OTS-45
OTS$MOVE3 . OTS-48
OTS$MOVE5 . OTS-50
OTS$MULCx . OTS-52
OTS$POWCxCx . OTS-54
OTS$POWCxJ . OTS-57
OTS$POWDD . OTS-59
OTS$POWDR. OTS-61
OTS$POWDJ . OTS-63
OTS$POWGG . OTS-65
OTS$POWGJ . OTS-68
OTS$POWHH_R3 . OTS-70
OTS$POWHJ_R3 . OTS-72
OTS$POWII.. OTS-74
OTS$POWJJ . OTS-75
OTS$POWLULU . OTS-76

iii

Index

Tables

1-1
1-2
1-3
1-4
1-5
1-6
1-7

iv

OTS$POWxLU . OTS-77
OTS$POWRD. OTS-79
OTS$POWRJ . OTS-82
OTS$POWRR . OTS-84
OTS$SCOPY_DXDX.. OTS-86
OTS$SCOPY_R_DX . OTS-88
OTS$SFREE1_DD... OTS-91
OTS$SFREEn_DD . OTS-92
OTS$SGETl_DD . OTS-93

OTS$ Conversion Routines
OTS$ Division Routines
OTS$ Move Data Routines
OTS$ Multiplication Routine
OTS$ Exponentiation Routines
OTS$ Copy Source String Routines
OTS$ Return String Area Routines

1-1
1-2
1-2
1-2
1-2
1-3
1-3

Preface

This manual provides users of the Open VMS operating system with detailed
usage and reference information on general purpose routines supplied in the
OTS$ facility of the Run-Time Library.

Intended Audience
This manual is intended for system and application programmers who want to
call Run-Time Library routines.

Document Structure
This manual is organized into two parts as follows:

• Part I contains a brief overview of the OTS$ routines in Chapter 1.

• Part II, the OTS$ Reference Section, provides detailed reference information
on each routine contained in the OTS$ facility of the Run-Time Library.
This information is presented using the documentation format described
in Open VMS Programming Interfaces: Calling a System Routine. Routine
descriptions appear in alphabetical order by routine name.

Associated Documents
The Run-Time Library routines are documented in a series of reference manuals.
A description of how the Run-Time Library routines are accessed is presented in
Open VMS Programming Interfaces: Calling a System Routine. A description of
VMS features and functionality available through calls to the OTS$ Run-Time
Library appears in the Open VMS Programming Concepts Manual. Descriptions
of other RTL facilities and their corresponding routines and usages are discussed
in the following books:

• DPML, Digital Portable Mathematics Library

• Open VMS RTL DECtalk (DTK$) Manual

• Open VMS RTL Library (LIB$) Manual

• Open VMS VAX RTL Mathematics (MTH$) Manual

• Open VMS RTL Parallel Processing (PPL$) Manual

• Open VMS RTL Screen Management (SMG$) Manual

• Open VMS RTL String Manipulation (STR$) Manual

The Guide to DECthreads contains guidelines and reference information for
DECthreads, the Digital Multithreading Run-Time Library.

Application programmers using any programming language can refer to the Guide
to Creating Open VMS Modular Procedures for writing modular and reentrant
code.

v

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manual. Additional
information may also be found in the language user's guide provided with your
VMS language software.

For a complete list and description of the manuals in the VMS documentation set,
see the Overview of Open VMS Documentation.

Conventions

vi

In this manual, every use of Open VMS AXP means the Open VMS AXP operating
system, every use of Open VMS VAX means the Open VMS VAX operating system,
and every use of Open VMS means both the Open VMS AXP operating system and
the Open VMS VAX operating system.

The following conventions are used to identify information specific to Open VMS
AXP or to Open VMS VAX:

&Uw

•

The AXP icon denotes the beginning of information
specific to Open VMS AXP.

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS AXP or to Open VMS
VAX.

The following conventions are used in this manual:

Ctrllx

PFlx

GOLDx

A sequence such as Ctrl/x indicates down the key labeled Ctrl
while you press another key or a pointing device button.

A sequence such as PFl x indicates that you must first press
and release the key labeled PFl, then press and release
another key or a pointing device button.

A sequence such as GOLD x indicates that you must first press
and release the key defined GOLD, then press and release
another key. GOLD key sequences can also have a slash (I),
dash (-), or underscore (_) as a delimiter in EVE commands.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

()

[]

{}

boldface text

italic text

UPPERCASE TEXT

numbers

In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses. ·

In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an Open VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, IPRODUCER=name), and command parameters
in text.

Uppercase text indicates a command, the name of a routine,
the name of a file, the name of a file protection code, or the
abbreviation for a system privilege.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

All numbers in text are assumed to be decimal, unless
otherwise noted. N ondecimal radixes-binary, oc
hexadecimal-are explicitly indicated.

Other conventions used in the documentation of Run-Time Library routines are
described in Open VMS Programming Interfaces: Calling a System Routine.

vii

1
Overview of the OTS$ Facility

This manual discusses the Run-Time Library OTS$ routines that perform general
purpose functions. These functions include data type conversions as part of a
compiler's generated code, and some mathematical functions.

Most of the OTS$ routines were originally designed to support language
compilers. Because they provide useful functions, they were moved into the
language-independent facility, OTS$.

The OTS$ facility provides you with routines that perform seven main tasks:

• Convert data types

• Divide complex and packed decimal values

• Move data to a specified destination address

• Multiply complex values

• Raise a base to an exponent

• Copy a source string to a destination string

• Return a string area to free storage

Table 1-1, Table 1-2, Table 1-3, Table 1-4, Table 1-5, Table 1-6, and Table 1-7
contain all of the OTS$ routines grouped according to their functions.

Table 1-1 OTS$ Conversion Routines

Conversion Routine

OTS$CNVOUT

OTS$CVT_L_TB

OTS$CVT_L_TI

OTS$CVT_L_TL

OTS$CVT_L_TO

OTS$CVT_L_TU

OTS$CVT_L_TZ

OTS$CVT_TB_L

OTS$CVT_TI_L

OTS$CVT_TL_L

OTS$CVT_TO_L

Function

Convert a D-floating, G-floating, or H-floating value to a
character string

Convert an unsigned integer to binary text

Convert a signed integer to signed integer text

Convert an integer to logical text

Convert an unsigned integer to octal text

Convert an unsigned integer to decimal text

Convert an integer to hexadecimal text

Convert binary text to an unsigned integer value

Convert signed integer text to an integer value

Convert logical text to an integer value

Convert octal text to an integer value

(continued on next page)

Overview of the OTS$ Facility

1-2

Table 1-1 (Cont.) OTS$ Conversion Routines

Conversion Routine

OTS$CVT_TU_L

OTS$CVT _T_z

OTS$CVT _T_x

OTS$CVT_TZ_L

Function

Convert unsigned decimal text to an integer value

Convert numeric text to a D- or F-floating value

Convert numeric text to a G- or H-floating value

Convert hexadecimal text to an unsigned longword integer
value

For more information on Run-Time Library conversion routines, see the CVT$
reference section in the Open VMS RTL Library (LIB$) Manual.

Table 1-2 OTS$ Division Routines

Division Routine

OTS$DIVCx

OTS$DIV _PK_LONG

OTS$DIV _PK_SHORT

Table 1-3 OTS$ Move Data Routines

Move Data Routine

OTS$MOVE3

OTS$MOVE5

Function

Perform complex division

Perform packed decimal division with a long
divisor

Perform packed decimal division with a short
divisor

Function

Move data without fill

Move data with fill

Table 1-4 OTS$ Multiplication Routine

Multiplication Routine Function

OTS$MULCx Perform c?mplex multiplication

Table 1-5 OTS$ Exponentiation Routines

Exponentiation Routine

OTS$POWCxCx

OTS$POWCxJ

OTS$POWDD

OTS$POWDR

OTS$POWDJ

Function

Raise a complex base to a complex floating­
point exponent

Raise a complex base to a signed longword
exponent

Raise a D-floating base to a D-floating
exponent

Raise a D-floating base to an F-floating
exponent

Raise a D-floating base to a longword integer
exponent

(continued on next page)

Overview of the OTS$ Facility

Table 1-5 (Cont.) OTS$ Exponentiation Routines

Exponentiation Routine

OTS$POWGx

OTS$POWGJ

tOTS$POWHx

OTS$POWHJ

OTS$POWII

OTS$POWHJJ

OTS$POWLULU

OTS$POWxLU

OTS$POWRD

OTS$POWRJ

OTS$POWRR

tVAX VMS specific.

Function

Raise a G-fl.oating base to a G-fl.oating or
longword integer exponent

Raise a G-fl.oating base to a longword integer
exponent

Raise an H-fl.oating base to a floating-point
exponent

Raise an H-fl.oating base to a longword integer
exponent

Raise a word integer base to a word integer
exponent

Raise a longword integer base to a longword
integer exponent

Raise an unsigned longword integer base to an
unsigned longword integer exponent

Raise a floating-point base to an unsigned
longword integer exponent

Raise an F-fl.oating base to a D-fl.oating
exponent

Raise an F-fl.oating base to a longword integer
exponent

Raise an F-fl.oating base to an F-fl.oating
exponent

Table 1-6 OTS$ Copy Source String Routines

Copy Source String Routine

OTS$SCOPY_DXDX

OTS$SCOPY_R_DX

Function

Copy a source string passed by descriptor to a
destination string

Copy a source string passed by reference to a
destination string

Table 1-7 OTS$ Return String Area Routines

Return String Area Routine

OTS$SFREE1_DD

OTS$SFREEN_DD

OTS$SGET1_DD

Function

Free one dynamic string

Free n dynamic strings

Get one dynamic string

1-3

OTS$ Reference Section

This section provides detailed descriptions of the routines provided by the VMS
RTL General Purpose (OTS$) Facility.

OTS$CNVOUT

OTS$CNVOUT-Convert D-Floating, G-Floating or H-Floating
Number to Character String

Format

Returns

Arguments

The Convert Floating to Character String routines convert a D-fioating, G-fioating
or H-fioating number to a character string in the FORTRAN E format.

OTS$CNVOUT D-G-or-H-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction

OTS$CNVOUT _G D-G-or-H-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction

OTS$CNVOUT _HD-G-or-H-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction +

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

D-G-or-H-float-pt-i n put-val
Open VMS usage fioating_point
type D_floating, G_fioating, H_fioating
access read only
mechanism by reference

Value that OTS$CNVOUT converts to a character string. For OTS$CNVOUT,
the D-G-or-H-float-pt-input-val argument is the address of a D-fioating number
containing the value. For OTS$CNVOUT_G, the D-G-or-H-float-pt-input-
val argument is the address of a G-floating number containing the value. For
OTS$CNVOUT_H, the D-G-or-H-float-pt-input-val argument is the address of
an H-fioating number containing the value.

fixed-length-resultant-string
Open VMS usage char_string
type character string
access write only
mechanism by descriptor, fixed length

Output string into which OTS$CNVOUT writes the character string result of the
conversion. The fixed-length-resultant-string argument is the address of a
descriptor pointing to the output string.

OTS$CNVOUT

digits-in-fraction
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
read only
by value

Number of digits in the fractional portion of the result. The digits-in-fraction
argument is an unsigned longword containing the number of digits to be written
to the fractional portion of the result.

Condition Values Returned

SS$_NORMAL

SS$_ROPRAND

OTS$_0UTCONERR

Normal successful completion.

Floating reserved operand detected.

Output conversion error. The result would have
exceeded the fixed-length string; the output
string is filled with asterisks.

OTS$CVT _L_ TB

OTS$CVT _L_ TB-Convert an Unsigned Integer to Binary Text

Format ·

Returns

Arguments

The Convert an Unsigned Integer to Binary Text routine converts an unsigned
integer value of arbitrary length to binary representation in an ASCII text string.
By default, a longword is converted.

OTS$CVT _L_ TB varying-input-value ,fixed-length-resultant-string [,number-of-digits]
[,input-value-size]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

varying-in put-value
Open VMS usage varying_arg
type unspecified
access read only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_L_TB converts to an unsigned
decimal representation in an ASCII text string. (The value of the input-value­
size argument determines whether varying-input-value is a byte, word, or
longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string
Open VMS usage char_string
type character string
access write only
mechanism by descriptor, fixed-length

ASCII text string that OTS$CVT_L_TB creates when it converts the integer
value. The fixed-length-resultant-string argument is the address of a
descriptor pointing to this ASCII text string. The string is assumed to be of
fixed length (DSC$K_CLASS_S).

number-of-digits
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Minimum number of digits in the binary representation to be generated. The
number-of-digits argument is a signed longword containing this minimum
number. If the minimum number of digits is omitted, the default is 1. If the
actual number of significant digits is less than the minimum number of digits,
leading zeros are produced. If the minimum number of digits is zero and the
value of the integer to be converted is also zero, OTS$CVT_L_TB creates a blank
string.

OTS$CVT _L_ TB

input-value-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Size of the integer to be converted, in bytes. The input-value-size argument is
a signed longword containing the byte size. This is an optional argument. If the
size is omitted, the default is 4 (longword).

Condition Values Returned

Example

OTS-6

SS$_NORMAL

OTS$_0UTCONERR

Normal successful completion.

Output conversion error. The result would have
exceeded the fixed-length string; the output
string is filled with asterisks.

O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTY D F 4 TTY
C* Initialize numeric value to be converted.
C Z-ADD13 VALUE 90
C CVTLTB EXTRN'OTS$CVT_L_TB'
C* Convert the number to binary in a string.
C CALL CVTLTB
C PARM VALUE RL
C PARMD OUTSTR 4
C* Display the converted string on the terminal.
C OUTSTR DSPLYTTY
C SETON LR

This RPG II program displays the string '1101' on the terminal.

OTS$CVT _L_ Tl

OTS$CVT _L_ Tl-Convert Signed Integer to Decimal Text

Format

Returns

Arguments

The Convert Signed Integer to Decimal Text routine converts a signed integer to a
decimal ASCII text string; This routine supports FORTRAN Iw and Iw.m output
and BASIC output conversion.

OTS$CVT _L_ Tl varying-input-value ,fixed-length-resultant-string [,number-of-digits]
[,input-value-size] [,flags-value]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

varying-in put-value
Open VMS usage varying_arg
type unspecified
access read only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_L_TI converts to an unsigned
decimal representation in an ASCII text string. (The value of the input-value­
size argument determines whether varying-input-value is a byte, word, or
longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string
Open VMS usage char_string
type character string
access write only
mechanism by descriptor, fixed length

Decimal ASCII text string that OTS$CVT_L_TI creates when it converts the
sigried integer. The fixed-length-resultant-string argument is the address of a
descriptor pointing to this text string. The string is assumed to be of fixed length
(DSC$K_CLASS_S).

number-of-digits
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Minimum number of digits to be generated when OTS$CVT_L_TI converts the
signed integer to a decimal ASCII text string. The number-of-digits argument
is a signed longword containing this number. If the minimum number of digits
is omitted, the default value is 1. If the actual number of significant digits is
smaller, OTS$CVT_L_TI inserts leading zeros into the output string. If number­
of-digits is zero and varying-input-value is zero, OTS$CVT_L_TI writes a
blank string to the output string.

OTS-7

OTS$CVT _L_ Tl

input-value-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Size of the integer to be converted, in bytes. The input-value-size argument is
a signed longword containing this value size. The value size must be either 1,
2, or 4. If value size is 1 or 2, the value is sign-extended to a longword before
conversion. If the size is omitted, the default is 4 (longword).

flags-value
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by value

Caller-supplied flags that you can use if you want OTS$CVT_L_TI to insert a
plus sign before the converted number. The flags-value argument is an unsigned
longword containing the flags.

The caller flags are defined as follows:

Bit 0 If set, a plus sign (+) is inserted before the first nonblank character in
the output string; otherwise, the plus sign is omitted.

If flags-value is omitted, all bits are clear and the plus sign is not inserted.

Condition Values Returned

OTS-8

SS$_NORMAL

OTS$_0UTCONERR

Normal successful completion.

Output conversion error. The result would have
exceeded the fixed-length string; the output
string is filled with asterisks.

OTS$CVT_L_TL

OTS$CVT _L_ TL-Convert Integer to Logical Text

Format

Returns

Arguments

The Convert Integer to Logical Text routine converts an integer to an ASCII text
string representation using FORTRAN L (logical) format.

OTS$CVT _L_ TL longword-integer-value ,fixed-length-resultant-string

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

longword-integer-value
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference

Value that OTS$CVT_L_TL converts to an ASCII text string. The longword­
integer-value argument is the address of a signed longword containing this
integer value.

fixed-length-resultant-string
Open VMS usage char_string
type character string
access write only
mechanism by descriptor, fixed length

Output string that OTS$CVT_L_TL creates when it converts the integer value
to an ASCII text string. The fixed-length-resultant-string argument is the
address of a descriptor pointing to this ASCII text string.

The output string is assumed to be of fixed length (DSC$K_ CLASS_S).

If length equals the fixed length of the output string, then the output string
consists of (length - 1) blanks followed by the letter T if bit 0 is set, or the letter
F if bit 0 is clear.

Condition Values Returned

SS$_NORMAL

OTS$_0UTCONERR

Normal successful completion.

Output conversion error. The result would have
exceeded the fixed-length string; the output
string is of zero length (DSC$W _LENGTH= 0).

OTS-9

OTS$CVT _L_ TL

Example

OTS-10

5 ! +
! This is an example program
! showing the use of OTS$CVT_L_TL.
!-

VALUE% = 10
OUTSTR$ = I I

CALL OTS$CVT_L_TL(VALUE%, OUTSTR$)
PRINT OUTSTR$

9 END

This BASIC example illustrates the use of OTS$CVT_L_TL. The output generated
by this program is 'F' .

OTS$CVT _L_ TO

OTS$CVT _L_ TO-Convert Unsigned Integer to Octal Text

Format

Returns

Arguments

The Convert Unsigned Integer to Octal Text routine converts an unsigned integer
to an octal ASCII text string. OTS$CVT_L_TO supports FORTRAN Ow and
Ow.m output conversion formats.

OTS$CVT _L_ TO varying-input-value ,fixed-length-resultant-string [,number-of-digits]
[,input-value-size]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

varying-input-value
Open VMS usage varying_arg
type unspecified
access read only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_L_TO converts to an unsigned
decimal representation in an ASCII text string. (The value of the input-value­
size argument determines whether varying-input-value is a byte, word, or
longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string
Open VMS usage char_string
type character string
access write only
mechanism by descriptor, fixed length

Output string that OTS$CVT_L_TO creates when it converts the integer value
to an octal ASCII text string. The fixed-length-resultant-string argument is
the address of a descriptor pointing to the octal ASCII text string. The string is
assumed to be of fixed length (DSC$K_CLASS_S).

number-of-digits
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Minimum number of digits that OTS$CVT_L_TO generates when it converts the
integer value to an octal ASCII text string. The number-of-digits argument
is a signed longword containing the minimum number of digits. If it is omitted,
the default is 1. If the actual number of significant digits in the octal ASCII
text string is less than the minimum number of digits, OTS$CVT_L_TO inserts

OTS-11

OTS$CVT _L_ TO

leading zeros into the output string. If number-of-digits is zero and varying­
input-value is zero, OTS$CVT_L_TO writes a blank string to the output
string.

input-value-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Size of the integer to be converted, in bytes. The input-value-size argument is a
signed longword containing the number of bytes in the integer to be converted by
OTS$CVT_L_TO. If it is omitted, the default is 4 (longword).

Condition Values Returned

OTS-12

SS$_NORMAL
OTS$_0UTCONERR

Normal successful completion.
Output conversion error. The result would have
exceeded the fixed-length string; the output
string is filled with asterisks.

OTS$CVT _L_ TU

OTS$CVT _L_ TU-Convert Unsigned Integer to Decimal Text

Format

Returns

Arguments

The Convert Unsigned Integer to Decimal Text routine converts a byte, word, or
longword value to unsigned decimal representation in an ASCII text string. By
default, a longword is converted.

OTS$CVT _L_ TU varying-input-value ,fixed-length-resultant-string [,number-of-digits]
[,input-value-size]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

varying-input-value
Open VMS usage varying_arg
type unspecified
access read only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_L_TU converts to an unsigned
decimal representation in an ASCII text string. (The value of the input-value­
size argument determines whether varying-input-value is a byte, word, or
longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string
Open VMS usage char_string
type character string
access write only
mechanism by descriptor, fixed-length

Output string (fixed-length) that OTS$CVT_L_TU creates when it converts the
integer value to unsigned decimal representation in an ASCII text string. The
fixed-length-resultant-string argument is the address of a descriptor pointing
to this ASCII text string.

number-of-digits
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Minimum number of digits in the ASCII text string that OTS$CVT_L_TU creates.
The number-of-digits argument is a signed longword containing the minimum
number. If the minimum number of digits is omitted, the default is 1.

OTS-13

OTS$CVT _L_ TU

If the actual number of significant digits in the output string created is less than
the minimum number, OTS$CVT_L_TU inserts leading zeros into the output
string. If the minimum number of digits is zero and the integer value to be
converted is also zero, OTS$CVT_L_TU writes a blank string to the output string.

input-value-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Size of the integer value to be converted, in bytes. The input-value-size
argument is a signed longword containing the size of the integer value. If the size
is omitted, the default is 4. The only values that OTS$CVT_L_TU allows are 1,
2 and 4. If any other value is specified, OTS$CVT_L_TU uses the default value,
which is 4 (longword).

Condition Values Returned

Example

OTS-14

SS$_NORMAL

OTS$_ OUTCONERR

Normal successful completion.

Output conversion error. The result would have
exceeded the fixed-length string; the output
string is filled with asterisks.

O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTY D F 7 TTY
C* Initialize numeric value to be converted.
C Z-ADD32857 VALUE 90
C Z-ADD7 DIGITS 90
C CVTLTU EXTRN'OTS$CVT_L_TU'
C* Convert the number to decimal in a string with 7 decimal digits.
C CALL CVTLTU
C PARM VALUE RL
C PARMD OUTSTR 7
C PARMV DIGITS
C* Display the converted string on the terminal.
C OUTSTR DSPLYTTY
C SETON LR

This RPG II program displays the string '0032857' on the terminal screen.

OTS$CVT_L_TZ

OTS$CVT _L_ TZ-Convert Integer to Hexadecimal Text

Format

Returns

Arguments

The Convert Integer to Hexadecimal Text routine converts an unsigned integer to
a hexadecimal ASCII text string. OTS$CVT_L_TZ supports FORTRAN Zw and
Zw.m output conversion formats.

OTS$CVT _L_ TZ varying-input-value ,fixed-length-resultant-string [,number-of-digits]
[,input-value-size]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

varying-input-value
Open VMS usage varying_arg
type unspecified
access read only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_L_TZ converts to an unsigned
decimal representation in an ASCII text string. (The value of the input-value­
size argument determines whether varying-input-value is a byte, word, or
longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string
Open VMS usage char _string
type character string
access write only
mechanism by descriptor, fixed length

Output string that OTS$CVT_L_TZ creates when it converts the integer value to
a hexadecimal ASCII text string. The fixed-length-resultant-string argument
is the address of a descriptor pointing to this ASCII text string. The string is
assumed to be of fixed length (DSC$K_CLASS_S).

number-of-digits
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Minimum number of digits in the ASCII text string that OTS$CVT_L_TZ creates
when it converts the integer. The number-of-digits argument is a signed
longword containing this minimum number. If it is omitted, the default is 1. If
the actual number of significant digits in the text string that OTS$CVT_L_TZ
creates is less than this mini~um number, OTS$CVT_L_TZ inserts leading zeros
in the output string. If the minimum number of digits is zero and the integer

OTS-15

OTS$CVT _L_ TZ

value to be converted is also zero, OTS$CVT_L_TZ writes a blank string to the
output string.

input-value-size
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Size of the integer that OTS$CVT_L_TZ converts, in bytes. The input-value-size
argument is a signed longword containing the value size. If the size is omitted,
the default is 4 (longword).

Condition Values Returned

Example

OTS-16

SS$_NORMAL

OTS$_0UTCONERR

with TEXT_IO; use TEXT_IO;
procedure SHOW_CONVERT is

Normal successful completion.
Output conversion error. The result would have
exceeded the fixed-length string; the output
string is filled with asterisks.

type INPUT_INT is new INTEGER range o .. INTEGER'LAST;

INTVALUE : INPUT_INT := 256;
HEXSTRING : STRING(l .. 11);

procedure CONVERT_TO_HEX (I : in INPUT_INT; HS : out STRING);
pragma INTERFACE (RTL, CONVERT_TO_HEX);
pragma IMPORT_routine (INTERNAL => CONVERT_TO_HEX,

EXTERNAL=> "OTS$CVT_L_TZ",
MECHANISM =>(REFERENCE,

DESCRIPTOR (CLASS=> S)));

begin
CONVERT_TO_HEX (INTVALUE, HEXSTRING);
PUT_LINE("This is the value of HEXSTRING");
PUT_LINE(HEXSTRING);

end;

This VAX Ada example uses OTS$CVT_L_TZ to convert a longword integer to
hexadecimal text.

OTS$CVT _ TB_L

OTS$CVT _ TB_L-Convert Binary Text to Unsigned Integer

Format

Returns

Arguments

The Convert Binary Text to Unsigned Integer routine converts an ASCII text
string representation of an unsigned binary value to an unsigned integer value of
arbitrary length. By default, the result is a longword. Valid input characters are
the blank and the digits 0 and 1. No sign is permitted.

OTS$CVT _ TB_L input-string ,varying-output-value [,output-value-size] [,flags-value]

Open VMS usage
type
access
mechanism

input-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char_string
character string
read only
by descriptor

Input string containing the string representation of an unsigned binary value
that OTS$CVT_TB_L converts to an integer value. The input-string argument
is the address of a descriptor pointing to the string.

varying-output-value
Open VMS usage varying_arg
type unspecified
access write only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_TB_L creates when it converts
the ASCII text string. (The value of the output-value-size argument determines
whether varying-output-value is a byte, word, or longword.) The varying­
output-value argument is the address of the unsigned integer.

output-value-size
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Number of bytes to be occupied by the value created when OTS$CVT_TB_L
converts the ASCII text string to an integer value. The output-value-size
argument contains the value size. If output-value-size contains a zero or a
negative number, OTS$CVT_TB_L returns an error code as the condition value.
Valid values for the output-value-size argument are 1, 2, and 4; the contents
determine whether the integer value that OTS$CVT_TB_L creates is a byte,
word, or longword. If the number of bytes is omitted, the default is 4 (longword).

OTS-17

OTS$CVT_TB_L

flags-value
Open VMS usage mask_longword
type longword (unsigned)
access read only
mechanism by value

User-supplied flags that OTS$CVT_TB_L uses to determine how to interpret
blanks and tabs. The flags-value argument contains the value of the user­
supplied flags.

The flags are defined as follows:

Bit Description

0 If set, OTS$CVT_TB_L ignores blanks. If clear, OTS$CVT_TB_L
interprets blanks as zeros.

4 If set, OTS$CVT_TB_L ignores tabs. If clear, OTS$CVT_TB_L
interprets tabs as invalid characters.

The default is that all bits are clear.

Condition Values Returned

Example

OTS-18

SS$_NORMAL

OTS$_INPCONERR

Normal successful completion.

Input conversion error. An invalid character,
overflow, or invalid input-value-size occurred.

OPTION &

!+

!-

!+

!-

TYPE = EXPLICIT

This program demonstrates the use of OTS$CVT_TB_L from BASIC.
Several binary numbers are read and then converted to their
integer equivalents.

DECLARATIONS

DECLARE STRING BIN_STR
DECLARE LONG BIN_VAL, I, RET_STATUS
DECLARE LONG CONSTANT FLAGS = 17 ! 2AQ + 2A4
EXTERNAL LONG FUNCTION OTS$CVT_TB_L (STRING, LONG, &

LONG BY VALUE, LONG BY VALUE)

!+
MAIN PROGRAM

!-

!+
Read the data, convert it to binary, and print the result.

!-

OTS$CVT_TB_L

FOR I = 1 TO 5
READ BIN_STR
RET_STATUS = OTS$CVT_TB_L(BIN_STR, BIN_VAL, '4'1, FLAGS)
PRINT BIN_STR;" treated as a binary number equals";BIN_VAL

NEXT I

!+
Done, end the program.

!-

GOTO 32767

999 Data

32767 END

"1111", "1 111", "1011011", "11111111", "00000000"

This BASIC example program demonstrates how to call OTS$CVT_TB_L to
convert binary text to a longword integer.

The output generated by this BASIC program is as follows:

1111 treated as a binary number equals 15
1 111 treated as a binary number equals 15
1011011 treated as a binary number equals 91
11111111 treated as a binary number equals 255
00000000 treated as a binary number equals 0

OTS-19

OTS$CVT _ Tl_L

OTS$CVT _ Tl_L-Convert Signed Integer Text to Integer

Format

Returns

Arguments

OTS-20

The Convert Signed Integer Text to Integer routine converts an ASCII text string
representation of a decimal number to a signed byte, word, or longword integer
value. The result is a longword by default, but the calling program can specify a
byte or a word value instead.

OTS$CVT _ Tl_L fixed-or-dynamic-input-string , varying-output-value
[,output-value-size] [,flags-value]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

fixed-or-dynamic-input-string
Open VMS usage char_string
type character string 1

access read only
mechanism by descriptor, fixed-length or dynamic string

Input ASCII text string that OTS$CVT_TI_L converts to a signed byte, word,
or longword. The fixed-or-dynamic-input-string argument is the address of a
descriptor pointing to the input string.

The syntax of a valid ASCII text input string is as follows:

[+ or-] <integer-digits>

OTS$CVT_TI_L always ignores leading blanks. A decimal point is assumed at
the right of the input string.

varying-output-value
Open VMS usage varying_arg
type unspecified
access write only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_TI_L creates when it converts
the ASCII text string. (The value of the output-value-size argument determines
whether varying-output-value is a byte, word, or longword.) The varying­
output-value argument is the address of the unsigned integer.

output-value-size
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Number of bytes to be occupied by the value created when OTS$CVT_TI_L
converts the ASCII text string to an integer value. The output-value-size

OTS$CVT _ Tl_L

argument contains the number of bytes. If output-value-size contains a zero or
a negative number, OTS$CVT_ TI_L returns an error code as the condition value.
Valid values for the output-value-size argument are 1, 2, and 4; the contents
determine whether the integer value that OTS$CVT_TI_L creates is a byte, word,
or longword. If the number of bytes is omitted, the default is 4 (longword).

flags-value
Open VMS usage mask_longword
type longword (unsigned)
access read only
mechanism by value

User-supplied flags that OTS$CVT_TI_L uses to determine how blanks and tabs
are interpreted. The flags-value argument is an unsigned longword containing
the value of the flags.

Bit Description

0 If set, OTS$CVT_TI_L ignores all blanks. If clear, OTS$CVT_TI_
L ignores leading blanks but interprets blanks after the first legal
character as zeros.

4 If set, OTS$CVT_TI_L ignores tabs. If clear, OTS$CVT_TI_L interprets
tabs as invalid characters.

If flags-value is omitted, the default is that all bits are cleared.

Condition Values Returned

SS$_NORMAL

OTS$_INPCONERR

Normal successful completion.

Input conversion error: an invalid character in
the input string; or the value overflows byte,
word, or longword; or output-value-size is
invalid. Varying-output-value is set to zero.

OTS-21

OTS$CVT _ TL_L

OTS$CVT _ TL_L-Convert Logical Text to Integer

Format

Returns

Arguments

OTS-22

The Convert Logical Text to Integer routine converts an ASCII text string
representation of a FORTRAN-77 L format to a byte, word, or longword integer
value. The result is a longword by default, but the calling program can specify a
byte or a word value instead.

OTS$CVT _ TL_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

fixed-or-dynamic-input-string
Open VMS usage char _string
type character string
access read only
mechanism by descriptor, fixed-length or dynamic string

Input string containing an ASCII text representation of a FORTRAN-77 L format
that OTS$CVT_TL_L converts to a byte, word, or longword integer value. The
fixed-or-dynamic-input-string argument is the address of a descriptor pointing
to the input string.

The syntax of a valid ASCII text input string is either: Blank (end of string) or
Blank Period Letter Character (end of string)

The elements in the preceding input string are defined as follows:

Term

Blank

Period

Letter

Character

Description

Zero or more blanks

. or nothing

T, t, F, or f

Zero or more of any character

varying-output-value
Open VMS usage varying_arg
type unspecified
access write only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_TL_L creates when it converts
the ASCII text string. (The value of the output-value-size argument determines
whether varying-output-value is a byte, word, or longword.) The varying­
output-value argument is the address of the unsigned integer.

OTS$CVT _ TL_L

OTS$CVT_TL_L returns -1 as the contents of the varying-output-value
argument if the character denoted by "Letter" is "T" or "t". Otherwise, OTS$CVT_
TL_L sets varying-output-value to zero.

output-value-size
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Number of bytes to be occupied by the value created when OTS$CVT_TL_L
converts the ASCII text string to an integer value. The output-value-size
argument contains the number of bytes. If output-value-size contains a zero or
a negative number, OTS$CVT_TL_L returns an error code as the condition value.
Valid values for the output-value-size argument are 1, 2, and 4; the contents
determine whether the integer value that OTS$CVT_TI_L creates is a byte, word,
or longword. If it is omitted, the default is 4 (longword).

Condition Values Returned

SS$_NORMAL

OTS$_INPCONERR

Normal successful completion.

Invalid character in the input string or invalid
input-value-size; varying-input-value is set
to zero.

OTS-23

OTS$CVT _ TO_L

OTS$CVT _ TO_L-Convert Octal Text to Signed Integer

Format

Returns

Arguments

OTS-24

The Convert Octal Text to Signed Integer routine converts an ASCII text string
representation of an octal value to a signed integer of an arbitrary length. The
result is a longword by default, but the calling program can specify a byte, word,
or longword.

OTS$CVT _ TO_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size] [,flags-value]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

fixed-or-dynamic-input-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor, fixed-length or dynamic string

Input string containing an ASCII text string representation of an octal value that
OTS$CVT_TO_L converts to a signed integer. The fixed-or-dynamic-input­
string argument is the address of a descriptor pointing to the input string. The
valid input characters are blanks and the digits are 0 through 7. No sign is
permitted. ·

varying-output-value
Open VMS usage varying_arg
type unspecified
access write only
mechanism by reference

Signed byte, word, or longword that OTS$CVT_TO_L creates when it converts
the ASCII text string. (The value of the output-value-size argument determines
whether varying-output-value is a byte, word, or longword.) The varying­
output-value argument is the address of the signed integer.

output-value-size
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by value

Number of bytes occupied by the signed integer value. The output-value-size
argument contains the number of bytes. If the content of the output-value-size
argument is zero or a negative number, OTS$CVT_TO_L returns an error. If the
number of bytes is omitted, the default is 4 (longword).

OTS$CVT_TO_L

flags-value
Open VMS usage mask_longword
type longword (unsigned)
access read only
mechanism by value

User-supplied flags that OTS$CVT_TO_L uses to determine how blanks within
the input string are interpreted. The flags-value argument contains the user­
supplied flags.

Bit 0 If set, OTS$CVT_TO_L ignores all blanks. If clear, OTS$CVT_TO_L
interprets blanks as zeros.

If flags-value is omitted, the default is that all bits are clear.

Condition Values Returned

Example

Normal successful completion. SS$_NORMAL
OTS$_INPCONERR Input conversion error. An invalid character,

overflow, or invalid input-value-size occurred.

OCTAL_CONV: PROCEDURE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

%INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE OTS$CVT_TO_L ENTRY

(CHARACTER (*), /* Input string passed by descriptor */
FIXED BINARY (31),
FIXED BINARY VALUE,
FIXED BINARY VALUE)
RETURNS (FIXED BINARY
OPTIONS (VARIABLE);

/* Returned value passed by reference */
/* Size for returned value passed by value */
/* Flags passed by value */

(31)) /*Return status */
!* Arguments may be omitted */

DECLARE INPUT CHARACTER (10);
DECLARE VALUE FIXED BINARY (31);
DECLARE SIZE FIXED BINARY(31) INITIAL(4) READONLY STATIC; /* Longword */
DECLARE FLAGS FIXED BINARY(31) INITIAL(l) READONLY STATIC; /* Ignore blanks */

ON ENDFILE (SYSIN) STOP;

DO WHILE ('l'B); /*Loop continuously, until end of file */
PUT SKIP (2);
GET LIST (INPUT) OPTIONS (PROMPT ('Octal value: '));
STS$VALUE = OTS$CVT_TO_L (INPUT, VALUE, SIZE, FLAGS);
IF ASTS$SUCCESS THEN RETURN (STS$VALUE);
PUT SKIP EDIT (INPUT, 'Octal equals', VALUE, 'Decimal')

(A,X,A,X,F(lO) ,X,A);
END;

END OCTAL_CONV;

This PLJI program translates an octal value in ASCII into a fixed binary value.
The program is run interactively; simply press Ctrl/Z to quit.

$ RUN OCTAL
Octal value: 1
1 Octal equals 1 Decimal
Octal value: 11
11 Octal equals 9 Decimal
Octal value: 1017346
1017346 Octal equals 274150 Decimal
Octal value: Ctrl/Z

OTS-25

OTS$CVT_TU_L

OTS$CVT _ TU_L-Convert Unsigned Decimal Text to Integer

Format

Returns

Arguments

OTS-26

The Convert Unsigned Decimal Text to Integer routine converts an ASCII text
string representation of an unsigned decimal value to an unsigned byte, word, or
longword value. By default, the result is a longword. Valid input characters are
the space and the digits 0 through 9. No sign is permitted.

OTS$CVT _ TU_L fixed-length-input-string ,varying-output-value [,output-value-size]
[,flags-value]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

fixed-length-input-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor, fixed-length

Input string (fixed-length) containing an ASCII text string representation of
an unsigned decimal value that OTS$CVT_TU_L converts to a byte, word, or
longword value. The fixed-length-input-string argument is the address of a
descriptor pointing to the input string.

varying-output-value
Open VMS usage varying_arg
type unspecified
access write only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_TU_L creates when it converts
the ASCII text string. (The value of the output-value-size argument determines
whether varying-output-value is a byte, word, or longword.) _The varying­
output-value argument is the address of the unsigned integer.

output-value-size
Open VMS usage
type
access
mechanism

longword_signed
longword integer (signed)
read only
by value

Number of bytes occupied by the value created when OTS$CVT_TU_L converts
the input string. The output-value-size argument contains the number of bytes.
OTS$CVT_TU_L allows value sizes of 1, 2 and 4. If any other value is specified,
or if output-value-size is omitted, OTS$CVT_TU_L uses the default, which is 4.

OTS$CVT_TU_L

flags-value
Open VMS usage mask_longword
type longword (unsigned)
access read only
mechanism by value

User-supplied flags that OTS$CVT_TU_L uses to determine how blanks and tabs
are interpreted. The flags-value argument contains the user-supplied flags.

Bit Description

0 If set, OTS$CVT _TU _L ignores blanks. If clear, OTS$CVT _TU _L
interprets blanks as zeros.

4 If set, OTS$CVT_TU_L ignores tabs. If clear, OTS$CVT_TU_L interprets
tabs as invalid characters.

If it is omitted, the default is that all bits are clear.

Condition Values Returned

SS$_NORMAL

OTS$_1NPCONERR

Normal successful completion.

Input conversion error. An invalid character,
overflow or invalid input-value-size occurred.

OTS-27

OTS$CVT _ T _z

OTS$CVT _ T _z-Convert Numeric Text to D- or F-Floating Value

Format

Returns

Arguments

OTS-28

The Convert Numeric Text to D- or F-Floating routines convert an ASCII text
string representation of a numeric value to a D-floating or F-floating value.

OTS$CVT _ T _D fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT _ T _F fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

fixed-or-dynamic-input-string
Open VMS usage char _string
type character string
access read only
mechanism by descriptor, fixed-length or dynamic string

Input string containing an ASCII text string representation of a numeric value
that OTS$CVT_T_z converts to a D-floating or F-floating value. The fixed-or­
dynamic-input-string argument is the address of a descriptor pointing to the
input string.

The syntax of a valid input string is as follows:

Blank Sign Digit Period Digitletter blank sign OR sign digit

The elements in the preceding input string are defined as follows:

Term

Blank

Sign

Digit

Period

Letter

Description

Zero or more blanks

+, -, or nothing

Zero or more decimal digits

. or nothing

E, e, D, d, Q, or q

There is no difference in semantics among any of the six valid exponent letters
(E, e, D, d, Q, q).

floating-point-value
Open VMS usage floating_point
type D_floating, F _floating
access write only
mechanism by reference

OTS$CVT _ T _z

Floating-point value that OTS$CVT_T_z creates when it converts the input
string. The floating-point-value argument is the address of the floating-point
value. For OTS$CVT_T_D, floating-point-value is a D-floating number. For
OTS$CVT_T_F, floating-point-value is an F-floating number.

digits-in-fraction
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
read only
by value

Number of digits in the fraction if no decimal point is included in the input string.
The digits-in-fraction argument contains the number of digits. If the number of
digits is omitted, the default is zero.

scale-factor
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Scale factor. The scale-factor argument contains the value of the scale factor.
If bit 6 of the flags-value argument is clear, the resultant value is divided by
10scale-factor unless the exponent is present. If bit 6 of flags-value is set, the
scale factor is always applied. If the scale factor is omitted, the default is zero.

flags-value
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by value

User-supplied flags. The flags-value argument contains the user-supplied flags.

Bit 0 If set, OTS$CVT_T_z ignores blanks. If clear, OTS$CVT_T_z
interprets blanks as zeros.

Bit 1 If set, OTS$CVT_T_z allows only E ore exponents. If clear,
OTS$CVT_T_z allows E, e, D, d, Q and q exponents. (Bit 1 is clear for
BASIC and set for FORTRAN.)

Bit 2 If set, OTS$CVT_T_z interprets an underflow as an error. If clear,
OTS$CVT_T_z does not interpret an underflow as an error.

Bit 3 If set, OTS$CVT_T_z truncates the value. If clear, OTS$CVT_T-z
rounds the value.

Bit 4 If set, OTS$CVT_T_z ignores tabs. If clear, OTS$CVT_T_z interprets
tabs as invalid characters.

Bit 5 If set, an exponent must begin with a valid exponent letter. If clear,
the exponent letter can be omitted.

Bit 6 If set, OTS$CVT_T_z always applies the scale factor. If clear,
OTS$CVT_T_z applies the scale factor only ifthere is no exponent
present in the string.

If flags-value is omitted, all bits are clear.

OTS-29

OTS$CVT _ T _z

Description

extension-bits
Open VMS usage
type
access
mechanism

word_signed
word (signed)
write only
by reference

Extra precision bits. The extension-bits argument is the address of a word
containing the extra precision bits. If extension-bits is present, ftoating-point­
value is not rounded, and the first n bits after truncation are returned in this
argument.

These values are suitable for use as the extension operand in an EMOD
instruction.

These routines support FORTRAN D, E, F, and G input type conversion as well
as similar types for other languages.

OTS$CVT_T_D and OTS$CVT_T_F provide run-time support for BASIC and
FORTRAN input statements.

Condition Values Returned

Example

OTS-30

SS$_NORMAL

OTS$_INPCONERR

Normal successful completion.

Input conversion error; an invalid character in
the input string, or the value is outside the range
that can be represented. Floating-point-value
is set to +0.0 (not reserved operand -0.0).

Ct
C This is a FORTRAN program demonstrating the use of
C OTS$CVT_T_F.
c-

REAL*4 A
CHARACTER*lO T(5)
DATA T/'1234567t23' I '8.786534t3' I '-983476E-3' I '-23.734532' I '45'/
DO 2 I = 1, 5
TYPE l,I,T(I)

1 FORMAT(' Input string ',Il,' is ',AlO)

Ct
C B is the return status.
C T(I) is the string to be converted to an
c F-floating point value. A is the F-floating
C point conversion of T(I). %VAL(5) means 5 digits
C are in the fraction if no decimal point is in
C the input string T(I).
c-

2

B = OTS$CVT_T_F(T(I),A,%VAL(5) I,)
TYPE *,' Output of OTSCVT_T_F is
TYPE *I I
CONTINUE
END

I ,A

OTS$CVT _ T _z

This FORTRAN example demonstrates the use of OTS$CVT_T_F. The output
generated by this program is as follows:

Input string 1 is 1234567+23
Output of OTSCVT_T_F is 1.2345669E+24

Input string 2 is 8.786534+3
Output of OTSCVT_T_F is 8786.534

Input string 3 is -983476E-3
Output of OTSCVT_T_F is -9.8347599E-03

Input string 4 is -23.734532
Output of OTSCVT_T_F is -23.73453

Input string 5 is 45
Output of OTSCVT_T_F is 45000.00

OTS-31

OTS$CVT _ T _z

OTS$CVT _ T _z-Convert Numeric Text to G- or H-Floating Value

Format

Returns

Arguments

OTS-32

The Convert Numeric Text to G- or H-Floating routines convert an ASCII text
string representation of a numeric value to a G-floating or H-floating value.

OTS$CVT _ T _G fixed-or-dynamic-input-string ,floating-poinf-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT _ T _H fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits] +

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

fixed-or-dynamic-input-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor, fixed-length or dynamic string

Input string containing an ASCII text string representation of a numeric value
that OTS$CVT_T_z converts to a G-floating or H-floating value. The fixed-or­
dynamic-input-string argument is the address of a descriptor pointing to the
input string.

The syntax of a valid input string is as follows:

Blank Sign Digit Period Digitletter blank sign OR sign digit

The elements in the preceding input string are defined as follows:

Term

Blank

Sign

Digit

Period

Letter

Description

Zero or more blanks

+,-,or nothing

Zero or more decimal digits

. or nothing

E, e, D, d, Q, or q

There is no difference in semantics among any of the six valid exponent letters
(E, e, D, d, Q, q).

floating-point-value
Open VMS usage floating_point
type G_floating, H_floating
access write only
mechanism by reference

OTS$CVT _ T _z

Floating-point value that OTS$CVT_T_z creates when it converts the input
string. The floating-point-value argument is the address of the floating-point
value. For OTS$CVT_T_G, floating-point-value is a G-floating number. For
OTS$CVT_T_H, floating-point-value is an H-floating number.

digits-in-fraction
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
read only
by value

Number of digits in the fraction if no decimal point is included in the input string.
The digits-in-fraction argument contains the number of digits. If the number of
digits is omitted, the default is zero.

scale-factor
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Scale factor. The scale-factor argument contains the value of the scale factor.
If bit 6 of the flags-value argument is clear, the resultant value is divided by
rnscale-factor unless the exponent is present. If bit 6 of flags-value is set, the
scale factor is always applied. If the scale factor is omitted, the default is zero.

flags-value
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by value

User-supplied flags. The flags-value argument contains the user-supplied flags.

Bit 0 If set, OTS$CVT_T_z ignores blanks. If clear, OTS$CVT_T_z
interprets blanks as zeros.

Bit 1 If set, OTS$CVT_T_z allows only E ore exponents. If clear,
OTS$CVT_T_z allows E, e, D, d, Q, and q exponents. (Bit 1 is clear
for BASIC and set for FORTRAN.)

Bit 2 If set, OTS$CVT_T_z interprets an underflow as an error. If clear,
OTS$CVT_T_z does not interpret an underflow as an error.

Bit 3 If set, OTS$CVT_T_z truncates the value. If clear, OTS$CVT_T-z
rounds the value.

Bit 4 If set, OTS$CVT_T_z ignores tabs. If clear, OTS$CVT_T_z interprets
tabs as invalid characters.

Bit 5 If set, an exponent must begin with a valid exponent letter. If clear,
the exponent letter may be omitted.

Bit 6 If set, OTS$CVT_T_z always applies the scale factor. If clear,
OTS$CVT_T_z applies the scale factor only if there is no exponent
present in the string.

If flags-value is omitted, all bits are clear.

OTS-33

OTS$CVT _ T _z

Description

extension-bits
Open VMS usage
type
access
mechanism

word_signed
word (signed)
write only
by reference

Extra precision bits. The extension-bits argument is the address of a signed
word integer containing the extra precision bits. If present, floating-point-value
is not rounded, and the first n bits after truncation are returned in this argument.
For G-floating and H-floating, n equals 11 and 15, respectively, and the bits are
returned as a word, left-justified.

These values are suitable for use as the extension operand in an EMOD
instruction.

The extra precision bits returned for H-floating may not be precise because
calculations are only carried to 128 bits. However, the error should be small.

These routines support FORTRAN D, E, F, and G input type conversion as well
as similar types for other languages.

OTS$CVT_T_G and OTS$CVT_T_H provide run-time support for BASIC and
FORTRAN input statements.

Condition Values Returned

OTS-34

SS$_NORMAL

OTS$_INPCONERR

Normal successful completion.

Input conversion error; an invalid character in
the input string, or the value is outside the range
that can be represented. Floating-point-value
is set to +0.0 (not reserved operand -0.0).

OTS$CVT _ TZ_L

OTS$CVT _ TZ_L-Convert Hexadecimal Text to Unsigned Integer

Format

Returns

Arguments

The Convert Hexadecimal Text to Unsigned Integer routine converts an ASCII
text string representation of an unsigned hexadecimal value to an unsigned
integer of an arbitrary length. The result is a longword by default, but the calling
program can specify a byte, word, or longword value.

OTS$CVT _ TZ_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size] [,flags-value]

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

fixed-or-dynamic-input-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor, fixed-length or dynamic string

Input string containing an ASCII text string representation of an unsigned
hexadecimal value that OTS$CVT_TZ_L converts to an unsigned integer. The
fixed-or-dynamic-input-string argument is the address of a descriptor pointing
to the input string. Valid input characters are the space, the digits 0 through 9,
and the letters A through F (lowercase letters a through fare acceptable). No
sign is permitted.

varying-output-value
Open VMS usage varying_arg
type unspecified
access write only
mechanism by reference

Unsigned byte, word, or longword that OTS$CVT_TZ_L creates when it converts
the ASCII text string. (The value of the output-value-size argument determines
whether varying-output-value is a byte, word, or longword.) The varying­
output-value argument is the address of the unsigned integer.

output-value-size
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Number of bytes occupied by the integer value. The output-value-size argument
contains the number of bytes. If the value size is zero or a negative number,
OTS$CVT_TZ_L returns an input conversion error. If the number of bytes is
omitted, the default is 4 (longword).

OTS-35

OTS$CVT _ TZ_L

flags-value
Open VMS usage mask_longword
type longword (unsigned)
access read only
mechanism by value

User-supplied flags that OTS$CVT_TZ_L uses to determine how blanks are
interpreted. The flags-value argument is an unsigned longword containing these
user-supplied flags.

Bit 0 If set, OTS$CVT_TZ_L ignores blanks. If clear, OTS$CVT_TZ_L
interprets blanks as zeros.

If flags-value is omitted, the default is that all bits are clear.

Condition Values Returned

Examples

OTS-36

SS$_NORMAL

OTS$_INPCONERR
Normal successful completion.

Input conversion error. An invalid character,
overflow, or invalid output-value-size occurred.

1. 10 !+
! This BASIC program converts a character string representing
! a hexadecimal value to a longword.
!-

100 !+
! Illustrate (and test) OTS convert hex-string to longword
!-

EXTERNAL LONG FUNCTION OTS$CVT_TZ_L
EXTERNAL LONG CONSTANT OTS$_INPCONERR
INPUT "Enter hex numeric";HEXVAL$
RET_STAT% = OTS$CVT_TZ_L(HEXVAL$, HEX%
PRINT "Conversion error " IF RET_STAT% = OTS$_INPCONERR
PRINT "Decimal value of ";HEXVAL$;" is" ;HEX% &

IF RET_STAT% <> OTS$_INPCONERR

This BASIC example accepts a hexadecimal numeric string, converts it to a
decimal integer, and prints the result. One sample of the output generated by
this program is as follows:

$ RUN HEX
Enter hex numeric? A
Decimal value of A is 10

2. HEX_CONV: PROCEDURE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

%INCLUDE $STSDEF; /* Include definition of return status values *I
DECLARE OTS$CVT_TZ_L ENTRY

(CHARACTER (*) I /* Input string passed by descriptor */
/* Returned value passed by reference */
/* Size for returned value passed by value */
/* Flags passed by value */

FIXED BINARY (31),
FIXED BINARY VALUE,
FIXED BINARY VALUE)
RETURNS (FIXED BINARY
OPTIONS (VARIABLE);

(31)) /*Return status */

DECLARE INPUT CHARACTER (10);
DECLARE VALUE FIXED BINARY (31);

/* Arguments may be omitted */

DECLARE FLAGS FIXED BINARY(31) INITIAL(l) READONLY STATIC; /* Ignore blanks */

OTS$CVT_TZ_L

ON ENDFILE (SYSIN) STOP;

DO WHILE ('l'B); /*Loop continuously, until end of file */
PUT SKIP (2);
GET LIST (INPUT) OPTIONS (PROMPT ('Hex value: '));
STS$VALUE = OTS$CVT_TZ_L (INPUT, VALUE, , FLAGS);
IF ASTS$SUCCESS THEN RETURN (STS$VALUE);
PUT SKIP EDIT (INPUT, 'Hex equals', VALUE, 'Decimal')

(A,X,A,X,F(lO),X,A);
END;

END HEX_CONV;

This PL/I example translates a hexadecimal value in ASCII into a fixed
binary value. This program continues to prompt for input values until the
user types Ctrl/Z.

One sample of the output generated by this program is as follows:

$ RUN HEX
Hex value: lA
lA Hex equals 26 Decimal

Hex value: C
C Hex equals 12 Decimal

Hex value: Ctrl/Z

OTS-37

OTS$DIVCx

OTS$DIVCx-Complex Division

Format

Returns

Arguments

OTS-38

The Complex Division routines return a complex result of a division on complex
numbers.

OTS$DIVC complex-dividend ,complex-divisor

OTS$DIVCD_R3 complex-dividend ,complex-divisor

OTS$DIVCG_R3 complex-dividend ,complex-divisor

Each of these three formats corresponds to one of the three floating-point complex
types.

Open VMS usage
type
access
mechanism

complex_number
F _floating complex, D_floating complex, G_floating complex
write only
by value

Complex result of complex division. OTS$DIVC returns an F-floating complex
number. OTS$DIVCD_R3 returns a D-floating complex number. OTS$DIVCG_R3
returns a G-floating complex number.

complex-dividend
Open VMS usage complex_number
type F _floating complex, D_floating complex, G_floating complex
access read only
mechanism by value

Complex dividend. The complex-dividend argument contains a floating-point
complex value. For OTS$DIVC, complex-dividend is an F-floating complex
number. For OTS$DIVCD_R3, complex-dividend is a D-floating complex
number. For OTS$DIVCG_R3, complex-dividend is a G-floating complex
number.

com pl ex-divisor
Open VMS usage
type
access
mechanism

complex_number
F _floating complex, D_floating complex, G_floating complex
read only
by value

Complex divisor. The complex-divisor argument contains the value of the
divisor. For OTS$DIVC, complex-divisor is an F-floating complex number.
For OTS$DIVCD_R3, complex-divisor is a D-floating complex number. For
OTS$DIVCG_R3, complex-divisor is a G-floating complex number.

Description

OTS$DIVCx

These routines return a complex result of a division on complex numbers.

The complex result is computed as follows:

1. Let (a,b) represent the complex dividend.

2. Let (c,d) represent the complex divisor.

3. Let (r,i) represent the complex quotient.

The results of this computation are as follows:

i = (be - ad)/(c2 + d2)

Condition Values Signaled

SS$_FLTDIV _F

SS$_FLTOVF _F

Arithmetic fault. Floating-point division by zero.

Arithmetic fault. Floating-point overflow.

Examples

1. C+
c
c
c
c
c
c
c
c
c
c-

C+

This FORTRAN example forms the complex
quotient of two complex numbers using
OTS$DIVC and the FORTRAN random number
generator RAN.

Declare Zl, Z2, Z_Q, and OTS$DIVC as complex values.
OTS$DIVC will return the complex quotient of Zl divided
by Z2: Z_Q = OTS$DIVC(%VAL(REAL(Zl)), %VAL(AIMAG(Zl),
%VAL(REAL(Z2)) I %VAL(AIMAG(Z2))

COMPLEX Zl,Z2,Z_Q,OTS$DIVC

C Generate a complex number.
c-

Zl = (8. 0 I 4. 0)
C+
C Generate another complex number.
c-

Z2 = (1. 0 I 1. 0)
C+
C Compute the complex quotient of Zl/Z2.
c-

Z_Q = OTS$DIVC(%VAL(REAL(Zl)), %VAL(AIMAG(Zl)), %VAL(REAL(Z2)) I

+ %VAL(AIMAG(Z2)))
TYPE*, ' The complex quotient of' ,Zl,' divided by ',Z2,' is'
TYPE*, I I ,Z_Q
END

This FORTRAN program demonstrates how to call OTS$DIVC. The output
generated by this program is as follows:

The complex quotient of (8.000000,4.000000) divided by (1.000000,1.000000)
is (6 • 000000 I -2 • 000000)

OTS-39

OTS$DIVCx

OTS-40

2. C+
c
c
c
c
c
c
c
c
c-

C+

This FORTRAN example forms the complex
quotient of two complex numbers by using
OTS$DIVCG_R3 and the FORTRAN random number
generator RAN.

Declare Zl, Z2, and Z_Q as complex values. OTS$DIVCG_R3
will return the complex quotient of Zl divided by Z2:
Z_Q = Zl/Z2

COMPLEX*l6 Zl,Z2,Z_Q

C Generate a complex number.
c-

Zl = (8. 0 I 4. 0)
C+
C Generate another complex number.
c-

Z2 = (1. 0 I 1. 0)
C+
C Compute the complex quotient of Zl/Z2.
c-

Z_Q = Zl/Z2
TYPE*, ' The complex quotient of' ,Zl,' divided by ',Z2,' is'
TYPE*, I I ,Z_Q
END

This FORTRAN example uses the OTS$DIVCG_R3 entry point instead.
Notice the difference in the precision of the output generated:

The complex quotient of (8.000000000000000,4.000000000000000) divided by
(1.000000000000000,1.000000000000000) is

(6.000000000000000,-2.000000000000000)

OTS$DIV _PK_LONG

OTS$DIV _PK_LONG-Packed Decimal Division with Long Divisor

Format

Returns

Arguments

The Packed Decimal Division with Long Divisor routine divides fixed-point
decimal data, which is stored in packed decimal form, when precision and scale
requirements for the quotient call for multiple precision division. The divisor
must have a precision of thirty or thirty-one digits.

OTS$DIV _PK_LONG packed-decimal-dividend ,packed-decimal-divisor
,divisor-precision ,packed-decimal-quotient ,quotient-precision
,precision-data ,scale-data

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

packed-decimal-dividend
Open VMS usage varying_arg
type packed decimal string
access read only
mechanism by reference

Dividend. The packed-decimal-dividend argument is the address of a packed
decimal string that contains the shifted dividend.

Before being passed as input, the packed-decimal-dividend argument is always
multiplied by 10c where c is defined as follows:

c = 31 - prec{packed-decimal-dividend)

Mutiplying packed-decimal-dividend by 10c makes packed-decimal­
dividend a 31-digit number.

packed-decimal-divisor
Open VMS usage varying_arg
type packed decimal string
access read only
mechanism by reference

Divisor. The packed-decimal-divisor argument is the address of a packed
decimal string that contains. the divisor.

divisor-precision
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by value

Precision of the divisor. The divisor-precision argument is a signed word that
contains the precision of the divisor. The high-order bits are filled with zeros.

OTS-41

OTS$DIV _PK_LONG

OTS-42

packed-decimal-quotient
Open VMS usage varying_arg
type packed decimal string
access write only
mechanism by reference

Quotient. The packed-decimal-quotient argument is the address of the packed
decimal string into which OTS$DIV _PK_LONG writes the quotient.

quotient-precision
Open VMS usage word_signed
type word (signed)
access read only
mechanism by value

Precision of the quotient. The quotient-precision argument is a signed word
that contains the precision of the quotient. The high-order bits are filled with
zeros.

precision-data
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by value

Additional digits of precision required. The precision-data argument is a signed
word that contains the value of the additional digits of precision required.

OTS$DIV _PK_LONG computes the precision-data argument as follows:

precision-data= scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
- 31 + prec(packed-decimal-dividend)

scale-data
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by value

Scale factor of the decimal point. The scale-data argument is a signed word that
contains the scale data.

OTS$DIV_PK_LONG defines the scale-data argument as follows:

scale-data = 31 - prec(packed-decimal-divisor)

Description

OTS$DIV _PK_LONG

Before using this routine on an Open VMS for VAX system, you should determine
whether it is best to use OTS$DIV _PK_LONG, OTS$DIV _PK_SHORT, or the
VAX instruction DIVP. To determine this, you must first calculate b, where bis
defined as follows:

b = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
+ prec(packed-decimal-dividend)

If bis greater than 31, then OTS$DIV_PK_LONG can be used to perform the
division. If bis less than 31, you could use the instruction DIVP instead. +

When using this routine on an Open VMS AXP system, or on an Open VMS
VAX system and you have determined that you cannot use DIVP, you need
to determine whether you should use OTS$DIV _PK_LONG or OTS$DIV _PK_
SHORT. To determine this, you must examine the value of scale-data. If scale­
data is less than or equal to 1, then you should use OTS$DIV_PK_LONG. If
scale-data is greater than 1, you should use OTS$DIV _PK_SHORT instead.

Condition Value Signaled

SS$_FLTDIV Fatal error. Division by zero.

Example

1

OPTION &
TYPE = EXPLICIT

!+
This program uses OTS$DIV_PK_LONG to perform packed decimal
division.

!-

!+
DECLARATIONS

!-

DECLARE DECIMAL (31, 2)
DECLARE DECIMAL (30, 3)
DECLARE DECIMAL (10, 5)

NATIONAL_DEBT
POPULATION
PER_CAPITA_DEBT

EXTERNAL SUB OTS$DIV_PK_LONG (DECIMAL(31,2), DECIMAL (30, 3), &
WORD BY VALUE, DECIMAL(lO, 5), WORD BY VALUE, WORD BY VALUE, &
WORD BY VALUE)

!+
Prompt the user for the required input.

!-

INPUT "Enter national debt: ";NATIONAL_DEBT
INPUT "Enter current population: ";POPULATION

()T~-4~

OTS$DIV _PK_LONG

OTS-44

!+

!-

Perform the division and print the result.

scale(divd) 2
scale(divr) 3
scale(quot) 5

prec(divd) 31
prec(divr) 30
prec(quot) 10

prec-data scale(quot) + scale(divr) - scale(divd) - 31 +
prec(divd)

prec-data 5 + 3 2 - 31 + 31
prec-data = 6

b = scale(quot) + scale(divr) - scale(divd) + prec(divd)
b = 5 + 3 2 + 31
b = 37

c 31 - prec(divd)
c 31 - 31
c 0

scale-data = 31 - prec(divr)
scale-data = 31 - 30
scale-data = 1

b is greater than 31, so either OTS$DIV_PK_LONG or
OTS$DIV_PK_SHORT may be used to perform the division.
If b is less than or equal to 31, then the DIVP
instruction may be used.

scale-data is less than or equal to 1, so OTS$DIV_PK_LONG
should be used instead of OTS$DIV_PK_SHORT.

CALL OTS$DIV_PK_LONG(NATIONAL_DEBT, POPULATION, '30'W, PER_CAPITA_DEBT, &
'lO'W, '6'W, 'l'W)

PRINT "The per capita debt is ";PER_CAPITA_DEBT
END

This BASIC example program uses OTS$DIV _PK_LONG to perform packed
decimal division. One example of the output generated by this program is as
follows:

$ RUN DEBT
Enter national debt: ? 12345678
Enter current population: ? 1212
The per capita debt is 10186.20297

OTS$DIV _PK_SHORT

OTS$DIV _PK_SHORT-Packed Decimal Division with Short Divisor

Format

Returns

Arguments

The Packed Decimal Division with Short Divisor routine divides fixed-point
decimal data when precision and scale requirements for the quotient call for
multiple-precision division.

OTS$DIV _PK_ SHORT packed-decimal-dividend ,packed-decimal-divisor
,divisor-precision ,packed-decimal-quotient
,quotient-precision ,precision-data

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

packed-decimal-dividend
Open VMS usage varying_arg
type packed decimal string
access read only
mechanism by reference

Dividend. The packed-decimal-dividend argument is the address of a packed
decimal string that contains the shifted dividend.

Before being passed as input, the packed-decimal-dividend argument is always
multiplied by me where c is defined as follows:

c = 31 - prec(packed-decimal-dividend)

Multiplying packed-decimal-dividend by 10e makes packed-decimal­
dividend a 31-digit number.

packed-decimal-divisor
Open VMS usage varying_arg
type packed decimal string
access read only
mechanism by reference

Divisor. The packed-decimal-divisor argument is the address of a packed
decimal string that contains the divisor.

divisor-precision
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by value

Precision of the divisor. The divisor-precision argument is a signed word
integer that contains the precision of the divisor. The high-order bits are filled
with zeros.

OTS-45

OTS$DIV _PK_SHORT

Description

--

OTS-46

packed-decimal-quotient
Open VMS usage varying_arg
type packed decimal string
access write only
mechanism by reference

Quotient. The packed-decimal-quotient argument is the address of a packed
decimal string into which OTS$DIV_PK_SHORT writes the quotient.

quotient-precision
Open VMS usage word_signed
type word (signed)
access read only
mechanism by value

Precision of the quotient. The quotient-precision argument is a signed word
that contains the precision of the quotient. The high-order bits are filled with
zeros.

precision-data
Open VMS usage
type
access
mechanism

word_signed
word (signed)
read only
by value

Additional digits of precision required. The precision-data argument is a signed
word that contains the value of the additional digits of precision required.

OTS$DIV _PK_SHORT computes the precision-data argument as follows:

precision-data = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
- 31 + prec(packed-decimal-dividend)

Before using this routine on an Open VMS for VAX system, you should determine
whether it is best to use OTS$DIV _PK_LONG, OTS$DIV _PK_SHORT, or the
VAX instruction DIVP. To determine this, you must first calculate b, where bis
defined as follows: ·

b = scale(packed-decimal-quotient) + scale(packed-decimal-divisor) -
scale(packed-decimal-dividend) + prec(packed-decimal-dividend)

If bis greater than 31, then OTS$DIV_PK_SHORT can be used to perform the
division. If bis less than 31, you could use the VAX instruction DIVP instead. +

When using this routine on an Open VMS AXP system, or on an Open VMS
for VAX system and you have determined that you cannot use DIVP, you need
to determine whether you should use OTS$DIV _PK_LONG or OTS$DIV _PK_
SHORT. To determine this, you must examine the value of scale-data. If scale­
data is less than or equal to 1, then you should use OTS$DIV_PK_LONG. If
scale-data is greater than 1, you should use OTS$DIV _PK_SHORT instead.

Condition Value Signaled

SS$_FLTDIV

OTS$DIV _PK_SHORT

Fatal error. Division by zero.

OTS-47

OTS$MOVE3

OTS$MOVE3-Move Data Without Fill

Format

The Move Data Without Fill routine moves up to 231-1 bytes (2,147,483,647
bytes) from a specified source address to a specified destination address.

OTS$MOVE3 length-value ,source-array ,destination-array

corresponding jsb entry point

OTS$MOVE3_R5

Returns

Arguments

OTS-48

None.

length-value
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by value

Number of bytes of data to move. The length-value argument is a signed
longword that contains the number of bytes to move. The value of length-value
may range from 0 to 2,147,483,647 bytes.

source-array
Open VMS usage
type
access
mechanism

vector _byte_ unsigned
byte (unsigned)
read only
by reference, array reference

Data to be moved by OTS$MOVE3. The source-array argument contains the
address of an unsigned byte array that contains this data.

destination-array
Open VMS usage
type
access
mechanism

vector _byte_unsigned
byte (unsigned)
write only
by reference, array reference

Address into which source-array will be moved. The destination-array
argument is the address of an unsigned byte array into which OTS$MOVE3
writes the source data.

Description

OTS$MOVE3

OTS$MOVE3 performs the same function as the VAX MOVC3 instruction except
that the length-value is a longword integer rather than a word integer. When
called from the JSB entry point, the register outputs of OTS$MOVE3_R5 follow
the same pattern as those of the MOVC3 instruction:

RO 0
Rl Address of one byte beyond the source string

R2 0
R3 Address of one byte beyond the destination string

R4 0

R5 0

For more information, see the description of the MOVC3 instruction in the VAX
Architecture Reference Manual. See also the routine LIB$MOVC3, which is a
callable version of the MOVC3 instruction.

Condition Values Returned

None.

OTS-49

OTS$MOVE5

OTS$MOVE5-Move Data with Fill

Format

The Move Data with Fill routine moves up to 231-1 bytes (2,147,483,647
bytes) from a specified source address to a specified destination address, with
separate source and destination lengths, and with fill. Overlap of the source and
destination arrays does not affect the result.

OTS$MOVE5 longword-int-source-length ,source-array ,fill-value
,longword-int-dest-length ,destination-array

corresponding jsb entry point

OTS$MOVE5_R5

Returns

Arguments

OTS-50

None.

longword-int-source-length
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Number of bytes of data to move. The longword-int-source-length argument
is a signed longword that contains this number. The value of longword-int­
source-length may range from 0 to 2,147,483,647.

source-array
Open VMS usage
type
access
mechanism

vector_byte_unsigned
byte (unsigned)
read only
by reference, array reference

Data to be moved by OTS$MOVE5. The source-array argument contains the
address of an unsigned byte array that contains this data.

fill-value
Open VMS usage
type
access
mechanism

byte_unsigned
byte (unsigned)
read only
by value

Character used to pad the source data if longword-int-source-length is less
than longword-int-dest-length. The fill-value argument contains the address
of an unsigned byte that is this character.

longword-int-dest-length
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Description

OTS$MOVE5

Size of the destination area in bytes. The longword-int-dest-length argument
is a signed longword containing this size. The value of longword-int-dest­
length may range from 0 through 2,147,483,647.

destination-array
Open VMS usage
type
access
mechanism

vector_byte_unsigned
byte (unsigned)
write only
by reference, array reference

Address into which source-array is moved. The destination-array argument is
the address of an unsigned byte array into which OTS$MOVE5 writes the source
data.

OTS$MOVE5 performs the same function as the VAX MOVC5 instruction
except that the longword-int-source-length and longword-int-dest-length
arguments are longword integers rather than word integers. When called from
the JSB entry point, the register outputs of OTS$MOVE5_R5 follow the same
pattern as those of the MOVC5 instruction:

RO Number of unmoved bytes remaining in source string

Rl Address of one byte beyond the source string

R2 0

R3 Address of one byte beyond the destination string

R4 0

R5 0

For more information, see the description of the MOVC5 instruction in the VAX
Architecture Reference Manual. See also the routine LIB$MOVC5, which is a
callable version of the MOVC5 instruction.

Condition Values Returned

None.

OTS-51

OTS$MULCx

OTS$MULCx-Complex Multiplication

Format

Returns

Arguments

Description

OTS-52

The Complex Multiplication routines calculate the complex product of two
complex values.

OTS$MULCD_R3 complex-multiplier ,complex-multiplicand

OTS$MULCG_R3 complex-multiplier ,complex-multiplicand

These formats correspond to the D-floating and G-floating complex types.

Open VMS usage
type

complex_number
D_floating complex, G_floating complex
write only access

mechanism by value

Complex result of multiplying two complex numbers. OTS$MULCD_R3 returns
a D-floating complex number. OTS$MULCG_R3 returns a G-floating complex
number.

complex-multiplier
Open VMS usage complex_number
type D_floating complex, G_floating complex
access read only
mechanism by value

Complex multiplier. The complex-multiplier argument contains the complex
multiplier. For OTS$MULCD_R3, complex-multiplier is a D-floating complex
number. For OTS$MULCG_R3, complex-multiplier is a G-floating complex
number.

complex-multiplicand
Open VMS usage complex_number
type D_floating complex, G_floating complex
access read only
mechanism by value

Complex multiplicand. The complex-multiplicand argument contains the
complex multiplicand. For OTS$MULCD_R3, complex-multiplicand is a D­
floating complex number. For OTS$MULCG_R3, complex-multiplicand is an
F-floating complex number.

OTS$MULCD_R3 and OTS$MULCG_R3 calculate the complex product of two
complex values.

The complex product is computed as follows:

1. Let (a,b) represent the complex multiplier.

2. Let (c,d) represent the complex multiplicand.

3. Let (r,i) represent the complex product.

The results of this computation are as follows:

(a, b) * (e, d) = (ae - bd) + J=l(ad +be)

Therefore : r = ac - bd

Therefore : i = ad+ be

OTS$MULCx

Condition Values Signaled

SS$_FLTOVF _F

SS$_ROPRAND

Floating value overflow can occur.

Reserved operand. OTS$MULCx encountered

Example

Ct

a floating-point reserved operand because of
incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
Digital.

C This FORTRAN example forms the product of
C two complex numbers using OTS$MULCD_R3
C and the FORTRAN random number generator RAN.
c
C Declare Zl, Z2, and Z_Q as complex values. OTS$MULCD_R3
C returns the complex product of Zl times Z2:
C Z_Q = Zl * Z2
c-

COMPLEX*16 Zl,Z2,Z_Q
Ct
C Generate a complex number.
c-

Zl = (8.0,4.0)
Ct
C Generate another complex number.
c-

Z2 = (2 . 0 I 3 . 0)
Ct
C Compute the complex product of Zl*Z2.
c-

Z_Q = Zl * Z2
TYPE*, ' The complex product of' ,Zl,' times ',Z2,' is'
TYPE*, I I ,Z_Q
END

This FORTRAN example uses OTS$MULCD_R3 to multiply two complex
numbers. The output generated by this program is as follows:

The complex product of (8.000000000000000,4.000000000000000) times
(2.000000000000000,3.000000000000000) is

(4.000000000000000,32.00000000000000)

OTS$POWCxCx

OTS$POWCxCx-Raise a Complex Base to a Complex Floating-Point
Exponent

Format

Returns

Arguments

OTS-54

The Raise a Complex Base to a Complex Floating-Point Exponent routines raise a
complex base to a complex exponent.

OTS$POWCC complex-base ,complex-exponent-value

OTS$POWCDCD_R3 complex-base ,complex-exponent-value

OTS$POWCGCG_R3 complex-base ,complex-exponent-value

Each of these three formats corresponds to one of the three floating-point complex
types.

Open VMS usage
type
access
mechanism

complex_number
F _fioating complex, D_fioating complex, G_fioating complex
write only
by value

Result of raising a complex base to a complex exponent. OTS$POWCC returns
an F-fioating complex number. OTS$POWCDCD_R3 returns a D-floating complex
number. OTS$POWCGCG_R3 returns a G-floating complex number.

complex-base
Open VMS usage
type
access
mechanism

complex_number
F _fioating complex, D_floating complex, G_fioating complex
read only
by value

Complex base. The complex-base argument contains the value of the base.
For OTS$POWCC, complex-base is an F-fioating complex number. For
OTS$POWCDCD_R3, complex-base is a D-fioating complex number. For
OTS$POWCGCG_R3, complex-base is a G-fioating complex number.

complex-exponent-value
Open VMS usage complex_number
type F _fioating complex, D_fioating complex, G_floating complex
access read only
mechanism by value

Complex exponent. The complex-exponent-value argument contains the value
of the exponent. For OTS$POWCC, complex-exponent-value is an F-floating
complex number. For OTS$POWCDCD_R3, complex-exponent-value is a
D-floating complex number. For OTS$POWCGCG_R3, complex-exponent-value
is a G-fioating complex number.

Description

OTS$POWCxCx

OTS$POWCC, OTS$POWCDCD_R3 and OTS$POWCGCG_R3 raise a complex
base to a complex exponent. The American National Standard FORTRAN-77
(ANSI X3.9-1978) defines complex exponentiation as follows:

xY = exp(y * log(x))

In this example, x and y are type COMPLEX.

Condition Values Signaled

MTH$_INVARGMAT

MTH$_FLOOVEMAT

SS$_ROPRAND

Invalid argument in math library. Base is (0.,0.).

Floating-point overflow in math library.

Reserved operand.

Examples

This FORTRAN example raises a complex base to a complex
power usirrg OTS$POWCC.

1. C+
c
c
c
c
c
c
c-

Declare Zl, Z2, Z3, and OTS$POWCC as complex values. Then OTS$POWCC
returns the complex result of Zl**Z2: Z3 = OTS$POWCC(Zl,Z2),
where Zl and Z2 are passed by value.

COMPLEX Zl,Z2,Z3,0TS$POWCC
C+
C Generate a complex base.
c-

Zl = (2.0,3.0)
C+
C Generate a complex power.
c-

Z2 = (1. 0 I 2 . 0)
C+
C Compute the complex value of Zl**Z2.
c-

Z3 = OTS$POWCC(%VAL(REAL(Zl)), %VAL(AIMAG(Zl)) I

+ %VAL(REAL(Z2)) I %VAL(AIMAG(Z2)))
TYPE *, ' The value of' ,Zl, '**' ,Z2,' is' ,Z3
END

This FORTRAN example uses OTS$POWCC to raise an F-floating complex
base to an F-floating complex exponent.

The output generated by this program is as follows:

The value of (2.000000,3.000000)** (1.000000,2.000000) is
(-0.4639565,-0.1995301)

OTS-55

OTS$POWCxCx

OTS-56

2. C+
c
c
c
c
c
c-

C+

This FORTRAN example raises a complex base to a complex
power using OTS$POWCGCG_R3.

Declare Zl, Z2, and Z3 as complex values. OTS$POWCGCG_R3
returns the complex result of Zl**Z2: Z3 = Zl**Z2.

COMPLEX*l6 Zl,Z2,Z3

C Generate a complex base.
c-

Zl = (2.0,3.0)
C+
C Generate a complex power.
c-

Z2 = (1. 0 I 2 . 0)
C+
C Compute the complex value of Zl**Z2.
c-

Z3 = Zl**Z2
TYPE l,Zl,Z2,Z3

1 FORMAT(' The value of (' ,Fll.8, ',' ,Fll.8, ')**(' ,Fll.8,
+ ', ',Fll.8, ') is (',Fll.8, ', ',Fll.8, ') .')

END

This FORTRAN example program shows how to use OTS$POWCGCG_R3.
Notice the high precision in the output generated by this program:

The value of (2.00000000, 3.00000000)**(1.00000000, 2.00000000) is
(-0.46395650,-0.46395650).

OTS$POWCxJ

OTS$POWCxJ-Raise a Complex Base to a Signed Longword Integer
Exponent

Format

Returns

Arguments

The Raise a Complex Base to a Signed Longword Integer Exponent routines
return the complex result of raising a complex base to an integer exponent.

OTS$POWCJ complex-base ,longword-integer-exponent

OTS$POWCDJ_R3 complex-base ,longword-integer-exponent

OTS$POWCGJ_R3 complex-base ,longword-integer-exponent

Each of these three formats corresponds to one of the three floating-point complex
types.

complex_number Open VMS usage
type
access
mechanism

F _fioating complex, D_fioating complex, G_fioating complex
write only
by value

Complex result of raising a complex base to an integer exponent. OTS$POWCJ
returns an F-fioating complex number. OTS$POWCDJ_R3 returns a D-fioating
complex number. OTS$POWCGJ_R3 returns a G-floating complex number. In
each format, the result and base are of the same data type.

complex_number
complex-base
Open VMS usage
type
access
mechanism

F _fioating complex, D_fioating complex, G_fioating complex
read only
by value

Complex base. The complex-base argument contains the complex base.
For OTS$POWCJ, complex-base is an F-fioating complex number. For
OTS$POWCDJ_R3, complex-base is a D-fioating complex number. For
OTS$POWCGJ_R3, complex-base is a G-fioating complex number.

longword-integer-exponent
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Exponent. The longword-integer-exponent argument is a signed longword
containing the exponent.

OTS-57

OTS$POWCxJ

Description

OTS$POWCJ, OTS$POWCDJ_R3, and OTS$POWCGJ_R3 return the complex
result of raising a complex base to an integer exponent. The complex result is as
follows:

Base

Any

(0.,0.)

Not (0.,0.)

Not (0.,0.)

Exponent

>0

~o

<0

0

Result

The product of (base**2i), where i is each nonzero
bit in longword-integer-exponent

Undefined exponentiation

The product of (base**2i), where i is each nonzero
bit in longword-integer-exponent
(1.0,0.0)

Condition Values Signaled

SS$_FLTDIV

SS$_FLTOVF

MTH$_UNDEXP

Floating-point division by zero.

Floating-point overflow.

Undefined exponentiation.

Example

OTS-58

C+
C This FORTRAN example raises a complex base to
C a NONNEGATIVE integer power using OTS$POWCJ.
c
C Declare Zl, Z2, Z3, and OTS$POWCJ as complex values.
C Then OTS$POWCJ returns the complex result of
C Zl**Z2: Z3 = OTS$POWCJ(Zl,Z2),
C where Zl and Z2 are passed by value.
c-

C+

COMPLEX Zl,Z3,0TS$POWCJ
INTEGER Z2

C Generate a complex base.
c-

Zl = (2.0,3.0)
C+
C Generate an integer power.
c-

Z2 = 2

C+
C Compute the complex value of Zl**Z2.
c-

Z3 = OTS$POWCJ(%VAL(REAL(Zl)), %VAL(AIMAG(Zl)) I %VAL(Z2))
TYPE l,Zl,Z2,Z3

1 FORMAT(' The value of (' ,Fl0.8, ', ',Fll.8, ')**' ,Il,' is
+ (',Fll.8, ', ',Fl2.8, '). ')

END

The output generated by this FORTRAN program is as follows:

The value of (2.00000000, 3.00000000)**2 is
(-5 • 00000000 I 12 • 00000000) o

OTS$POWDD

OTS$POWDD-Raise a D-Floating Base to a D-Floating Exponent

Format

Returns

Arguments

Description

The Raise a D-Floating Base to a D-Floating Exponent routine raises a D-floating
base to a D-floating exponent.

OTS$POWDD D-floating-point-base ,D-floating-point-exponent

Open VMS usage
type
access
mechanism

floating_point
D_floating
write only
by value

D-floating-point-base
Open VMS usage floating_point
type D_floating
access read only
mechanism by value

Base. The D-floating-point-base argument is a D-floating number containing
the base.

D-floating-point-exponent
Open VMS usage floating_point
type D_floating
access read only
mechanism by value

Exponent. The D-floating-point-exponent argument is a D-floating number
that contains the exponent.

OTS$POWDD raises a D-floating base to a D-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The D-floating result for OTS$POWDD is given by the following:

Base Exponent Result

=0 >0 0.0

=0 =0 Undefined exponentiation

=0 <0 Undefined exponentiation

<0 Any Undefined exponentiation

>0 >0 2[exponent>1<Iog2(base)]

>0 =0 1.0

OTS-59

OTS$POWDD

Base Exponent Result

>0 <0 2[exponent+log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$_UNDEXP

OTS-60

Floating-point overflow in math library.
Floating-point underflow in math library.

Undefined exponentiation. This error is signaled
if D-fioating-point-base is zero and D-fioating­
point-exponent is zero or negative, or if the
D-fioating-point-base is negative.

OTS$POWDR

OTS$POWDR-Raise a D-Floating Base to an F-Floating Exponent

Format

Returns

Arguments

Description

The Raise a D-Floating Base to an F-Floating Exponent routine raises a D­
floating base to an F-floating exponent.

OTS$POWDR D-floating-point-base ,F-floating-point-exponent

Open VMS usage
type
access
mechanism

floating_point
D_floating
write only
by value

D-floati ng-poi nt-base
Open VMS usage floating_point
type D_floating
access read only
mechanism by value

Base. The D-fioating-point-base argument is a D-floating number containing
the base.

F-floating-point-exponent
Open VMS usage floating_point
type F _floating
access read only
mechanism by value

Exponent. The F-fioating-point-exponent argument is an F-floating number
that contains the exponent.

OTS$POWDR raises a D-floating base to an F-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

OTS$POWDR converts the F-floating exponent to a D-floating number. The
D-floating result for OTS$POWDR is given by the following:

Base Exponent Result

=0 >0 0.0

=0 =0 Undefined exponentiation

=0 <0 Undefined exponentiation

<0 Any Undefined exponentiation

>0 >0 2[exponent>i<log2(base)]

>0 =0 1.0

OTS-61

OTS$POWDR

Base Exponent Result

>0 <0 2[exponent>1<Iog2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

SS$_FLTOVF

OTS-62

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$_UNDEXP

Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Floating-point overflow in math library.

Floating-point underflow in math library.

Undefined exponentiation. This error is signaled
if D-floating-point-base is zero and F-floating­
point-exponent is zero or negative, or if the
D-floating-point-base is negative.

OTS$POWDJ

OTS$POWDJ-Raise a D-Floating Base to a Longword Exponent

Format

Returns

Arguments

Description

The Raise a D-Floating Base to a Longword Exponent routine raises a D-floating
base to a longword exponent.

OTS$POWDJ D-floating-point-base ,longword-integer-exponent

Open VMS usage
type
access
mechanism

floating_point
D_floating
write only
by value

D-floating-point-base
Open VMS usage floating_point
type D _floating
access read only
mechanism by value

Base. The D-ftoating-point-base argument is a D-floating number containing
the base.

longword-integer-exponent
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Exponent. The longword-integer-exponent argument is a signed longword
that contains the signed longword integer exponent.

OTS$POWDJ raises a D-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follo~s:

Base Exponent

Any >0

>0 =0

=0 =0

<0 =0

>0 <0

Result

Product of (base**2i) where i is each nonzero bit
position in longword-integer-exponent

1.0

Undefined exponentiation

1.0

1.0/ (base**2i), where i is each nonzero bit position in
longword-integer-exponent

OTS-63

OTS$POWDJ

Base

=0

<0

Exponent

<0

<0

Result

Undefined exponentiation
1.0/ (base**2i) where i is each nonzero bit position in
longword-integer-exponent

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

Condition Values Signaled

SS$_FLTOVF

OTS-64

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$_UNDEXP

Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Floating-point overflow in math library.
Floating-point underflow in math library.

Undefined exponentiation. This error is signaled
if D-floating-point-base is zero and longword­
integer-exponent is zero or negative, or if the
D-floating-point-base is negative.

OTS$POWGG

OTS$POWGG-Raise a G-Floating Base to a G-Floating Exponent

Format

Returns

Arguments

Description

The Raise a G-Floating Base to a G-Floating Exponent routine raises a G-floating
base to a G-floating exponent.

OTS$POWGG G-floating-point-base ,G-floating-point-exponent

Open VMS usage
type
access
mechanism

floating_point
G_floating
write only
by value

G-floating-point-base
Open VMS usage floating_point
type G_floating
access read only
mechanism by value

Base that OTS$POWGG raises to a G-floating exponent. The G-floating-point­
base argument is a G-floating number containing the base.

G-floating-point-exponent
Open VMS usage floating_point
type G_floating
access read only
mechanism by value

Exponent to which OTS$POWGG raises the base. The G-floating-point­
exponent argument is a G-floating number containing the exponent.

OTS$POWGG raises a G-floating base to a G-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The G-floating result for OTS$POWGG is as follows:

Base Exponent Result

=0 >0 0.0

=0 =0 Undefined exponentiation

=0 <0 Undefined exponentiation

<0 Any Undefined exponentiation

>0 >0 2[exponent>1<log2(base)]

>0 =0 1.0

OTS-65

OTS$POWGG

Base Exponent Result

>0 <0 2[exponent>1<Iog2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Example

OTS-66

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT
MTH$_UNDEXP

Floating-point overflow in math library.

Floating-point underflow in math library.

Undefined exponent. This error is signaled if
G-floating-point-base is zero and G-floating­
point-exponent is zero or negative, or if G­
floating-point-base is negative.

C+
C This example demonstrates the use of OTS$POWGG,
C which raises a G-floating point base
C to a G-floating point power.
c-

REAL*8 X,Y,RESULT,OTS$POWGG
C+
C The arguments of OTS$POWGG are passed by value. FORTRAN can
C only pass INTEGER and REAL*4 expressions as VALUE. Since
C INTEGER and REAL*4 values are one longword long, while REAL*8
C values are two longwords long, equate the base (and power) to
C two-dimensional INTEGER vectors. These vectors will be passed
C by VALUE.
c-

C+

INTEGER N(2),M(2)
EQUIVALENCE (N(l),X), (M(l),Y)
x = 8.0
y = 2.0

C To pass X by value, pass N(l) and N(2) by value. Similarly for Y.
c-

C+

RESULT = OTS$POWGG(%VAL(N(l)),%VAL(N(2)) ,%VAL(M(l)),%VAL(M(2)))
TYPE*, I 8.0**2.0 IS I ,RESULT
x = 9.0
y = -0.5

C In FORTRAN, OTS$POWWGG is indirectly called by simply using the
C exponentiation operator.
c-

RESULT = X**Y
TYPE *,I 9.0**-0.5 IS I ,RESULT
END

This FORTRAN example uses OTS$POWGG to raise a G-floating base to a
G-floating exponent.

The output generated by this example is as follows:

8.0**2.0 IS 64.0000000000000
9.0**-0.5 IS 0.333333333333333

OTS$POVVGG

OTS-67

OTS$POWGJ

OTS$POWGJ-Raise a G-Floating Base to a Longword Exponent

Format

Returns

Arguments

Description

OTS-68

The Raise a G-Floating Base to a Longword Exponent routine raises a G-floating
base to a longword exponent.

OTS$POWGJ G-floating-point-base ,longword-integer-exponent

Open VMS usage
type
access
mechanism

floating_point
G_floating
write only
by value

G-floating-point-base
Open VMS usage floating_point
type G_floating
access read only
mechanism by value

Base that OTS$POWGJ raises to a longword exponent. The G-ftoating-point­
base argument is a G-floating number containing the base.

longword-integer-exponent
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Exponent to which OTS$POWGJ raises the base. The longword-integer­
exponent argument is a signed longword containing the exponent.

OTS$POWGJ raises a G-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follows:

Base Exponent

Any >0

>0 =0

=0 =0

<0 =0

>0 <0

Result

Product of (base**2i) where i is each nonzero bit
position in longword-integer-exponent

1.0

Undefined exponentiation

1.0

1.0/ (base**2i), where i is each nonzero bit position in
longword-integer-exponent

Base

=0

<0

Exponent

<0

<0

OTS$POWGJ

Result

Undefined exponentiation

1.0/ (base**2i) where i is each nonzero bit position in
longword-integer-exponent

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

Condition Values Signaled

SS$_FLTOVF

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$_UNDEXP

Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Floating-point overflow in math library.
Floating-point underflow in math library.

Undefined exponent. This error is signaled if
G-floating-point-base is zero and longword­
integer-exponent is zero or negative, or if
G-floating-point-base is negative.

OTS-69

OTS$POWHH_R3

OTS$POWHH_R3-Raise an H-Floating Base to an H-Floating
Exponent (VAX VMS Only)

Format

Returns

Arguments

Description

OTS-70

On an Open VMS for VAX system, the Raise an H-Floating Base to an H-Floating
Exponent routine raises an H-fioating base to an H-fioating exponent.

OTS$POWHH_R3 H-floating-point-base , H-floating-point-exponent

Open VMS usage
type
access
mechanism

fioating_point
H_fioating
write only
by value

H-floating-point-base
Open VMS usage fioating_point
type H_fioating
access read only
mechanism by value

Base. The H-floating-point-base argument is an H-fioating number containing
the base.

H-floati ng-poi nt-exponent
Open VMS usage fioating_point
type H_fioating
access read only
mechanism by value

Exponent. The H-floating-point-exponent argument is an H-fioating number
that contains the H-floating exponent.

OTS$POWHH_R3 raises an H-fioating base to an H-fioating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The H-fioating result for OTS$POWHH_R3 is as follows:

Base Exponent Result

=0 >0 0.0
=0 =0 Undefined exponentiation

=0 <0 Undefined exponentiation

<0 Any Undefined exponentiation

>0 >0 2[exponent>1< Iog2(base)]

Base

>0

>0

Exponent

=0

<0

Result

1.0
2[exponent>1<log2(base)]

Floating-point overflow can occur.

OTS$POWHH_R3

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Example

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$_UNDEXP

Floating-point overflow in math library.

Floating-point underflow in math library.

Undefined exponentiation. This error is signaled
if H-floating-point-base is zero and H-floating­
point-exponent is zero or negative, or if the
H-floating-point-base is negative.

C+
C Example of OTS$POWHH, which raises an H_f loating
C point base to an H_floating point power. In FORTRAN,
C it is not directly called.
c-

C+

REAL*16 X,Y,RESULT
x = 9877356535.0
y = -0.5837653

C In FORTRAN, OTS$POWWHH is indirectly called by simply using the
C exponentiation operator.
c-

RESULT = X**Y
TYPE *,I 9877356535.0**-0.5837653 IS I ,RESULT
END

This FORTRAN example demonstrates how to call OTS$POWHH_R3 to raise an
H-floating base to an H-floating power.

The output generated by this program is as follows:

9877356535.0**-0.5837653 IS 1.463779145994628357482343598205427E-0006+

OTS-71

OTS$POWHJ_R3

OTS$POWHJ_R3-Raise an H-Floating_Base to a Longword
Exponent (VAX VMS Only)

Format

Returns

Arguments

Description

OTS-72

On an Open VMS for VAX system, the Raise an H-Floating Base to a Longword
Exponent routine raises an H-floating base to a longword exponent.

OTS$POWHJ_R3 H-floating-point-base ,longword-integer-exponent

Open VMS usage
type
access
mechanism

floating_point
H_floating
write only
by value

H-floating-point-base
Open VMS usage floating_point
type H_floating
access read only
mechanism by value

Base. The H-floating-point-base argument is an H-floating number containing
the base.

longword-integer-exponent
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Exponent. The longword-integer-exponent argument is a signed longword
that contains the signed longword exponent.

OTS$POWHJ_R3 raises an H-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follows:

Base

Any

>0

=0

<0

Exponent

>0

=0

=0

=0

Result

Product of (base**2i) where i is each nonzero bit
position in longword-integer-exponent

1.0

Undefined exponentiation

1.0

Base

>0

=0

<0

Exponent

<0

<0

<0

OTS$POWHJ_R3

Result

1.0/ (base**2i), where i is each nonzero bit position in
longword-integer-exponent
Undefined exponentiation

1.0/ (base**2i) where i is each nonzero bit position in
longword-integer-exponent

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

Condition Values Signaled

SS$_FLTOVF

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$_UNDEXP

Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Floating-point overflow in math library.

Floating-point underflow in math library.

Undefined exponentiation. This error is signaled
if H-floating-point-base is zero and longword­
integer-exponent is zero or negative, or if the
H-floating-point-base is negative.+

OTS-73

OTS$POWll

OTS$POWll-Raise a Word Base to a Word Exponent

Format

Returns

Arguments

The Raise a Word Base to a Word Exponent routine raises a word base to a word
exponent.

OTS$POWI I word-integer-base , word-integer-exponent

Open VMS usage
type
access
mechanism

word-integer-base

word_signed
word (signed)
write only
by value

Open VMS usage word_signed
type word (signed)
access read only
mechanism by value

Base. The word-integer-base argument is a signed word containing the base.

word-integer-exponent
Open VMS usage word_signed
type word (signed)
access read only
mechanism by value

Exponent. The word-integer-exponent argument is a signed word containing
the exponent.

Condition Values Signaled

SS$_FLTDIV Arithmetic trap. This error is signaled by the
hardware if a floating-point division by zero
occurs.

SS$_FLTOVF

MTH$_UNDEXP

OTS-74

Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Undefined exponentiation. This error is signaled
if word-integer-base is zero and word­
integer-exponent is zero or negative, or if
word-integer-base is negative.

OTS$POWJJ

OTS$POWJJ-Raise a Longword Base to a Longword Exponent

Format

Returns

Arguments

The Raise a Longword Base to a Longword Exponent routine raises a signed
longword base to a signed longword exponent.

OTS$POWJJ longword-integer-base ,longword-integer-exponent

Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
write only
by value

longword-integer-base
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Base. The longword-integer-base argument is a signed longword containing
the base.

longword-integer-exponent
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Exponent. The longword-integer-exponent argument is a signed longword
containing the exponent.

Condition Values Signaled

SS$_FLTDIV Arithmetic trap. This error is signaled by the
hardware if a floating-point division by zero
occurs.

SS$_FLTOVF

MTH$_UNDEXP

Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Undefined exponentiation. This error is
signaled if longword-integer-base is zero
and longword-integer-exponent is zero
or negative, or if longword-integer-base is
negative.

OTS-75

OTS$POWLULU

OTS$POWLULU-Raise an Unsigned Longword Base to an Unsigned
Longword Exponent

Format

Returns

Arguments

Description

The Raise an Unsigned Longword Base to an Unsigned Longword Exponent
routine raises an unsigned longword integer base to an unsigned longword
integer exponent.

OTS$POWLULU unsigned-lword-int-base, unsigned-lword-int-exponent

Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by value

unsigned-lword-int-base
Open VMS usage longword_ unsigned
type longword (unsigned)
access read only
mechanism by value

Unsigned longword integer base. The unsigned-lword-int-base argument
contains the value of the integer base.

unsigned-lword-int-exponent
Open VMS usage longword_ unsigned
type longword (unsigned)
access read only
mechanism by value

Unsigned longword integer exponent. The unsigned-lword-int-exponent
argument contains the value of the integer exponent.

OTS$POWLULU returns the unsigned longword integer result of raising an
unsigned longword integer base to an unsigned longword integer exponent. Note
that overflow cannot occur in this routine. If the result or intermediate result is
greater than 32 bits, the low-order 32 bits are used.

Condition Values Signaled

MTH$_UNDEXP Both the base and exponent values are zero.

OTS-76

OTS$POWxLU

OTS$POWxLU-Raise a Floating-Point Base to an Unsigned
Longword Integer Exponent

Format

Returns

--Arguments

The Raise a Floating-Point Base to an Unsigned Longword Integer Exponent
routines raises a floating-point base to an unsigned longword integer exponent.

OTS$POWRLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWDLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWGLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWHLU_R3 floating-point-base ,unsigned-lword-int-exponent •

Open VMS usage
type
access
mechanism

floating_point
F _floating, D_floating, G_floating, H_floating
write only
by value

Result of raising a floating-point base to an unsigned longword integer exponent.
OTS$POWRLU returns an F-floating number. OTS$POWDLU returns a D­
floating number. OTS$POWGLU returns a G-floating number.

OTS$POWHLU_R3 returns an H-floating number. •

floating-point-base
Open VMS usage floating_point
type F _floating, D_floating, G_floating, H_floating
access read only
mechanism by value

Floating-point base. The floating-point-base argument contains the value
of the base. For OTS$POWRLU, floating-point-base is an F-floating
number. For OTS$POWDLU, floating-point-base is a D-floating number.
For OTS$POWGLU, floating-point-base is a G-floating number. For
OTS$POWHLU_R3, floating-point-base is an H-floating number.

unsigned-lword-int-exponent
Open VMS usage longword_ unsigned
type longword (unsigned)
access read only
mechanism by value

Integer exponent. The unsigned-lword-int-exponent argument contains the
value of the unsigned longword integer exponent.

OTS-77

OTS$POWxLU

Description

OTS$POWRLU, OTS$POWDLU, OTS$POWGLU, and OTS$POWHLU_R3 return
the result of raising a floating-point base to an unsigned longword integer
exponent. The floating-point result is as follows:

Base Exponent

Any >0

>0 =0

=0 =0

<0 =0

Condition Values Signaled

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$_UNDEXP

OTS-78

Result

Product of (base*2i) where i is each nonzero bit position
in longword-integer-exponent

1.0

Undefined exponentiation

1.0

Floating-point overflow in math library

Floating-point underflow in math library. This
can only occur if the caller has floating-point
underflow enabled.

Undefined exponentiation. This occurs if both the
floating-point-base and unsigned-longword­
integer-exponent arguments are zero.

OTS$POWRD

OTS$POWRD-Raise an F-Floating Base fo a D-Floating Exponent

Format

Returns

Arguments

Description

The Raise an F-Floating Base to a D-Floating Exponent routine raises an F­
floating base to a D-floating exponent.

OTS$POWRD F-floating-point-base ,D-floating-point-exponent

Open VMS usage
type
access
mechanism

floating_point
D_floating
write only
by value

F-floating-point-base
Open VMS usage floating_point
type F _floating
access read only
mechanism by value

Base. The F-ftoating-point-base argument is an F-floating number containing
the base.

D-floating-point-exponent
Open VMS usage floating_point
type D_floating
access read only
mechanism by value

Exponent. The D-ftoating-point-exponent argument is a D-floating number
that contains the exponent.

OTS$POWRD raises an F-floating base to a D-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

OTS$POWRD first converts the F-floating base to D-floating. The D-floating
result for OTS$POWRD is as follows:

Base Exponent Result

=0 >0 0.0

=0 =0 Undefined exponentiation

=0 <0 Undefined exponentiation

<0 Any Undefined exponentiation

>0 >0 2[exponent>1<LOG2(base)]

>0 =0 1.0

OTS-79

OTS$POWRD

Base Exponent Result

>0 <0 2[exponent>1< LOG2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Example

OTS-80

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT
MTH$_UNDEXP

Floating-point overflow in math library.

Floating-point underflow in math library.

Undefined exponentiation. This error is signaled
if F-floating-point-base is zero and D-floating­
point-exponent is zero or negative, or if F­
floating-point-base is negative.

C+
C This FORTRAN example demonstrates the use
C of OTS$POWRD, which raises an F-floating point
C base to a D-floating point exponent. The result is a
C D-floating value.
c-

C+

REAL*4 X
REAL*8 Y,RESULT,OTS$POWRD
INTEGER M(2)
EQUIVALENCE (M(l),Y)
x = 9768.0
y = 9.0

C The arguments of OTS$POWRD are passed by value.
c-

C+

RESULT= OTS$POWRD(%VAL(X),%VAL(M(l)),%VAL(M(2)))
TYPE*, I 9768.0**9.0 IS I ,RESULT
x = 7689.0
y = -0.587436654545

C In FORTRAN, OTS$POWRD is indirectly called by simply
C using the exponentiation operator.
c-

RESULT = X**Y
TYPE*, I 7689.0**-0.587436654545 IS I ,RESULT
END

This FORTRAN example uses OTS$POWRD to raise an F-floating base to a
D-floating exponent. Notice the difference in the precision of the result produced
by this routine in comparison to the result produced by OTS$POWRR.

The output generated by this program is as follows:

9768.0**9.0 IS 8.0956338648832908E+35
7689.0**-0.587436654545 IS 5.2155199252836588E-03

OTS$POWRD

OTS-81

OTS$POWRJ

OTS$POWRJ-Raise an F-Floating Base to a Longword Exponent

Format

Returns

Arguments

Description

OTS-82

The Raise an F-Floating Base to a Longword Exponent routine raises an F­
floating base to a longword exponent.

OTS$POWRJ F-floating-point-base ,longword-integer-exponent

Open VMS usage
type
access
mechanism

floating_point
F _floating
write only
by value

F-floating-point-base
Open VMS usage floating_point
type F _floating
access read only
mechanism by value

Base. The F-ftoating-point-base argument is an F-floating number containing
the base.

longword-integer-exponent
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by value

Exponent. The longword-integer-exponent argument is a signed longword
that contains the longword exponent.

OTS$POWRJ raises an F-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follows:

Base Exponent

Any >0

>0 =0

=0 =0

<0 =0

>0 <0

Result

Product of (base**2i) where i is each nonzero bit
position in longword-integer-exponent

1.0

Undefined exponentiation
1.0
1.0/ (base**2i), where i is each nonzero bit position in
longword-integer-exponent

Base

=0

<0

Exponent

<0

<0

OTS$POWRJ

Result

Undefined exponentiation

1.0/ (base**2i) where i is each nonzero bit position in
longword-integer-exponent

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

Condition Values Signaled

SS$_FLTOVF

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$_UNDEXP

Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Floating-point overflow in math library.

Floating-point underflow in math library.

Undefined exponentiation. This error is signaled
if F-floating-point-base is zero and longword­
integer-exponent is zero or negative, or if
F-floating-point-base is negative.

OTS-83

OTS$POWRR

OTS$POWRR-· Raise an F-Floating Base to an F-Floating Exponent

Format

Returns

Arguments

Description

OTS-84

The Raise an F-Floating Base to an F-Floating Exponent routine raises an
F-floating base to an F-floating exponent.

OTS$POWRR F-floating-point-base , F-floating-point-exponent

Open VMS usage
type
access
mechanism

floating_point
F _floating
write only
by value

F-floati ng-poi nt-base
Open VMS usage floating_point
type F _floating
access read only
mechanism by value

Base. The F-floating-point-base argument is an F-floating number containing
the base.

F-floating-point-exponent
Open VMS usage floating_point
type F _floating
access read only
mechanism by value

Exponent. The F-floating-point-exponent argument is an F-floating number
that contains the exponent.

OTS$POWRR raises an F-floating base to an F-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The F-floating result for OTS$POWRR is as follows:

Base Exponent Result

=0 >0 0.0

=0 =0 Undefined exponentiation

=0 <0 Undefined exponentiation

<0 Any Undefined exponentiation

>0 >0 2[exponent>1<Iog2(base)]

>0 =0 1.0

OTS$POWRR

Base Exponent Result

>0 <0 2[exponenhlog2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

Example

MTH$_FLOOVEMAT

MTH$_FLOUNDMAT

MTH$_UNDEXP

Floating-point overflow in math library.

Floating-point underflow in math library.

Undefined exponentiation. This error is signaled
if F-ftoating-point-base is zero and F-ftoating­
point-exponent is zero or negative, or if F­
ftoating-point-base is negative.

C+
C This FORTRAN example demonstrates the use
C of OTS$POWRR, which raises an F-floating
C point base to an F-floating point power.
c-

C+

REAL*4 X,Y,RESULT,OTS$POWRR
x = 8.0
y = 2.0

C The arguments of OTS$POWRR are passed by value.
c-

C+

RESULT= OTS$POWRR(%VAL(X),%VAL(Y))
TYPE *,I 8.0**2.0 IS I ,RESULT
x = 9.0
y = -0.5

C In FORTRAN, OTS$POWRR is indirectly called by simply
C using the exponentiation operator.
c-

RESULT = X**Y
TYPE *,I 9.0**-0.5 IS I ,RESULT
END

This FORTRAN example uses OTS$POWRR to raise an F-floating point base to
an F-floating point exponent. The output generated by this program is as follows:

8.0**2.0 IS 64.00000
9.0**-0.5 IS 0.3333333

OTS-85

OTS$SCOPY_DXDX

OTS$SCOPY _DXDX-Copy a Source String Passed by Descriptor to
a Destination String

Format

The Copy a Source String Passed by Descriptor to a Destination String routine
copies a source string to a destination string. Both strings are passed by
descriptor.

OTS$SCOPY _DXDX source-string ,destination-string

corresponding jsb entry point

OTS$SCOPY_DXDX6

Returns

Arguments

OTS-86

Open VMS usage
type
access
mechanism

word_ unsigned
word (unsigned)
write only
by value

If source-string contains more characters than destination-string, and the
JSB entry point is used, RO contains the number of characters that were not
copied.

source-string
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Source string. The source-string argument is the address of a descriptor
pointing to the source string. The descriptor class can be unspecified, fixed
length, dynamic, scalar decimal, array, noncontiguous array, or varying.

destination-string
Open VMS usage
type
access
mechanism

char_string
character string
write only
by descriptor

Destination string. The destination-string argument is the address of a
descriptor pointing to the destination string. The class field determines the
appropriate action.

See the Description section for further information.

Description

OTS$SCOPY _DXDX

OTS$SCOPY_DXDX copies a source string to a destination string. All error
conditions except truncation are signaled; truncation is ignored.

OTS$SCOPY_DXDX passes the source string by descriptor. In addition, an
equivalent JSB entry point is provided, with RO being the first argument
(the descriptor of the source string), and Rl the second (the descriptor of the
destination string).

For the CALL entry point, RO (return status) is as it would be after a MOVC5
instruction. For the JSB entry point, RO:R5 and the PSL are as they would be
after a MOVC5 instruction. RO:R5 contain the following:

RO Number of bytes of source string not moved to destination string

Rl Address one byte beyond the last copied byte in the source string

R2 0

R3 Address one byte beyond the destination string

R4 0

R5 0

For further information, see the VAX Architecture Reference Manual.

Depending on the class of the destination string, the actions described below
occur:

Class Field

DSC$K_CLASS_S,Z,SD,A,NCA

DSC$K_CLASS_D

DSC$K_CLASS_ VS

Action

Copy the source string. If needed, space fill
or truncate on the right.

If the area specified by the destination
descriptor is large enough to contain the
source string, copy the source string and
set the new length in the destination
descriptor. If the area specified is not
large enough, return the previous space
allocation (if any) and then dynamically
allocate the amount of space needed. Copy
the source string and set the new length
and address in the destination descriptor.

Copy source string to destination string up
to the limit of DSC$W _MAXSTRLEN with
no padding. Adjust current length field to
actual number of bytes copied.

Condition Values Signaled

OTS$_FATINTERR

OTS$_INVSTRDES

OTS$_INSVIRMEM

Fatal internal error.

Invalid string descriptor.

Insufficient virtual memory.

OTS-87

OTS$SCOPY_R_DX

OTS$SCOPY _R_DX-Copy a Source String Passed by Reference to a
Destination String

Format

The Copy a Source String Passed by Reference to a Destination String routine
copies a source string passed by reference to a destination string.

OTS$SCOPY _R_DX word-int-source-length-val ,source-string-address
,destination-string

corresponding jsb entry point

OTS$SCOPY _R_DX6

Returns

Arguments

OTS-88

Open VMS usage
type
access
mechanism

word_ unsigned
word (unsigned)
write only
by value

If source-string-address contains more characters than destination-string,
and the JSB entry point is used, RO contains the number of characters that were
not copied.

word-int-source-length-val
Open VMS usage word_ unsigned
type word (unsigned)
access read only
mechanism by value

Length of the source string. The word-int-source-length-val argument is an
unsigned word integer containing the length of the source string.

source-string-address
Open VMS usage char _string
type character string
access read only
mechanism by reference

Source string. The source-string-address argument is the address of the source
string.

destination-string
Open VMS usage
type
access
mechanism

char _string
character string
write only
by descriptor

Destination string. The destination-string argument is the address of a
descriptor pointing to the destination string. The class field determines the
appropriate action. The length field (DSC$W _LENGTH) alone or both the

Description

OTS$SCOPV _R_DX

address (DSC$A_POINTER) and length fields can be modified if the string is
dynamic. For varying strings, the current length is rewritten.

OTS$SCOPY_R_DX copies a source string to a destination string. All conditions
except truncation are signaled; truncation is ignored. Input scalars are passed by
value.

OTS$SCOPY_R_DX passes the source string by reference preceded by a length
argument. In addition, an equivalent JSB entry point is provided, with RO being
the first argument, Rl the second, and R2 the third, if any. The length argument
is passed in bits 15:0 of the appropriate register.

For the CALL entry point, RO (return status) is as it would be after a MOVC5
instruction. For the JSB entry point, RO:R5 and the PSL are as they would be
after a MOVC5 instruction. RO:R5 contain the following:

RO Number of bytes of source string not moved to destination string

Rl Address one byte beyond the last copied byte in the source string

R2 0

R3 Address one byte beyond the destination string
R4 0

R5 0

For additional information, see the VAX Architecture Reference Manual.

Depending on the class of the destination string, the actions described below
occur:

Class Field

DSC$K_CLASS_S,Z,SD,A,NCA

DSC$K_CLASS_D

DSC$K_CLASS_ VS

Action

Copy the source string. If needed, space fill
or truncate on the right.

If the area specified by the destination
descriptor is large enough to contain the
source string, copy the source string and
set the new length in the destination
descriptor. If the area specified is not
large enough, return the previous space
allocation (if any) and then dynamically
allocate the amount of space needed. Copy
the source string and set the new length
and address in the destination descriptor.

Copy source string to destination string up
to the limit of DSC$W _MAXSTRLEN with
no padding. Adjust current length field to
actual number of bytes copied.

OTS-89

OTS$SCOPY_R_DX

Condition Values Signaled

OTS$_FATINTERR
OTS$_INVSTRDES
OTS$_INSVIRMEM

Example

Fatal internal error.
Invalid string descriptor.
Insufficient virtual memory.

A FORTRAN example demonstrating dynamic string manipulation appears at the
end of OTS$SGET1_DD. This example uses OTS$SCOPY_R_DX, OTS$SGET1_
DD, and OTS$SFREE1_DD.

OTS-90

OTS$SFREE1 _DD

OTS$SFREE1_DD-Strings, Free One Dynamic

Format

The Free One Dynamic String routine returns one dynamic string area to free
storage.

OTS$SFREE1_DD dynamic-descriptor

corresponding jsb entry point

OTS$SFREE1_DD6

Returns

Arguments

Description

None.

dynamic-descriptor
Open VMS usage quad word_ unsigned
type quadword (unsigned)
access modify
mechanism by reference

Dynamic string descriptor. The dynamic-descriptor argument is the address of
the dynamic string descriptor. The descriptor is assumed to be dynamic and its
class field is not checked.

OTS$SFREE1_DD deallocates the described string space and flags the descriptor
as describing no string at all (DSC$A_POINTER = 0 and DSC$W _LENGTH = 0).

Condition Value Signaled

OTS$_FATINTERR Fatal internal error.

Example

A FORTRAN example demonstrating dynamic string manipulation appears at the
end of OTS$SGET1_DD. This example uses OTS$SFREE1_DD, OTS$SGET1_DD,
and OTS$SCOPY_R_DX.

OTS$SFREEn_DD

OTS$SFREEn_DD-Strings, Free n Dynamic

Format

The Free n Dynamic Strings routine takes as input a vector of one or more
dynamic string areas and returns them to free storage.

OTS$SFREEN_DD descriptor-count-value ,first-descriptor

corresponding jsb entry point

OTS$SFREEN_DD6

Returns

Arguments

Description

None.

descriptor-count-value
Open VMS usage longword_ unsigned
type longword (unsigned)
access read only
mechanism by value

Number of adjacent descriptors to be flagged as having no allocated area (DSC$A_
POINTER = 0 and DSC$W _LENGTH = 0) and to have their allocated areas
returned to free storage by OTS$SFREEN_DD. The descriptor-count-value
argument is an unsigned longword containing this number.

first-descriptor
Open VMS usage
type
access
mechanism

quad word_ unsigned
quadword (unsigned)
modify
by reference

First string descriptor of an array of string descriptors. The first-descriptor
argument is the address of the first string descriptor. The descriptors are
assumed to be dynamic, and their class fields are not checked.

OTS$SFREEN_DD6 deallocates the described string space and flags each
descriptor as describing no string at all (DSC$A_POINTER = 0 and DSC$W _
LENGTH= 0).

Condition Values Signaled

OTS$_FATINTERR Fatal internal error.

OTS-92

OTS$SGET1_DD

OTS$SGET1_DD-Strings, Get One Dynamic

Format

The Get One Dynamic String routine allocates a specified number of bytes of
dynamic virtual memory to a specified string descriptor.

OTS$SG ET1 _DD word-integer-length-value ,dynamic-descriptor

corresponding jsb entry point

OTS$SGET1 _DD _R6

Returns

Arguments

Description

None.

word-integer-length-value
Open VMS usage word_ unsigned
type word (unsigned)
access read only
mechanism by value

Number of bytes to be allocated. The word-integer-'length-value argument
contains the number of bytes. The amount of storage allocated is automatically
rounded up. If the number of bytes is zero, a small number of bytes is allocated.

dynamic-descriptor
Open VMS usage quadword_ unsigned
type quadword (unsigned)
access modify
mechanism by reference

Dynamic string descriptor to which the area is to be allocated. The dyn-str
argument is the address of the dynamic string descriptor. The class field is not
checked but it is set to dynamic (DSC$B_CLASS = 2). The length field (DSC$W_
LENGTH) is set to word-integer-length-value and the address field (DSC$A_
POINTER) is set to the string area allocated (first byte beyond the header).

OTS$SGET1_DD allocates a specified number of bytes of dynamic virtual memory
to a specified string descriptor. This routine is identical to OTS$SCOPY _DXDX
except that no source string is copied. You can write anything you want in the
allocated area.

If the specified string descriptor already has dynamic memory allocated to it,
but the amount allocated is either greater than or less than word-integer­
length-value, that space is deallocated before OTS$SGET1_DD allocates new
space.

OTS-93

OTS$SGET1_DD

Condition Values Signaled

OTS$_FATINTERR
OTS$_INSVIRMEM

Fatal internal error.
Insufficient virtual memory.

Example

OTS-94

PROGRAM STRING_TEST

C+
C This program demonstrates the use of some dynamic string
C manipulation routines.
c-
C+
C DECLARATIONS
c-

C+

IMPLICIT NONE
CHARACTER*80
INTEGER*4
CHARACTER*2

DATA_LINE
DATA_LEN, DSC(2), CRLF_DSC(2), TEMP_DSC(2)
CRLF

C Initialize the output descriptor. It should be empty.
c-

CALL OTS$SGETl_DD(%VAL(O) I DSC)

C+
C Initialize a descriptor to the string CRLF and copy the
C character CRLF to it.
c-

C+
c
c-

C+
c
c-

999

C+
c
c
c
c-

998

1
2

CALL OTS$SGET1_DD(%VAL(2) I CRLF_DSC)
CRLF = CHAR(13)//CHAR(10)
CALL OTS$SCOPY_R_DX(%VAL(2) I %REF(CRLF(l:l)) I CRLF_DSC)

Initialize a temporary descriptor.

CALL OTS$SGET1_DD(%VAL(O), TEMP_DSC)

Prompt the user.

WRITE(6, 999)
FORMAT(lX, 'Enter your message, end with Ctrl/Z.')

Read lines of text from the terminal until end-of-file.
Concatenate each line to the previous input. Include a
CRLF between each line.

DO WHILE (. TRUE.)
READ(S, 998, ERR = 10) DATA_LEN, DATA_LINE
FORMAT(Q,A)
CALL OTS$SCOPY_R_DX(%VAL(DATA_LEN),

%REF(DATA_LINE(l:l)),
TEMP_DSC)

CALL STR$CONCAT(DSC, DSC, TEMP_DSC, CRLF_DSC
END DO

C+
C The user has typed Ctrl/Z. Output the data we read.
c-
10 CALL LIB$PUT_OUTPUT(DSC)
C+
C Free the storage allocated to the dynamic strings.
c-

C+

CALL OTS$SFREE1_DD(DSC)
CALL OTS$SFREE1_DD(CRLF_DSC
CALL OTS$SFREE1_DD(TEMP_DSC

C End of program.
c-

STOP
END

OTS$SGET1_DD

This FORTRAN example program demonstrates dynamic string manipulation
using OTS$SGET1_DD, OTS$SFREE1_DD, and OTS$SCOPY_R_DX.

OTS-95

c
Complex numbers

division of, OTS-39
multiplication of, OTS-52

Conversion
binary text to unsigned integer, OTS-18
floating-point to character string, OTS-4
hexadecimal text to unsigned integer, OTS-36
integer to binary text, OTS-6
integer to FORTRAN L format, OTS-9
integer to hexadecimal, OTS-16
numeric text to floating-point, OTS-30,

OTS-34
unsigned decimal to integer, OTS-27
unsigned octal to signed integer, OTS-25

Copy strings, OTS-87

D
Division

complex number, OTS-39
packed decimal, OTS-43, OTS-46

Dynamic strings, OTS-92

E
Exponentiation

M

complex base to complex exponent, OTS-55
complex base to signed integer exponent,

OTS-58
D-floating base, OTS-59, OTS-61, OTS-63
F-floating base, OTS-79, OTS-82, OTS-84
G-floating base, OTS-65, OTS-68
H-floating base, OTS-70, OTS-72
signed longword base, OTS-75
word base to word exponent, OTS-7 4

Multiplication
of complex numbers, OTS-52

Index

0
OTS$CNVOUT routine, OTS-3
OTS$CNVOUT_G routine, OTS-3
OTS$CNVOUT_H routine, OTS-3
OTS$CVT_L_TB routine, OTS-5
OTS$CVT_L_TI routine, OTS-7
OTS$CVT_L_TL routine, OTS-9
OTS$CVT_L_TO routine, OTS-11
OTS$CVT_L_TU routine, OTS-13
OTS$CVT_L_TZ routine, OTS-15
OTS$CVT_TB_L routine, OTS-17
OTS$CVT_TI_L routine, OTS-20
OTS$CVT_TL_L routine, OTS-22
OTS$CVT_TO_L routine, OTS-24
OTS$CVT_TU_L routine, OTS-26
OTS$CVT_TZ_L routine, OTS-35
OTS$CVT_T_z routine, OTS-28, OTS-32
OTS$DNC routine, OTS-38
OTS$DNCD_R3 routine, OTS-38
OTS$DNCG_R3 routine, OTS-38
OTS$DN _PK_LONG routine, OTS-41
OTS$DN _PK_SHORT routine, OTS-45
OTS$MOVE3 routine, OTS-48
OTS$MOVE5 routine, OTS-50
OTS$MULCD_R3 routine, OTS-52
OTS$MULCG_R3 routine, OTS-52
OTS$POWCxCx routine, OTS-54
OTS$POWCxJ routine, OTS-57
OTS$POWDD routine, OTS-59
OTS$POWDJ routine, OTS-63
OTS$POWDLU routine, OTS-77
OTS$POWDR routine, OTS-61
OTS$POWGG routine, OTS-65
OTS$POWGJ routine, OTS-68
OTS$POWGLU routine, OTS-77
OTS$POWHH_R3 routine, OTS-70
OTS$POWHJ_R3 routine, OTS-72
OTS$POWHLU_R3 routine, OTS-77
OTS$POWII routine, OTS-7 4
OTS$POW JJ routine, OTS-7 5
OTS$POWLULU routine, OTS-76
OTS$POWRD routine, OTS-79
OTS$POWRJ routine, OTS-82

lndex-1

OTS$POWRLU routine, OTS-77
OTS$POWRR routine, OTS-84
OTS$SCOPY_DXDX routine, OTS-86
OTS$SCOPY_R_DX routine, OTS-88
OTS$SFREE1_DD routine, OTS-91
OTS$SFREEN_DD routine, OTS-92
OTS$SGET1_DD routine, OTS-93

lndex-2

R
Run-Time Library routines

general purpose, 1-1

s
Strings

allocating, OTS-93
copying by descriptor, OTS-87
copying by reference, OTS-89
freeing, OTS-92

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
and press 2 for technical assistance.

Electronic Orders
If you wish to place an order through your account at the Electronic Store, dial 800-234-1998, using a
modem set to 2400- or 9600-baud. You must be using a VT terminal or terminal emulator set at 8 bits, no
parity. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an
Electronic Store specialist.

Telephone and Direct Mail Orders

From

U.S.A.

Puerto Rico

Canada

International

Internal Orders1

(for software
documentation)

Internal Orders
(for hardware
documentation)

Call

DEC direct
Phone: 800-DIGITAL
(800-344-4825)
FAX: (603) 884-5597

Phone: (809) 781-0505
FAX: (809) 749-8377

Phone: 800-267-6215
FAX: (613) 592-1946

DTN: 241-3023
(508) 874-3023

DTN: 234-4325
(508) 351-4325
FAX: (508) 351-4467

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street
Suite 200
Metro Office Park
San Juan, Puerto Rico 00920

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

Software Supply Business (SSB)
Digital Equipment Corporation
1 Digital Drive
Westminster, MA 01473

Publishing & Circulation Services
Digital Equipment Corporation
NR02-2
444 Whitney Street
Northboro, MA 01532

1Call to request an Internal Software Order Form (EN-01740-07).

Reader's Comments

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual's: Excellent Good

Accuracy (product works as manual says) D D
Completeness (enough information) D D
Clarity (easy to understand) D D
Organization (structure of subject matter) D D
Figures (useful) D D
Examples (useful) D D
Index (ability to find topic) D D
Page layout (easy to find information) D D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

OpenVMS RTL General
Purpose (OTS$) Manual

AA-PV6HA-TK

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

For software manuals, please indicate which version of the software you are using:

Name/Title

Company

Mailing Address

Dept.

Phone

Date

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OpenVMS Documentation
110 SPIT BROOK ROAD ZK03-4/U08
NASHUA, NH 03062-2642

I I I 11111II1II1111II1111I1I11I1I1II11ii11I11I1I1I1I1 I

No Postage
Necessary
if Mailed

in the
United States

Do Not Tear - Fold Here ---

