ﬂﬂ@ﬂan Guide to Creating OpenVMS Modular Procedures

OpenVMS

Part Number: AA-PV6AA-TK

Guide to Creating OpenVMS
Modular Procedures

Order Number: AA-PV6AA-TK

May 1993

This manual describes how to create a complex application program
by dividing it into modules and coding each module as a separate
procedure.

Revision/Update Information: This manual supersedes the Guide
to Creating OpenVMS Modular
Procedures, Version 1.0.

Software Version: OpenVMS AXP Version 1.5
OpenVMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.
All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, BASIC,
Bookreader, DEC Ada, DEC Fortran, DECmigrate, DECnet, DECthreads, DECwindows, Digital,
FMS, OpenVMS, VAX, VAX BASIC, VAX C, VAX DOCUMENT, VAX FORTRAN, VAX MACRO,
VAX Pascal, VMS, the AXP logo, and the DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

ZK4518

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface

1 Introduction to Modular Procedures

RS G N W N —
W=

Why Bother with Modular Procedures?
Invoking a Modular Procedure............
Using Procedure Libraries

Existing System Procedures..............
Using Translated Images (AXP Only)

2 Designing Modular Procedures

2.1
2.1.1
2.1.2
2.2
2.21
222
2.2.2.1

2222

223
2.2.3.1
223.2
2233
224
225
2.3

24
2.4.1
24141
24.1.2
2.4.1.3
241.4
2.4.1.5
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.6
2.6.1
2.6.2
2.7
2.71

Organizing New Applications.............
Organizing Files and Modules
Organizing Procedures into Modules

Defining a Modular Procedure Interface
Explicit Arguments
Implicit Arguments

......................

......................

......................

......................

LI R T N T I

......................

......................

......................

Implicit Arguments Allocated by the Calling Program..........
Implicit Arguments Allocated by the Called Procedure

How to Avoid Using Implicit Arguments .
Combining Procedures
User-Action Routine.

......................

......................

......................

Designating Responsibility to the Callmg Program

Order of Arguments
Using Optional Arguments
JSB Entry Points (VAXOnly)
Using System Resources
Choosing a Storage Type
Stack Storage

Heap Storage

Static Storage
Avoiding Use of Static Storage
Summary of Storage Use by Language

Using Event Flags
Using Logical Unit Numbers
Using Input/Output
Terminal Input/Output...............
File Input/Output...................
Documenting Modules
Writing a Module Preface.............
Writing a Procedure Description

......................

......................

......................

......................

......................

......................

.....................

......................

......................

......................

......................

......................

......................

......................

Planning for Signaling and Condition Handling

Guidelines for Signaling Error Conditions

......................

Vii

1-2
1-2
1-3
1-4

2-1
2-1
2-1
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-7
2-10
2-10
2-10
2-11
2-11
2-11
2-11
2-12
2-12
2-13
2-14
2-14
2-15
2-15
2-16
2-17
2-17
2-18
2-20
2-20

2.7.2
2.7.3

Guidelines for Returning Condition Values .
When to Signal or Return Condition Values.

3 Coding Modular Procedures

3.1
3.1.1
3.1.1.
3.1.1.
3.1.1.
3.1.1.
3.1.1.
3.1.1.
3.1.1.
3.1.1.

ONOOOTAWN =

3.1.2
3.1.3
3.14
3.1.41
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.4.1
3.34.2
3.3.4.3
3.3.4.4
3.3.5
3.3.6

Coding Guidelines
Adhering to the Naming Conventions

....................

....................

....................

....................

Facility Naming Conventions (Recommended)
Procedure Naming Conventions (Recommended)
File Naming Conventions (Recommended)

Module Naming Conventions (Required)
PSECT Naming Conventions (Required)

....................

....................

Lock Resource Naming Conventions (Recommended)...........
Global Variable Naming Conventions (Recommended)
Status Code and Condition Value Naming Conventions

(Required)

Using Common Source Files (Recommended)
Using OpenVMS System Services
Invoking Optional User Action Routines . ..
Bound Procedure Value (VAX Only)
Initializing Modular Procedures.............
Initializing Storage
Testing and Setting a First-Time Flag
Using LIB$INITIALIZE
Writing AST-Reentrant Code
What Isan AST?
AST-Reentrancy Versus Full-Reentrancy . . .
Writing AST-Reentrant Modular Procedures

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

How to Eliminate Race Conditions During Concurrent Access.
Performing All Accesses in One Instruction

Using Test and Set Instructions.......
Keeping a Call-in-Progress Count
Disabling AST Interrupts............
Performing Input/Output at AST Level
Condition Handling at AST Level

4 Testing Modular Procedures

4.1
4.1.1
4.1.2
4.2
4.3
4.31
4.3.2
4.4
4.4.1
44.11
44.1.2
442
4.5
4.5
452
4.6

Unit Testing
Black Box Testing
White Box Testing

Language-Independence Testing

Integration Testing.
All at Once Approach to Integration Testing
Incremental Approach to Integration Testing

Testing for Reentrancy
Checking for AST-Reentrancy

....................

....................

....................

....................

....................

....................

....................

Using the Debugger to Check for AST-Reentrancy.............
Using Desk Checking to Check for AST-Reentrancy

Checking for Full-Reentrancy
Performance Analysis
SHOW Entry Point

STAT Entry Point
Monitoring Procedures in the Run-Time Library

....................

....................

....................

3-1
3-1
3-1
3-3
34
34
3-4
3-5
3-5

3-6
3-6
3-7
3—7
3-8
3-8
3-9
3-10
3-13
3-15
3-15
3-15
3-16
3-17
3-17
3-18
3-19
3-19
3-20
3-21

41
4-2
4-3
4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-8
4-8
4-8
4-9

5 Integrating Modular Procedures

5.1
5.2
5.3

Creating Facility Prefixes i,
Creating Object Module Librariesot eennn...
Creating Shareable Image Libraries

6 Maintaining Modular Procedures

6.1
6.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2

Making Your Procedures Upwardly Compatible.....................
Regression Testing i i
Adding Arguments to Existing Routines ,

Adding New Arguments to the Procedure
Using Argument Blocks it

Updating Libraries.ttt it e e it

Updating Object Libraries,
Updating Shareable Images

A Summary of Modular Programming Guidelines

Al

A1l
A1.2
A13
Al14
A1.5
A1.6
A17

Index

Examples
21

2-2

2-3
2-4
2-5
3-1
3-2
3-3
3-4
3-5

3-6
3-7

Coding Rules i i e

Calling Interface ittt
Initializing oo i et
Reporting Exception Conditions
AST-Reentrancy ovvei ettt ettt e e e e
Resource Allocation
Format and Content of Coded Modules
Upward Compatibility

FORTRAN Program Showing the Improper Use of Implicit
Arguments e e e e e

FORTRAN Program Combining Procedures to Avoid Implicit
Arguments i e e e e

Static Storage and AST-Reentrancyccvviivnn..
Sample Module Description i,
A Sample Procedure Description
Pascal Program That Uses a First-Time Flag
BASIC Initialization Procedure for LIB$INITIALIZE
Program to Add Address to PSECT LIB$INITIALIZE e
BASIC Main Program 0.ttt

VAX MACRO Program Showing Use of Queue Instructions to Perform
All Accesses in a Single Instruction

MACRO Program Showing Use of Test and Set Instructions
A FORTRAN Program Disabling and Restoring ASTs

5-1
5-2
5-2

61
61
6-2
6-3
6-3
64
64
6-5

A-
A-1
A-3
A-3
A-3
A-4
A-4
A-5

2-6

2-7
2-13
2-18
2-19
3-12
3-14
3-14
3-14

3-18
3-19
3-20

Figures

1-1
2-1
2-2
2-3
24
31
3-2
3-3
4-1
4-2
4-3
6—1
6-2

Tables

vi

2—1
3-1
3-2
3-3
3—4

Developing a Program that Calls Library Procedures 1-3
Levelsof Abstraction it 2-2
Possible Procedure Groupingscoiiiineeenunnnnnn. 2-3
Designating Storage Responsibility to the Caller 2-8
Use of Storage Typesot i ittt ettt 2-12
Examples of Facility Prefixes as Used in Procedure Names 3-2
Methods of Initializingttt 3-9
How to Initialize Static Storage 3-11
Black Box Testing Methods 4-3
White Box Tests ovi ittt i i e 4-4
A Sample Procedure for Integration Testing 4-5
Regression Testing i 62
One Type of Argument Block, the Signal Argument Vector 6—4
Summary of Storage Use by Language 2-13
Common Library Facilities — Prefixes and Content 3-2
Naming Procedure Entry Points 34
Code for the Content and Usage of Global Variables 3-5
How to Declare Common Source Files 3-6

Preface

Intended Audience

This manual contains guidelines for developing, integrating, and maintaining
modular procedures. It is intended for advanced system and applications
programmers who are already familiar with OpenVMS operating system
concepts. Readers should also be proficient in at least one supported language.

Document Structure

This book contains the following chapters and appendix:

Chapter 1 defines modular procedures and discusses the benefits of modular
programming.

Chapter 2 covers design topics, such as organizing new applications, designing
a modular procedure interface, using system resources, using input/output,
writing internal documentation, and planning for signaling and condition
handling.

Chapter 3 presents general coding guidelines and information about
initializing modular procedures. It also discusses guidelines for invoking
optional user-supplied action routines, and writing AST-reentrant code.

Chapter 4 describes methods for testing procedures for modularity, language-
independence, and reentrancy. This chapter also provides general information
about performance testing and monitoring procedures.

Chapter 5 shows you how to create object module libraries, shareable images,
and shareable image libraries from your completed procedures.

Chapter 6 covers maintenance topics, such as upward compatibility,
regression testing, updating procedures and procedure libraries, and changing
the transfer vector or linker options file.

Appendix A summarizes the modular programming guidelines presented in
this manual.

Associated Documents

The following manuals contain more information about the programming tasks
described in this book:

OpenVMS Programming Environment Manual

OpenVMS Programming Concepts Manual

OpenVMS Programming Interfaces: Calling a System Routine
OpenVMS Calling Standard

OpenVMS System Services Reference Manual

vii

* OpenVMS Linker Utility Manual

¢ The documentation set for your language processor

Conventions

In this manual, every use of OpenVMS AXP means the OpenVMS AXP operating
system, every use of OpenVMS VAX means the OpenVMS VAX operating system,
and every use of OpenVMS means both the OpenVMS AXP operating system and
the OpenVMS VAX operating system.

The following conventions are used to identify information specific to OpenVMS
AXP or to OpenVMS VAX:

The AXP icon denotes the beginning of information
AXP specific to OpenVMS AXP.

The VAX icon denotes the beginning of information
L VAX] specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of
¢ information specific to OpenVMS AXP or to OpenVMS
' VAX.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A horizontal ellipsis in examples indicates one of the following
possibilities:

e Additional optional arguments in a statement have been
omitted.

® The preceding item or items can be repeated one or more
times.

e Additional parameters, values, or other information can be
entered.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, /PRODUCER=name), and command parameters
in text.

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
: the name of a file, or the abbreviation for a system privilege.

viii

1

Introduction to Modular Procedures

A procedure is a set of related instructions that performs a task. A module is a
single body of code and text that can be assembled and compiled as a unit.

A procedure is modular if it contains all the definitions and calls it needs to
perform a task. A modular procedure must also follow rules and principles that
permit it to be successfully linked together with other procedures that follow the
same rules and principles.

This chapter briefly discusses:

* Programming benefits of modular procedures
¢ Invoking modular procedures |

¢ Using procedure libraries

¢ Existing OpenVMS system procedures

¢ Using translated images

1.1 Why Bother with Modular Procedures?

Procedures can be combined to form programs in the following ways:
* Your procedure calls other procedures
® Other procedures call your procedure
® A calling program calls either your procedure or other procedures

For procedures to execute successfully when they are combined to form a
program, they must follow general guidelines. Modular procedures that do not
follow these guidelines can cause other procedures in the program image to
execute incorrectly.

The modular programming guidelines in this manual are designed to give
programmers a common environment in which to write code. If all programmers
follow these guidelines, then any modular procedure can be added to a procedure
library without conflicting with procedures already in the library or with any that
are added later.

Modular programming offers the following advantages:

* You can use any modular procedure in any program

* You can add a modular procedure to a library at any time

¢ You do not need to rewrite common algorithms for a new program

* You can reduce development time and complexity, and increase reliability

Introduction to Modular Procedures
1.1 Why Bother with Modular Procedures?

* You can modify or replace a procedure without modifying the calling
program provided that you adhere to the guidelines for maintaining upward
compatibility.

* You can control processwide resource allocation

* You can use different programming languages to write different procedures
for a program

Many of the guidelines in this manual are recommendations, not requirements.
By following all the guidelines, however, you can realize the following additional
advantages:

e Shareable library procedures can save memory space, disk space, and link
time

* AST-reentrant procedures can be called by AST-level procedures

* Modular procedures that conform to all coding recommendations are similar
in format; therefore, they are easier to use and maintain

1.2 Invoking a Modular Procedure

Typically, you invoke a procedure by executing a VAX CALLS or CALLG
instruction (on VAX systems) or JSR instruction (on AXP systems). If you

are using a high-level language, the compiler generates the appropriate transfer
instruction when you use the conventions required by your language to implement
a procedure. '

For more information about calling sequences, refer to OpenVMS Programming
Interfaces: Calling a System Routine. To find out how specific languages
implement procedures, refer to the documentation set for your language
Processor.

1.3 Using Procedure Libraries

You can use modular procedures for general programming or you can group them
in procedure libraries. Grouping procedures into libraries is a way of collecting
procedures so that calling programs can access them easily. When you link your
program to a library, the OpenVMS Linker utility (linker) automatically searches
that library to resolve any references that your program makes to procedures in
the library. Because the linker searches the specified library automatically, your
program can call many modular procedures without including the name of each
procedure explicitly in the LINK command. The program’s executable image and
the procedures that it calls are executed in the proper sequence at run time.

Figure 1-1 shows the development of a program that calls one or more procedures
in a library. Depending on the options you select when writing modular
procedures, you can control the way the linker accesses your procedures, and
therefore, the way procedures are invoked at run time. For example, if you place
commonly used procedures within a shareable procedure library or shareable
image library, you can save memory and disk space because all user processes
can access a single copy of the shared procedures.

Introduction to Modular Procedures
1.3 Using Procedure Libraries

Figure 1-1 Developing a Program that Calls Library Procedures

Interactive Input

=

Run FILENAM.EXE

Editor ©
Source Edit Time
Module(s) You edit and enter
the program.
FILENAM. XXX
Language N~ _
Trarl;s:ator Object Compile Time
Assembler Module(s) Compiler translates
edited program into
FILENAM.OBJ an object file.
FILENAM.LIS
T T~ Link Time
The linker searches
object module library and
shareable images.
Executable
Image(s) The appropriate library
Linker R entry points are made
FILENAM.EXE known to the object
module to form an

executable image.

FILENAM.MAP l
Tttt i Run Time
i Shareable |
i Image ! The executable image
' ! is now aware of the
"""""" addresses of the relevant
library procedures in
Called Program its virtual address space.
Obiject Output . ;
I The image can call library
Modules procedures at run time.
Executable
Image(s)

1.4 Existing System Procedures

ZK-4068-GE

Many system routines that perform advanced applications are included in the
OpenVMS operating system. These procedures are designed to perform various
general functions and can be useful building blocks for your own procedures.
Before you write a new procedure, make sure the application does not already
exist. You should call an existing procedure from a system library whenever
possible, instead of duplicating code.

Introduction to Modular Procedures
1.4 Existing System Procedures

The types of callable system procedures available as part of the OpenVMS
operating system are:

Run-time library (RTL) Procedures
System Services

Utility Routines

Record Management Services (RMS)

For more information about the features of these procedures, refer to the
OpenVMS Programming Environment Manual. For more information about how
to use them, refer to OpenVMS Programming Concepts Manual.

1.5 Using Translated Images (AXP Only)

AXP

14

Programs that run on VAX systems can be converted to run on AXP systems by
recompiling and relinking or by translating. A single application can include both
native images (those that were recompiled and relinked) and translated images.

The most effective way to convert a program that runs on a VAX system to one
that runs on an AXP system is to recompile the source code using a native AXP
compiler and then to relink the object files and shareable images using the linker.

The alternative method, translation, involves using' DECmigrate for OpenVMS
AXP, which supports the migration of VAX applications to AXP applications
by translating images. DECmigrate converts VAX images into functionally
equivalent images that can run on AXP systems. DECmigrate includes the
VAX Environment Software Translator (VEST) utility, which analyzes a VAX
executable or shareable image and creates a functionally equivalent translated
image.

The Translated Image Environment (TIE), which is part of the OpenVMS
AXP operating system, provides the run-time support for translated images on
OpenVMS AXP. The TIE includes an AXP shareable image that provides each
translated image with an environment similar to OpenVMS VAX, interprets
untranslated VAX instructions, and processes all interactions with the native
AXP system. The TIE also includes a translated image that executes complex
VAX instructions.

For more information about VEST and TIE, refer to DECmigrate for OpenVMS
AXP Version 1.0 Translating Images. For more information about mixing native
AXP and translated VAX modules in a single application, see Migrating to an
OpenVMS AXP System: Recompiling and Relinking Applications. ¢

2

Designing Modular Procedures

Well-designed procedures are more likely to be modular, well-written, and easy to
maintain. Any time that you save by skimping at the design stage will be lost as
you fix problems stemming from a poor design.

This chapter discusses the following aspects of designing a new application:
¢ Organizing new applications

¢ Defining a modular procedure interface

¢ Using JSB entry points

¢ Using system resources

* Using Input/output

* Documenting modules

* Planning for signaling and condition handling

2.1 Organizing New Applications

Before designing a new application, look at the overall organization. An
application should be made up of one or more files, each containing one or more
procedures. When linked, the procedures are organized into program sections
(PSECTs). Each procedure, as well as the interface between the procedures,
should conform to the modular guidelines described in this manual.

2.1.1 Organizing Files and Modules

Each application contains one or more files. Each file contains exactly one
module. For information about naming files, refer to Section 3.1.1.3. For
information about naming modules, refer to Section 3.1.1.4.

2.1.2 Organizing Procedures into Modules

Each module should contain a single procedure or a group of related procedures.
The linker always brings the entire module containing a called procedure into the
image if any of its entry points are referenced. Therefore, placing each procedure
in a separate module reduces image size and allows more flexibility when using a
procedure library. You can supply your own version of one procedure while using
other procedures from the library. If many procedures have been grouped in a
single module, the linker must link all or none of them.

Group procedures into a module if they share the same static storage or if they
have a similar calling sequence, perform similar functions, and share a significant
amount of code.

2-1

Designing Modular Procedures
2.1 Organizing New Applications

If you are writing a large number of related procedures that call one another
or access common data blocks, make the relationship among those procedures
as clear as possible. To do this, use the following guidelines to minimize the

interaction between procedures, and between procedures and data structures:

* Organize procedures into levels of abstraction
e Make sure each level calls only the next lower level

* Restrict read/write access to data structures and system components to as few
procedures as possible

Figure 2-1 shows the BASIC and FORTRAN record I/O processing procedures,
which are implemented in the following three levels of abstraction:

1. User program interface (UPI)
2. User program data formatting (UDF)
3. Record processing and OpenVMS RMS interface (REC)

Figure 2—1 Levels of Abstraction

Procedure Procedure Procedure .
Type C Type C Type C Level C: RMS Interface
A
All Calls
Procedure Procedure Level B: User Program
4> Type B Type B Data Formatting
[
|
Procedure Procedure Procedure Level A: User Program
Type A Type A Type A Interface
L 4
| Modular
Interface
' Main Program
ZK-4006-GE

2-2

Designing Modular Procedures
2.1 Organizing New Applications

All calls are made in one direction, to the next innermost level. Procedures
at different levels should be in different modules. Figure 2-2 shows possible
groupings of procedures.

Figure 2-2 Possible Procedure Groupings

H Module
|
)
! Static
! Storage (%
: (Optional) | ™]
! \\FleadNVnte
‘ \,
i ! Reade AN
1
1
i Modular Modular
Main i] Procedure Procedure
Cal « : L (Optional)
! RET RET
Call
—1
Interface
] 1
] 1
1 1
1 1
H Module !
| |
! SStatic ! SStatic
1 torage i torage
i (Optional) i (Optional)
| ! RET.
i) . | i .
i 1 Read/Write ! 1 Read/Wirite
il] \ 4] \ 4
Main i | Cal
i [Modular i Modular
Cal ¢ H Procedure | Procedure
1
i RET - RET
1
! !
Interface Interface
Module
1
]
! Static Although these procedures may
1 Storage — not be modular, the module is
! (Optional) modular across the interface.
. v
! RET
i 'y Procedure
Ve E | Read/Write (Optional)
ain : 4 RET
H Call
Call + I—'. Modular
b ! |_ Procedure) y
! RET
! Procedure
: (Optional) ¢ |
! Call RET
i Modular
call I l—. Procedure
- ! L (Optional)
| RET
i
1
1
Interface

ZK-4007-GE

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

2.2 Defining a Modular Procedure Interface

Procedures communicate with one another by passing arguments. To clarify the
interactions between procedures and programs, you must define each argument
when you are designing a procedure. There are two types of arguments: explicit
arguments and implicit arguments. The following sections define explicit and
implicit arguments and describe how to use them.

2.2.1 Explicit Arguments

Explicit arguments are a procedure’s primary interface with other programs.
Therefore, to maintain a modular interface, you must follow the rules for
argument order, data types, and passing mechanisms. The following format is
used to describe each argument:

argument-name

OpenVMS usage: argument-data-structure
type: argument-data-type

access: argument-access

mechanism: argument-passing-mechanism

For descriptions of each of these four argument attributes, see the OpenVMS
Programming Interfaces: Calling a System Routine.

To make your procedures easier to call, be sure that the passing mechanism
used for particular data types is consistent throughout all procedures in a
facility. Passing all atomic data by reference and all string data by descriptor is
recommended.

2.2.2 Implicit Arguments

An implicit argument is one that is not specified in the argument list. Implicit
arguments provide additional information to your procedure from static storage
locations. Two types of implicit arguments are:

* Arguments allocated by the calling program
* Arguments allocated by your procedure

Using implicit arguments is discouraged because they make the relationship
across procedures less clear and tend to increase the interaction between
procedures in a way that might go undetected. If your procedure must retain
information from previous activations, see Section 2.2.3 for ways to avoid using
implicit arguments.

2.2.2.1 Implicit Arguments Allocated by the Calling Program
The calling program can allocate implicit arguments as statically allocated
variables in a named PSECT (for example, COMMON and MAP in BASIC,
COMMON in FORTRAN, or variables declared in the outer block of a procedure
or program in Pascal). The calling program can also allocate implicit arguments
as statically allocated global variables (for example, symbols defined with a
double colon [::] in MACRO and GLOBAL variables in BLISS).

Allocation of implicit arguments by the calling program is not recommended for
the following reasons:

* Two programs could use the same PSECT name or global variable for different
values. This error would be undetected.

¢ The calling program is no longer independent of the called procedure.
Consequently, a change in one could inadvertently affect the other.

2-4

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

¢ In FORTRAN, the calling program declares all variables as COMMON
regardless of the number of implicit inputs actually needed. All COMMON
variables should also be declared by all modules that use the COMMON
storage, further decreasing independence.

2.2.2.2 Implicit Arguments Allocated by the Called Procedure

Implicit arguments allocated by the called procedure are kept in local static
storage.

These implicit arguments are usually used to keep track of resources (using
resource allocating procedures) and shorten the explicit argument list. However,
the use of implicit inputs by non-resource-allocating procedures can lead to
unexpected results. For example, assume that procedure A is to leave information
for a companion procedure B. This would result in B having both explicit inputs
(from its caller) and implicit inputs (from A’s storage). Next, consider that a
calling program calls A, then calls procedure X, and finally calls B. For the calling
program to get correct results from B, it must know that X (and any procedure
that X calls) did not make a call to A, because such a call would change the
implicit inputs A leaves for B.

Because one of the objectives of modular programming is to permit procedures
to be combined arbitrarily without needing to understand each other’s internal
workings, using implicit arguments is not recommended. The same problems can
occur with any non-resource-allocating procedure that leaves results for itself as
future implicit arguments.

2.2.3 How to Avoid Using Implicit Arguments

Procedures that do not allocate resources can be written in the following three
ways to avoid the implicit argument problems described in Section 2.2.2:

¢ When one procedure obtains results from another, combine the two procedures
into a single call. (See Section 2.2.3.1.)

* Provide a single call to an action routine that is supplied by the calling
program part way through the procedure’s execution. (See Section 2.2.3.2.)

* Give the calling program responsibility for retaining information from
a procedure activation. This is done with an explicit argument. (See
Section 2.2.3.3.)

2.2.3.1 Combining Procedures

Often, non-resource-allocating procedures can be combined into a single procedure
that returns all information explicitly in a single call.

Compare Example 2-1 with Example 2-2 to see the effects of combining
procedures to avoid the use of implicit arguments.

2-5

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Example 2-1 FORTRAN Program Showing the Improper Use of Implicit
Arguments

T+

! This program demonstrates a situation where

! the input of a procedure depends on the output
! of a previously called procedure.

1=

EAL*4 X, Y, RESULT

=g

1
1
L+
! Call the procedure that writes into a common data area.
[-
CALL SUM_SQUARES (X, Y)
T+
! Call the procedure that reads from the common data area.
| -
CALL GET_SQRT (RESULT)
'+
! Print the result obtained.
| -
WRITE (6,10) X, Y, RESULT
10 FORMAT (1X, 'SQRT(’', F6.2, '**2 + ', F6.2, '**2) =',F6.2)
STOP
END

T+
! This procedure sums the squares of its two inputs and
! places the result in a common area, for use by some
! other procedure.
[«
SUBROUTINE SUM_SQUARES (A, B)
COMMON /INTERNAL_STORAGE/ TEMP_RESULT
TEMP_RESULT = (A ** 2) + (B ** 2)
RETURN
END
'+
! This procedure calculates the square root of whatever
! number is in the common area.
| .
SUBROUTINE GET_SQRT (C)
COMMON /INTERNAL_STORAGE/ TEMP_RESULT
C = SQRT (TEMP_RESULT)
RETURN
END

2.2.3.2 User-Action Routine

2-6

Another way to combine several procedures into one call is to let the calling
program gain control at a critical point in your procedure’s execution. For this to
happen, your procedure must specify an action routine argument that is called
during execution. Therefore, your procedure can execute twice, before and after
the action routine, with no implicit inputs. The OPEN statements in BASIC,
FORTRAN, and Pascal use this technique by permitting the user to supply a
user-action routine. ‘

To keep the calling program from having to provide implicit inputs for its action
routine, your procedure should also provide another argument that is passed to
the action routine. The calling program uses the following calling sequence to
invoke your procedure:

CALL my-proc (... ,action-routine ,user-arg)

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Example 2-2 FORTRAN Program Combining Procedures to Avoid Implicit
Arguments

T+
! This procedure shows the subroutines called in
! the previous example combined into a single subroutine
! that eliminates the use of COMMON.
1=
REAL*4 X, Y, RESULT
X=1
Y=1
'+
! Call the new procedure.
1 -
CALL DO_IT ALL (X, Y, RESULT)
WRITE (6,10) X, Y, RESULT
10 FORMAT (1X, 'SQRT (', F6.2, '**2 + ', F6.2, '**2) = ' ,F6.2)

STOP
END

This procedure calculates the square root of the sum of
the squares of its first two arguments, and returns the
result in the third argument. It combines the functions
provided by the SUM_SQUARES and GET_SQRT

procedures and eliminates the use of COMMON.

SUBROUTINE DO_IT_ALL (A, B, C)
C = SQRT ((A ** 2) + (B ** 2))
RETURN

END

Then your procedure invokes the action routine as follows:
CALL action-routine (... ,user-arg)

For information on writing user-action routines, see Section 3.1.4.

2.2.3.3 Designating Responsibility to the Calling Program
You can make the calling program responsible for retaining information from one
procedure activation to another. There are three ways to do this:

* Require the calling program to allocate the storage your procedure needs.
Then have the calling program pass the address of the storage location as
an explicit argument on all calls to your procedure. The disadvantage of this
method is that you cannot increase the amount of storage needed by your
procedure without requiring all calling programs to be rewritten. Thus, you
should use this method only when you are confident that your procedure will
not be revised to use additional storage in the future.

* Require the calling program to allocate a longword pointer to the stored
data and pass its address to your procedure as an explicit argument. On
the first call, your called procedure will dynamically allocate storage (by
calling LIBS$GET_VM) and store its address in the caller’s longword. On
subsequent calls, your procedure will use information left in the storage area
from previous calls.

¢ Require the calling program to pass a processwide identifying value to your
procedure on all calls. The processwide identifier indicates which information
from previous procedure activations is to be used as implicit inputs.

2-7

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Figure 2-3 shows a calling program that has responsibility for explicitly
indicating the storage to be used by the called procedure.

Figure 2-3 Designating Storage Responsibility to the Caller

Storage
for
Calling
Program
K
Argument K
is written to Storage for
Call Read (K) o calling program Procedure X
storage.
RET L
Procedure L
Read !
Call X o
a7 Call Read (L)
y RET
I_’ ér?;::ﬁpénf Procedure X
Call Get (K) - calling program
- storage.
RET Interface
Calling Program Pro(c}zc:ure
interface
By giving the caller responsibility for
storage, you can separate information
Data » Control stored on each procedure activation
_____ ®Path Path and prevent undetected conflicts.

2-8

ZK-4004-GE

Calling Program Allocates Procedure Storage

This method causes the calling program to allocate all storage needed and pass
the address of the storage as an explicit argument on each call.

For example, the library procedure MTH$RANDOM requires that the calling
program allocate storage for the longword seed and pass its address on each call.
MTH$RANDOM takes the seed as input and computes the next random number
sequence from the current seed value. MTH$RANDOM returns a random number
between 0 and 1 and updates the longword seed passed by the calling program.
This ensures that the procedure will generate a different value on the next call.

The next two sections describe interface techniques that permit storage size to
change without affecting the interface with the calling program.

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Calling Program Passes Pointer

In this method, the calling program allocates only a longword pointer to the
dynamic heap storage to be allocated by your procedure. It then passes the
address of the longword as an explicit argument. The following two interface
techniques can be used to indicate that storage is to be initialized:

* Provide a single entry point. If your called procedure finds the value zero in
the longword that the calling program has allocated, the procedure allocates
and initializes dynamic heap storage.

* Provide a second entry point. This entry point stores the address of the
allocated storage in the longword. On subsequent calls, your procedure uses
that value as the storage address of information from previous calls.

Regardless of the method used to indicate storage allocation and initialization,
you must also provide a way to indicate storage deallocation. You can do this by
using either a separate argument or separate entry point.

For example, the procedure LIB$INIT_TIMER, which gets times and counts from
the operating system, uses a single optional argument handle-adr to determine
where these values are to be stored. The handle-adr argument is the address of
a longword pointing to a block of storage that contains the values of times and
counts:

* If handle-adr is missing, the values are stored in static storage, making this
call non-AST-reentrant.

e If handle-adr is zero, LIB$INIT_TIMER allocates a block of dynamic heap
storage by calling LIB§GET_VM. The values are placed in that block, and the
address of the block is returned in handle-adr.

* If handle-adr is nonzero, it is considered to be the address of a storage block
previously allocated by a call to LIB$INIT TIMER. The block is then used
again and new times and counts are stored in it.

LIB$FREE_TIMER deallocates the block of dynamic heap storage allocated by a
previous call to LIB$INIT _TIMER. The handle-adr argument to
LIB$FREE_TIMER is the address of a longword that points to a block of dynamic
heap storage where times and counts have been stored. That storage is returned
to free storage by calling LIBSFREE_VM.

Calling Program Passes a Processwide Identifier

In this method, the calling program passes a processwide identifying value to
identify implicit results produced on previous calls, which will be implicit inputs
on this call. Any calling program can use the processwide identifier. Examples
include BASIC or FORTRAN logical unit numbers and OpenVMS system services
I/O channel numbers.

Processwide identifiers are a resource. Modular programming techniques require
that all resources allocated by a procedure be allocated by calling a resource-
allocating procedure. This prevents conflicts because a single procedure can keep
track of multiple allocations to more than one procedure or procedure activation.
Therefore, if you use the method described in this section, you will also have

to write a resource-allocating procedure to control the resource. If you write a
resource-allocating procedure, it is recommended that you place it in an object
module library so that other programmers can use it.

The library procedures LIB§GET_LUN and LIB$FREE_LUN allocate and
deallocate FORTRAN and BASIC logical unit numbers outside the range normally
specified in user programs, that is, outside the range 0 to 99.

2-9

Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

2.2.4 Order of Arguments

Procedures in the RTL follow a consistent pattern for positioning arguments. You
should follow the same guidelines. Group procedure arguments from left to right
in the following order:

Required input arguments (read access)
Required input-output arguments (modify access)
Required output arguments (write access)
Optional input arguments (read access)

Optional input-output arguments (modify access)

S O o

Optional output arguments (write access)

Note that optional arguments follow required arguments. Therefore, when the
calling program omits the optional arguments, the actual argument list passed to
the procedure is shortened.

The called procedure accesses the required arguments from left to right,
beginning with the first argument. The only exceptions are procedures that
return a large function value of known size. In this case, the calling program
uses the first argument to specify where the function value is to be stored, and
the other arguments are shifted right one position. (For more information, refer
to the OpenVMS Calling Standard.)

2.2.5 Using Optional Arguments

An optional argument is one that the calling program can omit. The calling
program indicates the omission by passing argument list entries containing zero.
For a trailing optional argument, the calling program can pass a shortened list or
a zero argument list entry.

A zero argument list entry is simply a zero passed to the procedure by value. For
example, if we call a procedure called GRA_CUBE and omit an optional argument
C, the calling sequence from BASIC would be as follows:

15 CALL GRA_CUBE(A, B, 0 BY VALUE)
In this call, "0 BY VALUE" is the zero argument list entry.

Note

Most OpenVMS system services, unlike the run-time library procedures,
cannot accept a shortened argument list. Omitted arguments must
always be indicated with a zero argument list entry. For arguments
passed by value, there is no distinction between passing a zero value and
passing a zero argument list entry.

2.3 JSB Entry Points (VAX Only)

L VAX

2-10

On VAX systems, Digital recommends that you do not use JSB! entry points in
procedures that will be contained in a procedure library. Procedures that can

be invoked only by JSB instructions are not callable by high-level languages. If
a procedure does use a JSB entry point, it must also provide an equivalent call

! JSB is a MACRO instruction that means jump to subroutine.

Designing Modular Procedures
2.3 JSB Entry Points (VAX Only)

entry point to maintain language independence. The call entry point must be
provided because JSB instructions are only available in VAX MACRO and VAX
BLISS-32.

If you provide a JSB entry point for your procedure, the name of the JSB entry
point is the same as the name of the procedure, except that it ends in _Rn. The n
indicates the highest register modified or used as an input argument.

For example, the JSB entry point of the run-time library procedure
LIBSANALYZE_SDESC is LIBSANALYZE_SDESC_R2. ¢

2.4 Using System Resources

The system resources available to you are limited by your account quotas and
by the amount of available resources on the system. Efficient use of system
resources makes more resources available for all processes.

2.4.1 Choosing a Storage Type

There are three types of storage: stack, heap, and static. The three forms of
storage differ in the method and duration of allocation, that is, how long that
storage is in use.

2.4.1.1 Stack Storage

A procedure dynamically allocates stack storage on the process stack at run time,
as needed. To allocate stack storage, the procedure moves the stack pointer up by
decreasing its value. Note that stack storage is not initialized to zero because the
stack is created once and reused many times for subsequent stack frames.

The procedure deallocates stack storage by moving the stack pointer down
(increasing its value) when that procedure returns control to the calling program.
Stack storage exists only for the duration of the procedure activation that creates
it.

2.4.1.2 Heap Storage

Dynamic heap storage is allocated at run time from a processwide pool, as the
procedure activation needs it and as the account quotas and virtual address space
of your process permits.

To allocate heap storage, your procedure calls a system routine such as the Run-
Time Library procedure LIB$GET_VM or the system service $EXPREG. The
call to the system routine may be within the procedure itself, or you may use a
general resource-allocating procedure to centralize your resource allocations.

Heap storage is deallocated—that is, returned to the processwide pool—by calling
LIB$FREE_VM. The system service $CNTREG cannot be used to deallocate heap
storage.

Figure 2—4 shows how the different types of storage are used.

Note

The type of storage to be used can be determined by the duration or
quantity of the storage. Any storage that is of long duration and unknown
quantity (at compile time) should be heap storage. Storage of short
duration (during the current invocation of the procedure) should be stack
storage. Storage of long duration that is needed in only one instance
should be static storage.

2-11

Designing Modular Procedures
2.4 Using System Resources

Figure 2-4 Use of Storage Types

CALL[™

Static Stack

Storage Storage
[
| Read/Write | Read/Write
y A J

CALL CALL
CALL
Procedure I I Procedure

rer

‘—|ET<_|_RET

Static storage is used

when a result must

be retained for

a future procedure

activation.

Stack storage is used
when results are
needed only for

the current procedure
activation.

Itis deallocated
when the procedure
returns to its caller.

gt
“lrer

Heap
Storage

I Read/Write
A 4

Procedure
RET

Heap storage is
used when the
amount of storage
varies from call

to call.

Storage is deallocated
before control
returns to the

caller (by calling
LIB$FREE_VM).

CAL| [cau
leer T rer

4
. Heap
Pointer . Storage
Static O
Storage
Read/Write
y

CALL
Procedure LJ—.
| RET

Heap storage is

also used when the
amount of storage
needed varies and
when results must be
retained for a

future procedure
activation.

It is deallocated by
calling LIBSFREE_VM.

2.4.1.3 Static Storage

At link time, the linker collects storage in similar PSECTs into a single image
section. The initial contents of this storage are specified in the source program.
The OpenVMS operating system initializes any noninitialized static storage to
zero. On calls to a procedure after initialization, the static storage has the same
allocation and the contents left from the previous call.

2.4.1.4 Avoiding Use of Static Storage
Several disadvantages to using static storage are:

2-12

ZK-4005-GE

e It is an inefficient use of memory. When using static storage, you must
provide for the largest possible memory use.

* An image size is larger because of the inefficient use of memory.

¢ It can easily lead to problems with AST reentrancy, as seen in Example 2-3.
This example circumvents the problem of an AST corrupting data by setting a
first-time flag. Another method of preventing this problem is to use “test and
set” instructions. For more information, see Section 3.3.4.2.

Designing Modular Procedures
2.4 Using System Resources

Example 2-3 Static Storage and AST-Reentrancy

10

100

t+

! Program to demonstrate corruption

! of static storage due to ASTs.

DECLARE LONG CURRENT_NUMBER

Lt

! Enable CTRL/C AST handling.

ON ERROR GOTO 19000

X% = CTRLC

T+

! Increment the number and print the

! current value.

When the number

! reaches 1000, exit.

f—

éOR CURRENT_NUMBER = 1% TO 1000%

PRINT CURRENT_NUMBER;

NEXT CURRENT_NUMBER

GOTO 32767

19000 !+

! Error-handling routine.

! entered due to a CTRL/C
! AST, corrupt CURRENT_NUMBER by setting it to -1.

1=

If this routine is

IF ERR = 28 THEN CURRENT_NUMBER = -1%

RESUME 100

32767 END

2.4.1.5 Summary of Storage Use by Language
Table 2—-1 summarizes storage available to the programmer in various language
procedures.

Table 2-1 Summary of Storage Use by Language

Language

Storage Type

Static

Stack

Heap

Ada

BASIC

BLISS

COBOL

Constants and fixed-
size objects contained
in library packages

All COMMON and
MAP data storage

Most arrays

OWN and GLOBAL

Objects declared with
external or static
internal linkage

All data storage

Local subprogram
and task variables

Local variables

Executable
DIMENSION
statement

STACK LOCAL

Objects declared
inside a function
with "automatic”
linkage

Not applicable

Dynamically sized objects in library
packages and objects created by
allocators

Dynamic strings

By calling LIB$GET_VM

By calling malloc, calloc, or realloc

By calling LIB§GET_VM

(continued on next page)

2-13

Designing Modular Procedures
2.4 Using System Resources

Table 2-1 (Cont.) Summary of Storage Use by Language

Language Storage Type
Static Stack Heap
DIBOL All RECORD, Not applicable Not applicable
COMMON, and
LITERAL data
storage
VAX FORTRAN All data storage Not applicable By calling LIB§GET_VM!
Assembly Block storage Decrementing stack By calling LIB§GET VM
language pointer
Pascal All program or PROCEDURE and By calling NEW?
module level storage = FUNCTION local
PL/I STATIC AUTOMATIC ALLOCATE statement (BASED)?
RPGII All data storage Not applicable By calling LIB$GET_VM
SCAN STATIC, GLOBAL, When AUTOMATIC DYNAMIC STRING values, TREE
COMMON, is used in a pointers, and the ALLOCATE function
EXTERNAL procedure or macro

1Storage for DEC Fortran for OpenVMS Alpha is the same as for VAX FORTRAN, except that stack storage is available
as a compile time option for some variables.

2 Although this is true most of the time, there are other rules that can also determine STATIC versus STACK allocation.
For more information, see the Pascal user documentation.

SBASED is the storage class used to allocate heap storage in PL/I. The ALLOCATE statement does the actual allocation.

2.4.2 Using Event Flags

Event flags allow modular procedures to communicate with each other and to
synchronize their operations. Because they can be allocated at run time, event
flags allow one procedure to run independently of other procedures existing in the
same process.

Event flags are allocated and deallocated by the run-time library procedures
LIB$GET_EF and LIB$FREE_EF. (For more information, see the descriptions of
the LIB$GET_EF and LIB$FREE_EF procedures in the OpenVMS Programming
Concepts Manual and the OpenVMS RTL Library (LIB$) Manual.)

2.4.3 Using Logical Unit Numbers

2-14

A logical unit number is used to define the device or file a program uses to
perform input and output. Modular procedures do not need to know the unit
numbers of other procedures running at the same time.

Logical unit numbers are used only in BASIC and FORTRAN.

Logical unit numbers should be allocated and deallocated using the
LIB$GET_LUN and LIB$FREE_LUN RTL procedures. (For more information
about using logical unit numbers, see the descriptions of the LIB§GET_LUN and
LIB$FREE_LUN procedures in the OpenVMS Programming Concepts Manual
and the OpenVMS RTL Library (LIB$) Manual.)

Designing Modular Procedures
2.5 Using Input/Output

2.5 Using Input/Output

In general, your procedure’s input/output (I/0) is directed to either the terminal or
a file. (In some cases, you may need to use mailbox I/O and network operations.
For information about these areas, see the DECnet for OpenVMS Networking
Manual.) Regardless of whether you are directing input/output to the terminal
screen or to a file, you must follow two rules to maintain modularity:

1.

A procedure must not print error or informational messages either directly or
by calling the $PUTMSG system service. It must either return a condition
value in RO as a function value, or call LIB$SIGNAL or LIB$STOP to output
all messages. (LIB$SIGNAL and LIB$STOP may be called either directly or
indirectly.)

A procedure should use device independent services and procedures for
input/output.

2.5.1 Terminal Input/Output

The methods available for performing input/output to the terminal include the
following:

Queue I/O Request system service ($QIO)

Using a $QIO to perform terminal I/O is very efficient. However, $QIOs
use device-dependent services and are the most difficult to use from high-
level languages of all methods discussed here, because there are more steps
involved and because the calling interface requires more knowledge from
the caller than RMS services. Using a $QIO in your procedure may require
additional steps, such as constructing item lists, writing AST routines,
assigning an I/O channel, queueing an I/O request, testing to ensure that
the request was successfully queued and completed, and deassigning the
I/O channel. (For more information about $QIOs, see the OpenVMS System
Services Reference Manual.)

OpenVMS Record Management Services (RMS)

The RMS facility provides device-independent and general-purpose services
that are easier to call than $QIOs. However, it is often not convenient to
construct the access control blocks (FAB, RAB, and so forth) required by
RMS from a high-level language. (For more information about RMS, see the
OpenVMS Record Management Services Reference Manual.)

Language I/O statements

Language I/O statements are provided for all high-level languages. These
statements are easy to use and provide simple I/O and data formatting

for the high-level language user. Native language I/0 statements make it
unnecessary for the high-level language user to call $QIO or RMS directly;
these calls are made by the compiled code on your behalf. However, low-level
and medium-level languages (VAX MACRO and BLISS-32) have no built-in
language I/O statements and must use $QIO and RMS for terminal and file
I/0. (For more information, see the appropriate language reference manual.)

Screen Management Procedures in the run-time library (SMG$)

SMG$ procedures provide an easy-to-call interface for high-level languages.
They are device-independent and aid in the composition of complex

screen images. The SMG$ facility in the run-time library provides screen
composition operations; that is, SMG$ makes it easy for an application to

2-15

Designing Modular Procedures
2.5 Using Input/Output

divide its screen into multiple regions and provides functions for manipulating
" those regions. Other features provided by SMG$ procedures are as follows:

— Output to virtual displays

— Input from a virtual keyboard or locator device

— The ability to perform asynchronous input

— Built-in minimal screen updating

~ Optional buffering and batching to optimize performance

— The ability to trap broadcast messages

— The option of performing output to a file or a hardcopy device
— Support for foreign (not Digital) terminals

— Subprocess manipulation

For more information about SMG$ procedures, see the OpenVMS RTL Screen
Management (SMG$) Manual and the OpenVMS Programming Concepts
Manual.

During I/O to the terminal, it is important that the procedure and the main
program cooperate in controlling the terminal screen. For example, an I/O
procedure may write something to the terminal screen that the calling program
wants to erase. The calling program must know both what and where that _
information is, in order to erase it. The calling program and the called procedure
must communicate by passing arguments that define which part of the screen will
be accessed by each. The run-time library contains Screen Management (SMG$)
procedures for this purpose.

Do not combine different methods of I/O within your application. Problems

can arise if the calling program and the called procedure use different methods
of I/O. Each method of performing input/output maintains some knowledge of
what is on the terminal screen. At the very least, the current cursor position is
remembered. If another type of I/O is performed, that information is not updated
and, therefore, becomes incorrect. The results of any subsequent I/O would be
unpredictable. If you must combine other methods with uses of SMG$ procedures,
use the SMG$ procedures that aid such an integration.

2.5.2 File Input/Output

2-16

File I/O can be performed by the following methods:
* Block I/O

Uses system services to map a section of the file to the process virtual address
space. No notion of records.

¢ OpenVMS Record Management Services (RMS)

RMS provides a variety of file organizations and access modes from which
you can select the processing techniques best suited to your application. RMS
supports the sequential, relative, and indexed-sequential file organizations.
These modes allow you to access records within these files sequentially,
randomly by key value or relative record number, or randomly by the records
file address (RFA). It is usually not necessary to call RMS directly from
high-level languages. For specific information about performing record
management operations in the language you are using, consult your language
reference manual. (For more information about RMS, see the OpenVMS
Record Management Services Reference Manual.)

¢ Language /O

Designing Modular Procedures
2.5 Using Input/Output

The compiled code in most high-level languages calls a run-time library
language support procedure for file operations. The run-time library
procedures normally call RMS. Therefore, most RMS features are available
to the high-level language user without calling RMS directly. Language

I/O statements are suitable for either data files or output files. Low- and
medium-level languages (VAX MACRO and BLISS-32) do not have any
language I/O statements and must call RMS directly. (For more information,
see the appropriate language reference manual.)

2.6 Documenting Modules

You should document every module you create so that you and others know what
the procedure does. Each module should include:

¢ A preface that identifies the procedure

* A description of the procedure

In most cases, a module should contain only one procedure.

2.6.1 Writing a Module Preface

At the beginning of every module, include a preface that contains the following

information:

Title:

Version:
Facility:

Abstract:

Environment:

Author:
Modified by:

Module name followed by a one-line functional description.

Version and a three-digit edit number. Generally 1-001 is the
original version.

Description of the library facility, such as general utility library
(LIB).

Short (three to six lines) functional description of the module.

Describe any special environmental assumptions that the module
can make. These include assumptions made at both compilation
and execution time that could affect either the hardware or software
environments.

Describes situations that the module assumes during execution time
and optional modular programming elements that your module does
not follow.

Indicates the reentrancy characteristics of the procedures in this
module. Each procedure is either fully-reentrant, AST-reentrant, or
non-reentrant.

Your name and date the module was created.

Modification number, name of modifying programmer, modification
date, and a list of the modifications.

End the preface with a page delimiter. After the preface, include the code for the

procedure.

Example 2—4 shows a sample module description.

2-17

Designing Modular Procedures
2.6 Documenting Modules

Example 2-4 Sample Module Description

PROGRAM GRA_CUBE

MODIFIED BY:

|
!
|
!
!
!
!
|
|
|
|
|
!
!
!
|

AUTHOR: John Smith

! Create representation of a cube

+

VERSION: 1-002

FACILITY: User Graphics Computation Library

ABSTRACT: This module contains a procedure to create a mathematical

representation of a cube, GRA_CUBE.

ENVIRONMENT: User Mode, AST-reentrant

CREATION DATE: 14-Sep-1993

1-001 - Original. DWS 14-Sep-1993
1-002 - Fix a minor bug in cube volume computation. MDL 15-Mar-1993

2.6.2 Writing a Procedure Description

At the beginning of every procedure in a module, describe the procedure by
including the information in this section. Include all the description elements,
even if they are not in the procedure. For example, if a procedure has no implicit

2-18

inputs, write the following:

Implicit Inputs:

NONE

Every procedure description should include the following information:

Functional description:

Calling sequence:

Describes a procedure’s purpose and completely documents
its interfaces.

Includes the basis for any critical algorithms used,
including literature references where applicable, and
explains why a particular algorithm was chosen.

Indicates the reentrancy characteristics of this procedure if
they differ from those given in the module description.

Includes these elements in the following order:
1. A return status, value argument, or CALL statement
2. The procedure name

3. The argument list (typically a list of registers or
arguments)

In VAX MACRO, each argument is symbolically defined as
the offset relative to the argument pointer (AP).

Lists the arguments in the order they will appear in a
high-level language. Each argument characteristic should
also be included, using the procedure argument notation
described in OpenVMS Programming Interfaces: Calling a
System Routine.

Designing Modular Procedures
2.6 Documenting Modules

Formal arguments: Lists any explicit input, input-output, or output arguments.
Includes a qualifying description with each argument. The
arguments should be listed in the order they are listed in
the calling sequence.

Implicit inputs: Lists any inputs from storage, internal or external to the
module, that are not specified in the argument list. Usually
all that will appear here is “‘NONE”. See Section 2.2.2.

Implicit outputs: Lists any outputs to internal or external storage that are
not specified in the argument list.

Completion status or Lists the success or failure condition value symbols that

routine value: could be returned. If your procedure returns a function
value other than a condition value, change the heading to
“Routine value”.

Side effects: Describes any functional side effects not evident from
a procedure’s calling sequence. This includes changes
in storage allocation, process status, file operations,
and possible signaled conditions. In general, you should
document anything out of the ordinary that the procedure
does to the environment. If a side effect modifies local or
global storage locations, document it in the implicit output
description instead.

Example 2-5 shows a sample procedure description.

Example 2-5 A Sample Procedure Description
Y+t

! FUNCTIONAL DESCRIPTION:
!

Return the system date and time, using the caller’s
semantics for his/her string.

|

1

!

! Non-reentrant; uses static storage.
|

! FORMAL ARGUMENT(S):

1

! RESULT_.ADDR

! VMS USAGE : char_string

! TYPE : character string
! ACCESS : write only

! MECHANISM : by descriptor
1

! Address of the descriptor into which the
! system date and time is written.

|

! IMPLICIT INPUTS:
!

! NONE
1

! IMPLICIT OUTPUTS:
!

|

|

NONE

(continued on next page)

2-19

Designing Modular Procedures
2.6 Documenting Modules

Example 2-5 (Cont.) A Sample Procedure Description
COMPLETION CODES:

SS$_NORMAL Procedure successfully completed
LIBS_STRTRU Success, but source string truncated

Requests the current date and time from VMS.

|

|

|

1

!

! SIDE EFFECTS:
1

1

!

1=

2.7 Planning for Signaling and Condition Handling

Two methods are available to a procedure for indicating to its caller whether it
completed successfully. One method is to return a condition value. The other
method is to signal an error condition.

To provide a better user interface, all procedures in a facility should either return
condition values or signal error conditions. Regardless of which method you
choose, you should be consistent within the facility to make the procedures easier
for the user to call.

2.7.1 Guidelines for Signaling Error Conditions

2-20

The signaling of an error condition is, in some instances, mandatory.

Procedures that return a function value cannot also return a condition value and
therefore must signal any error conditions encountered.

However, to maintain efficiency, you might want other procedures to signal error
conditions also. Checking the return status of a called procedure for repetitive
calls can be time consuming and adversely affect the performance of the calling
program. For example, if you are going to call a procedure 100 times within a
loop and the chances of that procedure’s failure are relatively small, you may not
want to take the time to check the return status after each call to make sure that
the condition value returned was SS$_NORMAL. Signaling error conditions is far
more efficient in this type of application.

From the point of view of the calling program, handling a signaled condition

is slightly more difficult than checking a returned condition value because it
involves writing a condition handler to be invoked in the event that an error
condition is signaled. However, handling a signaled condition allows the calling
program to execute more efficiently.

To signal an error condition, your procedure uses either a condition-handling
mechanism provided by the source language, or it calls the Run-Time Library
procedure LIB$SIGNAL. To use LIB$SIGNAL, your procedure calls LIB$SIGNAL
and specifies the condition code and zero or more arguments specifying the
environment of the condition. For more information about using LIB$SIGNAL,
see the OpenVMS RTL Library (LIB$) Manual.

Designing Modular Procedures
2.7 Planning for Signaling and Condition Handling

2.7.2 Guidelines for Returning Condition Values

2.7.3 When

From the point of view of the calling program, it is considerably easier to check
returned condition values than to handle signaled error conditions. When the
condition value is being returned, the calling program does not need to include
a condition handler. The calling program needs only to check the status of the
returned value.

However, if you return condition values rather than signal error conditions, you
return less information about the error condition to the calling program. It is
recommended that you return condition values when the explanation of the error
condition is simple and self-contained. For example, LIB§GET_VM returns a
condition value, because the possible status conditions are self-contained and
simple (for example, insufficient virtual memory).

According to the OpenVMS Calling Standard, the status returned must be a
condition value. (For more information, see OpenVMS Programming Interfaces:
Calling a System Routine.)

to Signal or Return Condition Values

To some degree, whether you decide to signal an error condition or return a
condition value depends on the language you are using for your procedure. In
some high-level languages, it is very difficult to write a condition handler to be
invoked in the event that an error condition is signaled. (For more information
about condition handling in your language, consult the appropriate language
reference manual.)

Regardless of which language you are using, there are general guidelines for
when to return a condition value and when to signal an error condition.

You should signal an error condition in the following situations:
* Your procedure returns a value in RO and cannot return a condition value.

* Your procedure must execute quickly and checking the return status of a
condition value would be inefficient.

* Your procedure will be executed repetitively and, therefore, checking the
condition value returned would adversely affect your procedure’s performance.

¢ The amount of information you want to return about the error condition
cannot be contained in a condition value.

¢ A useful error message requires information that cannot be determined until
run time. For example, the FDL$PARSE procedure must tell you which line
of the FDL file was the cause of an error. Because the line number of the
line containing the error cannot be determined until run time, the signal
mechanism is preferred.

* You want to execute a specific condition handler in the event that an error
condition is signaled.

2-21

Designing Modular Procedures
2.7 Planning for Signaling and Condition Handling

2-22

You should return a condition value in the following situations:

You want to keep the error-handling mechanism simple.
The speed of the error-checking mechanism is not of great concern.

The total possible errors that may be returned is a small number and

sufficient information about those errors can be contained in the condition
value returned.

The functions provided by the procedure are so general that the procedure
will be used in various levels and environments.

3

Coding Modular Procedures

This chapter describes how to code modular procedures. Specifically, it covers the
following topics:

¢ Coding guidelines
¢ Initializing modular procedures
* Writing AST-reentrant code

Appendix A summarizes many of these guidelines. Refer to the appendix to
review the guidelines or use it as a checklist. '

3.1 Coding Guidelines

The coding guidelines discussed in this section are of two types: required and
recommended. You must follow the sections marked required to ensure that
your application is modular. Digital highly recommends that you adhere to the
guidelines presented in the sections marked recommended. Following these
additional rules will help you produce consistent, uniform applications.

3.1.1 Adhering to the Naming Conventions

The following guidelines apply to the naming of facilities, procedures, files,
modules, and program sections. You must follow these conventions when choosing
names for modules, PSECTs, and status codes.

3.1.1.1 Facility Naming Conventions (Recommended)

To make it easy to locate a set of related procedures, Digital recommends that

you group your procedures into facilities. Providing related procedures with a

common facility prefix is a convenient method for organizing procedures. The
- facility prefix is the first part of any procedure name.

As shown in Figure 3-1, the first three (or sometimes four) characters of a
procedure name are used to indicate the facility of a run-time library (RTL)
procedure.

3-1

Coding Modular Procedures
3.1 Coding Guidelines

Figure 3-1 Examples of Facility Prefixes as Used in Procedure Names

STR$APPEND BAS$STRING
Facility Prefix Facility Prefix
for String Manipulation for BASIC—-Specific Support
Procedures Procedures
ZK-3084-GE

Facility names represent library facilities. A procedure is characterized as
belonging to a particular facility according to the types of operations it performs.
Facilities may differ in the conventions they use for handling errors and receiving
arguments, as well as in primary function. Table 3-1 lists some common Digital
facility prefixes.

Table 3-1 Common Library Facilities — Prefixes and Content

Prefix Content

ADA Ada Run-Time Library procedures

APL APL Run-Time Library procedures

BAS BASIC Run-Time Library procedures
B32 BLISS-32 Run-Time Library procedures
CDU Command Definition utility

CLI Command language interpreter

COB COBOL Run-Time Library procedures
COR CORAL Run-Time Library procedures
C74 COBOL-74 Run-Time Library procedures
DBG Debugger

DBL DIBOL Run-Time Library procedures
DECC C RTL

ERF Error Log Formatter

FDV , FMS Forms Driver Library procedures
FOR FORTRAN Run-Time Library procedures
LBR Librarian utility procedures

LIB RTL General-Purpose procedures
MATH Portable Math Library

MTH RTL Mathematics procedures

OTS RTL language-independent procedures
PAS PASCAL Run-Time Library procedures
PLI PL/I Run-Time Library procedures
RMS Record Management Services

RPG RPG II Run-Time Library procedures

(continued on next p