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Preface

Hardware
conventions

SG-3073 5.0

This manual is explains the use of vector processing with the
CF77 compiling system, a product of Cray Research Inc. (CRI).
The compiling system operates on all Cray Research computers
and operating systems. This manual is part of a set for the
compiling system, which includes the following titles:

e CF77 Compiling System Ready Reference, publication SQ-3070

e CF77 Compiling System, Volume 1: Fortran Reference
Manual, publication SR-3071

e CF77 Compiling System, Volume 2: Compiler Message
Manual, publication SR—3072

e CF77 Compiling System, Volume 4: Parallel Processing Guide,
publication SG-3074

e UNICOS I/0 Technical Note, publication SN-3075

The text assumes that you are a user of CF77 and have access to
these other publications but does not assume previous
familiarity with vector processing.

The Hardware Product Line sheet, located at the end of this
preface, defines the hardware naming conventions used in this
manual. This sheet shows both the chronological evolution of
CRI mainframes and the characteristics of each mainframe
group. The reverse side of the sheet contains definitions of the
terms used on the sheet and throughout this manual.

Cray Research, Inc. v
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Reader comments

The following reference conventions are used throughout this
manual:

Convention Meaning

command(1l)  The designation (1) following a command name

indicates that the command is documented in
UNICOS User Commands Reference Manual,
publication SR-2011

routine(3x) The designation (3x) following a routine name

indicates that the routine is documented in one
of the CRI library reference manuals (SR-2079,
SR—-2080, SR—2081, SR—2082, or SR—2057). The
letter following the number 3 indicates the
appropriate manual.

If you have comments about the technical accuracy, content, or
organization of this manual, please tell us. You can contact us
in any of the following ways:

Call our Software Information Services department at
(612) 683-5729.

Send us electronic mail from a UNICOS or UNIX system, using
the following UUCP address:

uunet !cray!publications

Send us electronic mail from any system connected to
Internet, using one of the following Internet addresses:

pubs3073@timbuk.cray.com (comments specific to this
manual)

publications@timbuk.cray.com (general comments)

Send a facsimile of your comments to the attention of
"Software Information Services" at fax number
(612) 683-5599.

Use the postage-paid Reader’s Comment form at the back of
this manual.

Cray Research, Inc. SG-3073 5.0
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e Write to us at the following address:

Cray Research, Inc.

Software Information Services Department
655F Lone Oak Drive
Eagan, MN 55121

We value your comments and will respond to them promptly.

SG-3073 5.0 Cray Research, Inc. vii
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The following list defines architecture terms:

Term

CX/1 systems

CEA systems

CRAY-2 systems

CX/CEA systems

EAM bit (hardware)

EMA feature (software)

X-mode

Y-mode

Definition

This group includes all models of the CRAY X-MP and CRAY-1
computer systems. It is characterized by 24-bit addressing capabilities.

This group includes all models of the Extended Architecture (EA) series,
which are the CRAY Y-MP and CRAY X-MP EA computer systems.
1t is characterized by 32-bit addressing capabilities.

This group includes all models of the CRAY-2 computer systems. It is
characterized by 32-bit addressing capabilities, large common memories,
and immersion cooling.

This group designates all models of CRAY X-MP computer systems
plus all models of the CRAY Y-MP and CRAY X-MP EA computer
systems. It does not include CRAY-1 computer systems.

In CX/1 systems, the EAM bit is the Enhanced Addressing Mode bit in
the Flag register. When set, it sign-extends certain instructions for
memory addressing in 8- and 16-Mword systems. In CEA systems, the
EAM bit is the Extended Addressing Mode bit in the Flag register. It is
set by the operating system to select either 24- or 32-bit addressing.

In CX/1 systems, EMA is the Extended Memory Addressing feature for
8- or 16-Mword systems.

This term refers to the 24-bit addressing mode in CEA systems. The
operating systems select this mode with the EAM bit in the Exchange
Package.

This term refers to the 32-bit addressing mode in CEA systems. The
operating systems select this mode with the EAM bit in the Exchange
Package.
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IMustrating
vectorization
1.1

SG-3073 5.0

Vectorization is a form of parallel processing in which array
elements are processed by groups. For many applications,
vectorization is the most important optimization feature of a
Cray Research system. A loop that is executed with vectorized
code typically runs 10 times faster than when executed with
conventional (scalar) code.

The CF77 compiling system vectorizes Fortran code when it
determines that this will not affect the program results. An
understanding of vectorization will help you get the best
performance. Of the components of the compiling system, the
two that are concerned with vectorization are the FPP
dependency analyzer and the CFT77 compiler. FPP makes
modifications of the actual source code to allow vectorization,
while the compiler modifies the intermediate text, a
representation of the program at a later stage of processing.

This subsection describes vectorization for those who are
unfamiliar with it. A more technical discussion is given in later
subsections.

A scalar is a single value. Scalar processing consists of
performing logical and arithmetic operations on scalars one at a
time.

A vector is a series of values or vector elements; for example, a
vector can be derived from a Fortran array or part of an array,
though an array does not have to be processed as a vector. A
hardware operation for processing values, such as an add
operation, consists of multiple steps. Vector processing or
vectorization allows these internal steps to process vector
elements in close sequence, so that a vectorized operation can
simultaneously process as many elements as the number of
steps in the operation.

Cray Research, Inc. 1
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Vectorization works something like an assembly line in
manufacturing. To illustrate, Figure 1 compares two ways to
carry out a five-step process for making chairs, in which each
step takes one minute:

« In one process, one assembly must go through all five steps
before the next assembly can begin the first step. One chair is
produced every five minutes.

¢ With the use of an assembly line, each step in the sequence is
performed as soon as the previous step is complete. In this
way, the first chair is completed after five minutes, and one
new chair is completed each minute after that.

Scalar processing: one at a time

Each incoming seat must wait for processing until previous
assembly completes all five steps. One new chair is completed
every five minutes.

Five-step process

Input of seats ——= ——= Qutput of chairs

Vector processing: assembly line

One new chair is completed each minute.

Step1 begins when previous T—- Step 2 begins when previous
assembly begins step 2. assembly begins step 3.

!

Figure 1. Scalar versus vector, illustrated

Cray Research, Inc. v SG-3073 5.0
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Processing an array
1.1.1

Vector hardware
1.2

SG-3073 5.0

Like manufacturing a chair, processing an array in a Fortran
loop is a multi-step process that can be performed one step at a
time, or by a process resembling an assembly line.

To process an array in either vector or scalar mode a loop must
do the following:

¢ Load elements from memory to a register
e Process the elements, placing the results in another register
e Store the results back to memory

Conventional (scalar) code is a one-at-a-time process: each
element must finish the final step of processing before the next
element can begin the first step; that is, each loop iteration
begins when the previous iteration ends. But with vector code,
as in an assembly line, each element begins the first step when
the previous element finishes only the first step, rather than the
final step.

Vector processing is made possible by the following hardware
features, among others:

o Pipelining within the functional unit for an operation allows
each step of the operation to pass its result to the next step
after only one clock period (CP); for example, an add operation
has seven steps taking seven clock periods. Pipelining is
shown schematically in Figure 2.

e Chaining (not used in CRAY-2 systems) allows the movement
of elements to continue from one vector operation to another,
so that a process including more than one vector operation is
executed as one long vectorized operation.

o Vector registers are registers that hold up to 64 elements.

A
Operands F> > > > |> |=> [>C
B —71 Result
1 2 3 4 5 6 7
Clock periods

Figure 2. Pipelining in a functional unit

Cray Research, Inc. 3
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Vector operations
1.2.1

An operation that is pipelined, as described in the previous
paragraph, is a vector operation. Vector operations include those
to load, store, add, subtract, and multiply vectors. These vector
operations are referred to as vector load, and so forth.

Example:

DO 10, I=1,1000
A(I) = B(I) * C(I)
10 CONTINUE

The operations generated by this code, executed on a CRAY Y-MP
system, are timed as follows:

Operation Time in clock periods
Vector load 17
Vector multiply 7
Vector store 17

Therefore, for a loop that multiplies two vectors, element by
element, the length of the load-multiply-store "assembly line" is
17+7+17=41 steps. (The two vector operands are loaded
simultaneously, excluding instruction issue time.) When these
operations are vectorized and chained, the first result is stored
after 41 CPs; after that, one new result is stored on each clock
period. This operation is shown schematically in Figure 3.

Movement of array elements ——>

Pipelinin; Chainin,
p%Ng /\g o
m
I Vector load | Multiply | Vector store

For illustration only. Functional units are not
physically arranged as shown.

Figure 3. Pipelining and chaining

Cray Research, Inc. SG-3073 5.0
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Scalar and vector
processing
1.2.2

Changes in the
order of processing
1.3

SG-3073 5.0

The following loop adds each element of array KK with the
corresponding element of array LL and stores the results in
array JJ.

DO 10 I=1,3
JJ(I) = KK{(I) + LL(I)
10 CONTINUE

With scalar processing, this loop performs the following

operations (if it is not unrolled):

e Read one element of Fortran array KK.

e Read one element of LL.

e Add the elements.

e Write the result to the Fortran array JJ.

e Increment the loop index by 1.

o Repeat the above sequence for each succeeding array element
until the loop index equals its limit.

With vector processing, the preceding loop performs the
following vector operations:

e Load a series of elements from array KK to a vector register
and a series of elements from array LL to another vector
register (these operations occur simultaneously except for
instruction issue time).

e Add the corresponding elements from the two vector registers
and send the results to another vector register, representing
array JJ.

e Store the register used for array JJ to memory.

¢ This sequence would be repeated if the array had more
elements than the maximum elements used in vector
processing.

Inherent to vector processing is a change in the order of
operations performed on individual array elements, for any loop
that includes two separate vectorized operations. For example,
the following loop performs two separate additions on arrays.

Cray Research, Inc. 5
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DO 10 I=1,3
L(I) = J(I) + K(I)
N(I) = L(I) + M(I)
10 CONTINUE

With scalar processing, the two statements within this loop are
each executed three times, with the two operations alternating:
L(I) is calculated before N (I) in each iteration. The new value
of L(I) is used to calculate the value of N(I). This order of
operations is shown in Table 1.

Table 1. Scalar processing order and results

Event Operation Values
1 L(1)=J(1)+K (1) T7=2+5
2 N(1)=L(1)+M(1) 11=7+4
3 L(2)=J(2)+K(2) -1=(-4)+3
4 N(2)=L(2)+M(2) 5=(-1)+6
5 L(3)=3(3)+K(3) 15=7+8
6 N(3)=L(3)+M(3) 13 =15+ (-2)

With vector processing, however, the first line within the loop
processes all elements of the array before the second line is

executed. The order of operations performed on individual array
elements is shown in Table 2. Notice that this order differs from
that shown for scalar processing in Table 1.

Table 2. Vector processing order and results

Event Operation Values
1 L(1)=J(1)+K(1) T7=2+5
2 L(2)=J(2)+K(2) “1=(-4)+3
3 L(3)=J(3)+K(3) 15=7+8
4 N(1l)=L(1)+M(1) 11=7+4
5 N(2)=L(2)+M(2) 5=(-1)+6
6 N(3)=L(3)+M(3) 13 =15+ (-2)

Cray Research, Inc.
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As shown in Tables 1 and 2, results for each array element are
equivalent in scalar and vector processing. This equivalence is a
fundamental requirement of vector processing.

In the preceding code example, the values calculated on the first
line of the loop are used in the operation in the second line. The
later use of a result within this loop does not change the results
when the order of operations is changed. Within other loops,
however, later use of a calculation can cause different final
results and will therefore inhibit vectorization; this is referred to
as a data dependency. See the section beginning on page 39.

Cray Research, Inc. 7



CPU Vector Architecture [2]




CPU Vector Architecture [2]

CRAY Y-MP systems
2.1

Computer resources
2.1.1
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This section summarizes the system architecture of CRAY Y-MP
and CRAY-2 systems, emphasizing aspects that affect
vectorization. To display the model and configuration of the
system you use, enter the target command.

CRAY Y-MP systems offer a wide range of computational power
and memory capacity with a high degree of field upgradability.
Figure 4, page 11, shows the block diagram of a CRAY Y-MP
system.

The CRAY Y-MP product line includes three basic configurations:
CRAY Y-MP8, CRAY Y-MP4, and CRAY Y-MP2 systems. These
systems can be configured with up to 8, 4, and 2 central
processing units (CPUs), respectively.

All currently manufactured CRAY Y-MP systems have a clock
period of 6.0 nanoseconds.

The CPUs of a CRAY Y-MP system make use of these areas of the
computer:

o Central memory can be 16 to 128 Mwords. (A Cray word
consists of 64 bits.) Memory is shared by all of the CPUs and
the I/O section. Each CPU in the system has four parallel
memory ports. Each port performs specific functions, allowing
different types of memory transfers to occur simultaneously.
Special hardware minimizes delays caused by memory
conflicts.

¢ The I/O section, shared by the CPUs, consists of channels that
communicate with the I/O subsystem (I0S) and the optional
SSD solid-state storage device. ”

Cray Research, Inc. 9
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CPU computational
section
2.1.2

10

e The interprocessor communication section allows two or more
CPUs to work simultaneously on the same program.
Communication and synchronization between CPUs are made
possible by shared registers in this section.

o All CPUs in a system share a single real-time clock (RTC),
consisting of a 64-bit counter that is incremented on each
clock period. Because the clock advances synchronously with
program execution, it can time the program to an exact
number of clock periods.

1

Each CPU has its own computational section consisting of
registers and functional units.

The primary registers can be accessed directly by central
memory and by the functional units. These are the address (A),
scalar (S), and vector (V) registers. Scalar (S) and vector (V)
registers serve as the source and destination for arithmetic and
logical instructions. The A and S registers are supported by the
B and T registers, respectively, which are called intermediate
and cannot be accessed by the functional units.

Functional units implement algorithms or portions of the
instruction set, such as add or multiply. Each functional unit
can be accessed by one group of registers (address, scalar, or
vector); the floating-point functional unit can be accessed by
either the scalar or the vector registers. The functional units
are as follows:

¢ Vector functional units are Vector Add, Vector Shift, Full
Vector Logical, Second Vector Logical, and Vector
Population/Parity.

¢ Scalar functional units are Scalar Add, Scalar Shift, Scalar
Logical, and Scalar Population/Parity/Leading Zero.

e Floating-point functional units are Floating-point Add,
Floating-point Multiply, and Reciprocal Approximation. The
operands to the floating-point functional units can be either a
pair of scalar registers or a pair of vector registers.

o Address functional units are Address Add and Address
Multiply.

Cray Research, Inc. SG-3073 5.0
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Vector registers 0BIC

— A ||
- /, H

00 Retip
VO.-V7 _(MalEply]

17 |

Floating point

T00-T77 Scalar registers

y

Add

Memory

Scalar

11

Add

Address

LOSP Contro

Fetch ' I VHISP Contrpl
:
A 100 - [ NIP | CIP
37 -

Execution

Instruction buffers

Shared registers
SMO0-SM17

5 SB0-SB7 ST0-ST7
=7 =0
= —

Figure 4. CRAY Y-MP block diagram
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Vector registers
2.1.2.1

CRAY Y-MP architecture
and vector processing
2.1.3

Segmented functional units
2.1.3.1

Chaining
2.1.3.2

12

Each CPU contains eight vector (V) registers. Each V register
consists of 64 elements, each containing 64 bits. A single vector
instruction causes successive elements from a V register to enter
a functional unit in successive clock periods. Vector processing
allows a set of operands to be used to compute a series of results.

The vector length (VL) register specifies the number of elements
in the vector register to be processed by a vector instruction.
The contents of the VL register range from 1 to 64 10°

The 64-bit vector mask (VM) register represents a selection of
vector elements stored in a V register. Each bit in the VM
register corresponds to one element (a one-word value) in the
vector. The mask uses vector merge and test instructions to
perform operations on individual elements.

Segmented functional units and chaining are two major
architectural features that have a great impact on CRAY Y-MP
vector processing.

Each CRAY Y-MP CPU contains several functional units, each
designed for a special purpose. Because these functional units
operate independently of each other, operations (such as adds
and multiplies) can occur in parallel. Additionally, the
functional units are fully segmented. That is, the intermediate
steps required to complete an operation are broken down into
one-clock-period segments. Results occur at the rate of one per
clock period. Segmenting is the basis of pipelining, as described
and illustrated on page 3.

Depending on their complexity, different functional units have
different numbers of segments. For example, the reciprocal
approximation functional unit has more segments than the
floating-point multiply functional unit. The number of segments
determines the number of clock periods required to compute the
result for a scalar or the first result for a vector. Subsequent
vector results occur at the rate of one per clock period.

The functional units in each CRAY Y-MP CPU operate
independently (in parallel). This capability allows the output
from one operation to directly become the input to another
functional unit. Chaining occurs when the resultant vector
register becomes an operand vector register for a second

Cray Research, Inc. SG-3073 5.0
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calculation. As soon as the first result arrives, the second
calculation begins, rather than waiting for the entire first vector
operation to finish. For example, when the first result from a
vector multiply is available, it can be used as input to the vector
add function.

Consider the following loop:

DO 8I=1, N
X(I) = A(I) * B(I) + C
8 CONTINUE

The above code would generate code that would be chained in
the following way. Each numbered item shows operations that
occur simultaneously except for instruction issue time:

1. Load scalar C from memory into the S register. (This can
occur at various times but typically occurs first.)

2. Load arrays A and B from memory into vector registers VO
and V1.

3. Multiply VO by V1 in functional unit, storing result to
register V2.

4. Add scalar C to elements from V2, storing result to register
V3.

5. Store V3 to memory.

Chains of three or more functional units are possible but
unusual. Although chains of two functional units are typically
the maximum for CF77-generated code, the two data paths from
memory (LOAD paths) and to memory (STORE path) can also be
considered functional units. Therefore, optimizing loads and
stores to and from memory also promotes chaining on

CRAY Y-MP systems.
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Figure 5 shows a block diagram of a CRAY-2 system. The system
contains the following components:

o A single foreground processor (FGP) that controls and
monitors system operation

e Common memory consisting of 256 or 512 million words of
dynamic memory, or 64 or 128 million words of static memory.

A single foreground processor is the heart of the CRAY-2 system.
It controls and monitors system operation by responding to
background processor requests and sequencing channel
communication signals. The primary function of the foreground
processor is real-time response to requests from a variety of
sources (called channel nodes). The foreground processor polls
the various nodes in the system and takes action when
necessary.

To communicate with the other system resources, such as CPUs
or disks, the foreground processor uses a series of four channel
loops. A channel loop consists of various controllers and ports.
Each controller or port is called a channel node. A channel loop
must contain the following nodes: common memory port and
background processor port.

A CRAY-2 system contains two or four identical background
processors. Each background processor includes the components
described in the following subsections.

A background processor’s computational section contains the
operating registers and functional units necessary to perform
arithmetic and logical calculations.

There are three types of operating registers: address (A), scalar
(S) and vector (V) registers.

There are four kinds of functional units: address, scalar, vector,
and floating-point. Functional units receive operands from
registers, perform an operation on the operands, and return the
result to registers. Functional units can operate
simultaneously. Each functional unit can deliver one result per
clock period.

Cray Research, Inc. SG-3073 5.0
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The functional units are as follows:

o Address functional units are Address Add and Address
Multiply.

e Scalar functional units are Scalar Integer, Scalar Shift, and
Scalar Logical.

e Vector functional units are Vector Integer and Vector Logical.

¢ Floating-point functional units can operate on either a pair of
scalar registers or a pair of vector registers. The units are
Floating-point Add and Floating-point multiply.

Each background processor contains an identical, independent
control section. Each background processor’s control section
coordinates the operations of the operating registers and
functional units, along with the other functions of the
background processor.

The control section includes a program address (P) register
indicating the address of the current instruction parcel; eight
independent instruction buffers that allow program loops to
execute without additional common memory references; and an
instruction issue mechanism that issues one instruction every
two clock periods.

Each background processor contains 16K 64-bit words of local
memory. This memory holds scalar operands during a
computation period and then returns the data to common
memory. The local memory is also used for temporary storage of
vector elements when these elements are used more than once
in a computation in the V registers.

CRAY-2 system architecture promotes Fortran code efficiency.

At the same time, loop vectorization can exploit system
efficiency. Knowing how vectors are handled by CRAY-2
processors helps you code for improved efficiency. Two major
architectural features that have a great impact on CRAY-2 vector
processing are segmented functional units and functional unit
overlap.
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A CRAY-2 background processor contains a number of functional
units, each designed for a special purpose. Because these
functional units operate independently of each other, operations
(such as adds and multiplies) can occur in parallel.

Additionally, the functional units in a CRAY-2 system are fully
segmented. That is, the intermediate steps required to complete
an operation are broken down into one-clock-period segments.
This allows results to be generated at the rate of one per clock
period.

Depending on their complexity, different functional units will
have different numbers of segments. For example, the
reciprocal approximation functional unit has more segments
than the floating-point multiply functional unit. The number of
segments determines the number of clock periods to compute the
result for a scalar operation or the first result for a vector
operation. Subsequent vector results are available at the rate of
one per clock period.

The functional units in the CRAY-2 system operate
independently (in parallel). This independence allows two
vector operations to be running simultaneously.

All of the functional units on a CRAY-2 system are independent
of each other and therefore can be combined in parallel
operations. Combinations of three or more functional units are
not possible, however, due to limitations on the number of data
paths.

Parallel usage of two functional units in vector operations is
rather uncommon in CF77-generated code. However, the single
path that moves data from memory and that stores data to
memory can be considered a functional unit. Hence, optimizing
loads and stores from and to memory also promotes speed on a
CRAY-2 system.

Cray Research, Inc. 17
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Section 1 introduced the underlying concepts of vectorization.
This section introduces the basic elements of accomplishing
vectorization on a practical level.

Although the CF77 compiling system performs extensive
vectorization automatically, a knowledge of vectorization will
help you increase the degree of vectorization, as well as
removing constructs that create unnecessary work for your
program. This section describes the essentials of what you need
to know, such as the kinds of expressions or code constructs that
can be vectorized by the compiling system.

Note

Examples in this section include comments such as
“Vectorization inhibited” and “Inhibits vectorization.” If such a
comment appears on a line within a loop, it applies to that line
in particular. If the comment appears on the loop’s DO
statement, it applies to the loop as a whole, or the interaction of
two or more statements within the loop.

This subsection defines terms and concepts used in this manual. -

¢ A vector is a series of values on which instructions operate:
this can be an array or any subset of an array (such as a row,
column, or diagonal) in which the intervals between the array
elements’ memory locations are constant. When arithmetic or
logical operations are applied to vectors, it is referred to as
vector processing.

e Vector length is the number of elements in a vector; maximum
64. This means that an array of 640 elements must be divided
into at least ten vectors. With ten vectors, the length of each
would be 64; other combinations could be 20 vectors of length
32, ten vectors of length 60 with one of length 40, and so on.
Each vector must be separately loaded, processed, and stored.

Cray Research, Inc. 19
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o The stride is the interval between memory locations for
successive elements of a vector. A constant stride is an
interval that is the same for all consecutive elements of a
vector. Vectorization requires a constant stride, meaning that
an array is processed in sequences such as A (1),A(2), A(3),
..,0rB(2),B(4),B(6),... Astride that is not constant is
illustrated by a sequence suchas A(1),A(2),A(3),A(5),
A(8),A(13).

e A dependency is anything that causes vector and scalar code to
give different results. A recurrence or data dependency is an
expression, within a loop, that requires a value calculated in a
previous iteration of the loop in order to be evaluated. This
situation is also referred to as a vector dependency. See
sections beginning on pages 39 and 39.

e A chime is a sequence of vector operations that can be chained
with a single vector load and store. The limitation on such a
sequence is that the same vector functional unit cannot be
used twice in the same chain. Therefore, a loop that contains
two vector adds, for example, contains at least two chimes and
the overhead of at least two load/stores, because there is only
one Vector Add functional unit.

A branch is a transfer of control; that is, any conditional code.
Branches result from GOTO, arithmetic IF, or alternate return.
For example, the line IF (N.EQ.0) M = 100 is considered a
branch because the assignment to M is conditional.

A block is a section of code with no explicit or implicit branches,
including simple cases such as the IF statement mentioned in
the preceding paragraph.

A backward branch is a transfer of control to a preceding point
in the program. A forward branch goes to a later point in the
program.

A loop invariant is a constant or simple variable that is
referenced but not redefined in the course of a loop. An array
element is also considered to be a loop invariant if the subscript
expression(s) is/are loop invariant. In the following code, M, N, X,
I,B(I), and 4 are examples of loop invariants, within the
innermost loop, DO 10:

Cray Research, Inc. SG-3073 5.0
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DIMENSION A(200), B(200), C(200), D(200)
PARAMETER (X=101, M=100, N=100)
K=0
DO 20T =1, M
DO 10 J =1, N
K=K+ X+ I
L=J+4 +M
A(J) = B(I) * C(L) + D(K)
10 CONTINUE
20 CONTINUE

Scalar temporary A scalar temporary is a simple variable defined and later

3.1.3 referenced during each pass through a loop, but is not
referenced outside the loop. The compiler can replace a scalar
temporary with a temporary vector or eliminate it.

In the following code segment, the Y variable is a scalar
temporary:

DIMENSION A(100), R(100)
DIMENSION S(100,100)
DO 20 J =1, 100

Y = R(J) * 5(1,J)

A(J) = Y
20 CONTINUE
END
Loop counter A loop counter is an integer variable that is incremented or
3.14 decremented by an integer constant expression on each pass

through the loop. Additional conditions for determining whether
an element is a loop counter are as follows:

o The only operators allowed in the expression defining the
variable are addition and subtraction; the expression cannot
include multiplication, division, and exponentiation.

o If the variable defines itself in the course of the loop, and the
result could alternate in sign (for example, I = 1 - I),the
variable is still considered a loop counter, but it will inhibit
vectorization.

e If a variable is defined as the sum or difference of the same
variable (for example, I = I + I),the variable will inhibit
vectorization.

SG-3073 5.0 Cray Research, Inc. 21
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A loop’s index is one kind of loop counter.

In the following Fortran sequences, I, J, L, JJ, and N are loop
counters. Of these, only JJ inhibits vectorization. JJ is defined
first by J0 = JJ + 1;asubsequent statement(JJ = 1 - JJ)
changes its sign. This means that JJ alternates in sign on each
pass through the loop, since it is given a nonzero initial value.

DIMENSION A(200), B(200)

K=1

J = 10

M = 100

DO 10 I = 10, 20
Jd =J + 75

L =K -J3
N=L+M
B(I) = A(N + I)

JJ = JJ + 1
JJ =1 - J3J
10 CONTINUE
END

A loop counter may be incremented or decremented more than
once if the effect of the two assignments is the same as a single
assignment. In the following code, the two assignments to the J
variable are equivalent to J=J-1 for vectorization purposes:

DIMENSION A(200), B(200)

DIMENSION C(200)

Jd =0

DO 10 I=10,20
J=J+1
A(J) = B(J) * C(J)
J=J - 2

10 CONTINUE
END

A vector array reference is an array element reference whose
subscript expression is not a loop invariant. It is an array that
is processed in vector registers.
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The following code shows examples of vector array references
X(J),L(I+2),TAB(I, N+3),and SQ(I, 2*J+4).

DIMENSION X (200), TAB(200,100)
DIMENSION L(200), SQ(200,100)
N =5
DO 10 I =
J =1+
X(J) = L(I+2)
TAB(I, N+3) = SQ(I, 2*J + 4)
10 CONTINUE
END

1, 10
4

A vectorizable expression is an arithmetic or logical expression
that consists of a combination of any of the following:

¢ Loop invariants
e Loop counters

Vector array references

Scalar temporaries

« A function with a vector version that has any of the preceding
as arguments. This includes most CF77 intrinsic functions
and math and scientific library routines.

A vectorizable loop is an innermost loop that contains only
vectorizable expressions (that is, expressions for which the CF77
compiling system can produce vector code).

Character expressions are not vectorized.

DO loops, DO WHILE loops, and IF loops can be vectorized if
they meet certain requirements. These can be summarized as
follows:

o In a nested structure, only innermost loops can be vectorized.

o Vector and scalar versions of a given code must produce
equivalent results.
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¢ Other requirements are based on hardware considerations
and limits on the complexity of a loop.

Within a group of nested loops, only innermost loops are
vectorized. Example:

DO 10 I = 1,N ! Vectorization inhibited
A(I) =0
DO 20 J = 1,M ! Vectorization permitted
B(J,I) =0

20 CONTINUE
10 CONTINUE

If you manually split the outer loop in the preceding example
(DO 10 I=)so that the assignments are performed in separate
loops, both loops can vectorize, as in the following:

DO 10 I = 1,N ! Vectorization permitted
A(I) =0
10 CONTINUE
DO 20 I =1,N ! Vectorization inhibited
DO 30 J = 1,M ! Vectorization permitted
B(J,I) =0

30 CONTINUE
20 CONTINUE

A loop does not have to be a DO loop to be a candidate for
vectorization. A GOTO structure is a potentially vectorizable loop
if it generates, in intermediate text, constructs similar to those
generated by DO loops. The following is an example of a
vectorizing loop that is not a DO loop:

1. SUBROUTINE VECTOR_IF_LOOP(A,B,C)
2. REAL A(100), B{100), C(100)

3. I=1

4. 10 CONTINUE

5. A(I) = B(I) * C(I)

6. I=I+1

7. IF(I .LE. 100) GO TO 10

8. END

*** *x*x* PFB8004 [vector ]
Loop starting at line 4 was vectorized.
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If a loop cannot be vectorized in its current form, you may be
able to modify it so that the compiler can vectorize it. Some
small innermost loops are candidates for unwinding.
Unwinding consists of making several copies of the body of the
loop, so that the loop is converted to straight-line code. This
makes the next outer loop the innermost nested loop and CF77
attempts to vectorize it. If you compile with the Loopmark
option (using cf77 -Wf"-em"), an unwound loop is indicated
by a W notation to the left of the code. Unwinding is discussed
more fully in CF77 Compiling System, Volume 1: Fortran
Reference Manual, publication SR-3071.

Numerical differences To increase the opportunities for vectorization, the compiler
3.2.2 weakens the requirement for vector-scalar equivalence by
ignoring two sources of potential numerical differences:

o Computer floating-point arithmetic is not associative. For
example, a scalar loop summing the elements of an array is
transformed into a vector reduction, causing the elements to
be summed in a different order. You must identify the cases
in which this leads to an unacceptable difference in the sum.

¢ Some interrupts may be handled at different points in the
scalar and vector versions of the program. Such interrupts
can arise from operand range errors and floating-point

exceptions.
Subprogram references Loops containing calls to function subprograms and subroutines
3.2.3 do not vectorize, with these exceptions:

e Subprogram calls that are expanded inline.

¢ Functions with vector versions, identified by the VFUNCTION
directive; see the following subsection.

o Certain intrinsic and library functions (including MOD, ABS,
and RANF). Examples:

CALL BBB(B,N) ! Inhibits vectorization
A(I) = MYFUNC(B(I)) ! Inhibits vectorization
A(I) = SIN(B(I)) ! Permits vectorization
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The CF77 compiling system attempts to generate machine
instructions that will execute a particular code construct as
efficiently as possible. In many cases, the operations within a
Fortran looping construct can be implemented entirely with
vector instructions. This is called full vectorization.

A loop is a candidate for full vectorization when all of the
following statements are true:

There is at least one vector array reference on the left side of
the equal sign.

All the simple variables in the loop are loop counters without
possible alternating signs, loop invariants, or scalar
temporaries.

The only kinds of terms to be defined (that is, appearing on
the left of an equal sign) are vector array references, scalar
temporaries, or loop induction variables.

Any functions used in the loop are statement functions,
vectorizable intrinsic functions with vectorizable expressions
as arguments, or vectorizable CAL functions specified in
VFUNCTION directives.

Vector code cannot result if any of the following are in an
innermost loop:

Any reference to external code that cannot be vectorized. This
includes:

— I/O statements (these generate library calls). But note that
an implied-DO list in an I/O statement does vectorize.

— References to a function that does not have a vector version.

— A reference to an external function or subroutine that is not
expanded inline.

— Any RETURN, STOP, or PAUSE statement; these generate
library calls. However, a jump from within a loop to one of
these statements does not inhibit vectorization.

Obsolete conditional statements: three-branch IF, assigned
GOTO, and computed GOTO. These cannot be converted to
vector hardware instructions.
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e Backward branches other than the one that forms the loop.

o The presence of source directives NOVECTOR, NEXTSCALAR, or
SUPPRESS. Vectorization can also be disabled from the c£77
command line with -Wf"-o" options off, noscalar, or
novector. ‘

» A statement branch into the loop from outside the loop. Such
code violates the ANSI standard but is permitted by the CF77
compiling system.

e Array bounds checking.

¢ Dependencies (constructs that produce different results in
scalar and vector mode):

— A recurrence, with exceptions shown in the section
beginning on page 39.

— Ambiguous subscript references. If the ambiguity can be
limited during compilation, the loop can be conditionally
vectorized.

Generally, complexity can prevent vectorization, because the
required analysis is judged to be too demanding of system
resources relative to the performance improvement that is
anticipated in the generated code.

Note this tradeoff: smaller loops are generally more likely to
vectorize, but larger loops have less overhead per operation and
give better performance if they vectorize.

The cf77 -Wf"-o aggress" option raises certain internal
limits used by the compiler, allowing loops of greater complexity
to be vectorized. This option does not increase dependency
analysis and may increase compile time. See CF77 Compiling
System, Volume 1: Fortran Reference Manual, publication
SR-3071.
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The performance improvement normally expected with
vectorization can be degraded by memory contention, which is
the conflict between successive accesses to the same memory
bank. Each access to a location in a memory bank causes that
bank to be unavailable for some number of clock periods. Any
attempts to access a bank that is currently unavailable are held
until the bank is free.

Consecutive Fortran array elements are stored in distinct
memory banks, which are numbered consecutively. For
example, given an array declared REALA (100), element A (1) is
stored in bank n, A (2) in bank n+1, and so on. Memory
addresses for elements in a two-dimension array are in the order
corresponding to elements moving down a column of the array;
therefore, a single column is stored in different banks, and a row
is stored all in one bank. (Recall that a column contains
elements whose first subscript is incremented; a row contains
elements whose second subscript is incremented while the first
is constant.)

Memory conflicts, then, are caused by successive accesses to the
same memory bank. The following example illustrates one
frequent cause of bank conflicts: the accessing of elements
consecutively within a row.

REAL A(256,100), B(256,100)
DO I=1,256
DO J=1,100 ! Accesses rows
A(I,J) = B(I,J) * 2
END DO
END DO

In this example, the order of access is: A(1,1),A(1,2),
A(1,3),..; these are consecutive elements in a row. As just
explained, a row is stored in one memory bank, so each
successive access is held (delayed). The performance of the
vector load and store is degraded depending on the bank-busy
time for your system’s memory. Typically, a vector load or store
without memory contention runs 5 to 8 times faster than the
same vector load or store with the greatest memory contention.

Enter the target command to see how many memory banks are
configured on your system, and the length (in clock periods) of a
memory hold on your system, indicated by the heading
bankbusy-=.
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The best way to ensure efficient memory access is to write loops
so that elements are accessed down columns (incrementing the
first subscript on consecutive elements) and vectors to be loaded
or stored have odd strides. An odd stride guarantees that
successive accesses are not to the same memory bank.

Following are two ways to modify the preceding example so that
the resulting vector load and store use an odd stride:

Original:
REAL A(256,100), B(256,100)

DO I=1,256
DO J=1,100
A(I,J) = B(I,J) * 2
END DO
END DO

Modified:
REAL A(256,100), B(256,100)

DO J=1,100 ! "Flipped" DO statements

DO I=1,256
A(I,J) = B(I,J) * 2
END DO
END DO

The access in the modified code is now down the columns
(stride 1) whereas the access in the original code is along the
rows (stride 256).

Original:
REAL A(256,100), B(256,100)

DO I=1,256
DO J=1,100
A(I,J) = B(I,J) * 2
END DO
END DO
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Modified:
REAL A(257,100), B(257,100) ! Column length 257
DO I=1,256
DO J=1,100
A(I,J) = B(I,J) * 2
END DO
END DO

Memory accesses for the modified code are along the rows, but
with a stride of one because each column length is now 257.

It is common for programs to be 70% to 80% vectorized; that is,
spend 70% to 80% of their running time executing vector
instructions. Although a vectorized loop runs 10 to 20 times
faster than its scalar equivalent, a fully vectorized program
typically executes 2 to 4 times faster than the original scalar
code. The proportion of vectorization can be measured by
hardware performance monitors, introduced on page 37.

The speedup of the whole program is lower than the speedup of
a single loop because of a principle called Amdahl’s Law, which
states that the performance of a program is dominated by its
slowest component. For a vectorized program, the slowest
component is scalar code. A formulation of this law for vector
code, which is R times faster than scalar code, is shown in the
following equation:

1
s
In the equation,
s, = maximum expected speedup from vectorization
f,, = fraction of a program that is vectorized
f, = fraction of a program that is scalar = 1 -/,
R, = ratio of scalar to vector processing time
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For Cray Research systems, R, ranges from 10 to 20; for the
following discussion, assume a value of 10. For a program that
is 50% vectorized, this formula gives a speedup of only 1.8. For
a program that is 80% vectorized, the speedup is still only 3.6.
Only with 100% vectorization can a program actually achieve a
speedup of 10 (that is, the result sv).

It is not always easy to reach 70% to 80% vectorization in a
program, and vectorizing beyond this level becomes increasingly
difficult, normally requiring major changes to the algorithm.
Consequently, many users stop their vectorization efforts once
the vectorized code is running 2 to 4 times faster than scalar
code.

The preceding formula assumes that all vector code is R, times
faster than equivalent scalar code, and that the overhead for
vector code is insignificant. In reality, not all vector code is R,
times faster than scalar code, and short vector lengths further
reduce this factor. Also, vector code has a small startup cost, so
that, at vector lengths of two or three elements, scalar code is
usually faster. A realistic speedup for a program that is 80%
vectorized might be 3.0 rather than 3.6.

This subsection summarizes directives and command-line
options used in vectorization. As shown in the manual CF77
Compiling System, Volume 1: Fortran Reference Manual,
publication SR—-3071, the following c£77 command lines all
result in vectorized code:

cf77 pfile.f # Default vectorization level
cf77 -Zv pfile.f # Increases vectorization

cf77 -Zp pfile.f # Increased vectorization with Autotasking

The following command line disables vectorization:

cf77 -Wf"-o novector" pfile.f
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To specify an FPP option, such as generating an FPP listing file,
enclose that option in quotation marks following option -wd, as
in the following:

cf77 -z2v -Wd"-1 listfile" pfile.f
a.out

FPP options and directives are shown in the appendix beginning
on page 107.

Vectorization is disabled by any c£77 -Wf"-o option" where
option is of £, noscalar, or novector. Other -Wf"-o"
options relating to vectorization are the following:

Option Effect

recurrence, norecurrence
Enables or disables vectorization of reduction loops,
discussed on page 80. The default is recurrence.

vsearch, novsearch
Enables or disables vectorization of search loops,
discussed beginning on page 61. The default is
vsearch.

zeroinc, nozeroinc
cf77 -Wf"-o zeroinc" causes the compiler to
assume that some loop counters (see page 21) might be
incremented by zero for each pass through the loop
and produces conditional vector code for these loops.
This degrades performance. The default is
nozeroinc.

Source code directives used by the compiling phase are in the
form CDIR$ DIRECTIVE. These are ignored if vectorization is
disabled by the command line. Compiler vectorization directives
are as follows:

Directive Effect

VECTOR, NOVECTOR
These directives turn vectorization on and off.
Either directive applies until the end of the
program unit unless the opposite directive appears.
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Directive Effect

NEXTSCALAR
Disables vectorization only for the next DO loop
between the directive and the end of the program
unit.

IVDEP[SAFEVL=n]
Indicates that any dependencies can be ignored if
the vector length does not exceed n; if SAFEVL=
does not appear, all dependencies are ignored. See
page 50; dependencies are discussed on page 39.
IVDEP is used when it is known that any apparent
dependencies will not cause invalid results if a loop
is vectorized. FPP inserts this directive when its
analysis shows that a loop can be vectorized safely.
Loops that have been vectorized with the use of
IVDEP are indicated by the notation Vi in
Loopmark listings.

VFUNCTION Declares that a vector version of an external
function exists, written in CAL; function names are
listed on the directive separated by commas.

SHORTLOOP Allows the compiler to generate faster code when a
loop’s trip count is known to be 64 or less. See page
79.

VSEARCH, NOVSEARCH
Enables and disables, respectively, vectorization of
all search loops until the opposite directive is
encountered or until the end of the program unit.
The default is VSEARCH. Search loops are discussed
on page 61. These directives override
cf77 -Wf"-o0 novsearch* and
-Wf"-o0 vsearch", discussed in the previous
subsection.

RECURRENCE, NORECURRENCE
Enables and disables, respectively, vectorization of
all reduction loops until the opposite directive is
encountered or until the end of the program unit.
The default is RECURRENCE. Reduction loops are
discussed on page 80. These directives override
cf77 -Wf"-0 norecurrence" and
-Wf"-o0 recurrence", discussed in the previous
subsection.
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Loopmark listing
3.64.1

FPP listings
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By default, the compiler does not write an output listing. You
receive a listing with -wf"-e" list options or by including the
directive CDIR$ LIST or CDIR$ CODE in your source code. In
working with vectorization, you should include the -Wf"-em"
option to produce listings using the Loopmark feature. Some
other listing options are as follows: ¢, common block storage; g,
generated code with CAL equivalent; x, cross-references.

The name of the compiler’s default listing file is your source file
name with the extension . 1.

Examples:
cf77 -Zv -Wf"-e mcx" pgm.f # Tofile pgm.1

cf77 -Zv -Wf"-e mcx -1 pgm.4" pgm.f # Tofilepgm.4

The compiler’s Loopmark feature, specified on the command line
by cf77 -Wf"-em", generates source listings that indicate the
kind of optimization that has been achieved on each loop. An
example is shown in Figure 6.

In Loopmark listings, primary loop types are: V: vector; S:
scalar; W: unwound (page 25). Modifiers added to these types are:
b: bottom loaded; c: vectorized with a computed maximum safe
vector length (page 49); i: unconditionally vectorized with
CDIRS IVDEP; r: unrolled (see CF77 Compiling System, Volume
1: Fortran Reference Manual, publication SR-3071); s: short
vector loop; v: short safe vector loop.

When you specify c£77 -Zv, -ZV, -Zp, or -ZP, the CF77
dependency analysis phase, FPP, performs transformations on
your source program and produces new, modified Fortran source
(without changing your source file). You can examine the new
source code in the following ways:

e Specify c£77 -Wd"-1 filename" to cause FPP to produce a
listing in file filename. This listing shows in detail the actions
taken by FPP; it is distinct from the compiler’s listings.

e When you specify c£77 -Zv or -Zp with -Wf"-em", the
resulting source listing written by the compiler shows the code
produced by FPP, rather than your original source.

o Specify c£77 -zZV or cf77 -ZP to save FPP’s output in file
file ..
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LOOPMARK LEGEND

PRIMARY LOOP TYPE LOOP MODIFIERS

S - scalar loop b - bottom loaded

V - vector loop ¢ - computed safe vector length

W - unwound loop i - unconditionally vectorized with an IVDEP

k - kernel scheduled
r - unrolled
s - short vector loop
v - short safe vector length
1 1. SUBROUTINE LMARK
2 2. DIMENSION A(100),B(100),C(100)
3 3. COMMON // J,K,N
4 4. S——--mmm - < DO L = 1,10
5 5. 8 PRINT*, A(L)
6 6. S-——mm e > ENDDO
7 7. Vomm e e < DO I = K,N
8 8. V¢ A(I) = A(I) + A(I-K)
9 9. Ve-=-mmmmmmm - > ENDDO

10 10. CDIRS IVDEP

11 11. Vir--———--———omm < DO M = 1,100

12 12. Vir c(M) = A(M-J)

13 13. Vvir A(M) = B(M)

14 14. Vir-——-------oooee -~ > ENDDO

15 15. END

VECTORIZATION INFORMATION

*¥*% **% FF8021 [vector] < LMARK, Line = 4, File = loopm, Line = 4 > :
Loop starting at line 4 was not vectorized. It contains
an input/output operation.

¥*% x*x* FF8005 [vector] < LMARK, Line = 7, File = loopm, Line = 7 > :
Loop starting at line 7 was vectorized with a computed
maximum safe vector length.

**k*x **x FF8006 [vector] < LMARK, Line = 11, File = loopm, Line = 11 > :
Loop starting at line 11 was vectorized because an IVDEP
compiler directive was specified.

OPTIMIZATION INFORMATION

*** *xx FF8135 [opt_info] < LMARK, Line = 11, File = loopm, Line = 11>:

Loop starting at line 11 was unrolled 2 times.
Figure 6. Loopmark listing
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This subsection describes methods of assessing the extent of
vectorization in your program: the Loopmark feature (described
on page 34) indicates the kind of code that was generated for
each loop, and a variety of tools monitor your program during
execution, allowing you to identify areas where additional effort
would be useful. The monitoring tools are described fully in
UNICOS Performance Utilities Reference Manual, publication
SR-2040.

Flowtrace gathers timing and calling information about
procedure calls during program execution and writes the
information to a file. Flowtrace incurs CPU overhead and
requires recompilation and reloading. Example:

cf77 -F pgm.f
./a.out
flowview -Luch > flow.report

Following are ways to trace only selected routines, or sections of
routines, to lower Flowtrace overhead:

« To trace specific subprograms, insert directives in your source
code. Each CDIRS FLOW enables Flowtrace for one program
unit only, and must be contained in that program unit.

o Insert calls to the FLOWMARK subroutine at the beginning and
end of a code block for which you need separate tracing and
timing. The first call includes a name for the code block
(entered as a null-terminated character string); the second
invocation uses 0 as an argument. You do not need to invoke
Flowtrace on the compiler’s command line to use FLOWMARK
calls. A FLOWMARK block should use at least 50 microseconds
per call.

FLOWMARK example:

CALL FLOWMARK (’PHANTOM'L)
DO 10, I=1,10

10 CONTINUE
CALL FLOWMARK (0)
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Hardware monitor: hpm
and Perftrace
3.7.2

hpm command
3.7.2.1
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On systems other than CRAY-2 systems, a hardware
performance monitor measures the usage of groups of system
components during program execution. The hpm command gives
you readings for your whole program, and Perftrace works with
the Flowtrace feature to give readings by routine and code block.
There are four groups of monitors, which must be specified
separately. Examples in this subsection show all four groups
used.

Reports for both hpm and Perftrace are generated by the
perfview command. This can be entered with no arguments
for interactive use, or with arguments to generate a report. The
examples here show the most commonly used arguments for
generating a report. The perfview utility evaluates the raw
hardware measurements and provides commentary on the
balance of operations in your program.

The hpm command is used similarly to t ime, in that your
program’s name is included on the same command line. Output
is sent to stderr, which can be redirected using shell notation.
The following examples show, for the Bourne and C shells,
program a.out being executed four times to be monitored by
each of the monitor groups, followed by the perfview command
to generate a report in file report . out.

Bourne shell:

hpm -r -g0 ./a.out 2> perf.data
hpm -r -gl ./a.out 2>> perf.data
hpm -r -g2 ./a.out 2>> perf.data
hpm -r -g3 ./a.out 2>> perf.data
perfview -LBuchM > report.out

C shell:

hpm -r -g0 ./a.out 2> perf.0
hpm -r -gl ./a.out 2> perf.l
hpm -r -g2 ./a.out 2> perf.2
hpm -r -g3 ./a.out 2> perf.3
cat perf.[0-3] | perfview -LBuchM - > report.out
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Perftrace
3.7.2.2
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Perftrace gives the same kind of statistics as those given by the
hpm command, but broken down by program unit. Perftrace
incurs CPU and operating system overhead; you can decrease
system overhead by using selective tracing, as shown previously
for Flowtrace. Perftrace is invoked by specifying the Flowtrace
option on the compilation command line and loading the
libperf.a library instead of the Flowtrace library. Example:

cf77 -F -1lperf pgm.f
./a.out
perfview -LBMuch > perf.report

The Profiling feature indicates the relative amount of execution
time used by individual parts of your program, represented as
segments of program memory. It produces finer-grained results
than those from Flowtrace. Profiling uses this sequence: compile
with debug option, load with 1ibprof.a library, execute, prof,
profview. Example:

cf77 WE"—ez" -1 prof pgm.f
env PROF_WPB=1 ./a.out
prof -x a.out > pgm.prof
profview pgm.prof

Options can also be entered on the profview command so that
you can save the output. Example:

profview —LmhDc pgm.prof > pgm.report
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A primary inhibitor of vectorization is known as a dependency,
which occurs when results of an operation could differ between
scalar and vector processing. The CF77 compiling system
inhibits generation of vector code in these cases and indicates
the problem in the listing.

A recurrence is a data dependency between loop iterations. This
occurs when an expression in one loop iteration requires a value
that was defined in a previous iteration. Normally, recurrences
cannot be vectorized because the reordering of operations would
yield incorrect results. Consider the following program:
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PROGRAM VECSCAL
INTEGER IA(4),IB(4),IC(4)
DATA IA/11,12,13,14/
& IB/21,22,23,24/
& 1C/31,32,33,34/
C [Print initial values]
DO I=2,4
IB(I)=IA(I-1)
IA(I)=IC(I)
ENDDO
C [Print final values]
END

This code is compiled into scalar code because of the recurrence
caused by the subscript (1-1). The printed result follows:

Initial values:

IA = 11 12 13 14
IB =21 22 23 24
IC = 31 32 33 34

Final values following loop (1C is unchanged):

IA = 11 32 33 34
IB =21 11 32 33

If the loop is converted to vector code, the vector result must
agree with this scalar result. Preceded by CDIRS IVDEP, the
loop is compiled into vector code, giving the following result,
which differs from scalar and is therefore invalid:

IA
IB

11 32 33 34
21 11 12 13

The order of operations used in scalar and vector processing is
as follows.

Scalar processing:

IB(2)=IA(1)
IA(Z):IC(Z)
IB(3)=IA(2) ! IB(3) getsnew IA(2)
IA(3)=IC(3)
IB(4)=IA(3) ! IB(4) getsnew IA(3)
IA(4)=IC(4)

40 Cray Research, Inc. SG-3073 5.0



CF77 Compiling System, Volume 3: Vectorization Guide . Dependencies

A simple test for
dependency
4.1

SG-3073 5.0

Vector processing:

IB(2)=IA(1)

IB(3)=IA(2) ! IB(3) getsold IA(2)

IB(4)=IA(3) ! IB(4) getsold IA(3)

IA(2)=IC(2)

IA(3)=IC(3)

IA(4)=IC(4)

Because vector processing of the Fortran DO loop in this example
would generate incorrect results, the loop is not vectorized.

This subsection describes a test to determine whether two
appearances of an array in a loop can create a dependency
conflict. This test is easy to apply, but it does not always give
correct results. Some situations in which this test fails are
discussed later in this section. Also, a more rigorous and
accurate test is described later.

The following example illustrates this test.

DO 20 J =2, M
Z(J) YY(J) + TEMPA
R(J) Z(J+1)/ TEMPB
20 CONTINUE

i

In the preceding loop, a potential for data dependency exists.
The 7z array is both defined and referenced within the loop.

Identify the two appearances as the key definition (where the z
array is defined) and the other reference (where the z array is
referenced). In the preceding DO loop, Z (J) is the key definition;
7 (J+1) is the other reference.
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Using the key definition and other reference, proceed with the
following three steps:

1. Relative to the array’s key definition, determine whether the
other reference is in either the previous area or the
subsequent area. The previous area includes the right side of
the key definition statement, as follows:

DO 10 I=1,N

Previous

A(I) =

Subsequent

10 CONTINUE

In this example, the other reference, Z (J+1), is subsequent
to the key definition, Z (J).

2. Determine whether the subscript of the other reference is
greater than or less than the subscript of the key definition.
In this example, the subscript for zZ (J+1) is greater than the
subscript for z (J) .

3. Determine whether the array subscripts are incrementing or
decrementing on each iteration of the loop.
In this example, the DO loop index J is incrementing on each
iteration of the loop.

As shown in the preceding steps, the use of an array in a loop
has the following characteristics:

e An array’s other reference is either Previous or Subsequent to
the array’s key definition.

e The subscript on the array’s other reference is either Greater
or Less than on the array’s key definition.

e The array’s subscript is either Incrementing or Decrementing.
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These three characteristics can be abbreviated, respectively, as
PorS, Gor L, and I or D. Using these abbreviations, there are
a total of eight possibilities for loop-dependency analysis: PGI,
PLI, PGD, PLD, SGI, SLI, SGD, and SLD. Four of these cases
indicate dependencies that inhibit vectorization:

SLD SGI PLI PGD

The loop shown in the preceding example can then be described
as subsequent, greater, and incrementing, or SGI, indicating
that a data dependency may exist; vectorization is therefore
inhibited.

The following example illustrates another case using the same
test.

DO 10 I 1, 100
X(I) = X{(I+1)
10 CONTINUE

In the preceding code, X (I) is the key definition. X (I+1) is the
other reference. The other reference is in the previous area.

The subscript of the other reference is greater than the subscript
of the key definition. The subscripts are incrementing on each
iteration of the loop. This loop can be described as previous,
greater, and incrementing, or PGI.

The following subsections contain examples of all eight types of
loops, along with the vectorization message issued by the
compiler for each loop.

The following shows an example of SGI (Subsequent, Greater,
Incrementing) conflict:
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SUBROUTINE SGI (A, B, C)
DIMENSION A(100), B(100), C(100)
DO 10 I=1,99
A(I) = B(I)
C(I) = A(I+1)
10 CONTINUE
END

No U W

cft77-8045 cf77: VECTOR SGI, Line= 3
Loop at line 3 was not vectorized.
It contains complex ordering of
dependencies.

The following shows an example of SLD (Subsequent, Less,
Decrementing) conflict:

SUBROUTINE SLD(A, B, C)
DIMENSION A(100), B(100), C(100)
Do 10 I=100,2,-1
A(I) = B(I)
C(I) = A(I-1)
10 CONTINUE
END

Nou ke W

cft77-8045 cf77: VECTOR SLD, Line= 3
Loop at line 3 was not vectorized.
It contains complex ordering of
dependencies.

The following shows an example of PLI (Previous, Less,
Incrementing) conflict:

1. SUBROUTINE PLI(A, B, C)

2. DIMENSION A(100), B(100), C(100)
3. DO 10 I=2,100

4. B(I) = A(I-1)

5. A(I) = C(I)

6. 10 CONTINUE

7. END

cft77-8045 cf77: VECTOR PLI, Line=3
Loop at line 3 was not vectorized.
It contains complex ordering of
dependencies.
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The following shows an example of PGD (Previous, Greater,
Decrementing) conflict:

1. SUBROUTINE PGD(A, B, C)

2. DIMENSION A(100), B(100), C(100)
3. DO 10 I=99,1,-1

4. B(I) = A(I+1)

5. A(I) = C(I)

6. 10 CONTINUE

7. END

cft77-8045 cf77: VECTOR PGD, Line=3
Loop at line 3 was not vectorized.
It contains complex ordering of
dependencies.

Example codes that do The following example includes SGD (Subsequent, Greater,
not inhibit vectorization Decrementing) subscripts, which indicate no conflict:

4.12
SUBROUTINE SGD(A, B, C)

DIMENSION A(100), B(100), C(100)
DO 10 I=99,1,-1
A(I) = B(I)
C(I) = A(I+1)
10 CONTINUE
END

NS oUW N

cft77-8004 cf77: VECTOR SGD, Line=3

Loop starting at line 3 was vectorized.

The following example includes SLI (Subsequent, Less,
Incrementing) subscripts, which indicate no conflict:

SUBROUTINE SLI(A, B, C)
DIMENSION A(100), B(100), C(100)
DO 10 I=2,100
A(I) = B(I)
C(I) = A(TI-1)

10 CONTINUE
END

NSOy W N
LI S S S S Y

cft77-8004 c£77: VECTOR SLI, Line=3

Loop starting at line 3 was vectorized.
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The following example includes PLD (Previous, Less,
Decrementing) subscripts, which indicate no conflict:

SUBROUTINE PLD(A, B, C)
DIMENSION A(100), B(100), C(100)
DO 10 1=100,2,-1
B(I) = A(I-1)
A(I) = C(I)

10 CONTINUE
END

N oYUl W N

cft77-8004 cf77: VECTOR PLD, Line=3
Loop starting at line 3 was vectorized.

The following example includes PGI (Previous, Greater,
Incrementing) subscripts, which indicate no conflict:

SUBROUTINE PGI(A, B, C)
DIMENSION A(100), B(100), C(100)
DO 10 I=1,99
B(I) = A(I+l)
A(I) = C(I)

10 CONTINUE
END

N ok W R

cft77~-8004 cf77: VECTOR PGD, Line=3
Loop starting at line 3 was vectorized.

A more rigorous This subsection shows a test for dependency analysis that is
£ more rigorous than the test shovs{n prewqusly but which still
test for dependency does not cover all possible situations. It is the same test as that
4.2 used by the compiling phase of CF77 to determine whether a loop
has a data dependency. This test accounts for cases in which
the dependency test described on page 41 is insufficient.

The following example is the same as that used to illustrate the
simplified dependency analysis test, except that the loop control
variable is incremented by 2, instead of 1, on each iteration.

DO 20 J =2, M, 2
Z(J) = YY(J) + TEMPA
R(J) = Z(J+1)/ TEMPB
20 CONTINUE
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In this code, there is a potential data dependency: the z array is
both defined and referenced in the loop.

1.

As in the previous test, identify the two appearances as the
key definition (where 7 is defined) and the other reference
(where 2 is referenced). In the preceding loop, Z (J) is the
key definition; Z (J+1) is the other reference.

Using the key definition and the other reference, let the
"most previous" reference be refl, and the "most subsequent"”
be ref2. It is critical to choose refl and ref2 accurately. The
concepts of previous and subsequent are exactly the same as
those defined in the simplified dependency analysis test.

Using refl and ref2, define index1, index2, and stride, as
follows:

o indexI = index of refl. From the example, indexI = index
of Z (J), which is J.

o index2 = index of ref2. From the example, index2 = index
of Z (J+1), which is J+1.

o stride = index stride (signed). From the example, stride =2.
If the sign of index2 minus index1 equals the sign of stride,

there may be a dependency; proceed to step 5. Otherwise, no
dependency exists.

From the example:
index] = J, index2 = J+1, stride = 2:

o The sign of (index2—index1) = the sign of ((J+1)-(J)) =
the sign of (1), which is positive.

o The sign of (stride) = the sign of (2), which is positive.
Because the sign of indexI minus index2 equals the sign of

stride (both positive), there may be a dependency.
Consequently, step 5 must be performed.

If (index2 minus index1) mod stride equals 0, there is a
dependency. Otherwise, no dependency exists.
From the example:
index] = J, index2 = J+1, stride =2:
o (index1-index2) mod stride =
((J+1) - (J)) mod2=1mod2=1

Because (index2 minus index1) mod stride does not equal 0,
there is no data dependency.
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If the simplified dependency analysis test is used on the
preceding code, the result is SGI. This implies that there is a
possible data dependency. The more rigorous dependency test
takes into account the stride of the indexes of the arrays.
Vectorizing This subsection shows how a loop with a recurrence can be
recurrences vectorized by preventing thfa recurrence frpm affecting the loop’s
43 result. Measures for resolving dependencies can be performed

Recurrence threshold
4.3.1

48

in either the compiling or dependency analysis phase.

When invoked with cf77 -2Zv, -2V, -Zp, or -ZP, CF77s
dependency analysis phase transforms the source code to
produce new source that can be vectorized, without affecting
your original source. Some capabilities described in the
following subsections require the use of this phase, as noted.

The threshold of a recurrence is the number of iterations that
occur before a value is reused. If the vector length equals the
threshold, the recurrence does not affect results in the vectorized
version. A recurrence whose threshold exceeds 64 is fully
vectorized. If the compiler can detect a threshold value of £ in
the range 2 < k < 64, the loop is vectorized with a vector length
of k.

SUBROUTINE SHORT_ VL (A)
DIMENSION A (100)
DO 20 I = 7,100
A(I) = A(I-6) + 1.0
20 CONTINUE
END

ANU W
P

cft77-8072 cf77: VECTOR SHORT_VL, Line=3
Loop starting at line 3 was vectorized
with a vector length of 6.

The recurrence in this code has a threshold of 6. Therefore, it is
vectorizable with the shortened vector length of 6.
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Safe vector length To offer better performance on some loops that involve potential

4.3.2 recurrences, the compiler can include a run-time test to
determine a safe vector length. This length is less than or equal
to the recurrence threshold, just discussed, assuring that the
code’s result will be unaffected by a recurrence. The threshold’s
value, ¢, need not be known at compile time; the safe vector
length equals k if k < 64, and 64 otherwise. Note that the use of
a safe vector length allows lengths of 1 and 2, which can degrade
performance even to the point of being slower than scalar code.

If you compile using c£77 -Wf"-em" to obtain Loopmark
listings, a c notation to the left of the code indicates the use of a
computed safe vector length. In the following example, the
vector length is a function result unknown at compile time:

PROGRAM SAFEVL
DIMENSION A(-100:100),B(100),C(100)
K = KFUN(A(I))
N = NFUN(B(I))
Ve-—---< DO I = K,N ! Nis vector length
. Vc A(I) = A(I) + A(I-K)
. Ve-—--> ENDDO
END

O JOoOUT WD

cft77-8005 cf77: VECTOR SAFEVL, Line=5
Loop starting at line 5 was vectorized with a
computed maximum safe vector length.

In the next example, the vector length is the result of an

expression:

2. SUBROUTINE RUNTIME (A,B,C)

3. DIMENSION A(-100:100),B(100),C(100)
4, COMMON // J

5. Ve----< DO I = 1,100

6. Vc C(I) = A(I-J)

7. Vc A(I) = B(I)

8. Ve----> ENDDO

9. END

cft77-8005 cf77: VECTOR RUNTIME, Line=3
Loop starting at line 5 was vectorized with a
computed maximum safe vector length.
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Options for safe vector
length
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Conditional
vectorization
4.3.3
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In the preceding Fortran code:

o If (J=64), the loop fully vectorizes with a vector length of 64.
o If (J < 1), the loop fully vectorizes with a vector length of 64.
o If (1<J <64), the loop vectorizes with a vector length of J.

In the preceding code, variable J is the ambiguous parameter
that causes the use of a run-time safe vector length.

Some loops are too complex to allow a run-time test for vector
length. If you know that the vector length in such a loop is safe,
you can force vectorization by use of CDIR$ IVDEP, listed on
page 33.

Even when a safe vector length is long enough to make
vectorization worthwhile (that is, 3 or above), the use of a run-
time test involves significant overhead. Therefore, you should
consider modifying each loop that performs poorly due to the use
of a run-time test for vector length. You can do one of the
following:

o Suppress vectorization with CDIR$ NEXTSCALAR (applying
to only one loop) or CDIRS NOVECTOR.

e Insert CDIR$S IVDEP [SAFEVL=n] before the loop, where n
is a vector length that you know to be safe. If you omit
SAFEVL=n, you must assure that the recurrence will not
invalidate your program’s result.

Although the use of a run-time test for safe vector length,
described in the preceding subsection, has sometimes been
called conditional vectorization, in CF77 this term refers to
another technique: the generation of both scalar and vector
code, one of which is selected and branched to at run time.

A run-time test can be either coded into your source or added by
CF77 at the source level, when invoked with c£77 -2Zv, -2V, -
7Zp, or -ZP. The test added to the source controls a branch to
one of two copies of the loop. CDIR$ NEXTSCALAR preceding
one of the copies suppresses vectorization (of a DO loop), causing
the code to be translated into scalar operations. CDIRS$ IVDEP
preceding the other copy causes it to ignore dependencies.
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When the c£77 -Zv option is used, CF77 can generate two
versions of a loop, together with a run-time test. If the loop is
not data dependent, a vectorized version of the loop executes;
otherwise a scalar version executes.

Example:

SUBROUTINE POTNTL ( A, B, IPl, N )
REAL A(*), B(*)
DO 10 I = 1,N
A(IP1+I) = A(I) + B(I) ! Potentially dependent
10 CONTINUE

Translation (compiled with c£77 -2Zv, -2V, -Zp, or -ZP):

IF ( IP1.LE.O0 .OR. IP1.GE.N ) THEN
CDIRQ@ IVDEP
DO 10 I =1, N ! "Vector” loop
)

A(IP1+I) = A(I) + B(T)
10 CONTINUE
ELSE
CDIR@ NEXTSCALAR
DO 77001 I = 1, N ! "Scalar" loop
A(IP1+I) = A(I) + B(I)
77001 CONTINUE
ENDIF

You can disable this transformation by using cf77 -wd"-dm"
or the NOALTCODE directive.

Sometimes a loop does not contain true feedback, but still cannot
be vectorized as is because of the order in which array elements
are referenced. In cases like the following example, CF77 creates
a temporary variable to hold the "old" elements of an array so
that they are still available when needed later. This allows the
loop to be safely vectorized.
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Example:

SUBROUTINE TEST (A,B,C,D,E,N)
DIMENSION A(N), B(N), C(N), D(N), E(N)
DO 10 I =1, N
A(I) = B(I) + C(I) + D(I)
D(I) = E(I) + A(I+1)
10 CONTINUE
RETURN
END

Translation (compiled with c£77 -2v, -zZV, -Zp, or -ZP):

REAL R1S
DIMENSION A(N), B(N), C(N), D(N), E(N)
CDIR@ IVDEP
DO 10 I =1, N
R1S = A(1+1)
A(I) = B(I) + C(I) + D(I)
D(I) E(I) + R1S
10 CONTINUE
RETURN
END

CF77 also reorders entire statements to eliminate dependencies.

When the information contained in a loop is insufficient to
determine the storage relationship between two array
references, the situation is called ambiguous subscripting or
potential feedback. In such situations, when invoked with c£77
-2v, -2V, -Zp, or -ZP, CF77 recognizes that a loop does not feed
back data between iterations. This is performed in the
dependency analysis phase: FPP searches for statements outside
the loop that may resolve the ambiguity and inserts an IVDEP
directive before each inner loop it knows to be free of data
dependence; this ensures that these loops are vectorized.

In the following loop, CF77 finds the assignment to L, which
makes it clear that LW can never equal L, and it recognizes that
there is no feedback.
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Example:
L =LW-1
DO 2I=1, N ! Not vectorized

Y(L) = Y(L) + X(I)*Y(LW)
IW = 1w + 1
2 CONTINUE

Translation (compiled with c£f77 -zv, -2V, -Zp, or -ZP):

L=Lw-1
CDIR@ IVDEP
DO2I-=1, N ! Unconditionally vectorized
Y(L) = Y(L) + X(I)*Y(LW)

ILw = 1w + 1
2 CONTINUE

When invoked with c£77 -zv, -2V, -Zp, or -ZP, CF77 can in
some cases determine that a dependency is limited to a subset of
the operations in a loop, and will modify the loop to remove or
isolate the dependency. The %DP field of the loop summary in an
FPP listing (enabled as shown on page 34) indicates how much of
the loop is left unvectorized. If more than a certain percentage
of a loop is dependent, the loop is not vectorized. (The exact
percentage depends on other factors.)

When possible, CF77 splits data-dependent loops into
vectorizable and nonvectorizable parts. You can disable loop
splitting by using the c£77 -wd"-ds" option.

Example:
DO 2530 L = 2, NLAYMI ! Does not vectorize
SDPOL(L,M) = SDPOL(L-1,M) + CONVPL (L) -
1 DSIG (L) *PITPOL (M)

IF (COMG) OMEGA(1l,JKP,L) = SDPOL(L,M)*1.E6
2530 CONTINUE
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Translation (compiled with cf77 -zv, -2V, -Zp, or -ZP):

CDIR@ IVDEP

DO 2530 L = 1, J28 ! Vectorizes
R1V (L) = CONVPL(1+J1S+L) -
1 DSIG (1+J1S+L) *PITPOL (M)
2530 CONTINUE
DO 77002 L = 1, J28 ! Does not vectorize

SDPOL (1+J1S+L,M) = SDPOL(J1S+L,M)+R1V (L)
77002 CONTINUE
CDIR@ IVDEP

DO 77003 L = 1, J28 I Vectorizes
IF (COMG) OMEGA(l,JKP,1+J1S+L) =
1 SDPOL (1+J1S+L,M) *1.E6

77003 CONTINUE

CF717 recognizes certain special cases, involving the need to
process the loop in two pieces to avoid an interior point that may
cause dependency problems.

Example:

DO 100 I =1, 100
A(I) = A(101-I) + B(I)
100 CONTINUE

Translation (compiled with c£77 -2Zv, -2V, -Zp, or -ZP).

CDIR@ IVDEP
DO 10 I = 1, 50
A(I) = A(101-I) + B(I)
10 CONTINUE
CDIR@ IVDEP
DO 77001 I 1, 50
A(50+I) = A(51-I) + B(50+I)
77001 CONTINUE

When CF77 recognizes that data dependency is caused by one or
a few iterations at one end of the DO index range, it can use loop
peeling to remove the dependency. This rewrites one or more
iterations as single statements outside of the loop.
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Example:

30

DO 100 K = 1,
(1) + B(K)

A(K) = A
100 CONTINUE

Translation (compiled with c£77 -2Zv, -2V, -Zp, or -ZP):

A(l) = A(1) + B(1)
CDIR@ IVDEP
DO 100 K = 1, 29
A(1+K) = A(l) + B(1+4K)
100 CONTINUE

If the first iteration is peeled from the loop (executed as a single
scalar statement), the rest of the loop iterations can be
vectorized.

Up to three iterations can be peeled from the beginning or end of
a loop. The loop may be of variable length, but the stride
(increment) must be a constant.

When CF77 restructures a loop, it may eliminate the definition of
some vector indexes (integer variables that are incremented by a
constant amount each pass through a loop). When necessary,
the final values of such variables are recreated. CF77 examines
the flow of the program unit to see whether the final value of an
index variable is used outside the loop; if not (as is usually the
case), then the vectorized code does not store a value into the
index variable.

In at least one case, CF77 may unnecessarily save last values.
This occurs when index variables are in common storage and
there are calls to external subprograms. When this happens,
CF77 cannot be sure that the variables are not used through
common storage by other program units, and it must generate
values for them.
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Example:
COMMON /BLOCK/ J
DO 23 I = 1IN
J=J + 1
23 CONTINUE
CALL SUBX ! Does SUBX use J?

Translation (compiled with c£77 -2Zv, -ZV, -Zp, or -ZP):

23 CONTINUE

IF (N .GT. 0) THEN | Must be > 0 iterations
J =J + N | Save last value

ENDIF

CALL SUBX

If such variables are not used by other program units, use
cf77 -Wd"-du", or the NOLSTVAL directive to suppress the
generation of last values.

This subsection describes data dependency directives that you
can use to provide CF77 with additional information so that code
can be fully optimized. Some data dependency directives also
have command line equivalents; see Table 6, page 116. Data
dependency directives are also discussed beginning on page 123.

Directives in this subsection are interpreted by FPP, which is
activated by c£77 options -Zv, -ZV, -Zp, or -zP. The directives
take the form CFPP$ directive scope, where L indicates loop
scope, R indicates routine scope, and F indicates file scope. See
page 115.

The CFPP$ NODEPCHK directive lets you direct CF77 to ignore
potential data dependencies in a loop. This capability should be
used only when you know that no real recurrence exists. When
it detects potential feedback, CF77 issues a message asking you
to apply this directive if the loop is not recurrent.
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The meaning of NODEPCHK is similar to that of IVDEP; they
differ in that NODEPCHK is used in the dependency analysis
phase, whereas IVDEP is used in the compiling phase. In
addition, IVDEP is written by FPP itself to communicate with the
compiler.

The following is an example where you might want to disable
data dependency checking. In this loop, CF77 cannot be sure
that N1 does not equal N2 and thus rejects the loop:

Example:

SUBROUTINE MOVE (A, B, N, N1, N2)

REAL A(N,*), B(*)

DO 3 I =1,N ! Not vectorized
3 A(I+1,N1) = A(I,N2)+B(I)

If you know that N1 is never equal to N2, you can insert a
directive as shown in the following:

CFPPS$S NODEPCHK
DO 4 I=1,N ! Vectorized
4 A(I+1,N1) = A(I,N2)+B(I)

Recurrences can be hidden by the use of EQUIVALENCE
statements. Although this problem is rare, CF77 examines
EQUIVALENCE statements to find hidden recurrences, and it
suppresses any potentially unsafe transformations.
Equivalencing of many variables can inhibit vectorization of
most loops in a program.

Example:

SUBROUTINE TEST (A,B,N)
DIMENSION A(N), B(N)
DO 10 I = 2, N

TEMP = A(I-1) + A(I-2)
B(I) = TEMP + 1.0/TEMP
A(I) = SQRT(B(I)) - 5.0
10 CONTINUE
RETURN
END
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fpp-37 cf77:

In the preceding loop, the reference to A at the top of the loop
conflicts with the store into A at the bottom. FPP prints a
message to this effect and inserts a directive to explicitly inhibit
vectorization. For this loop, FPP gives the following diagnostic:

COMMENT TEST, Line = 4, File = fppmsg.f, Line = 4

Feedback of elements of array 'A’. Optimization inhibited.

Conflict on line 6.

58

The DO index is ‘I’, the DO label is ‘10’.

The NOEQVCHK directive indicates to CF77 that EQUIVALENCE
statements can be ignored for data dependency analysis; that is,
variables with different names do not overlap in storage.

In the following example, several local arrays have been
equivalenced to a large array in common (perhaps to save
space). If the arrays could overlap (for instance, if the value of
the variable N was 1500 in the DO 100 loop), the DO 100 loop
cannot be vectorized. But, if we know the arrays do not overlap,
the NOEQVCHK directive can be applied to the whole routine.

Example:

COMMON /BIG/ POOL(100000)
DIMENSION A(1),B(1),C(1)
EQUIVALENCE (POOL(1),A (1)), (POOL(1001),
1 B(1)), (POOL(2001),C(1))
CFPPS NOEQVCHK R ! Ignore equivalences

DO 100 I =1, N
A(I+IA) = B(I+IB) + C(I+IC)
100 CONTINUE

Translation (compiled with c£77 -Zv, -ZV, -Zp, or -ZP):

CDIR@ IVDEP
DO 100 I =1, N ! Vectorized
A(I+IA) = B(I+IB) + C(I+IC)
100 CONTINUE
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You can use the CFPP$ RELATION directive to provide
additional information to CF77 about array subscript ranges;
this information helps determine whether a loop is safe to
vectorize. The RELATION directive has the following form:

CFPPS RELATION ( simplel .rel. simple2 )

simplel and simple2 are simple integer variables (one of them
can be an integer constant), and rel is one of GT, LT, GE, LE, EQ,
or NE, with the normal Fortran meanings.

When CF77 cannot otherwise determine whether the
relationship between two uses of an array is recurrent, it
searches the RELATIONs supplied by the user for the current
routine to see whether they help.

RELATION directives are informative only; they do not force any
action. They can be applied at the loop, routine, or file level. If
conflicting relations are given, the result is unpredictable. You
must ensure that the relations specified are correct and
consistent.

Example:
CFPPS$ RELATION ( J.GE.N ) R
DO 100 I =1, N ' If 3 .GE. N, no overlap
A(I+J) = A(I) + B(I)

100 CONTINUE

The RELATION directive is provided for situations in which you
are unsure whether the NODEPCHK directive (a blanket assertion
of nonrecurrence) is safe, or know it is not, but have some
information about relative values of index variables.
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When an array with a vector-valued subscript appears on both
sides of the equal sign in a loop, feedback is possible even if the
subscript is identical. Feedback occurs if there are any repeated
elements in the subscripting array.

Sometimes, indirect addressing is used because the elements of
interest in an array are sparsely distributed; in this case, an
integer array is used to point at the elements that are really
desired, and there are no repeated elements in the integer array
(as in the following example).

This information can be passed to CF77 through the

CFPP$ PERMUTATION directive, which asserts that the specified
integer arrays contain no repeated elements (that is, they serve
merely to permute the elements of the arrays they indirectly
address).

The format of the PERMUTATION directive is as follows:

CFPP$ PERMUTATION ( ial,ia2,...,ian )

PERMUTATION declares that the integer arrays (ial, etc.) do not
have repeated values for the entire routine.

Example:

CFPPS$ PERMUTATION (IPNT) ! IPNT has no repeated values.

DO 100 I =1, N
A(IPNT(I)) =
100 CONTINUE

A(IPNT(I)) + B(I)
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Loops Containing IF Statements [5]

X

The CF77 compiling system tries to vectorize loops containing
conditional statements and branches. IF statements can be
used to form the loop itself (IF. . .GOTO ) or can be contained
within a loop. Loops with conditional statements are subject to
the same rules as other loops, as well as some additional rules.

IF loops and IF loops and search loops have the same characteristics for

search loops vectorizing.
5.1 An IF loop uses the IF...GOTO construct to control the
repeated execution of a series of statements. Example:

REAL A(N)
I=1
3 CONTINUE
A(I) = I**2
I =I+1
IF (I.LT.N) GOTO 3

A search loop is a DO loop that can be exited by means of an
IF...GOTO construct. Example:

bDo 10, I=1,N

IF (A(I).LE.B(I)) GOTO 20
10 CONTINUE
20

Search loops and IF loops, including those with complex exit
conditions, are normally vectorized.

To be vectorized, a search loop must satisfy the following
requirements, relating to scalar-vector equivalence:

o The loop must be executed the correct number of times.
o The correct exit must be taken.

¢ All scalar values must be correct when an exit is taken.
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The following subsections discuss aspects of these requirements.

Loops that meet these requirements are vectorized as follows:
the IF expression is evaluated for the full set of loop iterations
indicated by the loop’s DO statement; the point where the IF
expression is satisfied indicates the vector length to be used for
the other expressions within the loop. This length is used when
those expressions are executed.

The VSEARCH and NOVSEARCH directives control vectorization
of search loops as a class, when vectorizing such loops would
give invalid results. The two primary cases when

CDIRS NOVSEARCH might be needed are: the IF test
expression would create an illegal value if applied to array
addresses past the search value; and the value being tested for
the loop exit could be the array index. These directives are
described more fully in CF77 Compiling System, Volume 1:
Fortran Reference Manual, publication SR-3071.

An early exit is any exit from the body of a loop; that is, any exit
that decreases the number of loop iterations from the trip count
calculated for the loop. A loop can have more than one early
exit, provided that no requirements described in this section are
violated.

Example:

DO 10, I=1,N
IF (A(I).GE.B(I+1)) GOTO 30

IF (A(I).LT.B(I)) GOTO 20

10 CONTINUE
20

30

Note that early exits, particularly multiple early exits,
contribute to the complexity of a loop, discussed on page 27.
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The compound logical operators, .OR. and .AND., do not
inhibit vectorization of search loops. These are also called
short-circuit operators.

The following code shows an example of a search loop with
compound logical operators:

1. SUBROUTINE 2_EXITS(A,B,TEST1, TEST2,N)
2. LOGICAL TEST1(N), TEST2 (N)

3. DO 10 I=1,N

4. IF (TEST1(I) .OR. TEST2(I)) GO TO 99
5. 10 CONTINUE

6. 99 PRINT *, I

7. END

cft77-8004 cf77: VECTOR 2_EXITS, Line=3
Loop starting at line 3 was vectorized.

Because an early exit affects the number of loop iterations, it
also affects the number of array elements to be processed; this
number must be the same with vector code as it would be with
scalar code. In the following examples, a value is computed that
limits how many values of array C can be modified; this follows
the assignment to C(I).

1. All early exits from aloop must appear in the first block of
the loop; that is, early exits must appear before the first
branch, such as an IF statement. (Blocks are discussed on
page 20.)

Because vector processing is the processing of elements in
groups, the group of elements to be processed by a vectorized
statement must be determined before the statement can be
executed. In the following example, each conditional
statement causes uncertainty about the group of elements to
be processed by the other conditional statement. Therefore,
the loop is not vectorized.

po71I=1,N ! Vectorization inhibited
IF (A(I).NE.0) C(I) =1 ! Branch
IF (B(I).NE.O) GOTO 8 ! Exit follows branch
7 CONTINUE

8
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2. The assignment in the following example is unconditional,
but two exits follow it. Determining which exit will take
effect (that is, on which iteration the exit will occur,
determining how many elements are processed) cannot
currently be done in vector code for this case.

DO 3 I =1,N ! Vectorization inhibited
Cc(1r) =1
IF (A(I).NE.O) GOTO 4
IF (B(I).NE.O) GOTO 4
3 CONTINUE

4

The compiler can move a loop’s final conditional exit (within the
intermediate text) to the top of the block containing the exit so
that the exit precedes the block’s vectorizable statements. This
compiler technique, called code motion, allows the loop to be
vectorized because the number of iterations is known before the
vectorizable statements are executed. (The number of iterations
is determined by the branch statement at run time.)

As discussed on page 20, a block is a section of code with no
explicit or implicit branches, where a branch indicates code that
may or may not be executed, including simple cases such as
IF(L) I = 1.

You can predict the compiler’s use of code motion by considering
the fundamental requirement for any vectorization: the result
must be equivalent to that given by scalar code. Only one exit
can be moved, and the move must not move the exit before a
branch (that is, to a different block), so that the number of
iterations is known before vectorized code is executed. Other
requirements are as follows:

¢ A value that is needed for the test to be moved is Computed
before the test.

e A value that is computed before the exit is carried out of the
loop.

e There 1s a store of a value ahead of the exit.

e An indirect memory reference (gather) is needed to compute
the exit condition.
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Examples in which the compiler uses code motion:

1.
DO 5 I=1,N
c(1) =1
IF (B(I).NE.O) GOTO 6 ! Exitto be moved
5 CONTINUE
6
2.
DO 2 I = 1,N
IF (A(I).NE.Q) GOTO 3 ! Branch defines block
Cc(1I) =1
IF (B(I).NE.O) GOTO 3 ! Exittobe moved
2 CONTINUE
3

Code motion does not apply to examples 1 and 2 beginning on
page 63. In example 1, the GOTO would move from after the
conditional assignment to before it, thereby crossing a block
boundary (which is not allowed with code motion); in example 2,
two exits would need to be moved, but this is not currently done.

Values computed The condition for an early exit must not depend on values
following exit computed (in a previous iteration) in the portion of the loop
5.1.5 following the exit. Example:

pDO8I-=1,N
IF (A(I).GT.100) GOTO 9
A(I+1) = A(I+1) + B(I) ! Inhibits vectorization
8 CONTINUE
9
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Although more complicated loops may present a challenge, you
can reorder this example relatively easily, as follows:

IF (A(1).GT.100) THEN
I =1
ELSE
DO 6 I =2,N ! Vectorization permitted
A(I) = A(I) + B(I-1)
IF (A(I).GT.100) GOTO 7
6 CONTINUE
7 IF (I.EQ.N+1) A(N+1l) = A(N+1l) + B(N)
ENDIF

The following examples show loops containing two exits; one
loop is vectorized and the other is not. The code containing a
store, B(I)=A(I), can be vectorized only if the number of
iterations is known before the vector operation.

Vectorized:

SUBROUTINE SRCH(A,B,N, IFND,T1,T2)
REAL A(N), B(N)

LOGICAL T1(N), T2(N)

. V--—< DO 10 I=1,N

\Y% IF(T1(I)) GO TO 20
IFND = I ‘
.V IF(T2(I)) GO TO 20
\Y B(I) = A(I) ! Vector tore after exits

V--->10 CONTINUE
20 CONTINUE
END

PO WO JOU R WNE
<

=

cft77-8004 cf77: VECTOR SRCH, Line=4
Loop at line 4 was vectorized.

Cray Research, Inc. SG-3073 5.0



CF77 Compiling System, Volume 3: Vectorization Guide . Loops Containing IF Statements

Indirect addressing
5.1.7

SG-3073 5.0

Not vectorized:

1. SUBROUTINE E2_NOVEC (A, B,N,IFOUND, T1,T2)
2. REAL A(N), B(N)

3. LOGICAL T1(N), T2 (N)

4. DO 10 I=1,N

5. B(I) = A(I) ! Vector store before exits
6. IF(T1(I)) GO TO 20

7. IFOUND = I

8. IF(T2(I)) GO TO 20

9. 10 CONTINUE

10. 20 CONTINUE

11. END

cft77-8017 cf77: VECTOR E2_NOVEC, Line=4
Loop at line 4 was not vectorized.
A value must be stored before an
exit condition is computed.

The compiler message shown here indicates that code to
evaluate an exit condition must be generated at the top of the
loop. Any code preventing the compiler from moving the exit
test ahead of all stores prevents vectorization.

If an exit condition involves indirect addressing, vectorization is
inhibited.

DO 71I=1,N
IF ((A(K(I))).NE.0.0) GOTO 8 ! Inhibits vectorization
7 CONTINUE
8 ...

An operand range error could occur during execution of the
vectorized version of the loop if values in K exceeding the index
when the GOTO is executed are not appropriate indices for A.

Cray Research, Inc. 67



Loops Containing IF Statements

CF77 Compiling System, Volume 3: Vectorization Guide

Branches
5.2
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5.2.1

Loops with backward
branches
5.2.2
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This subsection describes conditions that determine whether
loops containing branches can be vectorized.

If any statement branches into the loop from outside it, the loop
cannot be vectorized. (Such a branch into any DO loop is
prohibited; therefore, this rule applies only to IF loops.)
Example:

I =20
IF (C.NE.O) GOTO 2 ! Inhibits vectorization
I =1
1 CONTINUE
A(I) =0
2 B(I) = 0
I =I+1

IF (I.LT.N) GOTO 1

Any loop whose body contains a branch destination is not
mentioned in messages concerning vectorization. You can
usually eliminate such a branch, at the cost of duplicating some
code.

If a loop contains a backward branch, the loop cannot be
vectorized. A backward branch is itself a loop, and any
backward branch that is useful needs to be explicitly structured
as a loop.

Example:

5. 8§--—--- < po 7, 1 =1,N

6. S A(I) = B(I,10)

7. S V----< 6 J=J +1 ! Innermost loop

8. SV B(I,J) = (REAL(I))/(REAL(J))
9. S V----> IF (J.LT.10) GOTO 6

10. S------ > 7 CONTINUE
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In other cases, the backward branch may be a poor way of
coding for the desired result or may be incorrectly structured to
be vectorized. Example:

6. S-———--- < DO 7 I =1,10

7. S A(I) =0

8. S S----<6 B(I) = B(I) -1

9. § S-—---> IF (B(I).GT.10) GOTO 6
10. §———--- >7 CONTINUE

cft77-8035 cf77: VECTOR BACKBRANCH, Line = 6
Loop starting at line 6 was not vectorized.
It contains an inner loop.

cft77-8014 cf77: VECTOR BACKBRANCH, Line = 8
Loop starting at line 8 was not vectorized.
The loop control test uses floating-point,
double precision or complex arithmetic.

The inner loop shown here uses a real value, B(I), as its index
and cannot be vectorized. Even if this loop is modified so as to
vectorize, the outer loop, DO 7, will fail to vectorize.

Forward branches inside loops do not prevent vectorization.

DO 3 I =1,N
IF (A(I).GE.0) GOTO 2 ! Permits vectorization

A(I) =0
2 B(I) =0
3 CONTINUE

This branch would normally be coded with the IF directly
controlling the assignment to A(I).

Because the obsolete three-branch arithmetic IF statement, by
definition, has multiple destinations, it prevents vectorization of
loops. The following code includes a loop containing an
arithmetic IF:
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1. SUBROUTINE ARITH_IF(A,B,C,K1)
2. REAL A(100), B(100), C(100)
3. INTEGER K1 (100)

4, DO 100 I = 1, 100

5. IF (K1(I)) 50,40,30

6. 30 A(I) = 0.

7. GOTO 60

8. 40 B(I) = 0.

9. GOTO 60

10. 50 C(I) = 0.

11. 60 CONTINUE
12. 100 CONTINUE

13. END

cft77-8025 cf77: VECTOR ARITH_IF, Line=4
Loop starting at line 4 was not
vectorized. It contains an
arithmetic IF statement.

Conditional block A piece of the body of a loop that may be executed on a

exampl es particular iteration of the loop is called a conditional block. The
following examples show loops containing a variety of code

53 constructs within conditional blocks.

The following code shows several conditional blocks:

1. SUBROUTINE COND_BLOCKS (A,B,C,K1)
2. REAL A(100), B(100), C(100)
3. INTEGER K1(100)

4. DO 100 I = 1, 100

5. IF (K1(I).GT.0) THEN

6. A(I) = 0.

7. ELSEIF (K1(I).EQ.0O) THEN
8. B(I) = 0.

9. ELSE

10. c(1) = 0.

11. ENDIF

i2. 100 CONTINUE

13. END

cft77-8004 cf£77: VECTOR COND_BLOCKS, Line=4
Loop starting at line 4 was vectorized.
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The following code shows nested conditional blocks:

1. SUBROUTINE NEST (A,B,C,D,T1,T2,T3)
2. REAL A(100), B(100), C(100), D(100)
3. LOGICAL T1(100),T2(100),T3(100)

4. DO 100 I = 1, 100

5. IF (T1(I)) THEN

6. IF (T2(I)) THEN

7. A(I) = 0.

8. ELSE

9. B(I) = 0.

10. ENDIF

11. ELSE

12. IF (T3(I)) THEN

13. C(I) = 0.

14. ELSE

15 D(I) = 0.

16. ENDIF

17. ENDIF

18. 100 CONTINUE

19. END

cft77-8004 cf77: VECTOR NEST, Line=4
Loop starting at line 4 was vectorized.

The following example shows a forward branch:

1. SUBROUTINE FORWARD_BRANCH (TEST,A)
2. REAL A(100)

3. LOGICAL TEST(100)

4. DO 100 I = 1, 100

5. IF (TEST(I)) GOTO 50

6. A(I) = 0.

7. 50 CONTINUE

8. 100 CONTINUE

9. END

cft77-8004 cf77: VECTOR FORWARD BRANCH, Line=4
Loop starting at line 4 was vectorized.

The CF77 compiling system can also vectorize the following code
constructs:

¢ Reductions in a conditional block.

e Loop counters incremented or decremented in a conditional
block.
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The following example shows a loop counter conditionally

incremented:
1. SUBROQUTINE LIV_INC(A,B,TEST, INDX)
2. REAL A(100), B(100)
3. INTEGER INDX
4. LOGICAL TEST(100)
5. INDX =1
6. DO 100 I = 1, 100
7. IF (TEST(I)) THEN
8. A(INDX) = B(I)
9. INDX = INDX + 1
10 ENDIF
11. 100 CONTINUE
12. END

cft77-8004 cf77: VECTOR LIV_INC, Line=6
Loop starting at line 6 was vectorized.

The following example shows a reduction in a conditional block:

. SUBROUTINE COND_RED (A, SUMPOS)
REAL A(100)
SUMPOS = 0.
DO 10 I = 1,100
IF (A(I).GT.0.0) SUMPOS = SUMPOS + A(I)
10 CONTINUE
END

<oy W

cft77-8004 cf77: VECTOR COND_RED, Line=4
Loop starting at line 4 was vectorized.
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When invoked with the c£77 -Zv option, the CF77 compiling
system’s first phase, FPP, performs transformations on your
source code before the compile step. This does not affect your
original program. This analysis and rearrangement of code can
remove constructs that inhibit vectorization. This subsection
describes the kinds of transformations that are performed.

Innermost IF loops are converted into DO loops under certain
conditions. An innermost IF loop is one that contains no other
IF or DO loops. To be convertible, the loop must meet the
following criteria:

1. The loop must have a single entrance and a single exit.

2. The iteration count for the loop must be determinable at
execution time before the loop is entered.

Example:

SUBROUTINE IFLOOP (N, JB, A, B, S)
REAL A(N), B(N)

J = JB
10 CONTINUE
A(J) = 0.0
J=J + 1
IF ( J .GT. N ) GO TO 20
B(J) = S
GO TO 10
20 CONTINUE
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Translation:

INTEGER J1X

J = JB
10 CONTINUE
A(J) = 0.0
J=J+1
J1X = J
IF (N - J1X + 1 .GT. 0) THEN
CDIRE@ IVDEP
DO 77001 J =1, N - J1X + 1
B(J1X+J-1) = §
A(J1X+J-1) 0.0
77001 CONTINUE
ENDIF
20 CONTINUE

i

The cf77 -wWd"-d 1" option disables conversion of IF loops to
DO loops. All directives (such as NODEPCHK) affecting IF loops
must have routine or global scope.

Tests on the loop index are converted into restricted-range loops;
see page 75.

Arithmetic IFs are converted to block IFs. Example:

DO 500 I =1, N
IF (A(I)) 400,420,400

400 B(I) = A(I)
GO TO 500
420 C(I) = A(I)

500 CONTINUE

Translation:

CDIR@ IVDEP
DO 500 I =1, N
IF (A(I) .NE. 0) THEN

B(I) = A(I)
ELSE

C(I) = A(I)
ENDIF

500 CONTINUE
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Conditional operations
5.4.2

CF77 can analyze any combination of conditional assignments,
conditional and unconditional forward branching (including

arithmetic IFs and computed GOTOs with four or less labels),
and block IFs. Because of compilation-speed restrictions, there
is a limit of six simultaneously active conditions.

The loop below shows a conditional assignment that depends on
the loop index. CF77 eliminates such conditions by adjusting the
limits of the vector operation.

Example:

1013

Translation:

CDIR@

1013
CDIR@

77001

CDIR@

77002

DO 1013 I = 1,100
IF (I.NE.J) A(I)
CONTINUE

= B(I) + C(I)

IF (J-1.GE.O
IVDEP
DO 1013
A(I)
CONTINUE
IVDEP
DO 77001 I = J+1, 100
A(I) = B(I) + C(I)
CONTINUE
ELSE
IVDEP
DO 77002 I =1,
A(I) = B(I)
CONTINUE
ENDIF

.AND. J-1.LE.99) THEN

I H
W
H =

100
+ C(I)

The test, IF (J-1.GE.0...), determines whether Jis in the
range of the DO loop index. If so, the operation is performed up
to the J-1 element and then from the J+1 elementto N. If J
is not in the range of the DO loop index, the operation is
performed on all elements.

A condition dependent on the loop index is of the general form:

IF ( index expression.rel.invariant expression )

SG-3073 5.0
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In the previous IF statement, variables are as follows:
Variable Description
index expression This must take the following form:

vector index * (invariant expression) + or
- (invariant expression)

rel A relational operator; possible values are
EQ, NE, GT, GE, LT, or LE.

invariant expression  Represents an arithmetic expression,
constant, or variable.

Example:

DO 100 I =1, N
A(I) = A(I) + 1.
IF (I.EQ.K) B(I) = A(I)/C(I)
D(I) = B(I) + A(I)
100 CONTINUE

Translation:

CDIR@ IVDEP
DO 100 I =1, N
A(I) = A(I) + 1.
100 CONTINUE
IF (K.GE.l .AND. K.LE.N) B(K) = A(K)/C(K)
CDIR@ IVDEP
DO 77001 I =1, N
D(I) = B(I) + A(I)
77001 CONTINUE

CF77 uses the CVMGT function to convert certain conditional
reductions into a vectorizable form, if the vectorizable expression
that is being reduced contains only +, -, *, count, and logical
operators.

Example:

DO 400 I =1, N
IF ( A(I) .GT. EPSIIN ) S =S + A(I)
400 CONTINUE
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Translation:

CDIR@ IVDEP
DO 400 I =1, N
S =85 + CVMGT(A(I),0.0,A(I).GT.EPSILN)
400 CONTINUE

Conditional reductions are not transformed if they contain
operators with singularities (for example, square root).
Singularities cause problems because CVMGT evaluates the
expression for every element of the vector. The IF statement
protects the evaluation of the expression, as shown in the
following example:

DO 400 I=1,N
IF (B(I) .NE. 0.0)S = S + A(I)/B(I)
400 CONTINUE

Cray Research, Inc.
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Short vector loops
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This section discusses issues concerning special classes of loops,
modification of loop nests, and special loop optimizations.

Some iterative code segments do not fit the criteria for full
vectorization presented in preceding sections of this manual, yet
they can be vectorized. For these code segments, the generated
machine code consists of both vector and scalar instructions.
This section presents cases in this category.

A short vector loop is a fully vectorizable loop with an iteration
count less than or equal to 64, thus permitting the entire loop to
be executed with vector instructions and no looping construct.

AU W

10

SUBROUTINE FEWTRIPS (A, T)
DIMENSION A(20)
DO 10 I = 1,20

A(I) = A(I) + T
CONTINUE
END

cft77-8003 cf77: VECTOR FEWTRIPS, Line=3

Loop starting at line 3 was a short
vector loop.

The SHORTLOOP directive, listed on page 33, can be placed before
a loop if the compiler will not be able to determine the number of
iterations, but you can assure that the number will be 64 or less.
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A reduction loop reduces an array to a scalar value by doing a
cumulative operation on all of the array’s elements; this involves
including the result of the previous iteration in the expression of
the current iteration. A reduction can be vectorized if the
operator is one of the arithmetic operators +, —, *, /; MAX or MIN;
or one of the logical operators.

Example:

SUM = 0.0
DO 4 I = 1,N
SUM = SUM + A(I) ! Permits vectorization
4 CONTINUE

A reduction is a special case of vectorization; the generated code
effectively computes partial sums by using vector instructions,
then collapses the partial sums with vector and scalar
instructions to produce the final scalar result. The compiler can
vectorize DO loops containing one of the following types of
reductions, where S is a scalar variable and e is any expression
that does not inhibit vectorization:

S =S8 +e S = S*e
S =S -e¢e S = MIN(S,e)
S =S .AND. e S =S .0R. e
S = MAX(S,e) S = S/e

The compiler can also vectorize DO loops containing split
reductions such as the following:

S =S + el
S =S + e2

If a reduction loop has a low trip count that cannot be
determined at compile time, the cost of vectorizing it might
exceed the benefit. The NORECURRENCE directive allows you to
specify scalar execution for loops of this class (within a range of
code or a whole subprogram), without the need for multiple
NOVECTOR directives. You can prevent vectorization of all
reduction loops in an entire compilation by compiling with
cf77 -Wf"-o0 norecurrence".
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An implied DO loop can be used as the argument list in a READ
or WRITE statement.

Example:
1 SUBROUTINE IMPLIED_IO(A)
2. REAL A(100)
3. READ(10) (A(I),I=1,100)
4. END
cft77-1004 cf£77: VECTOR IMPLIED_IO

Loop starting at line 3 was vectorized.

The resultant code makes a call to a special entry point in the
I/0 library that vectorizes portions of the I/O operation.
Although the I/O statement does not vectorize, the implied DO
loop within the statement does.

An array reference with a constant index should be equivalent to
a scalar reference, but currently it is not handled as simply as a
true scalar because it can confuse dependence analysis.

1. This loop contains no recurrence because I never takes the
value 1. The compiler establishes this by comparing the
bounds on I with 1.

DO 10 I = 2,N,2
10 A(I) = A(1) | Permits vectorization

2. In this loop, the absence of a recurrence is not revealed by a
comparison of the bounds on I with 2, so the compiler does
not detect the absence. If this loop is preceded by
CDIRS$ IVDEP, it vectorizes.

DO 10 I = 1,N,2
10 A(I) = A(2) ! Inhibits vectorization

When invoked with c£77 -zv, -2V, -Zp, or -ZP, CF77
examines all IF and DO loops within a nest of loops, for possible
optimization. If an outer loop is more suitable than the
innermost for vectorization, CF77 exchanges the two loops. The
amount of data dependence, size of array strides, and vector
length are the criteria used to choose the "best” loop. Data
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dependency messages include the label and the index of the loop
to which they refer, which helps determine the exact location of
the dependency.

Unless you direct otherwise, CF77 analyzes a loop nest in these
steps:

1. Loops are examined from innermost loops outward, until
CF717 finds a loop or loops appropriate for vectorization.

2. If a nontranslatable construct is encountered (for example, a
READ statement), analysis of any loops further out in the nest
is disabled.

You can modify this procedure by using directives (for example,
SELECT, NOCONCUR, or NOVECTOR) and/or setting switches. See
Table 6, page 116, for a list of CF77 user directives.

To select the best loop in a nest for vectorization, CF77 uses the
following criteria:

¢ Loop iteration count

o Stride size of array references

o Percentage of data dependent code

« Percentage of conditionally executed code

In general, longer vectors, smaller strides, less dependence, and
less conditionality are favored.

Example:
DO 10 I =1, M
DO 10 J =1, M
10 A(I,J) = B(I,J)**2
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Translation (compiled with c£77 -2Zv, -2V, -Zp, or -ZP):

DO 77001 J = 1, M
CDIR@ IVDEP
DO 77002 I =1, M
A(I,J) = B(I,J)**2
77002 CONTINUE
77001 CONTINUE

Example:

COMMON /BLOCK/ PRESSURE(3,47),

1 TEMPERATURE(3,47), VOLUME(3,47)

DO 10 J = 1, NLAT

DO 20 K = 1, NDEPTH
PRESSURE (K,J) = CONST*VOLUME(K,J) *
1 TEMPERATURE (K, J)
20 CONTINUE

10 CONTINUE

Translation (compiled with c£77 -2v, -2V, -Zp, or -ZP):

DO 10 K = 1, NDEPTH
CDIR@G IVDEP
DO 77001 J = 1, NLAT
PRESSURE (K,J) = CONST*VOLUME(K,J) *
1 TEMPERATURE (K, J)
77001 CONTINUE
10 CONTINUE

You can use the c£77 -Wd"-et" option to increase the relative
weight of the factors listed in the preceding text, particularly the
weight of small stride relative to the CF77 bias toward picking
the original innermost loop for vectorization. Invoking this
switch can result in loops being interchanged more often.

Loop optimizations CF77 performs loop optimizations as described in the following
6.3 subsections.
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Loop nests that traverse all of the inner dimensions of the
arrays in the loop can be automatically "collapsed" into single
loops with larger iteration counts.

Collapse criteria are as follows:

o The loops must be tightly nested, with one loop index per
array dimension.

¢ The inner loop bounds must be identical to the array bounds
(see K in the following example).

e All the vector array references in the loops must conform; that
is, have the same subscripting.

Example:
SUBROUTINE DWEEB ( L,M,N,A,B )
DIMENSION A(L,M,N), B(L,M,N)
DO 100 K = 2, N-1
DO 100 0 =1, M
DO 100 I =1, L
A(I,J,K) = B(I,J,K)
100 CONTINUE

Translation (compiled with ¢£f77 -2zv, -7V, -Zp, or ~-ZP):

CDIRE@ IVDEP
DO 77001 K = 1, L*M*(N-2)
A(K,1,2) = B(K,1,2)
77001 CONTINUE

CF77 combines consecutive loops that have no statements
between them and that give the same answers when merged.
This aids other loop optimizations and reduces loop overhead.

Example:

DO 311 T = 1,100
A(I) = B(I) + SQRT(C(I))
311 CONTINUE
DO 312 I = 1,100
E(I) = B(I) + (C(I))**2
312 CONTINUE
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Translation (compiled with c£77 -Zv, -2V, -Zp, or -ZP):

DO 311 I = 1,100
A(I) = B(I) + SQRT(C(I))
E(I) = B(I) + (C{(I))**2
312 CONTINUE

Loop unrolling makes a copy of a loop’s body for each loop
iteration and replaces the original loop with these copies, to be
executed as straight-line code. Loop unrolling benefits
nonvector loops whose scalar optimization is inhibited because
they have too few operations per pass. Loop unrolling reduces
the percentage of time spent in loop overhead, and provides
more instructions for the optimizer to overlap in each pass of the
loop; it can also aid other loop optimizations.

Note

The compiler uses a technique similar to that described here,
but within the intermediate text. When performed by the
compiler, this feature is called loop unwinding. Another
compiler feature is called loop unrolling, but this is distinct from
the FPP feature of the same name; see CF77 Compiling System,
Volume 1: Fortran Reference Manual, publication SR—-3071.

The compiler performs this optimization by default, whereas
FPP must be enabled to do it. Enabling this technique at the
source level can be advantageous for loops with low iteration
counts. )

FPP has two modes of loop unrolling: automatic and explicit.
The CFPP$ UNROLL directive controls both of these modes (see
page 122). When used with routine or file scope (R or F),
UNROLL/NOUNROLL enables or disables automatic unrolling.
When used with local scope (L or blank), UNROLL directs CF77 to
explicitly unroll the following loop. Automatic unrolling can also
be enabled using cf77 -Wd"-ef".

When automatic loop unrolling is enabled, FPP unrolls inner
loops that satisfy these criteria:

e The vector length is constant, and below the vector threshold.
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e The vector length times the number of statements in the loop
is less than 32.

o The loop contains only assignment statements. No branches,
I/O statements, or external references are allowed.

e The DO loop control parameters are integer.

o The last value of the loop index is not required after the loop
is executed.

These restrictions do not apply to loops unrolled explicitly. The
only inhibitors in this case are assigned GOTOs and /O keywords
other than END=, ERR=, FMT=, and UNIT=. In explicit mode,
outer loops can also be unrolled.

The following is an example of automatic unrolling of a loop with
a small fixed iteration count; the loop is completely unrolled into
three assignment statements.

Example:

CFPP$ UNROLL R

DO 311 I =1, 3
D(I) = A(I) + B(I)*C(I)
311 CONTINUE

Translation (compiled with cf77 -zv, -2V, -Zp, or —-ZP):

D(1) = A(l) + B(1)*C(1)
D(2) A(2) + B(2)*C(2)
D(3) A(3) + B(3)*C(3)

For more information about the UNROLL directive, see
"Transformation directives," page 118.

CF77 translates array section syntax, a CF77 extension, into DO
loops, which can then be vectorized and/or autotasked.

Example:

A(IB:1E,JB:JE)
D(IB:I1IE,JB:JE)

B(IB:IE,JB:JE) + C(IB:IE,JB:JE)
SQRT (B(IX(IB:IE),JB:JE))
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Translation (compiled with c£77 -2Zv, -2V, -Zp, or -ZP):

DO 77001 J2X =1, JE - JB + 1
CDIRE@ IVDEP
DO 77002 J1X = 1, IE - IB + 1
A(J1X-1+1IB,J2X-1+JB) = B(J1X-1+IB,

1 J2X-1+JB) + C(J1X-1+IB,J2X-1+JB)
D(J1X-1+IB,J2X~-1+JB) = SQRT(B(IX
2 (J1X-1+1IB) ,J2X-1+JB))
77002 CONTINUE

77001 CONTINUE

Conversion of array syntax can be disabled by using the
cf77 -Wd"-dl" (not 1) option.

CF77 recognizes the CFT77 VFUNCTION directive and treats such
functions as vector intrinsics. A function that has been specified
on a VFUNCTION directive does not inhibit optimization by CF77.

Example:

CDIRS VFUNCTION JOE
DO 777 I = JB, JE
777 A(I) = JOE(B(I))

Translation (compiled with cf77 -2Zv, -2V, -Zp, or -ZP):

CDIRS$ VFUNCTION JOE
CDIRE@ IVDEP

DO 777 I = JB, JE
777 A(I) = JOE(B(I))
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This section contains loopmark listings and vectorization
messages for a variety of Fortran code segments. Loopmark
listings are specified on the command line in the form

cf77 -WE"-em".

Each loop in a Loopmark listing is identified with a single
uppercase letter (the primary loop type and, in some cases, a
single lowercase letter (the loop modifier). Loops are identified
according to the following legend:
Primary loop type:

S Scalar loop

v Vector loop

W Unwound loop

Loop modifiers:

b Bottom loaded

c Computed safe vector length

i Unconditionally vectorized with CDIR$ IVDEP

k  Kernel scheduled

r Unrolled

S Short vector loop

v Short safe vector length
Each Fortran code segment shown was translated by the
Fortran preprocessor FPP, specified by c£77 -Zv. Where FPP
translated the code sequence to enhance vectorization, the FPP
translations and resulting vectorization information are shown.

For the other code segments, FPP did not find any additional
possibilities for vectorization.
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1. PROGRAM SEQ1

2. DIMENSION A(100), B(100), C(100)
3. ADD(X,Y) = X + Y

FY ——————— < DO 10 I = 100, 1, -1

5. Vv A(I) = ADD(B(I), C(I))

(L A ——— > 10 CONTINUE

7. PRINT *, A

8. END

cft77-8004 c£77: VECTOR SEQl, Line=4
Loop starting at line 4 was vectorized.

1. PROGRAM SEQ2

2. DIMENSION A(100), B(100), C(100)
3. DATA B, C/100*3.0, 100*8.0/

4., S-——————————— < DO 10 I =1, 100

5. § A(I) = ADD(B(I), C(I))

6. S———————————=— > 10 CONTINUE

7. PRINT *, A

8. END

cft77-8020 cf£77: VECTOR SEQ2, Line=4
Loop starting at line 4 was not vectorized.
It contains a subroutine call.

1. FUNCTION ADD (X, Y)
2. ADD = X + Y

3. END

1. PROGRAM SEQ3

2. DIMENSION A(100)
3. DATA XX / 50 /
4, Vs————————m—— < DO 10 I =1, 50
5. Vs A(I) = TAN(XX)
6. Vg————mooo—m > 10 CONTINUE

7. PRINT *, A

8. END

cft77-8003 c£f77: VECTOR SEQ3, Line=4
Loop starting at line 4 is a short vector loop.

1. PROGRAM SEQ4

2. DIMENSION A (100), B(100)

3. Vs———————=—>= < DO 10 I = 10, 50

4. Vs IF (A(I).GT.B(I)) A(I) = B(I)
5. Vs——————————— > 10 CONTINUE

6. PRINT *, A

7. END

cft77-8003 cf77: VECTOR SEQ4, Line=3
Loop starting at line 3 is a short vector loop.
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1. PROGRAM SEQ5

2. DIMENSION A(64),B(64),C(64),D(64)
3. PARAMETER (NA=100)

4. CALL BOB (A,B,C,D,NA)

5. PRINT *, A

6. CALL JILL(A, B, NA)

7. PRINT *, A

8. END

1. SUBROUTINE BOB(A,B,C,D,NA)
2. REAL A(NA), B(NA), C(NA), D(NA)
3. Vemmmmmmm o < DO 30 I = 1, NA

4. Vv IF(C(I).GE.0) THEN

5. V IF (D(I).EQ.0) THEN

6. V A(I) = B(I) / A(I)
7.V ELSE

8. V A(I) = B(I) / A(I)

9. V ENDIF

10. V ENDIF
11, Vermeemweme——— > 30 CONTINUE

12. RETURN
13. END

cft77-8004 c£f77: VECTOR BOR, Line=3
Loop starting at line 3 was vectorized.

1. SUBROUTINE JILL(A,B,NA)
2. REAL A (NA)

3. REAL B (NA)

4. V-——————————— < DO 30 I =1, NA

5. V IF(A(I).GE.O) THEN

6. V IF (A(I).EQ.O0) THEN
7. V A(I) = B(I)

8. Vv ELSE

9. V A(I) = B(I) / A(I)
10. Vv ENDIF
11. VvV ENDIF
12, Vemmomm———— > 30 CONTINUE
13. RETURN
14. END

cft77-8004 c£f77: VECTOR JILL, Line=4
Loop starting at line 4 was vectorized.

SG-3073 5.0 Cray Research, Inc. 91



Vectorization Examples

CF77 Compiling System, Volume 3

: Vectorization Guide

cft77-8035 c£77: VECTOR SEQ6, Line=4
Loop starting at line 4 was
It contains an inner loop.
cft77-8003 c£77: VECTOR SEQ6, Line=5

0.0

1. PROGRAM SEQ6

2. DIMENSION A (100)

3. PARAMETER (KK = 1)
4, S——————m————= < DO 10 J =1, 10

5. § Vs———————== < DO 10 I = 20, 30
6. S Vs A(J+KK * (I-1))
7. S-Vs——===—~-— > 10 CONTINUE

8. PRINT *, A

9. END

not vectorized.

Loop starting at line 5 is a short vector loop.

cft77-8035 c£77: VECTOR SEQ7, Line=3
Loop starting at line 3 was
It contains an inner loop.
cft77-8035 c£77: VECTOR SEQ7, Line=4
Loop starting at line 4 was
It contains an inner loop.
cft77-8004 c£f77: VECTOR SEQ7, Line=5
Loop starting at line 5 was

1. PROGRAM SEQ8

2. DIMENSION A (100)
3. Vs————==—=r—== < DO 10 I = 10, 60
4. Vs A(I-3) = A(I+1)
5. Vs——=———=-mmm— > 10 CONTINUE

6. PRINT *, A

7. END

cft77-8003 cf77: VECTOR SEQ8, Line=3

1. PROGRAM SEQ7

2. DIMENSION A(100,100,100)

3., S———————————- < DO 10 I =5, 95

4. 8 S—————————~— < DO 10 J = 10, 90

5. 8 8§ V-—==m— < DO 10 K = 1, 100

6. S SV A(I, J, K) = A(I+4, J-4, K)
7. S-S-V-=mm—=—= > 10 CONTINUE

8. PRINT *, A

9. END

not vectorized.
vectorized.

not

vectorized.

Loop starting at line 3 is a short vector loop.
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PROGRAM SEQ9
DIMENSION A(100), B{100,100), C(100)

Vg———m—=mm——— < DO 10 I =1, SO
Vs B(I) = A(I)
Vs C(I) = B(I,7)
Vg———mw e e > 10 CONTINUE

PRINT *, C

END

cft77-8003 cf77: VECTOR SEQ9, Line=3

Loop starting at line 3 is a short vector loop.

PROGRAM SEQ10
DIMENSION A (100), B(100), K(10)
DATA B/100*1/, K/1,2,3,4,5,6,7,8,9,10/

Vommmmm o < DO 10 N = 1, 100
\'4 B(N) = 1.
Vo > 10 CONTINUE
Sb———-———-——— < DO 20 LIV = 2, 11
Sb K(LIV) = K(LIV-1)
Sb—---—-————~ > 20 CONTINUE
Vs—————-moo—— < DO 30 J =1, 10
. Vs I =230+ K(2)
Vs A(I) = B(J)
. V== > 30 CONTINUE
PRINT *, A
END

cft77-8004 cf£77: VECTOR SEQ10, Line=4

Loop starting at line 4 was vectorized.

cft77-8044 c£f77: VECTOR SEQ10, Line=7

Loop starting at line 7 was not vectorized.
It contains a recurrence on K at line 8.

cft77-8003 cf77: VECTOR SEQ10, Line=10

Loop starting at line 10 is a short vector loop.

PROGRAM SEQ11
DIMENSION A(100), B(100), C(100)

Vomom < DO 10 I = 90, 1, -1
v A(I) = B(I+2)
v A(I-3) = C(I)
Voo > 10 CONTINUE

PRINT *, A

END

cft77-8004 cf77: VECTOR SEQ3, Line=3

SG-3073 5.0

Loop starting at line 3 was vectorized.

Cray Research, Inc.

93



Vectorization Examples

CF77 Compiling System, Volume 3: Vectorization Guide

1. PROGRAM SEQ12

2. DIMENSION A(100,100)
3. S———————————= < DO 10 J = 5, 95

4., S Sbr————--—-- < DO 10 I = 90, 10, -1
5. S Sbr A(I,J) = A(I+1,J)
6. S-Sbr-————=--- > 10 CONTINUE

7. PRINT *, A

8. END

cft77-8035 cf77: VECTOR SEQ12, Line=3
Loop starting at line 3 was not vectorized.
It contains an inner loop.

cft77-8044 c£f77: VECTOR SEQ12, Line=4
Loop starting at line 4 was not vectorized.
It contains a recurrence on A at line 5.

FPP translated the previous Fortran code segment as follows:

1. PROGRAM SEQ12

2. C...Translated by FPP 5.0 (3.03M1) 07/15/91 12:57:28
3. DIMENSION A (100,100)

4., S————m———————— < Do I =1, 81

5. S CDIRE IVDEP

6. S V—————————— < DO J =1, 91

7. SV A(91-I,4+4J) = A(92-1I,4+J)
8. § V—————————~ > END DO

9, S——=————————-— > END DO
10. PRINT *, A
11. END

cft77-8035 cf77: VECTOR SEQ12, Line=4
Loop starting at line 4 was not vectorized.
It contains an inner loop.

cft77-8006 cf77: VECTOR SEQ12, Line=6
Loop starting at line 6 was vectorized. An
IVDEP compiler directive was specified.
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Voo dU s W
n n

PROGRAM SEQ13
INTEGER A (200)

J = 184

DO 10 I = 185, 200
A(I) = A(J)
J=J -1

CONTINUE

PRINT *, A

END

cft77-8044 c£f77: VECTOR SEQ13, Line=4
Loop starting at line 4 was not vectorized.
It contains a recurrence on A at line 5.

FPP translated the previous Fortran code segment as follows:

1. PROGRAM SEQ13

2. C...Translated by FPP 5.0 (3.03M1) 07/15/91
3. INTEGER A (200)

4. J = 184

S. CDIR@ IVDEP

6. Vs———————=——— < DO 10 I = 185, 200
7. Vs A(I) = A(J)

8. Vs J=J -1

9. Vs——————-————— > 10 CONTINUE

10. PRINT *, A

11. END

cft77-8003 cf77:

VECTOR SEQ13, Line=6

Loop starting at line 6 is a short vector loop.
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PROGRAM SEQ14
DIMENSION A(100,2)
PARAMETER (N=100)
NA=100

K= -1

CALL BOB(A,NA)
PRINT *, A

END

.

O a0 d WK

SUBROUTINE BOB (A,NA)

REAL A(NA,2)
Vommm < DO 10 I =1, 100
v A(I+K,1) A(I+K,1) + 1.0
v A(I+K,2) A(I+K,2) + 1.0
Vommmm oo > 10 CONTINUE

RETURN

END

.

O o b Wb

cft77-8004 c£77: VECTOR BOB, Line=3
Loop starting at line 3 was vectorized.

PROGRAM SEQ15
DIMENSION A (300), B(300), C(300)

.

1.

2

3. Sr———————---- < DO 10 J =1, 298
4. Sr A(J) = B(J)

5. Sr C(J) = A(J+1)
6. Sr-—-————----- > 10 CONTINUE

7. PRINT *, C

8. END

cft77-8045 c£77: VECTOR SEQ15, Line=3
Loop starting at line 3 was not vectorized.
It contains complex ordering of dependencies.

FPP translated the previous Fortran code segment as follows:

PROGRAM SEQ15

C...Translated by FPP 5.0 (3.03M1) 07/15/91 13:07:52
DIMENSION A(300), B(300), C(300)

CDIR@ IVDEP

O VWO~ s WN K
<
2]

Vr——————————= < DO 10 J =1, 298
C(J) = A(1+J)
Vr A(J) = B(J)
Vr——————=—=—- > 10 CONTINUE
PRINT *, C
1 END

cft77-8004 cf£77: VECTOR SEQ15, Line=5
Loop starting at line 5 was vectorized.

96 Cray Research, Inc. SG-3073 5.0



CF77 Compiling System, Volume 3: Vectorization Guide

Vectorization Examples

PROGRAM SEQ16
DIMENSION A (300), B(300), C(300)
EQUIVALENCE (JJ, KK)
DO 10 JJ = 300, 5, -1
A(KK) = C(KK)
B (KK) = A(KK-4)
10 CONTINUE
PRINT *, B
END

cft77-8051 c£f77: VECTOR SEQ16, Line=4

Loop starting at line 4 was not vectorized.

It contains a scalar store on JJ.

PROGRAM SEQ17
DIMENSION A (1000)
DO 10 I = 1,999
A(I+1) = A(I)
10 CONTINUE
PRINT *, A
END

cft77-8044 cf77: VECTOR SEQ17, Line=3

Loop starting at line 3 was not vectorized.

It contains a recurrence on A at line 4.

6]
<< < <<

PROGRAM SEQ18
DIMENSION A(100), B(100)
DO 10 I =1, 100

A(I) = 4.0
J=1+ 4
B(I) = A(J)
10 CONTINUE
PRINT *, B
END

cft77-8004 cf77: VECTOR SEQ18, Line=3
Loop starting at line 3 was vectorized.

PROGRAM SEQ19
DIMENSION B(50)
DO 10 I =1, 20, 2
B(I) = B(I-1)
10 CONTINUE
END

cft77-8003 c£f77: VECTOR SEQ19, Line=3

Loop starting at line 3 is a short vector loop.

SG-3073 5.0
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1. PROGRAM SEQ20

2. DIMENSION IA(5000)

3. INTEGER IR

4. CALL SUB1 (IA, IR)

S. PRINT *, IR

6. END

1. SUBROUTINE SUB1 (IA, IR)
2. DIMENSION IA(5000)

3. Vs————==v———= < DO 80 I =1, 64

4. Vs IR = IR - 66 - IA(I)
5. Vs———==-————— > 80 CONTINUE

6. RETURN

7. END

cft77-8003 cf77: VECTOR SEQ20, Line=3
Loop starting at line 3 is a short vector loop.

1. PROGRAM SEQ21

2. PARAMETER (N = 100)

3. DIMENSION X(N), Y(N), Z(N), VX(N), II(N)
4. S————-——————= < DO1I-=1, N

5. 8 X(I) = X(II(I}))

6. S———————————= > 1 CONTINUE

7. PRINT *, X

8. c

9. Wr-————-———=— > Y(:) = Y(II(:))

10. PRINT *, Y

11. c

12. Sxr———==—————- < Do 2 I =2, N-1
13. Sr Z(I) = 2(I-1) + 2(1I + 1)

14, Sr——=———————- > 2 CONTINUE

15. PRINT *, 2

16. C

17. Wr————====—= > VX(2:N-1) = VX(1:N-2) + VX(3:N)
18. PRINT *, VX

19. END

cft77-8061 cf77: VECTOR SEQ21, Line=4

Loop starting at line 4 was not vectorized.

The subscripts are ambiguous on X.
cft77-8004 cf77: VECTOR SEQ21, Line=9

Loop starting at line 9 was vectorized.
cft77-8004 c£f77: VECTOR SEQ21, Line=9

Loop starting at line 9 was vectorized.
cft77-8044 c£f77: VECTOR SEQ21, Line=12

Loop starting at line 12 was not vectorized.

It contains a recurrence on Z at line 13.
cft77-8004 cf£77: VECTOR SEQ21, Line=17

Loop starting at line 17 was vectorized.
cft77-8004 c£77: VECTOR SEQ21, Line=17

Loop starting at line 17 was vectorized.
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FPP translated the previous Fortran code segment as follows:

1. PROGRAM SEQ21

2. PARAMETER (N = 100)

3. C...Translated by FPP 5.0 (3.03M1) 07/15/91 13:14:07
4. DIMENSION X(N), Y(N), Z(N), VX(N), II(N)
S. INTEGER J1X

6. REAL R1X(100) ,R2X (98)

7. S=—————- < PDO1I=1, N

8. S X(I) = X(II(I))

9. S——————- > 1 CONTINUE
10. PRINT *, X

11. C

12 CDIR@ IVDEP

13. Vr———-—- < DO J1X = 1, 100

o
'Y
<
Lo}

Q

15. Vr R1X(J1X) = Y(II(J1X))
16. Vr—————- > END DO

17 CDIRE IVDEP

18. Vr———-—- < DO J1X = 1, 100

19. Vr Y (J1X) = R1X(J1X)

20. Vr—————- > END DO

21. PRINT *, Y

22. C

23 CDIR@ NEXTSCALAR

24, Sr—----- < DO 2 I =2, N-1

25. Sr Z2(I) = Z(I-1) + Z(I + 1)
26. Sr—-—---- > 2 CONTINUE

27. PRINT *, Z

28. c

29. CDIRR@ IVDEP

30. Vr—————- < DO J1X =1, 98

31. Vr C

32. Vr R2X (J1X) = VX (J1X) + VX (J1X+2)
33. Vr—————- > END DO

34. CDIR@ IVDEP
35. Vr—————- < DO J1X =1, 98

36. Vr VX (J1X+1) = R2X(J1X)
37. Vr—————- > END DO

38. PRINT *, VX

39. END
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cft77-8061 cf77: VECTOR SEQ21, Line = 7
Loop starting at line 7 was not vectorized. The subscripts
are ambiguous on "X".
cft77-8004 cf77: VECTOR SEQ21, Line = 13
Loop starting at line 13 was vectorized.
cft77-8004 c£f77: VECTOR SEQ21, Line = 18
Loop starting at line 18 was vectorized.
cft77-8054 c£f77: VECTOR SEQ21, Line = 24
Loop starting at line 24 was not vectorized. A NEXTSCALAR
compiler directive was specified.
cft77-8004 cf77: VECTOR SEQ21, Line = 30
Loop starting at line 30 was vectorized.
cft77-8004 c£f77: VECTOR SEQ21, Line = 35
Loop starting at line 35 was vectorized.

1. PROGRAM SEQ22

2. DIMENSION X (200)
3. V———————————— < DO 30 I =1, N
4. V X(I*I) = 1.

5. Vo—m—————>m—— > 30 CONTINUE

6. PRINT *, X

7. END

cft77-8004 cf77: VECTOR SEQ22, Line=3
Loop starting at line 3 was vectorized.

1. PROGRAM SEQ23

2. DIMENSION X (100), Y (100)
3. Vo————————— < DO 40 K = 2, 100

4. Vv X(K) = 2 + Y(K)

5. V Y (K) = COS(X(K))

6., V-————————u—~ > 40 CONTINUE

7. PRINT *, Y

8. END

cft77-8004 cf77: VECTOR SEQ23, Line=3
Loop starting at line 3 was vectorized.
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cft77-8004 cf77: VECTOR SEQ24,

PROGRAM SEQ24

DIMENSION VF (500)

PARAMETER (R2=100)

DEL1 = R2 * 3.1418

DELTA = DEL1 - R2

DO1 L =1, R2
IX = L + DELTA * (2*L-1)
MSUM = MSUM + VF (IX)

CONTINUE
PRINT *,
END

MS

UM

Line=6

Loop starting at line 6 was vectorized.

v
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nwnnon

PROGRAM SEQ25
DIMENSION AM(100,100),PP(100),TAK(100), BM(100),
VAR (100)

PARAMETER (PWR = 3, M = 1, N = 100)
GP = 59.45
DO 11I =M N

VAR (I)

RANF () * 10000

PP(I) = RANF() * 1000

CONTINUE

DO 2 I =M N
DO 2 J =M, N

AM(J,

AM(J,

BM (J)
CONTINUE
PRINT *,
PRINT *,
END

1)
2)

= VAR(J) * PP (J)-GP*TAK(J) / 144

AM
BM

= PP(I) / TAK (I) ** PWR
= SQRT (PP (J))

cft77-8029 cf77: VECTOR SEQ25, Line=6
Loop starting at line 6 was not vectorized.
It contains multiple calls to an intrinsic
function with side effects.

cft77-8035 cf77: VECTOR SEQ25, Line=10
Loop starting at line 10 was not vectorized.
It contains an inner loop.

cft77-8004 cf77: VECTOR SEQ25, Line=11
Loop starting at line 11 was vectorized.
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10.
11.
12.
13.
14.
15.
16.

PROGRAM SEQ26
DIMENSION Y (100), COEF(100), XM(100,100), YVEC(100),
* RSD(100)
PARAMETER (NR = 100)
S———————————- < DO 2 I =1, NR
s YO = Y(I)
YV = 0.0
Vo= < DO 25 J = 1, NR
v YV = YV + COEF (J) * XM(I,J)
Vomommom——— > 25 CONTINUE
YVEC(I) = YV
RS = YV -~ YO
RSD(I) = RS
S—————————-== > 2 CONTINUE
PRINT *, RSD
END

cft77-8035 cf77: VECTOR SEQ26, Line=5

Loop starting at line 5 was not vectorized.
It contains an inner loop.

cft77-8004 cf77: VECTOR SEQ26, Line=8

Loop starting at line 8 was vectorized.

PROGRAM SEQ27
REAL G(50, 50), H(50, 50)

S———————————= < DO 10 J = 1,50
S S———=—————m— < po 10 I =1,50
S s G(J,I) = RANF()
S s H(J,I) = RANF()
S-8———————==- > 10 CONTINUE
S——————————— < DO 20 J =1, 49
S Sr-———=-——- < DO 20 I =1, 49
S Sr G(I+1,J) = G(I,J) * H(I,J) - H(I,J+l)
S-Sr-—-—————- > 20 CONTINUE

PRINT *, G

END

cft77-8035 c£77: VECTOR SEQ27, Line=3

lLoop starting at line 3 was not vectorized.
It contains an inner loop.

cft77-8029 cf£77: VECTOR SEQ27, Line=4

Loop starting at line 4 was not vectorized.
It contains multiple calls to an intrinsic
function with side effects.

cft77-8035 c£77: VECTOR SEQ27, Line=8

Loop starting at line 8 was not vectorized.
It contains an inner loop.

cft77-8044 c£f77: VECTOR SEQ27, Line=9

102

Loop starting at line 9 was not vectorized.
It contains a recurrence on G at line 10.

Cray Research, Inc. SG-3073 5.0



CF77 Compiling System, Volume 3: Vectorization Guide _ Vectorization Examples

FPP translated the previous Fortran code segment as follows:

1. PROGRAM SEQ27

2. C...Translated by FPP 5.0 (3.03M1) 07/15/91 13:31:44
3. REAL G(50, 50), H(50, 50)

4. CDIRE@ IVDEP

5. Vo———————- < DO J =1, 2500

6. V G(J,1) = RANF ()

7. V H(J,1) = RANF ()

8. V-——————— > END DO

9. S————————- < DO I =1, 49

10. s CDIR@ IVDEP
11. S Vg—————- < DO J =1, 49
12. s Vs G(1+I,J) = G(I,J)*H(I,J) - H(I,1l+J)
13. § Vs————- > END DO
14. S—————-——- > END DO
15. PRINT *, G
16. END

VECTORIZATTION INFORMATTION

cft77-8004 cf77: VECTOR SEQ27, Line = 5

Loop starting at line 5 was vectorized.
cft77-8035 c£77: VECTOR SEQ27, Line = 9

Loop starting at line 9 was not vectorized. It contains an inner loop.
cft77-8003 cf77: VECTOR SEQ27, Line = 11

Loop starting at line 11 is a short vector loop.
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1. PROGRAM SEQ28

2. DIMENSION A(100,100)

3. S————————===- < DO 10 I = 1, 100

4. S Vg———————== < DO 10 J =1, 100

5. § Ve A(J+4, I*2) = A(J+1,I)
6. S-Vg———————=- > 10 CONTINUE

7. PRINT *, A

8. END

cft77-8035 cf£77: VECTOR SEQ28, Line=3
Loop starting at line 3 was not vectorized.
It contains an inner loop.
cft77-8005 c£77: VECTOR SEQ28, Line=4
Loop starting at line 4 was vectorized with a computed
maximum safe vector length.

PROGRAM SEQ29

DIMENSION B(100,100), C(100)
S———wmmm - < DO 10 M =1, 100
S Sr———————- < DO 10 K = 1, 100
S Sr B(M*4, K) = B(M*4, K-1) + C(K)
S-Sr——---———-= > 10 CONTINUE

PRINT *, B
. END

.

o ned WKk

cft77-8035 c£77: VECTOR SEQ29, Line=3
Loop starting at line 3 was not vectorized.
It contains an inner loop.

cft77-8044 c£77: VECTOR SEQ29, Line=4
Loop starting at line 4 was not vectorized.
It contains a recurrence on B at line 5.

FPP translated the previous Fortran code segment as follows:

1. PROGRAM SEQ29

2. C...Translated by FPP 5.0 (3.03M1) 07/15/91 13:42:45
3. DIMENSION B(100,100), C(100)

4. S—————-————— < DO K =1, 100

5. 8 CDIRG IVDEP

6. S Vi———————— < DO M =1, 100

7. S Vi B(M*4,K) = B(M*4,K-1) + C(K)
8. S Vi———————~ > END DO

9. S———————~——= > END DO

10. PRINT *, B

11. END

cft77-8035 c£77: VECTOR SEQ29, Line = 4
Loop starting at line 4 was not vectorized. It contains an inner loop.
cft77-8006 c£77: VECTOR SEQ29, Line = 6
Loop starting at line 6 was vectorized. An IVDEP compiler directive was specified.
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1. PROGRAM SEQ30
2. DIMENSION D(10,10,10,10), E(10,10)
3. S—————m————— < DO 10 I = 1,10
4. S S—————————- < DO 10 J = 1,10
5. 8§ 8 E(I,J) = RANF()
6. S S S———————v < DO 10 K = 1,10
7. S S 8§ Vs————~ < DO 10 L = 1,10
8. S S S Vs D(I,J,K,L) = RANF ()
9. S-S-S-Vs———-- > 10 CONTINUE
10. s- - < DO 30 II =1, 10
11. S S—-- -— -— < DO 30 JJ = 1, 10
12. 8§ § Vs———=————————m—muu < DO 30 KK = 1, 10
13. S S Vs W—————————mmmmm < DO 30 LL =1, S
14. S S Vs W D(4,JJ-5,LL,KK) = D(4,JJ~5,LL+1,KK)+
15. S S Vs W * E(LL, JJ)
16. S-S-Vs—W-——m—————m—— e > 30 CONTINUE
17. PRINT *, D
18. END
cft77-8035 c£77: VECTOR SEQ30, Line = 3, File = seq30Onew.f, Line = 3

Loop starting at line
cft77-8035 c£77: VECTOR
Loop starting at line
cft77-8035 c£f77: VECTOR
Loop starting at line
cft77-8003 c£77: VECTOR
Loop starting at line
cft77-8035 cf77: VECTOR
Loop starting at line
cft77-8035 c£77: VECTOR
Loop starting at line
cft77-8003 c£77: VECTOR
Loop starting at line

SG-3073 5.0

3 was not vectorized.
SEQ30, Line = 4, File
4 was not vectorized.
SEQ30, Line = 6, File
6 was not vectorized.

It contains an inner loop.

= seq30new.f, Line = 4

It contains an inner loop.

= seq30new.f, Line = 6

It contains an inner loop.

= seq30new.f, Line = 7

10, File = seq30Onew.f, Line = 10

It contains an inner loop.

11, File = seq30new.f, Line = 11

It contains an inner loop.

SEQ30, Line = 7, File

7 is a short vector loop.
SEQ30, Line =

10 was not vectorized.
SEQ30, Line =

11 was not vectorized.
SEQ30, Line =

12, File = seq30Onew.f, Line = 12

12 is a short vector loop.
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When invoked with c£77 -2v, -2V, -2p, or -zP, FPP, the
dependence analysis phase of the CF77 compiling system,
performs transformations on source code and adds directives to
allow vectorization of some loops that might otherwise be
difficult to vectorize in the compilation phase.

This appendix describes FPP options that are invoked on the
fpp command line or, as recommended by CRI, within the c£77
command in the form c£77 -wd"fpp_option".

fpp options are as follows, as used within the c£77 command.

c£77 -WA" [-C routinel,routine2,...] [-d optoff]

[-D directive [ :subl,sub2,...11 [-e opton] [-F file]
[-I routinel,routine2,...] [-1 listingfile] [-M lines]
[-o outputfile]l [-p liston] [-q listoffl [-r formaton]
[-n formatoff] [-S filel,file2] [-T threshold] "

—-C routinel,routine2,...
Lists names of concurrently callable routines.
-d optoff and -e opton
Enables (-¢) or disables (-d) optimization option switches

named in optoff and opton. The optimization switches are
described in Table 3, page 111. '

-D directive [ :subl,sub2,...]
Specifies a directive to be applied to certain routines, or to
the whole input file if no routines are listed.

-F file
Redirects command-line input from the named file. You
can use this file to specify -D options. An example ofa -F
file follows the description of fpp options.

-1 routinel,routine2,...
Lists routines to be expanded inline.
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-1 listingfile
Enables the FPP listing and directs it to file listingfile.
This listing shows in detail the actions taken by FPP; it is
distinct from the compiler’s listings. When you specify
cf77 -Zv -Wf"-em" or cf77 -Zp -Wf*-em", the
resulting listing from the compiler shows the code
produced by FPP, rather than your original source. If you
specify c£77 -2V or cf77 -zP, FPP’s output is saved as
file.m. Any of these methods can be used to show the
result of FPP processing.

-M lines
Sets the maximum number of lines of code to be allowed for
automatic in-line expansion; default is 50.

-o outputfile
Directs the translated source to file outputfile instead of
standard output. The output file is ready for processing by
FMP or CFT77, the other components of the CF77 compiling
system.

-p liston and -q listoff
Enables (-p) or disables (-q) listing option switches named
in liston and listoff. The listing switches are described in
table 4.

-r formaton and -n formatoff
Enables (-r) or disables (-n) reformatting (TIDY) option
switches named in formaton and formatoff.

-8 filel, file2
Specifies file names or complete path names of files
(including the actual file name) in which routines to be
expanded in-line are located. For example, any of the
following specifications is acceptable:

-8 file.f
-S /usr/fred/file.f
-S /usr/fred/abc.f,xyz.f

-T threshold
Specifies maximum Autotasking threshold value for
comparison to the loop iteration count; default is 800 for
CX/CEA systems and 3200 on CRAY-2 systems.

By default, the translated Fortran source output file is written
to the standard output file (normally the terminal), and no
listing file is produced. If you invoke fpp without arguments, it
prints a short usage summary.
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The following code is an example of a typical -F file:

-Dnoinner:subl

-Dnexpand (sub2) : subl#/usr/psr

-Ffile2.com (Nested command file)
-D relation(n.gt.32) :sub2

-Dswitch, tdyoff=p,indal=5, renumb=1000:100

To run the Fortran source file crunch. f through fpp, enter
the following:

fpp crunch.f > crunch.m

The optimized output is sent to crunch.m.

Torun crunch.f through fpp, with in-line expansion enabled,
and save the output in crunch.m; run the output (crunch.m)
through fmp, and save the output in file crunch.j;and
compile the translated code; enter the following:

fpop -e 78 crunch.f > crunch.m
fmp crunch.m > crunch. j
cft77 -a stack -c¢ crunch.j

The output of the last command is crunch. j.o, which can
then be loaded.

Switches, also called option-arguments, let you control
optimization of FPP and the contents of the listing file for FPP.

¢ You can pass optimization switches using cf77 -wd"-4"
(disable) and -wd"-e" (enable) or the swITcH directive.

e You can pass listing switches using the -p (enable) and -q
(disable) options of fpp, the -wd"-p" and -wd"-g" options
of c£77, or the swITcH directive.

Table 3, page 111, shows the optimization switches that affect
the transformation of the input program. For example,
specifying fpp option -d el means that EQUIVALENCE
statements are not examined for data dependency analysis, and
IF loops are not converted to DO loops.
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Some switches duplicate or overlap the functions of directives.
For example, the -d d switch is equivalent to the NODEPCHK
directive with file scope (CFPP$ NODEPCHK F).

Switches that correspond to directives (a, ¢, d, e, i, r, u, v,
and 7) may be toggled more than once within a routine (using
the SWITCH directive). Switches that do not correspond to
directives (b, h, j, k, 1, m, o, o, s, t, v, 0, 1, 4, 5, and
6) can have only one valid setting for any one routine; if they are
set more than once within a routine, only the last setting is
used.

The q, x,and 8 switches are valid only as command line
option-arguments.

Table 4, page 114, shows the switches that control the format of
the listing file. For example, if you wanted to get a 132-column
printer listing without warning messages and no event
summary, you would specify c£77 -wWd"-q twe".

The TIDY subprocessor is a feature of FPP that improves the
readability of the output code, either by using default standards,
or according to user-specified parameters. By default, TIDY is
applied only to loops that require restructuring in order to
vectorize and concurrentize. To apply TIDY to the entire
program unit, use cf77 -wWd"-dy".
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Table 3. Optimization switches enabled and disabled by -e and -4

Switch

Description

Default

Allows associative transformations. -d a is equivalent to
the NOASSOC directive with file scope.

Generates linear recursion library calls.

Autotasks loops; all loops (inner and outer) that have
enough work to justify concurrent execution are analyzed
for Autotasking. -d c is equivalent to the NOCONCUR
directive with file scope.

Does not ignore potential data dependencies. -d dis
equivalent to the NODEPCHK directive with file scope.

Examines EQUIVALENCE statements for data dependency.
-d eis equivalent to the NOEQVCHK directive with file
scope.

Enables source line debugging.

Allows parallel case optimization. Ignored if the c switch
(autotask) is off.

Analyzes inner loops with variable iteration counts at
compile time to determine if they are candidates for
Autotasking. By default, outer loops and inner loops that
obviously have enough work are autotasked. For inner
loops with high iteration counts and many statements,
enabling this option may improve performance. -e 1iis
equivalent to the INNER directive with file scope. The i
switch is ignored if the c switch (autotask) is off.

Translates nested loop idioms, such as matrix
multiplication matrix-vector multiplication, and rank one
update, to library calls.

Treats D in column 1 as a comment character. If this
switch is off, a D in column one is treated as a blank. This
switch provides compatibility with a debugging feature of
some compilers.

Transforms IF loops to DO loops.

Generates alternative code for potential dependencies. If
this switch is off, loops containing potential data
dependencies will not be optimized.

Specifies minimum DO trip count is one. Provides
compatibility with ANSI 66 Fortran compilers.

ON

OFF
ON

ON

ON

OFF
ON

OFF

ON

ON

ON
ON

OFF

SG-3073 5.0
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Table 3. Optimization switches enabled and disabled by -e and -d (continued)

Switch Description Default
p Collapse loop nests into single loops when possible. ON
o Takes error exit if syntax or fatal errors are found. If this OFF

switch is on and fpp detects a syntax or fatal error, it
returns an error code of 2. If fpp was invoked by c£77,
c£77 ceases processing at that point.

r Splits out all user subroutines and functions. -e ris OFF
equivalent to the SPLIT directive with file scope.

S Permits loop splitting to isolate recursion, which permits ON
partial vectorization of loops.

t Specifies use of aggressive loop exchange criteria. Gives OFF
greater weight to the use of stride-one vectors and
increased vector length, compared to retaining original loop
nest ordering.

u Generates final values for transformed scalars when ON
appropriate. -d uis equivalent to the NOLSTVAL
directive with file scope.

v Enhances CFT77 vectorization. -d v is equivalent to the ON
NOVECTOR directive with file scope. If this switch is off, the
b, m, p, r, and s switches are not meaningful.

X Creates optimized source file. This switch may be turned ON
off if only the diagnostic listing is wanted. Turning this
switch off may speed compile time and reduce disk space
used. The setting of this switch does not affect the listing
of the transformed source in the listing file. This switch is
valid only as a command line option-argument; it may not
be specified with the SWITCH directive.

v Reformats only restructured loops. -d y causes the entire ON
program unit to be reformatted with the TIDY subprocessor.

0 Generates Autotasking threshold test. ON

1 Converts array syntax to DO loops. ON

3 Enables 80-column input. OFF

4 Asserts that first values of private arrays are not needed. OFF

In some cases, allows more loops to be autotasked.
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FPP directives are lines appearing in source code beginning with
the string CFPPS$. You can use them to give FPP more
information about your program. (These directives are also
called user directives.)

Compiler directives are source lines beginning with CDIR$ and
CDIRGE that are interpreted by the compiler as information about
the program. FPP automatically inserts CDIR@ directives. FPP
also interprets certain compiler directives associated with vector
processing. (CDIRS directives are the same directives used by
the CFT77 compiler.)

Note

Directives beginning CDIR@ should not be inserted by users.

FPP user directives have the following syntax:

CFPP$ directive scope

The C in column 1 makes the directive a comment for all other
Fortran compilers. The body of the directive begins after one or
more blanks. Following the directive is an optional scope
parameter, scope, which specifies the range of code to which the
directive applies. Table 5 shows allowable scope values.

Table 5. Allowable scope parameters for CFPPS directives

Value Meaning Description

R Routine Directive applies until the end of the
current routine.

L Loop Directive applies to the next loop
encountered. Applies only to DO loops.

F File Directive applies until the end of the
input file.

I Immediate Directive applies immediately at that

point in the source code.

Blank Same as L; directive applies to the next
loop encountered.
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Some directives ignore the scope parameter. Directives affecting
IF loops must have R or F scope. Many directives can be
preceded by NO, thus effecting the reverse operation.

The following example tells FPP to ignore potential data
dependencies in the next loop:

CFPP$ NODEPCHK

The following example turns off the vectorization enhancement
for the rest of this routine.

CFPP$ NOVECTOR R

The following example turns on the listing for rest of file.

CFPPS$S LIST F

The full set of directives is summarized in Table 6. The scope
entry is either L, indicating that it applies to the next loop; R,
indicating that it applies to the whole routine; I, indicating that
it applies immediately; or LRF, which indicates that any of the
loop, routine, or file options can be used to control the scope. If
the scope is not specified, the default is L, or loop. A short
description of each of these directives follows the table. The
default condition is indicated by an asterisk (*).

Table 6. FPP directives

Directive

Function Scope

SWITCH, w=s,w=s...

Sets global switches. Switch s is passed to keyword w. I
Keywords correspond to fpp options as follows: OPTON,

-e; OPTOFF, -d; LSTON, -p; LSTOFF, -g; TDYON,

-r; TDYOFF, -n.

NOVECTOR/VECTOR*  Disables/enables vectorization enhancement. See v LRF
option.

NOCONCUR /CONCUR*  Disables/enables Autotasking; does not affect LRF
vectorization. See c option.

SKIP Disables Autotasking and vectorization. LRF

INNER/NOINNER* Allows/disallows Autotasking for inner loops. LRF

CNCALL Allows concurrent calls in loop. LRF
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Table 6. FPP directives (continued)

Directive Function Scope
CHOP_HERE Chops a loop into two loops at this point. None
NOALTCODE/ALTCODE([n]* Does not generate/generates alternate code blocks. n is LRF

an integer indicating a trip count or any other
expression to be used in tests for alternate code. See

option m.
NOASSOC/ASSOC* Does not/does perform associative transformations. LRF
" SPLIT/NOSPLIT¥® Does/does not enable cutting subroutine and function LRF

calls from loop (tells FPP that one loop pass does not
feed results to the next).

SELECT Selects next loop to optimize in a nest of loops (overrides L
FPP’s choice; directive ignored if FPP finds problem with
loop).

NOLSTVAL/LSTVAL* Does not/does save last values of transformed scalars LRF

(indexes or promoted scalars; especially those in
common or used in array subscripts) within directive’s
scope. NOLSTVAL says that values do not need to be
same as in scalar version (for later use).

UNROLL [n] /NOUNROLL[n]* Enables/disables loop unrolling. With scope Ror F,n LRF
specifies maximum trip count for automatic unrolling
(default 3). With L scope, n is the number of times to
unroll loop (default calculated by FPP).

NODEPCHK/DEPCHK* Ignores potential data dependencies or performs LRF
dependency check; asserts that no recursion exists. See
option d.

NOSYNC/SYNC¥* Does/does not ignore potential overlap of array elements LRF
accessed by different processors.

NOEQVCHK /EQVCHK* Does not/does check EQUIVALENCE statements to see if LRF
they cause data dependencies. See e option.

PERMUTATION (ial,ia2...) Declares that listed integer arrays, for use as subscripts R
in array section names, have no repeated values.

RELATION (intl relint2) Specifies relation between an integer variable and LRF
another integer value. rel is a Fortran relational
operator.
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Table 6. FPP directives (continued)

Directive Function Scope
NOLIST/LIST* Turns off/on FPP listing; see option ql, page 111. I
ITERATIONS (vI=nl,v2=n2,...)
Like COUNT but supplies values, n, for loop indexes by R
variable name, v.
EXPAND [(rl,r2...)] Expands listed routines, r, or all routines in-line; n/a
independent of CFT77 optimization. See option -1I,
page 107.
NEXPAND (list) (#path) Expand routines in list found in directory path, as well n/a

as routines called by them. Nested routines are not
expanded by any other means.

SEARCH (files) Specifies files to be searched for routines that are n/a
expanded in-line. Default file is r¢n . £ for routine rtn.

COUNT (i) Supplies approximate iteration count n for loops within LRF
the directive’s scope, affecting whether loops are
autotasked.

AUTOEXPAND/ Enables/disables automatic routine inlining. LRF

NOAUTOEXPAND*

Transformation Transformation directives change the way FPP transforms a

directives loop.

A2.1

NOVECTOR/VECTOR NOVECTOR disables vectorization enhancement. Despite the best

A2.1.1 efforts of FPP to make the right choices, occasionally a loop may

be less efficient after transformation. NOVECTOR is provided to
disable vectorization enhancement in such cases. VECTOR only
toggles back from NOVECTOR; it does not force vectorization.

The c£77 -Wd"-d v" option is equivalent to NOVECTOR with
file scope.
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SKIP disables Autotasking and vectorization; it acts like a

combined NOCONCUR and NOVECTOR.

CHOP_HERE directs FPP to split a loop at the indicated line. This

directive is used for fine-tuning certain loops.
Example:

SUBROUTINE TEST
COMMON N, A(500), B(500)

DO 10 I =1, N

IF ( A(I) .GT. 0 ) THEN

S = SQRT(A(I))
CFPP$ CHOP_HERE
B(I) =S + 1.0/S
ENDIF
10 CONTINUE

Translation:

TASK COMMON/Z1FPPOCM/ QQQ(8191)

EQUIVALENCE (QQQ(1),S1U), (QQQ(506),L1lV)

CDIR@ IVDEP
DO 10I =1, N
LIV(I) = A(I) .GT.

o

IF (L1V(I)) S1U(I) = SQRT(A(I))

10 CONTINUE
CDIR@ IVDEP
DO 77001 T =1, N

IF (L1V(I)) B(I) = S1U(I) + 1.0/S1U(I)

77001 CONTINUE

For potentially dependent vector loops, ALTCODE directs FPP to
generate versions of the loop both with and without an IVDEP
directive. ALTCODE also directs FPP to generate a run-time test
to choose between them based on the value of array subscript

expressions.

For autotasked loops, ALTCODE directs FPP to supply a

threshold test for the IF clause ofthe DO ALL or DO

PARALLEL.

Cray Research, Inc.
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ALTCODE allows an optional parameter. If the parameter is an
integer constant, FPP generates a test comparing the loop’s
iteration count to the constant. If the parameter is not an
integer constant, the parameter is echoed verbatim for the IF
test.

Note that ALTCODE is on by default. The —d m option to fpp is
equivalent to NOALTCODE with file scope.

By default, FPP transforms certain constructs into vector or
concurrent versions in which the order of operations may be
different than the original (that is, they have been associatively
transformed). (This is like the associative property of real
numbers.) Because of the way numbers are internally
represented in computers, this operation reordering may result
in answers that differ slightly from the scalar original. For
example, floating-point arithmetic is not associative. The
NOASSOC directive disables all associative transformations,
including the following:

e Reductions — sum, dot product, and index of minimum and
maximum.

e Operation reordering when minimizing dependent regions.
¢ Linear recursion translation.

The c£77 -wd"-da" option is equivalent to NOASSOC with file
scope.

SPLIT asserts that subroutine and function calls do not have
side effects that cause feedback of results from one loop pass to
another, and thus may be "split out" from an optimized loop into
a separate loop.

SELECT advises FPP to choose the next loop as the one to
vectorize or autotask in a nest of loops. If FPP cannot analyze
the loop or finds a dependence, the SELECT directive is ignored.

In choosing a single loop from a nest, FPP weighs loop iteration
count, the presence of data dependence, and the amount of work
within the loop to a heuristic algorithm. Because not all
pertinent information is available at compile time, FPP may not
always be able to make the best choice. Therefore, the SELECT
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directive allows you to dictate the optimization mode of a specific
loop. Place the SELECT directive directly before the DO
statement of the loop to be optimized. An optional argument
indicates the mode of optimization, either VECTOR or CONCUR.
The default is VECTOR.

NOLSTVAL advises FPP that final values for transformed scalars
(which are either indexes or promoted scalars; see page 128).
This directive is useful when FPP cannot determine by
inspecting the current subprogram whether or not a variable is
subsequently used. Such variables are typically in COMMON or
are array references. Unrolling is discussed on page 85.

The UNROLL directive has two functions: the first function is to
enable/disable automatic unrolling of loops with small constant
iteration counts; the second function is to force explicit unrolling
of a particular loop, regardless of iteration count. Eliminating
an inner loop by unrolling may allow another loop to vectorize.

These directives have the following syntax:

CFPP$ UNROLL [ (number_of times)] [{L,R,F}]
CFPP$ NOUNROLL [{L,R,F}]

When routine or file scope is specified (R or F), automatic
unrolling of loops is enabled or disabled over that scope. The
optional parameter number_of_times, which must be a constant,
specifies the threshold loop iteration count for automatic
unrolling. Loops with an iteration count greater than this value
are not unrolled. If no parameter is specified, the threshold is 3.

To force a loop to be explicitly unrolled, use the UNROLL
directive with local scope (1) immediately preceding the loop. In
this case, the optional parameter is taken as the number of
times to unroll the loop. If a parameter is not supplied, FPP
uses an internally calculated function of the loop length, loop
complexity, and default threshold.
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Data dependency directives are used to help FPP decide whether
data dependency conflicts actually exist in a loop. If you know
that an operation is not recursive, you can supply one of these
directives to inform FPP. These directives are discussed further
and examples are given in "Using data dependency directives,"
page 56.

When elements of an array are modified within a loop, FPP must
determine the exact storage relationship of these elements to all
other references to the array in the loop. This must be done to
ensure that the references do not overlap, and thus can be safely
executed in parallel. When the relationships cannot be
determined, FPP issues a potential dependency diagnostic to the
listing file.

The NODEPCHK directive asserts that all such potentially
recursive relationships are, in fact, not recursive. You should
use this capability only when you know no real recursion exists.
Use of the directive does not, however, force the optimization of
operations that are unambiguously recursive. The DEPCHK
directive is used to toggle back to the default state. The

cf77 -wWd"-d d" option is equivalent to NODEPCHK with file
scope.

NOEQVCHK directs FPP to ignore relationships between variables
caused by EQUIVALENCE statements, when examining the data
dependencies in a loop. The c£77 -Wd"-d e" option is
equivalent to NOEQVCHK with file scope.

PERMUTATION declares that an integer array does not have
repeated values. This is useful when the integer array is used
as a subscript for another array (indirect addressing). Ifit is
known that the integer array is used merely to permute the
elements of the subscripted array, it can often be determined
that feedback does not exist with that array reference.

RELATION advises FPP that a specified relationship exists
between two integer variables or between an integer variable
and an integer constant. This information may be useful to FPP
in resolving otherwise ambiguous array relationships.
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RELATION directives are informative only, they do not force any
action. They can be applied at the loop, routine, or file level. If
conflicting relations are given, the result is unpredictable. Itis
up to you to ensure that the relations specified are correct and
consistent. See page 59 for more information.

Adpvisory directives Advisory directives provide information for FPP, which may
A23 result in a better choice of loops to be optimized.

COUNT and ITERATIONS If the iteration count of a loop (or class of loops) is variable and
A23.1 cannot be determined from the information in the routine until

execution time, but you know the approximate number of
iterations, you can use the COUNT or ITERATIONS directive to
supply this information.

CFPP$ COUNT (vall) [{L,R,F}]

CFPP$ ITERATIONS (varl=vall [,var2=val2] ...)
vall, val2... Specify vector length values. These values do
not have to be exact because they are used only
as guidelines.
varl, var2... Specifies indexes of a loop with the given

assumed vector length values.

The COUNT directive can be used at the file, routine, or loop
levels. The ITERATIONS directive can only be used at the
routine level. A CFPP$ COUNT(0) F or NOITERATIONS
directive returns FPP to its normal iteration count processing.
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Example:

SUBROUTINE OPTIM7 ( A, B, C, L, M, N )
REAL A(L,M,N), B(L,M,N), C(M,N), S
C
CFPP$ ITERATIONS ( I
DO 609 K = 1,N
DO 608 J =1

=2, J=100, K=100 )

A(I,J,K) = B(I,J,K) + C(M,N)
607 CONTINUE
608 CONTINUE
609 CONTINUE

By default, the inner loop would be vectorized, but because the
directive indicates that the iteration count is small, and neither
of the outer loops is a good candidate for translation, the entire
loop nest is left alone.

Listing directives change the appearance of the FPP listing. The
following subsections discuss the FPP listing directives.

You can selectively suppress listing of the input source with the
NOLIST/LIST directive pair. If NOLIST (or the

cf77 -Wd"-ql" option) is in force when the END statement is
encountered, the rest of the listing (messages, translated source,
summaries) is suppressed, unless specifically enabled (with the
cf77 -Wd"-p" option switches.
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SWITCH enables you to set (or change) global switches, including
listing switches. You can also use the SWITCH directive to set
optimization and reformatting switches. See Table 3, page 111,
for a list of the optimization switches. See Table 4, page 114, for
a list of listing switches.

The format of the SWITCH directive is as follows:

CFPP$ SWITCH, OPTON=sir,OP TOFF=str,LSTON=str,
LSTOFF=str,TDYON=str,TDYOFF=str,SPACE=integer

Keywords OPTON, OPTOFF, LSTON, LSTOFF, TDYON and
TDYOFF correspond to fpp options -e, -d, -p, —q, -r, and
-n, respectively.

The SPACE parameter lets you specify a size, in words, for the
FPP-generated common block. The default size is 8191 words.

Blanks are not significant, and keywords and switches can be
either uppercase or lowercase.

In-line expansion directives provide information for FPP that
allows expansion of the bodies of certain subroutines and
functions into the loops that call them. The directives are as
follows:

e AUTOEXPAND
¢ EXPAND

¢ NEXPAND

¢ SEARCH

See "In-line expansion," page 131, for more information about
these directives and examples of their use.
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Additional Source Transformations [B]

[P

When the cf77 -Zv option is invoked, the compiling system
performs source transformations for scalar optimization,
replacement of library calls, and (if specified) in-line expansion.
These forms of processing are in addition to transformations
already described in this manual.

Library calls CF77 recognizes certain Fortran coding sequences that it can
B.1 replace by calls to highly optimized library routines, as follows:
¢ Matrix multiplication in most common forms
e Certain linear recursion patterns
e Index of maximum and minimum element operations
Translation of linear CF177 recognizes and translates certain forms of first- and
recurrence second-order linear recurrence into libsci calls. Calls to routines
B.1.1 FOLR, FOLRP, SOLR, and SOLR3 are generated.

Example:

DO 75 I =M, N
75 B(I) = B(I)-B(I-1) + A(I)

Translation (when compiled with c£77 -zv, -2Zv, -Zp, or
-ZP):

CALL FOLR (N-M+2,A(M-1),1,B(M-1),1)

Linear recurrence translation can be enabled by -wa*-eb". If
the Noassoc directive or -Wd"-da" is in force, linear
recurrence is not translated.

SG-3073 5.0 Cray Research, Inc. 127



Additional Source Transformations

CF77 Compiling System, Volume 3: Vectorization Guide

Scalars in loops
B.2

Scalar promotion
B.2.1

Last values of promoted
scalars
B.2.1.1

Conditionally defined
promoted scalars
B.2.1.2

128

Scalar variables are single locations in memory, such as a
simple variable X. Array references whose subscript values are
invariant in a loop (and thus represent a single location through
all passes of the loop) are called array constants. CF77 treats
array constants similarly to simple scalar variables.

In general, scalar variables must be defined (appear on the left
side of the equal sign) before they are used (appear on the right
side of the equal sign) if they are defined in the loop. Otherwise,
they are carry-around scalars, which may inhibit optimization.

In addition, scalar variables that are modified in a loop can
sometimes inhibit optimization. This subsection discusses the
transformations used to deal with the storing of values into
non-indexed scalars within a loop.

When a scalar is set to a vector expression, and then used in
more than one part of a split loop, that scalar must be promoted
to a vector. This requires the introduction of temporary vectors
that replace the promoted scalars.

When CF77 restructures a loop, it may eliminate the definition of
some scalar temporaries. When necessary, it re-creates the
correct final values of such variables. (See the previous
discussion of last value saving.)

If the final value of a conditionally defined promoted scalar is
required, that scalar cannot be optimized, because there is no
efficient way to determine the "last true" element. This may
inhibit Autotasking and degrade vectorization enhancement.
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Example:

SUBROUTINE CND2
COMMON /SCAL/ S,N
COMMON /ARRY/ A(1000),C(1000)

CFPPS$ INNER
DO 30 T

30 CONTINUE
RETURN
END

In this example, the fact that S is in COMMON, and defined
conditionally in the loop, prevents FPP from Autotasking the
loop. If the final value of S is not needed (as is probably the
case), you can use the NOLSTVAL directive, or the

c£77 -Wd"-du" option, to allow optimization. An even better
solution would be to make S a local variable, rather than a
COMMON variable.

Scalars that may be used before they are defined in a loop are
called carry-around scalars. They may or may not be recursive.
Recursive carry-around scalars inhibit optimization. All
references to these variables are collected in a scalar loop and
split out from the rest of the calculation if possible.

Example:

DO 3313 I = 1,N | Not optimized
A(I) = S + 1/S ! S is "carried around”
B(I) = C{(I) - A(I) + S

3313 8 = B(I) + D(I)

In some cases, scalars that are equivalenced may inhibit data
dependency analysis. The NOEQVCHK directive may be used to
allow such operations to optimize, if the equivalencing does not
actually create recursion. (It almost never does. See section 3
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for a full discussion of data dependence and the NOEQVCHK
directive.)

Example:

COMMON /BLOCK/ A(999)

EQUIVALENCE (S,A(100))

DO 67 I = M, N ! Not optimized
S = B(I)**2
A(I) =S + 1.0/8

67 CONTINUE

A reduction function is an operation that condenses array
operands into one scalar value that characterizes some aspect of
the input arrays.

FPP ensures that the optimized code is semantically equivalent;
however, FPP may reorder code and the order of operations
grouped from that in the original scalar loop. In some very
sensitive calculations, this reordering can cause small numerical
differences; for example, altering the result in the final decimal
places, because of round-off differences.

The optimized implementation of a reduction function often
combines operand elements in an order that may differ from
that specified in the original scalar loop. In some very sensitive
calculations, this reordering can alter the result in the final
decimal places, due to roundoff differences.

The Assoc and NOASSOC directives let you disable or enable all
transformations that change the way operands are associated
with each other. You can also enable or disable associative
transformations globally by using c£77 -wWd"-ea". (An
example of an associative transformation is changing (X+Y)+2
to X+(Y+z).) Such a transformation is always mathematically
correct, but it does not always produce exactly the same result
on computers, because they use finite-sized words to represent
numbers.
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The most common type of associative transformation made by
CF77 is the generation of autotasked reductions. If the
NOASSOC directive is specified, these optimizations are not done;
otherwise, by default, associative transformations are
performed. Another example of associative transformation
occurs when CF77 splits loops to minimize recursion.

This subsection describes CF77’s source-level in-line routine
expansion; this is distinct from that performed in the compiling
phase. In-line expansion reduces subroutine calling overhead
and increases vectorization possibilities. It also allows scalar
optimizations such as invariant code relocation and common
subexpression analysis to extend across the body of the
subroutine, as well as the body of the calling loop.

There are two modes of inlining: automatic and explicit. These
modes can be requested by directive or by command-line or
control statement specification. Application codes sometimes
have small external functions that are called from inside many
loops; these functions are good candidates for in-line expansion.

The following is a small example of in-line expansion:
Original:

DO 100 I =1, N
A(I) = CALC (A(I), X+B(I), 2.0)

100 CONTINUE

END

FUNCTION CALC (A,B,C)

CALC = A + SQRT( B**2 + C**2 )

IF (CALC.LT.0) CALC = ABS (B + C)

END

Expanding function CALC inline:

DO 100 I =1, N
TEMP1X = X + B(I)
CALC1X = A(I) + SQRT(TEMP1X**2 + 2.0%**2)
IF (CALC1X.LT.0) CALC1X = ABS (TEMP1X+2.0)
A(I) = CALCI1X
100 CONTINUE
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Automatic inlining, specified on the command line, gets rid of
"leaves" of the calling tree.

When automatic inlining is enabled (using the AUTOEXPAND
directive or c£77 -Wd"-e7") CF77 expands every called
subroutine or function that meets the following criteria:

o It has less than a threshold number of lines of code. The
default is 50, but the you can change the threshold with
cf77 -Wd"-M",

o It contains no calls inside the expanded routine (no nesting is
allowed with automatic expansion).

o It contains no expansion inhibitors (for example, argument
types must match).

Two forms of automatic in-line expansion can be used: full and
safe. Full automatic in-line expansion is enabled by

cf77 -Wd"-e7". Safe automatic in-line expansion is enabled
by c£77 -Wd"-e6".

Safe mode is provided because in certain unusual circumstances
FPP cannot correctly determine how to inline occurrences of
dummy arrays whose dimensions differ from those of the actual
arrays that were passed to them. In safe mode, these are not
inlined; whereas in full mode, they are inlined. In either case, a
warning is put in the listing file. The following example shows a
case where full mode inlining produces incorrect code.

Example:

SUBROUTINE SAM(A,B, LDA,N)
REAL A(LDA,*), B(*)
DO 886 I = 1, N
B(I) = ADD(N, A(1,I), 1)
886 CONTINUE
END

REAL FUNCTION ADD (N, X, INCX)
REAL X (2:1+INCX,1)
Y =0
DO 882 J =1, N
Y =Y + X(1,J)
882 CONTINUE
ADD = Y
END
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In full mode, FPP inlines ADD into SUM, with the following
diagnostic messages and output:

fpp-345 fpp: WARNING SAM, Line = 4, File = safe.f
Possible discrepancy between actual and dummy
array extents.

fpp-222 fpp: WARNING SAM, Line = 4, File = safe.f
Routine 'ADD’ expanded.

Output produced:

CMICR DO ALL IF (N .GT. 20) SHARED(N, LDA, A, B)
CMICR1 PRIVATE(Y, I, ADD1X, J)

DO 886 I =1, N
Cx***x* Code Expanded From Routine: ADD

Y =20
CDIR@ IVDEP

DO J =1, N

Y =Y + A(1,J+I-1)

END DO

ADD1X =Y

B(I) = ADD1X
cxx*x**x End of Code Expanded From Routine: ADD
886 CONTINUE

The J loop addresses A along the second dimension, striding by
LDA, when it should be striding by one.

In safe mode, FPP does not inline ADD, but it does generate the
following diagnostic message:

fpp-343 fpp: WARNING SAM, Line = 4, File = safe.f
Extent of dummy and/or actual array cannot be
determined.

Two options are provided because in safe mode, FPP sometimes
detects possible problems when there is no actual problem. In
practice, FPP rarely detects a problem; generally, either mode
produces similar results. Use safe mode if you suspect a
dimensioning conflict of the kind previously described.
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In explicit in-line expansion, you list the routines to be
expanded, or direct expansion in the following line of code by
using the EXPAND directive. You can list routines for explicit
in-line expansion on the command line when CF77 is invoked
using cf77 -Wd"-I" or the EXPAND directive.

You can request nested expansion with explicit inlining. The
NEXPAND directive expands the indicated routine and all
routines it calls, leaving no external references.

This subsection describes the expansion directives used to
control source-level in-line expansion.

AUTOEXPAND invokes automatic routine expansion. It has the
following syntax:

CFPP$ AUTOEXPAND

The AUTOEXPAND directive with global scope is equivalent to
cf77 -Wd"-e7".

EXPAND provides explicit routine expansion and is equivalent to
c£77 -wd"-Iarg" . It has the following syntax:

CFPP$S EXPAND [ ( list ) ]

list is a list of routines to expand within this routine; if it is not
supplied, any calls to the next statement are expanded. Scope is
ignored on the EXPAND directive.

Example:

CFPP$ EXPAND (CALC)
DO 100 I = 1, N
A(I) = CALC( A(I), B(I)+l1l., N )
100 CONTINUE

END
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Nested expansion is done only if specified by user directives.
Nested routines are not expanded in auto expansion mode, thus
reducing the possibility of greatly expanding code size. You
must explicitly specify nested routines in order for them to be
expanded.

The NEXPAND directive specifies explicit nested routine
expansion; it has no command-line equivalent. NEXPAND
specifies a list of routines; these routines are to be expanded,
together with all routines that they call directly or indirectly. It
has the following syntax:

CFPP$ NEXPAND [ (list) [#path] 1

list is a list of routines to expand. path specifies the path where
the routines to be expanded are located. Scope is ignored on the
NEXPAND directive.

Example:

CFPP$ NEXPAND ( CALC )#/USR/TEST
SUBROUTINE ADD

DO 100 I =1, N
A(I) = CALC(
100 CONTINUE

A(I), B(I)+1l., N )
END
Here cALC would be expanded and any calls inside CALC would

also be expanded. CF77 looks for calc.f in path /usr/test.

To automatically expand a routine, CF77 needs to know where to
find the routine’s source code. The source location depends on
programming style and on the user interface.

SEARCH tells CF77 where to look for the routines to expand. It is
equivalent to c£77 -Wd"-S" and has the following syntax:
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CFPP$ SEARCH (files)

files is a list of files (separated by commas) in which to search for
the routines to be expanded. If files is the special entry *.f,
routine xyz is looked for in file xyz.f. (This is the default
search method.)

Called routines can be searched for in the same file as the
calling routine (stacked input). This requires an initial pass by
CF77 through the entire input file (and files read in by INCLUDE
statements) to build a directory of the program units in the
input file. c£77 -Wd"-e8" enables this initial pass, which by
default is not done.

Using the SEARCH directive or c£77 -Wd"-S", you can supply
the name of a file in which to search for called routines.

Fortran programs are frequently stored so that each routine of
the program resides in a separate file with a canonical name (for
example, the name of the routine followed by ".£"). The .f
files are searched for in the current working directory. This is
the default search method when inlining is requested and the
-e8 option is not specified.

The following subsections discuss possible problems you may
encounter when using in-line expansion.

Fortran allows program units to be compiled separately and
linked together. Because different program units can be
compiled at different times, in-line expansion is not foolproof.

For example, suppose program A has subroutine B, which calls
subroutine C. Subroutine C is expanded into subroutine B.
Later, we decide to change the calculation in subroutine C and
so we edit it; rather than recompiling the entire program, we
just recompile C and link it with the previously compiled
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routines. Our changes to C are not present in the actual code
executed because C is no longer called from B (it was
expanded.)

Thus, you must be involved in the routine expansion process at
least to the point of knowing which routines must be recompiled
when a change is made. For this reason, CF77 generates both a
warning message for every expansion and an expansion event
table so that it is clear what has been expanded. (You may want
to use the make command to build your application. Using
make lets you explicitly record these kinds of dependencies, so
that proper recompilation is performed.)

A problem that may result from in-line expansion is code
mushrooming; if too many routines are expanded, or the
expanded routines are too large, the size of the compiled code
may reach unacceptable proportions. This potential problem
can be controlled through judicious application of this
transformation.

In-line code expansion can complicate user run-time debugging;
if the program fails in an expanded section of code, the error is
reported in a different routine than the one in which it originally
appeared. Further, referring to the in-lined routine by name
(such as in a breakpoint) will not find any references or will find
the non-expanded calls to the routine.

CF177 records (in a comment line in the listing file) the original
line number of the routine invocation on all the expanded lines.

Any scheme to analyze more than one program unit at a time
leads to significantly slower compilation rates, and in-line
expansion is no exception. It may result in two passes over the
entire program, and potentially much longer compile times,
depending on how much code is inlined.

There are several ways in which analysis may be inhibited,
thereby prohibiting expansion. An appropriate message in the
listing informs you of a failed expansion. A full list of messages
appears at the end of this section.
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The following are expansion inhibitors:
¢ The routine to be expanded cannot be located.
e Syntax errors are found in the expansion routine.

e The arguments used in the calling sequence do not match the
arguments in the expansion routine.

¢ There is a conflict between common blocks of the calling
routine and the expansion routine.

¢ A function name referenced in the expansion routine conflicts
with a nonfunction name used in the calling routine.

In automatic mode, all calls to routines must meet the following
criteria to be expanded:

¢ The routine to be expanded has less than the maximum
allowed number of noncomment lines. The default is 50
noncomment lines. The default can be changed by using
cf77 -wd"-M".

e The routine to be expanded does not call any other external
routines.

¢ There are no inhibitors to the expansion (common blocks that
do not agree, and so on.)

If these criteria prove too restrictive, you can always resort to
explicit mode. The objective of automatic mode is to catch small,
simple external functions that could have been statement
functions. More demanding cases must be explicitly requested.

Although called automatic, this mode must be enabled by

cf77 -Wd"-e6" or -Wd"-e7", or by the AUTOEXPAND
directive. An informational message is issued for each
expansion action. This is to remind you that expanded routines
need to be recompiled each time they are changed.

CF77 renames all variables and parameters in expanded
program units by combining the first four characters of the
variable with an integer number and the suffix X to create a
unique name. For example, the local variable I could become
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I1X, and the next reference to I in another expanded routine
could become I2X.

Operations that are performed during in-line expansion of
subroutines and functions are as follows:

Common blocks: All common blocks that are used in both
routines agree. The callee’s version of the common block may
be a subset of the caller’s. Elements of the common block may
have different names in caller and callee, but must not differ
in size or data type.

Constant parameters (from PARAMETER statements): Names

are examined and changed if necessary to avoid conflict with

any name from the calling program. Ifidentical in name and
value with a constant parameter in the calling program, then
no change is made.

Local variables: Local variables used in the expanded routine
are checked against all names defined in the caller, and made
unique.

Labels: All labels used in the called routine (FORMATS,
CONTINUES, DOs, and so on) are changed so that there is no
conflict with labels in the caller.

Actual vs. dummy parameters: Dummy parameters are
replaced with their corresponding actual arguments. In the
case of expressions passed as actual arguments, CF77 creates
a temporary variable to hold the expression and uses the
temporary in each of the places the dummy argument
appeared in the called routine.

Returns: RETURN statements are changed into branches to a
new label in the caller that represents the end of the called
routine. Ifitis an alternate RETURN statement, the branch
corresponding to that RETURN is directly to the specified label.

Function returned value: References to the function name as
a variable in an expanded function are replaced with another
name. (Calls to the original function may still exist
unexpanded.)

All in-line expansion messages appear as warnings. CF77 does
not expand any routine that has caused the generation of any of
the messages except for the ROUTINE EXPANDED message.
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CF77 identifies routines that have been expanded and tells you
why a routine was not expanded. A summary of the routines
and all the locations where a routine was or was not expanded is
displayed.

The following user messages are issued in regard to in-line
expansion:

¢ EXPANSION ROUTINE NOT FOUND

The expansion routine cannot be located, as specified by the
SEARCH directive or by the default location.

e SUBROUTINE/FUNCTION NOT FOUND IN INPUT FILE

The input file has been defined as the location for expansion
routines/functions, either by default or through a switch. The
routine/function is not found in the input file.

¢ EXPANSION ROUTINE IS TOO BIG FOR AUTOMATIC
EXPANSION

The routine has more noncomment lines than the allowable (the
default is 50; you can change the default number of lines); use
explicit expansion mode to expand. To change the default, use
cf77 -Wd"-M".

e EMBEDDED CALL STATEMENT ENCOUNTERED WHILE
EXPANDING

The expansion routine references another subroutine; use
explicit expansion mode to expand (for example, the NEXPAND
directive.)

e SYNTAX ERROR ENCOUNTERED IN EXPANSION ROUTINE

The expansion routine has a syntax error; therefore, it is not
expanded.

¢ ARGUMENT MISMATCH BETWEEN CALL AND EXPANSION
ROUTINE

The arguments specified in the calling sequence of a subroutine
or in a function reference do not match with arguments of the
expansion routine/function. For example, this could result from
a mismatch of data types, or from arrays with differing
dimensions.
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e EXCEEDED MAXIMUM NUMBER OF EXPANDED ROUTINES

The maximum number of different routines/functions CF77 will
expand has been exceeded. Currently this number is 600. This
message can also be issued if you exceed the maximum number
of times a given routine/function can be in-lined; this is
currently limited to 100 times.

e COMMON BLOCK MISMATCH BETWEEN CALLING AND
EXPANSION ROUTINE

Common blocks found in calling and expansion routines or
functions do not agree, or a COMMON variable in the expansion
routine is used as a local variable in the calling routine. The
common block in question is listed with this message.

e FUNCTION IN EXPANDED ROUTINE CONFLICTS WITH
NON-FUNCTION

A function found in the expanded routine is in conflict with a
nonfunction element in the calling routine. The function name
in question is listed with this message.

e SAVE STMT. INHIBITS EXPANSION, CHANGE TO COMMON
STMT.

s ENTRY STATEMENTS INHIBIT EXPANSION

e ACTUAL ARG. DIMENSIONS ARE LESS THAN DUMMY ARG.
DIMENSIONS

e DATA TYPES OF ARGUMENTS DO NOT MATCH

e SCALAR ACTUAL ARGUMENT PASSED TO DUMMY ARRAY
ARGUMENT

The formal argument (from the caller) is a scalar, but the

dummy argument (in the callee) is declared as an array.

e EXPAN, INHIBITOR - DATA STMT. IMPLIES SAVING OF
LOCAL VAR.

e« WIDTH OF DUMMY ARRAY DOES NOT MATCH WIDTH OF
ACTUAL ARRAY

e EXPANSION INHIBITED:SUBROUTINE USED AS A
FUNCTION REFERENCE

e EXPANSION INHIBITED: FUNCTION USED IN A CALL
STATEMENT
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s EXPAN. INHIBITOR - DATA TYPES IN COMMON BLOCK DO
NOT MATCH

The same common block appears in both caller and callee, but
data types of some elements of the block are not the same in
both routines.

e IN-LINE SAFE SWITCH INHIBITS EXPANSION WITH
CHARACTER ARGS

When the "safe” inlining option is used (c£77 -Wd"-e6"),
routines with character arguments are not in-lined.

¢ EXPAN. INHIBITOR - CONSTANT ARG. IS DESTINATION
OF A READ

¢ EXPAN. INHIBITOR: CHARACTER SUBSTRING LENGTH
UNDETERMINABLE

¢ WIDTH OF DUM. ARRAY AND/OR ACT. ARRAY CANNOT BE
DETERMINED

¢ FUNCTIONS IN ARITHMETIC IF STATEMENTS ARE NOT
EXPANDED

e POTENTIAL DISCREPANCY BETWEEN ACTUAL AND DUMMY
ARRAY WIDTHS

The situation that triggers this warning is discussed on page
132.

¢ ROUTINE EXPANDED

This warning message is issued whenever a routine/function is
expanded.
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A

A registers, 10, 14
ABS function, 25
Address (A) registers, 10, 14
Address functional units, 10, 16
Addressing, safe (FPP PERMUTATION directive), 60
Advisory directives, 124
aggress option, 27
Aggressive loop exchange criteria, 112
ALTCODE directive, 119, 120
Alternate code, 50
Amdahl’s Law, 30
Analysis inhibitors, 137
Arithmetic IF statement, 69
Arithmetic IFs, 74
Array bounds checking, 27
Array reference, vector, 22
Array syntax, 112
Arrays

constant index, 81

first values, 112

repeated elements, 60

syntax, 87

translation, 86
Assigned GOTO, 26
ASSOC directive, 119, 121, 130
Associative transformations, 111
AUTOEXPAND, 126
AUTOEXPAND directive, 119, 132, 134
Autotasking

threshold test, 112

B

b option, FPP, 127

B registers, 10

Background processor, CRAY-2 systems, 14
Backward branch, 20, 68

Block, 20

Branch, 20

Branches and vectorizing, 68
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Index

C

Carry-around scalars, 129
CDIR$

IVDEP, 50

NEXTSCALAR, 50

NOVECTOR, 50
c£77 command, 31

pass listing switches, 109
CFPPS directives, scope, 116
CFPP$ directives, table, 119
CFPP$ NODEPCHK exarnp]e, 57
CFPP$ NOEQVCHK example, 58
CFPP$ notation, 115
Chaining, 3, 12
Channel loops, 14
Channel node, 14
Character, comment, 111
Chime, 20
CHOP_HERE directive, 119, 120
Clock period, CRAY Y-MP systems, 9
CNCALL directive, 119
Code motion, 64
Code size, 137
Collapse loop nests, 112
Command line input, redirecting to fpp, 107
Comment character, 111
Compilation rate, 137
Compiler directives, 32
Complexity, preventing vectorization, 27
Compound exit conditions, 63
Computational section, CRAY-2 systems, 14
Computed GOTO, 26
CONCUR directive, 119
Conditional assignment, 75
Conditional block

examples, 70
Conditional operations, 75
Conditional reductions, 76
Conditional vectorization, 50
Constant array index, 81
Constant stride, 20
Control section, CRAY-2 system, 16
Controller, 14
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COUNT directive, 119, 124 FPP, 115
CPU computational section, 10 in-line expansion, 126
Cray word, 9
CRAY Y-MP system
architecture, 12 E
vector processing, 12
CRAY Y-MP systems, 9 —e option
CRAY-2 system fpp, 107
architecture, 16 Early exits, 62
vector processing, 16 EQUIVALENCE statement, 57, 111
CRAY-2 systems, 14, 113 Equivalenced scalars, 129

EQVCHK directive, 119, 123
Error exit, 112

D Error messages, FPP, 114
Event summary, listing, 114
-d option EXPAND, 126
fpp, 107 EXPAND directive, 119, 134
-d 1 option Expandable routines, searching, 113
fpp, 74 Expansion inhibitors, 138
-D option
fpp, 107
Data dependencies F
FPP option, 111
Data dependency, 20 -F option
Data dependency directives, 123 fpp, 107
Debugging, FPP, 137 File
Declarations added by FPP, 114 explicit/implicit name, 136
Definition, key, 41 First-order linear recurrence, 127
DEPCHK directive, 119, 123 Floating-point functional units, 10, 16
Dependencies Floating-point multiply functional unit, 12
FPP option, 111 FLOWMARK subroutine, 36
Dependency Flowtrace, 36
alternative code, 111 FOLR, 127
ambiguous subscripts, 52 FOLRP, 127
conflict, 41 Foreground processor, CRAY-2 systems, 14
directives, 56 Forward branch, 20, 69
EQUIVALENCE statements, 57 FPP
examples, 43 conditional operations, 75
indirect addressing, 60 -D option, 107
loop splitting, 53 -d option, 107
messages, 114 dependency analysis, 39
NODEPCHK directive, 20, 39, 56 -e option, 107
reference reordering, 51 error exit, 112
safe vector length, 49 ~F option, 107
test, 41, 46 fpp command, 107
threshold, 48 -1 option, 107
vectorizing recurrences, 48 IF statements, 73
Diagnostics, FPP, 114 -1 option, 34, 108
Directives list routines option, 107
compiler, 32 listing switches, 108, 109
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Index

loop analysis, 79
loop optimizations, 83
loops nest restructuring, 81
-M option, 108
messages, 114
-n option, 108
-o option, 108
-o option, 108
optimization switches, 109, 111
options, 107
-p option, 108
—g option, 108
-r option, 108
reformatting switches, 108
-S option, 108
specify file names for in-line expansion, 108
specify threshold value, 108
switches and directives, 110
-T option, 108
translated source to file, 108
typical -F file, 109
FPP directives, 115
FPP listing switches, 114
FPP loop analysis and tuning, 79
FPP options, specifying, 32
Full vectorization, 26
Functional unit
overlap on CRAY-2 system, 17
Functional units
CRAY Y-MP system, 10
segmented, 12, 17
Functions and subroutines, splitting out, 112

G

GOTO, assigned or computed, 26

H

Hardware monitor, 37
hpm command, 37
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I

-I option
fpp, 107
IF statement, three-branch, 69
IF loop, 61
IF loops, 61
into DO loops, 73
IF statements
source transformations, 73
Implied DO loop, 81
Implied-DO list, 26
INCLUDE files, listings, 114
Indirect addressing (FPP PERMUTATION directive), 60
In-line expansion
automatic, 132
explicit, 134
inhibitors, 138
In-line expansion directives, 126, 134
In-line expansion, source-level, 131
In-line expansion summary, 140
In-line expansion user messages, 139
Inlining
file names (FPP), 108
FPP, 108
FPP option, 107, 113
INNER directive, 119
Innermost loops, 24
Input line numbers, 114
Integer arrays, 60
Intermediate registers, 10
Invariant, loop, 20
/0
port, 9, 14
1/O section, 9
I/O statements, inhibiting vectorization, 26
T/O subsystem, 9
108, 9
ITERATION directive, 124
ITERATIONS directive, 119
IVDEP directive, 40, 50

K

Key definition, 41
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K

Key definition, 41

L

-1 option
fpp, 34,108
Last value saving, 55
Length, vector , 19
libperf.a library, 38
Library calls, replacement, 127
Line numbers, 114
Linear recurrence, 127
Linear recursion library calls, 111
LIST directive, 119, 125
Listing directives, 125
Listing switches (FPP), 108-109
Listing switches, to c£77, 109
Listings
FPP, 34, 108
Local memory, CRAY-2 systems, 16
Loop counter, 21
Loop exchange criteria, 112
Loop index
testing, 75
Loop invariant, 20
Loop peeling, 54
Loop splitting, 53, 54, 112
loop summary, listing, 114
Loopmark listing, 34
Loops
analysis, 79
branches, 68
branches and vectorizing, 63
collapse, 84
compound exit conditions, 63
early exits, 62
forward branches, 69
FPP Autotasking option, 111
fusion, 84
IF, 61
IF loops to DO loops, 73
IF, vectorizing, 61
implied DO, 81
innermost, 24
nest restructuring, 81
nested idioms, 111
reduction, 76, 79
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restructured, 112

search, 61

selection criteria, 82

short vector, 79

summary listing, 114

transforming IF to DO, 111

trip count, 63

unrolling, 85

unwinding, 25

variable iteration counts, 111
LSTVAL directive, 119, 122

M

-M option

fpp, 108
Measuring vectorization, 36
Memory, 28

indirect addressing, 67
Memory optimization, 29
Messages, FPP, 114, 140
Minimum DO trip count, 111
MoD function, 25

N

-n option, fpp, 108

NEXPAND, 126

NEXPAND directive, 119, 135
NEXTSCALAR, 27

NEXTSCALAR directive, 33, 50
NOALTCODE directive, 119, 120
NOASSOC directive, 119, 121
NOAUTOEXPAND directive, 119
NOCONCUR directive, 119
NODEPCHK directive, 56, 119, 123
NOEQVCHK directive, 57, 119, 123
NOINNER directive, 119

NOLIST directive, 119, 125
NOLSTVAL directive, 119, 122
NORECURRENCE directive, 33
norecurrence option, 32
noscalar option, 27

NOSPLIT directive, 119, 121
NOUNROLL directive, 119, 122
NOVECTOR, 27

NOVECTOR directive, 32, 50, 119
novector option, 27
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NOVSEARCH directive, 33, 62
novsearch option, 32
nozeroinc option, 32
Numerical differences, 25, 39

)

-o arguments, 32
off option, 27
Optimization

enabling switches, fpp, 107
Optimization switches, FPP, 109, 111
Order of operations, 39
Order of processing, changes to, 5
Other reference, 41
Output code, legibility, 110

P

-p option
fpp, 108
—p option switches to fpp, 125
Pass optimization switches, 109
PAUSE statement, 26
Perftrace, 38
perfview command, 37
PERMUTATION directive, 119, 123
PERMUTATION directive, FPP, 60
example, 60
PGD dependency, 43
PGI dependency, 43
Pipelining, 3
PLD dependency, 43
PLI dependency, 43
Port, /0, 9, 14
Previous area, 42
Primary registers, 10
Profiling, 38

Q

—q option
fpp, 108
-q 1 option, 125
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R

-r option, fpp, 108
RANF function, 25
Real-time clock, 10
Reciprocal approximation functional unit, 12
Recurrence, 20, 39
minimizing, 53
NODEPCHK directive, 56
RECURRENCE directive, 33
recurrence option, 32
Recurrences, 48
threshold, 48
Recursion, isolating, 112
Recursion, linear, library calls, 111
Redirecting command line input tofpp, 107
Reductions, conditional, 76
Reference reordering, 51
Reformatting switches (FPP), 108
Registers, 10
RELATION directive, 119, 123
RELATION directive, FPP, 59
RELATION directive vs NODEPCHK directive, 59
Reordering
reference, 51
RETURN statement, 26
RTC, 10

S

Sregisters, 10, 14
Safe vector length, 49
Same file, 136
Secalar, 1
transformed, 112
Scalar functional units, 10, 16
Scalar processing, 1
Scalar (S) registers, 10, 14
Scalar temporary, 21
Scalars, 128
carry-around, 129
conditionally defined, 128
equivalenced, 129
promotion, 128
Scope
CFPP$ directives, 116
SEARCH, 126
SEARCH directive, 119, 135
Search loops, 61
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Second-order linear recurrence, 127
Segmented functional units

CRAY-2 system, 17
Segmented functional units

CRAY Y-MP system, 12
SELECT directive, 119, 121
Selective tracing

Flowtrace, 36
Separate compilation, 136
SGD dependency, 43
SGI dependency, 43
SHORTLOOP directive, 33
Sign, alternating, 21
SKIP directive, 119, 120
SLD dependency, 43
SLI dependency, 43
Solid-state storage device, 9
SOLR, 127
SOLR3, 127
Source

showing loops, 114
Source file, optimized, 112
Source line debugging, 111
source lines, listings, 114
SPLIT directive, 119, 121
SSD, 9
STOP statement, 26
Stride, 20
Subprogram references in loops, 25
Subprograms

effect on vectorization, 23
Subroutines and functions, splitting out, 112
Subscript reference, ambiguous, 27
Subscripts

ambiguous, 52
Subsequent area, 42
Summary listing, 114
SUPPRESS, 27
SWITCH directive, 119, 126
Switches

FPP listing, 114
SYNC directive, 119
Syntax errors, listing, 114
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T

T registers, 10
Temporary, scalar, 21
Terminal, FPP listing format, 114
Three-branch IF, 26
Three-branch IF statement, 69
Threshold

FPP, 108
Threshold, recurrence, 48
TIDY subprocessor, 110
Transformation directives, 119
Translated code, listing, 114
Translation diagnostics, 114

U

UNROLL directive, 119, 122
Unwinding loops, 25

\'%

V registers, 10, 14
Vector array reference, 22
VECTOR directive, 32, 119
Vector functional units, 10, 16
Vector length, 19

safe, 49
Vector operation

definition, 3
Vector processing, 1
Vector registers, 12
Vector (V) registers, 10, 14
Vectorizable loop, 23
Vectorization, 1

enhancing (FPP option), 112

expressions, 23

numerical differences, 25
VFUNCTION directive, 26, 33, 87
VSEARCH directive, 33, 62
vsearch option, 32
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W

Warning messages, listing, 114

Y/

zeroinc option, 32

SG-3073 5.0 Cray Research, Inc. 149



Reader’s Comment Form
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Your reactions to this manual will help us provide you with better documentation. Please take a moment to
complete the following items, and use the blank space for additional comments.

List the operating systems and programming languages you have used and the years of experience with
each.

Your experience with Cray Research computer systems: 0-1 year 1-5 year B+years
How did you use this manual: in a class as a tutorial or introduction as a procedural guide

as a reference for troubleshooting other
Please rate this manual on the following criteria:

Excellent Poor

Accuracy 4 3 2 1
Appropriateness (correct technical level) 4 3 2 1
Accessibility (ease of finding information) 4 3 2 1
Physical qualities (binding, printing, illustrations) 4 3 2 1
Terminology (correct, consistent, and clear) 4 3 2 1
Number of examples 4 3 2 1
Quality of examples 4 3 2 1
Index 4 3 2 1

Please use the space below for your comments about this manual. Please include general comments about
the usefulness of this manual. If you have discovered inaccuracies or omissions, please specify the number
of the page on which the problem occurred.

Name Address

Title City
Company State/Country
Telephone Zip code

Today’s date Electronic mail address
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