

•
UNISYS STOS

Farms Designer
Programming
Guide

Copyright 0 1987 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation

Relative to Release
Level 6.0

Priced Item

October 1987
Distribution Code SA
Printed in U S America
5027212

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT.
Any product. and related material disclosed herein are only furnished pursuant
and subiect to the terms and conditions of a duly executed Program Product
license or Agreement to purchase or lease equipment. The only warranties
made by Unisys, if any, with respect to the products described in this
document are set forth in such license or Agreement. Unisys cannot accept
any financial or other responsibility that may be the result of your use of the
information in this document or software material, including direct, indirect,
special or consequential damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

Comments or suggestions regarding this document should be submitted on a
Field Communication Form (FCF). with the CLASS specified as 2
(S.S.W.:System Software), the Type specified as 1 (F.T.R.), and the
product specified as the 7-digit form number of the manual (for example,
5027212).

About This Guide

This guide contains reference information and
programming procedures for BTOS Forms Designer
software, including Forms Editor, Forms Reporter, and
Forms Run-Time.

Who Should Use This Guide
This guide is for BTOS Forms Designer programmers. To
understand some of the information in this guide, you
must be familiar with:

o standard workstation operating system Executive
commands

o linking a form to a program

How to Use This Guide
If you are using BTOS Forms Designer for the first time,
you should read sections 2 and 3. They contain basic
information you will need for installing the software and
creating, editing, and reporting a form.

v

In any case, if you scan the contents and review the topics
before you start, you may find this manual easier to use.
To find definitions of unfamiliar words, use the glossary;
to locate specific information, use the index.

How This Guide is Arranged
This material is divided into sections, with related subjects
grouped together. Section 1 describes the basic concepts
involved in the operations. Thereafter, the general
sequence of topics covers installing, using, and customizing
the software, and the representation of forms in memory
and on a BTOS disk file.

5027212

vi About This Guide

Procedures

Sections 2, 3, and 4 contain procedures for BTOS Forms
Designer operations.

For installation, refer to section 2.

For Forms Designer operations, refer to section 3.

For customizing Forms Designer, refer to section 4.

For descriptions of the external and internal
representation of a form, refer to section 5.

Conventions
The following conventions apply to all procedures:

o When two keys are used together for an operation, their
names are hyphenated (for example, ACTION-GO).

o The term character includes spaces.

Example Programs

Appendixes Band C contain complete programs in BASIC
and PASCAL languages. Appendix D provides you with a.
training exercise for creating a form.

Reference Material
This guide contains appendixes with reference
information, a glossary, and an index.

For definitions of key terms used in this manual or related
to this software, refer to the glossary.

Related Product Information
For detailed information about using the mouse device,
refer to the BTOS II System Reference Manual.

For more about linking a form to a program, you can refer
to BTOS II Language Development Linker and Librarian
Programming Guide.

For an explanation of workstation operating system
Executive Commands, refer to the BTOS II Standard
Software Operations Guide. For information about BTOS,
refer to the BTOS II System Reference Manual.

vii

Contents

About This Guide v
Who Should Use This Guide v
How to Use This Guide v
How This Guide is Arranged v
Procedures .. vi
Conventions .. vi
Example Programs vi
Reference Material vi
Related Product Information vi

Section 1: Overview 1·1
Forms, Fields, and Files 1-1
Field Definitions ... 1-2

Field Name .. 1-2
Default Field Value 1-3

Sequence Number 1-3
Data Type Control 1·3
Justification .. 1-4
Field Type: Mandatory, Protected, or Optional 1-4
Secret Property .. 1-4
Field Auto-exit During Program Run 1-5
Repeating Fields 1-5
Character Attributes 1-5
User Validation Routine 1-6
Help Message ... 1-6
List of Values ... 1-6
Selected/Unselected Color 1-7
Displaying a Report on a Form (Forms Reporter) 1-8
Forms Run-Time 1-8
Using the UserFillField Routine 1-9
Using the TypeForm Routine 1-9
Opening a Form ... 1-1 0
Custom Keyboard Configurations•........... 1-10
Using the Mouse 1-11

Section 2: Software Installation 2-1
Installing the Forms Software 2-1

Section 3: Forms Editor and Forms Reporter 3-1
Activating the Forms Editor 3-1
Forms Editor Display 3-3
Moving the Cursor 3-3
Selections ... 3-3

5027212

viii

Captions
Edit Modes .. .
DELETE and BACKSPACE Keys
Literally Inserting Characters and Symbols
Forms Editor Functions
Reselecting a Previously Selected Area (Fl)
Undoing the Most Recent Function (F2)
Displaying Graphics (F3)
Drawing lines and Boxes (F4)
Erasing lines and Boxes (F5)
Reading a Form (F6)
Inserting Text (CODE-F6)
Writing a Form (F7)
Defining Fields (F8)

Defining Repeating Fields
Modifying Field Definitions
Modifying Field Position and Width
Color Selection (CODE-F8)
Testing Forms (F9)
Deleting Selections (F10)
Copying and Moving
Displaying Text in 132-Column Format (CODE-Z)
Displaying Text in 146-Column Format (CODE-Z)
Viewing Edit Codes (CODE-V)
Selecting Tags (NEXT)
Exiting the Forms Editor
Displaying a forms Report
Creating forms Library files
forms Editor Error Response
Forms Editor In-Memory Work Area

Section 4: Forms Run-Time
AddValues
DefaultField .. .
DefaultForm
DisplayForm
EditForm .. .
ExtractValues .. .
FonctForm
GetFieldlnfo
LockKbd .. .
OpenForm
OutForm .. .
ReadField
RestoreForm
SetFieldAttrs
SetFieldType

Contents

3-5
3-5
3-6
3-6
3-7
3-8
3-8
3-9

3-10
3-10
3-11
3-12
3-14
3-15
3-21
3-26
3-27
3-27
3-28
3-28
3-29
3-30
3-30
3-30
3-31
3-31
3-32
3-34
3·35
3-35

4-1
4-2
4-4
4-5
4-6
4-7

4-11
4-12
4-13
4-16
4-17
4-18
4-20
4-21
4-22
4-23

Contents ix

StoreFieldData .. 4-24
TypeForm .. 4-26
UndisplayForm .. 4-30
UserFiIIField .. 4-31
Write Field .. 4-33
User Validation Routines 4-34
Forms Run-Time Customization 4-37
Keyboard Configuration 4-37
Configuring the Type System 4-39
Type Codes ... 4-39
Defining Types ... 4-40
Adding Types .. 4-40

EncodeProc .. 4-41
DecodeProc .. 4-42

Range Checking and Data Validation 4-43
Forms Run-Time Error Response 4-43

Section 5: Forms Structure 5-1
External Structure 5-1
Internal Structure 5-5

Appendix A: Error Messages• A-l
Forms Run-Time Error Codes A-l
Forms Editor Error Messages A-4
Forms Run-Time Error Messages A-l0

Appendix B: Sample BASIC Program 8-1

Appendix C: Sample PASCAL Program•......... C-l

Appendix 0: Training Exercise: Creating a Form 0-1
Activating the Forms Editor to Create a Form 0-1
Starting with Captions 0-1
Adding Lines and Boxes 0-2
Adding Tabular Columns 0-5
Defining Fields for User Entry 0-6

Glossary• Glossary-l

Index .. Index-l

5027212

xi

Illustrations

3-1 Forms Editor Command Form with Graphics 3-2
3-2 Forms Editor Command Form without Graphics 3-2
3-3 Forms Editor Help Screen 3-8
3-4 Graphics Display Form 3-9
3-5 Read Form Form 3-12
3-6 Text Insertion Form 3-13
3-7 Write Form Form 3-14
3-8 First Define Field Form 3-15
3-9 Second Define Field Form 3-16
3-10 Field Tags (Sample) 3-21
3-11 Finish Form (Sample) 3-32
3-12 FREPDRT Command Form 3-33
4-1 AddValues Buffer Structure 4-3
4-2 EditForm Buffer Structure 4-9
4-3 TypeForm Buffer Structure 4-28
5-' Form Format - External Representation 5-1
5-2 Color Matrix 5-11
0-1 Selected Caption Box 0-2
0-2 Captions in a Box 0-3
0-3 Selected Horizontal Line 0-3
0-4 Subdivided Box 0-4
0-5 Tabular Form 0-5
0-6 Selection for a Repeating Field 0-1
0-7 Defined Fields 0-1
0-8 Finished Form 0-9
0-9 Sample Form Report 0-10

5027212

xiii

Tables

2-1 BTOS Forms Designer Executive Level Commands 2-2
3-1 Cursor Movement 3-4
3-2 Forms Editor Functions 3-7
3-3 Character Attributes 3-19
4-1 AddValues Procedural Interface Parameters 4-2
4-2 DefaultField Procedural Interface Parameters 4-4
4-3 DisplayForm Procedural Interface Parameters 4-6
4-4 EditForm Procedural Interface Parameters 4-8
4-5 ExtractValues Procedural Interface Parameters 4-11
4-6 FonctForm Procedural Interface Parameters 4-12
4-7 GetFieldlnfo Procedural Interface Parameters 4-13
4-8 Information Returned by GetFieldlnfo 4-14
4-9 Open Form Procedural Interface Parameters 4-17
4-10 OutForm Procedural Interface Parameters 4-18
4-11 Information Returned by OutForm 4-19
4-12 ReadField Procedural Interface Parameters 4-20
4-13 RestoreForm Procedural Interface Parameters 4-21
4-14 SetFieldAttrs Procedural Interface Parameters 4-22
4-15 SetFieldType Procedural Interface Parameters 4-23
4-16 StoreFieldData Procedural Interface Parameters 4-24
4-17 TypeForm Procedural Interface Parameters 4-27
4-18 UserFiliField Procedural Interface Parameters 4-32
4-19 Information Returned by UserFiIIField 4-32
4-20 WriteField Procedu~al Interface Parameters 4-33
4-21 Keys That Can Be Reconfigured 4-38
4-22 EncodeProc Parameters 4-41
4-23 DecodeProc Parameters 4-42
5-' Form STRUCTURE Parameters 5-6
5-2 Run STRUCTURE Parameters 5-7
5-3 Blank STRUCTURE Parameters 5-8
5-4 ExtendedBlank STRUCTURE Parameters 5-10

5027212

Section 1 1-1

Overview

The BTOS Forms Designer allows you to create, revise, and
incorporate forms into your programs that request and
accept user input.

The Forms Designer software includes:
o a Forms Editor (FORMS EDITOR command) to help you

design forms
o a Forms Reporter (FREPORT command) to display

information about a form you have created
o Run Time Modules (Forms Run-Time) that you link to a

program to display forms and accept data that you supply.

You design or edit forms (draw lines, enter captions, and
define fields for user entries) using the Forms Editor.
Since Forms Run-Time permits a program to refer to fields
symbolically, you can often edit a form without changing
the program.

While you are editing or designing the form, the Forms
Editor displays the form as it appears at program run
time. The Forms Editor also has a Test Drive function that
allows you to fill in fields as a user. When you use the
Test Drive function or the Write Form function to save
your form, the Forms Editor converts the form into an
object module. Refer to section 3 for information.

When you finish creating or editing a form, you may save
the form for run time access, add it to a library of similar
forms using the BTOS Librarian, or link it directly with
your application.

Forms, Fields, and Files
Forms consist of lined and captioned displays with fields
for accepting user data entries or displaying computed
data. A form can contain many nonoverlapping fields,
limited by display size and byte availability. You define
the fields when you create or change a form.

Each field has a distinguishing name; however, you can
designate repeating fields (that is, several fields with the
same name). Repeating fields are distinguished by their
index number.

5027212

1-2 Overview

Field Definitions

Lines and captions are protected fields; that is, user input
at run time cannot change them. You define unprotected
fields (the fields for user input) by using the Define Field
function of the Forms Editor (refer to section 3).

Defined fields have:

o field name
o index (if repeating fields)
o default value (optional, value that appears in the field)
o sequence number
o data type control (Tx, An, Ab, or Nu)
o justification (L, R, or a number in the range 1-15)
o mandatory
o protected
o secret property
o show default
o automatic exit when the user enters a last character
o repeating
o selected/unselected character attribute (up to 16

character attribute combinations can be applied to select
or unselect parameters. The attributes are listed in
table 3-3.

o user validation routine
o help message
o list of values
o selected/unselected color (0,1, ... 7)

Field Name

The field name is a text string up to 40 characters in
length. When a program calls Forms Run-Time, it specifies
the field name (and index if the field is repeating). Field
names must be unique, unless all fields that share the
name are repeating. In matching field names, Forms
Run-Time ignores the distinction between uppercase and
lowercase.

Overview 1-3

Default Field Value

Each field has a default value that the field is set to when
Forms Run-Time displays the form. The default is empty
(null) unless you enter a value when you define (or
redefine) the field.

Unless you set the Show Default? field to No when you
define a field, the default displays when the form is used.
Forms Run-Time reads the default value whether or not it
displays.

Sequence Number
The sequence number applies only if TypeForm controls
form fill-in processing.

When the user exits a field, TypeForm checks if the exit
was caused by a Next field or a Previous field function
key, by the auto-exit property (equivalent to a Next field
key), or by a First field or a Last field function key.

TypeForm chooses the field to be selected next. The
default orders the fields depending on their location on the
screen, from top to bottom and from left to right. The user
may explicitly define the sequence number of each field.
The sequence numbers associated with the different fields
of a form must be a continuous range of values starting at 1.

Data Type Control
Data types can be any of the following:

o alphabetic - lowercase and uppercase letters only
o numeric - 0 ... 9, +, -, decimal mark in decimal fields
o alphanumeric - letters, figures and usual special

characters
o text - all ASCII characters (default)

When the user or the application program enters a
character into a field, Forms Run-Time verifies that the
character is the required type for that field. If it is not,
and the user has entered an incorrect character, an error
message displays. If an application program has entered
an incorrect character, an error code is returned to the
program.

5027212

1-4 Overview

A space is considered as an alphanumeric character,
except when Forms Run~Time is checking whether a field
is empty or not. The uninitialized part of a field always
contains binary zeroes and not spaces, although binary
zeroes are never returned to the application program.

Justification
Justification of text in a field can be:

a left-justified (default)
a right-justified
a justified on the decimal point (the user specifies a fixed

number of decimals when defining the field)

Field Type: Mandatory, Protected, or Optional
The field type can be mandatory, protected, or optional.

Mandatory fields are fields that cannot be left empty. An
empty field contains no other character than space(s) or
binary zero. This is checked:

a each time the user exits a mandatory field that has been
selected for being filled in; or

a for all mandatory fields in a form when the user presses
a form validation key

Note: If the field is initialized with a default value or a value written by the
application program, the user is not required to modify this value.

A protected field allows data to be entered by an
application program, but not by the user. The TypeForm
operation automatically skips over protected fields.

Optional fields (default) include all other fields.

Secret Property
If a field is defined with the secret property, every
character entered (by an application program or by the
user) displays as # on the screen.

Overview 1-5

Field Auto-exit During Program Run
Forms Run-Time returns control to the program when the
user attempts to exit the field. If you set the Auto-exit?
field to yes when you define a field, then Forms Run-Time
returns control to the program when the user enters a text
character in the last character cell of the field.

Repeating Fields
Repeating fields are groups of fields that have the same
name. For example, tabular forms with columns containing
rows of data usually have repeating fields. Each column
contains many fields of the same name.

The repeating fields are distinguished from one another by
their indexes (locations). If the repeating field is vertical,
the Forms Editor automatically assigns index numbers
consecutively (starting with 1). However, you can assign
index numbers when you define the repeating field (Define
Field function of the Forms Editor). No two fields
(locations) can have the same field name and index number.

You can change the number of fields for repeating fields
without changing the program that calls it; however, the
program must use the Forms Run-Time Service
GetFieldlnfo procedure to determine the number of fields
(refer to section 4).

Character Attributes
You can apply visual character attributes (highlights) to

fields when you define them. The character attributes
available are:

o blinking
o reverse video
o half-bright
o underlining

You can assign a selected and an un selected character
attribute to each field. When a user positions the cursor in
a field, the field is selected; when a user positions the
cursor outside the field, the field is unselected.

5027212

Overview

User Validation Routine
The user validation routine applies only if TypeForm
controls form fill-in processing.

This option allows the application program to verify the
value entered in a field, whenever this value is modified,
rather than performing user-specific validation for the
whole form after the TypeForm operation is complete. If
any value is erroneous, it calls TypeForm again to request
a modification from the user.

When defining the field, the user may associate with it the
name of a user validation routine. All the user validation
routines must be public procedures linked with the
application program; you must declare them when
configuring Forms Run-Time.

During form fill-in, each time the field contents are
modified without the field becoming empty, TypeForm
automatically calls the user validation routine (if it
exists). The user validation routine receives as input the
name, index, and number of the field, and its current
value. If it validates the value, it can optionally return to
TypeForm the name, index or number of the field that
must be selected next for input. The default is to let
TypeForm choose the next field to be selected, depending
on the last function key the user has entered. If it does
not validate the value, the field remains selected. The user
validation routine specifies the cursor location in the field
and the error message to be displayed.

Help Message
The help message displays on the bottom line of the screen
each time the user presses the Help key while filling in a field.

Note: The Help key may be pressed while in the Forms Editor to bring up a
single screen that lists the function key assignments and the character attributes
table.

List of Values
A field can be created so that it can never contain
anything but a value out of a limited list the user specified
when defining the field.

Overview

When such a field is selected for input, the user can either:

o display one by one all the values in the list, using a
Next value or Previous value function key

1-7

o enter any ASCII character, in which case the first value
in the list starting with this character will display (the
search starting with the value immediately following
the one currently displayed, so that if two different
values start with the same character, they can be
selected one after the other)

The default value or any value written into the field by
the application program is valid only if it is equal to one
of the values in the list, or to the first characters of one of
these values. In the second case, the whole value is displayed.

Uppercase and lowercase letters are considered as
equivalent when matching a character entered by the user,
the default value, or a value written by the application
program with one of the values in the list.

When the DisplayForm operation initially displays the
form, a field defined with a list of values contains its
default value or, if no default value has been specified, the
first value in the list. The show-default property is
ignored. In any case, such a field can never be empty.

Selected/Unselected Color
If your workstation has color capability, you can choose
the colors for lines, fields, and captions.

Color selection for a given form can be made from a color
palette made up of eight colors, numbered 0 through 7.
Each color is made up of component hues of red, green,
and blue. Four intensities of each hue are possible,
numbered 0 through 3. When the desired color and hue
selections are made the palette becomes a permanent part
of the form.

5027212

1-8

Displaying a Report on a Form (Forms
Reporter)

Overview

The Forms Reporter (FREPORT command) displays
information about a form (form name, size, height and
width, and number of fields) and lists each field's defined
characteristics. Refer to Display a Forms Report in
section 3 for information.

o name
o position
o size
o single or repeating
o index range
o options

You can direct the form's characteristics and image to the
screen, disk file, or print device.

Forms Run-Time
Through the Forms Editor, you can draw rulings of
various styles, define text captions, and designate fields to
be completed at run time. The completed form design is
stored in a file, accessible at any time by the application
program using Forms Run-Time.

Forms Run-Time, a library of object modules that can be
linked to the application program, provides the following
capabilities:

o displaying a previously-designed form
o obtaining information about a form
o allowing the user to enter data in the form
o returning data into the calling application program

In its library of object module procedures, Forms Run-Time
has two major user-input routines: the UserFillField
routine and the TypeForm routine. The UserFillField
routine allows form fields to be completed one by one
under program control. The TypeForm routine completes
all form fields without requiring program intervention.

You can write a program in any of the programming
languages available for workstations, and use Forms
Run-Time services.

Overview

Using the UserFiliField Routine

The sequence for using Forms Run-Time with the
UserFillField routine is as follows:

1-9

The program specifies the form name and, optionally, a
display location.

2 Forms Run-Time uses the tables stored by the Forms
Editor to display the form.

3 The user completes fields in a sequence controlled by
the program.

4 Forms Run-Time prompts the user to enter data into
each field and returns the data to the calling program.

5 Forms Run-Time controls user exit from each field as
follows:
If the user presses a key that moves the cursor within
the field (such as BACKSPACE, DELETE, Left Arrow
or Right Arrow), Forms Run-Time does not return
control to the program.
If the user presses a key that moves the cursor from the
field (such as TAB, NEXT, Up Arrow or Down Arrow),
Forms Run-Time exits the field and returns control to
the program.
If the user enters text (alphanumerics and punctuation),
Forms Run-Time does not return control to the program
unless Auto-exit? is turned on (set to yes) and the text
entry is in the last character cell of a field.

6 Forms Run-Time encodes field input values as it returns
them to the program.

Using the TypeForm Routine

The sequence for using Forms Run-Time with the
TypeForm routine is as follows:

1 The program specifies the form name and, optionally, a
display location.

2 Forms Run-Time uses the tables stored by the Forms
Editor to display the form.

3 The user completes fields in a sequence controlled by
the Forms Designer.

4 Forms Run-Time prompts the user to enter data into
each field.

5027212

1-10 Overview

5 The user presses a form-validation key, which allows
Forms Run-Time to encode and validate field input
values as it returns them to the calling program. The
user can alternatively press the form-cancel key to
return control to the program without accepting any
modified values.

Note: TypeForm can optionally validate each field's entry each time the entry
is changed (refer to section 3).

Opening a Form

An open form consists of a memory work area that
contains all the information needed to display the form
and to access its fields. The work area required is included
in the Forms Reporter report and displays at the top of
the Forms Editor display (unless the form fills the display)
so you can monitor form size as you create a form. A
full-display form requires a work area of approximately 2Kb.

The program must open the form before a user can enter
data in it. You use the Forms Run-Time OpenForm service
to instruct the program to open the form (refer to section 4),

In addition, you can use the BTOS Linker for static
inclusion of the forms in the run file. The program can
then refer to the form by its form name (declared as a
public symbol in the form file). The form is conceptually
opened at link time and you do not need OpenForm. (Refer
to the BTOS II Language Development Linker and
Librarian Programming Guide.)

Note: Forms are easier to maintain if the form and run files are separate.

Custom Keyboard Configurations
You can reconfigure (or redefine) the keyboard functions
by using the TabKey table contained in FmTabKey.asm or
FmTabKey5.asm.

The Forms.Lib provided with the BTOS Forms 6.0 release
has the Forms 4.0 keyboard table as the default
configuration. If you wish to use the Forms 5.0
configuration, you must assemble the FmTabKey5.asm,
renaming it to FmTabKey.obj during assembly. This
module must be placed in the Forms.Lib using the BTOS
Librarian. Your application(s) must be relinked with
Forms.Lib to complete the procedure.

Overview 1-11

In this manual, a key that you can reconfigure is referred
to by its function. For example, a key you use to move the
cursor to the next field in a form is called the Next Field key.

Keys that are reserved and cannot be reconfigured are
called by their key names (for example, DELETE,
BACKSPACE, and OVERTYPE).

For more information on reconfiguring the keyboard, refer
to section 4.

Using the Mouse
If the mouse server has been installed on your system, you
can use the mouse to select areas of the screen. The mouse
cursor is a solid block and moves independently from the
normal cursor. When the left mouse button is pressed, the
action is the same as for the MARK key. The function of
the right mouse button is the same as for the BOUND key.

For additional information about mouse hardware and
software use and installation, refer to the BTOS II System
Reference Manual.

5027212

Section 2 2-1

Software Installation
You use the procedures in this section to install your
Forms software. After you install the software, you run
the Forms Editor and Forms Reporter (FREPORT) by
entering commands at the Executive level. In addition, the
Forms Run Time Services are available for linking forms
into run files.

You install the Forms software from the software
diskettes. The diskettes are write-protected; you should
not write-enable them or use them as a working copy.

The system directs the software installation, prompting
you when it requires information.

The BTaS II Standard Software Operations Guide
contains additional information on installation procedures.

The installation run file utilizes a set of forms to
interactively install the Forms software.

Installing the Forms Software
To install the Forms software use the following
procedure:

Sign on to your system.
2 Insert the first of the two software diskettes in floppy

disk drive [fO).
3 Enter one of the following entries in the Executive

command line:
[J To install on a workstation, enter SOFTWARE

INSTALLATION.
[J To install on an XE520 master, enter XESOFTWARE

INSTALLATION.
4 Press GO.

A form is displayed.

5027212

2-2 Software Installation

5 Press GO to install the Forms 6.0 software (default is I
(Install)).

Note: If you want to deinstall, press D to remove previously installed
Forms files and commands. Then press GO.

The installation configuration form is then displayed.
You can change the default values specified in this
form to customize the installation of the Forms
software for your workstation.

6 If your workstation is a B26, B28, or B38 with
graphics hardware, and you want to use the
graphics-capable Forms Editor, enter YES following the
question Do you want Editor Graphics Capability

7 Press GO to continue the installation procedure. Press
CANCEL to abort.

8 Based on the options you have chosen, the number of
unused sectors for the specified volume and the total
number of sectors needed for the chosen configuration
are calculated and displayed.

9 If you have enough sectors, press GO to continue. If
you do not have enough sectors, press CANCEL to
halt. The installation continues when you press GO.

to When the system prompts you, remove the first
software diskette from your workstation's floppy disk
drive and install the second diskette.

Note: If you selected No to install the Forms library, installation is
complete.

11 Press GO.
12 When the message ···INSTALLATION OF BTOS

FORMS DESIGNER COMPLETE·'" appears, remove
diskette 2 of 2 and store it properly.

Table 2-1 lists the new commands you can enter from the
Executive after you install the Forms software.

Table 2-1 BTOS Forms Designer Executive Level Commands

Command

FORMS EDITOR
FREPORT

Description

editor for modifying and creating forms
reporter for detailed information on form size. number
of fields, and field· characteristics

Section 3

Forms Editor and Forms Reporter

The Forms Editor and Forms Reporter provide you with
two tools for designing forms:

3-1

o You can use the Forms Editor to design or modify a
form. The Forms Editor includes a Test Drive function
that allows Forms Run-Time to take control. Forms
Run-Time displays the form and allows you to test the
form as a user.

o You can use the Forms Reporter to display statistics
about the form, such as size and field characteristics.

This section contains procedures for using the Forms
Editor and Forms Reporter. In addition, appendix D
contains a training exercise for creating a form and a
sample report.

Activating the Forms Editor
To activate the Forms Editor when you want to create a
new form, enter FORMS EDITOR in the Executive
command line; then press GO. The Forms Editor display
appears.

Note: You do not have to specify a name for your form before you design it;
however, if you want to save the form you must specify a name before exiting
Forms Editor.

To activate the Forms Editor when you want to revise
an existing form, use the following procedure:

Enter FORMS EDITOR in the Executive command line.
2 Press RETURN.

The system displays one of two FORMS EDITOR
command forms, depending on whether graphics
capability is installed (refer to figure 3-1 and
figure 3-2).

3 Enter the file name in the [File] field.
Do not include a .form suffix; the system adds the
suffix when you use the Write Form function (refer to
Writing a Form).
The system uses the current volume and directory as
the default path. To access a form from a different
volume or directory, you must include the volume and
directory names.

5027212

3-2 Forms Editor and Forms Reporter

4 Enter the name of the form you want to modify in the
[Form] field, if the file includes more than one form.
The default is the file name.

5 Enter the name of the file in the [Graphic File] field, if
a graphics file is to be displayed in the background on
graphics workstations only.

6 To display the form starting at a particular column from
the upper left-hand corner, enter the starting-column
coordinate in the [Column] field.
The default centers the form, left to right, on the display.

7 To display the form starting at a particular line from
the top of the form, enter the starting-line coordinate in
the [Line] field.
The default centers the form, top to bottom, on the display.

8 Press GO.
The Forms Editor displays the form.

Figure 3-1 Forms Editor Command Form with Graphics

[File)
[Form]
[Graphic File]
[Column]
[Line)

Figure 3-2 Forms Editor Command Form without Graphics

[File]
(Form]
[Column]
[Line)

Forms Editor and Forms Reporter 3-3

Forms Editor Display
The Forms Editor display includes two areas:

o a status area above the line
o a work area below the line

The system displays messages in the center of the status
area. After you have named and saved the form, (refer to
Writing a Form), the number of bytes the form uses
appears at the top right corner and the form name appears
in the center.

If you create or access a form that uses the entire display
area, the work area expands and the status information no
longer displays.

When you activate the Forms Editor to create a form, the
work area is blank except for the cursor; when you
activate the Forms Editor to modify a form, the form
appears in the work area with the cursor at the last line
edited.

Moving the Cursor

The cursor may be moved by:

o pressing Left Arrow, Right Arrow, Down Arrow, or Up
Arrow individually or in combination (refer to
table 3-1).

o using the mouse, if you have the mouse server installed,
by using the left mouse button.

Selections

A selection is a rectangular display area that you select
(specify) by using MARK and BOUND or by using the
mouse. After you select an area, you can use the Forms
Editor functions on the selection (refer to Functions).

You can select only one area at a time; however, the
selection can be any size and can include fields or a
portion of a field, line, or caption.

5027212

3-4 Forms Editor and Forms Reporter

Table 3-1 Cursor Movement

To Move The Cursor

three lines up or down
five spaces right or left

to the display edge

to the center

diagonally

to a display corner

Press These Keys

SHIFT and Up Arrow or Down Arrow
SHIFT and Right Arrow or Left
Arrow
CODE and Up Arrow, Down Arrow,
Right Arrow, or Left Arrow
Right Arrow and Left Arrow; or Up
Arrow and Down Arrow
Up Arrow or Down Arrow and Left
Arrow or Right Arrow
CODE and Up Arrow or Down Arrow
and Left Arrow or Right Arrow

To make a selection, use the following procedure:

1 Position the cursor at one corner of the area you want
to select.

2 Press MARK.
The character cell containing the cursor appears in
reverse video. This becomes the marked corner of your
selection; to change it, you must press MARK to remove
the selection and then return to step 1 to select the
marked corner.

3 Move the cursor to the diagonally opposite corner of the
area you want to select.
This location becomes the bound corner of your
selection.

4 Press BOUND.
The selected area appears as a reverse video rectangle.
To change the width or height of your selection, move
the cursor to a different location and press BOUND.
The marked corner of the selection remains fixed, but
the bound corner can be changed as often as you like to
fine-tune your selection.
Press MARK to remove the selection. The character cell
at the cursor location remains in reverse video.

Forms Editor and Forms Reporter 3-5

Captions

The Forms software protects captions; lines cannot
overwrite these text entries during forms editing, nor can
the user modify them.

You can place captions anywhere, but lines and captions
cannot occupy the same character cell. Two or more
distinct captions can occupy the same line of a form, for
example:

left caption right caption

You should separate these same line captions by cursor
movement (empty character cells), not by spaces. Spaces
are characters and you cannot draw lines through
character cells occupied by spaces.

Editing a caption does not affect the position of other
captions on the same line. In the following example,
changing left caption to left-hand caption does not change
the position of right caption:

left caption
left-hand caption

right caption
right caption

If you edit one of these same line captions so that a
caption runs into a caption to the right, or if you try to
insert more characters than can fit on that line, the
system beeps.

A caption overrides a selection. If you start entering a
caption after making a selection, the selection disappears.
You can recover the selection after you finish entering the
caption by using the Reselect function.

Edit Modes
You use either insert or overtypemode to create or modify
captions. In overtype mode, the characters you enter
replace the characters at the cursor position. In insert
mode, the characters you enter are inserted at the current
cursor position (the character at the cursor position and
the cursor move to, the right).

502n12

3-6 Forms Editor and Forms Reporter

For overtype mode, use the following procedure:

To activate the overtype mode, press OVERTYPE.
The keycap light (LED) comes on.

2 To return to the insert mode, press OVERTYPE again.
The LED goes off.

Note: The Forms Editor does not wrap text, but you may repeat fields to
obtain similar results. If an insert causes the text to pass the edge of the
display or to run into text that ends at the display edge, the system beeps and
does not accept the entry. For repeating fields, text can be entered into a field
until it is filled. Then the cursor must be moved to the next field and text can
again be entered.

DELETE and BACKSPACE Keys
DELETE and BACKSPACE can help you edit captions.
When you press DELETE, you remove one character (at
the cursor position).

BACKSPACE functions differently depending on which
edit mode you use, as follows:

o In overtype, BACKSPACE is equivalent to Left Arrow;
it moves the cursor to the left but does not delete text.

o In insert, BACKSPACE moves the cursor to the left and
deletes text to the left of the cursor position as it moves.

Literally Inserting Characters and Symbols
Press the CODE and the Equals (=) keys together to
literally insert the next key you press. For example, to
insert an Up Arrow character in your form, press
CODE-=, then press Up Arrow.

All characters in the range OOh-FFh are accessible.

Forms Editor and Forms Reporter 3-7

Forms Editor Functions
The Forms Editor includes functions that you use to
create, revise, save, test, and use forms. You activate the
Forms Editor functions by pressing function keys Fl
through FlO and HELP (refer to table 3-2), using:

o RETURN, NEXT, TAB, or Down Arrow to move to the
next field in a form

o Up Arrow to move to the previous field in a form
o CODE-Up Arrow to move to the first field in a form
o CODE-Down Arrow to move to the last field in a form
o SCROLL UP to move to the next value in a field
o SCROLL DOWN to move to the previous value in a field
o GO to validate a form
o CANCEL to cancel a form

Table 3-2 Forms Editor Functions

Key Function

Fl Reselect
F2 Undo
F3 Graphics·
SHIFT-F3 Graphics'
F4 Draw
CODE-F4 Draw
SHIFT-F4 Draw
F5 Erase
F6 Read Form
CODE-FB Insert Text
F7 Write Form
FB Define Field
CODE-FB Color Selection
F9 Test Drive
FlO Delete Selection

CODE-= Insert
CODE-(A-PI Define Attribute

HELP Forms Editor Help
screen

Use This Function To:

select the last selected area
delete the last change
display graphics
undisplay (remove) graphics
draw a line or box (single thin bar)
draw a line or box (double thin bar)
draw a line or box (single thick bar)
remove a line or box
display a saved form
display a saved text file
save a form
define field characteristics
select the color palette for a given form
test the form as a user
delete captions, lines, and fields from the
selection
insert literal character
define attribute of selected area (refer to
table 3-3)
display the Forms Editor Help Screen
(refer to figure 3-3)

* Forms with graphics capability

5027212

3-8 Forms Editor and Forms Reporter

Figure 3-3 shows the Forms Editor Help Screen as it
appears when you press HELP. The Help Screen shows the
function key assignments and the character attributes table.

Reselecting a Previously Selected Area (F1)

In most cases, when you select an area and then perform a
function on that selection (for example, Draw), the Forms
Editor removes the selection from that area. If you want
to select the same area that the function was performed
on, press Reselect (Fl) and position the cursor to the
receiving location.

Undoing the Most Recent Function (F2)

You can remove the effect of your most recent function by
pressing Undo (F2). The Forms Editor also returns the
selection and cursor to the previous position.

Undo restores deleted text or erased lines, deletes inserted
or copied lines, and replaces moved material in its original
position. Any uninterrupted sequence of text-entry
operations counts asa single function for Undo.

Figure 3-3 Forms Editor Help Screen

[~t'mJ.i~l~ijllMij~~iFE{f.'i~~~JMytt~iHW.#.p.!tij~~pgr.M:¢'M~i@il
F1 _ R_lecIthe !aslselecled area
F2 • Undo the last change
F3 - Display a graphics Image (Forms Graphics Only)
F4 Draw a IIn8 or box (single thin bar)
SHIFT-F4 - Draw a line or box (slngl8 thick bar)
CODE-F4 Draw a line or box (double thin bar)
F5 - Erase (remova) a line or box
Fe • Read and display a Form
CODE-Fa Read and display a taXI ma
F7 Wrtte a Form
Fa • Denne the characteristics 01 the selected lIeld
CODE-Fa Deline the color characteristics of the current form
AI • T esl drlve the current form
F10 Delele lhe entire .elected area
CODE- • Insert literal character
CODE-char· Deline lIItrIbut .. 01 selected area:

1::§ti:.M
~1:~:t:~J!~JIi'~A:"":'!.~;;:;,~J ABC D E F G H J K L M N 0 P

1I2-brlghl
Underline
Rw.V1deo
Blinking

x x x
x x

x x

x
x x
x x

x x x x
x x x x

x x x X

XXXlIxxxx

Forms Editor and Forms Reporter 3-9

Displaying Graphics (F3)

If you have installed Forms Designer with graphics
display capability, you can display a graphics picture that
is contained in a file.

To display a graphics picture, use the following
procedure:

Press Graphics Display (F3).
The system displays the Graphics Display form (refer to
figure 3-4).

2 In the [Graphics File] field, enter the name (including
the suffix) of the file containing the graphic picture
(the default suffix is .pic).
If you already used the Graphics Display function, the
name of the file you previously specified appears in the
[Graphics File] field.

3 Press GO.
The system displays the graphics picture. If the picture
is larger than the form, the picture overlaps the form's
boundaries.

To remove a graphics picture, do the following:

1 Press SHIFT·F3 to remove the displayed graphics
picture.

Figure 3-4 Graphics Display Form

r;:====== GRAPHICS DISPLAY =====::::::;,

5027212

3-10 Forms Editor and Forms Reporter

Drawing Lines and Boxes (F4)

You can use the Draw function (F4) to draw lines and
boxes on your form. Any text in the path of a line
(including spaces) is unaffected; therefore, the resulting
line may be broken.

To draw lines or boxes, you select a portion of the
display and then press:

o Draw CF4) for normal lines
o SHIFT and Draw CF4) for heavy lines
o CODE and Draw CF4) for double lines

To draw a vertical line, use the following procedure:

1 Select a rectangle with a width equal to one character cell.
2 Press Draw CF4) with or without SHIFT or CODE.

To draw a horizontal line, use the following procedure:

1 Select a rectangle with a height equal to one character cell.
2 Press Draw CF4) with or without SHIFT or CODE.

To draw a box, use the following procedure:

Select a rectangle with width and height greater than
one character cell.

2 Press Draw CF4) with or without SHIFT or CODE.
The Forms Editor draws the lines you specified through
the middle of the character cell at each edge of the
selection.
To subdivide this box with lines, make a selection for a
vertical or horizontal line that ends at the box
boundaries. The kind of line (normal, heavy, double)
does not have to correspond to the box lines.

Erasing Lines and Boxes (F5)

You can use the Erase function (F5) to remove lines or
boxes. The Forms Editor does not erase captions within
the selected area.

To erase lines or boxes, use the following procedure:

Select the line, box, or portion of line or box to be erased.
2 Press Erase (F5),

The system deletes all the lines within the boundary of
your selected area. If the erased line intersects other
lines, the Erase function clears the intersections.

Forms Editor and Forms Reporter 3-11

Reading a Form (F6)

You use the Read Form function (F6) to recall a
previously saved form after you activate the Forms Editor.

Caution: When the form or text displays, the Forms Editor overwrites the
display, erasing any data. If it overwrites a form that you have not saved by
using the Write Form function (refer to Writing a Form), that form is lost.

To read a form, use the following procedure:

Press Read Form (F6).
The system displays the Read Form form (refer to
figure 3-5). lf a form is currently displayed, the form
name appears in the File: field.

2 Edit the file name in the File: field.
Do not include a .form suffix; the system adds the
suffix when you use the Write Form function (refer to
Writing a Form).

3 Enter the form name in the [Form] field, if the file has
more than one form.
The default is the file name.

4 Enter the coordinates for the [Column) and [Line] fields
of the [Display] line, if you do not want the form to
appear in the center of the display (default).

5 Press GO.
lf an unsaved form is currently open, the Forms Editor
prompts you to confirm that you want to erase it.

6 Choose one of the following:
o Press GO to erase the current form and display the

form you requested.
o Press CANCEL for the Forms Editor to terminate the

Read Form function.

Note: You can open a previously saved form when you first activate the
Forms Editor (refer to Activating the Forms Editor).

5027212

3-12 Forms Editor and Forms Reporter

Figure 3-5 Read Form Form

r.=======READ FORM ========"

[Form:]

Display [Column] D rUne] D

You can use the Read Form function to recall the original
version of an open form (if you have not yet saved the
edited form under the same form name).

o To keep the revised version and display the original, use
the Write Form function to save the revised form under
a new form name. Then use Read Form to display the
original version.

o To return to the original version (deleting your
revisions), use the Read Form function while the
revised form is displayed. When the system prompts
you to confirm deleting the currently displayed form,
press GO.

Inserting Text (CODE-F6)

You can use the Text Insertion function (F6) to recall a
previously saved text file after you activate the Forms
Editor. The text file appears in a field you select by using
MARK and BOUND (described in Selections).

To insert text, use the following procedure:

1 Use MARK and BOUND to select an area.
2 Press Text Insertion (CODE-F6).

The system displays the Text Insertion form (refer to
figure 3-6). If a form is currently displayed, the form's
file name appears in the [File] field, suffixed by .txt.

3 Enter the text file name in the [File] field.
4 Enter the password in the [Password] field, if the text

file is protected with a password.

Forms Editor and Forms Reporter

5 Enter the word Yes in the [TAB expansion?] field to
replace tab characters with spaces.
If you do not want to replace tab characters with
spaces, the ASCII representation for TAB characters
displays.

6 Press GO.

3-13

The text file appears in the area selected with MARK
and BOUND. All word processor attributes are ignored.

Figure 3-6 Text Insertion Form

r.======TEXTINSERTION ======::::jJ

[Password:] 1...1 ___ ..J

[TAB expansion?] I No I

5027212

3-14 Forms Editor and Forms Reporter

Writing a Form (F7)

You use the Write Form function (F7) to save and name a
displayed form. This function writes your form as an
object module that the BTOS Librarian can store and the
BTOS Linker can add to run files. The system gives the
new object module a public label which is the same as the
file name.

If you use the BTOS Librarian for your forms modules,
any modification to your form must done by Forms Editor,
and you must use BTOS Librarian to update the library.

Caution: You should save frequently. If you exceed the character attribute
limitation, the Forms Editor exits and you lose all revisions you made since the
last Write Form function.

To write a form, use the following procedure:

Press Write Form (F7).
The Forms Editor displays the Write Form form (refer
to figure 3-7).

2 Enter the file name in the File field.
Do not include a .form suffix; the system adds this
suffix automatically.
The system uses the current volume and directory as
the default path. To specify a different volume or
directory, you must include the volume and directory
names.

3 Press GO.
The message Writing ... appears. The Forms Editor adds
a .form suffix to the file name (if the filename does not
currently have a suffix), and translates the form into an
object module. Status information appears in the status
area unless the form is too large.

Figure 3-7 Write Form Form

rr======= WRITE FORM ========il

Forms Editor and Forms Reporter 3-15

Defining Fields (F8)

You use the Define Field function (FS) to add or revise
fields and display the properties of individual fields.

Caution: You should save frequently. If you exceed the character attribute
limitation. the Forms Editor exits and you lose all revisions you made since
performing the last Write Form function.

Defining Single Fields

You can define a single field for any rectangular area that
is exactly one character cell high. To define a single field,
you use two forms (refer to figures 3-8 and 3-9).

Figure 3-8 First Define Field Form

rr======== DEFINE FIELD ========,.
Name: Index:

Default value:

Sequence number: 0
Control: ITxl Justification: ~

Mandatory? ~ Protected? fNc;l Secret? ~
Show default? ~ Auto-exlt? ~ Repeating? ~

Attributes: Unselected: 0 Selected? ~

5027212

3-16 Forms Editor and Forms Reporter

Figure 3-9 Second Define Field Form

r.======== DEFINE FIELD =========i1
User validation routine:

Help message:

List of values:

Selected Color Number: 0 Unselected Color Number: 0

Completing the First Define Field Form for a Single Field

To complete the lust Define Field form for a single
field, use the following procedure:

Select the area using the cursor keys and MARK and
BOUND (refer to Selections).

2 Press Define Field CFS).
The system displays the first Define Field form (refer to
figure 3-8). The cursor is in the Name field.

3 Enter a unique name for the field, up to a maximum of
40 characters, and press RETURN.

Note: Do not enter data in the Index field; the Forms Editor uses the
Index field to identify repeating field locations (refer to Defining Repeating fields).

4 To assign a default value, enter the value
(alphanumeric) in the Default Value field.

S Press RETURN.
6 If you use TypeForm to complete form fields, move the

cursor to the Sequence number field.
This field lets you tell TypeForm to fill fields in a
particular sequence.

Forms Editor and Forms Reporter 3-17

7 Specify the sequence number of the fields for
TypeForm to complete.
The default is 0; this attribute tells TypeForm to fill
fields starting at the top left side of the form and
proceeding from left to right until the bottom of the
form is reached. If you want TypeForm to fill fields in
a different sequence, assign continuous numbers to
each field, according to the sequence that TypeForm is
to follow. For example, assign the number 1 to the first
field in the sequence, assign the number 2 to the next
field; continue numbering the entries sequentially, up
to 200.

8 Move the cursor to the Control field.
9 Choose one of the following:

o Press RETURN to accept the default TX, which
allows the field to accept any ASCII characters.

o If you want the field to accept characters other than
ASCII characters, enter one of the following
two-letter mnemonics:
o Ab for uppercase and lowercase alphabetical

letters only (that is, letters A through Z and a
through z)

o Nu for numbers 0 through 9 and for numeric
symbols induding the plus sign (+), minus sign
(-), and decimal point (.) for decimal fields

o An for alphanumeric characters induding all 26
uppercase and lowercase alphabetical letters, and
all numbers, spaces, and special characters (such
as! and #)

10 Move the cursor to the Justification field.
11 Choose one of the following:

o If you want left-justified field entries, accept the
default (L) and make no entry.

o If you do not want left-justified field entries, enter
one of the following mnemonics:
o R for right-justified entries
o a number between 1 and 15 that corresponds to

the number of positions to the right of a decimal
point

12 Move the cursor to the Mandatory? field.

5027212

3-18 Forms Editor and Forms Reporter

13 Choose one of the following:
o Make no entry if you want this field to be optional

(either filled in or left blank).
o Enter Yes, if you want the user to complete this field

(with either text or numbers).

Note: You can specify a field as mandatory, protected, or optional;
however, you cannot specify a field as both mandatory and protected.

14 Move the cursor to the Protected? field.
15 Choose one of the following:

o Make no entry if you want this field to be optional
(accepting data from either a program or an
operator).

o Enter Yes, if you want the field to accept data only
from a program.

16 Move the cursor to the Secret? field.
17 Choose one of the following:

o Make no entry if you want the characters that a user
or program inserts into a field to appear on the display.

o Enter Yes, if you do not want the characters that a
user or program inserts into a field to appear on the
display. The characters a user or program inserts into
the field then appear as number signs (#) on the screen.

18 Enter No in the Show Default? field to prevent Forms
Run-Time from displaying the default.

19 Enter Yes in the Auto-exit? field to set up an
automatic exit from the field.

Note: If the Repeating? field is set to Yes, your selection was for more
than one field. Press CANCEL to terminate the Define Field function, or
follow the procedure for repeating fields (refer to Defining Repeating Fields).

20 Choose one of the following:
o Make no entry if you want the default attributes.

The default attributes are:
o A for unselected (Forms Run-Time adds no

attributes when the cursor is not in the field)
o E for selected (Forms Run-Time displays the field

in reverse video when the cursor is in the field)
o Enter new entries, if you want to change the

attributes (refer to table 3-3).

Forms Editor and Forms Reporter 3-19

Table 3-3 Character Attributes

LETTER CHARACTER ATTRIBUTE

Blinking Reverse Underline Half-
Video bright

A
B yes

C yes

D yes yes

E yes
F yes yes

G yes yes
H yes yes yes

I yes

J yes yes

K yes yes

l yes yes yes

M yes yes

N yes yes yes

0 yes yes yes
p yes yes yes yes

Completing the Second Define Field Form for a Single Field

To complete the second Define Field form for a single
field, use the following procedure:

Press NEXT PAGE to display the second Define Field
form (refer to figure 3-9).
The cursor is in the User validation routine field.

Note: To redisplay the first Define Field form, press PREV PAGE.

2 If you use TypeForm and a validation routine, enter the
name of the validation routine in the User validation
routine field, up to a maximum of 30 characters.

5027212

3-20 Forms Editor and Forms Reporter

Each time a user inserts new entries into a form's fields,
TypeForm lets the program use a validation routine to
make sure all form fields contain proper information; if
the validation routine finds an improper field value, it
displays an error message and the field that contains
the improper value. (For more information about user
validation routines, refer to section 4.)

3 Move the cursor to the Help message field.
4 Enter the Help message, up to a maximum of 60 characters.

The Help message appears at the bottom of the screen,
if the user presses HELP when filling in a form field.

5 Move the cursor to the List of values field.
This field lets you assign up to eight values to a
particular field; each value can contain up to
60 characters. The operator then selects a value for this
field from the list of available values by either:
o displaying each value one by one. The operator uses

the function keys defined as Next Value and Previous
Value keys to view the next value or the previous
value, respectively, in the list. The Next Value
function key is usually SCROLL UP and the Previous
Value key is usually SCROLL DOWN; however, these
functions can be reassigned to other keys (refer to
section 4).

o entering any ASCII character, which displays the
listed value whose first character is that ASCII
character. If two or more values in the list start with
the same character, reentering the same ASCII
character displays the next listed value that starts
with the same character.

Note: The default value or any value that the program writes to this
field must be equal either to one of the values in the list. or to the first
ASCII character of one of the values in the list.

6 If your workstation has color capability, you can choose
the colors for lines, fields, and captions.
Press CODE-F8 to display the color palette form, which
shows the color numbers 0 through 7.

Forms Editor and Forms Reporter 3-21

Press Define Field (FS) to display the first form of the
Define Field. Then press the Next Page key to display
the second form of the Define Field, where the selected
color number and unselected color number field entries
appear as the last two entries on the form. The selected
color number represents the color selected for the
current field in which the cursor is located. The
unselected color number represents the color selected
for the field in which the cursor does not reside.

7 Press GO.
The form reappears. A square box (called a tag) appears
for each character cell in the field (refer to figure 3-10).
If you define two adjacent fields (with no separating
captions or lines), one field contains filled boxes so you
can distinguish between the two fields.

Defining Repeating Fields

It is simpler to define repeating fields that are stacked
vertically; however, you can align fields horizontally or
distribute them randomly.

You can define vertically stacked repeating fields in one
operation. For horizontal or random fields, you can define
the fields vertically and then use MOVE (refer to Copying
and Moving) to position each field, or you can define each
repeating field separately.

To define a repeating field, you use both Define Field
forms (refer to figures 3-8 and 3-9),

Figure 3-10 Field Tags (Sample)

Tag For One Field 000000000000000

Tags For Two Adjacent Fields 00000011111111111111111111111

5027212

3-22 Forms Editor and Forms Reporter

Completing the First Define Field Form for Repeating Fields

To complete the first Define Field form for repeating
fields, use the following procedure:

Select the area using the cursor keys and MARK and
BOUND (refer to Selections).
o For vertically stacked repeating fields, select all fields.
o For horizontal or random repeating fields, select the

first field.
2 Press Define Field (F8).

The system displays the first of two Define Field forms
(refer to figure 3-8). The cursor is in the Field Name field.

3 Enter a unique name for the field, up to a maximum of
40 characters.
You must use the same field name for each field.

4 Move the cursor to the Index field.
5 Choose one of the following:

o For vertically stacked fields, leave the default (1) or
change it to start index numbering from a different
number.

o For horizontal or random fields, enter an index
number as you define each field. Start with the field
in· the top left of the form and number each field
sequentially, moving right and then down. The index
is used to identify each field's location.

Note: The remaining field characteristics are optional. For vertically
stacked fields. you initially give each field the same characteristics. You
can later select each field and modify these characteristics.

6 To assign a default value, enter the value
(alphanumeric) in the Default Value field.
The default is an empty field (null). If the default you
enter occupies more character cells than the field size,
the Forms Editor shortens the default value (from the
right) to fit.

7 If you use TypeForm to complete form fields, move the
cursor to the Sequence number field.
This field lets you tell TypeForm to fill fields in a
particular sequence.

Forms Editor and Forms Reporter 3-23

8 Specify the sequence number of the fields for
TypeForm to complete.
The default is 0; this attribute tells TypeForm to fill
fields starting at the top left side of the form and
proceeding from left to right until the bottom of the
form. If you want TypeForm to fill fields in a different
sequence, assign continuous numbers to each field,
according to the sequence that TypeForm is to fill the
fields. For example, assign the number 1 to the first
field in the sequence, assign the number 2 to the next
field; continue numbering the entries sequentially, up
to 200.

9 Move the cursor to the Control field.
10 Choose one of the following:

o Press RETURN to accept the default TX, which
allows the field to accept any ASCII characters.

o If you want the field to accept characters other than
ASCII characters, enter one of the following
two-letter mnemonics:
o Ab for uppercase and lowercase alphabetical

letters only (that is, letters A through Z and a
through z)

o Nu for numbers 0 through 9 and for numeric
symbols including the plus sign (+), minus sign (-),
and decimal point C.) for decimal fields

o An for alphanumeric characters including all 26
uppercase and lowercase alphabetical letters, all
numbers, spaces, and special characters (such as !
and #)

11 Move the cursor to the Justification field.
12 Choose one of the following:

o Make no entry to accept the default (L), which
left-justifies field entries.

o If you do not want left-justified field entries, enter
one of the following mnemonics:
o R for right-justified entries
o a number between 1 and 15 that corresponds to

the number of positions to the right of a decimal
point

13 Move the cursor to the Mandatory? field.

5027212

3·24 Forms Editor and Forms Reporter

14 Choose one of the following:
o Make no entry if you want this field to be optional

(either filled in or left blank).
o Enter Yes, if you want the user to complete this field

(with either text or numbers).

Note: You can specify a field as mandatory, protected, or optional;
however, you cannot specify a field as both mandatory and protected.

15 Move the cursor to the Protected? field.
16 Choose one of the following:

o Make no entry if you want this field to be optional
(accepting data from either a program or an
operator).

o Enter Yes, if you want the field to accept data only
from a program.

17 Move the cursor to the Secret? field.
18 Choose one of the following:

o Make no entry if you want the characters that a user
or program inserts into a field to appear on the display.

o Enter Yes, if you do not want the characters that a
user or program inserts into a field to appear on the
display. The characters a user or program inserts into
the field then appear as number signs (#) on the screen.

19 Enter No in the Show Default? field to prevent Forms
Run-Time from displaying the default.

20 Enter Yes in the Auto-exit? field to set up an
automatic exit from the field.

21 In the Repeating? field:
o Leave the Repeating? option set to Yes, if you

selected an area for vertically-stacked repeating
fields.

o Enter the word Yes, if you selected one field of a
repeating field.

22 Choose one of the following:
o Make no entry if you want the default attributes.

The default attributes are:
o A for unselected (Forms Run-Time adds no

attributes when the cursor is not in the field)
o E for selected (Forms Run-Time displays the field

in reverse video when the cursor is in the field)
o Enter new entries, if you want to change the

attributes (refer to table 3-3).

Forms Editor and Forms Reporter 3-25

Completing the Second Define Field Form for Repeating
Fields

To complete the second Define Field form for repeating
fields, use the following procedure:

Press NEXT PAGE to display the second Define Field
form (refer to figure 3-9).
The cursor is in the User validation routine field.

Note: To redisplay the first Define Field form, press PREVPAGE.

2 If you will be using TypeForm and a validation routine,
enter the name of the validation routine in the User
validation routine field, up to a maximum of 30
characters.
Each time a user inserts new entries into a form's fields,
TypeForm lets the program use a validation routine to
make sure all form fields contain proper information; if
the validation routine finds an improper field value, it
displays an error message and the field that contains
the improper value. For more information about user
validation routines, refer to section 4.

3 Move the cursor to the Help. message field.
4 Enter the Help message, up to a maximum of 60 characters.

The Help message appears at the bottom of the screen,
if the user presses HELP when filling in a form field.

5 Move the cursor to the List of values field.
This field lets you assign a list of up to eight values to a
particular field; each value can contain up to 60
characters. The user then selects a value for this field
from the list of available values by either:
o displaying each value one by one. The user utilizes

the function keys defined as Next Value and
Previous Value keys to view the next value or the
previous value, respectively, in the list. The Next
Value function key is usually SCROLL UP and the
Previous Value key is usually SCROLL DOWN;
however, these functions can be reassigned to other
keys (refer to section 4).

o entering any ASCII character, which displays the
listed value whose first character is that ASCII
character. If two. or more values in the list start
with the same character, reentering the same ASCII
character displays the next listed value that starts
with the same character.

5027212

3-26 Forms Editor and Forms Reporter

Note: The default value or any value that the program writes to this
field must be equal either to one of the values in the list, or to the
first ASCII character of one of the values in the list.

6 Press CODE-FS to display the color palette form, which
shows the color numbers 0 through 7.
Press Define Field (FS) to display the first form of
the Define Field. Then press the Next Page key to
display the second form of the Define Field, where
the selected color number and unselected color
number field entries appear as the last two entries on
the form. The selected color number represents the
color selected for the current field in which the
cursor is located. The unselected color number
represents the color selected for the field in which
the cursor does not reside.

7 Press GO.
The form reappears. A square box (called a tag) appears
for each character cell in the field (refer to figure 3-10).
If you define two adjacent fields (with no separating
captions or lines), one field contains filled boxes so you
can distinguish between the two fields.

8 If you are creating horizontal or random fields, you
must either:
o move each field to its location (be careful to keep

the indexes sequential, left to right then top to bottom)
o repeat this procedure to define each field

Modifying Field Definitions
You use the Define Field function (FS) to modify existing
fields. You can select a single square box of a defined field
to redefine the field. Your selection is automatically
adjusted to include the entire field.

To modify field definitions, use one of the following:

o For Single Fields, select the field and use the Define
Field function.

o For vertically stacked Repeating Fields, select an
individual field or all the fields and use the Define Field
function.

o For horizontal or random Repeating Fields, you must
select each field and use the Define Field function.

Forms Editor and Forms Reporter

Modifying Field Position and Width
You move the field or change its width by editing the
field's tag, as follows:

3-27

o Insert spaces in front of the tag to move the field to the
right, or backspace in front of the tag to move the field
to the left.

o Delete some of the tag boxes using DELETE to shorten
the field (and move it to the left).

o Move or copy fields (refer to Copying and Moving).

If you split the tag, the first part of the tag becomes the
field and the second part becomes a caption whose
appearance is a sequence of square boxes.

Color Selection (CODE-F8)

You can select the color palette to be used with a given
Forms Editor form with CODE·F8. The color palette
includes eight colors, numbered 0 through 7. The palette in
current use is displayed and changes to it are dynamically
updated. Each color is made up of component hues of red,
green, and blue. Each hue has four intensities, numbered 0
through 3. The color numbers to be used for Captions
(text) and for Lines (and Boxes) may also be selected on
this display.

You use the NEXT or RETURN key to move the active
cursor (indicated by a flashing reverse video block) from
area to area. Downward movement only is permitted, with
wraparound from the bottom to the top. Within each area,
cursor movement up or down is achieved with the Up
Arrow and Down Arrow keys.

After you have selected the desired color palette, press
GO. To abort this selection, press CANCEL.

5027212

3-28 Forms Editor and Forms Reporter

Testing Forms (F9)
The Test Drive function (F9) simulates a form's field
responses during run time and is similar to having a
program call the TypeForm routine.

To test your form, use the following procedure:

1 Press Test Drive (F9).
The Forms Editor translates the form into the binary
format of a form file (however, no file is written).
Forms Run-Time displays the form as it appears at run
time and positions the cursor in tp,e first field.

2 Try out your form by entering text, pressing the Next
Field key to move the cursor to the next field, and
pressing the Previous Field key to move to the previous
field.
As you exit each field, Forms Run-Time reads and
displays your entry. You can verify the character
attributes, defaults, and auto-exit. If you press a key
unknown to Forms Run-Time, a message displays.

Note: The Test Drive function does not support a First Field and last
Field key, a Form Validation and Form Cancel key, a Correction key, and a
user validation routine. Furthermore, the Test Drive function performs data
type control (that is, it verifies alphabetic, numeric, alphanumeric. and text
entries) according to the standard keyboard configuration (refer to section 41;
however, it does not perform data type control on default values.

3 Press Test Drive (F9) again to return control to the
Forms Editor.
Field tags reappear.

Deleting Selections (F10)
You use the Delete Selection function (FlO) to delete
(erase) all captions, lines, and fields from the area you
have selected.

To delete selections, use the following procedure:

1 Select the area to be deleted using the cursor and MARK
and BOUND.

2 Press Delete Selection (FlO).
The Forms Editor replaces the selected area with empty
spaces.

Note: You can also press CODE-DELETE to access the Delete Selection function.

You use Erase (PI)) to delete lines only (not text).

Forms Editor and Forms Reporter 3-29

Copying and Moving

You copy or move lines, fields, or captions from one part
of the form to another by selecting the area to be copied
and using either COPY or MOVE. You also move or copy a
text file recalled with the CODE-F6 keys (refer to
Inserting Text).

To copy or move lines, fields, or captions, use the
following procedure:

1 Select the area to be copied or moved (the source area).
2 Position the cursor at the top left corner of the area to

receive the lines, field, or 'captions (the target area).
Source and target areas can overlap.

3 Choose one of the following:
o To copy the source area to a target area using the

cursor position as the top left corner of the target
area, press COpy.

o To move the source area to a target area using the
cursor position as the top left corner of the target
area, press MOVE.

o To copy the source area to a target area using the
cursor position as the top right corner of the target
area, use SHIFT-COPY.

o To move the source area to a target area using the
cursor position as the top right corner of the target
area, use SHIFT-MOVE.

o To copy the source area to a target area using the
cursor position as the top center of the target area,
use CODE-COPY.

o To move the source area to a target area using the
cursor position as the top center of the target area,
use CODE·MOVE.

The system shortens lines extending across the edges of
the copy or joins them to the surrounding lines.
The target area remains selected, and the cursor moves
to the same position relative to the new selection as it
had relative to the old. You can repeat the MOVE or
COPY function.

Note: If you copy fields, the field must be repeating or you must either
redefine the field to be repeating or rename one of the fields to avoid duplicate fields.

5027212

3-30 Forms Editor and Forms Reporter

If you move repeating fields, the indexes must remain
sequential. You should edit the index numbers if
necessary.

If you Test Drive a form with duplicate single field names
or nonsequential repeating fields, the Forms Editor assigns
the blinking character attribute to all fields in conflict.

Displaying Text in 132-Column Format (CODE-Z)

On B27 workstations, you can use the Zoom function to
display text in 132-column format. Zoom changes the
display from 80 to 132 columns, and ·back again. To switch
modes from 80 to 132 columns or from 132 to 80 columns,
you press CODE-Z.

If you attempt to zoom from 132 to 80 columns when the
form in the work area is more than 80 columns wide, Zoom
displays the message Form is too wide and does not
change the display.

Displaying Text'in 146-Column Format (CODE-Z)

On B26, B28, and B38 workstations with bit-mapped
graphics, text can be displayed in 146-column format using
the Zoom function. Zoom changes the display from 80 to
146 columns, and back again. To switch modes from 80 to
146 columns or from 146 to 80 columns, you press CODE-Z.

If you attempt to zoom from 146 to 80 columns when the
form in the work area is more than 80 columns wide, Zoom
displays the message Form is too wide and does not
change the display.

Note: Because bit-mapped graphics does not support blinking attributes,
blinking is indicated by outline characters or as selected by the user via the
configuration file.

Viewing Edit Codes (CODE-V)

The View Edit Codes function makes all edit (formatting)
codes visible on the display. Press CODE-V to view
formatting. Press CODE-V again to exit.

Note: The Forms Editor deletes space characters you enter with the literal
insert procedure when you exit the View Edit Codes function.

Forms Editor and Forms Reporter 3-31

The Forms Editor cannot distinguish between the space
formatting codes that the system makes visible with the
View Edit Codes function and literal insert space
characters.

Selecting Tags (NEXT)

You press NEXT to select the next field tag; this is an
easy way to move through a form you are editing.

When you press NEXT, the Forms Editor starts at the
cursor position and scans the display row by row,
searching for a tag. If the cursor is currently in a tag, the
search begins just beyond that tag. If the system does not
find a tag between the cursor and the bottom of the
display, the search resumes at the top of the display.

When the Forms Editor finds a tag, the Forms Editor
positions the cursor in the first character cell of that tag.

Exiting the Forms Editor
You press FINISH to end a Forms Editor session and
return to the Executive.

If you have not used the Write Form function to save the
form you edited or created during the session (refer to
Writing a Form), the system displays the Finish form
(refer to figure 3-11).

If you are revising an existing form, the File field default
is the original file name. Your options are:

o To save the revised form under the original file name,
press GO.

o To save the revised form in a different file, edit the File
field and press GO.

o To delete the form, change the Save? field to No; then
press GO.

o To interrupt the Finish operation and return to the
Forms Editor, press CANCEL.

5021212

3-32 Forms Editor and Forms Reporter

Figure 3-11 Finish Form (Sample)

r;::::============= FINISH =======::;.,
Save? i!\\\\:\:\:\\i!i\tt1i:~;\\\\::i;ij\:~i\\:;::i:\::::!:!:\:!\:i::iiM::j::::i~:j:::!:i::11~;:::::1:ili:1:j:1i:1:::1\1::\::::\\\\:\:;:1\::\i::\

File:

Displaying a Forms Report
The Forms Reporter (FREPORT command) provides the
following information about a form you specify:

D name
D size in bytes, and height and width when displayed
D number of defined fields
D each field's:

D name
D row and column number (the top left corner has the

coordinates 0,0)
D width in characters
D repeating characteristic
D index
D control characteristic
D justification characteristic
D sequence number
D secret characteristic
D protected and mandatory characteristics
D default value
D show default characteristic
D auto-exit characteristic
D selected and unselected character attributes
D validation routine
D help message
o list of values
D selected/unselected color number

Rather than displaying the report, you can instruct the
system to write it to a disk file or printer.

Forms Editor and Forms Reporter 3-33

To display a forms report, use the following procedure:

1 Enter FREPORT in the Executive command line.
2 Press GO.

The FREPORT command form appears (refer to
figure 3-12).

3 Enter the file name in the File field.
If the system added the default suffix .form when you
created the form, do not include it; otherwise, enter the
entire file name.

4 If the file is a library file containing more than one
form, enter the form name in the [Form] field.

5 Enter No in the [Fields?] field to prevent the system
from reporting on the fields in the form.
The default is Yes.

6 Enter No in the [Form image?] field, if you do not want
the form image to appear in the forms report.
The default is Yes.

7 Enter a file name or device name in the [Output] field
to file or print the report.
The default is display. If your form has too many fields
for the entire report to fit on your display, you may
want to print the report or specify a file.

S Press GO.
A forms report displays. If the entire report does not fit
on your display, press NEXT PAGE or SCROLL UP to
display the rest of the form. When the system displays
the last item of the report, the Forms Reporter exits to
the Executive.
Refer to appendix D for a sample report.

Figure 3-12 FREPORT Command Form

File
[Form]
[Fields?]
[Form Image?]
[Output]

5027212

3-34 Forms Editor and Forms Reporter

Creating Forms Library Files
You use the BTOS Librarian utility (refer to the 81'OS II
Language Development Linker and Librarian
Programming Guide) to bundle forms in a library file of
object modules.

When you create the forms for inclusion in a library file,
follow these guidelines:

o make the file name and the form name the same
o avoid including an extension on the file name and the

form name (the system default adds the suffix .form)
o do not add more than one extension to a file name or

form name

After you create the forms, you use the BTOS Librarian
utility to create a library. The library file name should
have an extension to allow the Forms Editor and the
Forms Reporter to access the forms.

To create a forms library file, use the following
procedure:

Activate the BTOS Librarian by entering LIBRARIAN in
the Executive command line.
The system displays the LIBRARIAN command form.

2 Enter the library name in the Library file field.
You create a new library by entering a new library
name, or add new modules to a library by entering the
name of an existing library.

3 Enter the form names in the [Files to add] field. Add
the form names with all extensions. The BT08 Librarian
automatically removes any suffixes after the first dot
C.), and adds the suffix .obj.

4 Complete the LIBRARIAN command form.
S Press GO

To revise a form contained in a forms library file, or to
add or delete a form, you use the BTOS Librarian utility.

Forms Editor and Forms Reporter 3-35

You display the forms contained in the forms library using
the FORMS EDITOR command or the FREPORT command.
You enter the library file name in the File field and the
form name (without the suffix) in the Form field of the
command form.

Caution: You cannot use the Forms Editor to revise forms contained in a
forms library. After revisions are made, the revised form must be placed in the
library with the BTOS librarian to overwrite the original form.

Forms Editor Error Response
Users occasionally make errors that can be detected only
when using FINISH to complete a form, using F7 to write
a form, or using F9 to test drive a form. Common errors
are repeating a field's name on a form, sequencing some
(not all) fields on a form, sequencing fields with
nonsequential (noncontinuous) numbers, and creating
forms that take up too much memory.

Forms Editor indicates fields that contain such errors by
making the fields blink; the user can then utilize F2 to
undo the blinking fields (refer to Undoing the Most Recent
Function).

Forms Editor In-Memory Work Area
The Forms Editor uses an in-memory work area to store
and access all information pertaining to a form you are
editing. The size of this form must not exceed the work
area (8K). The size of a form is based on:

o number of defined fields
o length of the name and default value of each field
o number and length of each caption
o number and length of the lines

You determine the exact number of bytes needed to
represent a form by using the Forms Reporter.
Approximate byte sizes are:

o each form requires a fixed overhead of 15 bytes
o each field requires 32 bytes

5027212

3-36 Forms Editor and Forms Reporter

o each unique field name requires (j + 2) bytes (j is the
length of the field name in bytes)

o each unique pair (field name, default value) requires
(d+3) bytes (d is the length of the default value in
bytes). Fields with null default values are included.

o each caption requires (c+4) bytes (c is the length of the
run).

A run is a sequence of horizontally continuous character
cells that contain the same character and video attributes.
The two most common instances of a run are line
characters and field definitions. A run is also defined for
each horizontally contiguous sequence of null characters
(characters that are not part of any line, caption, or field
definition).

The Forms Editor uses another in-memory work area to
store currently defined field names and default values.
This work area contains 900 bytes. Each field requires
(j +d + 1) bytes (j is the length of the field name; d is the
length of the default value).

Section 4 4-1

Forms Run-Time

Forms Run-Time consists of a library of object module
procedures (forms.lib) you use to run forms with programs
written in any of the programming languages available for
workstations. Forms Run-Time also supplies four source
modules for custom configuration for forms.lib.

Note: This section will help the programmer who is already familiar with the
workstation operating system. Refer to the BrOS /I System Reference Manual
and the BroS /I Customizer Programming Guide for information about the
workstation operating system.

Section 4 discusses Forms Run-Time services in
alphabetical order and includes the following for each:

o an interface parameter table
o where applicable, a table of information returned by the

service
o where applicable, a figure illustrating the buffer

structure used by the service

5027212

4-2 Forms Run-Time

AddValues
AddValues adds or modifies default values which you
created when defining a field through the Define Field
(FS) function key. It reads the initial descriptor from
either a library or a single Form file, and writes the result
to a new Form file.

The procedural interface is:

AddValues (pbFileName, cbFileName, pbFormName,
cbFormName, pbRgValues, cbValues, pbNewFileName,
cbNewFileName): ErcType.

Refer to table 4-1 for names and descriptions of AddValues
procedural interface parameters.

Table 4-1 AddValues Procedural Interface Parameters

Name

pbFileName
cbFileName
pbFormName
cbFormName

pbRgValues
cbValues

pbNewFileName
cbNewFileName

Description

pbFileName and cbFileName describe a character string
containing the name of the Form file (or Library file).
pbFormName and cbFormName describe a character string
containing the name of the form to be read. If
cbFormName is 0, the form name is the file name minus
the file name extension, if there is one.
pgRgValues and cbValues describe a user-supplied
buffer containing information on the fields to be
modified. Its structure must take the form shown in
figure 4-1.

You can specify field names in any order. The buffer
can contain more or fewer field names than defined
in the Forms descriptor.
pbNewFileName and cbNewFileName describe a
character string containing the name 01 the Form file
to be created after modification. If the file already
exists, AddValues appends the suffix -New.

Forms Run-Time

Figure 4-1 AddValues Buffer Structure

pbRgValues ~

.~----------------~

sbFieldName

index

sbValue

cbValues

• •

• •

• •

• •

5027212

(sbString)

(WORD)

(sbString)

4-3

for
each
field

4-4 Forms Run-Time

DefaultField
DefaultField restores a field to its default value (as it
appears immediately following DisplayForm). If Show
default? is turned on for the defined field when you
specified yes, the default value appears.

The procedural interface is:

DefaultField (pForm, pbFieldName, cbFieldName,
index): ErcType

Refer to table 4-2 for names and descriptions of
DefaultField procedural interface parameters.

Table 4-2 DefaultField Procedural Interface Parameters

Name

pForm
pbFieldName
cbFieldName

index

Description

pForm is a pointer to the work area of an open form.
pbFieldName and cbFieldName describe a character string
naming the field to be defaulted. In matching field names.
DefaultField ignores the distinction between uppercase and
lowercase.
Index specifies the field of a repeating field to be
defaulted. DefaultField ignores this parameter. if the named
field is not repeating.

Forms Run-Time 4-5

DefaultForm
DefaultForm restores a form to its default state (as it
appears immediately following DisplayForm) by applying
DefaultField to each field.

The procedural interface is:

DefaultForm (pForm): ErcType

pForm is a pointer to the work area of an open form.

5027212

4-6 Forms Run-Time

DisplayForm
DisplayForm displays a form at a specified location. You
can center the form horizontally and/or vertically within a
frame by specifying 255 for iCol and/or iLine. Each field
in the form is defaulted as described in DefaultField.

The procedural interface is:

DisplayForm (pForm, iFrame, iCol, iLine): ErcType

Refer to table 4-3 for names and descriptions of
DisplayForm procedural interface parameters.

Table 4-3 DisplayForm Procedural Interface Parameters

Name

pForm
iFrame

iCol
iUne

Description

pForm is a pointer to the work area of an open form.
iFrame is a frame number in the Video Control Block (refer
to the BrOS" System Reference Manua/).
iCol is a column number within the frame.
iLine is a line number within the frame.

Forms Run-Time

EditForm
EditForm either displays a form on the screen or writes it
to a file or device. It opens the form file and loads the
form into memory, if required.

Optionally, EditForm can initialize the fields in the form
with values the application program supplies. The type
code it uses in decoding the data is always Character.

If the EditForm operation is called for writing a form to a
file or device, it replaces all rulings with asterisks and
other special characters in text captions or fields with
spaces. It opens the output file as a byte stream in write
mode, which means that it overwrites a previously
existing file of the same name.

The procedural interface is:

EdltForm (pForm, cbMaxForm, pbFileName,
cbFileName, pbFileDest, cbFileDest, pbFormName,
cbFormName, iFrame, ICol, lLine, pbInit, cbInit):
ErcType

Refer to table 4-4 for names and descriptions of EditForm
procedural interface parameters.

5027212

4-8 Forms Run-Time

Table 4-4 EditForm Procedural Interface Parameters

Name

pForm
cbMaxForm

pbFileName
cbFileName

pbFileDest
cbFileDest

pbFormName
cbFormName

iFrame

iCol
iUne

pblnit
cblnit

Description

pForm and cbMaxForm describe the work area of an
already open form. or the work area into which EditForm
mlist load the form.
pbFileName and cbFileName describe a character string
containing the name of the form file (or library file). If
cbFileName is O. no disk file is accessed: either the
application program or a previous call to the EditForm
operation is supposed to have already loaded the form into
the work area.
pbFileDest and cbFileDest describe a character string
containing the name of the output file or device. If
cbFileDest is O. EditForm displays the form on the screen
using the DisplayForm operation. If cbFileDest is not O. it
writes the form to the specified file Dr device using the
Sequential Access Method.
pbFormName and cbFormName describe a character string
containing the form name of the form to be read. EditForm
ignores these parameters. if it is not required to load the
form from disk into the work area. If cbFormName is O.
the form name is the file name minus the file name
extension. if there is one.
iFrame is the number of the frame in which EditForm is to
display the form. It ignores iFrame. if it is to write the
form to a file Dr device.
iCol and iUne determine the location within the frame at
which EditForm is to display the form. You can center the
form horizontally and/or vertically within the frame by
specifying 255 for iCol and/or iUne. EditForm ignores these
parameters. if it is to write the form to a file or device.
pblnit and cblnit describe a buffer that contains the
initialization values for the different fields of the form. If
cblnit is O. EditForm writes default values into the fields.
The buffer's structure must take the form shown in figure 4-2.

Forms Run-Time 4-9

Figure 4-2 EditForm Buffer Structure

bState

1st Field
rgbValue

bState

rgbValue

I

•

• •

• •

bState

Nth Field
rgbValue

bEnd

In figure 4-2:

bState is a byte that can have any of the following values:
00 or 02 - the next bytes containing the initialization
value for this field; 01 or 03 - no initialization value for
this field.

There must be a bState byte for each field of the form. If
bState is 01 or 03, the bState byte for the next field must
immediately follow it.

5027212

4-10 forms Run-Time

rgbValue is a string of characters EditForm is to use as
the initialization value for the field. If the field is decimal,
the initialization value must include the decimal mark,
except if the decimal part is empty. rgbValue must
immediately follow a bState byte containing 00 or 02.
Every character in the initialization value must be greater
than 03.

bEnd is a byte that marks the end of the buffer. The value
can be 00, 01, 02 or 03.

If a user has defined a specific sequence for this form, the
elements (bState(,rgbValuej) for the different fields of the
form must appear in the buffer in the order of the
sequence numbers; if you have not defined a sequence, the
elements must appear according to the location of the
fields on the screen (from top to bottom and from left to
right).

Forms Run-Time 4-11

ExtractValues
ExtractValues returns a buffer containing the default
values for each field of a form.

The procedural interface is:

ExtractValues (pbFileName, cbFileName, pbFormName,
cbFormName, pbRgValuesRet, cbMax, pcbValuesRet):
ErcType

Refer to table 4-5 for names and descriptions of
ExtractValues procedural interface parameters.

Table 4-5 ExtractValues Procedural Interface Parameters

Name

pbFileName
cbFileName

pbFormName
cbFormName

pbRgValuesRet
cbMax

pcbValuesRet

5027212

Description

pbFileName and cbFileName describe a character string
containing the name of the Form file (or library file).

pbFormName and cbFormName describe a character string
containing the name of the form to be read. If
cbFormName is 0, the form name is the file name minus
the file name extension, if there is one.
pbRgValuesRet and cbMax describe a user-supplied buffer.
The ExtractValues routine returns information in this buffer.
Its structure is identical to the input buffer structure for
the AddValues routine.

pcbValuesRet describes a word returned by the routine.
containing the actual count of valid bytes in the returned buffer.

4-12 Forms Run-Time

FonctForm
FonctForm allows the application program to dynamically
redefine a function key as:

o an invalid function key
o a form validation function key
o a form cancel function key

Since the modification is done only in memory, it is lost
when the application program exits.

The procedural interface is:

FonctForm (pbFonct, cbFonct): ErcType

Refer to table 4-6 for names and descriptions of FonctForm
procedural interface parameters.

Table 4-6 FonctForm Procedural Interface Parameters

Name

pbFonct
cbFonct

Description

pbFonct and cbFonct describe a memory buffer containing
the new key values. This buffer must be an array of 2 -byte
elements. one for each key to redefine:

o First byte: ASCII code of the key, in encoded mode

o Second byte: New value:
00 = Illegal

01 - Form validation
02 = Form cancel

Forms Run-Time 4-13

GetFieldlnfo
GetFieldlnfo returns information about a field (for
example, the number of repeating fields). It returns only
information requested using cbFieldlnfoMax.

The procedural interface is:

GetFieldInfo (pForm, pbFieldName, cbFieldName, index,
pFieldInfoRet, cbFieldInfoMax): ErcType

Refer to table 4-7 for names and descriptions of
GetFieldlnfo procedural interface parameters. Refer to
table 4-8 for information returned by GetFieldlnfo.

Table 4-7 GetFieldlnfo Procedural Interface Parameters

Name

pForm
pbFieldName
cbFieldName

index

pFieldlnfoRet
cbFieldlnfoMax

5027212

Description

pForm is a pointer to the work area of an open form.
pbFieldName and cbFieldName describe a character string
naming the field to be interrogated. In matching field
names, GetFieldlnfo ignores the distinction between
uppercase and lowercase.
index specifies the field of a repeating field to be
interrogated. GetFieldlnfo ignores this parameter, if the
named field is not repeating.
pfieldlnfoRet and cbFieldlnfoMax decribe the memory work
area into which GetFieldlnfo returns the field information.
Table 4-8 outlines the format of this information.

4-14 Forms Run-Time

Table 4-8 Information Returned by Getfieldlnfo

Offset field Size Description
(bytes)

0 ieol 2 a column number relative to the left
edge of the form

2 iUne 2 a line number relative to the top of
the form

4 ceol 2 the width of the field in the column
6 . fShowOefault 2 TRUE. if the show-default property is

turned on
8 fAutoExit 2 TRUE if the auto-exit property is

turned on
10 fRepeating 2 TRUE if the repeating property is

turned on
12 attrSel 2 a 4-bit encoding of the selected

character attributes
14 attrUnsel 2 a 4-bit encoding of the unselected

character attributes
16 indexFirst 2 the lower bound of indexes for a

repeating field
18 indexLast 2 the upper bound of indexes for a

repeating field
20 fMandatory 2 TRUE if the field is mandatory
22 fProtected 2 TRUE if the field is protected
24 fSecret 2 TRUE if the secret property is turned on
26 Justif an encoding of the juStification:

01: justified on decimal mark
02: right-justified
04: Ieft-justified

27 DecimaiMax the maximum number of decimals for
a decimal field

28 Control an encoding of the data type control:
01: text
02: alphanumeric
O4:alphabatic
08: IU1IIric

Forms Run-Time 4-15

Table 4-8 Information Returned by GetFieldlnfo (continued)

Offset Field Size Description
(bytes)

29 SeqNumber 1 the sequence number of field

30 cchOefault 2 the length of the default value
32 rgchOefault 132 the default value
164 sbValProc 31 the name of the user validation

routine (first byte is the length)
195 sbHelpMsg 61 the Help message (first byte is the

length)
256 rgsbList 488 the list of values consists of an array

Values of up to eight character strings. The
first byte of each element indicates
string length. The end of the list is
indicated by a zero count if there are
fewer than eight strings.

5027212

4-16 Forms Run-Time

LockKbd
LockKbd requires that the user press CANCEL before
using the keyboard. When a program calls LockKbd, the
system beeps and the keyboard locks; further input is
refused until the user presses CANCEL.

Whenever the user presses a key other than CANCEL, the
system beeps and does not respond.

The procedural interface is:

LockKbd: ErcType

Forms Run-Time 4-11

Open Form
OpenForm reads information from an open-file form into a
work area in memory. Once open, the form work area is
self-contained; OpenForm can then close the file.

The procedural interface is:

OpenForm (fb, pbFormNaine, cbFormName, pFormRet,
cbMax): Erctype

Refer to table 4-9 for names and descriptions of OpenForm
procedural interface parameters.

Table 4-9 OpenForm Procedural Interface Parameters

Name

fh
pbFormName
cbFormName

pFormRet
cbMax

5027212

Description

fh is an open file handle for the form file (or library file).
pbFormName and cbFormName describe a character string
containing the form name of the form to be read. In
matching form names, Open Form ignores the distinction
between uppercase and lowercase.
pFormRet and cbMax describe the memory work area into
which the open form is returned. To find out how much
work area the form requires. check the Status Area of the
Forms Editor or use the Forms Reporter (FREPORT command).

4-18 Forms Run-Time

OutForm
OutForm returns information about a form and the
different fields contained in this form. If the form is not
already open, the OutForm operation itself can load it into
the memory work area.

The procedural interface is:

OutForm (pForm, cbMaxForm, pbFileName, cbFileName,
pbFormName, cbFormName, pbRet, cbMax, pcb Ret):
ErcType

Refer to table 4-10 for names and descriptions of OutForm
procedural interface parameters. Refer to table 4-11 for
information returned by OutForm.

Table 4-10 OutForm Procedural Interface Parameters

Name

pForm
cbMaxForm

pbFileName
cbFileName

pbFormName
cbFormName

pbRet
cbMax
pcbRet

Description

pForm and cbMaxForm describe the work area of an
already open form, or the work area into which OutForm
must load the form.
pbFileName and cbFileName describe a character
string containing the name of the form file (or library
file). If cbFileName is 0, no disk file is accessed;
OutForm is supposed to have already loaded the form
into the work area.
pbFormName and cbFormName describe a character
string containing the form name of the form to be
read. OutForm ignores these parameters, if it is not
required to load the form from disk into the work
area. If cbFormName is 0, the form name is the file
name minus the file name extension, if there is one.

pbRet and cbMax describe the memory buffer into
which OutForm returns the information.

pcbRet is a pointer to a word into which OutForm
copies the count of bytes of significant information
returned.

Structure of the returned buffer:

The returned buffer consists of a header followed by one
field description block for each field of the form.
Table 4-11 outlines the format of this information.

Forms Run-Time 4-19

Table 4-11 Information Returned by Out Form

Offset Field Size
(bytes)

Header (general information about the form):

sbFormName
cField
cline

N

2

Description

form name (first byte is the size)
number of fields
number of lines

Field description block (this field description block is repeated cField times):

o
n

5027212

sbFieldName
ceol

bType

bJust

wFiags

n

2

field name (first byte is the size)
width of the field (number of
columns)
field type:
Bit 0 = 1: Text
Bit 1 ~ 1: Alphanumeric
Bit 2 = 1: Alphabetic
Bit 3 = 1: Numeric
Bits 4 to 7: reserved
justification:
Bits 0 to 3: number of decimals if
the field is justified on decimal mark
Bit 4 = 1: Justified on decimal mark
Bit 5 = 1: Right -justified
Bit 6 = 1: left -justified

Bit 7: reserved

flags:
Bits 0 to 3: Selected video attribute
Bits 4 to 7: Un selected video
attribute
Bit 8 = 1: Secret
Bit 9 = 1: Mandatory
Bit 10 = 1: Protected
Bits 11 and 12: reserved
Bit 13 = 1: Repeating
Bit 14 = 1: Auto-exit
Bit 15 = 1: Show default

4-20 Forms Run-Time

ReadField
ReadField reads data from a field into program memory,
encoding the currently displayed text according to the
type code supplied. Show default? has no effect on
ReadField. ReadField returns the default value, whether or
not the default is displayed, unless a user entry changes
the field's value.

The procedural interface is:

ReadField (pForm, pbFieldName, cbFieldName, index,
pbRet, cbMax, pcbRet, pType): ErcType

Refer to table 4-12 for names and descriptions of
ReadField procedural interface parameters.

Table 4-12 ReadField Procedural Interface Parameters

Name

pForm
pbFieldName
cbFieldName

index

pbRet
cbMax
pcbRet

pTvpe

Description

pForm is a pointer to the work area of an open form.
pbFieldName and cbFieldName describe a character string
naming the field to be read. In matching field names.
ReadField ignores the distinction between uppercase and
lowercase.
index specifies the field of a repeating field to be read.
ReadField ignores this parameter. if the named field is not
repeating.
pbRet and cbMax describe the memory work area into
which ReadField returns the data.
pcbRet is the memory address of the word into which
ReadField returns the count of bytes read.
p Type is the memory address of a type code ReadField
uses in encoding the data.

Forms Run-Time 4-21

RestoreForm
RestoreForm restores a previously displayed form to its
default values, or to values the application program
supplies in an initialization buffer. RestoreForm always
performs this operation without accessing any file.

The procedural interface is:

RestoreForm (pForm, pblnit, cblnit): ErcType

Refer to table 4-13 for names and descriptions of
RestoreForm procedural interface parameters.

Table 4-13 RestoreForm Procedural Interface Parameters

Name

pForm
pblnit
cblnit

5027212

Description

pForm is a pointer to the work area of an open form.
pblnit and cblnit describe a buffer that contains the
initialization values lor the different fields of the
form. If cblnit is 0, RestoreForm restores the default
values.
The RestoreForm buffer structure is the same as for
the EditForm operation.

4-22 Forms Run-Time

SetFieldAttrs
SetFieldAttrs sets the field character attributes.

The procedural interface is:

SetFieldAttrs (pForm, pbFieldName, cbFieldName,
index, attr): ErcType

Refer to table 4-14 for names and descriptions of
SetFieldAttrs procedural interface parameters.

Table 4-14 SetFieldAttrs Procedural Interface Parameters

Name

pForm
pbFieldName
cbFieldName

index

attr

Description

pForm is a pointer to the work area of an open form.
pbFieldName and cbFieldName describe a character string
naming the field to be modified. In matching field names,
SetFieldAttrs ignores the distinction between uppercase and
lowercase.
index specifies the field of a repeating field to be modified.
SetFieldAttrs ignores this parameter. if the named field is
not repeating.
attr is a word containing any of the following:
o a binary value in the range 0-15, directly encoding the

desired character attributes
o an 8-bit character code of a letter in the range A

through P (refer to table 3-3. Character Attributes. in
section 31

o the letter U for the unselected attributes of the field.
as specified at form definition

o the letter S for the selected attributes of the field. as
specified at form definition

Forms Run-Time 4-23

SetFieldType
SetFieldType allows the application program to
dynamically redefine the type (optional, mandatory, or
protected) of a specified field, or of all the fields of the form.

The procedural interface is:

SetFieldType (pForm, fAll, pbFieldName, cbFieldName,
index, type): ErcType

Refer to table 4-15 for names and descriptions of
SetFieldType procedural interface parameters.

Table 4-15 SetFieldType Procedural Interface Parameters

Name

pForm
fAil

pbFieldName
cbFieldName
index

type

5027212

Description

pform is a pointer to the work area of an open form.
fAil is TRUE or fALSE. If fAil is TRUE, type
redefinition applies to all the fields of the form;
SetFieldType ignores pbFieldName, cbFieldName and
index. If fAil is FALSE, type modification applies only
to the field specified by pbFieldName. cbFieldName
and index.
pbFieldName and cbFieldName describe a character
string naming the field to be redefined.
index specifies which instance of a repeating field is
to be redefined. SetFieldT ype ignores this parameter,
if the named field is not repeating.
type is a word containing any of the following:
0: Optional
1: Mandatory
2: Protected

4-24 Forms Run-Time

StoreFieldData
The StoreFieldData operation extracts the value of a
specified field from a buffer returned by the TypeForm
operation, and moves the value into a work area in
application program memory. It encodes the extracted data
according to any type code (for example, Character or
Binary).

The procedural interface is:

StoreFieldData (pForm, pbFieldName, cbFieldName,
index, pbBuf, pbRet, cbMax, plnfoRet, pType): ErcType

Refer to table 4-16 for names and descriptions of
StoreFieldData procedural interface parameters.

T able 4-16 StoreFieldData Procedural Interface Parameters

Name

pForm
pbFieldName
cbFieldName
index

pbBuf

pbRet
cbMax
plnfoRet

Description

pForm is a pointer to the work area of an open form.
pbFieldName and cbFieldName describe a character
string naming the field whose value is to be extracted.
index specifies from what instance of a repeating
field the value is to be extracted. StoreFieldOata
ignores this parameter. if the named field is not
repeating.
pbBuf points to a buffer returned by a previous
TypeForm operation.
pbRet and cbMax describe the memory work area
into which StoreFieldOata is to move the extracted data.
plnfoRet points to a memory area into which
StoreFieldOata returns the following information:

Size
Offset Field (bytes) Oesription

o cbRet 2 size (in
bytes) of
significant data
moved to the
memory area
pointed by pbRet

Forms Run-Time 4-25

Table 4-16 StoreFieldData Procedural Interface Parameters (continued I

Name

pType

5027212

Description

Size
Offset Field (bytesl

2 State 2

Description

field state
(equivalent to
bState byte in
the buffer
returned by
TypeForml

p Type is the memory address of a type code StoreFieldData
uses in encoding the data.

4-26 Forms Run-Time

TypeForm
The application program calls TypeForm to allow the user
to interactively modify the contents of a previously
displayed form. The application· program initially specifies
the first field to be selected for input. TypeForm then
automatically selects other fields, depending on the field
exit conditions it encounters (Next field, Previous field,
First field, or Last field function keys, and auto-exit
property of the field). It skips all protected fields. If the
user presses the Next field key when the currently
selected field is the last of the form, or the Previous field
key when it is the first, the field remains selected and the
system beeps to notify the user of the error. The First
field or Last field function key enables a user to jump,
respectively, to the first or last field of the form.

The TypeForm operation returns control to the application
program only when the user presses the Form validation
or Form cancel function key. However, TypeForm can
automatically call a user validation routine for any
individual field. The user must have declared the name of
this routine when defining the field; TypeForm calls it
each time the user exits from the field after having
modified its contents, if the field has not become empty,
and if the user has not exited through a Form cancel
function key. (Refer to User Validation Routines in this
section for additional information.)

If the user has validated the input and has left no
mandatory field empty, the TypeForm operation returns to
the application program all the values of the different
fields grouped together in a single buffer. If any
mandatory field is empty when the user presses the Form
validation function key, the user is notified of the error
and asked to fill in the first empty mandatory field. The
type code that TypeForm uses in encoding the data is
always Character. If the user has cancelled the input,
TypeForm returns an appropriate error code. Data the
user enters is not passed to the application program.

The procedural interface is:

TypeForm (pForm, pbRet, cbMax, pbFirstField,
cbFirstField, index, pExitStateRet): ErcType

Refer to table 4-17 for names and descriptions of
TypeForm procedural interface parameters.

Forms Run-Time 4-27

Table 4-17 TypeForm Procedural Interface Parameters

Name

pForm
pbRet
cbMax
pbFirstField
cbFirstField

index

pExitStateRet

5027212

Description

pForm is a pointer to the work area of an open form.
pbRet and cbMax describe the memory buffer into which
T vpeForm returns the data.
pbFirstField and cbFirstField describe a character string
naming the field to be initially selected for input. If
cbFirstField is 0, TypeForm selects the first field of the form.
index specifies which instance of a repeating field is to be
initially selected for input. T ypeForm ignores this parameter
if cbFirstField is 0, or if the named field is not repeating.
pExitStateRet points to a 4-byte memory area into
which TypeForm returns the following information:

Size
Offset Field (bytes) Description

o fill unused
ch the terminating

character code
2 cbRet 2 size (in bytes)

of significant
data returned in
the buffer

The buffer's structure must take the form shown in
figure 4-3.

4-28 Forms Run-Time

Figure 4-3 TypeForm Buffer Structure

bState

1st Field
rgbValue

bState

rgbValue

• •

• •

• •

bState

Nth Field
rgbValue

bEnd

:In figure 4-3:

bState is a byte that can have any of the following values:

00 = field not empty and not modified
01 = field empty and not modified
02 = field not empty and modified
03 = field empty and modified
There must be a bState byte for each field of the form. If
bState is 01 or 03, the bState byte for the next field must
immediately follow it.

rgbValue is the value TypeForm reads from the field, and
which it returns as a string of characters.

Forms Run-Time 4-29

TypeForm never returns binary zeroes. It always returns
ASCII spaces (20h), except if the field is empty (no other
character than space or binary zero). It always returns
non-significant ASCII zeroes (30h). If the field is decimal,
it includes the decimal mark in the returned value, except
if the decimal part is empty.

rgbValue must immediately follow a bState byte
containing 00 or 02.

bEnd is a byte that marks the end of the buffer. It is set
to 00.

If a user has defined a specific sequence for this form, the
elements (bState[,rgbValuej) for the different fields of the
form must appear in the buffer in the order of the
sequence numbers; if a user has not defined a sequence,
the elements must appear according to the location of the
fields on the screen (from top to bottom and from left to
right).

Note: This structure is compatible with the structure of the initialization buffer
used by the EditForm operation. The buffer returned by T ypeForm, therefore. can
also serve as input for EditForm.

5027212

4-30 Forms Run-Time

UndisplayForm
UndisplayForm removes a form from the screen, and
replaces it with the null character (code Oh). The contents
of any fields that were not read by the application
program are lost.

The procedural interface is:

UndisplayForm (pForm): ErcType

pForm is a pointer to the work area of an open form.

Forms Run-Time

UserFiliField
UserFillField highlights the field with the selected
character attributes and sets the cursor in the field.

4-31

If the user specified auto-exit when defining the field,
UserFillField removes the highlight from the field and
restores the unselected character attributes when the user
enters data in the last character cell.

UserFillField passes the terminating keystroke back to the
calling program in exitState.ch. The program interprets the
keystroke (for example, the user may use NEXT to
sequence through fields).

UserFillField does not include the terminating key value in
the data; if the user, however, enters a character in the
last position of an auto-exit field, UserFillField includes
the character as data, sets exitState.ch to right arrow
(code 12h), and sets exitState.fAuto-Exit to TRUE.
Likewise, if the user presses the Left Arrow key or the
Backspace key while the cursor is in the first position of
a field, the code corresponding to the key (Oeh and 08h,
respectively) is returned in exitState.ch and
exitState.fAuto-Exit is set to TRUE.

If the user tries to move the cursor or enter characters
beyond the field boundary, the system beeps, with the
following exception: With the repeating fields
characteristic, text can be entered into a field and
continued by moving to the next field if both are repeating
fields.

If the user presses CODE-Left Arrow, the cursor moves to
the left edge of the field; if the user presses CODE-Right
Arrow, the cursor moves to the end of the field.

The user enters or edits text in either insert or overtype
mode, and can press CODE-DELETE or
CODE-BACKSPACE to delete the contents of the entire field.

The procedural interface is:

UserFillField (pForm, pbFieldName, cbFieldName,
index, plnitState, pExltStateRet): ErcType

Refer to table 4-18 for names and descriptions of
UserFillField procedural interface parameters. Refer to
table 4-19 for information returned by UserFillField.

5027212

4-32 Forms Run-Time

Table 4-18 UserFiliField Procedural Interface Parameters

Name

pForm
pbFieldName
cbFieldName

index

plnitState
pExitStateRet

Description

pForm is a pointer to the work area of an open form,
pbFieldName and cbFieldName describe a character string
naming the field to be filled, In matching field names,
UserFiliField ignores the distinction between uppercase and
lowercase,

index specifies the field that is to be completed (for a
repeating field), UserFiliField ignores this parameter, if the
field is not repeating.
plnitState points to a descriptor block.

pExitStateRet points to a memory area.
Table 4-19 gives further information on these two parameters,

Table 4-19 Information Returned by UserFiIIField

Offset Field

plnitState:

0 ich

2 reserved

pExitStateRet:

0 ich

2 ch
4 fAutoExit
6 fModified

8 fEmpty

10 reserved

Size
(bytes)

2

6

2

2
2
2
2

6

Description

the initial cursor position relative to the
start of the field (where the first
character position is numbered 0)

the final cursor position relative to the
start of the field
the terminating character code '
TRUE if the field was exited by auto-exit
TRUE if the user changed the field contents
TRUE if the field was empty (aU spaces)
on exit

Forms Run-Time 4-33

WriteField
WriteField writes data to a field from the program
memory.

The procedural interface is:

Write Field (pForrn, pbFieldNarne, cbFieldNarne, index,
pb,cb,pType):ErcType

Refer to table 4-20 for names and descriptions of
Write Field procedural interface parameters.

Table 4-20 WriteField Procedural Interface Parameters

Name

pForm
pbFieldName
cbFieldName

index

pb
cb
pType

5021212

Description

pForm is a pointer to the work area of an open form.
pbFieldName and cbFieldName describe a character string
naming the field to be written. In matching field names,
WriteField ignores the distinction between uppercase and
lowercase.
index specifies which field of a repeating field is to be
written. WriteField ignores this paramenter, if the named
field is not repeating.
pb and cb describe a memory area containing the data to
be displayed.
p Type is the memory address of a type code Write Field
uses in decoding the data.

4-34 Forms Run-Time

User Validation Routines
A user validation routine must be a procedure defined
with the PUBLIC attribute and linked with the application
program. When configuring Forms Run-Time, you must
declare the names of all user validation routines that are
to be used. You can do this by editing the assembler
module FmVaIProc.asm. Information about how to modify
this module is included as comments in the module itself.
The user then must assemble Fm ValProc.asm and store,
using the Librarian utility, the resulting object module in
Forms.lib.

A user validation routine must be a Boolean function that
returns TRUE if it accepts the current field value as valid,
FALSE if it does not. Its interface must be as follows:

ValProc (pFvb): Boolean

pFvb is a pointer to a Field Validation Block, passed by
TypeForm to the user validation routine, with the
following structure:

Offset Field Size (bytes)

0 sbFieldName 41
41 index 2
43 iBlank 2
45 sbValue 133
178 ich 2
180 psbErrorMsg 4

The Field Validation Block is used in both directions, for
passing information from TypeForm to the user validation
routine (input), and for returning information from the
user validation routine to TypeForm (output).

The meanings of the various parameters in the Field
Validation Block are as follows:

o sbFieldName / index / iBlank:
Input: Name, index and numberofthe field to be validated.

Forms Run-Time 4-35

sbFieldName is an array of bytes, where the first byte is
the length of the field name.

iBlank is the internal number of the field. It is equal to
the sequence number minus 1, and therefore it starts at O.

Output: TypeForm ignores these parameters if the value
of the current field is not validated. If it is, you can
employ these parameters to specify what is the next field
to select for input.

There are three cases:

o You want to let TypeForm choose the next field,
depending on the keystroke that caused the exit from
the current field.
You must set:
sbFieldName(O) = 0;
iBlank = OFFFFh.

o You want to select the next field by its internal number.
You must set:
sbFieldName(O) = 0;
iBlank = desired number.

o You want to select the next field by its name and index.
You must set:
sbFieldName and index to the desired values;
iBlank to any value, as it is ignored if
sbFieldName(O) is not equal to O.
If the user has exited the current field through a Form
validation function key, Forms Run-Time processes this
key anyway, regardless of the values returned for
sbFieldName, index and iBlank.

o sbValue:
Input: Current value of the field. sbValue is an array of
bytes, where the first byte is the length of the value.
Output: Ignored.

5027212

4-36 Forms Run-Time

o ich:
Input: The final cursor position in the field.
Output: TypeForm ignores the ich parameter if the
current value is validated. If not validated, it must
contain the initial location at which the cursor should
be repositioned in the field.

o psbErrorMsg:
Input: Non-significant.
Output: TypeForm ignores the psbErrorMsg parameter if
the current value is validated. If not validated, it must
contain the address of the user-specific error message to
be displayed.

psbErrorMsg is a pointer to an array of bytes, where the
first byte is the length of the error message. If the length
is equal to 0, Forms displays the standard message Invalid
data.

Forms Run-Time 4-37

Forms Run-Time Customization
You can customize these four modules:

o FmTabKey.asm
a keyboard definition table contained in an assembly
language source file, FmTabKey.asm for Forms Designer
version 4.0 functionality.

o FmTabKey5.asm
a keyboard definition table contained in an assembly
language source file, FmTabKey5.asm for Forms
Designer version 5.0 functionality.

o FmRgtd.asm
a master table contained in an assembly language source
file, FmRgtd.asm

o Fm ValProc.asm
a user validation procedure table containing an
assembly language source file Fm ValProc.asm

The result of assembling the .asm files is an object file.
You use the BTOS Linker to link these object files with the
other object modules of the application program and the
Forms Run-Time library to produce your application
program. (Refer to the BTOS II Language Development
Linker and Librarian Programming Guide.)

Keyboard Configuration
The Forms.lib library contains the TabKey table, which is
an independent object module obtained by assembling the
desired FmTabKey.asm file. The TabKey table contains
256 control bytes, which define keyboard functions; each
key on the keyboard corresponds to a control byte
contained in the Tab Key table.

You can reconfigure (or redefine) some of the keys on the
keyboard to perform functions other than the standard
ones they normally perform. Table 4-21 shows the
functions that you can reassign to other keys and the
standard keys that currently provide those functions.

5027212

4-38 Forms Run-Time

Table 4-21 Keys That Can Be Reconfigured

Function Default Key

Form Validation GO
Form Cancel CANCEL
Next Field RETURN, NEXT, TAB, Down Arrow
Previous Field Up Arrow
First Field CODE-Up Arrow
last Field CODE-Down Arrow
Next Value SCROLL UP
Previous Value SCROLL DOWN
Decimal Mark' Decimal Point (.1

• You can redefine the Decimal Mark key, using a special parameter (chDecimaIMark) in
the FmTabKey.asm or FmTabKey5.asm module, to be either a period (.1 or a comma U.
For more information, refer to Forms Run-Time Customization.

The following keys are reserved and cannot be reassigned:

o cursor-movement keys (Left Arrow, Right Arrow,
CODE-Left Arrow, and CODE-Right Arrow)

o the HELP key
o the literal-insert key combination (CODE-=)
o function keys Fl through FlO

There are two ways to reconfigure the keys listed in
table 4-21:

o by modifying the FmTabKey.astn or FmTabKey5.asm
assembler module that contains the TabKey table; then
assembling FmTabKey.asm or FmTabKey5.asm and
using the BTOS Librarian to store the object module.
(Refer to the BTOS II Language Development Linker
and Librarian Programming Guide.)

o by using the FonctForm operation. (Refer to Forms
Run-Time Services.)

Forms Run-Time 4-39

Some keys are data keys; their control byte indicates
whether they are acceptable as alphabetic, numeric,
alphanumeric, or text characters. You cannot redefine
characters that have ASCII codes OOh through O:3h as data
characters.

Note: Numbers are decimal except when suffixed with h (hexadecimal); for
example, 10h = 16 and OFFh = 255.

Be aware that any keys whose functions you change by
modifying the TabKey table cannot be used when testing
forms with the Form Editor's Test Drive function
(described in section 3); the Form Editor uses its own
TabKey table, which is based on a standard keyboard
configuration.

Configuring the Type System
Type codes obtain their semantics through a table lookup
strategy at run time. The table to be searched is
determined when you link the Forms Run-Time and the
program; its name is rgtdForm and it is found in the
module FmRgtd.asm.

Assembly language source code generates the table. You
can extend the type system by changing this table;
however, you do not need to use this part of the Forms
utility for most applications.

Type Codes
A type code is presented to Forms Run-Time whenever it
reads or writes a field; the type code determines how the
data is encoded or decoded.

User entry data must be encoded (converted) for use by
the calling program; data written to a field must be
decoded for the display. The encoding and decoding
process uses a predefined set of data types. In Forms
Run-Time, these types are represented by text strings
called type codes.

A type code ends with a period and can contain a numeric
value (for example, a length). If a type code contains a
numeric value, a colon and a string of decimal digits
precede the final period. Examples of type codes are
Binary and Character-50.

5027212

4-40 Forms Run-Time

You can configure the type system when you employ
user-supplied type codes and conversion routines to link
Forms Run-Time and the calling program.

Defining Types

Each call on the macro DefineType generates one table
entry, defining one type. The entry for Binary:

%DefineType(Binary, EncodeBinary, DecodeBinary)

is equivalent to the following code:

DB 9. 'Binary'
DD EncodeBinary
DD DecodeBinary

CONST ENDS
EXTRN EncodeBinary: FAR.
DecodeBinary:FAR

CONST SEGMENT

This defines the type code Binary, to be implemented by
the external procedures EncodeBinary and DecodeBinary.

Adding Types

When a ReadField or WriteField requires type conversion,
the rgtd table is searched for a type code matching the one
supplied to the ReadField or WriteField in progress. In
matching type codes, ReadField or WriteField ignores the
distinction between uppercase and lowercase, and also the
numeric suffix of the type code (if any). Thus the type
Character, defined above, matches all of the following
type codes:

CHARACTER:50
Character: 1 00
cHarAcTer: 1

If ReadField or WriteField finds no match for a given type
code, it returns the message Bad type specification. If it
finds a match in the table, ReadField calls the associated
EncodeProc, or WriteField calls the associated DecodeProc,
to perform the conversion.

Forms Run-Time 4-41

EncodeProc

EncodeProc (used by ReadField) must have the interface:

EncodeProc (prgch, cch, pb, cb, pcbRet, sType): ErcType

Refer to table 4-22 for names and descriptions of
EncodeProc parameters.

Table 4-22 EncodeProc Parameters

Name

prgch

cch
pb
cb
pcbRet

sType

Description

prgch is a pointer to the text Forms Run-Time reads from
a field.
cch is the length of the text Forms Run-Time reads from a field.
pb and cb describe the data area passed to ReadField.

pcbRet is a pointer to a word to be set to the number of
encoded bytes placed by EncodeProc into pb.
s T ype is the binary value of the type code's numeric suffix
(if any).

EncodeProc converts the string defined by prgch and cch
into data in the area defined by pb and cb, and sets the
word pointed to by pcb Ret to the number of bytes
returned. sType gives specific information about the data
types (needed to conveniently handle types, such as .
packed decimal). If encoding is unsuccessful or a data
validation fails (for example, because an alphabetic
character is entered into a numeric field), EncodeProc
returns the message Invalid data; otherwise, it returns the
message OK.

5027212

4-42 Forms Run-Time

DecodeProc

DecodeProc (used by WriteField) must have the interface:

DecodeProc (prgch, cch, pb, cb, pcb Ret, sType): ErcType

Refer to table 4-23 for names and descriptions of
DecodeProc parameters.

Table 4-23 DecodeProc Parameters

Name Description

prgch prgch is a pointer to the area in which DecodeProc places
text to be written to a field.

cch

pb

cch is the length of an area in which DecodeProc places
text to be written to a field.
pb and cb describe the existing encoded data.

cb
pcbRet pcb Ret is a pointer to a word to be set to the number of

decoded bytes.
sType

Example:

s Type is the binary value of the type code's numeric suffix
(if any).

To implement a new type called Money, use the following
procedure:

Write procedures EncodeMoney and DecodeMoney to
perform the conversions. EncodeMoney accepts $ddd.cc
strings, converts them to cents, and then converts them
to 16-bit integers equal to the number of cents. If
EncodeMoney reads a string containing other characters
or a string in a different format, it displays the message
Invalid data. DecodeMoney converts a binary number of
cents into a money string with $ and . punctuation.

2 Edit the FmRgtd.asm file to include a type definition for
Money, by adding an entry of the form:
%DefineType(Money, EncodeMoney, DecodeMoney)

3 Relink the reassembled FmRgtd.obj to the application
system along with modules containing the procedures
EncodeMoney and DecodeMoney.

The system then recognizes the type code Money, and
Forms Run-Time calls EncodeMoney and DecodeMoney
whenever needed.

Forms Run-Time 4-43

Range Checking and Data Validation
The application program is responsible for range checking
and other data validation of encoded data. The BASIC
program in appendix B checks the PartNumber field for
range validity in lines 720-740.

Forms Run-Time Error Response
Users occasionally make errors while filling in forms.
Common errors are alphabetic characters in numeric fields
or numeric values that are out of range.

Forms Run-Time supports error handling by the program,
but it does not mandate a particular format for error
response. Two possible approaches are:

o You can set the program to signal an error by beeping
and repositioning the cursor in the field in which
invalid data was entered, or in the field where the
cursor appeared w hen the user pressed an erroneous key.
The interface to UserFillField permits you to specify the
character position in the field where the cursor is
initially positioned.
The interface to TypeForm permits the cursor to move
to the first field or last field in a form; you can use this
to respond to an erroneous keystroke. Typical erroneous
keystrokes include pressing the Next Field key when
the cursor is in the last field, and pressing the Previous
Field key when the cursor is in the first field.

o If the form includes a special application status field,
you can write the program to display an appropriate
error message in this field, to call LockKbd, and then to
reset the field to null after the user presses CANCEL.
LockKbd beeps for each character the user enters, and
disregards any entry after the erroneous entry until the
user presses CANCEL. You can assign the application
status field a character attribute (using the Forms
Editor), to ensure that any error message is emphasized.
If your program is intended for a user who is doing
high-speed data entry and who does not usually look at
the screen, this may be necessary to ensure that the
user realizes an error has occurred.

5027212

Section 5

Forms Structure

This section describes the representation of a form as it
resides in memory and as it resides on a BTOS disk file.

This section provides you with descriptions of the
following:

5-1

o the external representation of a form as it resides on a
BTOS disk file

o the internal representation of a BTOS Forms Designer
release 6.0 form as it resides in memory after having
been linked to an application program through the BTOS
Linker or loaded into memory from a disk file using
OpenForm.

External Structure
The BTOS disk file is of a format compatible with BTOS
object modules so that a form can be linked to an
application using the BTOS Linker. You can use BTOS
Librarian to combine multiple forms into a single library file.

The BTOS object format consists of a series of tables of
the same general format as shown in figure 5-1.

Figure 5-1 Form Format - External Representation

~,,"
REO R8XlAD

DATA
CHI<

lYPE LENGTH SLM
xxH o to 65534 bytes

" byte 2 bytes " " 1 byte

" "
REC TYP is the first byte in each record and contains a
value between o and 255 decimal, which indicates the
record type.

RECORD LENGTH is the second field in each record. It
contains the number of bytes in the record, excluding the
first two fields. This field is two bytes, using the
byte-reversed format, which is used for all two-byte fields
in all records.

5027212

5-2 Forms Structure

DATA is a series of bytes, from 0 to 65534 decimal in
number. The content and size of the data depends on the
data type.

CHK SUM is the last field of each record, and contains a
check sum containing the twos complement of the sum
(modulo 256 decimal) of all other bytes in the record.
Therefore, the sum (modulo 256 decimal) of all bytes in
the record equals O.

Using the format shown in figure 5-1, each form is
represented by a series of at least seven tables. The
following numeric values are hexadecimal unless otherwise
noted:

o Table I, Rec Typ = 80
The data for this table is the name of the form in ASCII.
The first byte of the name string is the length (in bytes)
of the remainder of the string. This name is usually the
name of the form file without the .form suffix.

o Table 2, Rec Typ = 88
The data for this table is a comment identifying the
level of forms object format supported. Refer to the
following listings for the exact format of this comment.

o Table 3, Rec Typ = 96
The data contained in this table is the ASCII string
DATA, preceded by the size of the string (4).

o Table 4, Rec Typ = 98
The first byte of data in this table is 48. The second
field is a two-byte size of the actual form data as it is
represented in memory for usage by the Forms
Run-Time Library (refer to Internal Structure in this
section). The final three bytes are 1, 1, 8.

o Table 5, Rec Typ = 90
This table describes the public name by which the form
data may be referenced. This name is normally the same
as the form name used in table O. The format of the
table is: 1, 1, size of the name string in bytes, the ASCII
string, 0, 0, 9

Forms Structure 5-3

o Table 6 through D-I, Rec Typ = AO
These tables contain the actual form data in memory
resident format. Each table contains up to 400 (l024
decimal) bytes of form data preceded by two fields. The
first single-byte field contains 1. The next two-byte field
contains the offset of the following data from the
beginning of the form. Thus a form 810 bytes long
would have three tables of sizes 400, 400, and 10 (plus
three bytes each of header). The respective offsets
would be 0, 400, and 800. The total size of the form
data may be as large as 2000 bytes, the limit imposed
by the FORMS internal format.

D Table D, Rec Typ = SA
This table signifies the end of the data. It contains a
single-byte zero value.

The following listing displays a sample form in interpreted
format:

..... '111 T". • •• CH,. Lift.... . .
_fI7,,"0070OCII.ac

RMeIiI T". •• cc-."'t) Len 1.

.... pt.

_ tMI GO 4F 112 M .. 4F .. 71 II 7Z" _ 4F IE 00j1O_
0001 51 • IE S4 'IE XI.4

IltGeN TyPl • II , , Len.... • •
DATA

.....,~ "" • II c .. ,."" Deft,.. .. ,,) u", •• 7 DATNDATA __ IEDt

Rea T", • II (Pull Lenl" • I
i-
NOI'ft .. " DATA
-",2101

........ Ty,. •• 1 (E""".tH Data) L"'", • "

..... DATA _ 0

0000 ED 00 Ff' Ff' Ff' 3. O' OF 00 M 00 .. 00 02 00 01 •.•.. t
0001 01 Ell 01 lA CE 01 01 a:: 00 ID 00 01 01 C4 80 \... . .••••....•.•...
0002 64 .. II 73 20 .. 73 20 73 It 8D 70 ec 15 20 74 nil 11 IImpl. I
0003 Ii 7t 74 20 I. eli 73 It 14 IG 0' 0' C4 00 03 00 ox, I nil 4 •••....
0004 10'''' 53 II 8D 70 ec 15 20 74 IS 71 74 20 IF 76 ., '.mpl. , II I • u
0005 74 73 .. 14 " 20 II 20 12 IF 71 lIIi 01 0\ C4 80 I II dO •• o •...•.
0008 01 II 20 82 IF 71 lIIi 00 '4 00 0' 01 C4 00 lD 00 .• b.x •........•
0007 0' 01 Et 01 ,... CE 0' 0' EA 00 lD 00 00 3. 00 0' •.•.............
0008 OE 00 00 2800 00 3, 00 00 3' 00 00 ,e 00 II O' .•• + •••••••••..•
000, 31 32 33 34 35 3. 00 15 00 00 05 OE 00 De 00 00 123451•.•.
000... 00 00 01 40 oc: eo 00 01 '0 FE FE 01 01 a:: 00 00 ., . .,•...•
OOOB 00 00 00 00 00 eo 00 00 10 Ff' Ff' Ff' Ff' Ff' Ff' Ff' .••••....••..•..
OOOC OOO.OIOOOOOOOOOOOOFf'Ff'Ff'Ff'Ff'Ff'Ff'
0000 00 IE .. IF GA.3F No 10 30 01 II .. U ec 14 31 1 .. 0 .fleldl
000£ 73.1 8D 70 ec n 20 .. It " Ie 14 00 CB limp I 0 1I.,d
_... "" •• 'A \Entli Lon", • I
0000 00 7.

5027212

5-4 Forms Structure

The following listing shows the same form file in raw format:

00000 80 01 00 07 73 11 10 70 ec 1& 32 IIC •• U 00 00
00010 00 4F 12 SA 4. 4F 20 7t " 72 73 It IF IE 20 51 , ... , .
00020 32 2E 34 7E • f 01 00 04 " 41 64 41 .8 .. 07 00 Thll I I
00030 .1 ED 00 01 01 oa U '0 OE 00 01 01 07 73 II eo OIl I nil de
00040 70 ec e5 32 00 00 o. ec III Ft 00 01 00 00 ED 00 pl • ... t ou
00050 FF FF FF 3. O. OF 00 SA 00 •• 00 02 00 01 01 E8 III do • '.1
00010 01 I" CIE 01 01 a: 00 ID 00 01 01 ct 10 I" 64 .. .• tto •..•..•.•. •
00070 It 73 20 Of 73 20 73 II eo 70 ec Ii 20 74 U 71 00 ••••••••• , ".,

00010 74 20 It IE 73 I' I' G5 01 01 ct 00 03 00 10 I" ••• + •• t ..•......
00010 53 II 10 70 ec OS 20 74 05 7' 7' 20 IF 7i 74 73 113411 •.•.•.•••••
000"0 It .. IS 20 " 20 fZ IF 7' 2E 01 01 ct 10 ot II . ..•............
OOOBO 20 U IF 78 2E 00 I' 00 01 01 ct 00 ID 00 01 01 "
OOOCO EI 01 I" CIE 01 01 ~ 00 1D 00 00 3. 00 01 OE 00 ., •••••••• o •••••

00000 00 2. 00 00 3. 00 00 3. 00 00 IE 00 I' 08 31 32 ' .. 0.11.1<11
OOOEO 33 3' 3& 31 00 15 00 00 05 OE 00 DI 00 00 00 00 .. mplt II old
OOOFO 01 40 OC EO 00 01 10 R; R; 01 01 a: 00 00 00 00
00100 00 00 00 EO 00 00 10 FF FF FF FF FF FF FF 00 O. .•. . t .. 1 12
00110 OG 00 00 00 00 00 00 FF FF FF FF FF FF FF 00 2E 34 , •.•....•.....
00120 II IF OA 3F "" AD 30 O. II .. es ec 64 31 73 II
00130 eo 70 ec 15 20 65 ec t4 00 CB SA 02 00 00
00140 74

Forms Structure 5-5

Internal Structure
The following describes the internal representation of a
BTOS Forms Designer release 6.0 form as it resides in
memory after having been linked to an application
through the Linker facility or loaded into memory from a
disk file using OpenForm. The format of the form data
within a library or disk file is not addressed here. The
following definitions are relative to Forms 6.0. Data
definitions are represented as PL/M constructs. A byte
occupies eight bits and a word equals sixteen bits.

Each form is a variable-sized structure composed of a
fixed header and variant substructures of various type.
The maximum total size of a form is 8192 bytes (8K). The
to~most definition is:

DECLARE Form STRUCTURE

cb WORD,
ifr BYTE,
icol BYTE.
Uine BYTE.
ceo! BYTE.
cline BYTE.
bruns WORD.
cbRuns WORD.
brgblank WORD,
iblankMlc WORD.
rgb(8177) BYTE
);

Refer to table 5-1 for the names and descriptions of the
Form STRUCTURE parameters.

5027212

5-6

Table 5-1

Name

cb

ifr
ieol

iline

eeol
cline

bruns

cbRuns

brgblank

iblankMac

rgb

Forms Structure

Form STRUCTURE Parameters

Description

the size of the entire form in bytes
the video frame in which the form is to be displayed
the column within the video frame at which the upper left corner of
the form is located
the line within the video frame at which the upper left corner of the
form is located
the maximum size of the form in columns
the maximum size of the form in lines
the offset (from the start of the form) of the beginning of the runs
(described later in this section) in the form
the size in bytes of all runs in the form
the offset (from the start of the form) of the beginning of the area
containing all blanks (described later in this section) in the form
the total number of blanks contained in the form
the array of bytes containing variable numbers and sizes of runs,
blanks, and extended blanks

The form structure through iblankMac is fixed in size and
meaning for all forms. The array rgb is a packed area
containing the remainder of the data. The first class of
data possible is the run. A run is a horizontal row across
the video frame containing character data and attributes.
The data types may be alphanumeric or graphical. Both
are represented by members of the B20 family character
set, with graphics being accomplished by combining
characters represented by values above OCOH. Each line
within the form (cline lines) is represented by at least one
run. The structure of each run is:

DECLARE Run STRUCTURE

tylooks BYTE,
ceol BYTE,
rgch (146) BYTE
I;

Refer to table 5-2 for the names and descriptions of the
Run STRUCTURE parameters.

Forms Structure 5-7

Table 5-2 Run STRUCTURE Parameters

Name

tylooks

ceDI
rgeh

Description

if bit 1 is 1, this is a "text" run described by ccol characters
contained in first ccol elements of the rgch array. If bit 1 is 0, this
is a "graphics" run of ccol identical characters of the value
contained in the first element of the rgch array. In either case, the
lower four bits of tylooks contain data regarding the attributes of
the run. This constrains each run to describe a line of only a single
attribute combination. The possible encodings are:
Bit 0 - halt bright
Bit 1 - underlined
Bit 2 - reverse video
Bit 3 - blinking
the number of characters comprising this run
an array of 1 or more characters comprising the run

The next type of form data is the blank. Each field
defined by the Forms Editor user is represented as a
blank. Visually, this appears as a line of small boxes, and
in fact, a run of these characters is generated for each
blank. The data in the blank structure is fixed in format
and represents the data entered into Forms Editor using
the Define Field function (FS). The format is:

DECLARE Blank STRUCTURE

icolRel BYTE,

ilineRel BYTE,

ccol BYTE,
iExtBlank BYTE,

bsbName WORD,
index WORD,
ordering BYTE,
control BYTE,
justif BYTE,
cchDefault BYTE,
brgchDefault WORD,
flagS WORD
)';

5027212

5-8 Forms Structure

Refer to table 5-3 for the names and descriptions of the
Blank STRUCTURE parameter.

Table 5-3 Blank STRUCTURE Parameters

Name

icolRel

ilineRel
ceo I
ExtBlank

bsbName

index
ordering

control

justif

cchDefault

brgchDefault

Description

the left most column of the blank relative to the first column
of the form
the single line of the blank relative to the first line of the form
the number of columns the blank occupies
the index of the extended blank associated with this blank
(described later in this section)
the offset from the beginning of the form of the string which
represents the name of this blank. The first byte of the
string is the number of bytes in the remainder.
the index used to identify repeating fields
the index used to define the order in which fields are
selected for data entry by T ypeForm if the default left to
right and top to bottom order is not acceptable.
a flag which determines the format of the data to be
contained within the blank. Values are:
1 - text data;
2 - alphanumeric data;
3 - alphabetic data;
4 - numeric data.
an indicator of the size and justification of the data to be
contained within the blank. Bits 0 through 3 contain the
maximum number of decimal digits allowed for numeric
entries. Bit 4 signifies decimal justification. bit 5 means right
justified. and bit 6 indicates left justification.
the count of bytes in the string containing the default value
of a blank
the offset from the start of the blank of the character string
defining the blanks default value

Forms Structure 5-9

Table 5-3 Blank STRUCTURE Parameters (continued)

Name Description

flagS a series of flags indicating the state of various options. A
one in the bit position means the option is valid. The
following flag values are in hexadecimal:
8000H - show default value;
4000H - auto exit;
2000H - repeating field;
1000H - this blank has an associated

extended blank (see below);
0400H - prohibited field;
0200H - mandatory field;
0100H - secret field.
The lower 8 bits contain the selected and unselected
attributes of this blank. Bits 0 through 3 indicate the
attributes to use in displaying this blank if unselected.
and bits 4 through 7 are the selected attributes.

Each blank defined within a form may optionally have an
extended blank associated with it. The extended blank
contains data which is not necessarily specified for every
blank. The extended blank area begins immediately
following the packed blanks. The offset of this area from
the start of the form may be computed as (brgblank +
(iblankMac * blank size)). An extended blank is defined:

DECLARE ExtendedBlank STRUCTURE

bsbValProc WORD.
bsbHelpMsg WORD.
brgsblistValues WORD.
iValueMax BYTE.
iValue BYTE.
rgbColors (8) BYTE
);

Refer to table 5-4 for the names and descriptions of the
ExtendedBlank STRUCTURE parameters.

5027212

5-10 Forms Structure

Table 5-4 ExtendedBlank STRUCTURE Parameters

Name

bsbValProc

bsbHelpMsg

brgsbListValues

iValueMax
iValue
rgbColors

DescriptoR

the offset from the start of the form of the string containing
the name of the user validation routine for the blank. The
first byte of the string contains the number of bytes in the
remainder.
the offset from the start of the form of the string containing
the message to be displayed as if the HELP key is pressed
while awaiting input from this blank. The first byte 01 the
string contains the number of bytes in the remainder of the string.
the offset from the start of the form of a packed series of
strings representing the possible values which may be
contained in the blank. Each individual string begins with a
byte count of the number of bytes in the remainder of the
string. The actual string follows immediately after the byte
count of the string.
the number of list values in the string series plus 1
the index of the default value among the list of values
for a normal extended blank, the first byte of this array
contains the color index into the current palette (a value from
o through 7) for the blank while selected. The second byte
represents the color to be used if unselected. If a color
palette has been selected for this form. there is a dedicated
blank and extended blank used to represent the palette. The
values of iColRel and ilineReI of this blank are set to 254,
an area outside the frame. The extended blank associated
with this special blank uses the rgbColors array to contain
the encoding of the red, green, and blue components of the
eight palette colors. Each component may have a value from
o through 3 representing no intensity through full intensity
for that particular component. These values are packed into 2
bits within each byte in the array. The masks for each color are:
Red - 30H;
Green - OCH;
Blue - 03H.
In this fashion, six bits of each of the eight bytes construct
the eight colors of the palette. Packed into the upper bit (bit
1) of the first three bytes of the array are the three bits
necessary to select one of the eight colors of the palette to
be used for the colors of the captions. likewise, the fifth,
sixth, and seventh bytes contain the color used for lines. This
is shown in figure 5-2.

Forms Structure 5-11

Figure 5·2 Color Matrix

Bit

Color 7 6 5 4 3 2 1 0

0 CaptO R1 RO G1 GO B1 eo

1 Capt1 R1 RO G1 GO B1 eo

2 Capt2 R1 RO G1 GO B1 eo

3 R1 RO G1 GO B1 BO

4 L1neO R1 RO G1 GO B1 eo

5 LIne 1 R1 RO G1 GO B1 eo

6 L1ne2 R1 RO G1 GO B1 BO

7 R1 RO G1 GO B1 BO

Following the extended region of the blank is space
allocated to strings pointed to by the "bsb .. " indices above.
Some of these strings are: list of values; default values;
and the name of the blank.

5027212

Appendix A A·'

Error Messages

Error messages for Forms Designer are listed in the
following three groups:

o Forms Run-Time error codes: 3700-3799
o Forms Editor error messages
o Forms Run-Time error messages

Forms Run-Time Error Codes

3700

3701

3702

3703

3704

5027212

Name not found
The form name supplied to OpenForm was not
found in the file. Check that the file name and
form name are correct.

Bad object file
The file supplied to OpenForm is not a valid
object module. The file could be empty. Check
that the file name is correct for the form you want.

Form too big
The work area supplied to OpenForm is too small
to contain the named form. Use the Forms
Reporter (FREPORT command) to determine the
required work area.

Form out of bounds
The coordinates passed to DisplayForm would
result in a part of the form lying outside the
frame. Use the Forms Reporter (FREPORT
command) to determine the required height and
width.

Form not displayed
A Forms Run-Time service was called for a form
that was not displayed. Display the form (use
OisplayForm) before attempting any of the Forms
Run-Time services.

A-2

3705

3706

3707

Error Messages

No such field
A Forms Run-Time service was called for a field
(specified by pbFieldName, cbFieldName) and
index that do not exist. Use the Forms Reporter
(FREPORT command) to determine the correct
name and index.

Bad type specification
A ReadField or WriteField was supplied with a
type code that is not defined in your
configuration. Examine the source text of
FmRgtd.asm for a list of defined type codes.

Bad data size
A ReadField or WriteField was attempted in
which the cbMax or cb parameter was incorrect
for the type of data being returned (for example,
a cbMax of three for type Binary). Make sure that
the size and type of your data agree.

AddValues also returns this error message:

o if the default value to be added ,is invalid, according to
the data control type assigned to the field

o if the data for a numeric field is not a valid number (for
example, a numeric sign inside a number or a duplicated
decimal point)

o if the default value for a field defined with a list of
values is not equal to the first characters of any values
in the list

3708
Invalid data
You attempted a ReadField or WriteField in which
the requested data conversion could not be
performed (for example, reading an alphabetic:
string as type Binary). For ReadField, display an
error message and have the user reenter the data.
For WriteField, make sure the type of the data
you are displaying is correct.
AddValues also returns this error message if one
or several default values are too large to fit in a
field. As a result, AddValues truncates the
user-supplied value name, processes all data in
the buffer, and, as a warning, returns the last
error code encountered.

Error Messages A-J

3709-3739
Reserved.

3740
Protected field
UserFillField was called on a field defined as
protected.

3741-3749
Reserved.

3750

3751

3752

3753

3754

3755

3756

3757

5027212

Invalid initialization buffer
EditForm or RestoreForm was supplied with an
initialization buffer that was not correctly
formatted.

Input cancelled
TypeForm was terminated by a Form cancel
function key. No data is returned.

Buffer too small
TypeForm or OutForm was supplied with a buffer
too small for the size of the data to be returned.

Invalid function key value
One or more of the function key values passed to
FonctForm were invalid.

No input field
TypeForm was called on a form containing only
protected fields.

No such validation routine
The name of the user validation routine
associated with the field could not be found in the
table generated by the FmValProc.asm module.

Invalid Buffer
The value supplied to AddValues is inconsistent.

Value List Too Large For Form
Including the user-supplied information will cause
the Form descriptor to exceed its maximum size
(SKB).

A-4 Error Messages

3758
Data Truncated In Returned Buffer
The user-supplied buffer is too small to contain
all of the returned data. As a result, the system
returns the maximum possible valid information
and updates CbValuesRet.

3759·3799
Reserved.

Forms Editor Error Messages

A decimal-justified field must be a numeric

If you selected a field entry to be justified on the
decimal point, you must specify the field to be a
numeric (Nu) data type.

A picture is already displayed

You used F3 to display a graphics picture while a
graphics picture was already displayed.

Press SHIFT·F3 to remove the current graphics
picture before displaying another picture.

A protected field cannot be mandatory

You designated a protected field as a mandatory
field. A field can be either protected or
mandatory; it cannot be both.

Check whether you want to designate the field as
protected or mandatory.

Bad file format

The system cannot find the file you specified in
the READ FORM form. Check that you have
specified the file correctly and try again.

The default volume and directory is the current
path. To access a form in a different volume or
directory, you must type in the complete file
name using brackets.

Error Messages A-5

Cannot move partial fields

You can MOVE or COpy a partial field only to a
location on the same line.

Adjust your selection to include the entire field or
MOVE or COPY the partial field to a location on
the same line.

Cannot open that file

The system cannot find the file typed in a Read
Form form. Check your file specification.

The current volume and directory is the default
path.

To access a form in a different volume or
directory, you must type in the complete file
name using brackets.

Default inconsistent with list of values

You selected an invalid default value.

Select a default value from one of the values in
the list.

Destination out of bounds

You cannot MOVE or COpy a field into an area
that overlaps the display edge. Check the position
both of your selection and of the cursor.

Discontinuous sequence numbers

5027212

You specified a fill-in sequence using numbers
that were not sequential (continuous).

Specify sequence numbers sequentially, starting
with 1 (for example, 1, 2, 3).

A-6 Error Messages

Field has nonsequential index

One field of a repeating field has an index that is
out of sequence with the rest of the repeating
field. The field is blinking. Change the index or
rename the field.

Field too small to accept decimal justification

You defined a field for justification with the
decimal point, but the field is too small to permit
justification.

Create a field that is at least three columns wide.

File in use

The file you specified in the [File} field on the
Text Insertion form is being edited from your
workstation or from another workstation.

File is not a library

The file name you specified in the [Library file]
field of the Graphics Display form does not exist
in the library.

File name missing

On the Graphics Display form, you specified the
name of a Library File that does not exist.

Form is too complex

Your form cannot be translated into binary
format because it has exceeded the Forms Editor
in-memory work area.

Try a Test Drive (the Forms Editor compacts the
form as a result of Test Drive and Write Form
functions). If the message still displays, reduce
the length of field names or default values until
the message no longer displays when you Test
Drive the form.

This problem is likely to occur if you have moved
or copied fields.

Error Messages A-7

Form is too wide

The Zoom function cannot reformat the display to
80 columns because the form does not fit. Use the
View Edit Code function (press CODE-V) to check
for any space characters that you can remove.

Graphics is not available on this workstation

You used F3 to perform the graphics operation on
a workstation that does not support graphics.

Illegal form name

A form name must consist only of alphanumeric
characters (including the filename). Make sure
that your entire form and file name conforms to
this restriction.

Invalid data type

You specified an invalid data type for a field.

Identify the field as Ab (alphabetic), Nu
(numeric), An (alphanumeric), or Tx (any ASCII
characters).

Invalid display coordinates

You specified invalid column or line coordinates
which would cause the form to appear outside
the display area boundary.

Invalid file name

You specified an invalid Library file name on the
Graphics Display form, or an invalid file name on
the Text Insertion form.

Invalid justification

5027212

You specified an invalid justification selection for
a field.

Identify the field as L (left justified), as R (right
justified), or as a number between 1 and 15.

A·a Error Messages

Last sequence number is greater than 200

Automatic incrementing of sequence numbers for
a repeating field has caused sequence numbering
to exceed 200. Sequence numbering cannot be
greater than 200, which is the maximum number
of fields in a form.

Multiple use of same field name

Two or more fields are blinking because they
have the same name, but are not defined as
repeating. Either change the field names or
specify yes for repeating.

No fields defined

NEXT and Test Drive (F9) cannot be used unless
you have defined a field.

No picture displayed

You used the Graphics Display form to display a
graphics picture, but you entered the name of a
bad library file or graphics module. This resulted
in no graphics picture being displayed.

No selection

The command you chose requires a selection.
Make a selection and then try the command.

No such form

The form you typed in the READ FORM form
does not exist in that file. If your file name is
correct, check your current path.

Not enough memory for Graphics Display

There is not enough memory for you to use the
graphics operation feature (F3). The Forms
Editor dynamically allocates 64KB of memory for
graphics operation.

Error Messages A-9

Please enter a number in range 0-200

You specified a number greater than 200 for a
fill-in sequence. A sequence number cannot
exceed 200, which is the maximum number of
fields in a form.

Please sequence all fields or none

You specified some form entries as part of a
fill~in sequence and others as not part of that
sequence.

If one field in the form has a nonzero sequence
number, all fields must have a nonzero sequence
number.

Selected area is too small

Too many lines or too much text appears in the
field you selected with MARK and BOUND. The
system truncates text that overlaps the field.

The file is not a Picture file

You entered the name of an invalid Picture file in
the [Graphics file] field of the Graphics Display
form.

The specified file is not a Word Processor file

The file you specified in the [File] field on the
Text Insertion form is not a text file.

The file you specify must be a text file (that is, a
file that is in the Word Processor or Forms Editor
format).

Too many decimals

5027212

You specified too many decimals in a field.

The maximum number of decimals allowed is
equal to the field's width minus 2.

A-l0 Error Messages

Too many fields

Your form cannot be translated into binary
format because it has exceeded the Forms Editor
in-memory work area. Try a Test Drive (the
Forms Editor compacts the form as a result of
Test Drive and Write Form functions). If the
message still displays, reduce the length of field
names or default values until the message no
longer displays when you Test Drive the form.
This problem is likely to occur if you have moved
or copied fields.

Value too large

The default value and/or listed values are so
large that they exceed the width of the field.

Specify values that are not greater than the
width of the field.

Forms Run-Time Error Messages

Alphabetic characters only

You tried to enter a nonalphabetic character in a
field that the data control type defines as an
alphabetic field.

Alphanumeric characters only

You tried to enter a nonalphanumeric character
in a field that the data control type defines as an
alphanumeric field.

Field overflow

The field is completely filled in; no more
characters can be inserted.

Illegal function key

You pressed a key that the TabKey table
considers to be illegal.

Error Messages A-11

Invalid cursor movement

You tried to move the cursor:

o out of the field
o to the right of a decimal mark in a decimal

field without typing a decimal mark (even if
the decimal mark is already present)

o into an uninitialized part of a field

Make sure to move the cursor only within the
allowable areas in a field.

Invalid data
The user validation routine rejected the current
value of the field, but did not supply an error
message.

Mandatory field
You have not filled in a mandatory field; please
do so.

No list of values for this field
You pressed a Next Value or Previous Value key,
while filling in a field that was not defined with
a list of values.

No such value
For a field defined with a list of values, you
typed an ASCII character that was different from
the first character of any values in the list.

Numeric characters only
You tried to enter a nonnumeric character in a
field that the data control type defines as a
numeric field.

Reserved character

5027212

You tried to enter a character with ASCII codes
OOh, Olh, or 03h into a field; you cannot use
these characters as data characters in a field.

A-12 Error Messages

Sign cannot be inside a number
In a numeric field, you can enter a sign only as
the first character.

Text characters only
You tried to enter a character into a field defined
with the text CTx) data control type, when you
can enter a character only with the literal text
entry method (CODE-=).

Appendix B 8-1

Sample BASIC Program

This BASIC program uses OpenF.'orm, DisplayForm,
UserFill Field, ReadField, WriteField, and UndisplayForm
to run the form created in appendix D.

The program includes range checking and data validation
of encoded data with the PartNumber field (lines 720-740).

Sample BASIC Program

This BASIC program uses OpenForm, DisplayForm, UserFill
Field, ReadField, WriteField, and UndisplayForm to run the
form created in appendix D.

The program includes range checking and data validation of
encoded data with the PartNumber field (lines 720-740).

10 'Basic program using Tutorial.form
11 'Illustrating fixed and repeating fields, user

input and program output
20 OPTION BASE 1
30 CHNEXT% = &HA: ERCINVALIDDATA% = 3708
40 'Create part number <=> price data base
SO DIM PRICES% [20J
60 FOR 1% = 1 TO 20: READ PRICES%!I%]: NEXT 1%
70 DATA 1, 5, 17, 20, 3, 4, 7, 6, 2, 3, 3, 12, 15,

19, 6, 8, 4, 9, 9, 15
80
100 'Open the form
110 FILES "Tutorial. form"
120 PSWD$
130 FH% = 0
140 MODE% &H6D72' modeRead
150 ERC% = OPENFILE(PTR(FH%), PTR(FILES), LEN(FILES),

PTR(PSWDS), LEN(PSWDS), MODE%)
160 IF ERC% <> 0 THEN GOTO 9000
170 FORMS = "Tutorial"
180 DIM FORM% [SOOJ ' 500 words = 1000 bytes
190 ERC% = OPENFORM(FH%, PTR(FORMS), LEN(FORM$),

PTR(FORM%[l), 1000)
200 ERC2% = CLOSEFILE(FH%) • close the file even if

OpenForm got an error
210 IF ERC% <> 0 THEN GOTO 9000
220 IF ERC2% <> 0 THEN GOTO 9000
230 'Now clear the screen and display the form

centered
240 PRINT CHR$(2SS1 + "pf" + CHRS(2SS) + "vf" +

CHRS(&HC) ;
250 ERe% = DISPLAYFORM(PTR(FORM%[l]), 0, 255, 255)
260 IF ERC% <> 0 THEN GOTO 9000
270

5027212

B-2 Sample BASIC Program

300 'Prompt user to fill in Salesman field
310 DIM INITSTATE% 14J
320 DIM EXITSTATE% 18J
330 FLDS = ·Salesman"
340 INITSTATE% 11 J = 0 ' initState. ich: initial cursor

position
350 ERC% = USERFILLFIELD(PTR(FORM%[l), PTR(FLDS),

LEN(FLDS), 0, PTR{INITSTATE%llJ),
PTR(EXITSTATE%[l]»

360 IF ERC% <> 0 THEN GOTO 9000
370 IF EXITSTATE%12] = CHNEXT% THEN GOTO 500 I

exitState.ch = Next => proper exit
380 PRINT CHRS(7); , anything else is improper exit:

make a beep (by pr inting ASCI I bell)
390 INITSTATE%[l) = EXITSTATE%[l) , leave cursor where

it was
400 GOTO 350 ' and try again
410 '
500 'Now find out how many repetitions there are
510 DIM INFO% [16J
520 FLD$ = "PartNumber"
530 ERC% = GETFIELDINFO(PTR(FORM%[l]), PTR(FLD$),

LEN(FLDS), 1, PTR(INFO%[l]), 32)
540 IF ERC% <> 0 THEN GOTO 9000
550
560 'Loop through all repetitions
570 AMOUNTDUE% 0
580 FOR INDEX% = INFO%[9] TO INFO%[lO] , indexFirst to

indexLast
590
600 'Prompt user to fill in Part Number
610 PART% = 0
620 FLDS = ·PartNumber"
630 TypeS = "Binary,"
640 INITSTATE%ll] = 0 I initial cursor position
650 ERC% = USERFILLFIELD(PTR(FORM%[l]), PTR(FLDS),

LEN(FLDS), INDEX%, PTR(INITSTATE%!lJ),
PTR(EXITSTATE%[I))

660 IF ERC% <> 0 THEN GOTO 9000
670 IF EXITSTATE%[2] = CHNEXT% THEN GOTO 710 ' proper

exit
680 PRINT CHRS(7); , improper exit: beep
690 INITSTATE%!l) = EXITSTATE% [1 J ' leave cursor where

it was
700 COTO 650 I and try again
710 'Find out what the user typed
715 CBREAD% = 0

Sample BASIC Program B-3

720 ERC% = READFIELD(PTR(FORM%[l]), PTR(FLDS),
LEN(FLDS), INDEX%, PTR(PART%), 2, PTR(CBREAD%),
PTR (TYPES))

730 IF ERC% = 0 AND PART% > 0 AND PART% <= 20 THEN
GOTO 800 ' valid part number

740 IF ERC% <> ERCINVALIDDATA% AND ERC <> 0 THEN GOTO
9000 ' random error

750 'Here if invalid part number: display an error
message

760 MSGS = "Invalid Part Number"
770 GOSUB 5000
780 ' And make the user do it allover again
790 GOTO 600
800 GOSUB 6000 ' clear the message
810 'Got a good part number, redisplay to right

justify
820 ERC% = WRITEFIELD(PTR(FORM%(l]I, PTR(FLDS),

LEN(FLDS), INDEX%, PTR(PART%), 2, PRT(TYPES»
825 IF ERC% <> 0 THEN GOTO 9000
830 'Now look up unit price and display
840 UNITPRICE% = PRICES%[PART%]
850 FLDS = "UnitPrice"
860 TYPES = "Binary."
870 ERC% = WRITEFIELD(PTR(FORM%(lj), PTR(FLDS),

LEN(FLDS), INDEX%, PTR(UNITPRICE%), 2, PTR(TYPES»
880 IF ERC% <> 0 THEN GOTO 9000
890
900 'Prompt user to fill in Quantity
910 FLDS = "Quantity"
920 TYPES = "Binary,"
930 QUANTITY% = 0
940 INITSTATE%[lj = 0 ' initial cursor position
950 ERC% = USERFILLFIELD(PTR(FORM%(l]), PTR(FLDS),

LEN(FLD$), INDEX%, PTR(INITSTATE%(l!),
PTR(EXITSTATE%[l]»

960 IF ERC% <> 0 THEN GOTO 9000
970 IF EXITSTATE%[2] = CHNEXT% THEN GOTO 1010 ' proper

exit
980 PRINT CHR$(7); , improper exit: beep
990 INITSTATE%[l) = EXITSTATE%(l] , leave cursor where

it was
1000 GOTO 950 ' and try again
1010 'Find out what the user typed
1015 CBREAD% = 0
1020 ERC% = READFIELD(PTR(FORM%\l]), PTR(FLDS),

LEN(FLDS), INDEX%, PTR(QUANTITY%), 2, PTR(CBREAD%),
PTR(TYPES»

1030 IF ERC% = 0 THEN GOTO 1100 ' valid number
1040 IF ERC% <> ERCINVALIDDATA% THEN GOTO 9000 ' random

error

5027212

B-4

1050

1060
1070
1080
1090
1100
1110
1120

1125
1130

1140
1150
1160
1170

1180
1190
1200
1210
1220
1230

1240
1250
1400
1410
1420
1500
1510
1515
1520
1530
5000
5010

5020

5030
5040
5050
5060
5070
5080
6000
6010
6020
6030
6040
6050
6060
9000
9010
9020

Sample BASIC Program

'Here if invalid quantity: display an error
message
MSGS • "Not a number"
COSUB 500.0
'And make the user do it allover again
COTO 900
COSUB 6000 ' clear the message
'Redisplay quantity as we did part number
ERC% = WR ITEFIELD (PTR (FORM% I1 J), PTR (FLDS) ,
LEN(FLDS), INDEX%, PTR(QUANTITY%), 2, PTR(TYPES»
IF ERC% <> 0 THEN GOTO 9000
'Compute total price· unit price • quantity, and
display
TOTALPRICE% = UNITPRICE% * QUANTITY%
FLDS = "TotalPrice"
TYPES· "Binary."
ERC% = WRITEFIELD(PTR(FORM%[l), PTR(FLDS),
LEN(FLDS), INDEX%, PTR(TOTALPRICE%I, 2,
PTR (TYPES))
IF ERC% <> 0 THEN GOTO 9000
'And update Amount Due
AMOUNTDUE% = AMOUNTDUE% + TOTALPRICE%
FLDS. "AmountDue"
TYPES· "Binary."
ERC% = WRITEFIELO(PTR(FORM%[l]), PTR(FLDS),
LEN(FLO$), INDEX%, PTR(AMOUNTDUE%), 2, PTR(TYPE$»
IF ERC% <> 0 THEN GOTO 9000

'Finished a row, loop back for next row
NEXT INDEX%

'Last row filled: put cursor back and exit
PRINT CHRS(2551 + "pn" + CHRS(255) • "vnN,
ERC% = UNDISPLAYFORM(PTR(FORM%!l])1
END

'Subroutine to display MSGS in the form
'Use escape sequence to position cursor and set
blinking attributes
PRINT CHRS(255) + "CO + CHR$(50) + CHRS(25) +
CHRS(255) + "a(",
'Display message
PRINT MSGS;
'Reset attributes to plain and beep
PRINT CHRS(2551 + Baa" + CHRS(7);
RETURN

'Subroutine to clear the error message
'Use escape sequence to position cursor
PRINT CHRS(2551 + "c" + CHRS(50) + CHRS(251;
'Print 50 spaces
PRINT STRING$(50, " "I;
RETURN

'Error exit
PRINT "error" ERC%
GOTO 1500

Appendix C C-1

Sample PASCAL Program
PROGRAM TestPas (Input, Output);

(* Program to exercise some of the procedures *j

(* TypeForm, StoreFieldData and SetfieldType *)
(* This program assumes the presence of the form 0)
(* 'Tutorial.form' constructed by following the instructions *j
(* for creating a form in appendix D. *j

{SDebug-1 (0 Turn off the debugger *)

TYPE
1 Pointer

Quad
ErcType
flagType= BOOLEAN:

VAR (PUBLICi
FileHandle: WORD
Index
Price
TotalPrice: REAL
AmountDue: REAL
UnitPrice: REAL
DeCodeReal: REAL
Part
Quantity: INTEGER
FrameNumber: INTEGER
DeCodeIntr: INTEGER
vtype
Field
NumStr
StrCodeNum: LSTRING(20)
Prices

• ADS of WORD:
• ADS of WORD;
• WORD:

:
WORD
REAL

.
INTEGER

: LSTRING(lO)
: LSTRING(U)
: LSTRING(20)

: 'ARRAY(l .• lOI of REAL:
: ARRAYll .. 2000) of BYTE: Form

InitState:
ExitSute:
fieldlnfo:

ARRAYll .. 41 of WORD;
ARRAYll .. 4) of WORD:

RetBuf

VAR (EXTERNAL I
BsVid

VAR

CONST

5027212

Protected"
Mandatory·

ARRAY(l .. l7) of WORD;
ARRAYll .. 40001 of BYTE:

BYTE

: WORD

2:
1 :

C-2

... I vf' *

CHR (#0) •

ModeRelld=
InvalidData"
rgbCls

#6[l72
#3708 :

Sample PASCAL Program

• CHR(NOff) • 'pf' * CHRI#Off)

CHR(#Off) • 'c' • CHRlkO) *

CHRI#Off) • 'ef' • CHR(#O);

(* Declare BTOS External Procedures *)

rUNCTION Openrile(prhRet

EXTERN;

rUNCTION WriteBsRecordlpBSWA

EXTERN;

: Pointer
pbFileSpec
cbFileSpec :
pbPassWord :
cbPassWord :
Mode : WORD

: Pointer ;
pb : Pointer
cb : WORD

Pointer
WORD
Pointer
WORD

) : ErcType;

pcbRet : Pointer) : ErcType;

rUNCTION Closerile(FileHlIndle: WORD) : ErcType: EXTERN;

PROCEDURE CheckErc(Erc WORD) : EXTERN;

PROCEDURE Exit EXTERN:

(* Declare rORMS External Procedures *)

rUNCTION Openrorm(FileHandle: WORD

EXTERN:

rUNCTION DisplayForm(pForm

EXTERN;

rUNCTION Typerorm(pForm

ErcType; EXTERN;

FUNCTION StoreFieldData(prorm

pbFormName : Pointer :
cbFormName : WORD
pFormRet Pointer
cb~lax : WOR II I : I::r cTypC':

: Pointer ;
iFrllme ; WORD
iCol : WORD
iLlne : WORD) : ErcTypC';

: Pointer ;
pbRet : Pointer
cb~lax : WORD ;
pbFirstField : Pointer
cbFirstField : WORD
index : WORD
pbExitState : POINTER) :

: Pointer ;
pbFieldName : Pointer
cbFieldName : WORD
index WORD;
pbBuf Pointer;
pbRet Pointer:
cbMax WORD
plnfoRet : POINTER
pType POINTER) ErcType:

Sample PASCAL Program

EXTERN:

FUNCTION WriteField(pForm : Pointer ;
pbFieldName Pointer
cbFieldName WORD
index : WORD
pb Pointer
cb WORD

C-3

pType : POINTER ErcType;
EXTERN;

FUNCTION SetFieldType(pform

EXTERN:

(•••••• * •••••••••••••••

BEGIN

(* Def ine pricing data *)
Pricesll] : = 9.95:
Pricesl2] := 15.87:
Pricesl3) : = 3.31 ;
Pricesl4] : = 19.78;
PriceslS] : = 12.23:

t' Clear the screen *)

: Pointer ;
fAll : FlagType
pbfieldName : Poinler
cbFieldName : WORD
index : WORD
fieldtype : WORD Ere-Type;

CheckErc (WriteBsRecord(Ads BsVid,
Ads rgbCls,
SizeO! (rgbCls),
Ads i)):

(* Open the file containing the form')
CheckErc (Openfile (Ads FileHandle,

Ads 'Tutorial.form',
13,
Ads
0,
ModeRead I I:

to Read the form into local storage 01
CheckErc (OpenForm (FileHandle,

t* free up the file *j
CheckErc (CloseFile (FileHandlel);

Ads 'Tutorial',
8,
Ads Form,
SizeO((Forml) I:

(. Throw the form up on the screen 'j
CheckErc (Displayform(Ads Form,

5027212

0,
255,
2~51 I;

C-4 Sample PASCAL Program

(* Loop through the 5 rows of the form .j
FOR i := I TO 5 DO

BEGIN

Fie 1 d: = 'Un i t Pr ice' :
Vtype := 'Character.':

(* Display the pricing data *'
IF ENCODE (StrCodeNum, PricesIORD(il}:7:21
THEN BEGIN

CheckErc (WriteField (Ads Form,
Ads Fieldll!.
Field. len,

END:

i,
Ads StrCodeNumlll,
7,
Ads Vtypell!I):

(* Make the Unit Price field write protected .)
CheckErc (SetFieldType (Ads Form,

FALSE,
Ads Fieldll!.
Field.len.
i,
Protected)) :

(* Make the Total Price fieJd write protected "I
Field:: 'TotalPrice':
CheckErc (SetFieldType Ads Form,

FALSf..

END;

Ads fie I dill,
fleld.len,
i ,
Protected I) :

(* Make the Amount Due field write protected OJ
field := 'AmountDue':
CheckErc (SetfieldType (Ads Form,

FALSE,
Adsfieldlll,
field. len,
0,
Protected)) :

Sample PASCAL Program

(* Make the Salesman field write protected *)
Field := 'Salesman';
CheckErc (SetFieldType (Ads Form,

FALSE,
Ads Field{lJ,
field.len,
0,
Mandatory)) ;

(* Now let Forms lead the user through the forms fill-in *)
CheckErc (Typeform (Ads form,

Ads RetBuf,
SizeO! (RetBuf),
Ads Form,
0,
0,
Ads ExitState)) ;

(* The user has filled in the form -- now compute the Total
Prices 0)

(0 Note that data validation (either via Typeform or
programmatic)

is not implc~ented .)

Vtype := 'Character. ';
AmountDue := 0.0;

FOR i := 1 TO 5 DO
BEGIN
Field:= 'Quantlty':

(" Get the data entered for the Quantity field 0)

CheckErc IStorefleldData I Ads Form.

5027212

Ads field!l!.
fleld.len.
J.
Ads RetBuf.
Ads Numstr!ll.
7.
Ads ExltState,
Ads Vtype III)):

C-5

C-6

form,

Sample PASCAL Program

Numstr.len := ExitStatelll;
(* Try to convert it to a numeric value 0)
If DECODE (Numstr. Quantity)
THEN BEGIN

END;

TotalPrice := PricesIORD(i)) • Quantity;
AmountDue := AmountDue + TotalPrice;

(* Display the Total Price field 0)
If ENCODE (StrCodeNum. TotelPrice,7:2)
THEN BEGIN

END;

Field := 'TotalPrice';
CheckErc (Writefield (Ads

Ads Fieldili.
Field.len,
i ,
Ads StrCodeNumll!,
7,
Ads Vtypell!));

END:

(0 Now display the Amount Due value OJ
If ENCODE (StrCodeNum, AmountDue:7:2)
THEN BEGIN

field := 'AmountDue';
CheckErc (WriteField (Ads form,

Ads Fieldll),

END;

field .len,
0,
Ads StrCodeNumll) ,
7,
AdsVtype(l)1);

(0 Exit gracefully')
Exit;

END.

Appendix 0 0-1

Training Exercise: Creating a Form

This appendix provides a training exercise with
step-by~step instructions for creating a form (including
captions, lines and boxes, and single and repeating fields).

If you are not familiar with the overtype and insert modes
or cursor movement, you should review those paragraphs
in section 3. Also refer to section 3 as necessary for
additional information on the Forms Editor's functions.

Note: You can exit any of the Forms Editor's functions and return to the
Forms Editor by pressing CANCEL. The Test Drive function is
activated/deactivated using the (F9) function key. You can exit the Forms Editor
and return to the Executive by pressing FINISH.

Activating the Forms Editor to Create a Form
To activate the Forms Editor, use the following
procedure:

Enter FORMS EDITOR in the Executive command line.
2 Press GO.

The words Forms Editor 6.0.0 appear at the top of the
screen. The area below the line is work space for
creating a form. The cursor is in the center of the screen.

Starting with Captions
To specify captions for the form, use the foHowing
procedure:

Move the cursor approximately 16 spaces to the left
using either the arrow keys or the mouse.

2 Enter Part No. with a period C.) after the o.
3 Press Right Arrow three times.
4 Enter Quan. with a period C.) after the n.
5 Press Right Arrow three times.
6 Enter Price.
7 Press Right Arrow three times.
8 Enter Total.

The center of your form should now look like this:
Part No. Quan. Price Total

5027212

0-2 Training Exercise: Creating a Form

Adding lines and Boxes
To enclose the captions in a hox. use the following
procedure:

Position the cursor one line above and two character
cells to the left of the Part No. caption.

2 Press MARK.
J Position the cursor three lines below and two character

cells to the right of the Total caption.
4 Press BOUND.

You have selected an area for a box. Your form should
now look like figure D-l.

5 Press SHIFT and DRAW CF4).

The captions are surrounded by a thick line box. Your
form should now look like figure D-2.

Figure 0-1 Selected Caption Box

Training Exercise: Creating a Form D-3

To subdivide the box horizontally (that is, draw lines to
separate the captions), use the following procedure:

Posit.ion the' cursor onp lin£' hpJow t.he capt.ions at the
right box boundary.

2 Press MARK.
3 Position the cursor on the same horizontal line Cone line

below the captions) at the left box boundary.
4 Press BOUND.

Since you have selected an area one character cell high,
your selection is for a line. Your form should now look
like figure D-3.

5 Press Draw CF4).
A thin horizontal line appears.

Figure D-2 Captions in a Box

Part No. Quan. Price Total

Figure 0-3 Selected Horizontal Line

Part No. Quan. Price Total

5027212

0-4 Training Exercise: Creating a Form

To subdivide the box vertically, use the following
procedure:

Position the cursor midway between Part No. and
Quan. and one line above the captions.

2 Press MARK.
3 Position the cursor in a direct line below the selected

character cell, intersecting the bottom line.
4 Press BOUND.
5 Press Draw CF4).

A thin vertical line appears.
Use Reselect to add vertical lines between Quan. and
Price and between Price and Total by doing steps 6, 7,
and 8.

6 Press Reselect (Fl).

The selection for the line between Part No. and Quan.
reappears.

7 Position the cursor one line above the captions, midway
between Quan. and Price.

8 Press COpy twice. (You can use COpy because these
columns are equal in area.)
Two more vertical lines appear. Your form should now
look like figure D-4. The rightmost vertical line is still
in the selected area.

Figure 0-4 Subdivided Box

Part No. Quan. Price Total

Training Exercise: Creating a Form D-5

Adding Tabular Columns
To make a tabular form with five rows of data, you copy
the lower box four times. To add tabular columns, use
the following procedure:

To select the lower box using MARK and BOUND,
position the cursor on the left boundary, one line below
the captions. Press MARK.

2 Position the cursor on the lower right corner of the box.
Press BOUND.

3 Position the cursor on the lower left corner of the box.
(The cursor is just inside the lower left corner of the
selection).

4 Press COPY.
A copy of the selected box is appended to the bottom of
the box and is selected. The cursor is positioned on the
lower left corner of the box (in the lower left corner of
the selection).

5 Press COPY three more times.
Your form should now look like figure D-5. The bottom
row of the form is selected.

Figure 0-5 Tabular Form

Part No. Quan. Price Total

5027212

0-6 Training Exercise: Creating a Form

Defining Fields for User Entry
Figure D-6 illustrates the define field command form and
the bottom portion of your form with the Part No.
repeating field selected.

To define repeating fields for each column, use the
following procedure:

Select the column labeled Part No. as shown in
figure D-6 by doing the following. Do not include the
caption line in your selection.
Move the cursor to inside the left bottom corner of the
form. Press MARK. The selected area disapppears.

2 Position the cursor two lines below the captions and to
the left of the vertical line between the Part No. and
Quan. columns. Press BOUND.

3 Press Define Field (FS).
The Define Field command form appears. Your screen
should now look like figure D-6.

4 Use NEXT, RETURN, or Down Arrow to move the
cursor (left to right, top to bottom) through the fields
of the Define Field command form. Use Up Arrow to
move the cursor through the fields in reverse order.
When changing an existing entry (such as the Yes for
Show default?), you must use DELETE to clear the
character cells before you can enter a new entry.

5 Enter PartNumber in the Name: field of the Define
Field command form.

6 Press GO.
Five fields are defined. Each contains a tag (sequence
of square boxes).

7 Select the Quan. column. Press Define Field (FS) to
define a repeating field named quantity with a default
value of I.

S Press GO.
9 Select the Price column and define the repeating field

UnitPrice.
10 Press GO.
t1 Select the Total column and define the repeating field

TotalPrice.
12 Press GO.

Your form should now look like figure D-7.

Training Exercise: Creating a Form 0-7

Figure D-6 Selection for a Repeating Field

r;::::======= DEFINE FIELD =======::;,
Name: Index:

~
Default value:

Sequence number: 0
Control: ~ Justification: [I]

Mandatory? fNc;l Protected? ~
Show default? ~ Auto-exit? ~

Secret? ~
Repeating? ~

Attributes: Unselected: 0 Selected? II]

Figure D-7 Defined Fields

Part No. Quan. Price Total

DDDDDDDDD DDDDDDD OODDDDD 0000000

DDDDDDDOD DDODDOO ODD DODD 0000000

DDDDDDDDD ODDDDDC DDDDDOO DOOOODD

DOOODDDDO DDDDODO DDDDDDD DDDDDDD

DDODDDDOD DDODDDD DDDDDDD DDDDDDD

5027212

0-8 Training Exercise: Creating a Form

To define two single fields, use the following procedure:
1 Below the Total column, select an area three lines high

(including the bottom line of the box and having the
same width as the Total column).

2 Press SHIFT-Draw CF4).
A thick line box appears, joined to the main form.

3 Select the interior of this box and define a field named
AmountDue.

4 Press GO.
5 Enter the caption Amount Due: to the left of the box.
6 Move the cursor to the top of the form.
7 Enter the caption Salesman: above the Part No.

column.
8 Select a field one character high beginning to the right

of the caption Salesman: and extending to just inside
the right edge of your form.

9 Define a field named Salesman to the right of the caption.
10 Change the unselected character attribute to underline

(letter C).
11 Press GO.

Your form should now look like figure 0-8.
12 To save your form in a file named Tutorial by using

the Write Form function, press F7.
13 Press GO.
14 To run a Test Drive on your form, press F9. Use

NEXT, RETURN, or Down Arrow to move the cursor
through the fields of your form, left to right, top to
bottom. Use Up Arrow to move the cursor through the
fields in reverse order.

15 Press F9 to exit Test Drive.
16 Exit the Forms Editor by pressing FINISH.
17 Activate the Forms Reporter by entering FREPORT in

the Executive command line. Press GO. Enter the name
of the saved file, Tutorial, in the required file
parameter entry field. Press GO.
The report shown in figure D-9 is displayed.

Note: If the form is created using color palette information (CODE-FB),
the color palette information for the form and the selected color numbers
for lines and captions are shown at the end of the, report.

18 Use the BASIC program in appendix B to run your form.

Training Exercise: Creating a Form D-9

Figure 0-8 Finished Form

S~~mM: CCCCCCCCCCCCCCCCCCCCCCCC

Part No. Quan. Price Total

CCDCCCCCC CCCCCCD DCCCCCC CCCCCCO

CDDDDDCCC CCCCDCC CCCCCCC CCCCCCC

CCDDDDDCC 0000000 0000000 0000000

000000000 DDDDDDD 0000000 DDDCDDD

IJCCCCDDDD DDDDDDD DDDDDDD DDDCCDC

Amount due: DDDDDDD

5027212

D-10 Training Exercise: Creating a Form

Figure D-9 Sample Form Report (page 1 of 8)

size: 663 bytes Form name: tutorial
height: 16 width: 36 number of fields: 22

Field name: Salesman
Row: 0 Column: 13 width: 22
Repeating? No Index: (first: last:
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: PartNumber
Row: 4 Column: 1 Width: 10
Repeating? Yes Index: 1 (first: 1 last: 5)
Control: Tx Justificalion: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: Quantity
Row: 4 Column: 12 Width: 7
Repeating? Yes Index: 1 (first: 1 last: 5)
Control: Nu Justification: R Sequence number:
Secret? No Protected? No Mandatory? No
Default: I
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
.Selected Color Number: 0 Unselected Color Number: 0

Training Exercise: Creating a Form 0-11

Figure 0-9 Sample Form Report (page 2 of 8)

Field name: UnitPrice
Row: t Column: 20 Width: 7
Repeating? Yes Index: I (first: I last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: TotalPrice
Row: 4 Column: 28 Width: 7
Repeating? Yes Index: 1 (first: I last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: PartNumber
Row: 6 Column: 1 Width: 10
Repeating? Yes Index: 2 (first: I last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: Unselected Color Number: 0

SP27212
!

D-12 Training Exercise: Creating a Form

Figure 0-9 Sample Form Report {page 3 of 8)

Field name: Quantity
Row: 6 Column: 12 Width: 7
Repeating? Yes Index: 2 (first: 1 last: 5)
Control: Nu Justification: R Sequence number:
Secret? No Protected? No Mandatory? No
Default: 1
Show default? No Auto-exit? No Unselected: A Selected: E
validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: UnitPrice
Row: 6 Column: 20 width: 7
Repeating? Yes Index: 2 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: TotalPrice
Row: 6 Column: 28 Width: 7
Repeating? Yes Index: 2 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No

IDefault:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Training Exercise: Creating a Form D-13

Figure D-9 Sample Form Report (page 4 of 8)

Field name: PartNumber
Row: 8 Column: 1 Width: 10
Repeating? Yes Index: 3 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: Quantity
Row: 8 Column: 12 Width: 7
Repeating? Yes Index: 3 (first: 1 last: 5)
Control: Nu Justification: R Sequence number:
Secret? No Protected? No Mandatory? No
Default: 1
Show default? No Auto-exit? No Unselected: A Selected: F.
validation routine:
Help message:

List of values:
,Selected Color Number: 0 Unselected Color Number: 0

Field name: UnitPrice
Row: 8 Column: 20 Width: 7
Repeating? Yes Index: 3 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

.List of values:
Selected Color Number: 0 Unselected Color Number: 0

5027212

0-14 Training Exercise: Creating a Form

Figure 0-9 Sample Form Report (page 5 of 8)

Field name: TotalPrice
Row: 8 Column: 28 Width: 7
Repeating? Yes Index: 3 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default :
Show default? Yes Auto-exit? No Unselected: A Selected: E
validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: PartNumber
Row: 10 Column: 1 Width: 10
Repeating? Yes Index: 4 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: Quantity
Row: 10 Column: 12 Width: 7
Repeating? Yes Index: 4 (first: 1 last: 5)
Control: Nu Justification: R Sequence number:
Secret? No Protected? No Mandatory? No
Default: I
Show default? No Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Training Exercise: Creating a Form 0-15

Figure 0-9 Sample Form Report (page 6 of 8)

field name: UnitPrice
Row: 10 Column: 20 Width: 7
Repeating? Yes Index: 4 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: TotalPrice
Row: 10 Column: 28 Width: 7
Repeating? Yes Index: 4 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

field name: PartNumber
Row: 12 Column: 1 width: 10
Repeating? Yes Index: 5 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

5027212

D-16 Training Exercise: Creating a Form

Figure 0-9 Sample Form Report (page 7 of 8)

Field name: Quantity
Row: 12 Column: 12 Width: 7
Repeating? Yes Index: 5 (first: 1 last: 5)
Control: Nu Justification: R Sequence number:
Secret? No Protected? No Mandatory? No
Default: 1
Show default? No Auto-exit? No Unselected: A Selected: E
validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: UnitPrice
Row: 12 Column: 20 Width: 7
Repeating? Yes Index: 5 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

Field name: TotalPrice
Row: 12 Column: 28 Width: 7
Repeating? Yes Index: 5 (first: 1 last: 5)
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

T raining Exercise: Creating a Form

Figure 0-9 Sample Form Report (page 8 of 8)

Field name: AmountDue
Row: 14 Column: 28 Width: 7
Repeating? No Index: (first: last:
Control: Tx Justification: L Sequence number:
Secret? No Protected? No Mandatory? No
Default:

D-17

Show default? Yes Auto-exit? No Unselected: A Selected: E
Validation routine:
Help message:

List of values:
Selected Color Number: 0 Unselected Color Number: 0

5027212

Glossary-l

Glossary

AddValues. AddValues is a Forms Run-Time service that adds or modifies
values which were created when an Editor Fa-function-key default action
defined a field.

Character Attribute. A character attribute is a visual highlight which can be
applied to form fields and selected text or captions. Attributes include blinking,
reverse video, half-bright, underlining, and combinations of these.

DefaultField. DefaultField is a Forms Run-Time service that restores a field's
value to its default.

DefaultForm. DefaultForm is a Forms Run-Time service that restores a form
to its default state.

Define Field. Define Field is a Forms Editor function that sets field
characteristics such as field name, default, character attributes, auto exit, and
repeating field.

Delete Selection. Delete Selection is a Forms Editor function that removes all
captions, lines, and fields from a selected area.

DisplayForm. DisplayForm is a Forms Run-Time service that displays a form
at a specific location.

Draw. Draw is a Forms Editor function that allows you to draw a line or box
at the selected area.

EditForm. EditForm is a Forms Run-Time service that displays a form on the
video or writes it to a file or device.

Erase. Erase is a Forms Editor function that allows deletion of a line or box
from the selected area of a form but leaves the text and/or captions in place.

ExtractValues. ExtractValues is a Forms Run-Time service that returns a
buffer containing the default values for each field of a form.

Field. A field is the specific area of a form that is set aside for accepting
user data entries or displaying computed data. A form may contain many
nonoverlapping fields, limited by display size and system byte availability. See
DefaultField, Define Field, GetFieldlnfo, ReadField, Repeating Field, SetFieldAttrs,
UserFiIIField, Write Field.

FonctForm. FonctForm is a Forms Run-Time service that allows the
application program to dynamically redefine some of the function keys.

Form. A form is a lined and captioned display with fields for accepting user
data entries or displaying computed data. See DefaultForm, DisplayForm. Forms
Reporter, Forms Run Time. Open Form, Read Form, TypeForm, UnDisplayForm,
Write Form.

5027212

Glossary-2

Forms Reporter. Forms Reporter is a display that provides the following
information for an existing form: the form name, the size (bytes), the displayed
height and width, and information on the defined fields.

Forms Run-Time. Forms Run-Time is a library of object module procedures
(services).

GetField/nfo. GetFieldlnfo is a Forms Run-Time service that returns
information about a field.

Graphics Display. Graphics Display is a Forms Editor function that displays a
graphics picture within a form.

Index Number. An Index Number is a number used to distinguish locations of
repeating fields.

Insert Mode. Insert Mode is an edit mode that allows the insertion of
characters at the current cursor position.

lockKbd. lockKbd is a Forms Run-Time service that interrupts keyboard
entries until the user presses CANCEl.

OpenForm. OpenForm is a Forms Run-Time service that reads a form from a
file into a work area in memory.

OutForm. OutForm is a Forms Run-Time service that reads information about
a form.

Overtype Mode. Overtype Mode is an edit mode that allows the replacement
of characters at the cursor position.

ReadField. ReadField is a Forms Run-Time service that reads data from a
field into program memory.

Read Form. Read Form is a Forms Editor function that displays a stored form.

Repeating Field. A repeating field is a field that has the same name as
another field. These fields are distinguished by index (location).

Reselect. Reselect is a Forms Editor function that allows repeated selection
of the same form area.

RestoreForm. RestoreForm is a Forms Run-Time service that restores a form
to its default values or to values supplied by the application program.

Selection. A selection is a rectangular area of the display that may be chosen
by using MARK and BOUND or the mouse.

SetFieldAttrs. SetFieldAttrs is a Forms Run- Time service that sets the
character attributes of a field on the display.

SetFieldType. SetFieldType is a Forms Run-Time service that allows the
application program to dynamically modify the type of a field.

Glossary-3

StoreFieldData. StoreFieldData is a Forms Run-Time service that extracts the
value of a given field from a buffer returned by TypeForm.

Test Drive. Test Drive is a Forms Editor function that allows the user to
display the form as it appears at run time and to fill in fields.

Text Insertion. Text Insertion is a Forms Editor function that recalls a
previously saved text file after the Forms Editor has been activated.

TypeForm. TypeForm is a Forms Run-Time service that allows program input
to form fields.

UnDisplayForm. UnDisplavForm is a Forms Run-Time service that removes a
form· from the display.

Undo. Undo is a Forms Editor function that deletes the previous change to a form.

UserFiIIField. UserFiIIField is a Forms Run-Time service that allows user input
to a field.

Write Form. Write Form is a Forms Editor function that saves a form.

WriteField. WriteField is a Forms Run-Time service that writes from program
memory.

5027212

Index

A

Activating the Forms Editor, 3·1
Adding types, 4-40
AddValues, 4·2, Glossary·l
Area

reselecting a previously selected. 3-8
Attributes of characters, 1·3, 3·18
Automatic exit, 1·5, 1·9

B

BACKSPACE and DELETE keys
editing captions using, 3-6

BASIC program sample, B-1
Blank structure parameters, 5-8
Blinking attribute, 1·5, 3·19
Boxes and lines

drawing. 3-10
erasing. 3-10

Bound key, 1·11, 3-3

C

Captions, 3·5
editing. 3-5

Charactef attributes, 1·5, 3·19, Glossary-l
Characters and symbols

literally inserting. 3-6
Color matrix, 5-11
Color palette form, 3·20, 3·26
Color, Selecled/Unselected, 1·1
Color Selection, 3·21
Command form

FORMS EDITOR. 3-2
FREPORT. 3-33

Configuring the type system, 4-39
Copying and moving, 3·29
Creating

a form: training exercise. 0-1
Forms library files. 3-34

Cursor
movement, 3-4
moving it in the Forms Editor display. 3-3

Customization
Forms Run Time. 4-37

5027212

Index-1

Index-2

D

Data type control, '-3
Data validation and range checking, 4-43
DecodeProc, 4-42
DefaultField, 4-4, Glossary·'
Default field value, '-3
DefaultForm, 4-5, Glossary·'
Defined fields, 1-2
Define Field, Glossary·'
Defining

fields, 1-2, 3-15
repeating fields, 3-21
single fields, 3-15
types, 4-40

Defining fields (F8), 3-15
DELETE and BACKSPACE keys

editing captions using, 3-6
Delete Selection, Glossary·'
Deleting selections (F'O), 3-28
Display

Forms Editor, 3-3
DisplayForm, '-7,4-6, B·', Glossary·'
Displaying

a Forms report, 3-32. 3-33
text in 132-column format (CODE-Z), 3-30
text in 146-column format (CODE-Zl, 3-30

Displaying graphics (F3), 3-9
Draw. Glossary-1
Drawing lines and boxes (F4), 3-10

E

Edit Codes
viewing, 3-30

EditForm, 4-7, Glossary·'
Editing captions, 3-5

with DELETE and BACKSPACE keys, 3-6
Edit modes, 3-5
EncodeProc, 4-4,
Erase, Glossary·'
Erasing lines and boxes (F5), 3-10
Error codes

Forms Run-Time, A-l
Error messages, A·'

Forms Editor, A-4
Forms Run-Time, A-10

Error response
Forms Editor, 3-35
Forms Run-Time. 4-43

Executive level commands
for Forms Designer, 2-2

Exiting the Forms Editor, 3-31
External structure of a form, 5-1
ExtractValues, 4-11, Glossary-1

F

Field, Glossary-1
defining a single, 3-14
definitions, 1-2
name, 1-2
tags, 3-27
type, 1-4

Field auto-exit during program run, 1-5
Field definitions, 1-2

modifying, 3-26
Field position and width

modifying, 3-27
Fields

defining, 3-15
defining repeating, 3-21
defining single, 3-16
mandatory, 1-4
optional, 1-4
protected, 1-4
repeating, 1-2, 1-5

Field tags (sample), 3-21
Field types, 1-5
Finish form (sample), 3-32
First Define Field form, 3·15
FonctForm, 4-12, Glossary-'
Form, Glossary-1

Finish (sample), 3-32
First Define Field, 3-15
FREPDRT Command, 3-33
Graphics Displav, 3-9
opening a, 1-10
Read Form, 3-12
reading a, 3-11
Second Define Field, 3-16
Text Insertion, 3-13
Write Form, 3-14
writing a, 3-14

Format
displaying text in 132 column, 3-30
displaying text in 146-column, 3-30

Forms
testing, 3-28

Forms Designer executive level commands, 2·2

5027212

Index-3

Index-4.

Forms Editor, 1-8, 3-1
activating the, 3-1
command forms, 3-2
display, 3-3
error messages, A-4
error response, 3-35
exiting the, 3-31
functions, 3-7
help screen, 3-8
in-memory work area, 3-35

Forms Editor display
moving the cursor in the, 3-3
status area, 3-3
work area, 3-4

Forms, fields, and files, 1-1
Forms report

displaying a, 3-32
Forms Run·Time, 1-4, 1-8, 4-1, Glossary-2

customization, 4-37
error codes, A-I
error messages, A-10
error response, 4-43

Forms Run· Time services, 4-1
AddValues, 4-2
DefaultField, 4-4
DefaultForm, 4-5
DisplayForm, 4-6
EditForm, 4-7
ExtractValues, 4-11
FonctForm, 4-12
GetFieldlnfo, 4-13
LockKbd, 4-16
OpenForm, 4-17
OutForm, 4-18
ReadField, 4-20
RestoreForm, 4-21
SetFieldAttrs, 4-22
SetFieldType, 4-23
StoreFieldData, 4-24
TypeForm, 4-26
UndisplayForm, 4-30
UserFiliField, 4-31
WriteField, 4-33

Forms software
installing it on a hard disk system, 2-1

Forms structure, 5-1
Form structure parameters, 5-6
FREPORT command, 1-8, 2-1,2-2, 3-32
FREPORT Command form, 3-33

Function
undoing the most recent, 3-8

Functions
Forms Editor, 3-7

G

GetFieldlnfo, 4-13, Glossary-2
information returned by, 4-14

Graphics
displaying, 3-9

Graphics Display, Glossary-2
form, 3-9

H

Half bright attribute, 1-5, 3-19
Hard disk system

installing the Forms software on a, 2-1
Help key, 1-6, 3-7
Help message, 1-6
Help screen, 3-7, 3-8

Index number, Glossary-2
In-memory work area

Forms Editor, 3-35
Inserting

(literally) characters and symbols, 3-6
Inserting text (Code-F6), 3-12
Insert mode, 3-5, Glossary-2
Installing the forms software

on a hard disk system, 2-1
Internal struction of a form, 5-5

J

Justification of text in a field, 1-4

K

Keyboard.
reconfiguring the, 1-10, 4-37

Keyboard configuration, 1-10,4-37
Keys that can be reconfigured, 4-38

L

librarian utility, 3-34
library files

creating Forms. 3-34
Lines and boxes

drawing, 3-10
erasing. 3-10

5027212

Index-5

Index-6

List of values, 1-6
Literally inserting characters and symbols, 3-6
LockKbd, 4-16, Glossary-2

M

Making selections, 3-3
Mandatory fields, 1-4
Mark key, 1-11, 3-3
Messages (error), A-l

Forms Editor, A-4
Forms Run-Time, A-l0

Mode, 3-5
insert, 3-6
overtype, 3-6

Modifying
field definitions, 3-26
field position and width, 3-27

Mouse device, vi, ,-", 3-3
Moving

and copying, 3-29
the cursor in the Forms Editor display, 3-3

o
132-column format

displaying text in, 3-30
146-column format

displaying text in, 3-30
OpenForm, 4-17, Glossary-2, 8-1
Opening a form, 1-10
Optional fields, 1-4
OutForm, 4-18, Glossary-2

information returned by, 4-19
Overtype mode, 3-6, Glossary-2
Overview, 1-1

P

PASCAL program, C-l
Protected fields, 1-4
PUBLIC attribute, 4-34

R

Range checking and data validation, 4-43
ReadField, 4-20, B-1, Glossary-2
ReadForm, Glossary-2

form, 3-12
Reading a form (F6), 3-11
Reconfiguring the keyboard, 1-10, 4-36
Repeating fields, 1-1, 1-2, 3-6, Glossary-2

defining, 3-21

Representation of a form. 5-1
Reselect. Glossary-2
Reselecting a previously selected area IF1). 3-8
RestoreForm. 4-21. Glossary-2
Reverse video attribute. 1-5. 3-19
Routines

user validation, 1-6, 4-34
Run. 3-36
Run structure parameters. 5-7
Run-time modules. 1-1

s
Sample

BASIC program, B-1
field tags, 3-21
Finish form, 3-32
PASCAL program, C-l

Second Define Field form. 3-16
Secret property. 1-4
Selected area

reselecting a previously, 3-8
Selected COIOf. 1-7
Selected/unselected character attribute. 1-5
Selected/unselected color. 1-7
Selecting tags (NEXT). 3-31
Selections. 3-3. Glossary-2

deleting, 3-8
making, 3-4

Sequence number. 1-3
SetFieldAttrs, 4-22. Glossary-2
SetFieldType. 4-23. Glossary-2
Single field

defining a, 3-15
Software installation. 2-1
StoreFieldDala. 4-24. Glossary-3
Symbols and characters

literally inserting, 3-6

T

Tags
selecting, 3-31

Test Drive. Glossary-3. 3-1. 3-28
Testing forms (F9). 3-28
Text

displaying it in 132-column format, 3-30
displaying it in 146-column format, 3-30
inserting, 3-12

T ext in a field
justification of, 1-4

5027212

Index-7

Index-8

Text Insertion, Glossary-3
form, 3-13

Training exercises: Creating a Form, 0-1
Type codes, 4-39
TypeForm, 1-8, 1-9, 4-26, Glossary-3
TypeForm routine

using the. 1-9
Types

adding, 4-40
defining, 4-40

Types of fields, 1-4
Typ. system

configuring the, 4-39

u
Underlining attribute, 1-5, 3-19
UndisplayForm, 4-30, B-1, Glossary-3
Undo, 3-8, Glossary-3
Undoing the most recent function (F21. 3-8
Unselected color, 1-7
UserFiliField, 4-31, B-1, 1-9. Glossary-3
UserFillField routine

using the, 1-8, 1-9
User validation routines, 1-6, 4-34
Using

the TypeForm routine, 1-9
the UserFiliField routine, 1-9

Utility
BTOS Librarian, 3-34

v
Values

list of, 1-6
Viewing edit codes (CODE-V), 3·30

W

Width and position of field
modifying, 3-21

Work area
Forms Editor in-memory, 3-35

WriteField. 4-33, B-1, Glossary-l
Write Form. Glossary-3

form, 3-14
Writing a form (F7), 3·14

Errata Sheet
Errata Sheet for document:
BTOS Forms Designer Programming Guide
Relative to release level 6.0
Form 5027212
October 1987
Please add the following information to your copy of the
guide described above.

Adclthe following sentence to the first paragraphs of
steps 6 and 7:
This step applies only to Forms Editor with graphics
capaWIUy ..

1

~* .. ****** .. ******.**** page 3-3 ••• ***********.*.*"'**** .. *******
Delft'" the follOWing parameters from figure 3-2, FORMS
EDITOR Command Form without Graphics:

(CotumnJ
(U~J

5021212-EOl

• UNISYS Unisys Corporation
Software & Publications Distribution Services
41100 Plymouth Road, Building 4
Plymouth, Michigan 48170

BTOS Forms Designer 6.0. 1
Enclosed is the 6.0 release of the BTOS Forms Designer
software. We hope this program product will become an
integral part of your business.

This product package consists of:

o Two 5-1/4-inch diskettes containing the 6.0 release of
the BTOS Forms Designer

o BTOS Forms Designer 6.0 Release Notes (form
109200913)

o BTOS Fonns Designer Programming Guide, release 6.0
(form 5027212)

You can order additional, priced copies from:

Unisys
Publication Center
41100 Plymouth Road
Plymouth, MI 48170

using order form #3020003, obtained from your local
Unisys representative.

109200913

BTOS Forms Designer Release Notes

Style: SB20FM6, MB20FM6, XB20FM6

Level: 6.0.1

October 21, 1987

2 BTOSForms Designer 6.0 Release Notes

CONTENTS

Title Page

NEW FEATURES •........ . ' 3

PRODUCT IMPROVEMENTS •....•............. 5

KNOWN LIMITATIONS•..•...... 5

KNOWN PROBLEMS 8

SOFTWARE FILES•....•. 9

109200913

BTOS Forms Designer 6.0 Release Notes 3

BTOS Forms Editor and the Forms Run~Time
for release 6.0 support additional
hardware for design and development of
forms. BTOS Forms Designer uses color on
color-capable workstations and allows
you to interactively select the new .
color assignments and view the result.
There are new function keys to enhance
the flexibility of designing forms.

NEW FEATURES

The new features in this release are:

BTOS Forms Editor and Forms Run­
Time support the B25 MD4 and the
B25 GRC bit-mapped graphics
hardware.

New function keys are defined to
allow more functionality in the
Forms Designer:

109200913

The HELP function key provides
an on-line HELP screen.

The CODE-Fa function key
allows you to select and
modify the color palette for
the entire form and specify
the color for lines and
captions.

The F3 function key displays a
graphics picture if. the Forms
Designer with graphics
functionality is installed.

4 BTOS forms Designer 6.0 Release NQtes

SHIFT-F3 removes the display
graphics picture.

The Fa Define Field function
key allows you to assign the
Selected/Unselected color
number to a field.

The Forms Reporter lists the
palette information and selection
for the entire form and the
individual field color attributes.

Mouse support is provided for
cursor positioning if the Mouse
Server is installed to handle
cursor control and tracking.

Forms Designer 6.0 offers two files
for defining function keys:

FmTabKey.Asm Forms version 4.0
functionality

FmTabKeyS.Asm Forms version 5.0
functionality

The Forms.Lib provided in the 6.0
release has the 4.0 function key
functionality. You can access Forms
5.0 function key functionality by
assembling the FmTabKeyS.Asm and
adding it to the Forms.Lib as
FmTabKey.Obj.

109200913

BTOS Forms Designer 6.0 Release Notes 5

PRODUCT IMPROVEMENTS

The following are the major product
improvements in this release:

Delete Character key functionality
has been added.
The procedural interface for
OutForm has been corrected.
The error message display when
using the herald area has been
corrected.
Validation for the index and
sequence number fields of the
define field (Fa) function has been
added.
Cursor movement for Shifted Up and
Down Arrows and the Left and Right
Arrows with standard values has
been corrected.
The previous problem with using the
Read Form (F6) function to detect
invalid form names has been
corrected.

KNOWN LIMITATIONS

Forms Designer does not support
Graphics on B25 bit-mapped graphics
or B27 systems. Therefore, you
should install Forms Designer
without the Graphics capability
option on these systems.

109200913

6 STOS Forms Designer 6.0 Release Notes

When BTOS Forms Editor discovers an
error in the specification of a
form (e.g., duplicate field names),
the unselected attribute of the
offending field is changed to "I."
This causes it to blink for easy
identification. This attribute
should be changed back to the
desired setting when Define Field
(F8) is used to correct the error.
You can also use (F2) to remove the
effects of the most recent function
and to undo the blinking attribute.

You can obtain vertical lines by
using the character IGh, which is
identical to vertical line Elh. You
get the character IGh by typing
CODE = and pressing function key F2
where you want a thin vertical
line.

Because of hardware differences,
you may not be able to create or
edit forms on one workstation and
use them on another.

If you expect your forms to be used
across the equipment line, then you
should create your forms to the
limits of the smallest screen. For
example, if you are using B21, B22,
B26, and B27 hardware, the form
should be a maximum of 80 x 28 for
the B21 screen (refer to the table
on the following page).

Also, you can use forms created in
Zoom mode only on workstations that
support Zoom mode (B22 and B27).

109200913

BTOS Forms Designer 6.0 Release Notes 7

BTOS
Work-
station

B21

B22

B27

B25 GRC

B26, B28
or B38

Maximum
Screen
Size

80 x 28

80 x 34
132 x 34

80 x 30
80 X 34
132 x 30
132 x 34

146 x 38

80 x 29

Forms created to
use maximum
screen size can
be used on:

B21, B22, B26,
B27, B28, or B38

B22 or B27

B22 or B27

B25 GRC

B22, B26, B27,
B28, or B38

In summary, if forms are to be used
on different hardware types, you
should use the smallest screen size
in the group.

109200913

8 aTOS Form§ Designer 6.0 Releo§e Notes

KNOWN PROBLEMS

These problems are listed in the Product
Support Information Manual (PSIM); fix
schedules will be maintained in the
PSIMs.

Splitting a Field

Splitting a field into two parts usually
causes the first part of the tag to
become the field and the second part to
become merely a caption. Duplicate
field definitions sometimes result in an
error message.

You should move a selection from one
line to another if the selection
contains a partial field. The Forms
Editor some~imes allows move operations.
The moved tag then becomes a caption
that is disassociated from any field
definition.

Test Drive

You should use Test Drive immediately
following the error message Too many
fields. This error message can result
if you have many field definitions,
usually caused by extensive field
moving. Use Test Drive promptly to
eliminate these definitions.

109200913

BTOS Forms Designer 6.0 Re1ea§e Notes 9

SOFTWARE FILES

The software is packaged on two
5-1/4-inch diskettes, as follows:

[B20FM6-l] <UNISYS>

FormsReporter.Run
FormsEditor.Run
sFormsEditor.Run

[B20FM6-2] <UNISYS>

Forms.Lib
FmrGtd.Asm
FmTabKey.Asm
FmTabKey5.Asm
FmVa1Proc.Asm

109200913

	001
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	Glossary-01
	Glossary-02
	Glossary-03
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Release_Errata
	Release_Notes_00
	Release_Notes_01
	Release_Notes_02
	Release_Notes_03
	Release_Notes_04
	Release_Notes_05
	Release_Notes_06
	Release_Notes_07
	Release_Notes_08
	Release_Notes_09

