Burroughs

Reference
I ELTE]

Priced Item

Printed in U.S.A.

August 1983

1162252

Burroughs

Reference
Manual

Priced Item 1162252
Printed in U.S.A.
August 1983

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Warning: This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in accordance with the
instructions manual, may cause interference to radio communications. It
has been tested and found to comply with the limits for a Class A
computing device pursuant to Subpart J of Part 15 of FCC Rules, which
are designed to provide reasonable protection against such interference
when operated in a commercial environment. Operation of this
equipment in a residential area is likely to cause interference in which
case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of this manual, or may be addressed directly to
Documentation East, Burroughs Corporation, P.O. Box CB7, Malvern,
Pennsylvania, 19355, U.S. America.

LIST OF EFFECTIVE PAGES

Page

iii thru xxv
XXVi

1-1 thru 1-7
1-8

2-1 thru 2-25
2-26

3-1 thru 3-12
4-1 thru 4-31
4-32

5-1 thru 5-6

6-1 thru 6-16
7-1 thru 7-16
8-1 thru 8-11
812

9-1 thru 9-17
9-18

10-1 thru 10-26
11-1 thru 11-12
12-1

12-2

13-1 thru 13-7
13-8

14-1 thru 14-82
15-1 thru 15-40
16-1 thru 16-10
17-1 thru 17-34
18-1 thru 18-12
19-1 thru 19-17
19-18

20-1 thru 20-4
21-1 thru 21-28
22-1 thru 22-6
23-1 thru 23-18
24-1 thru 24-16
25-1 thru 25-10
26-1 thru 26-28
27-1 thru 27-3
27-4

28-1 thru 28-20
29-1 thru 29-21
29-22

30-1 thru 30-6
A-1 thru A49
A-50

B-1 thru B-10
C-1 and C-2
D-1 thru D-5
D-6

E-1 thru E-12
F-1 thru F-19
F-20

G-1 thru G41
G-42

1 thru 20

Issue

Bhage!
Original
Blank

Original
Blank

Original
Original
Blank

Original
Original
Original
Original
Blank

Original
Blank

Original
Original
Original
Blank

Original
Blank

Original
Original
Original
Original
Original
Original
Blank

Original
Original
Original
Original
Original
Original
Original
Blank

Original
Original
Original
Blank

Original
Original
Blank

Original
Original
Original
Blank

Original
Original
Blank

Original
Blank

Original

il

Section

1

TABLE OF CONTENTS

Title

OVERVIEW

Multiprogramming .

Event-Driven Priority Schedulmg
Interprocess Communication

Exchanges . .

System Service Processes

Accessing System Services

Filters . .
Local Resource Sharmg Network (Cluster) .
Standard Network .

Virtual Code Segment Management

File Management . .o

Device Handlers

Other Features .

Command Interpreter .

Compact System .

Batch Manager

CONCEPTS .
General .
Structure of the B 20 Operatmg System .
Processing Concepts .
Memory Organization .
Types of Memory . .
Virtual Code Segment Management
Interprocess Communication
Messages and Exchanges
Process States .
Process Priorities and Process Scheduhng .
Sending a Message .
Waiting for a Message . .
Applying Interprocess Commumcatron .
Communication
Synchronization .
Resource Management
B 20 System Services
Procedural Access to System Serv1ces
Direct Access to System Services

Page

LHLULEASLLLAALOLLLA AN

1 1

ok ek kot ke ek ko ok ek ek ke
1

2-10
2-11
2-12
2-12
2-12
2-13
2-14
2-15
2-15
2-15

Interaction of Client Processes and System Serv1ce Processes 2-17

Filter Processes .

Request Blocks .

Cluster Configuration . .

Interstation Communication . .
Cluster Workstation Agent Service Process .
Master Workstation Agent Service Process
Interstation Request/Response Message .

Communications I/O Processor .

Software Organization

User-Written Software in a Cluster Conflguratlon .

Standard Network

PROCESS MANAGEMENT
Overview .

2-19
2-20
2-21
2-21
2-22
2-22
2-23
2-23
2-24
2-24
2-25

vi

Section

TABLE OF CONTENTS (CONT.)

Title

3 (Cont.) Concepts .

Process . .
Context of a Process . .
Process Priorities and Process Scheduhng .
Process States

Operations: Primitives and Procedures
ChangePriority .
CreateProcess
GetUserNumber
QueryProcessNumber

INTERPROCESS COMMUNICATION MANAGEMENT
Overview .
Messages
Exchanges . .
System Service Processes
Accessing System Services .
Filter Processes .
Cluster Configuration
Concepts .
Messages
Exchanges . .
Link Blocks .
Exchange Allocation
Sending a Message .
Waiting for a Message .
Sending Messages to Another Partrtlon .
System Service Processes
Accessing System Services . .
Procedural Access to System Serv1ces
Direct Access to System Services

Interaction of Client Processes and System Servrce Processes

Filter Processes .
Request Blocks .
Standard Header .
Request-Specific Control Informatlon
Request Data Item .
Response Data Item
Example . .

Request Primitive .

Respond Primitive .

Wait Primitive .

Interstation Commumcatron . .
Cluster Workstation Agent Service Process .
Master Workstation Agent Service Process
Interstation Request/Response Message .

Operations: Primitives

Check

PSend

Request .

Respond

Send .

Wait

4-10
4-10
4-10
4-11
4-13
4-15
4-16
4-17
4-18
4-18
4-18
4-19
4-20
4-21
4-22
4-22
4-23
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31

Section

5

TABLE OF CONTENTS (CONT.)

Title
EXCHANGE MANAGEMENT
Overview .
Concepts .
Exchange

Exchange Allocat1on . . .
Operations: Procedures and Serv1ces .
AllocExch . .

DeallocExch . . .
QueryDefaultRespExch

MEMORY MANAGEMENT
Overview . .
Types of Memory .
Concepts . .
Addressing Memory
Segments

Code, Static Data and Dynamlc Data Segments .

Memory Organization . . .
Long-Lived and Short-Lived Memory .
Operations .

Deallocations
Long-Lived Memory Uses
Short-Lived Memory Uses
Virtual Code Segment Management
Operations: Services ..

AllocAllMemorySL

AllocMemoryLL

AllocMemorySL

DeallocMemoryLL

DeallocMemorySL

QueryMem Avail

ResetMemoryLL

TASK MANAGEMENT

Overview .

Concepts . ..

Application System

Task . .

Code and Data Segments

Loading a Task .

Exit Run File

Operations e e e
Operations: Procedures and Services .
Chain

ErrorExit

Exit . . .

LoadTask
QueryExitRunFile

SetExitRunFile .

VIRTUAL CODE SEGMENT MANAGEMENT .

Overview .
Concepts .

Page

1 1
[y

(@) W@, T~ SV I NG R SE N

N A
W NN N =

O oo aaLda

O\O\O\OI\O\O\O\
ok ok ko ek
AN DWW -—O

1)

RIS
WD

<2
i

PR

O&ah A

7-11
7-12
7-14
7-16

OOOlOOO
[N I

vii

viii

Section

8 (Cont.)

10

TABLE OF CONTENTS (CONT.)

Title

Virtual Memory . . .

Virtual Code Segment Swapplng .
Virtual Code Segment Swapping Versus Page Swapplng
Using the Virtual Code Segment Management Fac111ty .
Initializing .
Linking

Using Overlays .

Operations: Procedures .

GetCParasOvlyZone .

InitLargeOverlays .

InitOverlays . .

MakeRecentlyUsed

RelnitLargeOverlays .

RelnitOverlays .

PARAMETER MANAGEMENT .
Overview . .

Forms-Oriented Interface .

Parameters .
Organizing Parameters Variable-Length Parameter Block
Concepts .

Parameter and Subparameter

Variable-Length Parameter Block .

Application System Control Block

Operations: Procedures . .

CParams. . .

CSubParams .

GetpASCB .

RgParam

RgParamlnit . .

RgParamSetEltNext .

RgParamSetListStart .

RgParamSetSimple

APPLICATION PARTITION MANAGEMENT
Overview .
Concepts . .
Types of Partltlons
Types of Application Partltlons
Primary Application Partitions
Secondary Application Partitions
Dynamic Control of Application Partitions
Memory Organization of Application Partitions
Creating Secondary Application Partitions
At System Initialization . . .
Dynamically
Partition Handle
Loading Tasks
Exit Run File.
Obtaining Partition Status
Interpartition Communication .
Terminating Tasks .
Removing Partitions .

Page

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17

10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-3
10-4
10-6
10-6
10-6
10-6
10-6
10-7
10-7
10-7
10-8
10-8

Section

10 (Cont.)

11

12
13

TABLE OF CONTENTS (CONT.)

Title

Deallocation of System Resources .
Application Partition Data Structures

Operating: Services . .
Interpartition Commumcatlon .
Partition Control

Task Control .
CreatePartition . .
GetPartitionExchange
GetPartitionHandle
GetPartitionStatus
LoadPrimaryTask .
RemovePartition
SetPartitionExchange
SetPartitionLock
TerminatePartitionTasks
VacatePartition .

CLUSTER MANAGEMENT
Overview .

Concepts .

Software

Initialization .

Operation .

Status

Operations: Serv1ces
DisableCluster .
GetClusterStatus
GetWSUserName
SetWSUserName ..
NETWORK MANAGEMENT

SYSTEM SERVICES MANAGEMENT
Overview .
Concepts .

Dynamically Instalhng a System Serv1ce in an Extended

System Partition .
Typical Operational Sequence
Restrictions .

Dynamically Instalhng a System Servwe in a Secondary

Application Partition

Operations: Services
ConvertToSys
ServeRq

iX

TABLE OF CONTENTS (CONT.)

Section Title Page
14 FILE MANAGEMENT 1441
Overview . . . |
File Access Methods e P)
Local File System 143
Concepts 144
Node 144
Volume 144
Directory 145
File e 145
Automatic Volume Recogmtlon e e 146
NodeName 146
VolumeName 146
System Volume 146
Scratch Volume 147
Directory Name 147
File Name . . T % W
Directory and File Spemflcatlons . b Y
Abbreviated Specifications 14-8
Passwords 149
File Protection . . . e e 1400
Creating and Accessing a F1le T O S
Logical File Address 14-13
File Handle 14-13
Memory Address 1414
UsingaFile1414
CreatingaFile14-14
Opening a File 1405
Reading and Writing a Flle T 2)
Local File System 1416
Operations: Procedures and Serv1ces L1418
ChangeFile Length. 1422
ChangeOpenMode 1423
CheckReadAsync1424
CheckWriteAsync 1425
ClearPath14-26
CloseAllFiles1427
CloseAllFilesLL 1428
CloseFile1429
CreateDir1430
CreateFile1432
DeleteDir1434
DeleteFile1435
GetDirStatus1436
GetFhLongevity 14-38
GetFileStatus.1439
GetUCB.1441
OpenFile11442
OpenFileLL1444
QueryWSNum 1446
Read1447
ReadAsync 1449

ReadDirSector 14-50

Section

14 (Cont.)

15

TABLE OF CONTENTS (CONT.)

Title

RenameFile .
SetDirStatus .
SetFhLongevity .
SetFileStatus .
SetPath .
SetPrefix
Write .
WriteAsync .
Volume Control Structures .
Volume Home Block
Allocation Bit Map and Bad Sector F11e .
File Header Block . .o
Disk Extent .
BootExt.Sys .
Extension File Header Block
Master File Directory and Directories
System Volume
System Image .
Crash Dump Area .
Log File .
Standard Cnaracter Font

$ Directories .
System Data Structures
User Control Block

User Control Blocks in the Master Workstatlon .
User Control Blocks in the Cluster Workstations .

Device Control Block .

QUEUE MANAGEMENT
Overview . ..

Client Processes

Server Processes .

Sequence for Using Queue Management Facﬂlty

Queue Index File ..

Installing the Queue Manager

Queue Entry File

Queue Entry .

Client Operations. .
Adding an Entry to a Queue .
Reading Queue Entries .

Queue Entry Handle
Queue Status Block .
Removing and Entry .

Server Operations
Establishing Servers
Marking Queue Entries .

Unmarking Queue Entries .
Sample Queue Entry .

Control Queues .

Spooler Status Queue ..
Printer Spooler Escape Sequences .

Page

. 14-52
. 14-54
. 14-56
. 14-57
. 14-59
. 14-61
. 14-62
. 14-64
. 14-65
. 14-66
. 14-66
. 14-66
. 14-66
. 14-71
. 1472
. 14-73
. 14-75
. 14-75
. 14-76
. 14-76
. 14-76
. 14-76
. 14-78
. 14-78
. 14-79
. 1479
. 14-79

15-1
15-1
15-3
15-3
15-3
15-4
15-7
15-7
15-8
15-9
15-9
15-9

. 15-10
. 15-10
. 15-11
. 15-12
. 15-12
. 15-12
. 15-13
. 15-13
. 15-16
. 15-17
. 15-19

xi

Xii

Section

TABLE OF CONTENTS (CONT.)

Title

15(Cont.) Qperations: Services

16

Client Process Group .
Server Process Group .
AddQueueEntry
EstablishQueueServer
MarkKeyedQueueEntry .
MarkNextQueueEntry
ReadKeyedQueueEntry .
ReadNextQueueEntry
RemoveKeyedQueueEntry
RemoveMarkedQueueEntry .
RewriteMarkedQueueEntry
TerminateQueueServer .
UnmarkQueueEntry .

FILE ACCESS METHODS .
Overview . .
Characteristics of the Flle Access Methods
Hybrid Patterns of Access . .
Modifying and Reading Data Flles
Concepts . . L.
Standard Record Header
Standard Record Trailer
Standard File Header .
Operations: Procedures .
GetStamFileHeader

Page

. 15-20
. 15-20
. 15-20
. 15-22
. 15-24
. 15-25
. 15-28
. 15-30
. 15-32
. 15-34
. 15-36
. 15-37
. 15-39
. 1540

16-1
16-1
16-2
16-3
16-4
16-5
16-5
16-7
16-8

. 16-10
. 16-10

TABLE OF CONTENTS (CONT.)

Section Title Page
17 SEQUENTIAL ACCESSMETHOD 17-1
Overview O A
Concepts 172
Byte Streams 172
Using a Byte Stream 172
Predefined Byte Streams for Vrdeo and Keyboard .. 172
Device/File Specifications 173
CustomizingSAM 175
File Byte Streams 175
Printer Byte Streams 176
PrintingModes 176
Spooler Byte Streams 177
PrintingModes 177
Keyboard Byte Streams 17-8
Communications Byte Streams 17-8
X.25Byte Streams 179
Video Byte Streams 179
Special Characters in Video Byte Streams 1710
Multibyte Escape Sequences 17-11
Operations: Procedures 17-18
CheckpointBs 1720
CloseByteStream 1721
GetBsLfa 1722
OpenByteStream 1723
PutBackByte 1725
QueryVidBs 1726
ReadBsRecord 1727
ReadByte 1728
ReadBytes 1729
ReleaseByteStream 1730
SetBsLfa 1731
SetlmageMode 1732
WriteBsRecord 1733
WriteByte 1734
18 RECORD SEQUENTIAL ACCESS METHOD 18-1
Overview 181
Concepts . . e e e o182
RSAM Files and Records S .29
Working Area 182
Buffer . . . e e e e e e oo 182
Operations: Procedures e e e e o ..o ... 183
CheckpointRsFile 184
CloseRsFile 185
GetRsLfa 186
OpenRsFile 187
ReadRsRecord 189
ReleaseRsFile . . T £ 53 1)
ScanToGoodRsRecord T BT 0
WriteRsRecord 1812
19 DIRECT ACCESSMETHOD 191
Overview B N

Xiii

Xiv

Section

TABLE OF CONTENTS (CONT.)

Title

19 (Cont.) Concepts .

20

21

DAM Files, Records and Record Fragments
Working Area . ..
Buffer

Buffer Size and Sequentlal Access

Buffer Management Modes: Wnte-T}{rough and.

Write-Behind . .
Operations: Procedures .
CloseDakFile
DeleteDaRecord
OpenDaFile
QueryDaLastRecord .
QueryDaRecordStatus
ReadDaFragment .
ReadDaRecord .
SetDaBufferMode .
TruncateDaFile .
WriteDaFragment .
WriteDaRecord .

INDEXED SEQUENTIAL ACCESS METHOD
Overview
Concepts .
Key Types .
File Types
Operations . .
ISAM Orgamzatlon
Multiuser Access Package.
Single-User Access Package .
Utilities

DISK MANAGEMENT
Overview .
Concepts .

Accessing a DlSk Dev1ce .
Device Specification and Device Password
Operations: Procedures and Services .
CheckReadAsync .

CheckWriteAsync .

CloseFile

DismountVolume .

Format .

GetVHB

MountVolume

OpenFile

QueryDCB

Read . .

ReadAsync

SetDevParams

Write .

WriteAsync

Page

19-2
19-2
19-2
19-2
19-3

19-3
19-4
19-6
19-7
19-8
19-10
19-11
19-12
19-13
19-14
19-15
19-16
19-17

20-1
20-1
20-1
20-1
20-2
20-2
20-3
20-3
20-4
20-4

21-1
21-1
21-2
21-2
21-2
21-3
21-5
21-6
21-7
21-8
21-10

21-12

21-14
21-16
21-18
21-20
21-22
21-24
21-26
21-28

Section

22

23

24

TABLE OF CONTENTS (CONT.)
Title

PRINTER SPOOLER MANAGEMENT
Overview .
Concepts . ..
Printer Spooler Conﬁguratxon
Sending a Password
Operations: Services
ConfigureSpooler .
SpoolerPassword

VIDEO MANAGEMENT
Overview . . .
Video Attnbutes
Video Software . .
Hierarchy of Video Software
Concepts . . .
Video Capabllltles .
Basic . .
Standard . . .
Standard Video Capablhty
Video Attributes .
Video Refresh .
Cursor RAM
Style RAM . . .
Basic Video Capablhty .
Video Attributes .
Video Refresh .
Video Software . . .
Hierarchy of Video Software
Video Display Manager
Video Access Method . .
Sequential Access Method

Application System/Video Subsystem Interactlon

Video Control Block .

System Data Structures: Video Control Block and .

Frame Descriptor

VIDEO DISPLAY MANAGEMENT
Overview .
Concepts . . .

Reinitializing the Vldeo Subsystem
Operations: Services ..
InitCharMap .

InitVidFrame

LoadFontRam

QueryVidHdw

ResetVideo .
SetScreenVidAttr .

23-7

23-7
23-8
23-8
239
239
23-10

23-11

24-1
24-1
24-2
24-2
244
24-5
24-6
249

. 2411
2413
. 24-15

XV

XVi

Section

25

26

27

28

TABLE OF CONTENTS (CONT.)
Title

VIDEO ACCESS METHOD

Overview .
Forms—Orlented Interactlon
Advanced Text Processing .

Operations: Procedures .
PosFrameCursor
PutFrameAttrs .
PutFrameChars .
QueryFrameChar
ResetFrame
ScrollFrame

KEYBOARD MANAGEMENT
Overview . .
Physical Keyboard

Keyboard Modes: Unencoded and Character

Keyboard Encoding Table .
LED Keys . .
Submit Facility .

Concepts . . .

Physical Keyboard

Keyboard Modes: Unencoded and Character

Type Ahead

ACTION Key . .

Independence of Keyboard and Vldeo .

Keyboard Encoding Table .

Standard Character Set .

Submit Facility .

Submit File Escape Sequences
Read-Direct Escape Sequence .

Application System Termination

Operations: Services

Beep . .
CheckpomtSysIn
DisableActionFinish .
QueryKbdLeds .
QueryKbdState .
ReadActionCode
ReadKbd . . .
ReadKbdDirect .
SetKbdLed . .
SethdUnencodedMode
SetSysInMode

COMMUNICATIONS MANAGEMENT
Overview . .
Operations: Procedures .

LockIn .
LockOut

TIMER MANAGEMENT

Overview . .
Real-Time Clock

TABLE OF CONTENTS (CONT.)
Section Title

28 (Cont.) Programmable Interval Timer
Concepts . .
Simplified Date/Tlme Format
System Date/Time Format
Expanded Date/Time Format
Timer Management Operations .
Date/Time .
Format Conversion .
Delay . . .
Real-Time Clock .
Programmable Interval Tlmer .

Operations: Primitives, Procedures, and Serv1ces

CloseRTClock
Compact DateTime
Delay . . .
ExpandDateTune .
GetDateTime
OpenRTClock
ResetTimerInt
SetDateTime .
SetTimerInt

29 INTERRUPT HANDLERS .
Overview .
External Interrupts
Internal Interrupts
Device Handlers
Concepts . .o
Interrupt Types .
Interrupts . ..
External Interrupts .
Internal Interrupts
Pseudointerrupts
Interrupt Handlers
Communications Interrupt Handlers
Packaging of Interrupt Handlers .
Mediated Interrupt Handlers
Raw Interrupt Handlers
Communications Interrupt Service Routmes
Printer Interrupt Service Routines
Operations: Primitives and Services
MediateIntHandler
ResetCommISR
SetCommISR
SetIntHandler
SetLpISR .

30 CONTINGENCY MANAGEMENT .
Overview
Operations: Procedures and Services .

Crash .
FatalError .
WriteLog

Page

28-1
28-2
28-2
28-3
28-3
28-4
284
284
28-4
28-5
28-8
28-10
28-12
28-13
28-14
28-15
28-16
28-17
28-18
28-19
28-20

29-1
29-1
29-1
29-2
29-2
29-3
29-3
29-5
29-5
29-8
29-8
299
299
29-9
29-10
29-11
29-13
29-13
29-14
29-15
29-16
29-17
29-19
29-21

30-1
30-1
30-1
30-2
30-3
304

xvii

Xviii

Section

m m g O 9w

TABLE OF CONTENTS (CONT.)
Title
STATUS CODES
STANDARD CHARACTER SET
KEYBOARD CODES .
REQUEST CODES IN NUMERIC SEQUENCE .
DATA STRUCTURES

ACCESSING SYSTEM OPERATIONS FROM ASSEMBLY
LANGUAGE

GLOSSARY
INDEX

Page

B-1
C-1

D-1

Figure

2-2
2-3
2-4
2-5
2-6
2-7
2-8
29
2-10

32
4-1
4-2
43
4-4

10-1
10-2

10-3
10-4
14-1
15-1
15-2
26-1
E-1

LIST OF ILLUSTRATIONS

Title Page
Relationship of Processes, Tasks, and an Application
System 2-3
Memory Organization 2-4
Memory Organization with Secondary Application Partition 2-5
Relationship of Exchanges, Messages, and Processes . . 2-8
Process States 2-10
Communication between Processes 2-13
Synchronization 2-14
Interaction of Client and System Service Processes . . . 2-18

Processing Flow of Client and System Service Processes . 2-19
Interaction of Hilter Process with Client and System
Service Processes 2-20
Relationship of Processes, Tasks, and an Application

System 3-2
Process States 3-5
Relationship of Exchanges, Messages, and Processes .47
Interaction of Client and System Service Process . . . 4-14

Processing Flow of Client and System Service Processes . 4-1 5
Interaction of Filter Process with Client and System

Service Processes 4-16
Memory Organization of the Application Partition in a
Compact System 65

Memory Organization of an Application Partition in a
System Allowing Simultaneous Execution of Multiple

Application Systems 66
Memory Organization without Secondary Application
Partitions 103
Memory Organization with Secondary Application

Partitions 104
Memory Organization of an Application Partition . . . 10-5
Application Partition Data Structures 10-10
Volume Control Structures 14-62
Example Configuration with Queue Management Facility 15-2
Sample Queue Index File 156
Keyboard 266
Application Partition and Batch Data Structure E-9

Xix

Table

N
w[\,)r—d»—u--p-l(\))—a»—-

_
P
=

11-1
11-2
14-1
14-2
14-3
14-4
14-5
14-6
14-7
15-1
15-2
15-3
16-1
16-2
16-3
17-1

17-2
19-1
21-1
23-1
23-2
26-1
28-1
28-2
28-3
28-4
28-5
28-6
29-1

B-2
C-1
E-1
E-2
E-3
E-4
E-5
E-6

XX

LIST OF TABLES
Title

Process State Transition .

Process State Transition .

Processor Descriptor Block

Format of a Request Block Header . .
Exchange Management Operations by Functlon .
Memory Management Operations by Function
Variable-Length Parameter Block

Application System Control Block .

Parameter Management Operations by Functlon
Application Partition Management Operations by
Function . .
Commumca’uons Status Buffer

wsStatus Block

File Protection Levels .

File Management Operations by Funct1on
Volume Home Block .

File Header Block . .
Entry for a Directory in the Master Flle Dlrectory .
User Control Block . e
Device Control Block . .

Examples of Queue Entry Flles

Queue Status Block . .

Sample Queue Entry . . ;

Format of a Standard Record Header .

Format of a Standard Record Trailer .

Format of a Standard File Header

Interpretation of Special Characters by Vldeo Byte
Streams .

Sequential Access Method Operatlons by Functlon
Direct Access Method Operations by Function
Disk Management Operations by Function .
Video Control Block

Frame Descriptor .
Permitted Codes in Escape Sequences .
Simplified Date/Time Structure .

System Date/Time Structure

Expanded Date/Time Format .

Timer Request Block Format .

Timer Pseudointerrupt Block . .

Timer Management Operations by Functlon
Interrupt Types

Standard Character Set

Graphic Representation of the Standard Character Set
Keyboard Codes Generated by Unencoded Keyboard .

System Common Address Table (SCAT)
Batch Control Block .
Extended Partition Descriptor

Partition Configuration Block .

Partition Descriptor

System Configuration Block

E-10

INTRODUCTION

This manual provides descriptive and operational
information for the B 20 Operating System
(BTOS), hereinafter referred to as "Operating
System" or "OS". The 0OS is a powerful, real time
multitasking operating system for the B 20 Micro-
Computer Systems. The information is provided in
sections and appendices as listed in the Table
of Contents. This information 1is relative to
BTOS Release Level 3.0.

The following technical manuals are referenced
for additional information:

Title

B 20 System Programmers and Assembler
Reference Manual (Part 2)

B 20 Installation Planning Guide

B 20 Operations (Part 1)

B 20 Operations (Part 2)

B 20 Word Processing Quick Reference
Guide

20 Pascal Reference Manual

20 FORTRAN Reference Manual

20 COBOL II Reference Manual

20 Systems Debugger Reference Manual
20 Systems Editor Reference Manual
20 Systems Linker/Librarian
Reference Manual

B 20 System Programmers and Assembler
Reference Manual (Part 1)

20 Systems Font Reference Manual

20 Systems Form Reference Manual

20 Systems ISAM Reference Manual

20 2780; 3780 RJE Reference Manual
20 3270 Reference Manual

20 Asynchronous Terminal Emulator
(ATE) Reference Manual

B 20 Systems Sort/Merge Reference
Manual

B 20 System Software Operation Guide

Wwwww

wmwww

Form numbers and release 1level numbers for the
above manuals can Dbe found 1in the Customer
Technical Publications Catalog and Price List -
Form 1130010.

XXi

Software Patches

Within a particular release, patches to individual items may be
issued. For example, an Operating System identified by 2.02.03
contains certain improvements over an Operating System 2.02.01.
A patch always increases the patch number. All system software
items within a given release (mark and level numbers) may be
used together, regardless of the patch number, unless explicitly
stated otherwise in the technical notes of the item.

The file [D0]<Sys>Sys.Version will be used to record the patches
made to the software on the B20. It will be "Appended" if a new
patch release is issued. The format of the file records will be
as follows:

AAA BBBBB X.XX.XX
[} [}

--------- release level
-------------- affected file
——————————————————— Operating System or
utility identifier

For example, if a change to the Spooler was made, the record will
look as follows:

Spooler InstallSpl.Run 2.2.4-USA

XX1i

CONVENTIONS USED IN THIS MANUAL

Numbers

Memory Address

Variable Names

Prefixes

Numbers are decimal except when suffixed with "h"
for hexadecimal. Thus, 10h = 16 and OFFh = 255,

Memory address refers to the logical memory
address. (See the "Memory Management" section.)

Variables are named according to a formal
convention. Some of the characteristics of the
variable can be inferred from its name.
Parameters wused 1in procedure definitions and
fields of request blocks and other data
structures are named according to this
convention.

A variable name 1is composed of up to three
parts: a prefix, a root, and a suffix.

The prefix identifies the data type of the
variable. Common prefixes are:

b byte (8-bit character or unsigned number),
c count (unsigned number),

f flag (TRUE = OFFh or FALSE = 0),

i index (unsigned number),

n number (unsigned number) (same as "c"),

o offset from the segment base address (16
bits),

P logical memory address (pointer) (32 bits
consisting of the offset and the segment
base address),

q quad (32-bit unsigned integer),

XXiii

rg array of..., and
s size in bytes (unsigned number).

Prefixes can be composed. Common compound
prefixes are:

cb count of bytes (the number of bytes in a
string of bytes),

pb pointer to (logical memory address of) a
string of bytes, and

rgb array of bytes.

Roots
The root of a variable name can be unique to that
variable, selected from the 1list Dbelow, or a
compound of the two. Common roots are:
dcb Device Control Block,
dh device handle,
erc status (error) code,
exch exchange,
fcb File Control Block,
fh file handle,
1fa logical file address,
ph partition handle
geh queue entry handle
rq request block, and
ucb User Control Block.
Suffixes

The suffix identifies the use of the variable.
Suffixes are:

Last the largest allowable index of an array,

XXiv

Examples

Max

Ret

the maximum length of an array or buffer
(thus one greater than the largest
allowable index), and

identifies a variable whose value is to
be set by the called process or procedure
rather than specified by the calling
process.

Here are a few examples of variable names:

cbFileSpec the count of bytes of a file
specification,

ercRet the status code to be returned to
the calling process,

pPbFileSpec the memory address of a string of
bytes containing a file
specification,

pDataRet the memory address of an area into

which data is to be returned to
the calling process,

ppDataRet the memory address of a 4-byte

memory area into which the memory
address of a data item is to be
returned to the calling process,

PRg the memory address of a request
block,

psDataRet the memory address of a (2-byte)
memory area into which the size of
a data item is to be returned,

sData the size (in bytes) of a data
area,

sDataMax the maximum size (in bytes) of a
data area, and

ssDataRet the size of the area into which

the size of a data item is to be
returned.

XXV

SECTION 1
OVERVIEW

MULTIPROGRAMMING

The B20 Operating System provides a real-time,
mul tiprogramming environment. Mul ti programmi ng
is supported at three levels: application
systems, tasks, and processes.

First, any number of application systems can
coexist, each in its own memory partition. (An
application system is a collection of one or more
tasks that access a common set of files and
implement a single application.)

Second, any number of tasks can be 1loaded into
the memory of a partition and independently
executed. (A task 1is an executable program,
created by translating one or more source
programs into object modules and 1linking them
together.)

Third, any number of processes can independently
execute the code (instructions) of each task. (A
process is the basic element of computation that
competes for access to the processor.)

EVENT-DRIVEN PRIORITY SCHEDULING

To meet the system builder's need for high
performance, the Operating System Kernel provides
efficient, event-driven, priority scheduling for
an unlimited number of processes.

Each process is assigned one of 255 priorities
and is scheduled for execution based on that
priority. Whenever an event, such as the
completion of an input/output operation, makes a
higher priority process eligible for execution,
rescheduling occurs immediately. This provides a
more responsive system than scheduling techniques
that are entirely time based.

To give multiple tasks with the same priority a
fair share of system resources, processes with
priorities in a predefined range are subject to
time slicing. Processes with the same priority
are then executed in turn for intervals of 100 ms
in round robin fashion.

INTERPROCESS COMMUNICATION

EXCHANGES

The other major function provided by the O0S
Kernel is the interprocess communication (IPC)
facility. IPC is used for synchronizing process
execution and for transmitting information
between processes.

A process can "send" a message and can "wait" for
a message. When a process waits for a message,
its execution 1is suspended until a message is
sent to it. This allows processes to synchronize
execution. A process can also "check" whether a
message is available without its execution being
suspended.

As a simple example, Process A sends a message to
Process B and then waits for an answer. Process
B waits for a message, performs a function
determined by that message, and then sends an
answering message. This sequence assures that
Process B does not begin its function until
requested and that Process A does not resume
execution until Process B has completed its
function.

As a more complex example, Process A continues
execution in parallel with the execution of
Process B Dbefore synchronizing execution by
waiting for the answer.

Messages are not sent directly from process to
process. Rather, they are routed through an
intermediary element called an exchange.

Expanding on the example above: Process A sends
a message to Exchange X and waits at Exchange Y,
while Process B waits at Exchange X and sends an
answering message to Exchange Y.

A single process can serve several exchanges, in
which case it can select which of several kinds
of messages to process next. This can be used to
set priorities for the work the process is to
perform.

Also, several processes can serve the same
exchange, thereby sharing the processing of a
single kind of message.

SYSTEM SERVICE PROCESSES

The B20 Operating System includes a number of
system service processes. These processes, which
are scheduled for execution in the same manner as
application processes, receive IPC messages to
request the performance of their services.
Because of this internal use of I1PC, the
Operating System is classified as message—based.

Each system service process acts as the guardian
and manager for a class of system resources such
as files, memory, or keyboard. Because the
system service process is the only software
element that accesses the resource, and because
the interface to the system service process is
formalized through the use of IPC, a highly
modular environment results.

This modular environment increases reliability by
localizing the scope of processing and provides
the flexibility to replace a system service
process as a complete entity.

ACCESSING SYSTEM SERVICES

Each of the functions provided by the system
service processes can be accessed through the use
of a procedure call from high-level languages
such as FORTRAN and Pascal, as well as from
assembly language.

The use of a procedural interface masks all the
complexities of using 1IPC: the procedural
interface automatically uses a default response
exchange and builds the "request block" message
on the stack of the calling process.

In high-performance applications, however, the
direct use of IPC operations to access system
services allows an increased degree of
concurrency between multiple input/output
operations and computation.

FILTERS

Requests for system services are directed to the
appropriate system service process through
reference to a table that can be modified. This
allows a system service request to be redirected
to another system service process and also allows
the implementation of filters. A filter enables
the system builder to customize the function of a
system service without modifying the system
service process that implements it.

As an example, a filter process positioned
between the file management system and its client
processes can perform special password validation
before permitting access to a file.

LOCAL RESOURCE-SHARING NETWORK (CLUSTER)

The Operating System provides support for local
resource-sharing networks (clusters), as well as
for standalone workstations. In a cluster
configuration (consisting of a master workstation
and up to 16 cluster workstations), essentially
the same Operating System executes 1in each
cluster workstation as in the master workstation.
The master workstation provides file system and
queue management resources for all workstations
in the cluster. In addition, it concurrently
supports its own interactive application
processing.

In the cluster configuration, the IPC facility is
extended to provide transparent access to system
service processes that execute 1in the master
workstation. While some services, 1like file
management, queue management, 3270 emulator, and
data base management, migrate to the master
workstation, others, such as video and keyboard
management, remain at the cluster workstation.

One high-speed RS-422 channel is standard on each
workstation. This channel 1is used by cluster
workstations for communication with the master
workstation. Master workstations of small
cluster configurations (up to four cluster
workstations) use this channel for communications
with their cluster workstations. However, master
workstations of large cluster configurations use
one or two Communications 1/0 Processors
(CommIOPs) for communications with their cluster
workstations.

The CommIOP, which is added to the Multibus of
the master workstation, is an intelligent
communications processor based on the Intel 8085
microprocessor. The CommIOP serves up to four
cluster workstations on each of its two high-
speed serial lines.

STANDARD NETWORK

A Standard Network extends the O0S resource-
sharing capabilility to permit sharing of file
system and printer spooler resources between
clusters connected by leased, voice-grade 1lines
and/or an X.25 Value-Added Network. In addition,
the Standard Network permits access to other
computers through the Value-Added Network.

VIRTUAL CODE SEGMENT MANAGEMENT

The OS virtual code segment management facility
permits the execution of an application system
whose size exceeds the available partition
memory. To ensure maximum real-time performance,
the use of this facility is under control of the
system builder; an application system uses
virtual code segment management only if the
option is selected when its task image is 1linked.

If the virtual code segment facility is selected
for a task, the code of the task is divided into
variable-length segments that reside on disk. As
the task executes, only the code segment being
executed at a particular time must occupy the
main memory of the partition. However, to
maximize performance, recently used code segments
are retained in memory as long as possible.
Also, the data of the task remains in the main
memory of the partition for the duration of task
execution.

FILE MANAGEMENT

The OS file management system provides a
hierarchical organization by volume, directory,
and file. A volume is automatically recogni zed
when placed online. Each file can have a 50-
character file name, a l2-character password, and
a file protection 1level. A file can be
dynamically expanded or contracted without 1limit
as long as it fits on one disk. Concurrent file
access is controlled by read (shared) and modi fy
(exclusive) access modes.

1-5

While providing convenience and security, the OS
file management system supplies the system
builder with the full throughput capability of
the disk hardware. This includes reading or
writing any sector of any open file with one disk
access, reading or writing up to 64k bytes with
one disk access, input/output overlapped with
process execution, and optimized disk arm
scheduling.

The duplication of «critical volume control
structures protects the integrity of disk file
data against hardware malfunction. The Backup
Volume utility is able to recover a file if
either of its redundant File Header Blocks is
valid.

DEVICE HANDLERS

A device handler can be part of the application
process or it can be a system service process.
Its interrupt handler can let the OS Kernel save
process context (in which case it can be written
in FORTRAN or Pascal), or it <can receive the
interrupt directly from the hardware. IPC
provides an efficient, yet formal, interface from
interrupt handler to device handler and from
device handler to application process.

OTHER FEATURES

The Operating System also provides support for
video display with multiple split screens,
unencoded keyboard, communications 1lines,
Sequential Access Method, Record Sequential
Access Method, Direct Access Method, and Indexed
Sequential Access Method.

COMMAND INTERPRETER

Interaction with the workstation operator is a
function of the B20 Executive, not of the
Operating System. This allows the system builder
to choose the manner in which the video display
and keyboard are used.

The Executive is a forms-oriented command
interpreter providing an operator interface that
includes a HELP facility, command files, and the
interactive addition of new commands. The
Executive is available for program development
and for system builders that find its operator
interface compatible with their users' needs.
However, the Executive 1is a normal application-
level program that can easily be replaced by the
customized command interpreter of the system
builder.

See the B20 System Executive Reference Manual,
form 1144474 for more information about the
Executive.

COMPACT SYSTEM

A compact version of the Operating System can be
created at system build. The compact version
requires less memory yet provides all Operating
System functions except the simul taneous
execution of multiple application systems. In
the compact version, one application system is
executed at a time.

BATCH MANAGER

Sequential execution of noninteractive
application systems is a function of the batch
manager. The batch manager interprets job

control language files that execute specified
application systems with specified parameters.
The batch manager 1is wuseful for both program
development and end-user environments.

GENERAL

SECTION 2
CONCEPTS

Some of the concepts described in this Section
are illustrated in program examples in Appendix
F.

STRUCTURE OF THE B 20 OPERATING SYSTEM

The basic components of the B20 Operating System
are:

o) the Kernel,

o system service processes,

o system common procedures,

o object module procedures, and
o device and interrupt handlers.

The Kernel, the most primitive yet most powerful
component of the Operating Systen, provides
process management and interprocess communication
facilities. It schedules process execution,
including the saving and restoring of process
context. A process 1is the basic element of
computation that competes for access to the
processor. The Kernel's interprocess
communication primitives are the primary building
blocks for synchronizing process execution and
transmitting information between processes.

System service processes are OS processes that
guard and manage system resources. System
service processes are scheduled for execution in
the same manner as application processes.

The four major categories of system services are:
o task management,

o} file management,

o device management, and

o memory management.

There are two ways to access 0S system services.
The more convenient is by a procedure call from a
high-level language. The more primitive allows
an increased degree of concurrency between
multiple input/output operations and computation.

System common procedures are OS procedures that
perform some common system functions. An example
of a system common procedure 1is Exit, which
terminates the execution of an application
system. System common procedures are executed in
the same context and at the same priority as the
invoking process. The Video Access Method is an
example of system common procedures.

Object module procedures are procedures that are
supplied as part of an object module file. They
are not part of the OS System Image itself. Most
application systems require only a subset, not a
full set, of these procedures. The desired
subset is linked into the application task. The
Sequential Access Method is an example of object
module procedures.

Device handlers and interrupt handlers of the
Operating System are accessed indirectly through
the convenient interfaces of the system service
processes.

System builders can easily include their own
system service processes, system common
procedures, device handlers, and interrupt
handlers in the 0S System Image at system build.
System build is the name for the sequence of
actions necessary to construct a customized OS
System Image. System build is described 1in the
B20 System Programmers and Assembler Reference
Manual (Part 1), form 1148699.

PROCESSING CONCEPTS

Under the Operating System, an application system
(see Figure 2-1) is the collection of all logical
software elements (tasks) currently in a
partition. These tasks can be loosely or tightly
coupled, but all perform related portions of the
same application. These tasks execute
asynchronously. ‘

A task consists of executable code, data, and one
Oor more processes. The code and data can be
unique to the task or shared with other tasks. A
task is created by translating one or more source
programs into object modules and then 1linking
them together. This results in a task image that
is stored on disk in a run file.

Program Code
Program Data
Process

Process » Task 3
[]

i J

Program Code .
Program Data > Task | Application

Process System

Program Code
Program Data

Process Y Task J
Process
Process

Figure 2-1. Relationship of Processes, Tasks, and an Application System

When requested by a currently active task, such
as the Executive, the Operating System reads the
task image from the run file into partition
memory, relocates intersegment references, and
schedules it for execution. The new task can
coexist with or replace other application tasks
in its partition memory.

A process is the basic element of computation
that competes for access to the processor. A
process consists of: (1) the address of the next
instruction to execute on behalf of this process,
(2) a copy of the data to be 1loaded 1into the
processor registers before control is returned to
this process, and (3) a stack. A process is
assigned one of 255 priorities so that the
Operating System can schedule its execution
appropriately.

MEMORY ORGANIZATION

The memory of a system consists of two types of
partitions:

system partitions, which contain the
operating system and dynamically installed
system services, and

application partitions, each of which
contains an application system.

When a system is initiated, the Operating System
is loaded into the system partition at the low
address end of memory. Dynamically installed
system services are loaded into extended system
partitions located at the high address end of
memory. The remaining memory 1is defined as a
single application partition, called the primary
application partition. (See Figure 2-2.)

Low End of Memory
System Partition

p—
Interactive
Application ﬁ Primary Application Partition
System

| W

Extended System Partition

High End of Memory

Figure 2-2. Memory Organization

When new partitions are created, they are placed
at the high address end of the existing
application partition and are called secondary
application partitions. The remaining memory is
defined as the primary application partition.
(See Figure 2-3.)

The primary application partition is for
interactive programs that use the keyboard and
video display to interact with the user. Such
partitions can be loaded wi th interactive
programs chosen by the user, such as the Word
Processor, a terminal emulator, or a user-written
application program.

Low End of Memory

System Partition

Interactive
Application -< Primary Application Partition
System

Noninteractive ‘ Secondary Application Partition B
Application

Systems

Secondary Application Partition A

Extended System Partition

High End of Memory

Figure 2-3. Memory Organization with Secondary Application Partition

2-5

Types of Memory

Secondary application partitions are for
noninteractive applications. Such partitions can
be used for execution batch jobs under control of
the batch manager, user—-written applications, or
system services.

A compact version of the Operating System can be
built at system build that saves memory yet
provides all Operating System functions described
for the execution of one application system at a
time. The compact version can have only one
application partition, as shown in Figure 2-2.

Two types of memory allocation are available to
the application system: 1long-lived and short-
lived. Within each application partition, long-
lived memory expands upward from 1low memory
locations while short-lived memory expands
downward from high memory locations. The
Operating System allocates short-lived memory for
application tasks.

Processes within an application partition
allocate and deallocate 1long-lived and short-
lived memory by requests to OS system services.
A process in one partition cannot allocate or
deallocate memory in other partitions.

When the execution of an application system 1is
terminated, the short-lived memory of its
partition is automatically deallocated.

Long-lived memory 1is deallocated only at the
explicit request of the application system.
Therefore, long-lived memory is useful for
passing information from an application system to
a succeeding application system within the same
partition.

VIRTUAL CODE SEGMENT MANAGEMENT

Virtual code segment management supports the
execution of an application system whose size
exceeds the available memory in its application
partition. Program code (but not data) can
reside on disk while a task is executing. Only
the code segment whose instructions are being
executed at a particular time need occupy the
main memory of an application partition. The
remaining code segments of the application system

are automatically read into partition memory as
needed. When necessary, the oldest code segment
in partition memory is overlaid to make enough
partition memory available for a new code
segment.

INTERPROCESS COMMUNICATION

As a message-based operating system, the OS uses
its interprocess communication (IPC) facility
internally for synchronization of process
execution and information transmission. The O0S
Kernel provides IPC primitives to facilitate the
consistent but flexible exchange of information
between processes. Processes can communicate
with each other within or between application
partitions.

Six IPC primitives are provided: Check, PSend,
Request, Respond, Send, and Wait. Both Operating
System (that is, system service) and application
system processes use these primitives.

Messages and Exchanges
Messages and exchanges are used in IPC.

A message conveys information and provides
synchronization between processes. Although only
a single 4-byte data item is literally
communicated between processes, this data item is
usually the memory address of a larger data
structure. The larger data structure is called
the message.

An exchange is the path over which messages are
communicated from process to process (or from
interrupt handler to process). An exchange
consists of two first-in, first-out queues: one
of processes waiting for a message, the other of
messages for which no process has yet waited.

Processes or messages (but not both) <can be
queued at an exchange at any given instant. If a
process waits at an exchange at which messages
are queued, then the message that was enqueued
first is dequeued and its address given to the
process; the process then continues execution.
Similarly, if a message is sent to an exchange at
which processes are queued, then the process that
was enqueued first is dequeued, given the address
of the message, and placed into the ready state.

The relationship of exchanges, messages, and
processes is shown in Figure 2-4.

Link g Link
pres—s c— — e— e — —
Message 1 Message 2
Or
‘ Exchange >
—T B
Process A Process B

Figure 2-4. Relationship of Exchanges, Messages, and Processes

Exchanges are allocated in three ways:

o at system build (for system service
processes),

o dynamically using the AllocExch (and
DeallocExch) operation, and

o at process creation.

Process States

A process can send a message to a process 1in
another application partition. The destination
process allocates an exchange and makes the
exchange known to the O0S. The sender process
obtains the exchange number and sends messages to
the exchange. Each of the processes must lock
itself in its partition to prevent interference
with the communication.

A process can exist in one of three states:
running, ready, and waiting.

A process is in the running state when the
processor is actually executing its
instructions. Only one process can be in the
running state at a time.

A process is in the ready state when it could be
running, but a higher priority process is
currently running. Any number of processes can
be in the ready state at a time.

A process is in the waiting state when it is
waiting at an exchange for a message. Any number
of processes can be waiting at a time.

Table 2-1 describes the transitions between
process states and the events causing the
transitions. The relationship among process
states is shown in Figure 2-5.

Table 2-1. Process State Transition

Transition
From To Event
Runni ng Waiting A process executes a
Wait but no messages
are at the exchange.

Waiting Ready/ A process sends a
Runni ng message to the
exchange at which a
process is waiting.

Runni ng Ready A higher priority
process leaves the
waiting state.

Ready Runni ng All higher priority

proceses enter the
waiting state.

2-9

Running

Waiting

Figure 2-5. Process States

Process Priorities and Process Scheduling

Every process has a priority that indicates its
importance relative to other processes. The
priority of a process is assigned at process
creation.

The Operating System has event-driven priority
scheduling. This means that processes are
scheduled for execution based on their priorities
and system events, not on a time limit imposed by
the scheduler. This involves very little
decision-making of the 0Ss. The scheduler
maintains a queue of the processes that are
eligible to execute. Priority determines which
process, among those eligible, is executed. At
any time, the 0OS always allocates the processor
to the highest priority process that can be
executed. Rescheduling occurs when a system
event makes executable a process with a higher
priority than the one currently executing.

A system event affects the executability of a
process. Examples of system events are an
interrupt from a device controller, Multibus
device, timer, or real-time clock, or a message
sent from another process. The system event
causes a message to be sent to an exchange at
which a higher priority process is waiting; this,
in turn, causes the O0OS to reallocate the
processor.

When a system event occurs that makes a process
eligible to execute, the process receives control
of the processor until another higher priority
process preempts 1its execution, or until it
voluntarily relinquishes control of the
processor.

If no other process has work to perform, the null
process, which executes at a priority (255) lower
than any real process and which is always ready-
to-run, is given control of the processor. The
null process exists only to simplify the
algorithm of the scheduler; it performs no other
useful work.

To give multiple tasks with the same priority a
fair share of system resources, processes with
priorities in a predefined range are subject to
time slicing. Such processes with the same
priority are executed in turn for intervals of
100 ms in round robin fashion.

Sending a Message

When a message is sent to an exchange, the
Operating System queues the address of the
message, not the message itself. Because only
the address is moved, overhead is minimized, and
queueing a number of messages at the same
exchange requires 1little execution time or
memory.

When a process sends a message to an exchange,
one of two actions results at the exchange:

If no processes are waiting, the message is
queued.

If one or more processes are waiting, the
process that was enqueued first is given the
message and is placed into the ready state.
If this process has a higher priority than
the sending process, it becomes the running
process and the sending process loses control
until it once again becomes the highest
priority ready process.

2-11

After a message is queued at an exchange, it must
not be modified by the sending process. A
process that receives the message by waiting at
the exchange where the message was queued is free
to modify the message.

Waiting for a Message

When a process waits for a message at an
exchange, one of two actions results at the
exchange:

If no messages are queued, the process 1is
placed into the waiting state until a message
is sent. When a message is sent, its address
is returned to the process, which leaves the
waiting state and is scheduled for execution.

If one or more messages are queued, the
message that was enqueued first is dequeued
and its address returned to the process,
which continues to execute.

Applying Interprocess Communication

Communication

To a large extent, the power of the Operating
System results from its interprocess
communication facility. IPC supports three
mul titasking capabilities:

o communication,
o synchronization, and

o resource management.

Communication, the most elementary interaction
between processes, is the transmission of data
from one process to another via an exchange.
Figure 2-6 below shows an example of
communication between Process A and Process B.
Process A sends a message to Exchange X, and
Process B waits for a message at that Exchange.

Synchronization

Exchange X

Send Wait

Process A Process B

Figure 2-6. Communication between Processes

Synchronization is the means by which a process
ensures that a second process has completed a
particular item of work before the first process
continues execution. Synchronization between
processes and the transmission of data between
processes usually occur simul taneously.

As shown in Figure 2-7 below, Process A sends a
meéssage to Exchange Y, requesting that Process B
perform an item of work. Process A then waits at
Exchange Z until Process B has completed the
work. This synchronizes the continued execution
of Process A with the completion of an item of
work by Process B.

2-13

Wait

Send Exchange Y Satisfied
A1 B2
Wait N
Process A Wait B1 Process B

Resource Management

Wait Send
Satisfied Exchange Z B3
A3
Figure 2-7. Synchronization
In a multitasking environment, resource

management is the means of sharing resources

among several processes in a controlled way. For
example, several processes may need to use the
printer; however, only one process can use the
printer at a particular time.

One way to control a resource is to establish a
process to manage it. Only the managing process
accesses the resource directly. Other processes
access the resource indirectly by sendi ng
messages to the process that performs the desired
function. 0S system services, which manage
resources such as files, devices, and memory, are
implemented via an analogous mechanism.

B 20 SYSTEM

Procedural Access

SERVICES

The Operating System includes a number of system
service processes. These processes, which are
scheduled for execution in the same manner as
application processes, receive IPC messages to
request the performance of their services. Any
process, even a system service process, can use
(be a client of) a system service process.

Each system service process acts as the gquardian
and manager for a class of system resources such
as files, memory, or keyboard.

OS system services can be accessed:

indirectly, by a procedural interface, or

directly, by the Request and Wait primitives.

Using the procedural interface is easier because
it automatically performs most of the necessary
housekeeping and issues the Request and Wait
primitives.

Using the Request and Wait primitives is more
powerful, however, as it allows a greater degree
of overlap between mul tiple input/output
operations and computation.

to System Services

When a procedural interface is used, a request
block is automatically constructed and the
default response exchange of the process 1is
automatically used. (Request block and default
response exchange are defined immediately
below.) Except for the ReadAsync and WriteAsync
procedures, the request block is constructed on
the stack of the client process.

Direct Access to System Services

Execution of a system service involves the
participation of two processes (client and system
service), three kinds of Kernel primitives
(Request, Respond, and Wait), two kinds of
exchanges (response exchange and default response
exchange), and a data structure (request block).

2-16

The process requesting the system service is the
client process. Any process, even a system

service process, can be a client process, since
any process can request system services.

OS system services are provided by system service
processes. These processes are created when the
system is first loaded and execute code that was
linked into the System Image at system build.

A request block, a data structure provided by the
client process, contains the specification of,
and the parameters to, the desired system
service. A request block contains a request code
field, a response exchange field, and several
other fields.

A request code is a 16-bit value that uniquely
identifies the desired system service. For
example, the request code for the Write operation
is 36. The request code is used both to route a
request to the appropriate system service process
and to specify to that process which of the
several services it provides is currently

requested.

A response exchange is the exchange at which the
requesting client process waits for the response
of a system service. The response can be
directed to the exchange at which the client
process is expecting it because the exchange at
which the response is desired is specified in the
request block.

A special case of response exchange 1is the

default response exchange of a process. Each
process 1is given a unique default response
exchange when it 1is created. This special

exchange is automatically used as the response
exchange whenever a client process uses the
procedural interface to a system service.

A service exchange 1is an exchange that is
assigned to a system service process at system
build. The system service process waits for
requests for its service at its service exchange.

The Request primitive is a variant of the Send
primitive. It is used to direct a request for a
system service from a client process to the
service exchange of the system service process.
Request, unlike Send, does not accept an exchange

identification as a parameter. Rather, it infers
the appropriate service exchange by using the
request code as an index into the Service
Exchange Table.

The Service Exchange Table is constructed at
system build, resides in the System Image, and
translates request codes to service exchanges.

The Respond primitive is another variant of the
Send primitive. System service processes use
Respond to report the completion of the requested
system service.

Interaction of Client Processes and System Service Processes

The client process initiates the transaction by
formatting a request block and issuing a Request
primitive. After issuing the Request primitive,
the client process can continue execution but
must not modify the request block.

In order to determine when the request was
completed, the client process must issue either a
Wait or a Check primitive. The Wait or Check
primitive must specify the same exchange that the
client process specified as the response exchange
in the request block.

The Wait primitive suspends execution of the
client process until the system service process
responds (or until another message is queued at
the specified exchange).

The Check primitive does not suspend execution of
the client process; instead it inquires whether a
message is queued at the specified exchange.

The system service process waits for a request to
be queued at an exchange. Upon receiving a
request, the system service process verifies the
control information and data given it before
processing the request. After performing the
requested function, it acknowledges completion of
the service by responding to the client process.
It then resumes waiting until it receives the
next request.

The interaction of «client and system service
processes is shown in Figure 2-8. The processing

flow of client and system service processes 1is
shown in Figure 2-9.

Service

Wait
Exchange Satisfied B2
Request A1
Wait B1 Svst
. stem
Client Request Sirvice
Process A Block
Wait A2 Process B
\ : Respond B3
Wait Response
Satisfied A3
Exchange

Figure 2-8. Interaction of Client and System Service Processes

Filter Processes

Process Entry Process Entry
Point Point
Initialize Process Initialize Process
—» Compute —>1 Wait for Request
Request Service Perform Function
Wait for Response Respond
CLIENT PROCESS SERVICE PROCESS

Figure 2-9. Processing Flow of Client and System Service Processes

A filter process is a user-written system service
process that is included in the System Image at
system build. A filter process is interposed
between a client process and a system service
process that believe they are communicating
directly with each other. The Service Exchange
Table is adjusted at system build to route
requests through the desired filter process.

A filter process might be used between the file
management system and its client process to
perform special password validation on all or
some requests.

The interaction of a filter process with a client
process and system service process 1is shown 1in
Figure 2-10 below.

Service
Exchange

Service
Exchan
ghange Wait
Satisfied

B2

Wait
Satisfied
c2

Request B3
Request A1 Wait B1 Wait C1
ilter
lient SF;::m System
P ol A S!:‘rvice Service
rocess Process C
Process B
Wait A2 Respond B6 Wait B4
\A‘Iai.t Wait Respond C3
Satistied Satisfied
A3 85
Response Response
Exchange \ Exchange

Figure 2-10. Interaction of Filter Process with Client and System Service Processes

Request Blocks
The format of request blocks is designed to allow
the transparent migration of system service
processes between standalone and cluster
configurations. Request blocks are completely
self-describing and consist of four parts:
1. a standard header,
2. request-specific control information,
3. descriptions of the request data items, and
4. descriptions of the response data items.
Each data item is described by memory address,

size, and source (client or system service
process).

CLUSTER CONFIGURATION

Cluster configurations of the B20 Series of
Business Computer Systems consist of a master
workstation and up to 16 cluster workstations.
Essentially the same Operating System executes in
each cluster workstation as 1in the master
workstation. The master workstation provides
file system and queue management resources for
all workstations in the cluster. 1In addition, it
concurrently supports its own interactive
application processing as well as user-written
mul tiuser system services. A cluster workstation
can have its own local file system and printer
spooler.

In the cluster configuration, the IPC facility is
extended to provide transparent access to system
service processes that execute in the master
workstation. While some services, 1like file
management, 3270 terminal emulator, and data base
management, migrate to the master workstation,

others, such as video and keyboard management,
remain at the cluster workstation.

Application systems access the file system of a
master workstation exactly as they do that of a
standalone workstation. A program that works on
a standalone workstation (accessing the 1local

file system) can be moved to a cluster
workstation (accessing the file system of the
master workstation) wi thout modi fication,

recompilation, or relinking.
Interstation Communication

The interstation communication (ISC) facility is
an upward—-compatible extension of the
interprocess communication facility. When a
client process requests a system service, a
request block is constructed that contains all
the information necessary to describe the desired
function.

In a standalone workstation, the request block is
queued at the exchange of the system service
process that actually performs the desired
function.

2-21

Cluster Workstation

Master Workstation

2-22

Agent Service Process

In a cluster workstation, however, if the
function is to be performed at the master
workstation, then the request block is queued at
the exchange of the Cluster Workstation Agent
Service Process. The Cluster Workstation Agent
Service Process converts interprocess requests to
interstation messages for transmission to the
master workstation. The Cluster Workstation
Agent Service Process is included at system build
in a System Image that is to be used on a cluster
workstation.

Agent Service Process

The System Image used at the master workstation
is built to include a corresponding service
process. This process, the master workstation
Agent Service Process, reconverts the
interstation message to an interprocess request
that it queues at the exchange of the master
workstation system service process that actually
performs the desired function. Note that the
Service Exchange Table that translates the
request code to a service exchange at the master
workstation is necessarily different from the
table at the cluster workstation.

When the system service process at the master
workstation responds, the response 1is routed
through the master workstation Agent Service
Process, the high-speed data 1link, and the
cluster workstation Agent Service Process before
being queued at the response exchange 1in the
cluster workstation that was specified in the
request block.

The format of request blocks is designed to allow
the cluster workstation and master workstation
Agent Service Processes to convert between
interprocess requests and interstation messages
efficiently and with no external information.
Because request blocks are completely self-
describing, the Agent Service Processes can
transfer requests and responses between master
workstation and cluster workstations without any
knowledge of what function is requested or how it
is to be performed.

Interstation Request/Response Message

An interstation request message consists of:
o a header,
o control information,

o the size and actual text of each request data
item, and

o the maximum allowed size of each response
data item.

An interstation response message consists of:
o a status code, and

o the actual size and text of each response
data item.

The cluster workstation Agent Service Process
forms an interstation request message by copying
the header and control information from the
request block, moving the actual text of the
request data items into the message, and
including a specification of the maximum allowed
sizes of the response data items.

After receiving the interstation response
message, the cluster workstation Agent Service
Process stores the status code into the request
block and moves the text of the response data
items into the memory areas specified for them by
the request block. This transformation scheme
ensures that no redundant or extraneous
information is transmitted between master
workstation and cluster workstations.

Communications /0 Processor

One high-speed RS-422 channel is standard on each
workstation. This channel 1is wused by cluster
workstations for communications with the master
workstation. Master workstations of small
cluster configurations (up to four cluster
workstations) see this channel for communications

wi th their cluster workstations. Master
workstations of large cluster configurations use
one oOr two Communications 1/0 Processors

(CommIOPs) for communications with their cluster
workstations.

2-23

The CommIOP, which is added to the Multibus of
the master workstation, is an intelligent
communications processor based on the Intel 8085
microprocessor. The CommIOP serves up to four
cluster workstations on each of its two high-
speed serial lines.

CommIOP software consists of an 8085 bootstrap-
ROM program, the main CommIOP program (which
executes in 8085 RAM), and a CommIOP handler
(written in 8086 code) which executes in system
memory under OS control.

Software Organization

An OS System Image built for a cluster
workstation differs from an OS System Image built
for a standalone workstation in the (optional)
exclusion of the file management system and the
disk handler, and the inclusion of the cluster
workstation Agent Service Process.

An OS System Image built for a master workstation
differs from an OS System Image built for a
standalone workstation only in its inclusion of
the master workstation Agent Service Process.
The master workstation is the file server for the
entire cluster configuration. However, this does
not necessitate the use of a different file
management system from the one used 1in the
standalone workstations. In fact, the file
management system of the Operating System is
actually a multiuser file system, even in a
standalone workstation.

User-Written Software in a Cluster Configuration

Concurrency 1is the ma jor issue concerning
application systems executing on cluster
workstations. Preferred programming practice
dictates that the client process of a system
service always examines the status code returned
by the system service. However, while a program
that opens a file without considering the
possibility of receiving status code 220 ("File
in use") executes successfully on a standalone
workstation, such a program fails intermittently
when executed on a cluster workstation at the
same time that a program in another workstation
is modifying the same file.

Whether user-written system services are good
candidates for suppor ting multiple client
processes depends both on the function they
perform and the generality with which they are
written. As an example, consider a user-written
handler for a special Multibus device. If it
used the standard format for request blocks, the
device handler could be relocated to the master
workstation. However, 1if it did not include
concurrency checks, the device handler might
become confused when it received requests from
two or more workstations.

STANDARD NETWORK

(To be supplied)

OVERVIEW

SECTION 3
PROCESS MANAGEMENT

The process management facility provides event-

driven priority scheduling and dynamic creation
of multiprocess tasks.

Within each task of the application system and
within the O0S itself, the basic element of
computation that competes for access to the
processor 1is a process. Every process is
assigned a priority. At all times, the OS
process management facility allocates the
processor to the highest priority process
currently requesting it.

CONCEPTS

Process

A process is the basic element of computation
that competes for access to the processor and
which the OS schedules for execution.

A task has a single process associated with it
when it is first loaded. That single process can
create additional processes using the
CreateProcess operation. The additional
processes created typically share the same code
but have separate stacks. The degree and means
of data sharing are application-specific.

Processes and tasks usually have a hierarchical
relationship. However, processes can execute
code in multiple tasks. The usual relationship
of a process to the tasks of an application
system is shown in Figure 3-1 below.

Program Code
Program Data
Process
Process > Task 3

. J

Program Code
Program Data 1 Task
Process

Application
System

Program Code
Program Data

Process y Task J
Process
Process

Figure 3-1. Relationship of Processes, Tasks, and an Application System

Context of a Process

The context of a process is the collection of all
information about a process. The context has
both hardware and software components.

The hardware context of a process consists of
values to be loaded into processor registers when
the process is scheduled for execution. This
includes the registers that control the location
of the process's stack.

The software context of a process consists of its
default response exchange and the priority at
which it is to be scheduled for execution.

The combined hardware and software context of a
process is maintained in a system data structure
called a Process Control Block (PCB). A PCB is
the physical representation of a process.

When a higher priority process preempts a lower
priority process, the OS saves the hardware
context of the preempted process in that
process's PCB. The OS later restores the
contents of the registers when the process is
rescheduled for execution; this permits the
process to continue as though it were never
interrupted. This is known as a context switch.

Process Priorities and Process Scheduling

Every process has a priority that indicates its
importance relative to other processes. The
priority of a process 1is assigned at process
creation. Priorities range from 0 to 254 with 0
being the highest priority.

The OS has event-driven ©priority scheduling.
This means that processes are scheduled for
execution based on their priorities and system
events, not on a time 1limit imposed by the
scheduler. This involves very little decision-
making for the OS. The scheduler maintains a
queue of the processes that are eligible to
execute. Priority determines which process among
those eligible is executed. At any time, the OS
always allocates the processor to the highest
priority process that can be executed.

Rescheduling occurs when a system event makes
executable a process with a higher priority than

3-3

Process States

3-4

the one currently executing. In most cases, the
interval between events 1is determined by the
duration of the typical input/output operation.
A process never loses control involuntarily to
another process of equal priority, only to a
process of higher priority.

A system event affects the executability of a
process., Examples of system events are an
interrupt from a device controller, Multibus
device, timer, or real-time clock, or a message
sent from another process. The system event
causes a message to be sent to an exchange at
which a higher priority process is waiting; this,
in turn, causes the O0S to reallocate the
processor.

When a system event occurs that makes a process
eligible to execute, the process receives
control of the processor until another higher
priority process preempts 1its execution, or
until it voluntarily relinquishes control of the
processor.

If no other process has work to perform, the
null process, which executes at a priority (255)
lower than any real process and which is always
ready-to-run, is given control of the processor.
The null process exists only to simplify the
algorithm of the OS scheduler; it performs no
other useful work.

To give multiple tasks with the same priority a
fair share of system resources, processes with
priorities in a predefined range are subject to
time slicing. Such processes with the same
priority are executed in turn for intervals of
100 ms in round robin fashion. The priority
range is a system build parameter, the default
of which is 128 (80h) to 254 (FEh).

A process can exist in one of three states:
running, ready, and waiting.

A process is in the running state when the
processor is actually executing its
instructions. Only one process can be in the
running state at a time. Any other ready-to-run
processes are in the ready state. As soon as the
running process waits, the highest priority
process in the ready state is placed into the
running state and the execution context is
switched to that process's context.

A process is in the ready state when it could be
running, but a higher priority process is
currently running. Any number of processes can
be in the ready state at a time.

A process is in the waiting state when it is
waiting at an exchange for a message. A process
enters the waiting state when it must synchronize
with other processes. A process can only enter
the waiting state by voluntarily issuing a Wait
primitive that specifies an exchange at which no
messages are currently queued. The process
remains in the waiting state until another
process (or interrupt handler) issues a Send (or
PSend, Request, or Respond) primitive that
specifies (indirectly in the case of
Request/Respond) the same exchange that was
specified by the Wait primitive. Any number of
processes can be waiting at a time. (See the
"Interprocess Communication Management" section
for more information on the Wait, Send, PSend,
Request, and Respond primitives.)

The relationship among process states is shown in
Figure 3-2 below.

Running

P e c—— — — —

Waiting

Figure 3-2. Process States

Table 3-1 below describes the transitions between
process states and the events causing the
transitions.

Table 3-1. Process State Transition

Transition

From To Event

Runni ng Waiting A process execut