
CTIX™ OPERATING SYSTEM MANUAL

Version C
Volume 3

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, Chart Designer, ClusterCard, ClusterNet,
Clusters hare, Context Manager/VM, Convergent, CT-DBMS,

CT-MAIL, CT-Net, CTIX, CTOS, CTOS/VM, DISTRIX, Document
Designer, The Operator, AWS, CWS, IWS, S/50, S/120, S/160, S/220,
S/320, S/640, S/1280, Multibus, TeleCluster, Voice/Data Services,

Voice Processor, WGS/Calendar, WGS/Desktop Manager,
WGS/Mail, and X-Bus are trademarks of

Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent Technologies under license from
AT&T. UNIX and RFS are trademarks of AT&T.

Material excerpted from the UNIX System V, Release 3.2 System Administrator s/User s
Reference Manual and Programmer's Reference Manual is Copyright 1989 by AT&T
Technologies. Reprinted by permission.

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

This manual was prepared on a Convergent Technologies S/320 Computer System and
was printed on an Apple LaserWriter II Laser Printer.

Second Edition (November 1989) 09-02264-01

Copyright © 1989 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. No part of this document may be reproduced, transmitted, stored in a
retrieval system, or translated into any language without the prior written consent of
Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Convergent Technologies reserves the right
to revise this publication and to make changes from time to time in its content without
being obligated to notify any person of such revision or changes.

TABLE OF CONTENTS: VOLUME 3

How to Use This Manual ix

Permuted Index xiii

2. System Calls

intro introduction to system calls and error numbers
access determine accessibility of a file
acct enable or disable process accounting
adjtime correct the time to allow synchronization of the system clock
alarm set a process alarm clock
bind bind a name to a socket
brk change data segment space allocation
chdir change working directory
chmod change mode of file
chown change owner and group of a file
chroot change root directory
close close a file descriptor
connect initiate a connection on a socket
creat create a new file or rewrite an existing one
dup duplicate an open file descriptor
exec execute a file
exit terminate process
fcntl file control
fork create a new process
getdents read directory entries and put in a file
getdtablesize get descriptor table size
gethostid get/set unique identifier of current host
gethostname get/set name of current host
getmsg get next message off a stream
getpeername get name of connected peer
getpid get process, process group, and parent process IDs
getsockname get socket name
getsockopt get and set options on sockets
gettimeofday get/set date and time
getuid get real user, effective user, real group, and effective group IDs
ioctl control device
kill send a signal to a process or a group of processes
link link to a file
listen listen for connections on a socket
locking exclusive access to regions of a file
Iseek move read/write file pointer
mkdir make a directory
mknod make a directory, or a special or ordinary file
mount mount a file system
msgctl message control operations
msgget get message queue
msgop message operations
nfssys common shared NFS system calls

- iii -

nice change priority of a process
notify manage notifications
open open for reading or writing
pause suspend process until signal
pipe create an interprocess channel
plock lock process, text, or data in memory
poll STREAMS input/output multiplexing
profil execution time profile
ptrace process trace
putmsg send a message on a stream
read read from file
recv receive a message from a socket
rmdir remove a directory
select synchronous I/O multiplexing
semctl semaphore control operations
semget get set of semaphores
semop semaphore operations
send send a message to a socket
setpgrp set process group ID
setuid set user and group IDs
shmctl shared memory control operations
shmget get shared memory segment identifier
shmop shared memory operations
shutdown shut down part of a full-duplex connection
signal specify what to do upon receipt of a signal
sigset signal management
socket create an endpoint for communication
stat get file status
statfs get file system information
stime set time
swrite synchronous write on a file
sync update super block
sysfs get file system type information
syslocal special system requests
time get time
times get process and child process times
uadmin administrative control
ulimit get and set user limits
umask set and get file creation mask
umount unmount a file system
uname get name of current CTIX system
unlink remove directory entry
ustat get file system statistics
utime set file access and modification times
wait wait for child process to stop or terminate
write write on a file

Subroutines and Libraries

intro introduction to functions and libraries
a641 convert between long integer and base-64 ASCII string
abort generate a SIGABRT

- iv -

abs return integer absolute value
assert verify program assertion
bessel Bessel functions
bsearch binary search a sorted table
bstring bit and byte string operations
byteorder convert values between host and network byte order
clock report CPU time used
conv translate characters
crypt generate hashing encryption
crypt password and file encryption functions
ctermid generate file name for terminal
ctime convert date and time to string
ctype character handling
curses terminal screen handling and optimization package
cuserid get character login name of the user
dbm database subroutines
dial establish an out-going terminal line connection
directory directory operations
drand48 generate uniformly distributed pseudo-random numbers
dup2 duplicate an open file descriptor
ecvt convert floating-point number to string
end last locations in program
erf error function and complementary error function
exp exponential, logarithm, power, square root functions
fclose close or flush a stream
ferror stream status inquiries
floor floor, ceiling, remainder, absolute value functions
fopen open a stream
fpgetround IEEE floating point environment control
fread binary input/output
frexp manipulate parts of floating-point numbers
fseek reposition a file pointer in a stream
ftw walk a file tree
gamma log gamma function
getc get character or word from a stream
getcwd get path-name of current working directory
getenv return value for environment name
getgrent get group file entry
gethostbyname get network host entry
getlogin get login name
getnetent get network entry
getopt get option letter from argument vector
getpass read a password
getprotoent get protocol entry
getpw get name from UID
getpwent get password file entry
getrpcent get rpc entry
getrpcport get RPC port number
gets get a string from a stream
getservent get service entry
getspent get shadow
getut access utmp file entry

- v -

hsearch manage hash search tables
hypot Euclidean distance function
inet Internet address manipulation routines
isnan test for floating point NaN (Not-A-Number)
13tol convert between 3-byte integers and long integers
ldahread read the archive header of a member of an archive file
ldclose close a common object file
ldfhread read the file header of a common object file
Idgetname retrieve symbol name for common object file symbol table entry
ldlread manipulate line number entries of a common object file function
ldlseek seek to line number entries of a section of a common object file
ldohseek seek to the optional file header of a common object file
ldopen open a common object file for reading
ldrseek seek to relocation entries of a section of a common object file
ldshread read an indexed/named section header of a common object file
ldsseek seek to an indexed/named section of a common object file
ldtbindex compute the index of a symbol table entry of a common object file
ldtbread read an indexed symbol table entry of a common object file
Idtbseek seek to the symbol tabic of a common object file
libdev manipulate Volume Home Blocks (VHB)
lockf record locking on files
logname return login name of user
lsearch linear search and update
malloc main memory allocator
malloc fast main memory allocator
matherr error-handling function
memory memory operations
mktemp make a unique file name
monitor prepare execution profile
ndbm database subroutines
nlist get entries from name list
nlsgetcall get client's data passed through the listener
nlsprovider get name of transport provider
nlsrequest format and send listener service request message
ocurse optimized screen functions
otermcap terminal independent operations
perror system error messages
plot graphics interface subroutines
popen initiate pipe to/from a process
printf print formatted output
putc put character or word on a stream
putenv change or add value to environment
putpwent write password file entry
puts put a string on a stream
putspent write shadow password file entry
qsort quicker sort
rand simple random-number generator
rcmd routines for returning a stream to a remote command
regcmp compile and execute regular expression
resolver resolver routines
rexec return stream to a remote command
scanf convert formatted input

- vi -

setbuf assign buffering to a stream
setjmp non-local goto
sinh hyperbolic functions
sleep suspend execution for interval
sputl access long integer data in a machine-independent fashion
ssignal software signals
stdio standard buffered input/output package
stdipc standard interprocess communication package
string string operations
strtod convert string to double-precision number
strtol convert string to integer
swab swap bytes
system issue a shell command
t_accept accept a connect request
t_alloc allocate a library structure
t_bind bind ^ address to a transport endpoint
t_close close a transport endpoint
t_connect establish a connection with another transport user
t_error produce error message
t_free free a library structure
t_getinfo get protocol-specific service information
t_getstate get the current state
t_listen listen for a connect request
t_look look at the current event on a transport endpoint
t_open establish a transport endpoint
t_optmgmt manage options for a transport endpoint
t_rcv receive data or expedited data sent over a connection
t_rcvconnect receive the confirmation from a connect request
t_rcvdis retrieve information from disconnect
t_rcvrel acknowledge receipt of an orderly release indication
t_rcvudata receive a data unit
t_rcvuderr receive a unit data error indication
t_snd send data or expedited data over a connection
t_snddis send user-initiated disconnect request
t_sndrel initiate an orderly release
t_sndudata send a data unit
t_sync synchronize transport library
t_unbind disable a transport endpoint
tmpfile create a temporary file
tmpnam create a name for a temporary file
trig trigonometric functions
tsearch manage binary search trees
ttyname find name of a terminal
ttyslot find the slot in the utmp file of the current user
ungetc push character back into input stream
vprintf print formatted output of a varargs argument list

- vii -

HOW TO USE THIS MANUAL

This second edition of the CTIX Operating System Manual, Version C, describes the
commands, system calls, libraries, data files, and device interfaces that make up the CTIX
Operating System for S/Series Computer Systems. This manual should always be your
starting point when you need to find the documentation for a CTIX feature with which
you are unfamiliar.

The manual consists of a large number of short entries, sometimes called "the man
pages," after the command that accesses the entries when they are kept online. Each
entry briefly documents some feature of CTIX. Some features require longer
documentation than an entry in this manual; such features have an entry that outlines the
feature and cross-references the manual that documents the feature fully. Entries that do
not refer to other manuals are self-contained and are the final word on the features they
describe.

Organization of the manual. The entries are organized into seven sections in four
volumes:

Volumes 1 and 2:
1. Commands and Application Programs.

Volume 3:
2. System Calls.
3. Subroutines and Libraries.

Volume 4:
4. File Formats.
5. Miscellaneous Facilities.
6. Games.
7. Special Files.

Within each section, entries are alphabetical by title, except for an intro entry at the
beginning of each section.

Entry Title Conventions. An entry title looks like this example:

Name is the name of the entry. Section Number indicates the section that contains the
entry. In this case, the entry is in Section 3, which is in Volume 2. Entry Type appears
only on entries that belong to special categories; refer to the section's intro entry for an
explanation. In this case, a reference to intro(3) would tell you that erj{3M) describes
functions from the Math Library, which the C compiler does not load by default.

11

I Entry Type

Section Number
Name

- ix -

Finding the entry you need. To find out which entry you need, refer to the following
guides:

• The Permuted Index. This indexes each significant word in each entry's
description. It is useful when you have only a general notion what you're
looking for. It is also useful when you know the name of the command or
function you are interested in, but there is no entry by that name.

• The Table of Contents. This is a simple list of entries, by section, together with
the entry descriptions. Volumes 1 and 2 have Tables of Contents for Section 1.
Volume 3 has a Table of Contents for Sections 2 and 3. Volume 4 has a Table of
Contents for Sections 4 through 7.

• The Table of Related Entries. For Volume 1 only. A table of entries organized
so that related entries are grouped together.

Section organization. Each section begins with an intro entry, which provides
important general information for that section.

Section 1, Commands and Application Programs, describes programs intended to be
invoked directly by the user or by command ianguage procedures, as opposed to
subroutines, which are intended to be called by the user's programs. Commands
generally reside in the directory /bin (for binary programs). Some programs also reside
in /usr/bin, to save space in /bin. These directories are searched automatically by the
command interpreter called the shell. Commands that were not transported from UNIX
System V reside in /usr/local/bin; this directory is recommended for locally
implemented programs. Some administrative commands reside in /etc and various other
places. The /etc directory is searched automatically if you are logged in as root;
otherwise use the full path name given under SYNOPSIS or change the PATH
environment variable to include the command's directory.

Section 2, System Calls, describes the entries into the CTIX kernel, including the C
language interfaces.

Section 3, Subroutines and Libraries, describes the available library functions or
subroutines. Their binary versions reside in various system libraries in the directories
/lib and /usr/Iib. See intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular kinds of files; for example,
the format of the output of the link editor is given in a.out(4). Excluded are files used by
only one command (for example, the assembler's intermeidiate files). In general, the C
language struct declarations corresponding to these formats can be found in the
directories /usr/include and /usr/include/sys.

Section 5, Miscellaneous Facilities, contains descriptions of character sets, macro
packages, and other such information.

Section 6, Games, describes the games and educational programs that reside in the
directory /usr/games.

Section 7, Special Files, discusses the characteristics of files that actually refer to
input/output devices.

- x -

Entry organization. All entries are based on a common format, in which some parts are
optional:

The NAME part gives the name(s) of the entry and briefly states its
purpose.

The SYNOPSIS part summarizes the use of the program being
described. A few conventions are used, particularly in Section 1
(Commands and Application Programs):

NAME

SYNOPSIS

Bold

Regular

Boldface strings are literals, and are to be typed just as
they appear.
Regular face strings usually represent substitutable
argument prototypes and program names found
elsewhere in the manual.

Square brackets around an argument prototype indicate
that the argument is optional. When an argument
prototype is given as "name" or "file," it always refers
to a file name.

Ellipses are used to show that the previous argument
prototype can be repeated.

- + = A final convention is used by the commands themselves.
An argument beginning with a minus (-) , plus (+), or
equal sign (=) is often taken to be some sort of flag
argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with - , +, or =.

DESCRIPTION The DESCRIPTION part discusses the subject at hand.
EXAMPLE(S) The EXAMPLE(S) part gives example(s) of usage, where

appropriate.

FILES The FILES part gives the file names that are built into the program.

SEEALSO The SEE ALSO part gives pointers to related information.

DIAGNOSTICS The DIAGNOSTICS part discusses the diagnostic indications that
may be produced. Messages that are intended to be self-explanatory
are not listed.

NOTES The NOTES part gives information that might be helpful under the
particular circumstance described.

WARNINGS The WARNINGS part points out potential pitfalls.

BUGS The BUGS part gives known bugs and sometimes deficiencies.
Occasionally, the suggested fix is also described.

A table of contents is provided at the front of each of the four volumes, along with a
complete permuted index derived from the tables. On each index line, the title of the

- xi -

entry to which that line refers is followed by the appropriate section number in
parentheses. This is important because there is considerable duplication of names
among the sections, arising principally from commands that exist only to exercise a
particular system call.

- xii -

PERMUTED INDEX

This index includes entries for all pages of Volumes 1 through 4. The entries themselves
are based on the one-line descriptions or titles found in the NAME portion of each
manual page; the significant words (keywords) of these descriptions are listed
alphabetically down the center of the index.

The index is actually a keyword-in-context (KWIC) index that has three columns. To
use the index, read the center column to look up specific commands by name or by
subject topics. Note that the entry may begin in the left column or wrap around and
continue into the left column. A period (.) marks the end of the entry, and a slash (J)
indicates where the entry has been continued or truncated. The right column gives the
manual page where the command or subject is described.

hpio: Hewlett-Packard 2645A terminal tape file/ hpio(l)
/special functions of DA3I 300 and 300s terminals 300(1)

for Interphase V/TAPE 3200 half-inch tape/ /interface ipt(7)
13tol, ltol3: convert between 3-byte integers and long/ 13tol(3C)

comparison. difE3: 3-way differential file difl3(l)
paginator for the Tektronix 4014 terminal. 4014: 4014(1)

special functions of the DASI 450 terminal. 450: handle 450(1)
long integer and base-64/ a641,164a: convert between a641(3C)

abort: generate a SIGABRT. abort(3C)
value, abs: return integer absolute abs(3C)

adb: absolute debugger adb(l)
abs: return integer absolute value abs(3C)

/floor, ceiling, remainder, absolute value functions floor(3M)
tiop: terminal accelerator interface tiop(7)

t_accept: accept a connect request t_accept(3n)
prevent LP requests, accept, reject: allow or accept(lM)

a directory for remote access, adv: advertise adv(lM)
of a file, touch: update access and modification times touch(l)

utime: set file access and modification times utime(2)
accessibility of a file, access: determine access(2)
commands, graphics: access graphical and numerical graphics(lG)

sputl, sgetl: access long integer data in a/ sputl(3X)
fusage: disk access profiler fusage(lM)

sadp: disk access profiler sadp(lM)
ldfcn: common object file access routines ldfcn(4)

copy file systems for optimal access time, dcopy: dcopy(lM)
locking: exclusive access to regions of a file locking(2)

/setutent, endutent, utmpname: access utmp file entry getut(3C)
access: determine accessibility of a file access(2)

enable or disable process accounting, acct: acct(2)
acctcon2: connect-time accounting, acctconl, acctcon(lM)

acctprcl, acctprc2: process accounting acctprc(lM)
turnacct: shell procedures for accounting, /startup, acctsh(lM)

/accton, acctwtmp: overview of accounting and miscellaneous/ acct(lM)
accounting and miscellaneous accounting commands, /of acct(lM)

diskusg: generate disk accounting data by user ID diskusg(lM)
acct: per-process accounting file format acct(4)

- xiii -

search and print process accounting file(s). acctcom: acctcom(l)
acctmerg: merge or add total accounting files acctmerg(lM)

summary from per-process accounting records, /command acctcms(lM)
wtmpfix: manipulate connect accounting records, fwtmp, fwtmp(lM)

runacct: run daily accounting ranacct(lM)
process accounting, acct: enable or disable acct(2)

file format, acct: per-process accounting acct(4)
per-process accounting/ acctcms: command summary from acctcms(lM)

process accounting file(s). acctcom: search and print acctcom(l)
connect-time accounting, acctconl, acctcon2: acctccn(lM)

acctwtmp: overview of/ acctdisk, acctdusg, acct on, acct(lM)
accounting files, acctmerg: merge or add total acctmerg(lM)

accounting, acctprcl, acctprc2: process acctprc(lM)
orderly release/ t_rcvrel: acknowledge receipt of an t_rcvrel(3n)

trig: sin, cos, tan, asin, acos, a tan, atan2:/ trig(3M)
killall: kill all active processes killall(lM)

sag: system activity graph sag(lG)
sar: sal, sa2, sadc: system activity report package sar(lM)

sar: system activity reporter sar(l)
current SCCS file editing activity, sact: print sact(l)

report process data and system activity, /time a command; timex(l)
Dialers: ACU/modem calling protocols Dialers(5)

random, hopefully interesting, adage, fortune: print a fortune(6)
adb: absolute debugger adb(l)

acctmerg: merge or add total accounting files acctmerg(lM)
putenv: change or add value to environment putenv(3C)

Anet_netof: Internet address manipulation routines inet(3)
getservaddr: get network address of service host getservad(lM)

control, arp: address resolution display and arp(lM)
arp: Address Resolution Protocol arp(7)

endpoint. t_bind: bind an address to a transport t_bind(3n)
allow synchronization of the/ adjtime: correct the time to adjtime(2)

system, adman: administer a CllX adman(l)
SCCS files, admin: create and administer admin(l)

network listener service administration, nlsadmin: nlsadmin(lM)
rfadmin: Remote File Sharing administration rfadmin(lM)

uadmin: administrative control uadmin(lM)
uadmin: administrative control uadmin(2)

swap: swap administrative interface swap(lM)
remote access, adv: advertise a directory for adv(lM)

advent: explore Colossal Cave advent(6)
remote access, adv: advertise a directory for adv(lM)

fumount: forced unmount of an advertised resource fumount(lM)
alarm: set a process alarm clock alarm(2)

clock, alarm: set a process alarm alarm(2)
sendmail. aliases: aliases file for aliases(4)

aliases: aliases file for sendmail aliases(4)
the data base for the mail aliases file, /rebuild newaliases(l)

t_alloc: allocate a library structure t_alloc(3n)
change data segment space allocation, brk, sbrk: brk(2)

realloc, calloc: main memory allocator, malloc, free, malloc(3C)
mallinfo: fast main memory allocator, /calloc, mallopt, malloc(3X)

accept, reject: allow or prevent LP requests accept(lM)
adjtime: correct the time to allow synchronization of the/ adjtime(2)

process by changing/ renice: alter priority of running renice(l)
sort: sort and/or merge files sort(l)

link editor output. a.out: common assembler and a.out(4)
introduction to commands and application programs, intro: intro(l)

- xiv -

maintainer for portable/ ar: archive and library ar(l)
format, ar: common archive file art̂ 4)

number: convert Arabic numerals to English number(6)
language, be: arbitrary-precision arithmetic bc(l)

for portable archives, ar: archive and library maintainer ar(l)
cpio: format of cpio archive cpio(4)

ar: common archive file format ar(4)
header of a member of an archive file. Ahe archive ldahread(3X)
formats, convert: convert archive files to common convert(l)

an archive/ ldahread: read the archive header of a member of ldahread(3X)
2645A terminal tape file archiver. /Hewlett-Packard hpio(l)

tar: tape file archiver. tar(l)
maintainer for portable archives, /archive and library ar(l)

cpio: copy file archives in and out cpio(l)
varargs: handle variable argument list varargs(5)

formatted output of a varargs argument list, /print vprintf(3S)
command, xargs: construct argument list(s) and execute xargs(l)

getopt: get option letter from argument vector. getopt(3C)
expr: evaluate arguments as an expression expr(l)

echo: echo arguments echo(l)
be: arbitrary-precision arithmetic language bc(l)

number facts, arithmetic: provide drill in arithmetic(6)
display and control, arp: address resolution arp(lM)

Protocol, arp: Address Resolution arp(7)
ftp: ARPANET file transfer program ftp(l)

expr: evaluate arguments as an expression expr(l)
as: common assembler as(l)

/attach and detach serial lines as network interfaces slattach(lM)
/locate a terminal to use as the virtual system console conlocate(lM)

characters, asa: interpret ASA carriage control asa(l)
and/ /gmtime, asctime, cftime, ascftime, tzset: convert date ctime(3C)

ascii:mapof ASCII character set ascii(5)
hd: hexadecimal and ascii file dump hd(l)

set ascii: map of ASCII character ascii(5)
long integer and base-64 ASCII string, /convert between a641(3C)

strings: extract the ASCII text strings in a file strings(l)
ctime, localtime, gmtime, asctime, cftime, ascftime,/ ctime(3C)

trig: sin, cos, tan, asin, acos, atan, atan2:/ trig(3M)
output a.out: common assembler and link editor a.out(4)

as: common assembler. as(l)
assertion, assert: verify program assert(3X)

setbuf, setvbuf: assign buffering to a stream setbuf(3S)
system commands, assist: assistance using CTIX assist(l)

astgen: generate/modify ASSIST menus and command/ astgen(l)
commands, assist: assistance using CTTX system assist(l)

print the list of blocks associated with an. bcheck: bcheck(lM)
/create device nodes for assorted device types createdev(lM)

menus and command forms, astgen: generate/modify ASSIST astgen(l)
a later time, at, batch: execute commands at at(l)

/sin, cos, tan, asin, acos, atan, atan2: trigonometric/ trig(3M)
cos, tan, asin, acos, atan, atan2: trigonometric/ /sin, trig(3M)

description file, queuedefs: at/batch/cron queue queuedefs(4)
double-precision/ strtod, atof: convert string to strtod(3C)

integer, strtol, atol, atoi: convert string to strtol(3C)
integer, strtol, atol, atoi: convert string to strtol(3C)

as/ slattach, sldetach: attach and detach serial lines slattach(lM)
resources, rmnttry: attempt to mount remote rmnttry(lM)
log of failed login attempts, /usr/adm/loginlog: loginlog(4)

- XXV -

wait: await completion of process wait(l)
processing language, awk: pattern scanning and awk(l)

ungetc: push character back into input stream ungetc(3S)
back: the game of backgammon back(6)

back: the game of backgammon back(6)
fine: fast incremental backup finc(lM)

ckbupscd: check file system backup schedule ckbupscd(lM)
free: recover files from a backup tape frec(lM)

banner, make posters bannerol)
newaliases: rebuild the data base for the mail aliases/ newaliases(l)

Sun rpc program number data base, rpc: rpc(4)
terminal capability data base, termcap: termcap(4)
terminal capability data base, terminfo: terminfo(4)

between long integer and base-64 ASCII string, /convert a641(3C)
(visual) display editor based on ex. /screen-oriented vi(l)

from proto file; set links based on. /out file lists qlist(l)
portions of path names, basename, dirname: deliver basename(l)

later time, at, batch: execute commands at a at(l)
arithmetic language, be: arbitrary-precision bc(l)

blocks associated with an. bcheck: print the list of bcheck(lM)
system initialization/ brc, bcheckrc, drvload, powerfail: brc(lM)
string operations. hcopvi bemp, bzero: bit and byte ^ - - - - , bstring(3)

byte string operations, bcopy, bemp, bzero: bit and bstring(3)
bcopy: interactive block copy bccpy(lM)
bdiff: big diff. bdiff(l)

cb: C program beautifier cb(l)
about the operating system for beginning users, /information starterO)

jO.jl, jn, yO, yl,yn: Bessel functions, bessel: bessel(3M)
yn: Bessel functions, bessel: jO, j 1, jn, yO, y 1 bessel(3M)

bfs: big file scanner bfs(l)
cpset: install object files in binary directories cpset(lM)

fread, fwrite: binary input/output. fread(3S)
bsearch: binary search a sorted table bsearch(3C)

tfind, tdelete, twalk: manage binary search trees, tsearch, tsearch(3C)
bind: bind a name to a socket bind(2)

endpoint. t_bind: bind an address to a transport t_bind(3n)
bind: bind a name to a socket bind(2)

nfsd, biod: NFS daemons nfsd(lM)
bcopy, bemp, bzero: bit and byte string/ bstring(3)

bj: the game of black jack bj(6)
bj: the game of black jack bj(6)

bcopy: interactive block copy bcopy(lM)
sum: print checksum and block count of a file sum(l)

sync: update the super block sync(lM)
sync: update super block sync(2)

df: report number of free disk blocks and i-nodes df(lM)
bcheck: print the list of blocks associated with an bcheck(lM)

libdev: manipulate Volume Home Blocks (VHB) libdev(3X)
powerfail: system/ brc, bcheckrc, drvload, brc(lM)

space allocation, brk, sbrk: change data segment brk(2)
modest-sized programs, bs: a compiler/interpreter for bs(l)

sorted table, bsearch: binary search a bsearch(3C)
stdio: standard buffered input/output package stdio(3S)

setbuf, setvbuf: assign buffering to a stream setbuf(3S)
mknod: build special file mknod(lM)

vme: VME bus interface vme(7)
between host and network byte order, /convert values byteorder(3)

bcopy, bemp, bzero: bit and byte string operations bstring(3)

- xvi -

size: print section sizes in bytes of common object files size(l)
swab: swap bytes swab(3C)

operations, bcopy, bcmp, bzero: bit and byte string bstring(3)
cc: C compiler cc(l)

cflow: generate C flowgraph cflow(l)
cpp: the C language preprocessor cpp(l)

include/ includes: determine C language preprocessor includes(l)
cb: C program beautifier cb(l)

lint: a C program checker. lint(l)
cxref: generate C program cross-reference cxref(l)

ctrace: C program debugger ctrace(l)
extract and share strings in C programs, xstn xstr(l)
time, cprofile: setting up a C shell environment at login cprofile(4)

object file, list: produce C source listing from a common list(l)
cal: print calendar. cal(l)

dc: desk calculator dc(l)
cal: print calendar cal(l)

calendar: reminder service calendar(l)
cu: call another UNIX system cu(lC)

data returned by stat system call, stat: stat(5)
Dialers: ACU/modem calling protocols Dialers(5)
malloc, free, realloc, calloc: main memory allocator. malloc(3C)

fast/ malloc, free, realloc, calloc, mailopt, mailinfo: malloc(3X)
intro: introduction to system calls and error numbers intro(2)
common shared NFS system calls, nfssys: nfssys(2)

request, rumount: cancel queued remote resource rumount(lM)
to an LP line printer, lp, cancel: send/cancel requests lp(l)

termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)

description into a terminfo/ captoinfo: convert a termcap captoinfo(lM)
asa: interpret ASA carriage control characters asa(l)

text editor (variant of ex for casual users), edit: edit(l)
files, cat: concatenate and print cat(l)

advent: explore Colossal Cave. advent(6)
cb: Cprogram beautifier. cb(l)
cc: C compiler cc(l)

cc2sw, cc2fp: front-end to the cc command, eelsw, cclsw(l)
create a front-end to the cc command, gencc: gencc(lM)

to the cc command, cclsw, cc2sw, cc2fp: front-end cclsw(l)
command, eelsw, cc2sw, cc2fp: front-end to the cc cclsw(l)

cc command, cclsw, cc2sw, cc2fp: front-end to the cclsw(l)
cd: change working directory cd(l)

commentary of an SCCS delta, ede: change the delta cdc(l)
/ceil, fmod, fabs: floor, ceiling, remainder, absolute/ floor(3M)

cflow: generate C flowgraph cflow(l)
/localtime, gmtime, asctime, cftime, ascftime, tzset:/ ctime(3C)

strings, cftime: language specific cftime(4)
delta: make a delta (change) to an SCCS file delta(l)

priority of running process by changing nice, renice: alter renice(l)
pipe: create an interprocess channel pipe(2)

terminal's local RS-232 channels, tp: controlling tp(7)
stream, ungetc: push character back into input ungetc(3S)

conversionI chrtbl: generate character classification and chrtbl(lM)
and neqn. eqnehar: special character definitions for eqn eqnchar(5)

_toupper, setchrclass: character handling. /_tolower, ctype(3C)
user, cuserid: get character login name of the cuserid(3S)

/getchar, fgetc, getw: get character or word from a/ getc(3S)
/putchar, fputc, putw: put character or word on a stream putc(3S)

- xvii -

ascii: map of ASCII character set ascii(5)
fgrep: search a file for a character string fgrep(l)

interpret ASA carriage control characters, asa: asa(l)
_tolower, toascii: translate characters. /_toupper, conv(3C)

tr: translate characters tr(l)
lastlogin, monacct, nulladm,/ chargefee, ckpacct, dodisk, acctsh(lM)

directory, chdir: change working chdir(2)
fsck, dfsck: check and repair file systems fsck(lM)

schedule, ckbupscd: check file system backup ckbupscd(lM)
permissions file, uucheck: check the uucp directories and uucheck(lM)

constant-width text for/ cw, checkcw: prepare cw(l)
text for nroff or/ eqn, neqn, checkeq: format mathematical eqn(1)

lint: a C program checker lint(l)
grpck: password/group file checkers, pwck pwck(lM)

systems processed by fsck and/ checklist: list of file checklist(4)
formatted with the MM/ mm, checkmm: print/check documents mm(l)

file, sum: print checksum and block count of a sum(l)
chown, chgrp: change owner or group chown(l)

times: get process and child process times times(2)
terminate, wait: wait for child process to stop or wait(2)

libraries tool, chkshlib: compare shared chkshlib(l)
chmod: change mode chmod(l)
chmod: change mode of file chmod(2)

of a file, chown: change owner and group chown(2)
group, chown, chgrp: change owner or chown(l)

chroot: change root directory chroot(2)
for a command, chroot: change root directory chroot(lM)

classification and conversion/ chitbl: generate character chrtbl(lM)
backup schedule, ckbupscd: check file system ckbupscd(lM)

monacct, nulladm,/ chargefee, ckpacct, dodisk, lastlogin acctsh(lM)
chrtbl: generate character classification and conversion/ chrtbl(lM)

strclean: STREAMS error logger cleanup program strclean(lM)
uucp spool directory clean-up. uucleanup: uucleanup(lM)

clear: clear terminal screen clear(l)
clri: clear i-node clri(lM)

clear: clear terminal screen clear(l)
status/ ferror, feof, clearerr, fileno: stream ferror(3S)

the listener, nlsgetcall: get client's data passed through nlsgetcall(3n)
(command interpreter) with C-like syntax, csh: a shell csh(l)

synchronization of the system clock. Ahe time to allow adjtime(2)
alarm: set a process alarm clock alarm(2)

cron: clock daemon cron(lM)
clock: report CPU time used clock(3C)

on a STREAMS driver, clone: open any minor device clone(7)
ldclose, ldaclose: close a common object file ldclose(3X)

close: close a file descriptor close(2)
t_close: close a transport endpoint t_close(3n)

fclose, fflush: close or flush a stream fclose(3S)
telldir, seekdir, rewinddir, closedir: directory/ /readdir directory(3X)

clri: clear i-node clri(lM)
cmp: compare two files cmp(l)

dis: object code disassembler. dis(l)
line-feeds, col: filter reverse col(l)

advent: explore Colossal Cave advent(6)
comb: combine SCCS deltas comb(l)

common to two sorted files, comm: select or reject lines comm(l)
nice: run a command at low priority nice(l)

cc2fp: front-end to the cc command, cclsw, cc2sw, cclsw(l)

- xviii -

change rod directory for a command, chroot: chrool(lM)
examples, usage: retrieve a command description and usage usage(l)

env: set environment for command execution env(l)
rcmd: remote shell command execution rcmd(l)

uux: UNIX-to-UNDC system command execution uux(lC)
/ASSIST menus and command forms astgen(l)

create a front-end to the cc command, gencc: gencc(lM)
quits, nohup: run a command immune to hangups and nohup(l)

C-like syntax, csh: a shell (command interpreter) with csh(l)
getopt: parse command options getopt(l)

getopts, getoptcvt: parse command options getopts(l)
locate executable file for command, path: path(l)

/shell, the standard/restricted command programming language sh(l)
returning a stream to a remote command, /routines for rcmd(3)

and system/ timex: time a command; report process data timex(l)
uuxqt: execute remote command requests uuxqt(lM)

return stream to a remote command, rexec: rexec(3)
per-process/ acctcms: command summary from acctcms(lM)

system: issue a shell command system(3S)
used by the /etc/tapeset command.. /information tapedrives(4)

test: condition evaluation command test(l)
time: time a command time(l)

locate: identify a CTDC system command using keywords locate(l)
argument list(s) and execute command, xargs: construct xargs(l)

and miscellaneous accounting commands, /of accounting acct(lM)
intro: introduction to commands and application/ intro(l)

assistance using CTIX system commands, assist: assist(l)
at, batch: execute commands at a later time at(l)

access graphical and numerical commands, graphics: graphics(lG)
install: install commands install(lM)

mkhosts: make node name commands mkhosts(lM)
multi-user/rc2, rc3: run commands performed for rc2(lM)

operating system. rcO: run commands performed to stop the rcO(lM)
network useful with graphical commands, stat: statistical stat(lG)

streamio: STREAMS ioctl commands streamio(7)
manipulate the object file comment section, mcs: mcs(l)

cdc: change the delta commentary of an SCCS delta cdc(l)
ar: common archive file format ar(4)

editor output, a.out: common assembler and link a.out(4)
as: common assembler as(l)

glossary: definitions of common CTIX system terms and/ glossary(l)
convert archive files to common formats, convert: convert(l)

routines, ldfcn: common object file access ldfcn(4)
conv: common object file converter conv(l)

cprs: compress a common object file cprs(l)
ldopen, Idaopen: open a common object file for/ ldopen(3X)
/line number entries of a common object file function ldlread(3X)
ldclose, ldaclose: close a common object file ldclose(3X)

read the file header of a common object file, ldfhread: ldfhread(3X)
entries of a section of a common object file, /number ldlseek(3X)

the optional file header of a common object file, /seek to ldohseek(3X)
/entries of a section of a common object file ldrseek(3X)

/section header of a common object file ldshread(3X)
an indexed/named section of a common object file, /seek to ldsseek(3X)

of a symbol table entry of a common object file, /the index ldtbindex(3X)
symbol table entry of a common object file, /indexed ldtbread(3X)

seek to the symbol table of a common object file, ldtbseek: ldtbseek(3X)
line number entries in a common object file, linenum: linenum(4)

- xix -

C source listing from a common object file./produce list(l)
nm: print name list of common object file nm(l)

relocation information for a common object file, reloc: reloc(4)
scnhdr: section header for a common object file scnhdr(4)

line number information from a common object file, /and strip(l)
/retrieve symbol name for common object file symboly ldgetname(3X)

table format, syms: common object file symbol syms(4)
filehdr: file header for common object files filehdr(4)

Id: link editor for common object files ld(l)
section sizes in bytes of common object files, /print size(l)

calls, nfssys: common shared NFS system nfssys(2)
comm: select or reject lines common to two sorted files comm(l)

ipcs: report inter-process communication facilities/ ipcs(l)
/ftok: standard interprocess communication package stdipc(3C)

talkd: remote user communication server talkd(lM)
socket: create an endpoint for communication socket(2)

/configuration file for uucp communications lines Devices(5)
diff: differential file comparator diff(l)

descriptions, infoomp: compare or print out tenninfo infocmp(lM)
chkshlib: compare shared libraries tool chkshlib(l)

cmp: compare two files cmp(l)
SCCS file, sccsdiff: compare two versions of an sccsdiflfl)

difl3: 3-way differential file comparison difD(l)
dircmp: directory comparison dircmp(l)

expression, regcmp, regex: compile and execute regular regcmp(3X)
regexp: regular expression compile and match routines regexp(5)

regcmp: regular expression compile regcmp(l)
term: format of compiled term file term(4)

cc: C compiler cc(l)
tic: terminfo compiler. tic(lM)

yacc: yet another compiler-compiler. yacc(l)
modest-sized programs, bs: a compiler/interpreter for bs(l)

erf, erfc: error function and complementary error function erf(3M)
wait: await completion of process wait(l)

cprs: compress a common object file cprs(l)
pack, peat, unpack: compress and expand files pack(l)

table entry of a/ ldtbindex: compute the index of a symbol ldtbindex(3X)
cat: concatenate and print files cat(l)
test: condition evaluation command test(l)

system, config: configure a CTIX config(lM)
NFS file systems export configuration file, exports: exports(4)

(internet/ inetd.conf: configuration file for inetd inetd.conf(4)
communications/ Devices: configuration file for uucp Devices(5)

gateways', routed configuration file gateways(4)
netcf: Network Configuration File netcf(4)

resolv.conf: resolver configuration file resolver(4)
STREAMS linker, load socket configuration, /ldsocket: slink(l)

rtab: Remote I/O Processor configuration table rtab(4)
config: configure a CTDC system config(lM)

enpstart: configure Ethernet processor enpstart(lM)
parameters, ifconfig: configure network interface ifconfig(lM)

I/O Processor, riopefg: configure system for Remote riopcfg(lM)
system, lpadmin: con figure the LP spooling lpadmin(lM)

system, uconf: configure the operating uconf(lM)
t_rcvconnect: receive the confirmation from a connect/ t_rcvccnnect(3)

to use as the virtual system/ conlocate: locate a terminal conlocate(lM)
fwtmp, wtmpfix: manipulate connect accounting records fwtmp(lM)

on a socket, connect: initiate a connection connect(2)

- XXV -

t_accept: accept a connect request t_accept(3n)
t_listen: listen for a connect request- t_listen(3n)

the confirmation from a connect request, /receive t_rcvconnect(3)
getpeername: get name of connected peer getpeername(2)
an out-going terminal line connection, dial: establish dial(3C)

connect: initiate a connection on a socket. connect(2)
down part of a full-duplex connection, shutdown: shut shutdown(2)

or expedited data sent over a connection, /receive data t_rcv(3n)
data or expedited data over a connection. t_snd: send t_snd(3n)

t_connect: establish a connection with another/ t_connect(3n)
listen: listen for connections on a socket listen(2)

acctconl, acctcon2: connect-time accounting acctcon(lM)
to use as the virtual system console, /locate a terminal conlocate(lM)
the kernel debugger system console port, /change dbconsole(lM)

console: console terminal console(7)
for implementation-speci fic constants, /file header limits(4)

math: math functions and constants math(5)
file header for symbolic constants, unistd: unistd(4)

cw, checkcw: prepare constant-width text for troff. cw(l)
mkfs: construct a file system mkfs(lM)

execute command, xargs: construct argument list(s) and xargs(l)
nrofl/troff, ibl, and eqn constructs, deroff: remove deroff(l)

debugging on. Uutry: try to contact a remote system with Uutry(lM)
Is: list contents of directory ls(l)

ttoc, vtoc: graphical table of contents routines, toe: dtoc, toc(lG)
csplit: context split csplit(l)

address resolution display and control, arp: arp(lM)
asa: interpret ASA carriage control characters asa(l)

ioctl: control device ioctl(2)
scsi: scsi control device scsi(7)

Serial line Internet Protocol control facility, /switched slipd(lM)
fcntl: file control fcntl(2)

floating point environment control, /fpsetsticky: IEEE fpgetround(3)
init, telinit: process control initialization init(lM)

icmp: Internet Control Message Protocol icmp(7)
msgctl: message control operations msgctl(2)

semctl: semaphore control operations semctl(2)
shmctl: shared memory control operations shmctl(2)

fcntl: file control options fcntl(5)
tcp: Internet Transmission Control Protocol tcp(7)

uadmin: administrative control uadmin(lM)
uadmin: administrative control uadmin(2)

uucp status inquiry and job control, uustat: uustat(lC)
vc: version control vc(l)

V/TAPE 3200 half-inch tope controller, /for Interphase ipt(7)
set drive parameters for tape controllers, tapeset: tapeset(lM)

interface, tty: controlling terminal tty(7)
RS-232 channels, tp: controlling terminal's local tp(7)

converter, conv: common object file conv(l)
_toupper, _tolower, toascdi:/ conv: toupper, tolower, conv(3C)

terminals, term: conventional names for term(S)
units: conversion program units(l)

character classification and conversion tables, /generate chrtbl(lM)
into a terminfo/ captoinfo: convert a term cap description captoinfo(lM)

dd: convert and copy a file dd(lM)
English, number: convert Arabic numerals to number(6)

common formats, convert: convert archive files to convert(l)
integers and/ 13tol, ltol3: convert between 3-byte 13tol(3C)

- xxi -

and base-64 ASCII/ a641,164a:
to common formats,

/cftime, ascftime, tzset:
to string, ecvt, fcvt, gcvt:

scanf, fscanf, sscanf:
strtod, atof:

strtol, atol, atoi:
htonl, htons, ntohl, ntohs:
conv: common object file

timod: Transport Interface
dd: convert and

bcopy: interactive block
cpio:

access time, dcopy:
cp, In, mv:

volcopy: make literal
rep: remote file

uuname: UNIX-to-UNIX system
UNIX-to-UNDC system file

core: format of
synchronization of/ adjtime:

atan2:/ tn*»: sin,
functions, sinh,

sum: print checksum and block
wc: word

move files,
cpio: format of

and out.
preprocessor,

environment at login time.
file.

binary directories.
clock: report

craps: the game of

rewrite an existing one.
command, gencc:

file, tmpnam, tempnam:
an existing one. creat:

fork:
mkshlib:

ctags:
tmpfile:

communication, socket:
channel, pipe:

files, admin:
assorted device/ createdev:

umask: set and get file

crontab: user
cxref: generate C program

pg: file perusal filter for

encryption functions,
generate hashing encryption,

interpreter) with C-like/

terminal.

convert between long integer a641(3C)
convert: convert archive files convert(l)
convert date and time to/ ctime(3C)
convert floating-point number ecvt(3C)
convert formatted input scanf(3S)
convert string to/ strtod(3C)
convert string to integer strtol(3C)
convert values between host/ byteorder(3)
converter. conv(l)
cooperating STREAMS module timod(7)
copy a file dd(lM)
copy bcopy(lM)
copy file archives in and out cpio(l)
copy file systems for optimal dcopy(lM)
copy, link, or move files cp(l)
copy of file system volcopy(lM)
copy rcp(l)
copy, uucp, uulog, uucp(lC)
copy, uuto, uupick: public uuto(lC)
core image file core(4)
correct the time to allow adjtime(2)
cos, tan, ssin, scos, aran, trig(3M)
cosh, tanh: hyperbolic sinh(3M)
count of a file sum(l)
count wc(l)
cp. In, mv: copy, link, or cp(l)
cpio archive cpio(4)
cpio: copy file archives in cpio(l)
epp: the C language cpp(l)
cprofile: setting up a C shell cprofile(4)
cprs: compress a common object cprs(l)
cpset: install object files in cpset(lM)
CPU time used clock(3C)
craps craps(6)
crash: examine system images crash(lM)
creat: create a new file or creat(2)
create a front-end to the cc gencc(lM)
create a name for a temporary tmpnam(3S)
create a new file or rewrite creat(2)
create a new process fork(2)
create a shared library mkshlib(l)
create a tags file ctags(l)
create a temporary file tmpfile(3S)
create an endpoint for socket(2)
create an interprocess pipe(2)
create and administer SCCS admin(l)
create device nodes for createdev(lM)
creation mask umask(2)
cron: clock daemon cron(lM)
crontab file crontab(l)
cross-reference cxref(l)
CRTs pg(l)
crypt: encode/decode crypt(l)
crypt: password and file crypt(3X)
crypt, setkey, encrypt: crypt(3C)
csh: a shell (command csh(l)
csplit: context split. csplit(l)
ct: spawn getty to a remote ct(lC)

- xxii -

ctags: create a tags file ctags(l)
for terminal, ctermid: generate file name ctermid(3S)

asctime, cftime, ascftime,/ ctime, localtime, gmtime ctime(3C)
ctinstall: install software ctinstall(l)

adman: administer a CTIX system adman(l)
config: configure a CTIX system config(lM)

uname: get name of current CTIX system uname(2)
/definitions of common CTIX system terms and/ glossary(l)

ctrace: C program debugger ctrace(l)
cu: call another UNIX system cu(lC)

ttt, cubic: tic-tac-toe ttt(6)
uname: get name of current CTIX system uname(2)

endpoint. t_look: look at the current event on a transport t_look(3n)
get/set unique identifier of current host./sethostid: gethostid(2)

sethostname: get/set name of current host, gethostname, gethostname(2)
set or print identifier of current host system, hostid: hostid(l)

uname: print name of current CTIX system uname(l)
activity, sact: print current SCCS file editing sact(l)

t_getstate: get the current state t_getstate(3)
the Internet host name of the current system, /set or print hostname(l)

slot in the utmp file of the current user, /find the ttyslot(3C)
getcwd: get path-name of current working directory getcwd(3C)

5Cf_uump: format of curses screen image file scr_dump(4)
handling and optimization/ curses: terminal screen curses(3X)
spline: interpolate smooth curve spline(lG)

name of the user, cuserid: get character login cuserid(3S)
each line of a file, cut: cut out selected fields of cut(l)

constant-width text for/ cw, checkcw: prepare cw(l)
cross-reference, cxref: generate C program cxref(l)

cron: clock daemon cron(lM)
rfudaemon: Remote File Sharing daemon process rfudaemon(lM)

routed: network routing daemon routed(lM)
strerr: STREAMS error logger daemon strerr(lM)

nfsd, biod: NFS daemons nfsd(lM)
runacct: run daily accounting runaccl(lM)

Protocol server, ftpd: DARPA Internet File Transfer ftpd(lM)
number mapper, portmap: DARPA port to RPC program portmap(lM)

telnetd: DARPA TELNET protocol server telnetd(lM)
tftp: user interface to the DARPA TFTP protocol tftp(l)

Protocol server, tftpd: DARPA Trivial File Transfer tftpd(lM)
/handle special functions of DASI300 and 300s terminals 300(1)

special functions of the DASI450 terminal, /handle 450(1)
/time a command; report process data and system activity timex(l)

file, newaliases: rebuild the data base for the mail aliases newaliases(l)
rpc: Sun rpc program number data base rpc(4)
termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)

generate disk accounting data by user ID. diskusg: diskusg(lM)
t_rcvuderr: receive a unit data error indication t_rcvuderr(3)

/sgell: access long integer data in a machine-independent/ sputl(3X)
plock: lock process, text, or data in memory plock(2)

connection. t_snd: send data or expedited data over a t_snd(3n)
over a/ t_rcv: receive data or expedited data sent t_rcv(3n)

nlsgetcall: get client's data passed through the/ nlsgetcall(3n)
prof: display profile data prof(l)

call, stat: data returned by stat system stat(5)
I/O Processor for online data, riopqry: query Remote riopqry(lM)

brk, sbrk: change data segment space allocation brk(2)

- xxiii -

/receive data or expedited data sent over a connection t_rcv(3n)
types: primitive system data types types(5)

t_rcvudata: receive a data unit. t_rcvudata(3)
t_sndudata: send a data unit. t_sndudata(3)

changes to the Help Facility database, helpadm: make helpadm(lM)
join: relational database operator join(l)

using the mkfs(l) proto file database, /and verify software qinstall(l)
delete, firstkey, nextkey: database subroutines, /store dbm(3X)

/dbm_error, dbm_clearerr: database subroutines ndbm(3X)
a terminal or query terminfo database, tput: initialize tput(l)

udp: Internet User Datagram Protocol udp(7)
settimeofday: get/set date and time, gettimeofday gettimeofday(2)

/ascftime, tzset: convert date and time to string ctime(3C)
date: print and set the date date(l)

date: print and set the date date(l)
debugger system console port, dbconsole: change the kernel dbconsole(lM)

/dbm_nextkey, dbm_error, dbm_clearerr: database/ ndbm(3X)
dbmstore/ dbm open, dbm_close, dbm_fetch, ndbm(3X)
/dbm_fetch, dbm_store, dbm_delete, dbm_firstkeyj ndbm(3X)

/dbm_firstkey, dbm_nextkey, dbm_error, dbm_clearerr:/ ndbm(3X)
dbm_open, dbm_close, dbm_fetch, dbm_store,/ ndbm(3X)

/dbm store, dbsn delete, dbm firstkey, dbm_nex!key,/ - ndbm(3X)
firstkey, nextkey: database/ dhminit, fetch, store, delete, dbm(3X)
/dbm_delete, dbm_firstkey, dbm_nextkey, dbm_error/ ndbm(3X)

dbm_fetch, dbm_store,/ dbm_open, dbm_close, ndbm(3X)
/dbm_close, dbm_fetch, dbm_store, dbm_delete,/ ndbm(3X)

dc: desk calculator. dc(l)
optimal access time, dcopy: copy file systems for dcopy(lM)

dd: convert and copy a file dd(lM)
adb: absolute debugger adb(l)

ctrace: C program debugger ctrace(l)
fsdb: file system debugger. fsdb(lM)

load symbols in kernel debugger, mkdbsym: mkdbsym(lM)
sdb: symbolic debugger sdb(l)

dbconsole: change the kernel debugger system console port dbconsole(lM)
contact a remote system with debugging on. Uutry: try to Uutry(lM)

timezone: set default system time zone timezone(4)
sysdef: output system definition sysdef(lM)

eqnehar: special character definitions for eqn and neqn eqnchar(5)
system terms and/ glossary: definitions of common CITX glossary(l)

dbminit, fetch, store, delete, firstkey, nextkey:/ dbm(3X)
names, basename, dimame: deliver portions of path basename(l)

file, tail: deliver the last part of a tail(l)
delta commentary of an SCCS delta, ede: change the cdc(l)

file, delta: make a delta (change) to an SCCS delta(l)
delta, ede: change the delta commentary of an SCCS cdc(l)

rmdel: remove a delta from an SCCS file rmdel(l)
to an SCCS file, delta: make a delta (change) delta(l)

comb: combine SCCS deltas comb(l)
endemon: error-logging demon errdemon(lM)

terminate the error-logging demon, errstop: errstop(lM)
mesg: permit or deny messages mesg(l)

tbl, and eqn constructs, deroff: remove nrofl/troff, deroff(l)
usage: retrieve a command description and usage/ usage(l)
description into a terminfo description, /a termcap captoinfo(lM)

queuedefs: at/batch/cron queue description file queuedefs(4)
system: system description file system(4)

captoinfo: convert a termcap description into a terminfo/ captoinfo(lM)

- xxiv -

compare or print out teiminfo descriptions, infocmp: infocmp(lM)
close: close a file descriptor. close(2)

dup: duplicate an open file descriptor dup(2)
dup2: duplicate an open file descriptor dup2(3C)

getdtablesize: get descriptor table size getdtablesize(2)
dc: desk calculator dc(l)

slauach, sldetach: attach and detach serial lines as network/ slattach(lM)
file, access: determine accessibility of a access(2)

preprocessor/includes: determine C language includes(l)
identifier, fstyp: determine file system fstyp(lM)

file: determine file type file(l)
drivers: loadable device drivers drivers(7)

lines for finite width output device, fold: fold long fold(l)
master: master device information table master(4)

ioctl: control device ioctl(2)
devnm: device name devnm(lM)

device/createdev: create device nodes for assorted createdev(lM)
clone: open any minor device on a STREAMS driver clone(7)

/tekset, td: graphical device routines and filters gdev(lG)
scsi: scsi control device. scsi(7)

device nodes for assorted device types, /create createdev(lM)
for uucp communications/ Devices: configuration file Devices(5)

scsimap: set mappings for SCSI devices scsimap(lM)
devnm: device name devnm(lM)

blocks and i-nodes. df: report number of free disk df(lM)
systems, fsck, dfsck: check and repair file fsck(lM)

terminal line connection, dial: establish an out-going dial(3C)
ratfor: rational FORTRAN dialect ratfor(l)

protocols. Dialers: ACU/modem calling Dialers(5)
bdiff: big diff. bdiffi(l)

comparison. difB: 3-way differential file diff3(l)
sdiff: side-by-side difference program sdiff(l)

diffink: mark differences between files diflmk(l)
diff: differential file comparator diff(l)

difB: 3-way differential file comparison diff3(l)
dir: format of directories dir(4)
dircmp: directory comparison dircmp(l)

file, uucheck: check the uucp directories and permissions uucheck(lM)
install object files in binary directories, cpset: cpset(lM)

dir: format of directories dir{4)
link and unlink files and directories, link, unlink: link(lM)

mkdir, mkdirs: make directories mkdir(l)
rm, rmdir: remove files or directories rm(l)

cd: change working directory cd(l)
chdir. change working directory chdir(2)

chroot: change root directory chroot(2)
uucleanup: uucp spool directory clean-up uucleanup(lM)

dircmp: directory comparison dircmp(l)
file, getdents: read directory entries and put in a getdents(2)

file system independent directory entry, dirent: dirent(4)
unlink: remove directory entry unlink(2)

chroot: change root directory for a command chroot(lM)
/make a lost+found directory for fsck mklostfnd(lM)

adv: advertise a directory for remote access adv(lM)
path-name of current working directory, getcwd: get getcwd(3C)

Is: list contents of directory ls(l)
mkdir: make a directory mkdir(2)
mvdir: move a directory mvdirflM)

- XXV -

pwd: working directory name pwd(l)
/seekdir, rewinddir, closedir: directory operations directory(3X)
ordinary file, mknod: make a directory, or a special or mknod(2)

rmdir: remove a directory rmdir(2)
independent directory entry, dirent: file system dirent(4)

path names, basename, dimame: deliver portions of basename(l)
dis: object code disassembler dis(l)

t_unbind: disable a transport endpoint t_unbind(3n)
printers, enable, disable: enable/disable LP enable(l)

acct: enable or disable process accounting acct(2)
dis: object code disassembler dis(l)

type, modes, speed, and line discipline, /set terminal getty(lM)
type, modes, speed, and line discipline, /set terminal uugetty(lM)
t_snddis: send user-initiated disconnect request t_snddis(3n)

retrieve information from disconnect. t_rcvdis: t_rcvdis(3n)
fusage: disk access profiler. fusage(lM)

sadp: disk access profiler. sadp(lM)
ID. diskusg: generate disk accounting data by user diskusg(lM)

df: report number of free disk blocks and i-nodes df(lM)
disk: general disk driver disk(7)

update: provide disk synchronization update(lM)
du: summarize disk usage du(lM)

accounting data by user ID. diskusg: generate disk diskusg(lM)
arp: address resolution display and control arp(lM)

vi: screen-oriented (visual) display editor based on ex vi(l)
information, rmntstat: display mounted resource rmntstat(lM)

prof: display profile data prof(l)
statistics, serstat: display serial port error serstat(lM)

local network, ruptime: display status of nodes on ruptime(l)
hypot: Euclidean distance function hypot(3M)

Acong48: generate uniformly distributed pseudo-random/ drand48(3C)
Sharing domain and network/ dname: print Remote File dname(lM)

routines. /res_send, resinit, dn_comp, dn_expand: resolver resolver{3)
/res_send, res init, dn comp, dn_expand: resolver routines resolver(3)

MM/mm, checkmm: print/check documents formatted with the mm(l)
macro package for formatting documents, mm: the MM mm(5)

slides, mmt, mvt: typeset documents, view graphs, and mmt(l)
nulladm,/ chargefee, ckpacct, dodisk, lastlogin, monacct, acctsh(lM)

whodo:whois doing what whodo(lM)
/print Remote File Sharing domain and network names dname(lM)

named: Internet domain name server. named(lM)
/atof: convert string to double-precision number. strtod(3C)

gtdl, ptdl: RS-232 terminal download, tdl tdl(l)
nrand48, mrand48, jrand48y drand48, erand48, lrand48, drand48(3C)

graph: draw a graph graph(lG)
arithmetic: provide drill in number facts arithmetic(6)

controllers, tapeset: set drive parameters for tape tapeset(lM)
used by the/ tapedrives: tape drive specific information tapedrives(4)

facilitate usage of a tape drive, tsioctl: tsioctl(l)
any minor device on a STREAMS driver, clone: open clone(7)

disk: general disk driver. disk(7)
lddrv: manage loadable drivers lddrv(lM)

drivers, drivers: loadable device drivers(7)
initialization/ brc, bcheckrc, drvload, powerfail: system brc(lM)

table of contents/ toe: dtoc, ttoc, vtoc: graphical toc(lG)
du: summarize disk usage du(lM)

and status information from dump, /extract error records errdead(lM)
hd: hexadecimal and ascii file dump hd(l)

- xxvi -

od: octal dump °d(l)
object file, dump: dump selected parts of an dump(l)

descriptor, dup: duplicate an open file dup(2)
descriptor. dup2: duplicate an open file dup2(3C)

descriptor, dup: duplicate an open file dup(2)
descriptor. dup2: duplicate an open file dup2(3C)

echo: echo arguments echo(l)
network/ ping: send ICMP ECHO_REQUESTpackets to ping(lM)

floating-point number to/ ecvt, fcvt, gcvt: convert ecvt(3C)
ed, red: text editor ed(l)

program, end, etext, edata: last locations in end(3C)
ex for casual users), edit: text editor (variant of edit(l)

sact: print current SCCS file editing activity sact(l)
/(visual) display editor based on ex vi(l)

ed, red: text editor. ed(l)
ex: text editor ex(l)

files. Id: link editor for common object ld(1)
ged: graphical editor. ged(lG)

common assembler and link editor output a.out: a.out(4)
sed: stream editor. sed(l)

casual users), edit: text editor (variant of ex for edit(l)
ldeeprom: load EEPROM ldeeprom(lM)

/user, real group, and effective group IDs getuid(2)
and/ /getegid: get real user, effective user, real group getuid(2)

language, efl: extended FORTRAN efl(l)
split FORTRAN, ratfor, or efl files, fsplit: fsplit(l)
pattern using full regular/ egrep. search a file for a egrep(l)

en: Ethernet Processor. en(7)
enable/disable LP printers, enable, disable: enable(l)

accounting, acct: enable or disable process acct(2)
real-time priorities enabled/disabled, rtpenable: rtpenable(lM)

enable, disable: enable/ disable LP printers enable(l)
crypt: encode/decode crypt(l)

encrypt: generate hashing encryption, crypt, setkey, crypt(3C)
crypt: password and file encryption functions crypt(3X)

makekey: generate encryption key makekey(l)
locations in program, end, etext, edata: last end(3C)

/getgrgid, getgmam, setgrent, endgrent, fgetgrent: get group/ getgrent(3C)
/gethostent, sethostent, endhostent: get network host/ gelhostbyname(3)

/getnetbyname, setnetent, endnetent: get network entry getnetent(3)
socket: create an endpoint for communication socket(2)

bind an address to a transport endpoint t_bind: t_bind(3n)
t_close: close a transport endpoint t_close(3n)

current event on a transport endpoint l_look: look at the t_look(3n)
t_open: establish a transport endpoint t_open(3n)

manage options for a transport endpoint. t optmgmt: t_optmgmt(3n)
t_unbind: disable a transport endpoint t_unbind(3n)

/getprotobyname, setprotoent, endprotoent: get protocol/ getprotoent(3)
/getpwuid, getpwnam, setpwent, endpwent, fgetpwent: get/ getpwent(3C)

/getservbyname, setservent, endservent: get service entry getservent(3)
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf,/ getspent(3X)

utmp/ /pututline, setutent, endutent, utmpname: access getut(3C)
convert Arabic numerals to English, number: number(6)

processor, enpstart: configure Ethernet enpstart(lM)
getdents: read directory entries and put in a file getdents(2)

nlist: get entries from name list nlist(3C)
file, linenum: line number entries in a common object linenum(4)

file/ /manipulate line number entries of a common object ldlread(3X)

- xxvii -

/ldnlseek: seek to line number entries of a section of a/ ldlseek(3X)
/ldnrseek: seek to relocation entries of a section of a/ ldrseek(3X)

system independent directory entry, dirent: file dirent(4)
utmp, wtmp: utmp and wtmp entry formats utmp(4)

fgetgrent: get group file entry, /setgrent, endgrent, getgrent(3C)
endhostent: get network host entry, /sethostent gethostbyname(3)

endnetent: get network entry, /setnetent, getnetent(3)
endprotoent: get protocol entry, /setprotoent, getprotoent(3)

fgetpwent: get password file entry, /setpwent, endpwent getpwent(3C)
getrpcbynumber: get rpc entry, /getrpcbyname getrpcent(3)

endservent: get service entry, /setservent, getservent(3)
utmpname: access utmp file entry, /setutent, endutent getut(3C)

object file symbol table entry, /symbol name for common ldgetname(3X)
/the index of a symbol table entry of a common object file ldtbindex(3X)

/read an indexed symbol table entry of a common object file ldtbread(3X)
putpwent: write password file entry putpwent(3C)

write shadow password file entry, putspent: putspent(3X)
unlink: remove directory entry unlink(2)

command execution, env: set environment for env(l)
environ: user environment environ(5)

cprofile: setting up a C shell environment at login time cprofile(4)
profile: setting up an environment at login time profile(4)
/IEEE floating point environment control fpgetround(3)

environ: user environment environ(5)
execution, env: set environment for command env(l)

getenv: return value for environment name getenv(3C)
putenv: change or add value to environment putenv(3C)

performed for multi-user environment, /run commands rc2(lM)
stop the Remote File Sharing environment, rfstop: rfstop(lM)

interface, and terminal environment. Aerminal tset(l)
character definitions for eqn and neqn. /special eqnchar(5)

remove nrofl/troff, tbl, and eqn constructs, deroff: deroff(l)
mathematical text for nrofi/ eqn, neqn, checkeq: format eqn(l)

definitions for eqn and neqn. eqnchar special character eqnchar(5)
rhosts: remote equivalent users rhosts(4)

mrand48, jrand48,/ drand48, erand48, lrand48, nrand48 drand48(3C)
graphical device/ gdev: hpd, erase, hardcopy, tekset, td: gdev(lG)

complementary error function, erf, erfc: error function and erf(3M)
err: error-logging interface err(7)

and status information from/ errdead: extract error records errdead(lM)
errdemon: error-logging demon errdemon(lM)

format errfile: error-log file enfile(4)
system error/ perror, ermo, sys_errlist, sys_nerr: perror(3C)

function and complementary error function, /erfc: error erf(3M)
receive a unit data error indication. t_rcvuderr: t_rcvuderr(3)

strclean: STREAMS errorlogger cleanup program strclean(lM)
strerr: STREAMS errorlogger daemon strerr(lM)

log: interface to STREAMS errorlogging and event/ log(7)
t_enor: produce error message t_error(3n)

sys_erTlist, sys_nerr: system error messages, /ermo perror(3C)
to system calls and error numbers, introduction intro(2)

information/ errdead: extract error records and status errdead(lM)
serstat: display serial port error statistics serstat(lM)

matherr: error-handling function matherr(3M)
errfile: error-log file format errfile(4)

errdemon: error-logging demon errdemon(lM)
errstop: terminate the error-logging demon errstop(lM)

err: error-logging interface err(7)

- xxviii -

process a report of logged errors, errpt: errpt(lM)
hashcheck: find spelling errors, /hashmake, spellin spell(l)

error-logging demon, errstop: terminate the errstop(lM)
another transport/ t_connect: establish a connection with t_connect(3n)

endpoint. t_open: establish a transport t_open(3n)
terminal line/ dial: establish an out-going dial(3C)

setmnt: establish mount table setmnt(lM)
with information from /etc/passwd. //etc/shadow pwconv(lM)
with information from /etc/passwd. //etc/shadow pwunconv(lM)

pwconv: install and update /etc/shadow with information/ pwconv(lM)
pwunconv: install and update /etc/shadow with information/ pwunconv(lM)

/information used by the /etc/tapeset command tapedrives(4)
in program, end, etext, edata: last locations end(3C)

en: Ethernet Processor. en(7)
enpstart: configure Ethernet processor enpstart(lM)

hypot: Euclidean distance function hypol(3M)
expression, expr evaluate arguments as an expr(l)

test: condition evaluation command. test(l)
t look: look at the current event on a transport endpoint t_look(3n)

to STREAMS error logging and event tracing, log: interface log(7)
notify, unnotify, evwait, evnowait: manage/ notify(2)

notify, unnotify, evwait, evnowait: manage/ notify(2)
edit: text editor (variant of ex for casual users) edit(l)

ex: text editor. ex(l)
display editor based on ex. /screen-oriented (visual) vi(l)

crash: examine system images crash(lM)
a file, locking: exclusive access to regions of locking(2)

execve, execlp, execvp:/ exec: execl, execv, execle, exec(2)
execlp, execvp: execute/ exec: execl, execv, execle, execve exec(2)

execvp:/ exec: execl, execv, execle, execve, execlp, exec(2)
/execl, execv, execle, execve, execlp, execvp: execute a/ exec(2)

path: locate executable file for command path(l)
execve, execlp, execvp: execute a file, /execle, exec(2)

construct argument list(s) and execute command, xargs: xargs(l)
time, at, batch: execute commands at a later at(l)

regcmp, regex: compile and execute regular expression regcmp(3X)
requests, uuxqt: execute remote command uuxqt(lM)

set environment for command execution, env: env(l)
sleep: suspend execution for an interval sleep(l)
sleep: suspend execution for interval sleep(3C)

monitor: prepare execution profile monitor(3C)
rcmd: remote shell command execution rcmd(l)

rexecd: remote execution server rexecd(lM)
profil: execution time profile profil(2)

UNIX-to-UNIX system command execution, uux: uux(lC)
execvp: execute/ exec: execl, execv, execle, execve, execlp, exec(2)

exec: execl, execv, execle, execve, execlp, execvp:/ exec(2)
/execv, execle, execve, execlp, execvp: execute a file exec(2)

a new file or rewrite an existing one. creat: create creat(2)
exit, _exit: terminate process exit(2)

exponential, logarithm,/ exp, log, loglO, pow, sqrt: exp(3M)
peat, unpack: compress and expand files, pack pack(l)

to spaces, and vice versa, expand, unexpand: expand tabs expand(l)
t_snd: send data or expedited data over a/ t_snd(3n)

t_rcv: receive data or expedited data sent over a/ t_rcv(3n)
advent: explore Colossal Cave advent(6)

exp, log, log 10, pow, sqrt: exponential, logarithm, power,/ exp(3M)
exports: NFS file systems export configuration file exports(4)

- xxix -

export configuration file, exports: NFS file systems exports(4)
expression, expr: evaluate arguments as an expr(l)

routines, regexp: regular expression compile and match regexp(5)
regcmp: regular expression compile regcmp(l)

expr: evaluate arguments as an expression expr(l)
compile and execute regular expression, regcmp, regex: regcmp(3X)

a pattern using full regular expressions, /a file for egrep(l)
efl: extended FORTRAN language efl(l)

extproc: turn external processing on or off. extproc(lM)
programs, xstr: extract and share strings in C xstr(l)

status information/ errdead: extract error records and errdead(lM)
in a file, strings: extract the ASCII text strings strings(l)

remainder,/ floor, ceil, fmod, fabs: floor, ceiling, floor(3M)
drive, tsioctl: facilitate usage of a tape tsioctl(l)

factors of a number, factor, obtain the prime factor(l)
factor: obtain the prime factors of a number. factor(l)

/usr/adm/loginlog: log of failed login attempts loginlog(4)
true, false: provide truth values true(l)

data in a machine-independent fashion, /access long integer sputl(3X)
fine: fast incremental backup finc(lM)

/calloc, mallopt, mallinfo: fast main memory allocator. malloc(3X)
a stream, fclose. fflush: close or flush fc!o?e(3S)

fcntl: file control fcntl(2)
fcntl: file control options fcntl(5)

floating-point number/ ecvt, fevt, gcvt: convert ecvt(3C)
fopen, freopen, fdopen: open a stream fopen(3S)

status inquiries, ferror, feof, clearerr, fileno: stream ferror(3S)
fileno: stream status/ ferror, feof, clearerr, ferror(3S)

firstkey, nextkey:/ dbminit, fetch, store, delete, dbm(3X)
for a file system, ff: file names and statistics ff(lM)

stream, fclose, fflush: close or flush a fclose(3S)
word from a/ getc, getchar, fgetc, getw: get character or getc(3S)

/getgmam, setgrent, endgrent, fgetgrent: get group file/ getgrent(3C)
/getpwnam, setpwent, endpwent, fgetpwent: get password file/ getpwent(3C)

stream, gets, fgets: get a string from a gets(3S)
/getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf:/ getspent(3X)

character string, fgrep: search a file for a fgrep(l)
times, utime: set file access and modification utime(2)

ldfcn: common object file access routines ldfcn(4)
determine accessibility of a file, access: access(2)

/2645A terminal tape file archiver. hpio(l)
tar: tape file archiver tar(l)

cpio: copy file archives in and out cpio(l)
pwck, grpek: password/group file checkers pwck(lM)

chmod: change mode of file chmod(2)
change owner and group of a file, chown: chown(2)

mcs: manipulate the object file comment section mcs(l)
diff: differential file comparator. diff(l)

diff3: 3-way differential file comparison diff3(l)
fcntl: file control fcntl(2)
fcntl: file control options fcntl(5)

conv: common object file converter. conv(l)
rep: remote file copy rcp(l)

public UNIX-to-UNIX system file copy, uuto, uupick: uuto(lC)
core: format of core image file core(4)

cprs: compress a common object file cprs(l)
umask: set and get file creation mask umask(2)

crontab: user crontab file crontab(l)

- xxx -

ctags: create a tags file ctags(l)
fields of each line of a file, cut: cut out selected cut(l)

using the mkfs(l) proto file database, /software qinstall(l)
dd: convert and copy a file dd(lM)

a delta (change) to an SCCS file, delta: make delta(l)
close: close a file descriptor. close(2)

dup: duplicate an open file descriptor. dup(2)
dup2: duplicate an open file descriptor dup2(3C)

file: determine file type file(l)
hd: hexadecimal and ascii file dump hd(l)
selected parts of an object file, dump: dump dump(l)

sact: print current SCCS file editing activity sact(l)
crypt: password and file encryption functions crypt(3X)

endgrent, fgetgrent: get group file entry, /setgrent, getgrent(3C)
fgetpwent: get password file entry, /endpwent, getpwent(3C)
utmpname: access utmp file entry, /endutent getut(3C)

putpwent: write password file entry putpwent(3C)
write shadow password file entry, putspent: putspent(3X)

execlp, execvp: execute a file, /execv, execle, execve, exec(2)
systems export configuration file, exports: NFS file exports(4)

fgrep: search a file for a character string fgrep(l)
grep: search a file for a pattern grep(l)

regular/' egrep: search a file for a pattern using full egrep(l)
path: locate executable file for command. path(l)

inetd.conf: configuration file for inetd (internet/ inetd.conf(4)
ldaopen: open a common object file for reading, ldopen, ldopen(3X)

netrc: login file for remote networks netrc(4)
aliases: aliases file for sendmail aliases(4)

lines. Devices: configuration file for uucp communications Devices(5)
acct: per-process accounting file format acct(4)

ar: common archive file format ar(4)
errfile: error-log file format errfile(4)

intro: introduction to file formats intro(4)
entries of a common object file function, /line number ldlread(3X)

gateways: routed configuration file gateways(4)
get: get a version of an SCCS file get(l)
directory entries and put in a file, getdents: read getdents(2)

group: group file group(4)
files, filehdr: file header for common object filehdr(4)

limits: file header for/ limits(4)
constants, unistd: file header for symbolic unistd(4)

file. Idfhread: read the file header of a common object ldfhread(3X)
ldohseek: seek to the optional file header of a common object/ ldohseek(3X)

split: split a file into pieces split(l)
issue: issue identification file issue(4)

of a member of an archive file, /read the archive header ldahread(3X)
close a common object file, ldclose, ldaclose: ldclose(3X)

file header of a common object file. Idfhread: read the ldfhread(3X)
a section of a common object file, /line number entries of ldlseek(3X)

file header of a common object file, /seek to the optional ldohseek(3X)
a section of a common object file, /relocation entries of ldrseek(3X)

header of a common object file, /indexed/named section ldshread(3X)
section of a common object file. Ao an indexed/named ldsseek(3X)

table entry of a common object file, /the index of a symbol ldtbindex(3X)
table entry of a common object file, /read an indexed symbol ldtbread(3X)

table of a common object file, /seek to the symbol ldtbseek(3X)
entries in a common object file, linenum: line number linenum(4)

link: link to a file l ink®

- xxxi -

listing from a common object file, list: produce C source list(l)
set links/qlist: print out file lists from proto file; qlist(l)

access to regions of a file, locking: exclusive locking(2)
masterupd: update the master file masterupd(lM)

make an ifile from an object file, mkifile: mkifile(lM)
mknod: build special file mknod(lM)

or a special or ordinary file, /make a directory, mknod(2)
ctermid: generate file name for terminal ctermid(3S)

mktemp: make a unique file name mktemp(3C)
for a file system file names and statistics ff(lM)

netcf: Network Configuration File netcf(4)
data base for the mail aliases file, newaliases: rebuild the newaliases(l)

change the format of a text file, newform: newform(l)
name list of common object file, nm: print nm(l)

null: the null file null(7)
/find the slot in the utmp file of the current user ttyslot(3C)

identify processes using a file or file structure fuser(lM)
one. creat: create a new file or rewrite an existing creat(2)

passwd: password file passwd(4)
or subsequent lines of one file./lines of several files paste(l)

pg: file perusal filter for CRTs pg(l)
/rewind, ftell: reposition a file pointer in a stream fseek(3S)

lseek: move read/write file pointer. lseek(2)
prs: print an SCCS file prs(l)
queue description file, /at/batch/cron queuedefs(4)

read: read from file read(2)
for a common object file, /relocation information reloc(4)

resolver configuration file, resolv.conf: resolver(4)
Sharing name server master file, rfmaster: Remote File rfmaster(4)

remove a delta from an SCCS file, rmdel: rmdel(l)
bfs: big file scanner bfs(l)

two versions of an SCCS file, sccsdiff: compare sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

header for a common object file, scnhdr: section scnhdr(4)
format of curses screen image file.. scr_dump: scr_dump(4)

/out file lists from proto file; set links based on qlist(l)
shadow: password file shadow(4)

rfadmin: Remote File Sharing administration rfadmin(lM)
rfudaemon: Remote File Sharing daemon process rfudaemon(lM)

network/ dname: print Remote File Sharing domain and dname(lM)
rfstop: stop the Remote File Sharing environment rfstop(lM)

tfpasswd: change Remote File Sharing host password rfpasswd(lM)
master file, rfmaster: Remote File Sharing name server rfmaster(4)

query, nsquery: Remote File Sharing name server nsquery(lM)
shell/ rfuadmin: Remote File Sharing notification rfuadmin(lM)

unadv: unadvertise a Remote File Sharing resource unadv(lM)
/mount, unmount Remote File Sharing (RFS) resources rmountall(lM)

rfstart: start Remote File Sharing rfstart(lM)
mapping, idload: Remote File Sharing user and group idload(lM)

fsize: report file size fsize(l)
stat, fstat: get file status stat(2)

the ASCII text strings in a file, strings: extract strings(l)
from a common object file./line number information strip(l)

processes using a file or file structure, /identify fuser(lM)
checksum and block count of a file, sum: print sum(l)
swrite: synchronous write on a file swrite(2)

/symbol name for common object file symbol table entry ldgetname(3X)
syms: common object file symbol table format syms(4)

- xxxii -

ckbupscd: check file system backup schedule ckbupscd(lM)
fsdb: file system debugger fsdb(lM)

volume, fs: file system: format of system fs(4)
fstyp: determine file system identifier fstyp(lM)

directory entry, dirent: file system independent dirent(4)
statfs, fstatfs: get file system information statfs(2)
mkfs: construct a file system mkfs(lM)

mount: mount a file system mount(2)
/mount, unmount Network File System resources nmountall(lM)

nfsstat: Network File System statistics nfsstat(lM)
ustat: get file system statistics ustat(2)

fsstat: report file system status fsstat(lM)
mnttab: mounted file system table mnttab(4)

rmtab: remotely mounted file system table rmtab(4)
sysfs: get file system type information sysfs(2)

umount: unmount a file system umount(2)
volcopy: make literal copy of file system volcopy(lM)

system: system description file system(4)
/umount: mount and unmount file systems and remote/ mount(lM)

configuration/ exports: NFS file systems export exports(4)
access time, dcopy: copy file systems for optimal dcopy(lM)

fsck, dfsck: check and repair file systems fsck(lM)
labelit: provide labels for file systems labelit(lM)
mount, unmount multiple file systems, /umountall: mountall(lM)

and/ checklist: list of file systems processed by fsck checkList(4)
deliver the last part of a file, tail: tail(l)

term: format of compiled term file term(4)
tmpfile: create a temporary file tmpfile(3S)

create a name for a temporary file, tmpnam, tempnam: tmpnam(3S)
and modification times of a file, touch: update access touch(l)

ftp: ARPANET file transfer program ftp(l)
ftpd: DARPA Internet File Transfer Protocol server ftpd(lM)
tftpd: DARPA Trivial File Transfer Protocol server tftpd(lM)
uucp system, uucico: file transport program for the uucico(lM)

ftw: walk a file tree ftw(3C)
file: determine file type. file(l)

undo a previous get of an SCCS file, unget: unget(l)
report repeated lines in a file, uniq: uniq(l)

directories and permissions file, uucheck: check the uucp uucheck(lM)
val: validate SCCS file val(l)

write: write on a file write(2)
umask: set file-creation mode mask umask(l)

common object files, filehdr. file header for filehdr(4)
ferror, feof, clearerr, fileno: stream status/ ferror(3S)

and print process accounting file(s). acctcom: search acctcom(l)
merge or add total accounting files, acctmerg: acctmerg(lM)

create and administer SCCS files, admin: admin(l)
link, unlink: link and unlink files and directories link(lM)

cat: concatenate and print files cat(l)
cmp: compare two files cmp(l)

lines common to two sorted files, comm: select or reject comm(l)
In, mv: copy, link, or move files, cp(l)

mark differences between files, diffmk: diffink(l)
file header for common object files, filehdr: filehdr(4)

find: find files find(l)
free: recover files from a backup tape frec(lM)

format specification in text files, fspec: fspec(4)
FORTRAN, ratfor, or efl files, fsplit: split fsplit(l)

- xxxiii -

string, format of graphical files, /graphical primitive gps(4)
cpset: install object files in binary directories cpset(lM)

language preprocessor include files, includes: determine C includes(l)
intro: introduction to special files intro(7)

link editor for common object files. Id: ld(l)
lockf: record locking on files lockf(3C)

passmgmt: password files management passmgmt(lM)
rm, rmdir: remove files or directories nn(l)

/merge same lines of several files or subsequent lines of/ paste(l)
unpack: compress and expand files, pack, peat pack(l)

pr: print files pr{l)
in bytes of common object files, /print section sizes size(l)

sort: sort and/or merge files sort(l)
convert: convert archive files to common formats convert(l)

what: identify SCCS files what(l)
fstab: file-system-table fstab(4)

pg: file perusal filter for CRTs pg(l)
greek: select terminal filter greek(l)

nl: line numbering filter nl(l)
col: filter reverse line-feeds col(l)

lio: tape io filter tio(l)
graphical device routines and filters, /tekset, td: gdev(!G)

tplot: graphics filters tplot(lG)
fine: fast incremental backup finc(lM)

find: find files find(l)
hyphen: find hyphenated words hyphen(l)

ttyname, isatty: find name of a terminal ttyname(3C)
object library, lorder: find ordering relation for an lorder(l)

hashmake, spellin, hashcheck: find spelling errors, spell, spell(l)
of the current user, ttyslot: find the slot in the utmp file ttyslot(3C)

lookup program, finger: user information finger(l)
information server, fingerd: remote user fingerd(lM)

fold: fold long lines for finite width output device fold(l)
dbminit, fetch, store, delete, firstkey, nextkey: database/ dbm(3X)

fish: play "Go Fish" fish(6)
tee: pipe fitting tee(l)

/fpgetsticky, fpsetsticky: IEEE floating point environment/ fpgetround(3)
isnand, isnanf: test for floating point NaN/ isnan: isnan(3C)

ecvt, fevt, gcvt: convert floating-point number to/ ecvt(3C)
/modf: manipulate parts of floating-point numbers frexp(3C)

floor, ceil, fmod, fabs: floor, ceiling, remainder,/ floor(3M)
cflow: generate C flowgraph cflow(l)

fclose, {Rush: close or flush a stream fclose(3S)
remainder,/ floor, ceil, fmod, fabs: floor, ceiling, floor(3M)

width output device, fold: fold long lines for finite fold(l)
stream, fopen, freopen, fdopen: open a fopen(3S)

advertised resource, fumount: forced unmount of an fumount(lM)
fork: create a new process fork(2)

per-process accounting file format, acct: acct(4)
service request/ nlsrequest: format and send listener nlsrequest(3n)

ar: common archive file format ar(4)
errfile: error-log file format errfile(4)

nroff or/ eqn, neqn, checkeq: format mathematical text for eqn(l)
newform: change the format of a text file newform(l)

mode: format of an i-node inode(4)
term: format of compiled term file term(4)
core: format of core image file core(4)
cpio: format of cpio archive cpio(4)

- xxxiv -

file.. scr_dump: format of curses screen image scr_dump(4)
dir: format of directories dir(4)

/graphical primitive string, format of graphical files gps(4)
sccsfile: format of SCCS file sccsfUe(4)

fs: file system: format of system volume fs(4)
files, fspec: format specification in text fspec(4)

object file symbol table format, syms: common syms(4)
troff. tbl: format tables for nroff or tbl(l)

nroff: format text. nroff(l)
archive files to common formats, convert: convert convert(l)

intro: introduction to file formats intro(4)
wtmp: utmp and wtmp entry formats, utmp utmp(4)
scanf, fscanf, sscanf: convert formatted input scanf(3S)

Mprintf, vsprintf: print formatted output of a varargs/ vprintf(3S)
fprintf, sprintf: print formatted output printf, printf(3S)

/checkmm: print/check documents formatted with the MM macros mm(l)
mptx: the macro package for formatting a permuted index mptx(5)

mm: the MM macro package for formatting documents mm(5)
ms: text formatting macros ms(5)

man: macros for formatting manual pages man(5)
me: macros for formatting papers me(5)

ASSIST menus and command forms, /generate/modify astgen(l)
ration rational FORTRAN dialect ratfor(l)

efl: extended FORTRAN language efl(l)
files, fsplit: split FORTRAN, ratfor, or efl fsplit(l)

hopefully interesting, adage, fortune: print a random, fortune(6)
fpgetround, fpsetround, fpgetmask, fpsetmask,/ fpgetround(3)
fpgetmask, fpsetmask,/ fpgetround, fpsetround, fpgetround(3)
/fpgetmask, fpsetmask, fpgetsticky, fpsetsticky. IEEE/ fpgetround(3)

formatted output printf, fprintf, sprintf: print printf(3S)
/fpsetround, fpgetmask, fpsetmask, fpgetsticky J fpgetround(3)
fpsetmasky fpgetround, fpsetround, fpgetmask, fpgetround(3)

point/ /fpsetmask, fpgetsticky, fpsetsticky: IEEE floating fpgetround(3)
word on a/ putc, putchar, fputc, putw: put character or putc(3S)

stream, puts, fputs: put a string on a puts(3S)
input/output, fread, fwrite: binary fread(3S)
backup tape, free: recover files from a frec(lM)

t_free: free a library structure t_free(3n)
df: report number of free disk blocks and i-nodes df(lM)

memory allocator, malloc, free, realloc, calloc: main malloc(3C)
mallopt, mallinfo:/ malloc, free, realloc, calloc, malloc(3X)

stream, fopen, freopen, fdopen: open a fopen(3S)
parts of floating-point/ frexp, ldexp, modf: manipulate frexp(3C)

free: recover files from a backup tape frec(lM)
list: produce C source listing from a common object file list(l)
/and line number information from a common object file strip(l)

/receive the confirmation from a connect request t_rcvconnect(3)
reevfrom: receive a message from a socket recv, recv(2)
getw: get character or word from a stream, /fgetc, getc(3S)

gets, fgets: get a string from a stream gets(3S)
mkifile: make an ifile from an object file mkifile(lM)
rmdel: remove a delta from an SCCS file rmdel(l)

getopt: get option letter from argument vector. getopt(3C)
t_rcvdis: retrieve information from disconnect t_rcvdis(3n)

records and status information from dump, /extract error errdead(lM)
/etc/shadow with information from /etc/passwd. /and update pwconv(lM)
/etc/shadow with information from /etc/passwd. /and update pwunconv(lM)

read: read from file read(2)

- xxxv -

ncheck: generate path names from i-numbers ncheck(lM)
nlist: get entries from name list nlist(3C)

acctcms: command summary from per-process accounting/ acctcms(lM)
qlist: print out file lists from proto file; set links/ qlist(l)

getpw: get name from UID getpw(3C)
cclsw, cc2sw, cc2fp: front-end to the cc command cclsw(l)

gencc: create a front-end to the cc command gencc(lM)
system volume, fs: file system: format of fs(4)

formatted input, scanf, fscanf, sscanf: convert scanf(3S)
of file systems processed by fsck and ncheck. /list checklist(4)

file systems, fsck, dfsck: check and repair fsck(lM)
a lost+found directory for fsck. mklost+found: make mklostfnd(lM)

fsdb: file system debugger fsdb(lM)
reposition a file pointer in/ fseek, rewind, ftell: fseek(3S)

fsize: report file size fsize(l)
text files, fspec: format specification in fspec(4)

or efl files, fsplit: split FORTRAN,ratfor, fsplit(l)
status, fsstat: report file system fsstat(lM)

fstab: file-system-table fstab(4)
stat, fstat: get file status stat(2)

information, statfs, fstatfs: get file system statfs(2)
identifier, fstyp: determine file system fstyp(lM)

pointer in a/ fseek, rewind, ftell: reposition a file fseek(3S)
communication/ stdipc, ftok: standard interprocess stdipc(3C)

program, ftp: ARPANET file transfer ftp(l)
Transfer Protocol server, ftpd: DARPA Internet File ftpd(lM)

ftw: walk a file tree ftw(3C)
/a file for a pattern using full regular expressions egrep(l)

shutdown: shut down part of a full-duplex connection shutdown(2)
advertised resource, fumount: forced unmount of an fumount(lM)
error/ erf, erfc: error function and complementary erf(3M)
gamma: log gamma function gamma(3M)

hypot: Euclidean distance function hypot(3M)
of a common object file function, /line number entries ldlread(3X)
matherr: error-handling function matherr(3M)

prof: profile within a function prof(5)
math: math functions and constants math(S)

intro: introduction to functions and libraries intro(3)
jO.jl, jn, yO, yl, yn: Bessel functions, bessel: bessel(3M)

password and file encryption functions, crypt: crypt(3X)
logarithm, power, square root functions, /sqrt: exponential, exp(3M)

remainder, absolute value functions, /floor, ceiling, floor(3M)
ocurse: optimized screen functions ocurse(3X)
300,300s: handle special functions of DASI300 and 300s/ 300(1)

terminals, hp: handle special functions of Hewlett-Packard hp(l)
terminal. 450: handle special functions of the DASI 450 450(1)

sinh, cosh, tanh: hyperbolic functions sinh(3M)
a tan, atan2: trigonometric functions. Aan, asin, acos, trig(3M)

fusage: disk access profiler fusage(lM)
using a file or file/ fuser: identify processes fuser(lM)

fread, fwrite: binary input/output fread(3S)
connect accounting records, fwtmp, wtmpfix: manipulate fwtmp(lM)

moo: guessing game moo(6)
back: the game of backgammon back(6)

bj: the game of black jack bj(6)
craps: the game of craps craps(6)

wump: the game of hunt-the-wumpus wump(6)
trk: trekkie game trk(6)

- xxxvi -

intro: introduction to games intro(6)
gamma: log gamma function gamma(3M)

file, gateways: routed configuration gateways(4)
number to string, ecvt, fcvt, gcvt: convert floating-point ecvt(3C)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy, gdev(lG)

ged: graphical editor ged(lG)
the cc command, gencc: create a front-end to gencc(lM)

maze: generate a maze maze(6)
abort: generate a SIGABRT. abort(3C)
cflow: generate C flowgraph cflow(l)

cross-reference, cxref: generate C program cxref(l)
classification and/ chrtbl: generate character chrtbl(lM)

by user ID. diskusg: generate disk accounting data diskusg(lM)
makekey: generate encryption key makekey(l)

terminal, ctermid: generate file name for ctermid(3S)
crypt, setkey, encrypt: generate hashing encryption crypt(3C)

i-numbers. ncheck: generate path names from ncheck(lM)
lexical tasks, lex: generate programs for simple lex(l)

/srand4S, seed4S, lcong48: generate uniformly distributed/ drand48(3C)
and command forms, astgen: generate/modify ASSIST menus astgen(l)

srand: simple random-number generator, rand, rand(3C)
gets, fgets: get a string from a stream gets(3S)

get: get a version of an SCCS file get(l)
getsockopt, setsockopt: get and set options on/ getsockopt(2)

ulimit: get and set user limits ulimit(2)
the user, cuserid: get character login name of cuserid(3S)

getc, getchar, fgetc, getw: get character or word from a/ getc(3S)
through the/ nlsgetcall: get client's data passed nlsgetcall(3n)

getdtablesize: get descriptor table size getdtablesize(2)
nlist: get entries from name list nlist(3C)

umask: set and get file creation mask umask(2)
stat, fstat: get file status stat(2)

statfs, fstatfs: get file system information statfs(2)
ustat: get file system statistics ustat(2)

information, sysfs: get file system type sysfs(2)
file, get: get a version of an SCCS get(l)

/setgrent, endgrent, fgetgrent: get group file entry getgrent(3C)
getlogin: get login name getlogin(3C)
logname: get login name logname(l)

msgget: get message queue msgget(2)
getpw: get name from UID getpw(3C)

getpeemame: get name of connected peer getpeemame(2)
system, uname: get name of current CI IX uname(2)

provider, nlsprovider: get name of transport nlsprovider(3n)
host, getservaddr: get network address of service getservad(lM)

/setnetent, endnetent: get network entry getnetent(3)
/sethostent, endhostent: get network host entry gethostbyname(3)

getmsg: get next message off a stream getmsg(2)
unget: undo a previous get of an SCCS file unget(l)

argument vector, getcpt: get option letter from getopt(3C)
/setpwent, endpwent, fgetpwent: get password file entry getpwent(3C)

working directory, getcwd: get path-name of current getcwd(3C)
times, times: get process and child process times(2)

and/ getpid, getpgrp, getppid: get process, process group, getpid(2)
/setprotoent, endprotoent: get protocol entry getprotoent(3)

information. t_getinfo: get protocol-speci fic service t_getinfo(3n)
/geteuid, getgid, getegid: get real user, effective user J getuid(2)

getrpcbyname, getrpcbynumber: get rpc entry, getrpcent, getrpcent(3)

- xxxvii -

getrpcport: get RPC port number getrpcport(3)
/setservent, endservent: get service entry getservent(3)

semget: get set of semaphores semget(2)
fgetspent, lckpwdf, ulckpwdf: get shadow, /endspent getspent(3X)

identifier, shmget: get shared memory segment shmget(2)
getsockname: get socket name getsockname(2)

t_getstate: get the current state t_getstate(3)
tty: get the name of the terminal tty(l)

time: get time time(2)
get character or word from a/ getc, getchar, fgetc, getw: getc(3S)
character or word from/ getc, getchar, fgetc, getw: get getc(3S)

current working directory, getcwd: get path-name of getcwd(3C)
entries and put in a file, getdents: read directory getdents(2)

table size, getdtablesize: get descriptor getdtablesize(2)
getuid, geteuid, getgid, getegid: get real user J getuid(2)

environment name, getenv: return value for getenv(3C)
real user, effective/ getuid, geteuid, getgid, getegid: get getuid(2)

user J getuid, geteuid, getgid, getegid: get real getuid(2)
setgrent, endgrent,/ getgrent, getgrgid, getgmam getgrent(3C)

endgrenty getgrent, getgrgid, getgmam, setgrent, getgrent(3C)
getgrent, getgrgid, getgmam, setgrent, endgrent,/ getgrent(3C)

sethostent,/ gethostbyname, gethostbyaddr, gethostent gethostbyname(3)
gethostent, sethostent,/ gethostbyname, gethostbyaddr gethostbyname(3)

gethostbyname, gethostbyaddr, gethostent, sethostent,/ gethostbyname(3)
unique identifier of current/ gethostid, sethostid: get/set gethostid(2)
get/set name of current host, gethostname, sethostname: gethostname(2)

getlogin: get login name getlogin(3C)
stream, getmsg: get next message off a getmsg(2)

setnetentJ getnetent, getnetbyaddr, getnetbyname, getnetent(3)
getnetent, getnetbyaddr, getnetbyname, setnetent,/ getnetent(3)

getnetbyname, setnetent,/ getnetent, getnetbyaddr, getnetent(3)
argument vector, getopt: get option letter from getopt(3C)

getopt: parse command options getopt(l)
options, getopts, getoptcvt: parse command getopts(l)

command options, getopts, getoptcvt: parse getopts(l)
getpass: read a password getpass(3C)

connected peer, getpeemame: get name of getpeemame(2)
process group, and/ getpid, getpgrp, getppid: get process, getpid(2)

process, process group, and/ getpid, getpgrp, getppid: get getpid(2)
group, and/ getpid, getpgrp, getppid: get process, process getpid(2)

getprotoent, getprotobynumber, getprotobyname, setprotoenty getprotoent(3)
getprotobyname J getprotoent, getprotobynumber getprotoent(3)
getprotobyname, setprotoenty getprotoent, getprotobynumber, getprotoent(3)

getpw: get name from UID getpw(3C)
setpwent, endpwenty getpwent, getpwuid, getpwnam, getpwent(3C)
getpwent, getpwuid, getpwnam, setpwent, endpwenty getpwent(3C)

endpwenty getpwent, getpwuid, getpwnam, setpwent, getpwent(3C)
get rpc entry, getrpcent, getrpcbyname, getrpcbynumber: getrpcent(3)

getrpcbynumber: get rpc/ getrpcent, getrpcbyname, getrpcent(3)
number, getrpcport: get RPC port getrpcport(3)

a stream, gets, fgets: get a string from gets(3S)
address of service host, getservaddr: get network getservad(lM)

getservent, getservbyport, getservbyname, setservent,/ getservent(3)
setservent,/ getservent, getservbyport, getservbyname, getservent(3)

getservbyname, setservent,/ getservent, getservbyport getservent(3)
gettimeofday, settimeofday: get/ set date and time gettimeofday(2)
gethostname, sethostname: get/set name of current host gethostname(2)

current/ gethostid, sethostid: get/set unique identifier of gethostid(2)

- xxxviii -

getsockname: get socket name getsockname(2)
and set options on sockets, getsockopt, setsockopt: get getsockopt(2)

endspent, fgetspent, lckpwdf,/ getspent, getspnam, setspent, getspent(3X)
fgetspent, lckpwdf,/ getspent, getspnam, setspent, endspent gelspent(3X)

get/set date and time, gettimeofday, settimeofday: gettimeofday(2)
and terminal settings used by getty. gettydefs: speed gettydefs(4)

modes, speed, and line/ getty: set terminal type, getty(lM)
ct: spawn getty to a remote terminal ct(lC)

settings used by getty. gettydefs: speed and terminal gettydefs(4)
getegid: get real user J getuid, geteuid, getgid getuid(2)

pututline, setutentJ getut: getutent, getutid, getutline, getut(3C)
setutenty getut: getutent, getutid, getutline, pututline, getut(3C)

getut: getutent, getutid, getutline, pututline,/ getut(3C)
from a/ getc, getchar, fgetc, getw: get character or word getc(3S)

common CTIX system terms and/ glossary: definitions of glossary(l)
ascftime,/ ctime, localtime, gmtime, asctime, cftime, ctime(3C)

fish: play "Go Fish" fish(6)
setjmp, longjmp: non-local goto setjmp(3C)
string, format of graphical/ gps: graphical primitive gps(4)

graph: draw a graph graph(lG)
sag: system activity graph sag(lG)

commands, graphics: access graphical and numerical graphics(lG)
/network useful with graphical commands stat(lG)

/erase, hardcopy, tekset, td: graphical device routines and/ gdev(lG)
ged: graphical editor ged(lG)

primitive string, format of graphical files, /graphical gps(4)
toe: dtoc, ttoc, vtoc: graphical table of contents/ toc(lG)

gutil: graphical utilities gutil(lG)
numerical commands, graphics: access graphical and graphics(lG)

tplot: graphics filters tplot(lG)
plot: graphics interface plot(4)

subroutines, plot: graphics interface plot(3X)
mvt: typeset documents, view graphs, and slides, mmt mmt(l)
package for typesetting view graphs and slides, /macro mv(5)

greek: select terminal filter. greek(l)
pattern, grep: search a file for a grep(l)

/user, effective user, real group, and effective group/ getuid(2)
/getppid: get process, process group, and parent process IDs getpid(2)

chown, chgrp: change owner or group. . chown(l)
endgrent, fgetgrent: get group file entry, /setgrent, getgrent(3C)

group: group file group(4)
setpgrp: set process group ID setpgrp(2)

id: print user and group IDs and names id(lM)
real group, and effective group IDs. /effective user, getuid(2)

setuid, setgid: set user and group IDs setuid(2)
Remote File Sharing user and group mapping, idload: idload(lM)

newgrp: log in to a new group. newgrp(lM)
chown: change owner and group of a file chown(2)

a signal to a process or a group of processes, /send kill(2)
update, and regenerate groups of programs. Anaintain, make(l)

checkers, pwck, grpek: password/group file pwck(lM)
ssignal, gsignal: software signals ssignal(3C)

install or relocate a PT or GT local printer./mvtpy: mktpy(l)
download, tdl, gtdl, ptdl: RS-232 terminal tdl(l)

hangman: guess the word hangman(6)
moo: guessing game moo(6)

gutil: graphical utilities gutil(lG)
/for Interphase V/TAPE 3200 half-indi tape controller ipt(7)

- xxxix -

stape: SCSI quarter-inch and half-inch tape stape(7)
system state, shutdown, halt: shut down system, change shutdown(lM)

DASI 300 and 300s/ 300, 300s: handle special functions of 300(1)
Hewlett-Packard/ hp: handle special functions of hp(l)

the DASI 450 terminal. 450: handle special functions of 450(1)
varargs: handle variable argument list varargs(5)

curses: terminal screen handling and optimization/ curses(3X)
setchrclass: character handling. /_tolower, _toupper ctype(3C)

hangman: guess the word hangman(6)
nohup: run a command immune to hangups and quits nohup(l)

graphical/ gdev: hpd, erase, hardcopy, tekset, td: gdev(lG)
hinv: hardware inventory hinv(lM)

hcreate, hdestroy: manage hash search tables, hsearch hsearch(3C)
spell, hashmake, spellin, hashcheck: find spelling/ spell(l)
setkey, encrypt: generate hashing encryption, crypt, crypt(3C)

find spelling errors, spell, hashmake, spellin, hashcheck: spell(l)
search tables, hsearch, hcreate, hdestroy: manage hash hsearch(3C)

dump, hd: hexadecimal and ascii file hd(l)
tables, hsearch, hcreate, hdestroy: manage hash search hsearch(3C)

file, scnhdr: section header for a common object scnhdr(4)
files, filehdr: file header for common object filehdr(4)

limits: file header for/ limits(4)
unistd: file header for symbolic constants unistd(4)

file, ldfhread: read the file header of a common object ldfhread(3X)
/seek to the optional file header of a common object/ ldohseek(3X)

/read an indexed/named section header of a common object/ ldshread(3X)
ldahread: read the archive header of a member of an/ ldahread(3X)

helpadm: make changes to the Help Facility database helpadm(lM)
help: CTTX system Help Facility help(l)

help: CITX system Help Facility help(l)
Help Facility database, helpadm: make changes to the helpadm(lM)

tape file archiver. hpio: Hewlett-Packard 2645A terminal hpio(l)
/handle special functions of Hewlett-Packard terminals hp(l)

dump, hd: hexadecimal and ascii file hd(l)
hinv: hardware inventory hinv(lM)

libdev: manipulate Volume Home Blocks (VHB) libdev(3X)
fortune: print a random, hopefully interesting, adage fortune(6)

/ntohs: convert values between host and network byte order byteorder(3)
endhostent: get network host entry, /sethostent, gethostbyname(3)

unique identifier of current host, /sethostid: get/set gethostid(2)
get/set name of current host, /sethostname: gethostname(2)

get network address of service host, getservaddr: getservad(lM)
/set or print the Internet host name of the current/ hostname(l)

change Remote File Sharing host password, rfpasswd: rfpasswd(lM)
rwhod: host status server. rwhod(lM)

or print identifier of current host system, hostid: set hostid(l)
identifier of current host/ hostid: set or print hostid(l)

Internet host name of the/ hostname: set or print the hostname(l)
packets to network hosts, /send ICMP ECHO_REQUEST ping(lM)

of Hewlett-Packard terminals, hp: handle special functions hp(l)
td: graphical device/ gdev: hpd, erase, hardcopy, tekset, gdev(lG)
terminal tape file archiver. hpio: Hewlett-Packard 2645A hpio(l)

manage hash search tables, hsearch, hcreate, hdestroy: hsearch(3C)
convert values between host/ htonl, htons, ntohl, ntohs: byteorder(3)

values between host/ htonl, htons, ntohl, ntohs: convert byteorder(3)
wump: the game of hunt-the-wumpus wump(6)

sinh, cosh, tanh: hyperbolic functions sinh(3M)
hyphen: find hyphenated words hyphen(l)

- X l -

function, hypot: Euclidean distance hypot(3M)
network hosts, ping: send ICMP ECHO_REQUEST packets to ping(lM)

Protocol, icmp: Internet Control Message icmp(7)
disk accounting data by user ID. diskusg: generate diskusg(lM)

semaphore set or shared memory ID. /remove a message queue ipcrm(l)
and names, id: print user and group IDs id(lM)

setpgrp: set process group ID setpgrp(2)
issue: issue identification file issue(4)

fstyp: determine file system identifier. fstyp(lM)
/sethostid: get/set unique idenli fier of current host gethostid(2)

system, hostid: set or print identifier of current host hostid(l)
get shared memory segment identifier, shmget: shmget(2)

using keywords, locate: identify a CTIX system command locate(l)
file or file/ fuser: identify processes using a fuser(lM)

what: identify SCCS files what(l)
user and group mapping, idload: Remote File Sharing idload(lM)

id: print user and group IDs and names id(lM)
group, and parent process IDs. /get process, process getpid(2)
group, and effective group IDs. /effective user, real getuid(2)
setgid: set user and group IDs. setuid, setuid(2)
/fpgetsticky, fpsetsticky: IEEE floating point/ fpgetround(3)

interface parameters, ifconfig: configure network . ifcor.fig(lM)
mkifile: make an ifile from an object file mkifile(lM)

core: format of core image file core(4)
format of curses screen image file.. scr_dump: scr_dump(4)
crash: examine system images crash(lM)
nohup: run a command immune to hangups and quits nohup(l)

limits: file header for implementation-speci fic/ limits(4)
C language preprocessor include files, /determine includes(l)

fine: fast incremental backup. finc(lM)
dirent: file system independent directory entry dirent(4)

Agoto, tputs: terminal independent operations otermcap(3X)
for formatting a permuted index, /the macro package mptx(S)

of a/ ldtbindex: compute the index of a symbol table entry ldtbindex(3X)
ptx: permuted index ptx(l)

a common/ ldtbread: read an indexed symbol table entry of ldtbread(3X)
ldshread, ldnshread: read an indexed/named section header/ ldshread(3X)
ldsseek, ldnsseek: seek to an indexed/named section of a/ ldsseek(3X)
receipt of an orderly release indication, /acknowledge t_rcvrel(3n)

receive a unit data error indication, t rcvuderr: t_rcvuderr(3)
family, inet: Internet protocol inet(7)

inetntoa, inet_makeaddr/ inet_addr, inet_network inet(3)
"super-server", inetd: internet inetd(lM)

configuration file for inetd (internet/ inetd.conf: inetd.conf(4)
for inetd (internet/ inetd.conf: configuration file inetd.conf(4)

Anet_ntoa, inet_makeaddr, inetjnaof, inet_netof:/ inet(3)
/inet_network, inet ntoa, inetmakeaddr, inet_lnaof,/ inet(3)

Anet_makeaddr, inet_lnaof, inet_netof: Internet address/ inet(3)
inet_makeaddry inet_addr, inet_network, inet_ntoa, inet(3)

inet_addr, inet_network, inet_ntoa, inet_makeaddr,/ inet(3)
terminfo descriptions, infocmp: compare or print out infocmp(lM)

iniuab: script for the init process inittab(4)
initialization, init, telinit: process control init(lM)

init, telinit: process control initialization init(lM)
/drvload, powerfail: system initialization procedures brc(lM)

terminfo database, tput: initialize a terminal or query tput(l)
volume, iv: initialize and maintain iv(l)

socket connect: initiate a connection on a connect(2)

-x l i -

t_sndrel: initiate an orderly release t_sndrel(3n)
process, popen, pclose: initiate pipe to/from a popen(3S)

process, inittab: script for the init inittab(4)
clri: clear i-node clri(lM)

inode: format of an i-node inode(4)
number of free disk blocks and i-nodes. df: report df(lM)

start and stop terminal input and output /manually rsterm(lM)
sscanf: convert formatted input scanf, fscanf, scanf(3S)
push character back into input stream, ungetc: ungetc(3S)

fread, fwrite: binary input/output fread(3S)
poll: STREAMS input/output multiplexing poll(2)

stdio: standard buffered input/output package stdio(3S)
fileno: stream status inquiries, /feof, clearerr, ferror(3S)

uustat: uucp status inquiry and job control uustat(lC)
with information from/ pwconv: install and update /etc/shadow pwconv(lM)

with information/ pwunconv: install and update /etc/shadow pwunconv(lM)
using the mkfs(l)/qinstall: install and verify software qinstall(l)

install: install commands install(lM)
directories, cpset: install object files in binary cpset(lM)

local printer, mktpy, mvtpy: install or relocate a PT or GT mktpy(l)
ctinstall: install software ctinstall(l)

abs: return integer absolute value abs(3C)
/164a: convert between long integer and base-64 ASCII/ a641(3C)

sputl, sgetl: access long integer data in a/ sputl(3X)
atol, atoi: convert string to integer, strtol, strtol(3C)

3-byte integers and long integers, /convert between 13tol(3C)
bcopy: interactive block copy bcopy(lM)

system, mailx: interactive message processing mailx(l)
print a random, hopefully interesting, adage, fortune: fortune(6)

tset: set terminal, terminal interface, and terminal/ tset(l)
module, timod: Transport Interface cooperating STREAMS timod(7)

err: error-logging interface err(7)
V/TAPE 3200 half-inch/ipt: interface for Interphase ipt(7)

qic: interface for QIC tape qic(7)
lo: software loopback network interface 1°(7)

lp: parallel printer interface lp(7)
mem, kmem: system memory interface mem(7)

ifconfig: configure network interface parameters ifconfig(lM)
plot: graphics interface plot(4)

STREAMS/ tirdwr: Transport Interface read/write interface tirdwr(7)
/Transport Interface read/write interface STREAMS module tirdwr(7)

plot: graphics interface subroutines plot(3X)
swap: swap administrative interface swap(lM)

termio: general terminal interface termio(7)
tiop: terminal accelerator interface tiop{7)

logging and event/ log: interface to STREAMS error log(7)
telnet: user interface to TELNET protocol telnet(l)

protocol, tftp: user interface to the DARPA TFTP tftp(l)
tty: controlling terminal interface tty(7)

vme: VME bus interface vme(7)
detach serial lines as network interfaces, /attach and slattach(lM)

/inet_lnaof, inet_netof: Internet address manipulation/ inet(3)
Protocol, icmp: Internet Control Message icmp(7)

named: Internet domain name server named(lM)
Protocol server, ftpd: DARPA Internet File Transfer ftpd(lM)

hostname: set or print the Internet host name of the/ hostname(l)
names and numbers for the internet, networks: networks(4)
slipd: switched Serial Line Internet Protocol control/ slipd(lM)

- xlii -

lp:
protocols: list of

services: list of
inetd:

/configuration file for inetd
Protocol, tcp:
Protocol, udp:

half-inch/ ipt: interface for
spline:

characters, asa:
sno: SNOBOL

syntax, csh: a shell (command
pipe: create an

facilities/ ipcs: report
stdipc, ftok: standard

suspend execution for an
sleep: suspend execution for
application programs, intro:

intro:
libraries, intro:

intro:
intro:
intro:

and error numbers, intro:
generate path names from

hinv: hardware
tio: tape

select: synchronous
table, rtab: Remote

riopqry: query Remote
configure system for Remote

streamio: STREAMS

semaphore set or shared/
communication facilities/

V/TAPE 3200 half-inch tape/
/islower, isupper, isalpha,
Asxdigit, islower, isupper,

/ispunct, isprint, isgraph,
terminal, ttyname,

/isalpha, isalnum, isspace,
isupper, isalpha, isalnum,/

fiscntrl, ispunct, isprint,
isalnum,/ isdigit, isxdigit,

for floating point NaN/
floating point NaN/ isnan:
point NaN/ isnan: isnand,

/isspace, iscntri, ispunct,
/isalnum, isspace, iscntri,

/isupper, isalpha, isalnum,
system:

issue:
isdigit, isxdigit, islower,

isalpha, isalnum,/ isdigit,
news: print news

volume.

Internet protocol family inet(7)
Internet Protocol ip(7)
Internet protocols protocols(4)
Internet services services(4)
internet "super-server" inetd(lM)
(internet "super-server") inetd.conf(4)
Internet Transmission Control tcp(7)
Internet User Datagram udp(7)
Interphase V/TAPE 3200 ipt(7)
interpolate smooth curve spline(lG)
interpret ASA carriage control asa(l)
interpreter. sno(l)
interpreter) with C-like csh(l)
interprocess channel pipe(2)
inter-process communication ipcs(l)
interprocess communication/ stdipc(3C)
interval, sleep: sleep(l)
interval sleep(3C)
introduction to commands and intro(l)
introduction to file formats intro(4)
introduction to functions and intro(3)
introduction to games intro(6)
introduction to miscellany intro(5)
introduction to special files intro(7)
introduction to system calls intro(2)
i-numbers. ncheck: ncheck(lM)
inventory hinv(lM)
io filter. tio(l)
I/O multiplexing select(2)
I/O Processor configuration rtab(4)
I/O Processor for online data riopqiy(lM)
I/O Processor, riopcfg: riopcfg(lM)
ioctl commands streamio(7)
ioctl: control device ioctl(2)
ip: Internet Protocol ip(7)
ipcrm: remove a message queue, ipcrm(l)
ipcs: report inter-process ipcs(l)
ipt: interface for Interphase ipt(7)
isalnum, isspace, iscntri,/ ctype(3C)
isalpha, isalnum, isspace,/ ctype(3C)
isascii, tolower, toupperj ctype(3C)
isatty: find name of a ttyname(3C)
iscntri, ispunct, isprint,/ ctype(3C)
isdigit, isxdigit, islower, ctype(3C)
isgraph, isascii, tolower,/ ctype(3C)
islower, isupper, isalpha, ctype(3C)
isnan: isnand, isnanf: test isnan(3C)
isnand, isnanf: test for isnan(3C)
isnanf: test for floating isnan(3C)
isprint, isgraph, isascii,/ ctype(3C)
ispunct, isprint, isgraph,/ ctype(3C)
isspace, iscntri, ispunct,/ ctype(3C)
issue a shell command system(3S)
issue identification file issue(4)
isupper, isalpha, isalnum,/ ctype(3C)
isxdigit, islower, isupper, ctype(3C)
items news(l)
iv: initialize and maintain iv(l)

- xliii -

functions, bessel: jO, j l , jn, yO, yl, yn: Bessel bessel(3M)
functions, bessel: jO, j l , jn, yO, yl, yn: Bessel bessel(3M)
bj: the game of black jack bj(6)

functions, bessel: jO, j l , jn, yO, yl, yn: Bessel bessel(3M)
operator, join: relational database join(l)

/lrand48, nrand48, mrand48, jrand48, srand48, seed48,/ drand48(3C)
mkdbsym: load symbols in kernel debugger mkdbsym(lM)

port, dbconsole: change the kernel debugger system console dbconsole(lM)
makekey: generate encryption key makekey(l)

a CTIX system command using keywords, locate: identify locate(l)
killall: kill all active processes killall(lM)

process or a group of/ kill: send a signal to a kil l®
kill: terminate a process kill(l)

processes, killall: kill all active killall(lM)
mem, kmem: system memory interface mem(7)

quiz: test your knowledge quiz(6)
3-byte integers and long/ 13tol, ltol3: convert between 13tol(3C)

integer and base-64/ a641, 164a: convert between long a641(3C)
labelit: provide labels for file systems labelit(lM)

scanning and processing language, awk: pattern awk(l)
arbitrary-precision arithmetic language, be: bc(l)

efl: extended FORTRAN language. pfl(l)
scanning and processing language, nawk: pattern nawk(l)

cpp:theC language preprocessor. cpp(l)
files, includes: determine C language preprocessor include includes(l)

command programming language, /standard/restricted sh(l)
cftime: language specific strings cftime(4)

chargefee, ckpacct, dodisk, lastlogin, monacct, nuiladm,/ acctsh(lM)
shl: shell layer manager. shl(l)

/setspent, endspent, fgetspent, lckpwdf, ulckpwdf: get shadow getspent(3X)
/jrand48, srand48, seed48, lcong48: generate uniformly/ drand48(3C)

object files. Id: link editor for common ld(l)
object file, ldclose, ldaclose: close a common ldclose(3X)

header of a member of an/ ldahread: read the archive ldahread(3X)
file for reading, ldopen, ldaopen: open a common object ldopen(3X)

common object file, ldclose, ldaclose: close a ldclose(3X)
drivers, lddrv: manage loadable lddrv(lM)

ldeeprom: load EEPROM ldeeprom(lM)
of floating-point/ frexp, ldexp, modf: manipulate parts frexp(3C)

access routines, ldfcn: common object file ldfcn(4)
of a common object file, ldfhread: read the file header ldfhread(3X)

name for common object file/ ldgetname: retrieve symbol ldgetname(3X)
line number entries/ ldlread, ldlinit, ldlitem: manipulate ldlread(3X)

number/ ldlread, ldlinit, ldlitem: manipulate line ldlread(3X)
manipulate line number/ ldlread, ldlinit, ldlitem: ldlread(3X)
line number entries of a/ ldlseek, ldnlseek: seek to ldlseek(3X)

entries of a section/ ldlseek, ldnlseek: seek to line number ldlseek(3X)
entries of a section/ ldrseek, ldnrseek: seek to relocation ldrseek(3X)

indexed/named/ ldshread, ldnshread: read an ldshread(3X)
indexed/named/ ldsseek, ldnsseek: seek to an ldsseek(3X)
file header of a common/ ldohseek: seek to the optional ldohseek(3X)

object file for reading, ldopen, ldaopen: open a common ldopen(3X)
relocation entries of a/ ldrseek, ldnrseek: seek to ldrseek(3X)

indexed/named section header/ ldshread, ldnshread: read an ldshread(3X)
socket configuration, slink, ldsocket: STREAMS linker, load slink(l)

indexed/named section of a/ ldsseek, ldnsseek: seek to an ldsseek(3X)
of a symbol table entry of a/ ldtbindex: compute the index ldtbindex(3X)

symbol table entry of a/ ldtbread: read an indexed ldtbread(3X)

- xliv -

table of a common object/ ldtbseek: seek to the symbol ldtbseek(3X)
getopt: get option letter from argument vector getopt(3C)

generate programs for simple lexical tasks, lex: lex(l)
update, lsearch, lfind: linear search and lsearch(3C)
Blocks (VHB). libdev: manipulate Volume Home libdev(3X)

introduction to functions and libraries, intro: intro(3)
chkshlib: compare shared libraries tool chkshlib(l)

relation for an object library, /find ordering lorder(l)
portable/ an archive and library maintainer for arfl)
mkshlib: create a shared library mkshlib(l)

t_alloc: allocate a library structure t_alloc(3n)
t_free: free a library structure t_free(3n)

t_sync: synchronize transport library t_sync(3n)
implementation-specific/ limits: file header for limits(4)

ulimit: get and set user limits ulimit(2)
an out-going terminal line connection, /establish dial(3C)

type, modes, speed, and line discipline, /set terminal getty(lM)
type, modes, speed, and line discipline, /set terminal uugetty(lM)

slipd: switched Serial Line Internet Protocol control/ slipd(lM)
line: read one line line(l)

common object file, linenum: line number entries in a linenum(4)
/ldlinit, ldlilem: manipulate line number entries of a/ ldlread(3X)

idiseek, Idnlseek: seek to line number entries of a/ ldlseek(3X)
strip: strip symbol and line number information from a/ strip(l)

nl: line numbering filter nl(l)
out selected fields of each line of a file, cut: cut cut(l)

send/cancel requests to an LP line printer, lp, cancel: lp(l)
lpset: set parallel line printer options lpset(lM)

lpr: line printer spooler. lpr(l)
line: read one line line(l)

lsearch, lfind: linear search and update lsearch(3C)
col: filter reverse line-feeds col(l)

in a common object file, linenum: line number entries linenum(4)
/attach and detach serial lines as network interfaces slattach(lM)

files, comm: select or reject lines common to two sorted comm(l)
file for uucp communications lines. Devices: configuration Devices(5)

device, fold: fold long lines for finite width output fold(l)
head: give first few lines head(l)

uniq: report repeated lines in a file uniq(l)
subsequent/ paste: merge same lines of several files or paste(l)

directories, link, unlink: link and unlink files and link(lM)
files. Id: link editor for common object ld(l)

a.out: common assembler and link editor output a.out(4)
link: link to a file link(2)

cp. In, mv: copy, link, or move files cp(l)
link: link to a file link(2)

slink, ldsocket: STREAMS linker, load socket/ slink(l)
lists from proto file; set links based on. /out file qlist(l)

lint: a C program checker. lint(l)
Is: list contents of directory ls(l)

nlist: get entries from name list nlist(3C)
and statistics for file system list file names ff(lM)

an. bcheck: print the list of blocks associated with bcheck(lM)
nm: print name list of common object file nm(l)

by fsck and/ checklist: list of file systems processed checklist(4)
hosts: list of hosts on network hosts(4)

protocols: list of Internet protocols protocols(4)
services: list of Internet services services(4)

-x lv -

terminal number, ttytype: list of terminal types by ttytype(4)
from a common object file, list: produce C source listing list(l)

handle variable argument list, varargs: varargs(5)
output of a varargs argument list, /print formatted vprintf(3S)

tjisten: listen for a connect request t_listen(3n)
socket, listen: listen for connections on a listen(2)

data passed through the listener, /get client's nlsgetcall(3n)
nlsadmin: network listener service/ nlsadmin(lM)

nlsrequest: format and send listener service request/ nlsrequest(3n)
file, list: produce C source listing from a common object list(l)
xargs: construct argument list(s) and execute command xargs(l)
links/qlist: print out file lists from proto file; set qlist(l)

volcopy: make literal copy of file system volcopy(lM)
files, cp, In, mv: copy, link, or move cp(l)

interface, lo: software loopback network lo(7)
ldeeprom: load EEPROM ldeeprom(lM)

Adsocket: STREAMS linker, load socket configuration slink(l)
debugger, mkdbsym: load symbols in kernel mkdbsym(lM)

drivers: loadable device drivers drivers(7)
lddrv: manage loadable drivers lddrv(lM)

cftime, ascftimey ctime, localtime, gmtime, asctime, ctime(3C)
the virtual system/ conlocate: locate a terminal to use as . conlocate(lM)

command, path: locate executable file for path(l)
command using keywords, locate: identify a CITX system locate(l)

end, etext, edata: last locations in program end(3C)
memory, pi ode: lock process, text, or data in plock(2)

files, lockf: record locking on lockf(3C)
regions of a file, locking: exclusive access to locking(2)

lockf: record locking on files lockf(3C)
gamma: log gamma function gamma(3M)
newgrp: log in to a new group newgrp(lM)

error logging and event/ log: interface to STREAMS l°g(7)
exponential, logarithm,/ exp, log, log 10, pow, sqrt: exp(3M)

Aisr/adm/loginlog: log of failed login attempts loginlog(4)
logarithm, power,/ exp, log, loglO, pow, sqrt: exponential, exp(3M)

/log 10, pow, sqrt: exponential, logarithm, power, square root/ exp(3M)
errpt: process a report of logged errors enpt(lM)

rwho:whois logged in on local network rwho(l)
strclean: STREAMS error logger cleanup program strclean(lM)

strerr: STREAMS error logger daemon strerr(lM)
interface to STREAMS error logging and event tracing log(7)

/log of failed login attempts loginlog(4)
networks, netrc: login file for remote netrc(4)

getlogin: get login name getlogin(3C)
logname: get login name logname(l)

cuserid: get character login name of the user cuserid(3S)
logname: return login name of user logname(3X)
passwd: change login password passwd(l)

rlogin: remote login rlogin(l)
rlogind: remote login server. rlogind(lM)

login: sign on login(l)
up a C shell environment at login time, cprofile: setting cprofile(4)

setting up an environment at login time, profile: profile(4)
logname: get login name logname(l)

user, logname: return login name of logname(3X)
a641,164a: convert between long integer and base-64 ASCII/ a641(3C)

sputl, sgetl: access long integer data in a/ sputl(3X)
between 3-byte integers and long integers. fltol3: convert 13tol(3C)

- xlvi -

output device, fold: fold
setjmp,

finger: user information
lo: software

for an object library,
mklost+found: make a

nice: run a command at
send/cancel requests to an

interface,
disable: enable/disable
reject: allow or prevent

/lpshut, lpmove: start/stop the
lpadmin: configure the

lpstat: print
spooling system,

scheduler/ Ipsched, lpshut,

start/stop the LP scheduler/
printer options.

LP scheduler and/ Ipsched,
information.

jrand48y drand48, erand48,
directory,

and update,
pointer.

integers and long/ 13tol,

mega, unixpc,.
values:

/access long integer data in a
permuted index, mptx: the
documents, mm: the MM

view graphs and/ mv: a troff
m4:

pages, man:
me:

formatted with the MM
ms: text formatting

/rebuild the data base for the
users or read mail.

sendmail:
processing system,

malloc, free, realloc, calloc:
/mallopt, mallinfo: fast

regenerate groups of/ make:
iv: initialize and

an archive and library
SCCS file, delta:

mkdir:
or ordinary file, mknod:
for fsck. mklost-t-found:

mktemp:
file, mkifile:

Facility database, helpadm:
mkdir, mkdirs:

system, vol copy:
regenerate groups of/

mkhosts:

long lines for finite width fold(l)
longjmp: non-local goto setjmp(3C)
lookup program finger(l)
loopback network interface lo(7)
lorden find ordering relation lorder(l)
lost+found directory for fsck mklostfnd(lM)
low priority nice(l)
LP line printer, lp, cancel: lp(l)
lp: parallel printer lp(7)
LP printers, enable, enable(l)
LP requests, accept, accept(lM)
LP scheduler and move/ lpsched(lM)
LP spooling system lpadmin(lM)
LP status information lpstat(l)
lpadmin: configure the LP lpadmin(lM)
lpmove: start/stop the LP lpsched(lM)
lpr: line printer spooler. lpr< 1)
Ipsched, lpshut, lpmove: lpsched(lM)
lpset: set parallel line Ipset(lM)
lpshut, lpmove: start/stop the lpsched(lM)
lpstat: print LP status lpstat(l)
lrand48, nrand48, mrssd48, drand48(3C)
Is: list contents of ls(l)
lsearch, lfind: linear search lsearch(3C)
lseek: move read/write file lseek(2)
ltol3: convert between 3-byte 13tol(3C)
m4: macro processor. m4(l)
machid: mc68k, miti, mini machid(l)
machine- dependent values values(S)
machine-independent fashion sputl(3X)
macro package for formatting a mptx(5)
macro package for formatting mm(5)
macro package for typesetting mv(5)
macro processor m4(l)
macros for formatting manual man(5)
macros for formatting papers me(5)
macros, /print/check documents mm(l)
macros ms(5)
mail aliases file newaliases(l)
mail, rmail: send mail to mail(l)
mail routing program sendmail(lM)
mailx: interactive message mailx(l)
main memory allocator. malloc(3C)
main memory allocator. malloc(3X)
maintain, update, and make(l)
maintain volume iv(l)
maintainer for portable/ ar(l)
make a delta (change) to an delta(l)
make a directory mkdir(2)
make a directory, or a special mknod(2)
make a lost+found directory mklostfnd(lM)
make a unique file name mktemp(3C)
make an ifile from an object mkifile(lM)
make changes to the Help helpadm(lM)
make directories mkdir(l)
make literal copy of file volcopy(lM)
make: maintain, update, and make(l)
make node name commands. . mkhosts(lM)

- xlvii -

banner:
session, script:

key.
/realioc, calloc, mallopt,
main memory allocator,

mallopt, mallinfo: fast main/
malloc, free, realioc, calloc,

manual pages.
Afind, tdelete, twalk:

hsearch, hcreate, hdestroy:
lddrv:

unnotify, evwait, evnowait:
endpoint. toptmgmt:

passmgmt: password files
window: window

sigignore, sigpause: signal
wm: window

shl: shell layer
records, fwtmp, wtmpfix:

of/ ldlread, ldlinit, ldlitem:
frexp, ldexp, modf:

route: manually
(VHB). libdev:

/inet netof: Internet address
man: macros for formatting

touting tables, route:
terminal input and/ rsterm:

ascii:
port to RPC program number

File Sharing user and group
scsimap: set

files, diflrnk:
umask: set file-creation mode

set and get file creation
table, master:

masterupd: update the
File Sharing name server

information table.
file.

regular expression compile and
math:

constants,
eqn, neqn, checkeq: format

function,
maze: generate a
unixpc,. machid:

file comment section,
machid: mc68k, miti, mini,

interface.
memcpy, memset:/ memory:

memset:/ memory: memccpy,
memory: memccpy, memchr,

/memccpy, memchr, memcmp,
free, realioc, calloc: main

mallopt, mallinfo: fast main
shmctl: shared

queue, semaphore set or shared

make posters banner(l)
make typescript of terminal script(l)
makekey: generate encryption makekey(l)
mallinfo: fast main memory/ malloc(3X)
malloc, free, realioc, calloc: malloc(3C)
malloc, free, realioc, calloc malloc(3X)
mallopt, mallinfo: fast main/ malloc(3X)
man: macros for formatting man(5)
manage binary search trees tsearch(3C)
manage hash search tables hsearch(3C)
manage loadable drivers lddrv(lM)
manage notifications, notify, notify(2)
manage options for a transport t_optmgmt(3n)
management passmgmt(lM)
management primitives window(7)
management, /sigrelse, sigset(2)
management wm(l)
manager shl(l)
manipulate connect accounting fwtmp(lM)
manipulate line number entries ldlread(3X)
manipulate parts of/ frexp(3C)
mnflimlalii itia nliiw4 fits
UlttlUpilKH. MIW WJW. ̂ . y

manipulate the routing tables route(lM)
manipulate Volume Home Blocks libdev(3X)
manipulation routines inet(3)
manual pages man(5)
manually manipulate the route(lM)
manually start and stop rsterm(lM)
map of ASCII character set ascii(5)
mapper, portmap: DARPA portmap(lM)
mapping, idload: Remote idload(lM)
mappings for SCSI devices scsimap(lM)
mark differences between diflmk(l)
mask umask(l)
mask, umask: umask(2)
master device information master(4)
master file mastempd(lM)
master file, rfmaster: Remote rfmaster(4)
master: master device master(4)
masterupd: update the master masterupd(lM)
match routines, regexp: regexp(5)
math functions and constants math(S)
math: math functions and math(5)
mathematical text for nroff or/ eqn(l)
matherr: error-handling matherr(3M)
maze maze(6)
mc68k, miti, mini, mega, machid(l)
mcs: manipulate the object mcs(l)
mega, unixpc, machid(l)
mem, kmem: system memory mem(7)
memccpy, memchr, memcmp, memoty(3C)
memchr, memcmp, memcpy, memory(3C)
memcmp, memcpy, memset: memory/ memoty(3C)
memcpy, memset: memory/ memoty(3C)
memory allocator, malloc malloc(3C)
memory allocator, /calloc, malloc(3X)
memory control operations shmctl(2)
memory ID./remove a message ipcrm(l)

- xlviii -

mem, kmem: system memory interface mem(7)
memcmp, memcpy, memsel:/ memory: memccpy, memchr memory(3C)
memomp, memcpy, memset: memory operations, /memchr memory(3C)

shmop: shared memory operations shmop(2)
lock process, text, or data in memory, plock: plock(2)

shmget: get shared memory segment identifier. shmget(2)
/memchr, memcmp, memcpy, memset: memory operations memory(3C)

astgen: generate/modify ASSIST menus and command forms astgen(l)
sort: sort and/or merge files sort(l)
files, acctmerg: merge or add total accounting acctmerg(lM)

files or subsequent/ paste: merge same lines of several paste(l)
mesg: permit or deny messages mesg(l)

msgctl: message control operations msgctl(2)
recv, recvfrom: receive a message from a socket. recv(2)

send listener service request message, /format and nlsrequest(3n)
getmsg: get next message off a stream getmsg(2)

putmsg: send a message on a stream putmsg(2)
msgop: message operations msgop(2)

mailx: interactive message processing system mailx(l)
icmp: Internet Control Message Protocol icmp(7)

msgget: get message queue msgget(2)
or shared/ipcrm: remove a message queue, semaphore set ipcrm(l)

t_error: produce error message t_error(3n)
send, sendto: send a message to a socket. send(2)

mesg: permit or deny messages mesg(l)
sys_nerr: system error messages, /ermo, sys_en-list, perror(3C)

strace: print STREAMS trace messages strace(lM)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

driver, clone: open any minor device on a STREAMS clone(7)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

kemel debugger, mkdbsym: load symbols in mkdbsym(lM)
mkdir make a directory mkdir(2)

directories, mkdir, mkdirs: make mkdir(l)
mkfs: construct a file system mkfs(lM)

/and verify software using the mkfs(l) proto file database qinstall(l)
commands, mkhosts: make node name mkhosts(lM)
object file, mkifile: make an ifile from an mkifile(lM)

lost+found directory for/ mklost+found: make a mklostfnd(lM)
mknod: build special file mknod(lM)

special or ordinary file, mknod: make a directory, or a mknod(2)
library, mkshlib: create a shared mkshlib(l)

name, mktemp: make a unique file mktemp(3C)
relocate a PT or GT local/ mktpy, mvtpy: install or mktpy(l)

documents formatted with the/ mm, checkmm: print/check mm(l)
formatting documents, mm: the MM macro package for mm(5)

documents formatted with the MM macros, /print/check mm(l)
formatting documents, mm: the MM macro package for mm(5)

view graphs, and slides, mmt, mvt: typeset documents, mmt(l)
table, mnttab: mounted file system mnttab(4)

chmod: change mode chmod(l)
umask: set file-creation mode mask umask(l)

chmod: change mode of file chmod(2)
getty: set terminal type, modes, speed, and line/ getty(lM)

uugetty: set terminal type, modes, speed, and line/ uugetty(lM)
bs: a compiler/interpreter for modest-sized programs bs(l)
floating-point/ frexp, ldexp, modf: manipulate parts of frexp(3C)

touch: update access and modification times of a file touch(l)
mime: set file access and modification times utime(2)

- xlix -

Interface cooperating STREAMS module, timod: Transport timod(7)
read/write interface STREAMS module. /Transport Interface tirdwr(7)

/ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,/ acctsh(lM)
profile, monitor: prepare execution monitor(3C)

moo: guessing game moo(6)
more, page: text perusal more(l)

mount: mount a file system mount(2)
and remote/ mount, umount: mount and unmount file systems mount(lM)

imnttry: attempt to mount remote resources rmnttry(lM)
mountd: NFS mount request server mountd(lM)

setmnt: establish mount table setmnt(lM)
systems, mountall, umountall: mount, unmount multiple file mountall(lM)

System/ nmountall, numountall: mount, unmount Network File nmountall(lM)
rmountall, rumountall: mount, unmount Remote File/ rmountall(lM)
unmount multiple file/ mountall, umountall: mount, mountall(lM)

server, mountd: NFS mount request mountd(lM)
mnttab: mounted file system table mnttab(4)

rmtab: remotely mounted file system table rmtab(4)
rmntstat: display mounted resource information rmntstat(lM)

rmount: queue remote resource mounts rmount(lM)
showmount: show all remote mounts showmount(lM)

mvdir move a directors . mvdir(lM)
cp, In,mv: copy, link, or movefiles cp(l)

lseek: move read/write file pointer. lseek(2)
the LP scheduler and move requests./start/stop lpsched(lM)

formatting a permuted index, mptx: the macro package for mptx(5)
/erand48, lrand48, nrand48, mrand48, jrand48, srand48y drand48(3C)

ms: text formatting macros ms(5)
operations, msgctl: message control msgctl(2)

msgget: get message queue msgget(2)
msgop: message operations msgop<2)

/umountall: mount, unmount multiple file systems mountall(lM)
poll: STREAMS input/output multiplexing poll(2)

select: synchronous I/O multiplexing select(2)
sxt: STREAMS multiplexor. sxt(7)

run commands performed for multi-user environment. /rc3: rc2(lM)
typesetting view graphs and/ mv: a troff macro package for mv(5)

cp, In, mv: copy, link, or move files cp(l)
mvdir: move a directory mvdir(lM)

graphs, and slides, mmt, mvt: typeset documents, view mmt(l)
PT or GT local/ mktpy. mvtpy: install or relocate a mktpy(l)

server, named: Internet domain name named(lM)
test for floating point NaN (Not-A-Number). /isnanf: isnan(3C)
processing language, nawk: pattern scanning and nawk(l)

systems processed by fsck and ncheck. /list of file checklist(4)
from i-numbers. ncheck: generate path names ncheck(lM)

mathematical text for/ eqn, neqn, checkeq: format eqn(l)
definitions for eqn and neqn. /special character eqnchar(5)

File, netcf: Network Configuration netcf(4)
networks, netrc: login file for remote netrc(4)

netstat: show network status netstat(l)
host, getservaddr: get network address of service getservad(lM)

values between host and network byte order, /convert byteorder(3)
netcf: Network Configuration File netcf(4)

setnetent, endnetent: get network entry, /getnetbyname, getnetent(3)
/numountall: mount, unmount Network File System resources nmountall(lM)

statistics, nfsstat: Network File System nfsstat(lM)
/sethostent, endhostent: get network host entry gethostbyname(3)

- 1 -

1CMP ECHO_REQUEST packets to network hosts, ping: send ping(lM)
hosts: list of hosts on network hosts(4)
lo: software loopback network interface lo(7)

ifconfig: configure network interface parameters ifconfig(lM)
and detach serial lines as network interfaces, /attach slattach(lM)

administration, nlsadmin: network listener service nlsadmin(lM)
Remote File Sharing domain and network names, dname: print dname(lM)

routed: network routing daemon routed(lM)
status of nodes on local network, ruptime: display ruptime(l)

who is logged in on local network, rwho: rwho(l)
netstat: show network status netstat(l)

commands, stat: statistical network useful with graphical stat(lG)
uucpd, ouucpd: network uucp servers uucpd(lM)
for the internet networks: names and numbers networks(4)

netrc: login file for remote networks netrc(4)
base for the mail aliases/ newaliases: rebuild the data newaliases(l)

a text file, newform: change the format of newform(l)
newgip: log in to a new group newgrp(lM)

news: print news items news(l)
/store, delete, firstkey, nextkey: database subroutines dbm(3X)

nfsd, biod: NFS daemons nfsd(lM)
configuration file, exports: NFS file systems export exnorts(4)

mountd: NFS mount request server. mountd(lM)
nfssys: common shared NFS system calls nfssys(2)

nfsd, biod: NFS daemons nfsd(lM)
statistics, nfsstat: Network File System nfsstat(lM)

system calls, nfssys: common shared NFS nfssys(2)
process, nice: change priority of a nice(2)

of running process by changing nice, renice: alter priority renice(l)
priority, nice: run a command at low nice(l)

nl: line numbering filter. nl(l)
list, nlist: get entries from name nlist(3C)

service administration, nlsadmin: network listener nlsadmin(lM)
passed through the listener, nlsgetcall: get client's data nlsgetcall(3n)

transport provider, nlsprovider: get name of nlsprovider(3n)
listener service request/ nlsrequest: format and send nlsrequest(3n)

object file, nm: print name list of common nm(l)
unmount Network File System/ nmountall, numountall: mount, nmountall(lM)

mkhosts: make node name commands mkhosts(lM)
createdev: create device nodes for assorted device/ createdev(lM)

ruptime: display status of nodes on local network ruptimefl)
hangups and quits, nohup: run a command immune to nohup(l)

setjmp, longjmp: non-local goto setjmp(3C)
test for floating point NaN (Not-A-Number). /isnanf: isnan(3C)

rfuadmin: Remote File Sharing notification shell script rfuadmin(lM)
evwait, evnowait: manage notifications, /unnotify, notify(2)

evnowait: manage/ notify, unnotify, evwait, notify(2)
drand48, erand48, lrand48, nrand48, mrand48, jrand48y drand48(3C)

nroff: format text nroff(l)
format mathematical text for nroff or troff. /checkeq: eqn(l)

tbl: format tables for nroff or troff. tbl(l)
constructs, deroff: remove nroff/troff, tbl, and eqn deroff(l)

name server query, nsquery: Remote File Sharing nsquery(lM)
between host/ htonl, htons, ntohl, ntohs: convert values byteorder(3)

host and/ htonl, htons, ntohl, ntohs: convert values between byteorder(3)
null: the null file null(7)

/dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,/ acctsh(lM)
nl: line numbering filter. nl(l)

- l i -

number: convert Arabic numerals to English number(6)
graphics: access graphical and numerical commands graphics(lG)

Network File/ nmountall, numountall: mount, unmount nmountall(lM)
dis: object code disassembler dis(l)

ldfcn: common object file access routines ldfcn(4)
mcs: manipulate the object file comment section mcs(l)

conv: common object file converter conv(l)
cprs: compress a common object file cprs(l)
dump selected parts of an object file, dump: dump(l)

ldopen, ldaopen: open a common object file for reading ldopen(3X)
number entries of a common object file function, /line ldlread(3X)

ldaclose: close a common object file, ldclose, ldclose(3X)
the file header of a common object file, ldfhread: read ldfhread(3X)

of a section of a common object file, /number entries ldlseek(3X)
file header of a common object file. Ao the optional ldohseek(3X)

of a section of a common object file, /entries ldrseek(3X)
section header of a common object file, indexed/named ldshread(3X)

section of a common object file, /indexed/named ldsseek(3X)
symbol table entry of a common object file, /the index of a ldtbindex(3X)
symbol table entry of a common object file, /read an indexed ldtbread(3X)

the symbol table of a common object file, /seek to ldtbseek(3X)
number en t r i e s in a common obiec? file, linenum: l i ne lincnym(4)

C source listing from a common object file, list: produce list(l)
mkifile: make an ifile from an object file mkifile(lM)

nm: print name list of common object file nm(l)
information for a common object file, /relocation reloc(4)

section header for a common object file, scnhdr: scnhdr(4)
information from a common object file, /and line number strip(l)

entry, /symbol name for common object file symbol table ldgetname(3X)
format, syms: common object file symbol table syms(4)
file header for common object files, filehdr: filehdr(4)

directories, cpset: install object files in binary cpset(lM)
Id: link editor for common object files ld(l)

sizes in bytes of common object files./print section size(l)
find ordering relation for an object library, lorder: lorder(l)

number, factor: obtain the prime factors of a factor(l)
od: octal dump °d(l)

functions, ocurse: optimized screen ocurse(3X)
od: octal dump °d(l)

query Remote I/O Processor for online data, riopqry: riopqry(lM)
reading, ldopen, ldaopen: open a common object file for ldopen(3X)

fopen, freopen, fdopen: open a stream fopen(3S)
STREAMS driver, clone: open any minor device on a clone(7)

dup: duplicate an open file descriptor dup(2)
dup2: duplicate an open file descriptor dup2(3C)

open: open for reading or writing open(2)
seekdir,/ directory: opendir, readdir, telldir, directory(3X)

starter: information about the operating system for beginning/ starter(l)
prf: operating system profiler prf(7)

/prfdc, prfsnap, prfpr: operating system profiler profiler^ 1M)
commands performed to stop the operating system. rcO: run rcO(lM)

uconf: configure the operating system uconf(lM)
bzero: bit and byte string operations, bcopy, bemp bstring(3)

rewinddir, closedir: directory operations. Aelldir, seekdir, directory(3X)
memcmp, memcpy, memset: memory operations, /memccpy, memchr, memory(3C)

msgctl: message control operations msgctl(2)
msgop: message operations msgop(2)

tputs: terminal independent operations. Agetstr, tgoto, otermcap(3X)

- Hi -

semctl: semaphore control
semop: semaphore

shmctl: shared memory control
shmop: shared memory

strcspn, strtok: string
join: relational database

dcopy: copy file systems for
terminal screen handling and

ocurse:
vector, getopt: get

common/ ldohseek: seek to the
fcntl: file control

stty: set the
endpoint. toptmgmt: manage

getopt: parse command
getoptcvt: parse command

set parallel line printer
/setsockopt: get and set

object library, lorder: find
/acknowledge receipt of an

t_sndrel: initiate an
a directory, or a special or

keywords, locate: identify a
assist: assistance using

help:
uname: print name of current

dial: establish an
assembler and link editor
long lines for finite width
/vsprintf: print formatted

sprintf: print formatted
and stop terminal input and

sysdef:
uucpd,

/acctdusg, accton, acctwtmp:
chown: change

chown, chgrp: change
and expand files,

handling and optimization
permuted/ mptx: the macro

documents, mm: the MM macro
graphs and/ mv: a troff macro

sadc: system activity report
standard buffered input/output

interprocess communication
ping: send ICMP ECHO_REQUEST

more,
macros for formatting manual

4014 terminal. 4014:
me: macros for formatting

lpset: set
lp:

tapeset: set drive
configure network interface
process, process group, and

getopt:
getopts, getoptcvt:

nlsgetcall: get client's data

operations semctl(2)
operations semop(2)
operations shmctl(2)
operations shmop(2)
operations, /strpbrk, strspn string(3C)
operator join(l)
optimal access time dcopy(lM)
optimization package, curses: curses(3X)
optimized screen functions ocurse(3X)
option letter from argument getopt(3C)
optional file header of a ldohseek(3X)
options fcntl(5)
options for a terminal stty(l)
options for a transport t_optmgmt(3n)
options getopt(l)
options, getopts, getopts(l)
options, lpset: lpset(lM)
options on sockets getsockopt(2)
ordering relation for an lorderfl)
orderly release indication t_rcvrel(3n)
orderly release t_sndrel(3n)
ordinary file, mknod: make mkncd(2)
CTIX system command using locate(l)
CTIX system commands assist(l)
CTIX system Help Facility help(l)
CTIX system uname(l)
out-going terminal line/ dial(3C)
output, a.out: common a.out(4)
output device, fold: fold fold(l)
output of a varargs argument/ vprintf(3S)
output, printf, fprintf printf(3S)
output, /manually start rsterm(lM)
output system definition sysdef(lM)
ouucpd: network uucp servers uucpd(lM)
overview of accounting and/ acct(lM)
owner and group of a file chown(2)
owner or group chown(l)
pack, peat, unpack: compress pack(l)
package. Aerminal screen curses(3X)
package for formatting a mptx(5)
package for formatting mm(5)
package for typesetting view mv(5)
package, sar: sal, sa2, sar(lM)
package, stdio: stdio(3S)
package, /ftok: standard stdipc(3C)
packets to network hosts ping(lM)
page: text perusal more(l)
pages, man: man(5)
paginator for the Tektronix 4014(1)
papers me(5)
parallel line printer options lpset(lM)
parallel printer interface lp(7)
parameters for tape/ tapeset(lM)
parameters, ifconfig: lfconfig(lM)
parent process IDs. /get getpid(2)
parse command options getopt(l)
parse command options getopts(l)
passed through the listener nlsgetcall(3n)

- liii -

management.

functions, crypt:
/endpwent, fgetpwent: get

putpwent: write
putspent: write shadow

passwd:
shadow:

passmgmt:
getpass: read a

passwd: change login
Remote File Sharing host

pwck, grpck:
several files or subsequent/

for command,
dimame: deliver portions of

ncheck: generate
directory, getcwd: get
grep: search a file for a

processing language, awk:
processing language, nawk:

egrep: search a file for a
signal,

expand files, pack,
a process, popen,

get name of connected
rc2, rc3: run commands

operating/ rcO: run commands
check the uucp directories and

mesg:
macro package for formatting a

ptx:
format, acct:

acctcms: command summary from
sys_netT: system error/

pg: file
more, page: text

CRTs.
split: split a file into

packets to network hosts.
channel,

tee:
popen, pclose: initiate

fish:
data in memory.

subroutines,
ftell: reposition a file

lseek: move read/write file
multiplexing,

to/from a process,
kernel debugger system console

serstat: display serial
getrpcport: get RPC

mapper, portmap: DARPA
and library maintainer for

basename, dimame: deliver

passmgmt: password files passmgmt(lM)
passwd: change login password passwd(l)
passwd: password file passwd(4)
password and file encryption crypt(3X)
password file entry getpwent(3C)
password file entry putpwent(3C)
password file entry putspent(3X)
password file passwd(4)
password file shadow(4)
password files management. passmgmt(lM)
password getpass(3C)
password passwd(l)
password, rfpasswd: change rfpasswd(lM)
password/group file checkers pwck(lM)
paste: merge same lines of paste(l)
path: locate executable file path(l)
path names, basename, basename(l)
path names from i-numbers ncheck(lM)
path-name of current working getcwd(3C)
pattern grep(l)
pattern scanning and awk(l)
partem scanning and nawk(l)
pattern using full regular/ egrep(l)
pause: suspend process until pause(2)
peat, unpack: compress and pack(l)
pclose: initiate pipe to/from popen(3S)
peer, getpeername: getpeemame(2)
performed for multi-user/ rc2(lM)
performed to stop the rcO(lM)
permissions file, uucheck: uucheck(lM)
permit or deny messages mesg(l)
permuted index, mptx: the mptx(5)
permuted index ptx(l)
per-process accounting file acct(4)
per-process accounting/ acctcms(lM)
perror, ermo, sys_errlist, perror(3C)
perusal filter for CRTs pg(l)
perusal more(l)
pg: file perusal filter for pg(l)
pieces split(l)
ping: send ICMP F,CHO_RF.OUF.ST ping(lM)
pipe: create an interprocess pipe(2)
pipe fitting tee(l)
pipe to/from a process popen(3S)
play "Go Fish" fish(6)
plock: lock process, text, or plock(2)
plot: graphics interface plot(4)
plot: graphics interface plot(3X)
pointer in a stream, /rewind, fseek(3S)
pointer. lseek(2)
poll: STREAMS input/output poll(2)
popen, pclose: initiate pipe popen(3S)
port, dbconsole: change the dbconsole(lM)
pott error statistics serstat(lM)
port number. getrpcport(3)
port to RPC program number portmap(lM)
portable archives, /archive ar(l)
portions of path names basename(l)

- l i v -

program number mapper, portmap: DARPA port to RPC portmap(lM)
banner: make posters banner(l)

logarithm,/ exp, log, log 10, pow, sqrt: exponential, exp(3M)
/sqrt: exponential, logarithm, power, square root functions exp(3M)

brc, bcheckrc, drvload, powerfail: system/ brc(lM)
pr: print files pr(l)

/lastlogin, monacct, nulladm, prctmp, prdaily, prtacct,/ acctsh(lM)
/monacct, nulladm, prctmp, prdaily, prtacct, runacct,/ acctsh(lM)

for troff. cw, checkcw: prepare constant-width text cw(l)
monitor: prepare execution profile monitor(3C)

cpp: the Clanguage preprocessor. cpp(l)
includes: determine C language preprocessor include files includes(l)

accept, reject: allow or prevent LP requests accept(lM)
unget: undo a previous get of an SCCS file unget(l)

profiler, prf: operating system prf(7)
profiler: prfld, prfstat, prfdc, prfsnap, prfpr:/ profilerflM)

prfsnap, prfpr:/ profiler: prfld, prfstat, prfdc, profiler^ 1M)
/prfstat, prfdc, prfsnap, prfpr: operating system/ profiler(lM)

system/ /prfld, prfstat, prfdc, prfsnap, prfpr: operating profiler^ 1M)
prfpr:/ profiler: prfld, prfstat, prfdc, prfsnap, profiler(lM)

factor: obtain the prime factors of a number. factor(l)
graphical/ gps: graphical primitive string, format of gns(4)

types: primitive system data types types(5)
window: window management primitives window(7)

interesting, adage, fortune: print a random, hopefully fortune(6)
prs: print an SCCS file prs(l)

date: print and set the date date(l)
cal: print calendar. cal(l)

of a file, sum: print checksum and block count sum(l)
editing activity, sact: print current SCCS file sact(l)

cat: concatenate and print files cat(l)
pr: print files pKl)

vprintf, vfprintf, vsprintf: print formatted output of a/ vprintf(3S)
printf, fprintf, sprintf: print formatted output printf(3S)

host system, hostid: set or print identifier of current hostid(l)
lpstat: print LP status information lpstal(l)

object file, nm: print name list of common nm(l)
system, uname: print name of current CTDC uname(l)

news: print news items news(l)
proto file; set links/ qlist: print out file lists from qlist(l)

infocmp: compare or print out terminfo/ infocmp(lM)
fiie(s). acctcom: search and print process accounting acctcom(l)

domain and network/ dname: print Remote File Sharing dname(lM)
of common object files, size: print section sizes in bytes size(l)

strace: print STREAMS trace messages strace(lM)
of the/hostname: set or print the Internet host name hostname(l)

associated with an. bcheck: print the list of blocks bcheck(lM)
names, id: print user and group IDs and id(lM)

formatted with/mm, checkmm: print/check documents mm(l)
lp: parallel printer interface lp(7)

requests to an LP line printer, /cancel: send/cancel lp(l)
or relocate a PT or GT local printer. Anvtpy: install mktpy(l)

lpset: set parallel line printer options lpset(lM)
lpr: line printer spooler. lpr(l)

disable: enable/disable LP printers, enable, enable(l)
print formatted output printf, fprintf, sprintf: printf(3S)

rtpenable: real-time priorities enabled/disabled rtpenable(l M)
nice: run a command at low priority nice(l)

- l v -

nice: change priority of a process nice(2)
changing nice, renice: alter priority of running process by renice(l)

errors, enpt: process a report of logged errpt(lM)
acct: enable or disable process accounting acct(2)

acctprcl, acctprc2: process accounting acctprc(lM)
acctcom: search and print process accounting file(s) acctcom(l)

alarm: set a process alarm clock alarm(2)
times, times: get process and child process times(2)

/alter priority of running process by changing nice renice(l)
init, telinit: process control/ init(lM)

timex: time a command; report process data and system/ timex(l)
exit, exit: terminate process exit(2)

fork: create a new process fork(2)
/getpgrp, getppid: get process, process group, and parent/ getpid(2)

setpgrp: set process group ID setpgrp(2)
process group, and parent process IDs. /get process getpid(2)
inittab: script for the init process inittab(4)

kill: terminate a process kill(l)
nice: change priority of a process nice(2)

kill: send a signal to a process or a group of/ kill(2)
initiate pipe to/from a process, popen, pclose: popen(3S)

getpid. getpgrp. getppid: get process, process group, and/ getpid(2)
Remote File Sharing daemon process, rfudaemon: rfudaemon(lM)

ps: report process status ps(l)
memory, plock: lock process, text, or data in plock(2)

times: get process and child process times times(2)
wait: wait for child process to stop or terminate wait(2)

ptrace: process trace ptrace(2)
pause: suspend process until signal pause(2)

wait: await completion of process wait(l)
/list of file systems processed by fsck and ncheck checklist(4)

to a process or a group of processes, /send a signal kill(2)
killall: kill all active processes killall(lM)

structure, fusen identify processes using a file or file fuser^lM)
awk: pattern scanning and processing language awk(l)

nawk: pattern scanning and processing language nawk(l)
extproc: turn external processing on or off. extproc(lM)

mailx: interactive message processing system mailx(l)
rtab: Remote I/O Processor configuration table rtab(4)

en: Ethernet Processor. en(7)
enpstart: configure Ethernet processor. enpstart(lM)
riopqry: query Remote I/O Processor for online data riopqry(lM)

m4: macro processor m4(l)
system for Remote I/O Processor, riopcfg: configure riopcfg(lM)

a common object file, list: produce C source listing from list(l)
t_error: produce error message t_error(3n)

prof: display profile data prof(l)
function, prof: profile within a ptof(5)

profile, profil: execution time profil(2)
prof: display profile data prof(l)

monitor: prepare execution profile monitor(3C)
profil: execution time profile ptofil(2)

environment at login time, profile: setting up an profile(4)
prof: profile within a function prof(5)

fusage: disk access profiler fusage(lM)
prf: operating system profiler prf(7)
prfdc, prfsnap, prfpr:/ profiler: prfld, prf slat, profiler^ 1M)

prfpr: operating system profiler, /prfdc, prfsnap, profiler(lM)

- lvi -

sadp: disk access
standard/restricted command

software using the mkfs(l)
on. /print out file lists from

arp: Address Resolution
/switched Serial Line Internet
/setprotoent, endproloent: get

inet: Internet
icmp: Internet Control Message

ip: Internet
DARPA Internet File Transfer

telnetd: DARPA TELNET
DARPA Trivial File Transfer

Internet Transmission Control
user interface to TELNET

interface to the DARPA TFTP
udp: Internet User Datagram

Dialers: ACU/modem calling
protocols,

information. t_getinfo: get
update:

arithmetic:
systems, labelit:

true, false:
get name of transport

/nulladm, prctmp, prdaily,

/generate uniformly distributed
/mvtpy: install or relocate a

download, tdl, gtdl.

stream, ungetc:
put character or word on a/

character or word on a/ putc,
environment,

stream.
entry,

stream,
password file entry,

/getutent, getutid, getutline,
a/ putc, putchar, fputc,

file checkers,
/etc/shadow with information/

/etc/shadow with information/
qic: interface for

software using the mkfs(l)/
from proto file; set links/

tape, stape: SCSI
File Sharing name server

online data, riopqry:
tput: initialize a terminal or

queuedefs: at/batch/cron
msgget: get message

rmount:

profiler sadp(lM)
programming language, /the sh(l)
proto file database, /verify qinstall(l)
proto file; set links based qlist(l)
Protocol arp(7)
Protocol control facility slipd(lM)
protocol entry getprotoent(3)
protocol family inet(7)
Protocol icmp(7)
Protocol ip(7)
Protocol server, ftpd: ftpd(lM)
protocol server. telnetd(lM)
Protocol server, tftpd: tftpd(lM)
Protocol, tcp: tcp(7)
protocol, telnet: telnet(l)
protocol, tftp: user tftp(l)
Protocol udp(7)
protocols Dialers(5)
protocols: list of Internet protocols(4)
protocol-specific service t_getinfo(3n)
provide disk synchronization update(lM)
provide drill in number facts arithmetic®
provide labels for file labelit(lM)
provide truth values true(l)
provider, nlsprovider: nlsprovider(3n)
prs: print an SCCS file prs(l)
prtacct, runacct, shutacct,/ acctsh(lM)
ps: report process status ps(l)
pseudo-random numbers drand48(3C)
PT or GT local printer mktpy(l)
ptdl: RS-232 terminal tdl(l)
ptrace: process trace ptrace(2)
ptx: permuted index ptx(l)
push character back into input ungetc(3S)
putc, putchar, fputc, putw: putc(3S)
putchar, fputc, putw: put putc(3S)
putenv: change or add value to putenv(3C)
putmsg: send a message on a putmsg(2)
putpwent: write password file putpwent(3C)
puts, fputs: put a string on a puts(3S)
putspent: write shadow putspent(3X>
pututline, setutent, endutent,/ getut(3C)
putw: put character or word on putc(3S)
pwck, grpck: password/group pwck(lM)
pwconv: install and update pwconv(lM)
pwd: working directory name pwd(l)
pwunconv: install and update pwunconv(lM)
QIC tape qic(7)
qinstall: install and verify qinstall(l)
qlist: print out file lists qlist(l)
qsort: quicker sort. qsott(3C)
quarter-inch and half-inch stape(7)
query, nsquery: Remote nsquery(lM)
query Remote VO Processor for riopqry(lM)
query terminfo database tput(l)
queue description file queuedefs(4)
queue msgget(2)
queue remote resource mounts rmount(lM)

- Ivii -

ipcim: remove a message queue, semaphore set or shared/ ipcrm(l)
request, rumount: cancel queued remote resource rumount(lM)

description file, queuedefs: at/batch/cron queue queuedefs(4)
qsort: quicker sort. qsoit(3C)

command immune to hangups and quits, nohup: run a nohup(l)
quiz: test your knowledge quiz(6)

random-number generator, rand, srand: simple rand(3C)
adage, fortune: print a random, hopefully interesting, fortune(6)

rand, srand: simple random-number generator rand(3C)
fsplit: split FORTRAN, ratfor, or efl files fsplit(l)

dialect ratfor: rational FORTRAN ratfor(l)
ratfor: rational FORTRAN dialect ratfor(l)

stop the operating system. rcO: run commands performed to rcO(lM)
performed for multi-user/ rc2, rc3: run commands rc2(lM)

for multi-user/ rc2, rc3: ran commands performed rc2(lM)
execution, rcmd: remote shell command rcmd(l)

routines for returning a/ rcmd, rresvport, ruserok: rcmd(3)
rep: remote file copy rcp(l)

getpass: read a password getpass(3C)
entry of a common/ ldtbread: read an indexed symbol table ldtbread(3X)
header/ ldshread, ldnshread: read an indexed/named section ldshread(3X)

in a file, getdents: read directory entries and put getdents(2)
read: read from file read(2)

mail: send mail to users or read mail, mail, mail(l)
line: read one line line(l)

read: read from file read(2)
member of an/ ldahread: read the archive header of a ldahread(3X)

common object file, ldfhread: read the file header of a ldfhread(3X)
directory: opendir, readdir, telldir, seekdir,/ directory(3X)

open a common object file for reading, ldopen, ldaopen: ldopen(3X)
open: open for reading or writing open(2)

lseek: move read/write file pointer. lseek(2)
tirdwr: Transport Interface read/write interface STREAMS/ tirdwr(7)

allocator, malloc, free, realioc, calloc: main memory malloc(3C)
mallinfo: fast/ malloc, free, realioc, calloc, mallopt, malloc(3X)

enabled/disabled, rtpenable: real-time priorities rtpenable(lM)
reboot: reboot the system reboot(lM)

mail aliases/ newaliases: rebuild the data base for the newaliases(l)
specify what to do upon receipt of a signal, signal: signal(2)

t_rcvrel: acknowledge receipt of an orderly release/ t_rcvrel(3n)
t_rcvudata: receive a data unit t_rcvudata(3)

socket, recv, reevfrom: receive a message from a recv(2)
indication. t_rcvuderr: receive a unit data error t_rcvuderr(3)

sent over a/ t_rcv: receive data or expedited data t_rcv(3n)
a connect/ t_rcvconnect: receive the confirmation from t_rcvconnect(3)

lockf: record locking on files lockf(3C)
from per-process accounting records, /command summary acctcms(lM)
from/ errdead: extract error records and status information errdead(lM)

manipulate connect accounting records, fwtmp, wtmpfix: fwtmp(lM)
tape, free: recover files from a backup frec(lM)

message from a socket recv, reevfrom: receive a recv(2)
from a sockeL recv, reevfrom: receive a message recv(2)

ed, red: text editor ed(l)
execute regular expression, regcmp, regex: compile and regcmp(3X)

compile, regcmp: regular expression regcmp(l)
make: maintain, update, and regenerate groups of programs make(l)
regular expression, regcmp, regex: compile and execute regcmp(3X)
compile and match routines, regexp: regular expression regexp(5)

- lviii -

locking: exclusive access to
match routines, regexp:

regcmp:
regex: compile and execute

file for a pattern using full
requests, accept,

sorted files, comm: select or
lorder: find ordering

join:
/receipt of an orderly

t_sndrel: initiate an orderly
for a common object file,
mktpy, mvtpy: install or

ldrseek, ldnrseek: seek to
common object file, reloc:
/fmod, fabs: floor, ceiling,

calendar
adv: advertise a directory for

for returning a stream to a
uuxqt: execute

rexec: return stream to a
rhosts:

rexecd:
rep:

administration, rfadmin:
process, rfudaemon:

network names, dname: print
environment, rfstop: stop the
password, rfpasswd: change
server master file, rfmaster:

server query, nsquery:
notification shell/ rfuadmin:

unadv: unadvertise a
/rumountall: mount, unmount

rfstart: start
group mapping, idload:

configuration table, rtab:
online data, riopqry : query

riopefg: configure system for
riogin:

liogind:
showmount: show all

netrc: login file for
rmount: queue

rumount: cancel queued
and unmount file systems and

rmnttry: attempt to mount
execution, remd:

rshd:
on. Uutry: try to contact a

ct: spawn getty to a
server, talkd:

server, fingerd:
table, rmtab:

file, rmdel:
rmdir:

semaphore set or/ ipcrm:
unlink:

regions of a file locking(2)
regular expression compile and regexp(5)
regular expression compile. regcmp(l)
regular expression, regcmp, regcmp(3X)
regular expressions, /search a egrep(l)
reject: allow or prevent LP accept(lM)
reject lines common to two comm(l)
relation for an object/ lorder(l)
relational database operator join(l)
release indication t_rcvrel(3n)
release t_sndrel(3n)
reloc: relocation information reloc(4)
relocate a PT or GT local/ mktpy(l)
relocation entries of a/ ldrseek(3X)
relocation information for a reloc(4)
remainder, absolute value/ floor(3M)
reminder service. calendar(l)
remote access adv(lM)
remote command, /routines rcmd(3)
remote command requests uuxqt(lM)
remote command rexec(3)
remote equivalent users mGsu(4)
remote execution server. rexecd(lM)
remote file copy rcp(l)
Remote File Sharing rfadmin(lM)
Remote File Sharing daemon rfudaemon(lM)
Remote File Sharing domain and dname(lM)
Remote File Sharing rfstop(lM)
Remote File Sharing host rfpasswd(lM)
Remote File Sharing name rfmast£r(4)
Remote File Sharing name nsquery(lM)
Remote File Sharing rfuadmin(lM)
Remote File Sharing resource unadv(lM)
Remote File Sharing (RFS)/ rmountall(lM)
Remote File Sharing rfstart(lM)
Remote File Sharing user and idload(lM)
Remote I/O Processor rtab(4)
Remote I/O Processor for riopqry(lM)
Remote I/O Processor. riopcfg(lM)
remote login rlogin(l)
remote login server. rlogind(lM)
remote mounts showmount(lM)
remote networks netrc(4)
remote resource mounts rmount(lM)
remote resource request. rumount(lM)
remote resources, /mount mount(lM)
remote resources rmnttry(lM)
remote shell command rcmd(l)
remote shell server. rshd(lM)
remote system with debugging Uutiy(lM)
remote terminal ct(lC)
remote user communication talkd(lM)
remote user information fingerd(lM)
remotely mounted file system rmtab(4)
remove a delta from an SCCS rmdel(l)
remove a directory rmdir(2)
remove a message queue ipcrm(l)
remove directory entry unlink(2)

-lix -

rm, rmdir: remove files or directories rm(l)
eqn constructs, deroff: remove nrofl/troff, tbl, and deroflf(l)

running process by changing/ renice: alter priority of renice(l)
fsck, dfsck: check and repair file systems fsck(lM)

uniq: report repeated lines in a file uniq(l)
clock: report CPU time used clock(3C)
fsize: report file size fsize(l)
fsstat: report file system status fsstat(lM)

communication/ ipcs: report inter-process ipcs(l)
blocks and i-nodes. df: report number of free disk df(lM)

errpt: process a report of logged errors errpt(lM)
sa2, sadc: system activity report package, sar: sal, sar(lM)
timex: time a command; report process data and system/ timex(l)

ps: report process status ps(l)
file, uniq: report repeated lines in a uniq(l)

rpcinfo: report RPC information rpcinfo(lM)
sar: system activity reporter sar{l)

stream, fseek, rewind, ftell: reposition a file pointer in a fseek(3S)
and send listener service request message, /format nlsrequest(3n)

cancel queued remote resource request rumount: rumount(lM)
mountd: NFS mount request server mountd(lM)

t accept: accept a connect request t_sccspt(3n)
l listen: listen for a connect request t_listen(3n)
confirmation from a connect request /receive the t_rcvconnect(3)

send user-initiated disconnect request. t_snddis: t_snddis(3n)
reject: allow or prevent LP requests, accept accept(lM)
the LP scheduler and move requests./lpmove: start/stop lpsched(lM)

syslocal: special system requests syslocal(2)
lp, cancel: send/cancel requests to an LP line/ lp(l)

uuxqt: execute remote command requests uuxqt(lM)
res_mkquery, res_send, res_init, dn_comp, dn_expand:/ resolver(3)

res_init, dn_comp, dn_expand:/ res_mkquery, res_send, resolver(3)
control, arp: address resolution display and arp(lM)

arp: Address Resolution Protocol arp(7)
configuration file, resolv.conf: resolver resolver(4)

resolv.conf: resolver configuration file resolver(4)
res_init, dn_comp, dn_expand: resolver routines. /res_send resolver(3)

unmount of an advertised resource, fumount: forced fumount(lM)
rmntstat: display mounted resource information rmntstat(lM)

rmount: queue remote resource mounts rmount(lM)
rumount: cancel queued remote resource request - mmount(lM)

a Remote File Sharing resource, unadv: unadveitise unadv(lM)
file systems and remote resources, /mount and unmount mount(lM)

unmount Network File System resources, /numountall: mount, nmountall(lM)
attempt to mount remote resources, rmnttry: rmnttry(lM)

Remote File Sharing (RFS) resources. Anount, unmount rmountall(lM)
dn_expand:/ res mkquery, res send, res_init, dn_comp, resolver(3)

and usage examples, usage: retrieve a command description usage(l)
disconnect. t_rcvdis: retrieve information from t_rcvdis(3n)

common object file/ ldgetname: retrieve symbol name for ldgetname(3X)
abs: return integer absolute value abs(3C)

logname: return login name of user logname(3X)
command, rexec: return stream to a remote rexec(3)

name, getenv: return value for environment getenv(3C)
stat: data returned by stat system call stat(5)

/ruserok: routines for returning a stream to a remote/ rcmd(3)
col: filter reverse line-feeds col(l)

file pointer in a/ fseek, rewind, ftell: reposition a fseek(3S)

- l x -

/readdir, telldir, seekdir, rewinddir, closedir: directory/ directory(3X)
creat: create a new file or rewrite an existing one creat(2)

remote command, rexec: return stream to a rexec(3)
server, rexecd: remote execution rexecd(lM)

administration, rfadmin: Remote File Sharing rfadmin(lM)
name server master file, rfmasler: Remote File Sharing rfmaster(4)
Sharing host password, rfpasswd: change Remote File rfpasswd(lM)

unmount Remote File Sharing (RFS) resources, /mount, rmountall(lM)
Sharing, rfstart: start Remote File rfstart(lM)

Sharing environment, rfstop: stop the Remote File rfstop(lM)
notification shell script, rfuadmin: Remote File Sharing rfuadmin(lM)

daemon process, rfudaemon: Remote File Sharing rfudaemon(lM)
users, rhosts: remote equivalent rhosts(4)

Remote I/O Processor, riopcfg: configure system for riopcfg(lM)
Processor for online data, riopqry: query Remote I/O ricpqry(lM)

rlogin: remote login riogin(l)
rlogind: remote login server rlogind(lM)

directories, rm, rmdir: remove files or rm(l)
read mail, mail, rmail: send mail to users or mail(l)

SCCS file, rmdel: remove a delta from an rmdel(l)
rmdir: remove a directory rmdir(2)

directories, rm, rmdir. remove files or rm(i)
resource information, rmntstat: display mounted rmntstat(lM)

remote resources, rmnttry: attempt to mount rmnttry(lM)
mounts, rmount: queue remote resource rmount(lM)

unmount Remote File Sharing/ rmountall, rumountall: mount, rmountall(lM)
system table, rmtab: remotely mounted file rmtab(4)

chroot: change root directory chroot(2)
chroot: change root directory for a command chroot(lM)

logarithm, power, square root functions, /exponential, exp(3M)
routing tables, route: manually manipulate the route(lM)

gateways: routed configuration file gateways(4)
daemon, routed: network routing routed(lM)

Aekset, td: graphical device routines and filters gdev(lG)
rcmd, rresvport, ruserok: routines for returning a/ rcmd(3)

Internet address manipulation routines. /inet_netof: inet(3)
common object file access routines, ldfcn: ldfcn(4)

expression compile and match routines, regexp: regular regexp(5)
dn_comp, dn_expand: resolver routines. /res_send, res_init, resolver(3)

graphical table of contents routines, /dtoc, ttoc, vtoc: toc(lG)
routed: network routing daemon routed(lM)
sendmail: mail routing program sendmail(lM)

route: manually manipulate the routing tables route(lM)
getrpcbynumber: get rpc entry, /getrpcbyname, getrpcent(3)

rpcinfo: report RPC information rpcinfo(lM)
getrpcport: get RPC port number. getrpcport(3)

rpc: Sun rpc program number data base rpc(4)
portmap: DARPA port to RPC program number mapper. portmap(lM)

data base, rpc: Sun rpc program number rpc(4)
information, rpcinfo: report RPC rpcinfo(lM)

for returning a stream/ rcmd, rresvport, ruserok: routines rcmd(3)
controlling terminal's local RS-232 channels, tp: tp(7)

tdl, gtdl, ptdl: RS-232 terminal download tdl(l)
standard/restricted/ sh, rsh: shell, the sh(l)

rshd: remote shell server rshd(lM)
stop terminal input and/ rsterm: manually start and rsterm(lM)

configuration table, rtab: Remote I/O Processor rtab(4)
priorities enabled/disabled, rtpenable: real-time rtpenable(lM)

- lxi -

resource request rumount: cancel queued remote rumount(lM)
Remote File/ rmountall, rumountall: mount, unmount rmountall(lM)

nice: run a command at low priority nice(l)
hangups and quits, nohup: run a command immune to nohup(l)

multi-user/ rc2, rc3: run commands performed for rc2(lM)
the operating system. rcO: run commands performed to stop rcO(lM)

runacct: run daily accounting runacct(lM)
ranacct: run daily accounting runacct(lM)

/prctmp, prdaily, prtacct, runacct, shutacct, startup,/ acctsh(lM)
renice: alter priority of running process by changing/ renice(l)

nodes on local network, ruptime: display status of ruptime(l)
returning a/ rcmd, rresvport, raserok: routines for rcmd(3)

local network, rwho: who is logged in on rwho(l)
rwhod: host status server rwhod(lM)

activity report package, sar: sal, sa2, sadc: system sar(lM)
report package, sar: sal, sa2, sadc: system activity sar(lM)

editing activity, sact: print current SCCS file sact(l)
package, sar: sal, sa2, sadc: system activity report sar(lM)

sadp: disk access profiler sadp(lM)
sag: system activity graph sag(lG)

activity report package, sar: sal, sa2, sadc: system sar(lM)
sar: system activity reporter saKl)

space allocation, brie, sbrk: change data segment brk(2)
formatted input, scanf, fscanf, sscanf: convert scanf(3S)

bfs: big file scanner. bfs(l)
language, awk: pattern scanning and processing awk(l)

language, nawk: pattern scanning and processing nawk(l)
the delta commentary of an SCCS delta, ede: change cdc(l)

comb: combine SCCS deltas comb(l)
make a delta (change) to an SCCS file, delta: delta(l)

sact: print current SCCS file editing activity sact(l)
get: get a version of an SCCS file get(l)

prs: print an SCCS file prs(l)
rmdel: remove a delta from an SCCS file rmdel(l)

compare two versions of an SCCS file, sccsdiff: sccsdi£f(l)
sccsfile: format of SCCS file sccsfile(4)

undo a previous get of an SCCS file, unget: unget(l)
val: validate SCCSfile val(l)

admin: create and administer SCCS files admin(l)
what: identify SCCS files what(l)

of an SCCS file, sccsdiff: compare two versions sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

check file system backup schedule, ckbupscd: ckbupscd(lM)
/Ipmove: start/stop the LP scheduler and move requests lpsched(lM)

uusched: the scheduler for the UUCP system uusched(lM)
common object file, senhdr: section header for a scnhdr(4)

screen image file.. scr_dump: format of curses scr_dump(4)
clear: clear terminal screen clear(l)

ocurse: optimized screen functions ocurse(3X)
optimization/ curses: terminal screen handling and curses(3X)

scr_dump: format of curses screen image file scr_dump(4)
display editor based on/ vi: screen-oriented (visual) vi(l)

inittab: script for the init process inittab(4)
terminal session, script: make typescript of script(l)

Sharing notification shell script, rfuadmin: Remote File rfuadmin(lM)
scsi: scsi control device scsi(7)

scsimap: set mappings for SCSI devices scsimap(lM)
half-inch tape, stape: SCSI quarter-inch and stape(7)

- lxii -

scsi: scsi control device scsi(7)
devices, scsimap: set mappings for SCSI scsimap(lM)

sdb: symbolic debugger sdb(l)
program, sdiff: side-by-side difference sdiff(l)

string, fgrep: search a file for a character fgrep(l)
grep: search a file for a pattern grep(l)

using full regular/ egrep: search a file for a pattern egrep(l)
bsearch: binary search a sorted table bsearch(3C)

accounting file(s). acct com: search and print process acctcom(l)
lsearch, lfind: linear search and update lsearch(3C)

hcreate, hdestroy: manage hash search tables, hsearch, hsearch(3C)
tdelete, twalk: manage binary search trees, tsearch, lfind, tsearch(3C)

object file, scnhdr: section header for a common scnhdr(4)
object/ /read an indexed/named section header of a common ldshread(3X)

the object file comment section, mcs: manipulate mcs(l)
Ao line number entries of a section of a common object/ ldlseek(3X)

Ao relocation entries of a section of a common object/ ldrseek(3X)
/seek to an indexed/named section of a common object/ ldsseek(3X)

common object/ size: print section sizes in bytes of size(l)
sed: stream editor sed(l)

/mrand48, jrand48, srand48, seed48, lcong48: generate/ drand48(3C)
section of/ ldsseek, ldnsseek: seek to an indexed/named ldsseek(3X)

a section/ lulseek, laniseek: seek to line number entries of ldlseek(3X)
a section/ ldrseek, ldnrseek: seek to relocation entries of ldrseek(3X)

header of a common/ ldohseek: seek to the optional file ldohseek(3X)
common object file, ldtbseek: seek to the symbol table of a ldtbseek(3X)

/opendir, readdir, telldir, seekdir, rewinddir, closedir:/ directory(3X)
shmget: get shared memory segment identifier. shmget(2)

brk, sbrk: change data segment space allocation brk(2)
to two sorted files, comm: select or reject lines common comm(l)

multiplexing, select: synchronous I/O select(2)
greek: select terminal filter. greek(l)

of a file, cut: cut out selected fields of eadi line cut(l)
file, dump: dump selected parts of an object dump(l)

semctl: semaphore control operations semctl(2)
semop: semaphore operations semop(2)

ipcrm: remove a message queue, semaphore set or shared memory/ ipcrm(l)
semget: get set of semaphores semget(2)

operations, semctl: semaphore control semctl(2)
semget: get set of semaphores semget(2)
semop: semaphore operations semop(2)

t_snuudata: send a data unit. t_sndudata(3)
putmsg: send a message on a stream putmsg(2)

send, sendto: send a message to a socket send(2)
a group of processes, kill: send a signal to a process or kill(2)
over a connection. t_snd: send data or expedited data t_snd(3n)

to network hosts, ping: send ICMP ECHO_REQUEST packets ping(lM)
nlsrequest: format and send listener service request/ nlsrequest(3n)

mail, mail, rmail: send mail to users or read mail(l)
to a socket send, sendto: send a message send(2)

request t_snddis: send user-initiated disconnect t_snddis(3n)
line printer, lp, cancel: send/cancel requests to an LP lp(l)
aliases: aliases file for sendmail aliases(4)

program, sendmail: mail routing sendmail(lM)
socket, send, sendto: send a message to a send(2)

/receive data or expedited data sent over a connection t_rcv(3n)
control/ slipd: switched Serial Line Internet Protocol slipd(lM)

/sldetach: attach and detach serial lines as network/ slattach(lM)

- lxiii -

serstat: display
error statistics,

remote user information
File Transfer Protocol

Remote File Sharing name
mountd: NFS mount request

named: Internet domain name
Remote File Sharing name

rexecd: remote execution
rlogind: remote login

rshd: remote shell
rwhod: host status

remote user communication
telnetd: DARPA TELNET protocol

Trivial File Transfer Protocol
uucpd, ouucpd: network uucp

make typescript of terminal
buffering to a stream.

Aoascci, tolower, toupper,
IDs. setuid,

getgrent, getgrgid, getgmam,
/oethostbvaddr, °ethostent

identifier of/ gethostid,
current host, gethostname,

goto.
hashing encryption, crypt,

/getnetbyaddr, getnetbyname,

protocol/ /getprotobyname,
getpwent, getpwuid, getpwnam,
/getservbyport, getservbyname,

options on/ getsockopt,
lckpwdf,/ getspent, getspnam,

time, gettimeofday,
environment at/ cprofile:

login time, profile:
gettydefs: speed and terminal

group IDs.

,/getutid. getutline, pututline,
stream, setbuf,

data in a/ sputl,
standard/restricted command/

lckpwdf, ulckpwdf: get
putspent: write

xstr: extract and
chkshlib: compare

mkshlib: create a
operations, shmctl:

queue, semaphore set or
shmop:

identifier, shmget: get
nfssys: common

rfadmin: Remote File
rfudaemon: Remote File

dname: print Remote File

serial port error statistics serstat(lM)
serstat: display serial port serstat(lM)
server, fingerd: fingerd(lM)
server, ftpd: DARPA Internet ftpd(lM)
server master file, rfmaster: rfmaster(4)
server mountd(lM)
server named(lM)
server query, nsquery: nsquery(lM)
server rexecd(lM)
server rlogind(lM)
server rshd(lM)
server rwhod(lM)
server, talkd: talkd(lM)
server telnetd(lM)
server, tftpd: DARPA tftpd(lM)
servers uucpd(lM)
session, script: scripl(l)
setbuf, setvbuf: assign setbuf(3S)
setchrclass: character/ ctype(3C)
setgid: set user and group setuid(2)
setgrent, endgrent, fgetgrent:/ getgrent(3C)
sethostent, endhostent: get/ gethostbynanie(3)
sethostid: get/set unique gethostid(2)
sethostname: get/set name of gethostname(2)
setjmp, longjmp: non-local setjmp(3C)
setkey, encrypt: generate crypt(3C)
setmnt: establish mount table setmnt(lM)
setnetent, endnetent: get/ getnetent(3)
setpgrp: set process group ID setpgrp(2)
setprotoent, endprotoent: get getprotoent(3)
setpwent, endpwent, fgetpwent:/ getpwent(3C)
setservent, endservent: get/ getservent(3)
setsockopt: get and set getsockopt(2)
setspent, endspent, fgetspent, getspent(3X)
settimeofday: get/set date and gettimeofday(2)
setting up a C shell cprofile(4)
setting up an environment at profile(4)
settings used by getty geuydefs(4)
setuid, setgid: set user and setuid(2)
setuname: set name of system setuname(lM)
setutent, endutent, utmpname:/ . getut(3C)
setvbuf: assign buffering to a setbuf(3S)
sgetl: access long integer sputl(3X)
sh, rsh: shell, the sh(l)
shadow, /endspent, fgetspent, getspent(3X)
shadow password file entry putspent(3X)
shadow: password file shadow(4)
share strings in C programs xstr(l)
shared libraries tool chkshlib(l)
shared library mkshlib(l)
shared memory control shmctl(2)
shared memory ID. /a message ipcrm(l)
shared memory operations shmop(2)
shared memory segment shmget(2)
shared NFS system calls nfssys(2)
Sharing administration rfadmin(lM)
Sharing daemon process rfudaemon(lM)
Sharing domain and network/ dname(lM)

- lxiv -

rfstop: stop the Remote File Sharing environment rfstop(lM)
rfpasswd: change Remote File Sharing host password rfpasswd(lM)

file, rfmaster: Remote File Sharing name server master rfmaster(4)
nsquery: Remote File Sharing name server query nsquety(lM)

scripL rfuadmin: Remote File Sharing notification shell rfuadmin(lM)
unadvertise a Remote File Sharing resource, unadv: unadv(lM)

/mount, unmount Remote File Sharing (RFS) resources rmountall(lM)
rfstart: start Remote File Sharing rfstart(lM)

mapping, idload: Remote File Sharing user and group idload(lM)
rcmd: remote shell command execution rcmd(l)

with C-like syntax, csh: a shell (command interpreter) csh(l)
system: issue a shell command system(3S)

cprofile: setting up a C shell environment at login/ cprofile(4)
shl: shell layer manager shl(l)

shutacct, startup, tumacct: shell procedures for/ /iunacct, acctsh(lM)
File Sharing notification shell script /Remote rfuadmin(lM)

rshd: remote shell server. rshd(lM)
command programming/ sh, rsh: shell, the standard/restricted sh(l)

shl: shell layer manager. shl(l)
operations, shmctl: shared memory control shmctl(2)

segment identifier, shmget: get shared memory shmget(2)
operations, shmop: shared memory - shmop(2)

mounts, showmount: show all remote showmount(lM)
/prdaily, prtacct, nrnacct, shutacct, startup, tumacct:/ acctsh(lM)

system, change system state, shutdown, halt: shut down shutdown(lM)
full-duplex connection, shutdown: shut down part of a shutdown(2)

program, sdiff: side-by-side difference sdiff(l)
abort: generate a SIGABRT. abort(3C)

sigpause: signal/ sigset, sighold, sigrelse, sigignore, sigset(2)
sigset, sighold, sigrelse, sigignore, sigpause: signal/ sigset(2)

login: sign on login(l)
sigrelse, sigignore, sigpause: signal management /sighold, sigset(2)
pause: suspend process until signal pause(2)
what to do upon receipt of a signal, signal: specify signal(2)

of processes, kill: send a signal to a process or a group kill(2)
ssignal, gsignal: software signals ssignal(3C)

/sighold, sigrelse, sigignore, sigpause: signal management sigset(2)
signal/ sigset, sighold, sigrelse, sigignore, sigpause: sigset(2)

sigignore, sigpause: signal/ sigset, sighold, sigrelse, sigset(2)
lex: generate programs for simple lexical tasks lex(l)

generator, rand, srand: simple random-number nmd(3C)
atan, atan2:/ trig: sin, cos, tan, asin, acos, trig(3M)

functions, sinh, cosh, tanh: hyperbolic sinh(3M)
fsize: report file size fsize(l)

get descriptor table size, getdtablesize: getdtablesize(2)
object/ size: print section sizes in bytes of common size(l)

detach serial lines as/ siattach, sldetach: attach and slattach(lM)
serial lines as/ siattach, sldetach: attach and detach slattach(lM)

an interval, sleep: suspend execution for sleep(l)
interval, sleep: suspend execution for sleep(3C)

documents, view graphs, and slides, mmt, mvt: typeset mmt(l)
typesetting view graphs and slides, /macro package for mv(5)

linker, load socket/ slink, ldsocket: STREAMS slink(l)
Internet Protocol control/ slipd: switched Serial Line slipd(lM)

current/ ttyslot: find the slot in the utmp file of the ttyslot(3C)
spline: interpolate smooth curve spline(lG)

sno: SNOBOL interpreter. sno(l)
bind: bind a name to a socket bind(2)

- lxv -

ldsocket: STREAMS linker, load socket configuration, slink, slink(l)
initiate a connection on a socket, connect: connect(2)

communication, socket: create an endpoint for socket(2)
listen for connections on a socket listen: listen(2)

getsockname: get socket name getsockname(2)
receive a message from a socket, recv, reevfrom: recv(2)

sendto: send a message to a socket send, send(2)
get and set options on sockets, /setsockopt: getsockopt(2)

ctinstall: install software ctinstall(l)
interface, lo: software loopback network lo(7)

ssignal, gsignal: software signals ssignal(3C)
qinstall: install and verify software using the mkfs(l)/ qinstall(l)

son: soit and/or merge files sort(l)
qsort: quicker sort. qsort(3C)

sort: sort and/or merge files sort(l)
tsort: topological sort tsort(l)

or reject lines common to two sorted files, comm: select comm(l)
bsearch: binary search a sorted table bsearch(3C)

object file, list: produce C source listing from a common list(l)
brk, sbik: change data segment space allocation brk(2)

/unexpand: expand tabs to spaces, and vice versa. expand(l)
terminal, ct: spawn getty to a remote ct(lC)

the/ tapedrives: tape drive specific information used by tapedrives(4)
cftime: language specific strings cftime(4)

fspec: format specification in text files fspec(4)
receipt of a signal, signal: specify what to do upon signal(2)
/set terminal type, modes, speed, and line discipline getty(lM)
/set terminal type, modes, speed, and line discipline uugetty(lM)
used by getty. gettydefs: speed and terminal settings gettydefs(4)

spelling/ spell, hashmake, spellin, hashcheck: find spell(l)
spellin, hashcheck: find spelling errors, /hashmake, spell(l)

curve, spline: interpolate smooth spline(lG)
split: split a file into pieces split(l)

csplit: context split csplit(l)
efl files, fsplit: split FORTRAN, ratfor, or fsplit(l)

uucleanup: uucp spool directory clean-up uucleanup(lM)
lpr: line printer spooler lpr(l)

lpadmin: configure the LP spooling system lpadmin(lM)
output printf, fprintf, sprintf: print formatted printf(3S)

integer data in a/ sputl, sgetl: access long sputl(3X)
power./ exp, log, loglO, pow, sqrt: exponential, logarithm exp(3M)

exponential, logarithm, power, square root functions, /sqrt: exp(3M)
generator, rand, srand: simple random-number rand(3C)

/nrand48, mrand48, jrand48, srand48, seed48, lcong48:/ drand48(3C)
input, scanf, fscanf, sscanf: convert formatted scanf(3S)

signals, ssignal, gsignal: software ssignal(3C)
package, stdio: standard buffered input/output stdio(3S)

communication/ stdipc, ftok: standard interprocess stdipc(3C)
sh, rsh: shell, the standard/restricted command/ sh(l)

half-inch tape, stape: SCSI quarter-inch and stape(7)
and output rsterm: manually start and stop terminal input rsterm(lM)

rfstart: start Remote File Sharing rfstart(lM)
operating system for/ starter: information about the starterfl)

and/ lpsched, lpshut, lpmove: start/stop the LP scheduler lpsched(lM)
/prtacct, runacct, shutacct, startup, tumacct: shell/ acctsh(lM)

stat, fstat: get file status stat(2)
useful with graphical/ stat: statistical network stat(lG)
stat: data returned by stat system call stat(5)

- lxvi -

system information, statfs, fstatfs: get file statfs(2)
with graphical/ stat: statistical network useful stat(lG)

ff: file name and statistics for a file system ff(lM)
nfsstat: Network File System statistics nfsstat(lM)

display serial port error statistics, serstat: serstat(lM)
ustat: get file system statistics ustat(2)

fsstat: report file system status fsstat(lM)
/extract error records and status information from dump errdead(lM)

lpstat: print LP status information lpstat(l)
feof, clearerr, fileno: stream status inquiries, ferror fenor(3S)

control, uustat: uucp status inquiry and job uustat(lC)
communication facilities status, /report inter-process ipcs(l)

netstat: show network status netstat(l)
network, ruptime: display status of nodes on local raptime(l)

ps: report process status ps(l)
rwhod: host status server. rwhod(lM)

stat, fstat: get file status stat(2)
input/output package, stdio: standard buffered stdio(3S)

interprocess communication/ stdipc, ftok: standard stdipc(3C)
stime: set time stime(2)

wait for child process to stop or terminate, wait: wait(2)
rsterm: manually start and stop terminal input and/ rsterm(lM)

rcO: run commands performed to stop the operating system rcO(lM)
environment, rfstop: stop the Remote File Sharing rfstop(lM)

nextkey:/ dbminit, fetch, store, delete, firstkey, dbm(3X)
messages, strace: print STREAMS trace strace(lM)

strcmp, strncmp,/ string: strcat, strdup, stmcat, string(3C)
/strcpy, stmcpy, strlen, strchr, strrchr, strpbrk,/ string(3C)

cleanup program, strclean: STREAMS error logger strclean(lM)
/strcat, strdup, stmcat, strcmp, strncmp, strcpy,/ string(3C)

/stmcat, strcmp, stmcmp, strcpy, stmcpy, strlen,/ string(3C)
/strrchr, strpbrk, strspn, strcspn, strtok: string/ string(3C)
stmcmp,/ string: strcat, strdup, stmcat, strcmp, string(3C)

sed: stream editor. sed(l)
fflush: close or flush a stream, fclose fclose(3S)

fopen, freopen, fdopen: open a stream fopen(3S)
reposition a file pointer in a stream, fseek, rewind, ftell: fseek(3S)

get character or word from a stream, /getchar, fgetc, getw: getc(3S)
getmsg: get next message off a stream getmsg(2)

fgets: get a string from a stream, gets gets(3S)
put character or word on a stream, /putchar, fputc, putw: putc(3S)

putmsg: send a message on a stream putmsg(2)
puts, fputs: put a string on a stream puts(3S)

setvbuf: assign buffering to a stream, setbuf, setbuf(3S)
/feof, clearerr, fileno: stream status inquiries ferror(3S)

/routines for returning a stream to a remote command rcmd(3)
rexec: return stream to a remote command rexec(3)

push character back into input stream, ungetc: ungetc(3S)
commands, streamio: STREAMS ioctl streamio(7)

open any minor device on a STREAMS driver, clone: clone(7)
program, strclean: STREAMS error logger cleanup strclean(lM)

strerr STREAMS error logger daemon strerr(lM)
event/ log: interface to STREAMS error logging and log(7)

multiplexing, poll: STREAMS input/output poll(2)
streamio: STREAMS ioctl commands streamio{7)

slink, ldsocket: STREAMS linker, load socket/ slink(l)
Interface cooperating STREAMS module. /Transport timod(7)

Interface read/write interface STREAMS module. /Transport tirdwr(7)

- lxvii -

sxt: STREAMS multiplexor sxt(7)
strace: print STREAMS trace messages strace(lM)

daemon, strerr: STREAMS error logger strerT(lM)
long integer and base-64 ASCII string. /164a: convert between a641(3C)

convert date and time to string, /ascftime, tzset: ctime(3C)
floating-point number to string, /fcvt, gcvt: convert ecvt(3C)

search a file for a character string, fgrep: fgrep(l)
gps: graphical primitive string, format of graphical/ gps(4)

gets, fgets: get a string from a stream gets(3S)
puts, fputs: put a string on a stream puts(3S)

bemp, bzero: bit and byte string operations, bcopy bstring(3)
strspn, strcspn, strtok: string operations, /strpbrk string(3C)

number, strtod, atof: convert string to double-precision strtod(3C)
strtol, atol, atoi: convert string to integer strtol(3C)

cftime: language specific strings cftime(4)
text strings in a file, strings: extract the ASCII strings(l)

extract the ASCII text strings in a file, strings: strings(l)
xstr: extract and share strings in C programs xstr(l)

number information from a/ strip: strip symbol and line strip(l)
information from a/ strip: strip symbol and line number strip(l)
/stmcmp, strcpy, stmcpy, strlen, strchr, strrchr/ string(3C)

string: strcat, strdup, strncat. strcmp, stmcmp/ string(3C)
/strdup, stmcat, strcmp, stmcmp, strcpy, stmcpy/ string(3C)

/strcmp, stmcmp, strcpy, stmcpy, strlen, strchr/ string(3C)
/strlen, strchr, strrchr, strpbrk, strspn, strcspn/ string(3C)

/stmcpy, strlen, strchr, strrchr, strpbrk, strspn/ string(3C)
/strchr, strrchr, strpbrk, strspn, strcspn, strtok:/ string(3C)

to double-precision number, strtod, atof: convert string strtod(3C)
/strpbrk, strspn, strcspn, strtok: string operations string(3C)

string to integer, strtol, atol, atoi: convert strtol(3C)
processes using a file or file structure, fuser: identify fuser(lM)

t_alloc: allocate a library structure. t_alloc(3n)
t free: free a library structure. t_free(3n)

terminal, stty: set the options for a stty(l)
another user, su: become super-user or su(lM)

firstkey, nextkey: database subroutines, /store, delete, dbm(3X)
dbm_clearerr: database subroutines. /dbm_enor ndbm(3X)
plot: graphics interface subroutines plot(3X)

/same lines of several files or subsequent lines of one file paste(l)
count of a file, sum: print checksum and block sum(l)

du: summarize disk usage du(lM)
accounting/ acctcms: command summary from per-process acctcms(lM)

base, rpc: Sun rpc program number data ipc(4)
sync: update the super block sync(lM)

sync: update super block sync(2)
inetd: internet "super-server" inetd(lM)

/file for inetd (internet "super-server") inetd.conf(4)
su: become super-user or another user su(lM)

interval, sleep: suspend execution for an sleep(l)
interval, sleep: suspend execution for sleep(3C)

pause: suspend process until signal pause(2)
swab: swap bytes swab(3C)

swap: swap administrative interface swap(lM)
swab: swap bytes swab(3C)

interface, swap: swap administrative swap(lM)
Protocol control/ slipd: switched Serial Line Internet slipd(lM)

file, swrite: synchronous write on a swrite(2)
sxt: STREAMS multiplexor sxt(7)

- lxviii -

information from/ strip: strip symbol and line number strip(l)
file/ ldgetname: retrieve symbol name for common object ldgetname(3X)

name for common object file symbol table entry, /symbol ldgetname(3X)
object/ /compute the index of a symbol table entry of a common ldtbindex(3X)

ldtbread: read an indexed symbol table entry of a common/ ldtbread(3X)
syms: common object file symbol table format syms(4)

object/ ldtbseek: seek to the symbol table of a common ldtbseek(3X)
unistd: file header for symbolic constants unistd(4)

sdb: symbolic debugger. sdb(l)
common CTIX system terms and symbols, /definitions of glossary(l)

mkdbsym: load symbols in kernel debugger. mkdbsym(lM)
symbol table format, syms: common object file syms(4)

sync: update super block sync(2)
sync: update the super block sync(lM)

/correct the time to allow synchronization of the system/ adjtime(2)
update: provide disk synchronization update(lM)

t_sync: synchronize transport library t_sync(3n)
select: synchronous I/O multiplexing select(2)
swrite: synchronous write on a file swrite(2)

interpreter) with C-like syntax, csh: a shell (command csh(l)
definition, sysdef: output system sysdef(lM)

error/ perror, ermo, sys_errlist, sys_nerr: system - perror(3C)
information, sysfs: get file system type sysfs(2)

requests, syslocal: special system syslocal(2)
perror, ermo, sys_errlist, sys_nerr: system error/ perror(3C)

shutdown, halt: shut down system, change system state shutdown(lM)
binary search a sorted table, bsearch: bsearch(3C)

for common object file symbol table entry, /symbol name ldgetname(3X)
/compute the index of a symbol table entry of a common object/ ldtbindex(3X)

file, /read an indexed symbol table entry of a common object ldtbread(3X)
common object file symbol table format, syms: syms(4)
master device information table, master: master(4)

mnttab: mounted file system table mnttab(4)
ldtbseek: seek to the symbol table of a common object file ldtbseek(3X)

/dtoc, ttoc, vtoc: graphical table of contents routines toc(lG)
remotely mounted file system table, rmtab: rmtab(4)

I/O Processor configuration table, rtab: Remote rtab(4)
setmnt: establish mount table selmnt(lM)

getdtablesize: get descriptor table size getdtablesize(2)
classification and conversion tables, /generate character chrtbl(lM)

tbl: format tables for nroff or troff. tbl(l)
hdestroy: manage hash search tables, hsearch, hcreate, hsearch(3C)

manipulate the routing tables, route: manually route(lM)
tabs: set tabs on a terminal tabs(l)

expand, unexpand: expand tabs to spaces, and vice/ expand(l)
request. t_accept: accept a connect t_accept(3n)

ctags: create a tags file ctags(l)
a file, tail: deliver the last part of tail(l)
talk: talk to another user talk(l)

communication server, talkd: remote user talkd(lM)
structure. t_alloc: allocate a library t_alloc(3n)

trigonometric/ trig: sin, cos, tan, asin, acos, atan, atan2: trig(3M)
sinh, cosh, tanh: hyperbolic functions sinh(3M)

V/TAPE 3200 half-inch tape controller. /Interphase ipt(7)
set drive parameters for tape controllers, tapeset: tapeset(lM)

information used/ tapedrives: tape drive specific tapedrives(4)
tsioctl: facilitate usage of a tape drive tsioctl(l)

Hewlett-Packard 2645A terminal tape file archiver. hpio: hpio(l)

- Ixix -

tar: tape file archiver tar(l)
recover files from a backup tape, free: frec(lM)

tio: tape io filter tio(l)
qic: interface for QIC tape qic(7)

quarter-inch and half-inch tape, stape: SCSI stape(7)
specific information used by/ tapedrives: tape drive tapedrives(4)

for tape controllers, tapeset: set drive parameters tapeset(lM)
tar: tape file archiver tar(l)

programs for simple lexical tasks, lex: generate lex(l)
transport endpoint. t_bind: bind an address to a t_bind(3n)

deroff: remove nroS/troff, tbl, and eqn constructs deroff(l)
ortioff. tbl: format tables fornroff tbl(l)

endpoint. t_close: close a transport t_close(3n)
connection with another/ t_connect: establish a t_connect(3n)

Control Protocol, tcp: Internet Transmission tcp(7)
/hpd, erase, hardcopy, tekset, td: graphical device routines/ gdev(lG)

search trees, tsearch, tfind, tdelete, twalk: manage binary tsearch(3C)
terminal download, tdl, gtdl, ptdl: RS-232 tdl(l)

tee: pipe fitting tee(l)
gdev: hpd, erase, hardcopy, tekset, td: graphical device/ gdev(lG)

4014: paginator for the Tektronix 4014 terminal 4014(1)
initialization, init. telinit: process control init(lM)

directory: opendir, readdir, telldir, seekdir, rewinddir/ directory(3X)
telnetd: DARPA TELNET protocol server telnetd(lM)

telnet: user interface to TELNET protocol telnet(l)
TELNET protocol, telnet: user interface to telnet(l)

server, telnetd: DARPA TELNET protocol telnetd(lM)
temporary file, tmpnam, tempnam: create a name for a tmpnam(3S)

tmpfile: create a temporary file tmpfile(3S)
tempnam: create a name for a temporary file, tmpnam, tmpnam(3S)

terminals, term: conventional names for term(5)
term: format of compiled term file term(4)

terminfo/ captoinfo: convert a termcap description into a captoinfo(lM)
data base, termcap: terminal capability termcap(4)

for the Tektronix 4014 terminal. 4014: paginator 4014(1)
functions of the DASI 450 terminal. 450: handle special 450(1)

interface, tiop: terminal accelerator tiop(7)
termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)

console: console terminal console(7)
ct: spawn getty to a remote terminal ct(lC)

generate file name for terminal, ctermid: ctermid(3S)
tdl, gtdl, ptdl: RS-232 terminal download tdl(l)

/terminal interface, and terminal environment tset(l)
greek: select terminal filter greek(l)

Agetstr, tgoto, tputs: terminal independent/ otenmcap(3X)
/manually start and stop terminal input and output rsterm(lM)

terminal/tset: set terminal, terminal interface, and tset(l)
termio: general terminal interface termio(7)
tty: controlling terminal interface tty(7)

dial: establish an out-going terminal line connection dial(3C)
list of terminal types by terminal number, ttytype: ttytype(4)

database, tput: initialize a terminal or query terminfo tput(l)
clear, clear terminal screen clear(l)

optimization package, curses: terminal screen handling and curses(3X)
script: make typescript of terminal session script(l)

getty. gettydefs: speed and terminal settings used by gettydefs(4)
stty: set the options for a terminal stty(l)

- lxx -

tabs: set tabs on a terminal tabs(l)
hpio: Hewlett-Packard 2645A terminal tape file archiver. hpio(l)

and terminal/ tset: set terminal, terminal interface, tset(l)
system/ collocate: locate a terminal to use as the virtual conlocate(lM)

tty: get the name of the terminal tty(l)
isatty: find name of a terminal, ttyname, ttyname(3C)

and line/ getty: set terminal type, modes, speed getty(lM)
and line/ uugetty: set terminal type, modes, speed uugetty(lM)

number, ttytype: list of terminal types by terminal ttytype(4)
vt: virtual terminal vt(7)

functions of DASI300 and 300s terminals, /handle special 300(1)
functions of Hewlett-Packard terminals, hp: handle special hp(l)

channels, tp: controlling terminal's local RS-232 tp(7)
term: conventional names for terminals term(5)

kill: terminate a process kill(l)
exit, _exit: terminate process exit(2)

demon, errstop: terminate the error-logging errstop(lM)
for child process to stop or terminate, wait: wait wait(2)

tic: terminfo compiler. tic(lM)
initialize a terminal or query terminfo database, tput: tput(l)
a termcap description into a terminfo description, /convert captoinfo(lM)

infocmp: compare or print out terminfo descriptions infocmp(lM)
data base, terminfo: terminal capability terminfo(4)
interface, termio: general terminal termio(7)

/of common CllX system terms and symbols glossary(l)
message. t_error: produce error t_error(3n)

command, test: condition evaluation test(l)
isnan: isnand, isnanf: test for floating point NaN/ isnan(3C)

quiz: test your knowledge quiz(6)
ed, red: text editor. ed(l)

ex: text editor ex(l)
casual users), edit: text editor (variant of ex for edit(l)

change the format of a text file, newform: newform(l)
fspec: format specification in text files fspec(4)

/checkeq: format mathematical text for nroff or troff. eqn(l)
prepare constant-width text for troff. cw, checkcw: cw(l)

ms: text formatting macros ms(5)
nroff: format text. nroff(l)

plock: lock process, text, or data in memory plock(2)
more, page: text perusal more(1)

strings: extract the ASCII text strings in a file strings(l)
troff: typeset text troff(l)

binary search trees, tsearch, tfind, tdelete, twalk: manage tsearch(3C)
structure. t_free: free a library t_free(3n)

user interface to the DARPA TFTP protocol, tftp: tftp(l)
DARPA TFTP protocol, tftp: user interface to the tftp(l)
Transfer Protocol server, tflpd: DARPA Trivial File tflpd(lM)

tgetstr, tgoto, tputs:/ tgetent, tgetnum, tgetflag otermcap(3X)
tputs:/ tgetent, tgetnum, tgetflag, tgetstr, tgoto, otermcap(3X)

protocol-sped fic service/ t_getinfo: get t_getinfo(3n)
tgoto, tputs:/ tgetent, tgetnum, tgetflag, tgetstr, otermcap(3X)

state. t_getstate: get the current t_getstate(3)
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs:/ otermcap(3X)
Agetnum, tgetflag, tgetstr, tgoto, tputs: terminal/ otermcap(3X)

tic: terminfo compiler tic(lM)
ttt, cubic: tic-tac-toe ttt(6)

data and system/timex: time a command; report process timex(l)
time: time a command time(l)

- lxxi -

execute commands at a later time, at, batch: a t 0)
a C shell environment at login time, cprofile: setting up cprofile(4)

systems for optimal access time, dcopy: copy file dcopy(lM)
time: get time time(2)

settimeofday: get/set date and time, gettimeofday gettimeofday(2)
profil: execution time profile profil(2)

up an environment at login time, profile: setting profile(4)
stime: set time stime(2)
time: get time time(2)

of the/ adjtime: correct the time to allow synchronization adjtime(2)
tzset: convert date and time to string, /ascftime, ctime(3C)

clock: report CPU time used clock(3C)
time zone: set default system time zone timezone(4)

process times, times: get process and child times(2)
update access and modification times of a file, touch: touch(l)

get process and child process times, times: times(2)
file access and modification times, utime: set utime(2)

process data and system/ timex: time a command; report timex(l)
time zone, timezone: set default system timezone(4)

cooperating STREAMS module, timod: Transport Interface timod(7)
tio: tape io filter. tio(l)

interface, tiop: terminal accelerator tiop(7)
read/write interface STREAMS/ tirdwr: Transport Interface tirdwr(7)

request. t_listen: listen for a connect t_listen(3n)
event on a transport/ t_look: look at the current t_look(3n)

file, tmpfile: create a temporary tmpfile(3S)
for a temporary file, tmpnam, tempnam: create a name tmpnam(3S)

/isascii, tolower, toupper, toascci, _tolower, _toupper,/ ctype(3C)
Aolower, _toupper, _tolower, toascii: translate characters conv(3Q

graphical table of contents/ toe: dtoc, ttoc, vtoc: toc(lG)
popen, pclose: initiate pipe to/from a process popen(3S)

Aoupper, tolower, _toupper, _tolower, toascii: translate/ conv(3C)
tolower, toupper, toascci, _tolower, _toupper,/ Asascii, ctype(3C)

toascii:/ conv: toupper, tolower, _toupper, _tolower, conv(3C)
compare shared libraries tool, chkshlib: chkshlib(l)

endpoint. t_open: establish a transport t_open(3n)
tsort: topological sort. tsort(l)

a transport endpoint. toptmgmt: manage options for t_optmgmt(3n)
acctmerg: merge or add total accounting files acctmerg(lM)

modification times of a file, touch: update access and touch(l)
Aoupper, toascci, _tolower, _toupper, setchrclass:/ ctype(3C)

conv: toupper, tolower, toupper, tolower, toascii:/ conv(3C)
local RS-232 channels, tp: controlling terminal's tp(7)

tplot: graphics filters tplot(lG)
query terminfo database, tput: initialize a terminal or tput(l)

Agetfiag, tgetstr, tgoto, tputs: terminal independent/ otermcap(3X)
tr: translate characters tr(l)

strace: print STREAMS trace messages strace(lM)
ptrace: process trace ptrace(2)

error logging and event tracing, interface to STREAMS log(7)
ftp: ARPANET file transfer program ftp(l)

ftpd: DARPA Internet File Transfer Protocol server ftpd(lM)
tftpd: DARPA Trivial File Transfer Protocol server tftpd(lM)

/_toupper, _tolower, toascii: translate characters conv(3C)
tr: translate characters tr(l)

tcp: Internet Transmission Control Protocol tcp(7)
t_bind: bind an address to a transport endpoint t_bind(3n)

t_close: close a transport endpoint t_close(3n)

- lxxii -

look at the current event on a transport endpoinl. t_look: t_look(3n)
t_open: establish a transport endpoint t_open(3n)

Manage options for a transport endpoint t_optmgmt(3n)
tunbind: disable a transport endpoint t_unbind(3n)

cooperating STREAMS/ timod: Transport Interface timod(7)
interface STREAMS/ tirdwr: Transport Interface read/write tirdwr(7)

t_sync: synchronize transport library t_sync(3n)
system, uucico: file transport program for the uucp uucico(lM)

nlsprovider: get name of transport provider. nlsprovider(3n)
a connection with another transport user, /establish t_connect(3n)

expedited data sent over a/ t rcv: receive data or t_rcv(3n)
confirmation from a connect/ t rcvconnect: receive the t_rcvconnect(3)

from disconnect. t_rcvdis: retrieve information t_rcvdis(3n)
of an orderly release/ t_rcvrel: acknowledge receipt t_rcvrel(3n)

unit. t_rcvudata: receive a data t_rcvudata(3)
data error indication. t_rcvuderr: receive a unit t_rcvuderT(3)

ftw: walk a file tree ftw(3C)
twalk: manage binary search trees. A find, tdelete tsearch(3C)

trk: trekkie game trk(6)
tan, asin, acos, atan, atan2: trigonometric functions, /cos, trig(3M)

server, tftpd: DARPA Trivial File Transfer Protocol tftpd(lM)
trk: trekkie game , tric(6)

constant-width text for troff. cw, checkcw: prepare cw(l)
mathematical text for nroff or troff. /neqn, checkeq: format eqn(l)

typesetting view graphs/mv: a troff macro package for mv(5)
format tables for nroff or tioff. tbl: tbl(l)

troff: typeset text. troff(l)
true, false: provide truth values tiue(l)

with debugging on. Uutry: try to contact a remote system Uutry(lM)
twalk: manage binary search/ tsearch, tfind, tdelete, tsearch(3C)

interface, and terminal/ tset: set terminal, terminal tset(l)
tape drive, tsioctl: facilitate usage of a tsioctl(l)

data over a connection. t_snd: send data or expedited t_snd(3n)
disconnect request. t_snddis: send user-initiated t_snddis(3n)

release. t_sndrel: initiate an orderly t_sndrel(3n)
t_sndudata: send a data unit t_sndudata(3)
tsort: topological sort tsort(l)

library. t_sync: synchronize transport t_sync(3n)
contents routines, toe: dtoc, ttoc, vtoc: graphical table of toc(lG)

ttt, cubic: tic-lac-toe ttt(6)
interface, tty: controlling terminal ttv(7)
terminal, tty: get the name of the tty(l)

a terminal, ttyname, isatty: find name of ttyname(3C)
utmp file of the current/ ttyslot: find the slot in the ttyslot(3C)

types by terminal number, ttytype: list of terminal ttytype(4)
endpoint. t_unbind: disable a transport t_unbind(3n)

/runacct, shutacct, startup, tumacct: shell procedures for/ acctsh(lM)
tsearch, tfind, tdelete, twalk: manage binary search/ tsearch(3C)

file: determine file type file(l)
sysfs: get file system type information sysfs(2)

getty: set terminal type, modes, speed, and line/ getty(lM)
uugetty: set terminal type, modes, speed, and line/ uugetty(lM)

ttytype: list of terminal types by terminal number. ttytype(4)
nodes for assorted device types, /create device createdev(lM)

types, types: primitive system data types(5)
types: primitive system data types types(5)

session, script: make typescript of terminal script(l)
graphs, and slides, mmt, mvt: typeset documents, view mmt(l)

lxxiii -

troff: typeset text troff(l)
mv: a troff macro package for typesetting view graphs and / mv(5)
to/ /asctime, cftime, ascftime, tzset: convert date and time ctime(3C)

control, uadmin: administrative uadmin(lM)
control, uadmin: administrative uadmin(2)
system, uconf: configure the operating uconf(lM)

Protocol, udp: Internet User Datagram udp(7)
getpw: get name from UID getpw(3C)

ul: do underlining til(l)
/endspent, fgetspent, lckpwdf, ulckpwdf: get shadow getspent(3X)

limits, ulimit: get and set user ulimit(2)
creation mask, umask: set and get file umask(2)

mask, umask: set file-creation mode umask(l)
systems and remote/ mount, umount: mount and unmount file mount(lM)

umount: unmount a file system umount(2)
multiple file/ mountall, umountall: mount, unmount mountall(lM)

File Sharing resource, unadv: unadvertise a Remote unadv(lM)
Sharing resource, unadv: unadvertise a Remote File unadv(lM)

CTIX system, uname: get name of current uname(2)
Cl'lX system, uname: print name of current uname(l)

ul: do underlining ul(l)
file, unget: undo a previous get of an SCCS unget(l)

spaces, and vice/ expand, unexpand: expand tabs to expand(l)
an SCCS file, unget: undo a previous get of unget(l)

into input stream, ungetc: push character back ungetc(3S)
/seed48, lcong48: generate uniformly distributed/ drand48(3C)

a file, uniq: report repeated lines in uniq(l)
mktemp: make a unique file name mktemp(3C)

gethostid, sethostid: get/set unique identifier of current/ gethostid(2)
symbolic constants, unistd: file header for unistd(4)

t rcvuderr: receive a unit data error indication t_rcvuderr(3)
t_rcvudata: receive a data unit t_rcvudata(3)

t_sndudata: send a data unit. t_sndudata(3)
units: conversion program units(l)

mc68k, miti, mini, mega, unixpc,. machid: machid(l)
execution, uux: UNIX-to-UNIX system command uux(lC)

uucp, uulog, uuname: UNIX-to-UNIX system copy uucp(lC)
uuto, uupick: public UNIX-to-UNIX system file copy uuto(lC)

link, unlink: link and unlink files and directories link(lM)
entry, unlink: remove directory unlink(2)

umount: unmount a file system umount(2)
mount, umount: mount and unmount file systems and/ mount(lM)

mountall, umountall: mount, unmount multiple file systems mountall(lM)
nmountall, numountall: mount, unmount Network File System/ nmountall(lM)

resource, fumount: forced unmount of an advertised fumount(lM)
rmountall, rumountall: mount, unmount Remote File Sharing/ rmountall(lM)

manage notifications, notify, unnotify, evwait, evnowait: notify(2)
files, pack, peat, unpack: compress and expand pack(l)

times of a file, touch: update access and modification louch(l)
of programs, make: maintain, update, and regenerate groups make(l)

pwconv: install and update /etc/shadow with/ pwconv(lM)
pwunconv: install and update /etc/shadow with/ pwunconv(lM)
lfind: linear search and update, lsearch, lsearch(3C)

synchronization, update: provide disk update(lM)
sync: update super block sync(2)

masterupd: update the master file masterupd(lM)
sync: update the super block sync(lM)

du: summarize disk usage du(lM)

- lxxiv -

a command description and usage examples./retrieve usage(l)
tsioctl: facilitate usage of a tape drive tsioctl(l)

description and usage/ usage: retrieve a command usage(l)
stat: statistical network useful with graphical/ stat(lG)

id: print user and group IDs and names id(lM)
setuid, setgid: set user and group IDs setuid(2)

idload: Remote File Sharing user and group mapping idload(lM)
talkd: remote user communication server. talkd(lM)

crontab: user crontab file crontab(l)
character login name of the user, cuserid: get cuserid(3S)

udp: Internet User Datagram Protocol udp(7)
/getgid, getegid: get real user, effective user, real/ getuid(2)

environ: user environment environ(5)
disk accounting data by user ID. diskusg: generate diskusg(lM)

program, finger: user information lookup finger(l)
fingerd: remote user information server fingerd(lM)

protocol, telnet: user interface to TELNET telnet(l)
TFTP protocol, tftp: user interface to the DARPA tftp(l)

ulimit: get and set user limits ulimit(2)
logname: return login name of user. logname(3X)

/get real user, effective user, real group, and/ getuid(2)
become super-user or another user, su: su(1 M)

iaik: raik to another user. talk(l)
with another transport user, /establish a connection t_connect(3n)

the utmp file of the current user, /find the slot in ttyslot(3C)
write: write to another user. write(l)

request t_snddis: send user-initiated disconnect t_snddis(3n)
(variant of ex for casual users), edit: text editor edit(l)

mail, rmail: send mail to users or read mail mail(l)
rhosts: remote equivalent users rhosts(4)

operating system for beginning users, /information about the starter(l)
wall: write to all users wall(l)

fuser: identify processes using a file or file/ fuser(lM)
search a file for a pattern using full regular/egrep: egrep(l)

identify a CTIX system command using keywords, locate: locate(l)
assist: assistance using CTIX system commands assist(l)

/install and verify software using the mkfs(l) proto file/ qinstall(l)
failed login attempts, /usr/adm/loginlog: log of loginlog(4)

statistics, ustat: get file system ustat(2)
gutil: graphical utilities gutil(lG)

modification times, utime: set file access and utime(2)
utmp, wtmp: utmp and wtmp entry formats utmp(4)

endutent, utmpname: access utmp file entry, /setutent, getut(3C)
ttyslot: find the slot in the utmp file of the current user ttyslot(3C)

/pututline, setutent, endutent, utmpname: access utmp file/ getut(3C)
directories and permissions/ uucheck: check the uucp uucheck(lM)

for the uucp system, uucico: file transport program uucico(lM)
directory clean-up. uucleanup: uucp spool uucleanup(lM)

/configuration file for uucp communications lines Devices(5)
uucheck: check the uucp directories and/ uucheck(lM)

uucpd, ouucpd: network uucp servers uucpd(lM)
uucleanup: uucp spool directory clean-up uucleanup(lM)

control, uustat: uucp status inquiry and job uustat(lC)
file transport program for the uucp system, uucico: uucico(lM)

uusched: the scheduler for the UUCP system uusched(lM)
UNIX-to-UNIX system copy, uucp, uulog, uuname: uucp(lC)

servers, uucpd, ouucpd: network uucp uucpd(lM)
modes, speed, and line/ uugetty: set terminal type, uugetty(lM)

- lxxv -

system copy, uucp, uulog, uuname: UNIX-to-UNIX uucp(lC)
copy, uucp, uulog, uuname: UNIX-to-UNIX system uucp(lC)

system file copy, uuto, uupick: public UNIX-to-UNIX uuto(lC)
UUCP system, uusched: the scheduler for the uusched(lM)

and job control, uustat: uucp status inquiry uustat(lC)
UNIX-to-UNIX system file/ uuto, uupick: public uuto(lC)
system with debugging on. Uutry: try to contact a remote Uutry(lM)

command execution, uux: UNIX-to-UNIX system uux(lC)
requests, uuxqt: execute remote command uuxqt(lM)

val: validate SCCS file val(l)
abs: return integer absolute value abs(3C)

getenv: return value for environment name getenv(3C)
ceiling, remainder, absolute value functions, /fabs: floor, floor(3M)

putenv: change or add value to environment putenv(3C)
/htons, ntohl, ntohs: convert values between host and/ byteorder(3)

values, values: machine-dependent values(5)
true, false: provide truth values trae(l)

values: machine-dependent values values(5)
/print formatted output of a varargs argument list vprintf(3S)

argument list, varargs: handle variable varargs(5)
varargs: handle variable argument list varargs(5)

users), edit: text editor (variant of ex for casual edit(l)
vc: version control yc(l)

option letter from argument vector, getopt: get getopt(3C)
assert: verify program assertion. assert(3X)

mkfs(l)/ qinstall: install and verify software using the qinstall(l)
tabs to spaces, and vice versa, /unexpand: expand expand(l)

vc: version control vc(l)
get: get a version of an SCCS file get(l)

sccsdiff: compare two versions of an SCCS file sccsdiff(l)
formatted output of/ vprintf, vfprintf, vsprintf: print vprintf(3S)

manipulate Volume Home Blocks (VHB). libdev: libdev(3X)
display editor based on ex. vi: screen-oriented (visual) vi(l)
expand tabs to spaces, and vice versa, expand, unexpand: expand(l)

mmt, mvt: typeset documents, view graphs, and slides mmt(l)
macro package for typesetting view graphs and slides. Aroff mv(5)

/a terminal to use as the virtual system console conlocate(lM)
vt: virtual terminal vt(7)

on ex. vi: screen-oriented (visual) display editor based vi(l)
vme: VME bus interface vme(7)

file system, volcopy: make literal copy of volcopy(lM)
file system: format of system volume, fs: . fs(4)

libdev: manipulate Volume Home Blocks (VHB) libdev(3X)
iv: initialize and maintain volume iv(l)

print formatted output of a/ vprintf, vfprintf, vsprintf: vprintf(3S)
vt: virtual terminal ^(7)

ipt: interface for Interphase V/TAPE 3200 half-inch tape/ ipt(7)
contents/ toe: dtoc, ttoc, vtoc: graphical table of toc(lG)

process, wait: await completion of wait(l)
or terminate, wait: wait for child process to stop wait(2)

ftw: walk a file tree ftw(3C)
wall: write to all users wall(l)
wc: word count wc(l)
what: identify SCCS files what(l)

signal, signal: specify what to do upon receipt of a signal(2)
whodo: who is doing what. whodo(lM)

network, rwho: who is logged in on local rwho(l)
who: who is on the system who(l)

- lxxvi -

whodo: who is doing what whodo(lM)
fold long lines for finite width output device, fold: fold(l)

window: window management primitives window(7)
wm: window management wm(l)

primitives, window: window management window(7)
wm: window management wra(l)

cd: change working directory cd(l)
chdir: change working directory chdir(2)

get path-name of current working directory, getcwd: getcwd(3C)
pwd: working directory name pwd(l)

swrite: synchronous write on a file swrite(2)
write: write on a file write(2)

putpwent: write password file entry putpwent(3C)
entry, putspent: write shadow password file putspent(3X)

wall: write to all users wall(l)
write: write to another user write(l)

write: write on a file write®
open: open for reading or writing open(2)

utmp, wtmp: utmp and wtmp entry formats utmp(4)
accounting records, fwtmp, wtmpfix: manipulate connect fwtmp(lM)

hunt-the-wumpus. wump: the game of wump(6)
list(s) and execute command, xargs: construct argument xargs(l)

strings in C programs, xstr: extract and share xstrfl)
bessel: jO,jl,jn, yO, yl, yn: Bessel functions bessel(3M)

bessel: jO, j 1, jn, yO, y 1, yn: Bessel functions bessel(3M)
compiler-compiler, yacc: yet another yacc(l)

bessel: jO,jl,jn, yO, yl, yn: Bessel functions bessel(3M)
set default system time zone, timezone: timezone(4)

- lxxvii -

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes the system calls, most of which have one or more error
returns. An error condition is indicated by an otherwise impossible returned
value. This is almost always -1 or the NULL pointer; the individual descriptions
specify the details. An error number is also made available in the external
variable err no. Errno is not cleared on successful calls, so it should be tested
only after an error has been indicated.

Each system call description attempts to list all possible error numbers. The
following is a complete list of the error numbers and their names as defined in
<errno.h>.

1 EPERM Not owner or super-user

Typically this error indicates an attempt to modify a file in some way
forbidden except to its owner or super-user. It is also returned for
attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory

This error occurs when a file name is specified and the file should exist
but doesn't, or when one of the directories in a path name does not
exist.

3 ESRCH No such process

No process can be found corresponding to that specified by pid in
kill(2) or ptrace(2).

4 EINTR Interrupted system call

An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the interrupted
system call returned this error condition.

5 EIO I/O error

Some physical I/O error has occurred. This error may in some cases
occur on a call following the one to which it actually applies.

INTRO(2) INTRO(2)

6 ENXIO No such device or address

I/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for example,
a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long

An argument list longer than 5,120 bytes is presented to a member of
the exec {2) family.

8 ENOEXEC Exec format error

A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number [see
a.out(4)].

9 EBADF Bad Hie number

Either a file descriptor refers to no open file, or a read{2) [write (2)]
request is made to a file which is open only for writing (respectively,
reading).

10 ECHILD No child processes

A wait was executed by a process that had no existing or unwaited-for
child processes.

11 EAGAIN No more processes

A fork failed because the system's process table is full or the user is not
allowed to create any more processes, a system call failed because of
insufficient memory or swap space, or an IPC call is made with the
rPC_NOWAIT and the caller would block.

12 ENOMEM Not enough space

During an exec(2), brk(2), or sbrk(2), a program asks for more space
than the system is able to supply. This may not be a temporary
condition; the maximum space size is a system parameter. The error
may also occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not enough
swap space during a fork(2). If this error occurs on a resource
associated with Remote File Sharing (RFS), it indicates a memory
depletion which may be temporary, dependent on system activity at
the time the call was invoked.

- 2 -

INTRO(2) INTRO(2)

13 EACCES Permission denied

An attempt was made to access a file or an IPC structure in a way
forbidden by the protection system.

14 EFAULT Bad address

The system encountered a hardware fault in attempting to use an
argument of a system call.

15 ENOTBLK Block device required

A non-block file was mentioned where a block device was required:
for example, in mount(2).

16 EBUSY Device or resource busy

An attempt was made to mount a device that was already mounted or
an attempt was made to dismount a device on which there is an active
file (open file, current directory, mounted-on file, active text segment).
It will also occur if an attempt is made to enable accounting when it is
already enabled. The device or resource is currently unavailable.

17 EEXIST File exists

An existing file was mentioned in an inappropriate context: for
example, link(2).

18 EXDEV Cross-device link

A link to a file on another device was attempted.

19 ENODEV No such device

An attempt was made to apply an inappropriate system call to a
device: for example, read a write-only device.

20 ENOTDIR Not a directory

A non-directory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(2).

21 EISDIR Is a directory

An attempt was made to write on a directory.

- 3 -

INTRO(2) INTRO(2)

22 EINVAL Invalid argument

Some invalid argument [for example, dismounting a non-mounted
device; mentioning an undefined signal in signal(2) or kill{2)\ reading
or writing a file for which lseek(2) has generated a negative pointer].
Also set by the math functions described in the (3M) entries of this
manual.

23 ENFILE File table overflow

The system file table is full, and temporarily no more opens can be
accepted.

24 EMFILE Too many open files

No process may have more than NOFILES (default 20) descriptors open
at a time. When a record lock is being created with fcntl, there are too
many files with record locks on them.

25 ENOTTY Not a character device (or) Not a typewriter

An attempt was made to ioctl(2) a file that is not a special character
device.

26 ETXTBSY Text file busy

An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or to
remove a pure-procedure program that is being executed.

27 EFBIG File too large

The size of a file exceeded the maximum file size or ULIMIT [see
UUtfUl(z) J.

28 ENOSPC No space left on device

During a write(2) to an ordinary file, there is no free space left on the
device. In an IPC call, no IPC identifiers are available.

29 ESPIPE Illegal seek

An lseek(2) was issued to a pipe.

30 EROFS Read-only file system

An attempt to modify a file or directory was made on a device
mounted read-only.

- 4 -

INTRO(2) INTRO(2)

31 EMLINK Too many links

An attempt to make more than the maximum number of links (1000) to
a file.

32 EPIPE Broken pipe

A write on a pipe for which there is no process to read the data. This
condition normally generates a signal; the error is returned if the signal
is ignored.

33 EDOM Math argument

The argument of a function in the math package (3M) is out of the
domain of the function.

34 ERANGE Result too large

The value of a function in the math package (3M) is not representable
within machine precision.

35 ENOMSG No message of desired type

An attempt was made to receive a message of a type that does not exist
on the specified message queue [see msgop(2)].

36 EIDRM Identifier removed

This error is returned to processes that resume execution due to the
removal of an identifier from the file system's name space [see
msgctl (2), semctl(2), and shmctl(2)].

37 ECHRNG Channel number out of range

Not used; retained for compatibility.

38 EL2NSYNC Level 2 not synchronized

Not used; retained for compatibility.

39 EL3HALT Level 3 halted

Not used; retained for compatibility.

40 EL3RST Level 3 reset

Not used; retained for compatibility.

41 ELNRNG Link number out of range

Not used; retained for compatibility.

- 5 -

INTRO(2) INTRO(2)

42 EVNATCH Protocol driver not attached

Not used; retained for compatibility.
43 ENOCSI No CSI structure available

Not used; retained for compatibility.

44 EL2HLT Level 2 halted

Not used; retained for compatibility.

45 EDEADLK Deadlock

A deadlock situation was detected and avoided. This error pertains to
file and record locking provided by fcntl {2).

46 ENOLCK No lock

In fcntl(2), the setting or removing of record locks on a file cannot be
accomplished because there are no more record entries left on the
system.

50 EBADE Invalid exchange

A user-specified exchange descriptor is out of range or specifies an
unallocated exchange.

51 EBADR Invalid request descriptor

An attempt has been made to reference a request that is not
outstanding.

52 EXFULL Exchange full

No request descriptors are currently available for this exchange.

53 ENOANO No anode

Not used; retained for compatibility.

54 EBADRQC Invalid request code

No routing is currently available for this request code.

55 EBADSLT Invalid slot

The slot number specified for an ICC request is not present in the
system. (No longer used; retained for compatibility.)

- 6 -

INTRO(2) INTRO(2)

56 EDEADLOCK Deadlock error

Call cannot be honored because of potential deadlock or because lock
table is full. [Note that this return value is associated with locking (2)
and differs from the EDEADLK of fcntl (2); see the WARNING on
locking (2).]

57 EBFONT Bad font file format

Not used; retained for compatibility.

60 ENOSTR Not a stream

A putmsg(2) or getmsg(2) system call was attempted on a file
descriptor that is not a STREAMS device.

62 ETIME Stream ioctl timeout

The timer set for a STREAMS ioctl(2) call has expired. The cause of
this error is device specific and could indicate either a hardware or
software failure, or perhaps a timeout value that is too short for the
specific operation. The status of the ioctl(2) operation is
indeterminate.

63 ENOSR No stream resources

During a STREAMS open(2), either no STREAMS queues or no
STREAMS head data structures were available.

64 ENONET Machine is not on the network

This error is Remote File Sharing (RFS) specific. It occurs when users
try to advertise, unadvertise, mount, or unmount remote resources
while the machine has not done the proper startup to connect to the
network.

65 ENOPKG No package

This error occurs when users attempt to use a system call from a
package which has not been installed.

66 EREMOTE Resource is remote

This error is RFS specific. It occurs when users try to advertise a
resource which is not on the local machine, or try to mount/unmount a
device (or pathname) that is on a remote machine.

67 ENOLINK Virtual circuit is gone

This error is RFS specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

- 7 -

INTRO(2) INTRO(2)

68 EADV Advertise error

This error is RFS specific. It occurs when users try to advertise a
resource which has been advertised already, or try to stop the RFS
while there are resources still advertised, or try to force unmount a
resource when it is still advertised.

69 ESRMNT Srmount error

This error is RFS specific. It occurs when users try to stop RFS while
there are resources still mounted by remote machines.

70 ECOMM Communication error

This error is RFS specific. It occurs when trying to send messages to
remote machines but no virtual circuit can be found.

71 EPROTO Protocol error

Some protocol error occurred. This error is device specific, but is
generally not related to a hardware failure.

74 EMULTIHOP Multihop attempted

This error is RFS specific. It occurs when users try to access remote
resources which are not directly accessible.

77 EBADMSG Bad message

During a read(2), getmsg(2), or ioctl(2) I_RECVFD system call to a
STREAMS device, something has come to the head of the queue that
can't be processed. That something depends on the system call:

read(2) Control information or a passed file descriptor.

getmsg(2) Passed file descriptor.

ioctl(2) Control or data information.

83 ELIBACC Cannot access a needed shared library

Trying to exec(2) an a.out that requires a shared library (to be linked
in) and the shared library doesn't exist or the user doesn't have
permission to use i t

84 ELIBBAD Accessing a corrupted shared library

Trying to exec(2) an a.out that requires a shared library (to be linked
in) and exec(2) could not load the shared library. The shared library is
probably corrupted.

- 8 -

INTRO(2) INTRO(2)

85 ELIBSCN .lib section in a.out corrupted

Trying to exec(2) an a.out that requires a shared library (to be linked
in) and there was erroneous data in the .lib section of the a.out. The .lib
section tells exec(2) what shared libraries are needed. The a.out is
probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than
system limit

Trying to exec(2) an a.out that requires more shared libraries (to be
linked in) than is allowed on the current configuration of the system.
See the SISeries CTlXAdministrator' sGnide.

87 ELIBEXEC Cannot exec a shared library directly

Try in a tn exec(̂ 2) a shared library directly. This is allowed.

224 ENOHDW No hardware available for operation

The address specification exceeds the allowable limits or the required
hardware does not exist (for example, the executable file requires
hardware that is not available). See exec (2).

225 EBADFS Bit-mapped file system is marked dirty

An attempt to mount a bit-mapped file system failed due to the dirty
flag being set for that file system.

226 EWOULDBLOCK Operation would block

An operation which would cause a process to block was attempted on
an object in non-blocking mode.

227 EINPROGRESS Operation now in progress

An operation which takes a long time to complete [such as a
connect(2)] was attempted on a non-blocking object.

228 EALREADY Operation already in progress

An operation was attempted on a non-blocking object which already
had an operation in progress.

229 ENOTSOCK Socket operation on non-socket

Self-explanatory.

230 EDESTADDRREQ Destination address required

A required address was omitted from an operation on a socket.

- 9 -

INTRO(2) INTRO(2)

231 EMSGSIZE Message too long

A message sent on a socket was larger than the internal message
buffer.

232 EPROTOTYPE Protocol wrong type for socket

A protocol was specified which does not support the semantics of the
socket type requested. For example, you cannot use the ARPA Internet
UDP protocol with type SOCK_STREAM.

233 EPROTONOSUPPORT Protocol not supported

The protocol has not been configured into the system or no
implementation for it exists.

234 ESOCKTNOSUPPORT Socket type not supported

The support for the socket type has not been configured into the
system or no implementation for it exists.

235 EOPNOTSUPP Operation not supported on socket

For example, trying to accept a connection on a datagram socket.

236 EPFNOSUPPORT Protocol family not supported

The protocol family has not been configured into the system or no
implementation for it exists.

237 EAFNOSUPPORT Address family not supported by protocol

An address incompatible with the requested protocol was used. For
example, you shouldn't necessarily expect to be able to use PUP
Internet addresses with ARPA Internet protocols.

238 EADDRINUSE Address already in use

Only one usage of each address is normally permitted.

239 EADDRNOTAVAIL Can't assign requested address

Normally results from an attempt to create a socket with an address not
on this machine.

240 ENETDOWN Network is down

A socket operation encountered a dead network.

241 ENETUNREACH Network is unreachable

A socket operation was attempted to an unreachable network.

- 1 0 -

INTRO(2) INTRO(2)

242 ENETRESET Network dropped connection on reset

The host you were connected to crashed and rebooted.

243 ECONNABORTED Software caused connection abort

A connection abort was caused internal to your host machine.

244 ECONNRESET Connection reset by peer

A connection was forcibly closed by a peer. This normally results
from the peer executing a shutdown (2) call.

245 ENOBUFS No buffer space available

An operation on a socket or pipe was not performed because the
system lacked sufficient buffer space.

246 EISCONN Socket is aiready connected

A connect request was made on an already connected socket; or, a
sendto or sendmsg request on a connected socket specified a
destination other than the connected party.

247 ENOTCONN Socket is not connected

An request to send or receive data was disallowed because the socket
is not connected.

248 ESHUTDOWX Can't send after socket shutdown

A request to send data was disallowed because the socket had already
been shut down with a previous shutdown (2) call.

249 ETOOMANYREFS Too many references: can't splice

Not in use; included for compatibility only.

250 ETIMEDOUT Connection timed out

A connect request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on
the communication protocol.)

251 ECONNREFUSED Connection refused

No connection could be made because the target machine actively
refused i t This usually results from trying to connect to a service
which is inactive on the foreign host.

252 EHOSTDOWN Host is down

The host is down.

- 1 1 -

INTRO(2) INTRO(2)

253 EHOSTUNREACH No route to host

The gateway does not recognize the requested host via the route
specified.

254 ENOPROTOOPT Protocol not available

A bad option was specified in a getsockopt(2) or setsockopt (2) call.

DEFINITIONS
Process ID Each active process in the system is uniquely identified by a
positive integer called a process ID. The range of this ID is from 1 to 30,000.

Parent Process ID A new process is created by a currently active process [see
fork{2)]. The parent process ID of a process is the process ID of its creator.

Process Group ID Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This ID is the
process ID of the group leader. This grouping permits the signaling of related
processes [see kill(2)].

Tty Group ID Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping is used to
terminate a group of related processes upon termination of one of the processes
in the group [see exit(2) and signal(2)].

Real User ID and Real Group ID Each user allowed on the system is identified
by a positive integer (0 to 65535) called a real user ID.

Each user is also a member of a group. The group is identified by a positive
integer called the real group ID.

An active process has a real user ID and real group ID that are set to the real
user ID and real group ID, respectively, of the user responsible for the creation
of the process.

Effective User ID and Effective Group ID An active process has an effective
user ID and an effective group ID that are used to determine file access
permissions (see below). The effective user ID and effective group ID are equal
to the process's real user ID and real group ID, respectively, unless the process
or one of its ancestors evolved from a file that had the set-user-ID bit or set-
group- ID bit set [see exec(2)].

Super-user A process is recognized as a super-user process and is granted
special privileges, such as immunity from file permissions, if its effective user
ID is 0.

- 1 2 -

INTRO(2) INTRO(2)

Special Processes The processes with a process ID of 0 and a process ID of 1
are special processes and are referred to as procO and prod.

ProcO is the scheduler. Prod is the initialization process (init). Procl is the
ancestor of every other process in the system and is used to control the process
structure.

File Descriptor A file descriptor is a small integer used to do I/O on a file. The
value of a file descriptor is from 0 to (NOFILES - 1). A process may have no
more than NOFILES file descriptors open simultaneously. A file descriptor is
returned by system calls such as open(2), or pipe(2). The file descriptor is used
as an argument by calls such as read(2), write(2), ioctl(2), and close(2).

File Name Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character values excluding
\0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use ?, [, or] as part of file names because
of the special meaning attached to these characters by the shell [see ^ (l)] .
Although permitted, the use of unprintable characters in file names should be
avoided.

Path Name and Path Prefix A path name is a null-terminated character string
starting with an optional slash (/) , followed by zero or more directory names
separated by slashes, optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named
a non-existent file.

Directory Directory entries are called links. By convention, a directory
contains at least two links,. and . . , referred to as dot and dot-dot, respectively.
Dot refers to the directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory Each process has associated
with it a concept of a root directory and a current working directory for the
purpose of resolving path name searches. The root directory of a process need
not be the root directory of the root file system.

- 1 3 -

INTRO(2) INTRO(2)

File Access Permissions Read, write, and execute/search permissions on a file
are granted to a process if one or more of the following are true:

• The effective user ID of the process is super- user.

• The effective user ID of the process matches the user ID of the owner of
the file and the appropriate access bit of the "owner" portion (0700) of
the file mode is set

• The effective user ID of the process does not match the user ID of the
owner of the file, and the effective group ID of the process matches the
group of the file and the appropriate access bit of the "group" portion
(0070) of the file mode is set

• The effective user ID of the process does not match the user ID of the
owner of the file, and the effective group ID of the process does not
match the group ID of the fiie, and the appropriate access
bit of the "other" portion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier A message queue identifier (msqid) is a unique
positive integer created by a msg get (2) system call. Each msqid has a message
queue and a data structure associated with i t The data structure is referred to as
msqidds and contains the following members:

struct ipc_perm msg_perm;
struct msg 'msg flrst;
struct msg *msg_last;
ushort msgcbytes;
ushort msg_qnum;
ushort msgqbytes;
ushort msgjspid;
ushort msgjrpid;
t i m e j msgstlme;
t ime j msgrtime;
t imet msg_ctime;

msg_perm Is an ipc_perm structure that specifies the message
operation permission (see below). This structure
includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group Id */
ushort uid; /* user id •/
ushort gid; /• group id •/

- 1 4 -

INTRO(2) INTRO(2)

ushort mode; /• r/w permission */
ushort Mq; /» stol usage sequence # »/
key_t key; /* key */

msg " m s g f i r s t Is a pointer to the first message on the queue.

msg *msg_last Is a pointer to the last message on the queue.

msg cbytes Is the current number of bytes on the queue.

msg_qnum Is the number of messages currently on the queue.

msgqbytes Is the maximum number of bytes allowed on the
queue.

msgjspid Is the process ID of the last process that performed a
msgsnd operation.

msg_lrpid Is the process ID of the last process that performed a
msgrcv operation.

msgst ime Is the time of the last msgsnd operation.

msgrt ime Is the time of the last msgrcv operation.

msgct ime Is the time of the last msgctl(2) operation that
changed a member of the above structure.

Message Operation Permissions In the msgop(2) and msgctl(2) system call
descriptions, the permission required for an operation is given as "{token}",
where "token" is the type of permission needed, interpreted as follows:

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a msqid are granted to a process if one or more
of the following are true:

• The effective user ID of the process is super- user.

• The effective user ID of the process matches msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid and the
appropriate bit of the "use r" portion (0600) of msg_perm.mode is set

- 1 5 -

INTRO(2) INTRO(2)

The effective group ID of the process matches msg_perm.cgid or
msg_perm.gid and the appropriate bit of the "group" portion (060) of
msg_perm.mode is set

The appropriate bit of the "other" portion (006) of msgperm.mode
set

is

Otherwise, the corresponding permissions are denied.

Semaphore Identifier A semaphore identifier (semid) is a unique positive
integer created by a semget{2) system call. Each semid has a set of semaphores
and a data structure associated with i t The data structure is referred to as
semidds and contains the following members:

struct ipcperm sem_perm;

struct
ushort
t ime j
time t

semperm

/* operation permission*/
/• struct */

sem *sem_base; /* ptr to first semaphore in set */
sem_nsems; /* number of sems in set */
semotime; /* last operation time */
semctime; /* last change time */

/* Times measured in sees since */
/* 00:00:00 GMT, Jan. 1,1970 */

Is an ipc_perm structure that specifies the
semaphore operation permission (see below). This
structure includes the following members:

ushort uld; /* user id */
ushort gid; /• group id */
ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort mode; /'* r/'a permission »/'
ushort seq; /* slot usage sequence number */
key_t key; /• key •/

sem_nsems Is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive
integer referred to as a sem num. Sem_num values
run sequentially from 0 to the value of sem_nsems
minus 1.

sem otime Is the time of the last semap (2) operation.

sem ctime Is the time of the last semctl(2) operation that
changed a member of the above structure.

- 1 6 -

INTRO(2) INTRO(2)

A semaphore is a data structure called sem that contains the following
members:

ushort semval; /» semaphore value */
short sempid; /* pid of last operation */
ushort semncnt; /• # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0*1

semval Is a non-negative integer which is the actual value of
the semphore.

sempid Is equal to the process ID of the last process that
performed a semaphore operation on this semaphore.

semncnt Is a count of the number of processes that are
currently suspended awaiting this semaphore's
semval to become greater than its current value.

semzcnt Is a count of the number of processes that are
currently suspended awaiting this semaphore's
semval to become zero.

Semaphore Operation Permissions In the semop (2) and semctl (2) system call
descriptions, the permission required for an operation is given as "{token}",
where "token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00040 Read by group
00020 Alter by group
00004 Read by others
00002 Alter by others

Read and alter permissions on a semid are granted to a process if one or more of
the following are true:

• The effective user ID of the process is super- user.

• The effective user ID of the process matches sem_perm.cuid or
sem_perm.uid in the data structure associated with semid and the
appropriate bit of the "user" portion (0600) of sem_perm.mode is set

• The effective group ID of the process matches semjperm.cgid or
sem_perm.gid and the appropriate bit of the "group" portion (060) of
sem perm.mode is set

• The appropriate bit of the "other" portion (006) of sem_perm.mode is
set

- 1 7 -

INTRO(2) INTRO(2)

Otherwise, the corresponding permissions are denied.

Shared-Memory Identifier A shared-memory identifier (shmid) is a unique
positive integer created by a shmget(2) system call. Each shmid has a segment
of memory (referred to as a shared memory segment) and a data structure
associated with i t (Note that these shared memory segments must be explicitly
removed by the user after the last reference to them is removed.) The data
structure is referred to as shmid ds and contains the following members:

struct Ipcperm shm_perm; /» operation permission «/
/*struct */

int shmsegsz; /* size of segment */
ushort shmjpid; /* pid of last operation */
ushort shm_cpid; /* creator pid */
ushort shmjtattch; /» number of current attaches */
t ime j shmatime; /* last attach time »/
t ime j shmdtime; /« last detach time */
t ime j shmctime; /* last change time */

/* Times measured in sees since */
/* 00:00:00 GMT, Jan. 1,1970 */

s h m p e r m Is an ipc_perm structure that specifies the shared
memory operation permission (see below). This
structure includes the following members:

ushort cuid; /* creator user id »/
ushort cgid; /• creator group id */
ushort uld; /* user id •/
ushort gid; /* group Id */
ushort mode; /* r/w permission */
ushort seq; /* slot usage sequence number */
k e y j key; /* key */

s h m s e g s z

shm_cpid

s h m j p i d

shm nattch

Specifies the size of the shared memory segment in
bytes.

Is the process ID of the process that created the
shared memory identifier.

Is the process ID of the last process that performed a
shmop(2) operation.

Is the number of processes that currently have this
segment attached.

- 1 8 -

INTRO(2) INTRO(2)

shmatime Is the time of the last shmat(2) operation.

shm_dtime Is the time of the last shmdt(2) operation.

shm_ctime Is the time of the last shmctl(2) operation that
changed one of the members of the above structure.

Shared-Memory Operation Permissions In the shmop(2) and shmctl(2)
system call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as
follows:

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a shmid are granted to a process if one or more
of the following are true:

• The effective user ID of the process is super-user.

• The effective user ID of the process matches shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid and the
appropriate bit of the "user" portion (0600) of shm_perm.mode is set.

• The effective group ID of the process matches shm_perm.cgid or
shm_perm.gid and the appropriate bit of the "group" portion (060) of
shm perm.mode is set

• The appropriate bit of the "other" portion (06) of shm_perm.mode is
set

Otherwise, the corresponding permissions are denied.

STREAMS A set of kernel mechanisms that support the development of network
services and data communication drivers. It defines interface standards for
character input/output within the kernel and between the kernel and user level
processes. The STREAMS mechanism is composed of utility routines, kernel
facilities and a set of data structures.

Stream A stream is a full-duplex data path within the kernel between a user
process and driver routines. The primary components are a stream head, a
driver and zero or more modules between the stream head and driver. A stream
is analogous to a shell pipeline except that data flow and processing are
bidirectional.

- 1 9 -

INTRO(2) INTRO(2)

Stream Head In a stream, the stream head is the end of the stream that
provides the interface between the stream and a user process. The principle
functions of the stream head are processing STREAMS -related system calls, and
passing data and information between a user process and the stream.

Driver In a stream, the driver provides the interface between peripheral
hardware and the stream. A driver can also be a pseudo- driver, such as a
multiplexor or log driver [see log(7)], which is not associated with a hardware
device.

Module A module is an entity containing processing routines for input and
output data. It always exists in the middle of a stream, between the stream's
head and a driver. A module is the STREAMS counterpart to the commands in a
Shell pipeline except that a module contains a pair of functions which allow
independent bidirectional (downstream and upstream) data flow and
processing.

Downstream In a stream, the direction from stream head to driver.

Upstream In a stream, the direction from driver to stream head.

Message In a stream, one or more blocks of data or information, with
associated STREAMS control structures. Messages can be of several defined
types, which identify the message contents. Messages are the only means of
transferring data and communicating within a stream.

Message Queue In a stream, a linked list of messages awaiting processing by a
module or driver.

Read Queue In a stream, the message queue in a module or driver containing
messages moving upstream.

Write Queue In a stream, the message queue in a module or driver containing
messages moving downstream.

Multiplexor A multiplexor is a driver that allows streams associated with
several user processes to be connected to a single driver, or several drivers to be
connected to a single user process. STREAMS does not provide a general
multiplexing driver, but does provide the facilities for constructing them, and
for connecting multiplexed configurations of streams.

Sockets and Address Families
A socket is an endpoint for communication between processes. Each socket has
queues for sending and receiving data.

Sockets are typed according to their communications properties. These
properties include whether messages sent and received at a socket require the

- 2 0 -

INTRO(2) INTRO(2)

name of the partner, whether communication is reliable, the format used in
naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult
socket(2) for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications
protocols. Each protocol set supports addresses of a certain format. An
Address Family is the set of addresses for a specific group of protocols. Each
socket has an address chosen from the address family in which the socket was
created.

Two interchangeable structures are used by socket calls: sockaddr (defined in
<sys/socket.h>) and sockaddr in (defined in <sys/in.h>). The sadata field of
the sockaddr structure is interpreted according to the address family. (Note that
AF INET is the only currently supported address family,) The structure
sockaddr in has been defined specifically for the Internet family (the first field
must be AFJNET); this structure is described in inet(7).

SEE ALSO
close(2), exit(2), getmsg(2), getpid(2), getuid(2), msgctl(2), msgget(2),
msgop(2), open(2), poll(2), putmsg(2), read(2), semctl(2), semget(2), semop(2),
setpgrp(2), setuid(2), shmctl(2), shmget(2), shmop(2), signal(2), wait(2),
write(2), intro(3).
CTIX Network Programmer's Primer.
UNIX System VRelease 3.2 Network Programmer's Guide.
UNIX System V Release 3.2 Streams Programmer's Guide.
UNIX System V Release 3.2 Streams Primer.

- 2 1 -

ACCESS(2) ACCESS (2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char *path;
int amode;

DESCRIPTION
The path argument points to a path name naming a file; access checks the
named file for accessibility according to the bit pattern contained in amode,
using the real user ED in place of the effective user ID and the real group ID in
place of the effective group ID. The bit pattern contained in amode is
constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] Read, write, or execute (search) permission is requested for a
null path name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[EROFS] Write access is requested for a file on a read-only file
system.

[ETXTBSY] Write access is requested for a pure procedure (shared text)
file that is being executed.

[EACCES] Permission bits of the file mode do not permit the requested
access.

[EFAULT] Path points outside the allocated address space for the
process.

[EINTR] A signal was caught during the access system call.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

ACCESS (2) ACCESS (2)

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

The owner of a file has permission checked with respect to the "owner" read,
write, and execute mode bits. Members of the file's group other than the owner
have permissions checked with respect to the "group" mode bits, and all others
have permissions checked with respect to the "other" mode bits.

SEE ALSO
chmod(2), stat(2).

DIAGNOSTICS
If the requested access is permitted, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

ACCT(2) ACCT (2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
acct is used to enable or disable the system process accounting routine. If the
routine is enabled, an accounting record will be written on an accounting file
for each process that terminates. Termination can be caused by one of two
things: an exit call or a signal [see exit(2) and signal(2)]. The effective user ID
of the calling process must be super-user to use this call.

path points to a pathname naming the accounting file. The accounting file
format is given in ncc>(4). u V / '

The accounting routine is enabled if path is non-zero and no errors occur
during the system call. It is disabled if path is zero and no errors occur during
the system call.

acct will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not super-user.

[EBUSY] An attempt is being made to enable accounting when it is
already enabled.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] One or more components of the accounting file path name do
not exist.

[EACCES] The file named by path is not an ordinary file.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points to an illegal address.

SEE ALSO
exit(2), signal(2), acct(4).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

ADJTIME(2) ADJTIME(2)

NAME
adjtime - correct the time to allow synchronization of the system clock

SYNOPSIS
#include <sys/time.h>

int adjtime(delta, olddelta)
struct timeval *delta;
struct timeval *olddelta;

DESCRIPTION
The adjtime call makes small adjustments to the system time, as returned by
gettimeofday (2), advancing or retarding it by the time specified by the timeval
delta. If delta is negative, the clock is slowed down by incrementing it more
slowly than normal until the correction is complete. If delta is positive, a larger
increment than normal is used. The skew used to perform the correction is
generally a fraction of one percent. Thus, the time is always a monotonically
increasing function.

This call can be used by time servers that synchronize the clocks of computers
in a local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average
network time.

RETURN VALUE
A return value of 0 indicates that the call succeeded. A return value of -1
indicates that an error occurred, and in this case an error code is stored in the
global variable errno.

ERRORS
The following

[EFAULT]

[EPERM]

SEE ALSO
date(l), gettimeofday(2).

WARNINGS
A time correction from an earlier call to adjtime may not be finished when
adjtime is called again. If olddelta is non-zero, then the structure pointed to
will contain, upon return, the number of microseconds still to be corrected from
the earlier call.

The adjtime (2) call is restricted to the super-user.

error codes may be set in errno:

An argument points outside the process's allocated address
space.

The process's effective user ID is not that of the super-user.

(r - -

ALARM(2) ALARM(2)

NAME
alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
alarm instructs the alarm clock of the calling process to send the signal
SIGALRM to the calling process after the number of real time seconds specified
by sec have elapsed [see signal (2)].

Alarm requests are not stacked; successive calls reset the alarm clock of the
calling process.

If sec is 0, any previously made alarm request is canceled.

SEE ALSO
pause(2), signal(2), sigpause(2).

DIAGNOSTICS
alarm returns the amount of time previously remaining in the alarm clock of the
calling process.

!

BIND(2) (CTIX Internetworking) BIND(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int bind (s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
The bind call assigns a name to an unnamed socket. When a socket is created
with socket Q), it exists in a name space (address family) but has no name
assigned. (Currently, only the Internet address family is supported.) The bind
call requests that name be assigned to the socket.

SEE ALSO
connect(2), getsockname(2), intro(2), listen(2), socket(2), inet(7), intro(7).
CTIX Network Programmer's Primer.

NOTES
The rules used in name binding vary between communication domains [see
protocols(4)]. Consult the manual entries in Section 7 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an
error, which is further specified in the global errno.

ERRORS
The bind call fails if any of the following are true:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is not a socket
[EADDRNOTAVAIL] The specified address is not available from the local

machine.

[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address.

[EACCESS] The requested address is protected, and the current
user has inadequate permission to access it.

[EFAULT] The name parameter is not in a valid part of the user
address space.

(r

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char * endds;

char *sbrk (incr)
int incr;

DESCRIPTION
brk and sbrk are used to change dynamically the amount of space allocated for
the calling process's data segment [see exec (2)]. The change is made by
resetting the process's break value and allocating the appropriate amount of
space. The break value is the address of the first location beyond the end of the
data segment. The amount of allocated space increases as the break value
increases. Newly allocated space is set to zero. If, however, the same memory
space is reallocated to the same process its contents are undefined.

brk sets the break value to endds and changes the allocated space accordingly.

sbrk adds incr bytes to the break value and changes the allocated space
accordingly. Incr can be negative, in which case the amount of allocated space
is decreased.

brk and sbrk will fail without making any change in the allocated space if one
or more of the following are true:

[ENOMEM] Such a change would result in more space being allocated
than is allowed by the system-imposed maximum process
size [see ulimit(2)).

[EAGAIN] Total amount of system memory available for a read during
physical I/O is temporarily insufficient [see shmop(2)]. This
may occur even though the space requested was less than the
system-imposed maximum process size [see ulimit(2)].

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C).

DIAGNOSTICS
Upon successful completion, brk returns a value of 0 and sbrk returns the old
break value. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

-

CHDIR(2) CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory, chdir causes the named directory
to become the current working directory, the starting point for path searches for
path names not beginning with /.

chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path
name.

[EFAULT] Path points outside the allocated address space of the
process.

[EINTR] A signal was caught during the chdir system call.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file, chmod sets the access permission
portion of the named file's mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.

020#0 Set group ID on execution if # is 1 ,5 ; -3; or 1

Enable mandatory file/record locking if # is 6 ,4 ,2 , or 0

01000 Save text image after execution.

00400 Read by owner.

00200 Write by owner.

00100 Execute (search if a directory) by owner.

00070 Read, write, execute (search) by group.

00007 Read, write, execute (search) by others.
The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save
text image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective group
ID of the process does not match the group ID of the file, mode bit 02000 (set
group ID on execution) is cleared.

If a 410 executable file has the sticky bit (mode bit 01000) set, the operating
system does not delete the program text from the swap area when the last user
process terminates. If a 413 executable file has the sticky bit set, the operating
system does not delete the program text from memory when the last user
process terminates. In either case, if the sticky bit is set the text is already be
available (either in a swap area or in memory) when the next user of the file
executes it, thus making execution faster.

CHMOD(2) CHMOD(2)

Overall, if a directory is writable and has the sticky bit set, files within that
directory can be removed only if one or more of the following is true [see
unlink(2)]:

the user owns the file
the user owns the directory
the file is writable to the user
the user is the super-user

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010
(execute or search by group) is not set, mandatory file/record locking exists on
a regular file. This can affect future calls to open(2), creat(2), read(2), and
write(2) on this file.

The chmod fails and the file mode is unchanged if one or more of the following

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[EPERM] The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the allocated address space of the
process.

[EINTR] A signal was caught during the chmod system call.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chmod(l), chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), write(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION
The path argument points to a path name naming a file. The owner ID and
group ID of the named file are set to the numeric values contained in owner and
group respectively.

Only processes with effective user ID equal to the file owner or super-user may
change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-
group-ID bits of the file mode, 04000 and 02000 respectively, are cleared.

The chown call fails and the owner and group of the named file remains
unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[EPERM] The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the allocated address space of the
process.

[EINTR] A signal was caught during the chown system call.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

[EMULTTHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chown(l), chmod(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

I

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
The path argument points to a path name naming a directory. The chroot call
causes the named directory to become the root directory, the starting point for
path searches for path names beginning with root (/) . The user's working
directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root
directory.

The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root
directory.

The chroot call fails and the root directory remains unchanged if one or more of
the following are true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user ID is not super-user.

[EFAULT] Path points outside the allocated address space of the
process.

[EINTR] A signal was caught during the chroot system call.

[ENOUNK] Path points to a remote machine and the iink to that machine
is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chdir(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

(r

CLOSE(2) CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe system
call, close closes the file descriptor indicated by fildes. All outstanding record
locks owned by the process (on the file indicated by fildes) are removed.

If a STREAMS [see intro(2)] file is closed, and the calling process had
previously registered to receive a SIGPOLL signal [see signal(2) and sigset(2)]
for events associated with that file [see I_SETSIG in streamio(l)\, the calling
process will be unregistered for events associated with the file. Tne last close
for a stream causes the stream associated with fildes to be dismantled. If
0_NDELAY is not set and there have been no signals posted for the stream,
close waits up to 15 seconds, for each module and driver, for any output to drain
before dismantling the stream. If the 0_NDELAY flag is set or if there are any
pending signals, close does not wait for output to drain, and dismantles the
stream immediately.

The named file is closed unless one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[EINTR] A signal was caught during the close system call.

[ENOUNK] fildes is on a remote machine and the link to that machine is
no longer active.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), intro(2), open(2), pipe(2), signal(2), sigset(2),
streamio(7).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

(r

CONNECT(2) (CTIX Internetworking) CONNECT(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int connect (s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
The connect call initiates a connection on a socket The parameter s is a socket
If it is of type SOCK_DGRAM, then this call permanently specifies the peer to
which datagrams are to be sent; if it is of type SOCK_STREAM, then this call
attempts to make a connection to another socket The other socket is specified
by name; namelen is the length of name, which is an address in the address
family of the socket Each address family interprets the name parameter in its
own way.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is
returned, and a more specific error code is stored in errno.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

[EADDRNOTAVAIL]

[EAFNOSUPPORT]

[EISCONN]

[ETIMEDOUT]

[ECONNREFUSED]

[ENETUNREACH]

[EADDRINUSE]

[EFAULT]

S is not a valid descriptor.

S is a descriptor for a file, not a socket

The specified address is not available on this machine.

Addresses in the specified address family cannot be
used with this socket

The socket is already connected.

Connection establishment timed out without
establishing a connection.

The attempt to connect was forcefully rejected.

The network is not reachable from this host.

The address is already in use.

The name parameter specifies an area outside the
process address space.

CONNECT(2) (CTTX Internetworking) CONNECT(2)

SEE ALSO

accept(2), getsockname(2), intro(2), socket(2), intro(7).
CTIX Network Programmer's Primer.

(r

- 2 -

CREAT (2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;

DESCRIPTION
The creat call creates a new ordinary file or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner ID is set to the effective user ID of the
process, the group ID of the process is set to the effective group ID of the
process, and the low-order 12 bits of the file mode are set to the value of mode
modified as follows:

• All bits set in the process's file mode creation mask are cleared [see
umask(2)].

• The "save text image after execution bi t" of the mode is cleared [see
chmod(2)].

Upon successful completion, a write-only file descriptor is returned and the file
is open for writing, even if the mode does not permit writing. The file pointer is
set to the beginning of the file. The file descriptor is set to remain open across
exec system calls [see fcntl (2)]. No process can have more than NOFILES files
open simultaneously. NOFILES is a system-imposed maximum per process,
which can be changed by uconf(\M): the range, as specified in param.h, is 20
(NOFILES_MIN) to 100 (NOFILES_M AX). The current value of NOFILES can be
determined by u!imit(2). A new file can be created with a mode that forbids
writing.

The creat call fails if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[ENOENT] The path name is null.

[EACCES] The file does not exist and the directory in which the file is
to be created does not permit writing.

CREAT (2) CREAT(2)

[EROFS] The named file resides or would reside on a read-only file
system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being
executed.

[EACCES] The file exists and write permission is denied.

[EISDIR] The named file is an existing director)'.

[EMFILE] NOFILES file descriptors are currently open.

[EFAULT] Path points outside the allocated address space of the
process.

[ENFILE] The system file table is full.

[EAGAIN] The file exists, mandatory file/record locking is set, and there
are outstanding record locks on the file [see chmod(2)].

[EINTR] A signal was caught during the creat system call.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

[EMULT1HOP] Components of path require hopping to multiple remote
machines.

[ENOSPC] The file system is out of inodes.

[EDEADLOCK] A side effect of a previous locking (2) call. [See the
WARNING on the locking (2) manpage.]

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), lseek(2), open(2), read(2), umask(2),
write(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely the file descriptor,
is returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

DUP(2) DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe system
call, dup returns a new file descriptor having the following in common with the
original:

• Same open file (or pipe).

• Same file pointer (that is, both file descriptors share one file pointer).

• Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls [see
fcntl (2)].
The file descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[EINTR] A signal was caught during the dup system call.

[EMRLE] NOFILES file descriptors are currently open.

[ENOIiNK] fildes is on a remote machine and the link to that machine is
no longer active.

SEE ALSO
close(2), creat(2). exec(2), fcntl(2), open(2), pipe(2), lockf(3C).

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file descriptor,
is returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

I

EXEC(2) EXEC (2)

NAME
exec: execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, argl, ..., argn, (char *)0)
char *path, •argO, •argl, ..., •argn;
int execv (path, argv)
char *path, *argv[];

int execle (path, argO, argl, ..., argn, (char *)0, envp)
char •path, •argO, •argl, „., •argn, *envp[];

int execve (path, argv, envp)
char •path, *argv[], •envpf];

int execlp (file, argO, argl, argn, (char •)())
char •file, •argO, •argl, *argn;

int execvp (file, argv)
char *file, *argv[];

DESCRIPTION
The exec call in all its forms transforms the calling process into a new process.
The new process is constructed from an ordinary, executable file called the new
process file. This file consists of a header [see a.out(4)], a text segment, and a
data segment. The data segment contains an initialized portion and an
uninitialized portion (bss). There can be no return from a successful exec
because the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char ••argv, ••envp;

where argc is the argument count, argv is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the
environment strings. As indicated, argc is conventionally at least one and the
first member of the array points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a
search of the directories passed as the environment line PATH [see environ (5)].
The environment is supplied by the shell [see sfc(l)].

EXEC(2) EXEC (2)

argO, argl, argn are pointers to null-terminated character strings. These
strings constitute the argument list available to the new process. By
convention, at least argO must be present and point to a string that is the same
as path (or its last component).

argv is an array of character pointers to null-terminated strings. These strings
constitute the argument list available to the new process. By convention, argv
must have at least one member, and it must point to a string that is the same as
path (or its last component), argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process, envp is terminated by a null
pointer. For execl and execv, the C run-time start-off routine places a pointer
to the environment of the calling process in the global cell:

extern char «environ;

It is used to pass the environment of the calling process to the new process.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see fcntl (2). For those file
descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling process are set to terminate the new process.
Signals set to be ignored by the calling process are set to be ignored by the new
process. Signals set to be caught by the calling process are set to terminate the
new process; see signal (2).

For signals set by sigset(2), exec ensures that the new process has the same
system signal action for each signal type whose action is SIG_DFL, SIG_IGN, or
SIG_HOLD as the calling process. However, if the action is to catch the signal,
then the action is reset to SIG_DFL, and any pending signal for this type is held.

If the set-user-ID mode bit of the new process file is set [see chmod(2)], exec
sets the effective user ID of the new process to the owner ID of the new process
file. Similarly, if the set-group-ID mode bit of the new process file is set, the
effective group ID of the new process is set to the group ID of the new process
file. The real user ID and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling process are not attached to
the new process [see shmop(2)].

Profiling is disabled for the new process; see profil (2).

EXEC(2) EXEC (2)

The new process also inherits the following attributes from the calling process:

nice value [see nice (2)]
process ID
parent process ID
process group ID
semadj values [see semop(2)}
tty group ID [see exit (2) and signal (2)]
trace flag [see ptrace(2) request 0]
time left until an alarm clock signal [see alarm(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
file size limit [see ulimit(2)\
utime, stime, cutime, and cstime [see times(2)]
file-locks [see/cnrt(2) and lockf(lC)}

exec fails and returns to the calling process if one or more of the following are
true:

[ENOENT] One or more components of the new process path name of
the file do not exist.

[ENOTDIR] A component of the new process path of the file prefix is not
a directory.

[EACCES] Search permission is denied for a directory listed in the new
process file's path prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execution permission.

[ENOEXEC] The exec is not an execlp or execvp , and the new process file
has the appropriate access permission but an invalid magic
number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.

[ENOMEM] The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM.

[E2BIG] The number of bytes in the new process's argument list is
greater than the system-imposed limit of 10,240 bytes.

[EFAULT] Path, argv, or envp point to an illegal address.

EXEC(2) EXEC (2)

[EAGAIN] Not enough memory.

[ELIBACC] Required shared library does not have execute permission.

[ELIBEXEC] Trying to exec(2) a shared library directly.

[EINTR] A signal was caught during the exec system call.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

[EMULTTHOP] Components of path require hopping to multiple remote
machines.

[ENOHDW] The executable file requires hardware that does not exist
(such as floating-point).

[F.NOF.XRCl The file format does not correspond to that expected as
specified with the magic number (such as a hole in the file).

[ENOEXEC] The virtual address specification in the header(s) exceeds the
allowed system limits.

SEE ALSO
alarm(2), exit(2), fcntl(2), fork(2), nice(2), ptrace(2), semop(2), signal(2),
sigset(2), times(2), ulimit(2), umask(2), lockf(3C), a.out(4), environ(5).

DIAGNOSTICS
If exec returns to the calling process an error has occurred; the return value is
-1 and ermo is set to indicate the error.

EXIT(2) EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void exit (status)
int status;

DESCRIPTION
The exit call terminates the calling process with the following consequences:

• All of the file descriptors open in the calling process are closed.

• If the parent process of the calling process is executing a wait, it is
notified of the calling process's termination and the low order eight
bits (bits 0377) of status are made available to it [see wait (2)].

• If the parent process of the calling process is not executing a wait, the
calling process is transformed into a zombie process. A zombie
process is a process that only occupies a slot in the process table. It
has no other space allocated either in user or kernel space. The
process table slot that it occupies is partially overlaid with time
accounting information (see <sys/proc.h>) to be used by times.

• The parent process ID of all of the calling processes' existing child
processes and zombie processes is set to 1. This means the
initialization process [see intro (2)] inherits each of these processes.

• Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

• For each semaphore for which the calling process has set a semadj
value [see semop (2)], that semadj value is added to the semval of the
specified semaphore.

• If the process has a process, text, or data lock, an unlock is performed
[see plock(2)].

• An accounting record is written on the accounting fde if the system's
accounting routine is enabled [see acct (2)].

• If the process ID, tty group ID, and process group ID of the calling
process are equal (it is a process group leader), the SIGHUP signal is
sent to each process that has a process group ID equal to that of the
calling process.

EXIT(2) EXIT(2)

• A death of child signal is sent to the parent.

• The C function exit may cause cleanup actions before the process
exits. The function ex it circumvents all cleanup.

SEE ALSO
acct(2), intro(2), plock(2), semop(2), signal(2), sigset(2), wait(2).

DIAGNOSTICS
None. There can be no return from an exit system call.

WARNING
See WARNING in signal (2).

FCNTL(2) FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#include <fcntl.h>

int fcntl (Hides, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION
The fcntl call provides for control over open files, fildes is an open file
descriptor obtained from a creat, open, dup, fcntl, or pipe system call.

The data type, value, and use of arg are specific to the type of command
specified by cmd. cmd specifies the operation to be performed by fcntl, and can
be one of the following:

The commands available are:

F_DUPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file
descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (that is, both file descriptors share the
same file status flags).

The close-on-exec flag associated with the new file descriptor
is set to remain open across exec (2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor
fildes. If the low-order bit is 0 the file will remain open
across exec, otherwise the file will be closed upon execution
of exec.

F_SETFD Set the close-on-exec flag associated with fildes to the low-
order bit of arg (0 or 1 as above).

F_GETFL Get file status flags.

F_SETFL Set file status flags to arg. Only certain flags can be set [see
fcntl (5)}.

FCNTL(2) FCNTL(2)

Get the first lock which blocks the lock description given by
the variable of type struct flock pointed to by arg. The
information retrieved overwrites the information passed to
fcntl in the flock structure. If no lock is found that would
prevent this lock from being created, then the structure is
passed back unchanged except for the lock type which will be
set to FJJNLCK.

Set or clear a file segment lock according to the variable of
type struct flock pointed to by arg [see fcntl{5)]. The cmd
F_SETLK is used to establish read (F_RDLCK) and write
(F_WRLCK) locks, as well as remove either type of lock
(F_UNLCK). If a read or write lock cannot be set fcntl will
return immediately with an error value of -1.

F_SETLKW This cmd is the same as F_SETLK except that if a read or write
lock is blocked by other locks, the process will sleep until the
segment is free to be locked.

A read lock prevents any process from write locking the protected area. More
than one read lock may exist for a given segment of a file at a given time. The
file descriptor on which a read lock is being placed must have been opened with
read access.

A write lock prevents any process from read locking or write locking the
protected area. Only one write lock may exist for a given segment of a file at a
given time. The file descriptor on which a write lock is being placed must have
been opened with write access.

The structure flock describes the type (I j y p e) , starting offset (l_whence),
relative offset (l_start), size (Men), process ID (l_pid), and RFS system ID
(l_sysid) of the segment of the file to be affected. The process ID and system ID
fields are used only with the F_GETLK cmd to return the values for a blocking
lock. Locks may start and extend beyond the current end of a file, but may not
be negative relative to the beginning of the file. A lock may be set to always
extend to the end of file by setting I Jen to zero (0). If such a lock also has
l_whence and l_start set to zero (0), the whole file will be locked. Changing or
unlocking a segment from the middle of a larger locked segment leaves two
smaller segments for either end. Locking a segment that is already locked by
the calling process causes the old lock type to be removed and the new lock
type to take effect. All locks associated with a file for a given process are
removed when a file descriptor for that file is closed by that process or the
process holding that file descriptor terminates. Locks are not inherited by a
child process in a fork(2) system call.

F_GETLK

F_SETLK

FCNTL(2) FCNTL(2)

When mandatory file and record locking is active on a file, [sec chmod{2)],
read and write system calls issued on the file are affected by the record locks in
effect.

The fcntl call fails if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[EBADF] cmd is F_SETLK or F_SETLKW the type of lock (I j y p e) is a
read lock (F RDLCK) and fildes is not a valid open file
descriptor open for reading.

[EBADF] cmd is F_SETLK or F_SETLKW the type of lock (Ijype) is a
write lock (F_RDLCK) and fildes is not a valid open file
descriptor open for writing.

[EMFILE] cmd is F_DUPFD and the number of file descriptors currently
open in the calling process is the configured value for the
maximum number of open file descriptors allowed each user.

[EINVAL] cmd is F_DUPFD. arg is either negative, or greater than or
equal to the configured value for the maximum number of
open file descriptors allowed each user.

[EINVAL] cmd is F_GETLK, F_SETLK, or SETLKW and arg or the data it
points to is not valid.

[EACCES] cmd is F_SETLK the type of lock (I j y p e) is a read
(F_RDLCK) lock and the segment of a file to be locked is
already write locked by another process or the type is a write
(F_WRLCK) lock and the segment of a file to be locked is
already read or write loeked by another process.

[ENOLCK] cmd is F_SETLK or F_SETLKW, the type of lock is a read or
write lock, and there are no more record locks available (too
many file segments loeked) because the system maximum
has been exceeded.

[EDEADLK] cmd is F_SETLKW, the lock is blocked by some lock from
another process, and putting the calling-process to sleep,
waiting for that lock to become free, would cause a deadlock.

[EFAULT] cmd is FJSETLK, arg points outside the program address
space.

[EINTR] A signal was caught during the fcntl system call.

[ENOLINK] fildes is on a remote machine and the link to that machine is
no longer active.

FCNTL(2) FCNTL(2)

SEE ALSO
closc(2), creat(2), dup{2), exec(2), fork(2), opcn(2), pipe(2), fcntl(5).

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

Otherwise, a value of -1 is returned and errno is set to indicate the error.

Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a file is already locked by another process, portable
application programs should expect and test for either value.

Two forms of file locking are available: locking (2) and fcntl (2). locking (2) is
retained for compatibility with previous versions of CTIX. Although both forms
are compatible and interchangeable, new programs should use only fcntl (2) for
record locking. Note that the error return values differ.

F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLKW

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value other than -1.
Value of file flags.
Value other than -1.
Value other than -1.
Value other than -1.
Value other than -1.

WARNINGS

FOR K(2) FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
fork causes creation of a new process. The new process (child process) is an
exact copy of the calling process (parent process). This means the child process
inherits the following attributes from the parent process:

environment
close-on-exec flag [sec exec (2)]
signal handling settings (that is, SIG DFL, SIG IGN, SIG HOLD,
function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value [see nice (2)]
all attached shared memory segments [see shmop{2)]
process group ID
tty group ID [see exit (2)]
current working directory
root directory
file mode creation mask [see umask(2)]
file size limit [see ulimit(2)]

The child process differs from the parent process in the following ways:

• The child process has a unique process ID.

• The child process has a different parent process ID (that is, the process
ID of the parent process).

• The child process has its own copy of the parent's file descriptors.
Each of the child's file descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

• All semadj values are cleared [see semop (2)].

• Process locks, text locks and data locks are not inherited by the child
[see plock(2)].

• The child process's utime, stime, cutime, and cstime are set to 0. The
time left until an alarm clock signal is reset to 0.

FORK(2) FORK(2)

fork will fail and no child process will be created if one or more of the
following are true:

[EAGAIN] The system-imposed limit on the total number of processes
under execution would be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes
under execution by a single user would be exceeded.

[EAGAIN] Total amount of system memory available when reading via
raw IO is temporarily insufficient.

SEE ALSO
exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2), sigset(2),
times(2), ulimit(2), umask(2), wait(2).

DIAGNOSTICS
Upon successful completion, fork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a
value of -1 is returned to the parent process, no child process is created, and
errno is set to indicate the error.

GETDENTS(2) GETDENTS(2)

NAME
getdents - read directory entries and put in a file system independent format

SYNOPSIS
#include <sys/dirent.h>

int getdents (fildes, buf, nbyte)
int fildes;
char •buf;
unsigned nbyte;

DESCRIPTION
The fildes argument is a file descriptor obtained from an open {2) or dup (2)
system call.

The getdents call attempts to read nbyte bytes from the directory associated
with fildes and to format them as file system independent directory entries in
the buffer pointed to by buf. Since the file system independent directory entries
are of variable length, in most cases the actual number of bytes returned is
stricUy less than nbyte.

The file system independent directory entry is specified by the dirent structure.
For a description of this see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given by
the file pointer associated with fildes. Upon return from getdents, the file
pointer is incremented to point to the next directory entry.

This system call was developed in order to implement the readdir(iX) routine
[for a description see directory (3X)], and should not be used for other purposes.

The getdents call fails if one or more of the following are true:

[EBADF] fildes is not a valid file descriptor open for reading.

[EFAULT] buf points outside the allocated address space.

[EINVAL] nbyte is not large enough for one directory entry.

[ENOENT] The current file pointer for the directory is not located at a
valid entry.

[ENOLiNK] fildes points to a remote machine and the link to that
machine is no longer active.

[ENOTDIR] fildes is not a directory.

[EIO] An I/O error occurred while accessing the file system.

SEE ALSO
directory(3X), dirent(4).

GETDENTS(2) GETDENTS(2)

DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. A value of 0 indicates the end of the directory
has been reached. If the system call failed, a -1 is returned and errno is set to
indicate the error.

GETDTABLESIZE(2) (CTIX Internetworking) GETDTABLESIZE(2)

NAME
getdtablesize - get descriptor table size

SYNOPSIS
nfds = getdtablesize()
int nfds;

DESCRIPTION
Each process has a fixed size descriptor table, which is guaranteed to have at
least 20 slots. The size of the descriptor table determines how many files and
sockets a process can have open simultaneously. The entries in the descriptor
table are numbered with small integers starting at 0. The call getdtablesize
returns the size of this table. It is equivalent to the ulimit(2) system call as
issued with an argument as shown below:

SEE ALSO
close(2), dup(2), open(2), select(2), ulimit(2).
CTIX Network Programmer's Primer.

i

GETHOSTID (2) (CTIX Internetworking) GETHOSTID(2)

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostid = gethostid()
long hostid;

sethostid(hostid)
long hostid;

DESCRIPTION
The sethostid call establishes a 32-bit identifier for the current system that is
intended to be unique among all UNIX systems in existence. This is normally a
DARPA Internet address for the local machine. This call is allowed only to the
super-user and is normally performed at boot time. The sethostid call returns an
int -1 if the ID can not be set.

The gethostid call returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(l), gethostname(2).
CTIX Network Programmer's Primer.

GETHOSTNAME(2) (CTIX Internetworking) GETHOSTNAME(2)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
int gethostname(name, namelen)
char '"name;
int namelen;

int sethostname(name, namelen)
char '"name;
int namelen;

DESCRIPTION
The gethostname call returns the standard host name for the current processor,
as previously set by sethostname. The parameter namelen specifies the size of
the name array. The returned name is null-terminated unless insufficient space
is provided.

The sethostname call sets the name of the host machine to be name, which has
length namelen. This call is restricted to the super-user and is normally used
only when the system is booted up. In order to maintain consistency between
the system nodename and the local hostname, sethostname interacts with
setuname. See hostname (I) for the specifics.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is
returned and an error code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address.

[EPERM] The caller tried to set the hostname and was not the super-
user.

SEE ALSO
hostname(l), uname(l), setuname(2), gethostid(2).
CTIX Network Programmer's Primer.

WARNING
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>)
characters, currently 64. The left-most qualifier, or nodename, is limited to the
size of a system nodename, currently 9 characters. The right-most qualifier, or
Internet Domain name, is limited to 54 characters.

GETMSG(2) GETMSG(2)

NAME
getmsg - get next message off a stream

SYNOPSIS
#include <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

DESCRIPTION
getmsg retrieves the contents of a message [see intro(2)] located at the stream
head read queue from a STREAMS file, and places the contents into user
specified buffer(s). The message must contain either a data part, a control part
or both. The data and control parts of the message are placed into separate
buffers, as described below. The semantics of each part is defined by the
STREAMS module that generated the message.

fd specifies a file descriptor referencing an open stream, ctlptr and dataptr
each point to a strbuf structure which contains the following members:

where buf points to a buffer in which the data or control information is to be
placed, and maxlen indicates the maximum number of bytes this buffer can
hold. On return, len contains the number of bytes of data or control information
actually received, or is 0 if there is a zero-length control or data part, or is -1 if
no data or control information is present in the message. Flags may be set to
the values 0 or RS_HIPRI and is used as described below.

ctlptr is used to hold the control part from the message and dataptr is used to
hold the data part from the message. If ctlptr (or dataptr) is NULL or the
maxlen field is -1, the control (or data) part of the message is not processed and
is left on the stream head read queue and len is set to -1. If the maxlen field is
set to 0 and there is a zero-length control (or data) part, that zero-length part is
removed from the read queue and len is set to 0. If the maxlen field is set to 0
and there are more than zero bytes of control (or data) information, that
information is left on the read queue and len is set to 0. If the maxlen field in
ctlptr or dataptr is less than, respectively, the control or data part of the
message, maxlen bytes are retrieved. In this case, the remainder of the message
is left on the stream head read queue and a non-zero return value is provided, as

int maxlen;
int len;
char *buf;

/* maximum buffer length */
/* length of data */
/• ptr to buffer */

GETMSG(2) GETMSG(2)

described below under DIAGNOSTICS. If information is retrieved from a
priority message, flags is set to RS_H1PRI on return.

By default, getmsg processes the first priority or non-priority message available
on the stream head read queue. However, a user may choose to retrieve only
priority messages by setting flags to RS_HIPRI. In this case, getmsg will only
process the next message if it is a priority message.

If 0_NDELAY has not been set, getmsg blocks until a message, of the type(s)
specified by flags (priority or either), is available on the stream head read
queue. If 0_NDELAY has been set and a message of the specified type(s) is not
present on the read queue, getmsg fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved,
getmsg will continue to operate normally, as described above, until the stream
head read queue is empty. Thereafter, it will return 0 in the len fields of ctlptr
and dataptr.

getmsg fails if one or more of the following are true:

[EAGAIN] The 0_NDELAY flag is set, and no messages are available.

[EBADF] fd is not a valid file descriptor open for reading.

[EBADMSG] Queued message to be read is not valid for getmsg.

[EFAULT] ctlptr, dataptr, or flags points to a location outside the
allocated address space.

[EINTR] A signal was caught during the getmsg system call.

[EINVAL] An illegal value was specified in flags, or the stream
referenced by fd is linked under a multiplexor.

[ENOSTR] A stream is not associated with fd.

A getmsg can also fail if a STREAMS error message had been received at the
stream head before the call to getmsg. The error returned is the value contained
in the STREAMS error message.

SEE ALSO
intro(2), read(2), poll(2), putmsg(2), write(2).
UNIX System V Release 3.2 Streams Primer.
UNIX System V Release 3.2 Streams Programmer's Guide.

GETMSG(2) GETMSG(2)

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. A value of 0
indicates that a full message was read successfully. A return value of
MORECTL indicates that more control information is waiting for retrieval. A
return value of MOREDATA indicates that more data is waiting for retrieval. A
return value of MORECTLIMOREDATA indicates that both types of information
remain. Subsequent getmsg calls will retrieve the remainder of the message.

i

GETPEERNAME (2) (CTIX Internetworking) GETPEERNAME (2)

NAME
getpeername - get name of connected peer

SYNOPSIS
int getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int "namelen;

DESCRIPTION
The getpeername call returns the name of the peer connected to socket s. The
namelen parameter should be initialized to indicate the amount of space pointed
to by name. On return it contains the actual size of the name returned (in
bytes). The interpretation of name depends on the "communication domain"
[see protocols^)].

SEE ALSO
bind(2), getsockname(2), intro(2), socket(2), intro(7).
CTIX Network Programmer's Primer.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless one of the following is true:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to
perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of
the process address space.

GETPID(2) GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION

The getpid call returns the process ID of the calling process.

The getpgrp call returns the process group ID of the calling process.

The getppid call returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

i

GETSOCKNAME(2) (CTIX Internetworking) GETSOCKNAME(2)

NAME
getsockname - get socket name

SYNOPSIS
int getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int "namelen;

DESCRIPTION
The getsockname call returns the current name for the specified socket (s). The
namelen parameter should be initialized to indicate the amount of space pointed
to by name. On return namelen contains the actual size of the name returned
(in bytes).

SEE ALSO
bind(2), intro(2), socket(2), intro(7).
CTIX Network Programmer's Primer.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument j is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to
perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of
the process address space.

I

GETSOCKNAME(2) (CTIX Internetworking) GETSOCKNAME(2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char "optval;
int "optlen;

int setsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char "optval;
int optlen;

DESCRIPTION
The getsockopt and setsockopt calls manipulate options associated with a
socket Options can exist at multiple protocol levels; they are always present at
the uppermost "socket" level.

When manipulating socket options the level at which the option resides and the
name of the option must be specified. To manipulate options at the ' 'socket' '
level, level is specified as SOL_SOCKET. To manipulate options at any other
level the protocol number of the appropriate protocol controlling the option is
supplied. For example, to indicate that an option is to be interpreted by the TCP
protocol, level should be set to the protocol number of TCP; see getprotoent(3).

The parameters optval and optlen are used to access option values for
setsockopt. For getsockopt they identify a buffer in which the value for the
requested option(s) are to be returned. For getsockopt, optlen is a value-result
parameter, initially containing the size of the buffer pointed to by optval, and
modified on return to indicate the actual size of the value returned. If no option
value is to be supplied or returned, optval may be supplied as 0.

optname and any specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The include file <sys/socket.h> contains
definitions for "socket" level options, described below. Options at other
protocol levels vary in format and name; consult the appropriate entries in
section (4).

Most socket-level options take an int parameter for optval. For setsockopt, the
parameter should be non-zero to enable a boolean option, or zero if the option is
to be disabled. SO_LINGER uses a struct linger parameter, defined in

GETSOCKNAME(2) (CTIX Internetworking) GETSOCKNAME(2)

<sysisocket.h>, which specifies the desired state of the option and the linger
interval (see below).

The following options are recognized at the socket level. Except as noted, each
may be examined with getsockopt and set with setsockopt.

SO_DEBUG Toggle recording of debugging information.

SO_REUSEADDR Toggle on/off local address reuse.

SO_KEEPALIVE Toggle keep connections alive.

SO_DONTROUTE Toggle routing bypass for outgoing messages.

SCMJNGER Linger on close if data present

SO_BROADCAST Toggle permission to transmit broadcast messages.

SO OOBINLINE Toggle reception of out-of-band data in band.

SO_SNDBUF Set buffer size for output.

SO_RCVBUF Set buffer size for input.

SO_TYPE Get the type of the socket (get only).

SO_ERROR Get and clear error on the socket (get only).

SO_DEBUG enables debugging in the underlying protocol modules.

SO_REUSEADDR indicates that the rules used in validating addresses supplied
in a bind(2) call should allow reuse of local addresses.

SOJCEEPALIVE enables the periodic transmission of messages on a connected
socket Should the connected party fail to respond to these messages, the
connection is considered broken and processes using the socket are notified via
a SIGPIPE signal.

SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on
socket and a close (2) is performed. If the socket promises reliable delivery of
data and SO_LINGER is set, the system blocks the process on the close attempt
until it is able to transmit the data or until it decides it is unable to deliver the
information (a timeout period, termed the linger interval, is specified in the
setsockopt call when SO_LINGER is requested). If SO_LINGER is disabled and a
close is issued, the system processes the close in a manner that allows the
process to continue as quickly as possible.

GETSOCKNAME(2) (CTIX Internetworking) GETSOCKNAME(2)

SO_BROADCAST requests permission to send broadcast datagrams on the
socket Broadcast was a privileged operation in earlier versions of the system.

With protocols that support out-of-band data, SO_OOBINLINE requests that
out-of-band data be placed in the normal data input queue as received; it is then
accessible with recv or read calls without the MSG_OOB flag.

SO_SNDBUF and SO_RCVBUF are options to adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be
increased for high-volume connections, or may be decreased to limit the
possible backlog of incoming data. The system places an absolute limit on
these values.

SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE
returns the type of the socket such as SOCK_STREAM; it is useful for servers
that inherit sockets on startup. SQ_ERROR returns any pending error on the
socket and clears the error status. It may be used to check for asynchronous
errors on connected datagram sockets or for other asynchronous errors.

SEE ALSO
ioctl(2), socket(2), getprotoent(3).
CTIX Network Programmer s Primer.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a fde, not a socket

[ENOPROTOOFT] The option is unknown at the level indicated.
[EFAULT] The address pointed to by optval is not in a valid part

of the process address space. For getsockopt, this error
may also be returned if optlen is not in a valid part of
the process address space.

BUGS
Several of the socket options should be handled at lower levels of the system.

It

GETTTMEOFDAY(2) GETTIMEOFD A Y (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <sys/time.h>

int gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

int settimeofday(tp, tzp)
struct timeval *tp;
struct timezone "tzp;

DESCRIPTION
The system's notion of the current Greenwich time and the current time zone is
obtained with the gettimeofday call, and set with the seiiimeofduy call. The
time is expressed in seconds and microseconds since midnight (0 hour), January
1, 1970. The resolution of the system clock is hardware dependent, and the
time may be updated continuously or in "ticks." If tzp is zero, the time zone
information will not be returned or set.

The structures pointed to by tp and tzp are defined in <sys/time.h> as:

•truct timeval {
long tv sec; /* seconds since Jan. 1,1970 */
long tv_usec; /* and microseconds */

};

struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */

};
The timezone structure indicates the local time zone (measured in minutes of
time westward from Greenwich), and a flag that, if nonzero, indicates that
Daylight Savings Time applies locally during the appropriate part of the year.

Only the super-user can set the time of day or time zone.

SEE ALSO
date(l), adjtime(2), ctime(3C).

RETURN VALUE
A 0 return value indicates that the call succeeded. A -1 return value indicates
an error occurred, and in this case an error code is stored into the global
variable errno.

GETTIMEOFD A Y (2) GETTIMEOFD AY (2)

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.

[EPERM] A user other than the super-user attempted to set the time.

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get Teal user, effective user, real group, and
effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

DESCRIPTION

getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.

getgid returns the real group ID of the calling process.

getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

- 1 -

IOCTL(2) IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
int ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION
The ioctl call performs a variety of control functions on devices and STREAMS.
For non-STREAMS files, the functions performed by this call are device-specific
control functions. The arguments request and arg are passed to the file
designated by fildes and are interpreted by the device driver. This control is
infrequendy used on non-STREAMS devices, with the basic input/output
functions performed through the read(2) and write(2) system calls.

For STREAMS fiies, specific functions are performed by the ioctl call as
described in streamio(T).

The fildes argument is an open file descriptor that refers to a device; request
selects the control function to be performed and depends on the device being
addressed; arg represents additional information needed by this specific device
to perform the requested function. The data type of arg depends upon the
particular control request, but it is either an integer or a pointer to a device-
specific data structure.

In addition to device-specific and STREAMS functions, generic functions are
provided by more than one device driver, for example, the general terminal
interface [see ternuo(l)].

The ioctl call fails for any type of file if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[ENOTTY] fildes is not associated with a device driver that accepts
control functions.

[EINTR] A signal was caught during the ioctl system call.

The ioctl call also fails if the device driver detects an error; the error is passed
through ioctl without change to the caller. A particular driver might not have
all of the following error cases. Other requests to device drivers fail if one or
more of the following are true:

[EFAULT] Request requires a data transfer to or from a buffer pointed to
by arg, but some part of the buffer is outside the process's
allocated space.

IOCTL(2) IOCTL(2)

[EINVAL] Request or arg is not valid for this device.

[EIO] Some physical I/O error has occurred.

[ENXIO] The request and arg are valid for this device driver, but the
service requested can not be performed on this particular
subdevice.

[ENOIiNK] fildes is on a remote machine and the link to that machine is
no longer active.

STREAMS errors are described in streamio(l).

SEE ALSO
streamio(7), termio(7).

DIAGNOSTICS
Upon successful completion, the value returned depends upon the device
control function, but must be a non-negative integer. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

KILL(2) KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
kill sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid. The signal that is
to be sent is specified by sig and is either one from the list given in signal (2), or
0. If sig is 0 (the null signal), error checking is performed but no signal is
actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or
effective user ID of the receiving process, unless the effective user ID of the
sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes
[see intro(2)] and will be referred to below as procO and prod, respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is
equal to pid. pid may equal 1.

If pid is 0, sig will be sent to all processes excluding prod3 and prod whose
process group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be
sent to all processes excluding procO and prod whose real user ID is equal to
the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be sent
to all processes excluding procO and prod.

If pid is negative but not -1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

kill will fail and no signal will be sent if one or more of the following are true:

[EINVAL] sig is not a valid signal number.

[EINVAL] sig is SIGKILL and pid is 1 (procl).

[ESRCH] No process can be found corresponding to that specified by
pid.

[EPERM] The user ID of the sending process is not super-user, and its
real or effective user ID does not match the real or effective
user ID of the receiving process.

KILL(2) KILL(2)

SEE ALSO
kill(l), getpid(2), setpgrp(2), signal(2), sigset(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

- 2 -

LINK(2) LINK(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char "pathl, *path2;

DESCRIPTION
The pathl argument points to a path name naming an existing file; path2 points
to a path name naming the new directory entry to be created.

The link call creates a new link (directory entry) for the existing file. It fails
and no link is created if one or more of the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EEXIST]

[EPERM]

[EXDEV]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

[EMLINK]

[EINTR]

[ENOLINK]

[EMULTIHOP]

SEE ALSO unlink(2).

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by pathl does not exist.

The link named by path2 exists.

The file named by pathl is a directory and the effective user
ID is not super-user.

The link named by path2 and the file named by pathl are on
different logical devices (file systems).

path2 points to a null path name.

The requested link requires writing in a directory with a
mode that denies write permission.

The requested link requires writing in a directory on a read-
only file system.

path points outside the allocated address space of the
process.

The maximum number of links to a file would be exceeded.

A signal was caught during the link system call.

path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

LINK(2) LINK(2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

LISTEN(2) (CTIX Intenietworking) LISTEN(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
int listen (s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket (2), a backlog for
incoming connections is specified with listen, and then the connections are
accepted with accept (2). The listen call applies only to sockets of type
SOCK_STREAM.

The backlog parameter defines the maximum length to which the queue of
pending connections may grow. If a connection request arrives with the queue
fall the client will receive an error with an indication of ECONNREFUSED.

SEE ALSO
accept(2), connect(2), socket(2).
CTIX Network Programmer s Primer.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS
The call fails if:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is not a socket.
[EOPNOTSUPP] The socket is not of a type that supports the operation

listen.

BUGS
The backlog is currently limited (silendy) to 5.

I

LOCKING (2) LOCKING (2)

NAME
locking - exclusive access to regions of a file

SYNOPSIS
int locking (filedes, mode, size);
int fildes, mode;
long size;

DESCRIPTION
The locking call places or removes a kernel-enforced lock on a region of a file.
The calling process has exclusive access to regions it has locked. If another
process uses read(2), write (2), creat(2), or open (2) (with 0_TRUNC) in a way
that reads or modifies part of the locked region, the second process's system call
does not return until the lock is released, unless deadlock or some other error is
detected. A process whose execution is suspended in such a manner is said to
be blocked.

Parameters specify the file to be locked or unlocked, the kind of lock or unlock,
and the region affected:

filedes Specifies the file to be locked or unlocked; filedes is a file descriptor
returned by an open, create, pipe, fcntl, or dup system call.

mode Specifies the action: 0 for lock removal; 1 for blocking lock; 2 for
checking lock. Blocking and checking locks differ only if the
attempted lock is itself locked out: a blocking lock waits until the
existing lock or locks arc removed; a checking lock immediately
returns an error.

size The region affected begins at the current fde offset associated with
filedes and is size bytes long. If size is zero, the region affected ends
at the end of the fde.

Locking imposes no structure on a CTIX file. A process can arbitrarily lock any
unlocked byte and unlock any locked byte. However, creating a large number
of noncontiguous locked regions can fill up the system's lock table and make
further locks impossible. It is advisable that a program's use of locking segment
the file in the same way as does the program's use of read and write.

A process is said to be deadlocked if it is sleeping until an unlocking which is
indirectly prevented by that same sleeping process. The kernel will not permit a
read, write, creat, open with 0_TRUNC, or blocking locking if such a call
would deadlock the calling process. Errno is set to EDEADLOCK. The
standard response to such a situation is for the program to release all its existing
locked areas and try again. If a locking call fails because the kernel's table of

LOCKING(2) LOCKING(2)

locked areas is full, again, errno is set to EDEADLOCK and, again, the calling
program should release its existing locked areas.

Special files and pipes can be locked, but no input/output is blocked.

Locks are automatically removed if the process that placed the lock terminates
or closes the file descriptor used to place the lock.

SEE ALSO
create(2), close(2), dup(2), open(2), read(2), write(2).

RETURN VALUE
A return value of -1 indicates an error, with the error value in errno.

[EACCES] A checking lock on a region already locked.

[EDEADLOCK] A lock that would cause deadlock or overflow the system's
lode table

WARNING
Do not apply any standard input/output library function to a locked file: this
library does not know about locking.

Two forms of file locking are available: locking (2) and fcntl (2). locking (2) is
retained for compatibility with previous versions of C n x . Although both forms
are compatible and interchangeable, new programs should use only fcntl (2) for
record locking. Note that the error return values differ.

LSEEK(2) LSEEK(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
fildes is a file descriptor returned from a creat, open, dup, or fcntl system call.
lseek sets the file pointer associated with fildes as follows:

• If whence is 0, the pointer is set to offset bytes.

• If whence is 1, the pointer is set to its current location plus offset.

• If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in
bytes from the beginning of the file, is returned. Note that if fildes is a remote
file descriptor and offset is negative, lseek will return the file pointer even if it
is negative.

lseek will fail and the file pointer will remain unchanged if one or more of the
following are true:

[EBADF] fildes is not an open file descriptor.

[ESPIPE] fildes is associated with a pipe or fifo.

[EINVAL and SIGSYS signal]
whence is not 0 ,1 , or 2.

[EINVAL] fildes is not a remote file descriptor, and the resulting file
pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associated
with such a device is undefined.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

MKDIR (2) MKDIR (2)

NAME
mkdir - make a directory

SYNOPSIS
int mkdir (path, mode)
char "path;
int mode;

DESCRIPTION
The mkdir call creates a new directory with the name path. The mode of the
new directory is initialized from the mode. The protection part of the mode
argument is modified by the process's mode mask [see umask(2)].

The directory's owner ID is set to the process's effective user ID. The
directory's group ID is set to the process's effective group ID. The newly
created directory is empty with the possible exception of entries for the " d o t "
(.) and "dot dot' (. .) directories. The mkdir call fails and no directory is
created if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[ENOIiNK] Path points to a remote machine and the link to that machine
is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

[EACCES] Either a component of the path prefix denies search
permission or write permission is denied on the parent
directory of the directory to be created.

[ENOENT] The path is longer than the maximum allowed.

[EEXIST] The named file already exists.

[EROFS] The path prefix resides on a read-only file system.

[EFAULT] Path points outside the allocated address space of the
process.

[EMLINK] The maximum number of links to the parent directory would
be exceeded.

[EIO] An I/O error has occurred while accessing the file system.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned, and errno is set to indicate the error.

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary fde

SYNOPSIS
int mknod (path, mode, dev)
char "path;
int mode, dev;

DESCRIPTION
The mknod call creates a new fde named by the path name pointed to by path.
The mode of the new file is initialized from mode, where the value of mode is
interpreted as follows:

0170000 fde type; one of the following:

0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution

00020#0 set group ID on execution if # is 7 ,5 ,3 , or 1

enable mandatory file/record locking if # is 6 , 4 , 2 , or 0

0001000 save text image after execution

0000777 access permissions; constructed from the following:

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The group
ID of the file is set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be used.
The low-order 9 bits of mode are modified by the process's file mode creation
mask: all bits set in the process's file mode creation mask are cleared [see
umask(2)]. If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block I/O device. If
mode does not indicate a block special or character special device, dev is
ignored.

MKNOD(2) MKNOD(2)

The mknod call can be invoked only by the super-user for file types other than
FIFO special.

The call fails and the new file is not created if one or more of the following are
true:

[EPERM] The effective user ID of the process is not super-user.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EROFS] The directory in which the file is to be created is located on a
read-only fde system.

[EEXIST] The named fde exists.

[EFAULT] Path points outside the allocated address space of the
process.

[ENOSPC] No space is available.

[EINTR] A signal was caught during the mknod system call.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
mkdir(l), chmod(2), exec(2), umask(2), fs(4).

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

WARNING
If mknod is used to create a device in a remote directory, the major and minor
device numbers are interpreted by the server.

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
#include <sys/types.h>
#include <sys/mount.h>

int mount (spec, dir, mflag, fstyp, dataptr, datalen)
char *spec, *dir;
int mflag, fstyp;
char "dataptr;
int datalen;

DESCRIPTION
mount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. Spec and dir
are pointers to path names, fstyp is the file system type number. The sysfs(2)
system call can be used to determine the file system type number. Note that if
both the MS_DATA and MS_FSS flag bits of mflag are off, the file system type
will default to the root file system type. Only if either flag is on will fstyp be
used to indicate the file system type.

If the MS_DATA flag is set in mflag the system expects the dataptr and datalen
arguments to be present Together they describe a block of file-system specific
data at address dataptr of length datalen. This is interpreted by file-system
specific code within the operating system and its format depends upon the file
system type. A particular file system type may not require this data, in which
case dataptr and datalen should both be zero. Note that MS_FSS is obsolete and
will be ignored if MS_DATA is also set but if MS_FSS is set and MS_DATA is
not, dataptr and datalen are both assumed to be zero.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system.

The low-order bit of mflag is used to control write permission on the mounted
file system; if 1, writing is forbidden, otherwise writing is permitted according
to individual file accessibility.

mount may be invoked only by the super-user. It is intended for use only by the
mount(1M) utility.

mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

MOUNT(2) MOUNT(2)

[ENOTDIR] A component of a path prefix is not a directory.

[EREMOTE] Spec is remote and cannot be mounted.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

[ENOTBLK] Spec is not a block special device.

[ENXIO] The device associated with spec does not exist.

[ENOTDIR] Dir is not a directory.

[EFAULT] Spec or dir points outside the allocated address space of the
process.

[EBUSY] Dir is currently mounted on, is someone's current working
directory, or is otherwise busy.

[EBUSY] The device associated with spec is currently mounted.

[EBUSY] There are no more mount table entries.

[EROFS] Spec is write protected and mflag requests write permission.

[ENOSPC] The file system state in the super-block is not FsOKAY and
mflag requests write permission.

[EINVAL] The super block has an invalid magic number or the fstyp is
invalid or mflag is not valid.

[EBADFS] An attempt to mount a bit-mapped file system failed due to
the dirty flag being set for that fde system.

SEE ALSO
mount(lM), sysfs(2), umount(2), fs(4).

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

MSGCTL(2) MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid ds "buf;

DESCRIPTION
The msgctl call provides a variety of message control operations as specified by
cmd. The following cmds are available:

I PC _S TAT Place the current value of each member of the data structure
associated with msqid into the structure pointed to by buf.
The contents of this structure are defined in intro (2).
(READ)

IPC_SET Set the value of the following members of the data structure
associated with msqid to the corresponding value found in
the structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits */
msg_qbytes

This cmd can be executed only by a process that has an
effective user ID equal to either that of super-user, or to the
value of msg_perm.cuid or msg_perm.uid in the data
structure associated with msqid. Only super-user can raise
the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid
from the system and destroy the message queue and data
structure associated with i t This cmd can be executed only
by a process that has an effective user ID equal to either that
of super-user, or to the value of msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid.

MSGGET(2) MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key t key;
int msgflg;

DESCRIPTION
The msgget call returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure
[see intro (2)] are created for key if one of the following are true:

• Key is equal to IPCPRIVATE.

• Key does not already have a message queue identifier associated with
it, and (msgflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

• Msg_perm.cuid, msg_perm.uid, msgperm.gid, and msg_perm.cgid
are set equal to the effective user ID and effective group ID,
respectively, of the calling process.

• The low-order 9 bits of msg_perm.mode are set equal to the low-
order 9 bits of msgflg.

• Msg_qnum, msg lspid, msg lrpid, msg stime, and msgrtime are
set equal to 0.

• Msg ctime is set equal to the current time.

• Msg qbytes is set equal to the system limit.

The msgget call fails if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but operation
permission [see intro (2)] as specified by the low-order 9 bits
of msgflg would not be granted.

[ENOENT] A message queue identifier does not exist for key and
(msgflg & IPC_CREAT) is "false".

MSGGET(2) MSGGET(2)

[ENOSPC] A message queue identifier is to be created but the system-
imposed limit on the maximum number of allowed message
queue identifiers system wide would be exceeded.

[EEXIST] A message queue identifier exists for key but [(msgflg &
IPC_CREAT) & (msgflg & IPC_EXCL)] is "true".

SEE ALSO
intro(2), msgctl(2), msgop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a message queue
identifier, is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

MSGOP(2) MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf "msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct rnsgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
The msgsnd call is used to send a message to the queue associated with the
message queue identifier specified by msqid. {WRITE} msgp points to a
structure containing the message. This structure is composed of the following
members:

long mtype; /* message type */
char mtextQ; /* message text */

The mtype member is a positive integer that can be used by the receiving
process for message selection (see msgrcv below). The mtext member is any
text of iength msgsz bytes; msgsz can range from 0 to a system-imposed
maximum.

The msgflg parameter specifies the action to be taken if one or more of the
following are true:

• The number of bytes already on the queue is equal to msg qbytes [see
intro (2)].

• The total number of messages on all queues system-wide is equal to
the system-imposed limit.

MSGOP(2) MSGOP(2)

These actions are as follows:

• If (msgflg & IPC_NOWAIT) is "true", the message is not sent and the
calling process returns immediately.

• If (msgflg & IPC_NOWAIT) is "false", the calling process suspends
execution until one of the following occurs:

The condition responsible for the suspension no longer exists,
in which case the message is sent.

msqid is removed from the system [see msgctl(2)]. When this
occurs, errno is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught. In
this case the message is not sent and the calling proccss
resumes execution in the manner prescribed in signal (2).

The msgsnd call fails and no message is sent if one or more of the following are
true:

[EINVAL] msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process [see
intro (2)].

[EINVAL] mtype is less than 1.

[EAGAIN] The message cannot be sent for one of the reasons cited
above and (msgflg & IPC_NOWAIT) is "true".

[EINVAL] msgsz is less than zero or greater than the system-imposed
limit.

[EFAULT] msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro (2)].

• msgqnum is incremented by 1.

• msglspid is set equal to the process ID of the calling process.

• msgstime is set equal to the current time.

msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the structure pointed to by msgp.
[READ] This structure is composed of the following members:

long mtype; I* message type */
char mtextQ; /* message text */

MSGOP(2) MSGOP(2)

mtype is the received message's type as specified by the sending process, mtext
is the text of the message, msgsz specifies the size in bytes of mtext. The
received message is truncated to msgsz bytes if it is larger than msgsz and
(msgflg & MSG_NOERROR) is "true". The truncated part of the message is
lost and no indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

• If msgtyp is equal to 0, the first message on the queue is received.

• If msgtyp is greater than 0, the first message of type msgtyp is received.

• If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on
the queue. These are as follows:

• If (msgflg & IPC_NOWAIT) is "true", the calling process returns
immediately with a return value of -1 and errno set to ENOMSG.

• If (msgflg & IPC_NOWAIT) is "false", the calling process suspends
execution until one of the following occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. When this occurs, errno is
set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In
this case a message is not received and the calling process
resumes execution in the manner prescribed in signal (2).

The msgrcv call fails and no message is received if one or more of the following
are true:

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro(2)].

[EFAULT]

[EINVAL]

[EACCES]

[EINVAL]

[E2BIG]

[ENOMSG]

msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

msgsz is less than 0.

mtext is greater than msgsz and (msgflg & MSGNOERROR)
is "false".

The queue does not contain a message of the desired type
and (msgtyp &IPC_NOWAIT) is "true".

msgp points to an illegal address.

MSGOP(2) MSGOP(2)

• msg qnum is decremented by 1.

• msg lrpid is set equal to the process ID of the calling process.

• msg_rtime is set equal to the current time.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

DIAGNOSTICS
If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If they return due to
removal of msqid from the system, a value of -1 is returned and errno is set to
EIDRM.

Upon successful completion, the return value is as follows:

• msgsnd returns a value of 0.

• msgrcv returns a value equal to the number of bytes actually placed
into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

NFSSYS (2) (NFS Utilities) NFSSYS(2)

NAME
nfssys - common shared NFS system calls

SYNOPSIS
#include <sys/fs/nfs.h>

int nfssys(cmd, argp)
int cmd;
char *argp;

nfs_getfh(fd, fhp)
int fd;
char *fhp;
{

struct {
int fdes;
char *fhp;

} args;
extern int nfssys();

args.fdes = fd;
args.fhp = fhp;
return(nfssys(2, &args»;

}

nfs_svc(fd)
int fd;
{

extern int nfssys ();
return(nfssys(l, fd);

}

async_daemon()
{

extern int nfssys();
return(nfssys(3, 0));

}
DESCRIPTION

The nfssys system call is provided to allow NFS daemons [through nfs_getfh(),
nfs_svc(), and async_daemon() routines] to enter the kernel. Note that this call

NFSSYS (2) (NFS Utilities) NFSSYS(2)

is not intended for general purpose use, and is described here only for
illustration.

The cmd argument to nfssys specifies the NFS routine to use:

1 is nfsjvc ()

2 is nfs_getfh ()

3 is async_daemon ().

The argp argument is the error return.

The nfs_getfh routine, in the mountd mount daemon, returns a file handle for the
file open as file descriptor fdes.

nfs_getfh(fd, fhp)
int fd;
char *fhp;
{

•truct {
int fdes;
char *fhp;

Jargs;
extern int nfssys();

args.fdes = fd;
args.fhp = fhp;
return(nfssys(2, &args));

}

The nfs svcO and asyncdaemonQ routines allow kernel processes to have a
user context. The nfs_svc routine starts the nfsd daemon listening on socket
sock. The socket (in 4.2BSD terminology) must be AFJNET and
SOCK_DGRAM (protocol UDP/IP), but this is completely dependent on the local
network transport implementation. This system call returns only if the process
is killed.

nfs_svc(fd)
int fd;
{

extern int nfssys ();
return(nfssys(1, fd);

}

NFSSYS (2) (NFS Utilities) NFSSYS(2)

The async daemon routine implements the NFS biod daemon, which handles
asynchronous I/O for an NFS client; it never returns.

async_daemon()
{

extern Int nfssys();
return(nfssy*(3,0));

}
SEE ALSO

mountd(lM), nfsd(lM).

NICE(2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
nice adds the value of incr to the nice value of the calling process. A process's
nice value is a non-negative number for which a more positive value results in
lower CPU priority.

The system allows nice values only from -8 to 39. The nice values -8 to -1 are
not accepted unless the syslocal(SYSLRTNICE) is executed to enable the
mechanism. The nice system call grants nice values from -8 to -1 only to
super-user processes. These negative nice values cause die CPU priority of the
process to be fixed independently of CPU usage of the process, nice values from
0 to 39 allow the system to adjust dynamically the actual CPU priority of the
process, temporarily lowering it in proportion to the process's recent level of
CPU usage. If a super-user process requires a nice value below -8, or if any
other process requests a nice value below 0, the system imposes a nice value of
0. If any process requests a nice value above 39, the system imposes a nice
value of 39.

[EPERM] nice will fail and not change the nice value if incr is
negative or greater than 39 and the effective user ID of the
calling process is not super-user.

SEE ALSO
nice(l), rtpenable(lM), exec(2).

DIAGNOSTICS
Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

NICE(2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
nice adds the value of incr to the nice value of the calling process. A process's
nice value is a non-negative number for which a more positive value results in
lower CPU priority.

The system allows nice values only from -8 to 39. The nice values -8 to -1 are
not accepted unless the syslocal(SYSLRTNICE) is executed to enable the
mechanism. The nice system call grants nice values from -8 to -1 only to
super-user processes. These negative nice values cause the CPU priority of the
process to be fixed independently of CPU usage of the process, nice values from
0 to 39 allow the system to adjust dynamically the actual CPU priority of the
process, temporarily lowering it in proportion to the process's recent level of
CPU usage. If a super-user process requires a nice value below -8, or if any
other process requests a nice value below 0, the system imposes a nice value of
0. If any process requests a nice value above 39, the system imposes a nice
value of 39.

[EPERM] nice will fail and not change the nice value if incr is
negative or greater than 39 and the effective user ID of the
calling process is not super-user.

SEE ALSO
nice(l), rtpenable(lM), exec(2).

DIAGNOSTICS
Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

NOTIFY(2) NOTIFY (2)

NAME
notify, unnotify, evwait, evnowait - manage notifications

SYNOPSIS
#include <notify.h>

int notify(type, arg, tag)
ushort type;
char *arg;
char *tag;

int unnotify(type, arg)
ushort type;
char *arg;

ushort evwait(tag, datum)
.. i_ — niiii • • utg;
char **datum;

ushort evnowait(tag, datum)
char **tag;
char **datum;

DESCRIPTION
The notify system call interface allows a user process to record a number of
events that it is interested in, and then waits for any one of them. Like select {2),
it does synchronous I/O multiplexing, but notify waits for a wider range of
events and thus has greater functionality than select.

The notify call requests a notification or set of notifications.

The unnotify call retracts an earlier request (or set of requests) for notification.

The evwait call waits for a notification to be posted to the calling process.

The evnowait call returns the first notification if one exists, returning
immediately otherwise.

Notifications are posted FIFO (first-in, (frst-out) in the user process, each
evwait returning the first notification or blocking until one is posted. When a
notify call is given the user must supply the type of notification, a tag, and an
argument. The tag is an arbitrary number the size of a (char *), which is
returned by any evwait call triggered by that notification request. The
argument is type specific and is described below.

The return values of evwait and evnowait are the type of the notification.

It is an error for notify to be called with a type and arg matching a currently
active notification.

NOTIFY(2) NOTIFY (2)

The notify calls support the following type s:

NFDREAD
Queue a notification if the file descriptor arg is readable at the time of
the notify call, and subsequently whenever there is data to be read. A
notification is also queued at end-of-file or when the number of writers
on a pipe goes to zero. The datum returned from an evwait is a count of
the number of bytes available to be read, unless the notification is for a
terminal device in cooked mode; in this case, the count is actually the
number of delimiters encountered (that is, the number of reads
required to get all data). At EOF the datum is -1, and the request is
deleted. This type is implemented for sockets, pipes, ttys, and streams.

N_FD WRITE
Queue a notification if the file descriptor arg is writable at the time of
the notify call, and subsequently when the file goes from a non-
writable to a writable state (that is, output is not blocked). Datum is
the number of characters writable. This type is implemented for
sockets, pipes, and streams.

NSIGNAL
Queue a notification on receipt of a signal. This is used in conjunction
with regular signal catching [see signal(2)]. When signal notification is
in effect, all caught signals queue notifications instead of causing
pseudo-interrupts. If multiple instances of a caught signal occur
before the process has received the notification, the returned type is
N LOSTSIG rather than N SIGNAL. Ignored or defaulted signals are
handled normally. Signals are not reset upon notification.

Note that only one call to notify

notify(N_SIGNAL,ignored,tag)

is required to enable notification of all signals that have a signal
catching function (use a null function). Evwait and evnowait return the
tag and datum. Datum is a bitwise OR of all queued signals: that is,
low-numbered signals are represented as low-order bits (signal n sets
2«-i)

N UMSGREAD, N UMSGWRITE
Queue a notification if the message queue described by arg is or
becomes readable or writable, respectively. The datum returned is the
number of messages received or the number of characters that can be
sent, respectively. When the message queue is removed, datum is -1,
and the request is deleted.

NOTIFY(2) NOTIFY (2)

NINDIR
If type is N INDIR, arg is acually a pointer to an array of the following
structure (defined in /usr/include/notify.h):

struct n_request {
ushort type;
char *arg;
char 'tag;

}

The array should be terminated with an entry having type N INDIR. The entire
set of notifications is either placed or removed. N INDIR is never returned by
evwait or evnowait.

NOIIF.RY
Type N_QUERY is valid only as an argument to the notify call, arg is a
pointer to an array of struct n indir, and tag is a pointer to an int
containing the number of elements in the array.
On return, the array contains the current active notifications in a form
suitable for passing to notify or unnotify (that is, terminated by
N INDIR), and the int pointed to by tag contains the number of active
notifications (even if there was not enough space to copy them all
back).

NSEMOP
Queue a notification if the semaphore described by the struct
n_semop (below) pointed to by arg would not block, is released, or is
removed. Datum is semval unless the semaphore has been removed, in
which case it is-1.

struct nsemop {
int semid; I* semaphore ID */
short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */

}

SEE ALSO
fcntl(2), msgop(2), pipe(2), read(2), select(2), signal(2), socket(2), wait(2),
termio(7).

NOTTFY(2) NOTIFY(2)

DIAGNOSTICS
All calls return -1 on error, setting errno to one of the following:

[EINVAL] Invalid type was given

[EINVAL] Caller never did a notify (unnotify, evwait, evnowait)

[EINVAL] File is not of a valid type (NFDREAD, N_FDWRITE).

[EBADF] File is not open (N FDREAD, N_FDWRITE)

[EBADF] Invalid message queue descriptor (NJUMSG)

[ENOSPC] No space available to allocate notification queue header

[ENOSPC] No space available to allocate table entry for this notification

[ENOSPC] Too many active notification requests for given space
(N QUERY)

[EFAULT] An address fault was generated by a user-supplied pointer

EXAMPLE
#include "sys/types.hf"
#include <sys/notify.h>
#include <stdio.h>
#include <signal.h>

int sig_catch();

main()
{

int tag, datum, i;
char buf[BUFSIZ];
ushort rv, evwait();

setbuf(stdout, NULL);
if (notify(N_FDR EAD, 0, t') < 0)

perrorfnotify for N FDREAD of stdin failed"), exit(1);

if (notify(N_SIGNAL, 2, 's') < 0)
perror("notify failed"), exit(1);

for (i=0; i<20; i++)
signal(i, sigcatch);

NOTIFY(2) NOTIFY (2)

M;;) {
r Wait for an event */
rv = evwait(&tag, &datum);

r Tell the user about it */
printff'Ov: %d tag: %d datum: %d0, rv, tag, datum);

switch (tag) {
case's':

break;
case't':

/* Read the input */
gets(buf);
prlntf("read '%s'0, buf);
if (*buf == 'q')
exit(O);
break;

}
}

}
sig_catch()
{

}
WARNING

The notify system call interface is not portable, has little likelihood of becoming
so, and may disappear in future releases of CTIX. It is therefore recommended
that you use the poll (2) system call, and that existing software using notify be
changed to use poll.

OPEN(2) OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (path, oflag [, mode])
char *path;
int oflag, mode;

DESCRIPTION
The open call opens a file descriptor for the file pointed to by path, and sets the
file status flags according to the value of oflag. For non-STREAMS [see
intro(2)] files, oflag values are constructed by or-ing flags from the following
list (only one of the first three flags below may be used):

O RDONLY Open for reading only.

O WRONLY Open for writing only.

0_RDWR Open for reading and writing.

0_NDELAY This flag may affect subsequent reads and writes [see
read(2) and write (2)}.

When opening a FIFO with 0_RD0NLY or 0_WR0NLY set

If 0_NDELAY is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

If 0_NDELAY is clear:

An open for reading-oniy will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

When opening a file associated with a communication line:

If 0_NDELAY is set:

The open will return without waiting for carrier.

If 0_NDELAY is clear:

The open will block until carrier is present.

OPEN(2) OPEN(2)

OAPPEND If set, the file pointer will be set to the end of the file prior to
each write.

O DIRECT If set, subsequent reads or writes that satisfy the following
criteria are moved direcdy to or from the user space to the
physical media:

• The transfer must start on a IK byte boundary in the
file, and it must be in multiples of IK byte blocks.

O SYNC When opening a regular file, this flag affects subsequent
writes. If set, each write (2) will wait for both the file data
and file status to be physically updated.

O CREAT If the file exists, this flag has no effect. Otherwise, the
owner ID of the file is set to the effective user ID of the
process, the group ID of the file is set to the effective group
ID of the process, and the low-order 12 bits of the file mode
are set to the value of mode modified as follows [see
creat (2)]:

• All bits set in the file mode creation mask of the process are
cleared [see umask (2)].

• The "save text image after execution b i t" of the mode is
cleared [see chmod (2)].

OTRUNC
If the file exists, its length is truncated to 0 and the mode and owner are
unchanged.

OEXCL
If 0_EXCL and 0_CREAT are set, open will fail if the file exists.

When opening a STREAMS file, oflag may be constructed from 0_NDELAY or-
ed with either 0_RDONLY, 0_WR0NLY or 0_RDWR. Other flag values are not
applicable to STREAMS devices and have no effect on them. The value of
0_NDELAY affects the operation of STREAMS drivers and certain system calls
[see read(2), getmsg(2), putmsg(2) and write(2)]. For drivers, the
implementation of 0_NDELAY is device-specific. Each STREAMS device driver
may treat this option differently.

Certain flag values can be set following open as described in fcntl(2).

The file pointer used to mark the current position within the file is set to the
beginning of the file.

OPEN(2) OPEN(2)

The new file descriptor is set to remain open across exec system calls [see

fcntl(2)].

The named fde is opened unless one or more of the following are true:

[EACCES] A component of the path prefix denies search permission.

[EACCES] oflag permission is denied for the named file.
[EAGAIN] The file exists, mandatory file/record locking is set, and there

are outstanding record locks on the file [see chmod (2)].

[EEXIST] 0_CREAT and 0_EXCL are set, and the named file exists.

[EFAULT] path points outside the allocated address space of the
process.

[EINTR] A signal was caught during the open system call.

[EIO] A hangup or error occurred during a STREAMS open.

[EISDIR] The named file is a directory and oflag is write or read/write.

[EMFILE] NOFILES file descriptors are currently open.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

[ENFILE] The system file table is full.

[ENOENT] 0_CREAT is not set and the named file does not exist.

[ENOUNK] path points to a remote machine, and the link to that machine
is no longer active.

[ENOMEM] The system is unable to allocate a send descriptor.

[ENOSPC] 0_CREAT and 0_EXCL are set, and the file system is out of
inodes.

[ENOSR] Unable to allocate a stream.

[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO] The named file is a character special or block special file,
and the device associated with this special file does not exist.

[ENXIO] 0_NDELAY is set, the named file is a FIFO, 0_WR0NLY is
set, and no process has the file open for reading.

[ENXIO] A STREAMS module or driver open routine failed.

[EROFS] The named file resides on a read-only file system and oflag
is write or read/write.

OPEN(2) OPEN(2)

[ETXTBSY] The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write.

[EDEADLOCK] A side effect of the locking(2) call, when applying OTRUNC.
[See the WARNING on the locking (2) manpage.]

SEE ALSO
chmod(2), close(2), creat(2), dup(2), fcntl(2), getmsg(2), intro(2), lseek(2),
read(2), putmsg(2), umask(2), write(2).

DIAGNOSTICS
Upon successful completion, the fde descriptor is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

PAUSE(2) PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
The pause call suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause does not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function [see signal (2)], the calling process resumes execution
from the point of suspension; with a return value of -1 from pause and errno set
to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

PIPE(2) PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2];

DESCRIPTION
pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[0] and fildes [l], fildes[0] is opened for reading and fildes [1] is opened
for writing.

Up to 9,216 bytes of data are buffered by the pipe before the writing process is
blocked. A read only file descriptor fildes [0] accesses the data written to
fildes [1] on a first-in-first-out (FIFO) basis.

pipe will fail if:

[EMFILE] NOFILES file descriptors are currently open.

[ENFILE] The system file table is full.

SEE ALSO
sh(l), read(2), write(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

C

PLOCK(2) PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION
plock allows the calling process to lock its text segment (text lock), its data and
stack segments (data lock), or its text and data segments (process lock) into
memory. Locked segments are immune to all routine swapping, plock also
allows these segments to be unlocked. For 407 object modules TXTLOCK and
DATLOCK are identical.

The effective user ID of the calling process must be super-user to use this call.
op specifies the following:

PROCLOCK lock text and data segments into memory (process lock)

TXTLOCK lock text segment into memory (text lock)

DATLOCK lock data segment into memory (data lock)

UNLOCK remove locks

Shared regions (for example, text) may be locked by anyone using the text, but
they may be unlocked only if the caller is the last one using the region. Note
that sticky-bit text that is not explicitly unlocked will remain locked in core
even after the last process using it terminates.

plock will fail and not perform the requested operation if one or more of the
following are true:

[EPERM] The effective user ID of the calling process is not super- user.

[EINVAL] op is equal to PROCLOCK and a process lock, a text lock, or
a data lock already exists on the calling process.

[EINVAL] op is equal to TXTLOCK and a text lock, or a process lock
already exists on the calling process.

[EINVAL] op is equal to DATLOCK and a data lock, or a process lock
already exists on the calling process.

[EINVAL] op is equal to UNLOCK and no type of lock exists on the
calling process.

[EAGAIN] Not enough memory.

PLOCK(2) PLOCK(2)

SEE ALSO
exec(2), exit(2), fork(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

POLL(2) POLL(2)

NAME
poll - STREAMS input/output multiplexing

SYNOPSIS
#include <stropts.h>
#include <poll.h>

int poll(fds, nfds, timeout)
struct pollfd fds[];
unsigned long nfds;
int timeout;

DESCRIPTION
poll provides users with a mechanism for multiplexing input/output over a set of
file descriptors that reference open streams [see intro(2)]. poll identifies those
streams on which a user can send or receive messages, or on which certain
events have occurred. A user can receive messages using read(2) or getmsg{2)
and can send messages using write(2) and putmsg(2). Certain ioctl(2) calls,
such as I_RECVFD and I_SENDFD [see streamio(J)], can also be used to receive
and send messages.

fds specifies the file descriptors to be examined and the events of interest for
each file descriptor. It is a pointer to an array with one element for each open
file descriptor of interest. The array's elements are pollfd structures which
contain the following members:

int fd; r file descriptor */
short events; /* requested events */
short revents; f returned events */

where fd specifies an open file descriptor and events and revents are bitmasks
constructed by or-ing any combination of the following event flags:

POLLIN A non-priority or file descriptor passing message (see
I_RECVFD) is present on the stream head read queue. This flag
is set even if the message is of zero length. In revents, this flag
is mutually exclusive with POLLPRI.

POLLPRI A priority message is present on the stream head read queue.
This flag is set even if the message is of zero length. In revents,
this flag is mutually exclusive with POLLIN.

POLLOUT The first downstream write queue in the stream is not full.
Priority control messages can be sent (see putmsg) at any time.

POLL(2) POLL(2)

POLLERR An error message has arrived at the stream head. This flag is
only valid in the revents bitmask; it is not used in the events
field.

POLLHUP A hangup has occurred on the stream. This event and POLLOUT
are mutually exclusive; a stream can never be writable if a
hangup has occurred. However, this event and POLLIN or
POLLPRI are not mutually exclusive. Tnis nag is only valid in
the revents bitmask; it is not used in the events field.

POLLNVAL The specified fd value does not belong to an open stream. This
flag is only valid in the revents field; it is not used in the events
field.

For each element of the array pointed to by fds, poll examines the given file
anf/ r i \ nt\A/>i fia/4 in i/im t r> ' I 'ha mimKAi* f j 1c u i n ^ o y i 3 p v v i n v / u 111 c r c m o . m v i i u i u l / i * i u i m v

be examined is specified by nfds. If nfds exceeds NOFILES, the system limit of
open files [see ulimit(2)], poll will fail.

If the value fd is less than zero, events is ignored and revents is set to 0 in that
entry on return from poll.

The results of the poll query are stored in the revents field in the pollfd
structure. Bits are set in the revents bitmask to indicate which of the requested
events are true. If none are true, none of the specified bits is set in revents when
the poll call returns. The event flags POLLHUP, POLLERR and POLLNVAL are
always set in revents if the conditions they indicate are true; this occurs even
though these flags were not present in events.

If none of the defined events have occurred on any selected file descriptor, poll
waits at least timeout msec for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeout is rounded up to the nearest legal value available on that system. If the
value timeout is 0, poll returns immediately. If the value of timeout is -I, poll
blocks until a requested event occurs or until the call is interrupted, poll is not
affected by the 0_NDELAY flag.

poll fails if one or more of the following are true:

[EAGAIN] Allocation of internal data structures failed but request should
be attempted again.

[EFAULT] Some argument points outside the allocated address space.

[EINTR] A signal was caught during the poll system call.

[EINVAL] The argument nfds is less than zero, or nfds is greater than
NOFILES.

POLL(2) POLL(2)

SEE ALSO
intro(2), read(2), getmsg(2), putmsg(2), write(2), streamio(7).
UNIX System V Release 3.2 Streams Primer.
UNIX System V Release 3.2 Streams Programmer's Guide.

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. A positive value
indicates the total number of file descriptors that has been selected (that is, file
descriptors for which the revents field is non-zero). A value of 0 indicates that
the call timed out and no file descriptors have been selected. Upon failure, a
value of -1 is returned and errno is set to indicate the error.

i I

PROFIL(2) PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char "buff;
int bufsiz, offset, scale;

DESCRIPTION
buff points to an area of core whose length (in bytes) is given by bufsiz. After
this call, the user's program counter (pc) is examined each clock tick. Then the
value of offset is subtracted from it, and the remainder multiplied by scale. If
the resulting number corresponds to an entry inside buff, that entry is
incremented. An entry is defined as a series of bytes with length sizeof(short).
The scale is interpreted as an unsigned, fixed-point fraction with binary point at
the left: 0177777 (octal) gives a 1-1 mapping of pc's to entries in buff; 077777
(octal) maps each pair of instruction entries together. 02(octal) maps all
instructions onto the beginning of buff (producing a non-interrupting core
clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by
giving a bufsiz of 0. Profiling is turned off when an exec is executed, but
remains on in child and parent both after a fork. Profiling will be turned off if
an update in buff would cause a memory fault.

SEE ALSO
prof(l), times(2), monitor(3C).

DIAGNOSTICS
Not defined.

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
ptrace provides a means by which a parent process may control the execution
of a child process. Its primary use is for the implementation of breakpoint
debugging [see sdb(1)]. The child process behaves normally until it encounters
a signal [see signal(2) for the list], at which time it enters a stopped state and its
parent is notified via wait (2). When the child is in the stopped state, its parent
can examine and modify its "core image" using ptrace. Also, the parent can
cause the child either to terminate or continue, with the possibility of ignoring
the signal that caused it to stop.

The request argument determines the precise action to be taken by ptrace and is
one of the following:

0 This request must be issued by the child process if it is to be traced by
its parent. It turns on the child's trace flag that stipulates that the child
should be left in a stopped state upon receipt of a signal rather than the
state specified by func [see signal(2)]. The pid, addr, and data
arguments are ignored, and a return value is not defined for this
request Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can be used only by the parent process. For each,
pid is the process ID of the child. The child must be in a stopped state before
these requests are made.

1,2 With these requests, the word at location addr in the address space of
the child is returned to the parent process. If I and D space are
separated, request 1 returns a word from I space, and request 2 returns
a word from D space. If I and D space are not separated, either request
1 or request 2 may be used with equal results. The data argument is
ignored. These two requests will fail if addr is not the start address of
a word, in which case a value of -1 is returned to the parent process
and the parent's errno is set to EIO.

3 With this request, the word at location addr in the child's USER area in
the system's address space (see <sys/user.h>) is returned to the parent
process. Addresses in this area range from 0 to ctob (USIZE) on
Convergent Technologies 680x0-family processors. The data

PTRACE(2) PTRACE(2)

argument is ignored. This request will fail if addr is not the start
address of a word or is outside the USER area, in which case a value of
-1 is returned to the parent process and the parent's errno is set to EIO.

4 , 5 With these requests, the value given by the data argument is written
into the address space of the child at location addr. If I and D space
are separated (as on PDP-11), request 4 writes a word into I space, and
request 5 writes a word into D space. If I and D space are not
separated (as on Convergent Technologies 680x0-family processors)
either request 4 or request 5 may be used with equal results. Upon
successful completion, the value written into the address space of the
child is returned to the parent These two requests will fail if addr is
not the start address of a word. Upon failure a value of -1 is returned
to the parent process and the parent's errno is set to EIO.

6 With this request, a few entries in the child's USER area can be written.
Data gives the value that is to be written and addr is the location of
the entry. The few entries that can be written are:

• the general registers (that is, registers 0 to 15 on Convergent
Technologies 680x0-family processors)

• the condition codes of the Processor Status Word.

7 This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that caused the
child to stop are canceled before it resumes execution. If the data
argument is a valid signal number, the child resumes execution as if it
had incurred that signal, and any other pending signals are canceled.
The addr argument must be equal to 1 for this request. Upon
successful completion, the value of data is returned to the parent.
This request will fail if data is not 0 or a valid signal number, in which
case a value of -1 is returned to the parent process and the parent's
errno is set to EIO.

8 This request causes the child to terminate with the same consequences
as exit (2).

9 This request sets the trace bit in the Processor Status Word of the child
and then executes the same steps as listed above for request 7. The
trace bit causes an interrupt upon completion of one machine
instruction. This effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-ID facility on subsequent
exec (2) calls. If a traced process calls exec, it will stop before executing the
first instruction of the new image showing signal SIGTRAP.

PTRACE(2) PTRACE(2)

General Errors
ptrace will in general fail if one or more of the following are true:

[EIO] request is an illegal number.

[ESRCH] pid identifies a child that does not exist or has not executed a
ptrace with request 0.

SEE ALSO
sdb(l), exec(2), signal(2), wait(2).

PUTMSG(2) PUTMSG(2)

NAME
putmsg - send a message on a stream

SYNOPSIS
#include <stropts.h>

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf "ctlptr;
struct strbuf "dataptr;
int flags;

DESCRIPTION
The putmsg call creates a message [see intro(2)] from user specified buffer(s)
and sends the message to a STREAMS file. The message can contain either a
data part, a control part or both. The data and control parts to be sent are
distinguished by placement in separate buffers, as described below. The
semantics of each part is defined by the STREAMS module that receives the
message.

fd specifies a file descriptor referencing an open Stream; ctlptr and dataptr each
point to a strbuf structure which contains the following members:

ctlptr points to the structure describing the control part, if any, to be included in
the message. The buf field in the strbuf structure points to the buffer where the
control information resides, and the len field indicates the number of bytes to be
sent The maxlen field is not used in putmsg [see getmsg(2)]. In a similar
manner, dataptr specifies the data, if any, to be included in the message, flags
may be set to the values 0 or RS_HIPRI and is used as described below.

To send the data part of a message, dataptr must be non-NULL and the len field
of dataptr must have a value of 0 or greater. To send the control part of a
message, the corresponding values must be set for ctlptr. No data (control) part
will be sent if either dataptr (ctlptr) is NULL or the len field of dataptr (ctlptr)
is set to -1.

If a control part is specified, and flags is set to RS_HIPRI, a priority message is
sent If flags is set to 0, a non-priority message is sent If no control part is
specified, and flags is set to RS_HIPRI, putmsg fails and sets errno to EINVAL.
If no control part and no data part are specified, and flags is set to 0, no message
is sent, and 0 is returned.

int maxlen;
Int len;
char *buf;

I* not used */
/* length of data */
/* ptr to buffer */

PUTMSG(2) PUTMSG(2)

For non-priority messages, putmsg will block if the stream write queue is full
due to internal flow control conditions. For priority messages, putmsg does not
block on this condition. For non-priority messages, putmsg does not block
when the write queue is full and 0_NDELAY is set Instead, it fails and sets
errno to EAGAIN.

putmsg also blocks, unless prevented by lack of internal resources, waiting for
the availability of message blocks in the stream, regardless of priority or
whether 0_NDELAY has been specified. No partial message is sent

putmsg fails if one or more of the following are true:

[EAGAIN] A non-priority message was specified, the 0_NDELAY flag is
set and the stream write queue is full due to internal flow
control conditions.

[EAGAIN] Buffers could not be allocated for the message that was to be
created.

[EBADF] fd is not a valid file descriptor open for writing.

[EFAULT] ctlptr or dataptr points outside the allocated address space.

[EINTR] A signal was caught during the putmsg system call.

[EINVAL] An undefined value was specified in flags, or flags is set to
RS_HIPRI and no control part was supplied.

[EINVAL] The stream referenced by fd is linked below a multiplexor.

[ENOSTR] A stream is not associated with fd.

[ENXIO] A hangup condition was generated downstream for the
specified stream.

[ERANGE] The size of the data part of the message does not fall within the
range specified by the maximum and minimum packet sizes of
the topmost stream module. This value is also returned if the
control part of the message is larger than the maximum
configured size of the control part of a message, or if the data
part of a message is larger than the maximum configured size
of the data part of a message.

A putmsg also fails if a STREAMS error message had been processed by the
stream head before the call to putmsg. The error returned is the value contained
in the STREAMS error message.

PUTMSG(2) PUTMSG(2)

SEE ALSO
intro(2), read(2), getmsg(2), poll(2), write(2).
UNIX System V Release 3.2 Streams Programmer's Guide.
UNIX System V Release 3.2 Streams Primer.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

- 3 -

READ(2) READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
The fildes argument is a file descriptor obtained from a creat (2), open (2),
dup(2),fcntl(2), or pipe (2) system call.

The read call attempts to read nbyte bytes from the file associated with fildes
into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file given by
the file pointer associated with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and
placed in the buffer; this number may be less than nbyte if the file is associated
with a communication line [see ioctl (2) and termio(7)], or if the number of
bytes left in the file is less than nbyte bytes. A value of 0 is returned when an
end-of-file has been reached.

A read from a STREAMS [see intro(2)] file can operate in three different modes:
"byte-stream" mode, "message-nondiscard" mode, and "message-discard"
mode. The default is byte-stream mode. This can be changed using the
I_SRDOPT ioctl request [see streamio(7)], and can be tested with the I_GRDOPT
ioctl. In byte-stream mode, read retrieves data from the stream until it has
retrieved nbyte bytes, or until there is no more data to be retrieved. Byte-
stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read retrieves data until it has read
nbyte bytes, or until it reaches a message boundary. If the read does not
retrieve all the data in a message, the remaining data are replaced on the stream,
and can be retrieved by the next read or getmsg(2) call. Message-discard mode
also retrieves data until it has retrieved nbyte bytes, or it reaches a message
boundary. However, unread data remaining in a message after the read returns
are discarded, and are not available for a subsequent read or getmsg.

READ(2) READ(2)

When attempting to read from a regular fde with mandatory file/record locking
set [see chmod(2)], and there is a blocking (owned by another process) write
lock on the segment of the fde to be read:

• If 0_NDELAY is set, the read returns a -1 and set errno to EAGAIN.

• If 0_NDELAY is clear, the read sleeps until the blocking record lock is
removed.

When attempting to read from an empty pipe (or FIFO):

• If 0_NDELAY is set, the read returns a 0.

• If 0_NDELAY is clear, the read blocks until data is written to the fde or
the file is no longer open for writing.

When attemntinc to read a file associated with a ttv that has no data currentlv i w •• " • "V - - - - - - j

available:

• If 0_NDELAY is set, the read returns 0.

• If 0_NDELAY is clear, the read blocks until data becomes available.
When attempting to read a file associated with a stream that has no data
currently available:

• If 0_NDELAY is set, the read returns a -1 and set errno to EAGAIN.

• If 0_NDELAY is clear, the read blocks until data becomes available.

When reading from a STREAMS file, handling of zero-byte messages is
determined by the current read mode setting. In byte-stream mode, read
accepts data until it has read nbyte bytes, or until there is no more data to read,
or until a zero-byte message block is encountered. The read call then returns
the number of bytes read, and places the zero-byte message back on the stream
to be retrieved by the next read or getmsg. In the two other modes, a zero-byte
message returns a value of 0 and the message is removed from the stream.
When a zero-byte message is read as the first message on a stream, a value of 0
is returned regardless of the read mode.

A read from a STREAMS file can only process data messages. It cannot process
any type of protocol message and fails if a protocol message is encountered at
the stream head.

The read call fails if one or more of the following are true:

[EAGAIN] Mandatory file/record locking was set, 0_NDELAY was set,
and there was a blocking record lock.

[EAGAIN] Total amount of system memory available when reading via
raw IO is temporarily insufficient.

- 2 -

READ(2) READ(2)

[EAGAIN] No message waiting to be read on a stream and 0_NDELAY
flag set

[EBADF] fildes is not a valid fde descriptor open for reading.

[EBADMSG] Message waiting to be read on a stream is not a data
message.

[EDEADLK] The read was going to go to sleep and cause a deadlock
situation to occur.

[EFAULT] buf points outside the allocated address space.

[EINTR] A signal was caught during the read system call.

[EINVAL] Attempted to read from a stream linked to a multiplexor.

TENOLCK] The system record lock table was full, so the read could not
go to sleep until the blocking record lock was removed.

[ENOLINK] fildes is on a remote machine and the link to that machine is
no longer active.

[EDEADLOCK] A side effect of the locking(2) call. (See the WARNING on
the locking (2) manpage.)

A read from a STREAMS fde also fails if an error message is received at the
stream head. In this case, errno is set to the value returned in the error
message. If a hangup occurs on the stream being read, read continues to
operate normally until the stream head read queue is empty. Thereafter, it
returns 0.

SEE ALSO
creat(2), dup(2), fcntl(2), getmsg(2), iocd(2), intro(2), locking(2), open(2),
pipe(2), streamio(7), termio(7).

DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a -1 is returned and errno is set to
indicate the error.

(r

RECV(2) (CTEX Internetworkiiig) RECV(2)

NAME
recv, recvfrom - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int recv(s, buf, len, flags)
int s;
char *buf;
int len, flags;

int recvfrom(s, buf, len, flags, from, fromlen)
int s;
char *buf;
int len, nags;
struct sockaddr "from;
int "fromlen;

DESCRIPTION
The recv and recvfrom calls are used to receive messages from a socket.

The recv call can be used only on a connected socket [see connect (2)], while
recvfrom can be used to receive data on a socket whether it is in a connected
state or not

If from is non-zero, the source address of the message is filled in. fromlen is a
value-result parameter, initialized to the size of the buffer associated with from,
and modified on return to indicate the actual size of the address stored there.
The length of the message is returned in cc. If a message is too long to fit in the
supplied buffer, excess bytes may be discarded depending on the type of socket
the message is received from; see socket(2).

If no messages are available at the socket, the receive call waits for a message
to arrive.

The flags argument to a send call is formed by or' ing one or more of the values:

#define MSG PEEK 0x1 /* peek at incoming message 7
#define MSG OOB 0x2 /* process out-of-band data */

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

RECV (2) (CI'IX Internetworking) RECV (2)

ERRORS
The calls fail if:

[EBADF]

[ENOTSOCK]

[EINTR]

[EFAULT]

The argument s is an invalid descriptor.

The argument s is not a socket

The receive was interrupted by delivery of a signal
before any data was available for the receive.

The data was specified to be received into a non-
existent or protected part of the process address space.

SEE ALSO
connect(2), intro(2), read(2), send(2), socket(2), intro(7).
CTIX Network Programmer's Primer.

RMDIR (2) RMDIR (2)

NAME
rmdir - remove a directory

SYNOPSIS
int rmdir (path)
char *path;

DESCRIPTION
The rmdir call removes the directory named by the path name pointed to by
path. The directory must not have any entries other than the dot (.) and dot dot
(. .) files.

The named directory is removed unless one or more of the following are true:

[EINVAL] The current directory should not be removed.

[EINVAL] The dot (.) entry of a directory should not be removed.

[EEXIST] The directory contains entries other than those for dot (.)
and dot dot (. .) .

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for a component of the path
prefix.

[EACCES] Write permission is denied on the directory containing the
directory to be removed.

[EACCES] The parent directory has the sticky bit set and: the parent
directory is not owned by the user, and the directory is not
owned by the user, and the directory is not writable by the
user, and the user is not super-user.

[EBUSY] The directory to be removed is the mount point for a
mounted file system.

[EROFS] The directory entry to be removed is part of a read-only file
system.

[EFAULT] Path points outside the process's allocated address space.

[EIO] An IAD error occurred while accessing the file system.

[ENOLINK] Path points to a remote machine, and the link to that machine
is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

RMDIR(2) RMDIR(2)

SEE ALSO
mkdir(l), rm(l), rmdir(l), mkdir(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

- 2 -

SELECT(2) (CTIX Internetworking) SELECT(2)

NAME
select - synchronous I/O multiplexing

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;
fd_set "readfds, "writefds, "exceptfds;
struct timeval "timeout;

FD SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdset)
FD ZERO(&fdset)
int fd;
fd_set fdset;

DESCRIPTION
The select call examines the I/O descriptor sets whose addresses are passed in
readfds, writefds, and exceptfds to see if some of their descriptors are ready for
reading, are ready for writing, or have an exceptional condition pending,
respectively. The first nfds descriptors are checked in each set; that is, the
descriptors from 0 through nfds-1 in the descriptor sets are examined. On
return, select replaces the given descriptor sets with subsets consisting of those
descriptors that are ready for the requested operation. The total number of
ready descriptors in all the sets is returned in nfound.

The descriptor sets are stored as bit fields in arrays of integers. The following
macros are provided for manipulating such descriptor sets: D_ZERO(&fdset)
initializes a descriptor set fdset to the null set FD_SET(fd, &fdset) includes a
particular descriptor fd in fdset. FD_CLR(fd, &fdset) removes fd from fdset.
FD_lSSET(fd, &fdset) is nonzero if fd is a member of fdset, otherwiseit is zero.
The behavior of these macros is undefined if a descriptor value is less than zero
or greater than or equal to FD SETS1ZE, which is normally at least equal to the
maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a zero pointer, the select blocks indefinitely.
To affect a poll, the timeout argument should be non-zero, pointing to a zero-
valued timeval structure.

SELECT(2) (CTTX Internetworking) SELECT(2)

Any of readfds, writefds, and exceptfds may be given as zero pointers if no
descriptors are of interest,

SEE ALSO
accept(2), connect(2), getdtablesize(2), read(2), recv(2), send(2), write(2).
CTIX Network Programmer's Primer.

RETURN VALUE
The select call returns the number of ready descriptors that are contained in the
descriptor sets, or -1 if an error occurred. If the time limit expires then select
returns 0. If select returns with an error, including one due to an interrupted
call, the descriptor sets will be unmodified.

ERRORS
Returned error codes from select are as follows:

[EBADF] One of the descriptor sets specified an invalid descriptor.

[EINTR] A signal was delivered before the time limit expired and
before any of the selected events occurred.

[EINVAL] The specified time limit is invalid. One of its components is
negative or too large.

BUGS
Although the provision of getdtablesize (2) was intended to allow user programs
to be written independent of the kernel limit on the number of open files, the
dimension of a sufficiendy large bit field for select remains a problem. The
default size FD_SETSIZE (currently 256) is somewhat larger than the current
kernel limit to the number of open files. However, in order to accommodate
programs that might potentially use a larger number of open files with select,
you can to increase this size within a program by providing a larger definition
of FD_SETSIZE before the inclusion of <sys/types.h>.

The select call should probably return the time remaining from the original
timeout, if any, by modifying the time value in place. This may be
implemented in future versions of the system. Thus, it is unwise to assume that
the timeout value will be unmodified by the select call.

SEMCTL(2) SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

int val;
struct semid_ds "buf;
ushort "array;

} arg;

DESCRIPTION
The semctl call provides a variety of semaphore control operations as specified
by cmd.

The following cmds are executed with respect to the semaphore specified by
semid and semnum:

GETVAL Return the value of semval [see intro (2)]. [READ)

SETVAL Set the value of semval to arg.val. [ALTER) When this cmd
is successfully executed, the semadj value corresponding to
the specified semaphore in all processes is cleared.

GETPID Return the value of sempid. [READ)

GETNCNT Return the value of semncnt. (READ)

GETZCNT Return the value of semzcnt. (READ)

The following cmds return and set, respectively, every semval in the set of
semaphores.

GETALL
Place semvals into array pointed to by arg.array. (READ)

SETALL
Set semvals according to the array pointed to by arg.array. (ALTER)
When this cmd is successfully executed the semadj values
corresponding to each specified semaphore in all processes are
cleared.

SEMCTL(2) SEMCTL(2)

The following cmds are also available:

IPCSTAT
Place the current value of each member of the data structure associated
with semid into the structure pointed to by arg.buf. The contents of
this structure are defined in intro(2). {READ}

IDT CUT AS »' I ' i j *

Set the value of the following members of the data structure associated
with semid to the corresponding value found in the structure pointed to
by arg.buf\

sem_perm.uld
sem_perm.gld
sem_perm.mode /* only low 9 bits «/

This cmd can be executed only by a process that has an effective user
ID equal to either that of super-user, or to the value of sem_perm.cuid
or sem_perm.uid in the data structure associated with semid.

IPCRMID
Remove the semaphore identifier specified by semid from the system
and destroy the set of semaphores and data structure associated with it.
This cmd can only be executed by a process that has an effective user
ID equal to either that of super-user, or to the value of sem_perm.cuid
or sem_perm.uid in the data structure associated with semid.

The semctl call fails if one or more of the following are true:

[EINVAL] semid is not a valid semaphore identifier.

[EINVAL] semnum is less than zero or greater than sem nsems.

[EINVAL] cmd is not a valid command.

[EACCES] Operation permission is denied to the calling process [see
intro (2)].

[ERANGE] cmd is SETVAL or SETALL and the value to which semval is
to be set is greater than the system imposed maximum.

[EPERM] cmd is equal to IPC_RMID or IPC_SET and the effective user
ID of the calling process is not equal to that of super-user, or
to the value of sem_perm.cuid or sem_perm.uid in the data
structure associated with semid.

[EFAULT] arg.buf points to an illegal address.

SEMCTL(2) SEMCTL(2)

SEE ALSO
intro(2), semget(2), semop(2).

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
A value ofO.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

<c

SEMGET(2) SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
^include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
The semget call returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems
semaphores [see intro (2)] are created for key if one of the following is true:

• Key is equal to IPC PRIVATE.

• Key does not already have a semaphore identifier associated with it,
and (.semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore identifier
is initialized as follows:

• sem_perm.cuid, sem_perm.uid, sem_perm.gid, and sem_perm.cgid
are set equal to the effective user ID and effective group ID,
respectively, of the calling process.

• The low-order 9 bits of sem_perm.mode are set equal to the low-order
9 bits of semflg.

• semnsems is set equal to the value of nsems.

• semotime is set equal to 0 and sem ctime is set equal to the current
time.

The semget call fails if one or more of the following are true:

[EINVAL] nsems is either less than or equal to zero or greater than the
system-imposed limit.

[EACCES] A semaphore identifier exists for key, but operation
permission [see intro (2)] as specified by the low-order 9 bits
of semflg would not be granted.

[EINVAL] A semaphore identifier exists for key, but the number of
semaphores in the set associated with it is less than nsems,
and nsems is not equal to zero.

SEMGET(2) SEMGET(2)

[ENOENT] A semaphore identifier does not exist for key and (semflg &
IPCCREAT) is "false".

[ENOSPC] A semaphore identifier is to be created but the system-
imposed limit on the maximum number of allowed
semaphore identifiers system wide would be exceeded.

[ENOSPC] A semaphore identifier is to be created but the system-
imposed limit on the maximum number of allowed
semaphores system wide would be exceeded.

[EEXIST] A semaphore identifier exists for key but [(semflg &
IPC_CREAT) and (semflg &IPC_EXCL)] is " t rue".

SEE ALSO
intro(2), semctl(2), semop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned; otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEMOP(2) SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf • •sops;
unsigned nsops;

DESCRIPTION
The semop call is used to automatically perform an array of semaphore
operations on the set of semaphores associated with the semaphore identifier
specified by semid. The sops parameter is a pointer to the array of semaphore-
operation structures; nsops is the number of such structures in the array. The
contents of each structure includes the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /» operation flags */

Each semaphore operation specified by sem op is performed on the
corresponding semaphore specified by semid and sem num.

The sem op member specifies one of three semaphore operations as follows:

• If semop is a negative integer, one of the following occurs {ALTER}:

If semval [see intro (2)] is greater than or equal to the absolute
value of sem op, the absolute value of sem op is subtracted
from semval. Also, if (semJig & SEMUNDO) is "true", the
absolute value of sem op is added to the calling process's
semadj value [see exit (2)] for the specified semaphore.

If semval is less than the absolute value of sem op and
(semJig & IPC NOWAIT) is "true", semop returns
immediately.

If semval is less than the absolute value of sem op and
(sem Jig & IPC_NOWAIT) is "false", semop increments the
semncnt associated with the specified semaphore and
suspends execution of the calling process until one of the
following conditions occur.

SEMOP(2) SEMOP(2)

+ Semval becomes greater than or equal to the absolute
value of semop. When this occurs, the value of
semncnt associated with the specified semaphore is
decremented, the absolute value of sem op is
subtracted from semval and, if (semJig &
SEM_UNDO) is "true", the absolute value of
sem op is added to the calling process's semadi
value for the specified semaphore.

+ The semid for which the calling process is awaiting
action is removed from the system [see semctl(2)].
When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

+ The calling process receives a signal that is to be
caught. When this occurs, the value of semncnt
associated with the specified semaphore is
decremented, and the calling process resumes
execution in the manner prescribed in signal (2).

• If sem op is a positive integer, the value of sem op is added to semval
and, if (semJig & SEM_UNDO) is "true", the value of sem op is
subtracted from the calling process's semadj value for the specified
semaphore. {ALTER}

• If sem op is zero, one of the following occurs [READ}:

If semval is zero, semop returns immediately.

If semval is not equal to zero and (sem Jig & IPC_NOWAIT)
is "true", semop returns immediately.

If semval is not equal to zero and (semJig & IPC_NOWAIT)
is "false", semop increments the semzcnt associated with the
specified semaphore and suspends execution of the calling
process until one of the following occurs:

+ Semval becomes zero, at which time the value of
semzcnt associated with the specified semaphore is
decremented.

+ The semid for which the calling process is awaiting
action is removed from the system. When this
occurs, errno is set equal to EIDRM, and a value of -1
is returned.

- 2 -

SEMOP(2) SEMOP(2)

+ The calling process receives a signal that is to be
caught. When this occurs, the value of semzcnt
associated with the specified semaphore is
decremented, and the calling process resumes
execution in the manner prescribed in signal (2).

The semop call fails if one or more of the following are true for any of the
semaphore operations specified by sops:

[EINVAL] semid is not a valid semaphore identifier.

[EFBIG] sem num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.

[E2BIG] nsops is greater than the system-imposed maximum.

[EACCES] Operation permission is denied to the calling process [see
intro (2)]

[EAGAIN] The operation would result in suspension of the calling
process but (semJig & IPC_NOWAIT) is " true".

[ENOSPC] The limit on the number of individual processes requesting
an SEM UNDO would be exceeded.

[EINVAL] The number of individual semaphores for which the calling
process requests a SEM UNDO would exceed the limit.

[ERANGE] An operation would cause a semval to overflow the system-
imposed limit.

[ERANGE] An operation would cause a semadj value to overflow the
system-imposed limit.

[EFAULT] sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified
in the array pointed to by sops is set equal to the process ID of the calling
process.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

DIAGNOSTICS
If semop returns due to the receipt of a signal, a value of -1 is returned to the
calling process and errno is set to EINTR. If it returns due to the removal of a
semid from the system, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, a value of zero is returned; otherwise, a value of
-1 is returned and errno is set to indicate the error.

i

SEND(2) (CTIX Internetwork iag) SEND(2)

NAME
send, sendto - send a message to a socket

SYNOPSIS
^include <sys/types.h>
#include <sys/socket.h>

int send(s, msg, len, flags)
int s;
char "msg;
int len, flags;

int sendto(s, msg, len, flags, to, tolen)
int s;
char "msg;
int len, flags;
struct sockaddr "to;
int tolen;

DESCRIPTION
The send and sendto calls are used to transmit a message to another socket (s).
The send call can be used only when the socket is in a connected state, while
sendto can be used at any time.

The address of the target is given by to with tolen specifying its size. The
length of the message is given by len. If the message is too long to pass
atomically through the underlying protocol, then the error EMSGSIZE is
returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1
indicate some locally detected errors.

If no message space is available at the socket to hold the message to be
transmitted, send blocks.

The flags parameter can be set to SOF_OOB to send "out-of-band" data on
sockets which support this notion (SOCK_STREAM).

SEE ALSO
intro(2), recv(2), socket(2), intro(7).
CTIX Network Programmer's Primer.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.

SOCKET(252) (CTIX Internetworking) SOCKET(2)

ERRORS
[EBADF] An invalid descriptor was specified.

[ENOTSOCK] The argument s is not a socket.

[EFAULT] An invalid user space address was specified for a
parameter.

[EMSGSIZE] The socket requires that message be sent atomically,
and the size of the message to be sent made this
impossible.

SETPGRP(2) SETPGRP(2)

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

DESCRIPTION
The setpgrp call sets the process group ID of the calling process to the process
ID of the calling process and returns the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2), termio(7).

DIAGNOSTICS
The setpgrp call returns the value of the new process group ID.

SETUID(2) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
The setuid (setgid) call is used to set the real user (group) ID and effective user
(group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real user (group)
ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real user
(group) ID is equal to uid (gid), the effective user (group) ID is set to uid (gid).

If the effective user ID of the calling process is not super-user, but the saved
set-user (group) ID from exec(2) is equal to uid (gid), the effective user (group)
ID is set to uid (gid).

The setuid (setgid) call fails if any of the following conditions are true:

[EPERM]
The real user (group) ID of the calling process is not equal to uid (gid)
and its effective user ID is not super-user.

[EINVAL]
The uid is out of range.

SEE ALSO
getuid(2), intro(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

SHMCTL(2) SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmidds *buf;

DESCRIPTION
The shmctl call provides a variety of shared memory control operations as
specified by cmd. The following cmds are available:

IFCSTAT Place the current value of each member of the data structure
associated with shmid into the structure pointed to by buf.
The contents of this structure are defined in intro (2).
(READ)

IPC SET Set the value of the following members of the data structure
associated with shmid to the corresponding value found in
the structure pointed to by buf:

shm_perm.uid
•hm_perm.gid
shm_perm.mode /* only low 9 bits */

This cmd can be executed only by a process that has an
effective user ID equal to that of super user, or to the value of
shm_perm.cuid or shm_perm.uid in the data structure
associated with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid
from the system and destroy the shared memory segment and
data structure associated with it. This cmd can be executed
only by a process that has an effective user ID equal to that of
super-user, or to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

SHM LOCK Lock the shared memory segment specified by shmid in
memory. This cmd can be executed only by a process that
has an effective user ID equal to super-user.

SHMCTL(2) SHMCTL(2)

SHMUNLOCK Unlock the shared memory segment specified by shmid. This
cmd can be executed only by a process that has an effective
user ID equal to super user.

The shmctl call fails if one or more of the following are true:

[EINVAL]

[EINVAL]

[EACCES]

[EPERM]

[EPERM]

shmid is not a valid shared memory identifier.

cmd is not a valid command.

cmd is equal to IPC_STAT and {READ} operation permission
is denied to the calling process [see intro(2)].

cmd is equal to IPC RMID or IPCSET and the effective user
ID of the calling process is not equal to that of super-user, or
to the value of shm_perm.cuid or shm_perm.uid in the data
structure associated with shmid.

cmd is equal to SHM LOCK or SHM UNLOCK and the
effective user ID of the calling process is not equal to that of
super-user.

[EFAULT] buf points to an illegal address.

[ENOMEM] cmd is equal to SHM_LOCK and there is not enough
memory.

SEE ALSO
intro(2), shmget(2), shmop(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

NOTES
The user must explicitly remove shared memory segments after the last
reference to them has been removed.

SHMGET(2) SHMGET(2)

NAME
shmget - get shared memory segment identifier

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION
The shmget call returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory
segment of at least size bytes [see intro (2)] are created for key if one of the
following are true:

• key is equal to IPC_PRIVATE.

• key does not already have a shared memory identifier associated with
it, and (shmflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

• shm_perm.cuid, shmperm.uid, shmperm.gid, and
shm_perm.cgid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

• The low-order nine bits of shm_perm.mode are set equal to the low-
order nine bits of shmflg. shmsegsz is set equal to the value of size.

• shmjpid, shmnattch, shm atime, and shm dtime are set equal
to zero.

• s h m c t i m e is set equal to the current time.

The shmget call fails if one or more of the following are true:

[EINVAL] size is less than the system-imposed minimum or greater than
the system-imposed maximum.

[EACCES] A shared memory identifier exists for key but operation
permission [see intro (2)] as specified by the low-order nine
bits of shmflg would not be granted.

SHMGET(2) SHMGET(2)

[EINVAL] A shared memory identifier exists for key but the size of the
segment associated with it is less than size and size is not
equal to zero.

[ENOENT] A shared memory identifier does not exist for key and
(shmflg & IPC_CREAT) is "false".

fENOSPC] A shared memory identifier is to be created but the system-
imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

[ENOMEM] A shared memory identifier and associated shared memory
segment are to be created but the amount of available
memory is not sufficient to fill the request

[EEXIST] A shared memory identifier exists for key but [{shmflg &
IPC_CREAT) and (shmflg &1PC_EXCL)] is "true".

SEE ALSO
intro(2), shmctl(2), shmop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned; otherwise, a value of -1 is returned and errno is set to
indicate the error.

NOTES
The user must explicitly remove shared memory segments after the last
reference to them has been removed.

SHMOP(2) SHMOP(2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char "shmat (shmid, shmaddr, shmflg)
int shmid;
char "shmaddr;
int shmflg;

int shmdt (shmaddr)
char "shmaddr;

DESCRIPTION
shmat attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the data segment of the calling process. The
segment is attached at the address specified by one of the following criteria:

• If shmaddr is equal to zero, the segment is attached at the first
available address as selected by the system.

• If shmaddr is not equal to zero and (shmflg & SHM_RND) is "true",
the segment is attached at the address given by [shmaddr - (shmaddr
modulus SHMLBA)].

• If shmaddr is not equal to zero and (shmflg & SHM RND) is "false",
the segment is attached at the address given by shmaddr.

shmdt detaches from the calling process's data segment the shared memory
segment located at the address specified by shmaddr.

The segment is attached for reading if (shmflg & SHM RDONLY) is " t rue"
{READ}, otherwise it is attached for reading and writing {READ/WRITE}.

shmat will fail and not attach the shared memory segment if one or more of the
following are true:

[EINVAL] shmid is not a valid shared memory identifier.

[EACCES] Operation permission is denied to the calling process [see
intro (2)].

[ENOMEM] The available data space is not large enough to accommodate
the shared memory segment.

SHMOP(2)

[EINVAL]

[EINVAL]

[EMFELE]

[EINVAL]

SHMOP(2)

shmaddr is not equal to zero, and the value of [shmaddr -
(shmaddr modulus SHMLBA)] is an illegal address.

shmaddr is not equal to zero, (shmflg & SHM_RND) is
"false", and the value of shmaddr is an illegal address.

The number of shared memory segments attached to the
calling process would exceed the system-imposed limit.

shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared
memory segment.

- 2 -

SHUTDOWNS) (CTIX Internet working) S HUTDOWN (2)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket
associated with s to be shut down. If how is 0, further receives are disallowed.
If how is 1, further sends are disallowed. If how is 2, further sends and receives
are disallowed.

SEE ALSO
connect(2), socket(2).
CTIX Network Programmer's Primer.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless one of the following is true:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is a fde, not a socket

[ENOTCONN] The specified socket is not connected.

SIGNAL(2) SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

void ("signal (sig, func))()
int sig;

void (*func)();

DESCRIPTION
signal allows the calling process to choose one of three ways in which it is
possible to handle the receipt of a specific signal, sig specifies the signal and
func specifies the choice.
sig can be assigned any one of the following except SIGKILL:

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03W quit
SIGILL 04m illegal instruction (not reset when

05tU
caught)

SIGTRAP 05tU trace trap (not reset when caught)
SIGIOT 06W IOT instruction
SIGEMT 07m EMT instruction
SIGFPE 08tU floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10m bus error
SIGSEGV n i l] segmentation violation
SIGSYS 12m bad argument to system call
SIGPIPE 13 write on a pipe with no one to

read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSR1 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 18»1 death of a child
SIGPWR 1912] power fail
SIGWIND 20 reserved
SIGPHONE 21 reserved
SIGPOLL 2 2 ^ selectable event pending

func is assigned one of three values: SIGDFL, SIGIGN, or a function address.
SIGDFL, and SIG IGN, are defined in the include file signal.h. Each is a

SIGNAL(2) SIGNAL(2)

macro that expands to a constant expression of type pointer to function
returning void, and has a unique value that matches no declarable function.

The actions prescribed by the values o f f u n c are as follows:

SIGDFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be terminated
with all of the consequences outlined in exit (2). See NOTE [1] below.

SIG IGN - ignore signal
The signal sig is to be ignored.

Note that the signal SIGKILL cannot be ignored.

function address - catch signal
Upon receipt of the signal sig, the receiving process is to execute the

f n n / > ^ / \ n */"v Kir / . .MA T K O o i r m n l n n m k a r r>«s> k } i g i i a i ~ v a i v i u n g l u u v u u i i p v / i i i i v u u j j m / i l . i i«v j i ^ i i a i n u i n u v i

will be passed as the only argument to the signal-catching function.
Additional arguments are passed to the signal-catching function for
hardware-generated signals. Before entering the signal-catching
function, the value of func for the caught signal will be set to SIGDFL
unless the signal is SIGILL, SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving process
will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read(2), a write (2),
an open(2), or an ioctl(2) system call on a slow device (like a
terminal; but not a file), during a pause (2) system call, or during a
wait (2) system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal
catching function will be executed and then the interrupted system call
may return a -1 to the calling process with errno set to EINTR.

signal will not catch an invalid function argument, func, and results are
undefined when an attempt is made to execute the function at the bad
address.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL
signal.

signal will fail if sig is an illegal signal number, including SIGKILL. [EINVAL]

SIGNAL(2)

NOTES
[1]

[2]

SIGNAL(2)

If SIG DFL is assigned for these signals, in addition to the process
being terminated, a "core image" will be constructed in the current
working directory of the process, if the following conditions are met:

• The effective user ID and the real user ID of the receiving
process are equal.

• An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

— a mode of 0666 modified by the file creation mask
[see umask{ 2)]

— a fde owner ID that is the same as the effective user
ID of the receiving process.

— a file group ID that is the same as the effective group
ID of the receiving process.

For the signals SIGCLD and SIGPWR func is assigned one of three
values: SIG DFL, SIG IGN, or a function address. The actions
prescribed by these values are:

SIG DFL - ignore signal
The signal is to be ignored.

SIG IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the
calling process's child processes will not create zombie
processes when they terminate [see exit(2)].

function address - catch signal
If the signal is SIGPWR , the action to be taken is the same as
that described above for func equal to function address. The
same is true if the signal is SIGCLD with one exception:
while the process is executing the signal-catching function,
any received SIGCLD signals will be ignored. (This is the
default action.)

In addition, SIGCLD affects the wait, and exit system calls as follows:

wait If the func value of SIGCLD is set to SIG_IGN and a wait is
executed, the wait will block until all of the calling process's
child processes terminate; it will then return a value of -1 with
errno set to ECHELD.

- 3 -

SIGNAL(2) SIGNAL(2)

exit If in the exiting process's parent process the func value of
SIGCLD is set to SIGIGN, the exiting process will not create a
zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that may be
piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

[3] SIGPOLL is issued when a file descriptor corresponding to a STREAMS
[see intro(2)] file has a "selectable" event pending. A process must
specifically request that this signal be sent using the I_SETSIG ioctl call.
Otherwise, the process will never receive SIGPOLL.

SEE ALSO
kiil(I), intro(2), kiii(2), pause(2), pirace(2), waii(2), setjmp(3C), sigsei(2).

DIAGNOSTICS
Upon successful completion, signal returns the previous value of func for the
specified signal sig. Otherwise, a value of SIG_ERR is returned and errno is set
to indicate the error. SIG_ERR is defined in the include file signal.h.

SIGSET(2) SIGSET(2)

NAME
sigset, sighold, sigrelse, sigignore, sigpause - signal management

SYNOPSIS
#include <signal.h>

void ("sigset (sig, func))()
int sig;
void (*func)();
int sighold (sig)
int sig;

int sigrelse (sig)
int sig;

int sigignore (sig)
int sig;

int sigpause (sig)
int sig;

DESCRIPTION
These functions provide signal management for application processes, sigset
specifies the system signal action to be taken upon receipt of signal sig. This
action is either calling a process signal-catching handler func or performing a
system-defined action.

sig can be assigned any one of the following values except SIGKILL. Machine
or implementation dependent signals are not included (see NOTES below). Each
value of sig is a macro, defined in <signal.h>, that expands to an integer
constant expression.

SIGHUP hangup
SIGINT interrupt
SIGQUTT* quit
SIGILL* illegal instruction (not held when caught)
SIGTRAP* trace trap (not held when caught)
SIGABRT* abort
SIGFPE* floating point exception
SIGKILL kill (can not be caught or ignored)
SIGSYS* bad argument to system call
SIGPIPE write on a pipe with no one to read it
SIGALRM alarm clock
SIGTERM software termination signal
SIGUSR1 user-defined signal 1
SIGUSR2 user-defined signal 2

- 1 -

SIGSET(2) SIGSET(2)

SIGCLD death of a child (see WARNING below)
SIGPWR power fail (see WARNING below)
SIGPOLL selectable event pending (see NOTES below)

See below under SIG_DFL regarding asterisks (*) in the above list.

The following values for the system-defined actions of func are also defined in
<signal.h>. Each is a macro that expands to a constant expression of type
pointer to function returning void and has a unique value that matches no
declarable function.

SIG DFL - default system action
Upon receipt of the signal sig, the receiving process is to be terminated
with all of the consequences outlined in exit (2). In addition a "core
image" will be made in the current working directory of the receiving
process if sig is one for which an asterisk appears in the above list and
the following conditions are met:

• The effective user ID and the real user ID of the receiving
process are equal.

• An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

— A mode of 0666 modified by the file creation mask
[see umask (2)].

— A file owner ID that is the same as the effective user
ID of the receiving process.

— A file group ID that is the same as the effective
group ID of the receiving process.

SIG IGN - ignore signal
Any pending signal sig is discarded and the system signal action is set
to ignore future occurrences of this signal type.

SIG_HOLD - hold signal
The signal sig is to be held upon receipt Any pending signal of this
type remains held. Only one signal of each type is held.

Otherwise, func must be a pointer to a function, the signal-catching handler,
that is to be called when signal sig occurs. In this case, sigset specifies that the
process will call this function upon receipt of signal sig. Any pending signal of
this type is released. This handler address is retained across calls to the other
signal management functions listed here.

SIGSET(2) SIGSET(2)

When a signal occurs, the signal number sig will be passed as the only
argument to the signal-catching handler. Before calling the signal-catching
handler, the system signal action will be set to SIG_HOLD . During normal
return from the signal-catching handler, the system signal action is restored to
func and any held signal of this type released. If a non-local goto (longjmp) is
taken, then sigrelse must be called to restore the system signal action and
release any held signal of this type.

In general, upon return from the signal-catching handler, the receiving process
will resume execution at the point it was interrupted. However, when a signal
is caught during a read(2), a write (2), an open (2), or an ioctl (2) system call
during a sigpause system call, or during a wait (2) system call that does not
return immediately due to the existence of a previously stopped or zombie
process, the signal-catching handler will be executed and then the interrupted
system call may return a -1 to the calling process with errno set to EINTR.

sighold and sigrelse are used to establish critical regions of code, sighold is
analogous to raising the priority level and deferring or holding a signal until the
priority is lowered by sigrelse. sigrelse restores the system signal action to that
specified previously by sigset.

sigignore sets the action for signal sig to SIGJGN (see above).

sigpause suspends the calling process until it receives a signal, the same as
pause(2). However, if the signal sig had been received and held, it is released
and the system signal action taken. This system call is useful for testing
variables that are changed on the occurrence of a signal. The correct usage is to
use sighold to block the signal first, then test the variables. If they have not
changed, then call sigpause to wait for the signal, sigset will fail if one or more
of the following are true:

[EINVAL] sig is an illegal signal number (including SIGKILL) or the
default handling of sig cannot be changed.

[EINTR] A signal was caught during the system call sigpause.

SEE ALSO
kill(2), pause(2), signal(2), wait(2), setjmp(3C).

DIAGNOSTICS
Upon successful completion, sigset returns the previous value of the system
signal action for the specified signal sig. Otherwise, a value of SIG_ERR is
returned and errno is set to indicate the error. SIG_ERR is defined in
<signal.h>.
For the other functions, upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

- 3 -

SIGSET(2) SIGSET(2)

NOTES
SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see
intro(2)] file has a selectable event pending. A process must specifically
request that this signal be sent using the I_SETSIG ioctl(2) call [see
streamio(l)]. Otherwise, the process will never receive SIGPOLL.

For portability, applications should use only the symbolic names of signals
rather than their values and use only the set of signals defined here. The action
for the signal SIGKILL can not be changed from the default system action.

Specific implementations may have other implementation-defined signals.
Also, additional implementation-defined arguments may be passed to the
signal-catching handler for hardware-generated signals. For certain hardware-
generated signals, it may not be possible to resume execution at the point of
interruption.

The signal type SIGSEGV is reserved for the condition that occurs on an invalid
access to a data object. If an implementation can detect this condition, this
signal type should be used.

The other signal management functions, signal(2) and pause(2), should not be
used in conjunction with these routines for a particular signal type.

WARNING
Two signals that behave differently than the signals described above exist in
this release of the system:

SIGCLD death of a child (reset when caught)

SIGPWR power fail (not reset when caught)

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN, or a
function address. The actions prescribed by these values are as follows:

SIG DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process's
child processes will not create zombie processes when they terminate
[see exit (2)].

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that
described above for func equal to function address. The same is true if
the signal is SIGCLD with one exception: while the process is executing
the signal-catching function, any received SIGCLD signals will be
ignored. (This is the default action.)

- 4 -

SIGSET(2) SIGSET(2)

The SIGCLD affects two other system calls [wait(2), and exit (2)] in the
following ways:

wait If the func value of SIGCLD is set to SIG_IGN and a wait is executed, the
wait will block until all of the calling process's child processes terminate;
it will then return a value of -1 with errno set to ECHILD.

exit If in the exiting process's parent process the func value of SIGCLD is set
to SIG_IGN, the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the
parent of the proceeding processes. A process that may be piped into in this
manner (and thus become the parent of other processes) should take care not to
set SIGCLD to be caught.

Iv

1

SOCKET(2) (CTIX Internetworking) SOCKET(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s = socket(domain, type, protocol)
int s, domain, type, protocol;

DESCRIPTION
The socket call creates an endpoint for communication and returns a descriptor;
s is a file descriptor returned by the socket system call.

The domain parameter specifies a communications domain within which
communication will take place; this selects the protocol family which should be
used. The protocol family generally is the same as the address family for the
addresses supplied in later operations on the socket. These families are defined
in the include file <sys/socket. h>. The only currently supported format is
PFJNET (ARPA Internet protocols).

The socket has the indicated type, which specifies the semantics of
communication. Currendy defined types include:

S OCK_STRE AM
SOCKJDGRAM
SOCK_RAW

Note that not all types are supported by all protocol families.

A SOCKJSTREAM type provides sequenced, reliable, two-way connection-
based byte streams with an out-of-band data transmission mechanism. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages
of a fixed maximum length).

SOCK_RAW sockets provide access to internal network protocols and
interfaces. This type is available only to the super-user.

The protocol specifies a particular protocol to be used with the socket.
Normally only a single protocol exists to support a particular socket type within
a given protocol family. However, it is possible that many protocols may exist,
in which case a particular protocol must be specified in this manner. The
protocol number to use is particular to the "communication domain" in which
communication is to take place; see protocols (4).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes.
A stream socket must be in a connected state before any data may be sent or
received on it. A connection to another socket is created with a connect (2) call.

- 1 -

SOCKET(2) (CTTX Internetworking) SOCKET(2)

Once connected, data may be transferred using read(2) and write (2) calls or
some variant of the send(2) and recv(2) calls. When a session has been
completed a close (2) may be performed. Out-of-band data may also be
transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM ensure that
data is not lost or duplicated. If a piece of data for which the peer protocol has
buffer space cannot be successfully transmitted within a reasonable length of
time, then the connection is considered broken and calls will indicate an error
with -1 returns and with ETIMEDOUT as the specific code in the global variable
errno. The protocols optionally keep sockets "warm" by forcing transmissions
roughly every minute in the absence of other activity. An error is then
indicated if no response can be elicited on an otherwise idle connection for a
extended period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends
on a broken stream; this causes naive processes, which do not handle the signal,
to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to
correspondents named in send(2) calls. Datagrams are generally received with
recv(2), which returns the next datagram with its return address.

An fcntl (2) call can be used to specify a process group to receive a SIGUSR1
signal when the out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options
are defined in the file <sys/socket.h>. setsockopt and getsockopt [see
getsockopt(2)] are used to set and get options, respectively. The following
options are recognized at the socket level:

SO_DEBUG Toggle recording of debugging information.

SO_REUSEADDR Toggle on/off local address reuse.

SOJCEEPALIVE Toggle keep connections alive.

SO_DONTROUTE Toggle routing bypass for outgoing messages.

SO_LINGER Linger on close if data present

S 0_B RO ADC AST Toggle permission to transmit broadcast messages.

SO_OOBINLINE Toggle reception of out-of-band data in band.

SO_SNDBUF Set buffer size for output

SO_RCVBUF Set buffer size for input.

SOCKET(277) (CTIX Internetworking) SOCKET(2)

SO_TYPE Get the type of the socket (get only).

SO_ERROR Get and clear error on the socket (get only).

The options work as follows:

SO_DEBUG Enables debugging in the underlying protocol modules.

SO_REUSEADDR indicates that the rules used in validating addresses supplied
in a bind(2) call should allow reuse of local addresses.

SO_KEEPALTVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the
connection is considered broken and processes using the socket are notified via
a SIGPIPE signal.

SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on
socket and a close (2) is performed. If the socket promises reliable delivery of
data and SO_LINGER is set, the system blocks the process on the close attempt
until it is able to transmit the data or until it decides it is unable to deliver the
information (a timeout period, termed the linger interval, is specified in the
setsockopt call when SO_LINGER is requested). If SOJJNGER is disabled and a
close is issued, the system processes the close in a manner that allows the
process to continue as quickly as possible.

SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of the system.

With protocols that support out-of-band data, SO_OOBINLINE requests that
out-of-band data be placed in the normal data input queue as received; it is then
accessible with recv or read calls without the MSG_OOB flag.

SO_SNDBUF and SO_RCVBUF are options to adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be
increased for high-volume connections, or may be decreased to limit the
possible backlog of incoming data. The system places an absolute limit on
these values.

SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE
returns the type of the socket, such as SOCK_STREAM; it is useful for servers

SOCKET(2) (CTTX Internetworking) SOCKET(2)

that inherit sockets on startup. SO_ERROR returns any pending error on the
socket and clears the error status. It may be used to check for asynchronous
errors on connected datagram sockets or for other asynchronous errors.

SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), intro(2), ioctl(2),
listen(2), read(2), recv(2), select(2), send(2), shutdown(2), write(2), inet(7),
intro(7).

CTIX Network Programmer* s Primer.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor
referencing the socket.

ERRORS
The socket call fails ifi

[EPROTONOSUPPORT]

[EMHLE]

[ENFILE]

[EACCESS]

[ENOSR]

The protocol type or the specified protocol is not
supported within this communication domain.

The per-process descriptor table is full.

The system file table is full.

Permission to create a socket of the specified type
and/or protocol is denied.

Insufficient buffer space is available. The socket
cannot be created until sufficient resources are freed.

STAT (2) STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int stat (path, buf)
char *path;
struct stat "buf;

int fstat (fildes, buf)
int fildes;
struct stat "buf;

DESCRIPTION
Path points to a path name naming a file. Read, write, or execute permission of
the named file is not required, but all directories listed in the path name leading
to the file must be searchable, stat obtains information about the named fde.

Note that in a Remote File Sharing environment, the information returned by
stat depends upon the user/group mapping set up between the local and remote
computers. [See idload(lM}.]

fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, fcntl, or pipe system call.

buf is a pointer to a stat structure into which information is placed concerning
the fde.

The contents of the structure pointed to by buf include the following members:

ushort s tmode; /* File mode [see mknod (2)] */
inot s t jno ; I* Inode number */
dev_t st_dev; /* ID of device containing a directory entry for this file */
dev_t st_rdev; /* ID of device. Defined only for character */

/* special or block special flies */
short st_nlink; /* Number of links */
ushort s tu id ; /* User ID of the file's owner */
ushort st_gid; /* Group ID of the file's group *l
o f f j st_size; 1* File size in bytes */
time_t statime; 1* Time of last access */
time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */
1* 00:00:00 GMT, Jan. 1,1970 */

STAT(2) STAT(2)

st mode The mode of the file as described in the mknod(2) system call.

st_ino This field uniquely identifies the file in a given file system. The
pair s t j n o and st_dev uniquely identifies regular files.

st dev This field uniquely identifies the file system that contains the
file. Its value may be used as input to the ustat(2) system call to
determine more information about this file system. No other
meaning is associated with this value.

st_rdev This field should be used only by administrative commands. It is
valid only for block special or character special files and only
has meaning on the system where the file was configured.

st_nlink This field should be used only by administrative commands.

st uid The user ID of the file's owner.

st gid The group ID of the file's group.

st size For regular files, this is the address of the end of the file. For
pipes or fifos, this is the count of the data currently in the file.
For block special or character special, this is not defined.

st atime Time when file data was last accessed. Changed by the
following system calls: creat(2), mknod(2), pipe (2), utime (2),
and read(2).

s t m t i m e Time when data was last modified. Changed by the following
system calls: creat(2), mknod(2), pipe(2), utime(2), and
write (2).

st_ctime Time when file status was last changed. Changed by the
following system calls: chmod(2), chown(2), creat(2), link(2),
mknod(2), pipe(2), unlink(2), utime(2), and write (2).

stat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path
prefix.

[EFAULT] buf or path points to an invalid address.

[EINTR] A signal was caught during the stat system call.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

- 2 -

STAT (2) STAT(2)

[EMULTTHOP] Components of path require hopping to multiple remote
machines.

fstat will fail if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[EFAULT] buf points to an invalid address.

[ENOLENK] fildes points to a remote machine and the link to that
machine is no longer active.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), syslocal(2),
time(2), unlink(2), utime(2), write(2).

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a vaiue of -I is
returned and errno is set to indicate the error.

STATFS(2) STATFS(2)

NAME
statfs, fstatfs - get file system information

SYNOPSIS
#include <sys/types.h>
#include <sys/statfs.h>

int statfs (path, buf, len, fstyp)
char "path;
struct statfs "buf;
int len, fstyp;

int fstatfs (Hides, buf, len, fstyp)
int fildes;
struct statfs "buf;
int len, fstyp;

DESCRIPTION
The statfs call returns a "generic super-block" describing a file system. It can
be used to acquire information about mounted as well as unmounted file
systems, and usage is slightly different in the two cases. In all cases, buf is a
pointer to a structure (described below) to be filled by the system call, and len
is the number of bytes of information the system should return in the structure.
The value of len must be no greater than sizeof(structstatfs), and ordinarily it
contains exacdy that value; if it holds a smaller value, the system fdls the
structure with that number of bytes. (This allows future versions of the system
to grow the structure without invalidating older binary programs.)

If the file system of interest is currently mounted, path should name a file
which resides on that file system. In this case the file system type is known to
the operating system and the fstyp argument must be zero. For an unmounted
file system path must name the block special file containing it and fstyp must
contain the (non-zero) file system type. In both cases read, write, or execute
permission of the named file is not required, but all directories listed in the path
name leading to the file must be searchable.

The statfs structure pointed to by buf includes the following members:

short f j s typ; /* File system type *l
short fbsize; 1* Block size */
short ffrsize; /* Fragment size *l
long fblocks; 1* Total number of blocks */
long fbfree; /* Count of free blocks */
long Miles; 1* Total number of file nodes */
long f j f ree ; /* Count of free file nodes */

STATFS(2) STATFS(2)

char f_fnama[6]; /• Volume name */
char f_fpack[6]; /* Pack name •/

The fstaffs call is similar to the statfs call, except that the file named by path in
statfs is instead identified by an open file descriptor fildes obtained from a
successful open(2), creat(2), dup(2),fcntl(2), or pipe(2) system call.

The statfs call obsoletes ustat(2) and should be used in preference to it in new
programs.

The statfs and fstatfs calls fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path
prefix.

[EFAULT] buf or path points to an invalid address.

[EBADF] fildes is not a valid open file descriptor.

[EINVAL] fstyp is an invalid file system type; path is not a block
special file and fstyp is nonzero; len is negative or is greater
than sizeof (struct statfs).

[ENOLINK] Path points to a remote machine, and the link to that machine
is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

DIAGNOSTICS
Upon successful completion a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2), fs(4).

STIME(2) STTME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION
stime sets the system's idea of the time and date, tp points to the value of time
as measured in seconds from 00:00:00 GMT January 1,1970.

[EPERM] stime will fail if the effective user ID of the calling process is
not super-user.

SEE ALSO
time(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SWRITE(2) SWRTTE(2)

NAME
swrite - synchronous write on a file

SYNOPSIS
int swrite (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
swrite has the same purpose and conventions as write (2). The two differ solely
in their handling of disk input/output, swrite, unlike write, does not give a
normal return before physical output is complete. A program that executes an
swrite can assume that the data is on the disk, not waiting in a buffer pool.

SEE ALSO
creat(2), dup(2), lseek(2), open(2), pipe(2), ulimit(2).

I

SYNC(2) SYNC(2)

NAME
sync - update super block

SYNOPSIS
void sync ()

DESCRIPTION
The sync call causes all information in memory that should be on disk to be
written out, including modified super blocks, modified i-nodes, and delayed
block I/O.

The sync call should be used by programs that examine a file system: for
example fsckmd d f . A call to sync is mandatory before a reboot

The writing, although scheduled, is not necessarily complete upon return from
sync.

SYSFS(2) SYSFS(2)

NAME
sysfs - get file system type information

SYNOPSIS
#include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs (opcode, fsname)
int opcode;
char "fsname;

int sysfs (opcode, fs_index, buf)
int opcode;
int fs_index;
char *buf;

int sysfs (opcode)
int opcode;

DESCRIPTION
sysfs returns information about the fde system types configured in the system.
The number of arguments accepted by sysfs varies and depends on the opcode.
The currently recognized opcodes and their functions are described below:

GETFSIND translates fsname, a null-terminated file-system identifier,
into a file-system type index.

GETFSTYP translates fsindex, a file-system type index, into a null-
terminated file-system identifier and writes it into the buffer
pointed to by buf, this buffer must be at least of size
FSTYPSZ as defined in <syslfstyp.h>.

GETNFSTYP returns the total number of file system types configured in
the system.

sysfs will fail if one or more of the following are true:

[EINVAL] fsname points to an invalid file-system identifier; f s index is
zero, or invalid; opcode is invalid.

[EFAULT] buf or fsname point to an invalid user address.

DIAGNOSTICS
Upon successful completion, sysfs returns the file-system type index if the
opcode is GETFSIND, a value of 0 if the opcode is GETFSTYP, or the number of
file system types configured if the opcode is GETNFSTYP. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SYSLOCAL(2) SYSLOCAL(2)

NAME
syslocal - special system requests

SYNOPSIS
#include <syslocaI.h>
int syslocal (cmd [, arg] ...)
int cmd;

DESCRIPTION
The syslocal routine executes certain special system calls. The specific call is
indicated by the first argument See the <sys/sys!ocal.h> file for complete
documentation of parameters.

System Type
int sysiocal(SYSL_SYSTEM)

Return SYSL_MITI for S/Series.

Family Member
int sysiocai(SYSL_FAMILYM EMBER)

Returns a value identifying the specific system: SYSLFMITIl for S/120,
S/221-2, or S/320; SYSLFMITI2 for S/480 or S/640; SYSLFS80 for S/80; and
SYSLFS280 for S/280.

Superblock Resynchronization
int sysiocai(SYSL_RESYNC, devnum)

short devnum

Reread contents of superblock from disk, devnum specifies the file system: the
high order byte contains the major device number of the character special
device; the low order byte contains the minor device number. Only the super-
user can reread the contents of the superblock from disk.

Maximum Number of Users
int syslocal(SYSL_MAX USERS)

Returns maximum number of users this system is configured for.

Kernel Addresses
syslocal(SYSL_KADQR, arg)

Returns certain addresses of kernel data structures. This allows certain
programs (ps, tillall) to run properly, even if /unix is not the currently running
operating system.

SYSLOCAL(2) SYSLOCAL(2)

arg is one of the following:

SLA V Return address of var structure (sys/var.h).

SLA PROC Return address of proc structure (sys/proc.h).

SLA ERR Return address of err structure (sys/err.h).

SCA_TIME Return address of int time.

SLACDT Return address of crash dump table (CDT) =
(sys/hardware.h).

SLA GDUTAB Return address of gdutab (sys/iobuf.h).

SLAUSRSTK Return highest address of user stack.

SLAUSIGN Return signature of running UNIX (may be compared with
that of /usix to see if they are identical).

SLA MEM Return number of bytes of physical memory.

SLA_BDEVCNT Return the number of slots in struct bdevsw (sys/conf.h).

SLA_CDEVCNT Return the number of slots in struct cdevsw (sys/conf.h).

SLA_PRELD Return the address of the preloaded driver table.

Object Module Type
•yslocal(SYSL_04i SMAGIC)

Returns 1 if the kernel can support the -F option of IdQ.

Read Real-Time Clock
syslocal(SYSL_RDRTC, arg)

Read current state of real-time (battery supported) clock, arg is a pointer to
struct rtc (sys/rtc.h)

Write Real-Time Clock
»yslocal(SYSL_WTRTC, arg)

Write new state of real-time clock, arg is a pointer to a struct rtc (sys/rtc.h).
EIO is returned if any of the values are illegal. Only the super-user can write
the real-time clock.

Reboot System
syslocal(SYSL_REBOOT)

Force a software reset. Only the superuser may reset. Obsolete: retained for
compatibility. Use uadmin(2) instead.

SYSLOCAL(2) SYSLOCAL(2)

Allocate or Bind a Loadable Driver
•yslocal(SYSL_ALLOCDRV, option, arg)
»y»local(SYSL_BlNDDRV, option, arg)

These two functions implement the loadable driver functions of CTIX. They
both require super-user privilege.

Loading drivers consists of two phases: allocation of virtual space, device
numbers, and device IDs; and binding. Fully relocating a driver into memory,
allocating physical space, plugging the device switch tables, calling
initialization routines, and unloading require the same two phases in reverse.
For information on the arguments, see /usr/include/sys/drv.h.

Determine Processor Type
syalocal(SYSL_PROCESSOR)

Returns a value that can be used to determine what kind of processor (68010 or
68020) is running and whether floating-point hardware (68881) is available.

Enable Fixed Priority Range
syslocal(SYSL_RTNlCE,flag)

Enables/disables the fixed priority range [see nice (2)]. flag is 1 for enable, 2
for disable. Only the super-user can execute this call, which affects every
process.

S/Series Hardware Configuration
syslocal(SYSL_MmcFlG)

Returns a bit mask of the hardware that is present Values can be found in
syslocal.h. A more convenient way to get this information is by using
hinv(1M).

SEE ALSO
fsck(lM), nice(2).

DIAGNOSTICS
Note that syslocal

[EINVAL]

[EFAULT]

fails if one of the following is true:

cmd or any suboption is illegal.

An arg points outside the process's space.

TIME(2) TIME(2)

NAME
time - get time

SYNOPSIS
#include <sys/types.h>

time t time (tloc)
long "tloc;

DESCRIPTION
The time call returns the value of time in seconds since 00:00:00 GMT, January
1,1970.

If tloc is non-zero, the return value is also stored in the location to which tloc
points.

[EFAULT] time fails if tloc points to an illegal address.

SEE ALSO
stime(2).

DIAGNOSTICS
Upon successful completion, time returns the value of time; otherwise, a value
of -1 is returned and errno is set to indicate the error.

TIMES (2) TIMES(2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/types.ta>
#include <sys/times.h>

long times (buffer)
struct tms •buffer;

DESCRIPTION
The times call fills the structure pointed to by buffer with time-accounting
information. The following are the contents of this structure:

struct tms {

time_t

iime_t

t ime j

tlme_t

tms_utime;

tms_stlme;

tmscut ime;

tms cstime;

};
This information comes from the calling process and each of its terminated
child processes for which it has executed a wait. All times are reported in clock
ticks per second. Clock ticks are a system-dependent parameter. The specific
value for an implementation is defined by the variable HZ, found in the include
file param.h.

tmsutime
Is the CPU time used while executing instructions in the user space of
the calling process.

tmsstime
Is the CPU time used by the system on behalf of the calling process.

tmsjoutime

Is the sum of the tmsjitimes and tmscutime s of the child processes.

tms_cstime

Is the sum of the tms stime s and tms cstime s of the child processes.

The times call fails if the following is true:

[EFAULT] buffer points to an illegal address.

SEE ALSO exec(2), fork(2), time(2), wait(2).

TTMES(2) TIMES(2)

DIAGNOSTICS
Upon successful completion, times returns the elapsed real time, in clock ticks
per second, from an arbitrary point in the past (such as system start-up time).
This point does not change from one invocation of times to another. If times
fails, a -1 is returned and errno is set to indicate the error.

UADMIN(2) UADMIN(2)

NAME
uadmin - administrative control

SYNOPSIS
#include <sys/uadmin.h>

int uadmin (cmd, fen, mdep)
int cmd, fen, mdep;

DESCRIPTION
Uadmin provides control for basic administrative functions. This system call is
tighdy coupled to the system administrative procedures and is not intended for
general use. The mdep argument is provided for machine-dependent use and is
not defined here.

As specified by cmd, the following commands are available:

A_SHUTDOWN Shut down the system. All user processes are killed, the
buffer cache is flushed, and the root file system is
unmounted. The fen function specifies the action to be
taken after the system is shut down. The functions are
generic; the hardware capabilities vary on specific
machines.

AD_HALT Halt the processor so it is safe to turn off
the power.

AD_BOOT Reboot the system.

A_REBOOT

Reboot the system immediately, without further processing.

A_REMOUNT
The root file system is mounted again after having been fixed. This
should be used only during the startup process.

A_HALT

The system stops immediately.

uadmin fails if any of the following are true:

[EPERM] The effective user ID is not super-user.
SEE ALSO

syslocal(2).

UADMIN(2) UADMIN(2)

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

A_SHUTDOWN Never returns.
A_REBOOT Never returns.
A_REMOUNT 0
A_HALT Never returns.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ULIMIT(2) ULIMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd values follow:

1 Get the regular fde size limit of the process. The limit is in units of 512-
byte blocks and is inherited by child processes. Files of any size can be
read.

2 Set the regular fde size limit of the process to the value of newlimit. Any
process may decrease this limit, but only a process with an effective user
ID of super-user may increase the limit, ulimit fails and the limit is
unchanged if a process with an effective user ID other than super-user
attempts to increase its regular file size limit. [EPERM]

3 Get the maximum possible break value [see brk{2)].

4 Get the current value of the maximum number of open fdes per process
configured in the system.

SEE ALSO
brk(2), write(2).

DIAGNOSTICS
Upon successful completion, a non-negative value is returned; otherwise, a
value of -1 is returned and errno is set to indicate the error.

WARNING
The ulimit call is effective in limiting the growth of regular files. Pipes are
currently limited to 9,216 bytes (this is the maximum atomic write size).

UMASK(2) UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION
The umask call sets the process's file mode creation mask to cmask and returns
the previous value of the mask. Only the low-order 9 bits of cmask and the file
mode creation mask are used.

SEE ALSO
mkdir(l), sh(l), chmod(2), creat(2), mknod(2), open(2).

DIAGNOSTICS
The previous value of the file mode creation mask is returned.

- 1 -

UMOUNT(2) UMOUNT (2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (file)
char •file;

DESCRIPTION
The umount call requests that a previously mounted file system contained on
the block special device or directory identified by file be unmounted. The file
parameter is a pointer to a path name. After unmounting the file system, the
directory upon which the file system was mounted reverts to its ordinary
interpretation.

The umount call can be invoked only by the super-user.

The urnouni call fails if one or more of the following are true:

[EPERM] The process's effective user ID is not super-user.

[EINVAL] file does not exist.

[ENOTBLK] file is not a block special device.

[EINVAL] file is not mounted.

[EBUSY] A file on file is busy.

[EFAULT] file points to an illegal address.

[EREMOTE] file is remote.

[ENOLINK] file is on a remote machine, and the link to that machine is no
longer active.

[EMULTIHOP] Components of the path pointed to by file require hopping to
multiple remote machines.

SEE ALSO
mount(2).

DIAGNOSTICS
Upon successful completion a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

UNAME(2) UNAME(2)

NAME
uname - get name of current CTIX system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname "name;

DESCRIPTION
The uname call stores information identifying the current CTTX system in the
structure pointed to by name.

The call uses the structure defined in <sys/utsname.h>, whose members follow:

char sysname[9];
char nodename[9];
char raiease[9];
char verslon[9];
char machine[9];

The uname call returns a null-terminated character string naming the current
CTIX system in the character array sysname. Similarly, nodename contains the
name that the system is known by on a communications network. [Note the
equivalence of nodename and the left-most qualifier in a full Internet name; see
hostname (I).] The release and version members further identify the operating
system; machine contains a standard name that identifies the hardware that the
CTIX system is running on.

[EFAULT] uname fails if name points to an invalid address.

SEE ALSO

hostname(l), setuname(lM), uname(l), sethostname (2).

DIAGNOSTICS
Upon successful completion, a non-negative value is returned; otherwise, a
value of -1 is returned and errno is set to indicate the error.

UNLINK (2) UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char "path;

DESCRIPTION
unlink removes the directory entry named by the path name pointed to by path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named fde does not exist.

[EACCES] Search permission is denied for a component of the path
prefix

[EACCES] Write permission is denied on the directory containing the
link to be removed.

[EACCES] The parent directory has the sticky bit set and: the parent
directory is not owned by the user; and the directory is not
owned by the user; and the directory is not writable by the
user, and the user is not super-user.

[EPERM] The named fde is a directory and the effective user ID of the
process is not super-user.

[EBUSY] The entry to be unlinked is the mount point for a mounted
file system.

[ETXTBSY] The entry to be unlinked is the last link to a pure procedure
(shared text) fde that is being executed.

[EROFS] The directory entry to be unlinked is part of a read-only file
system.

[EFAULT] Path points outside the process's allocated address space.

[EINTR] A signal was caught during the unlink system call.

[ENOLINK] Path points to a remote machine and the link to that machine
is no longer active.

[EMULTTHOP] Components of path require hopping to multiple remote
machines.

When all links to a fde have been removed and no process has the fde open, the
space occupied by the file is freed and the fde ceases to exist. If one or more

UNLINK (2) UNLINK(2)

processes have the file open when the last link is removed, the removal is
postponed until all references to the file have been closed.

SEE ALSO
rm(l), close(2), link(2), open(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

USTAT(2) USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
dev t dev;
struct ustat *buf;

DESCRIPTION
The ustat call returns information about a mounted file system, dev is a device
number identifying a device containing a mounted file system, buf is a pointer
to a ustat structure that includes the following elements:

daddr_t f j f ree ; /* Total free block* */
ino t Minode; /* Number of free (nodes */
char f_fname[6]; /* Filsys name */
char f_fpack[6]; I* Filsys pack name */

The ustat call fails if one or more of the following are true:

[EINVAL] dev is not the device number of a device containing a
mounted file system.

[EFAULT] buf points outside the process's allocated address space.

[EINTR] A signal was caught during a ustat system call.

[ENOLINK] dev is on a remote machine and the link to that machine is no
longer active.

[ECOMM] dev is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
stat(2), statfs(2), fs(4).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

NOTE
The statfs call obsoletes ustat (2) and should be used in preference to ustat (2) in
new programs.

(c

UTIME(2) UTTME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
int utime (path, times)
char "path;
struct utimbuf "times;

DESCRIPTION
The path parameter points to a path name naming a file. The utime call sets the
access and modification times of the named file.

If times is NULL, the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write permission
to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and
the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or the super-user can use utime
this way.

The times in the following structure are measured in seconds since 00:00:00
GMT, Jan. 1,1970.

struct utimbuf {
time t actime; /* access time */
time t modtime; /* modification time »/

};
The utime call fails if one or more of the following are true:

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path prefix is not a directory.
[EACCES] Search permission is denied by a component of the path

prefix.

[EPERM] The effective user ED is not super-user and not the owner of
the file and times is not NULL.

[EACCES] The effective user ID is not super-user and not the owner of
the file and times is NULL and write access is denied.

[EROFS] The file system containing the file is mounted read-only.

[EFAULT] times is not NULL and points outside the process's allocated
address space.

UTTME(2) UTIME(2)

[EFAULT] path points outside the process's allocated address space.

[EINTR] A signal was caught during the utime system call.

[ENOLINK] path points to a remote machine and the link to that machine
is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
stat(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

WAIT(2) WAIT(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (statJoe)
int "stat loc;

DESCRIPTION
The wait call suspends the calling process until until one of the immediate
children terminates or until a child that is being traced stops, because it has hit a
break point. The wait system call returns prematurely if a signal is received and
if a child process stopped or terminated prior to the call on wait, return is
immediate.

If stat Joe is non-zero, 16 bits of information called status are stored in the
low-order 16 bits of the location pointed to by stat Joe. status can be used to
differentiate between stopped and terminated child processes and if the child
process terminated, status identifies the cause of termination and passes useful
information to the parent. This is accomplished in the following manner:

• If the child process stopped, the high-order 8 bits of status contain the
number of the signal that caused the process to stop and the low-order
8 bits are set equal to 0177.

• If the child process terminated due to an exit call, the low-order 8 bits
of status are zero and the high-order 8 bits contain the low-order 8 bits
of the argument that the child process passed to exit [see exit (2)].

• If the child process terminated due to a signal, the high-order 8 bits of
status are zero and the low-order 8 bits contain the number of the
signal that caused the termination. In addition, if the low-order seventh
bit (bit 200) is set, a "core image" will have been produced [see
signal (2)].

If a parent process terminates without waiting for its child processes to
terminate, the parent process ID of each child process is set to 1. This means the
initialization process inherits the child processes [see intro (2)].

The wait call fails and returns immediately if the following is true:

[ECHILD] The calling process has no existing unwaited-for child
processes.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

WAIT(2) WATT(2)

DIAGNOSTICS
If wait returns due to the receipt of a signal, a value of -1 is returned to the
calling process and errno is set to EINTR. If wait returns due to a stopped or
terminated child process, the process ID of the child is returned to the calling
process; otherwise, a value of -1 is returned and errno is set to indicate the
error.

WARNING
The wait call fails and its actions are undefined if statjoc points to an invalid
address.

See WARNING in signal (2).

WRITE(2) WRITE(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
The fildes argument is a fde descriptor obtained from a creat(2), open(2),
dup(2), fcntl (2), or pipe (2) system call.

The write call attempts to write nbyte bytes from the buffer pointed to by buf to
the file associated with the fildes.

Or. devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write, the file
pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the 0_APPEND flag of the file status flags is set, the file pointer will be set to
the end of the file prior to each write.

For regular files, if the 0_SYNC flag of the file status flags is set, the write will
not return until both the file data and file status have been physically updated.
This function is for special applications that require extra reliability at the cost
of performance. For block special files, if 0_SYNC is set, the write will not
return until the data has been physically updated.

A write to a regular file will be blocked if mandatory file/record locking is set
[see chmod(2)], and there is a record lock owned by another process on the
segment of the file to be written. If 0_NDELAY is not set, the write sleeps until
the blocking record lock is removed.

For STREAMS [see intro(2)] files, the operation of write is determined by the
values of the minimum and maximum nbyte range (packet size) accepted by the
stream. These values are contained in the topmost stream module. Unless the
user pushes [see I_PUSH in streamio(l)] the topmost module, these values can
not be set or tested from user level. If nbyte falls within the packet size range,
nbyte bytes will be written. If nbyte does not fall within the range and the
minimum packet size value is zero, write will break the buffer into maximum
packet size segments prior to sending the data downstream (the last segment
may contain less than the maximum packet size). If nbyte does not fall within

- 1 -

WRITE(2) WRTTE(2)

the range and the minimum value is non-zero, write will fail with errno set to
ERANGE. Writing a zero-length buffer (nbyte is zero) sends zero bytes with
zero returned.

For STREAMS files, if 0_NDELAY is not set and the stream can not accept data
(the stream write queue is full due to internal flow control conditions), write
will block until data can be accepted. 0_NDELAY will prevent a process from
blocking due to flow control conditions. If 0_NDELAY is set and the stream
can not accept data, write will fail. If 0_NDELAY is set and part of the buffer
has been written when a condition in which the stream can not accept
additional data occurs, write will terminate and return the number of bytes
written.

write will fail and the file pointer will remain unchanged if one or more of the
following are true:

[EAGAIN] Mandatory file/record locking was set, 0_NDELAY was set,
and there was a blocking record lock.

[EAGAIN] Total amount of system memory available when reading via
raw I/O is temporarily insufficient.

[EAGAIN] Attempt to write to a stream that can not accept data with the
0_NDELAY flag set

[EBADF] fildes is not a valid file descriptor open for writing.

[EDEADLK] The write was going to go to sleep and cause a deadlock
situation to occur.

[EFAULT] buf points outside the process's allocated address space.

[EFBIG] An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size [see
ulinut {!)}.

[EINTR] A signal was caught during the write system call.

[EINVAL] Attempt to write to a stream linked below a multiplexor.

[ENOLCK] The system record lock table was full, so the write could not
go to sleep until the blocking record lock was removed.

[ENOIINK] fildes is on a remote machine and the link to that machine is
no longer active.

[ENOSPC] During a write to an ordinary file, there is no free space left
on the device.

WRITE(2) WRTTE(2)

[ENXIO] A hangup occurred on the stream being written to.

[EPIPE and SIGPIPE signal]
An attempt is made to write to a pipe that is not open for
reading by any process.

[ERANGE] Attempt to write to a stream with nbyte outside specified
minimum and maximum write range, and the minimum value
is non-zero.

[EDEADLOCK] A side effect of the loclang(2) call. (See the WARNING on
the locking (2) manpage.)

If a write requests that more bytes be written than there is room for (e.g., the
ulimit [see ulimit (2)] or the physical end of a medium), only as many bytes as
there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write of 512-bytes wili return 20.
The next write of a non-zero number of bytes will give a failure return (except
as noted below).

If the file being written is a pipe (or FIFO) and the 0_NDELAY flag of the file
flag word is set, then write to a full pipe (or FIFO) will return a count of 0.
Otherwise (0_NDELAY clear), writes to a full pipe (or FIFO) will block until
space becomes available.

A write to a STREAMS file can fail if an error message has been received at the
stream head. In this case, errno is set to the value included in the error
message.

SEE ALSO
creat(2), dup(2), fcntl(2), intro(2), lseek(2), open(2), pipe(2), ulimit(2).

DIAGNOSTICS
Upon successful completion the number of bytes actually written is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

i

INTRO(3) INTRO(3)

NAME
intro - introduction to functions and libraries

DESCRIPTION
This section describes functions found in various libraries, other than those
functions that directly invoke CHX system primitives, which are described in
Section 2 of this volume. Certain major collections are identified by a letter
after the section number:

(3C) These functions, together with those of Section 2 and those marked (3S),
constitute the Standard C Library libc, which is automatically loaded by
the C compiler, cc(l). The link editor ld(1) searches this library under
the -lc option. A "shared library" version of libc can be searched using
the -lc_s option, resulting in smaller a.outs. Declarations for some of
these functions may be obtained from #include files indicated on the
appropriate pages.

(3S) These functions constitute the "standard I/O package" [see stdio(3S)].
These functions are in the library libc, already mentioned. Declarations
for these functions may be obtained from the #include file <stdio.h>.

(3M) These functions constitute the Math Library, libm. They are not
automatically loaded by the C compiler, cc(l); however, the link editor
searches this library under the -1m option. Declarations for these
functions may be obtained from the #include file <math.h>. Several
generally useful mathematical constants are also defined there [see
math(5j\.

(3N) This contains sets of functions constituting the Network Services
library. These sets provide protocol-independent interfaces to
networking services based on the service definitions of the OSI (Open
Systems Interconnection) reference model. Application developers
access the function sets that provide services at a particular level.

This library contains the functions of the TRANSPORT INTERFACE (TI)
- provide the services of the OSI Transport Layer. These services
provide reliable end-to-end data transmission using the services of an
underlying network. Applications written using the TI functions are
independent of the underlying protocols. Declarations for these
functions may be obtained from the #include file <tiuser.h>. The link
editor Id (I) searches this library under the -lnsl_s option.

(3X) Various specialized libraries. The files in which these libraries are
found are given on the appropriate pages.

INTRO(3) INTRO(3)

DEFINITIONS
A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, represented in the C language as AO'. A
character array is a sequence of characters. A null-terminated character array
is a sequence of characters, the last of which is the null character. A string is a
designation for a null-terminated character array. The null string is a character
array containing only the null character. A NULL pointer is the value that is
obtained by casting 0 into a pointer. The C language guarantees that this value
will not match that of any legitimate pointer, so many functions that return
pointers return it to indicate an error. NULL is defined as 0 in <stdio.h>; the
user can include an appropriate definition if not using <stdio.h>.

Netbuf
In the Network Services library, netbuf is a structure used in various Transport
Interlace (TI) functions to send and receive data and information. It contains
the following members:

unsigned int maxlen;

unsigned int len;

char *buf;

buf points to a user input and/or output buffer, len generally specifies the
number of bytes contained in the buffer. If the structure is used for both input
and output, the function will replace the user value of len on return.

maxlen generally has significance only when buf is used to receive output from
the TI function. In this case, it specifies the physical size of the buffer, the
maximum value of len that can be set by the function. If maxlen is not large
enough to hold the returned information, an TBUFOVFLW error will generally
result. However, certain functions may return part of the data and not generate
an error.

Note that a struct sockaddr goes in all "addr" TLI netbufs.

INTRO(3) INTRO(3)

FILES
/lib
/lib/libc.a
/lib/libc_s.a
/lib/libm.a
/shlib/libclsw_s
/shlib/libc2sw_s
/shlib/libc2fp_s
/shlib/libnsllsw_s
/shlib/libnsl2sw_s
/shlib/libnsl2fp_s
/usr/lib/libnsl_s.a

SEE ALSO
ar(l), cc(l), Id(l), lint(l), nrn(l), iniro(2), siuio(3S), maih(5).

DIAGNOSTICS
Functions in the C and Math Libraries (3C and 3M) may return the
conventional values 0 or +HUGE (the largest-magnitude single-precision
floating-point numbers; HUGE is defined in the <math.h> header file) when
the function is undefined for the given arguments or when the value is not
representable. In these cases, the external variable errno [see intro{2)] is set to
the value EDOM or ERANGE.

WARNING
Many of the functions in the libraries call and/or refer to other functions and
external variables described in this section and in Section 2 (System Calls). If a
program inadvertently defines a function or external variable with the same
name, the presumed library version of the function or external variable may not
be loaded. The lint(1) program checker reports name conflicts of this kind as
"multiple declarations" of the names in question. Definitions for Sections 2,
3C, and 3S are checked automatically. Other definitions can be included by
using the -1 option. (For example, -1 m includes definitions for Section 3M, the
Math Library.) Use of lint is highly recommended.

A64L(3C) A64L(3C)

NAME
a641,164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (s)
char *s;

char *164a (I)
iong i;

DESCRIPTION
These functions are used to maintain numbers stored in base-64 ASCII
characters. This is a notation by which long integers can be represented by up
to six characters; each character represents a "digit ' ' in a radix-64 notation.

The characters used to represent "digits" are . for 0, / for 1, 0 through 9 for
2-11, A through Z for 12-37, and a through z for 38-63.

a64l takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a64l will use the first six.

a64l scans the character string from left to right, decoding each character as a 6
bit Radix 64 number.

164a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0,164a returns a pointer to a null string.

CAVEAT
The value returned by 164a is a pointer into a static buffer, the contents of
which are overwritten by each call.

ABORT(3C) ABORT (3C)

NAME
abort - generate a SIGABRT

SYNOPSIS
int abort ()

DESCRIPTION
The abort routine does the work of exit (2), but instead of just exiting, abort
causes SIGABRT to be sent to the calling process. If SIGABRT is neither caught
nor ignored, all stdio(3S) streams are flushed prior to the signal being sent, and
a core dump results.

The abort routine returns the value of the kill (2) system call.

SEE ALSO
sdb(l), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is writable,
a core dump is produced and the message "abort - core dumped" is written by
the shell.

ABS(3C) ABS(3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
The abs routine returns the absolute value of its integer operand.

SEE ALSO
floor(3M).

CAVEAT
In two's-complement representation, the absolute value of the negative integer
with largest magnitude is undefined. Some implementations trap this error, but
others simply ignore it.

ASSERT(3X) ASSERT(3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed,
if expression is false (zero), assert prints

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert statement

Compiling with the preprocessor option -DNDEBUG [see cpp(1)], or with the
preprocessor control statement #define NDEBUG ahead of the #include
<assert.h> statement, will stop assertions from being compiled into the
program.

SEE ALSO
cpp(l), abort(3C).

CAVEAT
Since assert is implemented as a macro, the expression may not contain any
string literals.

BESSEL(3M) BESSEL(3M)

NAME
bessel: jO, j 1, jn, yO, y 1, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO (x)
double x;

double j l (x)
double x;

double jn (n, x)
int n;
double x;

double yO (x)
double x;

double y l (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION
jO and jl return Bessel functions of x of the first kind of orders 0 and 1,
respectively, jn returns the Bessel function of x of the first kind of order n.

yO and yl return Bessel functions of x of the second kind of orders 0 and 1,
respectively, yn returns the Bessel function of x of the second kind of order n.
The value of x must be positive.

SEE ALSO
matherr(3M).

DIAGNOSTICS
Non-positive arguments cause yO, yl and yn to return the value -HUGE and to
set errno to EDOM. In addition, a message indicating DOMAIN error is printed
on the standard error output

Arguments too large in magnitude cause jOJl, yO and yl to return zero and to
set errno to ERANGE. In addition, a message indicating TLOSS error is printed
on the standard error output

These error-handling procedures can be changed with the function
matherr{ 3M).

BSEARCH(3C) BSEARCH(3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>

char *bsearch ((char •) key, (char *) base, nel, sizeof (*key), compar)
unsigned nel;
int (•comparX);

DESCRIPTION
The bsearch routine is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where a datum can be
found. The table must be previously sorted in increasing order according to a
provided comparison function, key points to a datum instance to be sought in
the table. Base points to the element at the base of the table, nel is the number
of elements in the table, compar is the name of the comparison function, which
is called with two arguments that point to the elements being compared. The
function must return an integer less than, equal to, or greater than zero as
accordingly the first argument is to be considered less than, equal to, or greater
than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the
node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and
prints the string and its length, or prints an error message.

#include <std(o.h>
#include <search.h>

#define TABSIZE 1000

struct node { /* these are stored in the table */
char *string;
int length;

};
struct node table[TABSIZE]; I* table to be searched */

BSEARCH(3C) BSEARCH(3C)

struct node *node_ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

node.string = strspace;
while (scanf("%s", node.string) != EOF) {

node_ptr = (struct node *)bsearch((char *)
(Anode), (char *)table, TABSIZE,
sizeof (struct node), nodecompare);

if (node_ptr != NULL) {
(void)printf ("string = %20s,

length = %d\n", node_ptr->string,
node_ptr->iength);

} else {
(void)printf("not found: %s\n",

node.string);
}

}
}

/* This routine compares two nodes based on an
alphabetical ordering of the string field. */

int
node_compare(node1, node2)
char *node1, *node2;
{

return (strcmp(
((struct node *)node1)->string,
((struct node *)node2)->string));

}
NOTES

The pointers to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Although bsearch is declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

BSEARCH(3C) BSEARCH(3C)

SEE ALSO

hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS A NULL pointer is returned if the key cannot be found in the table.

BSTRING(3) BSTRING(3)

NAME
bcopy, bcmp, bzero - bit and byte string operations

SYNOPSIS
int bcopy(src, dst, length)
char *src, *dst;
int length;

int bcmp(bl, b2, length)
char *bl, *b2;
int length;

int bzero(b, length)
char *b;
int length;

r » P n n i l • iwn•

L(CJv.Kir i it»n
The functions bcopy, bcmp, and bzero operate on variable length strings of
bytes. They do not check for null bytes as the routines in string (3) do.
The bcopy routine copies length bytes from string src to the string dst.

The bcmp routine compares byte string bl against byte string b2, returning zero
if they are identical, non-zero otherwise. Both strings are assumed to be length
bytes long.

bzero places length 0 bytes in the string bl.

WARNING
The bcopy routine take parameters backwards from strcpy.

B YTEORDER (3) (CTTX Internetworking) BYTEORDER (3)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#include <sys/types.h>
#include <sys/in.h>

netlong = htonl(hostlong);
unsigned long netlong, hostlong;

netshort = htons(hostshort);
ushort netshort, hostshort;

hostlong = ntohl(netlong);
unsigned long hostlong, netlong;

hostshort = ntohs(netshort);
ushort hostshort, netshort;

DESCRIPTION
These routines convert 16- and 32-bit quantities between network byte order
and host byte order. These routines are defined as null macros in the include file
<sys/in.h> (that is, network byte order is native 680x0 order).

These routines are most often used in conjunction with Internet addresses and
ports as returned by gethostentQ) and getserventQ).

SEE ALSO
gethostbyname(3), getservent(3).
CTIX Network Programmer's Primer.

(r - •

CLOCK (3C) CLOCK (3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
The clock routine returns the amount of CPU time (in microseconds) used since
the first call to clock. The time reported is the sum of the user and system times
of the calling process and its terminated child processes for which it has
executed wait(2), pclose(3S), or system(iS).

The resolution of the clock is 1/HZ seconds on CTIX processors (HZ is defined
in <sys/param.h>).

SEE ALSO
times(2V wait(2), popen(3S), system(3S).

BUGS
The value returned by clock is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this, the
value returned wraps around after accumulating only 2147 seconds of CPU time
(about 36 minutes). The value then accumulates to -2148 and finally wrap
around again to 0.

CONV(3C) CONV(3C)

NAME
conv: toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include <ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

DESCRIPTION
The toupper and tolower routines have as domain the range of getc (3S): the
integers from -1 through 255. If the argument of toupper represents a
lowercase letter, the result is the corresponding uppercase letter. If the
argument of tolower represents an uppercase letter, the result is the
corresponding lower-case letter. All other arguments in the domain are
returned unchanged.

The macros toupper and tolower, accomplish the same thing as toupper and
tolower but have restricted domains and are faster, joupper requires a
lowercase letter as its argument; its result is the corresponding uppercase letter.
The macro tolower requires an uppercase letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause
undefined results.

The toascii routine yields its argument with all bits turned off that are not part
of a standard ASCII character; it is intended for compatibility with other
systems.

SEE ALSO
ctype(3C), getc(3S).

CRYPT(3C) CRYPT (3C)

NAME
crypt, setkey, encrypt - generate hashing encryption

SYNOPSIS
char "crypt (key, salt)
char "key, "salt;

void setkey (key)
char "key;

void encrypt (block, ignored)
char "block;
int ignored;

DESCRIPTION
The crypt routine performs password encryption. It is based on a one-way
hashing encryption algorithm with variations intended (among other things) to
frustrate use of hardware implementations of a key search.

The key argument is a user's typed password. The salt argument is a two-
character string chosen from the set [a-zA-ZO-97]; this string is used to perturb
the hashing algorithm in one of 4,096 different ways, after which the password
is used as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual
hashing algorithm. The argument of setkey is a character array of length 64
containing only the characters with numerical value 0 and 1. If this string is
divided into groups of 8, the low-order bit in each group is ignored; this gives a
56-bit key which is set into the machine. This is the key that will be used with
the hashing algorithm to encrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 containing
only the characters with numerical value 0 and 1. The argument array is
modified in place to a similar array representing the bits of the argument after
having been subjected to the hashing algorithm using the key set by setkey.
Ignored is unused by encrypt but it must be present.

SEE ALSO
login(l), passwd(l), getpass(3C), passwd(4).

CAVEAT
The return value points to static data that are overwritten by each call.

WARNING
The standard CTIX distribution is the international version, which does not
support encryption.

CRYPT(3C) CRYPT (3C)

NAME
crypt - password and fde encryption functions

SYNOPSIS
cc [flag ...] file ... -Icrypt

char "crypt (key, salt)
char "key, "salt;

void setkey (key)
char "key;

void encrypt (block, flag)
char *block;
int flag;

char *des_crypt (key, salt)
char "key, "salt;

void des_setkey (key)
char "key;

void des_encrypt (block, flag)
char "block;
int flag;

int run_setkey (p, key)
int p[2];
char "key;

int run_crypt (offset, buffer, count, p)
long offset;
char *buffer;
unsigned int count;
int p[2];

int crypt_close(p)
int p[2];

DESCRIPTION
The descrypt routine performs password encryption. It is based on a one-way
hashing encryption algorithm with variations intended (among other things) to
frustrate use of hardware implementations of a key search.

The key argument is a user's typed password. The salt argument is a two-
character string chosen from the set [a-zA-ZO-9. /]; this string is used to perturb
the hashing algorithm in one of 4096 different ways, after which the password

CRYPT(3X) CRYPT(3X)

is used as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password. The first two characters are the salt itself.

The dessetkey and des_encrypt entries provide (rather primitive) access to the
actual hashing algorithm. The argument of des setkey is a character array of
length 64 containing only the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is ignored; this
gives a 56-bit key which is set into the machine. This is the key that is used
with the hashing algorithm to encrypt the string block with the function
des encrypt.

The argument to the des_encrypt entry is a character array of length 64
containing only the characters with numerical value 0 and 1. The argument
array is modified in place to a similar array representing the bits of the
argument after having been subjected to the hashing algorithm using the key set
by dessetkey. If flag is zero, the argument is encrypted; if non-zero, it is
decrypted.

Note that decryption is not provided in the international version of crypt(3X). If
decryption is attempted with the international version of des_encrypt, an error
message is printed.

The crypt, setkey, and encrypt routines are front-end routines that invoke
des crypt, des setkey, and des encrypt respectively.

The routines runsetkey and runcrypt are designed for use by applications that
need cryptographic capabilities [such as ed{ 1) and vz'(l)] that must be
compatible with the crypt(1) user-level utility, run setkey establishes a two-
way pipe connection with crypt(l), using key as the password argument The
run crypt routine takes a block of characters and transforms the cleartext or
ciphertext into their ciphertext or cleartext using crypt(1). The offset argument
is the relative byte position from the beginning of the file that the block of text
provided in block is coming from; count is the number of characters in block,
and connection is an array containing indices to a table of input and output file
streams. When encryption is finished, crypt close is used to terminate the
connection with crypt(1).

The run setkey routine returns -1 if a connection with crypt(1) cannot be
established; this occurs on international versions of CTIX where crypt{ 1) is not
available. If a null key is passed to run setkey, 0 is returned; otherwise, 1 is
returned. The run crypt routine returns -1 if it cannot write output or read input
from the pipe attached to crypt; otherwise, it returns 0.

SEE ALSO
crypt(l), login(l), passwd(l), getpass(3C), passwd(4).

CRYPT(3C) CRYPT (3C)

DIAGNOSTICS
In the international version of crypt(3X), a flag argument of 1 to des encrypt is
not accepted, and an error message is printed.

CAVEAT
The return value in crypt points to static data that are overwritten by each call.

WARNING
The standard CTIX distribution is the international version, which does not
support encryption.

I

CTERMID(3S) CTERMID(3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <stdio.h>
char "ctermid (s)
char *s;

DESCRIPTION
The ctermid routine generates the path name of the controlling terminal for the
current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the contents
of which are overwritten at the next call to ctermid, and the address of which is
returned. Otherwise, s is assumed to point to a character array of at least
L ctermid elements; the path name is placed in this array and the value of s is
returned. The constant L_ctermid is defined in the <stdio.h> header file.

SEE ALSO
ttyname(3C).

NOTES
The difference between ctermid and tty name (3Q is that tty name must be
handed a file descriptor and returns the actual name of the terminal associated
with that file descriptor, while ctermid returns a string (/dev/tty) that refers to
the terminal if used as a file name. Thus, ttyname is useful only if the process
already has at least one file open to a terminal.

(r

CTIME(3C) CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, cftime, ascftime, tzset - convert date and
time to string

SYNOPSIS
#include <sys/types.h>
#include <time.h>

char * ctime (clock)
time t "clock;

struct tm "localtime (clock)
time_t "clock;

struct tm "gmtime (clock)
time_t "clock;

char * asctime (tm)
struct tm "tm;

int cftime(buf, fmt, clock)
char "buf, "fmt;
time_t "clock;

int ascftime (buf, fmt, tm)
char "buf, "fmt;
struct tm "tm;

extern long timezone, altzone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION
The ctime, localtime, and gmtime routines accept arguments of type time t
(declared in <sys/types.h>), pointed to by clock, representing the time in
seconds since 00:00:00 GMT, January 1,1970. ctime returns a pointer to a 26-
character string in the following form. All the fields have constant width.

Fri Sep 13 00:00:001986\n\0

The localtime and gmtime routines return pointers to tm structures, described
below, localtime corrects for the main time zone and possible alternate
(Daylight Savings) time zone; gmtime converts directly to Greenwich Mean
Time (GMT), which is the time the UNIX system uses.

CTIME(3C) CTIME(3C)

The asctime routine converts a tm structure to a 26-character string, as shown
in the above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are in the
<time.h> header file. The structure declaration follows:

struct tm {
int Im sec; /« seconds after the minute — [0,59] */
int tm min; /« minutes after the hour — [0, 59] */
int tm_hour; /* hour since midnight — [0, 23] */
int tmmday; /* day of the month — [1,31]*/
int tm mon; /* months since January— [0,11] */
int tmyear; /* years since 1900 */
Int tm_wday; /* days since Sunday — [0,6] */
int tm_yday; /* days since January 1 — [0,365] */
int tmjsdst; /• flag for daylight savings time */

};
If the alternate time zone is in effect, tm jsdst is non-zero.

The cftime and ascftime routines provide the capabilities of dime and asctime,
respectively, as well as additional ones. The cftime routine takes an integer of
type time t pointed to by clock and converts it to a character string; ascftime
takes a pointer to a tm structure and converts it to a character string. In both
functions, the characters are placed into the array pointed to by buf (plus a
terminating \0) and the value returned is the number of such characters (not
counting the terminating \0). The fmt argument controls the format of the
resulting string; it is a character string that consists of field descriptors and text
characters, reminiscent of printf{3S). Each field descriptor consists of a %
character followed by another character which specifies the replacement for the
field descriptor. All other characters are copied from fmt into the result. The
following field descriptors are supported:

same as %
%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%d day of month (0 1 - 3 1)
%D date as %m/%d/%y
%e day of month (1-31; single digits are preceded by a blank)
%h abbreviated month name
%H hour (00 - 2 3)

- 2 -

CTIME(3C) CTIME(3C)

%I hour (0 0 - 1 2)
%j day number of year (001 - 366)
%m month number (01 - 1 2)
%M minute (00 - 59)
%n same as\n
%p ante meridian or post meridian
%r time as %I:%M:%S %p
%R time as %H:%M
%S seconds (00 - 59)
%t insert a tab
%T time as %H:%M:%S
%U week number of year (01 - 52), Sunday is the first day of week
%w weekday number (Sunday = 0)
%W week number of year (0 1 - 5 2) , Monday is the first day of week
%x Local specific date format
%X Local specific time format
%y year within century (00 - 99)
%Y year as ccyy (for example, 1986)
%z time zone name

The difference between %U and %W lies in which day is counted as the first
of the week. Week number 01 is the first week with four or more January days
in it

The example below shows what the values in the tm structure would look like
for Thursday, August 28,1986 at 12:44:36 in New Jersey.

ascftime (buf, "%A %h %d %]", tm)

This example would result in the buffer containing Thursday Aug 28 240.

If fmt is (char *)0, the value of the environment variable CFTIME is used. If
CFTIME is undefined or empty, a default format is used. The default format
string is taken from the file that contains the date and time strings associated
with the then current language [see below for details on changing the current
language and cftime(4) for a description of the structure of these files].

The user can request that the output of cftime and ascftime be in a specific
language by setting the environment variable LANGUAGE to the desired
language. If LANGUAGE is empty, unset or set to an unsupported language, the
last language requested will be used (the default is the usa_english strings).

The external long variable timezone contains the difference, in seconds,
between GMT and the main time zone; the external long variable altzone
contains the difference, in seconds, between GMT and the alternate time zone;

CTIME(3C) CTIME(3C)

both timezone and altzone default to 0 (GMT). The external variable daylight is
non-zero if an alternate time zone exists. The time zone names are contained in
the external variable tzname, which by default is set as follows:

char *tzname[2] = ("GMT", " " } ;

The functions know about the peculiarities of this conversion for various time
periods for the U.S.A (specifically, the years 1974, 1975, and 1987). The
functions will handle the new daylight savings time starting with the first
Sunday in April, 1987.

The tzset routine uses the contents of the environment variable TZ to override
the value of the different external variables. The syntax of TZ can be described
as follows:

TZ^zone
/ zone signedtime
/ zone signed time zone
/ zone signed time zone dst

zone -» letter letter letter
signed time —»sign time

/ time
time —> hour

/ hour: minute
/ hour : minute :

dst —» signedtime
/ signed time ; dst date ,
/; dst date , dst date

dst date —> julian
/ julian / time

letter a/A/b/B/.../z/Z
how -> 00/01/.../23
minute -> 00 / 011... / 59
second -> 00/ 01/.../ 59
julian 001 / 002 /.../366
sign -> - / +

tzset scans the contents of the environment variable and assigns the different
fields to the respective variable. For example, the setting for New Jersey in
1986 could be either of the following:

"EST5EDT4;117/2:00:00,299/2:00:00".

HBEST5EDT

CTIME (3C) CTTME(3C)

A southern hemisphere setting such as the Code Islands could be the following:

"KDT9:30KST10:00;64/5:00,303/20:00"

When the longer format is used, the variable must be surrounded by double
quotes as shown. For more details, see timezone(4) and environ(5). In the
longer version of the New Jersey example of TZ, tzname[0] is EST, timezone
will be set to 5*60*60, tzname[l] is EDT, aitzone will be set to 4*60*60, the
starting date of the alternate time zone is the 117th day at 2 AM, the ending
date of the alternate time zone is the 299th day at 2 AM, and daylight will be
set to non-zero. Starting and ending times are relative to the alternate time
zone. If the alternate time zone start and end dates and the time are not
provided, the days for the United States that year will be used and the time will
be 2 AM. If the start and end dates are provided but the time is not provided,
the time will be midnight The effects of tzset are thus to change the values of
the external variables timezone, aitzone, daylight and tzname. tzset is called by
localtime and can also be called explicidy by the user.

FILES
/lib/cftime - directory that contains the language specific printable fdes

SEE ALSO

time(2), getenv(3C), printf(3S), putenv(3C), cftime(4), timezone(4), environ(5).

CAVEAT
The return values for ctime, localtime and gmtime point to static data whose
content is overwritten by each call.
Setting the time during the interval of change from timezone to aitzone or vice
versa can produce unpredictable results.

The system administrator must change the Julian start and end days annually if
the full form of the TZ variable is specified.

I

CTYPE(3C) CTYPE(3C)

NAME
isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntri, ispunct,
isprint, isgraph, isascii, tolower, toupper, toascci, _tolower, _toupper,
setchrclass - character handling

SYNOPSIS
#include <ctype.h>

int isdigit (c);
int c;

tolower(c)
int c;

int setchrclass (chrclass)
char "chrclass;

DESCRIPTION
The character classification macros listed below return nonzero for true, zero
for false, isascii is defined on all integer values; the rest are defined on valid
members of the character set and on the single value EOF [see sfd/o(3S)]
(guaranteed not to be a character set member).

isdigit Tests for the digits 0 through 9.

isxdigit Tests for any character for which isdigit is true or for the letters a
through for A through F.

islower Tests for any lowercase letter as defined by the character set

isupper Tests for any uppercase letter as defined by the character set.

isalpha Tests for any character for which islower or isupper is true and
possibly any others as defined by the character set.

isalnum Tests for any character for which isalpha or isdigit is true.

isspace Tests for a space, horizontal-tab, carriage return, newline,
vertical-tab, or form-feed.

iscntri Tests for "control characters" as defined by the character set

ispunct Tests for any character other than the ones for which isalnum,
iscntri, or isspace is true or space.

CTYPE(3C) CTYPE(3C)

isprint Tests for a space or any character for which isalnum or ispunct is
true or other "printing character" as defined by the character
set

isgraph Tests for any character for which isprint is true, except for space.

isascii Tests for an ASCII character (a non-negative number less than
0200.)

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).

tolower If the character is one for which isupper is true and there a
corresponding lowercase character, tolower returns the
corresponding lowercase character. Otherwise, the character is
returned unchanged.

toupper If the character is one for which islower is true and there is a
corresponding uppercase character, toupper returns the
corresponding uppercase character. Otherwise, the character is
returned unchanged.

toascii Turns off the bits that are not part of the ASCII character set

tolower Returns the lowercase representation of a character for which
isupper is true; otherwise, undefined.

toupper Returns the uppercase representation of a character for which
islower is true; otherwise, undefined.

The conversion macros have the same functionality of the functions on valid
input, but the macros are faster because they do not do range checking.

All the character classification macros and the conversion functions and macros
do a table lookup.

The setchrclass routine itializes the table used by these functions and macros to
a specific character classification set It uses the value of its argument or the
value of the environment variable CHRCLASS as the name of the datafile
containing the information for the desired character set These datafiles are
searched for in the special directory /lib/chrclass.

If chrclass is (char *)0, the value of the environment variable CHRCLASS is
used. If CHRCLASS is not set or is undefined, the table retains its current value,
which at initialization time is ascii.

FILES
/lib/chrclass - directory containing the datafiles for setchrclass

CTYPE(3C) CTYPE(3C)

SEE ALSO
ascii(5), chrtbl(l), environ(5), stdio(3S).

DIAGNOSTICS
If the argument to any of the character handling macros is not in the domain of
the function, the result is undefined.

If setchrclass does not successfully fill the table, the table will not change
(initially "ascii* *) and -1 is returned. If everything works, setchrclass returns 0.

CURSES (3X) CURSES (3X)

NAME
curses - terminal screen handling and optimization package

OVERVIEW
The curses manual page is organized as follows:

SYNOPSIS:
9 Compiling information

• Summary of parameters used by curses routines

• Alphabetical list of curses routines, showing parameters

DESCRIPTION:

An overview of how curses routines should be used

ROUTINES (descriptions of each curses routine are grouped under the
appropriate topics):

• Overall Screen Manipulation

• Window and Pad Manipulation

• Output

• Input

• Output Options Setting

• Input Options Setting

• Environment Queries

• Color Manipulation

• Soft Labels

• Low-level Curses Access

• Terminfo-Level Manipulations

• Termcap Emulation

• Miscellaneous

• Use of curscr

ATTRIBUTES

FUNCTION-KEYS

LINE GRAPHICS

CURSES (3X) CURSES (3X)

SYNOPSIS
cc [flag . . .] file . . . -Icurses [library . . .]

#include <curses.h> (automatically includes <stdio.h>, <termio.h>,
and <unctrl.h>).

The parameters in the following list are not global variables, but rather this
is a summary of the parameters used by the curses library routines. All
routines return the int values ERR or OK unless otherwise noted. Routines
that return pointers always return NULL on error. (ERR, OK, and NULL are
all defined in <curses.h>.) Routines that return integers are not listed in the
parameter list below.

bool bf

char * * area, * bool names [], *boolcodes[], *boolfnames[], *bp
char *cap, *capname, codename[2], erasechar, * filename, *fmt
char ^keyname, killchar, * label, *longname
char *name, *numnames[], *numcodes[], *numfnames[]
char *slk_label, *str, *strnames[], *strcodes[], *strfnames[]
char *term, *tgetstr, *tigetstr, *tgoto, *tparm, *type

chtype attrs, ch, horch, vertch

FILE *infd, *outfd

int begin_x, begin_y, begline, bot, c, col, count
int dmaxcol, dmaxrow, dmincol, dminrow, *errret, fildes
int [*init()], labfmt, labnum, line
int ms, ncols, new, newcol, newrow, nlines, numlines
int oldcol, oldrow, overlay
int pi, p2, p9, pmincol, pminrow, [*putc()], row
int smaxcol, smaxrow, smincol, sminrow, start
int tenths, top, visibility, x, y
short pair, f, b, color, r, g, b

SCREEN *new, * new term, *set_term

TERMINAL *cur_term, *nterm, *oterm

va list varglist

WINDOW *curscr, *dstwin, *initscr, *newpad, *newwin, *orig
WINDOW *pad, *srcwin, *stdscr, *subpad, *subwin, *win

addch(ch)
addstr(str)

CURSES (3X) CURSES (3X)

attroff(attrs)
attron(attrs)
attrset(attrs)
baudrate()
beep()
box(win, vertch, horch)
cbreak()
clear()
clearok(win, bf)
clrtobot()
clrtoeol()
copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol, dmaxrow,

dmaxcol, overlay)
curs_set(visibility)
def_prog_mode()
def_sheII_mode()
deI_curterm(oterm)
delayoutput(ms)
delch()
deleteln()
delwin(win)
doupdate()
draino(ms)
echo()
echochar(ch)
endwin()
erase()
erasechar()
filter()
flashQ
flushinp()
garbagedlines(win, begline, numlines)
getbegyx(win, y, x)
getchQ
getmaxyx(win, y, x)
getstr(str)
getsyx(y, x)
getyx(win, y, x)
halfdelay(tenths)
has_colors()
has_ic()

CURSES (3X) CURSES (3X)

has_il()
idlok(win, bf)
inch()
init_color(color, r, g, b)
init_pair(pair, f, b)
initscr()
insch(ch)
insertln()
intrflush(win, bf)
isendwin()
keyname(c)
keypad(win, bf)
kiUchar()
leaveok(win, bf)
longname()
meta(win, bf)
move(y, x)
mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow, newcol)
mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x, str)
mvinch(y, x)
mvinsch(y, x, ch)
mvprintw(y, x, fmt [, arg...])
mvscanw(y, x, fmt [, arg...])
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x, str)
mvwin(win, y, x)
mvwinch(win, y, x)
mvwinsch(win, y, x, ch)
mvwprintw(win, y, x, fmt [, arg...])
mvwscanw(win, y, x, fmt [, arg...])
napms(ms)
newpad(nlines, ncols)
newterm(type, outfd, infd)
newwin(nlines, ncols, begin_y, begin_x)

- 4 -

CURSES (3X) CURSES (3X)

nl()
nocbreak()
nodelay(win, bf)
noecho()
nonl()
noraw()
Rotinieoui(\vin, bf)
overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)
pair_content(pair, &f, &b)
pechochar(pad, ch)
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
printw(fmt [, arg...])
putp(str)
raw()
refresh()
reset_prog_mode()
reset_shell_mode()
resetty()
restartterm(term, fildes, errret)
ripoffline(line, init)
savetty()
scanw(fmt t, arg...])
scr_dump(filename)
scr_init(filename)
scr_restore(filename)
scroll(win)
scrollok(win, bf)
set_curterm(nterm)
set_term(new)
setscrreg(top, bot)
setsyx(y, x)
setupterm(term, fildes, errret)
set_attron(attrs)
set_attrset(attrs)
set_attroff(attrs)
slk_clear()
slkinit(fmt)
slk_label(labnum)
slk_noutrefresh()

CURSES(3X) CURSES (3X)

slk_refresh()
slk_restore()
slk_set(labnum, label, fmt)
slk_touch()
standend()
standout()
start_co!or()
subpad(orig, nlines, ncols, begin_y, begin_x)
subwin(orig, nlines, ncols, begin_y, begin_x)
tgetent(bp, name)
tgetflag(codename)
tgetnum(codename)
tgetstr(codename, area)
tgoto(cap, col, row)
tigetflag(capname)
tigetnum (capname)
tigetstr(capname)
touch!ine(win, start, count)
touchwin(win)
tparm(str, pi, p2, ..., p9)
tputs(str, count, putc)
typeahead(fildes)
unctrl(c)
ungetch(c)
vidattr(attrs)
vidputs(attrs, putc)
vwprintw(win, fmt, varglist)
vwscanw(win, fmt, varglist)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win)
wdeleteln(win)
wechochar(win, ch)
werase(win)
wgetch(win)

- 6 -

CURSES(3X) CURSES (3X)

wgetstr(win, str)
winch(win)
winsch(win, ch)
winsertln(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win, fmt [, arg,, ,1)
wrefresh(win)
wscanw(win, fmt [, arg...])
wsetscrreg(win, top, bot)
wstandend(win)
wstandout(win)

DESCRIPTION
The curses routines give the user a terminal-independent method of updating
screens with reasonable optimization.

In order to initialize the routines, # include <curses.h> must be included at the
beginning of fdes that use any curses routines. In addition, the routine initscr()
or newterm() must be called before any of the other routines that deal with
windows and screens are used. (Three exceptions are noted where they apply.)
The routine endwin() must be called before exiting. To get character-at-a-time
input without echoing, (most interactive, screen oriented programs want this)
after calling initscrQ you should call "cbreakQ; noechoQ;" Most programs
would additionally call "nonl(); intrflush (stdscr, FALSE); keypad(stdscr,
TRUE);".

Before a curses program is run, a terminal's tab stops should be set and its
initialization strings, if defined, must be output. This can be done by executing
the tput init command after the shell environment variable TERM has been
exported. For further details, see profiled), tput(1), and the "Tabs and
Initialization" subsection of terminfo(4).

The curses library contains routines that manipulate data structures called
windows that can be thought of as two-dimensional arrays of characters
representing all or part of a terminal screen. A default window called stdscr is
supplied, which is the size of the terminal screen. Others can be created with
newwin(). Windows are referred to by variables declared as WINDOW *; the
type WINDOW is defined in <curses.h> to be a structure. These data structures
are manipulated with routines described below, among which the most basic are
move() and addch(). (More general versions of these routines are included
with names beginning with w, allowing you to specify a window. The routines
not beginning with w usually affect stdscr.) Then refresh() is called, telling
the routines to make the user's terminal screen look like stdscr. The characters

- 7 -

CURSES (3X) CURSES (3X)

in a window are actually of type chtype, so that other information about the
character can also be stored with each character.

Special windows called pads can also be manipulated. These are windows
which are not constrained to the size of the screen and whose contents need not
be displayed completely. See the description of newpad() under "Window
and Pad Manipulation" for more information.

In addition to drawing characters on the screen, video attributes can be included
which cause the characters to show up in modes such as underlined or in reverse
video on terminals that support such display enhancements. Line drawing
characters can be specified to be output On input, curses is also able to
translate arrow and function keys that transmit escape sequences into single
values. The video attributes, line drawing characters, and input values use
names, defined in <curses.h>, such as A REVERSE, ACS HLINE, and
KEY_LEFT.

Routines that manipulate color on color alphanumeric terminals are new in this
release of curses. To use these routines, start_color() must be called, usually
right after initscr(). Colors are always used in pairs (referred to as color-pairs).
A color-pair consists of a foreground color (for characters) and a background
color (for the field the characters are displayed on). A programmer initializes a
color-pair with the routine init_pair(). After it has been initialized,
COLOR PAIR(n), a macro defined in <curses.h>, can be used in the same ways
other video attributes can be used. If a terminal is capable of redefining colors,
the programmer can use the routine init_color() to change the definition of a
color. The routines has_color() and can_change_color() return TRUE or
FALSE, depending on whether the terminal has color capabilities and whether
the user can change the colors. The routine color_content() allows a user to
identify the amounts of red, green, and blue components in an initialized color.
The routine pair_content() allows a user to find out how a given color-pair is
currently defined.

curses also defines the WINDOW • variable, curscr, which is used only for
certain low-level operations like clearing and redrawing a garbaged screen,
curscr can be used in only a few routines. If the window argument to
clearok() is curscr, the next call to wrefresh() with any window causes the
screen to be cleared and repainted from scratch. If the window argument to
wrefreshQ is curscr, the screen is immediately cleared and repainted from
scratch. This is how most programs would implement a "repaint-screen"
function. More information on using curscr is provided where its use is
appropriate.

CURSES (3X) CURSES (3X)

The environment variables LINES and COLUMNS can be set to override
terminfo's idea of how large a screen is. These can be used in an AT&T
Teletype 5620 layer, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using curses
checks for a local terminal definition before checking in the standard place. For
example, if the environment variable TERM is set to act4, then the compiled
terminal definition is found in lusriliblterminfolalact4. (The a is copied from
the first letter of act4 to avoid creation of huge directories.) However, if
TERMINFO is set to $HOME!my terms, curses first checks
$HOME/myterms/a/act4, and, if that fails, then checks lusrlliblterminfolalact4.
This is useful for developing experimental definitions or when write permission
on /usr/lib/terminfo is not available.

The integer variables LINES and COLS are defined in <curses.h>; and is filled
in by initscrQ with the size of the screen. (For more information, see the
subsection "Terminfo-Level Manipulations.") The integer variables COLORS
and COLOR PAIRS are also defined in <curses.h> and contain, respectively,
the maximum number of colors and color-pairs the terminal can support. They
are initialized by start_color(). The constants TRUE and FALSE have the
values 1 and 0, respectively. The constants ERR and OK are returned by
routines to indicate whether the routine successfully completed. These
constants are also defined in <curses.h>.

ROUTINES
Many of the following routines have two or more versions. The routines
prefixed with w require a window argument The routines prefixed with p
require a pad argument Those without a prefix generally use stdscr.

The routines prefixed with mv require y and x coordinates to move to before
performing the appropriate action. The mv() routines imply a call to move()
before the call to the other routine. The window argument is always specified
before the coordinates, y always refers to the row (of the window), and x
always refers to the column. The upper-left corner is always (0,0), not (1,1).
The routines prefixed with mvw take both a window argument and y and x
coordinates.

In each case, win is the window affected and pad is the pad affected. (win and
pad are always of type WINDOW *.) Option-setting routines require a boolean
flag bf with the value TRUE or FALSE. (bf is always of type bool.) The types
WINDOW, bool, and chtype are defined in <curses.h>. See the SYNOPSIS for
a summary of what types all variables are.

All routines return either the integer ERR or the integer OK, unless otherwise
noted. Routines that return pointers always return NULL on error.

- 9 -

CURSES (3X) CURSES (3X)

Sometimes the description of a routine refers to a second routine. If the routine
referred to is prefixed with a w, then you should assume that other versions of
the second routine behave similarly. For example, the description of initscr()
refers to wrefresh(). This implies that the same result occurs if refresh() is
called.

Overall Screen Manipulation
WINDOW *initscr()

The first routine called should almost always be initscr(). [The
exceptions are slk_init(), filter(), and ripoffline().] This determines
the terminal type and initializes all curses data structures. initscr() also
arranges that the first call to wrefreshQ clears the screen. If errors
occur, initscr() writes an appropriate error message to standard error
and exit; otherwise, a pointer to stdscr is returned. If the program wants
an indication of error conditions, newterm() should be used instead of
initscr(). initscr() should only be called once per application.

endwin()
A program should always call endwin() before exiting or escaping from
curses mode temporarily, to do a shell escape or system(3S) call, for
example. This routine restores tty(J) modes, moves the cursor to the
lower-left corner of the screen, and resets the terminal into the proper
non-visual mode. To resume after a temporary escape, call wrefresh()
or doupdate().

isendwin()
This routine returns TRUE if endwin() has been called without any
subsequent calls to wrefresh().

SCREEN *newterm(type, outfd, infd)
A program that outputs to more than one terminal must use newterm()
for each terminal instead of initscrQ. A program that wants an
indication of error conditions, so that it can continue to run in a line-
oriented mode if the terminal cannot support a screen-oriented program,
must also use this routine. newterm() should be called once for each
terminal. It returns a variable of type SCREEN* that should be saved as
a reference to that terminal. The arguments are the type of the terminal
to be used in place of the environment variable TERM; outfd, a
st<ho{3S) file pointer for output to the terminal; and infd, another file
pointer for input from the terminal. When it is done running, the
program must also call endwin() for each terminal being used. If
newterm() is called more than once for the same terminal, the first
terminal referred to must be the last one for which endwin() is called.

- 1 0 -

CURSES(3X) CURSES (3X)

SCREEN *set_term(new)
This routine is used to switch between different terminals. The screen
reference new becomes the new current terminal. A pointer to the
screen of the previous terminal is returned by the routine. This is the
only routine which manipulates SCREEN pointers; all other routines
affect only the current terminal.

Window and Pad Manipulation
refresh()
wrefresh (win)

These routines [or prefreshQ, pnoutrefresh(), wnoutrefreshQ, or
doupdateQ] must be called to write output to the terminal, as most
other routines merely manipulate data structures. wrefresh() copies
the named window to the physical terminal screen, taking into account
what is already there in order to minimize the amount of information
that's sent to the terminal (called optimization). refreshQ does the
same thing, except it uses stdscr as a default window. Unless
leaveok() has been enabled, the physical cursor of the terminal is left
at the location of the window's cursor. The number of characters
output to the terminal is returned.

Note that refresh() is a macro.

wnoutrefresh(win)
doupdateQ

These two routines allow multiple updates to the physical terminal
screen with more efficiency than wrefreshQ alone. How this is
accomplished is described in the next paragraph.

curses keeps two data structures representing the terminal screen: a
physical terminal screen, describing what is actually on the screen, and
a virtual terminal screen, describing what the programmer wants to
have on the screen. wrefresh() works by first calling
wnoutrefresh(), which copys the named window to the virtual screen,
and then by calling doupdate(), which compares the virtual screen to
the physical screen and does the actual update. If the programmer
wishes to output several windows at once, a series of calls to
wrefresh() results in alternating calls to wnoutrefresh() and
doupdateQ, causing several bursts of output to the screen. By first
calling wnoutrefresh() for each window, it is then possible to call
doupdate() once, resulting in only one burst of output, with probably
fewer total characters transmitted and certainly less processor time
used.

- 1 1 -

CURSES (3X) CURSES (3X)

WINDOW *newwin(nlines, ncols, begin_y, begin_x)
This routine creates and returns a pointer to a new window with the
given number of lines (or rows), nlines, and columns, ncols. The
upper-left corner of the window is at line begin_y, column beginx. If
either nlines or ncols is 0, they are set to the value of lines-begin_y and
cols-begin x. A new full-screen window is created by calling
newwin(050,0?0).

mvwin(win, y, x)
This routine noves the window to position the upper-left corner at (y,
x). If the move would cause any portion of the window to be off the
screen, it is an error and the window is not moved.

WINDOW *subwin(orig, nlines, ncols, begin_y, begin_x)
This routine creates and returns a pointer to a new window with the
given number of lines (or rows), nlines, and columns, ncols. The
window is at position (begin_y, begin jc) on the screen. (This position
is relative to the screen and not to the window orig.) The window is
made in the middle of the window orig, so that changes made to one
window affect the character image of both windows. When changing
the image of a subwindow, it is necessary to call touchwin() or
touch!ine() on orig before calling wrefresh() on orig.

delwin(win)
This routine deletes the named window, freeing up all memory
associated with it If you try to delete a main window before all of its
subwindows are deleted, ERR is returned.

WINDOW *newpad(nlines, ncols)
This routine creates and returns a pointer to a new pad data structure
with the given number of lines (or rows), nlines, and columns, ncols.
A pad is a window that is not restricted by the screen size and is not
necessarily associated with a particular part of the screen. Pads can be
used when a large window is needed, and only a part of the window is
on the screen at one time. Automatic refreshes of pads (for example,
from scrolling or echoing of input) do not occur. It is not legal to call
wrefreshQ with a pad as an argument; the routines prefreshQ or
pnoutrefresh() should be called instead. Note that these routines
require additional parameters to specify the part of the pad to be
displayed and the location on the screen to be used for display.

-12 -

CURSES (3X) CURSES (3X)

WINDOW *subpad(orig, nlines, ncols, begin_y, begin_x)
This routine creates and returns a pointer to a subwindow within a pad
with the given number of lines (or rows), nlines, and columns, ncols.
Unlike subwin(), which uses screen coordinates, the window is at
position (begin_y, begin_x) on the pad. The window is made in the
middle of the window orig, so that changes made to one window affect
the character image of both windows. When changing the image of a
subwindow, it is necessary to call touchwin() or touchline() on orig
before calling prefresh() on orig.

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)

These routines are analogous to wrefresh() and wnoutrefresh()
except that pads, instead of windows, are involved. The additional
parameters are needed to indicate what part of the pad and screen are
involved, pminrow and pmincol specify the upper-left corner, in the
pad, of the rectangle to be displayed, sminrow, smincol, smaxrow, and
smaxcol specify the edges, on the screen, of the rectangle to be
displayed in. The lower-right corner in the pad of the rectangle to be
displayed is calculated from the screen coordinates, since the
rectangles must be the same size. Both rectangles must be entirely
contained within their respective structures. Negative values of
pminrow, pmincol, sminrow, or smincol are treated as if they were
zero.

Output
These routines are used to manipulate text in windows.
addch(ch)
waddch(win, ch)
mvaddch(y, x, ch)
mvwaddch(win, y, x, ch)

The character ch is put into the window at the current cursor position
of the window and the position of the window cursor is advanced. Its
function is similar to that of putchar [see pu/c(3S)]. At the right
margin, an automatic newline is performed. At the bottom of the
scrolling region, if scrollok() is enabled, the scrolling region is
scrolled up one line.

-13 -

CURSES (3X) CURSES (3X)

If ch is a tab, newline, or backspace, the cursor is moved appropriately
within the window. A newline also does a wcIrtoeol() before moving.
Tabs are considered to be at every eighth column. If ch is another
control character, it is drawn in the Control X notation. [Calling
winch() on a position in the window containing a control character
does not return the control character, but instead returns one character
of the representation of the control character,] Video attributes can be
combined with a character by ORing them into the parameter. This
results in these attributes also being set [The intent here is that text,
including attributes, can be copied from one place to another using
winch() and waddch().] See wstandout(), below.

Note that ch is actually of type chtype, not a character.

Note that addchQ, mvaddchQ. and mvwaddch(), are macros,

echochar(ch)
wechochar(win, ch)
pechochar(pad, ch)

These routines are functionally equivalent to a call to addch(ch)
followed by a call to refresh(), a call to waddch(win, ch) followed by
a call to wrefresh(win), or a call to waddch(pad, ch) followed by a
call to prefresh(pad). The knowledge that only a single character is
being output is taken into consideration and, for non-control
characters, a considerable performance gain can be seen by using these
routines instead of their equivalents. In the case of pechochar(), the
last location of the pad on the screen is reused for the arguments to
prefresh().

Note that ch is actually of type chtype, not a character.

Note that echochar() is a macro.

addstr(str)
waddstr(win, str)
mvwaddstr(win, y, x, str)
mvaddstr(y, x, str)

These routines write all the characters of the null-terminated character
string str on the given window. This is equivalent to calling waddch()
once for each character in the string.

Note that addstr(), mvaddstr(), and mvwaddstr() are macros.

- 1 4 -

CURSES (3X) CURSES (3X)

attroff(attrs)
wattroff(win, attrs)
attron(attrs)
wattron(win, attrs)
attrset(attrs)
wattrset(win, attrs)
standend()
wstandend(win)
standout()
wstandout(win)

These routines manipulate the current attributes of the named window.
These attributes can be any combination of ASTANDOUT,
AREVERSE, ABOLD, ADIM, ABLINK, AUNDERLINE, and
A_ALTCHARSET, as well as the macro COLOR_PAIR(). These
constants are defined in <curses.h> and can be combined with the C
logical OR (I) operator.

The current attributes of a window are applied to all characters that are
written into the window with waddch(). Attributes are a property of
the character, and move with the character through any scrolling and
insert/delete line/character operations. To the extent possible on the
particular terminal, they are displayed as the graphic rendition of the
characters put on the screen.

wattrset(win, attrs) sets the current attributes of the given window to
attrs. wattroff(win, attrs) turns off the named attributes without
turning on or off any other attributes. wattron(win, attrs) turns on the
named attributes without affecting any others. wstandout(win, attrs)
is the same as wattron(win, A STANDOUT). wstandend(win, attrs) is
the same as wattrset(win, 0), that is, it turns off all attributes.

Note that wattroffQ, wattronQ, wattrsetQ, wstandend(), and
wstandout() return 1 at all times.

Note that attrs is actually of type chtype, not a character.

Note that attroff(), attron(), attrset(), standend(), and standout()
are macros.

beep()
flashQ These routines are used to signal the terminal user. beep() sounds the

audible alarm on the terminal, if possible, and if not, flashes the screen
(visible bell), if that is possible. flash() flashes the screen, and if that
is not possible, sounds the audible signal. If neither signal is possible,

- 1 5 -

CURSES (3X) CURSES (3X)

nothing happens. Nearly all terminals have an audible signal (bell or
beep), but only some can flash the screen.

box(win, vertch, horch)
A box is drawn around the edge of the window, win. vertch and horch
are the characters the box is to be drawn with. If vertch and horch are
0, then appropriate default characters, ACS VLINE and ACS HLINE,
are used.

Note that vertch and horch are actually of type chtype, not characters.

erase()
werase(win)

These routines copy blanks to every position in the window.

Note that erase() is a macro.
clearQ
wclear(win)

These routines are like eraseQ and weraseQ, but they also call
c!earok(), arranging that the screen is cleared completely on the next
call to wrefresh() for that window and repainted from scratch.

Note that clear() is a macro.

clrtobot()
wclrtobot(win)

All lines below the cursor in this window are erased. Also, the current
line to the right of the cursor, inclusive, is erased.

Note that clrtobot() is a macro.

clrtoeol()
wclrtoeol(win)

The current line to the right of the cursor, inclusive, is erased.

Note that clrtoeol() is a macro.
delay_output(ms)

Insert a ms millisecond pause in the output It is not recommended that
this routine be used extensively, because padding characters are used
rather than a processor pause.

- 1 6 -

CURSES (3X) CURSES (3X)

delchO
wdelch(win)
mvdelch(y, x)
mvwdelch(win, y, x)

The character under the cursor in the window is deleted. All
characters to the right on the same line are moved to the left one
position and the last character on the line is filled with a blank. The
cursor position does not change [after moving to (y, x), if specified].
(This does not imply use of the hardware "delete-character " feature.)

Note that delch(), mvdelch(), and mvwdelch() are macros.

deleteln()
wdeleteln(win)

The line under the cursor in the window is deleted. All lines below the
current line are moved up one line. The bottom line of the window is
cleared. The cursor position does not change. (This does not imply
use of the hardware "delete-line" feature.)

Note that deleteln() is a macro.

getyx(win, y, x)
The cursor position of the window is placed in the two integer
variables y and x.

Note that getyx() is a macro, so no ampersand (&) is necessary before
the variables y and x.

getbegyx(win, y, x)
getmaxyx(win, y, x)

The current beginning coordinates [getbegyx()) or size (getmaxyx()]
of the specified window are placed in the two integer variables y and
x.

Note that getbegyxQ and getmaxyx() are macros, so no & is
necessary before the variables y and x.

insch(ch)
winsch(win, ch)
mvwinsch(win, y, x, ch)
mvinsch(y, x, ch)

The character ch is inserted before the character under the cursor. All
characters to the right are moved one space to the right, losing the
rightmost character of the line. The cursor position does not change

- 1 7 -

CURSES (3X) CURSES (3X)

[after moving to (y, x), if specified]. (This does not imply use of the
hardware "insert-character" feature.)

Note that ch is actually of type chtype, not a character.

Note that insch(), mvinsch(), and mvwinsch() are macros.

insertln()
winsertin(win)

A blank line is inserted above the current line and the bottom line is
lost (This does not imply use of the hardware "insert-line" feature.)

Note that insertln() is a macro.

move(y, x)
wmove(win, y, x)

The cursor associated with the window is moved to line (row) y,
column x. This does not move the physical cursor of the terminal until
wrefresh() is called. The position specified is relative to the upper-
left corner of the window, which is (0,0).

Note that move() is a macro.

overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)

These routines overlay text from srcwin on top of text from dstwin
wherever the two windows overlap. The difference is that overlay() is
non-destructive (blanks are not copied), while overwrite() is
destructive.

copywin(srcwin, dstwin, sminrow, smincol, dminrow,
dmincol, dmaxrow, dmaxcol, overlay)

This routine provides a finer grain of control over the overlay() and
overwriteQ routines. As in the prefreshQ routine, a rectangle is
specified in the destination window, (dminrow, dmincol) and
(dmaxrow, dmaxcol), and the upper-left-corner coordinates of the
source window, (sminrow, smincol). If the argument overlay is true,
then copying is non-destructive, as in overlay().

printw(fmt [, arg...])
wprintw(win, fmt [, arg...])
mvprintw(y, x, fmt [, arg...])
mvwprintw(win, y, x, fmt [, arg...])

These routines are analogous to printf(3). The string which would be
output by printf(3) is instead output using waddstr() on the given
window.

- 18-

CURSES (3X) CURSES (3X)

vwprintw(win, fmt, varglist)
This routine corresponds to vfprintf OS). It performs a wprintwQ
using a variable argument list. The third argument is a valist, a
pointer to a list of arguments, as defined in <varargs.h>. See the
vprintfQS) and varargs (5) manual pages for a detailed description on
how to use variable argument lists.

scroii(win)
The window is scrolled up one line. This involves moving the lines in
the window data structure. As an optimization, if the window is stdscr
and the scrolling region is the entire window, the physical screen is
scrolled at the same time.

touchwin(win)
touch!ine(win, start, count)

Throw away all optimization information about which parts of the
window have been touched, by pretending that the entire window has
been drawn on. This is sometimes necessary when using overlapping
windows, since a change to one window affects the other window, but
the records of which lines have been changed in the other window
does not reflect the change. touchline() only pretends that count lines
have been changed, beginning with line start.

Input
getch()
wgetch(win)
mvgetch(y, x)
mvwgetch(win, y, x)

A character is read from the terminal associated with the window. In
NODELAY mode, if there is no input waiting, the value ERR is
returned. In DELAY mode, the program hangs until the system passes
text through to the program. Depending on the setting of cbreakQ,
this is after one character (CBREAK mode), or after the first newline
(NOCBREAK mode). In HALF-DELAY mode, the program hangs until a
character is typed or the specified timeout has been reached. Unless
noecho() has been set, the character is also echoed into the designated
window.

When wgetchQ is called, before getting a character, it calls
wrefresh() if anything in the window has changed (for example, the
cursor has moved or text changed).

-19 -

CURSES (3X) CURSES (3X)

When using getch(), wgetch(), mvgetch(), or mvwgetch(), do not set
both NOCBREAK mode [nocbreak()] and ECHO mode [echo()] at the
same time. Depending on the state of the tty{l) driver when each
character is typed, the program may produce undesirable results. If
wgetch() encounters a Control-D, it is returned (unlike stdio routines,
which would return a null string and have a return code of -1).

If keypad(win, TRUE) has been called, and a function key is pressed,
the token for that function key is returned instead of the raw
characters. [See keypad() under "Input Options Setting."] Possible
function keys are defined in <curses.h> with integers beginning with
0401, whose names begin with KEY_. If a character is received that
could be the beginning of a function key (such as escape), curses sets a
timer. If the remainder of the sequence is not received within the
designated time, the character is passed through, otherwise the
function key value is returned. For this reason, on many terminals,
there is a delay after a user presses the escape key before the escape is
returned to the program. [Use by a programmer of the escape key for a
single character routine is discouraged. Also see notimeout() below.]

Note that getch(), mvgetch(), and mvwgetch() are macros.

getstr(str)
wgetstr(win, str)
mvgetstr(y, x, str)
mvwgetstr(win, y, x, str)

A series of calls to wgetch() is made, until a newline, carriage return,
or enter key is received. The resulting value (except for this
terminating character) is placed in the area pointed at by the character
pointer str. The user's erase and kill characters are interpreted. See
wgetch() for how it handles characters differently from stdio routines
(especially ControlD).

Note that getstr(), mvgetstr(), and mvwgetstr() are macros.

flushinp()
Throws away any typeahead that has been typed by the user and has
not yet been read by the program. Note that flushinp() does not throw
away any characters supplied by ungetch().

ungetch(c)
Place c onto the input queue to be returned by the next call to
wgetch().

- 2 0 -

CURSES (3X) CURSES (3X)

inch()
winch(win)
mvinch(y, x)
mvwinch(win, y, x)

The character, of type chtype, at the current position in the named
window is returned. If any attributes are set for that position, their
values are QRed into the value returned. The predefined constants
A CHARTEXT and A ATTRIBUTES, defined in <curses.h>, can be
used with the C logical AND operator (&) to extract the character or
attributes alone.

Note that inch(), winch(), mvinch(), and m vwinch() are macros.

scanw(fmt [, arg...])
wscanw(win, fmt [, arg...])
mvscanw(y, x, fmt [, arg...])
mvwscanw(win, y, x, fmt [, arg...])

These routines correspond to scanf(3S), as do their arguments and
return values. wgetstrQ is called on the window, and the resulting
line is used as input for the scan. The return value for these routines is
the number of arg values that are converted by fmt. arg values that are
not converted are lost. See wgetstrQ for how it handles strings
differendy than the stdio routines (especially ControlD).

vwscanw(win, fmt, ap)
This routine is similar to vwprintw() in that it performs a wscanw()
using a variable argument list. The third argument is a va list, a
pointer to a list of arguments, as defined in <varargs.h>. See the
vprintf{3S) and varargs (5) manual pages for a detailed description on
how to use variable argument lists.

Output Options Setting
These routines set options within curses that deal with output. All options are
initially FALSE, unless otherwise stated. It is not necessary to turn these options
off before calling endwin().

clearok(win, bf)
If enabled (bf is TRUE), the next call to wrefresh() with this window
clears the screen completely and redraws the entire screen from
scratch. This is useful when the contents of the screen are uncertain,
or in some cases for a more pleasing visual effect.

idlok(win, bf)
If enabled (bf is TRUE), curses uses the hardware "insert/delete-line"
feature of terminals so equipped; if disabled (bf is FALSE), curses very

-21 -

CURSES (3X) CURSES (3X)

seldom uses the hardware "insert/delete-line" feature. (The
"insert/delete-character" feature is always considered.) This option
should be enabled only if your application needs "insert/delete-line",
for example, for a screen editor. It is disabled by default because
"insert/delete-line" tends to be visually annoying when used in
applications where it isn't really needed. If "insert/delete-line"
cannot be used, cwscs redraws the changed portions of all lines. Not
calling idIok() saves approximately 5000 bytes of memory.

leaveok(win, bf)
Normally, the hardware cursor is left at the location of the window
cursor being refreshed. This option allows the cursor to be left
wherever the update happens to leave it. It is useful for applications
where the cursor is not used, since it reduces the need for cursor
motions. If possible, the cursor is made invisible when this option is
enabled.

setscrreg(top, bot)
wsetscrreg(win, top, bot)

These routines allow the user to set a software scrolling region in a
window, top and bot are the line numbers of the top and bottom
margin of the scrolling region. (Line 0 is the top line of the window.)
If this option and scrol!ok() are enabled, an attempt to move off the
bottom margin line causes all lines in the scrolling region to scroll up
one line. [Note that this has nothing to do with use of a physical
scrolling region capability in the terminal, like that in the DEC VT100.
Only the text of the window is scrolled; if idlok() is enabled and the
terminal has either a scrolling region or "insert/delete-line"
capability, they are probably used by the output routines.]

Note that setscrreg() and wsetscrreg() are macros.

scrol!ok(win, bf)
This option controls what happens when the cursor of a window is
moved off the edge of the window or scrolling region, either from a
newline on the bottom line, or typing the last character of the last line.
If disabled (bf is FALSE), the cursor is left on the bottom line at the
location where the offending character was entered. If enabled (bf is
TRUE), wrefreshQ is called on the window, and then the physical
terminal and window are scrolled up one line. [Note that in order to
get the physical scrolling effect on the terminal, it is also necessary to
call idlok().] Note that scrollok() always returns OK.

- 2 2 -

CURSES (3X) CURSES (3X)

Input Options Setting
These routines set options within curses that deal with input. The options
involve using ioctl(2) and therefore interact with curses routines. It is not
necessary to turn these options off before calling endwin().

For more information on these options, see UNIX System V Release 3.2
Programmer's Guide.

cbreak()
nocbreak()

These two routines put the terminal into and out of CBREAK mode,
respectively. In CBREAK mode, characters typed by the user are
immediately available to the program and erase/kill character
processing is not performed. When in NOCBREAK mode, the tty driver
buffers characters typed until a newline or carriage return is typed.
Interrupt and flow-control characters are unaffected by this mode [see
termio(J)]. Initially, the terminal may or may not be in CBREAK
mode, as it is inherited, therefore, a program should call cbreak() or
nocbreak() explicitly. Most interactive programs using curses sets
CBREAK mode.

Note that cbreak() performs a subset of the functionality of raw().
See wgetchQ under "Input" for a discussion of how these routines
interact with echo() and noecho().

echoQ
noecho()

These routines control whether characters typed by the user are echoed
by wgetch() as they are typed. Echoing by the tty driver is always
disabled, but initially wgetch() is in ECHO mode, so characters typed
are echoed. Authors of most interactive programs prefer to do their
own echoing in a controlled area of the screen, or not to echo at all, so
they disable echoing by calling noecho(). See wgetchQ under
"Input'' for a discussion of how these routines interact with cbreak()
and nocbreak().

nl()
nonl() These routines control whether carriage return is translated into

newline on input by wgetchQ. Initially, this translation is done;
nonlQ turns the translation off. Note that translation by the tty(T)
driver is disabled in CBREAK mode.

- 2 3 -

CURSES (3X) CURSES (3X)

halfdelay(tenths)
Half-delay mode is similar to CBREAK mode in that characters typed
by the user are immediately available to the program. However, after
blocking for tenths tenths of seconds, ERR is returned if nothing has
been typed, tenths must be a number between 1 and 255. Use
nocbreak() to leave half-delay mode.

intrflush(win, bf)
If this option is enabled, when an interrupt key is pressed on the
keyboard (interrupt, break, quit) all output in the tty driver queue is
flushed, giving the effect of faster response to the interrupt, but
causing curses to have the wrong idea of what is on the screen.
Disabling the option prevents the flush. The default for the option is
inherited from the tty driver settings. The window argument is
ignored.

keypad(win, bf)
This option enables curses to obtain information from the keypad of
the user's terminal. If enabled, the user can press a function key (such
as an arrow key) and wgetch() returns a single value representing the
function key, as in KEY LEFT; if disabled, curses does not treat
function keys specially and the program would have to interpret the
escape sequences itself. If the keypad in the terminal can be turned on
(made to transmit), calling keypad (win, TRUE) enables it.

meta(win, bf)
Initially, whether the terminal returns seven or eight significant bits on
input depends on the control mode of the tty driver [see termio(7)]. To
force eight bits to be returned, invoke meta (win, TRUE); to force
seven bits to be returned, invoke meta (win, FALSE). The window
argument, win, is always ignored. If the terrrdnfo(A) capabilities smm
(meta_on) and rmm (meta_off) are defined for the terminal, smm is
sent to the terminal when meta (win, TRUE) is called and rmm is sent
when meta (win, FALSE) is called.

nodelay(win, bf)
This option causes wgetch() to be a non-blocking call. If no input is
ready, wgetch() returns ERR. If disabled, wgetch() hangs until a key
is pressed.

notimeout(win, bf)
While interpreting an input escape sequence, wgetchQ sets a timer
while waiting for the next character. If notimeout(win, TRUE) is
called, then wgetch() does not set a timer. The purpose of the timeout

- 2 4 -

CURSES (3X) CURSES (3X)

is to differentiate between sequences received from a function key and
those typed by a user.

raw()
noraw()

The terminal is placed into or out of raw mode. RAW mode is similar
to CBREAK mode, in that characters typed are immediately passed
through to the user program. The differences are that in RAW mode,
the interrupt, quit, suspend, and flow control characters are passed
through uninterpreted, instead of generating a signal. The behavior of
the BREAK key depends on other bits in the tty driver that are not set
by curses [see termio(7)].

typeahead(fddes)
curses does "line-breakout optimization" by looking for typeahead
periodically while updating the screen. If input is found, and it is
coming from a tty, the current update is postponed until wrefresh() or
doupdate() is called again. This allows faster response to commands
typed in advance. Normally, the file descriptor for the input FILE
pointer passed to newterm(), or stdin in the case that initscr() was
used, is used to do this typeahead checking. The typeahead() routine
specifies that the file descriptor fildes is to be used to check for
typeahead instead. If fildes is -1, then no typeahead checking is
performed.

Note that fildes is a file descriptor, not a <stdio.h> FILE pointer.

Environment Queries
baudrate()

Returns the output speed of the terminal. The number returned is in
bits per second, for example, 9600, and is an integer.

char erasechar()
The user's current erase character is returned.

has_ic()
True if the terminal has insert- and delete-character capabilities.

has_il()
True if the terminal has insert- and delete-line capabilities, or can
simulate them using scrolling regions. This might be used to check to
see if it would be appropriate to turn on physical scrolling using
scrollok().

char killchar()
The user's current line-kill character is returned.

-25 -

CURSES (3X) CURSES (3X)

char *longname()
This routine returns a pointer to a static area containing a verbose
description of the current terminal. The maximum length of a verbose
description is 128 characters. It is defined only after the call to
initscr() or newterm(). The area is overwritten by each call to
newterm() and is not restored by set_term(), so the value should be
saved between calls to newtermQ if longnameQ is going to be used
with multiple terminals.

Color Manipulation
This section describes the color manipulation routines introduced in this release
of curses.
can_change_color()

This routine requires no arguments. It returns TRUE if the terminal
supports colors and can change their definitions, FALSE otherwise.
This routine facilitates writing terminal-independent programs.

color_content(color, &r, &g, &b)
This routine gives users a way to find the intensity of the red, green,
and blue (RGB) components in a color. It requires four arguments: the
color number, and three addresses of shorts for storing the information
about the amounts of red, green, and blue components in the given
color. The value of the first argument must be between 0 and
COLORS-1. The values that are stored at the addresses pointed to by
the last three arguments are between 0 (no component) and 1000
(maximum amount of component). This routine returns ERR if the
color does not exist (the first argument is outside the valid range), or if
the terminal cannot change color definitions, OK otherwise.

has_colors()
This routine requires no arguments. It returns TRUE if the terminal
can manipulate colors, FALSE otherwise. This routine facilitates
writing terminal-independent programs. For example, a programmer
can use it to decide whether to use color or some other video attribute.

init_color(color, r, g, b)
This routine changes the definition of a color. It takes four arguments:
the number of the color to be changed followed by three RGB values
(for the amounts of red, green, and blue components). (See the section
COLOR for the default color index.) The value of the first argument
must be between 0 and COLORS-1. The last three arguments must
each be a value between 0 and 1000. When init_color() is used, all

- 2 6 -

CURSES (3X) CURSES (3X)

occurrences of that color on the screen immediately change to the new
definition. It returns OK if it was able to change the definition of the
color, ERR otherwise.

init_pair(pair, f, b)
This routine changes the definition of a color-pair. It takes three
arguments: the number of the color-pair to be changed, the foreground
color number, ana the background color number. The value of the first
argument must be between 1 and COLORPAIRS-l. The value of the
second and third arguments must be between 0 and COLORS-1. If the
color-pair was previously initialized, the screen are refreshed and all
occurrences of that color-pair are changed to the new definition. The
routine returns OK if it was able to change the definition of the color-
pair, ERR otherwise.

pair_content(pair, &f, &b)
This routine allows users to find out what colors a given color-pair
consists of. It requires three arguments: the color-pair number, and
two addresses of shorts for storing the foreground and the background
color numbers. The value of the first argument must be between 1 and
COLORPAIRS-l. The values that are stored at the addresses pointed
to by the second and third arguments are between 0 and COLORS-1.
The routine returns ERR if the color_pair has not been initialized, OK
otherwise.

start_color()
This routine requires no arguments. It must be called if the user wants
to use colors, and before any other color manipulation routine is
called. It is good practice to call this routine right after initscrQ.
start_color() initializes eight basic colors (black, blue, green, cyan,
red, magenta, yellow, and white), and two global variables, COLORS
and COLORPAIRS (respectively defining the maximum number of
colors and color-pairs the terminal can support). It also restores the
terminal's colors to the values they had when the terminal was just
turned on. It returns ERR if the terminal does not support colors, OK
otherwise.

Soft Labels
If desired, curses manipulates the set of soft function-key labels that exist on
many terminals. For those terminals that do not have soft labels, if you want to
simulate them, curses takes over the bottom line of stdscr, reducing the size of
stdscr and the variable LINES, curses standardizes on eight labels of eight
characters each. If a curses program changes the values of the soft labels, it can
restore them only to the default settings for that terminal. Therefore, if before

- 2 7 -

CURSES (3X) CURSES (3X)

calling a curses program a user changes the values of the soft labels, those
values cannot be reset when the curses program terminates.

slkinit(labfmt)
In order to use soft labels, this routine must be called before initscr()
or newterm() is called. If initscr() winds up using a line from stdscr
to emulate the soft labels, then labfmt determines how the labels are
arranged on the screen. Setting labfmt to 0 indicates that the labels are
to be arranged in a 3-2-3 arrangement; 1 asks for a 4-4 arrangement.

slk_set(labnum, label, labfmt)
labnum is the label number, from 1 to 8. label is the string to be put on
the label, up to eight characters in length. A NULL string or a NULL
pointer puts up a blank label, labfmt is one of 0, 1 or 2, to indicate
whether the label is to be left-justified-, centered, or right-justified
within the label.

slk_refresh()
s!k_noutrefresh()

These routines correspond to the routines wrefresh() and
wnoutrefresh(). Most applications would use slk_noutrefresh()
because a wrefresh() is likely to follow soon.

char *slk_label(labnum)
The current label for label number labnum is returned, in the same
format as it was in when it was passed to slk_set(); that is, how it
looked prior to being justified according to the labfmt argument of
slk_set().

slk_clear()
The soft labels are cleared from the screen.

slk_restore()
The soft labels are restored to the screen after a slk_clear().

slk_touch()
All of the soft labels are forced to be output the next time a
slk_noutrefresh() is performed.

slk_attron(attrs)
slkattrset(attrs)
slk_attrof(attrs)

These routines correspond to attron(), attrset(), and attrof(). The
have effect only if soft labels are simulated at the bottom of the screen.

- 2 8 -

CURSES (3X) CURSES (3X)

Low-Level curses Access
The following routines give low-level access to various curses functionality.
These routines typically would be used inside of library routines.
def_prog_mode()
def_shell_mode()

Save the current terminal modes as the "program" (in curses) or
"shell" (not in curses) state for use by the reset_prog_moae() and
reset_shell_mode() routines. This is done automatically by initscr().

reset_prog_mode()
reset_sheH_mode()

Restore the terminal to "program" (in curses) or "shell" (out of
curses) state. These are done automatically by endwin() and
doupdate() after an endwin(), so they normally would not be called.

resetty()
savetty()

These routines save and restore the state of the terminal modes.
savetty() saves the current state of the terminal in a buffer and
resetty() restores the state to what it was at the last call to savetty().

getsyx(y, x)
The current coordinates of the virtual screen cursor are returned in y
and x. If leaveok() is currently TRUE, then -1,-1 is returned. If lines
have been removed from the top of the screen using ripoffline(), y and
x include these lines; therefore, y and x should be used only as
arguments for setsyx().

Note that getsyxQ is a macro, so no & is necessary before the
variables y and x.

setsyx(y, x)
The virtual screen cursor is set to y, x. If y and x are both -1, then
leaveok() is set. The two routines getsyx() and setsyx() are designed
to be used by a library routine which manipulates curses windows but
does not want to change the current position of the program's cursor.
The library routine would call getsyxQ at the beginning, do its
manipulation of its own windows, do a wnoutrefresh() on its
windows, call setsyx(), and then call doupdate().

ripoff!ine(line, init)
This routine provides access to the same facility that slk_init() uses to
reduce the size of the screen. ripoffline() must be called before
initscr() or newterm() is called. If line is positive, a line is removed
from the top of stdscr; if negative, a line is removed from the bottom.

-29 -

CURSES (3X) CURSES (3X)

When this is done inside initscr(), the routine init() is called with two
arguments: a window pointer to the one-line window that has been
allocated and an integer with the number of columns in the window.
Inside this initialization routine, the integer variables LINES and COLS
(defined in <curses.h>) are not guaranteed to be accurate and
wrefresh() or doupdate() must not be called. It is allowable to call
wnoutrefresh() during the initialization routine. ripoffline() can be
called up to five times before calling initscr() or newterm().

scrdump(filename)
The current contents of the virtual screen are written to the file
filename.

scrrestore(filename)
The virtual screen is set to the contents of filename, which must have
been written using scrdumpQ. ERR is returned if the contents of
filename are not compatible with the current release of curses
software. The next call to doupdate() restores the screen to what it
looked like in the dump file.

scr_init(filename)
The contents of filename are read in and used to initialize the curses
data structures about what the terminal currently has on its screen. If
the data is determined to be valid, curses bases its next update of the
screen on this information rather than clearing the screen and starting
from scratch. scr_init() would be used after initscr() or a system(3S)
call to share the screen with another process which has done a
scr_dump() after its endwin() call. The data is declared invalid if the
time-stamp of the tty is old or the terminfo (4) capability nrrmc is true.
Note that keypadQ, metaQ, slkclearQ, curs_set(), flash(), and
beep() do not affect the contents of the screen, but makes the tty's
time-stamp old.

curs_set(visibility)
The cursor is set to invisible, normal, or very visible for visibility equal
to 0, 1 or 2. If the terminal supports the visibility requested, the
previous cursor state is returned; otherwise, ERR is returned.

draino(ms)
Wait until the output has drained enough that it takes only ms more
milliseconds to drain completely.

garbagedlines(win, begline, numlines)
This routine indicates to curses that a screen line is garbaged and
should be thrown away before having anything written over the top of

- 3 0 -

CURSES (3X) CURSES (3X)

it It could be used for programs such as editors which want a
command to redraw just a single line. Such a command could be used
in cases where there is a noisy communications line and redrawing the
entire screen would be subject to even more communication noise.
Just redrawing the single line gives some semblance of hope that it
would show up unblemished. The current location of the window is
used to determine which lines are to be redrawn.

napms(ms)
Sleep for ms milliseconds. mvcur(oldrow, oldcol, newrow, newcol)
Low-level cursor motion.

Terminfo-Level Manipulations
These low-level routines must be called by programs that need to deal directly
with the terminfo (A) database to handle certain terminal capabilities, such as
programming function keys. For all other functionality, curses routines are
more suitable and their use is recommended.

Initially, setupterm() should be called. [Note that setupterm() is
automatically called by initscr() and newterm().] This defines the set of
terminal-dependent variables defined in the terminfo (4) database. The
terminfo (4) variables lines and columns [see terminfo (4)] are initialized by
setuptermQ as follows: if the environment variables LINES and COLUMNS
exist, their values are used. If the above environment variables do not exist, the
values for lines and columns specified in the terminfo (4) database are used.

The header files <curses.h> and <term.h> should be included, in this order, to
get the definitions for these strings, numbers, and flags. Parameterized strings
should be passed through tparm() to instantiate them. All terminfo (4) strings
[including the output of tparm()] should be printed with tputs() or putp().
Before exiting, reset_shell_mode() should be called to restore the tty modes.
Programs that use cursor addressing should output enter_ca_mode upon startup
and should output ex i tcamode before exiting [see terminfo (4)], Programs
that use shell escapes should call reset_shell_mode() and output
exit_ca_mode before the shell is called and should output enter_ca_mode and
call reset_prog_mode() after returning from the shell. Note that this is
different from the curses routines [see endwinQ],

setupterm(term, fildes, errret)
Reads in the terminfo (4) database, initializing the terminfo (4)
structures, but does not set up the output virtualization structures used
by curses. The terminal type is in the character string term; if term is
NULL, the environment variable TERM is used. All output is to the
file descriptor fildes. If errret is not NULL, then setupterm() returns

-31 -

CURSES (3X) CURSES (3X)

OK or ERR and store a status value in the integer pointed to by errret.
A status of 1 in errret is normal, 0 means that the terminal could not be
found, and -1 means that the terminfo (4) database could not be found.
If errret is NULL, setupterm() prints an error message upon finding
an error and exit Thus, the simplest call is setupterm [(char *)0,1,
(int *)0], which uses all the defaults.

The terminfo (4) boolean, numeric and string variables are stored in a
structure of type TERMINAL. After setupterm() returns successfully,
the variable cur_term (of type TERMINAL *) is initialized with all of
the information that the terminfo (4) boolean, numeric and string
variables refer to. The pointer can be saved before calling
setupterm() again. Further calls to setupterm() allocates new space
rather than reuse the space pointed to by cur_term.

set_curterm(nterm)
nterm is of type TERMINAL *. set_curterm() sets the variable
cur_term to nterm, and makes all of the terminfo (4) boolean, numeric
and string variables use the values from nterm.

delcurterm(oterm)
oterm is of type TERMINAL del_curterm() frees the space pointed
to by oterm and makes it available for further use. If oterm is the same
as cur_term, then references to any of the terminfo (4) boolean,
numeric and string variables thereafter may refer to invalid memory
locations until another setupterm() has been called.

restartterm(term, fildes, errret)
Similar to setuptermQ, except that it is called after restoring memory
to a previous state; for example, after a call to scr_restore(). It
assumes that the windows and the input and output options are the
same as when memory was saved, but the terminal type and baud rate
may be different.

char *tparm(str, p r p2, ..., p?)
Instantiate the string str with parms p.. A pointer is returned to the
result of str with the parameters applied.

tputs(str, count, putc)
Apply padding to the string str and output it. str must be a terminfo (A)
string variable or the return value from tparmQ, tgetstrQ, tigetstrQ
or tgoto(). count is the number of lines affected, or 1 if not applicable.
putc() is aputchar(3S)-like routine to which the characters are passed,
one at a time.

-32 -

CURSES (3X) CURSES (3X)

putp(str)
A routine that calls tputs [str, 1, putcharQ],

vidputs(attrs, putc)
Output a string that puts the terminal in the video attribute mode attrs,
which is any combination of the attributes listed below. The
characters are passed to the putchar (3S)-like routine putc().

vidattr(attrs)
Like vidputsQ, except that it outputs through putchar (3S).

The following routines return the value of the capability corresponding to the
character string containing the terminfo (4) capname passed to them. For
example, rc = tigetstr("acsc") causes the value of acsc to be returned in rc.

tigetflag(capname)
The value -1 is returned if capname is not a boolean capability. The
value 0 is returned if capname is not defined for this terminal.

tigetnum(capname)
The value -2 is returned if capname is not a numeric capability. The
value -1 is returned if capname is not defined for this terminal.

tigetstr(capname)
The value (char *) -1 is returned if capname is not a string capability.
A null value is returned if capname is not defined for this terminal.

char *boolnames[], *boolcodes[], *boolfnames[]
char *numnames[], *numcodes[], *numfnames[]
char *strnames[], *strcodes[], *strfnames[]

These null-terminated arrays contain the capnames, the termcap codes,
and the full C names, for each of the terminfo (4) variables.

Termcap Emulation
These routines are included as a conversion aid for programs that use the
termcap library. Their parameters are the same and the routines are emulated
using the terminfo (4) database.

tgetent(bp, name)
Look up termcap entry for name. The emulation ignores the buffer
pointer bp.

tgetflag(codename)
Get the boolean entry for codename.

tgetnum(codes)
Get numeric entry for codename.

-33 -

CURSES (3X) CURSES (3X)

char *tgetstr(codename, area)
Return the string entry for codename. If area is not NULL, then also
store it in the buffer pointed to by area and advance area. tputsQ
should be used to output the returned string.

char *tgoto(cap, col, row)
Instantiate the parameters into the given capability. The output from
this routine is to be passed to tputs().

tputs(str, affcnt, putc)
See tputs() above, in this section.

Miscellaneous
unctrl(c)

This macro expands to a character string which is a printable
rorM«ocantotinn n f tKo />horopfpr /> Orvntrr*! r'horqr'tpro orp Hicnloxrp^ m
IV̂ IVOVIIUIUUII Ul UIV VIUUUVIVI 1/ • WIIU VHUIUVIVIO UIV UlĴ lUJVU 111

the Control X notation. Printing characters are displayed as is.

unctrl() is a macro, defined in <unctrl.h>, which is automatically
included by <curses.h>.

char *keyname(c)
A character string corresponding to the key c is returned.

filter() This routine is one of the few that is to be called before initscr() or
newterm() is called. It arranges things so that curses thinks that there
is a one-line screen, curses does not use any terminal capabilities that
assume that they know what line on the screen the cursor is on.

Use of curscr
The special window curscr can be used in only a few routines. If the window
argument to clearok() is curscr, the next call to wrefresh() with any window
causes the screen to be cleared and repainted from scratch. If the window
argument to wrefreshQ is curscr, the screen is immediately cleared and
repainted from scratch. (This is how most programs would implement a
"repaint-screen" routine.) The source window argument to overlayQ,
overwrite(), and copywinQ may be curscr, in which case the current contents
of the virtual terminal screen is accessed.

-34 -

CURSES (3X) CURSES (3X)

Obsolete Calls
Various routines are provided to maintain compatibility in programs written for
older versions of the curses library. These routines are all emulated as indicated
below.

crmode() Replaced by cbreak().

fix term () Replaced by reset_prog_mode().

gettmode() A no-op.

nocrmode() Replaced by nocbreak().

resetterm() Replaced by reset_shell_mode().

saveterm() Replaced by defjprog_mode().

setterm() Replaced by setupterm().

ATTRIBUTES
The following video attributes, defined in <curses.h>, can be passed to the
routines wattron(), wattroff(), and wattrset(), or ORed with the characters
passed to waddch().

Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Alternate character set
Color-pair defined in n (note that this is a macro)

A_STANDOUT
A.UNDERLINE
A_REVERSE
A_BUNK
A_DIM
A_BOLD
A_ALTCHARSET
COLOR_PAIR

A_CHARTEXT Bit-mask to extract character
[described under winch()]

A_ATTRIBUTES Bit-mask to extract attributes
[described under winch()]

A_NORMAL Bit mask to reset all attributes off
[for example: attrset (A NORMAL)]

A_COLOR Extract color-pair field information

FUNCTION-KEYS
The following function keys, defined in <curses.h>, might be returned by
getch() if keypadQ has been enabled. Note that not all of these can be

-35 -

CURSES (3X) CURSES (3X)

supported on a particular terminal if the terminal does not transmit a unique
code when the key is pressed or the definition for the key is not present in the
terminfo (4) database.

Name Value Key name

KEY_BREAK 0401 Break key (unreliable)
KEY_DOWN 0402 The four arrow keys . . .
KEY_UP 0403
KEY_LEFT 0404
KEY_RIGHT 0405
KEY_HOME 0406 Home key (upward+left

arrow)
KEY_BACKSPACE 0407 Backspace (unreliable)
KEY_F0 0410 Function keys. Space for

64 keys is reserved.
KEY_F(n) [KEY F0 Formula for f .

+(n)]
KEY_DL 0510 Delete line
KEYJL 0511 Insert line
KEY_DC 0512 Delete character
KEYJC 0513 Insert char or enter insert

mode
KEY_EIC 0514 Exit insert char mode
KEY_CLEAR 0515 Clear screen
KEY_EOS 0516 Clear to end of screen
KEY_EOL 0517 Clear to end of line
KEY_SF 0520 Scroll one line forward
KEY_SR 0521 Scroll one line backwards

(reverse)
KEY_NPAGE 0522 Next page
KEY_PPAGE 0523 Previous page
KEY_STAB 0524 Set tab
KEY_CTAB 0525 Clear tab
KEY_CATAB 0526 Clear all tabs
KEY_ENTER 0527 Enter or send
KEY_SRESET 0530 Soft (partial) reset
KEY_RESET 0531 Reset or hard reset

-36 -

CURSES (3X) CURSES (3X)

KEY_PRINT
KEY_LL

KEY_A1
KEY_A3
KEY_B2
KEY_C1
KEY_C3
KEY_BTAB
KEY_BEG
KEY.CANCEL
KEY_CLOSE
KEY_COMMAND
KEY_COPY
KEY_CREATE
KEY_END
KEY_EXTT
KEY_FIND
KEY_HELP
KEY_MARK
KEY_MESSAGE
KEY_MOVE
KEY_NEXT
KEY_OPEN
KEY_OPTIONS
KEY_PREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME

0532 Print or copy
0533 Home down or bottom (lower-

left).
Keypad is arranged
like this:

A1 up A3
left B2 right
CI down C3

0534 Upper left of keypad
0535 Upper right of keypad
0536 Center of keypad
0537 Lower left of keypad
0540 Lower right of keypad
0541 Back tab key
0542 Beg(inning) key
0543 Cancel key
0544 Close key
0545 Cmd (command) key
0546 Copy key
0547 Create key
0550 End key
0551 Exit key
0552 Find key
0553 Help key
0554 Mark key
0555 Message key
0556 Move key
0557 Next object key
0560 Open key
0561 Options key
0562 Previous object key
0563 Redo key
0564 Reference) key
0565 Refresh key
0566 Replace key
0567 Restart key
0570 Resume key

- 3 7 -

CURSES (3X) CURSES (3X)

KEYJSAVE 0571 Save key
KEY_SBEG 0572 Shifted beginning key
KEY_SCANCEL 0573 Shifted cancel key
KEY_SCOMMAND 0574 Shifted command key
KEY_SCOPY 0575 Shifted copy key
KEY_SCREATE 0576 Shifted create key
KEY_SDC 0577 Shifted delete char key
KEY_SDL 0600 Shifted delete line key
KEY_SELECT 0601 Select key
KEY.SEND 0602 Shifted end key
KEY_SEOL 0603 Shifted clear line key
KEY_SEXIT 0604 Shifted exit key
KEY_SFIND 0605 Shifted find key
KEY_SHEL-P 0606 Shifted help key
KEY_SHOME 0607 Shifted home key
KEY_SIC 0610 Shifted input key
KEY_SLEFT 0611 Shifted left arrow key
KEY_SMESSAGE 0612 Shifted message key
KEY_SMOVE 0613 Shifted move key
KEY_SNEXT 0614 Shifted next key
KEY_SOPTIONS 0615 Shifted options key
KEY_SPREVIOUS 0616 Shifted prev key
KEY_S PRINT 0617 Shifted print key
KEY_SREDO 0620 Shifted redo key
KEY_SREPLACE 0621 Shifted replace key
KEY_SRIGHT 0622 Shifted right arrow
KEY_SRSUME 0623 Shifted resume key
KEY_SSAVE 0624 Shifted save key
KEY_SSUSPEND 0625 Shifted suspend key
KEY_SUNDO 0626 Shifted undo key
KEY_SUSPEND 0627 Suspend key
KEY_UNDO 0630 Undo key

LINE GRAPHICS
The following variables can be used to add line-drawing characters to the
screen with waddchQ. When defined for the terminal, the variable has the
A ALTCHARSET bit enabled; otherwise, the default charcter listed below is
stored in the variable. The names were chosen to be consistent with the DEC
VT100 nomenclature.

- 3 8 -

CURSES (3X) CURSES (3X)

Name Default Glyph Description
ACS_ULCORNER + upper-left corner
ACS_LLCORNER + lower-left corner
ACS_URCORNER + upper-right corner
ACS_LRCORNER + lower-right comer
ACS_RTEE + right tee (-|)
ACS_LTEE + left tee (j-)
ACS_BTEE + bottom tee (J_)
ACS_TTEE + top tee (|)
ACS_HLINE - horizontal line
ACS_VLINE 1 vertical line
ACS_PLUS + plus
ACS_S1 - scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE degree symbol
ACS_PLM1NUS # plus/minus
ACS_BULLET 0 bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW V arrow pointing down
ACS_UARROW arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

RETURN VALUES
All routines return the integer OK upon successful completion and the integer
ERR upon failure, unless otherwise noted in the preceding routine descriptions.

All macros return the value of their w version, except getsyxQ, getyxQ,
getbegyx(), getmaxyx(). For these macros, no useful value is returned.

Routines that return pointers always return (type *) NULL on error.

SEE ALSO
cc(l), ld(l), ioctl(2), plot(3X), putc(3S), scanf(3S), stdio(3S), system(3S),
vprintf(3S), profile(4), term(4), terminfo(4), varargs(5), termio(7).
UNIX System VRelease 3.2 Programmer s Guide.

- 3 9 -

CURSES (3X) CURSES (3X)

W A R N I N G S
To use the new curses features, use the version of curses on CTIX Releases 6.1
and higher. All programs that ran curses under CTIX releases prior to 6.1 will
run with CTIX Release 6.1. You can link applications with object files based on
the previous curses/terminfo with the CTIX 6.1 libcurses.a library. You can link
applications with object files based on the CTIX 6.1 curses!terminfo with
previous CTIX releases' libcurses.a libraries, so long as the application does not
use the new features in the CTIX 6.1 curses/terminfo.

The plotting library plot{3X) and the curses library curses(3X) both use the
names erase() and move(). The curses versions are macros. If you need both
libraries, put the plot(3X) code in a different source file than the curses (IX)
code, and/or #undef move() and erase() in the plot(3X) code.

Between the time a call to initscr() and endwin() has been issued, use only the
routines in the curses library to generate output. Using system calls or the
"standard I/O package" [see stdio (3S)] for output during that time can cause
unpredictable results.

If a pointer passed to a routine as a window argument is null or out of range, the
results are undefined (core may be dumped).

B U G S
Currently typeahead checking is done using a nodelay read followed by an
ungetch() of any character that may have been read. Typeahead checking is
done only if wgetch() has been called at least once. This will be changed when
proper kernel support is available. Programs which use a mixture of their own
input routines with curses input routines may wish to call typeahead(-l) to turn
off typeahead checking. The argument to napms() is currently rounded up to
the nearest second.

draino (ms) only works for ms equal to 0.

- 4 0 -

CUSERID(3S) CUSERID(3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char "cuserid (s)
char *s;

DESCRIPTION
The cuserid routine gets the user's login name as found in /etc/utmp. If the
login name cannot be found, cuserid gets the login name corresponding to the
user ID of the current process. If s is a NULL pointer, this representation is
generated in an internal static area, the address of which is returned. Otherwise,
s is assumed to point to an array of at least L_cuserid characters; the
representation is left in this array. The constant L_cuserid is defined in the
<stdio.h> header file.

SEE ALSO
getlogin(3C), getpwent(3C).

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character (\0) will be placed at s[0].

DBM(3X) DBM(3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey - database subroutines

SYNOPSIS
#include <dbm.h>

typedef struct {
char *dptr;
int dsize;

} datum;

dbminit(file)
char "file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkeyO

datum nextkey(key)
datum key;

DESCRIPTION
The dbm functions maintain key/content pairs in a database. The functions
handle very large (a billion blocks) databases and access a keyed item in one or
two file system accesses. The functions are obtained with the loader option
•ldbm.

keys and contents are described by the datum typedef. A datum specifies a
string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal
ASCII strings, are allowed. The database is stored in two files. One file is a
directory containing a bit map and has .dir as its suffix. The second file
contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of
this call, the files file .dir and file.pag must exist. (An empty database is
Once open, the data stored under a key is accessed by fetch and data is placed
under a key by store. A key (and its associated contents) is deleted by delete.
A linear pass through all keys in a database can be made, in an (apparently)
random order, by use of f irstkey and nextkey: firstkey returns the first key in the

DBM(3X) DBM(3X)

database; with any key nextkey returns the next key in the database. This code
traverses the database:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key)

SEE ALSO
ndbm(3X).

DIAGNOSTICS
All functions that return an int indicate errors with negative values. A zero
return indicates ok. Routines that return a datum indicate errors with a null (0)
dptr.

NOTE
The dbm library has been superseded by ndbm(3), and is now implemented

: — -JZ -JI f.,— ̂ ^wnnfiliillt.. Avintinrv nrArvmmn (lint
UMUg riuum. uyf f i \ jA) 13 u i t i u u m 1U1 wu i^auu iu i) wiui vaiauii^ ^lugiama uitiL

invoke dbm(3X). When writing new programs, use ndbm(3X) instead.

WARNINGS
The .pag file contains holes so that its apparent size is about four times its
actual content. Older UNIX systems can create real file blocks for these holes
when touched. These files cannot be copied by normal means (cp, cat, tp, tar,
ar) without filling in the holes.
dptr pointers returned by these subroutines point into static storage that is
changed by subsequent calls.
The sum of the sizes of a key/content pair must not exceed the internal block
size (currently 1024 bytes). Moreover all key/content pairs that hash together
must fit on a single block, store returns an error in the event that a disk block
fills with inseparable data.

delete does not physically reclaim file space, although it does make it available
for reuse.

The order of keys presented by firstkey and nextkey depends on a hashing
function, not on anything interesting.

DIAL(3C) DIAL(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
The dial routine returns a fde-descriptor for a terminal line open for read/write.
The argument to dial is a CALL structure (defined in the <dial.h> header file).

When finished with the terminal line, the calling program must invoke undial to
release the semaphore that has been set during the allocation of the terminal
device.

The definition of CALL in the <dial.h> header file is as follows:

typedef struct {
struct termio *attr; I* pointer to termio attribute

struct */
int baud; /* transmission data rate */
int speed; /• 212A modem: low=300,

high=1200 (unused) */
char *llne; I* device name for out-going line */
char *telno; I* pointer to tel-no digits string */
int modem; /* specify modem control for direct

lines */
char 'device; /* Will hold the name of the device

used to make a connection
(unused) */

int devjen; /* The length of the device used to
make connection (unused) */

) CALL;

The CALL element baud is for the desired transmission baud rate. The rate must
be one of those supported by the operating system (134.5 is rounded to 134). If
the baud is less than 300, the line will be dialed at 300 baud then switched to
the desired rate (unless attr is non-null; see below).

If a particular terminal line is desired, a string pointer to its device-name should
be placed in the line element in the CALL structure. Legal values for such

DIAL(3C) DIAL(3C)

terminal device names are kept in /usr/lib/uucp/Devices. In this case, if baud is
0, the speed used will be determined by the line in the Devices file for the
terminal device.

The telno element is for a pointer to a character string representing the
telephone number to be dialed. Numbers consist of the following symbols:

0-9 dial 0-9
* dial *
dial #

4-second delay for second dial tone
= wait for secondary dial tone

On a smart modem, these symbols are translated to modem commands using the
modem description in /usr/lib/uucp/Dialers.

If telno is specified, an ACU entry in the Devices file will be used. If it is NULL,
a Direct entry will be used.

The CALL element modem is used to specify modem control for direct lines.
This element should be non-zero if modem control is required.

The CALL element attr is a pointer to a termio structure, as defined in the
termio.h header file. A NULL value for this pointer element may be passed to
the dial function, but if such a structure is included, the elements specified in it
will be set for the outgoing terminal line before the connection is established.
This is often important for certain attributes such as parity and baud-rate.
Values in this structure override the baud and modem entries.

Information on 801 type dialing units is obtained from the Devices file; thus the
speed, device and dev len elements are no longer used.

FILES
/usr/lib/ uucp/Devices
/usr/lib/uucp/Dialers
/usr/spool/locks/LCK. .tty-device

SEE ALSO
uucp(lC), alarm(2), read(2), write(2), Devices(5), Dialers(5), termio(7).

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be
returned. Mnemonics for these negative indexes as listed here are defined in
the <dial.h> header file.
INTRPT -1 /* interrupt occurred *l
D_HUNG -2 /* dialer hung (no return from write) •/
NO ANS -3 /* no answer within 10 seconds*/

DIAL(3C) DIAL(3C)

ILL_BD -4 /* illegal baud-rate */
A PROB -5 /* acu problem (open() failure) */
L PROB -6 /* line problem (open() failure) */
NO_Ldw -7 /• can't open LDEVS file */
DV NT A -8 /* requested device not available */
DV_NT_K -9 /* requested device not known */
NO_BD_A -10 /* no device available at requested baud »/
NO_BD_K -11 /* no device known at requested baud */

WARNINGS
Including the <dial.h> header fde automatically includes the <termio.h>
header fde.

The above routine uses <stdio.h>, which causes it to increase the size of
programs, not otherwise using standard I/O, more than might be expected.

BUGS
An alarm(2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of "touching" the LCK.. file and constitutes the device
allocation semaphore for the terminal device. Otherwise, uucp (1C) may simply
delete the LCK.. entry on its 90-minute clean-up rounds. The alarm may go off
while the user program is in a read{2) or write (2) system call, causing an
apparent error return. If the user program expects to be around for an hour or
more, error returns from reads should be checked for (errno==EINTR), and the
read possibly reissued.

DIRECTORY (3X) DIRECTORY (3X)

NAME
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir - directory
operations

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

DIR *opendir (filename)
char "filename;

struct dirent "readdir (dirp)
DIR "dirp;

long telldir (dirp)
DIR "dirp;

void seekdir (dirp, Ioc)
DIR "dirp;
long loc;

void rewinddir (dirp)
DIR "dirp;

void closedir(dirp)
DIR "dirp;

DESCRIPTION
The opendir routine opens the directory named by filename and associates a
directory stream with it. The opendir routine returns a pointer to be used to
identify the directory stream in subsequent operations. The pointer NULL is
returned if filename cannot be accessed or is not a directory, or if it cannot
malloc {3X) enough memory to hold a DIR structure or a buffer for the directory
entries.

The readdir routine returns a pointer to the next active directory entry. No
inactive entries are returned. It returns NULL upon reaching the end of the
directory or upon detecting an invalid location in the directory.

The telldir routine returns the current location associated with the named
directory stream.
The seekdir routine sets the position of the next readdir operation on the
directory stream. The new position reverts to the one associated with the
directory stream when the telldir operation from which loc was obtained was
performed. Values returned by telldir are good only if the directory has not
changed due to compaction or expansion. This is not a problem with System V,
but it may be with some file system types.

- 1 -

DIRECTORY(3X) DIRECTORY(3X)

The rewinddir routine resets the position of the named directory stream to the
beginning of the directory.

The closedir routine closes the named directory stream and frees the DIR
structure.

The following errors can occur as a result of these operations.
.

vycruw .

[ENOTDIR] A component of filename is not a directory.

[EACCES] A component of filename denies search permission.

[EMFILE] The maximum number of file descriptors are currently open.

[EFAULT] Filename points outside the allocated address space.

readdir •
[ENOENT] The current file pointer for the directory is not located at a

valid entry.
[EBADF] The file descriptor determined by the DIR stream is no longer

valid. This results if the DIR stream has been closed.
telldir, seekdir, and closedir:

[EBADF] The file descriptor determined by the DIR stream is no longer
valid. This results if the DIR stream has been closed.

EXAMPLE
Sample code which searches a directory for entry name:

dirp = opendir(".");
while ((dp = readdir(dlrp)) Is NULL)

If (•trcmp(dp->d_name, name) == 0)
{

closedir(dirp);
return FOUND;
}

closedir(dirp);
return NOT_FOUND;

SEE ALSO
getdents(2), dirent(4).

WARNINGS
The rewinddir routine is implemented as a macro, so its function address cannot
betaken.

DRAND48(3C) DRAND48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seedl6v)
unsigned short seedl6v[3];

void leong48 (param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well-
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers uniformly
distributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly
distributed over the interval [-231 , 231).

Functions srand48, seed48 and lcong48 are initialization entry points, one of
which should be invoked before either drand48, lrand48 or mrand48 is called.
(Although it is not recommended practice, constant default initializer values
will be supplied automatically if drand48, lrand48 or mrand48 is called
without a prior call to an initialization entry point.) Functions erand48,
nrand48 and jrand48 do not require an initialization entry point to be called
first

DRAND48(3C) DRAND48(3C)

All the routines work by generating a sequence of 48-bit integer values, X,,
according to the linear congruential formula:

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless
lcong48 has been invoked, the multiplier value a and the addend value c are
given by:

a = 5DEECE66D16 = 273673163155 8

c = B 1 6 = 138.

The value returned by any of the functions drand48, erand48, lrand48,
nrand48, mrand48 or jrand48 is computed by first generating the next 48-bit X,
in the sequence. Then the appropriate number of bits, according to the type of
data item to be returned, are copied from the high-order (leftmost) bits of X, and
transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit X; generated
in an internal buffer, and must be initialized prior to being invoked. The
functions erand48, nrand48 and jrand48 require the calling program to provide
storage for the successive X, values in the array specified as an argument when
the functions are invoked. These routines do not have to be initialized; the
calling program must place the desired initial value of X, into the array and pass
it as an argument. By using different arguments, functions erand48, nrand48
and jrand48 allow separate modules of a large program to generate several
independent streams of pseudo-random numbers, that is, the sequence of
numbers in each stream will not depend upon how many times the routines
have been called to generate numbers for the other streams.
The initializer function srand48 sets the high-order 32 bits of X, to the 32 bits
contained in its argument. The low-order 16 bits of X, are set to the arbitrary
value 330Ei6 .

The initializer function seed48 sets the value of X; to the 48-bit value specified
in the argument array. In addition, the previous value of X, is copied into a 48-
bit internal buffer, used only by seed48, and a pointer to this buffer is the value
returned by seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point at some
future time — use the pointer to get at and store the last X, value, and then use
this value to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial X,, the
multiplier value a, and the addend value c. Argument array elements
paramlO-2] specify X;, param[3-5] specify the multiplier a, and param[6]
specifies the 16-bit addend c. After lcong48 has been called, a subsequent call

DRAND48(3C) DRAND48(3C)

to either srand48 or seed48 will restore the "standard" multiplier and addend
values, a and c, specified on the previous page.

SEE ALSO
rand(3C).

DUP2(3C) DUP2(3C)

NAME
dup2 - duplicate an open file descriptor

SYNOPSIS
int dup2 (fildes, fildes2)
int fildes, fildes2;

DESCRIPTION
The fildes argument is a file descriptor referring to an open file; fildes2 is a
non-negative integer less than NOFILES. (NOFILES is a system-imposed
maximum per process [see creat (2)].) The dup2 routine causes fildes2 to refer
to the same file as fildes. If fildes2 already referred to an open file, it is closed
first

Note that dup2 fails if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[EMFILE] NOFILES file descriptors are currently open.

SEE ALSO

creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2), lockf(3C).

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file descriptor,
is returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

ECVT(3C) ECVTC3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, "decpt, "sign;

char "fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, "decpt, "sign;

char "gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
The ecvt routine converts value to a null-terminated string of ndigit digits and
returns a pointer to that string. The high-order digit is non-zero, unless the
value is zero. The low-order digit is rounded. The position of the decimal point
relative to the beginning of the string is stored indirecdy through decpt
(negative means to the left of the returned digits). The decimal point is not
included in the returned string. If the sign of the result is negative, the word
pointed to by sign is non-zero; otherwise, it is zero.

The fcvt routine is identical to ecvt, except that the correct digit has been
rounded for printf "%f" (FORTRAN F-format) output of the number of digits
specified by ndigit.

The gcvt routine converts the value to a null-terminated string in the array
pointed to by buf and returns buf. It attempts to produce ndigit significant
digits in FORTRAN F-format if possible, otherwise in E-format, ready for
printing. A minus sign if any, or a decimal point, will be included as part of the
returned string. Trailing zeros are suppressed.

SEE ALSO
printf(3S).

BUGS
The values returned by ecvt and fcvt point to a single static data array whose
content is overwritten by each call.

END(3C) END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents.
The address of etext is the First address above the program text, edata above the
initialized data region, and end above the uninitialized data region.

When execution begins, the program break (the first location beyond the data)
coincides with end, but the program break may be reset by the routines of
brk(2), malloc (3C), standard input/output [sfdio(3S)], the profile (-p) option of
cc(l), and so on. Thus, the current value of the program break should be
determined by sbrk [(char *)(0)] [see brk(2)].

SEE ALSO
cc(l), brk(2), malloc(3C), stdio(3S).

i

ERF(3M) ERF(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION

The erf routine returns the error function of x, defined as follows:

dt.
K 0

The erfc routine, which returns 1.0 - erf(x), is provided because of the extreme
loss of relative accuracy if erf(x) is called for large x and the result subtracted
from 1.0 (e.g., for* = 5,12 places are lost).

SEE ALSO
exp(3M).

EXP(3M) EXP(3M)

NAME
exp, log, loglO, pow, sqrt - exponential, logarithm, power, square root functions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double loglO (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
The exp routine returns ex.

The log routine returns the natural logarithm of x. The value of x must be
positive.

The log 10 routine returns the logarithm base ten of x. The value of x must be
positive.

The pow routine returns xy. If x is zero, y must be positive. If x is negative, y
must be an integer.

The sqrt routine returns the non-negative square root of x. The value of x may
not be negative.

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

DIAGNOSTICS
The exp routine returns HUGE when the correct value would overflow, or 0
when the correct value would underflow, and sets errno to ERANGE.

The log and log 10 routines return -HUGE and set errno to EDOM when x is
non-positive. A message indicating DOMAIN error (or SING error when x is 0)
is printed on the standard error output

The pow routine returns 0 and sets errno to EDOM when x is 0 and y is non-
positive, or when x is negative and y is not an integer. In these cases a message
indicating DOMAIN error is printed on the standard error output. When the

EXP(3M) EXP(3M)

correct value for pow would overflow or underflow, pow returns ±HUGE or 0,
respectively, and sets errno to ERANGE.

The sqrt routine returns 0 and sets errno to EDOM when x is negative. A
message indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr(3M).

FCLOSE(3S) FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE "stream;

int fflush (stream)
FILE *stream;

DESCRIPTION
The fclose routine causes any buffered data for the named stream to be written
out, and the stream to be closed.

The fclose routine is performed automatically for all open files upon calling
exit (2).

The fflush routine causes any buffered data for the named stream to be written
to that fde. The stream remains open.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS
These functions return 0 for success and EOF if any error was detected (such as
trying to write to a file that has not been opened for writing).

FERROR(3S) FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror (stream)
FILE "stream;

int feof (stream)
FILE "stream;

void clearerr (stream)
FILE "stream;

int fileno (stream)
FILE "stream:

DESCRIPTION
The ferror routine returns non-zero when an I/O error has previously occurred
reading from or writing to the named stream, otherwise zero.

The feof routine returns non-zero when EOF has previously been detected
reading the named input stream, otherwise zero.

The clearerr routine resets the error indicator and EOF indicator to zero on the
named stream.

The fileno routine returns the integer file descriptor associated with the named
stream; see open (2).

SEE ALSO
open(2), fopen(3S), stdio(3S).

NOTES
All the functions are implemented as macros; they cannot be declared or
redeclared.

FLOOR (3M) FLOOR (3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
The floor routine returns the largest integer (as a double-precision number) not
greater than x.

The ceil routine returns the smallest integer not less than x.

The/mod routine returns the floating-point remainder of the division of x by y:
x if y is zero or if x/y would overflow; otherwise the number / with the same
sign as x, such that x-iy + / for some integer i, and l/ l < I y I .

The, fabs routine returns the absolute value of x, I x I .

SEE ALSO
abs(3C).

FOPEN(3S) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE * fopen (filename, type)
char 'filename, "type;

FILE "freopen (filename, type, stream)
char 'filename, "type;
FILE 's t ream;

FILE 'fdopen (fildes, type)
int fildes;
char "type;

DESCRIPTION
The fopen routine opens the file named by filename and associates a stream
with it. The routine returns a pointer to the FILE structure associated with the
stream.

The filename argument points to a character string that contains the name of the
file to be opened.

The type argument is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append; open for writing at end of file, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at end-of-file

The freopen routine substitutes the named file in place of the open stream. The
original stream is closed, regardless of whether the open ultimately succeeds.
The routine returns a pointer to the FILE structure associated with stream.

The freopen routine is typically used to attach the preopened streams
associated with stdin, stdout and stderr to other files.

The fdopen routine associates a stream with a file descriptor. File descriptors
are obtained from open, dup, creat, or pipe(2), which open files but do not
return pointers to a FILE structure stream. Streams are necessary input for many
of the Section 3S library routines. The type of stream must agree with the
mode of the open file.

FOPEN(3S) FOPEN(3S)

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be followed directly by input without
an intervening fseek or rewind, and input cannot be followed directly by output
without an intervening fseek, rewind, or an input operation which encounters
end-of-file.

When a file is opened for append (that is, when type is a or a+), it is impossible
tn Airoinimto JnfAtwoHAn olrooHi? in tKp fllo -fcgi/tlr pqn Kp iicpH tr\ rptv\citinn thp yj * ci t r i i iv i i n u i J i i a U w i i a u v a u j 111 uiv iiiv. jiiCCrv v u i i Uv udvu i v x u w j i u i v

file pointer to any position in the file, but when output is written to the file, the
current file pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the output. If two
separate processes open the same file for append, each process may write freely
to the file without fear of destroying output being written by the other. The
output from the two processes will be intermixed in the file in the order in
which it is written.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S), stdio(3S).

DIAGNOSTICS
The fopen ,fdopen, and freopen routines return a NULL pointer on failure.

FPGETROUND (3C) FPGETROUND (3C)

NAME
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky - IEEE
floating point environment control

SYNOPSIS
#include <ieeefp.h>

typedef enum {
FP_RN=0,
FP_RZ=OxIO,
FP_RM=0x20,
FP_RP=Ox30,
} fp_rnd;

/* round to nearest */
/* round to zero (truncate) */
/* round to minus */
I* round to plus */

fp_rnd fpgetround();

fp_rnd fpsetround(rnd_dir)
fp_rnd rnd dir;

#define fp_except int
#define FP~X_INV 0x80 /* invalid operation */

/* exception */
#define FP_X_OFL 0x40 /* overflow */

/* exception */
#define FP_X_UFL 0x20 1* underflow *l

/* exception */
#define F P X D Z 0x10 /* divide-by-zero */

/* exception */
#define FP_X_IMP 0x08 I* imprecise (loss */

I* of precision) */

fp_except fpgetmask();

fp except fpsetmask(mask);
fpexcept mask;

fp_except fpgetsticky();

fp_except fpsetsticky(sticky);
fp_except sticky;

DESCRIPTION
These routines let the user change the behavior on occurrence of any of five
floating point exceptions: divide-by-zero, overflow, underflow, imprecise
(inexact) result, and invalid operation. The routines also change the rounding
mode for floating point operations. When a floating point exception occurs, the

FPGETROUND (3C) FPGETROUND (3C)

corresponding sticky bit is set (1), and if the mask bit is enabled (1), the trap
takes place. The routines are valid only on systems that are equipped with
floating point accelerator hardware; otherwise, floating point operations are
compiled differently and handled in software.

The fpgetround() routine returns the current rounding mode.

The fpsetround() routine sets the rounding mode and returns the previous
rounding mode.

The fpgetmask() routine returns the current exception masks.

The fpsetmask() routine sets the exception masks and returns the previous
setting.

The fpgetsticky () routine returns the current exception sticky flags.

The fpsetsticky () routine sets (clears) the exception sticky flags and returns the
previous setting.

The environment for Convergent computers that combine the MC68020 CPU
with the MC68881 or MC68882 floating point processor follows:

• Rounding mode set to nearest(FP_RN),

• Divide-by-zero,

• Floating point overflow, and

• Invalid operation traps enabled.

SEE ALSO
isnan(3Q.

CAVEATS
The utilities described in this manual page are applicable only for computers
that are equipped with both the MC68020 microprocessor for the CPU and the
MC68881 or MC68882 microprocessor for a hardware floating point accelerator.
Programs that invoke these utilities that are run on computers without the
floating point hardware result in no operation and no returned error message for
the particular function.

One must clear the sticky bit to recover from the trap and to proceed. If the
sticky bit is not cleared before the next trap occurs, a wrong exception type may
be signaled.

For the same reason, when calling fpsetmask() the user should make sure that
the sticky bit corresponding to the exception being enabled is cleared.

FPGETROUND (3C) FPGETROUND (3C)

WARNINGS
The fpsetsticky () routine modifies all sticky flags; fpsetmask () changes all
mask bits.

C requires truncation (round to zero) for floating point to integral conversions.
The current rounding mode has no effect on these conversions.

FREAD(3S) FREAD(3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
#inchide <stdio.h>
#include <sys/types.h>

int fread (ptr, size, nitems, stream)
char »ptr;
int nitems;
s ize t size;
FILE 's t ream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
int nitems;
s ize t size;
FILE 's t ream;

DESCRIPTION
The fread routine copies, into an array pointed to by ptr, nitems items of data
from the named input stream, where an item of data is a sequence of bytes (not
necessarily terminated by a null byte) of length size. The routine stops
appending bytes if an end-of-file or error condition is encountered while
reading stream, or if nitems items have been read. The fread routine leaves the
file pointer in stream, if defined, pointing to the byte following the last byte
read if there is one. It does not change the contents of stream.

The fwrite routine appends at most nitems items of data from the array pointed
to by ptr to the named output stream; it stops appending when it has appended
nitems items of data or if an error condition is encountered on stream. The
fwrite routine does not change the contents of the array pointed to by ptr.

The argument size is typically sizeof(*ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr. If ptr points to a data type
other than char it should be cast into a pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S),
scanf(3S), stdio(3S).

DIAGNOSTICS
The fread and fwrite routines return the number of items read or written. If
nitems is non-positive, no characters are read or written and 0 is returned by
both fread and fwrite.

FREXP(3C) FREXP(3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x* 2n, where the
"mantissa" (fraction) x is in the range 0.5 < IJC I < 1.0, and the "exponent" n is
an integer, frexp returns the mantissa of a double value, and stores the
exponent indirecdy in the location pointed to by eptr. If value is zero, both
results returned by frexp are zero.

The ldexp routine returns the quantity value * 2exp.

The modf routine returns the signed fractional part of value and stores the
integral part indirectly in the location pointed to by iptr.

DIAGNOSTICS
If ldexp would cause overflow, ±HUGE (defined in <math.h>) is returned
(according to the sign of value), and errno is set to ERANGE.
If ldexp would cause underflow, zero is returned and errno is set to ERANGE.

I*

FSEEK(3S) FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a fde pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE 's tream;
long offset;
int ptrname;

void rewind (stream)
FILE 's t ream;

long ftell (stream)
FILE 's tream;

DESCRIPTION
The fseek routine sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from the
beginning, from the current position, or from the end of the fde, according as
ptrname has the value 0,1, or 2.

The rewind(stream) routine is equivalent to fseek(stream, 0L, 0), except that no
value is returned.

The fseek and rewind routines undo any effects of ungetc (3S).

After fseek or rewind, the next operation on a fde opened for update may be
either input or output

The ftell routine returns the offset of the current byte relative to the beginning
of the fde associated with the named stream.

SEE ALSO
lseek(2), fopen(3S), popen(3S), stdio(3S), ungetc(3S).

DIAGNOSTICS
The fseek routine returns non-zero for improper seeks, otherwise zero. An
improper seek can be, for example, an fseek done on a fde that has not been
opened via fopen; in particular, fseek may not be used on a terminal, or on a fde
opened viapopen(3S).

FSEEK(3S) FSEEK(3S)

WARNING
Although on the CTIX system and other systems derived from the UNIX system,
an offset returned by ftell is measured in bytes, and it is permissible to seek to
positions relative to that offset, portability to non-UNIX systems requires that an
offset be used by fseek directly. Arithmetic may not meaningfully be performed
on such an offset, which is not necessarily measured in bytes.

FTW(3C) FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fn) () ;
int depth;

DESCRIPTION
The ftw routine recursively descends the directory hierarchy rooted in path.
For each object in the hierarchy, ftw calls fn, passing it a pointer to a null-
terminated character string containing the name of the object, a pointer to a stat
structure [see statQ)] containing information about the object, and an integer.
Possible values of the integer, defined in the <ftw.h> header file, are FTW_F for
a file, FTW_D for a directory, FTW_DNR for a directory that cannot be read, and
FTW_NS for an object for which stat could not be executed successfully. If the
integer is FTW_DNR, descendants of that directory will not be processed. If the
integer is FTW_NS, the stat structure will contain garbage. An example of an
object that would cause FTW_NS to be passed to fn would be a file in a
directory with read but without execute (search) permission.

The ftw routine visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn
returns a non-zero value, or some error is detected within ftw (such as an IAD
error). If the tree is exhausted, ftw returns zero. If fn returns a non-zero value,
ftw stops its tree traversal and returns whatever value was returned by fn. I f f t w
detects an error, it returns -1, and sets the error type in errno.

The ftw routine uses one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is zero or
negative, the effect is the same as if it were 1. Depth must not be greater than
the number of file descriptors currently available for use. The ftw routine runs
more quickly if depth is at least as large as the number of levels in the tree.

SEE ALSO
stat(2), malloc(3C).

CAVEAT
The ftw routine uses malloc (3C) to allocate dynamic storage during its
operation. If ftw is forcibly terminated, such as by longjmp being executed by
fn or an interrupt routine, ftw will not have a chance to free that storage, so it

FTW(3C) FTW(3C)

will remain permanently allocated. A safe way to handle interrupts is to store
the fact that an interrupt has occurred, and arrange to have fn return a non-zero
value at its next invocation.

BUGS
Because ftw is recursive, it is possible for it to terminate with a memory fault
when applied to very deep file structures.

GAMMA(3M) GAMMA (3M)

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>

double gamma (x)
double x;

extern int signgam;

DESCRIPTION
00

The gamma routine returns ln(ir(;c)l), where r(x) is defined as je~'tx~l dt.
0

The sign of F(JC) is returned in the external integer signgam. The argument x
cannot be a non-positive integer.

The following C program fragment might be used to calculate T:

if ((y = gamma(x)) > LN MAXDOUBLE)
error();

y = signgam * exp{y);

where LN_MAXDOUBLE is the least value that causes exp(3M) to return a range
error, and is defined in the <values.h> header fde.

SEE ALSO
exp(3M), matherr(3M), values(5).

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno is set to
EDOM. A message indicating SING error is printed on the standard error
output

If the correct value would overflow, gamma returns HUGE and sets errno to
ERANGE.

These error-handling procedures can be changed with the function
matherr(3M).

GETC(3S) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from a stream

SYNOPSIS
#include <stdio.h>

int getc (stream)
FILE ' s t r eam;

int getchar ()

int fgetc (stream)
FILE ' s t r eam;

int getw (stream)
FILE ' s t r eam;

DESCRIPTION
The getc routine returns the next character (that is, byte) from the named input
stream, as an integer. It also moves the file pointer, if defined, ahead one
character in stream. The getchar variable is defined as getc(stdin); getc and
getchar are macros.
The fgetc routine behaves like getc, but it is a function rather than a macro; it
runs more slowly than getc, but it takes less space per invocation and its name
can be passed as an argument to a function.

The getw routine returns the next word (for example, integer) from the named
input stream. The routine increments the associated file pointer, if defined, to
point to the next word. The size of a word is the size of an integer and varies
from machine to machine. It assumes no special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S),
stdio(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon an error.
Because EOF is a valid integer, ferror(3S) should be used to detect getw errors.

CAVEATS
Because it is implemented as a macro, getc evaluates a stream argument more
than once. In particular, getc(*f++) does not work sensibly; fgetc should be
used instead.

Because of possible differences in word length and byte ordering, files written
using putw are machine-dependent and cannot be read using getw on a different
processor.

GETC(3S) GETC(3S)

WARNING
If the integer value returned by getc, getchar, or fgetc is stored into a character
variable and then compared against the integer constant EOF, the comparison
may never succeed because sign extension of a character on widening to integer
is machine-dependent

GETCWD(3C) GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char 'getcwd (buf, size)
char *buf;
int size;

DESCRIPTION
The getcwd routine returns a pointer to the current directory path name. The
value of size must be at least two greater than the length of the path-name to be
returned.

If buf is a NULL pointer, getcwd gets size bytes of space using malloc (3C). In
this case, the pointer returned by getcwd can be used as the argument in a
subsequent cal! to free.
The function is implemented by using popen(3S) to pipe the output of the
pwd{ 1) command into the specified string space.

EXAMPLE
void exitQ, perrorQ;

if ((cwd = getcwd((char *)NULL, 64)) == NULL) {
perror("pwd");
exit(2);

}
printf("%s\n", cwd);

SEE ALSO
pwd(l), malloc(3C), popen(3S).

DIAGNOSTICS
The getcwd routine returns NULL with errno set to ERANGE if size is not large
enough, or if an error occurs in a lower-level function.

<c

GETENV(3C) GETENV(3C)

NAME
getenv - return value for environment name

SYNOPSIS
char 'getenv (name)
char 'name;

DESCRIPTION
The getenv routine searches the environment list [see environ (5)] for a string of
the form name=value, and returns a pointer to the value in the current
environment if such a string is present; otherwise, it returns a NULL pointer.

SEE ALSO
exec(2), putenv(3C), environ(5).

GETGRENT (3C) GETGRENT (3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file entry

SYNOPSIS
#include <grp.h>

struct group 'getgrent ()

struct group 'getgrgid (gid)
int gid;

struct group 'getgrnam (name)
char 'name;

void setgrent ()

void endgrent ()

struct group 'fgetgrent (f)
FILE *f;

DESCRIPTION
The getgrent, getgrgid, and getgrnam routines each return a pointer to an
object with the following structure containing the broken-out fields of a line in
the /etc/group file. Each line contains a group structure defined in the <grp.h>
header fde:

struct group {
char *gr_name;
char *gr_passwd;
int gr_gid;
char **gr_mem;

};
When first called, getgrent returns a pointer to the first group structure in the
file; thereafter, it returns a pointer to the next group structure in the file; so,
successive calls can be used to search the entire file. The getgrgid routine
searches from the beginning of the file until a numerical group ID matching gid
is found and returns a pointer to the particular structure in which it was found.
The getgrnam routine searches from the beginning of the file until a group
name matching name is found and returns a pointer to the particular structure in
which it was found. If an end-of-file or an error is encountered on reading,
these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. The endgrent routine can be called to close the group file when
processing is complete.

- 1 -

/* the name of the group */
/* the encrypted group password */
/* the numerical group ID */
/* vector of pointers to member */
I* names •/

GETGRENT (3C) GETGRENT (3C)

Th&fgetgrent routine returns a pointer to the next group structure in the stream
/ , which matches the format of /etc/group.

FILES
/etc/group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

CAVEAT
All information is contained in a static area, so it must be copied if it is to be
saved.

WARNING
The above routines use <stdio.h>, which causes them to increase the size of
programs, not otherwise using standard I/O, more than might be expected.

GETHOSTB YNAME(3) (Internet working) GETHOSTBYNAME(3)

NAME
gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent - get network
host entry

SYNOPSIS
#include <netdb.h>

extern int h errno;

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char "addr; int len, type;

struct hostent *gethostent()

sethostent(stayopen)
int stayopen;

endhostent()

DESCRIPTION
The gethostbyname and gethostbyaddr routines each return a pointer to an
object with the structure illustrated below. This structure contains either the
information obtained from the name server, named (IM), or broken-out fields
from a line in /etc/hosts, (if the local name server is not running).
gethostbyname takes a pointer to the ascii name of the host or one of its aliases.
gethostbyaddr takes a pointer to address-family specific data; if type is
AFJNET the data should be a struct inaddr.

hostent {
char *h_name; /* official name of host 7
char **h_aliases; /* alias list 7
int haddrtype; r host address type 7
int hjength; 1* length of address 7
char "h_addr_iist; /* list of addresses from name server 7

};
#define haddr h_addr_list[0] f address, for backward 7

/* compatibility 7
The members of this structure follow:

h_name Official name of the host.

h_aliases A zero terminated array of alternate names for the host

h_addrtype The type of address being returned; currently it is always
AFJNET.

GETHOSTBYNAME(3) (Internet wort i.K) GETHOSTB YNAME(3)

hjength The length, in bytes, of the address.

h_addr_list A zero terminated array of network addresses for the host Host
addresses are returned in network byte order.

h_addr The first address in h_addr_list; this is for backward compatiblity.

The sethostent routine allows a request for the use of a connected socket using
TCP for queries. If the stayopen flag is non-zero, this sets the option to send all
queries to the name server using TCP and to retain the connection after each call
to gethostbyname or gethostbyaddr.
The endhostent routine closes the TCP connection.

FILES
/etc/hosts

SEE ALSO
named(lM), inet(3), resolver(3), hosts(4).
CTIX Network Programmer's Primer.

DIAGNOSTICS
Error return or EOF status from gethostbyname and gethostbyaddr is indicated
by return of a null pointer. The external integer herrno can then be checked to
see whether this is a temporary failure or an invalid or unknown host.

The h errno member can have the following values:

HOST_NOT_FOUND No such host is known.

TRY AGAIN This is usually a temporary error, and it means that the
local server did not receive a response from an
authoritative server. A retry at some later time may
succeed.

NORECOVERY This is a non-recoverable error.

NO ADDRESS The requested name is valid but does not have an IP
address; this is not a temporary error. This means
another type of request to the name server will result in
an answer.

WARNINGS
All information is contained in a static area so it must be copied if it is to be
saved.

Only the Internet address format is currently understood.

GETLOGIN(3C) GETLOGIN (3C)

NAME
getlogin - get login name

SYNOPSIS
char 'getlogin () ;

DESCRIPTION
The getlogin routine returns a pointer to the login name as found in /etc/utmp.
It can be used in conjunction with getpwnam to locate the correct password fde
entry when the same user ID is shared by several login names.

If getlogin is called within a process that is not attached to a terminal, it returns
a NULL pointer. The correct procedure for determining the login name is to call
cuserid, or to call getlogin and if it fails to call getpwuid.

FILES
/etc/utmp

SEE ALSO

cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS

The getlogin routine returns the NULL pointer if name is not found.

CAVEAT The return values point to static data whose content is overwritten by each call.

<r

GETNETENT (3) (CTIX Internetworking) GETNETENT (3)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS
#include <netdb.h>

struct netent "getnetent ()

struct netent "getnetbyname (name)
char "name;

struct netent "getnetbyaddr (net, type)
long net;

setnetent (stayopen)
int stayopen

endnetent ()

DESCRIPTION
The getnetent, getnetbyname, and getnetbyaddr routines each return a pointer
to an object with the following structure containing the broken-out fields of a
line in the network database, /etc/networks.

struct netent {
char *n_name;
char **n_aliases;
int n_addrtype;
long n_net;

};

The members of this structure are:

n_name The official name of the network.

n_aliases A zero-terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only
AFJNET.

n_net The network number. Network numbers are returned in machine
byte order.

The getnetent routine reads the next line of the file, opening the file if
necessary.

The setnetent routine opens and rewinds the file. If the stayopen flag is non-
zero, the network database is not closed after each call to getnetent (either
directly or indirecUy through one of the other getnet calls).

/* official name of net 7
/* alias list 7
I* net number type 7
/* net number 7

GETNETENT(3) (CTIX Internetworking) GETNETENT (3)

The endnetent routine closes the file.

The getnetbyname and getnetbyaddr routines sequentially search from the
beginning of the file until a matching net name or net address is found, or until
EOF is encountered. Network numbers are supplied in host order. If type
AF_NET is supplied to gethostbyaddr, net should be right-justified: that is, net 3
would be a 3 rather than 0x3000000.

FILES
/etc/networks

SEE ALSO
networks(4).
CTIX Network Programmer's Primer.

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
All information is contained in a static area, so it must be copied if it is to be
saved.

Only Internet network numbers are currently understood.

GETOPT (3C) GETOPT (3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char "argv, *opstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION
The getopt routine returns the next option letter in argv that matches a letter in
optstring. It supports all the rules of the command syntax standard [see
intro (I)]. So all new commands will adhere to the command syntax standard,
they should use getopts {1) or getopt (3Q to parse positional parameters and
check for options that are legal for that command.

The optstring argument must contain the option letters the command using
getopt can recognize; if a letter is followed by a colon, the option is expected to
have an argument, or group of arguments, which must be separated from it by
white space.

The optarg variable is set to point to the start of the option-argument on return
from getopt.

The getopt routine places in optind the argv index of the next argument to be
processed. The optind variable is external and is initialized to 1 before the first
call to getopt.

When all options have been processed (that is, up to the first non-option
argument), getopt returns -1. The special option " - - " can be used to delimit
the end of the options; when it is encountered, -1 will be returned, and
will be skipped.

DIAGNOSTICS
The getopt routine prints an error message on standard error and returns a
question mark (?) when it encounters an option letter not included in optstring
or no option-argument after an option that expects one. This error message can
be disabled by setting opterr to 0.

GETOPT (3C) GETOPT (3C)

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the option
o, which requires an option-argument:

main (argc, argv)
int argc;
char »*argv;
{

Int c;
extern char *optarg;
extern int optind;

while ((c = getopt(argc, argv, "abo:")) != -1)
switch (c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bproc();

break;
case 'o':

oflle = optarg;
break;

case '? ' :
errflg++;

}
if (errflg) {

(vold)fprintf(stderr, "usage: . . . ");
exit (2);

}
for (; optind < argc; optind++) {

if (access(argv[optind],4)) {

}

GETOPT (3C) GETOPT (3C)

SEE ALSO
getopts(l), intro(l).

WARNINGS
Although the following command syntax rule [see intro (1)] relaxations are
permitted under the current implementation, they should not be used because
they may not be supported in future releases of the system. As in the
EXAMPLE section above, a and b are options, and the option o requires an
option-argument:

cmd -aboarg file

(Rule 5 violation: options with option-arguments must not be grouped with
other options).

cmd -ab -oarg file

(Rule 6 violation: there must be white space after an option that takes an
option-argument).

Changing the value of the variable optind, or calling getopt with different
values of argv, may lead to unexpected results.

GETPASS(3C) GETPASS(3C)

NAME
getpass - read a password

SYNOPSIS
char "getpass (prompt)
char 'prompt;

DESCRIPTION
The getpass routine reads up to a newline or EOF from the file /dev/tty, after
prompting on the standard error output with the null-terminated string prompt
and disabling echoing. A pointer is returned to a null-terminated string of at
most 8 characters. If /dev/tty cannot be opened, a NULL pointer is returned.
An interrupt will terminate input and send an interrupt signal to the calling
program before returning.

FILES
/dev/tty

SEE ALSO
crypt(3C).

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of
programs not otherwise using standard I/O, more than might be expected.

CAVEAT
The return value points to static data whose content is overwritten by each call.

GETPROTOENT (3) (CTIX Internetworking) GETPROTOENT (3)

N A M E
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get
protocol entry

S Y N O P S I S
#include <netdb.h>

struct protoent "getprotoent ()

struct protoent "getprotobyname (name)
char "name;

struct protoent "getprotobynumber (proto)
int proto;

setprotoent (stayopen)
int stayopen

endprotoent ()

D E S C R I P T I O N
The getprotoent, getprotobyname, and getprotobynumber routines each return a
pointer to an object with the following structure containing the broken-out
fields of a line in the network protocol database, /etc/protocols.

struct protoent {
char *p_name; /* official name of protocol */
char "pal iases; /* alias list 7
long p_proto; /* protocol number 7

};

The members of this structure follow:

p_name The official name of the protocol.

p_aliases A zero-terminated list of alternate names for the protocol.

p_proto The protocol number.

The getprotoent routine reads the next line of the file, opening the file if
necessary.

The setprotoent routine opens and rewinds the file. If the stayopen flag is non-
zero, the network database will not be closed after each call to getprotoent
(either directly or indirecdy through one of the other getproto calls).

GETPROTOENT(3) (CTIX Internetworking) GETPROTOENT(3)

The endprotoent routine closes the file.

The getprotobyname and getprotobynumber routines sequentially search from
the beginning of the file until a matching protocol name or protocol number is
found, or until EOF is encountered.

FILES
/etc/protocols

SEE ALSO
protocols(4).
CTIX Network Programmer's Primer.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must be copied if it is to be
saved.

Only the Internet protocols are currently understood.

GETPW(3C) GETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, buf)
int uid;
char *buf;

DESCRIPTION
The getpw routine searches the password file for a user ID number that equals
uid, copies the line of the password file in which uid was found into the array
pointed to by buf, and returns 0. The routine returns non-zero if uid cannot be
found.

This routine is included only for compatibility with prior systems and should
not be used; see getpwent(3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
The getpw returns non-zero on error.

WARNING
If a program not otherwise using standard I/O uses this routine, the size of the
program increases more than might be expected.

<r

GETPWENT (3C) GETP WENT (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get password
file entry

SYNOPSIS
#include <pwd.h>

struct passwd "getpwent ()

struct passwd "getpwuid (uid)
int uid;

struct passwd "getpwnam (name)
char "name;

void setpwent ()

void endpwent ()

struct passwd "fgetpwent (f)
FILE "f;

DESCRIPTION
The getpwent, getpwuid and getpwnam routines each return a pointer to an
object with the following structure containing the broken-out fields of a line in
the /etc/passwd file. Each line in the file contains a "passwd" structure,
declared in the <pwd.h> header file:

struct passwd {
char *pw_name;
char *pw_passwd;
int pwuid;
int pw_gid;
char *pw_age;
char •pwcomment
char •pwgecos;
char *pw_dir;
char *pw_sheil;

);
This structure is declared in <pwd.h> so you need not redeclare it The field
meanings are described in passwd(4).

When first called, getpwent returns a pointer to the first passwd structure in the
file; thereafter, it returns a pointer to the next passwd structure in the file so
successive calls can be used to search the entire file. The getpwuid routine
searches from the beginning of the file until a numerical user ID matching uid is
found; the routine then returns a pointer to the structure in which it was found.

- 1 -

GETPWENT(3C) GETPWENT (3C)

The getpwnam routine searches from the beginning of the file until a login
name matching name is found; the routine then returns a pointer to the
particular structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setpwent rewinds the password file to allow repeated searches. A call
to endpwent closes the password file when processing is complete.

The fgetpwent routine returns a pointer to the next passwd structure in the
stream/that matches the format of /etc/passwd.

FILES
/etc/passwd

SEE ALSO
getgrent(3C), getlogin(3C), getspent(3X), putpwent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
If a program not otherwise using standard I/O uses this routine, the size of the
program increases more than might be expected.

CAVEAT
All information is contained in a static area, so it must be copied if it is to be
saved.

GETRPCENT (3) (CTIX Internetworking) GETRPCENT(3)

NAME
getrpcent, getrpebyname, getrpebynumber - get rpc entry

SYNOPSIS
#include <netdb.h>

struct rpcent *getrpcent()

struct rpcent *getrpcbyname(name)
char "name;

struct rpcent *getrpcbynumber(number)
int number;

setrpcent(stayopen)
int stayopen

endrpcentQ
DESCRIPTION

The getrpcent, getrpebyname, and getrpebynumber routines each return a
pointer to an object with the following structure containing the broken-out
fields of a line in the rpc program number database, letc/rpc.

struct rpcent {
char *r_name; /* name of server for this rpc program 7
char **r_aliases; I* alias list 7
long r number; /* rpc program number 7

};
The members of this structure follow:

r_name The name of the server for this rpc program.

r_aliases A zero terminated list of alternate names for the rpc program.

r_number The rpc program number for this service.
The getrpcent routine reads the next line of the file, opening the fde if
necessary.

The setrpcent routine opens and rewinds the file. If the stayopen flag is non-
zero, the net database will not be closed after each call to getrpcent (either
directly or indirecdy through one of the other qgetrpccaUs).

The endrpcent routine closes the file.

The getrpebyname and getrpebynumber routines sequentially search from the
beginning of the fde until a matching rpc program name or program number is
found, or until EOF is encountered.

GETRPCENT(3) (CTIX Internetworking) GETRPCENT(3)

FILES
/etc/rpc

SEE ALSO
ipc(4), rpcinfo(lM).

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be
saved.

GETRPCPORT(3) (CTIX Internetworking) GETRPCPORT(3)

NAME
getrpcport - get RPC port number

SYNOPSIS
int getrpcport(host, prognum, versnum, proto)
char "host;
int prognum, versnum, proto;

DESCRIPTION
The getrpcport routine returns the port number for version versnum of the RPC
program prognum running on host and using protocol proto. The routine
returns 0 if it cannot contact the portmapper, or if prognum is not registered; if
prognum is registered but not with version versnum, getrpcport returns that port
number.

SEE ALSO
portmap(lM), rpcinfo(lM), rpc(4).
CTIX Network Programmer's Guide

<r

GETS(3S) GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char "gets (s)
char "S;

char "fgets (s, n, stream)
char *s;
int n;

FILE "stream;

DESCRIPTION
The gets routine reads characters from the standard input stream, stdin, into the
array pointed to by s, until a newline character is read or an end-of-file
condition is encountered. The newline character is discarded and the string is
terminated with a null character.
The fgets routine reads characters from the stream into the array pointed to by
s, until n-1 characters are read, or a newline character is read and transferred to
s, or an end-of-file condition is encountered. The string is then terminated with
a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S), stdio(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters are
transferred to s and a NULL pointer is returned. If a read error occurs, such as
trying to use these functions on a file that has not been opened for reading, a
NULL pointer is returned. Otherwise, 5 is returned.

GETSERVENT(3) (CTIX Internetworking) GETSERVENT(3)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service
entry

SYNOPSIS
#include <netdb.h>

struct servent "getservent ()

struct servent "getservbyname (name, proto)
char "name, "proto;

struct servent "getservbyport (port, proto)
int port; char "proto;

setservent (stayopen)
int stayopen

endservent ()

DESCRIPTION
The getservent, getservbyname, and getservbyport routines each return a
pointer to an object with the following structure containing the broken-out
fields of a line in the network services database, /etc/services.

struct servent {
char *s_name; f official name of service */
char " s aliases; /* alias list 7
long s_port; /* port service resides at 7
char *s_proto; I* protocol to use 7

};
The members of this structure follow:

s_name The official name of the service.

s_aliases A zero-terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are
returned in network byte order.

s_proto The name of the protocol to use when contacting the service.

The getservent routine reads the next line of the file, opening the fde if
necessary.

The setservent routine opens and rewinds the file. If the stayopen flag is non-
zero, the network database is not be closed after each call to getservent (either
directly or indirectly through one of the other getserv calls).

GETSERVENT(3) (CTIX Intcrnetwoiking) GETSERVENT(3)

The endservent routine closes the file.

The getservbyname and getservbyport routines sequentially search from the
beginning of the file until a matching protocol name or port number is found, or
until EOF is encountered.

If a protocol name is also supplied (non-NULL), searches must also match the
protocol.

FILES
/etc/services

SEE ALSO
getprotoent(3), services(4).
CTIX Network Programmer's Primer.

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area, so it must be copied if it is to be
saved.

GETSPENT(3X) GETSPENT (3X)

NAME
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf - get
shadow password file entry

SYNOPSIS
#include <shadow.h>

struct spwd "getspent ()

struct spwd "getspnam (name)
char "name;

int lckpwdf ()
int ulckpwdf ()

void setspent ()

void endspent ()

struct spwd "fgetspent (fp)
FILE "fp;

DESCRIPTION
The getspent and getspnam routines each return a pointer to an object with the
following structure containing the broken-out fields of a line in the /etc/shadow
file. Each line in the file contains a shadow password structure (spwd),
declared in the < shadow.h > header file:

struct spwd{
char *sp_namp;
char *sp_pwdp;
long spjstchg;
long spmin;
long sp_max;

The getspent routine, when first called, returns a pointer to the first spwd
structure in the file; thereafter, it returns a pointer to the next spwd structure in
the file; this way, successive calls can be used to search the entire file. The
getspnam routine searches from the beginning of the file until a login name
matching name is found, and then returns a pointer to the particular structure in
which it was found. The getspent and getspnam routines populate the spmin
or sp_max field with -1 if the corresponding field in /etc/shadow is empty. If
an end-of-file or an error is encountered on reading, these functions return a
NULL pointer.

The /etc/.pwd.lock file is the lock file, which is used to coordinate modification
access to the password files in /etc/passwd and /etc/shadow. The lckpwdf ()

GETSPENT(3X) GETSPENT(3X)

and ulckpwdf() routines are used to gain modification access to the password
files, through the lock file. A process first uses lckpwdf() to lock the lock file,
thereby gaining exclusive rights to modify the /etc/passwd or /etc/shadow file.
Upon completing modifications, a process should release the lock on the lock
file by using ulckpwdf(). This lock mechanism prevents simultaneous
modification of the password files.

The lckpwuf() routine attempts to lock the file /'etc/.pwd.!ock. If the file is
already locked, lckpwdf() tries for 15 seconds to lock the file. If unsuccessful,
lckpwdf() returns a -1; if successful within 15 seconds, lckpwdf() returns a
return code other than -1.

The ulckpwdfO routine attempts to unlock the file /etc/.pwd.lock. If
successful, ulckpwdfO returns a 0; if unsuccessful (if the file is not locked),
ulckpwdf () returns a -1.

A call to the setspent routine has the effect of rewinding the shadow password
file to allow repeated searches. The endspent routine may be called to close the
shadow password file when processing is complete.

The fgetspent routine returns a pointer to the next spwd structure in the stream
f p , which matches the format of /etc/shadow.

FILES
/etc/shadow
/etc/passwd
/etc/.pwd.lock

SEE ALSO
putspent(3X), shadow(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

CAVEAT
All information is contained in a static area, so it must be copied if it is to be
saved.

WARNING
If a program not otherwise using standard I/O uses this routine, the size of the
program increases more than might be expected.

This routine is for internal use only; compatibility is not guaranteed.

GETUT (3C) GETUT (3C)

NAME
getut getutent, getutid, getutline, pututline, setutent, endutent, utmpname -
access utmp fde entry

SYNOPSIS
#include <utmp.h>

struct utmp "getutent ()

struct utmp 'getutid (id)
struct utmp "id;

struct utmp "getutline (line)
struct utmp 'line;

void pututline (utmp)
struct utmp 'utmp;

void setutent ()

void endutent ()

void utmpname (file)
char 'file;

DESCRIPTION
The getutent, getutid and getutline routines each return a pointer to a structure
of the following type:

struct utmp {
char ut_user[8]; /* User login name */
char utjd[4]; /* /etc/inittab id (usually line #) */
char ut_line[12]; /* Device name (console, Inxx) */
short ut pid; /* Process id */
short ut_type; I* Type of entry */
struct exit_status {

short e_termination; /* Process termination status */
short e_exit; /* Process exit status */

} ut exit; /* The exit status of a process marked */
/* as DEAD_PROCESS. */

time t ut_time; /* Time entry was made */
};

The getutent routine reads in the next entry from a utmp -like file. If the file is
not already open, it opens it If it reaches the end of the file, it fails.

The getutid routine searches forward from the current point in the utmp file
until it finds an entry with a ut type matching id->ut_type if the type specified

GETUT(3C) GETUT(3C)

is RUN_LVL, BOOT_nME, OLD_TIME or NEW_TIME. If the type specified in
id is INTT.PROCESS, LOGIN_PROCESS, USER_PROCESS or DEAD_PROCESS,
getutid returns a pointer to the first entry whose type is one of these four and
whose utid field matches id->ut_id. If the end of file is reached without a
match, it fails.

The getutline routine searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a utline string matching the line->ut_line string. If the end of file is
reached without a match, it fails.

The pututline routine writes out the supplied utmp structure into the utmp file.
It uses getutid to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututline
will have searched for the proper entry using one of the getut routines. If so,
pututline will not search. If pututline does not find a matching slot for the new
entry, it will add a new entry to the end of the file.

The setutent routine resets the input stream to the beginning of the file. This
should be done before each search for a new entry if it is desired that the entire
file be examined.

The endutent routine closes the currently open file.

The utmpname routine allows the user to change the name of the file examined,
from /etc/utmp to any other file. It is most often expected that this other file
will be /etc/wtmp. If the file does not exist, this will not be apparent until the
first attempt to refer to the file is made. The utmpname routine does not open
the file. It just closes the old file if it is currently open and saves the new file
name.

FILES
/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for permissions or
having reached the end of file, or upon failure to write.

NOTES
The most current entry is saved in a static structure. Multiple accesses require
that it be copied before further accesses are made. Each call to either getutid or
getutline sees the routine examine the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks

- 2 -

GETUT (3C) GETUT (3C)

no further. For this reason, to use getutline to search for multiple occurrences,
it would be necessary to zero out the static after each success, or getutline
would just return the same pointer over and over again. There is one exception
to the rule about removing the structure before further reads are done. The
implicit read done by pututline (if it finds that it is not already at the correct
place in the file) will not hurt the contents of the static structure returned by the
getutent, getutid or getutline routines, if the user has just modified those
contents and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between processes
trying to modify the utmp and wtmp files.

HSEARCH(3C) HSEARCH (3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY 'hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION
The hsearch routine is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the location at
which an entry can be found. Item is a structure of type ENTRY (defined in the
<search.h> header fde) containing two pointers: item.key points to the
comparison key, and item.data points to any other data to be associated with
that key. (Pointers to types other than character should be cast to pointer-to-
character.) Action is a member of an enumeration type ACTION indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that
the item should be inserted in the table at an appropriate point. FIND indicates
that no entry should be made. Unsuccessful resolution is indicated by the return
of a NULL pointer.

The hcreate routine allocates sufficient space for the table, and must be called
before hsearch is used. Nel is an estimate of the maximum number of entries
that the table will contain. This number may be adjusted upward by the
algorithm in order to obtain certain mathematically favorable circumstances.

The hdestroy routine destroys the search table and can be followed by another
call to hcreate.

NOTES
The hsearch routine uses open addressing with a multiplicative hash function.
However, its source code has many other options available which the user can
select by compiling the hsearch source with the following symbols defined to
the preprocessor:

DIV Use the remainder modulo table size as the hash function instead of
the multiplicative algorithm.

HSEARCH(3C) HSEARCH (3C)

Use a User Supplied Comparison Routine for ascertaining table
membership. The routine should be named hcompar and should
behave in a manner similar to strcmp [see sfring(3Q].

Use a linked list to resolve collisions. If this option is selected, the
following other options become available.

START Place new entries at the beginning of the linked list
(default is at the end).

SORTUP Keep the linked list sorted by key in ascending order.

SORTDOWN Keep the linked list sorted by key in descending
order.

Additionally, there are preprocessor flags for obtaining debugging printout
(-DDEBUG) and for including a test driver in the calling routine (-DDRIVER).
The source code should be consulted for further details.

EXAMPLE
The following example will read in strings followed by two numbers and store
them in a hash table, discarding duplicates. It will then read in strings and find
the matching entry in the hash table and print it.

#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in the •/
int age, room; /* table other than the key. */

};
#define NUM EMPL 5000 /* # of elements in search table */
main()
{

/* space to store strings */
char string_space[NUM_EMPL*20];
/* space to store employee info */
struct info info_space[NUM_EMPL];
I* next avail space in string_space */
char *str_ptr = string space;
/* next avail space in info_space */
struct info *info_ptr = info_space;
ENTRY Item, *foundJtem, *hsearch();
/* name to look for in table */
char name_to_find[30];
int i = 0;

USCR

CHAINED

HSEARCH(3C) HSEARCH(3C)

/* create table */
(void) hcreate(NUM_EM PL);
while (scanf("%s%d%d", str_ptr, &info__ptr->age,

&info_ptr->room) 1= EOF && i++ < NUMEMPL) {
I* put Info in structure, and structure in */
/* Item */
item .key = str_ptr;
item.data = (char *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
Info_ptr++;
/* put item into table */
(void) hsearch(item, ENTER);

}
i* access table */
Item.key = name_to_find;
while (scanf("%rf\ item.key) != EOF) {

if ((foundJtem = hsearch(item, FIND)) != NULL) {
/* if item is in the table */
(void)printff'found %s, age = %d, room = %d\n",

found_item->key,
((struct info *)foundJtem->data)->age,
((struct info *)found_item->data)>room);

} else {
(void)printf("no such employee %s\n",

name_to_Jind)
}

}
}

SEE ALSO
bsearch(3C), lsearch(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).

DIAGNOSTICS
The hsearch routine returns a NULL pointer if either the action is FIND and the
item could not be found or the action is ENTER and the table is full.

The hcreate routine returns zero if it cannot allocate sufficient space for the
table.

CAVEAT
Only one hash search table can be active at any given time.

WARNING
The hsearch and hcreate routines use malloc (hC) to allocate space.

- 3 -

HYPOT(3M) HYPOT(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
The hypot routine returns the following, taking precautions against unwarranted
overflows:

sqrt(x * x + y * y),

SEE ALSO
matherr(3M).

DIAGNOSTICS
When the correct value would overflow, hypot returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

INET(3) (CTIX Internetworking) INET(3)

NAME
inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof -
Internet address manipulation routines

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr(cp)
char *cp;

int inet_network(cp)
char *cp;

char *inet_ntoa(in)
struct inet_addr in;

struct in_addr inet_makeaddr(net, Ina)
int net, Ina;

int inet_lnaof(in)
struct in_addr in;

int inet_netof(in)
struct in_addr in;

DESCRIPTION
The routines inetaddr and inetnetwork each interpret character strings
representing numbers expressed in the Internet standard dot notation, returning
numbers suitable for use as Internet addresses and Internet network numbers,
respectively. The struct in addr returned by inet_addr is cast to an unsigned
long for error checking (See Diagnostics, below.) The routine inet ntoa takes
an Internet address and returns an ASCII string representing the address in dot
notation. The routine inetjnakeaddr takes an Internet network number and a
local network address and constructs an Internet address from it The routines
inet netof and inet lnaof break apart Internet host addresses, returning the
network number and local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine
format integer values.

INET(3) (CTIX Internetworking) INET(3)

INTERNET ADDRESSES
Values specified using the dot notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right most two bytes of the network address. This
makes the three part address format convenient for specifying Class B network
addresses as VH.net.host.

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses as net .host.

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as "parts" in a "dot" notation may be decimal, octal, or
hexadecimal, as specified in the C language (that is, a leading Ox or OX implies
hexadecimal; otherwise, a leading 0 implies octal; otherwise, the number is
interpreted as decimal).

EXAMPLE
#include <stdio.h>
^include <>ys/types.h>
#include <sys/»ocket.h>
#include <netdb.h>
#include <sys/in.h>
#include <arpa/inet.h>
int check_address(address_s)
char address_s Q; /* ascii string (e.g., first token

* in /etc/hosts entry)
*/

{
struct in_addr addr;
Int rc;

rc = 0;

- 2 -

INET(3) (CTIX Internetworking) INET(3)

I* check that address is in valid format and get binary
* form to pass to gethostbyaddr
*/
addr.s addr = inet addr (addresses);
if (addr.s_addr== -1)
{

fprintf (siderr,
"Address '%s' not in valid Internet format\n",

addresss);
rcs-1;
return (rc);

}

I* check that address Is not already In host database 7
if ((int) gethostbyaddr (&addr,

sizeof (addr), AFJNET) != NULL)
{

fprintf (stderr,
"Address *%s' already in use\n",
addresss);

rc = -1;
)

return (rc);

} /* check_address7

SEE ALSO
gethostbyname(3), getnetent(3), hosts(4), networks(4), inet(7).
CTIX Network Programmer's Primer.

DIAGNOSTICS
The value -1 is returned by inet addr and inet network for malformed requests.

BUGS
The string returned by inetjitoa resides in a static memory area.

ISNAN (3C) ISNAN (3C)

NAME
isnan: isnand, isnanf - test for floating point NaN (Not-A-Number)

SYNOPSIS
#include <ieeefp.h>

int isnand (dsrc)
double dsrc;

int isnanf (fsrc)
float fsrc;

DESCRIPTION
The isnand and isnanf routines return true (1) if the argument dsrc or fsrc is a
NaN; otherwise, they return false (0).

Neither routine generates any exception, even for signaling NaNs.

The isnanf () routine is implemented as a macro included in <ieeefp.h>.

SEE ALSO
fpgetround(3C).

L3TOL(3C) L3TOL(3C)

NAME
Btol, ltol3 - convert between 3-byte integers and long integers

S Y N O P S I S
void 13toI (lp, cp, n)
long *lp;
char *cp;
int n;

void ltol3 (cp, lp, n)
char *cp;
long *lp;
int n;

DESCRIPTION
The Btol routine converts a list of ,n three-byte integers packed into a character
string pointed to by cp into a list of long integers pointed to by lp.

The ltol3 routine performs the reverse conversion from long integers (lp) to
three-byte integers (cp).

These functions are useful for file-system maintenance where the block
numbers are three bytes long.

SEE ALSO
fs(4).

CAVEAT
Because of possible differences in byte ordering, the numerical values of the
long integers are machine-dependent

LD AHRE AD (3X) LD AHRE AD (3X)

NAME
ldahread - read the archive header of a member of an archive fde

SYNOPSIS
#include <stdio.h>
#include <ar.h>
#include <filehdr.h>
#inciude <iafcn.h>

int ldahread (Idptr, arhead)
LDFILE * Idptr;
ARCHDR "arhead;

DESCRIPTION
If TYPE (Idptr) is the archive fde magic number, ldahread reads the archive
header of the common object fde currently associated with Idptr into the area of
memory beginning at arhead.

The ldahread routine returns SUCCESS or FAILURE; it fails if TYPE (Idptr)
does not represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library libido.

SEE ALSO
ldclose(3X), ldopen(3X), ar(4), ldfcn(4).

LDCLOSE(3X) LDCLOSE(3X)

NAME
Idclose, ldaclose - close a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int Idclose (Idptr)
LDFILE "Idptr;

int ldaclose (Idptr)
LDFILE * Idptr;

DESCRIPTION
The ldopen(3X) and Idclose routines provide uniform access to both simple
object files and object files that are members of archive fdes. Thus, an archive
of common object files can be processed as if it were a series of simple common
object files.

If TYFE(ldptr) does not represent an archive file, Idclose closes the file and free
the memory allocated to the LDFILE structure associated with Idptr. If
TYPE(ldptr) is the magic number of an archive file, and if there are any more
files in the archive, Idclose reinitializes OFFSET(Wpfr) to the file address of the
next archive member and returns FAILURE. The LDFILE structure is prepared
for a subsequent ldopen(3X). In all other cases, Idclose returns SUCCESS.

The ldaclose routine closes the file and frees the memory allocated to the
LDFILE structure associated with Idptr regardless of the value of TYPE (Idptr).
The ldaclose routine always returns SUCCESS. The function is often used in
conjunction with Idaopen.

The program must be loaded with the object file access routine library libido.

SEE ALSO
fclose(3S), ldopen(3X), ldfcn(4).

LDFHREAD(3X) LDFHREAD(3X)

NAME
Idfhread - read the fde header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int Idfhread (Idptr, filehead)
LDFILE "Idptr;
FILHDR "filehead;

DESCRIPTION
The Idfhread routine reads the file header of the common object fde currently
associated with Idptr into the area of memory beginning at filehead.

The Idfhread routine returns SUCCESS or FAILURE. Idfhread fails if it cannot
read the file header.

In most cases the use of Idfhread can be avoided by using the macro
HEADER(Wplr) defined in ldfcn.h [see ldfcn (4)]. The information in any
field, fieldname, of the file header may be accessed using
HEADER(ldptr).fieIdname.

The program must be loaded with the object file access routine library libido.

FILES
/usr/lih/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4).

LDGETNAME(3X) LDGETNAME(3X)

NAME
ldgetname - retrieve symbol name for common object file symbol table entry

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

char "ldgetname (Idptr, symbol)
LDFILE "Idptr;
SYMENT ^symbol;

DESCRIPTION
The ldgetname routine returns a pointer to the name associated with symbol as
a string. The string is contained in a static buffer locai to ldgetname that is
overwritten by each call to ldgetname, and therefore must be copied by the
caller if the name is to be saved.

The ldgetname routine can be used to retrieve names from object fdes without
any backward compatibility problems. The ldgetname routine returns NULL
(defined in stdio.h) for an object file if the name cannot be retrieved, as in the
following cases:

• If the string table cannot be found.

• If not enough memory can be allocated for the string table.

• If the string table appears not to be a string table (for example, if an
auxiliary entry is handed to ldgetname that looks like a reference to a
name in a nonexistent string table).

• If the name's offset into the string table is past the end of the string
table.

Typically, ldgetname is called immediately after a successful call to Idtbread to
retrieve the name associated with the symbol table entry filled by Idtbread.

The program must be loaded with the object file access routine library l ibido.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4).

LDLREAD(3X) LDLREAD(3X)

NAME
ldlread, ldlinit, ldlitem - manipulate line number entries of a common object file
function

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#inciude <iinenum.h>
#include <Idfcn.h>

int Idlread(Idptr, fcnindx, linenum, Iinent)
LDFILE * Idptr;
long fcnindx;
unsigned short linenum;
LINENO * Iinent;

int ldlinit(Idptr, fcnindx)
LDFILE * Idptr;
long fcnindx;

int Idlitem(ldptr, linenum, Iinent)
LDFILE * Idptr;
unsigned short linenum;
LINENO 'I inent;

DESCRIPTION
The ldlread routine searches the line number entries of the common object file
currendy associated with Idptr. It begins its search with the line number entry
for the beginning of a function and confines its search to the line numbers
associated with a single function. The function is identified by fcnindx, the
index of its entry in the object file symbol table. The routine reads the entry
with the smallest line number equal to or greater than linenum into the memory
beginning at Iinent.

The ldlinit and ldlitem routines together perform exactly the same function as
ldlread. After an initial call to ldlread or ldlinit, ldlitem can be used to retrieve
a series of line number entries associated with a single function. The ldlinit
routine locates the line number entries for the function identified by fcnindx;
ldlitem finds and reads the entry with the smallest line number equal to or
greater than linenum into the memory beginning at Iinent.

The ldlread, ldlinit, and ldlitem routines each return either SUCCESS or
FAILURE. The ldlread routine fails if there are no line number entries in the
object file, if fcnindx does not index a function entry in the symbol table, or if it
finds no line number equal to or greater than linenum. The ldlinit routine fails

LDLREAD(3X) LDLREAD(3X)

if there are no line number entries in the object file or if fcnindx does not index
a function entry in the symbol table. The Idlitem routine fails if it finds no line
number equal to or greater than linenum.

The programs must be loaded with the object file access routine library Iibld.a.

FILES
/ncr/ l iH/l ihlH q / Uk»/ livy HVtUiW

SEE ALSO
ldclose(3X), ldopen(3X), ldtbindex(3X), ldfcn(4).

LDOHSEEK(3X) LDOHSEEK(3X)

NAME
ldlseek, ldnlseek - seek to line number entries of a section of a common object
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <lufcn.h>

int ldlseek (Idptr, sectindx)
LDFILE "Idptr;
unsigned short sectindx;

int ldnlseek (Idptr, sectname)
LDFILE "Idptr;
char *sectname;

DESCRIPTION
The ldlseek routine seeks to the line number entries of the section
sectindx of the common object file currently associated with Idptr.

The ldnlseek routine seeks to the line number entries of the section
sectname.

The ldlseek and ldnlseek routines return SUCCESS or FAILURE. The ldlseek
routine fails if sectindx is greater than the number of sections in the object file;
ldnlseek fails if there is no section name corresponding with * sectname. Either
function fails if the specified section has no line number entries or if it cannot
seek to the specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libido.

FILES

/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

specified by

specified by

LDOHSEEK(3X) LDOHSEEK(3X)

NAME
ldohseek - seek to the optional file header of a common object fde

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldohseek (Idptr)
LDFILE "Idptr;

DESCRIPTION
The ldohseek routine seeks to the optional fde header of the common object file
currently associated with Idptr. It returns SUCCESS or FAILURE. The routine
fails if the object file has no optional header or if it cannot seek to the optional
header.

The program must be loaded with the object file access routine library libido.

FILES
/usr/Iib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldfhread(3X), ldfcn(4).

LDOPEN(3X) LDOPF.N(3X)

NAME
ldopen, Idaopen - open a common object file for reading

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

LDFILE * ldopen (filename, Idptr)
char "filename;
LDFILE "Idptr;

LDFILE "Idaopen (filename, oldptr)
char "Filename;
LDFILE "oldptr;

DESCRIPTION
The ldopen and Idclose (iX) routines provide uniform access to both simple
object files and object files that are members of archive files. Thus, an archive
of common object files can be processed as if it were a series of simple common
object files.

If Idptr has the value NULL, ldopen opens filename and allocates and initializes
the LDFILE structure, and returns a pointer to the structure to the calling
program.

If Idptr is valid and if TYPE (Idptr) is the archive magic number, ldopen
reinitializes the LDFILE structure for the next archive member of filename.

The ldopen and Idclose routines are designed to work in concert. The Idclose
routine returns FAILURE only when TYPE(Wp/r) is the archive magic number
and there is another file in the archive to be processed. Only then should
ldopen be called with the current value of Idptr. In all other cases, in particular
whenever a new filename is opened, ldopen should be called with a NULL Idptr
argument

The following is a prototype for the use of ldopen and Idclose.

/* for each filename to be processed */
Idptr = NULL;
do
{

if ((Idptr s ldopen(filename, Idptr)) != NULL)
{

I* check magic number; process the file */
}

} while (ldciose(ldptr) == FAILURE);

- 1 -

LDOPEN(3X) LDOPEN(3X)

If the value of oldptr is not NULL, Idaopen opens filename anew and allocate
and initialize a new LDFTLE structure, copying the TYPE, OFFSET, and
HEADER fields from oldptr. The Idaopen routine returns a pointer to the new
LDFILE structure. This new pointer is independent of the old pointer, oldptr.
The two pointers can be used concurrently to read separate parts of the object
file. For example, one pointer can be used to step sequentially through the
relocation information, while the other is used to read indexed symbol table
entries.

Both Idopen and Idaopen open filename for reading. Both functions return
NULL if filename cannot be opened, or if memory for the LDFILE structure
cannot be allocated. A successful open does not insure that the given file is a
common object file or an archived object file.

The program must be loaded with the object file access routine library libld,a.

FILES
/usr/lib/libld.a

SEE ALSO
fopen(3S), ldclose(3X), ldfcn(4).

LDOHSEEK(3X) LDOHSEEK(3X)

NAME
ldrseek, ldnrseek - seek to relocation entries of a section of a common object
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#inc!ude <!dfcr..h>

int ldrseek (Idptr, sectindx)
LDFILE "Idptr;
unsigned short sectindx;

int ldnrseek (Idptr, sectname)
LDFILE "Idptr;
char "sectname;

DESCRIPTION
The ldrseek routine seeks to the relocation entries of the section specified by
sectindx of the common object file currently associated with Idptr.

The ldnrseek routine seeks to the relocation entries of the section specified by
sectname.

The ldrseek and ldnrseek routines return SUCCESS or FAILURE. The ldrseek
fails if sectindx is greater than the number of sections in the object file; ldnrseek
fails if there is no section name corresponding with sectname. Either function
fails if the specified section has no relocation entries or if it cannot seek to the
specified relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libido.

FILES

/usr/libAibld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

LDSHREAD(3X) LDSHREAD(3X)

NAME
ldshread, ldnshread - read an indexed/named section header of a common object
fde

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include <ldfcn.h>

int ldshread (Idptr, sectindx, secthead)
LDFILE "Idptr;
unsigned short sectindx;
SCNHDR "secthead;

int ldnshread (Idptr, sectname, secthead)
LDFILE "Idptr;
char "sectname;
SCNHDR "secthead;

DESCRIPTION
The ldshread routine reads the section header specified by sectindx of the
common object file currently associated with Idptr into the area of memory
beginning at secthead.

The ldnshread routine reads the section header specified by sectname into the
area of memory beginning at secthead.

The ldshread and ldnshread routines return SUCCESS or FAILURE. The
ldshread routine fails if sectindx is greater than the number of sections in the
object file; ldnshread fails if there is no section name corresponding with
sectname. Either function fails if it cannot read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine library libld.a.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4).

LDOHSEEK(3X) LDOHSEEK(3X)

NAME
ldsseek, ldnsseek - seek to an indexed/named section of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldsseek (Idptr, sectindx)
LDFILE "Idptr;
unsigned short sectindx;

int ldnsseek (Idptr, sectname)
LDFILE "Idptr;
char "sectname;

DESCRIPTION
The ldsseek routine seeks to the section specified by sectindx of the common
object file currently associated with Idptr.

The ldnsseek routine seeks to the section specified by sectname.

The ldsseek and ldnsseek routines return SUCCESS or FAILURE. The ldsseek
fails if sectindx is greater than the number of sections in the object file; ldnsseek
fails if there is no section name corresponding with sectname. Either function
fails if there is no section data for the specified section or if it cannot seek to the
specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

FILES

/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

w

LDTBINDEX(3X) LDTB INDEX (3X)

NAME
ldtbindex - compute the index of a symbol table entry of a common object fde

SYNOPSIS
#include <stdio.h>
#include <fdehdr.h>
#include <syms.h>
#include <!dfcn.h>

long ldtbindex (Idptr)
LDFILE "Idptr;

DESCRIPTION
ldtbindex returns the (long) index of the symbol table entry at the current
position of the common object file associated with Idptr.

The index returned by ldtbindex can be used in subsequent calls to
Idtbread (3X). However, since ldtbindex returns the index of the symbol table
entry that begins at the current position of the object file, if ldtbindex is called
immediately after a particular symbol table entry has been read, it will return
the index of the next entry.

ldtbindex will fail if there are no symbols in the object file, or if the object file
is not positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library libido.

FILES

/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4).

LDTB READ (3X) LDTBREAD(3X)

NAME
Idtbread - read an indexed symbol table entry of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn

int Idtbread (Idptr, symindex, symbol)
LDFILE "Idptr;
long symindex;
SYMENT "symbol;

DESCRIPTION
Idtbread reads the symbol table entry specified by symindex of the common
object fde currendy associated with Idptr into the area of memory beginning at
symbol.

Idtbread returns SUCCESS or FAILURE. Idtbread will fail if symindex is
greater than or equal to the number of symbols in the object fde, or if it cannot
read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library libido..

FILES

/usr/lih/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldtbseek(3X), ldgetname(3X), ldfcn(4).

LDOHSEEK(3X) LDOHSEEK(3X)

NAME
ldtbseek - seek to the symbol table of a common object fde

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldtbseek (Idptr)
LDFILE * Idptr;

DESCRIPTION
ldtbseek seeks to the symbol table of the common object fde currently
associated with Idptr.

ldtbseek returns SUCCESS or FAILURE, ldtbseek will fail if the symbol table
has been stripped from the object file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access routine library libido.

FILES
/usr/lib/libld.a

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldfcn(4).

LIB DEV (3X) LIBDEV(3X)

NAME
libdev - manipulate Volume Home Blocks (VHB)

SYNOPSIS
#include <sys/gdisk.h>

struct vhbd *vhbd;
short si, ""sip;
char *s, "device;
int fd;

int gdnsec(vhbd, si)
int gdstrk(vhbd, si)
int gdftrk(vhbd, si)
int gdnszc(vhbd)
int isdisk(fd)
struct vhbd *readvhb(s, si)
struct vhbd *sreadvhb(device)
struct vhbd *freadvhb(fd, si)
char *adevname(fd)
char *bdevname(s)
int dismnt(fd)
char *gdname(s, sip)
char *fgdname(fd, sip)
int gdnlblk(fd)

DESCRIPTION
Each argument in the above subroutines denotes:

vhbd A pointer to a disk volume home block, as returned by
readvhb, sreadvhb, otfreadvhb.

si Slice number on the drive.

sip Pointer to a slice number. This argument is actually used by
the subroutine to return a slice number.

s The name of a special file in /dev/rdsk. This filename is
used to obtain a file descriptor to access a VHB. The name
need not be for slice zero of the disk.

device The name of a special fde in /dev/rdsk. This filename is
used to obtain a file descriptor to access a VHB. The name
must be for slice zero of a disk.

LIB DEV (3X) LIBDEV(3X)

fd Open file descriptor for slice zero of a disk.

The subroutines in /usr/Iib/libdev.a form a device and machine independent
interface to the VHB of CTIX disks. The function of each subroutine is
described below:

gdnsec Returns the number of sectors in slice si of the VHB indicated
by vhbd.

gdstrk Returns the starting track of slice si of the VHB pointed to by
vhbd.

gdftrk Returns 1 if slice si of the VHB pointed to by vhbd extends to
the end of the disk.

gdnszc Returns the number of sectors per cylinder.

isdisk Returns 1 if the file descriptor fd is opened to a special disk
device.

readvhb, sreadvhb, and freadvhb
Return a pointer to a VHB for the device described by their
arguments.

Returns the character device name for the disk drive to
which the file descriptor fd is opened.

Returns the block device name for the disk drive that the
string s names. The filename S can be for any slice on a raw
or block device.

Exercises the GDDISMNT ioctl call for the disk drive that the
file descriptor to which fd is opened.

Returns the file name for the character special slice zero of a
disk the filename s name a slice of. The value pointed to by
sip is set to the slice number of the filename s.

Performs as does gdname, but uses the file descriptor fd
instead of the filename s.

adevname

bdevname

dismnt

gdname

fgdname

gdnlblk Returns the number of logical blocks in the slice to which the
file descriptor fd is opened.

LIB DEV (3X) LIBDEV(3X)

FILES
/dev/rdsk/c?d?s?
/dev/dsk/c?d?s?
/usr/lib/libdev.a

SEE ALSO
iv(l) disk(7).

LOCKF (3C) LOCKF (3C)

NAME
lockf - record locking on files

SYNOPSIS
#include <unistd.h>

int lockf (fildes, function, size)
long size;
int fildes, function;

DESCRIPTION
The lockf command will allow sections of a file to be locked; advisory or
mandatory write locks depending on the mode bits of the file [see chmod(2)].
Locking calls from other processes that to lock the locked file section will
either return an error value or be put to sleep until the resource becomes
unlocked. All the iocks for a process are removed when the process terminates.
[See fcntl(2) for more information about record locking.]

fildes is an open file descriptor. The file descriptor must have 0_WR0NLY or
0_RDWR permission in order to establish lock with this function call.

function is a control value that specifies the action to be taken. The permissible
values for function are defined in <unistd.h> as follows:

#define F ULOCK 0 /* Unlock a previously locked section •/
#deflne F LOCK 1 /• Lock a section for exclusive use */
#define F_TLOCK 2 /* Test and lock a section for */

/* exclusive use •/
#define F TEST 3 /» Test section for other processes */

/* locks */

All other values of function are reserved for future extensions and will result in
an error return if not implemented.

F_TEST is used to detect if a lock by another process is present on the specified
section. F_LOCK and F_TLOCK both lock a section of a file if the section is
available. F_ULOCK removes locks from a section of the file.

Size is the number of contiguous bytes to be locked or unlocked. The resource
to be locked starts at the current offset in the file and extends forward for a
positive size and backward for a negative size (the preceding bytes up to but not
including the current offset). If size is zero, the section from the current offset
through the largest file offset is locked (that is, from the current offset through
the present or any future end-of-file). An area need not be allocated to the file
in order to be locked because such locks can exist past the end-of-file.

LOCKF (3C) LOCKF (3C)

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain
or be contained by a previously locked section for the same process. When this
occurs, or if adjacent sections occur, the sections are combined into a single
section. If the request requires that a new element be added to the table of
active locks and this table is already full, an error is returned, and the new
section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is
not available. F_LOCK will cause the calling process to sleep until the resource
is available. F_TLOCK will cause the function to return a -1 and set errno to
[EACCES] error if the section is already locked by another process.

F_ULOCK requests may, in whole or in part, release one or more locked sections
controlled by the process. When sections are not fully released, the remaining
sections are still locked by the process. Releasing the center section of a locked
section requires an additional element in the table of active locks. If this table
is full, an [EDEADLK] error is returned and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put
to sleep by accessing another process's locked resource. Thus calls to lockf or
fcntl scan for a deadlock prior to sleeping on a locked resource. An error return
is made if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(2) command
can be used to provide a timeout facility in applications that require this
facility.

The lockf utility will fail if one or more of the following are true:

[EBADF] fildes is not a valid open descriptor.

[EACCES] cmd is F_TLOCK or F_TEST and the section is already locked
by another process.

[EDEADLK] cmd is F_LOCK and a deadlock would occur.

[ENOLCK] The cmd. is F_LOCK, FT_LOCK, or F_ULOCK and the number
of entries in the lock table would exceed the number
allocated on the sytem. (Note that this differs from
EDEADLOCK).

[ECOMM] fildes is on a remote machine and the link to that machine is
no longer active.

SEE ALSO
chmod(2), close(2), creat(2), fcntl(2), intro(2), open(2), read(2), write(2).

LOCKF (3C) LOCKF (3C)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

WARNINGS
Unexpected results may occur in processes that do buffering in the user address
space. The process may later read/write data that is/was locked. The standard
I/O package is the most common source of unexpected buffering.

Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a fde is already locked by another process, portable
application programs should expect and test for either value.

LOGN AME (3X) LOGNAME(3X)

NAME
logname - return login name of user

SYNOPSIS
char *logname()

DESCRIPTION
logname returns a pointer to the null-terminated login name; it extracts the
LOGNAME environment variable from the user's environment.

This routine is kept in /lib/libPW.a.

FILES
/etc/profile
/usr/lib/libPW.a

SEE ALSO
env(l), login(l), getenv(3C), profile(4), environ(5).

CAVEATS

The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

LSEARCH(3C) LSEARCH(3C)

NAME
lsearch, lfind - linear search and update

SYNOPSIS
#include <stdio.h>
#include <search.h>

char "lsearch ((char *)key. (char *)base-7 nelp, sizeof(*key), compar)
unsigned "nelp;
int (*compar)();

char "lfind ((char *)key, (char *)base, nelp, sizeof("key), compar)
unsigned "nelp;
int (*compar)();

DESCRIPTION
lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It
returns a pointer into a table indicating where a datum may be found. If the
datum does not occur, it is added at the end of the table, key points to the
datum to be sought in the table, base points to the first element in the table.
nelp points to an integer containing the current number of elements in the table.
The integer is incremented if the datum is added to the table, compar is the
name of the comparison function which the user must supply (strcmp, for
example). It is called with two arguments that point to the elements being
compared. The function must return zero if the elements are equal and non-
zero otherwise.

lfind is the same as lsearch except that if the datum is not found, it is not added
to the table. Instead, a NULL pointer is returned.

NOTES
The pointers to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

EXAMPLE
This fragment will read in less than TABSIZE strings of length less than ELSIZE
and store them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define TABSIZE 50

LSEARCH(3C) LSEARCH(3C)

#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp();

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), string(3C), tsearch(3C).

DIAGNOSTICS
If the searched for datum is found, both Isearch and Ifind return a pointer to it.
Otherwise, Ifind returns NULL and Isearch returns a pointer to the newly added
element.

BUGS
Undefined results can occur if there is not enough room in the table to add a
new item.

MALLOC (3C) MALLOC (3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char "malloc (size)
unsigned size;

void free (ptr)
char "ptr;

char "realloc (ptr, size)
char "ptr;
unsigned size;

char "calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation package.
malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation, but its
contents are left undisturbed.

Undefined results will occur if the space assigned by malloc is overrun or if
some random number is handed to free.

malloc allocates the first big enough contiguous reach of free space found in a
circular search from the last block allocated or freed, coalescing adjacent free
blocks as it searches. It calls sbrk [see brk(2)] to get more memory from the
system when there is no suitable space already free.

realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents will be unchanged up to
the lesser of the new and old sizes. If no free block of size bytes is available in
the storage arena, then realloc will ask malloc to enlarge the arena by size
bytes and will then move the data to the new space.

realloc also works if ptr points to a block freed since the last call of malloc,
realloc, or calloc, thus sequences of free, malloc and realloc can exploit the
search strategy of malloc to do storage compaction.

calloc allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

MALLOC(3C) MALLOC(3C)

Each allocation routine returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS
MNJINR (TCQIIQC and colloc return a NULL pointer if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. When this happens the block pointed to by ptr may be
destroyed.

NOTES
Search time increases when many objects have been allocated; that is, if a
program allocates but never frees, then each successive allocation takes longer.
For an alternate, more flexible implementation, see malloc(3X).

MALLOC (3X) MALLOC (3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory allocator

SYNOPSIS
#include <maIloc.h>

char *maIloc (size)
unsigned size;

void free (ptr)
char "ptr;

char "realloc (ptr, size)
char "ptr;
unsigned size;

char "calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo()

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation package,
which runs considerably faster than the malloc (3C) package. It is found in the
library "malloc", and is loaded if the option "-lmalloc" is used with cc(l) or
ld(1).
malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation, and
its contents have been destroyed (but see mallopt below for a way to change
this behavior).

Undefined results will occur if the space assigned by malloc is overrun or if
some random number is handed to free.

realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents will be unchanged up to
the lesser of the new and old sizes.

calloc allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

mallopt provides for control over the allocation algorithm. The available
values for cmd are:

MALLOC (3X) MALLOC (3X)

M MXFAST

M NLBLKS

M GRAIN

M KEEP

Set maxfast to value. The algorithm allocates all blocks
below the size of maxfast in large groups and then doles
them out very quickly. The default value for maxfast is 24.

Set numlblks to value. The above mentioned "large groups"
each contain numlblks blocks. Numlblks must be greater than
0. The default value for numlblks is 100.

Set grain to value. The sizes of all blocks smaller than
maxfast are considered to be rounded up to the nearest
multiple of grain. Grain must be greater than 0. The default
value of grain is the smallest number of bytes which will
allow alignment of any data type. Value will be rounded up
to a multiple of the default when grain is set

Preserve data in a freed block until the next malloc, realloc,
or calloc. This option is provided only for compatibility
with the old version of malloc and is not recommended.

These values are defined in the <malloc.h> header file.

mallopt can be called repeatedly, but cannot be called after the first small block
is allocated.

mallinfo provides instrumentation describing space usage. It returns the
structure:

struct mallinfo {
int arena; /* total space in arena */
int ordblks; /* number of ordinary blocks */
int smblks; 1* number of small blocks */
int hblkhd; 1* space in holding block headers */
int hblks; 1* number of holding blocks */
int usmblks; 1* space in small blocks in use */
int fsmblks; 1* space in free small blocks */
int uordblks; 1* space in ordinary blocks in use »/
int fordblks; 1* space In free ordinary blocks */
int keepcost; 1* space penalty if keep option Is used */

This structure is defined in the <malloc.h> header file.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

- 2 -

MALLOC (3X) MALLOC (3X)

DIAGNOSTICS
malloc, realloc and calloc return a NULL pointer if there is not enough
available memory. When realloc returns NULL, the block pointed to by ptr is
left intact. If mallopt is called after any allocation or if cmd or value are
invalid, non-zero is returned. Otherwise, it returns zero.

WARNINGS
This package usually uses more data space than malloc (3C).

The code size is also bigger than malloc (3C).
Note that unlike malloc (3C), this package does not preserve the contents of a
block when it is freed, unless the MJCEEP option of mallopt is used.

Undocumented features of malloc QC) have not been duplicated.

MATHERR(3M) M ATHERR (3M)

NAME
matherr - error-handling function

SYNOPSIS
#include <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION
matherr is invoked by functions in the Math Library when errors are detected.
Users can define their own procedures for handling errors by including a
function named matherr in their programs, matherr must be of the form
described above. When an error occurs, a pointer to the exception structure x
will be passed to the user-supplied matherr function. This structure, which is
defined in the <math.h> header fde, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

};
The element type is an integer describing the type of error that has occurred,
from the following list of constants (defined in the header file):

DOMAIN Argument domain error.

SING Argument singularity.

OVERFLOW Overflow range error.

UNDERFLOW Underflow range error.

TLOSS Total loss of significance.

PLOSS Partial loss of significance.

The element name points to a string containing the name of the function that
incurred the error. The variables argl and arg2 are the arguments with which
the function was invoked, retval is set to the default value that will be returned
by the function unless the user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error message will be
printed, and errno will not be set.

If matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These

MATHERR(3M) MATHERR(3M)

procedures are also summarized in the table below. In every case, errno is set
to EDOM or ERANGE and the program continues.

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception *x;
{

switch (x->type) {
case DOMAIN:

/* change sqrt to return sqrt(-argl), not 0 */
if (!strcmp(x->name, "sqrt")) {

x->retval = sqrt(-x->arg1);
return (0); /* print message and set errno */

}
case SING:

/* all other domain or sing errors, print message and abort */
fprintf(stderr, "domain error in %s\n", x->name);
abort();

case PLOSS:
/* print detailed error message */
fprintf(stderr, "loss of significance in %s{%g) =

%g\n", x->name, x->arg1, x->retval);
return (1); /* take no other action */

}
return (0); /* all other errors, execute default procedure */

MATHERR (3M) MATHERR (3M)

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE

BESSEL:

y0,yl,yn(arg£0) M,-H
- - M, 0 •

EXP: - - H 0 - -

LOO, LOOIO:

(«rg < 0)

<«ri = 0)

M.-H

M.-H
- -

POW:

as% *• ncn-iii

0 •• non-po«

M.O -

±H 0

SQRT: M.O - -

GAMMA: M.H H -

HYPOT: - - H • -

SINH: - - ±H - -

COSH: - H -

SIN, COS, TAN: - - - - M, 0 m

ASIN, ACOS, ATAN2: M, 0 - - - -

ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed (EDOM error).
H HUGE is returned.
-H -HUGE is returned.
±H HUGE or -HUGE is returned.
0 0 is returned.

I

MEMORY (3C) MEMORY(3C)

NAME
memory: memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS
#include <memory.h>

char "memccpy (si, s2, c, n)
char "si, "s2;
int c, n;

char "memchr (s, c, n)
char "s;
int c, n;

int memcmp (si, s2, n)
char "si, *s2;
int n;

char "memcpy (si, s2, n)
char "si, *s2;
int n;

char "memset (s, c, n)
char "s;
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

memccpy copies characters from memory area s2 into s i , stopping after the first
occurrence of character c has been copied, or after n characters have been
copied, whichever comes first It returns a pointer to the character after the
copy of c in si , or a NULL pointer if c was not found in the first n characters of
s2.

memchr returns a pointer to the first occurrence of character c in the first n
characters of memory area s, or a NULL pointer if c does not occur.

memcmp compares its arguments, looking at the first n characters only, and
returns an integer less than, equal to, or greater than 0, according as s i is
lexicographically less than, equal to, or greater than s2.

memcpy copies n characters from memory area s2 to si . It returns si.

memset sets the first n characters in memory area s to the value of character c.
It returns s.

MEMORY (3C) MEMORY (3C)

For user convenience, all these functions are declared in the optional
<memory.h> header file.

CAVEATS
memcmp is implemented by using the most natural character comparison on the
machine. Thus, the sign of the value returned when one of the characters has its
high order bit set is not the same in all implementations and should not be relied
upon.

Character movement is performed differently in different implementations.
Thus, overlapping moves may yield surprises.

MKTEMP(3C) MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char "mktemp (template)
char "template;

DESCRIPTION
The mktemp utility replaces the contents of the string pointed to by template by
a unique file name and returns the address of template. The string in template
should look like a file name with six trailing Xs; mktemp replaces the Xs with a
letter and the current process ID. The letter is chosen so that the resulting name
does not duplicate an existing file.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

DIAGNOSTIC
The mktemp utility assigns to template the NULL string if it cannot create a
unique name.

CAVEAT
If called more than 26 times in a single process, mktemp starts recycling
previously used names.

MONITOR (3C) MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
WORD "buffer;
int bufsize, nfunc;

DESCRIPTION
An executable program created by cc -p automatically includes calls for
monitor with default parameters; monitor need not be called explicitly except
to gain fine control over profiling.

monitor is an interface to profil(2). lowpc and highpc are the addresses of two
functions; buffer is the address of a (user supplied) array of bufsize WORDs
(defined in the <mon.h> header file), monitor arranges to record a histogram
of periodically sampled values of the program counter, and of counts of calls of
certain functions, in the buffer. The lowest address sampled is that of lowpc
and the highest is just below highpc. lowpc may not equal 0 for this use of
monitor. At most nfunc call counts can be kept; only calls of functions
compiled with the profiling option -p of cc(l) are recorded.

For the results to be significant, especially where there are small, heavily used
routines, it is suggested that the buffer be no more than a few times smaller than
the range of locations sampled.

To profile the entire program, it is sufficient to use:

extern etext;

monitor ((int (*)())2, &etext, buf, bufsize, nfunc);

etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results, use

monitor ((int (*)())0, 0, 0,0, 0);

prof (I) can then be used to examine the results.

The name of the file written by monitor is controlled by the environment
variable PROFDIR. If PROFDIR does not exist, mon.out is created in the current
directory. If PROFDIR exists but has no value, monitor does not do any
profiling and creates no output file. Otherwise, the value of PROFDIR is used as
the name of the directory in which to create the output file. If PROFDIR is

MONITOR (3C) MONITOR (3C)

dirname, then the file written is dirname/pid.mon.out, where pid is the
program's process ID. (When monitor is called automatically by compiling via
cc -p, the file created is dirname/pid.progname, where progname is the name of
the program.)

FILES
mon.out

SEE ALSO
cc(l), prof(l), profil(2), end(3C).

BUGS
The "dirname/pid.mon.oul" form does not work; the
"dirname/pid.progname" form (automatically called via cc -p) does work.

NDBM(3X) NDBM(3X)

NAME
dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,
dbm_nextkey, dbm_error, dbm_clearerr - database subroutines

SYNOPSIS
#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;

} datum;

DBM •dbm_open(file, flags, mode)
char *file;
int flags, mode;

void dbm_close(db)
DBM *db;

datum dbm_fetch(db, key)
DBM *db;
datum key;

int dbm_store(db, key, content, flags)
DBM *db;
datum key, content;
int flags;

int dbm_delete(db, key)
DBM *db;
datum key;

datum dbm firstkey(db)
DBM *db;

datum dbm_nextkey(db)
DBM *db;

int dbm_error(db)
DBM *db;

int dbm_clearerr(db)
DBM *db;

DESCRIPTION
These functions maintain key/content pairs in a database. The functions will
handle very large (a billion blocks) databases and will access a keyed item in

NDBM(3X) NDBM(3X)

one or two file system accesses. This package replaces, and is incompatible
with, the earlier dbm(3x) library, which managed only a single database.

keys and contents are described by the datum typedef. A datum specifies a
string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal
ASCII strings, are allowed. The database is stored in two files. One file is a
directory containing a bit map and has .dir as its suffix. The second file
contains all u3ta 8Ru uSS aS its suffix.

Before a database can be accessed, it must be opened by dbmopen. This opens
and/or creates the files file .dir and file .pag depending on the flags parameter
[see open (2)].

Once open, the data stored under a key is accessed by dbm Jetch and data is
placed under a key by dbmstore. The flags field can be either DBMINSERT
or DBMREPLACE. DBM_INSERT inserts only new entries into the database
and does not change an existing entry with the same key. DBM REPLACE
replaces an existing entry if it has the same key. A key (and its associated
contents) is deleted by dbm delete. A linear pass through all keys in a database
can be made, in an (apparently) random order, by use of dbmJirstkey and
dbmnextkey. dbm Jirstkey returns the first key in the database, dbmnextkey
returns the next key in the database. This code traverses the database:

for key = dbm_firstkey(db); key .dptr 1= NULL; key = dbmnextkey(db)

dbm error returns non-zero when an error has occurred reading or writing the
database, dbm clearerr resets the error condition on the named database.

SEE ALSO
dbm(3X).

DIAGNOSTICS
All functions that return an int indicate errors with negative values. A zero
return indicates no error condition. Routines that return a datum indicate errors
with a null (0) dptr. If, when dbm store is called with a flags value of
DBM INSERT, it finds an existing entry with the same key, it returns 1.

WARNINGS
Hie .pag file will contain holes so that its apparent size is about four times its
actual content. Such a file cannot be copied by normal means (cp, cat, tp, tar,
ar) without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is
changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block
size (currently 4096 bytes). Moreover all key/content pairs that hash together

NDBM(3X) NDBM(3X)

NAME
dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,
dbm_nextkey, dbm_error, dbm_clearerr - database subroutines

SYNOPSIS
#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;

} datum;

DBM *dbm_open(file, flags, mode)
char "file;
int flags, mode;

void dbm_c!ose(db)
DBM *db;

datum dbm_fetch(db, key)
DBM *db;
datum key;

int dbm_store(db, key, content, flags)
DBM *db;
datum key, content;
int flags;

int dbm_delete(db, key)
DBM *db;
datum key;

datum dbm firstkey(db)
DBM *db;

datum dbm nextkey(db)
DBM *db;

int dbm_error(db)
DBM *db;

int dbm_clearerr(db)
DBM *db;

DESCRIPTION
These functions maintain key/content pairs in a database. The functions will
handle very large (a billion blocks) databases and will access a keyed item in

NDBM(3X) NDBM(3X)

one or two file system accesses. This package replaces, and is incompatible
with, the earlier dbm(3x) library, which managed only a single database.

keys and contents are described by the datum typedef. A datum specifies a
string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal
ASCII strings, are allowed. The database is stored in two files. One file is a
directory containing a bit map and has .dir as its suffix. The second file
/ - . o n t (| 1 n i ' n i l / I n t n o n i l V * n n i i n n nr. . h i [" I • J " f i V
v O i i u u i i a A L L U A U I a l i u n a 2 > * p a £ A O I U U I I I I A .

Before a database can be accessed, it must be opened by dbm open. This opens
and/or creates the files file.dir and file.pag depending on the flags parameter
[see open (2)].

Once open, the data stored under a key is accessed by dbm Jetch and data is
placed under a key by dbm store. The flags field can be either DBM_INSERT
or DBM REPLACE. DBM INSERT inserts only new entries into the database
and does not change an existing entry with the same key. DBM_REPLACE
replaces an existing entry if it has the same key. A key (and its associated
contents) is deleted by dbm delete. A linear pass through all keys in a database
can be made, in an (apparently) random order, by use of dbm Jirstkey and
dbm nextkey. dbm Jirstkey returns the first key in the database, dbm nextkey
returns the next key in the database. This code traverses the database:

for key = dbm_firstkey(db); key .dptr 1= NULL; key = dbmnextkey(db)

dbm error returns non-zero when an error has occurred reading or writing the
database, dbmclearerr resets the error condition on the named database.

SEE ALSO
dbm(3X).

DIAGNOSTICS
All functions that return an int indicate errors with negative values. A zero
return indicates no error condition. Routines that return a datum indicate errors
with a null (0) dptr. If, when dbm store is called with a flags value of
DBM_INSERT, it finds an existing entry with the same key, it returns 1.

WARNINGS
The .pag file will contain holes so that its apparent size is about four times its
actual content. Such a file cannot be copied by normal means (cp, cat, tp, tar,
ar) without filling in the holes.
dptr pointers returned by these subroutines point into static storage that is
changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block
size (currently 40% bytes). Moreover all key/content pairs that hash together

NDBM(3X) NDBM(3X)

must fit on a single block, dbm store will return an error in the event that a
disk block fills with inseparable data.

dbm delete does not physically reclaim file space, although it does make it
available for reuse.

The order of keys presented by dbmJirstkey and dbm nexlkey depends on a
hashing function, not on anything interesting.

NLIST(3C) NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include <nlist.h>

int nlist (filename, nl)
char ^filename;
struct nlist *nl;

DESCRIPTION
nlist examines the name list in the executable file whose name is pointed to by
filename and selectively extracts a list of values and puts them in the array of
nlist structures pointed to by nl. The name list nl consists of an array of
structures containing names of variables, types, and values. The list is
terminated with a null name; that is, a null string is in the name position of the
structure. Each variable name is looked up in the name list of the file. If the
name is found, the type and value of the name are inserted in the next two
fields. The type field will be set to 0 unless the file was compiled with the -g
option. If the name is not found, both entries are set to 0. See a.out(4) for a
discussion of the symbol table structure.

This function is useful for examining the system name list kept in the file /unix.
In this way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(4).

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or if it does not contain a
valid name list.

nlist returns -1 upon error; otherwise, it returns 0.

NOTES
The <nlist.h> header file is automatically included by <a.out.h> for
compatibility. However, if the only information needed from <a.out.h> is for
use of nlist, then including <a.out.h> is discouraged. If <a.out.h> is included,
the line "#undef n_name" may need to follow it.

I

NLSGETCALL(3N) NLSGETCALL(3N)

NAME
nlsgetcall - get client's data passed through the listener

SYNOPSIS
#include <sys/tiuser.h>

struct t_call *nlsgetcall(fd);
int fd;

DESCRIPTION
Nlsgetcall allows server processes started by the listener process to access the
client's tcall structure [that is, the sndcall argument of (connect (3N)].

The t call structure returned by nlsgetcall can be released by using t Jree(3N).

Nlsgetcall returns the address of an allocated t call structure or NULL if a t_call
structure cannot be allocated. If the t alloc succeeds, undefined environment
variables are indicated by a negative len field in the appropriate netbuf
structure. A len field of zero in the netbuf structure is valid and means that the
original buffer in the listener's t call structure was NULL.

FILES
/usr/lib/libnsl_s.a
/usr/lib/libnsl.a

SEE ALSO
nlsadmin(lM), getenv(3), t_connect(3N), t_alloc(3N), t_free(3N), t_error(3N).

DIAGNOSTICS
A NULL pointer is returned if t_alloc cannot allocate a t call structure. Further
error information can be found in t errno. Undefined environment variables
are indicated by a negative length field (len) in the appropriate netbuf structure.

CAVEATS
The listener process limits the amount of user data (udata) and options data
(opt) to 128 bytes each. Address data addr is limited to 64 bytes. If the original
data was longer, no indication of overflow is given.

NOTES
Server processes must call t_sync (3N) before calling nlsgetcall (3N).

WARNING
The len field in the netbuf structure is defined as being unsigned. In order to
check for error returns, it should first be cast to an integer.

NLS PROVIDER (3N) NLSPROVIDER(3N)

NAME
nlsprovider - get name of transport provider

SYNOPSIS
char *nlsprovider();

DESCRIPTION
Nlsprovider returns a pointer to a null terminated character string that contains
the name of the transport provider as placed in the environment by the listener
process. If the variable is not defined in the environment, a NULL pointer is
returned.

The environment variable is available only to server processes started by the
listener process.

SEE ALSO
nlsadmin(lM).

DIAGNOSTICS
If the variable is not defined in the environment, a NULL pointer is returned.

FILES
/usr/lib/libnsl.a
/usrAib/libnsl_s.a

NLSREQUEST(3N) NLS REQUEST (3N)

NAME
nlsrequest - format and send listener service request message

SYNOPSIS
#include <listen.h>

int nlsrequest(fd, servicecode);
int fd;
char "service code;

extern int nlslog, t errno;
extern char " nlsrmsg;

DESCRIPTION
Given a virtual circuit to a listener process (fd) and a service code of a server
process, nlsrequest formats and sends a service request message to the remote
listener process, requesting that it start the given service. Nlsrequest waits for
the remote listener process to return a service request response message, made
available to the caller in the static, null-terminated data buffer pointed to by
jilsrmsg. The service request response message includes a success or failure
code and a text message. The entire message can be printed.

FILES
/usr/lib/libnsl.a
/usr/lib/libnsl_s.a

SEE ALSO
nlsadmin(lM), t_error(3).

DIAGNOSTICS
The success or failure code is the integer return code from nlsrequest. Zero
indicates success. Negative values such as the following indicate nlsrequest
failures:

-1 Error encountered by nlsrequest, see t_errno.

Postive values are error return codes from the listener process. Mnemonics for
these codes are defined in listen.h.

2 Request message not interpretable.

3 Request service code unknown.

4 Service code known, but currently disabled.

If non-null, jilsrmsg contains a pointer to a static, null-terminated character
buffer containing the service request response message. Note that both
jilsrmsg and the data buffer are overwritten by each call to nlsrequest.

NLSREQUEST(3N) NLSREQUEST(3N)

If _nlslog is non-zero, nlsrequest prints error messages on stderr. Initially,
jilslog is zero.

WARNING
Nlsrequest does not always ensure that the remote server process has been
successfully started. If the process has not been started, nlsrequest returns with
no indication of an error, and the caller receives notification of a disconnect
event through a T LOOK error before or during the first t_snd or t_rcv call.

OCURSE(3X) OCURSE(3X)

NAME
ocurse - optimized screen functions

SYNOPSIS
#include <ocurse.h>

DESCRIPTION
Ocurse is the old Berkeley curses library that uses termcap (4). New programs
should use curses(3X).

These functions optimally update the screen.

Each curses program begins by calling initscr and ends by calling endwin.

Before a program can change a screen, it must specify the changes. It stores
changes in a variable of type WINDOW by calling curses functions with the
variable as argument. Once the variable contains all the changes desired, the
program calls wrefresh to write the changes to the screen.

Most programs need only a single WINDOW variable. Ocurse provides a
standard WINDOW variable for this case and a group of functions that operate
on i t The variable is called stdscr; its special functions have the same names as
the general functions minus the initial w.

FUNCTIONS
addch(ch)
addstr(str)
box(win,vert,hor)
crmode()
clearQ
clearok(scr,boolf)
clrtobot()
clrtoeol()
delcho
deleteln()
delwin(win)
echo()
endwin()
erase()
getchQ
getcap(name)
getstr(str)
gettmode()
getyx(win,y,x)

Add a character to stdscr.
Add a string to stdscr.
Draw a box around a window.
Set cbreak mode.
Clear stdscr.
Set clear flag for scr.
Clear to bottom on stdscr.
Clear to end of line on stdscr.
Delete a character.
Delete a line.
Delete win.
Set echo mode.
End window modes.
Erase stdscr.
Get a char through stdscr.
Get terminal capability name.
Get a string through stdscr.
Get tty modes.
Get y and x coordinates.

OCURSE(3X) OCURSE(3X)

inch()
initscr()
insch(c)
insertln()
leaveok(win.boolf)
Ion gname(termbuf,name)

mAva/17 V̂ L / T V \ J) A J

mvcur(lasty,lastx,newy,newx)
Actually move cursor.

newwin(lines,cols,begin_y,begin_x)
Create a new window.

Get char at current y and x coordinates.
Initialize screens.
Insert a char.
Insert a line.
Set leave flag for win.
Get long name from termbuf.
Move to y and x coordinates on stdscr.

nl()
nocrmode()
noecho()
nonI()
noraw()
overlay(win 1 ,win2)
overwrite(win 1, win2)
printw(fmt,argl,arg2,...)
raw()
refresh()
resetty()
savetty()
BR scanw (fmt,argl,arg2,...)
scroll(win)
scrollok(win,boolf)
setterm(name)
standend()

Set newline mapping.
Unset cbreak mode.
Unset echo mode.
Unset newline mapping.
Unset raw mode.
Overlay winl on win2.
Overwrite winl on top of win2.
Printf on stdscr.
Set raw mode.
Make current screen look like stdscr.
Reset tty flags to stored value.
Store current tty flags.
Scanf through stdscr.
Scroll win one line.
Set scroll flag.
Set term variables for name.
End standout mode.
Start standout mode. standout()

subwin(win, lines, cols,begin_y,begin_x)
Create a subwindow.

touchwin(win)
unctrl(ch)
waddch(win.ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win.c)
wdeleteln(win)

Change all of win.
Printable version of ch.
Add char to win.
Add string to win.
Clear win.
Clear to bottom of win.
Clear to end of line on win.
Delete char from win.
Delete line from win.

OCURSE(3X) OCURSE(3X)

werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsertln(win)
wmove(win,y,x)
wprintw(win,fmt,argl ,arg2,.

wrefresh(win)
wscanw(win, fmt, argl ,arg2,.

wstandend(win)
wstandoutfwin)

Erase win.
Get a char through win.
Get a string through win.
Get char at current y and x coordinates in win.
Insert char into win.
Insert line into win.
Set current y and x coordinates on win.

Printf on win.
Make screen look like win.

•)
Scanf through win.
End standout mode on win.
Start standout mode on win.

FILES
/usr/include/ocurse.h

/usr/lib/libocurse.a

/usr/lib/libtermcap.a

SEE ALSO

header file

curses library

termcap library, used by curses

stty(2), otermcap(3X), setenv(3), termcap(4).

\

OTERMCAP(3X) OTERMCAP(3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent operations

SYNOPSIS
char PC;
char *BC;
char "UP;
short ospeed;

tgetent(bp, name)
char "bp, •name;

tgetnum(id)
char "id;

tgetflag(id)
char "id;

char *
tgetstr(id, area)
char "id, ""area;

char »
tgoto(cmstr, destcol, destline)
char "cmstr;

tputs(cp, affcnt, outc)
register char "cp;
int affcnt;
int ("outc)();

DESCRIPTION
These functions extract and use information from terminal descriptions that
follow the conventions in termcapi4). The functions perform only basic screen
manipulation: they find and output specified terminal function strings and
interpret the cm string. The ocurse(3X) routine describes a screen updating
package built on termcap.

The tgetent routine finds and copies a terminal description. The name argument
is the name of the description; bp points to a buffer to hold the description. The
routine passes bp to the other termcap functions; the buffer must remain
allocated until the program finishes with the termcap functions.

OTERMC AP (3X) OTERMC AP (3X)

Tgetent uses the TERM and TERMCAP environment variables to locate the
terminal description.

• If TERMCAP isn't set or is empty, tgetent searches for name in
letcltermcap.

• If TERMCAP contains the full pathname of a file (any string that
begins with /) , tgetent searches for name in that file.

• If TERMCAP contains any string that does not begin with /, and TERM
is not set or matches name, tgetent copies the TERMCAP string.

• If TERMCAP contains any string that does not begin with /, and TERM
does not match name, tgetent searches for name in letcltermcap.

The tgetent routine returns -1 if it cannot open the terminal capability file; it
a „„„„„. — — — i i^iuiiid u 11 iL ^aiinwi miu aii m u j 1U1 riurrte, 11 l^iunid i ÛAJH a u t t c ^ .

The tgetnum routine returns the value of the numeric capability whose name is
id; It returns -1 if the terminal lacks the specified capability or if it is not a
numeric capability.

The tgetflag routine returns 1 if the terminal has boolean capability whose name
is id; it returns 0 if it does not or it is not a boolean capability.

The tgetstr routine copies and interprets the value of the string capability named
by id. It expands instances in the string of \ and It leaves the expanded string
in the buffer .ul indirectly pointed to by area and leaves the buffer's direct
pointer pointing to the end of the expanded string. For example:

tgetstrffcl", &ptr);

where ptr is a character pointer, not an array name. The tgetstr routine returns a
(direct) pointer to the beginning of the string.

The tgoto routine interprets the % escapes in a cm string. It returns cmstr with
the % sequences changed to the position indicated by destcol and destline. This
function must have the external variables BC and UP set to the values of the be
and up capabilities; if the terminal lacks the capability, set the external variable
to NULL. If tgoto cannot interpret all the % sequences in cm, it returns OPS.

The tgoto routine avoids producing characters that might be misinterpreted by
the terminal interface. If expanding a % sequence would produce a null or
Control-D, the function tries to send the cursor to the next line or column and
use BC or UP to move to the correct location. Note that tgoto does not avoid

- 2 -

OTERMC AP (3X) OTERMC AP (3X)

producing tabs; a program must disable the TAB3 feature of the terminal
interface [termio (T)}. This is a good idea anyway: some terminals use the tab
character as a nondestructive space.

The tputs routine directs the output of a string returned by tgetstr or tgoto. This
function must have the external variable PC set to the value of the pc
capability; if the terminal lacks the capability, set the external variable to null.
The tputs routine interprets any delay at the beginning of the string. The cp
argument is the string to be output; affcnt is the number of lines affected by the
action (1 if "number of lines affected'' doesn't mean anything); and outc points
to a function that takes a single char argument and outputs it, such as putchar.

FILES
/usr/lib/libotermcap.a library
/etc/termcap database

SEE ALSO
ex(l), ocurse(3X), termcap(4).

PERROR (3C) PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
void perror (s)
char *s;

extern int errno;

extern char *sys_errlist[];

extern int sys_nerr;

DESCRIPTION
perror produces a message on the standard error output, describing the last
error encountered during a call to a system or library function. The argument
string s is printed first, then a colon and a blank, then the message and a
newline. (However, if s="" the colon is not printed.) To be of most use, the
argument string should include the name of the program that incurred the error.
The error number is taken from the external variable errno, which is set when
errors occur but not cleared when non-erroneous calls are made.
To simplify variant formatting of messages, the array of message strings
sys errlist is provided; errno can be used as an index into this table to get the
message string without the newline. sysjnerr is the number of messages in the
table; it should be checked because new error codes may be added to the system
before they are added to the table.

SEE ALSO
intro(2).

I

PLOT(3X) (Category 2 Support) PLOT(3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
openpl ()

erase ()

label (s)
char *s;

line (xl, yl , x2, y2)
int xl , yl , x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, x8, yO, x i , yl)
int x, y, xO, yO, x l , yl;

move (x, y)
int x, y;

cont (x, y)
int x, y;

point (x, y)
int x, y;

linemod (s)
char *s;

space (xO, yO, xl , y l)
int xO, yO, xl, yl;

closepl ()

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent
manner. The space routine must be used before any of these functions to
declare the amount of space necessary [see plot (4)]. The openpl routine must
be used before any of the others to open the device for writing. The closepl
routine flushes the output

The circle routine draws a circle of radius r with center at the point (x, y).

The arc routine draws an arc of a circle with center at the point (x, y) between
the points (xO, yO) and (xl, yl).

String arguments to label and linemod are terminated by nulls and do not
contain newlines characters.

PLOT(3X) (Category 2 Support) PLOT(3X)

See plot (4) for a description of the effect of the remaining functions.

The library files listed below provide several flavors of these routines.

FILES

SEE ALSO
grdpji(ivj), ipiui^iuj, piuntj.

WARNINGS
In order to compile a program containing these functions in file.c it is necessary
to use "cc file.c -lplot".

In order to execute it, it is necessary to use "a.out I tplot''.

The above routines use <stdio.h>, which causes them to increase the size of
programs, not otherwise using standard I/O more than might be expected.

/usr/lib/libplot.a

/usr/lib/lib300.pa

/usr/lib/lib300.a

/usr/lib/lib450.a

/usr/lib/Iib4014.a

/usr/lib/libgta

produces output for tplot(1G) filters

for TEKTRONIX 4014

for Convergent Technologies Graphics Terminal

forDASI 300

forDASI 300s

for DASI450

POPEN(3S) POPEN(3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
#include <stdio.h>

FILE * popen (command, type)
char * command, •type;

int pclose (stream)
FILE •stream;

DESCRIPTION
The popen routine creates a pipe between the calling program and the
command to be executed. The arguments to popen are pointers to null-
terminated strings. The command argument consists of a shell command line:
type is an I/O mode, either r for reading or w for writing. The value returned is
a stream pointer such that one can write to the standard input of the command,
if the I/O mode is w, by writing to the fde stream', and one can read from the
standard output of the command, if the I/O mode is r, by reading from the file
stream.

A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command can be used as an input filter
and a type w as an output filter.

EXAMPLE
A typical call can be the following:

char *cmd = "Is *.c";
FILE *ptr;
if ((ptr = popen(cmd, "r")) != NULL)

while (fgets(buf, n, ptr) != NULL)
(void) printf ("%s ",buf);

This prints in stdout [see s7dio(3S)] all the file names in the current directory
that have a ".c" suffix.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), stdio(3S), system(3S).

POPEN(3S) POPEN(3S)

DIAGNOSTICS
The popen routine returns a NULL pointer if files or processes cannot be
created.

The pclose routine returns -1 if stream is not associated with a pope nod
command.

WARNING
If the original and popentA processes concurrently read or write a common file,
neither should use buffered I/O because the buffering gets all mixed up.
Problems with an output filter can be forestalled by careful buffer flushing; for
example, with fflush [see fclose (3S)].

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf (format , arg . . .)
char *format;

int fprintf (stream, format , arg . . .)
FILE ^stream;
char ^format;

int sprintf (s, format [, arg] . . .)
char *s, *format;

DESCRIPTION
printf places output on the standard output stream stdout. fprintf places output
on the named output stream, sprintf places "output," followed by the null
character (\0), in consecutive bytes starting at *s\ it is the user's responsibility
to ensure that enough storage is available. Each function returns the number of
characters transmitted (not including the \0 in the case of sprintf), or a negative
value if an output error was encountered.

Each of these functions converts, formats, and prints its arg s under control of
the format. The format is a character string that contains two types of objects:
plain characters, which are simply copied to the output stream, and conversion
specifications, each of which results in fetching of zero or more args. The
results are undefined if there are insufficient args for the format. If the format
is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

• Zero or more flags, which modify the meaning of the conversion
specification.

• An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than the field width, it will be
padded on the left (or right, if the left-adjustment flag (-), described
below, has been given) to the field width. The padding is with blanks
unless the field width digit string starts with a zero, in which case the
padding is with zeros.

• A precision that gives the minimum number of digits to appear for the
d, i, o, u, x, or X conversions, the number of digits to appear after the
decimal point for the e, E, and f conversions, the maximum number of

PRINTF(3S) PRINTF(3S)

significant digits for the g and G conversion, or the maximum number
of characters to be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit string; a null
digit string is treated as zero. Padding specified by the precision
overrides the padding specified by the field width.

• An optional 1 (ell) specifying that a following d, i, o, u, x, or X
conversion character applies to a long integer arg. An I before any
other conversion character is ignored.

• A character that indicates the type of conversion to be applied.

A field width or precision or both can be indicated by an asterisk (*) instead of
a digit string. In this case, an integer arg supplies the field width or precision.
The arg that is actually converted is not fetched until the conversion letter is
seen, so the arg s specifying field width or precision must appear before the arg
(if any) to be converted. A negative field width argument is taken as a (-) flag
followed by a positive field width. If the precision argument is negative, it will
be changed to zero.

The flag characters and their meanings are:

The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+ or

blank If the first character of a signed conversion is not a sign, a blank will
be prefixed to the result. This implies that if the blank and + flags
both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an alternate
form. For c, d, i, s, and u conversions, the flag has no effect. For o
conversion, it increases the precision to force the first digit of the
result to be a zero. For x or X conversion, a non-zero result will have
Ox or OX prefixed to i t For e, E, f, g, and G conversions, the result
will always contain a decimal point, even if no digits follow the point
(normally, a decimal point appears in the result of these conversions
only if a digit follows it). For g and G conversions, trailing zeroes
will not be removed from the result (which they normally are).

The conversion characters and their meanings are:

d,i,o,u,x,X
The integer arg is converted to signed decimal (d or i), unsigned
octal, (o), decimal (u), or hexadecimal notation (x or X), respectively;
the letters abcdef are used for x conversion and the letters ABCDEF

PRINTF(3S) PRINTF(3S)

for X conversion. The precision specifies the minimum number of
digits to appear; if the value being converted can be represented in
fewer digits, it will be expanded with leading zeroes. The default
precision is 1. The result of converting a zero value with a precision
of zero is a null string.

f The float or double arg is converted to decimal notation in the style
0]ddd.ddd, where the number of digits after the decimal point is equal
to the precision specification. If the precision is missing, six digits
are output; if the precision is explicitly 0, no decimal point appears.

e,E The float or double arg is converted in the style [-]d.ddde±dd, where
there is one digit before the decimal point and the number of digits
after it is equal to the precision; when the precision is missing, six
digits are produced; if the precision is zero, no decimal point appears.
The E format code will produce a number with E instead of e
introducing the exponent. The exponent always contains at least two
digits.

g,G The float or double arg is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted:
style e will be used only if the exponent resulting from the conversion
is less than -4 or greater than the precision. Trailing zeroes are
removed from the result; a decimal point appears only if it is followed
by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and characters from
the string are printed until a null character (\0) is encountered or the
number of characters indicated by the precision specification is
reached. If the precision is missing, it is taken to be infinite, so all
characters up to the first null character are printed. A NULL value for
arg will yield undefined results.

% Print a %; no argument is converted.

- 3 -

PRINTF(3S) PRINTF(3S)

In printing floating point types (float and double), if the exponent is 0x7FF and
the mantissa is not equal to zero, then the output is

[-JNaNOxdddddddd

where Oxdddddddd is the hexadecimal representation of the leftmost 32 bits of
the mantissa. If the mantissa is zero, the output is

[±]inf.

In no case does a non-existent or small field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters generated by printf and
fprintf are printed as iiputc(3S) had been called.

EXAMPLES
To print a date and time in the following form: Sunday, July 3, 10:02, where
weekday and month are pointers to null-terminated strings:

printf ("%s, %s %i, %d:%.2d", weekday, month, day, hour, min);

To print n to 5 decimal places:

printffpi = %.5f, 4 * atan(1.0));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

PUTC(3S) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (c, stream)
int c;
FILE "stream;

int putchar (c)
int c;

int fputc (c, stream)
int c;
FILE "stream;

int putw (w, stream)
int w;
FILE "stream;

DESCRIPTION
putc writes the character c onto the output stream (at the position where the file
pointer, if defined, is pointing), putchar(c) is defined as putc(c, stdout). putc
and putchar are macros.
fputc behaves like putc, but is a function rather than a macro, fputc runs more
slowly than putc, but it takes less space per invocation and its name can be
passed as an argument to a function.

putw writes the word (that is, integer) w to the output stream (at the position at
which the file pointer, if defined, is pointing). The size of a word is the size of
an integer and varies from machine to machine, putw neither assumes nor
causes special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S), setbuf(3S),
stdio(3S).

DIAGNOSTICS
On success, these functions (with the exception of putw) each return the value
they have written, [putw returns ferror (stream)]. On failure, they return the
constant EOF. This will occur if the file stream is not open for writing or if the
output file cannot grow. Because EOF is a valid integer, ferror(iS) should be
used to detect putw errors.

PUTC(3S) PUTC(3S)

C A V E A T S
Because it is implemented as a macro, putc evaluates a stream argument more
than once. In particular, putc(c, *f++); doesn't work sensibly, fputc should be
used instead.

Because of possible differences in word length and byte ordering, files written
using putw are machine-dependent, and cannot be read using getw on a
different processor.

PUTENV(3C) PUTENY(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char "string;

DESCRIPTION
string points to a string of the form name=value. putenv makes the value of the
environment variable name equal to value by altering an existing variable or
creating a new one. In either case, the string pointed to by string becomes part
of the environment, so altering the string will change the environment. The
space used by string is no longer used once a new string-defining name is
passed to putenv.

c c r * T P / I UL.L. AJLiOU
exec(2), getenv(3C), malloc(3C), environ(5).

DIAGNOSTICS
putenv returns non-zero if it was unable to obtain enough space via malloc for
an expanded environment; otherwise, it returns zero.

WARNINGS
putenv manipulates the environment pointed to by environ, and can be used in
conjunction with getenv. However, envp (the third argument to main) is not
changed.

This routine uses malloc (3Q to enlarge the environment.

After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument,
then exit from the calling function while string is still part of the environment.

PUTPWENT (3C) PUTPWENT (3C)

NAME
pulpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (p, f)
struct passwd *p;
FILE *f;

DESCRIPTION
The putpwent routine is the inverse of getpwent (3C). Given a pointer to a
passwd structure created by getpwent (or getpwuid or getpwnam), putpwent
writes a line on the stream/, which matches the format of /etc/passwd.

SEE ALSO
getpwent(3C), getspent(3X), putspent(3X).

DIAGNOSTICS
The putpwent routine returns non-zero if an error is detected during its
operation; otherwise it returns zero.

WARNING
If a program not otherwise using standard I/O uses this routine, the size of the
program increases more than might be expected.

PUTS(3S) PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE * stream;

DESCRIPTION
puts writes the null-terminated string pointed to by s, followed by a newline
character, to the standard output stream stdout.

fputs writes the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character.

SEE ALSO

ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S), stdio(3S).

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write
on a file that has not been opened for writing.

NOTES
puts appends a newline character while fputs does not.

I

i

PUTSPENT(3X) PUTSPENT (3X)

NAME
putspent - write shadow password fde entry

SYNOPSIS
#include <shadow.h>

int putspent (p, fp)
struct spwd *p;
FILE *fp;

DESCRIPTION
The putspent routine is the inverse of getspent (iX). Given a pointer to a spwd
structure created by the getspent routine (or the getspnam routine), the putspent
routine writes a line on the stream f p , which matches the format of /etc/shadow.

If the sp min, s p m a x , or sp_lstchg field of the spwd structure is -1, the
corresponding /etc/shadow field is cleared.

SEE ALSO
getpwent(3C), putpwent(3C), getspent(3X).

DIAGNOSTICS
The putspent routine returns non-zero if an error was detected during its
operation; otherwise, it returns zero.

WARNING
If a program not otherwise using standard I/O uses this routine, the size of the
program increases more than might be expected.

This routine is for internal use only; compatibility is not guaranteed.

I

QSORT(3C) QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort ((char *) base, nel, sizeof (*base), compar)
unsigned nel;
int ("comparX);

DESCRIPTION
qsort is an implementation of the quicker-sort algorithm. It sorts a table of data
in place.

base points to the element at the base of the table, nel is the number of
elements in the table, compar is the name of the comparison function, which is
called with two arguments that point to the elements being compared. The
function must return an integer giving the resuiis of the comparison: a negative,
0, or positive return indicates to the sort that the first operand is less than, equal
to, or greater than the second operand, respectively.

NOTES
The pointer to the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The order in the output of two items which compare as equal is unpredictable.

SEE ALSO
sort(l), bsearch(3C), lsearch(3Q, string(3C).

I

RAND(3C) RAND(3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int r a n d ()

vo i d s r a n d (seed)

un s i gned seed;

DESCRIPTION
The rand routine uses a multiplicative congruential random-number generator
with period 232 that returns successive pseudo-random numbers in the range
from0to2 l s- l .

The srand routine can be called at any time to reset the random-number
generator to a random starting point. The generator is initially seeded with a
value of 1.

NOTES
The spectral properties of rand are limited. The drand48(3C) routine provides
a much better, though more elaborate, random-number generator.

SEE ALSO
drand48(3C).

I

RCMD (3) (CTIX Internetworking) RCMD(3)

NAME

rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
rcmd (ahost, inport, locuser, rem user, cmd, fd2p);
char ••ahost;
unsigned short inport;
char * loc user, *remuser, *cmd;
int *fd2p;
rresvport (port);
int ""port;
ruserok (rhost, super user, ruser, luser);
char *rhost;
l!li cnporncav •

char * ruser, *luser;

DESCRIPTION
The rcmd routine is used by the super-user to execute a command on a remote
machine using an authentication scheme based on reserved port numbers. The
rresvport routine returns a descriptor to a socket with an address in the
privileged port space. The ruserok routine is used by servers to authenticate
clients requesting service with rcmd. All three functions are present in the
same file and are used by the rshd(\M) server (among others).

The rcmd routine looks up the host * ahost using gethostbyname (3), returning -1
if the host does not exist; otherwise, *ahost is set to the standard name of the
host and a connection is established to a server residing at the well-known
Internet port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller
and given to the remote command as stdin and stdout. If fd2p is non-zero, an
auxiliary channel to a control process is set up, and a descriptor for it is placed
in *fd2p. The control process returns diagnostic output from the command
(unit 2) on this channel and accepts bytes on this channel as being CTIX signal
numbers, to be forwarded to the process group of the command, \ifd2p is 0, the
stderr (unit 2 of the remote command) is made the same as the stdout and no
provision is made for sending arbitrary signals to the remote process, although
you may be able to get its attention by using out-of-band data.

The protocol is described in rshd{\M).

RCMD(3) (CTLX Internetworking) RCMD(3)

The rresvport routine is used to obtain a socket with a privileged address bound
to it This socket is suitable for use by remd and several other routines.
Privileged addresses consist of a port in the range 0 to 1023. Only the super-
user can bind an address of this sort to a socket.

The r user ok routine takes a remote host's name, as returned by a
gethostbyname (3) routine, two user names, and a flag indicating if the local
user's name is the super-user. It then checks the files /etc/hosts.equiv and,
possibly, .rhosts in the current working directory (normally the local user's
home directory) to see if the request for service is allowed. A 1 is returned if
the machine name is listed in the hosts.equiv file or if the host and remote user
name are found in the .rhosts file; otherwise, ruserok returns 0. If the superuser
flag is 1, the checking of the hostequiv file is bypassed.

SEE ALSO
rcmd(l), rexecd(lM), rlogin(l), rlogind(lM), rshd(lM), rexec(3).

BUGS
There is no way to specify options to the socket call that remd makes.

REGCMP (3X) REGCMP (3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char * regcmp (stringl [, string2, ...], (char *)0)
char •stringl, *string2,
char •regex (re, subject[, retO, ...])
char "re, •subject, •retO,

extern char • loci;

DESCRIPTION
regcmp compiles a regular expression (consisting of the concatenated
arguments) and returns a pointer to the compiled form, malloc (3C) is used to
create space for the compiled form. It is the user's responsibility to free
unneeded space so allocated. A NULL return from regcmp indicates an
incorrect argument regcmp (I) has been written to generally preclude the need
for this routine at execution time.

regex executes a compiled pattern against the subject string. Additional
arguments are passed to receive values back, regex returns NULL on failure or
a pointer to the next unmatched character on success. A global character
pointer loci points to where the match began, regcmp and regex were
mostly borrowed from the editor, ed(1); however, the syntax and semantics
have been changed slightly. The following are the valid symbols and their
associated meanings.

These symbols retain their meaning in ed{ 1).

Matches the end of the string; \n matches a newline.

Within brackets the minus means through. For example,
[a-z] is equivalent to [abed.. .xyz]. The - can appear as
itself only if used as the first or last character. For example,
the character class expression []-] matches the characters
] and -.

A regular expression followed by + means one or more
times. For example, [0-9]+ is equivalent to [0-9] [0-9]*.

{m} {m,} (m,u) Integer values enclosed in {} indicate the number of times
the preceding regular expression is to be applied. The value
m is the minimum number and u is a number, less than 256,
which is the maximum. If only m is present (for example,
{m}), it indicates the exact number of times the regular
expression is to be applied. The value {m,} is analogous to

-1 -

$

REGCMP (3X) REGCMP (3X)

{m,infinity}. The plus (+) and star (*) operations are
equivalent to {1,} and {0,} respectively.

The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+l)\h argument
following the subject argument. At most ten enclosed
regular expressions are allowed, regex makes its
assignments unconditionally.

Parentheses are used for grouping. An operator, for example,
*, +, {}, can work on a single character or a regular
expression enclosed in parentheses. For example,
(a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must, therefore,
i i „ \ n i—r L\ .„ u- i — .u 1 lie CK^upeu wiui a \ ^LioL-iouiMij lu uc uscu as u i t ins t i v^a.

EXAMPLES
This example matches a leading newline in the subject string pointed at by
cursor:

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regcmp(""\n", (char *)0)), cursor);
free(ptr);

This example matches through the string "Testing3" and returns the address of
the character after the last matched character (the "4"). The string "Testing3"
is copied to the character array retO:

char ret0[9];
char *newcursor, *name;

name = regcmp<"([A-Za-z][A-za-z0-9]{0,7})$0", (char *)0);
newcursor = regex(name, "012Testing345", retO);

This example applies a precompiled regular expression in file.i [see regcmp{\)]
against string:

char *string, *newcursor;

newcursor = regex(name, string);

These routines are kept in /lib/libPW. a.

(...)

REGCMP (3X) REGCMP (3X)

SEE ALSO
ed(l), regcmp(l), malloc(3C), regexp(5).

BUGS
The user program may run out of memory if regcmp is called iteratively
without freeing the vectors no longer required.

I

RESOLVER(3) (CTIX Internetworking) RESOLVER(3)

NAME
res_mkquery, res_send, res_init, dn_comp, dn_expand - resolver routines

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <reso!v.h>

res_mkquery(op, dname, class, type, data, datalen, newrr, buf, buflen)
int op;
char "dname;
int class, type;
char *data;
int datalen;
struct rrec *newrr;
char "buf;
int buflen;

res_send(msg, msglen, answer, anslen)
char *msg;
int msglen;
char "answer;
int anslen;

res_init()

dn_comp(exp_dn, compdn, length, dnptrs, lastdnptr)
char "expdn, "compdn;
int length;
char ""dnptrs, ""lastdnptr;

dn_expand(msg, eomorig, comp dn, expdn, length)
char "msg, "eomorig, *comp_dn, exp_dn;
int length;

DESCRIPTION
These routines are used for making, sending and interpreting packets to Internet
domain name servers. Global information that is used by the resolver routines is
kept in the variable res. Most of the values have reasonable defaults and can
be ignored. Options stored in res.options are defined in resolv.h and are as
follows. Options are a simple bit mask and are ORed in to enable.

RES_INIT True if the initial name server address and default domain
name are initialized (that is, res init has been called).

RESOLVER(3) (CTIX Internetworking) RESOLVER(3)

RESDEBUG

RES_AAONLY

RES_USEVC

RES STAYOPEN

RESIGNTC

RES_RECURSE

RES DEFNAMES

Print debugging messages.

Accept authoritative answers only, ressend will
continue until it finds an authoritative answer or finds an
error. Currently this is not implemented.

Use TCP connections for queries instead of UDP.

Used with RES_USEVC to keep the TCP connection open
between queries. This is useful only in programs that
regularly do many queries. UDP should be the normal
mode used.

Unused currently (ignore truncation errors, that is, don't
retry with TCP).

Set the recursion desired bit in queries. This is the
default. (res send does not do iterative queries and
expects the name server to handle recursion.)

Append the default domain name to single label queries.
This is the default.

resinit reads the initialization file, /etc/resolv.conf, to get the default domain
name and the Internet address of the initial hosts running the name server. If
the keyword usefile is present, no attempt is made to contact a name server, and
the /etc/hosts file is used. If the nameserver line does not exist, the host
running the resolver is tried. (The current domain name is determined
according to the following search scheme: first, res init checks the value of the
environment variable LOCALDOMAIN, and the value is used if this variable is
set; if there is no value for LOCALDOMAIN, res init checks the file
/etc/resolv.conf for a domain specification [see named (1M) and resolver(4)],
and the value is used if it can be obtained; if neither of the first two searches is
successful, res_init uses the value specified in the start-up file
/etc/rcopts/INET-DOMAIN if that file exists and contains a valid value.)

resjnkquery makes a standard query message and places it in buf.
res mkquery will return the size of the query or -1 if the query is larger than
buflen. op is usually QUERY but can be any of the query types defined in
nameser.h. dname is the domain name. If dname consists of a single label and
the RES_DEFNAMES flag is enabled (the default), dname will be appended with
the current domain name (determined in res init). newrr is currently unused
but is intended for making update messages.

RESOLVER(3) (CTIX Internetworking) RESOLVER(3)

ressend sends a query to name servers and returns an answer. It will call
res init if RESJNIT is not set, send the query to the local name server, and
handle timeouts and retries. The length of the message is returned or -1 if there
were errors.

dnexpand expands the compressed domain name comp dn to a full domain
name. Expanded names are converted to upper case, msg is a pointer to the
beginning of the message, exp dn is a pointer to a buffer of size length for the
result. The size of compressed name is returned or -1 if there was an error.

dn comp compresses the domain name exp dn and stores it in comp dn. The
size of the compressed name is returned or -1 if there were errors, length is the
size of the comp dn. dnptrs is a list of pointers to previously compressed names
in the current message. The first pointer points to to the beginning of the
message and the list ends with NULL, lastdnptr is a pointer to the end of the
array pointed to dnptrs. A side effect is to update the list of pointers for labels
inserted into the message by dn_comp as the name is compressed. If dnptr is
NULL, we don't try to compress names. If lastdnptr is NULL, we don't update
the list.

FILES
/etc/resolv.conf

SEE ALSO
named(lM), resolver(4).
CTIX Network Administrator's Guide.
CTIX Network Programmer's Primer.

(=

REXEC(3) (CTIX Intcrnetwoikwg) REXEC(3)

NAME
rexec - return stream to a remote command

SYNOPSIS
rexec (ahost, inport, user, passwd, cmd, fd2p);
char """ahost;
unsigned short inport;
char "user, "passwd, "cmd;
int *fd2p;

DESCRIPTION
rexec looks up the host *ahost using gethostbyname (3), returning -1 if the host
does not exist. Otherwise, *ahost is set to the standard name of the host If a
user name and password are both specified, then these are used to authenticate
to the foreign host; otherwise, the environment and then the user's .netrc file in
his home directory are searched for appropriate information. If all this fails, the
user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the
connection; it will normally be the value returned from the call
getnameserv("exec", "tcp") [see getservent(3)]. The protocol for connection
is described in rexecd(1M).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller
and given to the remote command as stdin and stdout. I f f d 2 p is non-zero, then
an auxiliary channel to a control process will be set up, and a descriptor for it
will be placed in *fd2p. The control process will return diagnostic output from
the command (unit 2) on this channel and will also accept bytes on this channel
as being CTIX signal numbers, to be forwarded to the process group of the
command. If fd2p is 0, then the stderr (unit 2 of the remote command) will be
made the same as the stdout and no provision is made for sending arbitrary
signals to the remote process, although you may be able to get its attention by
using out-of-band data.

SEE ALSO
rexecd(lM), rcmd(3), gethostbyname(3).

BUGS
There is no way to specify options to the socket call which rexec makes.

!

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer] . . .)
char "format;

int fscanf (stream, format [, pointer] . . .)
FILE * stream;
char "format;

int sscanf (s, format [, pointer] . . .)
char *s, "format;

DESCRIPTION
scarf reads from the standard input stream stdin. fscanf reads from the named
input stream, sscanf reads from the character string s. Each function reads
characters, interprets them according to a format, and stores the results in its
arguments. Each expects, as arguments, a control string format described
below, and a set of pointer arguments indicating where the converted input
should be stored. The results are undefined in that there are insufficient args
for the format. If the format is exhausted while args remain, the excess args
are simply ignored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string can contain:

1. White-space characters (blanks, tabs, newlines, or form-feeds) which,
except in two cases described below, cause input to be read up to the
next non-white-space character.

2. An ordinary character (not %), that must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character • , an optional numerical maximum
field width, an optional 1 (ell) or h indicating the size of the receiving
variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression was indicated by •. The suppression of assignment
provides a way of describing an input field that is to be skipped. An input field
is defined as a string of non-space characters; it extends to the next

SCANF(3S) SCANF(3S)

inappropriate character or until the field width, if specified, is exhausted. For
all descriptors except [and c, white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion codes
are legal:
% A single % is expected in the input at this point; no assignment is

done.

d A decimal integer is expected; the corresponding argument should be
an integer pointer.

u An unsigned decimal integer is expected; the corresponding argument
should be an unsigned integer pointer.

0 An octal integer is expected; the corresponding argument should be an
integer pointer.

x A hexadecimal integer is expected; the corresponding argument should
be an integer pointer.

1 An integer is expected; the corresponding argument should be an
integer pointer. It will store the value of the next input item interpreted
according to C conventions: a leading 0 implies octal; a leading Ox
implies hexadecimal; otherwise, decimal.

n Stores in an integer argument the total number of characters (including
white space) that have been scanned so far since the function call. No
input is consumed.

e,f,g A floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a
decimal point, followed by an optional exponent field consisting of an
E or an e, followed by an optional +, -, or space, followed by an
integer.

s A character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to
accept the string and a terminating \0, which will be added
automatically. The input field is terminated by a white-space
character.

c A character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is suppressed in

- 2 -

SCANF(3S) SCANF(3S)

this case; to read the next non-space character, use %ls. If a field
width is given, the corresponding argument should refer to a character
array; the indicated number of characters is read.

[Indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, called
the scanset, and a right bracket; the input field is the maximal
sequence of input characters consisting entirely of characters in the
scanset. The circumflex (*), when it appears as the first character in
the scanset, serves as a complement operator and redefines the scanset
as the set of all characters not contained in the remainder of the scanset
string.

There are some conventions used in the construction of the scanset. A
range of characters can be represented hv the construct first-last; thus,
[0123456789] can be expressed [0-9]. Using this convention, first
must be lexically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is the first or
the last character in the scanset To include the right square bracket as
an element of the scanset it must appear as the first character (possibly
preceded by a circumflex) of the scanset and in this case it will not be
syntactically interpreted as the closing bracket. The corresponding
argument must point to a character array large enough to hold the data
field and the terminating \0, which will be added automatically. At
least one character must match for this conversion to be considered
successful.

The conversion characters d, u, o, x and i can be preceded by 1 or b to indicate
that a pointer to long or to short rather than to int is in the argument list.
Similarly, the conversion characters e, f, and g can be preceded by I to indicate
that a pointer to double rather than to float is in the argument list. The 1 or h
modifier is ignored for other conversion characters.

scarf conversion terminates at EOF, at the end of the control string, or when an
input character conflicts with the control string. In the latter case, the offending
character is left unread in the input stream.

scarf returns the number of successfully matched and assigned input items; this
number can be zero in the event of an early conflict between an input character
and the control string. If the input ends before the first conflict or conversion,
EOF is returned.

SCANF(3S) SCANF(3S)

EXAMPLES
The call:

Int n ; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 S4.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name
will contain thompson\0 . Or:

Int I, J; float x; char name(50];

(void) scanf("%l%2d%f%»d %[0-9]&j, &i, &x, name);

with input:

011 56789 0123 56a72
will assign 9 to j, 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in
name. The next call to getchar [see getc(3S)] will return a. Or:

int i, J, s, e; char name[50];

(void) •canf("%i %l %n%*%n", &i, &j, &«, name, &e);

with input:

0x11 Oxy Johnson
will assign 17 to i, 0 to j, 6 to j, will place the string xy\0 in name, and will
assign 8 to e. Thus, the length of name is e - s = 2 . The next call to getchar
[see gefc(3S)] will return a blank.

SEE ALSO
getc(3S), printf(3S), stdio(3S), strtod(3C), strtol(3C).

DIAGNOSTICS
These functions return EOF on end of input and a short count for missing or
illegal data items.

CAVEATS
Trailing white space (including a newline) is left unread unless matched in the
control string.

SETBUF(3S) SETBUF(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buf)
FILE "stream;
char "buf;

int setvbuf (stream, buf, type, size)
FILE "stream;
char "buf;
int type, size;

DESCRIPTION
setbuf can be used after a stream has been opened but before it is read or
written. It causes the array pointed to by buf to be used instead of an
automatically allocated buffer. If buf is the NULL pointer, input/output will be
completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells the size of the
array needed:

char buftBUFSIZ];

setvbuf can be used after a stream has been opened but before it is read or
written. Type determines how stream will be buffered. Legal values for type
(defined in stdio.h) are:

JOFBF Causes input/output to be fully buffered.

JOLBF Causes output to be line buffered; the buffer will be flushed
when a newline is written, the buffer is full, or input is
requested.

_IONBF Causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering,
instead of an automatically allocated buffer. Size specifies the size of the
buffer to be used. The constant BUFSIZ in <stdio.h> is suggested as a good
buffer size. If input/output is unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other input/output is
fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

SETBUF(3S) SETBUF(3S)

DIAGNOSTICS
If an illegal value for type or size is provided, setvbuf returns a non-zero value.
Otherwise, the value returned will be zero.

NOTES
A common source of error is allocating buffer space as an automatic variable in
a code block, and then failing to close the stream in the same block.

SETJMP(3C) SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (env)
jmpbuf env;

void longjmp (env, val)
jmp buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in
a low-level subroutine of a program.

setjmp saves its stack environment in env (whose type, jmp buf, is defined in
the <setjmp.h> header file) for later use by longjmp. It returns the value 0.

longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed, program execution
continues as if the corresponding call of setjmp (which must not itself have
returned in the interim) had just returned the value val. longjmp cannot cause
setjmp to return the value 0. If longjmp is invoked with a second argument of
0, setjmp will return 1. At the time of the second return from setjmp, all
external and static variables have values as of the time longjmp is called (see
example). The values of register and automatic variables are undefined.

In a future release, C language users will be able to identify syntactically those
automatic variables on whose values they need to rely after the second return
from setjmp.

EXAMPLE
#include <setjmp.h>

jmp buf env;
Int I =0;
main ()
{

void exit();

if(setjmp(env) != 0) {
(void) printf("value of i on 2nd return from

setjmp: %d\n", i);
exit(0);

}

SETJMP(3C) SETJMP(3C)

(void) printf("value of i on 1«l return from set|mp:
%d\n", i);

1 = 1;

g();
/•NOTREACHED*/

}
g() {

k>ng]mp(env, 1);
/•NOTREACHED*/

}

If the a.out resulting from this C language code is run, the output will be:

value of i on 1st return from setjmp: 0

value of i on 2nd return from setjmp: 1

SEE ALSO
signal(2).

WARNING
If longjmp is called even though env was never primed by a call to setjmp, or
when the last such call was in a function that has since returned, absolute chaos
is guaranteed.

SINH(3M) SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
sinh, cosh, and tanh return, respectively, the hyberbciic sine, cosine and
tangent of their argument

SEE ALSO
matherr(3M).

DIAGNOSTICS
sinh and cosh return HUGE (and sinh may return -HUGE for negative x) when
the correct value would overflow and set errno to ERANGE.

These error-handling procedures may be changed with the function
matherr{ 3M).

I

SLEEP(3C) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument The actual suspension time may be less than that
requested for two reasons: (1) Because scheduled wakeups occur at fixed
one-second intervals, (on the second, according to an internal clock) and (2)
because any caught signal will terminate the sleep following execution of that
signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to the scheduling of other activity in the
system. The value returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept) in case the caller had an alarm set
to go off earlier than the end of the requested sleep time, or premature arousal
due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or
some other signal) occurs. The previous state of the alarm signal is saved and
restored. The calling program may have set up an alarm signal before calling
sleep. If the sleep time exceeds the time till such alarm signal, the process
sleeps only until the alarm signal would have occurred. The caller's alarm
catch routine is executed just before the sleep routine returns. But if the sleep
time is less than the time till such alarm, the prior alarm time is reset to go off at
the same time it would have without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

I

SPUTL(3X) SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion

SYNOPSIS
void sputl (value, buffer)
long value;
char * buffer;

long sgetl (buffer)
char "buffer;

DESCRIPTION
sputl takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the
same across all machines.

sgetl retrieves the four bytes in memory starting at the address pointed to by
buffer and returns the long integer value in the byte ordering of the host
machine.

The combination of sputl and sgetl provides a machine-independent way of
storing long numeric data in a fde in binary form without conversion to
characters.

A program that uses these functions must be loaded with the object-file access
routine library libido.

I

SSIGNAL(3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int (*ssignal (sig, action))()
int sig, (*action)();

int gsignal (sig)
int sig;

SSIGNAL(3C)

DESCRIPTION
ssignal and gsignal implement a software facility similar to signal(2). This
facility is used by the Standard C Library to enable users to indicate the
disposition of error conditions, and is also made available to users for their own
purposes.

Software signals made available to users are associated with integers in the
inclusive range 1 through 16. A call to ssignal associates a procedure, action,
with the software signal sig; the software signal, sig, is raised by a call to
gsignal. Raising a software signal causes the action established for that signal
to be taken.
The first argument to ssignal is a number identifying the type of signal for
which an action is to be established. The second argument defines the action; it
is either the name of a (user-defined) action function or one of the manifest
constants SIG DFL (default) or SIG IGN (ignore), ssignal returns the action
previously established for that signal type; if no action has been established or
the signal number is illegal, ssignal returns SIG_DFL.

gsignal raises the signal identified by its argument, sig:

• If an action function has been established for sig, then that action is
reset to SIG_DFL and the action function is entered with argument sig.
gsignal returns the value returned to it by the action function.

• If the action for sig is SIG IGN, gsignal returns the value 1 and takes
no other action.

• If the action for sig is SIG DFL, gsignal returns the value 0 and takes
no other action.

• If sig has an illegal value or no action was ever specified for sig,
gsignal returns the value 0 and takes no other action.

SEE ALSO
signal(2), sigset(2).

SSIGNAL(3C) SSIGNAL(3C)

NOTES
There are some additional signals with numbers outside the range 1 through 16
which are used by the Standard C Library to indicate error conditions. Thus,
some signal numbers outside the range 1 through 16 are legal, although their
use may interfere with the operation of the Standard C Library.

STDIO(3S) STDIO(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE *stdin, "stdout, "stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute
an efficient, user-level I/O buffering scheme. The in-line macros getc(3S) and
putc(3S) handle characters quickly. The macros getchar and putchar, and the
higher-level routines fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite,
gets, getw, printf, puts, putw, and scarf all use or act as if they use getc and
putc, they can be intermixed freely.

A file with associated buffering is called a stream and is declared to be a
pointer to a defined type FILE, fopen (3S) creates certain descriptive data for a
stream and returns a pointer to designate the stream in all further transactions.
Normally, there are three open streams with constant pointers declared in the
<stdio.h> header file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual descriptions for
details).

An integer constant BUFSIZ specifies the size of the buffers used by the
particular implementation.

Any program that uses this package must include the header file of pertinent
macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this
manual are declared in that header file and need no further declaration. The
constants and the following functions are implemented as macros (redeclaration
of these names is perilous): getc, getchar, putc,putchar, ferror, feof, clearerr,
and fileno.
Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output

STDIO(3S) STDIO(3S)

refers to a terminal. The standard error output stream stderr is by default
unbuffered, but use of freopen [see fopen (3S)] will cause it to become buffered
or line-buffered. When an output stream is unbuffered, information is queued
for writing on the destination file or terminal as soon as written; when it is
buffered, many characters are saved up and written as a block. When it is line-
buffered, each line of output is queued for writing on the destination terminal as
soon as the line is completed (that is, as soon as a newline character is written
or terminal input is requested). setbuf(3S) or setvbuf() in setbuf(3S) can be
used to change the stream's buffering strategy.

SEE ALSO
close(2), lseek(2), open(2), pipe(2), read(2), write(2), ctermid(3S), cuserid(3S),
fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S),
popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S), system(3S),
tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including
program termination. Individual function descriptions describe the possible
error conditions.

STDIPC(3C) STDIPC(3C)

NAME
stdipc, ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

keyt ftok(path, id)
char "path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be
used by the msg get (2), semget (2), and shmget(2) system calls to obtain
interprocess communication identifiers. One suggested method for forming a
key is to use the ftok subroutine described below. Another way to compose
keys is to include the project ID in the most significant byte and to use the
remaining portion as a sequence number. There are many other ways to form
keys, but each system must define standards for forming them. If some standard
is not adhered to, unrelated processes can unintentionally interfere with
another's operation. Therefore, it is recommended that the most significant
byte of a key in some sense refer to a project so that keys do not conflict across
a given system.

ftok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls. Path must be the path name of an existing file
that is accessible to the process. Id is a character which uniquely identifies a
project. Note that ftok will return the same key for linked files when called
with the same id and that it will return different keys when called with the same
file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
ftok returns (key t) -1 if path does not exist or if it is not accessible to the
process.

WARNING
If the file whose path is passed to ftok is removed when keys still refer to the
file, future calls to ftok with the same path and id will return an error. If the
same file is recreated, then ftok is likely to return a different key than it did
when it was called originally.

STRING (3C) STRING (3C)

NAME
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
#include <string.h>
#include <sys/types.h>

char "strcat (si, s2)
char "s i , "s2;

char "strdup (si)
char *sl;

char "strncat (si, s2, n)
char *sl, *s2;
size t n;

int strcmp (si, s2)
char »sl, *s2;

int strncmp (si, s2, n)
char »sl, »s2;
size t n;

char "strcpy (si, s2)
char "s i , »s2;

char "strncpy (si, s2, n)
char "s i , "s2;
size t n;

int strlen (s)
char "s;

char "strchr (s, c)
char "s;
int c;

char "strrchr (s, c)
char "s;
int c;

char "strpbrk (si, s2)
char *sl, "s2;

int strspn (si, s2)
char "si , "s2;

STRING (3C) STRING (3C)

int strcspn (si, s2)
char *sl, *s2;

char *strtok (si, s2)
char *sl, *s2;

DESCRIPTION
The arguments s i , s2 and s point to strings (arrays of characters terminated by a
null character). The functions strcat, strncat, strcpy, and strncpy all alter si .
These functions do not check for overflow of the array pointed to by s i .

The strcat routine appends a copy of string s2 to the end of string s i .

The strdup routine returns a pointer to a new string which is a duplicate of the
string pointed to by si . The space for the new string is obtained using
malloc QC). If the new string can not be created, null is returned.

The strncat routine appends at most n characters. Each returns a pointer to the
null-terminated result.

The strcmp routine compares its arguments and returns an integer less than,
equal to, or greater than 0, according as s i is lexicographically less than, equal
to, or greater than s2. The strncmp routine makes the same comparison but
looks at at most n characters.

The strcpy routine copies string s2 to s i , stopping after the null character has
been copied. The strncpy routine copies exactly n characters, truncating s2 or
adding null characters to s i if necessary The result is not null-terminated if the
length of s2 is n or more. Each function returns si .

The strlen routine returns the number of characters in s, not including the
terminating null character.

The strchr (strrchr) routine returns a pointer to the first (last) occurrence of
character c in string s, or a NULL pointer if c does not occur in the string. The
null character terminating a string is considered to be part of the string.

The strpbrk routine returns a pointer to the first occurrence in string s i of any
character from string s2, or a NULL pointer if no character from s2 exists in si .

The strspn (strcspn) routine returns the length of the initial segment of string s i
which consists entirely of characters from (not from) string s2.

The strtok routine considers the string s i to consist of a sequence of zero or
more text tokens separated by spans of one or more characters from the
separator string s2. The first call (with pointer s i specified) returns a pointer to
the first character of the first token, and will have written a null character into
si immediately following the returned token. The function keeps track of its

STRING (3C) STRING (3C)

position in the string between separate calls, so that subsequent calls (which
must be made with the first argument a NULL pointer) work through the string
s i immediately following that token. This way, subsequent calls work through
the string s i until no tokens remain. The separator string s2 may be different
from call to call. When no token remains in s i , a NULL pointer is returned.

For user convenience, all these functions are declared in the optional
<string.h> header file.

SEE ALSO
malloc(3C), malloc(3X).

CAVEATS
The strcmp and strncmp routines use native character comparison. Characters
are 8-bit signed values; all ASCII characters have values of at least 0; non-ASCII
are negative. On some machines, all characters are positive. Thus, programs
that only compare ASCII values are portable; programs that compare ASCII with
non-ASCII values are not

Character movement is performed differently in different implementations.
Thus, overlapping moves may yield surprises.

<V

STRTOD(3C) STRTOD(3C)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double st r tod (str, p t r)

cha r * s t r , * * p t r ;

double atof (str)

cha r * s t r ;

DESCRIPTION
The strtod routine returns as a double-precision floating-point number the value
represented by the character string pointed to by str. The string is scanned up
to the first unrecognized character.

The strtod routine recognizes an optional string of "white-space" characters
[as defined by isspace in cfype(3C)], then an optional sign, then a string of
digits optionally containing a decimal point, then an optional e or E followed
by an optional sign or space, followed by an integer.

If the value of ptr is not (char **)NULL, a pointer to the character terminating
the scan is returned in the location pointed to by ptr. If no number can be
formed, *ptr is set to str, and zero is returned.

The atof(str) variable is equivalent to strtod(str, (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, ± H U G E (as defined in < m a t h . h >) is
returned (according to the sign of the value), and errno is set to ERANGE.

If the correct value wouia cause underflow, zero is returned and errno is set to
ERANGE.

I

STRTOL (3C) STRTOL(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
The strtol routine returns as a long integer the value represented by the
character string pointed to by str. The string is scanned up to the first character
inconsistent with the base. Leading "white-space" characters [as defined by
isspace in ctype (3C)] are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character terminating
the scan is returned in the location pointed to by ptr. If no integer can be
formed, that location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored, and Ox or
OX is ignored if base is 16.

If base is zero, the string itself determines the base: After an optional leading
sign a leading zero indicates octal conversion, and a leading Ox or OX
hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.

The atol(str) variable is equivalent to strtol(str, (char **)NULL, 10).

The atoi(str) variable is equivalent to (int) strtol(str, (char **)NULL, 10).

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

CAVEAT
Overflow conditions are ignored.

I

SWAB(3C) SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
The swab routine copies nbytes bytes pointed to by from to the array pointed to
by to, exchanging adjacent even and odd bytes. The nbytes argument should be
even and non-negative. If nbytes is odd and positive swab uses nbytes -1
instead. If nbytes is negative, swab does nothing.

I

SYSTEM(3S) SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
#include <stdio.h>

int system (string)
char *string;

DESCRIPTION
The system routine causes the string to be given to sh(l) as input, as if the
string had been typed as a command at a terminal. The current process waits
until the shell has completed, then returns the exit status of the shell.

FILES
/bin/sh

SEE ALSO
sh(l), exec(2).

DIAGNOSTICS
system forks to create a child process that in turn exec's /bin/sh in order to
execute string. If the fork or exec fails, system returns a negative value and sets
errno.

T_ACCEPT (3N) (Networking Support Utilitiei) T_ ACCEPT (3N)

NAME
t_accept - accept a connect request

SYNOPSIS
#include <tiuser.h>

int t_accept(fd, resfd, call)
int fd;
int resfd;
struct t call *call;

DESCRIPTION
This function is issued by a transport user to accept a connect request, fd
identifies the local transport endpoint where the connect indication arrived,
resfd specifies the local transport endpoint where the connection is to be
established, and call contains information required by the transport provider to
complete the connection. The t call structure pointed to by call contains the
following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The netbuf structure is described in intro(3). In call, addr is the address of the
caller, opt indicates any protocol-specific parameters associated with the
connection, udata points to any user data to be returned to the caller, and
sequence is the value returned by t listen that uniquely associates the response
with a previously received connect indication.

A transport user can accept a connection on either the same, or on a different,
local transport endpoint than the one on which the connect indication arrived.
If the same endpoint is specified (resfd=fd), the connection can be accepted
unless the following condition is true: the user has received other indications
on that endpoint but has not responded to them (with t accept or t snddis). For
this condition, t accept fails and sets t errno to TBADF.

If a different transport endpoint is specified (resfd\=fd), the endpoint must be
bound to a protocol address and must be in the TJDLE state [see
t_getstate(3N)] before the t accept is issued.

For both types of endpoints, t accept fails and sets t errno to TLOOK if there
are indications (such as a connect or disconnect) waiting to be received on that
endpoint.

T_ACCEPT (3N) (Networking Support Utilitiei) T_ ACCEPT (3N)

The values of parameters specified by opt and the syntax of those values are
protocol specific. The udata argument enables the called transport user to send
user data to the caller and the amount of user data must not exceed the limits
supported by the transport provider as returned by t open or tjgetinfo. If the
len [see netbuf in intro(3)] field of udata is zero, no data is sent to the caller.

On failure, t errno can be set to one of the following:

[TBADF]

[TOUTSTATE]

[TACCES]

[TB ADOPT]

[TBADDATA]

[TBADSEQ]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

The specified file descriptor does not refer to a transport
endpoint, or the user is illegally accepting a connection
on the same transport endpoint on which the connect
indication arrived.

The function was issued in the wrong sequence on the
transport endpoint referenced by fd, or the transport
endpoint referred to by resfd is not in the T IDLE state.

The user does not have permission to accept a
connection on the responding transport endpoint or use
the specified options.

The specified options were in an incorrect format or
contained illegal information.

The amount of user data specified was not within the
bounds allowed by the transport provider.

An invalid sequence number was specified.

An asynchronous event has occurred on the transport
endpoint referenced by fd and requires immediate
attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_connect(3N), t_getstate(3N), t_listen(3N), t_open(3N),
t_rcvconnect(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned; otherwise, a value of -1 is
returned and t errno is set to indicate the error.

T _ A C C E P T (3N) (Networking Support Ut i l i t ie i) T_ ACCEPT (3N)

NAME
t_alloc - allocate a library structure

SYNOPSIS
#include <tiuser.h>

char *t_alloc(fd, structtype, fields)
int fd;
int struct_type;
int fields;

DESCRIPTION
The t alloc function dynamically allocates memory for the various transport
function argument structures as specified below. This function will allocate
memory for the specified structure, and will also allocate memory for buffers
referenced by the structure.

The structure to allocate is specified by struct type and can be one of the
following:

T.BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNTTDATA struct t_unitdata

T_UDERROR struct t_uderr

TJNFO struct t_info

where each structure can be used subsequendy as an argument to one or more
transport functions.

Each of the above structures except T_INFO contains at least one field of type
struct netbuf. netbuf is described in intro(3). For each field of this type, the
user can specify that the buffer for that field should be allocated as well. The
fields argument specifies this option, where the argument is the bitwise-OR of
any of the following:

T_ADDR The addr field of the t bind, tjall, tunitdata, or tuderr
structures.

T_OPT The opt field of the t optmgmt, t call, t unitdata, or t uderr
structures.

T_ALLOC(3N) (Net work ia g Support Utilitiei) T_ ALLOC (3N)

T_UDATA The udata field of the tcall, tdiscon, or tunitdata
structures.

T_ALL All relevant fields of the given structure.

For each field specified in fields, t alloc will allocate memory for the buffer
associated with the field and initialize the buf pointer and maxlen [see netbuf in
intro(3) for description of buf and maxlen] field accordingly. The length of the
buffer allocated will be based on the same size information that is returned to
the user on t_open and tgetinfo. Thus,/d must refer to the transport endpoint
through which the newly allocated structure will be passed, so that the
appropriate size information can be accessed. If the size value associated with
any specified field is -1 or -2 (see t open or tgetinfo), t alloc will be unable to
determine the size of the buffer to allocate and will fail, setting terrno to
TSYSERR and errno to EINVAL. For any field not specified in fields, buf will be
set to NULL and maxien will be set to zero.

Use of talloc to allocate structures will help ensure the compatibility of user
programs with future releases of the transport interface.

On failure, t errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_free(3N), t_getinfo(3N), t_open(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
On successful completion, t alloc returns a pointer to the newly allocated
structure. On failure, NULL is returned.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

N A M E
t_bind - bind an address to a transport endpoint

S Y N O P S I S
#include <tiuser.h>

int t_bind(fd, req, ret)
int fd;
struct t_bind *req;
struct t_bind *ret;

D E S C R I P T I O N
This function associates a protocol address with the transport endpoint specified
by fd and activates that transport endpoint. In connection mode, the transport
provider may begin accepting or requesting connections on the transport
endpoint. In connectionless mode, the transport user may send or receive data
units through the transport endpoint.

The req and ret arguments point to a tbind structure containing the following
members:

struct netbuf addr;
unsigned qlen;

netbuf is described in intro(3). The addr field of the t bind structure specifies a
protocol address and the qlen field indicates the maximum number of
outstanding connect indications.

req requests that an address, represented by the netbuf structure, be bound to the
given transport endpoint. len [see netbuf in intro(3); also for buf and maxlen]
specifies the number of bytes in the address and buf points to the address buffer.
maxlen has no meaning for the req argument On return, ret contains the
address that the transport provider actually bound to the transport endpoint; this
may be different from the address specified by the user in req. In ret, the user
specifies maxlen, which is the maximum size of the address buffer and buf,
which points to the buffer where the address is to be placed. On return, len
specifies the number of bytes in the bound address and buf points to the bound
address. If maxlen is not large enough to hold the returned address, an error
will result.

If the requested address is not available, or if no address is specified in req (the
len field of addr in req is zero), the transport provider will assign an appropriate
address to be bound and will return that address in the addr field of ret. The
user can compare the addresses in req and ret to determine whether the
transport provider bound the transport endpoint to a different address than that
requested.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

req may be NULL if the user does not want to specify an address to be bound.
Here, the value of qlen is assumed to be zero, and the transport provider must
assign an address to the transport endpoint. Similarly, ret may be NULL if the
user does not care what address was bound by the provider and is not interested
in the negotiated value of qlen. It is valid to set req and ret to NULL for the
same call, in which case the provider chooses the address to bind to the
transport endpoint and does not return that information to the user.

The qlen field has meaning only when initializing a connection-mode service.
It specifies the number of outstanding connect indications the transport provider
should support for the given transport endpoint. An outstanding connect
indication is one that has been passed to the transport user by the transport
provider. A value of qlen greater than zero is only meaningful when issued by a
passive transport user who expects other users to call i t The value of qlen will
be negotiated by the transport provider and can be changed if the transport
provider cannot support the specified number of outstanding connect
indications. On return, the qlen field in ret will contain the negotiated value.

This function allows more than one transport endpoint to be bound to the same
protocol address (however, the transport provider must support this capability
also), but it is not allowable to bind more than one protocol address to the same
transport endpoint. If a user binds more than one transport endpoint to the same
protocol address, only one endpoint can be used to listen for connect indications
associated with that protocol address. In other words, only one t_bind for a
given protocol address may specify a value of qlen greater than zero. In this
way, the transport provider can identify which transport endpoint should be
notified of an incoming connect indication.

If a user attempts to bind a protocol address to a second transport endpoint with
a value of qlen greater than zero, the transport provider will assign another
address to be bound to that endpoint. If a user accepts a connection on the
transport endpoint that is being used as the listening endpoint, the bound
protocol address will be found to be busy for the duration of that connection.
No other transport endpoints may be bound for listening while that initial
listening endpoint is in the data transfer phase. This will prevent more than one
transport endpoint bound to the same protocol address from accepting connect
indications.

On failure, terrno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

[TB AD ADDR] The specified protocol address was in an incorrect
format or contained illegal information.

[TNOADDR] The transport provider could not allocate an address.

[TACCES] The user does not have permission to use the specified
address.

[TBUFOVFLW] The number of bytes allowed for an incoming argument
is not sufficient to store the value of that argument The
provider's state will change to TJDLE and the
information to be returned in ret will be discarded.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_open(3N), t_optmgmt(3N), t_unbind(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t bind returns 0 on success and -1 on failure and t errno is set to indicate the
error.

I

T_CLOSE(3N) (Networking Support Utililiei) T_CLOSE(3N)

NAME
t_close - close a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_close(fd)
int fd;

DESCRIPTION
The tclose function informs the transport provider that the user is finished with
the transport endpoint specified by fd and frees any local library resources
associated with the endpoint. In addition, tclose closes the file associated with
the transport endpoint.

t close should be called from the T_UNBND state [see tgetstate (3N)].
However, this function does not check state information, so it may be called
from any state to close a transport endpoint. If this occurs, the local library
resources associated with the endpoint will be freed automatically. In addition,
close(2) will be issued for that file descriptor; the close will be abortive if no
other process has that file open and will break any transport connection that
may be associated with that endpoint.

On failure, t errno may be set to the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

SEE ALSO
t_getstate(3N), t_open(3N), t_unbind(3N).
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t close returns 0 on success and -1 on failure and t errno is set to indicate the
error.

I

T_CONNECT(3N) (Networking Support UtUities) T_CONNECT(3N)

NAME
t_connect - establish a connection with another transport user

SYNOPSIS
#include <tiuser.h>

int t_connect(fd, sndcall, rcvcall)
int fd;
struct t_call * sndcall;
struct t_call *rcvcall;

DESCRIPTION
This function enables a transport user to request a connection to the specified
destination transport user, fd identifies the local transport endpoint where
communication will be established, while sndcall and rcvcall point to a t call
structure which contains the following members'.

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

sndcall specifies information needed by the transport provider to establish a
connection and rcvcall specifies information that is associated with the newly
established connection.

netbuf is described in intro(3). In sndcall, addr specifies the protocol address of
the destination transport user, opt presents any protocol-specific information
that might be needed by the transport provider, udata points to optional user
data that may be passed to the destination transport user during connection
establishment, and sequence has no meaning for this function.

On return in rcvcall, addr returns the protocol address associated with the
responding transport endpoint, opt presents any protocol-specific information
associated with the connection, udata points to optional user data that may be
returned by the destination transport user during connection establishment, and
sequence has no meaning for this function.

The opt argument implies no structure on the options that may be passed to the
transport provider. The transport provider is free to specify the structure of any
options passed to it. These options are specific to the underlying protocol of the
transport provider. The user can choose not to negotiate protocol options by
setting the len field of opt to zero. In this case, the provider may use default
options.

TCONNECT(3N) (Nctwoikiag Support Utilitiei) T CONNECT(3N)

The udata argument enables the caller to pass user data to the destination
transport user and receive user data from the destination user during connection
establishment However, the amount of user data must not exceed the limits
supported by the transport provider as returned by topen (3N) or t getinfo (3N).
If the len [see netbuf in intro(3)] field of udata is zero in sndcall, no data will be
sent to the destination transport user.

On return, the addr, opt, and udata fields of rcvcall will be updated to reflect
values associated with the connection. Thus, the maxlen [see netbuf in introQ)]
field of each argument must be set before issuing this function to indicate the
maximum size of the buffer for each. However, rcvcall may be NULL, in which
case no information is given to the user on return from t connect.

By default, t connect executes in synchronous mode and will wait for the
destination user's response before returning control to the local user. A
successful return (that is, return value of zero) indicates that the requested
connection has been established. However, if 0_NDELAY is set (via t open or
fcntl), t connect executes in asynchronous mode. In this case, the call will not
wait for the remote user's response, but it will return control immediately to the
local user and return -1 with t errno set to TNODATA to indicate that the
connection has not yet been established. In this way, the function simply
initiates the connection establishment procedure by sending a connect request
to the destination transport user.

On failure, t errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TNODATA] 0_NDELAY was set, so the function successfully
initiated the connection establishment procedure but did
not wait for a response from the remote user.

[TB AD ADDR] The specified protocol address was in an incorrect
format or contained illegal information.

[TBADOPT] The specified protocol options were in an incorrect
format or contained illegal information.

[TBADDATA] The amount of user data specified was not within the
bounds allowed by the transport provider.

[TACCES] The user does not have permission to use the specified
address or options.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

[TBUFOVFLW]

[TLOOK]

[TNOTS UPPORT]

[TSYSERR]

The number of bytes allocated for an incoming
argument is not sufficient to store the value of that
argument. If executed in synchronous mode, the
provider's state, as seen by the user, changes to
T_DATAXFER, and the connect indication information
to be returned in rcvcall is discarded.

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

intro(3), t_accept(3N), t_getinfo(3N), t_listen(3N), t_open(3N),
t_optmgmt(3N), t_rcvconnect(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t_connect returns 0 on success and -1 on failure and t errno is set to indicate
the error.

I

T _ R C VDIS (3N) (Networking Support Utilities) T _ R C V D I S (3N)

NAME
t_error - produce error message

SYNOPSIS
#include <tiuser.h>

void t_error(errmsg)
char *errmsg;
extern int t_errno;
extern char *t_errlist[];
extern int t_nerr;

DESCRIPTION
The tjrror routine produces a message on the standard error output which
describes the last error encountered during a call to a transport function. The
argument string errmsg is a user-supplied error message that gi*/es context to
the error. The t error routine prints the user-supplied error message followed
by a colon and the standard transport function error message for the current
value contained in t errno. If t errno is TSYSERR, t error also prints the
standard error message for the current value contained in errno [see intro(2)].
The t_errlist array of message strings allows user message formatting; t_errno
can be used as an index into this array to retrieve the error message string
(without a terminating newline). t nerr is the maximum index value for the
t_errlist array.

t_errno is set when an error occurs and is not cleared on subsequent successful
calls.

EXAMPLE
If a t_connect function fails on transport endpoint fd2 because a bad address
was given, the following call might follow the failure:

t_error ("t_connect failed on fd2");

The diagnostic message would print as:

t_connect failed on fd2: Incorrect transport address format

where "t_connect failed on fd2" tells the user which function failed on which
transport endpoint, and "Incorrect transport address format" identifies the
specific error that occurred.

SEE ALSO
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

I

T _ R C VDIS (3N) (Networking Support Utilities) T _ R C V D I S (3N)

NAME
t_free - free a library structure

SYNOPSIS
#include <tiuser.h>

int t_free(ptr, structtype)
char *ptr;
int struct type;

DESCRIPTION
The tJree function frees memory previously allocated by t alloc. This
function will free memory for the specified structure, and will also free memory
for buffers referenced by the structure.

ptr points to one of the six structure types described for t alloc, and struct type
identifies the type of thai struciure which can be one of the following:

T_BIND struct t_bind

T_CALL struct t_call

T.OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNTTDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures is an argument to one or more transport
functions.

tJree will check the addr, opt, and udata fields of the given structure (as
appropriate) and free the buffers pointed to by the buf field of the netbuf
structure [see intro(3>)]. buf is NULL, tjree will not attempt to free memory.
After all buffers are freed, t Jree will free the memory associated with the
structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of
memory that was not previously allocated by t alloc.

On failure, t errno may be set to the following:

[TSYSERR] A system error has occurred during execution of this
function.

T_FREE (3N) (Networking Support Utiliuci) T_FREE (3N)

SEE ALSO
intro(3), t_alloc(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t Jree returns 0 on success and -1 on failure and t errno is set to indicate the
error.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

NAME
t_getinfo - get protocol-specific service information

SYNOPSIS
#include <tiuser.h>

int t_getinfo(fd, info)
int fd;
struct t info *info;

DESCRIPTION
This function returns the current characteristics of the underlying transport
protocol associated with file descriptor fd. The info structure returns the same
information returned by topen. This function enables a transport user to
access this information during any phase of communication.

This argument points to a tjnfo structure which contains the following
members:

long addr; /* max size of the transport protocol address 7
long options; /* max number of bytes of protocol-specific options 7
long tsdu; /* max size of a transport service data unit (TSDU) 7
long etsdu; I* max size of an expedited transport service data unit (ETSDU) 7
long connect; /* max amount of data allowed on connection establishment 7

/* functions 7
long discon; /* max amount of data allowed on t_snddis and t_rcvdis 7

/* functions 7
long servtype; /* service type supported by the transport provider 7

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the maximum size of
a transport protocol address; a value of -1 specifies that there is no
limit on the address size; and a value of -2 specifies that the
transport provider does not provide user access to transport protocol
addresses.

options A value greater than or equal to zero indicates the maximum number
of bytes of protocol-specific options supported by the provider; a
value of -1 specifies that there is no limit on the option size; and a
value of -2 specifies that the transport provider does not support
user-settable options.

tsdu A value greater than zero specifies the maximum size of a transport
service data unit (TSDU); a value of zero specifies that the transport
provider does not support the concept of TSDU, although it does

T_GETINFO (3N) (Networking Support Utilitici) T_GETINFO (3N)

support the sending of a data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that there is no
limit on the size of a TSDU; and a value of -2 specifies that the
transfer of normal data is not supported by the transport provider.

etsdu A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of zero
specifies that the transport provider does not support the concept of
ETSDU, although it does support the sending of an expedited data
stream with no logical boundaries preserved across a connection; a
value of -1 specifies that there is no limit on the size of an ETSDU;
and a value of -2 specifies that the transfer of expedited data is not
supported by the transport provider.

connect A value greater than or equal to zero specifies the maximum amount
of data that can be associated with connection establishment
functions; a value of -1 specifies that there is no limit on the amount
of data sent during connection establishment; and a value of -2
specifies that the transport provider does not allow data to be sent
with connection establishment functions.

discon A value greater than or equal to zero specifies the maximum amount
of data that can be associated with the tsnddis and tjcvdis
functions; a value of -1 specifies that there is no limit on the amount
of data sent with these abortive release functions; and a value of -2
specifies that the transport provider does not allow data to be sent
with the abortive release functions.

servtype This field specifies the service type supported by the transport
provider, as described below.

If a transport user is concerned with protocol independence, the above sizes can
be accessed to determine how large the buffers must be to hold each piece of
information. Alternatively, the t alloc function can be used to allocate these
buffers. An error will result if a transport user exceeds the allowed data size on
any function. The value of each field may change as a result of option
negotiation, and t getinfo enables a user to retrieve the current characteristics.

The servtype field of info may specify one of the following values on return:

T_COTS The transport provider supports a connection-mode service
but does not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service
with the optional orderly release facility.

T_G ETINFO (3N) (Networking Support Utilities) T_GETINFO(3N)

T_CLTS The transport provider supports a connectionless-mode
service. For this service type, topen will return -2 for
etsdu, connect, and discon.

On failure, t errno may be set to one of the following:

[TBADF] The specified fde descriptor does not refer to a transport
endpoint.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
t_open(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t getinfo returns 0 on success and -1 on failure and t errno is set to indicate the
error.

I

T_GETSTATE(3N) (Networking Support Util.) T_GETSTATE(3N)

NAME
t_getstate - get the current state

SYNOPSIS
#include <tiuser.h>

int tgets ta te(fd)
int fd;

DESCRIPTION
The tgetstate function returns the current state of the provider associated with
the transport endpoint specified by fd.

On failure, terrno can be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TSTATECHNG] The transport provider is undergoing a state change.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
t_open(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t getstate returns the current state on successful completion, -1 on failure;
t errno is set to indicate the error. The current state can be one of the
following:

unbound T_UNBND

TJDLE

T_OUTCON

TJNCON

T_DATAXFER

T_OUTREL

TJNREL

idle

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly release
indication)

incoming orderly release (waiting for an orderly release
request)

If the provider is undergoing a state transition when t getstate is called, the
function will fail.

I

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

NAME
t_listen - listen for a connect request

SYNOPSIS
#include <tiuser.h>

int t_listen(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
This function listens for a connect request from a calling transport user, fd
identifies the local transport endpoint where connect indications arrive, and on
return, call contains information describing the connect indication, call points
to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). In call, addr returns the protocol address of the
calling transport user, opt returns protocol-specific parameters associated with
the connect request, udata returns any user data sent by the caller on the
connect request, and sequence is a number that uniquely identifies the returned
connect indication. The value of sequence enables the user to listen for
multiple connect indications before responding to any of them.

Since this function returns values for the addr, opt, and udata fields of call, the
maxlen [see netbtrf in intro(3)] field of each must be set before issuing the
tjisten to indicate the maximum size of the buffer for each.

By default, tjisten executes in synchronous mode and waits for a connect
indication to arrive before returning to the user. However, if 0_NDELAY is set
(via t open or fcntl), t jisten executes asynchronously, reducing to a poll for
existing connect indications. If none are available, it returns -1 and sets t errno
toTNODATA.

On failure, t errno can be set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TBUFOVFLW] The number of bytes allocated for an incoming
argument is not sufficient to store the value of that
argument The provider's state, as seen by the user,

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

changes to TJNCON, and the connect indication
information to be returned in call is discarded.

[TNODATA] 0_NDELAY was set, but no connect indications had
been queued.

[TLOOK] An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of this
function.

CAVEATS
If a user issues tlisten in synchronous mode on a transport endpoint that was
not bound for listening (that is, qlen was zero on t_bind), the call will wait
forever because no connect indications will arrive on that endpoint.

SEE ALSO
intro(3), t_accept(3N), t_bind(3N), t_connect(3N), t_open(3N),
t_rcvconnect(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t listen returns 0 on success and -1 on failure and t errno is set to indicate the
error.

T_LOOK (3N) (Networking Support Utilities) T_LOOK (3N)

NAME
t_look - look at the current event on a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t look(fd)
int fd;

DESCRIPTION
This function returns the current event on the transport endpoint specified by fd.
This function enables a transport provider to notify a transport user of an
asynchronous event when the user is issuing functions in synchronous mode.
Certain events require immediate notification of the user and are indicated by a
specific error, TLOOK, on the current or next function to be executed.

This function also enables a transport user to poli a transport endpoint
periodically for asynchronous events.

On failure, t errno can be set to one of the following:

[TBADF] The specified fde descriptor does not refer to a transport
endpoint.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
t_open(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer1 s Guide.

DIAGNOSTICS
Upon success, tjook returns a value that indicates which of the allowable
events has occurred, or returns zero if no event exists. One of the following
events is returned:

TJJSTEN connection indication received

T_CONNECT connect confirmation received

T_DATA normal data received

T.EXDATA expedited data received

T_DISCONNECT disconnect received

T_ERROR fatal error indication

TJJDERR datagram error indication

T_LOOK (3N) (Networking Support Utilities) T_LOOK (3N)

T_ORDREL orderly release indication

On failure, -1 is returned and t errno is set to indicate the error.

T_OPEN(3N) (Networking Support Utililiei) T_OPEN(3N)

NAME
t_open - establish a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_open(path, oflag, info)
char *path;
int oflag;
struct t_info ""info;

DESCRIPTION
The topen function must be called as the first step in the initialization of a
transport endpoint. This function establishes a transport endpoint by opening a
UNIX fde that identifies a particular transport provider (that is, transport
protocol) and returning a file descriptor that identifies that endpoint. For
example, opening the file ldev/iso_cots identifies an OSI connection-oriented
transport layer protocol as the transport provider.
path points to the path name of the file to open, and oflag identifies any open
flags [as in open(2)]. t open returns a file descriptor that will be used by all
subsequent functions to identify the particular local transport endpoint.

This function also returns various default characteristics of the underlying
transport protocol by setting fields in the tjnfo structure. This argument points
to a t info which contains the following members:

long addr; f max size of the transport protocol address 7
long options; /* max number of bytes of protocol-specific options 7
long tsdu; /* max size of a transport service data unit (TSDU) 7
long etsdu; I* max size of an expedited transport service data unit 7

r (ETSDU) 7
long connect; I* max amount of data allowed on connection 7

I* establishment functions 7
long discon; /* max amount of data allowed on t_snddis and t_rcvdis 7

7 functions 7
long servtype; /* service type supported by the transport provider 7

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the maximum size of
a transport protocol address; a value of -1 specifies that there is no
limit on the address size; and a value of -2 specifies that the
transport provider does not provide user access to transport protocol
addresses.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

options A value greater than or equal to zero indicates the maximum number
of bytes of protocol-specific options supported by the provider; a
value of -1 specifies that there is no limit on the option size; and a
value of -2 specifies that the transport provider does not support
user-settable options.

tsdu A value greater than zero specifies the maximum size of a transport
service data unit (TSDU); a value of zero specifies that the transport
provider does not support the concept of TSDU, although it does
support the sending of a data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that there is no
limit on the size of a TSDU; and a value of -2 specifies that the
transfer of normal data is not supported by the transport provider.

etsdu A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of zero
specifies that the transport provider does not support the concept of
ETSDU, although it does support the sending of an expedited data
stream with no logical boundaries preserved across a connection; a
value of -1 specifies that there is no limit on the size of an ETSDU;
and a value of -2 specifies that the transfer of expedited data is not
supported by the transport provider.

connect A value greater than or equal to zero specifies the maximum amount
of data that can be associated with connection establishment
functions; a value of -1 specifies that there is no limit on the amount
of data sent during connection establishment; and a value of -2
specifies that the transport provider does not allow data to be sent
with connection establishment functions.

discon A value greater than or equal to zero specifies the maximum amount
of data that can be associated with the t snddis and t rcvdis
functions; a value of -1 specifies that there is no limit on the amount
of data sent with these abortive release functions; and a value of -2
specifies that the transport provider does not allow data to be sent
with the abortive release functions.

servtype This field specifies the service type supported by the transport
provider, as described below.

If a transport user is concerned with protocol independence, the above sizes can
be accessed to determine how large the buffers must be to hold each piece of
information. Alternatively, the t alloc function can be used to allocate these
buffers. An error will result if a transport user exceeds the allowed data size on
any function.

- 2 -

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

The servtype field of info can specify one of the following values on return:

T_COTS The transport provider supports a connection-mode service
but does not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service
with the optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode
service. For this service type, t open will return -2 for
etsdu, connect, and discon.

A single transport endpoint can support only one of the above services at one
time.

If info is set to NULL by the transport user, no protocol information is returned
by t open.

On failure, t errno may be set to the following:

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
open(2).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t open returns a valid file descriptor on success and -1 on failure and t errno is
set to indicate the error.

I

T_OPTMGMT(3N) (Networking Support Util.) T_OPTMGMT(3N)

NAME
t_optmgmt - manage options for a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_optmgmt(fd, req, ret)
int fd;
struct t_optmgmt *req;
struct toptmgmt *ret;

DESCRIPTION
The t optmgmt function enables a transport user to retrieve, verify, or negotiate
protocol options with the transport provider, fd identifies a bound transport
endpoint.

The req and ret arguments point to a t optmgmt structure containing the
following members:

struct netbuf opt;
long flags;

The opt field identifies protocol options and the flags field specifies the action
to take with those options.

The options are represented by a netbuf [see intro(3); also for len, buf and
maxlen] structure in a manner similar to the address in t bind. req requests a
specific action of the provider and to send options to the provider, len specifies
the number of bytes in the options, buf points to the options buffer, and maxlen
has no meaning for the req argument The transport provider may return
options and flag values to the user through ret. For ret, maxlen specifies the
maximum size of the options buffer and buf points to the buffer where the
options are to be placed. On return, len specifies the number of bytes of options
returned, maxlen has no meaning for the req argument, but must be set in the
ret argument to specify the maximum number of bytes the options buffer can
hold. The actual structure and content of the options are imposed by the
transport provider.

The flags field of req can specify one of the following actions:

T_NEGOTIATE This action enables the user to negotiate the values of the
options specified in req with the transport provider. The
provider will evaluate the requested options and negotiate
the values, returning the negotiated values through ret.

T_CHECK This action enables the user to verify whether or not the
options specified in req are supported by the transport

T_OPTMGMT (3N) (Networking Support Util.) T_OPTMGMT (3 N)

provider. On return, the flags field of ret will have either
T_SUCCESS or T_FAILURE set to indicate to the user
whether or not the options are supported. These flags are
only meaningful for the T_CHECK request.

T_DEFAULT This action enables a user to retrieve the default options
supported by the transport provider into the opt field of
ret. In req, the len field of opt must be zero and the buf
field may be NULL.

If issued as part of the connectionless-mode service, toptmgmt may block due
to flow control constraints. The function will not complete until the transport
provider has processed all previously sent data units.

On failure, t errno can be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TACCES] The user does not have permission to negotiate the
specified options.

[TBADOPT] The specified protocol options were in an incorrect
format or contained illegal information.

[TBADFLAG] An invalid flag was specified.

[TBUFOVFLW] The number of bytes allowed for an incoming argument
is not sufficient to store the value of that argument. The
information to be returned in ret will be discarded.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_getinfo(3N), t_open(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
The t optmgmt call returns 0 on success and -1 on failure and t errno is set to
indicate the error.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

NAME
t_rcv - receive data or expedited data sent over a connection

SYNOPSIS
int t_rcv(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int * flags;

DESCRIPTION
This function receives either normal or expedited data, fd identifies the local
transport endpoint through which data will arrive, buf points to a receive buffer
where user data will be placed, and nbytes specifies the size of the receive
buffer, flags may be set on return from t_rcv and specifies optional flags as
described "below.

By default, tjcv operates in synchronous mode and will wait for data to arrive
if none is currently available. However, if 0_NDELAY is set (via t open or
fcntl), t_rcv will execute in asynchronous mode and will fail if no data is
available. (See TNODATA below.)

On return from the call, if T_MORE is set in flags this indicates that there is
more data and the current transport service data unit (TSDU) or expedited
transport service data unit (ETSDU) must be received in multiple t rcv calls.
Each tjcv with the T_MORE flag set indicates that another t rcv must follow
immediately to get more data for the current TSDU. The end of the TSDU is
identified by the return of a t rcv call with the T_MORE flag not set If the
transport provider does not support the concept of a TSDU as indicated in the
info argument on return from t open or t_getinfo, the T_MORE flag is not
meaningful and should be ignored.

On return, the data returned is expedited data if T_EXPEDITED is set in flags. If
the number of bytes of expedited data exceeds nbytes, tjcv will set
T_EXPEDITED and T_MORE on return from the initial call. Subsequent calls to
retrieve the remaining ETSDU will not have T_EXPEDITED set on return. The
end of the ETSDU is identified by the return of a t rcv call with the T_MORE
flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the
remainder of the TSDU will be suspended until the ETSDU has been processed.
Only after the full ETSDU has been retrieved (T_MORE not set) will the
remainder of the TSDU be available to the user.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

On failure, t errno can be set to one of the following:

[TBADF]

[TNODATA]

[TLOOK]

[TNOTS UPPORT]

[TSYSERR]

The specified file descriptor does not refer to a transport
endpoint.

0_NDELAY was set, but no data is currently available
from the transport provider.

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

Sen ALdU
t_open(3N), t_snd(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
On successful completion, t rcv returns the number of bytes received, and it
returns -1 on failure and t errno is set to indicate the error.

T_RCVCONNECT(3N) (Networking Support) T_RCVCONNECT(3N)

NAME
t_rcvconnect - receive the confirmation from a connect request

SYNOPSIS
#include <tiuser.h>

int t_rcvconnect(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
This function enables a calling transport user to determine the status of a
previously sent connect request and is used in conjunction with t_connect to
establish a connection in asynchronous mode. The connection will be
established on successful completion of this function.
fd identifies the local transport endpoint where communication wiil be
established, and call contains information associated with the newly established
connection, call points to a t call structure which contains the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in introQ). In call, addr returns the protocol address
associated with the responding transport endpoint, opt presents any protocol-
specific information associated with the connection, udata points to optional
user data that may be returned by the destination transport user during
connection establishment, and sequence has no meaning for this function.

The maxlen [see netbuf in intro(3)] field of each argument must be set before
issuing this function to indicate the maximum size of the buffer for each.
However, call may be NULL, in which case no information is given to the user
on return from trcvconnect. By default, t_rcvconnect executes in synchronous
mode and waits for the connection to be established before returning. On
return, the addr, opt, and udata fields reflect values associated with the
connection.

If 0_NDELAY is set (via t open or fcntl), t rcvconnect executes in
asynchronous mode and reduces to a poll for existing connect confirmations. If
none are available, t rcvconnect fails and returns immediately without waiting
for the connection to be established. (See TNODATA below.) t rcvconnect
must be re-issued at a later time to complete the connection establishment phase
and retrieve the information returned in call.

T_RCVCONNECT(3N) (Networking Support) T_RCVCONNECT(3N)

On failure, t errno can be set to one of the following:

[TBADF]

[TBUFOVFLW]

[TNODATA]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

The specified file descriptor does not refer to a
transport endpoint.

The number of bytes allocated for an incoming
argument is not sufficient to store the value of that
argument and the connect information to be returned
in call will be discarded. The provider's state, as seen
by the user, will be changed to DATAXFER.

0_NDELAY was set, but a connect confirmation has
not yet arrived.

An asynchronous event has occurred on this transport
connection and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_accept(3N), t_bind(3N), t_connect(3N), t_listen(3N), t_open(3N).
CTIX Network Programmer's Primer.
UNIX System VRelease 3.2 Network Programmer's Guide.

DIAGNOSTICS
t rcvconnect returns 0 on success and -1 on failure and t errno is set to indicate
the error.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

NAME
t_rcvdis - retrieve information from disconnect

SYNOPSIS
#include <tiuser.h>

t_rcvdis(fd, discon)
int fd;
struct t_discon *discon;

DESCRIPTION
This function identifies the cause of a disconnect and retrieves any user data
sent with the disconnect fd identifies the local transport endpoint where the
connection existed, and discon points to a tdiscon structure containing the
following members:

struct netbuf udata;
int reason;
int sequence;

netbuf is described in intro(3). reason specifies the reason for the disconnect
through a protocol-dependent reason code, udata identifies any user data that
was sent with the disconnect, and sequence can identify an outstanding connect
indication with which the disconnect is associated, sequence is only
meaningful when t_rcvdis is issued by a passive transport user who has
executed one or more tjisten functions and is processing the resulting connect
indications. If a disconnect indication occurs, sequence can be used to identify
which of the outstanding connect indications is associated with the disconnect

If a user does not care if there is incoming data and does not need to know the
value of reason or sequence, discon may be NULL and any user data associated
with the disconnect will be discarded. However, if a user has retrieved more
than one outstanding connect indication (via tjisten) and discon is NULL, the
user will be unable to identify with which connect indication the disconnect is
associated.

On failure, t errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TNODIS] No disconnect indication currently exists on the
specified transport endpoint.

[TBUFOVFLW] The number of bytes allocated for incoming data is not
sufficient to store the data. The provider's state, as
seen by the user, will change to TJDLE, and the

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

disconnect indication information to be returned in
discon will be discarded.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_connect(3N), t_listen(3N), t_open(3N), t_snddis(3N).
CTIX Network Programmer's Primer.
UNIX System VRelease 3.2 Network Programmer's Guide.

DIAGNOSTICS
t rcvdis returns 0 on success and -1 on failure and t errno is set to indicate the

T_RC VREL (3N) (Networking Support Ut i l i t i c i) T_RCVREL(3N)

NAME
t_rcvrel - acknowledge receipt of an orderly release indication

SYNOPSIS
#include <tiuser.h>

trcvrel(fd)
int fd;

DESCRIPTION
This function acknowledges receipt of an orderly release indication, fd
identifies the local transport endpoint where the connection exists. After
receipt of this indication, the user cannot receive more data because such an
attempt will block forever. However, the user can send data over the
connection if tsndrel has not been issued by the user.

This function is an optional service of the transport provider and is only
supported if the transport provider returned service type T_COTS_ORD on
t open or t getinfo.

On failure, t errno can be set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TNOREL] No orderly release indication currently exists on the
specified transport endpoint.

[TLOOK] An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
t_open(3N), t_sndrel(3N).
CTIX Network Programmer's Primer.
UNIX System VRelease 3.2 Network Programmer's Guide.

DIAGNOSTICS
t_rcvrel returns 0 on success and -1 on failure t_errno is set to indicate the
error.

I

T_RC VUD AT A (3N) (Networking Support) T_RC VUD ATA (3N)

NAME
t_rcvudata - receive a data unit

SYNOPSIS
#include <tiuser.h>

int t_rcvudata(fd, unitdata, flags)
int fd;
struct t_unitdata "unitdata;
int "flags;

DESCRIPTION
This function is used in connectionless mode to receive a data unit from another
transport user, fd identifies the local transport endpoint through which data will
be received, unitdata holds information associated with the received data unit,
and flags is set on return to indicate that the complete data unit was not
received, unitdata points to a t unitdata structure containing the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen [see netbufia intro(3)] field of addr, opt, and udata must be set
before issuing this function to indicate the maximum size of the buffer for each.

On return from this call, addr specifies the protocol address of the sending user,
opt identifies protocol-specific options that were associated with this data unit,
and udata specifies the user data that was received.

By default, trcvudata operates in synchronous mode and will wait for a data
unit to arrive if none is currently available. However, if 0_NDELAY is set (via
topen or fcntl), trcvudata will execute in asynchronous mode and will fail if
no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to hold
the current data unit, the buffer will be filled and T_MORE will be set in flags
on return to indicate that another t_rcvudata should be issued to retrieve the rest
of the data unit. Subsequent t_rcvudata call(s) will return zero for the length of
the address and options until the full data unit has been received.

On failure, t_errno can be set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TNODATA] 0_NDELAY was set, but no data units are currently
available from the transport provider.

T_RC VUD ATA (3N) (Networking Support) T_RCVUDATA(3N)

[TBUFOVFLW]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

The number of bytes allocated for the incoming
protocol address or options is not sufficient to store the
information. The unit data information to be returned
in unitdata will be discarded.

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_rcvuderr(3N), t_sndudata(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t rcvudata returns 0 on successful completion and -1 on failure and t errno is
set to indicate the error.

T_RCVUDERR(3N) (Networking Support Util.) T_RCVUDERR(3N)

NAME
t_rcvuderr - receive a unit data error indication

SYNOPSIS
#include <tiuser.h>

int t_rcvuderr(fd, uderr)
int fd;
struct t uderr "uderr;

DESCRIPTION
This function is used in connectionless mode to receive information concerning
an error on a previously sent data unit and should only be issued following a
unit data error indication. It informs the transport user that a data unit with a
specific destination address and protocol options produced an error, fd
identifies the local transport endpoint through which the error report wiii be
received, and uderr points to a t uderr structure containing the following
members:

struct netbuf addr;
struct netbuf opt;
long error;

netbuf is described in introQ). The maxlen [see netbuf in intro(3)] field of addr
and opt must be set before issuing this function to indicate the maximum size of
the buffer for each.

On return from this call, the addr structure specifies the destination protocol
address of the erroneous data unit, the opt structure identifies protocol-specific
options that were associated with the data unit, and error specifies a protocol-
dependent error code.

If the user does not care to identify the data unit that produced an error, uderr
may be set to NULL and t_rcvuderr will simply clear the error indication
without reporting any information to the user.

On failure, t errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TNOUDERR] No unit data error indication currently exists on the
specified transport endpoint.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol
address or options is not sufficient to store the
information. The unit data error information to be
returned in uderr will be discarded.

- 1 -

T_RC VUDERR (3N) (Networking Support Util.) T_RCVUDERR(3N)

[TNOTSUPPORT] This function is not supported by the underlying transport
provider.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_rcvudata(3N), t_sndudata(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t rcvuderr returns 0 on successful completion and -1 on failure and t errno is
set to indicate the error.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

NAME
t_snd - send data or expedited data over a connection

SYNOPSIS
#include <tiuser.h>

int t_snd(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int flags;

DESCRIPTION
This function sends either normal or expedited data, fd identifies the local
transport endpoint over which data should be sent, buf points to the user data,
nbytes specifies the number of bytes of user data to be sent, and flags specifies
any optional flags described below.

By default, tsnd operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider
at the time the call is made. However, if 0_NDELAY is set (via topen or fcntl),
t snd will execute in asynchronous mode and will fail immediately if there are
flow control restrictions.

Even when there are no flow control restrictions, t snd will wait if STREAMS
internal resources are not available, regardless of the state of 0_NDELAY.

On successful completion, t snd returns the number of bytes accepted by the
transport provider. Normally this will be equal to the number of bytes specified
in nbytes. However, if 0_NDELAY is set, it is possible that only part of the data
will be accepted by the transport provider. In this case, t snd will set T_MORE
for the data that was sent (see below) and will return a value less than nbytes. If
nbytes is zero, no data will be passed to the provider and t snd will return zero.

If T_EXPEDITED is set in flags, the data will be sent as expedited data, and will
be subject to the interpretations of the transport provider.

If T_MORE is set in flags, or is set as described above, an indication is sent to
the transport provider that the transport service data unit (TSDU) (or expedited
transport service data unit - ETSDU) is being sent through multiple t snd calls.
Each t snd with the T_MORE flag set indicates that another t snd will follow
with more data for the current TSDU. The end of the TSDU (or ETSDU) is
identified by a t snd call with the T.MORE flag not set Use of T_MORE
enables a user to break up large logical data units without losing the boundaries
of those units at the other end of the connection. The flag implies nothing about
how the data is packaged for transfer below the transport interface. If the

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

transport provider does not support the concept of a TSDU as indicated in the
info argument on return from t open or t_getinfo, the T_MORE flag is not
meaningful and should be ignored.

The size of each TSDU or ETSDU must not exceed the limits of the
corresponding parameters of the transport provider as returned by t open or
t getinfo. (Note that t_getinfo returns the limits of several parameters, not just
those of TSDU or ETSDU.) If the size is exceeded, a TSYSERR with system error
EPROTO will occur. However, the tsnd may not fail because EPROTO errors
may not be reported immediately. In this case, a subsequent call that accesses
the transport endpoint will fail with the associated TSYSERR.

If t snd is issued from the TJDLE state, the provider may silently discard the
data. If t snd is issued from any state other than T.DATAXFER, TJNREL or
TJDLE, the provider will generate a TSYSERR with system error EPROTO
(which may be reported in the manner described above).

On failure, t errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a
transport endpoint.

[TFLOW] 0_NDELAY was set, but the flow control mechanism
prevented the transport provider from accepting data at
this time.

[TNOTS UPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error [see intro(2)] has been detected during
execution of this function.

SEE ALSO
t_open(3N), t_rcv(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
On successful completion, t_snd returns the number of bytes accepted by the
transport provider, and it returns -1 on failure and t errno is set to indicate the
error.

T_RC V D I S (3N) (Networking Support Utilities) T_RCVDIS (3N)

NAME
t_snddis - send user-initiated disconnect request

SYNOPSIS
#include <tiuser.h>

int t_snddis(fd, call)
int fd;
struct t_call •call;

DESCRIPTION
This function initiates an abortive release on an already established connection
or rejects a connect request, fd identifies the local transport endpoint of the
connection, and call specifies information associated with the abortive release.
call points to a t call structure that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). The values in call have different semantics,
depending on the context of the call to t_snddis. When rejecting a connect
request, call must be non-NULL and contain a valid value of sequence to
uniquely identify the rejected connect indication to the transport provider. The
addr and opt fields of call are ignored. In all other cases, call need only be used
when data is being sent with the disconnect request The addr, opt, and
sequence fields of the t call structure are ignored. If the user does not want to
send data to the remote user, the value of call may be NULL.

udata specifies the user data to be sent to the remote user. The amount of user
data cannot exceed the limits supported by the transport provider as returned by
t open or t getinfo. If the len field of udata is zero, no data will be sent to the
remote user.

On failure, t errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TOUTSTATE] The function was issued in the wrong sequence. The
transport provider's outgoing queue may be flushed, so
data may be lost

[TBADDATA] The amount of user data specified was not within the
bounds allowed by the transport provider. The transport

T_RC V D I S (3N) (Networking Support Utilities) T_RCVDIS (3N)

[TBADSEQ]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

provider's outgoing queue will be flushed, so data may
be lost

An invalid sequence number was specified, or a NULL
call structure was specified when rejecting a connect
request The transport provider's outgoing queue will
be flushed, so data may be lost

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_connect(3N), t_getinfo(3N), t_listen(3N), t_open(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t snddis returns 0 on success and -1 on failure and t errno is set to indicate the
error.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

NAME
t_sndrel - initiate an orderly release

SYNOPSIS
#include <tiuser.h>

int t_sndrel(fd)
int fd;

DESCRIPTION
This function initiates an orderly release of a transport connection and indicates
to the transport provider that the transport user has no more data to send, fd
identifies the local transport endpoint where the connection exists. After
issuing tsndrel, the user cannot send any more data over the connection.
However, a user can continue to receive data if an orderly release indication has
been received.

This function is an optional service of the transport provider and is only
supported if the transport provider returned service type T_COTS_ORD on
t open or tgetinfo.

On failure, t errno may be set to one of the following:

[TBADF] The specified fde descriptor does not refer to a
transport endpoint.

[TFLOW] O.NDELAY was set, but the flow control mechanism
prevented the transport provider from accepting the
function at this time.

[TNOTSUPPORT] This function is not supported by the underlying
transport provider.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
t_open(3N), t_rcvrel(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t sndrel returns 0 on success and -1 on failure and t errno is set to indicate the
error.

I

T_SNDUD ATA (3N) (Networking Support Util.) T_SNDUD AT A (3N)

NAME
t_sndudata - send a data unit

SYNOPSIS
#include <tiuser.h>

int t_sndudata(fd, unitdata)
int fd;
struct t_unitdata "unitdata;

DESCRIPTION
This function is used in connectionless mode to send a data unit to another
transport user, fd identifies the local transport endpoint through which data will
be sent, and unitdata points to a t unitdata structure containing the following
members:

*iruci neibuf addr;
struct netbuf opt;
struct netbuf udata;

netbuf is described in intro(3). In unitdata, addr specifies the protocol address
of the destination user, opt identifies protocol-specific options that the user
wants associated with this request, and udata specifies the user data to be sent
The user can choose not to specify what protocol options are associated with
the transfer by setting the len field of opt to zero. In this case, the provider can
use default options.

If the len field of udata is zero, no data unit will be passed to the transport
provider; tjndudata will not send zero-length data units.

By default, t sndudata operates in synchronous mode and may wait if flow
control restrictions prevent the data from being accepted by the local transport
provider at the time the call is made. However, if 0_NDELAY is set (via t open
or fcntl), t sndudata will execute in asynchronous mode and will fail under
such conditions.

If t sndudata is issued from an invalid state, or if the amount of data specified
in udata exceeds the TSDU size as returned by t open or t_getinfo, the provider
will generate an EPROTO protocol error. (See TSYSERR below.)

On failure, t errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TFLOW] 0_NDELAY was set, but the flow control mechanism
prevented the transport provider from accepting data at
this time.

- 1 -

T_SNDUDATA(3N) (Networking Support Uul.) T_SNDUDATA (3N)

[TNOTSUPPORT] This function is not supported by the underlying transport
provider.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_rcvudata(3N), t_rcvuderr(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t sndudata returns 0 on successful completion and -1 on failure t errno is set to
indicate the error.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

NAME
t_sync - synchronize transport library

SYNOPSIS
#include <tiuser.h>

int t_sync(fd)
int fd;

DESCRIPTION
For the transport endpoint specified by f d , t_sync synchronizes the data
structures managed by the transport library with information from the
underlying transport provider. In doing so, it can convert a raw file descriptor
[obtained via open{2), dup(2), or as a result of a/orjfc(2) and exec(2)] to an
initialized transport endpoint, assuming that the file descriptor made a reference
to a transport provider. This function also allows two cooperating processes to
synchronize their interaction with a transport provider.

For example, if a process forks a new process and issues an exec, the new
process must issue a t_sync to build the private library data structure associated
with a transport endpoint and to synchronize the data structure with the relevant
provider information.

It is important to remember that the transport provider treats all users of a
transport endpoint as a single user. If multiple processes are using the same
endpoint, they should coordinate their activities so as not to violate the state of
the provider. t_sync returns the current state of the provider to the user, thereby
enabling the user to verify the state before taking further action. This
coordination is only valid among cooperating processes; it is possible that a
process or an incoming event could change the provider's state after a t_sync is
issued.

If the provider is undergoing a state transition when t_sync is called, the
function will fail.

On failure, t errno may be set to one of the following:

[TBADF] The specified file descriptor is a valid open file
descriptor but does not refer to a transport endpoint.

[TSTATECHNG] The transport provider is undergoing a state change.

[TSYSERR] A system error has occurred during execution of this
function.

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

SEE ALSO
dup(2), exec(2), fork(2), open(2).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t sync returns the state of the transport provider on successful completion and
-1 on failure and t errno is set to indicate the error. The state returned can be
one of the following:

unbound

idle

outgoing connection pending

inrnmino rnr iwt inn tvnHino

TJJNBND

TJDLE

T.OUTCON

TJNCON

T_DATAXFER

T_OUTREL

TJNREL

data transfer

outgoing orderly release (waiting for an orderly release
indication)

incoming orderly release (waiting for an orderly release
request)

T_RC VDIS (3N) (Networking Support Utilities) T_RCVDIS (3N)

NAME
t_unbind - disable a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_unbind(fd)
int fd;

DESCRIPTION
The t unbind function disables the transport endpoint specified by fd which was
previously bound by t bind (3N). On completion of this call, no further data or
events destined for this transport endpoint will be accepted by the transport
provider.

On failure, t_errno may be set to one of the following:

[TBADF]

[TOUTSTATE]

[TLOOK]

[TSYSERR]

SEE ALSO
t_bind(3N).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
t unbind returns 0 on success and -1 on failure and t errno is set to indicate the
error.

The specified file descriptor does not refer to a transport
endpoint.

The function was issued in the wrong sequence.

An asynchronous event has occurred on this transport
endpoint.

A system error has occurred during execution of this
function.

I

TMPFILE(3S) TMPFILE(3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE "tmpfile ()

DESCRIPTION
tmpfile creates a temporary file using a name generated by tmpnam(3S), and
returns a corresponding FILE pointer. If the file cannot be opened, an error
message is printed using perror(3Q, and a NULL pointer is returned. The file
will automatically be deleted when the process using it terminates. The file is
opened for update (w+).

SEE ALSO
crcat(2), unlink(2), fopen(3S), mkiemp(3C), perror(3C), stdio(3S), tmpnam(3S).

I

TMPNAM(3S) TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char "tmpnam (s)
char "s;

char "tempnam (dir, pfx)
char "dir, "pfx;

DESCRIPTION
These functions generate file names that can safely be used for a temporary fde.

tmpnam always generates a file name using the path-prefix defined as
P_tmpdir in the <stdio.h> header file. If $ is NULL, tmpnam leaves its result
in an internal static area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If s is not NULL, it is assumed to
be the address of an array of at least Ltmpnam bytes, where Ltmpnam is a
constant defined in <stdio.h>; tmpnam places its result in that array and returns
s.

tempnam allows the user to control the choice of a directory. The argument dir
points to the name of the directory in which the file is to be created. If dir is
NULL or points to a string that is not a name for an appropriate directory, the
path-prefix defined as P_tmpdir in the <stdio.h> header file is used. If that
directory is not accessible, /tmp will be used as a last resort. This entire
sequence can be up-staged by providing an environment variable, TMPDIR, in
the user's environment, whose value is the name of the desired temporary-file
directory.

Many applications prefer their temporary files to have certain favorite initial
letter sequences in their names. Use the pfx argument for this. This argument
may be NULL or point to a string of up to five characters to be used as the first
few characters of the temporary-file name.

tempnam uses malloc (3C) to get space for the constructed file name and returns
a pointer to this area. Thus, any pointer value returned from tempnam may
serve as an argument to free [see malloc (iC)]. If tempnam cannot return the
expected result for any reason—that is, malloc (3Q failed—or none of the
above mentioned attempts to find an appropriate directory was successful, a
NULL pointer will be returned, to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

TMPNAM(3S) TMPNAM(3S)

CAVEATS
If called more than 17,576 times in a single process, these functions will start
recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for
some other process to create a file with the same name. This can never happen
if that other process is using these functions or mktemp, and the file names are
chosen to render duplication by other means unlikely.

NOTES
These functions generate a different file name each time they are called.

Files created using these functions and either fopen(3S) or creat(2) are
temporary only in the sense that they reside in a directory intended for
temporary use, and their names are unique. It is the user's responsibility to use

TRIG(3M) TRIG(3M)

NAME
trig: sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION
sin, cos and tan return respectively the sine, cosine and tangent of their
argument, x, measured in radians.

asin returns the arcsine of x, in the range [-n/2,nP].

acos returns the arccosine of in the range [0,Jt].

atan returns the arctangent of x, in the range [-TC/2,TC/2].

atan2 returns the arctangent of y/x, in the range (-TC,JC], using the signs of both
arguments to determine the quadrant of the return value.

SEE ALSO
matherr(3M).

DIAGNOSTICS
sin, cos, and tan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return zero when there would
otherwise be a complete loss of significance. In this case a message indicating
TLOSS error is printed on the standard error output For less extreme arguments
causing partial loss of significance, a PLOSS error is generated but no message
is printed. In both cases, errno is set to ERANGE.

TRIG(3M) TRIG(3M)

If the magnitude of the argument of asin or acos is greater than one, or if both
arguments of atan2 are zero, zero is returned and errno is set to EDOM. In
addition, a message indicating DOMAIN error is printed on the standard error
output

These error-handling procedures can be changed with the function
matherr(3M).

SEE ALSO
matherr(3M).

TSEARCH(3C) TSEARCH (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char "tsearch ((char *) key, (char **) rootp, compar)
int (*compar)();

char "tfind ((char *) key, (char »») rootp, compar)
int (*compar)();

char * tdelete ((char *) key, (char • •) rootp, compar)
int (*compar)();

void twalk ((char •) root, action)
void (»action)();

DESCRIPTION
tsearch, tfind, tdelete, and twalk are routines for manipulating binary search
trees. They are generalized from Knuth (6.2.2) Algorithms T and D. All
comparisons are done with a user-supplied routine. This routine is called with
two arguments, the pointers to the elements being compared. It returns an
integer less than, equal to, or greater than 0, according to whether the first
argument is to be considered less than, equal to, or greater than the second
argument The comparison function need not compare every byte, so arbitrary
data can be contained in the elements in addition to the values being compared.

tsearch is used to build and access the tree, key is a pointer to a datum to be
accessed or stored. If there is a datum in the tree equal to "key (the value
pointed to by key), a pointer to this found datum is returned. Otherwise, "key is
inserted, and a pointer to it returned. Only pointers are copied, so the calling
routine must store the data, rootp points to a variable that points to the root of
the tree. A NULL value for the variable pointed to by rootp denotes an empty
tree; in this case, the variable will be set to point to the datum which will be at
the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if
found. However, if it is not found, tfind will return a NULL pointer. The
arguments for tfind are the same as for tsearch.

tdelete deletes a node from a binary search tree. The arguments are the same as
for tsearch. The variable pointed to by rootp will be changed if the deleted
node was the root of the tree, tdelete returns a pointer to the parent of the
deleted node, or a NULL pointer if the node is not found.

TSEARCH(3C) TSEARCH (3C)

twalk traverses a binary search tree, root is the root of the tree to be traversed.
(Any node in a tree can be used as the root for a walk below that node.) action
is the name of a routine to be invoked at each node. This routine is, in turn,
called with three arguments. The first argument is the address of the node being
visited. The second argument is a value from an enumeration data type typedef
enum { preorder, postorder, endorder, leaf} VISIT; (defined in the <search.h>
header file), depending on whether this is the first, second or third time that the
node has been visited (during a depth-first, left-to-right traversal of the tree), or
whether the node is a leaf. The third argument is the level of the node in the
tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-
element, and cast to type pointer-to-character. Similarly, although declared as
type pointer-to-character, the value returned should be cast into type pointer-

EXAMPLE
The following code reads in strings and stores structures containing a pointer to
each string and a count of its length. It then walks the tree, printing out the
stored strings and their lengths in alphabetical order.

#lnclude <»earch.h>
#include <stdio.h>

•true! node { /* pointers to these are stored in the tree */
char *string;
int length;

};
char string_space[10000]; /» space to store strings */
struct node nodes[500]; I* nodes to store */
struct node *root = NULL; I* this points to the root •/

main()
{

char *strptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 500) {
/* set node */
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
/* put node into the tree */

TSEARCH(3C) TSEARCH(3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char "tsearch ((char *) key, (char **) rootp, compar)
int ("compar)();

char "tfind ((char •) key, (char **) rootp, compar)
int ("compar)();

char "tdelete ((char •) key, (char »*) rootp, compar)
int (*compar)();

void twalk ((char *) root, action)
void (*action)();

DESCRIPTION
tsearch, tfind, tdelete, and twalk are routines for manipulating binary search
trees. They are generalized from Knuth (6.2.2) Algorithms T and D. All
comparisons are done with a user-supplied routine. This routine is called with
two arguments, the pointers to the elements being compared. It returns an
integer less than, equal to, or greater than 0, according to whether the first
argument is to be considered less than, equal to, or greater than the second
argument The comparison function need not compare every byte, so arbitrary
data can be contained in the elements in addition to the values being compared.

tsearch is used to build and access the tree, key is a pointer to a datum to be
accessed or stored. If there is a datum in the tree equal to "key (the value
pointed to by key), a pointer to this found datum is returned. Otherwise, *key is
inserted, and a pointer to it returned. Only pointers are copied, so the calling
routine must store the data, rootp points to a variable that points to the root of
the tree. A NULL value for the variable pointed to by rootp denotes an empty
tree; in this case, the variable will be set to point to the datum which will be at
the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if
found. However, if it is not found, tfind will return a NULL pointer. The
arguments for tfind are the same as for tsearch.

tdelete deletes a node from a binary search tree. The arguments are the same as
for tsearch. The variable pointed to by rootp will be changed if the deleted
node was the root of the tree, tdelete returns a pointer to the parent of the
deleted node, or a NULL pointer if the node is not found.

TSEARCH(3C) TSEARCH(3C)

twalk traverses a binary search tree, root is the root of the tree to be traversed.
(Any node in a tree can be used as the root for a walk below that node.) action
is the name of a routine to be invoked at each node. This routine is, in turn,
called with three arguments. The first argument is the address of the node being
visited. The second argument is a value from an enumeration data type typedef
enum { preorder, postorder, endorder, leaf} VISIT; (defined in the <search.h>
header file), depending on whether this is the first, second or third time that the
node has been visited (during a depth-first, left-to-right traversal of the tree), or
whether the node is a leaf. The third argument is the level of the node in the
tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-
element, and cast to type pointer-to-character. Similarly, although declared as
type pointer-to-character, the value returned should be cast into type pointer-
to-eiemenL

EXAMPLE
The following code reads in strings and stores structures containing a pointer to
each string and a count of its length. It then walks the tree, printing out the
stored strings and their lengths in alphabetical order.

#include <search.h>
#include <stdio.h>

struct node { /* pointers to these are stored in the tree */
char *string;
int length;

};
char string_space[10000]; /* space to store strings */
struct node nodes[500]; /* nodes to store */
struct node *root = NULL; /* this points to the root */

main()
{

char *strptr = stringspace;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) Is NULL && i++ < 500) {
/» set node */
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);

TSEARCH(3C) TSEARCH(3C)

/* put node into the tree •/
(void) Uearch((chsr *)nodeptr,

(char **) &root, nodecompare);
I* adjust pointers, don't overwrite tree */
strptr += nodeptr->length + 1;
nodeptr++;

1
twalk((char *)root, prlnt node);

1
/* This routine compares two nodes, based on an

alphabetical ordering of the string field. */
int
nodecompa re(node1, node2)
char *node1, *node2;
{

return strcmp(((struct node *)node1)->string,
((struct node *) node2)->string);

}
I* This routine prints out a node, the first time

twalk encounters it. */
void
print_node(node, order, level)
char **node;
VISIT order;
int level;
{

if (order == preorder 11 order == leaf) {
(void)printffstring = %20s, length = %d\n",

(•((struct node **)node))->string,
(•((struct node **)node))->length);

}
}

SEE ALSO
bsearch(3C), hsearch(3C), lsearch(3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.

A NULL pointer is returned by tfind and tdelete if rootp is NULL on entry.

If the datum is found, both tsearch and tfind return a pointer to it If not, tfind
returns NULL, and tsearch returns a pointer to the inserted item.

- 3 -

TSEARCH(3C) TSEARCH(3C)

CAVEAT
If the calling function alters the pointer to the root, results are unpredictable.

WARNINGS
The root argument to twalk is one level of indirection less than the rootp
arguments to tsearch and tdelete.

There are two nomenclatures used to refer to the order in which tree nodes are
visited, tsearch uses preorder, postorder, and endorder in respective order to
refer to visting a node before any of its children, after its left child and before
its right, and after both its children. The alternate nomenclature uses preorder,
inorder, and postorder to refer to the same visits, which could result in some
confusion over the meaning of postorder.

TTYNAME(3C) TTYNAME(3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char "ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION
ttyname returns a pointer to a string containing the null-terminated path name
of the terminal device associated with file descriptor fildes.

isatty returns 1 i f f i ldes is associated with a terminal device, 0 otherwise.

FILES
/dev/*

DIAGNOSTICS
ttyname returns a NULL pointer if fildes does not describe a terminal device in
directory /dev.

CAVEAT
The return value points to static data whose content is overwritten by each call.

TTYSLOT(3C) TTYSLOT(3C)

NAME
ttyslot - Find the slot in the utmp Fde of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION
ttyslot returns the index of the current user's entry in the /etc/utmp fde. This is
accomplished by actually scanning the file /etc/inittab for the name of the
terminal associated with the standard input, the standard output, or the error
output (0, l ,or2) .

FILES
/etc/inittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for the
terminal name or if none of the above file descriptors is associated with a
terminal device.

UNGETC(3S) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc (c, stream)
int c;
FILE "stream;

DESCRIPTION
ungetc inserts the character c into the buffer associated with an input stream.
That character, c, will be returned by the next getc(3S) call on that stream,
ungetc returns c and leaves the file stream unchanged.
One character of pushback is guaranteed, provided something has already been
read from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

fseek(3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS
ungetc returns EOF if it cannot insert the character.

BUGS
When stream is stdin, one character may be pushed back onto the buffer
without a previous read statement.

I

VPRINTF(3S) VPRINTF(3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char "format;
va list ap;

int vfprintf (stream, format, ap)
FILE "stream;
char "format;
va_list ap;

lot vsprintf (s, format, ap)
char "s, "format;
va j i s t ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf
respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by varargs(5).

EXAMPLE
The following demonstrates the use of vfprintf to write an error routine.

#include <stdio.h>
finclude <varargs.h>

/*

* error should be called like
* error(functlon_name, format, argl, arg2...); •/

/•VARARGS*/
void
error(va_alist)
/* Note that the functionname and format argument* •/
I* cannot be separately declared because of the */
/» definition of varargs. */
vadcl
{

vajist args;

VPRINTF(3S) VPRINTF(3S)

char *fmt;

va_*tart(args);
/• print out name of function causing error */
(void)fprintf(stderr, "ERROR In %s:va_arg(args,

char *));
fmt = va_arg(args, char •);
/* print out remainder of message */
(votd)vfprlntf(stderr, fmt, args);
va_end(args);
(void)abort();

SEE ALSO
printf(3S), varargs(5).

I

i

