CTIX™ OPERATING SYSTEM MANUAL

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, Chart Designer, ClusterCard, ClusterNet,
ClusterShare, Context Manager/VM, Convergent, CT-DBMS,
CT-MAIL, CT-Net, CTIX, CTOS, CTOS/VM, DISTRIX, Document
Designer, The Operator, AWS, CWS, IWS, §/50, $/120, S/160, S/220,
57320, $/640, S/1280, Multibus, TeleCluster, Voice/Data Services,
Voice Processor, WGS/Calendar, WGS/Deskiop Manager,
WGS/Mail, and X-Bus are trademarks of
Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent Technologies under license from
AT&T. UNIX and RFS are trademarks of AT&T.

Material excerpted from the UNIX System V, Release 3.2 System Administrator's/User’s
Reference Manual and Programmer’'s Reference Manual is Copyright 1989 by AT&T
Technologies. Reprinted by permission.

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

This manual was prepared on a Convergent Technologies S$/320 Computer System and
was printed on an Apple LaserWriter II Laser Printer.

Second Edition (November 1989) 09-02264-01

Copyright © 1989 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. No part of this document may be reproduced, transmitted, stored in a
retrieval system, or translated into any language without the prior written consent of
Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Convergent Technologies reserves the right
to revise this publication and to make changes from time to time in its content without
being obligated to notify any person of such revision or changes.

TABLE OF CONTENTS: VOLUME 3

How to Use This Manual ix

Permuted Index xiii

2. System Calls

11T T introduction to system calls and error numbers
ACCESS &+ o v o o 4 4 b b e e e e e e e e e e e determine accessibility of a file
ACCL 4 v v v v e e e e e e e e e e e e e e . enable or disable process accounting
adjime correct the time to allow synchronization of the system clock
alarm . . . L L. oo oo s e e e + « « « . .setaprocess alarm clock
bind 000000l « « « « .« .bind aname to a socket
brk . . v o0 oo s s s . . . change data segment space allocation
chdir Lo o e . change working directory
chmod « . . change mode of file
chown 0000 e ... change owner and group of a file
CHIOOL = v v v v v v v e e e e e e e e e e e . . . change root directory
close e e e e © e+ 4 e e+ v e« . .closeafile descriptor
COMMECt « & & & v v v ¢ & & o o o « « « « « « . .initiate a connection on a socket
Creal « v v v v v v b v e e ecreate anew file or rewrite an existing one
dup e e e e e e e e e e e e e e duplicate an open file descriptor
EXEC &« 4 v v b e e e e e e e e e e e e e e e e « + « «execute afile
1 terminate process
fend e e . e e e e s s file control
fork o s e e e e e e . Creale a new process
getdents e e e e e e e read directory entries and put in a file
getdtablesize get descriptor table size
gethostid get/set unique identifier of current host
gethostname ¢ v v v v vt e e e . get/set name of current host
ELMSE . v v v v 4 it e e e e e e e e « « « . . getnext message off a stream
GEIPEEMAME . . &+ « v o & & & s + 4 4 o« e e s e . . get name of connected peer
getpid get process, process group, and parent process IDs
getsockname L. L . e s e e e e e e e e e . get socket name
getsockopt L. L Lo s s e get and set options on sockets
gettimeofday « « « . . getfset date and time
getuid get real user, effective user, real group, and effective group IDs
0T e e e e . control device
< send a signal to a process or a group of processes
1 1) . « v+ . . .linktoafile
lisen00..0... . hsten for connections on a socket
locking 000000 excluswe access 1o regions of a file
Iseek 0000 oo e e e e e move read/write file pointer
mkdir o e e e e e e e s e e e e e e e e make a directory
mknod 0000w make a dxrectory, or a special or ordinary file
mount v v v 4w e e e e . « + « + . . mount afile system
msgetl, e e e e e e e e e e e . . message control operations
MSEEEL o v v v v v e e e e e « + 4 4 4« = e« «getmessage queue
MSEOP « « o = o + s o o o o 4 o o 4 n e e e e e e e message operations
Nfssys o o e e s e e e e e e common shared NFS system calls

- iii -

MCE v v v v v v e e e e e e e e e e e e . « . . .change priority of a process

notify L. L L s s e e e e e e e e e e manage notifications
OPENL v v v v 4 v v 4 et e e e e e e e e e e e open for reading or writing
PAUSE « & v v v v e v e e e e e e e e e e . « .+ . . suspend process until signal
PiPE . v v v i i e e e e e e e e e e e e e . . . create an interprocess channel
plock e e e e e e e e e e e . . lock process, text, or data in memory
Poll .« . . o e e e e e e STREAMS input/output multiplexing
pofil e e e e e e e e e e e e execution time profile
ptrace e e e e e P . . process trace
PULMSE + - & v v v v v v o o o s s o h e e e e e send a message on a stream
(-« . .« read from file
(=102 e e e e e e e e e e e e e e receive a message from a socket
mdir . . v L s e e e e e e e e e e e e e e e e . . . remove adirectory
select e e e e e e e e e e e e e synchronous I/O multiplexing
semetl L L e s s e e e e e e e e e semaphore control operations
SEMZEL « v ¢ v v 4 e e h e e e e e e e e e e e « + = o . getsetof semaphores
semop e e e e e e e e e e e e . . . semaphore operations
send . . . L . s e e e e e e e e e + « « .« . .send amessage to a socket
SEIPEIP + + ¢« v v 4 e 4 s e s e e a e e e s e e e . « . set process group ID
setuid © . . . L . e e e e e e e e e e e setuserandgroupIDs
shmetl e e e e e e .. sha:ed memory control operations
shmget e e e e e e . get shared memory segment identifier
shmop 0. . + . . shared memory operations
shutdown shut down part of a full-duplex connection
signal « . . L0 0 e e e e e e e e spemfy what to do upon receipt of a signal
SIBSEL v v v 4 4 v e e e e e e e e e e e e e « « « o .signal management
socket L L0000 e .. create anendpomt for communication
S . . . e e e e e e e e e e e e e e e e e e e « « « - « . getfile status
statfs L0 0o v . get file system information
SHIME « v v ¢ v v v vt e e e e e e e e e e e e e+« + . . .settime
SWHIE &« ¢ v v v b e v e e e e e e e e e e e e e e e synchronous write on a file
SYNC ¢ v & o v o o o v s e e e e e e e e e e « « « « « o update super block
sysfs . . . oo L s e e e e e e « getfile system type information
syslocal L L L L. 0 L e s e e e e e . . special system requests
HMe . .« v v v e e e e e e e e e e e e e e e e 4 s e s e o . .gettime
HMES © & v v v v v e v v v e e e e e e e e . get process and child process times
uadmin L0 « « e« « « « « o « «administrative control
ulimit 0o e e e e . « « « « « « . . getand set user limits
umask o . s e e e e e e e e e e e e e e set and get file creation mask
UMOUNE v « + v o 4 ¢ o & o s o s o o o o o o s o o o o« unmount a file system
UNAME &« & v o 4 o & o o & o o o o s . « . . get name of current CTIX system
unlink . . . 0 L e e e e e e e e e e e e e e . . remove directory entry
USEAl & & v v h e e e e e e e e e e e e e e e e e get file system statistics
utime .+« ¢ ¢ . 4 4 e e e e e e e s setfile access and modification times
WAL« o . v e s e e e e e e e e e e e e wait for child process to stop or terminate
WIE & v v v v v v e e e e e e e e e e v e s e s s s . . owriteonafile

into e e e e e e e e e e e e e introduction to functions and libraries
a4l « + + « « . . .convert between long integer and base-64 ASCII string
abort00l « « « « « s « . .generate a SIGABRT

-iv-

abs ... L L s e e e return integer absolute value

ASSEIL & & v u . v i e e e e e e e e e e e e e e e . . verify program assertion
bessel L0 oo L oL . . . Bessel functions
bsearch e bma.ry search a sorted table
bstring « L o e o e e s e e e e e e e bit and byte string operations
byteorder convert values between host and network byte order
clock 0 e e e s s e e e e e e . .+ . report CPU time used
COMV v v v v v v v o v o s e s u v a s e o e e e . . . translate characters
CIYPL o« vt v o e i v e v v e e e e e e e e e e e generate hashing encryption
CIYPL v v v v e v e v e et e e e e e password and file encryption functions
cermid oL .. + « + « « « « . .generate file name for terminal
CHME + &+ v v v v v v v 4 v s e v e e e e e e . convert date and time to string
CLYPE v v v v s v e e e e e e e e e e e e e e . « . . character handling
CUISES = v v o« v + & v o & v & o & terminal screen handlmg and optimization package
cuserid Lo e e . get character login name of the user
dbm e e e e e e e e e e e database subroutines
dial00 oo estabhsh an out-going terminal line connection
directory = e e e e e e e e e e e e e e e e e e e directory operations
drand48 generate uniformly distributed pseudo-random numbers
dup2 e e e . ‘e duplxcate an open file descriptor
o convert floating-point number to string
end L0 e e e e e last locations in program
= ¢ S error function and complementary error function
EXP v ¢t e v e e e e e e e e e exponential, logarithm, power, square root functions
fclose e e e e e e e e e e e e e close or flush a stream
ferroro L. e e . . - . .stream status inquiries
?oor e e e e e floor, ceiling, remainder, absolute value functions
OPENL & 4 v o v v ot a e e e e s e e e e e e e e e e e e open a stream
fpgeround L L. L IEEE floating point environment control
fread e e e e e e e e e e . binary input/output
frexp00 Lo manipulate parts of floating-point numbers
fseek L. L Lo reposition a file pointer in a stream
ffw o L o e e e e e e e e s e e e e e e . . walk a file tree
BAMMA . . & v v 4 v 4 v v v v e e e e e e e e e . « . log gamma function
getc e e e e e e e e e e e e get character or word from a stream
getewd . .. L. 0 Lo e e e e e get path-name of current working directory
BeteNV L L h e e e e e e e e e e return value for environment name
BELETENt . & u e s e e e e e e e e e e e e e . . get group file entry
gethostbyname « + . . get network host entry
getlogin L0 getlogin name
GeMEetent L e . e e e e e e e e e e e e e e e get network entry
BEOPL L . u e e e e e e e e e e get option letter from argument vector
BEIPASS « . v . . e e h e e e e e e e e e e e e e e e e e e read a password
ZEIPotoent e e e h e e e e e e e « + + « . . getprotocol entry
getpw e e e e e e e e e . get name from UID
BEPDWENL & v & v vt vt i e v e e e e e e e e e e e e get password file entry
gerpcent 0 0 i e e e e e e e e e e e e + o+« o+ . . getrpcentry
BEUPCPOTL v . v v b i i e e i e e e e e e e e e e e e e get RPC port number
gets e e e e e e e e e e e e e e e get a string from a stream
BEISEIVENL . . . & v . . e i et e e e e e e e e e e e e e get service entry
BEISPENL .+ v .t v 4 v e et e e e e e e e e e « « + « . getshadow
21 | access utmp file entry

hsearch 00 e e e e e manage hash search tables

hypot . « ¢« « v v v e e e e e e e e e e e e e e Euclidean distance function
Met « v v v v v e e e e e e e e e e e Internet address manipulation routines
IBIAN o v v v v e e e e e e e e e e e test for floating point NaN (Not-A-Number)
Btol 0000 convert between 3-byte integers and long integers
ldahread read the archive header of a member of an archive file
delose 0000 . . + « . close acommon object file
Idfhread 000 L read Lhe file header of a common object file
dgethame retrieve symbol name for common object file symbol table entry
Idiread manipulate line number entries of a common object file function
Idlseek seek to line number entries of a section of a common object file
ldohseek seek to the optional file header of a common object file
Idopen 000000 open a common object file for reading
Idrseek seek to relocation entries of a section of a common object file
Idshread read an indexed/named section header of a common object file
Idsseek seek to an indexed/named section of a common object file
Idtbindex compute the index of a symbol table entry of a common object file
Idtbread read an indexed symbol table entry of a common object file
Wibseek seek to the Syﬂ"lbﬁ} table of a common oucu. file
libdev mampulate Volume Home Blocks (VHB)
lockf 0000 e . . « . . record locking on files
logname 0L L0 e e e e e e e e e e return login name of user
Isearch 000l e e linear search and update
malloc L L s e e e e e e e e e . . main memory allocator
malloc e e e e e « « + « « .« . fast main memory allocator
matherr L L L e e e e e e e e e error-handling function
MEMOTY + & &+ & o o 4 ¢ o o o o s o o o s o o s o o o o memory operations
mKiemp 0 0. o e e e e e e e e make a unique file name
MOMIOT « « « v v v v 4 v v o s e s s s o v o e o a prepare execution profile
ndbm . .. L Lo e e e e e e e e e e e . database subroutines
11 get entries from name list
nlsgetcall get client’s data passed through the listener
nlsprovider L L L0000 0o e get name of transport provider
nlsrequest format and send listener service request message
OCUISE o =« & « o o o & & & o o o o o o s o o o o o o » optimized screen functions
OBIMCAP + &+ &+ + v v &« & 4 2 s e h e e e e e terminal independent operations
PEITOr . . . v . v ¢ ¢ 4 b e e e e e e e e e e e e e e system error messages
plot e e e e e e e e . graphics interface subroutines
POPEIL « v ¢ v & vttt et e e e e e e e e e e initiate ‘pipe to/from a process
222111 print formatted output
PUIC . ¢ v v v v i e e e e e e e e e e e e e put character or word on a stream
PUWENV L . L L o e e e e e e e change or add value to environment
PUIPWENL o . o h e e e e e e e e e e e write password file entry
PULS « v & v v v v e s e e e e e e e e « = + + « « « .putastring on astream
PUISPENt « v & v v ¢ 4 v e e e e e e s . « . . write shadow password file entry
o ¢ e e e e - .« . quicker sort
2 s simple random-number generator
remdo L0000 routines for returning a stream to a remote command
TEECMP « v ¢ v v v w4 e e e e e e e e e compile and execute regular expression
resolver . . . L . . L e s e e e e e e e e e e e e resolver routines
TEXEC « v« v v v e e e e e e e e e e e e e .. return stream to a remote command
scanf . .. L L L L Lo e s s e e e e e convert formatted input

-vi-

setbuf 0. assignbuffering to a stream
seymp+ .. . mnonlocal goto
simh+.+.«...hyperolic functions
sleepsuspendexecution for interval
sputlaccesslong integer data in a machine-independent fashion
ssignal e e .« . .software signals
stdiostandard buffered mputJoutput package
sdipcstandard interprocess communication package
SIFINE =+« « v & 4 v 4 4 v s 4 e s s e v s e s« « . . .slring operations
sttodconver sking to double-precision number
siiolconvert sting to integer
swab L . L. L. .. e it e e e e s . . Jswapbytes
SYStBIM ¢ 4 4 s 4 e s e e s s s s s« o .issueashell command
tacceptacceptaconnect request
tallocalocate alibrary structure
tbindbindanaddress to atransport endpoint
telosecloseatransport endpoint
tcomnectestablishaconnection with another transport user
Lemor+t . .produceerror message
tfree . . . L .. . L. s e s i e s e e e o s . fTee alibrary structure
tgetinfo getprotocol-specific service information
tgetstate 4.getthecurrent state
thistenlistenfor aconnect request
tlooklookatthe current event on a transport endpoint
topen. . . « .+ . . . 4 . s 4 e ..+establishatransport endpoint
topimgmtmanageoptions for atransport endpoint
trevreceive data or expedited data sent over a connection
t_rcveonnectreceive the confirmation from a connect request
trevdisretrieve information from disconnect
trevrelacknowledge receipt of an orderly release indication
trevudata 4 0 . 4 v 4t e e e e s s . « o . . .reECEivVe adata unit
trevuderr 4. 4 e 4+ .+« « « « . . .receive aunit data error indication
tsnd.senddataorexpedited data over a connection
tsnddissenduser-initiated disconnect request
tsndrelinitiate an orderly release
tsndudata ee.ea.sendadataunit
Lsyncsynchronize transport library
tunbinddisablea transport endpoint
tmpfilecreateatemporaryﬁle
tapnamcCreateaname for atemporary file
rig « « v ¢« . o v v i 4 i s e v e w .+ u o « . . .trigonometric functions
tsearchmanage binary search trees
yname 00w e e e e e e « « + « . find name of a terminal
ttyslot ﬁndt.heslotmtheutmpﬁleofthecurrentuser
ungetc+ . . .+pushcharacter back into input stream
vprintfphont forrnatted output of a varargs argument list

- vii -

HOW TO USE THIS MANUAL

This second edition of the CTIX Operating System Manual, Version C, describes the
commands, system calls, libraries, data files, and device interfaces that make up the CTIX
Operating System for S/Series Computer Systems. This manual should always be your
starting point when you need to find the documentation for a CTIX feature with which
you are unfamiliar.

The manual consists of a large number of short entries, sometimes called ‘‘the man
pages,”’ after the command that accesses the entries when they are kept online. Each
entry briefly documents some feature of CTIX. Some features require longer
documentation than an entry in this manual; such features have an entry that outlines the
feature and cross-references the manual that documents the feature fully. Entries that do
not refer to other manuals are self-contained and are the final word on the features they
describe.

Organization of the manual. The entries are organized into seven sections in four
volumes:

Volumes 1 and 2:
1. Commands and Application Programs.

Volume 3:
2. System Calls.
3. Subroutines and Libraries.

Volume 4:
4, File Formats.
5. Miscellaneous Facilities.
6. Games.
7. Special Files.

Within each section, entries are alphabetical by title, except for an intro entry at the
beginning of each section.

Entry Title Conventions. An entry title looks like this example:
FHO
bl
} }Entry Type
| Section Number
Name

Name is the name of the entry. Section Number indicates the section that contains the
entry. In this case, the entry is in Section 3, which is in Volume 2. Entry Type appears
only on entries that belong to special categories; refer to the section’s intro entry for an
explanation. In this case, a reference to intro(3) would tell you that erf{3M) describes
functions from the Math Library, which the C compiler does not load by default.

-ix -

Finding the entry you need. To find out which entry you need, refer to the following
guides:

o The Permuted Index. This indexes each significant word in each entry’s
description. It is useful when you have only a general notion what you're
looking for. 1t is also useful when you know the name of the command or
function you are interested in, but there is no entry by that name.

| The Table of Contents. This is a simple list of entries, by section, together with
the entry descriptions. Volumes 1 and 2 have Tables of Contents for Section 1.
Volume 3 has a Table of Contents for Sections 2 and 3. Volume 4 has a Table of
Contents for Sections 4 through 7.

° The Table of Related Entries. For Volume 1 only. A table of entries organized
so that related entries are grouped together.

Section organization. Each section begins with an intro entry, which provides
important general information for that section.

Section 1, Commands and Application Programs, describes programs intended to be
invoked directly by the user or by command ianguage procedures, as opposed to
subroutines, which are intended to be called by the user’s programs. Commands
generally reside in the directory /bin (for binary programs). Some programs also reside
in /usr/bin, to save space in /bin. These directories are searched automatically by the
command interpreter called the shell. Commands that were not transported from UNIX
System V reside in /usr/local/bin; this directory is recommended for locally
implemented programs. Some administrative commands reside in /etc and various other
places. The /etc directory is searched automatically if you are logged in as root;
otherwise use the full path name given under SYNOPSIS or change the PATH
environment variable to include the command’s directory.

Section 2, System Calls, describes the entries into the CTIX kernel, including the C
language interfaces.

Section 3, Subroutines and Libraries, describes the available library functions or
subroutines. Their binary versions reside in various system libraries in the directories
Nlib and /usr/lib. See intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular kinds of files; for example,
the format of the output of the link editor is given in a.out(4). Excluded are files used by
only one command (for example, the assembler’s intermediate files). In general, the C
language struct declarations corresponding to these formats can be found in the
directories /usr/include and /usr/include/sys.

Section 5, Miscellaneous Facilities, contains descriptions of character sets, macro
packages, and other such information.

Section 6, Games, describes the games and educational programs that reside in the
directory /usr/games.

Section 7, Special Files, discusses the characteristics of files that actually refer to
input/output devices.

Entry organization. All entries are based on a common format, in which some parts are

optional;
NAME

SYNOPSIS

DESCRIPTION
EXAMPLE(S)

FILES
SEEALSO
DIAGNOSTICS

NOTES

WARNINGS
BUGS

The NAME part gives the name(s) of the entry and briefly states its
purpose.

The SYNOPSIS part summarizes the use of the program being
described. A few conventions are used, particularly in Section 1
(Commands and Application Programs):

Bold Boldface strings are literals, and are to be typed just as
they appear.
Regular Regular face strings usually represent substitutable

argument prototypes and program names found
elsewhere in the manual.

[1] Square brackets around an argument prototype indicate
that the argument 1s opuonal When an argument
prototype is given as ‘‘name’’ or ‘‘file,” it always refers
10 a file name.

Ellipses are used to show that the previous argument
prototype can be repeated.

—+= A final convention is used by the commands themselves.
An argument beginning with a minus (-), plus (+), or
equal sign (=) is often taken to be some sort of flag
argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with —, +, or =,

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that
may be produced. Messages that are intended to be self-explanatory
are not listed.

The NOTES part gives information that might be helpful under the
particular circumstance described.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies.
Occasionally, the suggested fix is also described.

A table of contents is provided at the front of each of the four volumes, along with a
complete permuted index derived from the tables. On each index line, the title of the

-Xi-

entry to which that line refers is followed by the appropriate section number in
parentheses. This is important because there is considerable duplication of names
among the sections, arising principally from commands that exist only to exercise a
particular system call.

- xii -

PERMUTED INDEX

This index includes entries for all pages of Volumes 1 through 4. The entries themselves
are based on the one-line descriptions or titles found in the NAME portion of each
manual page; the significant words (keywords) of these descriptions are listed
alphabetically down the center of the index.

The index is actually a keyword-in-context (KWIC) index that has three columns. To
use the index, read the center column to look up specific commands by name or by
subject topics. Note that the entry may begin in the left column or wrap around and
continue into the left column. A period (.) marks the end of the entry, and a slash (/)
indicates where the entry has been continued or truncated. The right column gives the
manual page where the command or subject is described.

hpio: Hewlent-Packard 2645A terminal apefile/ hpio(1)
fspecial functions of DASI 300and 300stemminals. 300(1)
for Interphase V/TAPE 3200 half-inch tape/ finterfface ipt(7)

1310}, 1tol3: convert between 3-byte integersandlong/ L. 13t0l(3C)
comparison. diff3: 3-waydifferentialfile diff3(1)

paginator for the Tektronix 4014 terminal. 4014: 4014Q1)
special functions of the DASI 450terminal. 450:handle 450(1)
long integer and base-64/ a64l, 164a: convertbetween a641(3C)
abort: generate aSIGABRT. abort(3C)

value. abs: retum integer absolute, . abs(3C)

adb: absolute debugger. oL adb(1)

abs: retum integer absolute value.00 .. abs(3C)

[floor, ceiling, remainder, absolute value functions. floor(3M)
tiop: terminal accelerator imerface. Lo L L. L. L tiop(7)

t_accept: accept aconnectrequest. o0 . . .o t_accept(3n)

prevent LP requests. accept, reject: allowor L, accept(1M)
adirectory for remote access. adv:advertise L. adv(1M)

of a file. touch: update access and modificationtimes touch(l)
utime: set file access and modificationtimes. utime(2)

accessibility of a file. access:determine L. ... access(2)
commands. graphics: access graphical and numerical graphics(1G)

sputl, sgetl: access long integer dataina/ sputl(3X)

fusage: disk accessprofiler., fusage(1M)

sadp: disk accessprofiler. 0oL sadp(1M)

Idfen: common object file accessroutines.00 0w 0. 0. 1dfcn(4)
copy file systems for optimal access time. dcopy: oL, dcopy(1M)
locking: exclusive access toregionsofafile. locking(2)

/setutent, endutent, utmpname: access utmp fileentry. L L getut(3C)
access: determine accessibility ofafile.o L0 access(2)

enable or disable process accounting. acct: acct(2)
acctoon2: connect-time accounting. acctconl, Lo accicon(1M)
acctprel, acctprc2: process accounting. v 0 0 e 0. e e . e acctpre(1M)
turnacct: shell procedures for accounting. fstartup, acctsh(1M)
faccton, acatwimp: overview of accounting and miscellanecus/ L L. acct(1M)
accounting and miscellaneous accounting commands. /of acct(1M)
diskusg: generate disk accounting databyuserID. diskusg(1M)

acct: per-process accounting file format. 0oL L. acct(4)

- xiii -

search and print process
acctmerg: merge or add total
summary from per-process
wtmpfix: manipulate connect
runacct: run daily

process accounting.

file format.

per-process accounting/
process accounting file(s).
connect-time acoounting.
acawimp: overview of/
acoounting files.

acoounting.

orderly release/ t_rcvrel:
trig: sin, cos, tan, asin,
killall: kill all

sag: system

sar: sal, sa2, sadc: system
sar: system

current SCCS file editing
report process data and system
Dialers:

random, hopefully interesting,

accumerg: merge or
putenv: change or
finet_netof: Internet
getservaddr: get network
control. arp:

arp:
endpoint. t_bind: bind an
allow synchronization of the/
system.

SCCS files.

network listener service
rfadmin: Remote File Sharing
uadmin:

uadmin:

swap: swap

remote access.

remote access. adv:

fumount: forced unmount of an
alarm: set a process

clock.

sendmail.

aliases:

the data base for the mail
t_alloc:

change data segment space
realloc, calloc: main memory
mallinfo: fast main memory
accept, reject:

adjtime: correct the time to
process by changing/ renice:
sort: sort

link editor output.
introduction to commands and

accounting file(s). acctcom: oo o L accicom(1)
accounting files. o L acctmerg(1M)
accounting records. /command acctems(1M)
accounting records. fwtmp, fwtmp(1M)
ACCOUNMUNG. + + « o « o o o o o o s o o o o o o runacct(1M)
acct: enable ordisable 000 acct(2)
acct: per-process accounting 0 o 0. .. acct(4)
acctcms: command summary from acctems(1M)
acctcom: searchandprint acctcom(1)
accteonl, accteon2: L . e . e e . . acctcon(1M)
acatdisk, acatdusg, accton, oo oo L acc(1M)
acctmerg: mergeoraddtotal acctmerg(1M)
acctprcl, acapre2: process 4 .. e e . acctprc(1M)
acknowledge receiptofan t_rcvrel(3n)
acos,atan, atan2:y/ 0 0 e e e e e s e e trig(3M)
ACHVE PrOCESSES. = + = o « v o = o o o o ¢ o o o . killall(1M)
activity graph.o e 0L sag(1G)
activity report package. oo 0oL L. sar(1M)
ACHVILY TEPOMET. .« « & & ¢ v « « ¢ o & ¢ & & o o » o« sar(1)
aclivity. sact:prifit . . . + « + ¢ o o« ¢ s o e 4o sact(1)
activity. timeacommand;+ tmex(1)
ACU/modem calling protocols. Dialers(5)
adage. formme:printa fortune(6)
adb: absolute debugger. adb(1)
add total accounting files. acctmerg(1M)
add value toenvironment. putenv(3C)
address manipulation routines. ine1(3)
address of servicehost. getservad(1M)
address resolution displayand L L. arp(1M)
Address Resolution Protocol. arp(7)
address O atransport . o « v ¢ ¢« . 0 e e o0 .. . t_bind(3n)
adjtime: correct thetimeto adjtime(2)
adman: administeraCTIX adman(1)
admin: create and administer admin(1)
administration. nlsadmin: nlsadmin(1M)
administration. 0oL rfadmin(1M)
administrative control. uadmin(1M)
administrative control. L. L L uadmin(2)
administrative interface. swap(1M)
adv: advertise adirectory for L. adv(1M)
advent: explore Colossal Cave. advent(6)
advertise adirectoryfor L. adv(IM)
advertisedresource. 4 00 .. fumount(1M)
alamclock. oo L L Lo s e e e alarm(2)
alarm: setaprocessalarm alarm(2)
aliases: aliases filefor aliases(4)
aliases file forsendmail. L L. aliases(4)
aliases file. /rebuild00 0L newaliases(1)
allocate alibrary structure. t_alloc(3n)
allocation. brk,sbek: o000 oL brk(2)
allocator. malloc,free, malloc(3C)
allocator. /fcalloc,mallopt, malloc(3X)
allow orprevent LPrequests. accept(1M)
allow synchronization ofthe/ adjtime(2)
alter priority of unning L L. renice(1)
andformergefiles. sort(1)
a.out: common assemblerand a.out(4)
application programs. intro: L ... intro(1)

- Xiv -

maintainer for portable/ ar: archiveand library ar(1l)
format. ar: common archivefile ar(4)

number: convert Arabic numerals to English. number(6)

language. bc: arbitrary-precision arithmetic be(1)

for portable archives. ar: archive and library maintainer ar(1)
cpio: formatof cpio archive.o . 0oL cpio(4)

ar: common archive fileformat. L0000 L L. ar(4)

header of a member of an archive file. fhe archive idahread(3X)
formats. convert: convert archive filestocommon convert(1)
an archive/ ldahread: read the archive header of amemberof ldahread(3X)
2645A terminal tape file archiver. /Hewlett-Packard hpio(1)

tar: tape file archiver.o 0L, tar(1)

maintainer for portable archives. farchive andlibrary ar(1)
cpio: copy file archivesinandout. cpio(1)

varargs: handle variable argumenthist. varargs(5)
formatted output of a varargs argument list. /print vprintf(3S)
command. xargs: construct argument list(s) and execute xargs(1)
getopt: get option letter from argumentvector. getopt(3C)
expr: evaluate arguments asanexpression. 0. . . expr(1)

echocecho arguments. echo(1)

be: arbitrary-precision arithmetic language. be(1)
number facts. arithmetic: provide drillin arithmetic(6)

dispiay and conirol. arp: addressresolution arp(1M)
Protocol. arp: Address Resolution arp(7)

ftp: ARPANET file transferprogram. fip(1)

expr: evaluate arguments asanexpression. o 4 40w v b a .. s expr(l)
as:commonassembler. as(1)

/attach and detach serial lines as network interfaces. slattach(1M)
flocate a terminal to use as the virtual systemconsole. conlocate(1M)
characters. asa:interpret ASA camagecontrol 0.0 .. asa(l)
and/ /gmtime, asctime, cftime, ascftime, tzset: convertdate ctime(3C)
ascii: map of ASClIIcharacterset. « ¢ ¢ v v v o o . ascii(S)

hd: hexadecimal and ascii filedump. L0000 .., hd(1)

set. ascii: map of ASCIIcharacter ascii(S)

long integer and base-64 ASCH string. /convertbetween a641(3C)
strings: extract the ASClItext stringsinafile. strings(1)

ctime, localtime, gmtime, asctime, cftime, ascftime,/ ctime(3C)
trig: sin, cos, tan, asin, acos, atan, atan2:/«4 . o4 . . trig(3M)

output. a.out: common assembler and link editor a.out(4)
asicommon assembler. L. L s L e w e i e e e as(1)

assertion. assert: verifyprogram 0. .. assert(3X)

setbuf, setvbuf: assign bufferingtoastream. L. L. setbuf(3S)

system commands. assist: assistance using CTIX assist(1)

astgen: generate/modify ASSISTmenusand command/ astgen(1)
commands. assist: assistance using CTIXsystem assist(1)

print the list of blocks associated with an. bcheck: bcheck(1M)
/create device nodes for assorted devicetypes. createdev(1M)
menus and command forms. astgen: generate/modify ASSIST astgen(1)
alater time. at, batch: execute commandsat at(1)

/sin, cos, tan, asin, acos, atan, atan2: igoONOMEIAC/ . « + . .+ . . 4 trig(3M)
cos, tan, asin, acos, atan, atan2: trigonometric/ fsin, trig(3M)
description file. queuedefs: at/batch/cronquene L. L L. L. queunedefs(4)
double-precision/ strtod, atof: convertstringto strtod(3C)
integer. strtol, atol, atoi: convenistringto L. L, sintol(3C)

integer. striol, atol, atoi: convertstringto strtol(3C)

as/ slattach, sldetach: attach and detach seriallines slattach(1M)
resources. rmntiry: attempt tomountremote+ rmnttry(1M)

log of failed login attempts. fusr/admfloginlog: loginlog(4)

-XV -

wait:
processing language.
ungetc: push character

back: the game of

finc: fast incremental
ckbupscd: check file system
frec: recover files from a

newaliases: rebuild the data
Sun rpc program number data
terminal capability data
terminal capability data
between long integer and
(visual) display editor

from proto file; set links
portions of path names.

later time. at,

arithmetic language.

blocks associated with an.
system initialization/ brc,
hoopy

i 24

byte string operations.

cb: C program

about the operating system for
0,31, jn, y0, y1, yn:

yn: Bessel functions.

cpset: install object files in
fread, fwrite:

bsearch:

tfind, tdelete, twalk: manage
bind:

endpoint. t_bind:

nfsd,
beopy, bemp, bzero:

bj: the game of

beopy: interactive

sum: print checksum and
sync: update the super

sync: update super

df: report number of free disk
bcheck: print the list of
libdev: manipulate Volume Home
powerfail: system/

space allocation.
modest-sized programs.
sorted table.

stdio: standard

setbuf, setvbuf: assign
mknod:

vme: VME

between host and network
beopy, bemp, bzero: bit and

await completion of process.o wait(1)
awk: pattemn scanningand awk(1)
back into input stream. ungetc(3S)
back: the game of backgammon. back(6)
backgammon. o 0. e e e . back(6)
backup.ol . finc(1M)
backup schedule.o . ckbupscd(1M)
backuptape. 00w . frec(I1M)
banner: make posters. o0 o .0 e o 0. banner(1)
base for the mail aliases/ newaliases(1)
base. IPC: « v v v v o e e e e e e e e e e e e e e e pc(4)
base. tEMMCAP: . + &+ « ¢ ¢ 0 0 e 0. e e e termcap(4)
base. terminfo: 000 e e .. . terminfo(4)
base-64 ASCI string. Jeonvert « « « « + . & a641(3C)
based onex. fscreen-oriented vi(l)
basedon. foutfilelistso 0oL qlist(1)
basename, dimame: deliver basename(1)
batch: execute commands ata at(1)
be: arbitrary-precision o0 e e be(1)
beheck: print the listof bcheck(IM)
bcheckre, drvload, powerfail: L L brc(IM)
hemp bzero:bhitandbyte bstring(3)
bcopy, bamp, bzero:bitand oL L L. bstring(3)
beopy: interactive block copy. 0 . . beopy(1M)
bdiffibigdiff. ool bdiff(1)
beautifier. v L e e e e e e e e e e cb(1)
beginning users. finformation starter(1)
Bessel functions. bessel: bessel(3M)
bessel: jO,jl,n,y0,y1, bessel(3M)
bfs:big filescanner. 000000 bfs(l)
binary directories.00 0w cpset(1M)
binary inputfoutput. - ... fread(3S)
binary searchasortedtable. bsearch(3C)
binary search trees. tsearch, tsearch(3C)
bindanametoasocket. . . + .« ¢ . v 4 4 o e o4 . . bind(2)
bind an addresstoatransport t_bind(3n)
bind: bind anametoasocket. bind(2)
biod: NFSdaemons. nfsd(1M)
bit and byte string/ 0L bstring(3)
bj: the game of black jack. bj(6)
blackjack.o bj(6)
blockcopy.« .o e e beopy(1M)
block countofafile. sum(1)
block. i e e e e sync(1M)
block. e sync(2)
blocks andi-nodes. df(1M)
blocks associated withan. beheck(1M)
Blocks(VHB). libdev(3X)
bre, beheckre,drvload, L L L o o000 L bre(1M)
brk, sbrk: change datasegment brk(2)
bs: a compiler/interpreter for oL oL L. bs(1)
bsearch: binary searcha bsearch(3C)
buffered input/output package. stdio(3S)
bufferingtoastream. setbuf(3S)
build special file. mknod(1M)
businterface. 4 44 e e et e e e .. vme(7)
byte order. /convertvalues byteorder(3)
byte string operations. o4 . bstring(3)

- XVi -

size: print section sizes in

swab: swap

operations. boopy, bemp,
cc:

cflow: generate

cpp: the

include/ includes: determine
cb:

lint: a

cxref: generate

ctrace:

extract and share strings in
time. cprofile: setting up a
object file. list: produce

dc: desk
cal: print

cu:
data returned by stat system
Dialers: ACU/modem
malloc, free, realloc,

fast/ malloc, fiee, iealloc,
intro: introduction to system
common shared NFS system
request. rumount:

to an LP line printer. lp,
termcap: terminal

terminfo: terminal
description into a terminfo/
asa: interpret ASA

text editor (variant of ex for
files.

advent: explore Colossal

cc2sw, cc2fp: front-end to the
create a front-end to the

to the cc command.
command. cclsw, cc2sw,

cc command. cclsw,

commentary of an SCCS delta.
/ceil, fmod, fabs: floor,

ftocaltime, gmtime, asctime,
strings.

delta: make a delta

priority of mnning process by
pipe: create an interprocess
terminal’s local RS-232
stream. ungetc: push
conversion/ chribl: generate
and neqn. eqnchar: special
_toupper, setchrclass:

user. cuserid: get

[getchar, fgetc, getw: get
fputchar, fputc, putw: put

bytes of common object files. e e size(1)
bytes. e e e e e e e e e e swab(3C)
bzero:bitand bytestring bstring(3)
Ccompiler. o o ce(l)
Cflowgraph.o cflow(l)
Clanguage preprocessor. cpp(1)
C language preprocessor « « « « + « o . . . includes(1)
Cprogram beautifier. cb(1)
Cprogramchecker. lint(1)
C program cross-reference. cxref(1)
Cprogramdebugger. ctrace(l)
Cprograms. XStr: 4 4 e 00 e e e e xstr(1)
Cshell environment atlogin cprofile(4)
C source listing fromacommon lis1(1)
cal:printcalendar., cal(l)
caleulator. L0 o0 s e de(l)
calendar. 0 h L e e e e e e e e e e e cal(1)
calendar: reminder service. calendar(l)
call another UNIXsystem. cu(1C)
call. Stat: L e e e e e e e e e e e e e e stat(5)
callingprotocols. Dialers(5)
calloc: main memory allocator. malloc(3C)
calloc, mailopi, mailinfo: malloc(3X)
callsand errornumbers. L. 0. .. intro(2)
calls. nfssys:, nfssys(2)
cancel queued remote resource rumount(1M)
cancel: send/cancel requests L L0 L, 1p(1)
capability database. termcap(4)
capability database. 0. terminfo(4)
captoinfo: convertatermcap captoinfo(1M)
camriage control characters. L. .. asa(l)
casualusers). edit:o ... edit(1)
cat: concatenate and printo cai(l)
Cave. . . . v v e e e e e e e e e e e e e e advent(6)
cb: C program beautifier. cb(1)
cc:Cceompiler.o cc(1)
cccommand. cclsw, oL, cclsw(l)
cccommand. gence: 0 0w 0 .. . gencc(1M)
cclsw, cc2sw, cc2fp: frontend L L L L. cclsw(l)
cc2fp: front-endtothece L. cclsw(l)
cc2sw, cc2fp: frontendtothe cclsw(l)
cd: change working directory. oL L. cd(1)
cdc: changethedelta cde(1)
ceiling, remainder, absolute/ floor(3M)
cflow: generate Cflowgraph. cflow(1)
cftime, ascftime, tzset:/ ctime(3C)
cftime: language specific cftime(4)
(change) toan SCCSfile. delta(1)
changing nice. renice: alter renice(1)
chanpel.o o000l o oL pipe(2)
channels. tp:controlling tp(7)
character back intoinput ungetc(3S)
character classificationand chnbl(1M)
character definitions foreqgn egnchar(5)
character handling. / tolower, ctype(3C)
character login nameofthe cuserid(3S)
characterorword froma/ 0. getc(3S)
characterorwordonastream. putc(3S)

- xvii -

ascii: map of ASCII

fgrep: search a file fora
interpret ASA carriage control
_tolower, toascii: translate

tr: translate

lastlogin, monacct, nulladm,/
directory.

fsck, dfsck:

schedule. ckbupscd:
permissions file. uucheck:
constant-width text for/ cw,
text for nroff or/ eqn, negn,
lint: a C program

grpek: password/group file
systems processed by fsck and/
formatted with the MM/ mm,
file. sum: print

chown,

times: get process and
terminate. wait: wait for
libraries tool.

of a file.
group.

for a command.

classification and conversion/
backup schedule.

monacct, nulladm,/ chargefee,
chrtbl: generate character
strclean: STREAMS error logger

uucp spool directory

clri:

clear:

status/ ferror, feof,

the listener. nisgetcall: get
(command interpreter) with
synchronization of the system
alarm: set a process alarm
cron:

on a STREAMS driver.
1dclose, 1daclose:

close:

t_close:

fclose, fllush:

telldir, seekdir, rewinddir,

dis: object

line-feeds.

advent: explore

comb:

common to two sorted files.
nice: run a

cc2fp: front-end to the cc

charactersel. . . . v « « « + ¢ v e e v e e e e e e ascii(5)

characterstring. fgrep(l)
characters. a8sa: < .« . . . e e e e e e e e e asa(l)
characters. /_toupper,+ 4 . e s .. .o conv(3C)
Characlers. . . . & « ¢ ¢ 4 s e a e e e e e e e e e e tr(1)
chargefee, ckpacct, dodisk, L. acctsh(1M)
chdir; changeworking o . L0 chdir(2)
check and repair file systems. o .. fsck(1M)
check file systembackup ckbupscd(1M)
check the uucp directoriesand uucheck(1M)
checkew:prepare e s s e e e e cw(l)
checkeq: format mathematical eqn(l)
Checker. .+ v v v 4 4 e e e e e e e e e e e lint(1)
checkers. pwek, 0 0 i 0o e e e e e pwck(IM)
checklist: istoffile checklist(4)
checkmm: print/check documents mm(1)
checksum and block countofa sum(1)
chgrp: change ownerorgroup. chown(1)
child processtimes.00 . 0oL times(2)
child processtostopor« ¢ ¢ ¢ ¢ o oo wait(2)
chkshlib: compare shared chkshlib(1)
chmod: changemode. chmod(1)
chmod: change mode of file. chmod(2)
chown: change ownerandgroup chown(2)
chown, chgrp: change owneror chown(l)
chroot: change root directory. chroot(2)
chroot: changeroot directory chroot(1M)
chrtbl: generate character chrtbl(1M)
ckbupscd: check filesystem ckbupscd(1M)
ckpacct, dodisk, lastlogin, 0L acctsh(1M)
classification and conversiony chnbl(1M)
cleanup program. strclean(1M)
clean-vp. uucleanup: uucleanup(1M)
clear: clearterminal screen. clear(l)
ceari-node. L. o oo 0. cln(lM)
clearterminal screen. clear(1)
clearerr, fileno: stream ferror(3S)
client’sdatapassedthrough nlsgetcall(3n)
C-like syntax. csh:ashell csh(l)
clock. fhe timetoallow adjtime(2)
clock. e e e e e e e e e alarm(2)
clockdaemon. 0000 e cron(1M)
clock: report CPUtimeused. clock(3C)
clone: open any minordevice clone(7)
close a common objectfile. 1dclose(3X)
close afiledescriptor. 000 close(2)
close atransportendpoint. t_close(3n)
close orflushastream. fclose(3S)
closedir: directory/ /readdir, directory(3X)
cli:clearinode. L. ... o000 0. clri(1M)
cmp: comparetwofiles. 000 ... cmp(1)
code disassembler.0 0. dis(1)
col: filterreverse o 0.0 .. col(1)
Colossal Cave. . . . « v v v v v v v v v v v v advent(6)
combine SCCSdeltas. comb(1)
comm: select orreject lines L. .. comm(1)
command atlowpriority. nice(1)
command. cclsw,cc2sw, 0. .. cclsw(l)

- Xviii -

change root directory fora
examples. usage: retrieve a
env: set environment for
remd: remote shell

uux: UNIX-to-UNIX system
/ASSIST menus and

create a front-end to the cc
quits. nohup: run a

C-like syntax. csh: a shell
getopt: parse

getopts, getoplcvt: parse
locate executable file for
/shell, the standard/restricted
returning a stream to a remote
and system/ timex: time a
uuxqu: execute remote

retum stream to a remote
per-process/ acctcms:
system: issue a shell

used by the /etc/tapeset

test: condition evaluation
time: time a

locaie: identify a CTIX system
argument list(s) and execute
and miscellaneous accounting
intro: introduction to
assistance using CTIX system
at, batch: execute

access graphical and numerical
install: install

mkhosts: make node name
multi-user/ rc2, rc3: run
operating system. rcQ: run
network useful with graphical
streamio: STREAMS ioctl
manipulate the object file
cdc: change the delta

ar:

editor output. a.out:

as:

glossary: definitions of
convert archive files to
routines. ldfcn:

conv:

cprs: compress a

Idopen, ldaopen: open a

Mline number entries of a
Idclose, ldaclose: close a

read the file header of a
entries of a section of a

the optional file header of a
/entries of a section of a
/section header of a

an indexed/named section of a
of a symbol table entry of a
symbol table entry of a

seek to the symbol table of a
line number entries in a

command. chroot: chroot{(1M)
command description andusage usage(1)
command eXecution. v env(l)
command €XeCUtion. . « v .« 4 . 4 b e s 4 s 4 e . s remd(1)
command execution. o 4 . e 0 b 4. 4 uux(1C)
commandforms. L 000000 astgen(1)
command. ZENCC: + « &« « 4 . 4 4 e 4w e e . gencc(1M)
command immune to hangupsand L. nohup(1)
(command interpreter) with, csh(l)
command OpONS.4 e 0 e e e . getopt(1)
command OpLioONs.« . . . 4 e 4.0 e .. getopts(1)
command. path: 0. path(1)
command programming language. sh(1)
command. froutinesfor rcmd(3)
command; report processdata timex(1)
command rEQUESIS. 4 . e e . e 0 e .. . uuxqt(1M)
commANd. TEXEC: . + « + o = &+ + o e 0 4 . e .4 . rexec(3)
command summary from acctems(1M)
command. b e e e e e e e e e e e systemn(3S)
command.. finformation tapedrives(4)
command. 0. e e e e e e e e e test(1)
command. 0 s 4 e e e e e e e e e e e time(1)
command usingkeywords. L., locate(1)
command. xargs:construct xargs(l)
commands. /ofaccounting acct(1M)
commands and application/ intro(1)
commands. assiSt: 4 . 4 e e e e e e . s assist(])
commands atalatertime.0 40 o. .. at(1)
commands. graphics: graphics(1G)
commands. 4 4 e e e e e e e e e e e e install(1M)
commands. 4 b e v e s e 44 e e e mkhosts(1M)
commands performedfor 0L L. rc2(1M)
commands perfomed tostopthe L. rcO(1M)
commands. stat: statistical stat(1G)
commands. e 4 e e e e e s e e e e streamio(7)
COmment SECHOM. TNCS: « + « « & o « o & o o« o « o o » mcs(1)
commentary of an SCCSdelta. cde(1)
common archive fileformat. 0. ... ar(4)
common assemblerandlink a.out(4)
commonassembler. 0oL . as(l)
common CTIX system termsand/ glossary(1)
common formats. convert: 0 4 s . . . convert(1)
common object fileaccess Lo . .. ldfen(4)
common object fileconverter. conv(l)
commonobjectfile. cprs(1)
common object filefor/ Idopen(3X)
common object file function. L. 1dIread(3X)
commonobject file. ldclose(3X)
common object file. ldfhread: 1dfhread(3X)
common object file. foumber L L. L. 1dlseek(3X)
common object file. fseekto 1dohseek(3X)
commonobjectfile. ldrseek(3X)
commonobjectfile. ldshread(3X)
common object file. fseekto L0 L. 1dsseek(3X)
common object file. ftheindex ldibindex(3X)
common object file. findexed 1dtbread(3X)
common object file. Ildtbseek: 1dibseek(3X)
common object file. inenum: L. . L. linenum(4)

- XiX -

C source listing from a

nm: print name list of
relocation information for a
scnhdr: section header for a
line number information from a
/retrieve symbol name for
table format. syms:

filehdr: file header for

1d: link editor for

section sizes in bytes of
calls. nfssys:

comm: select or reject lines
ipcs: report inter-process
fftok: standard interprocess
talkd: remote user

socket: create an endpoint for
[configuration file for uucp
diff: differential file
descriptions. infocmp:
chkshlib:

cmp:
SCCS file. scesdiff:

diff3: 3-way differential file
dircmp: directory
expression. regamp, regex:
regexp: regular expression
regemp: regular expression
term: format of

cc: C

tic: terminfo

yacc: yet another
modest-sized programs. bs: a
erf, erfc: error function and
wait: await

cprs:

pack, pcat, unpack:

table entry of a/ ldtbindex:
cat:

test:

system.

NFS file systems export
(internet/ inetd.conf:
communications/ Devices:
gateways: routed

netcf: Network

resolv.conf: resolver
STREAMS linker, load socket
rtab: Remote /O Processor
config:

enpstart:

parameters. ifconfig:

1/O Processor. riopcfg:
system. lpadmin:

system. uconf:
t_rcvconnect: receive the

to use as the virtual system/
fwimp, wtmpfix: manipulate
on a socket.

common object file. fproduce list(1)

commonobjectfile. Lo nm(l)
common object file. reloc: L. reloc(4)
commonobject file. + . . scnhdr(4)
commonobject file. fand L L. L strip(1)
common object filesymbol/ ldgetname(3X)
common object filesymbol L. syms(4)
commonobjectfiles. filehdr(4)
commonobjectfiles. 1d(1)
common object files. fprint L. L size(l)
common shared NFSsystem nfssys(2)
commontotwosorted files. comm(l)
communication facilities/ o ipes(l)
communication package. oo .. stdipc(3C)
COMMUNICAtON SEIVEL. « « « « « o « o « o + o « o o tatkd(1M)
COMMUNICALON. .« & « v & & & o o o + » o o o o o« & socket(2)
communications lines. oL Devices(5)
COMPATAOL. « + & o « v o o o o & o o o o s o 0 s o s diff(1)
compare orprint out terminfo L L L . L infocmp(1M)
compare shared librariestool. chkshlib(1)
comparetwofiles. 0oL cmp(l)
comparetwo versionsofano . scesdiff(1)
COMPANSON. . . + + & « = v o o ¢ 0 v o v o v diff3(1)
COMPANISOM. « o v & o « o o« o o ¢ o o + o o o o & dircmp(1)
compile and execute regular regemp(3X)
compile and match routines. L regexp(5)
compile.o regemp(1)
compiledtermfile.. 00 term(4)
compiler.00 o e e e e e cc(l)
compiler.00 o e s e tic(1M)
compiler-compiler.o L0 0 o 0L yacce(1)
compiler/interpreter for0 bs(1)
complementary errorfunction. erf(3M)
completion of process. o000 0L wait(l)
compress a common object file. cprs(l)
compress and expand files. oL L. pack(l)
compute theindex ofasymbol 1dtbindex(3X)
concatenate and print files.00 L cai(l)
condition evaluation command. L. test(1)
config: configureaCTIX config(1M)
configuration file. exports: exports(4)
configuration file forinetd inetd.conf(4)
configuration file foruacp Devices(S)
configuration file., gateways(4)
Configuration File. netcf(4)
configurationfile. oL resolver(4)
configuration. /ldsocket: slink(1)
configurationtable. 0oL rtab(4)
configure a CTIX system. config(IM)
configure Ethemet processor. enpstart(IM)
configure network interface, ifconfig(1M)
configure system forRemote riopcfg(1M)
configure the LPspooling Ipadmin(1M)
configure theoperating uconf(1M)
confimation fromaconnect/ t_rcvconnect(3)
conlocate: locate aterminal conlocate(1M)
connect accounting records. fwimp(1M)
connect: initiate aconnection connect(2)

- XX -

t_accepl: accept 2 COMMECLTEQUESL. . « & « « + + v = + « o o + &+ « t_accept(3n)

t_listen: listen fora connectrequest. t_listen(3n)

the confirmation from a connect request. /receive t_rcvconnect(3)
getpeername: get name of connectedpeer. L. L. L. getpeername(2)
an out-going terminal line connection. dial: establish L. dial(3C)
connect: initiate a connection on 280ckel. 4 e . . connect(2)

down part of a full-duplex connection. shutdown:shut shutdown(2)
orexpedited data sent over a connection. freceivedata oL oL L . t_rcv(3n)
data or expedited data overa connection. t_ snd:send t_snd(3n)
t_connect: establish a connection with another/ t_connect(3n)
listen: listen for connectionsonasocket. listen(2)

acciconl, acctoon2: connect-time accounting. acctcon(1M)

to use as the virtual system console. flocate aterminal conlocate(1M)
the kemel debugger system console port. /change dbconsole(1M)
console: comsoleterminal. console(7)

for implementation-speci fic constants. /fileheader oL limits(4)
math: math functions and constants. e v e e 4 e 4 e math(5)
file header for symbolic constants. unistd: 0. unistd(4)

cw, checkcw: prepare constant-width textfortroff. L oL 00 L cw(l)

mkfs: construct afilesystem. mkfs(1M)

execute command. xargs: construct argument list(s)and L L. L L L xargs(1)
nroffftroff, tbl, and eqn constructs. deroff: remove L deroff(1)
debugging on. Uutry: tryto contact aremote systemwith Uutry(1M)
Is: list conmtents of directory. 1s(1)

ttoc, vtoc: graphical table of contents routines. toc:dtoc, L. toc(1G)
csplit: context split., csplit(1)

address resolution display and control. arp: 0 0000 e 0. arp(1M)
asa: interpret ASA carriage control characters. L L . Lo L0 Lo, asa(l)
ioctl: controldevice. . . . v v v i v i v e e e e e e e ioctl(2)

scsi:scsi comtroldevice, oL 00w . scsi(7)

Serial Line Intemnet Protocol control facility. /switched slipd(1M)
fent: file control. L. 0oL oL fentl(2)

floating point environment control. ffpsetsticky: IEEE fpgetround(3)
init, telinit: process control initialization. init(1M)

icmp: Intemet Control Message Protocol., icmp(7)

msgctl: message controloperations. 0. 0. . msgctl(2)

semctl: semaphore control operations. oL L., semctl(2)

shmatl: shared memory control operations. shmetl(2)
fentl: file controloptions.o oL Lo fent(S)

tcp: Intemet Transmission Control Protocol. tep(7)
vadmin: administrative control. 0000000 . uadmin(1M)
uvadmin: administrative control. oL 0L 0L 000 L uadmin(2)
uucp status inquiry and job control. vustat: 0oL o L uostat(1C)
verversion Control. . . . c u v h h v e e e e e e e e e e e ve(l)

V/TAPE 3200 half-inch tape controller. fforInterphase ipt(7)
set drive parameters fortape controllers. tapeset: tapeset(1M)
interface. tty: controlling terminal L. L. L L. uy(?)

RS-232 channels. tp: controlling terminal’slocal tp(7)
converter. conv: commonobjectfile 0L L. conv(l)

_toupper, _tolower, toascii:/ conv: toupper,tolower, conv(3C)
terminals. term: conventional namesfor term(5)

UNits: CONVETSION PrOZIAM. . . + « = « & = « o + + o o « o & units(1)

character classification and conversion tables. /generate chrtbl(1M)
into a terminfo/ captoinfo: convert atermcap description captoinfo(1M)
dd: convetandcopyafile., dd(1M)

English. number: convert Arabicnumeralsto number(6)

common formats. convent: convert archivefilesto convert(1)
integers and/ 13tol, ltol3: convert between 3-byte 130l (3C)

- Xxi -

and base-64 ASCIl/ a64l, 164a:
to common formats.

/cftime, ascftime, tzset:

1o string. ecvt, fevt, govt:
scanf, fscanf, sscanf:

striod, atof:

strtol, atol, atoi:

htonl, htons, ntohl, ntohs:
conv: common object file
timod: Transport Interface
dd: convert and

beopy: interactive block
cpio:

access time. dcopy:

cp, In, mv:

volcopy: make literal

rep: remote file

uuname: UNIX-to-UNIX system
UNIX-to-UNIX system file
core: format of
synchronization of/ adjtime:
atan2:/ trig: sin,

functions. sinh,

sum: print checksum and block
wc: word

move files.

cpio: format of

and out.

preprocessor.

environment at login time.
file.

binary directories.

clock: report

craps: the game of

rewrite an existing one.
command. gencc:

file. tmpnam, tempnam:
an existing one. creat:
fork:

mkshlib:

clags:

tmpfile:
communication. socket:
channel. pipe:

files. admin:

assorted device/ createdev:
umask: set and get file

crontab: user
cxref: generate C program
pg: file perusal filter for

encryption functions.
generate hashing encryption.
interpreter) with C-like/

terminal.

convert between long integer a641(3C)
converi: convert archive files convert(l)
convert dateandtimeto/ cume(3C)
convert floating-point number, ecvt(3C)
convert formatted input.o . L . scanf(3S)
convertstring to/ .« o 4 e o e 0 e e e .. strtod(3C)
convert String tOiNtEgEr. .+ « « .+« . .« .+ o strtol(3C)
convert values between host/ byteorder(3)
COMVETEL. « v v o o o « o o s o « ¢ o o o o o o & & conv(l)
cooperating STREAMSmodule. timod(7)
copyafile.00 oo oo dd(1M)
COPY. & ¢ o o o n s o o o o o o s o o e o a e beopy(1M)
copy file archivesinandout. cpio(1)
copy file systems foroptimal deopy(I1M)
copy, link, ormove files. oo cp(l)
copyoffilesystem. volcopy(1M)
COPY. « « o« o e o o o o o o o s o o s s o o4 e e rep(1)
copy. uucp, uulog, .+ « ¢ v e e e e e e e e e e s uucp(1C)
copy. uuto, uupick: public Lo L uuto(1C)
coreimagefile. e oL core(4)
correct thetimetoallow adjtime(2)
cos tan asin acos atan, trig(A3M)
cosh, tanh: hyperbolic sinh(3M)
countofafile. ¢ 00 oo sum(1)
COUNL. ¢« v v o o o o o o o o o s s o o s s o o s o o we(l)
cp,In,mv: copy, link,oro oL cp(l)
cpioarchive. cpio(4)
cpio: copy filearchivesin oL cpio(1)
cpp:theClanguage cpp(1)
cprofile: setting upaCshell cprofile(4)
cprs: compress a common object cprs(1)
cpset: install object filesin oL L. cpset(1M)
CPUtimeused. . . « + « « ¢ v v v o v 0 o o o v & clock(3C)
CIAPS. « v v v v v v o e e e e e e e e e s e e e craps(6)
crash: examine system images. crash(1M)
creat: createanewfileor00, creat(2)
create afrontendtothecc gencc(1M)
create aname foratemporary tmpnam(3S)
creatc anew fileorrewrite creat(2)
Creale ANEW PIOCESS. = « « =« + « o « o & o o o o o o o fork(2)
create a shared library.o L. mkshlib(1)
createatagsfile. ctags(1)
create atemporary file. 0. L L tmpfile(3S)
create anendpoint for socket(2)
create aninterProcess . « « « « + . . 4 4 0 e e . 4 . pipe(2)
create and administer SCCS admin(1)
create devicenodesfor createdev(1M)
creationmask.o 00 umask(2)
cron:clockdaemon. 0L cron(1M)
crontabfile.00 0., crontab(1)
Cross-reference. . . « « « + v v v v o e e e 0. . cxref(1)
CRTs. « v v v v v e e e e s e e s d e e e e pe(l)
crypt: encode/decode. L. L crypt(1)
crypt: passwordandfile crypi(3X)
crypt, setkey, encrypt: crypt(3C)
csh:ashell(command csh(l)
csplit: context sphit. 0.0 csplit(1)
Cl: spawn getty to aremote . . « . « « o« o 4 0 4 4 4 . ct(1C)

- Xxxii -

for terminal.
asctime, cftime, ascftime,/

adman: administer a
config: configure a

uname: get name of current
fdefinitions of common

e,

uname: get name of
endpoint. t_look: look at the
get/set unique identifier of
sethostname: get/set name of
set or print identifier of
uname: print name of
activity. sact: print
t_getstate: get the

the Intemet host name of the
slot in the utmp file of the
geicwd: get path-name of
scr_dump: format of
handling and optimization/
spline: interpolate smooth
name of the user.

each line of a file. cut:
constant-width text for/
cross-reference.

cron: clock

rfudaemon: Remote File Sharing
routed: network routing
strerr: STREAMS error logger
nfsd, biod: NFS

runacct: an

Protocol server. fipd:
number mapper. portmap:
telnetd:

tftp: user interface to the
Protocol server. tftpd:
/handle special functions of
special functions of the
fime a command; report process
file. newaliases: rebuild the
rpc: Sun rpc program number
termcap: terminal capability
terminfo: terminal capability
generate disk accounting
t_rcvuderr: receive a unit
/sgetl: access long integer
plock: lock process, text, or
connection. t_snd: send
over a/ t_rcv: receive
nlsgetcall: get client’s

prof: display profile

call. stat:

1/O Processor for online

brk, sbrk: change

ctags: createatagsfile. 0L ctags(1)
ctermid: generate filename ctermid(3S)
ctime, localtime, gmtime, ctime(3C)
ctinstall: install software. cinstali(1)
CTIXsystem. . . . v v v v v v v v o v w o v v u s adman(1)
CTIXsystem. . .« . ¢ v ¢ v o v o o v v o o v v config(1M)
CTIXsystem. v v v v v o v v v o v v o uname(2)
CTIX systemtermsand/ « « . « . « . .. glossary(1)
ctrace: Cprogram debugger. ctrace(1)
cu: call another UNIXsystem. cu(1C)
cubic: ic-tac-t0€. . . . ¢ . 4 v v e e e e e e e e e e ttt(6)
current CTIXsystem. « « « v o v v v o . & uname(2)
currenteventonatransport t_look(3n)
current host. fsethostid:, gethostid(2)
current host. gethostname, gethostname(2)
current host system. hostid:, hostd(1)
current CTIX system. uname(1)
current SCCSfileediting saci(l)
CUTTENL STAE. « . + & & o & o o « o & o o o o o » t_getstate(3)
current system. /SELOrPrint hostname(1)
current user. ffindthe ttyslot(3C)
current working directory. getewd(3C)
curses screen image file.. scr_dump(4)
curses: terminal screen L . curses(3X)
CUIVE. & 4 s o o o o & o o o o = o o o o s o o spline(1G)
cuserid: get characterlogin cuserid(3S)
cut out selected fieldsof cut(1)
cw,checkcw:prepareo L. cw(l)
cxref: generate Cprogram cxref(1)
daemon. 0o e e e e e e e e e cron(1M)
daemonprocess. s rfudaemon(1M)
daemon. o0 . routed(1M)
daBmMOM. « &+ ¢ ¢ + « v v e e e e e e e e e e strerr(1M)
daemons. 0 0 e v e e e e e e e e nfsd(1M)
daily accounting. v . 0 . w e e e . runacct(1M)
DARPA Intemet File Transfer ftpd(1M)
DARPAport toRPCprogram, portmap(1M)
DARPA TELNET protocol server. telnetd(1M)
DARPATFTPprotocol. tftp(1)
DARPA Trivial File Transfer tftpd(1M)
DASI300 and 300s terminals. 300(1)
DASI450 terminal. handle 450(1)
data and system activity. timex(1)
data base for the mail aliases newaliases(1)
database.o pc(4)
database.o termcap(4)
database. 0000 terminfo(4)
data by user ID. diskusg: L. diskusg(1M)
data error indication. L. t_rcvuderr(3)
data in a machine-independent/ sputd(3X)
datainmemory. 0. plock(2)
data or expedited dataovera t_snd(3n)
data or expedited datasemt t_rcv(3n)
datapassedthroughthe/ nlsgetcall(3n)
. prof(1)
data returned by stat system 4. 4 e .o stat(S)
data. riopqry: queryRemote riopqry(1M)
data segment space allocation. brk(2)

- Xxiii -

/receive data or expedited
types: primitive system
t_rcvudata: receive a
t_sndudata: send a

changes to the Help Facility
join: relational

using the mkfs(1) proto file
delete, firstkey, nextkey:
/dbm_error, dbm_clearerr:
a terminal or query terminfo
udp: Intemet User
settimeofday: get/set
fascftime, tzset: convert
date: print and set the

debugger system console port.
/dbm_nextkey, dbm_error,
dbm_store,/ dbm_open,
/dbm_fetch, dbm_store,
/dbm_firstkey, dbm_nextkey,
dbm_open, dbm_close,
Idbm_store, dbm_delete,
firstkey, nextkey: database/
/dbm_delete, dbm_firstkey,
dbm_fetch, dbm_store,/
/dbm_close, dbm_fetch,

optimal access time.

adb: absolute

ctrace: C program

fsdb: file system

load symbols in kernet

sdb: symbolic

dbconsole: change the kemel
contact a remote system with
timezone: set

sysdef: output system
eqnchar: special character
system terms and/ glossary:
dbminit, fetch, store,

names. basename, dimame:
file. tail:

delta commentary of an SCCS
file. delta: make a

delta. cdc: change the
mdel: remove a

to an SCCS file.

comb: combine SCCS
errdemon: error-logging
terminate the error-logging
mesg: permit or

tbl, and eqn constructs.
usage: retrieve a command
description into 2 terminfo
queuedefs: at/batch/cron queue
system: system

captoinfo: convert a termcap

data sent overaconnection. t_ev(3n)

datatypes. .« « ¢ v ¢ e o v b e e e e e e e e e s types(5)
dataumit. a e e s e e e e e e e 1_rcvudata(3)
dataunit. . . .« . v b e e e e e e e e e e 1t_sndudata(3)
database. helpadm: make helpadm(1M)
database operator. - . . e 4. . e ... s join(1)
database. fand verify software qinstall(1)
database subroutines. fstore, dbm(3X)
database subroutines.« ndbm(3X)
database. tput: initialize Lo 0. tput(l)
Datagram Protocol. oo oo udp(7)
date and time. gettimeofday, gettimeofday(2)
date and ime tOSIANG. . + .« + « « « ¢ 4 4 e 4. o0 . ctime(3C)
date. . . . e e e e e e e e e e e e e e e e e e e date(1)
date: print and setthedate. date(1)
dbconsole: change thekermel dbconsole(1M)
dbm_clearerr: database/ ndbm(3X)
dbm_close, dbm_fetch, o ... ndbm(3X)
dbm_delete, dbm_firstkey,/ oL ndbm(3X)
dbm_error, dbm_clearerry/ ndbm(3X)
dbm_fetch, dbm_store,/0 o0 o0 ndbm(3X)
dbm_firstkey, dbm_nextkey/ ndbm(3X)
dbminit, fetch, store,delete, dbm(3X)
dbm_pextkey, dbm_error,/ ndbm(3X)
dbm_open,dbm close, ndbm(3X)
dbm_store, dbm _delete,/o oL . ndbm(3X)
dc:deskcalculator. oL 00w 0 e e e e de(1)
dcopy: copy file systemsfor dcopy(1M)
dd: convert andcopy afile. dd(1M)
debugger.o oo o e s e adb(1)
debugger.ot e e e e ctrace(1)
debugger.00 e e e o fsdb(1M)
debugger. mkdbsym: mkdbsym(1M)
debugger.o e e sdb(1)
debugger system consoleport. dbconsole(1M)
debugging on. Vury:rywo L L L . L L Uutry(1M)
default system time zone. timezone(4)
definition. ¢ ¢ . 0 s e e e e e e e e sysdef(1M)
definitions foregnandneqn. egnchar(5)
definitions of common CTIX glossary(1)
delete, firstkey, nextkey:/ dbm(3X)
deliver portions ofpath basename(1)
deliver the lastpartofa tail(1)
delta. cdc: changethe 0., cde(l)
delta (change) toanSCCS delta(l)
delta commentary of anSCCS cdc(l)
delta froman SCCSfile. rmdel(1)
delta: make adelta (change) delta(1)
deltas. v 0 i e e e e e e e e e e e e comb(1)
demon. 0 0 e e e e e e e e e errdemon(1M)
demon. errstop: 0 e v e e e e e 0 e errstop(1M)
denymessages. e v e e e e ... mesg(l)
deroff: remove nrofftroff, deroff(1)
description andusage/ L ... usage(1)
description. /atermcap captoinfo(1M)
descripion file. queuedefs(4)
description file. system(4)
description into aterminfo/ captoinfo(1M)

- XXiv -

compare or print out terminfo
close: close a file

dup: duplicate an open file
dup?2: duplicate an open file
getdiablesize: get

de:

slattach, sldetach: attach and
file. access:

preprocessor/ includes:
identifier. fstyp:

file:

drivers: loadable

lines for finite width output
master: master

ioctl: control

devnm:

device/ createdev: create
clone: open any minor
hekset, td: graphical

scsi: scsi control

device nodes for assoried
for uucp communications/
scsimap: set mappings for SCSI

blocks and i-nodes.
systems. fsck,

terminal line connection.
ratfor: rational FORTRAN
protocols.

bdiff: big

comparison.

sdiff: side-by-side
diffmk: mark

diff:

diff3: 3-way

file. uucheck: check the uucp
install object files in binary
dir: format of

link and unlink files and
mkdir, mkdirs: make

rm, rmdir: remove files or
cd: change working

chdir: change working
chroot: change root
uucleanup: uucp spool
dircmp:

file. getdents: read

file system independent
unlink: remove

chroot: change root

/make a lost+found

adv: advertise a

path-name of current working
1s: list contents of

mkdir: make a

mvdir: move a

descriptions. infocmp: L. infocmp(1M)
descriptor. L0 e e e e e close(2)
descriptor. oo e e e e e e e e e e e dup(2)
descriptor. .« « .« . v v v v e e e e e e e e e dup2(3C)
descriptor table size. gewdtablesize(2)
deskcalculator,o e e e de(l)
detach serial lines asnetwork/ slattach(1M)
determine accessibility ofa L., access(2)
determine Clanguage« .. includes(1)
determine filesystem fstyp(1M)
determine filetype. 0 Lo 0. a0 L. file(1)
devicedrivers. 0.0 e e 0. drivers(7)
device. fold:foldlong fold(1)
device informationtable. 0. master(4)
device. L0 e e e e e e e e ioctl(2)
devicename. 0 e 0 0 e e e e .. devnm(1M)
device nodes forassorted 0L createdev(1M)
device on a STREAMSdriver. clone(7)
device routines and filters.o gdev(1G)
device. vt e e e e e e e e e e e e e e scsi(7)
device types. fcreate 0. . createdev(1M)
Devices: configurationfile Devices(5)
devices. e e e e e e e e e e e scsimap(1M)
devhm:devicename. 0. devim(1M)
df: report number of freedisk df(1M)
dfsck: check and repairfile fsck(1M)
dial: establish anout-going dial(3C)
dialect. . . . 4 v b i e e e e e e e e e e e e e ratfor(1)
Dialers: ACU/modem calling Dialers(5)
e 1 bdiff(1)
diff3: 3-way differential file diff3(1)
difference program. 000 . sdiff(1)
differences between files. 0. 000 . diffmk(1)
differential file comparator. L., diff(1)
differential file comparison. diff3(1)
dir: formatof directories. dir(4)
dircmp: directory comparison. oo . . diremp(1)
directories and permissions uucheck(1M)
directories. Cpsel: o e e . e e s cpset(1M)
directories. v o e e e b e e e e e e e dir(4)
directories. link, unlink: 0. .. link(1M)
directories. 4 v v e e e e e e e mkdir(1)
directonies. . .« . v v v e e e e e e e e e e e e m(l)
directory. i e e e e e e e e e e e e e e cd(1)
dIreCtOny. . . o . v e e e e e e e e e e e e chdir(2)
diredtory.00 e e e e e e e e e chroot(2)
directory clean-up. 0 .. uucleanup(1M)
directory comparison. diremp(1)
directory entriesand putina getdents(2)
directory entry. dirent: dirent(4)
directoryentry. . . .« . . .« . 0 o0 e 0 e e e .. unlink(2)
directory foracommand. chroot(1M)
directory forfsck. mklostfnd(1M)
directory forremote access. 4 4 0 . s . adv(1M)
directory. getewd: geto getcwd(3C)
diredtory.0 0o e e e e e e e e e e 1s(1)
directory. oo e e e e e mkdir(2)
directory. e h e e e e e e e e e e mvdir(1M)

- XXV -

pwd: working

/seekdir, rewinddir, closedir:
ordinary file. mknod: make a
rmmdir: remove a

independent directory entry.
path names. basename,

t_unbind:

printers. enable,

acct: enable or

dis: object code

type, modes, speed, and line
type, modes, speed, and line
t_snddis: send user-initiated
retrieve information from
fusage:

sadp:

ID. diskusg: generate

df: report number of free
disk: general

update: provide

du: summarize

accounting data by user ID.
arp: address resolution

vi: screen-oriented (visual)
information. rmntstat:

prof:

statistics. serstat:

local network. ruptime:
hypot: Euclidean

flcong48: generate uniformly
Sharing domain and network/
routines. /res_send, res_init,
/res_send, res_init, dn_comp,
MM/ mm, checkmm: print/check
macro package for formatting
slides. mmt, mvt: typeset
nulladm,/ chargefee, ckpacct,
whodo: who is

fprint Remote File Sharing
named: Internet

/atof: convent string 10

gudl, ptdl: RS-232 terminal
nrand48, mrand48, jrand48,/
graph:

arithmetic: provide
controllers. tapeset: set

used by the/ tapedrives: tape
facilitate usage of a tape

any minor device on a STREAMS
disk: general disk

1ddrv: manage loadable
drivers.

initialization/ brc, becheckre,
table of contents/ toc:

and status information from
hd: hexadecimal and ascii file

directory name. 0 00 e e e e e e pwd(1)
directory operations. directory(3X)
directory, oraspecialor mknod(2)
directory.o e rmdir(2)
dirent: filesystem dirent(4)
dimame: deliver portionsof basename(1)
dis: object code disassembler., dis(1)
disable atransport endpoint. t_unbind(3n)
disable: enable/disable LP enable(1)
disable process accounting. acct(2)
disassembler. 0. . L0 ... dis(1)
discipline. /setterminal getty(1M)
discipline. /setterminal uugetty(1M)
disconnect request. t_snddis(3n)
disconnect. t_revdis:00 o .. t_rcvdis(3n)
disk accessprofiler.00 L. fusage(1M)
disk accessprofiler. L. sadp(1M)
disk acoounting databyuser diskusg(1M)
disk blocks andi-nodes. df(1M)
diskdriver. ¢ ¢ vt v e e e e e e e e e disk(7)
disk synchronization. update(1M)
diskusage. 0000w e e e e du(1M)
diskusg: generate disk diskusg(1M)
display andcontrol. arp(IM)
display editor basedonex. vi(l)
display mounted resource rmntstat(1M)
display profiledata. 0L prof(1)
display serialporterror serstat(1M)
display status ofnodeson ruptime(1)
distance function. 0 0 e e 4. .. hypot(3M)
distributed pseudo-random/ drand48(3C)
dname: print Remote File dname(1M)
dn_comp, dn_expand: resolver resolver(3)
dn_expand: resolver routines. resolver(3)
documents formatted withthe mm(1)
documents. mm:the MM oL L L. mm(5)
documents, view graphs,and mmt(1)
dodisk, lastlogin, monacet, acctsh(1M)
doingwhat. whodo(1M)
domain and network names. 0. .. . dname(1M)
domainnameserver. named(1M)
double-precision number. oL L L. strtod(3C)
download. tdl, tdl(1)
drand48, erand48, lrand48, drand48(3C)
drawagraph. graph(1G)
drill in numberfacts. arithmetic(6)
drive parameters fortape tapeset(1M)
drive specificinformation tapedrives(4)
drive. tsioctl: Lo L0 oL L. tsioctl(1)
driver. clone:open L0 clone(7)
diiver. . . ¢ v vt e e e e e e e e e e e e e disk(7)
drvers. L0 1ddrv(1M)
drivers: loadable device drivers(7)
drvload, powerfail: system brc(1M)
dioc, ttoc, vtoc: graphical 0 L L. L. toc(1G)
du: summarize diskusage. L0 L L. du(IM)
dump. /extract errorrecords errdead(1M)
dump. e e e e e e e e e e e e e hd(1)

- XXVI -

od: octal

object file. dump:
descriptor.

descriptor.

descriptor. dup:
descriptor. dup2:

echo:

network/ ping: send ICMP
floating-point number to/

program. end, etext,

ex for casual users).

sact: print current SCCS file
/(visual) display

ed, red: text

ex: text

files. 1d: link

ged: graphical

common assembler and link
sed: stream

casual users). edit: text
Ideeprom: load

fuser, reai group, and

and/ /getegid: get real user,
language.

split FORTRAN, ratfor, or
patiemn using full regular/

enable/disable LP printers.
accounting. acct:

real-time priorities

enable, disable:

crypt:

encrypt: generate hashing
crypt: password and file
makekey: generate

locations in program.
/getgrgid, getgmam, setgrent,
/gethostent, sethostent,
/getnetbyname, setnetent,
socket: create an

bind an address Lo a transport
t_close: close a transport
current event on a transpon
t_open: establish a transport
manage options for a transport
t_unbind: disable a transport
/getprotobyname, setprotoent,
/getpwuid, getpwnam, setpwent,
[getservbynarne, setservent,
getspent, getspnam, setspent,
utmp/ /pututline, setutent,
convert Arabic numerals to
processor.

getdents: read directory

nlist: get

file. linenum: line number
file/ /manipulate line number

dump. Lo e od(l)
dump selected partsofan L dump(1)
dup: duplicate anopenfile dup(2)
dup2: duplicate anopenfile dup2(3C)
duplicate anopenfile, dup(2)
duplicate anopenfile dup2(3C)
echoarguments. 0.0 echo(1)
ECHO_REQUESTpacketsto ping(1M)
ecvt, fevi,geviconvert o L . .. o e . L ecvt(3C)
edreditexteditor. 0 0. e e e e . ed(1)
edata: lastlocations in 0 040 e .. end(3C)
edit: text editor (vardantof edit(1)
editing activity. 00 sact(1)
editorbasedonex. 0o e e e e vi(l)
editor. e e e e e e e e e e e e e e e ed(1)
editor. L e e e e e e e e e e e e e ex(1)
editor forcommonobject 1d(1)
editor.o o e e e e e e e e e ged(1G)
editoroutput. a.0ut: 4 0 e e e e e e e a.out(4)
editor. . . . L . e e e e e e e e e e e e e e e sed(1)
editor (variant ofexfor edit(1)
EEPROM. v v v v 1deeprom(1M)
effecivegroupIDs. L. ... getuid(2)
effective user,realgroup, getuid(2)
efl: extended FORTRAN efi(1)
efifiles. fsplit: fsplit(1)
egrep: searchafilefora egrep(1)
en: EthemetProcessor. en(7)
enable, disable: 00000 0L enable(1)
enable ordisableprocess L. acct(2)
enabled/disabled. rtpenable: rtpenable(1M)
enable/disable LPprinters. enable(1)
encode/decode.0 0o e e 0. crypt(1)
encryption. crypt, setkey, crypt(3C)
encryption functions. 0 ... crypt(3X)
encrypionkey. 00 makekey(1)
end,etext,edata; last end(3C)
endgrent, fgetgrent: getgroup/ getgrent(3C)
endhostent: get network host/ gethostbyname(3)
endnetent: get networkentry. getnetent(3)
endpoint for communication. socket(2)
endpoint. t bind: t_bind(3n)
endpoint. 0oL 0w e e t_close(3n)
endpoint. t_jook: lookatthe t_look(3n)
endpoift. u e e e e e e e e e e t_open(3n)
endpoint. t_optmgmt: 1_optmgmt(3n)
endpoint. Lo e e e e e e e t_unbind(3n)
endprotoent: getprotocol/ L L Lo L L getprotoent(3)
endpwent, fgetpwent: get/ getpwent(3C)
endservent: get serviceentry. getservent(3)
endspent, fgetspent, Ickpwdf,/ getspent(3X)
endutent, utmpname: access getut(3C)
English. number: number(6)
enpstart: configure Ethemet enpstart(1M)
entries andputinafile. getdents(2)
entries fromname list. 0. ., nlist(3C)
entries inacommonobject linenum(4)
entries of acommon object 1dlread(3X)

- XXvii -

/ldnlseek: seek to line number
/ldnrseek: seek to relocation
system independent directory
utmp, wtmp: utmp and wtmp
fgetgrent: get group file
endhostent: get network host
endnetent: get network
endprotoent: get protocol
fgetpwent: get password file
getrpcbynumber: get rpc
endservent: get service
utmpname: access utmp file
object file symbol table

/the index of a symbol table
/read an indexed symbol table
putpwent: write password file
write shadow password file
unlink: remove directory
command execution.

cprofile: setting up a C shell
profile: setting up an

/IEEE floating point

environ: user

execution. env: set

getenv: retum value for
putenv: change or add value to
performed for multi-user

stop the Remote File Sharing
interface, and terminal
character definitions for
remove nrofffroff, tbl, and
mathematical text for nroff/
definitions for eqn and neqn.
rhosts: remote

mrand48, jrand48/ drand48,
graphical device/ gdev: hpd,
complementary error function.

and status information from/

format.

system error/ perror,
function and complementary
receive a unit data

strclean: STREAMS

strerr: STREAMS

log: interface to STREAMS
t_error: produce

sys_ertlist, sys_nerr: system
to system calls and
information/ errdead: extract
serstat: display serial port
matherr:

errfile:

errdemon:

errstop: terminate the

err:

entries ofasectionofa/ Idlseek (3X)
entries ofasecionofa/ ldrseek (3X)
entry. dirent: file dirent(4)
entry formats. 0. 0. oo oo utmp(4)
entry. [setgrent, endgrent, getgrent(3C)
entry. fsethostent, gethostbyname(3)
entry. fsetnetent, 40 e e s o. e s getnetent(3)
entry. fsetprotoent, 4 0 . 4 e e .. getprotoent(3)
entry. /setpwent, endpwent, getpwent(3C)
entry. /getrpcbyname, o o0 . .. getrpcent(3)
entry. fsetservent, 4 . .0 0 e . . getservent(3)
entry. /setutent, endutent, getut(3C)
entry. /symbol name forcommon ldgetname(3X)
eniry of acommon object file. 1dtbindex(3X)
entry of a common object file. 1dtbread(3X)
EAMY. & v v v v v e e e e e e e e e e e e putpwent(3C)
ENtry. PUISPENt: . . « « . . o s e e 0 e s a s putspent(3X)
BALY. « o v o o o o 0 e e e s e e e e e e e unlink(2)
env: setenvironmentfor00 L. env(1)
enViron: USEr environment. « « « « « « o o o environ(5)
environment atlogintime. cprofile(4)
environment at logintime. profile(4)
environmentcontrol. fpgetround(3)
ENVIONMENL. . . .+ « « o + « o o o o o » o o o o environ(5)
environment forcommand 0. ... env(l)
ENVITONMENI NAME. .« - « « « o « o o o o o o + o o getenv(3C)
ENVITONMENL . + « & & o « « o o o o o o « o o« o putenv(3C)
environment. /fruncommands rc2(1M)
environment. fstop: rfstop(1M)
environment. fterminal Lo L. L. tset(1)
eqgnand negn. /special, eqnchar(5)
eqneonstructs. deroff: L .00 L deroff(1)
eqn, neqn, checkeq: format eqn(1)
eqnchar: special character oL L eqnchar(5)
equivalent USErs. - s e e rhosts(4)
erand48, Irand48, nrand48, drand48(3C)
erase, hardcopy, tekset,td: gdev(1G)
eff,effc:errorfunctionand L L. L L. erf(3M)
err: error-logging interface. L ... L. err(7)
errdead: extract errorrecords errdead(1M)
errdemon: error-logging demon. errdemon(1M)
erfile:error-logfileo 0 L0 errfile(4)
ermmo, sys_errlist, sys nerr 0. 0. . perror(3C)
error function. ferfc:error erf(3M)
error indication. t_rcvuderr: t_rcvuderr(3)
errorlogger cleanup program. strclean(1M)
emmorloggerdaemon. o0 strerr(1M)
errorlogging andevent/ log(7)
EITOTMESSAZE. + « o « &« o o o o o o v o o o o o & t_error(3n)
error messages. /ermo, 4 4 . e . o0 . . perror(3C)
error numbers. fintroduction 0L 0. intro(2)
errorrecordsand status errdead(1M)
error SEAtistiCS. + + o+ .+ . 4 e e e e e e .. serstat(1M)
error-handling function. matherr(3M)
error-log fileformat. L0000 0L errfile(4)
error-loggingdemon. errdemon(1M)
error-loggingdemon. L., errstop(1M)
error-logging interfface. err(7)

- XXViii -

process & report of logged
hashcheck: find spelling
error-logging demon.
another transport/ 1_connect:
endpoint. t_open:

terminal line/ dial:

setmnt:

with information from

with information from
pwconv: install and update
pwunconv: install and update
finformation used by the

in program. end,

en:

enpstart: configure

hypot:

expression. expr:

test: condition

t_look: look at the current

to STREAMS error logging and
notify, unnotify, evwait,
notify, unnotify,

edit: text editor (variant of

display editor based on

crash:

a file. locking:

execve, execlp, execvp:/
execlp, execvp: execute/ exec:
execvp:/ exec: execl, execv,
Jexecl, execv, execle, execve,
path: locate

execve, execlp, execvp:
construct argument list(s) and
time. at, batch:

reganp, regex: compile and
requests. uuxqt:

set environment for command
sleep: suspend

sleep: suspend

monitor: prepare

remd: remote shell command
rexecd: remote

profil:

UNIX-t0-UNIX system command
execvp: execute/ exec: execl,
exec: execl, execv, execle,
Jexecv, execle, execve, execlp,
a new file or rewrite an

exit,

exponential, logarithm,/

peat, unpack: compress and
to spaces, and vice versa.
t_snd: send data or

t_rcv: receive data or

advent:

exp, log, log10, pow, sqrt:
expons: NFS file systems

CITOFS. EITPLL v & & & & v 2 v s 0 o« n o n a e s errpt(1M)
errors, /fhashmake, spellin, L. spell(1)
emrstop:teminate the L L. L L oL, L errstop(1M)
establish aconnection with 1_connect(3n)
establish atransport t_open(3n)
establish anout-going dial(3C)
establish mounttable. setmnt(1M)
fetc/passwd. Jleic/shadow pweonv(1M)
fetc/passwd. Jletc/shadow pwunconv(1M)
fetc/shadow with information/ pweonv(1M)
fetc/shadow with information/ pwunconv(1M)
fetchapeset command.. tapedrives(4)
etext, edata: last locations L. end(3C)
Ethemet Processor. . . .+ « & « v« v ¢ v v v v o o o o en(7)
Ethemetprocessor. « enpstart(1M)
Euclidean distance function. hypot(3M)
evaluate arguments asan e 00 .0 . . expr(1)
evalugtion command., test(1)
eventonatransportendpoint. t_look(3n)
event tracing. log: interfface log(7)
evnowail: manage/ 4 .. .0 e ... notify(2)
evwait, evnowait: manage/ notify(2)
exforcasualusers). edit(1)
exitexteditof. . . . o . v L e e s e e e e e e e e ex(1)
ex. /screen-oriented (visual) vi(l)
examine systemimages. 4 . . o0 ., crash(1M)
exclusive accesstoregionsof locking(2)
exec: execl, execv,execle, L0000 0. exec(2)
execl, execv, execle,execve, 0 0 e .. exec(2)
execle, execve,execlp, Lo exec(2)
execlp, execvp: executea/ L. exec(2)
executable file forcommand. path(1)
execute afile. fexecle,o o000 exec(2)
execute command. Xargs: 4 . . b . 4 e . . . xargs(1)
execute commands atalater at(1)
execute regular €Xpression. o0 . o4 . . regemp(3X)
execute remotecommand uuxqt(1M)
EXECULION. €MV: . + & &+ + « &« « « » 4 o 4 4 e .. e env(l)
execution foraninterval,0 0. . sleep(1)
execution forinterval. L., sleep(3C)
executionprofile., monitor(3C)
EXECULON. & 4 & o o o o & o o o o » o o 4+ o o s o u remd(1)
EXECULION SEIVET. + « « & & & & « o & & 4 o « o & rexecd(1M)
execution timeprofile. L L. profil(2)
EXECUtON. UUX: . « &« = + & « & o o o & o o o & o s uux(1C)
execv, execle, execve,execlp, oL L L. exec(2)
execve, execlp,execvpy/ oL .. oL L. exec(2)
execvp:executeafile. Lo L0 L. exec(2)
eXisting One. Creal: Create « « & o o o o o & » creat(2)
_EXil: lerminate process. 4 e o4 . 0. s . exit(2)
exp, log,logl0,pow,sqrt: exp(3M)
expand files. pack,, pack(1)
expand, unexpand: expandtabs expand(1)
expedited dataovera/ t_snd(3n)
expedited data sentovera/ 0. t_rcv(3n)
explore Colossal Cave. advent(6)
exponential, logarithm, power,/ exp(3M)
export configuration file. exports(4)

- XXiX -

export configuration file.
expression.

routines. regexp: regular
regemp: regular

expr: evaluate arguments as an
compile and execute regular
a pattern using full regular
efl:

extproc: tum

programs. Xstr:

status information/ errdead:
in a file. strings:

remainder,/ floor, ceil, fmod,
drive. tsioctl:

factors of a number.

factor: obtain the prime
fusr/adm/loginlog: log of
true,

data in a machine-independent
finc:

fcalloc, mallopt, mallinfo:

a stream.

floating-point number/ ecvt,
fopen, freopen,

status inquiries. ferror,

fileno: stream status/

firstkey, nextkey:/ dbminit,
for a file system.

stream. fclose,

word from a/ getc, getchar,
[getgmanm, setgrent, endgrent,
/getpwnam, setpwent, endpwent,
stream. gets,

/getspnamn, setspent, endspent,
character string.

times. utime: set

Idfcn: common object
determine accessibility of a
/2645 A terminal tape

tar: 1ape

cpio: copy

pwek, grpck: password/group
chmod: change mode of
change owner and group of a
mcs: manipulate the object
diff: differential

diff3: 3-way differential

fentl:

feml:

conv: common object

rcp: remote

public UNIX-to-UNIX system
core: format of core image
cprs: compress a common object
umask: set and get

crontab: user crontab

exports: NFSfilesystems exports(4)
expr: evaluate arguments asan expr(1)
expression compile and match regexp(5)
expression compile. 0. .. regemp(1)
EXPIESSION. « v o« o 4 v e 0 e s s e s e e e e expr(l)
expression. regamp,TegEX: o o o . o« e s regemp(3X)
expressions. fafileforo oL egrep(1)
extended FORTRAN language. efi(1)
extemal processing onoroff. extproc(1M)
extract and sharestringsinC xstr(1)
extract errorrecordsand L. o . errdead(1M)
extract the ASClltext strings « « « . « . . strings(1)
fabs: floor,ceiling,00 floor(3M)
facilitate usageofatape tsiocti(1)
factor: obtaintheprime factor(1)
faorsofanumber., factor(1)
failed login attempts. ¢ loginlog(4)
false: provide truth values, true(l)
fashion. /accesslonginteger sputl(3X)
fastincremental backup. oL oL finc(1M)
fast main memory allocator. malloc(3X)
fclose, flush: closeorflush fclose(3S)
fentl: fileconrol. L L Lo e e e . fentl(2)
fenul: file control options. fentl(S)
fovi,goviconvert .« . . . 0 oL 0 s v s e e e e s ecvt(3C)
fdopen:openastream. 0. ... fopen(3S)
feof, clearerr, fileno: stream ferror(3S)
ferror, feof, clearerr, ferror(3S)
fetch, store,delete, 000 dbm(3X)
ff: file names and statistics ff(1M)
flush: closeorflusha fclose(3S)
fgetc, getw: get characteror oL getc(3S)
fgetgrent: getgroupfile/ getgrent(3C)
fgetpwent: get password file/ getpwent(3C)
fgets: getastringfroma o000 gets(3S)
fgetspent, Ickpwdf, ulckpwdf:/ getspent(3X)
fgrep: searchafilefora fgrep(1)
file access and modification utime(2)
fileaccessroutines. 00 0 e e .. ldfcn(4)
file. 8BCCESS: &« v ¢ v 4 4 v b e e e e e e e e e e access(2)
filearchiver. 0. hpio(1)
filearchiver. . . . + . ¢ ¢ v v v v o e e e e e e 1ar(1)
file archivesinandout. cpio(1)
filecheckers. oo 0o pwck(1IM)
file. . . . v v v e e e e e e e e chmod(2)
file.chown: chown(2)
filecomment section. mces(1)
filecomparator.00 0o diff(1)
filecomparison. L. diff3(1)
filecontrol. 0 0 e v e e e e e e fentl(2)
filecontroloptions., fentl(S)
fileconverter,. 00000 e e conv(l)
filecopy. 0o s o e e e s rep(l)
file copy. uuto, uupick: Lo L uuto(1C)
file. . & ¢ v .t e e et e e e e e e e e e e core(4)
file. . . . ¢ v v i e e e e e e e e e cprs(1)
filecreationmask.00 ... umask(2)
filee. 0oL crontab(1)

- XXX -

ctags: create atags

fields of each line of a
using the mkfs(1) proto

dd: convert and copy a

a delta (change) to an SCCS
close: close a

dup: duplicate an open
dup2: duplicate an open

hd: hexadecimal and ascii
selected parts of an object

sact: print current SCCS

crypt: password and

endgrent, fgetgrent: get group
fgetpwent: get password
utmpname: access utmp
putpwent: write password
write shadow password

execlp, execvp: execute a
systems export configuration
fgrep: search a

grep: search a

reguiar/ egrep: search a

path: locate executable
inetd.conf: configuration
ldaopen: open a common object
netrc: login

aliases: aliases

lines. Devices: configuration
acct: per-process accounting
ar: common archive

errfile: error-log

intro: introduction to

entries of a common object
gateways: routed configuration
get: get a version of an SCCS
directory entries and put in a
group: group

files. filehdr:

limnits:

constants. unistd:

file. idfhread: read the
1dohseek: seek to the optional
split: split a

issue: issue identification

of a member of an archive
close a common object

file header of 2 common object
a section of a common object
file header of a common object
a section of a common object
header of a common object
section of a common object
table entry of a common object
table entry of a common object
table of a common object
entries in a common object
link: link to a

file. L e e e e e e e e e e e e e e e ctags(l)

file. cut: cutoutselectedo L cut(1)
file database. fsoftware qinstali(1)
file. o v v s e e e e e e e e e e e e e e e dd(1M)
file. delta:make 0000 . delta(1)
filedescriptor.0 w0 .. close(2)
filedescriptor. . . . « « . v . o0 0 0 e e e e dup(2)
filedescriptor.00 0. dup2(3C)
file: determine filetype. L. L. oo file(1)
filedump.o oo hd(1)
file. dump:dump0 oL dump(1)
file editing activity. 0o ... sact(1)
file encryption functions. crypt(3X)
file entry. fsetgrent, getgrent(3C)
file entry. fendpwent, getpwent(3C)
file entry. fendutent, getut(3C)
fileentry. ¢ 0o 00 putpwent(3C)
fileentry. putspent:0 .0 . s putspent(3X)
file. fexecv, execle, €XeCVe, e 4 w0 e e . e exec(2)
file. exports: NFSfile exports(4)
file fora characterstring. fgrep(1)
fileforapattem.00 . grep(1)
fie forapattemusingfall egrep(l)
fileforcommand. ¢ ¢ 000 path(1)
file forinetd (internet/ inetd.conf(4)
file for reading. ldopen, ldopen(3X)
file forremote networks. netrc(4)
file forsendmail.00 L. aliases(4)
file for vucp communications Devices(5)
fileformat. 0.0 00 e e acct(4)
fileformat. « ¢ v v b e e e e e e e e ar(4)
fileformal. ¢ ¢ ¢ C c v vt e e e e e e s errfile(4)
fileformats.« . ¢« c s b et e e e e intro(4)
file function. flinenumber dlread(3X)
file. . . . ¢ 0 v o ot e e e e e e e e gateways(4)
file. . . 0 v e e e e e e e e e e e e e e gey(l)
file. getdents:read getdents(2)
file. e e e e e e e e e e e e e group(4)
file header for common object filehdr(4)
flleheaderfor/ limits(4)
file header forsymbolic unistd(4)
file headerof acommonobject 1dfhread(3X)
file header of a common object/ 1dohseck(3X)
fileinopieces. o . 0w e o split(1)
file. . & e e e e e e e e e e e e e e e e e e issue(4)
file. fread the archive header 1dahread(3X)
file. Idclose, daclose: 1dclose(3X)
file. ldfhread: readthe 1dfhread(3X)
file. line numberentriesof 1dlseek (3X)
file. /seektotheoptional Idohseek(3X)
file. /relocation entriesof ldrseek (3X)
file. findexed/named section 1dshread(3X)
file. o anindexed/named 1dsseek(3X)
file. fihe index ofasymbol ldtbindex(3X)
file. /read anindexed symbol 1dibread(3X)
file. /seektothesymbol ldtbseek(3X)
file. linenum: linenumber linenum(4)
file. . . .« v i e e e e e e e e e e link(2)

- XXXI -

listing from a common object
set links/ glist: print out
access to regions of a
masterupd: update the master
make an ifile from an object
mknod: build special

or a special or ordinary
ctermid: generate

mktemp: make a unique

for a file system

netcf: Network Configuration
data base for the mail aliases
change the format of a text
name list of common object
null: the null

/find the slot in the utmp
fidentify processes using a
one. creat: create a new
passwd: password

or subsequent lines of one

pg:

/rewind, ftell: reposition a
Iseek: move read/write

prs: print an SCCS

queue description

read: read from

for a common object

resolver configuration
Sharing name server master
remove a delta from an SCCS
bfs: big

two versions of an SCCS
sccsfile: format of SCCS
header for a common object
format of curses screen image
fout file lists from proto
shadow: password

rfadmin: Remote

rfudaemon: Remote

network/ dname: print Remote
ristop: stop the Remote
rfpasswd: change Remote
master file. rfmaster: Remote
query. nsquery: Remote
shell/ rfuadmin: Remote
unadv: unadvertise a Remote
/mount, unmount Remote
rfstart: start Remote
mapping. idload: Remote
fsize: report

stat, fstat: get

the ASCII text strings in a
from a common object
processes using a file or
checksum and block count of a
swrite: synchronous write on a

/symbol name for common object

syms: common object

file. list: produce Csource list(1)
file lists fromprotofile;o oo Lo oL qlist(1)
file. locking: exclusive locking(2)
file. 0o . masterupd(1M)
file. mkifile: o mkifile(1M)
file. . v v e e e e e e e e e e e e e e e e e e mknod(1M)
file. /make adirectory, o o ..o mknod(2)
file name forterminal.o 0oL ctermid(3S)
filename. 0 v e e e e e e e e mktemnp(3C)
filenames and statistics 4 e e . .0 . ff(1M)
File. . ¢ v v vt ot e e e e e e e e e e e e e e netcf(4)
file. newaliases: rebuildthe newaliases(1)
file. newform: 0 ..o . newform(1)
file. nm:print oL oo e e nm(1l)
fille. « v v v e e e e e e e e e e e e e e e e e null(7)
fileof the currentuser. « « « « « « « .« ttyslot(3C)
fileorfilestructure. « ¢ ¢ . 0 0 0 0. .. fuser(1M)
fileorrewrite anexisting o . 0 0. . creat(2)
fille. « v 0 e e e e e e e e e e e e e e e e e e passwd(4)
file. lines of severalfiles paste(1)
file perusal filter for CRTs. pe(l)
file pointerinastream. fseek(3S)
filepointer.« ¢ o 0 v e 0 0 e e e e e Iseek(2)
fille. . v s e prs(1)
file. fatbatch/cron 00000 queuedefs(4)
flle. @ v v e e e e e e e e e e e e e e e e e e e read(2)
file. /relocation information reloc(4)
file. resolv.conf: o000 o0 resolver(4)
file. rfmaster; Remote File rfmaster(4)
file.imdel: 000 e e rmdel(1)
filescanner. o e e h e e e e e e e bfs(1)
file. scesdiff: compare L L. scesdiff(1)
file. © . v v v s e e e e e e e e e e e e e e sccsfile(4)
file. scnhdr:section scnhdr(4)
file.. scrdump: o000 L scr_dump(4)
file; setlinks basedon.0 qlist(1)
file. . . o e e e e e e e e e e e e e e shadow(4)
File Sharing administration. rfadmin(1M)
File Sharing daemon process. rfudaemon(1M)
File Sharing domainand dname(1M)
File Sharing environment. fstop(1M)
File Sharing host password. rfpasswd(1M)
File Sharing nameserver rfmaster(4)
File Sharing name server nsquery(1M)
File Sharing notification rfuadmin(1M)
File Sharing resource. « « « v+ v o unadv(1M)
File Sharing (RFS)resources. rmountall(1M)
FileSharing. fstart(1M)
File Sharing userand group idload(1M)
filesize. ¢ ¢ o 0t e e e e e e e e e fsize(l)
filestatus. 4 0 e e v e e e e e e e stat(2)
file. strings:extract0 ... strings(1)
file. line number information strip(1)
file structure. fidentify fuser(1M)
file. sum:print 0000000 sum(1)
file. . . & @ @ i e e e e e e e e e e e swrite(2)
file symbol tableentry. 1dgetname(3X)
file symbol table format. L. syms(4)

- XXXii -

ckbupscd: check

fsdb:

volume. fs:

fstyp: determine

directory entry. dirent:

statfs, fstatfs: get

mkfs: construct a

mount: mount a

/mount, unmount Network
nfsstat: Network

ustat: get

fsstat: report

mnttab: mounted

mmtab: remotely mounted
sysfs: get

umount: unmount a

voloopy: make literal copy of
system: system description
fumount: mount and unmount
configuration/ exports: NFS
access time. dcopy: copy
fsck, dfsck: check and repair
labelit: provide labels for
mount, unmount multiple
and/ checklist: list of

deliver the last part of a

term: format of compiled term
tmpfile: create a temporary
create a name for a temporary
and modification times of a
fip: ARPANET

fipd: DARPA Internet

tftpd: DARPA Trivial

uucp system. uucico:

fiw: walk a

file: determine

undo a previous get of an SCCS
report repeated lines in a
directories and permissions
val: validate SCCS

write: write on a

umask: set

common object files.

ferror, feof, clearerr,

and print process accounting
merge or add total accounting
create and administer SCCS
link, unlink: link and unlink
cat: concatenate and print
cmp: compare two

lines common to two sorted
In, mv: copy, link, or move
mark differences between

file header for common object
find: find

frec: recover

format specification in text
FORTRAN, ratfor, or efl

file system backup schedule. ckbupscd(1M)

file system debugger. fsdb(1M)
file system: formatof system fs(4)
file system identifier.o L fstyp(IM)
file system independent dirent(4)
file system information. statfs(2)
filesystem.00 e e mkfs(1M)
filesystem. o .o o oo mount(2)
File System resources. . . « « « « « « « « =« nmountall(1M)
File System statistics. « « « « « ¢ + +« o ¢ ¢ o o o . nfsstat(1M)
file systemn statistics.0 e e ustat(2)
filesysternstatus. 0. e e e e e s fsstat(1M)
file systemtable.00 0L mnttab(4)
file systemtable.00 0oL rmtab(4)
file system type information. sysfs(2)
filesystem. 00 0 e e e e e . umount(2)
filesystem.00 oo 0. volcopy(1M)
file. o0 i e e e system(4)
file systems andremote/ mount(1M)
filesystemsexport 00 o e e ... exports(4)
file systems foroptimal dcopy(1M)
filesystems.0 00000 . . fsck(1M)
filesystems. 00000 . labelit(1M)
file systems. fumountall: mountall(1M)
file systems processed by fsck checklist(4)
file. tail: e e e e e e e e e e e e e e e e tail(1)
file.. + ¢ ¢ 0 i e e e e e e e e e e e e e e e e e term(4)
file. . . . 0 i e e e e e e e e e e tmpfile(3S)
file. tmpnam, tempnam:0 .. tmpnam(3S)
file. touch: update access L. touch(1)
file transferprogram. fip(1)
File Transfer Protocol server. fipd(1M)
File Transfer Protocol server. tftpd(1M)
file transport program forthe uucico(1M)
filetree. . « v v« v v o vt b e e e e e e e e e fiw(3C)
filetype. 0 . 0 e e e e e e e e e e e file(1)
file. UNGEL .. . e e e e e e unget(1)
file.unigq: oL oo o e oo uniq(1)
file. uucheck: check thewucp uucheck(1M)
fille. . ¢ o e e e e e e e e e e e e e e e e e val(1)
flle. « v v e e e e e e e e e e e e e e e e e e e write(2)
file-creaion modemask. umask(1)
filehdr: fileheaderfor filehdr(4)
fileno: stream status/ 0 e e . . 0. . ferror(3S)
file(s). acctcom: search L. acctcom(]1)
files. acatmerg: ¢ 0 0 v e v e e 0. acctmerg(1M)
files. admin: e e 0 e e e e admin(1)
files and directories. ¢ . . e . 0 e 0. . link(1M)
files. . & v i e e e e e e e e e e e e e e e e e e cat(1)
files. . v v i e e e e e e e e e e e e e e e e e cmp(l)
files. comm: selectorreject comm(1)
files. P, « + - 4 vt e e e e e e e e e e e e e e e cp(l)
files. diffmk: diffmk(1)
files, filehdr: o L0000 filehdr(4)
fileS. « & v 0 v e e e e e e e e e e e e e e e e e find(1)
files fromabackuptape. frec(1M)
files. fspect . «00 oo e e oo . fspec(4)
files. fsplit: split o0 fsplit(1)

- XXXiii -

siring, format of graphical
cpset: install object

language preprocessor include
intro: introduction to special
link editor for common object
lockf: record locking on
passmgmt: password

mm, rmdir: remove

fmerge same lines of several
unpack: compress and expand
pr: print

in bytes of common object
sort: sort and/or merge
convert: convert archive
what: identify SCCS

fstab:

pg: file perusal

greek: select terminal

nl: line numbering

col:

tio: tape io

graphical device routines and
tplot: graphics

find:

hyphen:

ttyname, isatty:

object library. lorder:
hashmake, spellin, hashcheck:
of the current user. ttyslot:
lookup program.

information server.

fold: fold long lines for
dbminit, fetch, store, delete,
fish: play **Go

tee: pipe

ffpgetsticky, fpsetsticky: IEEE
isnand, isnanf: test for

ecvt, fovt, gevt: convert
/modf: manipulate parts of
floor, ceil, fmod, fabs:

cflow: generate C

fclose, fllush: close or
remainder,/ floor, ceil,

width output device. fold:
stream.

advertised resource. fumount:

per-process accounting file
service request/ nlsrequest:
ar: common archive file
errfile: error-log file

nroff or/ eqn, negn, checkeq:
newform: change the

inode:

term:

core:

cpio:

files. /graphical primiive L gps(4)
files in binary directories. cpset(1M)
files. includes: determine C includes(1)
files. « v v b b e e e e e e e e e e e e e e e e intro(7)
files. Id: 0 e e e e e e e e e e e e e e 1d(1)
fleS. & v o 0 e s e e e e e e e e e e e e e e e lockf(3C)
files management. passmgmt(1M)
filesordirectories. . . . « v+ ¢ ¢ 4 et e e e 0. m(1l)
files or subsequent linesof/ paste(1)
files. pack,pcat, . « . . . 00 v e e e et e e s pack(1)
filles. .+ v . v o e e e e e e e e e e e e e e e e s pr(l)
files. fprint section sizes . . .«o . . size(1)
files. . . .« ot e e e e e e e e e e e e e e e sort(1)
files to common formats. 0. .. convert(1)
17 what(1)
file-system-table. 0oL fstab(4)
filter forCRTS. . . & . . ¢ v v v v v e e e e e e pe(l)
filter. « v v v e e e e s e e e e e e e e e e e e greek(1)
filter. . . . v . s e e e e e e e e e e e e e e e e nl(1)
filter reverse linefeeds. col(1)
1= tio(1)
fiters. fiekset, td: o o ..o gdev(1G)
filters. « v « v v 4 e e e e e e e e e e e e e e e tplot(1G)
finc: fast incremental backup. finc(1M)
findfiles. ¢ . o it e e e e e e e find(1)
find hyphenated words. hyphen(1)
find name of aterminal. ttyname(3C)
find ordering relation foran lorder(1)
find spelling errors. spell, o000 . spell(1)
find the slot in the utmpfile ttyslot(3C)
finger: user information finger(1)
fingerd: remoteuser 0 . 4 0 e e 4 fingerd(1M)
finite width output device. « fold(1)
firstkey, nextkey: database/ dbm(3X)
Fish”. @ v i i i i ittt e e e e e fish(6)
fitting. 0 e e e e e e e e e e tee(1)
floating point environment/ fpgetround(3)
floating point NaN/ isman: « isnan(3C)
floating-point numberto/o L . ecvt(3C)
floating-point numbers. L. . frexp(3C)
floor, ceiling, remainder/ floor(BM)
flowgraph. o000 cflow(1)
flushastream. ¢ ¢+ v v v o fclose(3S)
fmod, fabs: floor, ceiling, floor(3M)
fold long lines forfinite fold(1)
fopen, freopen, fdopen: opena fopen(3S)
forced unmountofan fumount(1M)
fork:creale amew process. « . « « v + « o ¢ o . 4. . fork(2)
format. 8CCl: . .+ ¢ . 4 4 v e e e e e e e e e e e acc(4)
format and send listener nlsrequest(3n)
format. L s e e e e e e e e e e e e e ar(4)
format. o000l s . errfile(4)
format mathematical textfor eqn(1)
formatofatextfile. newform(1)
formatofaninode.o 0oL inode(4)
format of compiled term file.. term(4)
format of coreimagefile. core(4)
formatof cpioarchive., cpio(4)

- XXX1v -

file.. scr_dump:

dir:

/graphical primitive string,
sccsfile:

fs: file system:

files. fspec:

object file symbol table

troff. 1bl:

nroff:

archive files to common

intro: introduction to file
wtmp: utmp and wtmp entry
scanf, fscanf, sscanf: convert
Nfprintf, vsprintf: print
fprintf, sprintf: print
/checkmm: print/check documents
mptx: the macro package for
mm: the MM macro package for
ms: text

man: macros for

me: macros for

ASSIST menus and command
ratfor: rational

efl: extended

files. fsplit: split

hopefully interesting, adage.
fpgetround, fpsetround,
fpgetmask, fpsetmask,/
ffpgetmask, fpsetmask,
formatted output. printf,
ffpsetround, fpgetmask,
fpsetmask,/ fpgetround,
point/ ffpsetmask, fpgetsticky,
word on a/ putc, putchar,
stream. puts,

input/output.

backup tape.

t_free:

df: report number of

memory allocator. malloc,
mallopt, mallinfo:/ malloc,
stream. fopen,

parts of floating-point/

frec: recover files

list: produce C source listing
fand line number information
Ireceive the confirmation
recvfrom: receive a message
getw: get character or word
gets, fgets: get a string
mkifile: make an ifile

mmdel: remove a delta

getopt: get option letter
t_rcvdis: retrieve information
records and status information
feic/shadow with information
Jerc/shadow with information
read: read

format of curses screenimage scr_dump(4)
formatof directories.« . . o 0 v 4 ... dir(4)
format of graphical files. gps(4)
formatof SCCSfile. « ¢ o v . sccsfile(4)
format of systemvolume.00 .. fs(4)
format specificationintext fspec(4)
format. syms:common0 ... syms(4)
format tables fornrofforo 0L L, tbi(1)
fOrMAttEXt. o ¢ & & o ¢ & o & 4 s e e e e e e e nroff(1)
formats. convert: convert convert(1)
formats. v . b h e e e e e e e e e e e intro(4)
formats. wtmp,o ..o, utmp(4)
formattedinput. oL L. scanf(3S)
formatted output of a varargs/ vprintf(3S)
formatted output. printf, 0. .. printf(3S)
formatted withthe MM macros. mm(l)
formatting a permuted index. L. mpix(5)
formatting documents. mm(5)
formatting macros. e e .. ms(5)
formatting manual pages.44 . .. man(5)
formatting papers. 4 . e v e e 0 e e 0. me(5)
forms. /generate/modify astgen(1)
FORTRANdialect.+« v v v v v v v v o ratfor(1)
FORTRANIanguage. ¢ v v v v o v o 0w o efi(1)
FORTRAN, ratfor,orefl fsplit(1)
forne: printarandom,, fortune(6)
fpgetmask, fpsetmask/ 000 L. fpgetround(3)
fpgetround, fpsetround, fpgetround(3)
fpgetsticky, fpsetsticky: IEEE/ fpgetround(3)
fprintf, sprintf: print printf(3S)
fpsetmask, fpgetsticky,/ fpgetround(3)
fpsetround, fpgetmask, fpgetround(3)
fpsetsticky: IEEEfloating fpgetround(3)
fputc, putw: put characteror putc(3S)
fputs:putastringona L. ... puts(3S)
fread, fwrite:binary fread(3S)
frec: recoverfilesfroma oL oL L. frec(1M)
free alibrary structure. L L. ... t_free(3n)
free disk blocks andi-nodes. df(1M)
free, realloc, calloc:main malloc(3C)
free, realloc, calloc, malloc(3X)
freopen, fdopen:opena L ... L, fopen(3S)
frexp, ldexp, modf: manipulate frexp(3C)
fromabackuptape. L. frec(1IM)
from acommonobject file., list(1)
from acommonobjectfile., strip(1)
fromaconnectrequest. t_rcvconnect(3)
fromasocket. Tecv, 0 v . et . e e e .. recv(2)
from a stream. ffgetc, getc(3S)
fromastream.00 oL gets(3S)
fromanobjectfile. 0. mkifile(1M)
fromanSCCSfile. rmdel(1)
from argument vector. o« . - getopt(3C)
from disconnect. t_rcvdis(3n)
from dump. /extracterror errdead(1M)
from fetc/passwd. fandupdate pweonv(1M)
from Jetc/passwd. /fandupdate pwunconv(l1M)
fromfile. 0o s e e e e read(2)

- XXXV -

ncheck: generate path names
nlist: get entries

acctems: command summary
qlist: print out file lists
gelpw: gel name

cclsw, cc2sw, cc2fp:

gencc: create a

system volume.

formatted input. scanf,

of file systems processed by
file systems.

a lost+found directory for

reposition a file pointer in/

text files.
or efl files.
status.

stat,
information. statfs,

identi fier.

pointer in a/ fseek, rewind,
communication/ stdipc,
program.

Transfer Protocol server.

/a file for a pattern using
shutdown: shut down part of a
advertised resource.

error/ erf, erfc: error

gamma: log gamma

hypot: Euclidean distance

of a common object file
matherr: error-handling

prof: profile within a

math: math

intro: introduction to
j0,j1, jn, yO, y1, yn: Bessel
password and file encryption
logarithm, power, square root
remainder, absolute value
ocurse: optimized screen
300, 300s: handle special
terminals. hp: handle special
terminal. 450: handle special
sinh, cosh, tanh: hyperbolic
atan, atan2: trigonometric

using a file or file/

fread,

connect accounting records.
moo: guessing

back: the

bj: the

craps: the

wump: the

trk: trekkie

frominumbers. oL ncheck(1M)

fromnamelist. nlist(3C)
from per-process accounting/ acctems(1M)
from proto file; setinks/ oL qlist(1)
fromUD. getpw(3C)
front-end to the cccommand. cclsw(l)
front-end to the cccommand. gencc(1M)
fs: file system: formatof00 fs(4)
fscanf,sscanf:convert scanf(3S)
fsckandncheck. flist+ .. checklist(4)
fsck, dfsck: check and repair fsck(1M)
fsck. mklost+found: make mklostfnd(1M)
fsdb: file system debugger. fsdb(1M)
fseek, rewind, ftell: o0 fseek(3S)
fsize:report filesize.o fsize(1)
fspec: format specificationin fspec(4)
fsplit: split FORTRAN,ratfor, fsplit(l)
fsstat: report filesystem L. L fsstat(1M)
fstab: file-system-table. fstab(4)
fstat: getfilestatus. 000 0L stat(2)
fstatfs: get filesystem o000 statfs(2)
fstyp: determine filesystem fstyp(1M)
fiell: reposition afile Lo, fseek(3S)
ftok: standard interprocess stdipc(3C)
ftp: ARPANET filetransfer fip(1)
fipd: DARPAIntemet File ftpd(1M)
fiw:walk afiletree. 0 0. e ... fiw(3C)
full regularexpressions. 0. egrep(1)
full-duplex connection. shutdown(2)
fumount: forced unmountofan fumount(1M)
function and complementary erf(3M)
function. 000 e 0 e e e e gamma(3M)
function. 0oL 0o e hypot(3M)
function. /line numberentries 1diread(3X)
function. 0 L e v v e e e e e e matherr(3M)
function. oo oo h e e e e e prof(5)
functions and constants. math(5)
functions and libraries. intro(3)
functions. bessel: bessel(3M)
functions. crypt: 400 e e e . crypt(3X)
functions. /sqrt: exponential, exp(3M)
functions. ffloor,ceiling, floor(3M)
functions. 0. e e e ocurse(3X)
functions of DASI300and 300s/ 300(1)
functions of Hewlett-Packard hp(1)
functions of the DASI4S50 450(1)
functions.0 . e e e e e sinh(3M)
functions. ftan, asin, acos, + .« « ¢ 4 trig(3M)
fusage: disk access profiler. fusage(1M)
fuser: identify processes fuser(1M)
fwrite: binary inputfoutput. fread(3S)
fwimp, wimpfix: manipulate fwimp(1M)
BAME. .« « o v v o o v s e e e e e e e e e e moo(6)
game of backgammon.00, back(6)
game of blackjack. 00000 L. bj(6)
gameofcraps.o 0. craps(6)
game of hunt-the-wumpus. wump(6)
BAIME. « v v 4 v & v v e e e e e e e e e e e trk(6)

- XXXVi -

intro: introduction to
gamma: log

file.

number to string. ecwvt, fovt,
tekset, td: graphical device/

the cc command.

maze:

abont:

cflow:

cross-reference. cxref:
classification and/ chrtbl:
by user ID. diskusg:
makekey:

terminal. ctermid:

crypt, setkey, encrypt:
i-numbers. ncheck:

lexical tasks. lex:

/srand48, seed48, lcong48:
and command forms. astgen:
srand: simple random-number
gets, fgets:

get:

getsockopt, setsockopt:
ulimit:

the user. cuserid:

getc, getchar, fgetc, getw:
through the/ nlsgetcall:
getdiablesize:

nlist:

umask: set and

stat, fstat:

statfs, fstatfs:

ustat:

information. sysfs:

file.

/setgrent, endgrent, fgetgrent:
getlogin:

logname:

msgget:

getpw:

geipeemame:

system. uname:

provider. nlsprovider:

host. getservaddr:
/[seinetent, endnetent:
/[sethostent, endhostent:
getmsg:

unget: undo a previous
argument vector. getopt:
/setpwent, endpwent, fgetpwent:
working directory. getcwd:
times. times:

and/ getpid, getpgrp, getppid:
/setprotoent, endprotoent:
information. t_getinfo:
Jgeteuid, getgid, getegid:
getrpcbyname, getrpcbynumber:

BAIMES. .+« & v v v v e e e e e e e e e e e e intro{(6)
gamma function. 0., gamma(3M)
gateways: routed configuration gateways(4)
gevt: convert floating-point L L. ... ecvt(3C)
gdev: hpd, erase, hardcopy, gdev(1G)
ged: graphicaleditor., ged(1G)
gencc:create afront-endto gencc(1M)
GENETAE AMAZE. . ¢ &« v « o« v o o o 4 s 8 . . w .. maze(6)
generate aSIGABRT. abort(3C)
generate Cflowgraph. cflow(1)
generate Cprogram 00 . . cxref(1)
generate character L., chribl(1M)
generate disk accounting data diskusg(1M)
generate encryptionkey. makekey(1)
generate filenamefor 0L L ctermid(3S)
generate hashing encryption. crypt(3C)
generate pathnamesfrom ncheck(1M)
generate programs forsimple 0. .. lex(1)
generate uniformly distributed/ drand48(3C)
generate/modify ASSISTmenus astgen(1)
generator. rand, 4 e e e e 4. rand(3C)
getastring fromastream.0 0. .. . gets(3S)
getaversionofanSCCSfile. get(1)
get and setoptionson/ getsockopt(2)
get and setuserlimits. 0.0 .. ulimit(2)
get character loginnameof cuserid(3S)
get characterorword froma/ L .. getc(3S)
get client’sdatapassed nlsgetcall(3n)
get descriptor table size. getdtablesize(2)
get entries fromname list., nlist(3C)
getfilecreationmask. 0. umask(2)
getfilestatus. 0L 0000 stat(2)
get file system information. L. .. statfs(2)
get file system statistics. 0. .. ustat(2)
getfilesystemtype ¢ .. 00 ... sysfs(2)
get: getaversionofanSCCS, get(1)
getgroupfileentry. getgrent(3C)
getloginname. getlogin(3C)
getloginpame. logname(1)
BELMESSABE QUEUE. . .« .+ « v o 4 v . . e e . .o . msgget(2)
getnamefromUID. gepw(3C)
get name of connected peer. getpeemame(2)
getnameofcurrent CTIX uname(2)
getnameof transport nlsprovider(3n)
get network addressof service getservad(1M)
getnetworkentry. e 0. getnetent(3)
get network hostentry. gethostbyname(3)
get next message offastream. getmsg(2)
getofanSCCSfile. unget(1)
get option leter from getopt(3C)
get password fileentry. getpwent(3C)
get path-name ofcurrent getewd(3C)
getprocessand childprocess times(2)
BEL PrOCESS, PIOCESS BIOUP, « + « & + & o o o o o o« & getpid(2)
getprotocolemtry. 4 0 . 4.0 ... getprotoent(3)
get protocol-specificservice t_getinfo(3n)
get real user, effectiveusery/ getuid(2)
get rpcentry. getrpeent, L getrpecent(3)

- XXXvii -

getrpeport:

/setservent, endservent:
semget:

fgetspent, lckpwdf, uickpwdf:
identifier. shmget:
getsockname:

1_getstate:

y:

time:

get character or word from a/
character or word from/ getc,
current working directory.
entries and put in a file.

table size.

getuid, geteuid, getgid,
environment name.

real user, effective/ getuid,
user,/ getuid, geteuid,
setgrent, endgrent,/
endgrent,/ getgrent,

getgrent, getgrgid,
sethostent,/ gethostbyname,
gethostent, sethostent,/
gethostbyname, gethostbyaddr,
unique identi fier of current/
get/set name of current host.

stream.

setnetent,/ getnetent,
getnetent, getnetbyaddr,
getnetbyname, setnetent,/
argument vector.

options. getopts,
command options.

connected peer.

process group, and/ getpid,
process, process group, and/
group, and/ getpid, getpgrp,
getprotoent, getprotobynumber,
getprotobyname,/ getprotoent,
getprotobyname, setprotoent,/

setpwent, endpwent,/
getpwent, getpwuid,
endpwent,/ getpwent,

get 1pc entry. getrpcent,
getrpcbynumber: get rpc/
number.

a stream.

address of service host.
getservent, getservbyport,
setservent,/ getservent,
getservbyname, setservent,/
gettimeofday, settimeofday:
gethostname, sethostname:
current/ gethostid, sethostid:

get RPCportnumber. getrpepont(3)
getserviceentry. s . . getservent(3)
get setof semaphores. semget(2)
get shadow. Jendspent, getspent(3X)
get shared memory segment shmget(2)
get socketname. getsockname(2)
get thecurrentstate. o0 . . . t_getstate(3)
getthenameof theterminal. tty(1)
BELUME. & v ¢ o v ¢ 4 v o v o e e e e e e e . time(2)
getc, getchar, fgetc, getw: gete(3S)
getchar, fgetc, getw: get gete(3S)
getcwd: get path-nameof getewd(3C)
getdents: read directory L .. getdents(2)
getdtablesize: get descriptor getdtablesize(2)
getegid: getrealuser/ getuid(2)
getenv:retumvaluefor 0L L getenv(3C)
geteuid, getgid, getegid: get getuid(2)
getgid, getegid: getreal getuid(2)
getgrent, getgrgid, getgmam, getgrent(3C)
getgrgid, getgmam, setgrent, getgrent(3C)
getgmam, setgrent, endgrent/ getgrent(3C)
gethostbyaddr, gethostent, gethostbyname(3)
gethostbyname, gethostbyaddr, gethostbyname(3)
gethostent, sethostent,/ gethostbyname(3)
gethostid, sethostid: get/set gethostid(2)
gethostname, sethostname: gethostname(2)
getlogin: getloginname. getlogin(3C)
getmsg: get nextmessageoffa getmsg(2)
getnetbyaddr, getnetbyname, getnetent(3)
getnetbyname, setnetent,/ oo . getnetent(3)
getnetent, getnetbyaddr, getnetent(3)
getopt: get option lesterfrom getopt(3C)
getopt: parse command options. getopt(1)
getoptevt: parsecommand 4 0 4. s oo s getopts(1)
gelopts, getoptevl: parse s 4 . . e . . getopts(1)
getpass: readapassword. getpass(3C)
getpeemame: getnameof L. . getpeername(2)
gelpgrp, getppid: get process, getpid(2)
getpid, getpgrp, getppid: get L. .. getpid(2)
getppid: get process,process 4 . . 44 o4 . . getpid(2)
getprotobyname, setprotoent/ getprotoent(3)
getprotobynumber, L. getprotoent(3)
getprotoent, getprotobynumber, getprotoent(3)
getpw: getname fromUID. getpw(3C)
getpwent, getpwuid, getpwnam, getpwent(3C)
getpwnam, setpwent, endpwent,/ getpwent(3C)
getpwuid, getpwnam, setpwent, getpwent(3C)
getrpcbyname, getrpcbynumber: L . L L getrpeent(3)
getrpcent, getrpcbyname, getrpcent(3)
getrpcport: getRPCport getrpcpori(3)
gets, fgets: getasting from gets(3S)
getservaddr: getnetwork getservad(1M)
getservbyname, setservent,/ getservent(3)
getservbyport, getservbyname, L. getservent(3)
getservent, getservbyport, getservent(3)
get/setdateand time. gettimeofday(2)
get/set name of currenthost. gethostname(2)
get/set unique identifierof gethostid(2)

- XXXVviil -

and set options on sockets.
endspent, fgetspent, Ickpwdf,/
fgetspent, lckpwdf,/ getspent,
get/set date and time.

and terminal settings used by
modes, speed, and line/

ct: spawn

settings used by getty.
getegid: get real user,/
pututline, setutent,/ getut:
setutent,/ getut: getutent,
getut: getutent, getutid,

from a/ getc, getchar, fgeic,
common CTIX system terms and/
ascftime,/ ctime, localtime,
fish: play

setjmp, longjmp: non-local
string, format of graphical/
graph: draw a

sag: system activity
commands. graphics: access
Metwork useful with

Jerase, hardcopy, tekset, td:
ged:

primitive string, format of
toc: dtoc, ttoc, vtoc:

gutil:

numerical commands.

tplot:

plot:

subroutines. plot:

mvt: typeset documents, view
package for typesetting view

pattern.

fuser, effective user, real
/getppid: get process, process
chown, chgrp: change owner or
endgrent, fgetgrent: get
group:

Setpgrp: set process

id: print user and

real group, and effective
setuid, setgid: set user and
Remote File Sharing user and
newgrp: log in 10 a new
chown: change owner and

a signal to a process or a
update, and regenerate
checkers. pwck,

ssignal,

install or relocate a PT or
download. tdl,

hangman:

moo:

[for Interphase V/TAPE 3200

getsockname: get socketname. getsockname(2)
getsockopt, setsockopt: get getsockopt(2)
getspent, getspnam, setspent, getspent(3X)
geispnam, setspent, endspent, getspent(3X)
gettimeofday, settimeofday: gettimeofday(2)
getty. gettydefs: speed gettydefs(4)
getty: setterminaltype, gety(1M)
gettytoaremoteterminal. c(1C)
gettydefs: speed and terminal L L L, gettydefs(4)
getuid, geteuid, getgid,, getuid(2)
getutent, getutid, getutline, gem(3C)
getutid, getutline, pututline, getut(3C)
getutline, pututline,/ getut(3C)
getw: get characterorword L. L getc(3S)
glossary: definitionsof glossary(1)
gmtime, asctime, cftime, ctime(3C)
“GoFish™. v i i v v fish(6)
BOMO. v ¢ vt h h e e e e e e e e e e e e e seyymp(3C)
gps: graphical primitive00 L. gps(4)
graph.00 graph(1G)
graph. e e e e e e e e sag(1G)
graphical and numerical graphics(1G)
graphical commands., stat(1G)
graphical device routinesand/ gdev(1G)
graphicaleditor. ged(1G)
graphical files. /graphical gps(4)
graphical table of contents/ toc(1G)
graphical utilities. gutil(1G)
graphics: access graphicaland graphics(1G)
graphics filters. L0000 tplot(1G)
graphics interface. plot(4)
graphics intefface 0oL plot(3X)
graphs, and slides. mmt, mmt(1)
graphs and slides. /macro mv(5)
greek: select terminal filter. L L. greek(1)
grep: searchafilefora grep(1)
group, and effectivegroup/ gemid(2)
group, and parentprocessIDs. getpid(2)
BIOUP., & « v v v v v s e e e e e e e e e e e e e chown(1)
group file entry. /setgrent, getgrent(3C)
groupfile. 000 e e group(4)
groupID. oo s e setpgrp(2)
groupIDsandnames. id(1M)
group IDs. feffectiveuser, getuid(2)
groupIDs.00 setuid(2)
group mapping. idload: L. .. idload(1M)
BIOUD. &« v v v v v v o e e e e e e e e e newgrp(1M)
growpofafile. chown(2)
groupof processes. /send0 ... kill(2)
groups of programs. /maintain, make(1)
grpck: password/groupfile L L. L. L pwck(1M)
gsignal: softwaresignals. ssignal(3C)
GTlocal printer. fmvtpy: . « . . « . « & . o . o .. mktpy(1)
gudl, ptdl: RS-232terminal 0L L tdi(1)
guesstheword., hangman(6)
BUESSING BAIME. . .+ « & ¢ « o v s & o o o o 0 s 0 4 s moo(6)
gutil: graphical utiliies. gutil(1G)
half-inchtapecontrofler. ipt(7)

- XXXiX -

stape: SCSI quarter-inch and
system state. shutdown,

DASI 300 and 300s/ 300, 300s:
Hewlett-Packard/ hp:

the DASI 450 terminal. 450:
varargs:

curses: terminal screen
setchrclass: character

nohup: run a command immune to
graphical/ gdev: hpd, erase,
hinv:

hcreate, hdestroy: manage
spell, hashmake, spellin,
setkey, encrypt: generate

find spelling errors. spell,
search tables. hsearch,

dump.

tables. hsearch, hcreate,

file. scnhdr: section

files. filehdr: file

limits: file

unistd: file

file. Idfhread: read the file
/seek to the optional file

/read an indexed/named section
Idahread: read the archive
helpadm: make changes to the
help: CTIX system

Help Facility database.
tape file archiver. hpio:
/andle special functions of
dump. hd:

libdev: manipulate Volume
fortune: print a random,
/ntohs: convert values between
endhostent: get network
unique identifier of current
get/set name of current

get network address of service
Jset or print the Internet
change Remote File Sharing
rwhod:

or print identi fier of current
identi fier of current host/
Internet host name of the/
packets to network

of Hewlett-Packard terminals.
1d: graphical device/ gdev:
terminal tape file archiver.
manage hash search tables.
convert values between host/
values between host/ htont,
wump: the game of

sinh, cosh, tanh:

hyphen: find

half-inchtape. . . . « .« ¢ ¢« o oo e oL stape(7)
halt: shut down system, change shutdown(1M)
handle special functionsof oL .. 300(1)
handle special functionsof hp(1)
handle special funcionsof L oL 450(1)
handle variable argument list. varargs(5)
handling and optimization/ curses(3X)
handling. /_tolower, _toupper, ctype(3C)
hangman: guesstheword. hangman(6)
hangups and quits. o0 L0 nohup(1)
hardcopy, tekset, td:00 o0 L gdev(1G)
hardware inventory. 0 0 0. . hinv(1M)
hash search tables. hsearch, hsearch(3C)
hashcheck: findspelling/ speli(1)
hashing encryption. crypt, crypt(3C)
hashmake, spellin, hashcheck: speli(1)
hcreate, hdestroy: managehash hsearch(3C)
hd: hexadecimal and asciifile hd(1)
hdestroy: manage hashsearch hsearch(3C)
header fora commonobject, scnhdr(4)
header for commonobject L filehdr(4)
headerfor/ ¢ ¢ v e e e e e e e limits(4)
header for symbolic constants. unistd(4)
headerof a commonobject ldfhread(3X)
header of a common object/ ldohseek(3X)
header of a common object/ ldshread(3X)
header of amemberofan/ 1dahread (3X)
Help Facility database. helpadm(1M)
HelpFacility.« o v v v v v v oo help(1)
help: CTIX system Help Facility. help(1)
helpadm: make changestothe helpadm(1M)
Hewlett-Packard 2645Aterminal hpio(1)
Hewlett-Packard terminals.« .« hp(1)
hexadecimal and asciifile hd(1)
hinv: hardware inventory. hinv(1M)
HomeBlocks (VHB). libdev(3X)
hopefully interesting, adage. fortune(6)
host and network byteorder. byteorder(3)
host entry. /sethostent, gethostbyname(3)
host. /sethostid: getfset gethostid(2)
host. /sethostname: gethostname(2)
host. getservaddr: 0o L. getservad(1M)
host name of thecurrent/ hostname(1)
host password. rfpasswd: L. rfpasswd(1M)
hoStStAtUS SEIVET. . . & & v & & ¢+ . e v . 0o . rwhod(1M)
host system. hostid: set hostid(1)
hostid: setorprint oL hostid(1)
hostname: setorprintthe hostname(1)
hosts. /send ICMP ECHO_REQUEST ping(1M)
hp: handle special functions hp(D)
hpd, erase, hardcopy, tekset, gdev(1G)
hpio: Hewleu-Packard 2645A hpio(1)
hsearch, hcreate, hdestroy: hsearch(3C)
hton), htons, ntohl, ntohs: byteorder(3)
htons, ntohl, ntohs: convert, . byteorder(3)
hunt-the-wumpus. wump(6)
hyperbolic functions., sinh(3M)
hyphenated words. L. hyphen(1)

-xi-

function.

network hosts. ping: send
Protocol.

disk accounting data by user
semaphore set or shared memory
and names.

SEtpgrp: set process group
issue: issue

fstyp: determine file system
/sethostid: get/set unique
system. hostid: set or print
get shared memory segment
using keywords. locate:

file or file/ fuser:

what:

user and group mapping.

id: print user and group
group, and parent process

group, and effective group

setgid: set user and group
ffpgetsticky, fpsetsticky:
interface parameters.

mkifile: make an

core: format of core

format of curses screen
crash: examine system
nohup: run a command

limits: file header for

C language preprocessor

finc: fast

dirent: file system

ftgoto, tputs: terminal

for fomatting a permuted
of a/ ldtbindex: compute the
: permuted

a common/ ldibread: read an
1dshread, Idnshread: read an

1dsseek, ldnsseek: seek to an

receipt of an orderly release

receive 2 unit data error
family.

inet_ntoa, inet_makeaddr,/
‘‘super-server’’,

configuration file for

for inetd (intemet/
finet_ntoa, inet_makeaddr,
finet_network, inet_ntoa,
finet_makeaddr, inet_lnaof,
inet_makeaddr,/ inet_addr,
inet_addr, inet_network,
terminfo descriptions.
inittab: script for the
initialization.

init, telinit: process control
/drvload, powerfail: system
terminfo database. tput:
volume. iv:

socket. connect:

hypot: Euclidean distance hypot(3M)
ICMP ECHO_REQUESTpacketsto ping(1M)
icmp: Intemnet Control Message icmp(7)
ID. diskusg: generate diskusg(1M)
ID. /remove amessage quette, 4 . . o0 .. . ipcrm(1)
id: printuserandgroupIDs - L. 1d(1M)
ID. . . o e e e e e e s e e e setpgrp(2)
identificationfile. issue(4)
identifier. i . e e e e e e e e e e e fstyp(1M)
identifierof currenthost. gethostid(2)
identifierof currenthost hostid(1)
identifier. shmget: shmget(2)
identify a CTIX systemcommand locate(1)
identify processesusinga, fuser(1M)
identify SCCSfiles. what(1)
idload: Remote File Sharing idload(1M)
IDsandnames. . . . + ¢ ¢ v ¢ ¢ « ¢ ¢ ¢ o 40 n e id(1M)
IDs. /get process, process . + « « « o v o 0 4 0 o4 . . getpid(2)
IDs. /jeffective user,real, gewid(2)
DDs.setuid, . . o & ¢ v v 4o v v 6 o 0 v v e e e setuid(2)
IEEE floating point/ fpgetround(3)
ifconfig: configurenaawork ifconfig{1M}
ifile fromanobjectfile. mkifile(1M)
imagefile. v 0o v e e e core(4)
imagefile.serdump: 0. .. scr_dump(4)
IMAZES. + v v v ¢ 4 v e e e e e e e e e e e e e crash(1M)
immune to hangups and quits., nohup(1)
implementation-specific/ 0., limits(4)
include files. /determine 0L L. includes(1)
incremental backup.00 L finc(1M)
independent directory entry. dirent(4)
independent operations. otermcap(3X)
index. fthe macropackage mptx(5)
index of a symbol tableentry 1dibindex(3X)
indeX. e e e e e e e e e e e e e e e ptx(1)
indexed symbol tableentryof 1dtbread(3X)
indexed/named section header/ ldshread(3X)
indexed/named sectionofa/ 1dsseek(3X)
indication. /acknowledge t_rcvrel(3n)
indication. t_rcvaderr: L t_rcvuderr(3)
inet: Intemet protocol inei(?)
inet_addr, inet_network, L. inet(3)
inetd:intemet . . . 4 . 4 b 4 s e e e e e e e e inetd(1M)
inetd (intemet/ inetd.conf: inetd.conf(4)
inetd.conf: configuration file inetd.conf(4)
inet_Inaof, inet_netof:/ inet(3)
inet_makeaddr, inet_lnaof/ inet(3)
inet_netof: Internet address/ inet(3)
inet_network, inet_ntoa, inet(3)
inet_ntoa, inet_makeaddr/ inet(3)
infocmp: compare orprintout infocmp(1M)
NIEPrOCESS. « v o v o ¢ o v 4 v e e e e e e e inittab(4)
init, telinit: process oonlrol init(1M)
initialization. 4 0 e 4w a4 e 0w init(1M)
initialization procedures. bre(1M)
initialize aterminalorquery tput(1)
initialize and maintain L. .., iv(1)
initiate aconnectiononao« ... connect(2)

-xli -

t_sndrel:

process. popen, pclose:
process.

clni: clear

inode: format of an

number of free disk blocks and
start and stop terminal

sscanf: convert formatted
push character back into
fread, fwrite: binary

poll: STREAMS

stdio: standard buffered
fileno: stream status

uustat: uucp status

with information from/ pwconv:
with information/ pwunconv:
using the mkfs(1)/ ginstall:
install:

directories. cpset:

local printer. mktpy, mvtpy:
ctinstall:

abs: retun

/164a: convert between long
sputl, sgetl: access long

atol, atoi: convert string to
3-byte integers and long
boopy:

system. mailx:

print a random, hopefully
tset: set terminal, terminal
module. timod: Transport
err: error-logging

V/TAPE 3200 half-inch/ ipt:
gic:

lo: software loopback network
Ip: parallel printer

mem, kmem: system memory
ifconfig: configure network
plot: graphics

STREAMS/ tirdwr: Transport
[Transport Interface read/write
plot: graphics

swap: swap administrative
termio: general terminal

tiop: terminal accelerator i

logging and event/ log:
telnet: user

protocol. tftp: user

tty: controlling terminal
vme: VME bus

detach serial lines as network
finet_lnaof, inet_netof:
Protocol. icmp:

named:

Protocol server. fipd: DARPA
hostname: set or print the
names and numbers for the
slipd: switched Serial Line

initiate anorderly release. t_sndrel(3n)
initiate pipetoffroma popen(3S)
inittab: script fortheinit inittab(4)
INOGE. v v e e e e e e e e e e e e e e e e e e cin(IM)
Inode. . . . v v e e e e e e e e e e e e e e e e inode(4)
inodes. dfireport oL oo o L e df(1M)
input and output. fmanually rsterm(1M)
input. scanf,fscanf, scanf(3S)
input stream. UNGELC: e e e . e oo e ungetc(3S)
nput/omtput. o .0 e e e e e e e e e fread(3S)
input/output multiplexing. 0. poll(2)
inputfoutput package. 0o stdio(3S)
inquiries. ffeof, clearerr, ferror(3S)
inquiry and jobcontrol. uustat(1C)
install and update fetc/shadow pweonv(1M)
install and update fetc/shadow pwunconv(1M)
install and verify software ginstail(1)
install commands. 0. ... install(1M)
install object filesinbinary cpset(1M)
install orrelocate a PTorGT mktpy(1)
install software. 0 0 e e e 0 .. ctinstall(1)
integer absolute value. 000 .. abs(3C)
integer and base-64 ASCIl/ a641(3C)
integerdataina/ 000 0. sputd(3X)
integer. strtol, e e e e 0 e e e e strtol(3C)
integers. fconvertbetween 13t01(3C)
interactive blockcopy. oL beopy(1M)
interactive message processing mailx(1)
interesting, adage. fortune:o .. fortune(6)
interface, and terminal/0 .. tset(1)
Interface cooperating STREAMS timod(7)
interface. v e e e h e e e e e s e e e e e err(7)
interface forInterphase L L. oL ipi(7)
interface forQICtape.« .« ¢ qic(7)
interface.t h e e e e e e e e e e e 1o(7)
interface. L e o 0w e e e e e e e e e e 1p(7)
interface. v e b e e e e e e e e e e e mem(7)
interface parameters. ifconfig(1M)
interfface. oL plot(4)
Interface read/write interface tirdwr(7)
interface STREAMSmodule. tirdwr(7)
interface subroutines. 4 . 4 4 s e . 4 plot(3X)
interface. 0 v e e e e e e e e e swap(1M)
Interface. . . . ¢ ¢ o 4 i e e e e e e e e e e e e termio(7)
interface.o e . tiop(7)
interface to STREAMSerror log(7)
interface to TELNETprotocol. telnet(1)
interface to the DARPATFTP tftp(1)
interface. oo e e e e e e e tty(7)
interface. . . 0 4 . e h e h e e e e e e e e e e vme(7)
interfaces. fattachand slattach(1M)
Internet address manipulation/ inet(3)
Internet Control Message icmp(7)
Intemet domain name server. named(1M)
Intemet File Transfer ftpd(1M)
Intenet host name ofthe/ hostname(1)
internet. networks: e e e e e e .. networks(4)
Internet Protocol control/ o0 oL L slipd(1M)

- xlii -

inet:

ip:

protocols: list of

services: list of

inetd:

fconfiguration file for inetd
Protocol. tcp:

Protocol. udp:

half-inch/ ipt: interface for
spline:

characters. asa:

sno: SNOBOL

syntax. csh: a shell (command
pipe: create an

facilities/ ipcs: report

stdipc, ftok: standard

suspend execution for an
sleep: suspend execution for
application programs. intro:
intro:
intro:
intro:
intro:
intro:
and error numbers. intro:
generate path names from
hinv: hardware

tio: tape

select: synchronous

table. rtab: Remote
riopqry: query Remote
configure system for Remote
streamio: STREAMS

libraries.

semaphore set or shared/
communication facilities/
V/TAPE 3200 half-inch tape/
fislower, isupper, isalpha,
fisxdigit, islower, isupper,
fispunct, isprint, isgraph,
terminal, ttyname,
fisalpha, isalnum, isspace,
isupper, isalpha, isalnum,/
fiscntrl, ispunct, isprint,
isalnum,/ isdigit, isxdigit,
for floating point NaN/
floating point NaN/ isnan:
point NaN/ isnan: isnand,
fisspace, iscntrl, ispunct,
Asalnum, isspace, iscntrl,
fisupper, isalpha, isalnum,
system:

issue:

isdigit, isxdigit, islower,
isalpha, isalnum// isdigit,
news: print news

volume.

Intemet protocol family. oo 0oL inew(7)
Intemet Protocol. ip(7)
Intemetprotocols.o protocols(4)
Intemetservices. . . .« . + v . v o 4 e h e 0 e . services(4)
internet ‘‘super-server’.o . . inetd(1M)
(internet ‘‘super-server™). inetd.conf(4)
Intemet TransmissionControl tep(7)
Intemet User Datagram udp(7)
Interphase V/TAPE3200 ipt(7)
interpolate smoothcurve. spline(1G)
interpret ASA cariagecontrol L oL L L asa(l)
INEIPIEEr. . . & v v v v v e v e e e e e e e e e e sno(1)
interpreter) withC-like csh(l)
interprocess channel., pipe(2)
inter-process Communication .+ « « .+« o4 . . ipes(l)
interprocess communication/ stdipc(3C)
interval. sleep: L Lo ... sleep(1)
interval. L L. 0o o e e e e e e sleep(3C)
introduction tocommandsand intro(1)
introduction to file formats. intro(4)
introduction to functionsand L. L L. intro(3)
introduction togames. o4 0 e intro(6)
introduction tomiscellany. L. intro(S)
introduction to special files. intro(7)
introduction tosystemcalls L. .. intro(2)
i-numbers. ncheck: 0. 0. ncheck(1M)
INVERLOTY. + v v v v v v v v h e e e e e e e e e hinv(1M)
fofilter. . . . < . oL e s e e e e e e e tio(1)
IOmultiplexing. ¢« oo o v v v oo select(2)
I/O Processor configuration rtab(4)
/O Processor foronlinedata. riopgqry(1M)
I/O Processor. riopefg: oL, riopcfg (1IM)
jotlcommands. 0. . streamio(7)
ioctl: control device. 0000 ioctl(2)
ip:Intemet Protocol. L. oL Lo iX7)
IpCIM: Temove 2 MESSage QUEUE, . « « « + + « = + & ipcrm(1)
Ipcs: reportinter-process .« . .+ . . v e 4 4 . e o0 . . . ipes(l)
ipt: interface forInterphase ipi(7)
isalnum, isspace,disented/ L L L L0000 L ctype(3C)
isalpha, isalnum, isspace,/ ctype(3C)
isascii, tolower, touppery/ ctype(3C)
isatty: findnameofa ttyname(3C)
iscntdl, ispunct, isprint,/ L L .o L. L ctype(3C)
isdigit, isxdigit, islower, oL L. ctype(3C)
isgraph, isascii, tolower/ oL ctype(3C)
islower, isupper,isalpha, ctype(3C)
isnan: isnand, isnanfi test isnan(3C)
isnand, isnanf: testfor isnan(3C)
isnanf: test forfloating L. L. isnan(3C)
isprint, isgraph, isascii,/ L ctype(3C)
ispunct, isprint, isgraph,/00 L ctype(3C)
isspace, isentrl, ispunct,/ L. L. L L L ctype(3C)
issue ashellcommand. system(3S)
issue identification file. issue(4)
isupper, isalpha, isalnum/ L. L L. ctype(3C)
isxdigit, islower, isupper, ctype(3C)
TEMS. &+ & v v v v o 6 e s e e e e e e e e e e e e news(1)
iv: initialize and maintain iv(l)

- xliii -

functions. bessel:

functions. bessel: jO,

bj: the game of black
functions. bessel: j0, j1,
operator.

flrand48, nrand48, mrand48,
mkdbsym: load symbols in
port. dbconsole: change the
makekey: generate encryption
a CTIX system command using
killall:

process or a group of/

processes.
mem,

quiz: test your

3-byte integers and long/
integer and base-64/ a64l,
labelit: provide

scanning and processing
arbitrary-precision arithmetic
efl: extended FORTRAN
scanning and processing

cpp: the C

files. includes: determine C
command programming
cftime:

chargefee, ckpacct, dodisk,
shl: shell

/setspent, endspent, fgetspent,
/jrand48, srand48, seed48,
object files.

object file. 1dclose,

header of a member of an/
file for reading. ldopen,
common object file.

drnivers.

of floating-point/ frexp,
access routines.

of a common object file.
name for common object file/
line number entries/ ldlread,
number/ ldlread, 1dlinit,
manipulate line number/

line number entries of a/
entries of a section/ 1dlseek,
entries of a section/ ldrseek,
indexed/named/ ldshread,
indexed/named/ ldsseek,

file header of a common/
object file for reading.
relocation entries of a/
indexed/named section header/
socket configuration. slink,
indexed/named section of a/
of a symbol table entry of a/
symbol table entry of a/

jO,jl,jn,y0,yl,yn: Bessel bessel(3M)
jln,y0,yl,yn:Bessel bessel(3M)
JACK. . e e e e e e e e e e e e e e bj(6)
jn,y0,yl,yn:Bessel bessel(3M)
join: relational database o .00 join(1)
jrand48, srand48,seedd8/ drand48(3C)
kemel debugger. mkdbsym(1M)
kemel debugger systemconsole dbconsole(1M)
R makekey(1)
keywords. locate: identify locate(1)
kill all active processes. e 4. . killall(1M)
kill: send asignaltoa« ... kill(2)
kill: terminate aprocess. . . + « « + ¢ o . o s .. 0 0. . kill(1)
killall: kill all active « « « « ¢ o « .« . . killali(1M)
kmem: system memory interface. mem(7)
knowledge.o quiz(6)
13tol, ltol3: convertbetween - 13101(3C)
164a: convert betweenlong a641(3C)
labels forfilesystems. - ... labelit(1M)
language. awk:pattem awk(1)
language. be: L0000 oo be(l)
language.- - oo .o - ... e o efi(l)
language. nawk: pattem nawk(l)
language preprocessor. e 4 s e e e .. cpp(1)
language preprocessorinclude L includes(1)
language. /standard/restricted sh(1)
language specificstrings. cftime(4)
lastlogin, monacct, nulladm,/ acctsh(1M)
layermanager. v v 0 et e e 0 e 0 e .. . shi(1)
Ickpwdf, ulckpwdf: get shadow. getspent(3X)
lcong48: generate uniformly/ drand48(3C)
1d: link editor forcommon oL ... 1d(1)
ldaclose: closeacommon« . . . ldclose(3X)
ldahread: read the archive Idahread(3X)
Idaopen: open a common object 1dopen(3X)
ldclose, ldaclose: closea ldclose(3X)
1ddrv: manageloadable lddrv(IM)
ldeeprom:load EEPROM. ldeeprom(1M)
Idexp, modf: manipulate parts frexp(3C)
ldfen: common object file oL 1dfen(4)
ldfhread: read the fileheader 1dfhread(3X)
ldgetname: retrieve symbol ldgetname(3X)
Idlinit, 1dlitem: manipulate ldlread(3X)
Idlitem: manipulate line ldlread(3X)
Idlread, 1dlinit, Idlitem: 1dlread(3X)
Idlseek, Idnlseek: seekto 1dlseek (3X)
Idnlseck: seek to line number 1dlseek (3X)
ldnrseek: seek torelocation 1drseek (3X)
ldnshread: readan ldshread(3X)
ldnsseek: seektoan oL 1dsseek(3X)
Idohseek: seek tothe optional ldohseek(3X)
ldopen, ldaopen: openacommon ldopen(3X)
ldrseek, ldnrseek: seekto ldrseek(3X)
ldshread, ldnshread: readan 1dshread(3X)
ldsocket: STREAMS linker,foad slink(1)
ldsseek, ldnsseek: seektoan, ldsseek(3X)
ldibindex: compute theindex Idibindex(3X)
Ildtbread: read anindexed ldtbread(3X)

- xliv -

table of a common object/
getopt: get option

generate programs for simple
update. 1search,

Blocks (VHB).

introduction to functions and
chkshlib: compare shared
relation for an object
portable/ ar: archive and
mkshlib: create a shared
t_alloc: allocate a

t_free: free a

t_sync: synchronize transport
implementation-speci fic/
ulimit: get and set user

an out-going terminal

type, modes, speed, and

type, modes, speed, and
slipd: switched Serial

line: read one

common object file. linenum:
Adlinit, ldlitem: manipulate
idiseek, ldnlseek: seek to
strip: strip symbol and

nl.

out selected fields of ead;
send/cancel requests to an LP
Ipset: set parallel

lpr:

Isearch, Ifind:

col: filter reverse

in a common object file.
/attach and detach serial

files. comm: select or reject
file for uucp communications
device. fold: fold long

head: give first few

uniq: report repeated
subsequent/ paste: merge same
directories. link, unlink:
files. 1d:

a.out: common assembler and

cp, In, mv: copy,
link:

slink, ldsocket: STREAMS
lists from proto file; set

Is:
nlist: get entries from name
and statistics for file system

an. bcheck: print the
nm: print name

by fsck and/ checklist:
hosts:

protocols:

services:

Idtbseek: seektothesymbol 1dtbseck(3X)
letter from argument vector. getopt(3C)
lexical tasks. lex: 0., lex(1)
1find: linear searchand Isearch(3C)
libdev: manipulate Volume Home libdev(3X)
libraries. intro: 0 4 0 e e e e e e intro(3)
librariestool. chkshlib(1)
library. /ffindordering L. lorder(1)
library maintainer for L. . ar(l)
library. ¢ v i e mkshlib(1)
library structure.« . . e . 0 e 4 e e . t_alloc(3n)
library structure. . .« v b e e e e 0 e e t_free(3n)
Bibrary. v v v e e s e e e e e t_sync(3n)
limits: file headerfor, limits(4)
Bmits. . . . v v v v b e e e e e e e e e e e e ulimit(2)
line connection. /establish dial(3C)
line discipline. /setterminal geny(1IM)
line discipline. /setterminal uugetty(1M)
Line Intemet Protocol control/ slipd(1M)
Hoe. « & v v v v v e s e e e e e e e e line(1)
line numberentriesina linenum(4)
line numberentriesofa/ 1diread(3X)
line numberentriesofa/ 1dlseek (3X)
line number information froma/ strip(1)
line numbering filter.o 0oL L ni(1)
lineofafile. cuticut cut(1)
line printer. lp,cancel: 1p(1)
line printeroptions., Ipset(1M)
line printerspooler. L0000 . 1pr(1)
line:readoneline.0 e .. line(1)
linear searchandupdate. 1search(3C)
linefeeds.« v v v b b vt e e . col(1)
linenum: line numberentres linenum(4)
lines as network interfaces. slattach(1M)
lines commontotwosorted comm(1)
lines. Devices: configuration Devices(S)
lines for finite widthoutput fold(1)
lines. vt i e e e e e e e e e e head(1)
linesinafile. 00 unig(1)
lines of several filesor paste(1)
link and unlink filesand link(1M)
link editor for commonobject 1d(1)
link editoroutput. a.out(4)
link: linktoafile. link(2)
link, ormovefiles. ¢ . 4 e 4 e e cp(l)
linktoafile. link(2)
linker,load socket/ slink(1)
links based on. foutfile qlist(1)
lint: a Cprogramchecker. lint(1)
list contents of directory. 1s(1)
Het. . . v v e e e e e e e e e e e e e e e nlist(3C)
listfilenames, fi(1M)
list of blocks associated with beheck(1M)
list of common object file. L. nm(1)
list of file systems processed checklist(4)
listofhostsonmetwork., hosts(4)
list of Internet protocols. L. protocols(4)
list of Intemet services. services(4)

-xlv -

terminal number. ttytype:
from a common object file.
handle variable argument
output of a varargs argument
t_listen:

socket. listen:

data passed through the
nlsadmin: network
nlsrequest: format and send
file. list: produce C source
xargs: construct argument
links/ qlist: print out file
volcopy: make

files. cp,

interface.

ldeeprom:

Ndsocket: STREAMS linker,
debugger. mkdbsym:
drivers:

iddrv: manage

cftime, ascftime,/ ctime,

the virtual system/ conlocate:
command. path:

command using keywords.
end, etext, edata: last
memory. plock:

files.

regions of a file.

lockf: record

gamma:

newgrp:

error logging and event/
exponential, logarithm,/ exp,
fusr/adm/loginlog:
logarithm, power,/ exp, log,
Nlog10, pow, sqrt: exponential,
errpt: process a report of
rwho: who is

strclean: STREAMS error
strerr: STREAMS error
finterface to STREAMS error
Nog of failed

networks. netrc:

getlogin: get

logname: get

cuserid: get character
logname: retum

passwd: change

rlogin: remote

rlogind: remote

up a C shell environment at
setting up an environment at

user.
a64l, 164a: convert between

sputl, sgetl: access
between 3-byte integers and

list of terminal typesby ttytype(4)
list: produce Csource listing « . « list(1)
List. VATargs: o « « o o ¢ ¢ ¢ o o e e 0 e 0 o0 .. varargs(5)
list. fprint formatted vprnf(3S)
listen foraconnectrequest. t_listen(3n)
listen forconnections ona . . « + « « « & 4 . - - o+ . listen(2)
listener. fgetclient’s nlsgetcall(3n)
listener service/ 4 4 v e e e e v e e nlsadmin(1M)
listener servicerequest/ nlsrequest(3n)
listing froma commonobject list(1)
listi(s) and execute command. xargs(l)
lists fromproto file; seto L. qlist(1)
literal copy of file system. volcopy(1M)
In,mv: copy, link,ormove oo . cp(l)
lo: sofiware loopback network oL lo(7)
load EEPROM. 1deeprom(1M)
load socket configuration. ¢ 0000 slink(1)
load symbolsinkemel mkdbsym(1M)
loadable device drivers. drivers(7)
loadable drivers.o 0oL 1ddrv(1M)
localtime, gmtime, asctime, . . « . « « « « ¢ . . . ctime(3C)
locate aterminal touseas - conlocate(1M)
locate executable filefor 0oL path(1)
locate: identify a CTX system locate(1)
locations in program. e e s e 4 .o s end(3C)
lock process, text,ordatain L. plock(2)
lockf: record lockingon lockf(3C)
locking: exclusive accessto locking(2)
lockingonfiles. 1ockf(3C)
log gamma function. gamma(3M)
logintoanew group. . « « .+« . o . 0 0 o0 . newgrp(1M)
log: interfface to STREAMS log(7)
log,logl0, pow,sqrt: 0. exp(3M)
log of failed login attempts. loginlog(4)
1og10, pow, sqrt: exponential, exp(3IM)
logarithm, power, squareroot/ exp(3M)
logged ermors. « « v v v v v h e e e e e e e e e errpt(1M)
loggedinonlocalnetwork. rwho(1)
loggercleanup program. strclean(1M)
loggerdaemon.o o0 0. strerr(1M)
logging and event tracing. log(7)
login attempts.0 e e . loginlog(4)
login file forremoteo .. netrc(4)
loginname. v e e e e a0 e getlogin(3C)
loginname. . . . « ¢ ¢ v 4004 e e e logname(1)
login name of theuser. cuserid(3S)
login nameofuser. logname(3X)
loginpassword.« . . ¢ . .0 ..., passwd(1)
IogiN. .+ v v v v e e e e e e e e e e e e e e rogin(1)
loginserver.00 . rlogind(1M)
login:signon. v v v 0 o o0 e e e e e login(1)
login time. cprofile: setting cprofile(4)
login time. profile: profile(4)
logname: get loginname. logname(l)
logname: retum login nameof logname(3X)
long integer and base-64 ASCII/ a641(3C)
long integer dataina/ sputl(3X)
long integers. fltol3: convert L. L, 13t0l(3C)

- xlvi -

output device. fold: fold
setymp,

finger: user information
lo: software

for an object library.
mklost+found: make a
nice: run a command at
send/cancel requests to an
interface.

disable: enable/disable
reject: allow or prevent
Nipshut, lpmove: start/stop the
Ipadmin: configure the
Ipstat: print

spooling system.
scheduler/ Ipsched, Ipshut,

start/stop the LP scheduler/
printer options.

LP scheduler and/ lpsched,
information.

irand48,/ drand48, erand48.
directory.

and update.

pointer.

integers and long/ 130l

mega, unixpc,.

values:

faccess long integer data in a
permuted index. mptx: the
documents. mm: the MM
view graphs and/ mv: a troff
m4:

pages. man:

me:

formatted with the MM

ms: text formatting

[rebuild the data base for the
users or read mail.
sendmail:

processing system.

malloc, free, realloc, calloc:
fmallopt, mallinfo: fast
regenerate groups of/ make:
iv: initialize and

ar: archive and library
SCCS file. delta:

mkdir:

or ordinary file. mknod:

for fsck. mklost+found:

mktemp:

file. mkifile:

Facility database. helpadm:
mkdir, mkdirs:

system. volcopy:
regenerate groups of/
mkhosts:

jong lines forfinite width fold(1)
longjmp: non-local goto. setymp(3C)
lookup program. oL finger(1)
loopback network interface. 1o(7)
lorder: find ordering relation lorder(1)
lost+found directory forfsck. mklostfnd(1M)
lowprionity, ¢ ¢ 0 0 e v i v e e e e e e nice(1)
LPline printer. Ip,cancel: Ip(1)
Ip:parallelprinter00 . 1p(7)
LPprinters. enable, enable(1)
LP requests. accept, . . . - 0 ... accept(1M)
LPschedulerandmove/ Ipsched(1M)
LPspooling system. « .« .. . Ipadmin(1M)
LPswawsinformation. Ipstat(1)
lpadmin: configurethe LP Ipadmin(1M)
lpmove: start/stopthe LP L L0 L psched(1M)
lpr: line printer spooler. L. L., Ipr(1)
Ipsched, lpshut, lpmove: ipsched(1M)
Ipset: setparallel line Ipset(1M)
Ipshut, lpmove: start/stopthe Ipsched(1M)
Ipstat: print LPstams Ipstar(1)
Irand48 nranddf mrandd® L L L L L L L drand48{3C)
Is:listcontentsof ¢ . . .0 ... 1s(1)
Isearch, Ifind: linearsearch I1search(3C)
Iseek: move read/writefile 1seek(2)
Itol3: convert between3-byte 13t0l(3C)
M4 MACTOPIOCESSOT. « &+ v = « ¢ o « + o o & v o & o & m4(1)
machid: mc68k, miti, mini, machid(1)
machine-dependent values. values(5)
machine-independent fashion. sputl(3X)
macro package for formattinga L. mptx(5)
macro package for formatting mm(5)
macro package fortypesetting mv(5)
MACTOPIOCESSOT. « + & « o & « o + s o o o & o o & o » m4(1)
macros for formattingmanual L. man(5)
macros for formatting papers. me(5)
macros. /print/check documents L., mm(1)
TNACTOS. « « o & = o & o o o o & + 4 o o o o o o o o u ms(5)
mail aliasesfile. newaliases(1)
mail, mail: sendmailto mail(1)
mail routing program. sendmail(1M)
mailx: interactive message mailx(1)
main memory allocator. L. L L L. malloc(3C)
main memory allocator. malloc(3X)
maintain, update,and L L., make(1)
maintain volume. 0 e e e . iv(l)
maintainer forportable/o L ar(1)
make a delta (change)toan delta(1)
makeadirectory. mkdir(2)
make a directory, oraspecial mknod(2)
make alost+found directory mklostfnd(1M)
make aunique filepame. L L mktemp(3C)
make an ifile fromanobject mkifile(1M)
make changestotheHelp helpadm(1M)
make directories. e e e e mkdir(1)
make literal copyoffile volcopy(1M)
make: maintain, update,snd L. ... make(1)
make node name commands. mkhosts(1M)

- xlvii -

banner: makeposters. 04 e e 0. banner(1)

session. script: make typescript of terminal L . L . oL script(1)

key. makekey: generate encryption makekey(1)

Jrealioc, calloc, mallopt, mallinfo: fast mainmemory/ malloc(3X)
main memory allocator. malloc, free, realloc, calloc: malloc(3C)
mallopt, mallinfo: fast main/ malloc, free, realloc, calloc, malloc(3X)
malloc, free, realloc, calloc, mallopt, mallinfo: fastmain/ malioc(3X)
manual pages. man: macros for formatting man(5)

ftfind, tdelete, twalk: manage binary searchtrees. tsearch(3C)
hsearch, hcreate, hdestroy: manage hash searchtables. hsearch(3C)
Iddrv: manage loadable drivers. 1ddrv(1M)

unnotify, evwait, evnowait: manage notifications. notify, notify(2)
endpoint. t_opimgmt: manage options foratransport t_optmgmt(3n)
passmgmt: password files management. o000 . . passmgmt(1M)
window: window management primitives. window(7)

sigignore, sigpause: signal management. /sigrelse, sigset(2)
wm: window management. ¢ 0 0 v e e e e s e e s wm(l)

shl: shell layer manager. 0000000 w0 shl(1)

records. fwtmp, wtmpfix: manipulate connect accounting fwtmp(1M)

off 1dlread, 1dlinit, 1dlitem: manipulate line numberentries 1dlread(3X)
frexp, ldexp, modf: manipulate partsof/ o000 oL frexp(3C)

comment section. mes: manipulate theobject file oL .o . mes(l)
route: manually manipulate the routing tables. route(1M)

(VHB). libdev: manipulate Volume Home Blocks libdev(3X)

finet_netof: Internet address manipulation routines. o 0oL inet(3)
man: macros for formatting manual pages. e .. man(5)
routing tables. route: manually manipulate the route(1M)
terminal input and/ rsterm: manually statandstop L oL L. L rsterm(1M)
ascii: map of ASClIcharacterset. ascii(5)

port to RPC program number mapper. portmap: DARPA portmap(1M)
File Sharing user and group mapping. idload: Remote idload(1M)
scsimap: set mappings for SCSIdevices. scsimap(1M)

files. diffimk: mark differencesbetween L. diffmk(1)

umask: set file-creation mode mask. L0 e e e . umask(1)
set and get file creation mask. umask:00 00000 e e L umask(2)

table. master: master device information master(4)

masterupd: update the masterfile.00 0. masterupd(1M)

File Sharing name server master file. rfmaster:Remote rfmaster(4)
information table. master: masterdevice0 -0 . . master(4)

file. masterupd: update the master masterupd(1M)

regular expression compile and match routines. regexp: regexp(5)
math: math functions and constants. math(5)

constants. math: math functionsand math(5)

eqn, neqn, checkeq: format mathematical text fornroffor/ eqn(1)
function. matherr: error-handling matherr(3M)

maze: generate 8 MABZE. . o + o « « + o o o o o o o 4 0 4 e e e e e . maze(6)

unixpc,. machid: mc68k, miti, mini, mega, machid(1)

file comment section. mcs: manipulate theobject mces(1)
machid: mc68k, miti, mini, mMega,unixpc,. . . .+« + . . v e 0 e e e e e e . machid(1)
interface. mem, kmem: systemmemory mem(7)

memcpy, memset:/ memory: memccpy, memchr, mememp, L memory(3C)
memset:/ memory: memccpy, memchr, mememp, memepy, o memory(3C)
memory: memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)
/memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)
free, realloc, calloc: main memory allocator. malloc, malloc(3C)
mallopt, mallinfo: fast main memory allocator. fealloc, malloc(3X)
shmctl: shared memory control operations. shmctl(2)

queue, semaphore set or shared memory ID. /remove amessage ipcrm(1)

- xlviii -

mem, kmem: system
memcmp, memcpy, memset:/
memamp, memcpy, memset:
shmop: shared

lock process, text, or data in
shmget: get shared

fmemchr, memcmp, memcpy,
astgen: generate/modify ASSIST
sort: sort and/or

files. acctmerg:

files or subsequent/ paste:

msgctl:

recv, recvirom: receive a
send listener service request
getmsg: get next

putmsg: send a

msgop:

mailx: interactive

icmp: Internet Control
msgget: get

or shared/ ipcrm: remove a
t_error: produce error

send, sendto: send a

mesg: permit or deny
Sys_nerr: system error
strace: print STREAMS trace
machid: mc68k, miti,
driver. clone: open any
machid: mc68k,

kemel debugger.

directories.

/and verify software using the
commands.

object file.

lost+found directory for/

special or ordinary file.
library.

name.

relocate a PT or GT local/
documents formatted with the/
formatting documents. mm: the
documents formatted with the
formatting documents.

view graphs, and slides.

table.

chmod: change

umask: set file-creation
chmod: change

getty: set terminal type,
uugetty: set terminal type,

bs: a compiler/interpreter for
floating-point/ frexp, 1dexp,
touch: update access and
utime: set file access and

memory interface. L L. 00 oo . mem(7)
memory: memccpy, memchr, L L L. memory(3C)
memory operations. fmemchr, memory(3C)
Memory Operalions. .+ « « + o+ ¢ + 4 4 o 4 o4 e . shmop(2)
memory. plock: oo o000 0L plock(2)
memory segment identifier. shmget(2)
memsel: memory operations. memory(3C)
menusand command forms. L. astgen(1)
mergefiles.00 000 sort(1)
merge or add total accounting acctmerg(1M)
merge same lines of several paste(l)
mesg: permit or deny messages. mesg(l)
message control Operations. 4 .o« 0 o4 . . msgctl(2)
message fromasocket. recv(2)
message. fformatand L L nlsrequest(3n)
message offastream. L0 L0, getmsg(2)
MesSage on astream. . . . + « « « « o o o . o0 . . putmsg(2)
message Operations. .« « « « .« = .+ v 44 e 0 4 e . msgop(2)
message processing system. o4 mailx(1)
Message Protocol.00 0. icmp(7)
MESSBEE QUELE. .« & « o o « o + = o o o o o 0 o 4 . msgget(2)
message queue, semaphoreset ipcrm(1)
MESSAZE. « « o v v s o o v o et e e e e e e t_error(3n)
messagetoasocket. send(2)
TMESSAGES. + o o o « o s ¢ o b oo n . e e e e e e mesg(1)
messages. fermo, sys_emhist, perror(3C)
MESSAEES. &+ = « = o o o o ¢ ¢ 4 o 4 e 4 e e 0o strace(1M)
mini, MEGa, UNIXPC,. « « « v « + = o o o ¢ o 4 4 o . machid(1)
minordevicconaSTREAMS clone(7)
miti, mini, mega, UNiXpc,. 0 e e machid(1)
mkdbsym: load symbolsin mkdbsym(1M)
mkdir: make adirectory. mkdir(2)
mkdir, mkdirs:make0 0. ..., mkdir(1)
mkfs: construct a file system. mkfs(1M)
mkfs(1) proto file database. qinstali(1)
mkhosts: makenodename mkhosts(1M)
mkifile: make an ifile froman mkifile(1M)
mklost+found: makea mklostfnd(1M)
mknod: build special file. mknod(1M)
mknod: make a directory,ora mknod(2)
mkshlib: create ashared mkshlib(1)
mktemp: make aunique file mktemp(3C)
mktpy, mvtpy: installor L. L, mktpy(1)
mm, checkmm: print/check L. mm(1)
MM macropackagefor o0 .. mm(5)
MM macros. fprint/check oL 0. mm(1)
mm: the MM macro package for mm(5)
mmt, mvt: typeset documents, 0 .. 0w mmt(1)
mnftab: mounted filesystem mnttab(4)
mode. v e e e e e e e e e e e chmod(1)
modemask. . . . v v . 4 4t s e e e e e e e e e umask(1)
modeoffile., chmod(2)
modes, speed,andline/ L L. L geny(1IM)
modes, speed,and line/ uugetty(1M)
modest-sized programs. bs(1)
modf: manipulate partsof frexp(3C)
modification times ofafile. touch(l)
modificationtimes. 0000, utime(2)

- xlix -

Interface cooperating STREAMS
read/write interface STREAMS
/ckpacct, dodisk, lastlogin,
profile.

mount:

and remote/ mount, umount:
mmnttry: attempt to

mountd: NFS

setmnt: establish

systems. mountall, umountall:
System/ nmountall, numountall:
rmountall, rumountall:
unmount multiple file/

server.

mnttab:

rmtab: remotely

mntstat: display

rmount: queue remote resource
showmount: show all remote
mvdir:

cp, In, mv: copy, link, or
Iseek:

the LP scheduler and
formatting a permuted index.
ferand48, lrand48, nrand48,

operations.

Jjumountall: mount, unmount
poll: STREAMS input/output
select: synchronous 1/O

sxt: STREAMS

run commands performed for
typesetting view graphs and/
cp, In,

graphs, and slides. mmt,
PT or GT local/ mktpy,
server.

test for floating point
processing language.
systems processed by fsck and
from i-numbers.
mathematical text for/ eqn,
definitions for eqn and
File.

networks.

host. getservaddr: get

values between host and
netcf:

setnetent, endnetent: get
/numountall: mount, unmount
statistics. nfsstat:

Jsethostent, endhostent: get

module. timod: Transport timod(7)

module. /Transport Intefface tirdwr(7)
monacct, nulladm, pretmp,/ L accish(IM)
monitor: prepare execution monitor(3C)
MOO: GUESSING GAME. .« .+ &+ « « o o o + o & « o « « o moo(6)
more, page: textperusal. more(l)
mount a filesystem. L. mount(2)
mount and unmount file systems mount(IM)
mount remote resources.« . . . o+ mmnttry(1M)
mount TEQUESEt SEIVET. .« o+ &« « « ¢ = + o « o o mountd(1M)
mount table. setmnt(1M)
mount, unmount multiple file mountall(1M)
mount, unmount Network File nmountall(1M)
mount, unmount Remote File/ rmountall(1M)
mountall, umountall: mount, mountall{1M)
mountd: NFSmountrequest mountd(1M)
mounted file systemtable. mnttab(4)
mounted file systemtable. rmmtab(4)
mounted resource information. mmntstat(1M)
MOUMIS. o + & o o & o & o o o o o o o o o o o« o mmount(1M)
MOUNLS. & & « v o « & o o o o o o o o+ o . showmount(1M)
moveadirectory. - - = - . . . mvdi(IM)
movefiles. cp(l)
move read/write file pointer. e e e e e 1seek(2)
move requests. /SIAM/SIOP o . 4 s 0 . . . Ipsched(1M)
mptx: the macro package for mptx(5)
mrand48, jrand48,srand48,/ L. drand48(3C)
ms: text formatting macros. 0 0 ms(5)
msgetl: messagecontrol oL L, msgctl(2)
msgget: get meSSage quUEte. o . o« 4 . . . msgget(2)
MSEOP: MESSage OPErations. . « « « « o o = o = « .+ msgop(2)
multiple filesystems. mountall(1M)
multiplexing. 0.0 oo poll(2)
multiplexing. 0 0. .o . . select(2)
multiplexor.00 e e 0. sxt(7)
multi-user environment. frc3: e2(IM)
mv: atroff macropackagefor oL o mv(5)
mv: copy, link, ormove files. 0oL cp(l)
mvdir: move adirectory. mvdir(IM)
mvt: typeset documents, view o mmt(1)
mvipy: install orrelocatea mkipy(l)
named: Intemet domainname+ . named(1M)
NaN (Not-A-Number). fisnanf: isnan(3C)
nawk: pattem scanning and« . . nawk(l)
ncheck. flistoffile checklist(4)
ncheck: generate pathnames ncheck(1M)
neqn, checkeq: format0 L., eqn(1)
negn. fspecial character eqnchar(5)
netcf: Network Configuration« . . newcf(4)
netrc: login file forremote L oL netrc(4)
netstat: show network status. netstat(1)
network address of service getservad(1M)
network byte order. fconvert byteorder(3)
Network Configuration File. netcf(4)
network entry. /getnetbyname, getnetent(3)
Network File System resources. nmountall(IM)
Network File System nfsstat(1M)
network hostentry. gethostbyname(3)

ICMP ECHO_REQUEST packets to
hosts: list of hosts on
lo: software loopback

ifconfig: configure

and detach serial lines as
administration. nlsadmin:
Remote File Sharing domain and
routed:

status of nodes on local
who is logged in on local
netstat: show

commands. stat: statistical
vucpd, ouucpd:

for the internet.

netrc: login file for remote
base for the mail aliases/
atext file.

news: print

/store, delete, firstkey,
nfsd, biod:

configuration file. exports:
mountd:

nfssys: common shared

statistics.

system calls.

process.

of running process by changing
priority.

list.

service administration.

passed through the listener.
transport provider.

listener service request/

object file.

unmount Network File System/
mkhosts: make

createdev: create device
ruptime: display status of
hangups and quits.

setjmp, longjmp:

test for floating poim NaN
rfuadmin: Remote File Sharing
evwait, evnowait: manage
evnowait: manage/

drand48, erand48, lrand48,

format mathematical text for
tbl: format tables for
constructs. deroff: remove
name server query.

between host/ htonl, htons,
host and/ htonl, htons, ntohl,
null: the

/dodisk, lastlogin, monacct,
nl: line

network hosts. ping:send L ... L ping(1M)
NEAWOrk. . . . v e e e e e e e e e e e e e e e e hosts(4)
network interface. L. 00 0 e a0 e 1(7)
network interface parameters. ifconfig(1M)
petwork interfaces. /amach slattach(1M)
network listener service nlsadmin(1M)
network names. dname: print dname(1M)
network routing daemon. routed(1M)
network, ruptime: display ruptime(1)
network. rwho: Lo oo oL rwho(1)
network Status. o 4 4 e e e e e e netstat(1)
network useful with graphical stat(1G)
NEIWOrK UUCP SETVETS. . . &+ « « « o o o o &+ o o« « » uucpd(1M)
networks: names andnumbers networks(4)
NEIWOTKS. « & ¢ ¢ ¢ 4 4 « 4« x et a e e e s netrc(4)
newaliases: rebuild thedata newaliases(1)
newform: change the fomatof newform(1)
newgmp:logintoanewgroup. newgrp(1M)
NEWSIEMS. . & & v v v ¢ v o o o s ¢ o o o 0 o w0 s news(1)
nextkey: database subroutines. dbm(3X)
NFSdaemons. v ¢« v v @ o 0 v 0o v s o0 nfsd(1M)
NESfile systemsexport « . o« . . - - exports(4)
NFSmount request SEIVer. . . . « « « « + o « « & mountd(1M)
NFSsystemecalls. ¢« o v v v o v o o nfssys(2)
nfsd, biod: NFSdaemons. nfsd(1M)
nfsstat: Network File System nisstat(1M)
nfssys: common shared NFS nfssys(2)
nice: change priorityofa nice(2)
nice. renice: alterpriofity renice(1)
nice: mnacommandatlow nice(1)
nl: line numbering filter.00 0. nl(1)
nlist: get entries fromname nlist(3C)
nlsadmin: network listener nlsadmin(1M)
nlsgetcall: get client’sdata nisgetcall(3n)
nisprovider: getnameof nlsprovider(3n)
nlsrequest: foomatandsend nlsrequest(3n)
nm: print name list of common nm(1)
nmountall, numountall: mount, nmountall(1M)
nodenamecommands. mkhosts(1M)
nodes forassorted device/ createdev(1 M)
nodesonlocal network. ruptime(1)
nohup: run a command immuneto nohup(1)
nonlocal goto. setjmp(3C)
(Not-A-Number). fisnanf: 1snan(3C)
notification shell seript. rfuadmin(1M)
notifications. funnotify, notify(2)
notify, unnotify, evwait, notify(2)
nrand48, mrand48, jrand48/ drand48(3C)
nroff: fomattext.00 0., nroff(1)
nroffortroff. /checkeq: eqn(l)
noffortroff.o e e tbi(1)
nroffiroff,tbl,andegn deroff(1)
nsquery: Remote File Sharing nsquery(1M)
ntohl, ntohs: convertvalues byteorder(3)
ntohs: convert values between byteorder(3)
nalifile. 00 s e e e null(7)
nulladm, pretmp, prdaily,/ L L. acctsh(1M)
numbering filter. L Lo 0000 oo nl(1)

-

number: convent Arabic
graphics: access graphical and
Network File/ nmountall,

dis:

ldfen: commeon

mcs: manipulate the

conv: common

CPrs: cOmpress a common

dump selected parts of an
ldopen, ldaopen: open a common
number entries of a common
ldaclose: close a common

the file header of a common

of a section of a common

file header of a common

of a section of a common
section header of a common
section of a common

symbol table entry of a common
symbol table entry of a common
the symbol table of a common
number entries in a common

C source listing from a common
mkifile: make an ifile from an
nm: print name list of common
information for a common
section header for a common
information from a common
entry. /symbol name for common
format. syms: common

file header for common
directories. cpset: install

1d: link editor for common

sizes in bytes of common

find ordering relation for an
number. factor:

od:

functions.

query Remote 1/O Processor for
reading. ldopen, 1daopen:

fopen, freopen, fdopen:
STREAMS driver. clone:

dup: duplicate an

dup?2: duplicate an

open:

seekdir,/ directory:

starter: information about the
prf:

fprfdc, prfsnap, prfpr:

commands performed to stop the
uconf: configure the

bzero: bit and byte string
rewinddir, closedir: directory
memecmp, memcpy, memset: memory
msgctl: message control

msgop: message

tputs: terminal independent

numerals to English.o number(6)
numerical commands. graphics(1G)
numountall: mount, unmount nmountall(1M)
object code disassembler. oL L dis(1)
object file access routines. 1dfen(4)
object file comment section. mes(1)
object fileconverter. o o . e conv(l)
objectfile. o oo cprs(1)
object file. dump:o 0o dump(1)
object file forreading. oL ldopen(3X)
object file function. line ldlread(3X)
object file. ldclose, ldclose(3X)
object file. ldfhread: read ldfhread(3X)
object file. /numberentries 1diseek(3X)
object file. fotheoptional 1dohseek(3X)
object file. fentries ldrseek(3X)
object file. findexed/named 1dshread(3X)
object file. findexed/named 1dsseek(3X)
object file. Ahe indexofa 1dtbindex(3X)
object file. fread anindexed 1dtbread (3X)
object file. /seekto 1dtbseek(3X)
ohiect file. linenum: line linenum(4)
object file. list: produceo list(1)
objectfile.00 mkifile(1M)
objectfile. oo o e e e e nm(l)
object file. /relocation, reloc(4)
object file. secnhdr: o000 L. scnhdr(4)
object file. /and linepumber L L., strip(1)
object file symboltable ldgetname(3X)
object file symboltable syms(4)
object files. filehdr:00 oL filehdr(4)
object filesinbinary cpset(1M)
objectfiles. 000 1d(1)
object files. fprint section oL L., size(l)
object library. lorder:o 0000 . lorder(1)
obtain the prime factorsofa factor(1)
octaldump. Lo e e od(1)
ocurse: optimized screen ocurse(3X)
od:octaldump. od(1)
online data. riopqry: riopgry(1M)
open a common object filefor ldopen(3X)
OPEN ASTEAM. .+ « &+ « = « « + « o o s « o« 4 o« o & fopen(3S)
openany minordevice ona« . o4 04 o4 . 4. clone(7)
openfiledescriptor. dup(2)
openfiledescriptor., dup2(3C)
open forreading orwriting. open(2)
opendir, readdir, telldir, directory(3X)
operating system forbeginning/ starter(1)
operating system profiler. oL L ..., pri(7)
operating system profiler. profiler(1M)
operating system. rcQ:mun L. L 0L . L. rcO(1M)
operaling Syslem. . . « « « « ¢ « v+ 4 o 0 uconf(1M)
operations. bcopy,bcmp,o L., bstring(3)
operations. ftelldir, seekdir, directory(3X)
operations. fmemccpy, memchr, memory(3C)
OPEralions. « « v v » & v ¢ 4 e v e e e e e e e e msgctl(2)
OpErations. . . . v « « ¢+ v 4 4 44w e e e . msgop(2)
operations. ftgetstr, tgoto, otermcap(3X)

- lii -

sematl: semaphore control
semop: semaphore

shmctl: shared memory control
shmop: shared memory
strespn, surtok: string

join: relational database
dcopy: copy file systems for
terminal screen handling and
ocurse:

vector. getopt: get

common/ ldohseek: seek to the
fenul: file control

stty: set the

endpoint. t_optmgmt: manage
getopt: parse command
getopicvt: parse command

set parallel line printer
/setsockopt: get and set

object library. lorder: find
/acknowledge receipt of an
t_sndrel: initiate an

a directory, or a special or
keywords. locate: identify a
assist: assistance using

help:

uname: print name of current
dial: establish an

assembler and link editor
long lines for finite width
fvsprintf: print formatted
sprintf: print formatted

and stop terminal input and
sysdef:

uucpd,

/acatdusg, accton, acawtmp:
chown: change

chown, chgrp: change

and expand files.

handling and optimization
permuted/ mptx: the macro
documents. mm: the MM macro
graphs and/ mv: a troff macro
sadc: system activity report
standard buffered input/output
interprocess communication

ping: send ICMP ECHO_REQUEST

more,
macros for formatting manual
4014 temminal. 4014:

me: macros for formatting
Ipset: set

tapeset: set drive

configure network interface
process, process group, and
getopt:

getopts, getoptcvt:
nisgetcall: get client’s data

OPErations. .« + « = o = ¢+ . 4 e e e e e e e e semctl(2)
OPErations. v . . 4 4 e e e e e e e e semop(2)
OPErations. . « « « v + 4+« 4 4 4w e e e e e shmctl(2)
OPErations. « « « & ¢ + 4 s 4 4 4 e e e e e e e shmop(2)
operations. fstrpbrk, Strspn,4 string(3C)
OPEIAOT. + v o & « o &+ & o+ s s e s s e e e e e join(1)
optimal accesstime.o .. dcopy(1M)
optimization package. curses: curses(3X)
optimized screen functions. ocurse(3X)
option letter from argument getopt(3C)
optional file headerofa ldohseek(3X)
OPHONS. v v 4 v v 4 v et e e e e e e e e e e e, fentl(5)
options foraterminal., sity(1)
options foratransport t_optmgmt(3n)
OPHOMS. « v & v ¢ v v 4 v 0 o s o o v e e e e getopt(1)
oOplions. GEOPLS, .+ .« . 4 . 4 e . e e 4 e e e getopts(1)
options. Ipset:« ¢ . 004 oo o0 e Ipser(1M)
optionsonsockets. getsockopt(2)
ordering relation foran L oL L. lorder(1)
orderly release indication. t_rcvrel(3n)
orderlyrelease. 44 0 . e e e . t_sndrel(3n)
ordinary file. mknod: make mknod(2)
CTIX system commandusing locate(1)
CTIX systemcommands, o « « « « « o o o o & assist(1)
CTIX system Help Facility. help(1)
CTXsystem. v o v v v v v v v v v . uname(1)
out-going terminal line/ dial(3C)
oulput. 2.0uUt: COMMON . . « = « « « & & « = & o « + .+ a.out(4)
output device. fold:fold L. fold(l)
output of a varargs argument/ vprintf(3S)
output. printf, fprintef, L. ... prinif(3S)
output. /manually start L. L. rsterm(1M)
output system definition. sysdef(1M)
ouucpd: network uucp servers. uucpd(1M)
overview of accounting and/ acct(1M)
ownerand groupofafile. chown(2)
OWNETOFBIOUP. + + ¢ « « o « o o o o o o o + o o« » chown(1)
pack, pcat, unpack: compress, pack(1)
package. fterminal screen L curses(3X)
package forformattinga mpix(5)
package forformawting mm5)
package fortypesetting view mv(5)
package. sarisal,sa2, L., sar(1M)
package. stdio: L. oL oL stdio(3S)
package. fftok: standard L. L L L, stdipc(3C)
packetstonetwork hosts. L. ping(1M)
page:textperusal.0 oL L., more(1)
PAGES. MAM .+ + « v+ v s e e e e e e e e e man(5)
paginator forthe Tektronix 4014(1)
PAPETS. « ¢ v ¢ v et e e e e e e e e e e e e e e e me(5)
parallel line printeroptions. Ipset(1M)
parallel printerinterface., 1p(7)
parameters fortape/ tapeset(1M)
parameters. ifconfig: ifconfig(1M)
parentprocessIDs. fget, getpid(2)
parse command Options. getopt(1)
parse commandoptions. 0 . 0. . . getopts(1)
passed through the listener. nlsgetcall(3n)

- liii -

management.

functions. crypt:
fendpwent, fgetpwent: get
putpwent: write

putspent: write shadow
passwd:

shadow:

passmgmt:

getpass: read a

passwd: change login
Remote File Sharing host
pwek, grpek:

several files or subsequent/
for command.

dimame: deliver portions of
ncheck: generate

directory. getcwd: get
grep: search a file fora
processing language. awk:
processing langnage. nawk:
egrep: search a file fora
signal.

expand files. pack,

a process. popen,

get name of connected

rc2, rc3: run commands
operating/ rc0: run commands
check the uucp directories and
mesg:

macro package for formatting a
ptx:

format. acat:

acctcms: command summary from
sys_nerr: system error/

pg: file

more, page: text

CRTs.

split: split a file into
packets to network hosts.
channel.

tee:

popen, pclose: initiate

fish:

data in memory.

subroutines.

ftell: reposition a file

Iseek: move read/write file
multiplexing.

to/from a process.

kemel debugger system console
serstat: display serial
getrpeport: get RPC
mapper. portmap: DARPA
and library maintainer for
basename, dimame: deliver

passmgmt: password fileso L passmgmt(1M)

passwd: change login password. passwd(1)
passwd: password file.o . oL passwd(4)
password and file encryption crypt(3X)

password fileentry.o L. getpwent(3C)
password fileentry.o .. putpwent(3C)

password fileentry. putspent(3X)
passwordfile. passwd(4)
password file. oo shadow(4)
password files management. passmgmt(1M)
password. e e o e e e e e e e e getpass(3C)

password. o oo e e e e . passwd(1)

password. rfpasswd: change rfpasswd(1M)
password/group file checkers. pwck(1M)
paste: merge same linesof paste(1)
path: locate executable file path(1)
path names. basename, basename(1)
path names fromi-numbers. ncheck(1M)
path-name of current working getewd(3C)
PALEML « v v v v o e e e e e e e e e e e e e grep(1)
pattemn scanning and 0 o . 0 e e e e w e e awk(1)
pattern scanning and nawk(l)
pattem using full regular/ L. L egrep(l)
pause: suspend processuntil L L. pause(2)
pcat, unpack: compressand0 0. . pack(l)
pclose: initiate pipetoffrom oo L popen(3S)
Peer. gEelpeemame: . . . « . 4 4 . . o+ . e s e getpeername(2)
performed for multi-user/ L rc2(1M)
pefformedtostopthe rc0(1M)
permissions file. uucheck: L. uucheck(1M)
permit ordeny messages. 4 0 e 0 o4 e s mesg(1)
permuted index. mptx:the mptx(5)
pemutedindex. 0000 e e e . ptx(1)
per-process accounting file L0 acct(4)
per-process accounting/ acctemns(1M)
perror,ermo, sys_errlist, perror(3C)
perusal filter for CRTs. pe(l)
perusal. Lo more(1)
pg: file perusal filterfor 0L oL pe(l)
PIECES. + v v v v e e e e e e e e e e e e e e split(1)
ping: send ICMP ECHO_REQUEST ping(IM)
pipe: create an interprocess . « « « .+« s 4 pipe(2)
pipefitting.00 o e tee(1)
pipe toffromaprocess. 0oL popen(3S)
play “GoFish™. o0 fish(6)
plock: lock process, text,or plock(2)
plot: graphics interface. plot(4)
plot: graphics interface plot(3X)
pointer in a stream. frewind, fseek(3S)
POINtEr. v e e e e e e e e e e e Iseek(2)
poll: STREAMSinputfoutput poll(2)
popen, pclose: initiate pipe popen(3S)
port. dbconsole: changethe dbconsole(1M)
porterrorstatistics. serstat(1M)
potnumber.o 0oL getrpcport(3)
port to RPCprogramnumber portmap(1M)
portable archives. farchive ar(1)
portions of pathnames. basename(1)

- liv -

program number mapper.
banner: make

logarithm,/ exp, log, log10,
/sqrt: exponential, logarithm,
bre, beheckre, drvioad,

Aastlogin, monacct, nulladm,
/monacct, nulladm, prctmp,
forroff. cw, checkcw:
monitor:

cpp: the Clanguage
includes: determine C language
accept, reject: allow or
unget: undo a

profiler.

profiler: prfld, prfstat,
prfsnap, prfpr:/ profiler:
fprfstat, prfdc, prfsnap,
system/ fprfid, prfstat, pridc,
pripr:/ profiler: prfld,

factor: obtain the

graphical/ gps: graphical
types:

window: window management
interesting, adage. fortune:
prs:

date:

cal:

of a file. sum:

editing activity. sact:

cat: concatenate and

pr:

vprintf, vfprintf, vsprintf:
printf, fprintf, sprintf:

host system. hostid: set or
Ipstat:

object file. nm:

system. uname:

news:

proto file; set links/ glist:
infocmp: compare or

fiie(s). acctcom: search and
domain and network/ dname:
of common object files. size:
strace:

of the/ hostname: set or
associated with an. bcheck:
names. id:

formatted with/ mm, checkmm:
Ip: parallel

requests to an LP line

or relocate a PT or GT local
Ipset: set parallel line

Ipr: line

disable: enable/disable LP
print formatted output.
ripenable: real-time

nice: run a command at low

ponmap: DARPApontoRPC porumap(1M)
POSIETS. . o o ¢ v o v et e e e e e e e e e banner(1)
pow, sqrt: exponential, exp(3M)
power, square root functions. exp(3M)
powerfail: system/, brc(1M)
prprntfiles. oo oL pr(1)
prctmp, prdaily, prtacet,/ L oL oL L, acctsh(1M)
prdaily, pnacat, ranacet,/ L. acctsh(1IM)
prepare constant-width text cw(l)
prepare execution profile. monitor(3C)
PrePrOCESSOT. &+ « v = o o o o o o o o o o o o o 4 s s cpp(1)
preprocessor include files. L. includes(1)
prevent LPrequests. accept(1M)
previous getof an SCCSfile. unget(1)
prf:operating system prf(7)
prfdc, prfsnap, prfprs/ L. L. profiler(1M)
prild, prfstat, prfde, Lo Lo L. profiler(1M)
prfpr: operating system/ profiler(1M)
prfsnap, prfpr:operating profiler(1M)
prfstat, pride, prfsnap, profiler(1M)
prime factorsofanumber. factor(1)
primitive string, formatof L 0L gps(4)
primitive system datatypes. 4 . . 4 . . . types(5)
PHMIUVES. « o v v ¢ v v e v e e e e e s window(7)
print arandom, hopefully, fortune(6)
printanSCCSfile. prs(l)
print andsetthedate. date(1)
printcalendar. L0000 oL cal(1)
print checksum and block count sum(1)
print current SCCSfile sact(1)
prntfiles. 0. 00 00w o e e cat(1)
printfiles.o s e pr(l)
print formatted outputofa/ vprinf(3S)
print formattedoutput. oL .0 .. prinif(3S)
print identifierof current L. L. L. hostid(1)
print LP staws information. 0L 1pstat(1)
print name listofcommon, nm(1)
print nameof curremt CTIX uname(1)
print newsitems.0 . v e e e 0. .. news(1)
print out filelistsfrom qlist(1)
print out terminfo/ L .. . L ... L. infocmp(1M)
printprocess acoounting < acctcom(1)
print Remote File Sharing dname(1M)
print section sizesinbytes size(1)
print STREAMS trace messages. strace(1M)
print the Intemet hostname hostname(1)
print the listofblocks beheck(1M)
prantuserand groupIDsand id(1M)
print/check documents mm(l)
printer interface. 0., 1p(7)
printer. /cancel: send/cancel Ip(1)
printer. /mvtpy:install, mktpy(1)
Printer oplions.« . . 4 e e e e 0 0w s lpset(1M)
printerspooler.00 .. 1pr(1)
printers. enable, 00 0000 .. enable(1)
printf, fprintf, sprintf: L. printf(3S)
priorities enabled/disabled. rtpenable(1M)
PHOTILY. . + v v v v vt e o e e e e e e e e e nice(1)

-lv-

nice: change

changing nice. renice: alter
errors. empt:

acct: enable or disable
acatprel, acctpre2:
acctcom: search and print
alarm: seta

times. times: get

/alter priority of running
init, telinit:

timex: time a command; report
exit, _exit: terminate

fork: create a new

/getpgrp, getppid: get process,
setpgrp: set

process group, and parent
inittab: script for the init
kill: terminate a

nice: change priority of a
kill: send a signal to a
initiate pipe to/from a
getpid, getpgrp, getppid: get
Remote File Sharing daemon
ps: report

memory. plock: lock
times: get process and child
wait: wait for child

ptrace:

pause: suspend

wait: await completion of
Nlist of file systems

1o a process or a group of
killall: kill all active
structure. fuser: identify
awk: pattem scanning and
nawk: pattem scanning and
extproc: tum external
mailx: interactive message
rtab: Remote I/O

en: Ethemet

enpstart: configure Ethernet
riopqry: query Remote /O
m4: macro

system for Remote [/O

a common object file. list:
t_error:

function.

profile.

prof: display

monitor: prepare execution
profil: execution time
environment at login time.
prof:

fusage: disk access

prf: operating system
prfdc, prfsnap, prfpr:/
pripr: operating system

priority of aprocess. 0 e e o .0 .. nice(2)
priority of running processby renice(1)
process areportoflogged erp(1M)
process accOUNtINg. « « « o « ¢ 4 e e 4 4 e s e s acct(2)
process accounting. . .« . .« .« o e . o4 o0 e o4 ..o acctpre(1M)
process accounting file(s). acctcom(1)

processalamclock. oo Lo alarm(2)

process and child process times(2)
process by changing nice. renice(1)
process control/ o 0. e e e s init(1M)

processdataand system/o timex(1)
PrOCESS. v ¢« v v v 4 e e e e e e e e e e e e e s exit(2)
PrOCESS. « o ¢ v o o o s e e e e e e e e e e e e e fork(2)
process group,andparent/ getpid(2)
processgroupID. o000 o setpgrp(2)
process IDs. /getprocess, 0. . getpid(2)
PIOCESS. « ¢ o ¢ v v v e 4 e e e e e e e e e e s inittab(4)
PrOCESS. « v v v 4 v 4 e e e e e e e e e e e e e e kill(1)
PrOCESS. « v v v 4 v o e e e e e e e e e e e e e nice(2)
processoragroupof/0 .0 kill(2)

process. popen, pclose: 0000 00 . popen(3S)
process, process group. and/ o oL . getpid(2)

process. rfudaemon: rfudaemon(1M)
Process StatlsS. « o « o 4 4 e e 0 e e e 4 e e s e e ps(1)
process, text,ordatain plock(2)
PrOCESSHMES. .+ & & & « + + « o o o = o o o o o . s times(2)
process to stop orterminate. o 4 4 o4 o0 s e e wait(2)
PrOCESSITACE. « v o« o & o o o o o o s o o & 4 o » o ptrace(2)
processuntil signal. L pause(2)

PrOCESS. '« v v v v v e e 4 e e e e e e e e e e e e wait(1)

processed by fsckandncheck. checklist(4)
processes. /sendasignal oL L. kill(2)
PTOCESSES. « & v o v o o v o o v h e e e e e killall(1M)
processes using afileorfile fuser(1M)
processing language. awk(1)
processing language. 0 .. nawk(1)
processingonoroff. extproc(1M)

processing System. 4 0 v e e e e e . . mailx(1)
Processor configuration table. rtab(4)
Processor. i e i e e en(7)
PrOCESSOT. o« o v & o s o o 4 o o o o o v o o o o enpstart(1M)
Processor foronlinedata. riopqry(1M)
PrOCESSOT. & & o v o o v o o 4 4 ot o o v e o o 0 o o md(1)

Processor. riopefg: configure L L L. riopcfg(1M)
produce Csource listing from list(1)
produce EITOr message. 0 o4 t_error(3n)
prof: display profiledata. prof(1)
prof: profilewithina prof(5)
profil: execution time L. profil(2)
profiledata. 0oL prof(1)
profile. Lo e el monitor(3C)
profile. o e profil(2)
profile: settingupan L profile(4)
profile withinafunction. prof(S)
profiler. 0000 fusage(1M)
profiler. L s e pri(7)
profiler: prfld, prfstat, profiler(1M)
profiler. fprfdc, prfsnap, L L. profiler(1M)

-lvi-

sadp: disk access
standard/restricted command
software using the mkfs(1)
on. fprint out file lists from
arp: Address Resolution
Jswitched Serial Line Intemet
/setprotoent, endprotoent: get
inet: Internet

icmp: Intemet Control Message
ip: Intemet

DARPA Intemet File Transfer
telnetd: DARPA TELNET
DARPA Trivial File Transfer
Internet Transmission Control
user interface 10 TELNET
interface to the DARPA TFTP
udp: Intemet User Datagram
Dialers: ACU/modem calling
protocols.

information. t_getinfo: get
update:

arithmetic:

systems. labelit:

true, false:

get name of transport

fulladm, pretmp, prdaily,

/generate uniformly distributed
/mvipy: install or relocate a
download. tdl, gtdl,

stream. ungetc:

put character or word on a/
character or word on a/ putc,
environment.

stream.

entry.

stream.

password file entry.
/getutent, getutid, getutline,
a/ putc, putchar, fputc,

file checkers.

fetc/shadow with information/

fetc/shadow with information/
gic: interface for

software using the mkfs(1)/
from proto file; set links/

tape. stape: SCSI

File Sharing name server
online data. riopqry:

tput: initialize a terminal or
queuedefs: at/batch/cron
msgget: get message
rmount:

profiler. e e sadp(1M)
programming language. Ahe L. L L L. sh(1)
proto file database. fverify qinstall(1)
proto file; setlinks based L. qlist(1)
Protocol. v v v v v s et e e e e e e e e e e e arp(7)
Protocol control facility. slipd(1M)
protocolentry. 4 e 0w ... getprotoent(3)
protocol family. 0. .. inet(7)
Protocol. oo o s icmp(7)
Protocol. . . . v v v i e e e e e e e e e e e e ip(7)
Protocol server. ftpd: 0L ftpd(1M)
protocolserver. e . e 0 0 e ... telnetd(1M)
Protocol server. tftpd: L tftpd(1M)
Protocol. tep: . .« v v v v o e e e e e e e tep(7)
protocol. telnet: L. oo L., telnet(1)
protocol. tftp:user 0. .. tfip(1)
Proocol.o e udp(7)
Protocols. . . v . e e e e e e e e e e e e e Dialers(5)
protocols: st of Intemet L L L. L protocols(4)
protocol-specificservice t_getinfo(3n)
provide disk synchronization. update(1M)
provide drll in numberfacts. arithmetic(6)
provide labelsforfile labelit(1M)
provide truth values. true(1)
provider. nlsprovider: nlsprovider(3n)
prs:printan SCCSfile. prs(1)
priacct, runacet, shutacet,/ L. L L acctsh(1M)
PS:TEpOTL Process SIAatUS. .« & + = + 4 v 4 4 . 0 v e . . ps(1)
pseudo-random numbers. drand48(3C)
PTorGTlocalprinter. mktpy(1)
prdl: RS232terminal L oo 000 tdi(l)
pLrace: Processtrace. . . « + « « o + o o 2 0 . a4 . ptrace(2)
pipermutedindex. L 0L ..o 0 L L pux(1)
push character back intoinput, .. ungetc(3S)
putc, putchar, fpute,putw: L. putc(3S)
putchar, fputc,putw:put 0. putc(3S)
putenv: changeoraddvalueto putenv(3C)
putmsg: send amessageona putmsg(2)
putpwent: write password file putpwent(3C)
puts, fputs: putastringona 0 puts(3S)
putspent: writeshadow L., putspent(3X)
pututline, setutent, endutenty/ gewt(3C)
putw: put characterorwordon putc(3S)
pwck, grpck: password/fgroup L. pwck(1M)
pweonv: install andupdate pweonv(1M)
pwd: working directoryname. v . 004 . . pwd(1)
pwunconv: install andupdate pwunconv(1M)
QICtape. ¢ ¢ v v i i e i e e e e e e e qic(7)
ginstall: install and verify, ginstall(1)
qlist: printout filelists qlist(1)
gsort: quickersort. L. gsort(3C)
quarter-inchand half-inch stape(7)
query. nsquery:Remote L. nsquery(1M)
query Remote /O Processorfor nopqry(1M)
query terminfo database. L0 L L. tput(l)
queve description file., queuedefs(4)
QUELE. « ¢ 4 s e h e e e e e e s msgget(2)
queue remole resource Mounts. rmount(1M)

- bvii -

e e

ipcrm: remove a message

request. rumount: cancel
description file.

gsort:

command immune 1o hangups and

random-number generator.
adage. fortune: print a
rand, srand: simple

fsplit: split FORTRAN,
dialect.

ratfor:

stop the operating system.
performed for multi-user/
for multi-user/ rc2,
execution.

routines for returning a/

geipass:

entry of a common/ ldtbread:
header/ ldshread, ldnshread:
in a file. getdents:

read:

rmail: send mail to users or
line:

member of an/ 1dahread:
common object file. 1dfhread:
directory: opendir,

open a common object file for
open: open for

Iseek: move

tirdwr: Transport Interface
allocator. malloc, free,
mallinfo: fast/ malloc, free,
enabled/disabled. rtpenable:
reboot:

mail aliases/ newaliases:
specify what to do upon
t_rcvrel: acknowledge
t_rcvudata:

socket. recv, recvfrom:
indication. t_rcvuderr:

sent over a/ t_rcv:

a connect/ t_rcvconnect:
lockf:

from per-process accounting
from/ errdead: extract error
manipulate connect accounting
tape. frec:

message from a socket.
from a socket. recv,

ed,

execute regular expression.
compile.

make: maintain, update, and
regular expression. regcmp,
compile and match routines.

queue, semaphore setorshared/ ipcrm(1)
queued remote resource rumount(1M)
queuedefs: aybatch/cronquene queuedefs(4)
quickersort.o .00 e e e qsornt(3C)
quits. NOhUP: TUNA « « v & ¢ & o 4 0 s o o o o o .o nohup(1)
quiz: test your knowledge. quiz(6)
rand, stand: simple o0 oL L rand(3C)
random, hopefully interesting, fortune(6)
random-number generator. - 4 4 . . . rand(3C)
ratfor,oreflfiles. . . . « « « . . . o000 0. . fsplit(1)
ratfor: rational FORTRAN ratfor(1)
rational FORTRAN dialect. ratfor(1)
rc0: run commands performedto L L. . rcO(1M)
re2,re3:runcommands . . . e o e . e e e e e e e e rc2(1M)
rc3: run commands perfformed 0L L L rc2(1M)
rcmd: remote shellcommand L rcmnd(1)
remd, mresvport, ruserok: L . 0. e e . remd(3)
rep:remotefilecopy. o0 oL e e e e rep(l)
readapassword. 0 . 0 0w e e e e getpass(3C)
read an indexed symboltable 1dtbread(3X)
read an indexed/named secion 1dshread(3X)
read directory entriesandput getdents(2)
readfromfile. oo read(2)
readmail. mail, 000 ... mail(1)
readoneline. ¢t e e e e e e e e e e e line(1)
read:readfromfile.0 00 read(2)
read the archive headerofa 1dahread(3X)
read the file headerofa 1dfhread(3X)
readdir, telldir, seekdir,/o .. directory(3X)
reading. ldopen, ldaopen: L L 1dopen(3X)
readingorwriting. e e 4 open(2)
readfwrite filepointer. oL oL . 1seek(2)
read/wnte interface STREAMS/ tirdwr(7)
realloc, calloc: mainmemory malloc(3C)
realloc, calloc, mallopt, malloc(3X)
real-time priofities « . . . o 00 ... rtpenable(1M)
reboot the system. . . . « « « v« v« 4 v 0 a4 reboot(1M)
rebuild the database forthe newaliases(1)
receipt of asignal. signal: signal(2)
receipt of an orderly release/ t_rcvrel(3n)
receive adataunit. e e . . t_rcvudata(3)
receive amessagefroma L. .. recv(2)
receive aunitdataerror t_rcvuderr(3)
receive data orexpedited data t_rcv(3n)
receive the confirmation from t_rcvconnect(3)
record locking onfiles. lockf(3C)
records. /command summary acctems(IM)
records and status information L. errdead(1M)
records. fwtmp, wimpfix: L. fwtmp(1M)
recover files fromabackup, frec(1M)
recv,recvfrom:receive 8 0 . . . 00 . . recv(2)
recvfrom: receive amessage 4. .. recv(2)
red:texteditor. 000 e e e e e e ed(1)
regemp, regex: compileand L L L L regemp(3X)
regemp: regularexpression regemp(1)
regenerate groups of programs. make(1)
regex: compile and execute regemp(3X)
regexp: regular expression regexp(S)

- lviii -

locking: exclusive accessto regionsofafile. tocking(2)
match routines. regexp: regular expression compileand regexp(5)
regamp: regular expression compile. L L L. L L, regemp(1)

regex: compile and execute regular expression. regemp, regemp(3X)
file for a pattemn using full regular expressions. /searcha, egrep(1)
requests. accept, reject: allow orprevent LP accept(1M)

sorted files. comm: select or reject lines commontotwo comm(1)
lorder: find ordering relation foranobject/ lorder(1)

join: relational databaseoperator. join(1)

freceipt of an orderly release indication. L. .. L. t_rcvrel(3n)
t_sndrel: initiate an orderly release.00 000 0. L t_sndrel(3n)
for a common object file. reloc: relocation information oL ., reloc(4)
mktpy, mvtpy: install or relocate a PTorGTlocal/ mktpy(1)
Idrseek, ldnrseek: seek to relocation entriesofa/ 1drseek (3X)
common object file. reloc: relocation informationfora reloc(4)
ffmod, fabs: floor, ceiling, remainder, absolute value/ floor(3M)
calendar: reminderservice. 4 . v 4 4 440 .. s calendar(1)

adv: advertise a directory for remoteaccess. 0 0000 .. adv(1M)
for rewumning a stream to 2 remote command. froutines remd(3)
uuxqt: execute remote commandrequests. uuxqt(1M)

rexec: retumn streamtoa remotecommand. 0 e s e s e 40 . . . rexec(3)
thosts: remote equivalentneers. ‘hosis{4)

rexecd: remote eXecution SEIVEr. . . . « .+ . . . 4 4 . . . rexecd(1M)

rep: remotefilecopy.o 0oL rep(1)

administration. rfadmin: Remote File Sharing rfadmin(1M)
process. rfudaemon: Remote File Sharing daemon rfudaemon(1M)
network names. dname: print Remote File Sharing domainand dname(1M)
environment. rfstop: stop the Remote File Sharing ristop(1M)
password. rfpasswd: change Remote File Sharinghost rfpasswd(1M)
server master file. fmaster: Remote File Sharingname rfmaster(4)
server query. nsquery: Remote File Sharingname nsquery(1M)
notification shell/ fuadmin: Remote FileSharing rfuadmin(1M)
unadv: unadvertise a Remote File Sharing resource. unadv(1M)
/omountall: mount, unmount Remote File Shanng RFS)/ rmountall(1M)
ristart: start Remote File Sharing. ristart(1M)

group mapping. idload: Remote File Sharinguserand idload(1M)
configuration table. rtab: Remote /OProcessor rtab(4)
online data. riopgry: query Remote }/O Processorfor riopqry(1M)
riopcfg: configure system for Remote /O Processor. riopcfg(1M)
riogin: remotelogin.o o000 rlogin(1)

rlogind: remote loginserver. rlogind{(1M)

showmount: show all remotemounts. showmount(1M)

netrc: login file for remotenetworks. L. L. netrc(4)

mount: quede remote TeSOUSCEMOUNES. o &« « + o « = o o« o+ & rmount(1M)

rumount: cancel queued remote resource request. rumount(1M)

and unmount file systems and remote resources. /mount mount(1M)
mmnttry: attemnpt o mount reMOE TESOUTCES. « « « « « « « o & o o o & + o & mnttry(1M)
execution. rcmd: remote shellcommand L. remd(1)

rshd: remote shellserver. rshd(1M)

on. Uutry: try to contact a remote system withdebugging Untry(1M)
ct:spawn getty toa remoteterminal. oL L L. ..., ct(1C)

server. talkd: remote user communication talkd(1M)

server. fingerd: remote user information L. fingerd(1M)

table. mtab: remotely mounted filesystem rmtab(4)

file. rmdel: remove adelta fromanSCCS rmdel(1)

rmndir: remove adirectory. L. .0 . rmdir(2)

semaphore set or/ ipcrm: remove aMESSAZEQUEUE, ipcrm(1)
unlink: remove directoryentry. unlink(2)

- lix -

rm, rmdir:

eqn constructs. deroff:
running process by changing/
fsck, dfsck: check and

uniq: report

clock:

fsize:

fsstat:

communication/ ipcs:

blocks and i-nodes. df:

errpl: process a

sa2, sadc: system activity
timex: time a command,;

ps:

file. uniq:

rpeinfo:

sar: system activity

stream. fseek, rewind, fiell:
and send listener service
cancel queued remote resource
mountd: NFS mount

t_accept: accept a connect
t_listen: listen for a connect
confirmation from a connect
send user-initiated disconnect
reject: allow or prevent LP

the LP scheduler and move
syslocal: special system

Ip, cancel: send/cancel

uuxqt: execute remote command
res_mkquery, res_send,
res_init, dn_comp, dn_expand:/
control. arp: address

arp: Address

configuration file.

resolv.conf:

res_init, dn_comp, dn_expand:
unmount of an advertised
rmnistat: display mounted
mount: queue remote
rumount: cancel queved remote
a Remote File Sharing

file systems and remote
unmount Network File System
attempt to mount remote
Remote File Sharing (RFS)
dn_expand:/ res_mkquery,
and usage examples. usage:
disconnect. t_rcvdis:

common object file/ ldgetname:
abs:

logname:

command. rexec:

name. getenv:

stat: data

/ruserok: routines for

col: filter

file pointer in a/ fseek,

remove files or directories. o . L. . rm(1)
remove nrofftroff,tbl,and deroff(1)
renice: alter priority ofo renice(1)
repair filesystems.o ... fsck(1M)
repeated linesinafile. uniq(1)
report CPUtimeused. - . clock(3C)
reportfilesize.o e fsize(1)
report file system status.0 oL . fsstat(1M)
TEPOIt INLEF-PIOCESS + + + ¢ o o o + o o v ¢ o o o o o ipcs(1)
report number of freedisk oL df(1M)
reportofloggederrors. errpt(1M)
report package. sar:sal, o0 L. L sar(1M)
report process data and system/ timex(1)
report process SIS, . . . ¢ . v o e e e s e e e o4 v . ps(1)
report repeated linesinao . . uniq(1)
report RPCinformation. ¢ . .. rpcinfo(IM)
FEPOTET. + o = « « o o o o o s s o o o s & 4 s o o . sar(1)
reposition a file pointerina fseek(3S)
request message. fformat 0o . nlsrequest(3n)
request. TUMOUNL: .« + . o+ 4 4 4 4+ o+ e o4 e s rumount(1M)
TEQUESLSEIVET. + « & « o o & o s 4 4+ e e s e mountd(1M)
reguUESt. L L L L L L L L e e e e e e e e e t_accept(3n)
FEQUESL. o v ¢ v . e e e e e s e e e e e e e s t_listen(3n)
request. freceivethe t_rcvconnect(3)
request. t_snddis: 0. t_snddis(3n)
requests. aCCePl, . « .« . . 4 e o . e e e e . .o accept(1M)
requests. /lpmove: start/stop 0 . . Ipsched(1M)
TEQUESES. . o+« v e e e e e e e e e e e e syslocal(2)
requests toan LPline/ o000 Ip(1)
TEQUESES. « o o + & o o e o e 4 s b e e e e e e s uuxqt(1M)
res_init, dn_comp, dn_expand:/ resolver(3)
res_mkquery, res_send, o ... resolver(3)
resolution displayand 000 arp(1M)
Resolution Protocol. arp(7)
resolv.conf: resolver resolver(4)
resolver configuration file. resolver(4)
resolver routines. fres_send, resolver(3)
resource. fumount: forced fumount(1M)
resource information. rmntstat(1M)
TESOUICE TNOUNIS. + & + & o + « & o o o = o o o » rmount(1M)
resourcerequest. - . . - rumount(1M)
resource. unadv: unadvertise unadv(1M)
resources. /mountandunmount mount(1M)
resources. /numountall: mount, nmountall(1M)
resources. MINKIY: . . o + « « o o o + o 0 o . mmnttry(1M)
resources. mount, uUNMOoOUNt . . . « . .+ & o . . rmountall(1M)
res_send, res_init, dn_comp, resolver(3)
retrieve a command description usage(1)
retrieve information from t_rcvdis(3n)
retrieve symbol namefor ldgetname(3X)
return integer absolute valve. abs(3C)
return login name ofuser. logname(3X)
return Stream o ATEMOE . + & = o o « o = o o 4 4 . . rexec(3)
retun value forenvironment getenv(3C)
retumed by stat systemcall. 0000 L stat(5)
returning a streamtoaremote/ remd(3)
reverse line-feeds. 00 0. . col(1)
rewind, fiell: repositiona L. ., fseek(3S)

Ix -

freaddir, telldir, seekdir,
creat: create a new file or
remote command.
server.

administration.

name server master file.
Sharing host password.
unmount Remote File Sharing
Sharing.

Sharing environment.
notification shell script.
daemon process.

users.

Remote I/O Processor.
Processor for online data.

directories.
read mail. mail,
SCCS file.

directories. mm,

resource information.

remole resources.

mounts,

unmount Remote File Sharing/
system table.

chroot: change

chroot: change

logarithm, power, square
routing tables.

gateways:

daemon.

frekset, td: graphical device
rcmd, rresvport, ruserok:
Intemet address manipulation
common object file access
expression compile and match
dn_comp, dn_expand: resolver
graphical table of contents
routed: network

sendmail: mail

route: manually manipulate the
getrpcbynumber: get

rpcinfo: report

getrpcport: get

rpc: Sun

portmap: DARPA port to

data base.

information.

for returning a stream/ rcmd,
controlling terminal’s local
dl, gtd], pidl:
standard/restricted/ sh,

stop terminal input and/
configuration table.
priorities enabled/disabled.

rewinddir, closedir: directory/ directory(3X)
rewrite an eXiStNG ONE. . . . + + .+ .« e o 4 4 o0 4 . s creat(2)
rexXec: retum Stream 08 . « . « . .+ . .+ . 4 s 4 . . . rexec(3)
rexecd: remote execution 4 e 0 e 0. . . rexecd(1M)
rfadmin: Remote File Sharing rfadmin(1M)
rimaster: Remote File Sharing rimaster(4)
rfpasswd: change Remote File fpasswd(1M)
(RES)resources. fmount, rmountall(1M)
ristart: statRemote File ristart(1M)
fstop: stopthe Remote File fstop(1M)
rfuadmin: Remote File Sharing rfuadmin(1M)
rfudaemon: Remote File Sharing rfudaemon(1M)
thosts: remote equivalent thosts(4)
riopcfg: configure systemfor riopcfg(1M)
riopgry: query Remoie /O riopqry(1M)
rdogin: remotelogin. 0L rlogin(1)
rlogind: remote login server. rlogind(1M)
m, rmdir: remove filesor L L oL L. L rm(1)
mnail: send mail tousersor L. mail(1)
rmdel: remove adeltafroman 0. 0. 0L rmdel(1)
rmdir: remove adirectory. rmdir(2)
mdir: removefilesor L. L Lo L m(])
rmntstat: displaymounted L .. L. rmntstat(1M)
mntiry: atempt tomounto . rmnttry(1M)
MMOUNt: QUEUE TEMOLE TESOUICE + + o » & & & o & » rmount(1M)
mountall, nmountall: mount, rmountall(1M)
mmtab: remotely mounted file L, rmtab(4)
rootdirectory.0 e . 0w e e e e chroot(2)
root directory foracommand. chroot(1M)
root functions. /exponential, exp(3M)
route: manually manipulatethe route(1M)
routed configuration file. gateways(4)
routed: networkrouting routed(1M)
routines and filters. 0. ... gdev(1G)
routines forretuminga/ rernd(3)
routines. finet_netof: 0. inet(3)
rogtines. Idfen:0 00000 L. 1dfen(4)
routines. regexp:regular o ... 0. . regexp(5)
routines. /res_send, res_init, resolver(3)
routines. /dtoc, OC, VIOC: v 4 . e e e 1oc(1G)
routing daemon.00 0 e ... routed(1M)
TOULING PIOZTAML + &« o &« + + o o « 4 o o v o o+ » sendmail(1M)
routing tables. 0000 route(1M)
rpc entry. /getrpcbyname, L . L getrpeent(3)
RPCinformation. rpcinfo(1M)
RPCportnumber. getrpcport(3)
rpc program number database. L pc(4)
RPCprogram numbermapper. portmap(1M)
mpc: Sun rpeprogramnumber L . L . L L L L L L L L L pc(4)
rpeinfo: repotRPC L L. rpcinfo(1M)
mresvpor, ruserok: TOutines+ . . o . . . o0 4 . . remd(3)
RS-232channels. tp:, tp(7)
RS-232 terminal download. wdi(1)
rshishell,the ¢« o v v v e v v v o0 o sh(1)
rshd: remote shell server. rshd(1M)
rsterm: manually startand L L. L. rsterm(1M)
rtab: Remote /O Processor rtab(4)
rtpenable: realtime L. L L L L nipenable(1M)

- Ixi -

resource request.

Remote File/ mountall,
nice:

hangups and quits. nohup:
multi-user/ rc2, rc3:

the operating system. rc0:
runacct:

fprctmp, prdaily, prtacct,
renice: alter priority of
nodes on local network.
retuming a/ rcmd, rresvport,
local network.

activity report package. sar:
report package. sar: sal,
editing activity.

package. sar: sal, sa2,

activity report package.

space allocation. brk,
formatted input.

bfs: big file

language. awk: pattern
language. nawk: pattern

the delta commentary of an
comb: combine

make a delta (change) to an
sact: print current

get: get a version of an

prs: print an

rmdel: remove a delta from an
compare two versions of an
sccsfile: format of

undo a previous get of an
val: validate

admin: create and administer
what: identify

of an SCCS file.

check file system backup
fipmove: start/stop the LP
uusched: the

comimnon object file.

screen image file..

clear: clear terminal
ocurse: optimized
optimization/ curses: terminal
scr_dump: format of curses
display editor based on/ vi:
inittab:

terminal session.

Sharing notification shell
scsi:

scsimap: set mappings for
half-inch tape. stape:

rumount: cancel queued remote o . rumount(1M)

rumountall: mount, unmount rmountall(1M)
run a command at low priority. nice(1)
run acommand immuneto o .o nohup(1)
run commands perffomedfor L. rc2(1M)
run commands perfformedtostop L. rcO(1M)
run daily accounting.0 e . . e runacct(1M)
runacct: run daily accounting. runacct(1M)
runacct, shutacct, startup,/ 0 . o . . acctsh(1M)
running process by changing/ renice(1)
ruptime: display stamusof ruptime(1)
raserok:routines for o e 0 e 0. .. remd(3)
rwho: whoisloggedinon rwho(1)
rwhod: host status server. <+ ¢ < . . . rwhod(1M)
sal,sa2, sadc:system 0w e e e e sar(1M)
sa2,sadc: systemactivity 0 o o4 .. sar(1M)
sact: print current SCCSfile sact(l)
sadc: system activity Teport « . ¢ o ¢ . .. o0 . sar(1M)
sadp: disk accessprofiler.o L. sadp(1M)
sag: system activity graph. sag(1G)
sar; sal,sa2,sadc:system0 0. . 0. sar(1M)
sar: system activity reporter.« . ¢ o+ o« o . . . sar(1)
sbrk: change datasegment L. brk(2)
scanf, fscanf, sscanf: convert scanf(3S)
SCAMMNET. « « o « o o o o o « o o o s o o o o o o o o bfs(1)
scanning and processing o s o0 4 .. o . awk(1)
scanning and processing0 o nawk(1)
SCCSdelta. cdc:change v v o o o . . cde(1)
SCCSdeltas. ¢ . v v v v v v v v v v comb(1)
SCCSfile.delta: v v v v v v v v v e delta(1)
SCCSfile editing activity. . . « « « « ¢ ¢ ¢ ¢ o v o o sact(1)
SCCSfile. ¢ ¢ v v v v et e e e e e e e e get(1l)
SCCSfile. v v v v v vt e e e e e e e e prs(1)
SCCSfile. . v v v v v v vt i v e s e e e e rmdel(1)
SCCSfile. scesdiff: oo, sccsdiff(1)
SCCSfile. . . . v v v v v v v v v i i e e e sccsfile(4)
SCCSfile.unget: « ¢ ¢ v v v o v e e e e .. unget(1)
SCCSfile. . . & v v v v v v v e e e e e e val(1)
SCCSfiles. v ¢ v v v v v v v o v oo admin(1)
SCCSfiles. . v v v v v v v v v v e e e e e e e what(1)
sccsdiff: compare two versions scesdiff(1)
sccsfile: format of SCCSfile. sccsfile(4)
schedule. ckbupsed: ckbupscd(1M)
schedulerand move requests. Ipsched(1M)
scheduler forthe UUCPsystem. uusched(1M)
scnhdr: section headerfora scnhdr(4)
scr_dump: formatof curses scr_dump(4)
SCTEEM. o o v o & 4 4 4t t e e e e e clear(1)
screen functions.0 L0000 . ocurse(3X)
screenhandlingand curses(3X)
screenimagefile.00 0 0L, scr_dump(4)
screen-oriented (visual) 0o 0. ... vi(l)
script forthe init process. inittab(4)
script: make typescriptof script(1)
script. rfuadmin: Remote File rfuadmin(1M)
scsicontroldevice.00 e 0. scsi(7)
SCSIdevices. v v v v v v v v 0 e . scsimap(1M)
SCSIquarter-inchand stape(7)

- Ixii -

devices.

program.
string. fgrep:

grep:

using full regular/ egrep:
bsearch: binary

accounting file(s). acctcom:
Isearch, Ifind: linear

hcreate, hdestroy: manage hash
delete, twalk: manage binary
object file. scnhdr:

object/ /read an indexed/named
the object file comment

fio line number entries of a

fto relocation entries of a

/seek to an indexed/named
common object/ size: print

fmrand48, jrand48, srand48§,
section of/ ldsseck, ldnsseck:

a seciion/ idiseek, idniseek:

a section/ ldrseek, ldnrseek:
header of a common/ 1dohseek:
common object file. ldtbseek:
fopendir, readdis, telldir,
shmget: get shared memory
brk, sbrk: change data

to two sorted files. comm:
multiplexing.

greek:

of a file. cut: cut out

file. dump: dump

semctl:

semop:

ipcrm: remove a message queue,
semget: get set of

operations.

i_sndudaia:

putmsg:

send, sendto:

a group of processes. kill:
over a connection. t_snd:
to network hosts. ping:
nlsrequest: format and
mail. mail, rmail:

to a socket.

request. t_snddis:

line printer. lp, cancel:
aliases: aliases file for
program.

socket. send,

/receive data or expedited data
control/ slipd: switched
/sldetach: attach and detach

scsizscsicontrol device. L oL scsi(7)
scsimap: set mappings forSCSI scsimap(1M)
sdb: symbolic debugger. sdb(1)
sdiff: side-by-side difference L L. sdiff(1)
search a file foracharacter, . fgrep(1)
search a file forapatten. grep(1)
search a file forapattemm0 L egrep(l)
searchasortedtable. bsearch(3C)
search and printprocess acctcom(1)
searchandupdate. 1search(3C)
search tables. hsearch, hsearch(3C)
search trees. tsearch,tfind, tsearch(3C)
section header foracommon scnhdr(4)
section headerofacommon 1dshread(3X)
section. mcs: manipulate mes(1)
section of acommonobject/ diseek(3X)
section of acommon object/ ldrseek(3X)
section of acommon object/ 1dsseek(3X)
section sizesinbytesof size(1)
sed:streameditor. 0L .. sed(1)
sced48, lcong48: generate/ drand48(3C)
seek to anindexed/named Idsseek(3X)
seek to line numberentriesof ldlseek (3X)
seek to relocation entriesof idrseek(3X)
seek totheoptional file 1dohseek (3X)
seek to the symbol tableofa ldibseek(3X)
seekdir, rewinddir, closedirs/ directory(3X)
segment identifier. shmget(2)
segment space allocation., brk(2)
select orreject linescommon comm(1)
select: synchronous /O00 0L select(2)
select terminal filter. o 0L 0. 0. . greek(1)
selected fields ofeachline cut(l)
selected partsof anobject L. .. dump(1)
semaphore control operations. semctl(2)
semaphore operations. semop(2)
semaphore set or shared memory/ ipcrm(1)
semaphores.00 e e, semget(2)
semctl: semaphorecontrol semctl(2)
semget: get set of semaphores. semget(2)
semop: semaphore operations. semop(2)
send adataunit. 00 .. . t_sndudata(3)
send amessage onastream. putmsg(2)
send amessagetoasocket. L. L. .. send(2)
send asignal toaprocessor 0. 0. . kill(2)
send data orexpedited data L. t_snd(3n)
send ICMP ECHO_REQUEST packets ping(1M)
send listener servicerequest/ nlsrequest(3n)
send mail tousersorread mail(1)
send, sendto: send amessage send(2)
send user-initiated disconnect t_snddis(3n)
send/cancel requests toanLP L. 0L L. 1p(1)
sendmaill. Lo Lo 0oL L. aliases(4)
sendmail: mailrouting sendmail(1M)
sendto: send amessagetoa send(2)
sentoveraconnection. 4 o0 4. . . ow . t_rcv(3n)
Serial Line Intemnet Protocol slipd(1M)
serial lines asnetwork/ L L, slattach(1M)

- Ixiii -

serstat: display

error statistics.

remote user information

File Transfer Protocol
Remote File Sharing name
mountd: NFS mount request
named: Intemet domain name
Remote File Sharing name
rexecd: remote execution
rlogind: remote login

rshd: remote shell

rwhod: host status

remote user communication
telnetd: DARPA TELNET protocol
Trivial File Transfer Protocol
uucpd, ouucpd: network uucp
make typescript of terminal
buffering to a stream.
foascci, _tolower, _toupper,
IDs. setuid,

getgreni, getgrgid, getgrnam,
lgethosthvaddr, gethogtent,
identifier of/ gethostid,
current host. gethostname,
goto.

hashing encryption. crypt,

/getnetbyaddr, getnetbyname,

protocol/ /getprotobyname,
getpwent, getpwuid, getpwnam,
[getservbyport, getservbyname,
options on/ getsockopt,
Ickpwdf,/ getspent, getspnam,
time. gettimeofday,
environment at/ cprofile:

login time. profile:

gettydefs: speed and terminal
group IDs.

/getutid, getutline, pututline,
stream. setbuf,

data in a/ sputl,
standard/restricted command/
Ickpwdf, ulckpwdf: get
putspent: write

Xstr: extract and
chkshlib: compare
mkshlib: create a
operations. shmctl:
queue, semaphore set or
shmop:

identifier. shmget: get
nfssys: common
rfadmin: Remote File
rfudaemon: Remote File
dname: print Remote File

serial port error statistics. o« . . . serstat(1M)
pol

serstat: display serdalport serstat(1M)
server. fingerd:o e e o0 fingerd(1M)
server. fipd: DARPAIntemet fipd(1M)
server master file. fmaster: rfmaster(4)
SEIVEL. . « + « « « s s« s s o s s s s« . . mountd(1M)
SEIVEL. + + 4 « + o o + & v o 4 a e e e e e e e named(1M)
SEIVer query. NSQUETY: . . « o « « « o s o o o+ o & nsquery(1M)
SEIVEL. . v v o o o o 4 o v o o e e e e e e e .. rexecd(1M)
SEIVET. o o o o o + o 4 o b e o 4 e e e e e e rlogind(1M)
SBIVET. o v v o o & = o o o+ ¢ o & v e e e e e e rshd(1M)
SEIVEL. « v ¢ o = o o o s o o o o o 4 o e e e rwhod(1M)
server. talkd: L L 0 L o L0 e e e e talkd(1M)
SEIVET. « v o « = o o 4 o + v a4 e e e e e e telnetd(1M)
server. tfipd: DARPA tftpd(1M)
SEIVETS. o + o + + o o o o o o o e 4 s w e e uucpd(1M)
SeSSiON. SCHPL: « « v v v o+ 4 4 4 4 e e e e e e e s script(1)
setbuf, setvbuf: assigno 0L setbuf(3S)
setchrclass: character/ o0 0oL ctype(3C)
setgid: setuserandgroup 0. s setuid(2)
setgrent, endgrent, fgetgrem:/ getgrent(3C)

sethostent, endhostent: get/ L. gethosthyname(3)
sethostid: get/setunique, gethostid(2)
sethostname: get/setnameof gethostname(2)
setjmp, longjmp: non-local oL setimp(3C)
setkey, encrypt: generate0 . . crypt(3C)
setmnt: establish mount table. setmnt(1M)
setnetent, endnetent: get/ getnetent(3)
setpgrp: setprocessgroupID. L o0 L setpgrp(2)
setprotoent, endprotoent: get < . . . getprotoent(3)
setpwent, endpwent, fgetpwent:/ getpwent(3C)
setservent, endservent: get/ getservent(3)
setsockopt: getandset getsockopt(2)
setspent, endspent, fgetspent, getspent(3X)
settimeofday: get/setdateand gettimeofday(2)
setingupaCshell cprofile(4)
setting upanenvironment at . « o0 . . profile(4)
settings used by getty. 0. gettydefs(4)
setuid, setgid: setuserand setuid(2)
setuname: set name of system. setuname(1M)
settent, endutent, utmpname:/ gem(3C)
setvbuf: assign bufferingtoa L L0 L. setbuf(3S)
sgetl: access longinteger sputl(3X)
shyrshishell,the sh(1)
shadow. /endspent, fgetspent, getspent(3X)
shadow password fileentry. putspent(3X)
shadow: passwordfile. shadow(4)
share sirings in Cprograms. xstr(1)
shared librardes tool. chkshlib(1)
sharedlibrary. 0000 mkshlib(1)
shared memorycontrol, shmctl(2)
shared memory ID. /famessage ipcrm(1)
shared memory operations. L. 0L shmop(2)
shared memory segment shmget(2)
shared NFSsystemecalls. nfssys(2)
Sharing administration. rfadmin(1M)
Sharing daemonprocess. rfudaemon(1M)
Sharing domain and network/ dname(1M)

- Ixiv -

rfstop: stop the Remote File
rfpasswd: change Remote File
file. rfmaster: Remote File
nsquery: Remote File

script. rfuadmin: Remote File
unadvertise a Remote File
/mount, unmount Remote File
ristan: start Remote File
mapping. idload: Remote File
rcmd: remote

with C-like syntax. csh: a
system: issue a

cprofile: setting upa C

shl:

shutacct, startup, turmacct:
File Sharing notification

rshd: remote

command programming/ sh, rsh:

operations.

segment identifier.
operations.

mounts.

fprdaily, prtacct, runacct,
system, change system state.
full-duplex connection,
program. sdiff:

abort: generate a

sigpanse: signal/ sigset,
sigset, sighold, sigrelse,
login:

sigrelse, sigignore, sigpause:
pause: suspend process until
what to do upon receipt of a
of processes. kill: send a
ssignal, gsignal: software
/sighold, sigrelse, sigignore,
signal/ sigset, sighold,
sigignore, sigpause: signal/
lex: generate programs for
generator. rand, srand:

atan, atan2:/ trig:

functions.

fsize: report file

get descriptor table

object/ size: print section
detach serial lines as/

serial lines as/ slattach,

an interval.

interval.

documents, view graphs, and
typesetting view graphs and
linker, load socket/

Intemet Protocol control/
current/ ttyslot: find the
spline: interpolate

sno:

bind: bind a name o0 a

Sharing environment. 4 4 4 4w s . ristop(1M)
Sharing host password. rfpasswd(1M)
Sharing name servermaster rfmaster(4)
Sharing name serverquery. . . « « « <« + « « . . . nsquery(1M)
Sharing notification shell rfuadmin(1M)
Sharing resource. unadv: unadv(1M)
Sharing (RFS)resources. mmountall(1M)
Sharing. o v e e e e e e ristart(1M)
Sharinguserandgroup idload(1M)
shell command execution. remd(1)
shell (command interpreter) csh(1)
shellcommand. system(3S)
shell environment atlogin/ cprofile(4)
shell layermanager. shl(1)
shell procedures for/ /runacct, acctsh(1M)
shell script. fRemote rfuadmin(1M)
shell server. v v v i h e e e e e e e e rshd(1M)
shell, the standard/restricted < sh(l)
shl: shell layermanager. shi(1)
shmctl: shared memorycontrol shmctl(2)
shmget: get sharedmemory shmget(2)
shmop: sharedmemory shmop(2}
showmount: show allremote showmount(1M)
shutacat, startup, macet:/ L .. 0 L 0 . acctsh(1M)
shutdown, halt: shutdown shutdown(1M)
shutdown: shut downpartofa shutdown(2)
side-by-side difference 0L L. sdiff(1)
SIGABRT. v i v it vt e v e e us abort(3C)
sighold, sigrelse, sigignore, sigset(2)
sigignore, sigpause: signal/ sigset(2)
SIBMOM. & v v v v v e v et e e e e e e e e e e login(1)
signal management. fsighold, sigset(2)
signal. ... L. L. o pause(2)
signal. signal: specify signal(2)
signal to aprocessoragroup+ .+ o0 . . kill(2)
signals. . . . L .0 0o e e e e e ssignal(3C)
sigpause: signal management. sigset(2)
sigrelse, sigignore, sigpause:0 .., sigset(2)
sigset, sighold, sigrelse, sigset(2)
simple lexicaltasks. 0L lex(1)
simple random-number rand(3C)
sin, COS, 1an, asin, 8CO8, . « « « « &+ + ¢ @ 4 4. . 0 . trig(3M)
sinh, cosh, tanh: hyperbolic sinh(3M)
SIZE. . . i e e e e e e e e e e e e e e e e e e e fsize(1)
size. getdtablesize: getdtablesize(2)
sizesinbytesofcommon size(1)
slattach, sidetach: attachand slattach(1M)
sldetach: attachanddetach slattach(1M)
sleep: suspend executionfor L ... L. sleep(1)
sleep: suspend executionfor sleep(3C)
slides. mmt, mvt:typeset0 ... mmit(1)
slides. /macropackagefor mv(5)
slink, ldsocket: STREAMS slink(1)
slipd: switched Serjal Line slipd(1M)
slotin the utmp fileofthe ttyslot(3C)
smoothcurve. « . v v o v 0 b e e e spline(1G)
SNOBOLinterpreter. . . . « v v v ¢ v o o v v o v o & sno(1)
SOCKEL, . v i . e h e e e e e e e e e e e e e e bind(2)

-lxv -

Idsocket: STREAMS linker, load
initiate a connection on a
communication.

listen for connections on a
getsockname: get

receive a message from a
sendto: send a message to a
get and set options on
ctinstall: install

interface. lo:

ssignal, gsignal:

qinstall: install and verify
sor:

qsort: quicker

tsort: topological

or reject lines common to two
bsearch: binary search a
object file. list: produce C
brk, sbrk: change data segment
funexpand: expand tabs to
terminal. ct:

the/ tapedrives: tape drive
cftime: language

fspec: format

receipt of a signal. signal:
/set terminal type, modes,
/set terminal type, modes,
used by getty. gettydefs:
spelling/ spell, hashmake,
spellin, hashcheck: find
curve.

split:

csplit: context

cfl files. fsplit:

uucleanup: uucp

lpr: line printer

Ipadmin: configure the LP
output. printf, fprintf,
integer data in a/

power,/ exp, log, log10, pow,
exponential, logarithm, power,
generator. rand,

/nrand48, mrand48, jrand48,
input. scanf, fscanf,

signals.

package. stdio:
communication/ stdipc, ftok:
sh, rsh: shell, the

half-inch tape.

and output. rsterm: manually
fstart:

operating system for/

and/ lpsched, lpshut, lpmove:
fprtacct, runacct, shutacct,

useful with graphical/
stat: data returned by

socket configuration. shink, slink(1)

sockel. COMNECt: . . .« v . e e e e e e e e e e connect(2)
socket: create anendpoint for L. socket(2)
socket. listen:o v e e e e . listen(2)
SOCKEL NAME. .« + + « o ¢ o o« & o & o 4 o0 . . getsockname(2)
sockel. recv,recvfrom:0 0 o e ... recv(2)
sockel. send, 0 v et e e e e e e e e e send(2)
sockets. fsetsockopt: getsockopt(2)
software. e e e e e e e e ctinstall(1)
software loopback network L. 1o(7)
software signals. ssignal(3C)
software using the mkfs(1)/ qinstall(1)
sort andformergefiles.00 sort(1)
SOM. & v v v @ ¢ o o o o o b e b e e e e e e gsort(3C)
sort: sort andformergefiles. son(l)
SOM. v v v v e m h e e e e e e e e e e e e tsort(1)
sorted files. comm:select comm(1)
sortedtable. e e e e . bsearch(3C)
source listing fromacommon list(1)
spaceallocation. o0 0o 0w .. brk(2)
spaces,andvice versa.0 .. .0 . expand(1)
SDAWN EEUY LOBTEMOE . .« « v o + o o o 4 4 o4 e . e ct(1C)
specificinformation usedby tapedrives(4)
specificstrings. . . . ¢ . . v 4 e e e e e e e e . . cftime(4)
specification intextfiles. fspec(4)
specify whattodoupon signal(2)
speed, and line discipline. oL L getty(1M)
speed, and line discipline. uugetty(1M)
speed and terminal settings L . gettydefs(4)
spellin, hashcheck: find spell(1)
spelling errors. hashmake, spell(1)
spline: interpolate smooth spline(1G)
split afileintopieces. 0.0 ... split(1)
sphit. L ..o csplit(1)
split FORTRAN,ratfor,or fsplit(1)
spool directory clean-up. uucleanup(1M)
spooler. e e e e e e e e e e e . Ipr(1)
spooling system.0 1padmin(1M)
sprintf: print formatted printf(3S)
sputl, sgetl: accesslong L. L. sputl(3X)
sgrt: exponential, logarithm, exp(3M)
square root functions. /sqrt: exp(3M)
srand: simple random-number rand(3C)
srand48, seed48,lcong48:/ drand48(3C)
sscanf: convert formatted L ... scanf(3S)
ssignal, gsignal: software ssignal(3C)
standard buffered input/output L. stdio(3S)
standard interprocess0 stdipc(3C)
standard/restricted command/ sh(l)
stape: SCSIquarter-inchand stape(7)
start and stop terminalinput rsterm(1M)
start Remote File Sharing. fstart(1M)
starter: information aboutthe starter(1)
start/stopthe LPscheduler Ipsched(1M)
startup, turnacct: shell/ 0oL acctsh(1M)
stat, fstat: getfilestatus. stat(2)
stat: statistical network o0 . 0L stat(1G)
statsystemcall. 000000 0. stat(5)

- Ixvi -

system information.

with graphical/ stat:

ff: file name and

nfsstat: Network File System
display serial port error
ustat: get file system

fsstat: report file system
fextract error records and
Ipstat: print LP

feof, clearerr, fileno: stream
control. uustat: uucp
communication facilities
netstat: show network
network. ruptime: display
Ps: report process

rwhod: host

stat, fstat: get file
input/output package.
interprocess communication/

wait for child process to
rsterm: manually start and
rcO: run commands performed to
environment. rfstop:
nextkey:/ dbminit, fetch,
messages.

stremp, strncmp,/ string:
[strepy, stmcpy, strlen,
cleanup program.

[strcat, strdup, strncat,
[stmcat, strcmp, stmemp,
[strrchr, strpbrk, strspn,
stmemp,/ string: streat,

sed:

fflush: close or flush a

fopen, freopen, fdopen: open a
reposition a file pointer in a
get character or word from a
getmsg: get next message off a
fgets: get a string from a

put character or word on a
puimsg: send a message on a
puts, fputs: put a string on a
setvbuf: assign buffering 10 a
ffeof, clearerr, fileno:

froutines for returning a
rexec: retum

push character back into input
commands.

open any minor device on &
program. strclean:

strerr:

event/ log: interface to
multiplexing. poll:

streamio:

slink, ldsocket:

Interface cooperating
Interface read/write interface

statfs, fstatfs: getfile statfs(2)
statistical networkuseful stat(1G)
statistics forafilesystem. ff(1M)
SLALISHCS. & + 4 v v v v 4 e e e s e e e e e e e nfsstat(1M)
SLatistics. Serstal: . . « .« 4 4 . o« 4 e e 4 e e e s serstat(1M)
SLALSHCS. v v v s v b e v e e s e e e e ustat(2)
SIALUS. v v . e v e e e s e h e e e e e e e e e fsstat(1M)
status information fromdump. L. errdead(1M)
status information. 000000 0L Ipstat(1)
status inquiries. ferror, ferror(3S)
status inquiry andjob L. uustat(1C)
status. /repOrtinter-process . . « o o o o o « o & o o o ipes(1)
SEALUS. &+ & & ¢ & 4 s e e e w e e e e e e e e e e netstat(1)
status of nodesonlocal, ruptime(1)
SIATUS. & « v v v a ke e e e e e e e e e e e ps(1)
SLAUS SETVEL. & v « 4 « & = « o o o o « o o o o . rwhod(1M)
SIATUS. « v v 4 v v e s e e e e e e e e e e e stat(2)
stdio: standard buffered L L. L. stdio(3S)
stdipc, ftok: standard oL 0oL L stdipc(3C)
Stime: SEttME. . . v v 4 v+ 4 4 4 4 e e e e e e s stime(2)
stoporterminate, wait: wait(2)
stop terminal inputand/ L rsterm(1M)
stop the operating system. ¢ . . . rcO(1M)
stop the Remote File Sharing fstop(1M)
store, delete, firstkey, dbm(3X)
strace: print STREAMStrace strace(1M)
strcat, strdup, strncat, 0 0 . e e e e . e string(3C)
strchr, strechr, spbeky/ 0 L L 0 L 0 0 L 0 o 0 L L string(3C)
strclean: STREAMSerrorlogger strclean(1M)
stremp, stmemp, strepy,/ o o L o Lo L. string(3C)
strepy, stmepy, stilen/ . . . L. 0 0 00000 L string(3C)
strespn, strtok: string/ 0 0. . string(3C)
strdup, StnCal, SUCMP, .« « ¢« « ¢« + o o« 0 0. e . . string(3C)
streameditor. 0 0 v e e e e e e e e e e sed(1})
stream. fclose,0 00 e 0 e . fclose(3S)
SIEAMN. & & + + v s 4 e e e e e e e e e e e e e fopen(3S)
stream. fseek, rewind, ftell: fseek(3S)
stream. /getchar, fgetc,getw: getc(3S)
SEAM. v & v v« ¢ v s e e e e e e e e e e e getmsg(2)
SITEAM. GEIS, + « & « v « o + o o o o o o o v 4 4 4. gets(3S)
stream. /putchar, fputc,putw: putc(3S)
SIEAM. & v v+ & ¢ v v a e e e e e e e putmsg(2)
SLEAIM. & . v &+ 4 ¢ s e e e e e e e e e e e e s puts(3S)
stream. setbuf, 0.0 0L setbuf(3S)
stream status inquiries. - 0 ferror(3S)
streamtoaremotecommand. rcmd(3)
streamtoaremotecommand. rexec(3)
stream. ungetc: e . e e 4 e w0 s . ungetc(3S)
streamio;: STREAMSioetl streamio(7)
STREAMSdnver. clone: v+ o clone(7)
STREAMS errorloggercleanup strclean(1M)
STREAMSemorloggerdaemon. strerr(1M)
STREAMSerrorloggingand log(7)
STREAMSinputfoutput « « ¢« v o ¢ ¢« v o o . poli(2)
STREAMS iocti commands. streamio(7)
STREAMS linker, load socket/ slink(1)
STREAMS module. /Transport timod(7)
STREAMS module. /Transport tirdwr(7)

- 1xvii -

Sxt:

strace: print

daemon.

long integer and base-64 ASCII
convernt date and time to
floating-point number to
search a file for a character
gps: graphical primitive
gets, fgets: get a

puts, fputs: put a

bemp, bzero: bit and byte
strspn, strcspn, strtok:
number. surtod, atof: convert
strtol, atol, atoi: convert
cftime: language specific
text strings in a file.

extract the ASCII text

xstr: extract and share
number information from a/
information from a/ strip:
/stmemp, strcpy, stmepy,
string: strcat, strdup.
/strdup, stmcat, strcmp,
[stremp, stmemp, strepy,
/strlen, strchr, strrchr,
/stmcpy, strlen, strchr,
[strchr, strrchr, strpbrk,

to double-precision number.
/strpbrk, strspn, strcspn,
string to integer.

processes using a file or file
t_alloc: allocate a library
t_free: frec a library
terminal.

another user.

firstkey, nextkey: database
dbm_clearerr: database
plot: graphics interface
/same lines of several files or
count of a file.

du:

accounting/ acctcms: command
base. pc:

sync: update the

sync: update

inetd: intemet

/file for inetd (intemet

su: become

interval. sleep:

interval. sleep:

pause:

swap:
swab:

interface.

Protocol control/ slipd:
file.

STREAMS multiplexor. « .« .« o o o o . sxt(7)

STREAMS trace messages. - strace(1M)
strerr: STREAMSerrorlogger strerr{(1M)
string. /164a: convertbetweeno .. a641(3C)
string. /ascftime, tzsel: 0. . ctime(3C)
string. ffoev, govi:convert e .o .. ecvi(3C)
string. fgrep: o 0 e e e e e e e e e fgrep(1)
string, format of graphical/o .. gps(4)
string fromastream. o . . e e . s .. . s gets(3S)
SUANG ONASUTEAM. + « o « o o« o o & + o & « o =+ « puts(3S)
string operations. boopy, ¢ . .. 0. . bstring(3)
string operations. /strpbrk, L oL string(3C)
string to double-precision L ... strtod(3C)
SUANG LOINMEGET. .+ o« o + o o o o o o o o o s .. strtol(3C)
SLANES. & o v o o o s ot o o e e e e e e s cftime(4)
strings: extract the ASCIL strings(1)
strings inafile. strings: 0.0 L strings(1)
strings in Cprograms. ¢ . .o xstr(1)
strip: strip symbol andlineo .. strip(1)
strip symbol and linenumber L. . L strip(1)
strlen, stechr, strechr,/ - 0 0 L L . L 0 0 0 L L L string(3C)
stmcat, stremp, stmempy « . L 0 . 0 0 e e e e . . string(3C)
stmemp, Strcpy, Stmepy,/ o 0 . 0 e e e s a string(3C)
stmepy, strden, strchr/ L oL L L string(3C)
strpbrk, strspn, strespn,/ o . o . . L L . . string(3C)
strrchr, strpbrk, stespn/ . . . o 0 L o o 0 0 e . . string(3C)
strspn, strespn, stritok:/ L . . o . . . L L string(3C)
strtod, atof: convertstring o strtod(3C)
striok: string operations. ¢ ¢ 4 ¢ s e 4 o« o . string(3C)
strtol, atol, atoi: convert 0 0. . strtol(3C)
structure. fuser:identify o .. L fuser(1M)
SIMUCIUIE. . « =« « & o o o o = o o o o o o o o o & t_alloc(3n)
SIMUCIUTE. &+ v 4 & o o o o s o o o o o o o « o o« t_free(3n)
stty: settheoptionsfora stty(1)
su: become SUPEr-USeror o ¢ . e o s o0 o . su(1M)
subroutines. /store,delete, dbm(3X)
subroutines. /dbm_error, ndbm(3X)
SUDTOULINES. + + & ¢ v & o« v o ¢ o o s v o o o o o s plot(3X)
subsequent lines ofone file. paste(1)
sum: print checksum andblock sum(1)
summarize diskusage.0 0. .. du(IM)
summary from per-process acctems(1M)
Sun rpc program numberdata L pc(4)
superblock. 00 sync(1M)
superblock. o000 ... sync(2)
Super-server’. v v e e e e e e e e e inetd(1M)
“super-server’).o s e e . . inetd.conf(4)
super-user or anotheruser. su(1M)
suspend execution foran L0 L sleep(1)
suspend executionforo oL L sleep(3C)
suspend process until signal. pause(2)
swab:swapbytes. 0. swab(3C)
swap administrative interface. swap(1M)
swapbytes.o o000l swab(3C)
swap: swap administrative, swap(l1M)
switched Serial Line Intemet slipd(1M)
swrite: synchronous writeona swrite(2)
sxt: STREAMS multiplexor. sx(7)

- Ixviii -

e ———

information from/ strip: strip
file/ ldgetname: retrieve

name for common object file
object/ /compute the index of a
Idtbread: read an indexed
syms: common object file
object/ ldtbseek: seek to the
unistd: file header for

sdb:

common CTIX system terms and
mkdbsym: load

symbol table format.

fcorrect the time to allow
update: provide disk

t_sync:

select:

swrite:

interpreter) with C-like
definition.

error/ perror, ermo,
information.

requests.

perror, ermo, sys_errlist,
shutdown, halt: shut down
binary search a sorted

for common object file symbol
/compute the index of a symbol
file. /read an indexed symbol
common object file symbol
master device information
mnitab: mounted file system
1dtbseek: seek to the symbol
Jdtoc, ttoc, vtoc: graphical
remotely mounted file system
T/O Processor configuration
setmnt: establish mount
getdtablesize: get descriptor
classification and conversion
tbl: format

hdestroy: manage hash search
manipulate the routing

tabs: set

expand, unexpand: expand
request.

ctags: create a

a file.

talk:

communication server.
structure.

trigonometric/ trig: sin, cos,
sinh, cosh,

V/TAPE 3200 half-inch

set drive parameters for
information used/ tapedrives:
tsioctl: facilitate usage of a
Hewleut-Packard 2645A terminal

symbol and inepumber L0 strip(1)
symbol name forcommonobject ldgetname(3X)
symbol table entry. /symbol ldgetname(3X)
symbol table entry of acommon ldtbindex(3X)
symbol table entry of acommon/ 1dibread(3X)
symbol table format. syms(4)
symbol table of acommon 1dtbseek(3X)
symbolicconstants. unistd(4)
symbolicdebugger. L0000 sdb(1)
symbols. /definiionsof glossary(1)
symbols in kernel debugger. mkdbsym(1M)
syms: commonobjectfile, syms(4)
sync:update superblock. 0oL sync(2)
sync: update the superblock. sync(1M)
synchronzation of the system/ adjtime(2)
synchronization. update(1M)
synchronize transport library. t_sync(3n)
synchronous I/O multiplexing. select(2)
synchronous writeonafile. swrite(2)
syntax. csh: ashell command oL 0L csh(l)
sysdef: output system sysdef(1M)
sys_errlist, sys nemsystem perror(3C)
sysfs: getfilesystemtype sysfs(2)
syslocal: special system syslocal(2)
sys_nemr:systememor/04 a 0. .. perror(3C)
system, change system state. shutdown(1M)
table. bsearch: bsearch(3C)
table entry. /fsymbolname 1dgetname(3X)
table entry of a common object/ ldtbindex(3X)
table entry of a commonobject ldtbread(3X)
table format. syms: L0 L0 . 0L syms(4)
table. master: 0000 .. master(4)
wble. L. L. e e e mnttab(4)
table of a common object file. ldtbseek(3X)
table of contents routines. toc(1G)
table. rmtab: 000000 rmtab(4)
table. tab: Remote L. rtab(4)
table. . .. L. e e e e e e e e e e setmnt(1M)
tablesize. getdtablesize(2)
tables. /generate character chnbi(1M)
tables fornroffortroff. thi(1)
tables. hsearch,hcreate, hsearch(3C)
tables. route: manually route(1M)
tabsonaterminal. 0. .. tabs(1)
tabs to spaces,and vice/ expand(1)
t_accept: acceptaconnect 0. . t_accept(3n)
tagsfile. « . v ¢ v h o e e e e e e e e e ctags(l)
tail: deliver the lastpartof tail(1)
talk toanotheruser. L0000 talk(1)
talkd: remoteuser0 . .00 . talkd(1M)
t_alloc: allocate alibrary t_alloc(3n)
tan, asin, acos, atan, atan2: 0 e 4 o . trig(3M)
tanh: hyperbolic functions. sinh(3M)
tape controller. /Interphase ip(7)
tape controllers. tapeset: tapeset(1M)
tape drivespecific00 L tapedrives(4)
tapedrive. 0.0 ., tsioctl(1)
tape file archiver. hpio: hpio(1)

- Ixix -

i

tar:

recover files from a backup
tio:

gic: interface for QIC
quarter-inch and half-inch
specific information used by/
for tape controllers.

programs for simple lexical
transport endpoint.

deroff: remove nroffftroff,

or troff.

endpoint.

connection with another/
Control Protocol.

/hpd, erase, hardcopy, tekset,
search trees. tsearch, tfind,
terminal download.

gdev: hpd, erase, hardcopy,
4014: paginator for the
initialization. init,
directory: opendir, readdir,
telnetd: DARPA

telnet: user interface to
TELNET protocol.

server.

temporary file. tmpnam,
tmpfile: create a

tempnam: create a name for a
terminals.

term: format of compiled
terminfo/ captoinfo: convert a
data base.

for the Tektronix 4014
functions of the DASI 450
interface. tiop:

termcap:

terminfo:

console: console

ct: spawn getty to a remote
generate file name for

wdl, gdl, ptdl: RS-232
ferminal interface, and
greek: select

Jtgetstr, tgoto, tputs:
/manually start and stop
terminal/ tset: set terminal,
termio: general

tty: controlling

dial: establish an out-going
list of terminal types by
database. tput: initialize a
clear: clear

optimization package. curses:
script: make typescript of
geity. gettydefs: speed and
stty: set the options for a

tape filearchiver.o o0 tar(1)
tape. frec: 0 . e e e e e e e e e e e frec(1M)
tapeiofilter.o .o oo e tio(1)
12 23 qic(7)
tape. stape: SCSIo o 0o stape(7)
tapedrives: tapedrive oo .. tapedrives(4)
tapeset: set drive parameters tapeset(1M)
tar:tape filearchiver. oL tar(1)
tasks. lex: generate 0. .. lex(1)
t_bind: bind an addresstoa t_bind(3n)
tbl,and eqnconstructs. deroff(1)
tbl: format tables fornroff tbi(1)
t_close: closeatransport t_close(3n)
t_connect: establisha t_connect(3n)
tcp: Internet Transmissiono oL . tep(7)
td: graphical device routines/ gdev(1G)
tdelete, twalk: managebinary tsearch(3C)
Wl gudl,ptd: RS-232o oo di(1)
tee:pipefitting. 000 e .. tee(l)
tekset, 1d: graphical device/ gdev(1G)
Tektronix 4014terminal. 4014(1)
telinit: processcontrol oL o o0 init(1M)
telldir, seekdir, rewinddir,/ directory(3X)
TELNETprotocol server. + telnetd(1M)
TELNETprotocol. o v v v v o v o o 0 v s telnet(1)
telnet: userinterfaceto o 0 0 0. . . telnet(1)
telnetd: DARPA TELNET protocol telnetd(1M)
tempnam: create anamefora tmpnam(3S)
temporary file.00 oL tmpfile(3S)
temporary file. tmpnam, L. tmpnam(3S)
term: conventional namesfor term(5)
temfile. 0 0 s e e e e e e e e e e term(4)
termcap description intoa oo . captoinfo(1M)
termcap: terminal capability 0L L termcap(4)
terminal. 4014: paginator 4014(1)
terminal, 450: handle special 450(1)
terminal accelerator 0 0. . tiop(7)
terminal capability database. termcap(4)
terminal capability database. terminfo(4)
terminal. . . 0 L0 L 0 L 0 s e e e e e e e e console(7)
teminal. L L L L L e e e e e e e e e e ct(1C)
terminal. ctermid: L. .. 0oL L. ctermid(3S)
terminaldownload. tdl(1)
terminal environment. 0 0 . e e e e tset(1)
terminal filter. 00000 0. greek(1)
terminal independent/ L. otermcap(3X)
terminal input andoutput. rsterm(1M)
terminal interface,and L tset(1)
terminal interface. termio(7)
terminal interface. L. .00 0L 0 .. tty(7)
terminal line connection. dial(3C)
terminal number. ttytype: L. ttytype(4)
teminal orquery teminfo L. L L L. . tput(1)
terminal SCTEEN. . . + + & 4 & + o ¢ e 4 4 e e w .. . clear(l)
terminal screen handlingand curses(3X)
terminal SESSION. v e e e e e e e script(1)
terminal settingsusedby L. gettydefs(4)
terminal. . . . L L L L L L e e e e e e e e e e stty(1)

- Ixx -

tabs: set tabs on a

hpio: Hewlett-Packard 2645A
and terminal/ tset: set
system/ conlocate: locate a
tty: get the name of the
isatty: find name of a

and line/ getty: set

and line/ uugetty: set
number. ttytype: list of

vt: virual

functions of DASI 300 and 300s
functions of Hewleu-Packard
channels. tp: controlling
term: conventional names for
kill:

exit, _exit:

demon. errstop:

for child process to stop or
tic:

initialize a terminal or query
a termcap description into 8
infocmp: compare or print out
data base.

interface.

Jof common CTIX system
message.

command.

isnan: isnand, isnanf:

quiz:

ed, red:

ex:

casual users). edit:

change the format of a

fspec: format specification in
/checkeq: format mathematical
prepare constant-width

ms:

nroff: format

plock: lock process,

more, page:

strings: extract the ASCII
wroif: typeset

binary search trees. tsearch,
structure.

user interface to the DARPA
DARPA TFTP protocol.
Transfer Protocol server.
tgetstr, tgoto, tputs:/

tputs:/ tgetent, tgetnum,
protocol-speci fic service/
tgoto, tputs:/ tgetent,

state,

tgetent, tgetnum, tgetflag,
figetnum, tgetflag, tgetstr,

tt, cubic:
data and system/ timex:
time:

terminal. L . . o a e e e e e e e e e tabs(1)

terminal tape file archiver. hpio(1)
terminal, terminal interface, tset(1)
terminal touse asthevirnal conlocate(1M)
terminal. e e e e e e e e e e e e e e e e . try(1)
terminal. tyname, L. ttyname(3C)
terminal type, modes, speed, geny(1M)
terminal type, modes, speed, vugetty(1M)
terminal types by terminal L L .. ttytype(4)
terminal. . . . L L L L Lo e e s e e e e e e e vt(7)
terminals. /handle special 0L L 300(1)
terminals. hp: handle special oL L. hp(1)
terminal’slocal RS-232 tp(7)
teminals, . . . L . . s e e e e e e e e e e e e e term(S)
1EImMiNAte APrOCESS. « o o v o o o o o 4 o o o 0 4 0 0 s kill(1)
terminate Process. .« « « « + + x4 s 4 e b e w4 e s . exit(2)
terminate the error-logging errstop(1M)
terminate. wait: wait 0 4 wait(2)
terminfo compiler. 0L L0000, tic(1M)
terminfo database. tput: tput(1)
terminfo description. fconvert captoinfo(1M)
terminfo descriptions. o 000 . . infocmp(1M)
terminfo: terminal capability terminfo(4)
termio: general terminal L . L . L L termio(7)
termsand symbols. L. glossary(1)
t_error:produceerror 00 4 o0 . o. . t_error(3n)
test: condition evaluation test(1)
test for floating point NaN/ isnan(3C)
testyourknowledge.00 quiz(6)
eXteditof. « . . ¢ v v v v e e e e e e e e e e e s ed(l)
texteditor. . . v v 4 4 v . e e e e e e e e e e e e e ex(1)
text editor (variantofexfor edit(1)
textfile. newform: 000 0o newform(1)
textfiles. ¢ . L. e e e e e e e e e e fspec(4)
text fornroffortroff. o000 eqn(l)
text fortroff. cw,checkew: L L. cw(l)
text formatting macros. o . . . 0 ms(5)
175 nroff(1)
text, ordatainmemory. ¢ . e o4 e ... plock(2)
textperusal. L. Lo more(1)
textstringsmafile., strings(1)
BBXL v v v v e e e e e e e e e e e e e e e e e e e troff(1)
ifind, tdelete, twalk: manage tsearch(3C)
t_free: freealibrary t_free(3n)
TFTPprotocol. tftp:« . . o o .. tftp(1)
tftp: userinterfacetothe L tfip(1)
ifipd: DARPA Trivial File tftpd(1M)
tgetent, tgetnum, tgetflag, L. otermeap(3X)
1getflag, tgetstr, tgoto, otermcap(3X)
tgetinfo: get 0l v e e t_getinfo(3n)
tgetnum, tgetflag, tgetstr, otermcap(3X)
t_getstate: getthecurrent t_getstate(3)
tgetstr, tgoto, tputs:/ otermcap(3X)
tgoto, tputs: terminal/ L L. ... otermcap(3X)
tic: terminfocompiler. L .00 L tic(1M)
HCHACTOB, + & v o o o o o o v o s o o o o o o o o s o t(6)
time a command; TepOrt process timex(1)
timeacommand. 4 4 e v e e e e e time(1)

- Ixxi -

execute commands at a later
a C shell environment at login
systems for optimal access

settimeofday: get/set date and
profil: execution

up an environment at login
stime: set

time: get

of the/ adjtime: correct the
tzset: convert date and

clock: report CPU

timezone: set default system
process times.

update access and modification
get process and child process
file access and modification
process data and system/

time zone.

cooperating STREAMS module.

interface.

read/wnte interface STREAMS/
request.

event on a transport/

file.

for a temporary file.

fisascii, tolower, toupper,
ftolower, _toupper, _tolower,
graphical table of contents/
popen, pclose: initiate pipe
froupper, tolower, _toupper,
tolower, toupper, toascci,
toascii:/ conv: toupper,
compare shared libraries
endpoint.

tsort:

a transport endpoint.
acctmerg: merge or add
modification times of a file.
houpper, toascci, _tolower,
conv: toupper, tolower,
local RS-232 channels.

query terminfo database.
Igetflag, tgetstr, tgoto,

strace: print STREAMS
ptrace: process

error logging and event

ftp: ARPANET file

fipd: DARPA Intemet File
tftpd: DARPA Trivial File
/_toupper, _tolower, toascii:
tr:

tep: Intemet

1_bind: bind an address to a
t_close: close a

time. at,batch: o 0oL at(1)
time. cprofile: settingup cprofile(4)
time. deopy: copyfile dcopy(1M)
tme: getUmE. . + « « « « v e s x e e s e e e e time(2)
time. gettimeofday, gettimeofday(2)
tmeprofile.o profil(2)
time. profile: semting profile(4)
HME. « v v v e v v v e e e e e e e e e e e e e e stime(2)
HME. » ¢ v v o v v o o o b s e h e e e e e e e time(2)
time to allow synchronization adjtime(2)
time to string. fascftime, ctime(3C)
timeused. . « & ¢ 4 4 e 4 s s e e e e e e e e e clock(3C)
HME ZONE. .« « « « o o o « « = & & =« = s s s &+ » timezone(4)
times: getprocessand child oL times(2)
times ofafile. touch: 0. touch(1)
HMES. HMES: + o & & o o s o = o o o o o & 0 0 oa times(2)
times. UHME: SEL . & & o o « o o o o o o o o o 0 0 s utime(2)
timex: time acommand; report . . . <o . . timex(1)
timezone: set default system timezone(4)
timod: Transport Interface timod(7)
tio: tapeiofilter. oo oo e tio(1)
tiop: terminal accelerator o ... tiop(7)
tirdwr: Transport Interface tirdwr(7)
t_listen: listen foraconnect t_listen(3n)
t_look: look atthecurrent t_look(3n)
tmpfile: create atemporary tmpfile(3S)
tmpnam, tempnam: create aname tmpnam(3S)
toascci, _tolower, _toupper,/ ctype(3C)
toascii: translate characters. conv(3C)
10C: dtOC, HOC, VIO « « o 4 « o o o o o & o o o o o o toc(1G)
to/from aprocess. 0 e e e 00 0 e e . s popen(3S)
_tolower, toascii: translate/ conv(3C)
_tolower, _toupper,/ fisascii, ctype(3C)
tolower, _toupper, _tolower, conv(3C)
tool. chkshlib: chkshlib(1)
t_open: establish atranspont t_open(3n)
topological sort. ¢ .. 00 0. .. tsort(1)
t_optmgmt: manageoptions for t_optmgmt(3n)
total accounting files. L. acctmerg(1M)
touch: update accessand L. 0L touch(1)
_toupper, setchrclass:/o oL ctype(3C)
_toupper, _tolower, toascii:/ 0. .. conv(3C)
tp: controlling terminal’s L L. L. L, tp(7)
tplot: graphics filters. 0L 0L tplot(1G)
tput: initialize aterminalor tput(1)
tputs: terminal independent/ oL otermcap(3X)
tr: translate characters. 000 tr(1)
LFACEMESSARES. « o « + o & + o o ¢ o o o o o o s strace(1M)
IFACE. + + & o 4 o o o o o o o v o o 0 0 o s ... ptrace(2)
tracing. finterface to STREAMS log(7)
transferprogram. 0000000 . ftp(1)
Transfer Protocol server. fipd(1M)
Transfer Protocol server. tftpd(1M)
translate characters. conv(3C)
translate characters. 0. .. tr(1)
Transmission Control Protocol. tep(7)
transportendpoint. ¢ o . 4004 .. t_bind(3n)
transportendpoint. 0 000 . .. t_close(3n)

- Ixxii -

look at the current event on a
t_open: establish a

/manage options for a
t_unbind: disable a
cooperating STREAMS/ timod:
interface STREAMS/ tirdwr:
t_sync: synchronize

system. uucico: file
nisprovider: get name of

a connection with another
expedited data sent over a/
confirmation from a connect/
from disconnect.

of an orderly release/

unit.

data error indication.

ftw: walk a file

twalk: manage binary search
trk:

tan, asin, acos, atan, atan2:
server. tftpd: DARPA

constant-width text for
mathematical text for nroff or
typesetting view graphs/ mv: a
format tables for nroff or

true, false: provide

with debugging on. Uutry:
twalk: manage binary search/
interface, and terminal/

tape drive.

data over a connection.
disconnect request.

release.

library.
contents routines. toc: dtoc,

interface.

terminal.

a terminal.

utmp file of the current/
types by terminal number.
endpoint.

/runacct, shutacct, startup,
tsearch, tfind, tdelete,

file: determine file

sysfs: get file system

getty: set terminal

uugetty: set terminal
ttytype: list of terminal
nodes for assorted device
types.

types: primitive system data
session. script: make
graphs, and slides. mmt, mvt:

transport endpoint. t_Jook: L. t_look(3n)
transportendpoint. t_open(3n)
transportendpoint. t_optmgmt(3n)
transportendpoint.00 0. . t_unbind(3n)
Transport Interface timod(7)
Transport Interface read/write tirdwr(7)
transport library. 000 t_sync(3n)
transport program forthewucp L .. uncico(1M)
transport provider. nlsprovider(3n)
transport user. festablish o0 t_connect(3n)
trevireceivedataor v 4w v h e e e e s t_rcv(3n)
t_rcvconnect: receivethe L t_rcveonnect(3)
t_rcvdis: retrieve information t_rcvdis(3n)
t_rcvrel: acknowledge receipt t_rcvrel(3n)
t_rcvudata: receiveadata t_rcvudata(3)
t_rcvuderr: receiveaunit t_rcvuderr(3)
WEE. & v v v v o v s e s e e e e e e e e e e fiw(3C)
trees. Afind, tdelete, 0L tsearch(3C)
trekkie game. 0 . . . h e e e e e e e e e e trk(6)
trigonometric functions. fcos, trig(3M)
Trivial File Transfer Protocol tftpd(1M)
wk:trekkiegame.00 trK(6)
troff. cw, checkew: prepare L. L cw(l)
troff. /neqn, checkeq: format L. L. L. L, eqn(1)
troff macropackagefor mv(5)
woff. tbl: e e e e e e e e e e e e tbi(1)
troff: typeset text.00 e .. troff(1)
truthvalues.00 e . true(l)
try tocontact aremote system Uutry(1M)
tsearch, tfind, tdelete, tsearch(3C)
tset: set tepminal, terminal L L 0 L L 0L . tset(1)
tsioctl: facilitate wsageofa 1siocti(l)
t_snd: send data orexpedited t_snd(3n)
t_snddis: send user-initiated t_snddis(3n)
t_sndrel: initiate anordelly t_sndrel(3n)
1_sndudata: send adataunit., . t_sndudata(3)
tsort: topological sort. L. ... tsort(1)
t_sync: synchronize transport t_sync(3n)
ttoc, vtoc: graphical tableof toc(1G)
u, cubic: lictactoe. v 4 e e e e e e e e 1(6)
tty: controlling terminal L. tty(7)
tty: getthenameofthe ty(1)
ttyname, isatty: findnameof ttyname(3C)
ttyslot: find the slotinthe ttyslot(3C)
uytype: listofterminal L ttytype(4)
t_unbind: disable atransport t_unbind(3n)
tumacct: shell procedures for/ acctsh(1M)
twalk: manage binary search/ tsearch(3C)
137 o file(1)
typeinformation. 00000 e 0. sysfs(2)
type, modes, speed, and line/ getty(1M)
type, modes, speed, and line/ uugetty(1M)
types by teminal number. L ttytype(4)
types. /createdevice createdev(1M)
types: primitive systemdata types(5)
3 = 2 types(5)
typescript ofterminal script(1)
typeset documents, VIEW o v 4 e s e e 0 e . mmt(1)

- Ixxiii -

troff:

mv: a troff macro package for
to/ /asctime, cftime, ascftime,
control.

control.

system.

Protocol.

getpw: get name from

fendspent, fgetspent, lIckpwdf,
limits.

creation mask.

mask.

systems and remote/ mount,

multiple file/ mountall,
File Sharing resource.
Sharing resource. unadv:
CTIX system.

CTIX system.

ul: do

file. unget:

spaces, and vice/ expand,
an SCCS file.

into input stream.

/seed48, Icong48: generate
a file.

mktemp: make a
gethostid, sethostid: get/set
symbolic constants.
t_rcvuderr: receive a
t_rcvudata: receive a data
t_sndudata: send a data

mc68k, miti, mini, mega,
execution. uux:

uucp, uulog, uuname:

uuto, uupick: public

link, unlink: link and

entry.

umount:

mount, umount: mount and
mountall, umountall: mount,
nmountall, numountall: mount,
resource. fumount: forced
rmountall, rumountall: mount,
manage notifications. notify,
files. pack, peat,

times of a file. touch:

of programs. make: maintain,
pwconv: instail and
pwunconv: install and

1find: linear search and
synchronization.

sync:

masterupd:

sync:

du: summarize disk

typeset teXL. e 4 . e e e e e s e e e e troff(1)

typesetting view graphsand/ mv(5)
tzset: convertdateandtime ctime(3C)
vadmin: administrative o0 e . uadmin(1M)
uadmin: administrative uadmin(2)
uconf: configure the operating uconf(1M)
udp: Intemet UserDatagram udp(7)
UID. . .t e i e e e e e e e e e e e e e e e e getpw(3C)
ulidounderdining.0 . 000 ul(1)
ulckpwdf: get shadow. getspent(3X)
ulimit: get and setuser - o 0 4oL ulimit(2)
umask: setandgetfile umask(2)
umask: set filecreationmode umask(1)
umount: mount and unmount file mount(1M)
umount: unmount a file system. umount(2)
umountall: mount,unmount mountall{(1M)

unadv: unadvertise aRemote unadv(1M)
unadvertise aRemote File unadv(1M)
uname: get nameof current uname(2)
uname: print name of current uname(1)
underlining. 0 e o e e e e e e e e e ul(1)
undo aprevious getofanSCCS unget(1)
unexpand: expandtabsto o ... expand(1)
unget: undoapreviousgetof L unget(1)
ungetc: push characterback ungetc(3S)

uniformly distributed/ drand48(3C)
uniq: report repeated linesin unig(1)
unique filename.00 0 ... mktemp(3C)
unique identifierof current/ gethostid(2)
unistd: file headerfor00 unistd(4)
unit data errorindication. t_rcvuderr(3)

UL . o e e e e e e e e e e e e e e e t_rcvudata(3)
UL o 0 0 v o b e e e e e e e e e e e e e e t_sndudata(3)
units: CONVErsion program. « « o + « « « « + & units(1)

unixpc,. machid: o000 oL machid(1)
UNIX-to-UNIX system command uux(1C)
UNIX-to-UNIX system copy. . « « « « + « « « = + . uucp(1C)
UNIX-to-UNIX system filecopy. uuto(1C)

unlink files and directories. link(1M)
unlink: remove directory L 0. L. unlink(2)
unmount afilesystem. 0oL umount(2)

unmount file systemsand/ mount(1M)
unmount multiple file systems. mountall(1M)
unmount Network File System/ nmountall(1M)
unmount of an advertised fumount(1M)
unmount Remote File Sharing/ mountall(1M)
unnotify, evwait, evnowait: notify(2)
unpack: compressandexpand L. pack(l)
update access and modification touch(l)
update, and regenerate groups make(1)
update /etc/shadow with/ pweonv(1M)
update fetc/shadow with/ pwunconv(1M)

update. lsearch,00 0L 1search(3C)
update: providedisk 0L update(1M)
update superblock.00 L. sync(2)
update the masterfile. masterupd(1M)
update the superblock. sync(1M)
USABE. « o = ¢ « o o b e e e e e e e e e e e e . du(1M)

- Ixxiv -

a command description and
tsioctl: facilitate

description and usage/

stat: statistical network

id: print

setuid, setgid: set

idload: Remote File Sharing
talkd: remote

crontab:

character login name of the
udp: Internet

/gergid, getegid: get real
environ:

disk accounting data by
program. finger:

fingerd: remote

protocol. telnet:

TFTP protocol. tftp:

ulimit: get and set

logname: return login name of
/get real user, effective
become super-user or another
iajk: taik 10 another

with another transport

the uimp file of the current
write: write to another
request. t_snddis: send
(variant of ex for casual

mail, mail: send mail 10
rhosts: remote equivalent
operating system for beginning
wall: write to all

fuser: identify processes
search a file for a pattern
identify 2 CTIX system command
assist: assistance

finstall and verify software
failed login attempts.
statistics.

gutil: graphical

modification times.

uimp, wimp:

endutent, utmpname: access
ttyslot: find the siot in the
/pututline, setutent, endutent,
directories and permissions/
for the uucp system.
directory clean-up.
Jconfiguration file for
uucheck: check the

uucpd, ouucpd: network
uucleanup:

control. uustat:

file transport program for the
uusched: the scheduler for the
UNIX-10-UNIX system copy.
servers.

modes, speed, and line/

usage examples. fretieve usage(l)
usage ofatapedrive., tsioctl(1)
usage: retrieveacommand L L L L L. usage(1)
useful with graphical/ stat(1G)
user and group IDsand pames. id(1M)
userandgroupDs. L L. L setuid(2)
user and group mapping. . . « . . .« .. 4. .. . idload(1M)
user COMmunication Server. . . . « . . .+ « « « « & . talkd(1M)
usercrontabfile. 0000 crontab(1)
user. cuseridiget00 .. cusenid(3S)
User Datagram Protocol. udp(7)
user, effectiveuser,real/ L L getuid(2)
USET enVIIONMENt. . .« . & & v 4 4 . . 4 4 e environ(5)
user ID. diskusg: generate diskusg(1M)
user informationlookup L. finger(1)
user information SEIVer. « . + . . 4 . 4 o4 . o4 . 4 fingerd(1M)
user interface to TELNET telnet(1)
user interffacetothe DARPA tftp(1)
wserlimits.00 oL ulimit(2)
USEL. & v v 4 v o o 4t e e e e e e e e e e logname(3X)
user, real group,and/ oL ... getid(2)
USEL. SUD o o+ o o o « o o & o s o o s s e 4 4 e e su(1M)
USEE. & v v v o o o s s o & 4 v e e e e e e tatk(1)
user. /establish aconnection t_connect(3n)
user. findtheslotin ttyslot(3C)
USET. & v v o v o o o 4 v o o 4 e e e e e e e e write(1)
user-initiated disconnect, t_snddis(3n)
users). edit: texteditor L0 0. . edit(l)
usersorreadmail. 00 L e e e mail(1)
USETS. + o o o o o o o o o o o o o « o o o 0 o 0 rhosts(4)
users. /information aboutthe, . .. starter(1)
USEES. &+ v & o o s v o v v e b e e e e e e e e e e wall(1)
using afileorfile/ fuser(1M)
using full regular/ egrep:, egrep(l)
using keywords. locate: 0. locate(1)
using CTIX system commands. assist(1)
using the mkfs(1)protofile/ qinstali(1)
fust/admfloginlog: logof loginlog(4)
ustat: getfilesystem L. ..., ustat(2)
utilities. L . e i e e e e e e e e e e e gutil(1G)
utime: setfileaccessand utime(2)
utmp and wtmp entry formats. utmp(4)
utmp file entry. /setutent, gett(3C)
utmp file of the currentuser. tyslot(3C)
utmpname: accessutmp file/ getut(3C)
uucheck: checktheuucp uucheck(1M)
uucico: file transport program uucico(1M)
uucleanup: uucpspoolo L L, uucleanup(1M)
uucp communications lines. Devices(5)
uucp directories and/ uucheck(1M)
UUCP SEIVETS. « v o & v o v o o v o o o o o o o o uucpd(1M)
uucp spool directory clean-up. uucleanup(1M)
uucp status inquiry andjob L L. L vustat(1C)
UUCP SYSIEM. BUCICO: + = v+ v v o 0w e e e uucico(1M)
UUCPsystem. o v v v v v v uusched(1M)
uucp, UUlOg, UUNAME: . + . « & & « o =+ 4 uucp(1C)
uwicpd, ovucpd: natworkuuep . . . L L L L . L L uucpd(1M)
uugetty: setterminaltype, uugenty(1M)

- Ixxv -

system copy. uucp,

copy. uucp, uulog,

system file copy. uuto,
UUCP system.

and job control.
UNIX-10-UNIX system file/
system with debugging on.
command execution.
requests.

val:

abs: retumn integer absolute
getenv: retum

ceiling, remainder, absolute
putenv: change or add
/hions, ntohl, ntohs: convert
values.

true, false: provide truth
values: machine-dependent
fprint formatted output of a
argument list.

varargs: handle

users). edit: text editor

option letter from argument
assert:

mkfs(1)/ qinstall: install and
tabs to spaces, and vice

ve:

get: get a

sccsdiff: compare two
formatted output of/ vprintf,
manipulate Volume Home Blocks
display editor based on ex.
expand tabs to spaces, and
mmt, mvt: typeset documents,
macro package for typesetting
/a terminal to use as the

vt

on ex. vi: screen-oriented
vme:

file system.

file system: format of system
libdev: manipulate

iv: initialize and maintain
print formatted output of a/

ipt: interface for Interphase
contents/ toc: dtoc, ttoc,
process.

or terminate. wait:

fw:

signal. signal: specify
whodo:

network. rwho:

who:

uulog, uuname: UNIX410-UNIX uacp(1C)

uuname: UNIX-to-UNIX system uucp(1C)
uupick: public UNIX4to-UNIX uuto(1C)
uusched: the schedulerforthe uusched(1M)
uustal: uuCp status INQUITY . . .« .+ . . o e . . . e . uustat(1C)
wuto, wupick: publico L uuto(1C)
Uutry: trytocontactaremote . . . « « « « « « « « « Uutry(1M)
uux: UNIX-10-UNIXsystem « « « uux(1C)
uuxgt: execute remote command L. uuxqt(1M)
validate SCCSfile.« « o o o o v .. val(1)
value. e e e e e e e e e e e e e e e e abs(3C)
value forenvironmentname. getenv(3C)
value functions. ffabs:floor, floor(3M)
valuetoenvironment. . . « « ¢ « « « s 4 putenv(3C)
values between hostand/ « . . . byteorder(3)
values: machine-dependent values(5)
vallles, © . . . o e e e e e e e e e e e e e e e e . true(l)
values. h e e e e e e e e e e e e e e e values(5)
varargsargument list. 0 o . o o0 vprintf(3S)
varargs: handle variable00 0L varargs(5)
variable argument list. L. varargs(5)
(variant ofex forcasual edit(l)
veversioncontrol. L . 0 0 e e h e e e e e e ve(l)
VECIOT. BEIOPL: BEL & v « o v 4 . 4 4 e e o4 e . s getopt(3C)
verify program assertion. ¢ o .o . . assert(3X)
verify softwareusingthe o .. L. qinstall(1)
versa. funexpand:expand0 ... expand(1)
versioncontrol. - . e s e e e e e e e e e e . ve(l)
versionof an SCCSfile. get(1)
versions of anSCCSfile. scesdiff(1)
viprintf, vsprintf: print oL 0L, vprintf(3S)
(VHB). libdev:o v oo libdev(3X)
vi: screen-oriented (visual) vi(l)
vice versa. expand, unexpand: expand(1)
view graphs,andslides. oL mmt(1)
view graphs and slides. froff L. mv(5)
virtual systemconsole. L. conlocate(1M)
virual terminal. 0 0. e vi(7)
(visual) display editorbased vi(l)
VMEbus interfface. 0 0 0 0. . .. vme(7)
volcopy: make literal copyof volcopy(1M)
volume. £3: . . v v v e e e e e e e e e e e e e e e e fs(4)
Volume Home Blocks (VHB). libdev(3X)
volume. G e e h e e e e e e e iv(l)
vprintf, viprintf, vsprintf: 0. L. vprintf(3S)
vt:virtual terminal. L 0L o 0 0 oL 0L oL wi(7)
V/TAPE 3200 half-inchtape/ ipt(7)
vtoc: graphicaltableof toc(1G)
wait: await completionof L L oL L wait(1)
wait for child processtostop Lo L L. wait(2)
walkafiletree. o000 ftw(3C)
wall: writetoallusers. wall(1)
we:wordCount. . v . . . v e e e e e e e e e e e wc(l)
what: identify SCCSfiles. what(1)
whattodoupon receiptofa signal(2)
whoisdoingwhat. whodo(1M)
whoisloggedinonlocal rwho(1)
whoisonthesystem. who(1)

- Ixxvi -

whodo: whoisdoing what. whodo(1M)

fold long lines for finite width output device. fold: fold(1)
window: window management primitives. window (7)

wm: windowmanagement. wm(l)

primitives. window: window management window(7)

wm: window management. wm(1)

cd: change working directory. 0. .. cd(1)

chdir: change working directory., chdir(2)

get path-name of current working directory. getewd: getewd(3C)
pwd: working directory name. oL L., pwd(l)

swrite: synchronous writeonafile. 000 swrite(2)
write: writteonafile. 0000 write(2)

putpwent: write password fileentry. putpwent(3C)

entry. putspent: write shadow passwordfile putspent(3X)

wall: writetoallusers. L0000 wall(1)

write: write t0 anOther user. . . . « o = « « « ¢ o 4 4 . . . write(1)

write; writeonafile.00 0L write(2)

open: open forreading or WHLNG.« .+ « 4 ¢ 4 4 0 4 4 w4 e 4 e e ... open(2)
utmp, wimp: utmp and wtmpentry formats. L0 L. utmp(4)
acoounting records. fwtmp, wtmpfix: manipulate connect fwtmp(1M)
hunt-the-wumpus. wump: thegameof wump(6)

list(s) and execute command. Xxargs: constructargument o xargs(1)
strings in C programs. xstr:extractandshare, xstr(1)
bessel: j0, j1, m, yO,yl, yn: Bessel functions. bessel(3M)

bessel: jO, j1,jn, yO, yl,yn: Bessel functions. bessel(3M)
compiler-compiler. yacc: yetanother, yace(1)
bessel: jO, j1, jn, y0,y1, yn:Besselfunctions. bessel(3M)
set default system time zone. imezonNe: « « « + + 4 4 4. . . . timezone(4)

- Ixxvii -

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes the system calls, most of which have one or more error
returns. An error condition is indicated by an otherwise impossible returned
value. This is almost always -1 or the NULL pointer; the individual descriptions
specify the details. An error number is also made available in the external
variable errno. Errno is not cleared on successful calls, so it should be tested
only after an error has been indicated.

Each system call description attempts to list all possible error numbers. The

mha A ¢h ne g Aaficad I
F"""‘“""‘g isa ccmp!etc list of the error numbers and their namcs as defined in

<errno.h>.

1 EPERM Not owner or super-user

Typically this error indicates an attempt to modify a file in some way
forbidden except to its owner or super-user. It is also returned for
attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory

This error occurs when a file name is specified and the file should exist
but doesn’t, or when one of the directories in a path name does not

exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in
kill(2) or ptrace(2).

4 EINTR Interrupted system call

An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the interrupted
system call returned this error condition.

5 EIO 1/O error

Some physical I/O ermror has occurred. This error may in some cases
occur on a call following the one to which it actually applies.

INTRO(2)

10

11

12

INTRO(2)

ENXIO No such device or address

1/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for example,
a tape drive is not on-line or no disk pack is loaded on a drive.

E2BIG Arg list too long

An argument list longer than 5,120 bytes is presented to a member of
the exec (2) family.

ENOEXEC Exec format error

A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number [see
a.out(4)).

EBADF Bad file number

Either a file descriptor refers to no open file, or a read(2) [write(2)]
request is made to a file which is open only for writing (respectively,
reading).

ECHILD No child processes

A wait was executed by a process that had no existing or unwaited- for
child processes.

EAGAIN No more processes

A fork failed because the system’s process table is full or the user is not
allowed to create any more processes, a system call failed because of
insufficient memory or swap space, or an IPC call is made with the
IPC_NOWAIT and the caller would block.

ENOMEM Not enough space

During an exec(2), brk(2), or sbrk(2), a program asks for more space
than the system is able to supply. This may not be a temporary
condition; the maximum space size is a system parameter. The error
may also occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not enough
swap space during a fork(2). If this error occurs on a resource
associated with Remote File Sharing (RFS), it indicates a memory
depletion which may be temporary, dependent on system activity at
the time the call was invoked.

INTRO(2)

13

14

15

16

17

18

19

20

21

INTRO(2)

EACCES Permission denied

An attempt was made to access a file or an IPC structure in a way
forbidden by the protection system.

EFAULT Bad address

The system encountered a hardware fault in attempting to use an
argument of a system call.

ENOTBLK Block device required

A non-block file was mentioned where a block device was required:
for example, in mount(2).

EBUSY Device or resource busy

An attempt was made to mount a device that was already mounted or
an attempt was made to dismount a device on which there is an active
file (open file, current directory, mounted-on file, active text segment).
It will also occur if an attempt is made to enable accounting when it is
already enabled. The device or resource is currently unavailable.

EEXIST File exists

An existing file was mentioned in an inappropriate context: for
example, link(2).

EXDEV Cross-device link
A link to a file on another device was attempted.
ENODEV No such device

An attempt was made to apply an inappropriate system call to a
device: for example, read a write-only device.

ENOTDIR Not a directory

A non-directory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(2).

EISDIR Is a directory

An attempt was made to write on a directory.

INTRO(2)

22

23

24

25

26

27

28

29

30

INTRO(2)

EINVAL Invalid argument

Some invalid argument [for example, dismounting a non-mounted
device; mentioning an undefined signal in signal(2) or kili(2); reading
or writing a file for which Iseek(2) has generated a negative pointer].
Also set by the math functions described in the (3M) entries of this
manual.

ENFILE File table overflow

The system file table is full, and temporarily no more opens can be
accepted.

EMFILE Too many open files

No process may have more than NOFILES (default 20) descriptors open
at a time. When a record lock is being created with fcnil, there are too
many files with record locks on them.

ENOTTY Not a character device (or) Not a typewriter

An attempt was made to ioctl(2) a file that is not a special character
device.

ETXTBSY Text file busy

An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or to
remove a pure- procedure program that is being executed.

EFBIG File too large

The size of a file exceeded the maximum file size or ULIMIT [see

ulimii (2)].
ENOSPC No space left on device

During a write(2) to an ordinary file, there is no free space left on the
device. In anIPC call, no IPC identifiers are available.

ESPIPE Illegal seek
An Iseek(2) was issued to a pipe.
EROFS Read-only file system

An attempt to modify a file or directory was made on a device
mounted read-only.

INTRO(2)

31

32

33

34

35

36

37

38

39

41

INTRO(2)

EMLINK Too many links

An attempt to make more than the maximum number of links (1000) to
afile.

EPIPE Broken pipe

A write on a pipe for which there is no process to read the data. This
condition normally generates a signal; the error is returned if the signal
is ignored.

EDOM Math argument

The argument of a function in the math package (3M) is out of the
domain of the function.

ERANGE Result too large

The value of a function in the math package (3M) is not representable
within machine precision.

ENOMSG No message of desired type

An attempt was made to receive a message of a type that does not exist
on the specified message queue [see msgop(2)].

EIDRM Identifier removed

This error is returned to processes that resume execution due to the
removal of an identifier from the file system’s name space [see
msgctl (2), semctl(2), and shmctl (2)].

ECHRNG Channel number out of range
Not used; retained for compatibility.
EL2NSYNC Level 2 not synchronized
Not used; retained for compatibility.
EL3HALT Level 3 halted

Not used; retained for compatibility.
EL3RST Level 3 reset

Not used; retained for compatibility.
ELNRNG Link number out of range
Not used; retained for compatibility.

INTRO(2)

42

43

45

50

51

52

53

54

55

INTRO(2)

EVNATCH Protocol driver not attached
Not used; retained for compatibility.
ENOCSI No CSI structure available
Not used; retained for compatibility.
EL2HLT Level 2 halted

Not used; retained for compatibility.
EDEADLK Deadlock

A deadlock situation was detected and avoided. This error pertains to
file and record locking provided by fcntl (2).

ENOLCK No lock

In fcntl(2), the setting or removing of record locks on a file cannot be
accomplished because there are no more record entries left on the
system.

EBADE Invalid exchange

A user-specified exchange descriptor is out of range or specifies an
unallocated exchange.

EBADR Invalid request descriptor

An attempt has been made to reference a request that is not
outstanding.

EXFULL Exchange full

No request descriptors are currently available for this exchange.
ENOANO No anode

Not used; retained for compatibility.

EBADRQC Invalid request code

No routing is currently available for this request code.
EBADSLT Invalid slot

The slot number specified for an ICC request is not present in the
system. (No longer used; retained for compatibility.)

INTRO(2)

56

57

60

62

63

64

65

66

67

INTRO(2)

EDEADLOCK Deadlock error

Call cannot be honored because of potential deadlock or because lock
table is full. [Note that this return value is associated with locking (2)
and differs from the EDEADLK of fcntl(2); see the WARNING on
locking (2).]

EBFONT Bad font file format
Not used; retained for compatibility.
ENOSTR Not a stream

A putmsg(2) or getmsg(2) system call was attempted on a file
descriptor that is not a STREAMS device.

ETIME Stream ioctl timeout

The timer set for a STREAMS ioctl(2) call has expired. The cause of
this error is device specific and could indicate either a hardware or
software failure, or perhaps a timeout value that is too short for the
specific operation. The status of the ioctl(2) operation is
indeterminate.

ENOSR No stream resources

During a STREAMS open(2), either no STREAMS queues or no
STREAMS head data structures were available.

ENONET Machine is not on the network

This error is Remote File Sharing (RFS) specific. It occurs when users
try to advertise, unadvertise, mount, or unmount remote resources
while the machine has not done the proper startup to connect to the
network.

ENOPKG No package

This error occurs when users attempt to use a system call from a
package which has not been installed.

EREMOTE Resource is remote

This error is RFS specific. It occurs when users try to advertise a
resource which is not on the local machine, or try to mount/unmount a
device (or pathname) that is on a remote machine.

ENOLINK Virtual circuit is gone

This error is RFS specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

-7-

INTRO(2)

68

69

70

7

74

77

83

84

INTRO(2)

EADV Advertise error

This error is RFS specific. It occurs when users try to advertise a
resource which has been advertised already, or try to stop the RFS
while there are resources still advertised, or try to force unmount a
resource when it is still advertised.

ESRMNT Srmount error

This error is RFS specific. It occurs when users try to stop RFS while
there are resources still mounted by remote machines.

ECOMM Communication error

This error is RFS specific. It occurs when trying to send messages to
remote machines but no virtual circuit can be found.

EPROTO Protocol error

Some protocol emror occurred. This error is device specific, but is
generally not related to a hardware failure.

EMULTIHOP Multihop attempted

This error is RFS specific. It occurs when users try to access remote
resources which are not directly accessible.

EBADMSG Bad message

During a read(2), getmsg(2), or ioctl(2) I_RECVFD system call to a
STREAMS device, something has come to the head of the queue that
can’t be processed. That something depends on the system call:

read(2) Control information or a passed file descriptor.
getmsg(2) Passed file descriptor.

ioctl(2) Control or data information.

ELIBACC Cannot access a needed shared library

Trying to exec(2) an a.out that requires a shared library (to be linked
in) and the shared library doesn’t exist or the user doesn’t have
permission to use it.

ELIBBAD Accessing a corrupted shared library

Trying to exec(2) an a.out that requires a shared library (to be linked
in) and exec(2) could not load the shared library. The shared library is
probably corrupted.

INTRO(2)

85

86

87

224

225

226

N
N
~l

228

229

230

INTRO(2)

ELIBSCN .lib section in a.out corrupted

Trying to exec(2) an a.out that requires a shared library (to be linked
in) and there was erroneous data in the .lib section of the g.out. The .lib
section tells exec(2) what shared libraries are needed. The a.out is
probably corrupted.

ELIBMAX Attempting to link in more shared libraries than
system limit

Trying to exec(2) an a.out that requires more shared libraries (to be
linked in) than is allowed on the current configuration of the system.
See the S/Series CTIXAdministrator' sGuide.

ELIBEXEC Cannot exec a shared library directly

P
)
—

—

Q
2
]

Trying to exec(2) a shared library directly, This is no

<) 22GAANS RaUAdas 5

ENOHDW No hardware available for operation

The address specification exceeds the allowable limits or the required
hardware does not exist (for example, the executable file requires
hardware that is not available). See exec (2).

EBADFS Bit-mapped file system is marked dirty

An attempt to mount a bit-mapped file system failed due to the dirty
flag being set for that file system.

EWOULDBLOCK Operation would block

An operation which would cause a process to block was attempted on

an object in non-blocking mode.
EINPROGRESS Operation now in progress

An operation which takes a long time to complete [such as a
connect(2)] was attempted on a non-blocking object.

EALREADY Operation already in progress

An operation was attempted on a non-blocking object which already
had an operation in progress.

ENOTSOCK Socket operation on non-socket

Self-explanatory.
EDESTADDRREQ Destination address required

A required address was omitted from an operation on a socket.

INTRO(2)

231

232

233

234

235

236

237

238

239

240

241

INTRO(2)

EMSGSIZE Message too long

A message sent on a socket was larger than the internal message
buffer.

EPROTOTYPE Protocol wrong type for socket

A protocol was specified which does not support the semantics of the
socket type requested. For example, you cannot use the ARPA Internet
UDP protocol with type SOCK_STREAM.

EPROTONOSUPPORT Protocol not supported

The protocol has not been configured into the system or no
implementation for it exists.

ESOCKTNOSUPPORT Socket type not supported

The support for the socket type has not been configured into the
system or no implementation for it exists.

EOPNOTSUPP QOperation not supported on socket
For example, trying to accept a connection on a datagram socket.
EPFNOSUPPORT Protocol family not supported

The protocol family has not been configured into the system or no
implementation for it exists.

EAFNOSUPPORT Address family not supported by protocol

An address incompatible with the requested protocol was used. For
example, you shouldn’t necessarily expect to be able to use PUP
Internet addresses with ARPA Internet protocols.

EADDRINUSE Address already in use
Only one usage of each address is normally permitted.
EADDRNOTAVAIL Can’t assign requested address

Normally results from an attempt to create a socket with an address not
on this machine.

ENETDOWN Network is down
A socket operation encountered a dead network.
ENETUNREACH Network is unreachable

A socket operation was attempted to an unreachable network.

-10-

INTRO(2)

242

243

244

245

247

248

249

250

251

252

INTRO(2)

ENETRESET Network dropped connection on reset

The host you were connected to crashed and rebooted.
ECONNABORTED Software caused connection abort

A connection abort was caused internal to your host machine.
ECONNRESET Connection reset by peer

A connection was forcibly closed by a peer. This normally results
from the peer executing a shutdown (2) call.

ENOBUFS No buffer space available

An operation on a socket or pipe was not performed because the
system lacked sufficient buffer space.

A connect request was made on an already connected socket; or, a
sendto or sendmsg request on a connected socket specified a
destination other than the connected party.

ENOTCONN Socket is not connected

An request to send or receive data was disallowed because the socket
is not connected.

ESHUTDOWN Can’t send after socket shutdown

A request to send data was disallowed because the socket had already
been shut down with a previous shutdown (2) call.

ETOOMANYREFS Too many references: can’t splice
Not in use; included for compatibility only.
ETIMEDOUT Connection timed out

A connect request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on
the communication protocol.)

ECONNREFUSED Connection refused

No connection could be made because the target machine actively
refused it. This usually results from trying to connect to a service
which is inactive on the foreign host.

EHOSTDOWN Host is down

The host is down.

-11-

INTRO(2) INTRO(2)

253 EHOSTUNREACH No route to host

The gateway does not recognize the requested host via the route
specified.

254 ENOPROTOOPT Protocol not available
A bad option was specified in a getsockopt (2) or setsockopt (2) call.

DEFINITIONS
Process ID Each active process in the system is uniquely identified by a
positive integer called a process ID. The range of this ID is from 1 to 30,000.

Parent Process ID A new process is created by a currently active process [see
fork(2)]. The parent process ID of a process is the process ID of its creator.
Process Group ID Each active process is a member of a process group that is
identificd by a positive inieger calied ihe process group ID. This ID is ihe
process ID of the group leader. This grouping permits the signaling of related
processes [see kill (2)].

Tty Group ID Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping is used to
terminate a group of related processes upon termination of one of the processes
in the group [see exit(2) and signal (2)].

Real User ID and Real Group ID Each user allowed on the system is identified
by a positive integer (0 to 65535) called a real user ID.

Each user is also a member of a group. The group is identified by a positive
integer called the real group ID.

An active process has a real user ID and real group ID that are set to the real
user ID and real group ID, respectively, of the user responsible for the creation
of the process.

Effective User ID and Effective Group ID An active process has an effective
user ID and an effective group ID that arc used to determine file access
permissions (see below). The effective user ID and effective group ID are equal
to the process’s real user ID and real group ID, respectively, unless the process
or one of its ancestors evolved from a file that had the set-user-ID bit or set-
group- ID bit set [see exec(2)].

Super-user A process is recognized as a super-user process and is granted
special privileges, such as immunity from file permissions, if its effective user
IDis0.

-12-

INTRO(2) INTRO(2)

Special Processes The processes with a process ID of 0 and a process ID of 1
are special processes and are referred to as proc0 and procl.

Proc0 is the scheduler. Procl is the initialization process (init). Procl is the
ancestor of every other process in the system and is used to control the process
structure.

File Descriptor A file descriptor is a small integer used to do I/O on a file. The
value of a file descriptor is from O to (NOFILES - 1). A process may have no
more than NOFILES file descriptors open simultaneously. A file descriptor is
returned by system calls such as open(2), or pipe(2). The file descriptor is used
as an argument by calls such as read(2), write(2), iocti(2), and close(2).

File Name Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be seiected from the set of all character values excluding
\) (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names because
of the special meaning attached to these characters by the shell [see sh(1)].
Although permitted, the use of unprintable characters in file names should be
avoided.

Path Name and Path Prefix A path name is a null-terminated character string
starting with an optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically staied otherwise, the null path name is treated as if it named
a non-existent file.

Directory Directory entries are called links. By convention, a directory

contains at least two links, . and . ., referred to as dot and dot-dot , respectively.
Dot refers to the directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory Each process has associated
with it a concept of a root directory and a current working directory for the
purpose of resolving path name searches. The root directory of a process need
not be the root directory of the root file system.

-13 -

INTRO(2)

INTRO(2)

File Access Permissions Read, write, and execute/search permissions on a file
are granted to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of
the file and the appropriate access bit of the ‘‘owner’’ portion (0700) of
the file mode is set.

The effective user ID of the process does not match the user ID of the
owner of the file, and the effective group ID of the process matches the
group of the file and the appropriate access bit of the ‘‘group’’ portion
(0070) of the file mode is set.

The effective user ID of the process does not match the user ID of the
owner of the file, and the effective group ID of the process does not
maich ihe group ID of the file, and the appropriate access
bit of the ““other’’ portion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier A message queue identifier (msqid) is a unique
positive integer created by a msgget(2) system call. Each msqid has a message
queue and a data structure associated with it. The data structure is referred to as
msqid_ds and contains the following members:

struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg "msg_last;
ushort msg_cbytes;
ushort msg_qnum;
ushort msg_gbytes;
ushort msg lspid;
ushort msg_lrpid;
time_t msg_stime;
time_t msg_rtime;
time_t msg_ctime;

msg_perm Is an ipc_perm structure that specifies the message
operation permission (see below). This structure
includes the following members:

ushort cuid; /» creator user id */
ushort cgid; /+ creator group id »/
ushort uid; /+ userid »/

ushort gid; /= groupid »/

-14 -

INTRO(2)

INTRO(2)

ushort mode; /* r/'w permission »/
ushort seq; /+ slot usage sequence # +/
key t key; /+ key»/

msg *msg_first Is a pointer to the first message on the queue.

msg *msg_last
msg_cbytes
msg_qnum

msg_gbytes
msg_lspid
msg_Irpid

msg_stime
msg_rtime

msg_ctime

Is a pointer to the last message on the queue.
Is the current number of bytes on the queue.
Is the number of messages currently on the queue.

Is the maximum number of bytes allowed on the
queue.

Is the process ID of the last process that performed a
msgsnd operation.

Is the process ID of the last process that performed a
msgrcy operation.

Is the time of the last msgsnd operation.
Is the time of the last msgrcv operation.

Is the time of the last msgctl(2) operation that
changed a member of the above structure.

Message Operation Permissions In the msgop(2) and msgctl(2) system call
descriptions, the permission required for an operation is given as "{token}",
where "token" is the type of permission needed, interpreted as follows:

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a msqid are granted to a process if one or more

of the following are true:

o The effective user ID of the process is super-user.

e The effective user ID of the process matches msg_perm.cuid or
msg_perm.uid in the data structure associated with msqgid and the
appropriate bit of the *‘user’’ portion (0600) of msg_perm.mode is set.

-15-

INTRO(2) INTRO(2)

e The effective group ID of the process matches msg perm.cgid or
msg_perm.gid and the appropriate bit of the ‘‘group’” portion (060) of
msg_perm.mode is set.

e The appropriate bit of the ‘‘other’’ portion (006) of msg_perm.mode is
set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier A semaphore identifier (semid) is a unique positive
integer created by a semget (2) system call. Each semid has a set of semaphores
and a data structure associated with it. The data structure is referred to as
semid_ds and contains the following members:

struct ipc_perm sem_perm; /+ operation permission+/

/= struct »/
struct sem »sem_base; /* ptr to first semaphore in set »/
ushort sem_nsems; /* number of sems in set +/
time_t sem_otime; /= last operation time »/
time_t sem_ctime; /* last change time +/

/» Times measured in secs since «/
/= 00:00:00 GMT, Jan. 1, 1970 »/

sem_perm Is an ipc_perm structure that specifies the
semaphore operation permission (see below). This
structure includes the following members:

ushort uid; /» user id */
ushort gid; I« group id *+/
ushort cuid; /+ creator user id */

ushort cgid; /= creator group id */

ushori mode; /* r/a permission */

ushort seq; /= slot usage sequence number */
key t Kkey; 1+ Key */

sem_nsems Is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive
integer referred to as a sem_num. Sem_num values
run sequentially from O to the value of sem_nsems

minus 1.
sem_otime Is the time of the last semop(2) operation.
sem_ctime Is the time of the last semct/(2) operation that

changed a member of the above structure.

-16-

e e

INTRO(2)

INTRO(2)

A semaphore is a data structure called sem that contains the following
members:

ushort semval; /= semaphore value »/

short sempid; /= pld of last operation »/
ushort semncnt; /+ # awaiting semval > cval */
ushort semzcnt; /» # awaiting semval = 0 +/

semval Is a non-negative integer which is the actual value of
the semphore.
sempid Is equal to the process ID of the last process that

performed a semaphore operation on this semaphore.

semncnt Is a count of the number of processes that are
currently suspended awaiting this semaphore’s
semval to become greater than its current value.

semzcent Is a count of the number of processes that are

currently suspended awaiting this semaphore’s
semval to become zero.

Semaphore Operation Permissions In the semop(2) and semctl(2) system call
descriptions, the permission required for an operation is given as "{token}",
where "token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00040 Read by group
00020 Alter by group
00004 Read by others
00002 Alter by others

Read and alter permissions on a semid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super- user.

The effective user ID of the process matches sem_perm.cuid or
sem_perm.uid in the data structure associated with semid and the
appropriate bit of the ‘‘user’’ portion (0600) of sem_perm.mode is set.

The effective group ID of the process matches sem_perm.cgid or
sem_perm.gid and the appropriate bit of the ‘‘group’’ portion (060) of
sem_perm.mode is set.

The appropriate bit of the *‘other’’ portion (006) of sem_perm.mode is
set.

-17-

INTRO(2)

INTRO(2)

Otherwise, the corresponding permissions are denied.

Shared-Memory Identifier A shared-memory identifier (shmid) is a unique
positive integer created by a shmget(2) system call. Each shmid has a segment
of memory (referred to as a shared memory segment) and a data structure
associated with it. (Note that these shared memory segments must be explicitly
removed by the user after the last reference to them is removed.) The data
structure is referred to as shmid_ds and contains the following members:

struct Ipc_perm shm_perm;

int shm_segsz;
ushort shm_lpid;

ushort shm_cpid;

ushort shm_natich;
time_t shm_atime;
time_t shm_dtime;
time_t shm_ctime;

shm_perm

I+ operation permission »/
I*struct */

/+ size of segment +/

/+= pld of last operation */

I+ creator pid */

/* number of current attaches »/
/» last attach time +/

/= last detach time »/

/+= last change time *+/

/+ Times measured In secs since */
/» 00:00:00 GMT, Jan. 1, 1970 »/

Is an ipc_perm structure that specifies the shared

memory operation permission (see below). This
structure includes the following members:

shm_segsz

ushort
ushort
ushort
ushort
ushort
ushort

key t

bytes.

shm_cpid

mode;

cuid; /= creator user id »/
cgid; /+= creator group id +/

uid; /» user id »/
gid; /= group id »/
/+ r/w permission «/
seq; /+ slot usage sequence number */
key; /* key »/

Specifies the size of the shared memory segment in

Is the process ID of the process that created the

shared memory identifier.

shm_lpid

Is the process ID of the last process that performed a

shmop(2) operation.

shm_nattch

Is the number of processes that currently have this

segment attached.

-18 -

(—

INTRO(2) INTRO(2)

shm_atime Is the time of the last shmat(2) operation.
shm_dtime Is the time of the last shmdt(2) operation.

shm_ctime Is the time of the last shmctl(2) operation that
changed one of the members of the above structure.

Shared-Memory Operation Permissions In the shmop(2) and shmctl(2)
system call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as
follows:

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a shmid are granted to a process if one or more
of the following are true:

e The effective user ID of the process is super-user.

e The effective user ID of the process matches shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid and the
appropriate bit of the ‘‘user’” portion (0600) of shm_perm.mode is set.

e The effective group ID of the process matches shm_perm.cgid or
shm_perm.gid and the appropriate bit of the “‘group’’ portion (060) of
shm_perm.mode is set.

e The appropriate bit of the ‘‘other’” portion (06) of shm_perm.mode is

set.
Otherwise, the corresponding permissions are denied.

STREAMS A set of kernel mechanisms that support the development of network
services and data communication drivers. It defines interface standards for
character input/output within the kernel and between the kernel and user level
processes. The STREAMS mechanism is composed of utility routines, kernel
facilities and a set of data structures.

Stream A stream is a full-duplex data path within the kernel between a user
process and driver routines. The primary components are a stream head, a
driver and zero or more modules between the stream head and driver. A stream
is analogous to a shell pipeline except that data flow and processing are
bidirectional.

-19-

INTRO(2) INTRO(2)

Stream Head In a stream, the stream head is the end of the stream that
provides the interface between the stream and a user process. The principle
functions of the stream head are processing STREAMS-related system calls, and
passing data and information between a user process and the stream.

Driver In a stream, the driver provides the interface between peripheral
hardware and the stream. A driver can also be a pseudo-driver, such as a
multiplexor or log driver [see log(7)], which is not associated with a hardware
device.

Module A module is an entity containing processing routines for input and
output data. It always exists in the middle of a stream, between the stream’s
head and a driver. A module is the STREAMS counterpart to the commands in a
Shell pipeline except that a module contains a pair of functions which allow
independent bidirectional (downstream and upstream) data flow and
processing.

Downstream In a stream, the direction from stream head to driver.
Upstream In a stream, the direction from driver to stream head.

Message In a stream, one or more blocks of data or information, with

associated STREAMS control structures. Messages can be of several defined

types, which identify the message contents. Messages are the only means of P
transferring data and communicating within a stream. <

Message Queue In a stream, a linked list of messages awaiting processing by a
module or driver.

Read Queue In a stream, the message queue in a module or driver containing
messages moving upstream.

Write Queue In a stream, the message queue in a module or driver containing
messages moving downstream.

Multiplexor A multiplexor is a driver that allows streams associated with
several user processes to be connected to a single driver, or several drivers to be
connected to a single user process. STREAMS does not provide a general
multiplexing driver, but does provide the facilities for constructing them, and
for connecting multiplexed configurations of streams.

Sockets and Address Families
A socket is an endpoint for communication between processes. Each socket has
queues for sending and receiving data.

Sockets are typed according to their communications properties. These
properties include whether messages sent and received at a socket require the

-20-

INTRO(2) INTRO(2)

name of the partner, whether communication is reliable, the format used in
naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult
socket (2) for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications
protocols. Each protocol set supports addresses of a certain format. An
Address Family is the set of addresses for a specific group of protocols. Each
socket has an address chosen from the address family in which the socket was
created.

Two interchangeable structures are used by socket calls: sockaddr (defined in
<sys/socket.h>) and sockaddr in (defined in <sys/in.h>). The sa_data field of
the sockaddr structure is interpreted according to the address family. (Note that

sockaddr_in has been defined specifically for the Internet family (the first field
must be AF_INET); this structure is described in inet (7).

SEE ALSO
close(2), exit(2), getmsg(2), getpid(2), getuid(2), msgctl(2), msgget(2),
msgop(2), open(2), poll(2), putmsg(2), read(2), semctl(2), semget(2), semop(2),
setpgrp(2), setuid(2), shmctl(2), shmget(2), shmop(2), signal(2), wait(2),
write(2), intro(3).
CTIX Network Programmer’s Primer.
UNIX System V Release 3.2 Network Programmer’ s Guide.
UNIX System V Release 3.2 Streams Programmer’s Guide.
UNIX System V Release 3.2 Streams Primer.

221-

ACCESS(2)

NAME

ACCESS(2)

access - determine accessibility of a file

SYNOPSIS

int access (path, amode)

char *path;

int amode;
DESCRIPTION

The path argument points to a path name naming a file; access checks the
named file for accessibility according to the bit pattern contained in amode,
using the real user ID in place of the effective user ID and the real group ID in
place of the effective group ID. The bit pattern contained in amode is
constructed as follows:

04
02
01
00

read

write

execute (search)
check existence of file

Access to the file is denied if one or more of the following are true:

[ENOTDIR]
[ENOENT]

[ENOENT]
[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]

[EFAULT]

(EINTR]
[ENOLINK]

A component of the path prefix is not a directory.

Read, write, or execute (search) permission is requested for a
null path name.

The named file does not exist.

Search permission is denied on a component of the path
prefix.

Write access is requested for a file on a read-only file
system.

Write access is requested for a pure procedure (shared text)
file that is being executed.

Permission bits of the file mode do not permit the requested
access.

Path points outside the allocated address space for the
process.

A signal was caught during the access system call,

Path points to a remote machine and the link to that machine
is no longer active.

ACCESS(2) ACCESS(2)

{[EMULTIHOP] Components of path require hopping to multiple remote
machines.

The owner of a file has permission checked with respect to the ‘‘owner’’ read,
write, and execute mode bits. Members of the file’s group other than the owner
have permissions checked with respect to the ‘‘group’’ mode bits, and all others
have permissions checked with respect to the ‘‘other’’ mode bits.

SEE ALSO
chmod(2), stat(2).

DIAGNOSTICS
If the requested access is permitted, a value of 0 is returned. Otherwise, a value
of -1 isreturned and errno is set to indicate the error.

ACCT(2) ACCT(2)

NAME

acct - enable or disable process accounting

SYNOPSIS

int acct (path)
char *path;

DESCRIPTION

acct is used to enable or disable the system process accounting routine. If the
routine is enabled, an accounting record will be written on an accounting file
for each process that terminates. Termination can be caused by one of two
things: an exit call or a signal [see exit(2) and signal(2)]. The effective user ID
of the calling process must be super-user to use this call.

path points to a pathname naming the accounting file. The accounting file
format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur
during the system call. It is disabled if path is zero and no errors occur during
the system call.

acct will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not super-user.

[EBUSY] An attempt is being made to enable accounting when it is
already enabled.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] One or more components of the accounting file path name do
not exist.

[EACCES] The file named by path is not an ordinary file.

[EROFS] The named file resides on a read-only file system.

{EFAULT] Path points to an illegal address.

SEE ALSO

exit(2), signal(2), acct(4).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ADJTIME(2) ADJTIME (2)

NAME
adjtime - correct the time to allow synchronization of the system clock

SYNOPSIS
#include <sys/time.h>

int adjtime(delta, olddelta)
struct timeval *delta;
struct timeval *olddelta;

DESCRIPTION

The adjtime call makes small adjustments to the system time, as returned by
gettimeofday (2), advancing or retarding it by the time specified by the timeval
delta. 1f delta is negative, the clock is slowed down by incrementing it more
slowly than normal until the correction is complete. If delta is positive, a larger
increment than normal is used, The skew used to perform the correction is
generally a fraction of one percent. Thus, the time is always a monotonically
increasing function.

This call can be used by time servers that synchronize the clocks of computers
in a local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average
network time.

RETURN VALUE
A return value of O indicates that the call succeeded. A return value of -1
indicates that an error occurred, and in this case an error code is stored in the
global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument points outside the process’s allocated address
space.
[EPERM] The process’s effective user ID is not that of the super-user.
SEE ALSO
date(1), gettimeofday(2).
WARNINGS

A time correction from an earlier call to adjtime may not be finished when
adjtime is called again. If olddelta is non-zero, then the structure pointed to
will contain, upon return, the number of microseconds still to be corrected from
the earlier call.

The adjtime (2) call is restricted to the super-user.

ALARM(2) ALARM(2)

NAME
alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
alarm instructs the alarm clock of the calling process to send the signal
SIGALRM to the calling process after the number of real time seconds specified
by sec have elapsed [see signal (2)].

Alarm requests are not stacked; successive calls reset the alarm clock of the
calling process.
If sec is 0, any previously made alarm request is canceled.
SEE ALSO
pause(2), signal(2), sigpause(2).
DIAGNOSTICS

alarm returns the amount of time previously remaining in the alarm clock of the
calling process.

BIND(2)

NAME

(CTIX Intcrnetworking) BIND(2)

bind - bind a name to a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

int bind (S, name, namelen)

int s;

struct sockaddr *name;

int namelen;
DESCRIPTION

The bind call assigns a name to an unnamed socket. When a socket is created
with socket(2), it exists in a name space (address family) but has no name

QCClﬂnAd (pnrrnnﬂu only tha Intarmat addracg fomile

Sagyas wasu

liy Uil allwiiive aGGITSs raimiuy lb auppuucu } lllU Ulﬂu

call requests that name be assigned to the socket.

SEE ALSO

connect(2), getsockname(2), intro(2), listen(2), socket(2), inet(7), intro(7).
CTIX Network Programmer's Primer.

NOTES

The rules used in name binding vary between communication domains [see
protocols(4)]. Consult the manual entries in Section 7 for detailed information.

RETURN VALUE

If the bind is successful, a 0 value is returned. A return value of -1 indicates an
error, which is further specified in the global errno.

ERRORS

The bind call fails if any of the following are true:

[EBADF]
[ENOTSOCK]
[EADDRNOTAVAIL]

[EADDRINUSE]
[EINVAL}
[EACCESS]

[EFAULT}

§ is not a valid descriptor.
S is not a socket.

The specified address is not available from the local
machine.

The specified address is already in use.
The socket is already bound to an address.

The requested address is protected, and the current
user has inadequate permission to access it.

The name parameter is not in a valid part of the user
address space.

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;
DESCRIPTION
brk and sbrk are used to change dynamically the amount of space allocated for -
the calling process’s data segment [see exec(2)]. The change is made by
resetting the process’s break value and allocating the appropriate amount of
space. The break value is the address of the first location beyond the end of the

data segment. The amount of allocated space increases as the break value

increases. Newly allocated space is set to zero. If, however, the same memory
space is reallocated to the same process its contents are undefined.

brk sets the break value to endds and changes the allocated space accordingly.

sbrk adds incr bytes to the break value and changes the allocated space
accordingly. Incr can be negative, in which case the amount of allocated space
is decreased.

brk and sbrk will fail without making any change in the allocated space if one
or more of the following are true:

[ENOMEM] Such a change would result in more space being allocated |
than is allowed by the system-imposed maximum process i
size [see ulimit(2)].

[EAGAIN] Total amount of system memory available for a read during
physical I/O is temporarily insufficient [see shmop(2)]. This
may occur even though the space requested was less than the
system-imposed maximum process size [see ulimit(2)].

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C).

DIAGNOSTICS
Upon successful completion, brk returns a value of 0 and sbrk returns the old
break value. Otherwise, a value of -1 is returned and errno is set to indicate the
eITor.

CHDIR(2) CHDIR (2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory. chdir causes the named directory
to become the current working directory, the starting point for path searches for
path names not beginning with /.

chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path
name.

[EFAULT) Path points outside the allocated address space of the
process.

[EINTR] A signal was caught during the chdir system call.

[ENOLINK] Path points to a remote machine and the link to that machine

is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.
SEE ALSO
chroot(2).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;
DESCRIPTION
Path points to a path name naming a file. chmod sets the access permission
portion of the named file’s mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:
04000 Set user ID on execution.

020#0 Set group ID on execution if #is7,5,3,0r 1
Enable mandatory file/record locking if # is 6,4, 2,0r 0

01000 Save text image after execution.

00400 Read by owner.

00200 Write by owner.

00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save
text image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective group
ID of the process does not match the group ID of the file, mode bit 02000 (set
group ID on execution) is cleared.

If a 410 executable file has the sticky bit (mode bit 01000) set, the operating
system does not delete the program text from the swap area when the last user
process terminates. If a 413 executable file has the sticky bit set, the operating
system does not delete the program text from memory when the last user
process terminates. In either case, if the sticky bit is set the text is already be
available (either in a swap area or in memory) when the next user of the file
executes it, thus making execution faster.

CHMOD(2)

CHMOD(2)

Overall, if a directory is writable and has the sticky bit set, files within that
directory can be removed only if one or more of the following is true [see

unlink(2)}:

the user owns the file

the user owns the directory
the file is writable to the user
the user is the super-user

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010
(execute or search by group) is not set, mandatory file/record locking exists on
a regular file. This can affect future calls to open(2), creat(2), read(2), and
write(2) on this file.

The chmod fails and the file mode is unchanged if one or more of the following

wn demaae

[ENOTDIR]

[ENOENT]
[EACCES]

[EPERM]

[EROFS]
[EFAULT]

{EMULTIHOP]

SEE ALSO

A component of the path prefix is not a directory.
The named file does not exist.

Search permission is denied on a component of the path
prefix.

The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the
process.

A signal was caught during the chmod system call.
Path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

chmod(1), chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), write(2).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

CHOWN(2)

NAME

CHOWN(2)

chown - change owner and group of a file

SYNOPSIS

int chown (path, owner, group)

char *path;

int owner, group;

DESCRIPTION

The path argument points to a path name naming a file. The owner ID and
group ID of the named file are set to the numeric values contained in owner and
group respectively.

Only processes with effective user ID equal to the file owner or super-user may
change the ownership of a file.

if chown is invoked by other than the super-user, the set-user-ID and set-
group- ID bits of the file mode, 04000 and 02000 respectively, are cleared.

The chown call fails and the owner and group of the named file remains
unchanged if one or more of the following are true:

[ENOTDIR]

[ENOENT])
[EACCES]

[EPERM]

[EINTR]
[ENOLINK]

{EMULTIHOP]

SEE ALSO

A component of the path prefix is not a directory.
The named file does not exist.

Search permission is denied on a component of the path
prefix.

The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocaied address space of the
process.

A signal was caught during the chown system call.

Path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

chown(1), chmod(2).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

-1-

CHROOT(2) CHROOT (2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
The path argument points to a path name naming a directory. The chroot call
causes the named directory to become the root directory, the starting point for
path searches for path names beginning with root (/). The user’s working
directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root
directory.

The .. entry in the root directory is interpreted to mean the root directory itself,
Thus, .. cannot be used to access files outside the subtree rooted at the root
directory.

The chroot call fails and the root directory remains unchanged if one or more of
the following are true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user ID is not super-user. |

{EFAULT] Path points outside the allocated address space of the E
process.

[EINTR]} A signal was caught during the chroot system call.

[ENOLINK] Path points to a remoie machine and the link to that machine

is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chdir(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error,

CLOSE(2) CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcnil, or pipe system
call. close closes the file descriptor indicated by fildes. All outstanding record
locks owned by the process (on the file indicated by fildes) are removed.

If a STREAMS [see intro(2)] file is closed, and the calling process had
previously registered to receive a SIGPOLL signal [see signal(2) and sigset(2)]
for events associated with that file [see I_SETSIG in streamio(7)], the calling
process will be unrcgistered for evenis associaied wiih ihe file. The last ciose
for a stream causes the stream associated with fildes to be dismantled. If
O_NDELAY is not set and there have been no signals posted for the stream,
close waits up to 15 seconds, for each module and driver, for any output to drain
before dismantling the stream. If the O_NDELAY flag is set or if there are any
pending signals, close does not wait for output to drain, and dismantles the
stream immediately.

The named file is closed unless one or more of the following are true:

{EBADF] fildes is not a valid open file descriptor.
[EINTR] A signal was caught during the close system call.
[ENOLINK} fildes is on a remote machine and the link to that machine is
no longer active.
SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), intro(2), open(2), pipe(2), signal(2), sigset(2),
streamio(7).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

CONNECT (2) (CTIX Internetworking) CONNECT(2)

connect - initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int connect (s, name, namelen)
int s;

struct sockaddr *name;

int namelen;

DESCRIPTION

The connect call initiates a connection on a socket. The parameter s is a socket.
If it is of type SOCK_DGRAM, then this call permanently speciﬁes the peer to
which datagrams are to be sent; if it is of typc SCCK_STREAM, then this call
attempts to make a connection to another socket. The other socket is specified
by name; namelen is the length of name, which is an address in the address
family of the socket. Each address family interprets the name parameter in its
own way.

RETURN VALUE

If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is
returned, and a more specific error code is stored in errno.

ERRORS

The call fails if:
[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is a descriptor for a file, not a socket.

[EADDRNQTAVAIL) The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be
used with this socket.

[EISCONN] The socket is already connected.

(ETIMEDOUT]} Connection establishment timed out without
establishing a connection.

{ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network is not reachable from this host.
[EADDRINUSE] The address is already in use.
[EFAULT} The name parameter specifies an area outside the

process address space.

CONNECT (2) (CTIX Intemetworking) CONNECT(2)

SEE ALSO
accept(2), getsockname(2), intro(2), socket(2), intro(7).
CTIX Network Programmer’s Primer.

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;

DESCRIPTION
The creat call creates a new ordinary file or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file’s owner ID is set to the effective user ID of the
process, the group ID of the process is set to the effective group ID of the
process, and the low-order 12 bits of the file mode are set to the valuc of mode

modified as follows:
. All bits set in the process’s file mode creation mask are cleared [see
umask(2)].
. The ‘‘save text image after execution bit’’ of the mode is cleared [see
chmod (2)]. i
Upon successful completion, a write-only file descriptor is returned and the file }
is open for writing, even if the mode does not permit writing. The file pointer is

set to the beginning of the file. The file descriptor is set to remain open across
exec system calls [see fcntl (2)]. No process can have more than NOFILES files
open simultaneously. NOFILES is a system-imposed maximum per process,
which can be changed by uconf(IM): the range, as specified in param.h, is 20
(NOFILES_MIN) to 100 (NOFILES_MAX). The current value of NOFILES can be
determined by ulimit(2). A new filc can be created with a mode that forbids
writing,

The creat call fails if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[ENOENT] The path name is null.

[EACCES] The file does not exist and the directory in which the file is

to be created does not permit writing.

CREAT(2)

[EROFS]

[ETXTBSY]

[EACCES]
[EISDIR]

[EMFILE]
[EFAULT]

[ENFILE]
[EAGAIN]

[EINTR]
[ENOLINK]

(EMULTIHOP]

[ENOSPC]
[EDEADLOCK]

SEE ALSO

CREAT(2)

The named file resides or would reside on a read-only file
system.

The file is a pure procedure (shared text) file that is being
executed.

The file exists and write permission is denied.
The named file is an existing directory.
NOFILES file descriptors are currently open.

Path points outside the allocated address space of the
process.

The system file table is full.

The file exists, mandatory file/record locking is set, and there
are outstanding record locks on the file [see chmod(2)].

A signal was caught during the creat system call.

Path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

The file system is out of inodes.

A side effect of a previous locking(2) call. [See the
WARNING on the locking (2) manpage.]

chmod(2), close(2), dup(2), fentl(2), Iseek(2), open(2), read(2), umask(2),

write(2).
DIAGNOSTICS

Upon successful completion, a non-negative integer, namely the file descriptor,
is returned. Otherwise, a value of -1 is returned and errno is set to indicate the

error.

DUP(2) DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcnil, or pipe system
call. dup returns a new file descriptor having the following in common with the
original:

° Same open file (or pipe).
. Same file pointer (that is, both file descriptors share one file pointer).
. Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls {see

fentl ().
The file descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:

[EBADF) fildes is not a valid open file descriptor.
[EINTR] A signal was caught during the dup system call.
[EMFILE] NOFILES file descriptors are currently open.
[ENOLINK] fildes is on a remote machine and the link to that machine is
no longer active.
SEE ALSO
close(2), creat(2), exec(2), fentl(2), open(2), pipe(2), lockf(3C)
DIAGNOSTICS

Upon successful completion a non-negative integer, namely the file descriptor,
is returned. Otherwise, a value of -1 is returned and errno is set to indicate the
eITor.

EXEC(2) EXEC(2)

NAME
exec: execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, arg0, argl, ..., argn, (char *)0)
char *path, *arg0, *argl, .., *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, arg0, argl, ..., argn, (char *)0, envp)
char #path, *arg0, *argl, ..., *argn, *envp[|;

int execve (path, argv, envp)
char #path, *argv[], *envp[|;

int execlp (file, arg0, argl, ..., argn, (char #)0)
char +file, *arg0, *argl, .., *argn;

int execvp (file, argv)
char #file, *argv|];

DESCRIPTION
The exec call in all its forms transforms the calling process into a new process.
The new process is constructed from an ordinary, executable file called the new
process file. This file consists of a header [see a.out(4)], a text segment, and a
data segment. The data segment contains an initialized portion and an
uninitialized portion (bss). There can be no return from a successful exec
because the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)

int argc;

char **argv, *+envp;
where argc is the argument count, argv is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the
environment strings. As indicated, argc is conventionally at least one and the
first member of the array points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a
search of the directories passed as the environment line PATH [see environ (5)].
The environment is supplied by the shell [see sh(1)].

EXEC(2) EXEC(2)

arg0, argl, ..., argn are pointers to null-terminated character strings. These
strings constitute the argument list available to the new process. By
convention, at least arg0 must be present and point to a string that is the same
as path (or its last component).

argv is an array of character pointers to null-terminated strings. These strings
constitute the argument list available to the new process. By convention, argy
must have at least one member, and it must point to a string that is the same as
path (or its last component). argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process. envp is terminated by a null
pointer. For execl and execv, the C run-time start- off routine places a pointer
to the environment of the calling process in the global cell:

exiern char **environ;
It is used to pass the environment of the calling process to the new process.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see fentl(2). For those file
descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling process are set to terminate the new process.
Signals set to be ignored by the calling process are set to be ignored by the new
process. Signals set to be caught by the calling process are set to terminate the
new process; see signal (2).

For signals set by sigset(2), exec ensures that the new process has the same
system signal action for each signal type whose action is SIG_DFL, SIG_IGN, or
SIG_HOLD as the calling process. However, if the action is to catch the signal,
then the action is reset to SIG_DFL, and any pending signal for this type is held.

If the set-user-ID mode bit of the new process file is set [see chmod (2)], exec
sets the effective user ID of the new process to the owner ID of the new process
file. Similarly, if the set-group-ID mode bit of the new process file is set, the
effective group ID of the new process is set to the group ID of the new process
file. The real user ID and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling process are not attached to
the new process [see shmop(2)].

Profiling is disabled for the new process; see profil (2).

EXEC(2)

EXEC(2)

The new process also inherits the following attributes from the calling process:

nice value [see nice(2))

process ID

parent process ID

process group ID

semadj values [see semop(2))

tty group ID [see exit(2) and signal (2)]

trace flag [see ptrace (2) request 0]

time left until an alarm clock signal [see alarm(2)]
current working directory

root directory

file mode creation mask [see umask(2)]

file size limit [see ulimit (2)]

utime, stime, cutime, and cstime [see times(2)}
file-locks {see fentl(2) and lock(3C)]

exec fails and returns to the calling process if one or more of the following are

true:
[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULT]

One or more components of the new process path name of
the file do not exist.

A component of the new process path of the file prefix is not
a directory.

Search permission is denied for a directory listed in the new
process file’s path prefix.

The new process file is not an ordinary file.

The new process file mode denies execution permission.

pel

The exec is not an execlp or execvp , and the new process file
has the appropriate access permission but an invalid magic
number in its header.

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.

The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM.

The number of bytes in the new process’s argument list is
greater than the system-imposed limit of 10,240 bytes.

Path, argv, or envp point to an illegal address.

EXEC(2)

[EAGAIN]
[ELIBACC}
[ELIBEXEC]
[EINTR]
[ENOLINK]

[EMULTIHOP]

[ENOHDW]

[ENOFXEC]

[ENOEXEC]

SEE ALSO

EXEC(2)

Not enough memory.

Required shared library does not have execute permission.
Trying to exec(2) a shared library directly.

A signal was caught during the exec system call.

Path points to a remote machine and the link to that machine
is no longer active.

Components of path requirc hopping to multiple remote
machines.

The executable file requires hardware that does not exist
(such as floating-point).

The file format does not correspond to that expected as
specified with the magic number (such as a hole in the file).

The virtual address specification in the header(s) exceeds the
allowed system limits,

alarm(2), exit(2), fentl(2), fork(2), nice(2), ptrace(2), semop(2), signal(2),
sigset(2), times(2), ulimit(2), umask(2), lockf(3C), a.out(4), environ(5).

DIAGNOSTICS

If exec returns to the calling process an error has occurred; the return value is
-1and errno is set to indicate the error.

EXIT(2)

NAME

EXTT(2)

exit, _exit - terminate process

SYNOPSIS

void exit (status)
int status;

void _exit (status)
int status;

DESCRIPTION

The exit call terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is
notified of the calling process’s termination and the low order eight
bits (bits 0377) of status are made available to it {see wait (2)].

If the parent process of the calling process is not executing a wait, the
calling process is transformed into a zombie process. A zombie
process is a process that only occupies a slot in the process table. It
has no other space allocated either in user or kernel space. The
process table slot that it occupies is partially overlaid with time
accounting information (see <sys/proc.h>) to be used by times.

The parent process ID of all of the calling processes’ existing child
processes and zombie processes is set to 1. This means the
initialization process [see intro(2)] inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1,

For each semaphore for which the calling process has set a semadj
value [see semop(2)], that semadj value is added to the semval of the
specified semaphore.

If the process has a process, text, or data lock, an unlock is performed
[see plock(2)].

An accounting record is written on the accounting file if the system’s
accounting routine is enabled [see acct (2)].

If the process ID, tty group ID, and process group ID of the calling
process are equal (it is a process group leader), the SIGHUP signal is
sent to each process that has a process group ID equal to that of the
calling process.

EXIT(2) EXIT(2)

. A death of child signal is sent to the parent.
. The C function exit may cause cleanup actions before the process
exits. The function _exir circumvents all cleanup.

SEE ALSO

acct(2), intro(2), plock(2), semop(2), signal(2), sigset(2), wait(2).
DIAGNOSTICS

None. There can be no return from an exit system call.
WARNING

See WARNING in signal (2).

FCNTL(2)

NAME

FCNTL(2)

fentl - file control

SYNOPSIS

#include <fentl.h>

int fentl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION

The fentl call provides for control over open files. fildes is an open file
descriptor obtained from a creat, open, dup, fentl, or pipe system call.

The data type, value, and use of arg are specific to the type of command
specified by cmd. cmd specifies the operation to be performed by fentl, and can
be one of the following:

The commands available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file
descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (that is, both file descriptors share the
same file status flags).

The close-on-exec flag associated with the new file descriptor
is set to remain open across exec (2) system calls.

Get the close-on-exec flag associated with the file descriptor
fildes. 1If the low-order bit is 0 the file will remain open
across exec, otherwise the file will be closed upon execution
of exec.

Set the close-on-exec flag associated with fildes to the low-
order bit of arg (0 or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags can be set [see
Sfentl (5)).

FCNTL(2) FCNTL(2)

F_GETLK Get the first lock which blocks the lock description given by
the variable of type struct flock pointed to by arg. The
information retrieved overwrites the information passed to
fendl in the flock structure. If no lock is found that would
prevent this lock from being created, then the structure is
passed back unchanged except for the lock type which will be
set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the variable of
type struct flock pointed to by arg [see fcnti(5)]. The cmd
F_SETLK is used to establish read (F_RDLCK) and write
(F_WRLCK) locks, as well as remove either type of lock
(F_UNLCK). If a read or write lock cannot be set fcntl will
return immediately with an error value of -1.

F_SETLKW This ¢md is the same as F_SETLK except that if a read or write
lock is blocked by other locks, the process will sleep until the
segment is free to be locked.

A read lock prevents any process from write locking the protected area. More
than one read lock may exist for a given segment of a file at a given time. The
file descriptor on which a read lock is being placed must have been opened with
read access.

A write lock prevents any process from read locking or write locking the
protected area. Only one write lock may exist for a given segment of a file ata
given time. The file descriptor on which a write lock is being placed must have
been opened with write access.

The structure flock describes the type (/_type), starting offset (I_whence),
relative offset {{_start), size (I _len), process ID (I_pid), and RFS system ID
(I_sysid) of the segment of the file to be affected. The process ID and system ID
fields are used only with the F_GETLK cmd to return the values for a blocking
lock. Locks may start and extend beyond the current end of a file, but may not
be negative relative to the beginning of the file. A lock may be set to always
extend to the end of file by setting [len to zero (0). If such a lock also has
|_whence and [_start set to zero (0), the whole file will be locked. Changing or
unlocking a segment from the middle of a larger locked segment leaves two
smaller segments for either end. Locking a segment that is already locked by
the calling process causes the old lock type to be removed and the new lock
type to take effect. All locks associated with a file for a given process are
removed when a file descriptor for that file is closed by that process or the
process holding that file descriptor terminates. Locks are not inherited by a
child process in a fork(2) system call.

FCNTL(2)

FCNTL(2)

When mandatory file and record locking is active on a file, [scc chmod (2)],
read and write system calls issucd on the file are affected by the record locks in

effect.

The fentl call fails if one or more of the following are true:

(EBADF]
[EBADF]

[EBADF]

[EMFILE]

[EINVAL]

[EINVAL]

[EACCES]

[ENOLCK]

[EDEADLK]

[EFAULT]

(EINTR]
[ENOLINK]

fildes is not a valid open file descriptor.

cmd is F_SETLK or F_SETLKW the type of lock (I_type) is a
read lock (F_RDLCK) and fildes is not a valid open file
descriptor open for reading.

cmd is F_SETLK or F_SETLKW the type of lock (I_type) is a
write lock (F_RDLCK) and fildes is not a valid open file
descriptor open for writing.

cmd is F_DUPFD and the number of filc descriptors currenily
open in the calling process is the configured value for the
maximum number of open file descriptors allowed each user.

cmd is F_DUPFD. arg is either negative, or greater than or
equal to the configured value for the maximum number of
open file descriptors allowed each user.

cmd is F_GETLK, F_SETLK, or SETLKW and aryg or the data it
points to is not valid.

cmd is F_SETLK the type of lock (I type) is a read
(F_RDLCK) lock and the segment of a file to be locked is
already write locked by another process or the type is a write
(F_WRLCK) lock and the segment of a file to be locked is
already read or write locked by another process.

cmd is F_SETLK or F_SETLKW, the type of lock is a read or
write lock, and there are no more record locks available (too
many file scgments locked) because the system maximum
has been excecded.

cmd is F_SETLKW, the lock is blocked by some lock from
another process, and putting the calling-process to sleep,
waiting for that lock to become free, would cause a deadlock.

c¢md is F_SETLK, arg points outside the program address
space.

A signal was caught during the fcndl system call.

fildes is on a remote machine and the link to that machine is
no longer active.

-3-

FCNTL(2)

SEE ALSO

FCNTL(2)

close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2), fentl(5).

DIAGNOSTICS

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLKW

A new file descriptor.

Valuc of flag (only the low-order bit is defined).
Value other than -1.

Value of file flags.

Value other than -1.

Value other than - 1.

Value other than -1.

Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

WARNINGS

Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a file is alrcady locked by another process, portable
application programs should expect and test for either value.

Two forms of file locking are available: locking (2) and fentl (2). locking (2) is
retained for compatibility with previous versions of CTIX. Although both forms
are compatible and interchangeable, new programs should use only fenti (2) for
record locking. Note that the error return valucs differ.

FORK(2)

NAME

FORK(2)

fork - create a new process

SYNOPSIS

int fork ()

DESCRIPTION

fork causes creation of a new process. The new process (child process) is an
exact copy of the calling process (parent process). This means the child process
inherits the following attributes from the parent process:

environment

close-on-exec flag [see exec(2)]

signal handling settings (that is, SIG_DFL, SIG_IGN, SIG_HOLD,
function address)

set-user-1D mode bit

set-group-ID mode bit

profiling on/off status

nice value [sec nice(2)]

all attached shared memory segments [see shmop(2)]
process group ID

tty group ID [see exit (2)]

current working directory

root directory

file mode creation mask [see umask (2)]

file size limit [see wlimit(2)]

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (that is, ihe process
ID of the parent process).

The child process has its own copy of the parent’s file descriptors.
Each of the child’s file descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

All semadj values are cleared [see semop(2)].

Process locks, text locks and data locks are not inherited by the child
[see plock(2)].

The child process’s utime, stime, cutime , and cstime are set to 0. The
time left until an alarm clock signal is reset to 0.

FORK(2) FORK(2)

fork will fail and no child process will be created if one or more of the
following are true:

[EAGAIN] The system-imposed limit on the total number of processes
under execution would be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes
under execution by a single user would be exceeded.

[EAGAIN] Total amount of system memory available when reading via
raw 10 is temporarily insufficient.

SEE ALSO

exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2), sigset(2),
times(2), ulimit(2), umask(2), wait(2).

Upon successful completion, fork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a
value of -1 is returned to the parent process, no child process is created, and
errno is set to indicate the error.

GETDENTS(2) GETDENTS(2)

getdents - read directory entries and put in a file system independent format

SYNOPSIS

#include <sys/dirent.h>

int getdents (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRIPTION

The fildes argument is a file descriptor obtained from an open(2) or dup(2)
system call.

The getdents call attempts to read nbyte bytes from the directory associated
with fiides and to format them as file system independent directory entries in
the buffer pointed to by buf. Since the file system independent directory entries
are of variable length, in most cases the actual number of bytes returned is
strictly less than nbyte.

The file system independent directory entry is specified by the dirent structure.
For a description of this see dirent(4).

On devices capable of seeking, gerdents starts at a position in the file given by
the file pointer associated with fildes. Upon return from getdents, the file
pointer is incremented to point to the next directory entry.

This system call was developed in order to implement the readdir (3X) routine
[for a description see directory (3X)], and should not be used for other purposes.

The getdents call fails if one or more of the following are true:

{EBADF] fiides is not a valid file descriptor open for reading.

[EFAULT] buf points outside the allocated address space.

[EINVAL] nbyte is not large enough for one directory entry.

[ENOENT] The current file pointer for the directory is not located at a
valid entry.

{ENOLINK] fildes points to a remote machine and the link to that
machine is no longer active.

[ENOTDIR] fildes is not a directory.

[EIO] An O error occurred while accessing the file system,

SEE ALSO

directory(3X), dirent(4).

GETDENTS(2) GETDENTS (2)

DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. A value of 0 indicates the end of the directory

has been reached. If the system call failed, a -1 is returned and errno is set to
indicate the error.

GETDTABLESIZE(2) (CTiX Intemnetworking) GETDTABLESIZE(2)

NAME
getdtablesize - get descriptor table size

SYNOPSIS
nfds = getdtablesize()
int nfds;

DESCRIPTION
Each process has a fixed size descriptor table, which is guaranteed to have at
least 20 slots. The size of the descriptor table determines how many files and
sockets a process can have open simultaneously. The entries in the descriptor
table are numbered with small integers starting at 0. The call getdtablesize
returns the size of this table. It is equivalent to the ulimit(2) system call as
issued with an argument as shown below:

ulimit(4)

~

SEE ALSO
close(2), dup(2), open(2), select(2), ulimit(2).
CTIX Network Programmer’s Primer.

GETHOSTID(2) (CTIX Intemetworking) GETHOSTID(2)

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostid = gethostid()
long hostid;

sethostid(hostid)
long hostid;

DESCRIPTION
The sethostid call establishes a 32-bit identifier for the current system that is
intended to be unique among all UNIX systems in existence. This is normally a
DARPA Internet address for the local machine. This call is allowed only to the
super-user and is normally performed at boot time. The sethostid call returns an

int -1 if the ID can not be set.

The gethostid call returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(1), gethostname(2).
CTIX Network Programmer’s Primer.

GETHOSTNAME(2) (CTIX Internetworking) GETHOSTNAME(2)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
int gethostname(name, namelen)
char *name;
int namelen;

int sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
The gethostname call returns the standard host name for the current processor,
as previously set by sethostname . The parameter namelen specifies the size of

ihe name array. The returned name is null-terminated unless insufficient space
is provided.

The sethostname call sets the name of the host machine to be name, which has
length namelen. This call is restricted to the super-user and is normally used
only when the system is booted up. In order to maintain consistency between
the system nodename and the local hostname, sethostname interacts with
setuname . See hostname (1) for the specifics.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is
returned and an error code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address.
[EPERM] The caller tried to set the hostname and was not the super-
user.
SEE ALSO

hostname(1), uname(1), setuname(2), gethostid(2).
CTIX Network Programmer’s Primer.

WARNING
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>)
characters, currently 64. The left-most qualifier, or nodename, is limited to the
size of a system nodename, currently 9 characters. The right-most qualifier, or
Internet Domain name, is limited to 54 characters.

GETMSG(2) GETMSG(2)

NAME
getmsg - get next message off a stream

SYNOPSIS
#tinclude <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;

struct strbuf *ctlptr;

struct strbuf *dataptr;

int *flags;

DESCRIPTION
getmsg retrieves the contents of a message [see intro(2)] located at the stream
head read queue from a STREAMS file, and places the contents into user
specificd buffer(s). The message musi coniain either a data part, a control part
or both. The data and control parts of the message are placed into separate
buffers, as described below. The semantics of each part is defined by the
STREAMS module that generated the message.

fd specifies a file descriptor referencing an open stream. ctiptr and datapir
each point to a strbuf structure which contains the following members:

int maxilen; /* maximum buffer length */
int len; /* length of data */
char *buf; /* ptr to buffer */

where buf points to a buffer in which the data or control information is to be
placed, and maxlen indicates the maximum number of bytes this buffer can
hold. On return, Jen contains the number of bytes of data or control information
actually received, or is 0 if there is a zero-length control or data part, or is -1 if
no data or control information is present in the message. Flags may be set to
the values 0 or RS_HIPRI and is used as described below.

ctlptr is used to hold the control part from the message and dataptr is used to
hold the data part from the message. If ctlptr (or dataptr) is NULL or the
maxlen field is - 1, the control (or data) part of the message is not processed and
is left on the stream head read queue and len is set to -1, If the maxlen field is
set to 0 and there is a zero-length control (or data) part, that zero-length part is
removed from the read queue and len is set to 0. If the maxien field is set to 0
and there are more than zero bytes of control (or data) information, that
information is left on the read queue and len is set to 0. If the maxlen field in
ctiptr or dataptr is less than, respectively, the control or data part of the
message, maxlen bytes are retrieved. In this case, the remainder of the message
is left on the stream head read queue and a non-zero return value is provided, as

GETMSG(2) GETMSG(2)

described below under DIAGNOSTICS. If information is retricved from a
priority message, flags is set to RS_HIPRI on return.

By default, getmsg processes the first priority or non-priority message available
on the stream head read queue. However, a user may choose to retrieve only
priority messages by setting flags to RS_HIPRI. In this case, getmsg will only
process the next message if it is a priority message.

If O_NDELAY has not been sct, getmsg blocks until a message, of the type(s)
specified by flags (priority or either), is available on the stream head read
queue. If O_NDELAY has been set and a message of the specified type(s) is not
present on the read queue, getmsg fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved,
getmsg will continue to operate normally, as described above, until the stream
head read queue is empty. Thereafter, it will return O in the len fields of ctlptr
and dataptr.

getmsg fails if one or more of the following are true:

[EAGAIN] The O_NDELAY flag is set, and no messages are available.

[EBADF] fd is not a valid file descriptor open for reading.

[EBADMSG] Queued message to be read is not valid for getmsg.

[EFAULT] ctiptr, dataptr, or flags points to a location outside the
allocated address space.

[EINTR] A signal was caught during the getmsg system call.

[EINVAL] An illegal value was specified in flags, or the stream
referenced by fd is linked under a multiplexor.

[ENOSTR] A stream is not associated with fd.

A getmsg can also fail if a STREAMS error message had been received at the
stream head before the call to getmsg. The error returned is the value contained
in the STREAMS error message.

SEE ALSO
intro(2), read(2), poll(2), putmsg(2), write(2).
UNIX System V Release 3.2 Streams Primer.
UNIX System V Release 3.2 Streams Programmer’s Guide.

GETMSG(2) GETMSG(2)

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. A value of 0
indicates that a full message was read successfully. A return value of
MORECTL indicates that more control information is waiting for retrieval. A
return value of MOREDATA indicates that more data is waiting for retrieval. A
return value of MORECTLIMOREDATA indicates that both types of information
remain. Subsequent getmsg calls will retrieve the remainder of the message.

GETPEERNAME(2) (CTIX Internetworking) GETPEERNAME(2)

NAME
getpeername - get name of connected peer

SYNOPSIS
int getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
The getpeername call returns the name of the peer connected to socket s. The
namelen parameter should be initialized to indicate the amount of space pointed
to by name. On return it contains the actual size of the name returned (in
bytes). The interpretation of name depends on the ‘‘communication domain’’
[see protocols(4)).

SEE ALSO
bind(2), getsockname(2), intro(2), socket(2), intro(7).
CTIX Network Programmer’s Primer.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless one of the following is true:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to
perform the operation.
[EFAULT] The name parameter points to memory not in a valid part of

the process address space.

GETPID(2) GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process IDs

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()

DESCRIPTION
The getpid call returns the process ID of the calling process.

The getpgrp call returns the process group ID of the calling process.
The getppid call returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

GETSOCKNAME(2) (CTIX Internetworking) GETSOCKNAME(2)

NAME
getsockname - get socket name

SYNOPSIS
int getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
The getsockname call returns the current name for the specified socket (s). The
namelen parameter should be initialized to indicate the amount of space pointed
to by name. On return namelen contains the actual size of the name returned
(in bytes).

SEE ALSO
bind(2), intro(2), socket(2), intro(7).
CTIX Network Programmer’s Primer.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.
ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in the system to

perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of
the process address space.

GETSOCKOPT(2) (CTIX Intemetworking) GETSOCKOPT(2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int *optlen;

int setsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int optlen;

DESCRIPTION
The getsockopt and setsockopt calls manipulate options associated with a
socket. Options can exist at multiple protocol levels; they are always present at
the uppermost ‘‘socket’’ level.

When manipulating socket options the level at which the option resides and the
name of the option must be specified. To manipulate options at the ‘‘socket’’
level, level is specified as SOL_SOCKET. To manipulate options at any other
level the protocol number of the appropriate protocol controlling the option is
supplied. For example, to indicate that an option is to be interpreted by the TCP
protocol, level should be set to the protocol number of TCP; see getprotoent (3).

The parameters optval and optlen are used to access option values for
setsockopt. For getsockopt they identify a buffer in which the value for the
requested option(s) are to be returned. For getsockopt, optlen is a value-result
parameter, initially containing the size of the buffer pointed to by optval, and
modified on return to indicate the actual size of the value returned. If no option
value is to be supplied or returned, optval may be supplied as 0.

optname and any specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The include file <sys/socket.h> contains
definitions for ‘‘socket’’ level options, described below. Options at other
protocol levels vary in format and name; consult the appropriate entries in
section (4).

Most socket-level options take an int parameter for optval. For setsockopt, the
parameter should be non-zero to enable a boolean option, or zero if the option is
to be disabled. SO_LINGER uses a struct linger parameter, defined in

GETSOCKOPT(2)

GETSOCKOPT(2) (CTIX Internetworking)

<sysisocket.h>, which specifies the desired state of the option and the linger
interval (see below).

The following options are recognized at the socket level. Except as noted, each

may be examined with getsockopt and set with setsockopt.

SO_DEBUG
SO_REUSEADDR
SO_KEEPALIVE
SO_DONTROUTE
SO_LINGER
SO_BROADCAST

N NN

TAT TN
DN _ N ASIPLINAAIND

SO_SNDBUF
SO_RCVBUF
SO_TYPE
SO_ERROR

Toggle recording of debugging information.
Toggle on/off local address reuse.

Toggle keep connections alive.

Toggle routing bypass for outgoing messages.
Linger on close if data present.

Toggle permission to transmit broadcast messages.

Toggle reception of out-of-band data in band,
Set buffer size for output.

Set buffer size for input.

Get the type of the socket (get only).

Get and clear error on the socket (get only).

SO_DEBUG enables debugging in the underlying protocol modules.

SO_REUSEADDR indicates that the rules used in validating addresses supplied
in a bind(2) call should allow reuse of local addresses.

SO_KEEPALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the
connection is considered broken and processes using the socket are notified via
a SIGPIPE signal.

SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on
socket and a close(2) is performed. If the socket promises reliable delivery of
data and SO_LINGER is set, the system blocks the process on the close attempt
until it is able to transmit the data or until it decides it is unable to deliver the
information (a timeout period, termed the linger interval, is specified in the
setsockopt call when SO_LINGER is requested). If SO_LINGER is disabled and a
close is issued, the system processes the close in a manner that allows the
process to continue as quickly as possible.

GETSOCKOPT(2) (CTIX Inicmmetworking) GETSOCKOPT (2)

SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of the system.

With protocols that support out-of-band data, SO_OOBINLINE requests that
out-of-band data be placed in the normal data input queue as received; it is then
accessible with recv or read calls without the MSG_OOB flag.

SO_SNDBUF and SO_RCVBUF are options to adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be
increased for high-volume connections, or may be decreased to limit the
possible backlog of incoming data. The system placcs an absolute limit on
these values.

SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE
returns the type of the socket, such as SOCK_STREAM; it is useful for servers
that inherit sockets on startup. SO_ERROR refurns any pending ermror on the

socket and clears the error status. It may be used to check for asynchronous
errors on connected datagram sockets or for other asynchronous errors.

SEE ALSO

ioctl(2), socket(2), getprotoent(3).
CTIX Network Programmer’s Primer.

RETURN VALUE

ERRORS

BUGS

A 0O isreturned if the call succeeds, -1 if it fails.

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

{ENOPROTOOPT] The option is unknown at the level indicaied.

[EFAULT] The address pointed to by optval is not in a valid part

of the process address space. For getsockopt, this error
may also be returned if optlen is not in a valid part of
the process address space.

Several of the socket options should be handled at lower levels of the system.

GETTIMEOFDAY(2) GETTIMEOFDAY(2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <sys/time.h>

int gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *izp;

int settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
The system’s notion of the current Greenwich time and the current time zone is
obiained with the geiiimeofday call, and set with ithe seiiimeofday call. The
time is expressed in seconds and microseconds since midnight (0 hour), January
1, 1970. The resolution of the system clock is hardware dependent, and the
time may be updated continuously or in ‘‘ticks.”” If tzp is zero, the time zone
information will not be returned or set.

The structures pointed to by ¢p and ¢zp are defined in <sys/time.h> as:

struct timeval {
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

k

struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */
9
The timezone structure indicates the local time zone (measured in minutes of
time westward from Greenwich), and a flag that, if nonzero, indicates that
Daylight Savings Time applies locally during the appropriate part of the year.

Only the super-user can set the time of day or time zone.
SEE ALSO
date(1), adjtime(2), ctime(3C).

RETURN VALUE
A O return value indicates that the call succeeded. A -1 return value indicates
an emror occurred, and in this case an error code is stored into the global
variable errno.

GETTIMEOFDAY (2) GETTIMEOFDAY(2)

ERRORS
The following error codes may be set in errno:
[EFAULT] An argument address referenced invalid memory.
[EPERM] A user other than the super-user attempted to set the time.

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and
effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid ()

DESCRIPTION
getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.
getgid returns the real group ID of the calling process.
getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

IOCTL(2) IOCTL(2)

NAME

ioctl - control device

SYNOPSIS

int ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION

The ioctl call performs a variety of control functions on devices and STREAMS.
For non-STREAMS files, the functions performed by this call are device-specific
control functions. The arguments request and arg are passed to the file
designated by fildes and are interpreted by the device driver. This control is
infrequently used on non-STREAMS devices, with the basic input/output
functions performed through the read(2) and write(2) system calls.

For STREAMS files, specific functions are performed by the ioct call as
described in streamio(7).

The fildes argument is an open file descriptor that refers to a device; request
selects the control function to be performed and depends on the device being
addressed; arg represents additional information needed by this specific device
to perform the requested function. The data type of arg depends upon the
particular control request, but it is either an integer or a pointer to a device-
specific data structure.

In addition to device-specific and STREAMS functions, generic functions are
provided by more than one device driver, for example, the general terminal
interface [see termio(7)).

The ioctl call fails for any type of file if one or more of the following are true:
[EBADF] Jildes is not a valid open file descriptor.

[ENOTTY] fildes is not associated with a device driver that accepts
control functions.

[EINTR] A signal was caught during the ioctl system call.

The ioctl call also fails if the device driver detects an error; the error is passed
through ioctl without change to the caller. A particular driver might not have
all of the following error cases. Other requests to device drivers fail if one or
more of the following are true:

[EFAULT] Request requires a data transfer to or from a buffer pointed to
by arg, but some part of the buffer is outside the process’s
allocated space.

IOCTL(2) I0CTL(2)

[EINVAL] Request or arg is not valid for this device.

[EIO] Some physical /O error has occurred.

[ENXIO] The request and arg are valid for this device driver, but the
service requested can not be performed on this particular
subdevice.

{ENOLINK] fildes is on a remote machine and the link to that machine is

no longer active.
STREAMS errors are described in streamio(7).
SEE ALSO
streamio(7), termio(7).
DIAGNOSTICS
Upon successful completion, the value returned depends upon the device
control function, but must be a non-negative integer. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

KILL(2) KILL(2)

NAME

kill - send a signal to a process or a group of processes

SYNOPSIS

int kill (pid, sig)
int pid, sig;

DESCRIPTION

kill sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid. The signal that is
to be sent is specified by sig and is either one from the list given in signal (2), or
0. If sig is O (the null signal), error checking is performed but no signal is
actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or
effective user ID of the receiving process, unless the effective uscr ID of the
sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes
[see intro(2)] and will be referred to below as proc0 and procl , respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is
equal to pid. pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and procl whose
process group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be
sent to all processes excluding proc0 and procl whose real user ID is equal to
the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be sent
to all processes excluding proc0 and procl.

If pid is negative but not -1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

kill will fail and no signal will be sent if one or more of the following are true:

[EINVAL)] sig is not a valid signal number.

[EINVAL] sig is SIGKILL and pid is 1 (procl).

[ESRCH] No process can be found corresponding to that specified by
pid.

[EPERM] The user ID of the sending process is not super-user, and its

real or effective user ID does not match the real or effective
user ID of the receiving process.

KILL(2) KILL(2)

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2), sigset(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
isreturned and errno is set to indicate the error.

LINK(2)

NAME

link - link to a file

SYNOPSIS

LINK(2)

int link (pathl, path2)
char *pathl, *path2;

DESCRIPTION

The pathl argument points to a path name naming an existing file; path2 points
to a path name naming the new directory entry to be created.

The link call creates a new link (directory entry) for the existing file. It fails
and no link is created if one or more of the following are true:

[ENOTDIR]

[ENOENT]
[EACCES]

[ENOENT]
[EEXIST]
[EPERM]

[EXDEV]

{ENOENT]
[EACCES]

[EROFS]

[EFAULT)]

[EMLINK]
[EINTR]
[ENOLINK]}

[EMULTIHOP}

SEE ALSO
unlink(2).

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.
The file named by pathl does not exist.

The link named by path2 exists.

The file named by pathl is a directory and the effective user
ID is not super-user.

The link named by path2 and the file named by pathl are on
different logical devices (file systems).

path2 points to a null path name.

The requested link requires writing in a directory with a
mode that denies write permission.

The requested link requires writing in a directory on a read-
only file system.

path points outside the allocated address space of the
process.

The maximum number of links to a file would be exceeded.
A signal was caught during the link system call.

path points to a remote machine and the link to that machine
is no longer active.

Components of path requirc hopping to multiple remote
machines.

LINK(2) LINK(2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

LISTEN(2) (CTIX Internetworking) LISTEN(2)

NAME

listen - listen for connections on a socket

SYNOPSIS

int listen (s, backlog)
int s, backlog;

DESCRIPTION

To accept connections, a socket is first created with socket(2), a backlog for
incoming connections is specified with listen, and then the connections are
accepted with accept(2). The listen call applies only to sockets of type
SOCK_STREAM.

The backlog parameter defines the maximum length to which the queue of
pending connections may grow. If a connection request arrives with the queue

full the client will receive ain error wiih an indication of ECONNREFUSED.

SEE ALSO

accept(2), connect(2), socket(2).
CTIX Network Programmer’s Primer.

RETURN VALUE
A O return value indicates success; -1 indicates an error.
ERRORS
The call fails if:
(EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is not a socket.
[EOPNOTSUPP] The socket is not of a type that supports the operation
listen.
BUGS

The backlog is currently limited (silently) to 5.

LOCKING(2) LOCKING(2)

NAME

locking - exclusive access to regions of a file

SYNOPSIS

int locking (filedes, mode, size);
int fildes, mode;
long size;

DESCRIPTION

The locking call places or removes a kernel-enforced lock on a region of a file.
The calling process has exclusive access to regions it has locked. If another
process uses read(2), write (2), creat(2), or open(2) (with O_TRUNC) in a way
that reads or modifies part of the locked region, the second process’s system call
does not return until the lock is released, unless deadlock or some other error is
detected. A process whose execution is suspended in such a manner is said to
be blocked .

Parameters specify the file to be locked or unlocked, the kind of lock or unlock,
and the region affected:

filedes Specifies the file to be locked or unlocked; filedes is a file descriptor
returned by an open, create, pipe, fcnil, or dup system call.

mode Specifies the action: 0 for lock removal; 1 for blocking lock; 2 for
checking lock. Blocking and checking locks differ only if the
attempted lock is itself locked out: a blocking lock waits until the
existing lock or locks are removed; a checking lock immediately
returns an error.

size The region affected begins at the current file offset associated with
filedes and is size bytes long. If size is zero, the region affected ends
at the end of the file.

Locking imposes no structure on a CTIX file. A process can arbitrarily lock any
unlocked byte and unlock any locked byte. However, creating a large number
of noncontiguous locked regions can fill up the system’s lock table and make
further locks impossible. It is advisable that a program’s use of locking segment
the file in the same way as does the program’s use of read and write .

A process is said to be deadlocked if it is sleeping until an unlocking which is
indirectly prevented by that same sleeping process. The kernel will not permit a
read, write, creat, open with O_TRUNC, or blocking locking if such a call
would deadlock the calling process. Errno is set to EDEADLOCK. The
standard response to such a situation is for the program to release all its existing
locked areas and try again. If a locking call fails because the kernel's table of

LOCKING(2) LOCKING(2)

locked areas is full, again, errno is set to EDEADLOCK and, again, the calling
program should release its existing locked areas.

Special files and pipes can be locked, but no input/output is blocked.

Locks are automatically removed if the process that placed the lock terminates
or closes the file descriptor used to place the lock.

SEE ALSO
create(2), close(2), dup(2), open(2), read(2), write(2).

RETURN VALUE
A return value of -1 indicates an error, with the error value in errno.

[EACCES] A checking lock on a region already locked.
[EDEADLOCK] A lock that would cause deadlock or overflow the system’s

1ncl tahla
$O0CXK av:l.

WARNING
Do not apply any standard input/output library function to a locked file: this
library does not know about locking .

Two forms of file locking are available: locking (2) and fentl (2). locking (2) is
retained for compatibility with previous versions of CTIX. Although both forms
are compatible and interchangeable, new programs should use only fcntl (2) for
record locking. Note that the error return values differ.

LSEEK(2) LSEEK(2)

NAME
Iseek - move read/write file pointer

SYNOPSIS
long Iseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
fildes is a file descriptor returned from a creat, open, dup, or fcntl system call.
Iseek sets the file pointer associated with fildes as follows:

. If whence is 0, the pointer is set to offset bytes.
. If whence is 1, the pointer is set to its current location plus offset.
. If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in
bytes from the beginning of the file, is returned. Note that if fildes is a remote
file descriptor and offset is negative, Iseek will return the file pointer even if it
is negative.

Iseek will fail and the file pointer will remain unchanged if one or more of the
following are true:

[EBADF] fildes is not an open file descriptor.
[ESPIPE] fildes is associated with a pipe or fifo.
[EINVAL and SIGSYS signal]

whence isnot 0, 1, or 2.
[EINVAL] Jildes is not a remote file descriptor, and the resuiting file
pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associated
with such a device is undefined.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

MKDIR(2)

NAME

MKDIR (2)

mkdir - make a directory

SYNOPSIS

int mkdir (path, mode)

char *path;
int mode;

DESCRIPTION

The mkdir call creates a new directory with the name path. The mode of the
new directory is initialized from the mode. The protection part of the mode
argument is modified by the process’s mode mask [sec umask(2)].

The directory’s owner ID is set to the process’'s effective user ID. The
directory’s group ID is set to the process’s effective group ID. The newly
creaied directory is empty with the possibie exception of entries for the “‘dot”’
(.) and ““dot dot’ (..) directories. The mkdir call fails and no directory is
created if one or more of the following are true:

[ENOTDIR]

[ENOENT]
[ENOLINK]

[EMULTIHOP]

[EACCES]

[ENOENT]

[EEXIST]

[EROFS]
[EFAULT]

[EMLINK]

(EIO]
DIAGNOSTICS

A component of the path prefix is not a directory.
A component of the path prefix does not exist.

Path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

Either a component of the path prefix denies search
permission or write permission is denied on the parent
directory of the directory to be created.

The path is longer than the maximum allowed.
The named file already exists.
The path prefix resides on a read-only file system.

Path points outside the allocated address space of the
process.

The maximum number of links to the parent directory would
be exceeded.

An /O error has occurred while accessing the file system,

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned, and errno is set to indicate the error.

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
The mknod call creates a new file named by the path name pointed to by path.
The mode of the new file is initialized from mode, where the value of mode is
interpreted as follows:

0170000 file type; one of the following:

0010000 fifo special

0020000 character special
0040000 directory

0060000 block special

0100000 or 0000000 ordinary file

0004000 set user ID on execution
00020#0 set group ID on execution if #is7,5,3,0r 1
enable mandatory file/record locking if #1is 6,4, 2,0r 0
0001000 save text image after execution
0000777 access permissions; constructed from the following:

0000400 read by owner

0000200 write by owner

0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The group
ID of the file is set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be used.
The low-order 9 bits of mode are modified by the process’s file mode creation
mask: all bits set in the process’s file mode creation mask are cleared [see
umask(2)]. If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block I/O device. If
mode does not indicate a block special or character special device, dev is
ignored.

MKNOD(2)

MKNOD(2)

The mknod call can be invoked only by the super-user for file types other than

FIFO special.

The call fails and the new file is not created if one or more of the following are

true:
[EPERM]
[ENOTDIR]
[ENOENT]
[EROFS]

[EEXIST]

IERATIT'T]
“avs g

[T

[ENOSPC]
[EINTR]
[ENOLINK]

[EMULTIHOP]

SEE ALSO

The effective user ID of the process is not super-user.
A component of the path prefix is not a directory.
A component of the path prefix does not exist.

The directory in which the file is to be created is located on a
read-only file system.

The named file exists.

Path points outside the allocated address space of the
process.

No space is available.

A signal was caught during the mknod system call.

Path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

mkdir(1), chmod(2), exec(2), umask(2), fs(4).

DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set 10 indicate the error.

WARNING

If mknod is used to create a device in a remote directory, the major and minor
device numbers are interpreted by the server.

MOUNT(2) MOUNT(2)

NAME

mount - mount a file system

SYNOPSIS

#include <sys/types.h>
#include <sys/mount.h>

int mount (spec, dir, mflag, fstyp, dataptr, datalen)
char *spec, *dir;

int mflag, fstyp;

char +dataptr;

int datalen;

DESCRIPTION

mount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. Spec and dir
are pointers to path names. fstyp is the file system type number. The sysfs(2)
system call can be used to determine the file system type number. Note that if
both the MS_DATA and MS_FSS flag bits of mflag are off, the file system type
will default to the root file system type. Only if either flag is on will fstyp be

used to indicate the file system type.

If the MS_DATA flag is set in mflag the system expects the datapir and datalen
arguments to be present. Together they describe a block of file-system specific
data at address dataptr of length datalen. This is interpreted by file-system
specific code within the operating system and its format depends upon the file
system type. A particular file system type may not require this data, in which
case dataptr and datalen should both be zero. Note that MS_FSS is obsolete and
will be ignored if MS_DATA is also set, but if MS_FSS is set and MS_DATA is
not, dataptr and datalen are both assumed to be zero.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system,

The low-order bit of mflag is used to control write permission on the mounted
file system; if 1, writing is forbidden, otherwise writing is permitied according
to individual file accessibility.

mount may be invoked only by the super-user. It is intended for use only by the
mount(1M) utility.

mount will fail if one or more of the following are true:
[EPERM] The effective user ID is not super-user.
[ENOENT] Any of the named files does not exist.

S US—_

MOUNT(2)

[ENOTDIR]
[EREMOTE]
[ENOLINK]}

[EMULTIHOP]

[ENOTBLK]
[ENXIO]
[ENOTDIR]
[EFAULT]

[EBUSY]

[EBUSY]
[EBUSY]
[EROFS]
[ENOSPC]

[EINVAL]

[EBADFS]

SEE ALSO

MOUNT (2)

A component of a path prefix is not a directory.
Spec is remote and cannot be mounted.

Path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

Spec is not a block special device.
The device associated with spec does not exist.
Dir is not a directory.

Spec or dir points outside the allocated address space of the
Process.

Dir is currently mounted on, is someone’s current working
directory, or is otherwise busy.

The device associated with spec is currently mounted.
There are no more mount table entries.
Spec is write protected and mflag requests write permission.

The file system state in the super-block is not FSOKAY and
mflag requests write permission.

The super block has an invalid magic number or the fstyp is
invalid or mflag is not valid.

An attempt to mount a bit-mapped file system failed due to
the dirty flag being set for that file system.

mount(1M), sysfs(2), umount(2), fs(4).

DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

MSGCTL(2)

NAME

MSGCTL(2)

msgctl - message control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)

int msqid, cmd;

struct msqid_ds *buf;

DESCRIPTION

The msgctl call provides a variety of message control operations as specified by
cmd. The following cmds are available:

IPC_STAT

IPC_SET

IPC_RMID

Piace the current value of each member of the data structure
associated with msqid into the structure pointed to by buf.
The contents of this structure are defined in intro(2).
{READ}

Set the value of the following members of the data structure
associated with msqid to the corresponding value found in
the structure pointed to by buf:

msg_perm.uid

msg_perm.gid

msg_perm.mode /» only low 9 bits «/
msg_qbytes

This cmd can be executed only by a process that has an
effective user ID equal to either that of super-user, or to the
value of msg_perm.cuid or msg_perm.uid in the data
structure associated with msgid. Only super-user can raise
the value of msg_gbytes.

Remove the message queue identifier specified by msqid
from the system and destroy the message queue and data
structure associated with it. This cmd can be executed only
by a process that has an effective user ID equal to either that
of super-user, of to the value of msg_perm.cuid or
msg_perm.uid in the data structure associated with msgid.

MSGGET(2) MSGGET (2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key _t key;
int msgflg;
DESCRIPTION
The msgget call returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure
{see intro(2)] are created for key if one of the following are true:

o Key is equal to IPC_PRIVATE.

° Key does not already have a message queue identifier associated with
it, and (msgflg & IPC_CREAT) is ‘‘true’’.
Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

U Msg_perm.cuid, msg_perm.uid, msg_perm.gid, and msg_perm.cgid
are set equal to the effective user ID and effective group ID,
respectively, of the calling process.

. The low-order 9 bits of msg_perm.mode are set equal to the low-
order 9 bits of msgflg.

. Msg_qnum, msg_lspid, msg_Irpid, msg_stime, and msg_rtime are
set equal to 0.

. Msg_ctime is set equal to the current time.

. Msg_qbytes is set equal to the system limit.

The msgget call fails if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but operation
permission [see intro(2)] as specified by the low-order 9 bits
of msgflg would not be granted.

[ENOENT] A message queue identifier does not exist for key and

(msgflg & IPC_CREAT) is ‘‘false’’.

MSGGET(2) MSGGET(2)

[ENOSPC] A message queue identifier is to be created but the system-
imposed limit on the maximum number of allowed message
queue identifiers system wide would be exceeded.

[EEXIST] A message queue identifier exists for key but [(msgflg &
IPC_CREAT) & (msgflg & IPC_EXCL)] is ‘‘true’’.
SEE ALSO
intro(2), msgctl(2), msgop(2).
DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a message queue

identifier, is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

MSGOP(2) MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz, msgfig;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
The msgsnd call is used to send a message to the queue associated with the
message queue identifier specified by msqid. {WRITE} msgp points to a
structure containing the message. This structure is composed of the following
members:

long mtype; /* message type */
char miext[]; /» message text +/

The mtype member is a positive integer that can be used by the receiving
process for message selection (see msgrcv below). The mtext member is any
text of length msgsz bytes; msgsz can range from 0 to a system-imposed
maximum,.

The msgflg parameter specifies the action to be taken if one or more of the
following are true:

. The number of bytes already on the queue is equal to msg_gbytes [sce
intro(2)].

. The total number of messages on all queues system-wide is equal to
the system-imposed limit.

MSGOP(2) MSGOP(2)

These actions are as follows:

. If (msgflg & IPC_NOWAIT) is ‘‘true’’, the message is not sent and the
calling process returns immediately.

. If (msgflg & TPC_NOWAIT) is ‘‘false’’, the calling process suspends
execution until one of the following occurs:

- The condition responsibie for the suspension no longer exists,
in which case the message is sent.

- msqid is removed from the system [see msgctl(2)]. When this
occurs, errno is set equal to EIDRM, and a value of -1 is
returned.

- The calling process receives a signal that is to be caught. In

thia tha magaaoa 1a nat aant and tha Aalling nenn~nag
HUDY LaAdV UiV 1ILOIAEV 1D HIUL DVIIL dllu uiv vaulllg pPiuvuesd

resumes execution in the manner prescribed in signal (2).

The msgsnd call fails and no message is sent if one or more of the following are
true:

[EINVAL] msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process [see
intro(2)].

[EINVAL] mtype is less than 1.

[EAGAIN] The message cannot be sent for one of the reasons cited
above and (msgflg & IPC_NOWAIT) is “‘true’’.

[EINVAL] msgsz is less than zero or greater than the system-imposed
limit.

[EFAULT] msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro(2)].

e msg_qnum is incremented by 1.
. msg_lIspid is set equal to the process ID of the calling process.
e msg_stime is set equal to the current time.

msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the structure pointed to by msgp.
{READ) This structure is composed of the following members:

long mtype; /* message type »/
char mtext[]; /* message text »/

.2

MSGOP(2) MSGOP(2)

mtype is the received message’s type as specified by the sending process. mtext
is the text of the message. msgsz specifies the size in bytes of mrext. The
received message is truncated to msgsz bytes if it is larger than msgsz and
(msgflg & MSG_NOERROR) is ‘‘true’’. The truncated part of the message is
lost and no indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:
. If msgtyp is equal to 0, the first message on the queue is received.
. If msgtyp is greater than 0, the first message of type msgtyp is received.

. If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on

the quene. These are as follows:
. If (msgflg & TPC_NOWAIT) is ‘‘true’’, the calling process returns
immediately with a return value of -1 and errno set to ENOMSG.

. If (msgflg & TPC_NOWAIT) is ‘‘false’’, the calling process suspends
execution until one of the following occurs:

- A message of the desired type is placed on the queue.

- msqid is removed from the system. When this occurs, errno is
set equal to EIDRM, and a value of -1 is returned.

- The calling process receives a signal that is to be caught. In
this case a message is not received and the calling process
resumes execution in the manner prescribed in signal (2).

The msgrcv call fails and no message is received if one or more of the following

are irue:

[EINVAL] msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process.

[EINVAL] msgsz is less than 0.

[E2BIG] mitext is greater than msgsz and (msgflg & MSG_NOERROR)
is ““false’’.

[ENOMSG] The queue does not contain a message of the desired type
and (msgtyp & IPC_NOWAIT) is *‘true’’,

[EFAULT] msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro(2)].

-3-

MSGOP(2) MSGOP(2)

. msg_qnum is decremented by 1.
. msg_Irpid is set equal to the process ID of the calling process.
) msg_rtime is set equal to the current time.
SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).
DIAGNOSTICS

If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If they return due to
removal of msqid from the system, a value of -1 is returned and errno is set to
EIDRM.

Upon successful completion, the return value is as follows:
. msgsnd returns a value of 0.

. msgrcy returns a value equal to the number of bytes actually placed
into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

NFSSYS(2) (NFS Utilities) NFSSYS(2)

NAME
nfssys - common shared NFS system calls

SYNOPSIS
#include <sys/fs/nfs.h>

int nfssys(cmd, argp)
int cmd;
char *argp;

nfs_getfh(fd, fhp)
int fd;
char *fhp;
{
Sruct {
int fdes;
char *fhp;
} args;
extern int nfssys();

args.fdes = fd;

args.fhp = fhp;

return(nfssys(2, &args));
}

nfs_sve(fd)
int fd;
{
extern int nfssys ();
return(nfssys(1, fd);
}

async_daemon()
{
extern int nfssys();
return(nfssys(3, 0));
}

DESCRIPTION
The nfssys system call is provided to allow NFS daemons [through nfs_getfh(),
nfs_svc(), and async_daemon() routines] to enter the kernel. Note that this call

NFSSYS(2) (NFS Utilities) NFSSYS(2)

is not intended for general purpose use, and is described here only for
illustration.

The cmd argument to afssys specifies the NFS routine to use:
1 isnfs_svc()

2 isnfs_getfh ()

3 is async_daemon ().

The argp argument is the error return.

The nfs_getfh routine, in the mountd mount daemon, returns a file handle for the
file open as file descriptor fdes.

nfs_getfh(fd, thp)
int fd:
char *thp;
{
struct {
int fdes;
char *thp;
} args;
extern int nfssys();

args.fdes = fd;
args.fhp = thp;
return(nfssys(2, &args));

}

The nfs _svc() and async_daemon () routines allow kernel processes to have a
user context. The nfs_svc routine starts the nfsd daemon listening on socket
sock. The socket (in 4.2BSD terminology) must be AF_INET and
SOCK_DGRAM (protocol UDP/IP), but this is completely dependent on the local
network transport implementation. This system call returns only if the process
is killed.

nfs_svc{fd)

int fd;

{
extern int nfssys ();
return(nfssys(1, fd);

}

NFSSYS(2) (NFS Utilities) NFSSYS(2)

The async_daemon routine implements the NFS biod daemon, which handles
asynchronous 1/O for an NFS client; it never returns.

async_daemon()

{

extern int nfssys();
return{nfssys(3, 0));
}
SEE ALSO
mountd(1M), nfsd(1M). -

NICE(2) NICE(2)

NAME

nice - change priority of a process

SYNOPSIS

int nice (incr)
int incr;

DESCRIPTION

nice adds the value of incr to the nice value of the calling process. A process’s
nice value is a non-negative number for which a more positive value results in
lower CPU priority.

The system allows nice values only from -8 to 39. The nice values -8 to -1 are
not accepted unless the syslocal(SYSLRTNICE) is executed to enable the
mechanism. The nice system call grants nice values from -8 to -1 only to
super-user processes. These negative aice values cause ihe CPU priority of the
process to be fixed independently of CPU usage of the process. nice values from
0 to 39 allow the system to adjust dynamically the actual CPU priority of the
process, temporarily lowering it in proportion to the process’s recent level of
CPU usage. If a super-user process requires a nice value below -8, or if any
other process requests a nice value below 0, the system imposes a nice value of
0. If any process requests a nice value above 39, the system imposes a nice
value of 39.

[EPERM] nice will fail and not change the nice value if incr is
negative or greater than 39 and the effective user ID of the
calling process is not super-user.

SEE ALSO

nice(1), ripenable(1M), exec(2).

DIAGNOSTICS

Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

NICE(2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
nice adds the value of incr to the nice value of the calling process. A process’s
nice value is a non-negative number for which a more positive value results in
lower CPU priority.

The system allows nice values only from -8 10 39. The nice values -8 10 -1 are
not accepted unless the syslocal(SYSLRTNICE) is executed to enable the
mechanism. The nice system call grants nice values from -8 to -1 only to
SupeT-usci processes. These negaiive mice values cause the CPU priority of the
process to be fixed independently of CPU usage of the process. nice values from
0 to 39 allow the system to adjust dynamically the actual CPU priority of the
process, temporarily lowering it in proportion to the process’s recent level of
CPU usage. If a super-user process requires a nice value below -8, or if any
other process requests a nice value below 0, the system imposes a nice value of
0. If any process requests a nice value above 39, the system imposes a nice

value of 39.

[EPERM} nice will fail and not change the nice value if incr is
negative or greater than 39 and the effective user ID of the
calling process is not super-user.

SEE ALSO
nice(1), rtpenable(1M), exec(2).
DIAGNOSTICS

Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

NOTIFY(2) NOTIFY (2)

NAME

notify, unnotify, evwait, evnowait - manage notifications

SYNOPSIS

#include <notify.h>

int notify(type, arg, tag)
ushort type;

char *arg;

char *tag;

int unnotify(type, arg)
ushort type;
char *arg;

ushort evwait(tag, datum)
char **iag;
char **datum;

ushort evnowait(tag, datum)
char **tag;
char **datum;

DESCRIPTION

The notify system call interface allows a user process to record a number of
events that it is interested in, and then waits for any one of them. Like select (2),
it does synchronous /O multiplexing, but notify waits for a wider range of
events and thus has greater functionality than select.

The notify call requests a notification or set of notifications.
The unnotify call retracts an earlier request (or set of requests) for notification.
The evwait call waits for a notification to be posted to the calling process.

The evnowait call returns the first notification if one exists, returning
immediately otherwise.

Notifications are posted FIFO (first-in, (frst-out) in the user process, each
evwait returning the first notification or blocking until one is posted. When a
notify call is given the user must supply the zype of notification, a tag, and an
argument. The tag is an arbitrary number the size of a (char *), which is
returned by any ewwait call triggered by that notification request. The
argument is type specific and is described below.

The return values of evwait and evrnowait are the type of the notification.

It is an error for norify to be called with a rype and arg matching a currently
active notification.

NOTIFY(2) NOTIFY(2)

The notify calls support the following types:

N_FDREAD
Queue a notification if the file descriptor arg is readable at the time of
the notify call, and subsequently whenever there is data to be read. A
notification is also queued at end-of-file or when the number of writers
on a pipe goes to zero. The datum returned from an evwait is a count of
the number of bytes available to be read, unless the notification is for a
terminal device in cooked mode; in this case, the count is actually the
number of delimiters encountered (that is, the number of reads
required to get all data). At EOF the datum is -1, and the request is
deleted. This type is implemented for sockets, pipes, ttys, and streams.

N_FDWRITE
Queue a notification if the file descriptor arg is writable at the time of
the notify call, and subsequently when the file goes from a non-
writable to a writable state (that is, output is not blocked). Datum is
the number of characters writable. This type is implemented for
sockets, pipes, and streams.

N_SIGNAL
Queue a notification on receipt of a signal. This is used in conjunction
with regular signal catching [see signal(2)]. When signal notification is
in effect, all caught signals queue notifications instead of causing
pseudo-interrupts. If multiple instances of a caught signal occur
before the process has received the notification, the returned type is
N_LOSTSIG rather than N_SIGNAL. Ignored or defaulted signals are
handled normally. Signals are not reset upon notification.

Note that only one call to notify
notify(N_SIGNAL ,ignored,tag)

is required to enable notification of all signals that have a signal
catching function (use a null function). Evwait and evnowait return the
tag and datum. Datum is a bitwise OR of all queued signals: that is,
low-numbered signals are represented as low-order bits (signal n sets
271y,

N_UMSGREAD,N_UMSGWRITE
Queue a notification if the message queue described by arg is or
becomes readable or writable, respectively. The datum returned is the
number of messages received or the number of characters that can be
sent, respectively. When the message queue is removed, datum is -1,
and the request is deleted.

NOTIFY (2)

NOTIFY(2)

N_INDIR

If type is N_INDIR, arg is acually a pointer to an array of the following
structure (defined in /usr/include/notify.h):

struct n_request {
ushort type;
char *arg;
char *tag;

}

The array should be terminated with an entry having type N_INDIR. The entire
set of notifications is either placed or removed. N_INDIR is never returned by
evwait Or evnowait.

N_QUERY

Type N_QUERY is valid only as an argument to the notify call, argisa
pointer to an array of struct n_indir, and fag is a pointer to an int
containing the number of elements in the array.

On return, the array contains the current active notifications in a form
suitable for passing to notify or unnotify (that is, terminated by
N_INDIR), and the int pointed to by tag contains the number of active
notifications (even if there was not enough space to copy them all
back).

N_SEMOP

SEE ALSO

Queue a notification if the semaphore described by the struct
n_semop (below) pointed to by arg would not block, is released, or is
removed. Datum is semval unless the semaphore has been removed, in
which case it is -1.

struct n_semop {
int semid; /* semaphorelD ¥/
short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */

fentl(2), msgop(2), pipe(2), read(2), select(2), signal(2), socket(2), wait(2),
termio(7).

NOTIFY(2) NOTIFY(2)
DIAGNOSTICS
All calls return -1 on error, setting errno to one of the following:
[EINVAL] Invalid type was given
[EINVAL] Caller never did a notify (unnotify, evwait, evnowait)
[EINVAL] File is not of a valid type (N_FDREAD, N_FDWRITE).
[EBADFj File is not open (N_FDREAD,N_FDWRITE)
[EBADF] Invalid message queue descriptor (N_UMSG)
[ENOSPC] No space available to allocate notification queue header
[ENOSPC] No space available to allocate table entry for this notification
[ENOSPC] Too many active notification requests for given space
(N_QUERY)
[EFAULT] An address fault was generated by a user-supplied pointer
EXAMPLE

#include "sys/types.h”
#include <sys/notify.h>
#include <stdio.h>
#include <signal.h>

int sig_catch();

main()

{
int tag, datum, i;
char buf[BUFSIZ];
ushort rv, evwait();

setbuf(stdout, NULL);
it (notify(N_FDREAD, 0, 't’) < 0)
perror(“notify for N_FDREAD of stdin failed"), exit(1);

if (notify(N_SIGNAL, 2, 's’) < 0)
perror("notify failed”), exit(1);

for (i=0; i<20; i++)
signal(i, sig_catch);

NOTIFY(2) NOTIFY(2)

for(;;) {
/* Wait for an event */
v = evwait(&tag, &datum);

/* Tell the user about it */
printf("0v: %d tag: %d datum: %d0, rv, tag, datum);

switch (tag) {

case’s’:
break;
case’t’;
/* Read the input */
gets(buf);
printf("read '%e’0, buf);
if (*buf =='q’)
exit(0);
break;
}
}
}
sig_catch()
{
}
WARNING

The notify system call interface is not portable, has little likelihood of becoming
so, and may disappear in futare releases of CTIX. It is therefore recommended
that you use the poll(2) system call, and that existing software using notify be
changed to use poll.

OPEN(2)

NAME

OPEN(2)

open - open for reading or writing

SYNOPSIS

#include <fentl.h>
int open (path, oflag [, mode])

char *path;

int oflag, mode;

DESCRIPTION

The open call opens a file descriptor for the file pointed to by path, and sets the
file status flags according to the value of oflag. For non-STREAMS [see
intro(2)] files, oflag values are constructed by or-ing flags from the following
list (only one of the first three flags below may be used):

N DNRNANVT WV
A VIR

O_WRONLY
O_RDWR
O_NDELAY

Open for reading only.
Open for writing only.
Open for reading and writing.

This flag may affect subsequent reads and writes [see
read(2) and write (2)1.

When opening a FIFO with O_RDONLY or O_WRONLY set:
If O_NDELAY is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

If O_NDELAY is clear:

An open for reading-oniy will block until a process
opens the file for writing. An open for wrting-only
will block until a process opens the file for reading.

‘When opening a file associated with a communication line:
If O_NDELAY is set:

The open will return without waiting for carrier.
If O_NDELAY is clear:

The open will block until carrier is present.

OPEN(2) OPEN(2)

O_APPEND If set, the file pointer will be set to the end of the file prior to
each write.

O_DIRECT If set, subsequent reads or writes that satisfy the following
criteria are moved directly to or from the user space to the
physical media:

) The transfer must start on a 1K byte boundary in the
file, and it must be in multiples of 1K byte blocks.

0_SYNC When opening a regular file, this flag affects subsequent
writes. If set, each write (2) will wait for both the file data
and file status to be physically updated.

O_CREAT If the file exists, this flag has no effect. Otherwise, the
owner ID of the file is set to the effective user ID of the
process, the group ID of the file is set to the effective group
ID of the process, and the low-order 12 bits of the file mode
are set to the value of mode modified as follows [see

creat(2)]:
. All bits set in the file mode creation mask of the process are
cleared [see umask(2)].
. The “‘save text image after execution bit’’ of the mode is
cleared [see chmod(2)].
O_TRUNC
If the file exists, its length is truncated to 0 and the mode and owner are
unchanged.
0_EXCL

If O_EXCL and O_CREAT are set, open will fail if the file exists.

When opening a STREAMS file, oflag may be constructed from O_NDELAY or-
ed with either O_RDONLY, O_WRONLY or O_RDWR. Other flag values are not
applicable to STREAMS devices and have no effect on them. The value of
O_NDELAY affects the operation of STREAMS drivers and certain system calls
[see read(2), getmsg(2), putmsg(2) and write(2)]. For drivers, the
implementation of O_NDELAY is device-specific. Each STREAMS device driver
may treat this option differently.

Certain flag values can be set following open as described in fcnii(2).

The file pointer used to mark the current position within the file is set to the
beginning of the file.

OPEN(2)

OPEN(2)

The new file descriptor is set to remain open across exec system calls [see

fentl(2)).

The named file is opened unless one or more of the following are true:

[EACCES]
[EACCES]
[EAGAIN]

[EEXIST}]
[EFAULT]

[EINTR]

[EIO]
[EISDIR]
(EMFILE]
[EMULTIHOP]

[ENFILE]

[ENOENT]
[ENOLINK]

[ENOMEM]
[ENOSPC]

[ENOSR]
[ENOTDIR]
[ENXIO]

[ENXIO]

[ENXIO]
[EROFS]

A component of the path prefix denies search permission.
oflag permission is denied for the named file.

The file exists, mandatory file/record locking is set, and there
are outstanding record locks on the file [see chmod (2)).

O_CREAT and O_EXCL are set, and the named file exists.

path points outside the allocated address space of the
process.

A signal was caught during the open system call.

A hangup or error occurred during a STREAMS open.

The named file is a directory and oflag is write or read/write.
NOFILES file descriptors are currently open.

Components of path require hopping to multiple remote
machines.

The system file table is full.
O_CREAT is not set and the named file does not exist.

path points to a remote machine, and the link to that machine
is no longer active.

The system is unable to allocate a send descriptor.

O_CREAT and O_EXCL are set, and the file system is out of
inodes.

Unable to allocate a stream.
A component of the path prefix is not a directory.

The named file is a character special or block special file,
and the device associated with this special file does not exist.

O_NDELAY is set, the named file is a FIFO, O_WRONLY is
set, and no process has the file open for reading.

A STREAMS module or driver open routine failed.

The named file resides on a read-only file system and oflag
is write or read/write.

OPEN(2) OPEN(2)

[ETXTBSY] The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write.

[EDEADLOCK] A side effect of the locking(2) call, when applying OTRUNC.
[See the WARNING on the locking (2) manpage.]
SEE ALSO

chmod(2), close(2), creat(2), dup(2), fcnti(2), getmsg(2), intro(2), lseek(2),
read(2), putmsg(2), umask(2), write(2).

DIAGNOSTICS

Upon successful completion, the file descriptor is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

PAUSE(2) PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
The pause call suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause does not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function [see signal(2)}, the calling process resumes execution
from the point of suspension; with a return value of -1 from pause and errno set
to EINTR.

SEE ALSO
alarm(2), kill(2), signai(2), wait(2).

PIPE(2) PIPE(2)

NAME

pipe - create an interprocess channel
SYNOPSIS

int pipe (fildes)

int fildes[2];
DESCRIPTION

pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[0] and fildes[1]. fildes[0] is opened for reading and fildes[1] is opened
for writing.

Up t0 9,216 bytes of data are buffered by the pipe before the writing process is
blocked. A read only file descriptor fildes{0] accesses the data written to
fildes[1] on a first-in-first-out (FIFO) basis.

pipe will fail if:

[EMFILE] NOFILES file descriptors are currently open,
{ENFILE] The system file table is full.

SEE ALSO
sh(1), read(2), write(2).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

PLOCK(2) PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>
int plock (op)
int op;

DESCRIPTION
plock allows the calling process to lock its text segment (text lock), its data and
stack segments (data lock), or its text and data segments (process lock) into
memory. Locked segments are immune to all routine swapping. plock also
allows these segments to be unlocked. For 407 object modules TXTLOCK and
DATLOCK are identical.

The effective user ID of the calling process must be super-user to use this call.
op specifies the following:

PROCLOCK lock text and data segments into memory (process lock)
TXTLOCK lock text segment into memory (text lock)

DATLOCK lock data segment into memory (data lock)

UNLOCK remove locks

Shared regions (for example, text) may be locked by anyone using the text, but
they may be unlocked only if the caller is the last one using the region. Note
that sticky-bit text that is not explicitly unlocked will remain locked in core
even after the last process using it terminates.

plock will fail and not perform the requested operation if one or more of the
following are true:

[EPERM] The effective user ID of the calling process is not super-user.

[EINVAL] op is equal to PROCLOCK and a process lock, a text lock, or
a data lock already exists on the calling process.

[EINVAL] op is equal to TXTLOCK and a text lock, or a process lock
already exists on the calling process.

[EINVAL] op is equal to DATLOCK and a data lock, or a process lock
already exists on the calling process.

[EINVAL] op is equal to UNLOCK and no type of lock exists on the
calling process.

(EAGAIN] Not enough memory.

PLOCK(2) PLOCK(2)

SEE ALSO
exec(2), exit(2), fork(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

POLL(2) POLL(2)

NAME
poll - STREAMS input/output multiplexing

SYNOPSIS
#include <stropts.h>
#include <poll.h>

int poll(fds, nfds, timeout)
struct polifd fds[];
unsigned long nfds;

int timeout;

DESCRIPTION

poll provides users with a mechanism for multiplexing input/output over a set of
file descriptors that reference open streams [see intro(2)). poll identifies those
streams on which a user can send or receive messages, or on which certain
events have occurred. A user can receive messages using read(2) or getmsg(2)
and can send messages using write(2) and putmsg(2). Certain ioctl(2) calls,
such as I_RECVFD and I_SENDFD [see streamio(7)], can also be used to receive
and send messages.

fds specifies the file descriptors to be examined and the events of interest for
each file descriptor. It is a pointer to an array with one element for each open
file descriptor of interest. The array’s elements are polifd structures which
contain the following members:

int fd; /* file descriptor */
short events; /* requested events */
short revents; * returned events */

where fd specifies an open file descriptor and events and revents are bitmasks
constructed by or-ing any combination of the following event flags:

POLLIN A non-priority or file descriptor passing message (see
I_RECVFD) is present on the stream head read queue. This flag
is set even if the message is of zero length. In revents, this flag
is mutually exclusive with POLLPRI.

POLLPRI A priority message is present on the stream head read queue.
This flag is set even if the message is of zero length. In revents,
this flag is mutually exclusive with POLLIN.

POLLOUT The first downstream write queue in the stream is not full,
Priority control messages can be sent (see putmsg) at any time.

POLL(2) POLL(2)

POLLERR An error message has arrived at the stream head. This flag is
only valid in the revents bitmask; it is not used in the events
field.

POLLHUP A hangup has occurred on the stream. This event and POLLOUT
are mutually exclusive; a stream can never be writable if a
hangup has occurred. However, this event and POLLIN or
POLLPRI are not mutually exciusive. This flag is only valid in
the revents bitmask; it is not used in the events field.

POLLNVAL The specified fd value does not belong to an open stream. This
flag is only valid in the revents field; it is not used in the events
field.

For each element of the array pointed to by fds, poll examines the given file
Angrrintnr far tha avantlao) ananifiad in svamsic Tha niimhar Af fila dagnrintara tn
UVOVIIP&UI AV v \IV\JIIL\D} oy\/\,luvu A1 CVYCT/IHO. FRVIVINTIVIRIID W OR V) Uy B v iv] u\/b\/lllJI.UlD ws

be examined is specified by nfds. If nfds exceeds NOFILES, the system limit of
open files [see ulimit(2)1, poll will fail.

If the value fd is less than zero, events is ignored and revents is set to 0 in that
entry on return from poll.

The results of the poll query are stored in the revents ficld in the polifd
structure. Bits are set in the revents bitmask to indicate which of the requested
events are true. If none are true, none of the specified bits is set in revents when
the poll call returns. The event flags POLLHUP, POLLERR and POLLNVAL are
always set in revents if the conditions they indicate are true; this occurs even
though these flags were not present in events.

If none of the defined events have occurred on any selected file descriptor, poll
waits at least timeout msec for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeout 1s rounded up to the nearest legal value available on that system. If the
value timeout is 0, poll returns immediately. If the value of timeout is -1, poll
blocks until a requested event occurs or until the call is interrupted. poll is not
affected by the O_NDELAY flag.

poll fails if one or more of the following are true:

[EAGAIN] Allocation of internal data structures failed but request should
be attempted again.

[EFAULT] Some argument points outside the allocated address space.

[EINTR} A signal was caught during the poll system call.

[EINVAL} The argument nfds is less than zero, or nfds is greater than
NOFILES.

POLL(2) POLL(2)

SEE ALSO
intro(2), read(2), getmsg(2), putmsg(2), write(2), streamio(7).
UNIX System V Release 3.2 Streams Primer.
UNIX System V Release 3.2 Streams Programmer’s Guide.

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. A positive value
indicaies ihe total number of file descriptors that has been selected (that is, file
descriptors for which the revents field is non-zero). A value of O indicates that
the call timed out and no file descriptors have been selected. Upon failure, a
value of -1 is returned and errno is set to indicate the error.

PROFIL(2) PROFIL(2)

NAME

profil - execution time profile

SYNOPSIS

void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION

buff points to an area of core whose length (in bytes) is given by bufsiz. After
this call, the user’s program counter (pc) is examined each clock tick. Then the
value of offset is subtracted from it, and the remainder multiplied by scale. If
the resulting number corresponds to an entry inside buff, that entry is
incremented. An entry is defined as a series of bytes with length sizeof(short).
The scale is intcrpreied as an unsigned, {ixed-point fraction with binary point at
the left: 0177777 (octal) gives a 1-1 mapping of pc’s to entries in buff; 077777
(octal) maps each pair of instruction entries together. 02(octal) maps all
instructions onto the beginning of buff (producing a non-interrupting core
clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by
giving a bufsiz of 0. Profiling is turned off when an exec is executed, but
remains on in child and parent both after a fork. Profiling will be turned off if
an update in buff would cause a memory fault.

SEE ALSO

prof(1), times(2), monitor(3C).

DIAGNOSTICS

Not defined.

PTRACE(2) PTRACE(2)

NAME

ptrace - process trace

SYNOPSIS

int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION

ptrace provides a means by which a parent process may control the execution
of a child process. Its primary use is for the implementation of breakpoint
debugging [see sdb(1)]. The child process behaves normally until it encounters
a signal [see signal(2) for the list], at which time it enters a stopped state and its
parent is notified via waiz(2). When the child is in the stopped state, its parent
can examine and modify its ‘‘core image’’ using ptrace. Also, the parent can
cause the child either to terminate or continue, with the possibility of ignoring
the signal that caused it to stop.

The request argument determines the precise action to be taken by ptrace and is
one of the following:

0 This request must be issued by the child process if it is to be traced by
its parent. It turns on the child’s trace flag that stipulates that the child
should be left in a stopped state upon receipt of a signal rather than the
state specified by func [see signal(2)]. The pid, addr, and data
arguments are ignored, and a return value is not defined for this
request. Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can be used only by the parent process. For each,
pid is the process ID of the child. The child must be in a stopped state before
these requests are made.

1,2 With these requests, the word at location addr in the address space of
the child is returned to the parent process. If I and D space are
separated, request 1 returns a word from I space, and request 2 returns
a word from D space. If I and D space are not separated, either request
1 or request 2 may be used with equal results. The data argument is
ignored. These two requests will fail if addr is not the start address of
a word, in which case a value of -1 is returned to the parent process
and the parent’s errno is set to EIO.

3 With this request, the word at location addr in the child’s USER area in
the system’s address space (sce <sys/user.h>) is returned to the parent
process. Addresses in this arca range from O to ctob (USIZE) on
Convergent Technologies 680x0-family processors. The data

PTRACE(2)

4,5

PTRACE(2)

argument is ignored. This request will fail if addr is not the start
address of a word or is outside the USER area, in which case a value of
-1 is returned to the parent process and the parent’s errno is set to EIO.

With these requests, the value given by the data argument is written
into the address space of the child at location addr. If I and D space
are separated (as on PDP-11), request 4 writes a word into I space, and
request 5 writes a word into D space. If 1 and D space are not
separated (as on Convergent Technologies 680x0-family processors)
either request 4 or request S may be used with equal results. Upon
successful completion, the value written into the address space of the
child is returned to the parent. These two requests will fail if addr is
not the start address of a word. Upon failure a value of -1 is returned
to the parent process and the parent’s errno is set to EIO.

With this request, a few entries in the child’s USER area can be written.
Data gives the value that is to be written and addr is the location of
the entry. The few entries that can be written are:

. the general registers (that is, registers 0 to 15 on Convergent
Technologies 680x0-family processors)

. the condition codes of the Processor Status Word.

This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that caused the
child to stop are canceled before it resumes execution. If the data
argument is a valid signal number, the child resumes execution as if it
had incurred that signal, and any other pending signals are canceled.
The addr argument must be equal to 1 for this request. Upon
successful completion, the value of data is returned to the parent.
This request will fail if data is not O or a valid signal number, in which
case a value of -1 is returned to the parent process and the parent’s
errno is set to EIO.

This request causes the child to terminate with the same consequences
as exit(2).

This request sets the trace bit in the Processor Status Word of the child
and then executes the same steps as listed above for request 7. The
trace bit causes an interrupt upon completion of one machine
instruction. This effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-ID facility on subsequent
exec(2) calls. If a traced process calls exec, it will stop before executing the
first instruction of the new image showing signal SIGTRAP.

-2.

PTRACE(2) PTRACE(2)

General Errors
ptrace will in general fail if one or more of the following are true:

[EIO] request is an illegal number.

[ESRCH] pid identifies a child that does not exist or has not executed a
ptrace with request 0.
SEE ALSO
sdb(1), exec(2), signal(2), wait(2).

PUTMSG(2) PUTMSG(2)

NAME
putmsg - send a message on a stream

SYNOPSIS
#include <stropts.h>

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

DESCRIPTION
The putmsg call creates a message [see intro(2)] from user specified buffer(s)
and sends the message to a STREAMS file. The message can contain either a
data part, a conirol part or boih. The daia and conirol paris to be sent are
distinguished by placement in separate buffers, as described below. The
semantics of each part is defined by the STREAMS module that receives the
message.

Jd specifies a file descriptor referencing an open Stream; ctiptr and dataptr each
point to a strbuf structure which contains the following members:

int maxien; /" notused */
int len; /* length of data */
char *buf; /* ptr to buffer */

ctiptr points to the structure describing the control part, if any, to be included in
the message. The buf field in the strbuf structure points to the buffer where the
control information resides, and the len field indicates the number of bytes to be
sent. The maxlen field is not used in putmsg [see getmsg(2)]. In a similar
manner, dataptr specifies the data, if any, to be included in the message. flags
may be set to the values O or RS_HIPRI and is used as described below.

To send the data part of a message, dataptr must be non-NULL and the len ficld
of dataptr must have a value of 0 or greater, To send the control part of a
message, the corresponding values must be set for ctiptr. No data (control) part
will be sent if either dataptr (ctiptr) is NULL or the len field of datapir (ctiptr)
issetto -1.

If a control part is specified, and flags is set to RS_HIPRI, a priority message is
sent. If flags is set to 0, a non-priority message is sent. If no control part is
specified, and flags is set to RS_HIPRI, putmsg fails and sets errno to EINVAL.
If no control part and no data part are specified, and flags is set to 0, no message
is sent, and 0 is retumed.

PUTMSG(2) PUTMSG(2)

For non-priority messages, putmsg will block if the stream write queue is full
due to internal flow control conditions. For priority messages, putmsg does not
block on this condition. For non-priority messages, putmsg does not block
when the write queue is full and O_NDELAY is set. Instcad, it fails and sets
errno to EAGAIN,

putmsg also blocks, unless prevented by lack of internal resources, waiting for
the availability of message blocks in the stream, regardless of priority or
whether O_NDELAY has been specified. No partial message is sent.

putmsg fails if one or more of the following are true:

[EAGAIN] A non-priority message was specified, the O_NDELAY flag is
set and the stream write queue is full due to internal flow
control conditions.

[EAGAIN] Buffers could not be allocated for the message that was to be

created.

{EBADF] fd is not a valid file descriptor open for writing,.

[EFAULT] ctiptr or dataptr points outside the allocated address space.

{EINTR] A signal was caught during the putmsg system call.

[EINVAL] An undefined value was specified in flags, or flags is set to
RS_HIPRI and no control part was supplied.

[EINVAL] The stream referenced by fd is linked below a multiplexor.

[ENOSTR] A stream is not associated with fd.

[ENXIO] A hangup condition was generated downstream for the
specified stream.

[ERANGE] The size of the data part of the message does not fall within the
range specified by the maximum and minimum packet sizes of
the topmost stream module. This value is also returned if the
control part of the message is larger than the maximum
configured size of the control part of a message, or if the data
part of a message is larger than the maximum configured size
of the data part of a message.

A putmsg also fails if a STREAMS error message had been processed by the
stream head before the call to putmsg. The error returned is the value contained
in the STREAMS error message.

PUTMSG(2) PUTMSG(2)

SEE ALSO
intro(2), read(2), getmsg(2), poll(2), write(2).
UNIX System V Release 3.2 Streams Programmer’s Guide.
UNIX System V Release 3.2 Streams Primer.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set io indicaie the error.

READ(2) READ(2)

NAME

read - read from file

SYNOPSIS

int read (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRIPTION

The fildes argument is a file descriptor obtained from a creat(2), open(2),
dup(2), fcntl (2), or pipe (2) system call.

The read call attempts to read nbyte bytes from the file associated with fildes
into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file given by
the file pointer associated with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Devices that are incapable of secking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and
placed in the buffer; this number may be less than nbyte if the file is associated
with a communication line [see ioctl(2) and termio(7)], or if the number of
bytes left in the file is less than nbyte bytes. A value of 0 is returned when an
end-of-file has been reached.

A read from a STREAMS [see intro(2)] file can operate in three different modes:
“‘byte-stream’’ mode, ‘‘message-nondiscard’’ mode, and °‘message-discard’’
mode. The default is byte-stream mode. This can be changed using the
1_SRDOPT ioctl request [see streamio(7)], and can be tested with the I_GRDOPT
ioctl. In byte-stream mode, read retrieves data from the stream until it has
retrieved nbyte bytes, or until there is no more data to be retrieved. Byte-
stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read retrieves data until it has read
nbyte bytes, or until it reaches a message boundary. If the read does not
retrieve all the data in a message, the remaining data are replaced on the stream,
and can be reurieved by the next read or getmsg(2) call. Message-discard mode
also retrieves data until it has retrieved nbyte bytes, or it reaches a message
boundary. However, unread data remaining in a message after the read returns
are discarded, and are not available for a subsequent read or getmsg.

READ(2) READ(2)

When attempting to read from a regular file with mandatory file/record locking
set [see chmod(2)], and there is a blocking (owned by another process) write
lock on the segment of the file to be read:

. If O_NDELAY is set, the read returns a -1 and set errno to EAGAIN.
. If O_NDELAY is clear, the read sleeps until the blocking record lock is
Icmovea.
When attempting to read from an empty pipe (or FIFO):
. If O_NDELAY is set, the read returns a 0.

. If O_NDELAY is clear, the read blocks until data is written to the file or
the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data currently
available:

. If O_NDELAY is set, the read returns 0.
) If O_NDELAY is clear, the read blocks until data becomes available.

When attempting to read a file associated with a stream that has no data
currently available:

. If O_NDELAY is set, the read returns a -1 and set errno to EAGAIN.
) If O_NDELAY is clear, the read blocks until data becomes available.

When reading from a STREAMS file, handling of zero-byte messages is
determined by the current read mode setting. In byte-stream mode, read
accepts data until it has read nbyte bytes, or until there is no more data to read,
or until a zero-byte message block is encountered. The read call then returns
the number of bytes read, and places the zero-byte message back on the stream
to be retrieved by the next read or getmsg. In the two other modes, a zero-byte
message returns a value of 0 and the message is removed from the stream.
When a zero-byte message is read as the first message on a stream, a value of 0
is returned regardless of the read mode.

A read from a STREAMS file can only process data messages. It cannot process
any type of protocol message and fails if a protocol message is encountered at
the stream head.

The read call fails if one or more of the following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY was set,
and there was a blocking record lock.

[EAGAIN] Total amount of system memory available when reading via
raw IO is temporarily insufficient.

-2-

READ(2)

[EAGAIN]

[EBADF]
[EBADMSG]

[EDEADLK]

[EFAULT]
[EINTR]
[EINVAL]
[ENOLCK]

[ENOLINK]

[EDEADLOCK]

READ(2)

No message waiting to be read on a stream and O_NDELAY
flag set.

fildes is not a valid file descriptor open for reading.

Message waiting to be read on a stream is not a data
message.

The read was going 0 go to slecp and cause a deadiock
situation to occur.

buf points outside the allocated address space.

A signal was caught during the read system call.

Attempted to read from a stream linked to a multiplexor.

The system record lock table was full, so the read could not
go to sleep until the blocking record lock was removed.

fildes is on a remote machine and the link to that machine is
no longer active.

A side effect of the locking(2) call. (See the WARNING on
the locking (2) manpage.)

A read from a STREAMS file also fails if an error message is received at the
stream head. In this case, errno is set to the value returned in the error
message. If a hangup occurs on the stream being read, read continues to
operate normally until the stream head read queue is empty. Thereafter, it

returns O.

SEE ALSO

creat(2), dup(2), fentl(2), getmsg(2), ioctl(2), intro(2), locking(2), open(2),
pipe(2), streamio(7), termio(7).

DIAGNOSTICS

Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a -1 is returned and errno is set to

indicate the error.

RECVY(2) (CTIX Internetworking) RECV(2)

NAME
recv, recvfrom - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int recv(s, buf, len, flags)
int s;

char *buf;

int len, flags;

int recvfrom(s, buf, len, flags, from, fromlen)
int s;

char *buf;

ini ien, fiags;

struct sockaddr *from;

int *fromlen;

DESCRIPTION
The recv and recvfrom calls are used to receive messages from a socket.

The recv call can be used only on a connected socket {see connect(2)], while
recvfrom can be used to receive data on a socket whether it is in a connected
state or not.

If from is non-zero, the source address of the message is filled in. fromlen is a
value-result parameter, initialized to the size of the buffer associated with from,
and modified on return to indicate the actual size of the address stored there.
The length of the message is returned in cc. If a message is too long to fit in the
supplied buffer, excess bytes may be discarded depending on the type of socket
the message is received from; see socket (2).

If no messages are available at the socket, the receive call waits for a message
to arrive.

The flags argument to a send call is formed by or’ing one or more of the values:

#define MSG_PEEK Ox1 /* peek at incoming message */
#define MSG_OOB 0x2 /* process out-of-band data */

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

RECV(2) (CTIX Intemetworking) RECV(2)

ERRORS
The calls fail if:
[EBADF] The argument s is an invalid descriptor.
[ENOTSOCK] The argument s is not a socket.
[EINTR] The receive was interrupted by delivery of a signal
before any data was available for the receive.
[EFAULT] The data was specified to be received into a non-
existent or protected part of the process address space.
SEE ALSO

connect(2), intro(2), read(2), send(2), socket(2), intro(7).
CTIX Network Programmer’s Primer.

RMDIR(2)

NAME

RMDIR(2)

rmdir - remove a directory
SYNOPSIS

int rmdir (path)

char *path;

DESCRIPTION
The rmdir call removes the directory named by the path name pointed to by
path. The directory must not have any entries other than the dot (.) and dot dot

(..) files.

The named directory is removed unless one or more of the following are true:

[EINVAL]
[EINVAL)
[EEXIST]

[ENOTDIR]

[ENOENT]
[EACCES]

(EACCES]

(EACCES]

[EBUSY]

[EROFS]

(EFAULT]
[EIO]
[ENOLINK]

(EMULTIHOP]

The current directory should not be removed.

M 14 hn snsennznd
The dot {.) entry of a directory should not be removed.

The directory contains entries other than those for dot (.)
and dot dot (..).

A component of the path prefix is not a directory.
The named directory does not exist.

Search permission is denied for a component of the path
prefix.

Write permission is denied on the directory containing the
directory to be removed.

The parent directory has the sticky bit set and: the parent
directory is not owned by the user; and the directory is not
owned by the user; and the directory is not writable by the
user; and the user is not super-user.

The directory to be removed is the mount point for a
mounted file system.

The directory entry to be removed is part of a read-only file
system.

Path points outside the process’s allocated address space.
An I/O error occurred while accessing the file system.

Path points to a remote machine, and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

RMDIR(2) RMDIR(2)

SEE ALSO
mkdir(1), rm(1), rmdir(1), mkdir(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SELECT (2) (CTIX Internetworking) SELECT(2)

NAME

select - synchronous I/O mulitiplexing

SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;

fd_set *readfds, *writefds, *exceptfds;

struct timeval *timeout;

FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdsei)
FD_ZERO(&fdset)
int fd;

fd_set fdset;

DESCRIPTION

The select call examines the I/O descriptor sets whose addresses are passed in
readfds, writefds, and exceptfds to see if some of their descriptors are ready for
reading, are ready for writing, or have an exceptional condition pending,
respectively. The first afds descriptors are checked in each set; that is, the
descriptors from 0 through nfds-1 in the descriptor sets are examined. On
return, select replaces the given descriptor sets with subsets consisting of those
descriptors that are ready for the requested operation. The total number of
ready descriptors in all the sets is returned in nfound.

The descriptor sets are stored as bit fields in arrays of integers. The following
macros are provided for manipulating such descriptor sets: D _ZERO(&fdset)
initializes a descriptor set fdset to the null set. FD_SET(fd, &fdset) includes a
particular descriptor fd in fdset. FD_CLR(fd, &fdset) removes fd from fdset.
FD_ISSET(fd, &fdset) is nonzero if fd is a member of fdset, otherwiseit is zero.
The behavior of these macros is undefined if a descriptor value is less than zero
or greater than or equal to FD_SETSIZE, which is normally at least equal to the
maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a zero pointer, the select blocks indefinitely.
To affect a poll, the timeout argument should be non-zero, pointing to a zero-
valued timeval structure.

SELECT(2) (CTIX Internetworking) SELECT(2)

Any of readfds, writefds, and excepifds may be given as zero pointers if no
descriptors are of interest.

SEE ALSO
accept(2), connect(2), getdtablesize(2), read(2), recv(2), send(2), write(2).
CTIX Network Programmer's Primer.

RETURN VALUE
The select call returns the number of ready descriptors that are contained in the
descriptor sets, or -1 if an error occurred. If the time limit expires then select
returns 0. If select returns with an error, including one due to an interrupted
call, the descriptor sets will be unmodified.

ERRORS
Returned error codes from select are as follows:

[EBADF] One of the descriptor sets specified an invalid descriptor.

[EINTR] A signal was delivered before the time limit expired and
before any of the selected events occurred.

[EINVAL] The specified time limit is invalid. One of its components is
negative or too large.

BUGS

Although the provision of getdtablesize (2) was intended to allow user programs
to be written independent of the kernel limit on the number of open files, the
dimension of a sufficiently large bit field for select remains a problem. The
default size FD_SETSIZE (currently 256) is somewhat larger than the current
kernel limit to the number of open files. However, in order to accommodate
programs that might potentially use a larger number of open files with sclect,
you can to increase this size within a program by providing a larger definition
of FD_SETSIZE before the inclusion of <sys/types.h>.

The select call should probably return the time remaining from the original
timeout, if any, by modifying the time value in place. This may be
implemented in future versions of the system. Thus, it is unwise to assume that
the timeout value will be unmodified by the select call.

SEMCTL(2) SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {
int val;
struct semid_ds *buf;
ushort *array;
} arg;

DESCRIPTION
The semctl call provides a variety of semaphore control operations as specified
by cmd.
The following cmds are executed with respect to the semaphore specified by
semid and semnum:

GETVAL Return the value of semval [see intro(2)]. {READ}

SETVAL Set the value of semval to arg.val. {ALTER} When this ¢cmd
is successfully executed, the semadj value corresponding to
the specified semaphore in all processes is cleared.

GETPID Return the value of sempid. {READ}
GETNCNT Return the value of semncnt. (READ}
GETZCNT Return the value of semzcnt. {READ}
The following cmds return and set, respectively, every semval in the set of
semaphores.
GETALL
Place semvals into array pointed to by arg.array. {READ)
SETALL

Set semvals according to the array pointed to by arg.array. {ALTER}
When this cmd is successfully executed the semadj values
corresponding to each specified semaphore in all processes are
cleared.

SEMCTL(2)

SEMCTL(2)

The following cmds are also available:
IPC_STAT

Place the current value of each member of the data structure associated
with semid into the structure pointed to by arg.buf. The contents of
this structure are defined in intro(2). (READ}

IPC SET

Set the value of the following members of the data structure associated
with semid to the corresponding value found in the structure pointed to

by arg.buf:

sem_perm.uid
sem_perm.gid
sem_perm.mode /+ only low 9 bits »/

This cmd can be executed only by a process that has an effective user
ID equal to either that of super-user, or to the value of sem_perm.cuid
or sem_perm.uid in the data structure associated with semid.

IPC_RMID

Remove the semaphore identifier specified by semid from the system
and destroy the set of semaphores and data structure associated with it.
This cmd can only be executed by a process that has an effective user
ID equal to either that of super-user, or to the value of sem_perm.cuid
or sem_perm.uid in the data structure associated with semid.

The semctl call fails if one or more of the following are true:

[EINVAL] semid is not a valid semaphore identifier.

[EINVAL)] semnum is less than zero or greater than sem_nsems.

[EINVAL] cmd is not a valid command.

[EACCES] Operation permission is denied to the calling process [see
intro(2)].

[ERANGE] cmd is SETVAL or SETALL and the value to which semval is

to be set is greater than the system imposed maximum.

[EPERM] cmd is equal to IPC_RMID or IPC_SET and the effective user
ID of the calling process is not equal to that of super-user, or
to the value of sem_perm.cuid or sem_perm.uid in the data
structure associated with semid.

[EFAULT] arg.buf points to an illegal address.

SEMCTL(2) SEMCTL(2)

SEE ALSO
intro(2), semget(2), semop(2).
DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:
GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEMGET(2) SEMGET(2)

NAME

semget - get set of semaphores

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION

The semget call returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems
semaphores [see intro(2)] are created for key if one of the following is true:

. Key is equal to IPC_PRIVATE.

. Key does not already have a semaphore identifier associated with it,
and (semflg & IPC_CREAT) is *‘true”’.
Upon creation, the data structure associated with the new semaphore identifier
is initialized as follows:

o sem_perm.cuid, sem_perm.uid, sem_perm.gid, and sem_perm.cgid
are sct equal to the effective user ID and effective group ID,
respectively, of the calling process.

o The low-order 9 bits of sem_perm.mode are set equal to the low-order
9 bits of semflg.

. sem_nsems is set equal to the value of nsems.

. sem_otime is set equal to 0 and sem_ctime is set equal to the current
time.

The semget call fails if one or more of the following are true:

[EINVAL] nsems is either less than or equal to zero or greater than the
system-imposed limit.

[EACCES] A semaphore identifier exists for key, but operation
permission [see intro(2)] as specified by the low-order 9 bits
of semflg would not be granted.

(EINVAL] A semaphore identifier exists for key, but the number of

semaphores in the set associated with it is less than nsems,
and nsems is not equal to zero.

-1-

SEMGET(2) SEMGET(2)

[ENOENT] A semaphore identifier does not exist for key and (semflg &
IPC_CREAT) is *‘false”’.
[ENOSPC] A semaphore identifier is to be created but the system-

imposed limit on the maximum number of allowed
semaphore identifiers system wide would be exceeded.

[ENOSPCI] A semaphore identifier is to be created but the system-
imposed limit on the maximum number of allowed
semaphores system wide would be exceeded.

{EEXIST] A semaphore identifier exists for key but [(semfls &
IPC_CREAT) and (semflg & IPC_EXCL)] is *‘true’’.

SEE ALSO
intro(2), semctl(2), semop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a semaphore
identificr, is returned; otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEMOP(2) SEMOP(2)

NAME

semop - semaphore operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf **sops;
unsigned nsops;

DESCRIPTION

The semop call is used to automatically perform an array of semaphore
operations on the set of semaphores associated with the semaphore 1dentifier
specified by semid. The sops parameter is a pointer to the array of semaphore-
operation structures; nsops is the number of such structures in the array. The
contents of each structure includes the following members:

short sem_hum; /+ semaphore number »/
shott sem_op; /+ semaphore operation */
short sem_fig; /= operation flags +/

Each semaphore operation specified by sem op is performed on the
corresponding semaphore specified by semid and sem_num.

The sem_op member specifies one of three semaphore operations as follows:
. If sem_op is a negative integer, one of the following occurs {ALTER}:

- If semval [see intro(2)] is greater than or equal to the absolute
value of sem_op, the absolute value of sem_op is subtracted
from semval. Also, if (sem_flg & SEM_UNDO) is ‘‘true’’, the
absolute value of sem_op is added to the calling process’s
semadj value [sec exit(2)] for the specified semaphore.

- If semval is less than the absolute value of sem op and
(sem_flg & IPC_NOWAIT) is ‘“‘true’”’, semop returns
immediately.

- If semval is less than the absolute value of sem op and
(sem_flg & TPC_NOWAIT) is ‘‘false’’, semop increments the
semncnt associated with the specified semaphore and
suspends execution of the calling process until one of the
following conditions occur.

SEMOP(2)

SEMOP(2)

+ Semval becomes greater than or equal to the absolute
value of sem_op. When this occurs, the value of
semncnt associated with the specified semaphore is
decremented, the absolute value of sem op is
subtracted from semval and, if (sem flg &
SEM_UNDO) is ‘‘true’’, the absolute value of
sem op is added to the calling process’s semad)

value for the specified semaphore.

+ The semid for which the calling process is awaiting
action is removed from the system [see semcti(2)].
When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

+ The calling process receives a signal that is to be
caught. When this occurs, the value of semncnt
associated with the specified semaphore is
decremented, and the calling process resumes
execution in the manner prescribed in signal (2).

If sem_op is a positive integer, the value of sem_op is added to semval
and, if (sem_flg & SEM_UNDO) is ‘‘true’’, the value of sem_op is
subtracted from the calling process’s semadj valuc for the specified
semaphore. { ALTER)

If sem_op is zero, one of the following occurs {READ}:
- If semval is zero, semop returns immediately.

- If semval is not equal to zero and (sem_flg & IPC_NOWAIT)
is “‘true’’, semop returns immediately.

- If semval is not equal to zero and (sem_flg & IPC_NOWAIT)
is “‘false’’, semop increments the semzcnt associated with the
specified semaphore and suspends execution of the calling
process until one of the following occurs:

+ Semval becomes zero, at which time the value of
semzcnt associated with the specified semaphore is
decremented.

+ The semid for which the calling process is awaiting
action is removed from the system. When this
occurs, errno is set equal to EIDRM, and a value of -1
is returned.

SEMOP(2) SEMOP(2)

+ The calling process receives a signal that is to be
caught. When this occurs, the value of semzcnt
associated with the specified semaphore is
decremented, and the calling process resumes
execution in the manner prescribed in signal (2).

The semop call fails if one or more of the following are true for any of the
semaphore operations specified by sops:

[EINVAL] semid is not a valid semaphore identifier,

[EFBIG] sem_num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.

[E2BIG] nsops is greater than the system-imposed maximum.,

[EACCES] Operation permission is denied to the calling process [see
intro(2)]

[EAGAIN] The operation would result in suspension of the calling
process but (sem_flg & IPC_NOWAIT) is *‘true’’.

[ENOSPC] The limit on the number of individual processes requesting
an SEM_UNDO would be exceeded.

[EINVAL] The number of individual semaphores for which the calling
process requests a SEM_UNDO would exceed the limit.

[ERANGE] An operation would cause a semval to overflow the system-
imposed limit.

[ERANGE] An operation would cause a semadj value to overflow the
system-imposed limit.

[EFAULT] sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified
in the array pointed to by sops is set equal to the process ID of the calling
process.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

DIAGNOSTICS
If semop returns due to the receipt of a signal, a value of -1 is returned to the
calling process and errno is set to EINTR. If it returns due to the removal of a
semid from the system, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, a value of zero is returned; otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEND(2) (CTIX Intemetworking) SEND(2)

NAME
send, sendto - send a message to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int send(s, msg, len, flags)
ini s;

char *msg;

int len, flags;

int sendto(s, msg, len, flags, to, tolen)
int s;

char *msg;

int len, flags;

struct sockaddr *to;

int tolen;

DESCRIPTION
The send and sendto calls are used to transmit a message to another socket (s).
The send call can be used only when the socket is in a connected state, while
sendto can be used at any time.

The address of the target is given by to with tolen specifying its size. The
length of the message is given by len. If the message is too long to pass
atomically through the underlying protocol, then the error EMSGSIZE is
returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1
indicate some locally detected errors.

If no message space is available at the socket to hold the message to be
transmitted, send blocks.

The flags parameter can be set to SOF_OOB to send ‘‘out-of-band’’ data on
sockets which support this notion (SOCK_STREAM).

SEE ALSO
intro(2), recv(2), socket(2), intro(7).
CTIX Network Programmer's Primer.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.

SEND(2)

ERRORS
{EBADF]
[ENOTSOCK]
[EFAULT]

[EMSGSIZE]

(CTIX Internetworking) SEND(2)

An invalid descriptor was specified.
The argument s is not a socket.

An invalid user space address was specified for a
parameter.

The socket requires that message be sent atomically,
and the size of the message to be sent made this
impossible.

SETPGRP(2) SETPGRP(2)

NAME

setpgrp - set process group ID
SYNOPSIS

int setpgrp ()
DESCRIPTION

ID of the calling process and returns the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2), termio(7).

DIAGNOSTICS
The setpgrp call returns the value of the new process group ID.

SETUID(2) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;
int setgid (gid)
int gid;
DESCRIPTION
The setuid (setgid) call is used to set the real user (group) ID and effective user
(group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real user (group)
ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real user
(group) ID is equal to uid (gid), the effective user (group) ID is set to uid (gid).

If the effective user ID of the calling process is not super-user, but the saved
set-user (group) ID from exec(2) is equal to uid (gid), the effective user (group)
ID is set to uid (gid).

The setuid (setgid) call fails if any of the following conditions are true:
[EPERM]

The real user (group) ID of the calling process is not equal to uid (gid)
and its effective user ID is not super-user.

[EINVAL]
The uid is out of range.

SEE ALSO
getuid(2), intro(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

SHMCTL(2)

NAME

SHMCTL(2)

shmctl - shared memory control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmetl (shmid, cmd, buf)

int shmid, cmd;

struct shmid_ds *buf;

DESCRIPTION

The shmctl call provides a variety of shared memory control operations as
specified by cmd. The following c¢mds are available:

irC STA

IPC_SET

IPC_RMID

SHM_LOCK

Piace the current value of each member of the data structure
associated with shmid into the structure pointed to by buf.
The contents of this structure are defined in intro(2).
{(READ}

Set the value of the following members of the data structure
associated with shmid to the corresponding value found in
the structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /+ only low 9 bits +/

This ¢cmd can be executed only by a process that has an
effective user ID equal to that of super user, or to the value of
shm_perm.cuid or shm_perm.uid in the data structure
associated with shmid.

Remove the shared memory identifier specified by shmid
from the system and destroy the shared memory segment and
data structure associated with it. This cmd can be executed
only by a process that has an effective user ID equal to that of
super-user, or to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

Lock the shared memory segment specified by shmid in
memory. This ¢cmd can be executed only by a process that
has an effective user ID equal to super-user.

SHMCTL(2) SHMCTL(2)

SHM_UNLOCK Unlock the shared memory segment specified by shmid. This
cmd can be executed only by a process that has an effective
user ID equal to super user.

The shmctl call fails if one or more of the following are true:

[EINVAL} shmid is not a valid shared memory identifier.

[EINVAL] c¢md is not a valid command.

[EACCES] cmd is equal to IPC_STAT and {READ} operatior permission
is denied to the calling process [see intro(2)].

[EPERM] cmd is equal to IPC_RMID or IPC_SET and the effective user

1D of the calling process is not equal to that of super-user, or
to the value of shm_perm.cuid or shm_perm.uid in the data
structure associated with shmid.

[EPERM] cmd is equal to SHM_LOCK or SHM_UNLOCK and the
effective user ID of the calling process is not equal to that of
super-user.

[EFAULT] buf points to an illegal address.

(ENOMEM] cmd is equal to SHM_LOCK and there is not enough
memory.

SEE ALSO
intro(2), shmget(2), shmop(2).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

NOTES
The user must explicitly remove shared memory segments after the last
reference to them has been removed.

SHMGET(2) SHMGET(2)

NAME
shmget - get shared memory segment identifier

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION
The shmget call returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory
segment of at least size bytes [see intro(2)] are created for key if one of the
following are true:

. key is equal to IPC_PRIVATE.

. key does not already have a shared memory identifier associated with
it, and (shmflg & IPC_CREAT) is ‘‘true’’.
Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

. shm_perm.cuid, shm_perm.uid, shm_perm.gid, and
shm_perm.cgid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

. The low-order nine bits of shm_perm.mode are set equal to the low-
order nine bits of shmflg. shm_segsz is set equal to the value of size.

o shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal
to zero.

. shm_ctime is set equal to the current time.

The shmget call fails if one or more of the following are true:

[EINVAL] size is less than the system-imposed minimum or greater than
the system-imposed maximum.

{EACCES] A shared memory identifier exists for key but operation
permission {see intro(2)] as specified by the low-order nine
bits of shmflg would not be granted.

SHMGET(2)

[EINVAL]

[ENOENT]

[ENOSPC]

[ENOMEM]

[EEXIST}

SEE ALSO

SHMGET(2)

A shared memory identifier exists for key but the size of the
segment associated with it is less than size and size is not
equal to zero.

A shared memory identifier does not exist for key and
(shmflg & IPC_CREAT) is ‘‘false’’.

A shared memory identifier is to be created but the system-
imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

A shared memory identifier and associated shared memory
segment are to be created but the amount of available
memory is not sufficient to fill the request.

A shared memory identifier exists for key but [(shmflg &
IPC_CREAT) and (shmflg & IPC_EXCL)] is *‘true”’.

intro(2), shmctl(2), shmop(2).

DIAGNOSTICS

Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned; otherwise, a value of -1 is returned and errno is set to

indicate the error.

NOTES

The user must explicitly remove shared memory segments after the last
reference to them has been removed.

SHMOP(2) SHMOP(2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;

char *shmaddr;

int shmflg;

int shmdt (shmaddr)
char *shmaddr;

W W ————

shmat attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the data segment of the calling process. The
segment is attached at the address specified by one of the following criteria:

. If shmaddr is equal to zero, the segment is attached at the first
available address as selected by the system.

. If shmaddr is not equal to zero and (shmflg & SHM_RND) is ‘‘true’’,
the segment is attached at the address given by [shmaddr - (shmaddr
modulus SHMLBA)].

. If shmaddr is not equal to zero and (shmflg & SHM_RND) is ‘‘false’’,
the segment is attached at the address given by shmaddr.

sShmdt detaches from the calling process’s data segment the shared memory
segment located at the address specified by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is ‘‘true’”’
{READ}, otherwise it is attached for reading and writing {READ/WRITE]}.

shmat will fail and not attach the shared memory segment if one or more of the
following are true:

[EINVAL) shmid is not a valid shared memory identifier.

[EACCES] Operation permission is denied to the calling process [see
intro(2)]1.

[ENOMEM] The available data space is not large enough to accommodate

the shared memory segment.

SHMOP(2)

[EINVAL]

[EINVAL)

[EMFILE]

[EINVAL]

SHMOP(2)

shmaddr is not equal to zero, and the value of [shmaddr -
(shmaddr modulus SHMLBA)] is an illegal address.

shmaddr is not equal to zero, (shmflg & SHM_RND) is
“‘false’’, and the value of shmaddr is an illegal address.

The number of shared memory segments attached to the
calling process would exceed the system-imposed limit.

shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared
memory segment.

SHUTDOWN(2) (CTIX Interneiworking) SHUTDOWN(2)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket
associated with s to be shut down. If how is O, further receives are disallowed.
If how is 1, further sends are disallowed. If how is 2, further sends and receives
are disallowed.

SEE ALSO
connect(2), socket(2).
CTIX Network Programmer’ s Primer.

DIAGNOSTICS
A O isreturned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless one of the following is true:

[EBADF] § is not a valid descriptor.
[ENOTSOCK] S is a file, not a socket.
[ENOTCONN] The specified socket is not connected.

SIGNAL(2) SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

void (*signal (sig, func))()
int sig;
void (*func)();
DESCRIPTION
signal allows the calling process to choose one of three ways in which it is -
possible to handle the receipt of a specific signal. sig specifies the signal and
Sfunc specifies the choice.

sig can be assigned any one of the following except SIGKILL:

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 0301 quit
SIGILL 0411 illegal instruction (not reset when
caught)
SIGTRAP 05011 trace trap (not reset when caught)
SIGIOT 06!l IOT instruction
SIGEMT 0711 EMT instruction
SIGFPE 08(1] floating point exception :
SIGKILL 09 kill (cannot be caught or ignored) i
SIGBUS 10(1) bus error 5
SIGSEGV 1111 segmentation violation
SIGSYS 12[11 bad argument to system call
SIGPIPE 13 write on a pipe with no one to
read it

SIGALRM 14 alarm clock
SIGTERM 15 software termination signal

SIGUSR1 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 1812} death of a child
SIGPWR 1921 power fail

SIGWIND 20 reserved
SIGPHONE 21 reserved
SIGPOLL 2281 selectable event pending

func is assigned one of three values: SIG_DFL, SIG_IGN, or a function address.
SIG_DFL, and SIG_IGN, arc defined in the include file signal.h. Each is a

SIGNAL(2)

SIGNAL(2)

macro that expands to a constant expression of type pointer to function
returning void, and has a unique value that matches no declarable function.

The actions prescribed by the values of func are as follows:

SIG_DFL - terminate process upon receipt of a signal

Upon receipt of the signal sig, the receiving process is to be terminated
with all of the consequences outlined in exit(2). See NOTE [1] below.

SIG_IGN - ignore signal

function

The signal sig is to be ignored.
Note that the signal SIGKILL cannot be ignored.

address - catch signal
Upon receipt of the signal sig, the receiving process is to execute the

signal-catching function pointed to by fusc. The signal number sig
will be passed as the only argument to the signal-catching function.
Additional arguments are passed to the signal-catching function for
hardware-generated signals. Before entering the signal-catching
function, the value of func for the caught signal will be set to SIG_DFL

unless the signal is SIGILL, SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving process
will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read(2), a write(2),
an open(2), or an iocti(2) system call on a slow device (like a
terminal; but not a file), during a pause(2) system call, or during a
wait(2) system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal
catching function will be executed and then the interrupted system call
may retarn a -1 to the calling process with errno set to EINTR.

signal will not catch an invalid function argument, func, and results are
undefined when an attempt is made to execute the function at the bad
address.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL

signal.

signal will fail if sig is an illegal signal number, including SIGKILL. [EINVAL]

SIGNAL(2)

NOTES
1]

(2]

SIGNAL(2)

If SIG_DFL is assigned for these signals, in addition to the process
being terminated, a ‘‘core image’’ will be constructed in the current
working directory of the process, if the following conditions are met:

J The effective user ID and the real user ID of the receiving
process are equal.

. An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

— a mode of 0666 modified by the file creation mask
[see umask(2)}

— a file owner ID that is the same as the effective user
ID of the receiving process.

— a file group ID that is the same as the effective group
ID of the receiving process.

For the signals SIGCLD and SIGPWR func is assigned one of three
values: SIG_DFL, SIG_IGN, or a function address. The actions
prescribed by these values are:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the
calling process’s child processes will not create zombie
processes when they terminate {see exit(2)].

Jfunction address - catch signal

If the signal is SIGPWR , the action to be taken is the same as
that described above for func equal to function address. The
same is true if the signal is SIGCLD with one exception:
while the process is executing the signal-catching function,
any received SIGCLD signals will be ignored. (This is the
default action,)

In addition, SIGCLD affects the wait, and exit system calls as follows:

wait If the func value of SIGCLD is set to SIG_IGN and a wait is
executed, the wait will block until all of the calling process’s
child processes terminate; it will then return a value of -1 with
errno set to ECHILD.

SIGNAL(2)

(31

SEE ALSO

SIGNAL(2)

exit If in the exiting process’s parent process the func value of
SIGCLD is set to SIG_IGN, the exiting process will not create a
zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that may be
piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS
[see intro(2)] file has a ‘‘selectable’” event pending. A process must
specifically request that this signal be sent using the I_SETSIG ioctl call.
Otherwise, the process will never receive SIGPOLL.

s

kili(1), intro(2), kili(2), pause(Z), pirace(Z), waii(2), segmp{(3C), sigsei{2).

DIAGNOSTICS

Upon successful completion, signal returns the previous value of func for the
specified signal sig. Otherwise, a value of SIG_ERR is returned and errno is set
to indicate the error. SIG_ERR is defined in the include file signal.h.

SIGSET(2) SIGSET(2)

NAME
sigset, sighold, sigrelse, sigignore, sigpause - signal management

SYNOPSIS
#include <signal.h>

void (*sigset (sig, func))()
int sig;
void (*func)();
int sighold (sig)
int sig; -
int sigrelse (sig)
int sig;
int sigignore (sig)
int sig;
int sigpause (sig)
int sig;
DESCRIPTION
These functions provide signal management for application processes. sigset
specifies the system signal action to be taken upon receipt of signal sig. This
action is either calling a process signal-catching handler func or performing a
system-defined action.

sig can be assigned any one of the following values except SIGKILL. Machine I
or implementation dependent signals are not included (see NOTES below). Each i
value of sig is a macro, defined in <signal.h>, that expands to an integer
constant expression.

SIGHUP hangup

SIGINT interrupt

SIGQUIT* quit

SIGILL* illegal instruction (not held when caught)

SIGTRAP* trace trap (not held when caught)

SIGABRT* abort

SIGFPE* floating point exception

SIGKILL kill (can not be caught or ignored)

SIGSYS* bad argument to system call

SIGPIPE write on a pipe with no one to read it

SIGALRM alarm clock

SIGTERM software termination signal

SIGUSR1 user-defined signal 1 :
SIGUSR2 user-defined signal 2 }

-1-

SIGSET(2) SIGSET(2)

SIGCLD death of a child (sce WARNING below)
SIGPWR power fail (see WARNING below)
SIGPOLL sclectable event pending (sce NOTES below)

See below under SIG_DFL regarding asterisks (*) in the above list.

The following values for the system-defined actions of func are also defined in
<signal h>. Each is a macro that expands to a constant expression of type
pointer to function returning void and has a unique value that matches no
declarable function.

SIG_DFL - default system action
Upon receipt of the signal sig, the receiving process is to be terminated
with all of the consequences outlined in exit(2). In addition a ‘‘core
image’’ will be made in the current working directory of the receiving
process if sig is one for which an asterick appears in the ahove list and
the following conditions are met:

. The effective user ID and the real user ID of the receiving
process are equal.

. An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

— A mode of 0666 modified by the file creation mask
[see umask (2)].

— A file owner ID that is the same as the effective user
ID of the receiving process.

— A file group ID that is the same as the effective
group ID of the receiving process.

SIG_IGN - ignore signal
Any pending signal sig is discarded and the system signal action is set
to ignore future occurrences of this signal type.

SIG_HOLD - hold signal
The signal sig is to be held upon receipt. Any pending signal of this
type remains held. Only one signal of each type is held.

Otherwise, func must be a pointer to a function, the signal-catching handler,
that is to be called when signal sig occurs. In this case, sigset specifies that the
process will call this function upon receipt of signal sig. Any pending signal of
this type is released. This handler address is retained across calls to the other
signal management functions listed here.

SIGSET(2) SIGSET(2)

When a signal occurs, the signal number sig will be passed as the only
argument to the signal-catching handler. Before calling the signal-catching
handler, the system signal action will be set to SIG_HOLD . During normal
return from the signal-catching handler, the system signal action is restored to
func and any held signal of this type released. If a non-local goto (longjmp) is
taken, then sigrelse must be called to restore the system signal action and
release any held signal of this type.

In general, upon return from the signal-catching handler, the receiving process
will resume execution at the point it was interrupted. However, when a signal
is caught during a read(2), a write(2), an open(2), or an ioctl (2) system call
during a sigpause system call, or during a wait(2) system call that does not
return immediately due to the existence of a previously stopped or zombie
process, the signal-catching handler will be executed and then the interrupted
system call may return a -1 to the calling process with errno set to EINTR.

sighold and sigrelse are used to establish critical regions of code. sighold is
analogous to raising the priority level and deferring or holding a signal until the
priority is lowered by sigrelse. sigrelse restores the system signal action to that
specified previously by sigset.

sigignore sets the action for signal sig to SIG_IGN (see above).

sigpause suspends the calling process until it receives a signal, the same as
pause(2). However, if the signal sig had been received and held, it is released
and the system signal action taken. This system call is useful for testing
variables that are changed on the occurrence of a signal. The correct usage is to
use sighold to block the signal first, then test the variables. If they have not
changed, then call sigpause to wait for the signal. sigset will fail if one or more
of the following are true:

[EINVAL] sig is an illegal signal number (including SIGKILL) or the
default handling of sig cannot be changed.

[EINTR] A signal was caught during the system call sigpause .
SEE ALSO

kill(2), pause(2), signal(2), wait(2), setimp(3C).
DIAGNOSTICS

Upon successful completion, sigset returns the previous value of the system
signal action for the specified signal sig. Otherwise, a value of SIG_ERR is
returned and errno is set to indicate the error. SIG_ERR is defined in
<signal.h>.

For the other functions, upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

-3-

SIGSET(2) SIGSET(2)

NOTES

SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see
intro(2)] file has a selectable event pending. A process must specifically
request that this signal be sent using the I _SETSIG ioct(2) call [see
streamio(7)]. Otherwise, the process will never receive SIGPOLL.

For portability, applications should use only the symbolic names of signals
rather than their values and use only the set of signals defined here. The action
for the signal SIGKILL can not be changed from the default system action.

Specific implementations may have other implementation-defined signals.
Also, additional implementation-defined arguments may be passed to the
signal-catching handler for hardware-generated signals. For certain hardware-
generated signals, it may not be possible to resume execution at the point of
interruption.

The signal type SIGSEGY is reserved for the condition that occurs on an invalid
access to a data object. If an implementation can detect this condition, this
signal type should be used.

The other signal management functions, signal(2) and pause(2), should not be
used in conjunction with these routines for a particular signal type.

WARNING

Two signals that behave differently than the signals described above exist in
this release of the system:

SIGCLD death of a child (reset when caught)
SIGPWR power fail (not reset when caught)

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN, or a
function address. The actions prescribed by these values are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process’s
child processes will not create zombie processes when they terminate
[see exit(2)].

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that
described above for func equal to function address. The same is true if
the signal is SIGCLD with one exception: while the process is executing
the signal-catching function, any received SIGCLD signals will be
ignored. (This is the default action.)

-4-

SIGSET(2) SIGSET(2)

The SIGCLD affects two other system calls [wait(2), and exit(2)] in the
following ways:

wait 1f the func value of SIGCLD is set to SIG_IGN and a wait is executed, the
wait will block until all of the calling process’s child processes terminate;
it will then return a value of -1 with errno set to ECHILD.

exit If in the exiting process’s parent process the func value of SIGCLD is set
to SIG_IGN , the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the
parent of the proceeding processes. A process that may be piped into in this
manner (and thus become the parent of other processes) should take care not to
set SIGCLD to be caught.

SOCKET(2) (CTIX Intemetworking) SOCKET(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s = socket(domain, type, protocol)
int s, domain, type, protocol;

DESCRIPTION
The socket call creates an endpoint for communication and returns a descriptor;
s is a file descriptor returned by the socket system call.

The domain parameter specifies a communications domain within which
communication will take place; this selects the protocol family which should be
used. The protocol family generally is the same as the address family for the
addresses supplied in later operations on the socket. These families are defined
in the include file <sys/socket.h>. The only currently supported format is
PF_INET (ARPA Internet protocols).

The socket has the indicated type, which specifies the semantics of
communication. Currently defined types include:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW

Note that not all types are supported by all protocol families.

A SOCK_STREAM type provides sequenced, reliable, two-way connection-
based byte streams with an out-of-band data transmission mechanism. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages
of a fixed maximum length).

SOCK_RAW sockets provide access to internal network protocols and
interfaces. This type is available only to the super-user.

The protocol specifies a particular protocol to be used with the socket.
Normally only a single protocol exists to support a particular socket type within
a given protocol family. However, it is possible that many protocols may exist,
in which case a particular protocol must be specified in this manner. The
protocol number to use is particular to the ‘‘communication domain’’ in which
communication is to take place; see protocols(4).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes.
A stream socket must be in a connected state before any data may be sent or
received on it. A connection to another socket is created with a connect(2) call.

-1-

|

SOCKET(2) (CTIX Internetworking) SOCKET(2)

Once connected, data may be transferred using read(2) and write(2) calls or
some variant of the send(2) and recv(2) calls. When a session has been
completed a close(2) may be performed. Out-of-band data may also be
transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM ensure that
data is not lost or duplicated. If a piece of data for which the peer protocol has
buffer space cannot be successfully transmitted within a reasonable length of
time, then the connection is considered broken and calls will indicate an error
with -1 returns and with ETIMEDOUT as the specific code in the global variable
errno. The protocols optionally keep sockets ‘‘warm’’ by forcing transmissions
roughly every minute in the absence of other activity. An error is then
indicated if no response can be elicited on an otherwise idle connection for a
extended period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends
on a broken stream; this causes naive processes, which do not handle the signal,
to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to
correspondents named in send(2) calls. Datagrams are generally received with
recv(2), which returns the next datagram with its return address.

An fentl (2) call can be used to specify a process group to receive a SIGUSR1
signal when the out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options
are defined in the file <sys/socketh>. setsockopt and getsockopt [see
getsockopt (2)] are used to set and get options, respectively. The following
options are recognized at the socket level:

SO_DEBUG Toggle recording of debugging information.
SO_REUSEADDR Toggle on/off local address reuse.

SO_KEEPALIVE Toggle keep connections alive.

SO_DONTROUTE Toggle routing bypass for outgoing messages.
SO_LINGER Linger on close if data present.

SO_BROADCAST Toggle permission to transmit broadcast messages.
SO_OOBINLINE Toggle reception of out-of-band data in band.
SO_SNDBUF Set buffer size for output.

SO_RCVBUF Set buffer size for input.

SOCKET(2) (CTIX Internciworking) SOCKET(2)

SO_TYPE Get the type of the socket (get only).
SO_ERROR Get and clear error on the socket (get only).
The options work as follows:

SO_DEBUG Enables debugging in the underlying protocol modules.

SO_REUSEADDR indicates that the rules used in validating addresses supplied
in a bind (2) call shouid allow reuse of local addresses.

SO_KEEPALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the
connection is considered broken and processes using the socket are notified via
a SIGPIPE signal.

SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, mcssages are dirccied to thie appropriaie neiwork

interface according to the network portion of the destination address.
SO_LINGER controls the action taken when unsent messags are queued on
socket and a close(2) is performed. If the socket promises reliable delivery of
data and SO_LINGER is set, the system blocks the process on the close attempt
until it is able to transmit the data or until it decides it is unable to deliver the
information (a timeout period, termed the linger interval, is specified in the
setsockopt call when SO_LINGER is requested). If SO_LINGER is disabled and a
close is issued, the system processes the close in a manner that allows the
process to continue as quickly as possible.

SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of the system.

With protocols that support out-of-band data, SO_OOBINLINE requests that
out-of-band data be placed in the normal data input queue as received; it is then
accessible with recv or read calls without the MSG_OOB flag.

SO_SNDBUF and SO_RCVBUF are options to adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be
increased for high-volume connections, or may be decreased to limit the
possible backlog of incoming data. The system places an absolute limit on
these values.

SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE
returns the type of the socket, such as SOCK_STREAM; it is useful for servers

SOCKET(2) (CTIX Internctworking) SOCKET(2)

that inherit sockets on startup. SO_ERROR returns any pending error on the
socket and clears the error status. It may be used to check for asynchronous
errors on connected datagram sockets or for other asynchronous errors.

SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), intro(2), ioctl(2),
listen(2), read(2), recv(2), select(2), send(2), shutdown(2), write(2), inet(7),
intro(7).
CTIX Network Programmer’s Primer.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor
referencing the socket.

ERRORS

[EPROTONOSUPPORT] The protocol type or the specified protocol is not
supported within this communication domain.

[EMFILE] The per-process descriptor table is full.
[ENFILE] The system file table is fuli.
[EACCESS] Permission to create a socket of the specified type

and/or protocol is denied.

[ENOSR] Insufficient buffer space is available. The socket
cannot be created until sufficient resources are freed.

STAT(2)

NAME

stat, fstat - get file status

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>
int stat (path, buf)

char *path;

struct stat *buf;
int fstat (fildes, buf)

int fildes;

struct stat *buf;

DESCRIPTION

STAT(2)

Parh points to a path name naming a file. Read, write, or execute permission of
the named file is not required, but all directories listed in the path name leading
to the file must be searchable. stat obtains information about the named file.

Note that in a Remote File Sharing environment, the information returned by
stat depends upon the user/group mapping set up between the local and remote
computers. [See idload(1M).]

fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, fcnil, ot pipe system call.

buf is a pointer to a stat structure into which information is placed concerning

the file.

The contents of the structure pointed to by buf include the following members:

ushort
ino_t
dev_t
dev t

short
ushort
ushort
off_t
time_t
time_t
time_t

st_mode;
st_ino;
st_dev;
st_rdev;

st_nlink;
st_uid;
st_gid;
st_size;
st_atime;
st_mtime;
st_ctime;

/+ File mode [see mknod (2)] »/

/* Inode number »/

/* 1D of device containing a directory entry for this file +/
/+ 1D of device. Defined only for character */
/= special or block special files */

/+* Number of links */

/* User ID of the file’'s owner »/

/= Group ID of the file's group +/

/+ File size in bytes */

/» Time of last access */

/* Time of last data modification */

/+ Time of last file status change »/

/* Times measured in seconds since */

/% 00:00:00 GMT, Jan. 1, 1970 »/

STAT(2)

st_mode

st_ino

st_dev

st_rdev

st_nlink
st_uid
st_gid

st_size

st_atime

st_mtime

st_ctime

STAT(2)

The mode of the file as described in the mknod(2) system call.

This field uniquely identifies the file in a given file system. The
pair st_ino and st_dev uniquely identifies regular files.

This field uniquely identifies the file system that contains the
file. Its value may be used as input to the ustat(2) system call to
determine more information about this file system. No other
meaning is associated with this value.

This field should be used only by administrative commands. It is
valid only for block special or character special files and only
has meaning on the system where the file was configured.

This field should be used only by administrative commands.
The user ID of the file’s owner.
The group ID of the file’s group.

For regular files, this is the address of the end of the file. For
pipes or fifos, this is the count of the data currently in the file.
For block special or character special, this is not defined.

Time when file data was last accessed. Changed by the
following system calls: creat(2), mknod(2), pipe (2), utime(2),
and read(2).

Time when data was last modified. Changed by the following
system calls: creat(2), mknod(2), pipe(2), utime(2), and
write(2).

Time when file status was last changed. Changed by the
following system calls: chmod(2), chown(2), creat(2), link(2),
mknod(2), pipe (2), unlink (2), utime (2), and write (2).

stat will fail if one or more of the following are true:

[ENOTDIR]
[ENOENT]
[EACCES]

[EFAULT]
[EINTR]
[ENOLINK]

A component of the path prefix is not a directory.
The named file does not exist.

Search permission is denied for a component of the path
prefix.

buf or path points to an invalid address.
A signal was caught during the stat system call.

Path points to a remote machine and the link to that machine
is no longer active.

STAT(2) STAT(2)

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

fstat will fail if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.
[EFAULT] byf points to an invalid address.
{ENOLINK] fildes points to a remote machine and the link to that

machine is no longer active.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), syslocal(2),
time(2), unlink(2), utime(2), write(2).

DIAGNOSTICS
Upen successful complction a value of 0 is returmed. Giherwise, a vaiue of -1 is
returned and errno is set to indicate the error.

STATFS(2) STATFS(2)

NAME
statfs, fstatfs - get file system information

SYNOPSIS
#include <sys/types.h>
#include <sys/statfs.h>

int statfs (path, buf, len, fstyp)
char *+path;

struct statfs *buf;

int len, fstyp;

int fstatfs (fildes, buf, len, fstyp)
int fildes;

struct statfs *buf;

int len, fstyp;

DESCRIPTION

The statfs call returns a ‘“generic super-block’ describing a file system. It can
be used to acquire information about mounted as well as unmounted file
systems, and usage is slightly different in the two cases. In all cases, buf is a
pointer to a structure (described below) to be filled by the system call, and len
is the number of bytes of information the system should return in the structure.
The value of len must be no greater than sizeof(structstatfs), and ordinarily it
contains exactly that value; if it holds a smaller value, the system fills the
structure with that number of bytes. (This allows future versions of the system
to grow the structure without invalidating older binary programs.)

If the file system of interest is currently mounted, path should name a file
which resides on that file system. In this case the file system type is known to
the operating system and the fstyp argument must be zero. For an unmounted
file system path must name the block special file containing it and fstyp must
contain the (non-zero) file system type. In both cases read, write, or execute
permission of the named file is not required, but all directories listed in the path
name leading to the file must be searchable.

The statfs structure pointed to by buf includes the following members:

short f_fstyp; /= File system type »/

short {_bsize; /+ Block size »/

short f frsize; /» Fragment size */

long f blocks; /+ Total number of blocks */
long f bfree; /+ Count of free blocks */

long f _files; /= Total number of file nodes »/
long f_firee; /= Count of free file nodes */

STATFS(2)

char
char

STATFS(2)

f_fname[6]; /* Volume name +/
f_tpack[6]); /+ Pack name */

The fstatfs call is similar to the statfs call, except that the file named by path in
statfs is instead identified by an open file descriptor fildes obtained from a
successful open(2), creat(2), dup(2), fentl(2), or pipe(2) system call.

The statfs call obsoletes ustat(2) and should be used in preference to it in new

programs.

The statfs and fstatfs calls fail if one or more of the following are true:

[ENOTDIR]
[ENOENT]
[EACCES]

[EFAULT]

[EBADF]

[EINVAL]

[ENOLINK]

[EMULTIHOP]

DIAGNOSTICS

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path
prefix.

buf or path points to an invalid address.

fildes is not a valid open file descriptor.

fstyp is an invalid file system type; path is not a block
special file and fstyp is nonzero; len is negative or is greater
than sizeof (struct statfs).

Path points to a remote machine, and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

Upon successful completion a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2), fs(4).

STIME(2) STIME(2)

NAME
stime - set time
SYNOPSIS
int stime (tp)
long *tp;
DESCRIPTION
stime sets the system’s idea of the time and date. ¢p points to the value of time
as measured in seconds from 00:00:00 GMT January 1, 1970.

[EPERM] stime will fail if the effective user ID of the calling process is .
not super-user.
SEE ALSO
time(2).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SWRITE(2) SWRITE(2)

NAME
swrite - synchronous write on a file

SYNOPSIS
int swrite (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
swrite has the same purpose and conventions as write (2). The two differ solety
in their handling of disk input/output. swrite, unlike write, does not give a
normal return before physical output is complete. A program that executes an
swrite can assume that the data is on the disk, not waiting in a buffer pool.

SEE ALSO
creat(2), dup(2), lseck(2), open(2), pipe(2), ulimit(2).

SYNC(2) SYNC(2)

NAME
sync - update super block
SYNOPSIS
void sync ()
DESCRIPTION
The sync call causes all information in memory that should be on disk to be

written out, including modified super blocks, modified i-nodes, and delayed
block 1/0.

The sync call should be used by programs that examine a file system: for
example fsckand df. A call to sync is mandatory before a reboot.

The writing, although scheduled, is not necessarily complete upon return from
sync.

SYSFS(2) SYSFS(2)

NAME
sysfs - get file system type information

SYNOPSIS
#include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs (opcode, fsname)
int opcode;
char *fsname;

int sysfs (opcode, fs_index, buf) -
int opcode;
int fs_index;
char *buf;
ini sysfs (opcode)
int opcode;

DESCRIPTION
sysfs returns information about the file system types configured in the system. i
The number of arguments accepted by sysfs varies and depends on the opcode. !
The currently recognized opcodes and their functions are described below:

GETFSIND translates fsname, a null-terminated file-system identifier,
into a file-system type index.

GETFSTYP translates fs index, a file-system type index, into a null- |
terminated file-system identifier and writes it into the buffer |
pointed to by buf this buffer must be at least of size ‘
FSTYPSZ as defined in <sysifstyp.h>.

GETNFSTYP returns the total number of file system types configured in
the system.

sysfs will fail if one or more of the following are true:

[EINVAL] fsname points to an invalid file-system identifier; f5_index is
zero, or invalid; opcode is invalid.
[EFAULT] buf or fsname point to an invalid user address.
DIAGNOSTICS

Upon successful completion, sysfs returns the file-system type index if the
opcode is GETFSIND, a value of 0 if the opcode is GETFSTYP, or the number of
file system types configured if the opcode is GETNFSTYP. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SYSLOCAL(2) SYSLOCAL(2)

NAME
syslocal - special system requests

SYNOPSIS
#include <syslocal.h>
int syslocal (emd [,arg]...)
int cmd;

DESCRIPTION
The syslocal routine executes certain special system calls. The specific call is
indicated by the first argument. See the <sys/syslocal.h> file for complete
documentation of parameters.

System Type
Int syslocal(SYSL_SYSTEM)
Return SYSL_MITI for S/Series.

Family Mcmber
Int syslocal(SYSL_FAMILYMEMBER)
Returns a value identifying the specific system: SYSLFMITI1 for S/120,
S/221-2, or §/320; SYSLFMITI2 for S/480 or S$/640; SYSLFS80 for S/80; and
SYSLFS280 for S/280.

Superblock Resynchronization
int syslocal(SYSL_RESYNC, devnum)
short devnum
Reread contents of superblock from disk. devnum specifies the file system: the
high order byte contains the major device number of the character special
device; the low order byte contains the minor device number. Only the super-
user can reread the contents of the superblock from disk.

Maximum Number of Users
int syslocal(SYSL_MAXUSERS)
Returns maximum number of users this system is configured for.

Kernel Addresses
syslocal(SYSL_KADDR, arg)
Returns certain addresses of kernel data structures. This allows certain
programs (ps, killall) to run properly, even if /unix is not the currently running
operating system.

SYSLOCAL(2) SYSLOCAL(2)

arg is one of the following:

SLA_V Return address of var structure (sys/var.h).

SLA_PROC Return address of proc structure (sys/proc.h).

SLA_ERR Return address of err structure (sys/err.h).

SCA_TIME Return address of int time.

SLA_CDT Return address of crash dump table (CDT) =
(sys/hardware.h).

SLA_GDUTAB Return address of gdutab (sys/iobuf.h).
SLA_USRSTK Return highest address of user stack.
SLA_USIGN Return signature of running UNIX (may be compared with

that of /unix to see if they are identical),
SLA_MEM Return number of bytes of physical memory.
SLA_BDEVCNT Return the number of slots in struct bdevsw (sys/conf.h).
SLA_CDEVCNT Return the number of slots in struct cdevsw (sys/conf.h).
SLA_PRELD Return the address of the preloaded driver table.

Object Module Type
syslocal(SYSL_0413MAGIC)
Returns 1 if the kernel can support the -F option of /d().

Read Real-Time Clock
syslocal(SYSL_RDRTC, arg)
Read current state of real-time (battery supported) clock. arg is a pointer to
struct rtc (sys/rtc.h)

Write Real-Time Clock
syslocal(SYSL_WTRTC, arg)
Write new state of real-time clock. arg is a pointer to a struct rtc (sys/rtc.h).
EIO is returned if any of the values are illegal. Only the super-user can write
the real-time clock.

Reboot System
syslocal(SYSL_REBOOT)
Force a software reset. Only the superuser may reset. Obsolete: retained for
compatibility. Use uadmin(2) instead.

SYSLOCAL(2) SYSLOCAL(2)

Allocate or Bind a Loadable Driver
sysiocal(SYSL_ALLOCDRY, option, arg)
sysiocal(SYSL_BINDDRYV, option, arg)
These two functions implement the loadable driver functions of CTIX. They
both require super-user privilege.

Loading drivers consists of two phases: allocation of virtual space, device
numbers, and device IDs; and binding. Fully relocating a driver into memory,
allocating physical space, plugging the device switch tables, calling
initialization routines, and unloading require the same two phases in reverse.
For information on the arguments, see /usr/include/sys/drv.h.

Determine Processor Type
syslocal(SYSL_PROCESSOR)
Returns a value that can be used to determine what kind of processor (68010 or
68020) is running and whether floating-point hardware (68881) is available.

Enable Fixed Priority Range
syslocal(SYSL_RTNICE,flag)
Enables/disables the fixed priority range [see nice(2)]. flag is 1 for enable, 2
for disable. Only the super-user can execute this call, which affects every
process.

S/Series Hardware Configuration
syslocal(SYSL_MITICFIG)
Returns a bit mask of the hardware that is present. Values can be found in
syslocalLh. A more convenient way to get this information is by using

hinv(1M),

SEE ALSO
fsck(1M), nice(2).

DIAGNOSTICS
Note that syslocal fails if one of the following is true:

[EINVAL] cmd or any suboption is illegal.
[EFAULT] An arg points outside the process’s space.

TIME(2) TIME(2)

NAME

time - get time
SYNOPSIS

#include <sys/types.h>

time_t time (tloc)
long *tloc;
DESCRIPTION

The time call returns the value of time in seconds since 00:00:00 GMT, January
1, 1970.

If tloc is non-zero, the return value is also stored in the location to which tloc
points.
tloc points to an illegal address.
SEE ALSO
stime(2).

DIAGNOSTICS
Upon successful completion, time returns the value of time; otherwise, a value
of -1 is returned and errno is set to indicate the error.

TIMES(2) TIMES (2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struci tms *buffer;

DESCRIPTION
The times call fills the structure pointed to by buffer with time-accounting
information. The following are the contents of this structure:

struct tms {
time_t tms_utime;
time_t tms_stime;
time t tms_cutime;
time_t tms_cstime;

b

This information comes from the calling process and each of its terminated
child processes for which it has executed a wait. All times are reported in clock
ticks per second. Clock ticks are a system-dependent parameter. The specific
value for an implementation is defined by the variable HZ, found in the include
file param.h.

Ims_utime
Is the CPU time used while executing instructions in the user space of
the calling process.

tms_stime
Is the CPU time used by the system on behalf of the calling process.

tms_cutime
Is the sum of the tms_utime s and tms_cutime s of the child processes.

tms_cstime
Is the sum of the tms_stimes and tms_cstimes of the child processes.

The times call fails if the following is true:
[EFAULT] buffer points to an illegal address.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

TIMES(2) TIMES (2)

DIAGNOSTICS

Upon successful completion, times returns the elapsed real time, in clock ticks
per second, from an arbitrary point in the past (such as system start-up time).
This point does not change from one invocation of times to another. If times
fails, a -1 is returned and errno is set to indicate the error.

UADMIN(2)

NAME

UADMIN(2)

uadmin - administrative control

SYNOPSIS

#include <sys/uadmin.h>

int vadmin (cmd, fcn, mdep)

int cmd, fcn, mdep;

DESCRIPTION

Uadmin provides control for basic administrative functions. This sysiem call is
tightly coupled to the system administrative procedures and is not intended for
general use. The mdep argument is provided for machine-dependent use and is

not defined here.

As specified by cmd, the following commands are available:

A_SHUTDOWN

A_REBOOT

Shut down the system. All user processes are killed, the
buffer cache is flushed, and the root file system is
unmounted. The fcn function specifies the action to be
taken after the system is shut down. The functions are
generic; the hardware capabilities vary on specific
machines.

AD_HALT Halt the processor so it is safe to turn off
the power.

AD_BOOT Reboot the system.

Reboot the system immediately, without further processing.

A_REMOUNT

The root file system is mounted again after having been fixed. This
should be used only during the startup process.

A_HALT

The system stops immediately.

uadmin fails if any of the following are true:

[EPERM]

SEE ALSO
syslocal(2).

The effective user ID is not super-user.

UADMIN(2) UADMIN(2)

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

A_SHUTDOWN Never returns.

A_REBOOT Never returns.
A_REMOUNT 0
A_HALT Never returns.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ULIMIT(2) ULIMIT (2)

NAME
ulimit - get and set user limits

SYNOPSIS

long ulimit (cmd, newlimit)

int cmd;

long newlimit;

DESCRIPTION

This function provides for control over process limits. The cmd values follow:

1 Get the regular file size limit of the process. The limit is in units of 512-
byte blocks and is inherited by child processes. Files of any size can be
read.

2 Set the regular file size limit of the process to the value of newlimit. Any
process may decrease this limit, but only a process with an effective user
D of super-user may increase the limit. ulimir fails and the limit is
unchanged if a process with an effective user ID other than super-user
attempts to increase its regular file size limit. [EPERM]

Get the maximum possible break value [see brk(2)].

Get the current value of the maximum number of open files per process
configured in the system.

SEE ALSO
brk(2), write(2).

DIAGNOSTICS
Upon successful completion, a non-negative value is returned; otherwise, a
value of -1 is returned and errno is set to indicate the error.

WARNING

The ulimit call is effective in limiting the growth of regular files. Pipes are
currently limited to 9,216 bytes (this is the maximum atomic write size).

UMASK(2) UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION
The umask cali sets the process’s file mode creation mask to cmask and returns
the previous value of the mask. Only the low-order 9 bits of cmask and the file
mode creation mask are used.

SEE ALSO
mkdir(1), sh(1), chmod(2), creat(2), mknod(2), open(2).

DIAGNOSTICS

The previous value of the file modc creation mask is reiurned.

UMOUNT(2)

NAME

UMOUNT(2)

umount - unmount a file system

SYNOPSIS

int umount (file)

char *file;
DESCRIPTION

The umount call requests that a previously mounted file system contained on
the block special device or directory identified by file be unmounted. The file
parameter is a pointer to a path name. After unmounting the file system, the
directory upon which the file system was mounted reverts to its ordinary

interpretation,

The umount call can be invoked only by the super-user.

The umouni cail fails if one or more of the following are true:

[EPERM]
[EINVAL)
[ENOTBLK]
[EINVAL]
[EBUSY]
[EFAULT]
[EREMOTE]
[ENOLINK}

[EMULTIHOP]
SEE ALSO

mount(2).
DIAGNOSTICS

The process’s effective user ID is not super-user.
file does not exist.

file is not a block special device.

file is not mounted.

A file on file is busy.

file points to an illegal address.

file is remote.

file is on a remote machine, and the link to that machine is no
longer active.

Components of the path pointed to by file require hopping to
multiple remote machines.

Upon successful completion a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

UNAME(2) UNAME(2)

NAME
uname - get name of current CTIX system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION
The uname call stores information identifying the current CTIX system in the
structure pointed to by name.

The call uses the structure defined in <sys/utsname.h>, whose members follow:

char sysname|9];
char nodenamel9];
char release[9];
char version[9];

char machine{9];

The uname call returns a null-terminated character string naming the current
CTIX system in the character array sysname. Similarly, nodename contains the
name that the system is known by on a communications network. [Note the
equivalence of nodename and the left-most qualifier in a full Internet name; see
hostname(1).] The release and version members further identify the operating
system; machine contains a standard name that identifies the hardware that the
CTIX system is running on.

[EFAULT) uname fails if name points to an invalid address.
SEE ALSO

hostname(1), setuname(1M), uname(1), sethostname (2).
DIAGNOSTICS

Upon successful completion, a non-negative value is returned; otherwise, a
value of -1 is returned and errno is set to indicate the error.

UNLINK (2)

NAME

UNLINK (2)

unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION

uniink removes the directory entry named by the path name pointed to by path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR]

[ENOENT]
[EACCES]

[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROFS]

[EFAULT]
[EINTR]
[ENOLINK}

[EMULTIHOP]

A component of the path prefix is not a directory.
The named file does not exist.

Search permission is denied for a component of the path

nrofiv
prefix.

Write permission is denied on the directory containing the
link to be removed.

The parent directory has the sticky bit set and: the parent
directory is not owned by the user; and the directory is not
owned by the user; and the directory is not writable by the
user; and the user is not super-user.

The named file is a directory and the effective user ID of the
process is not super-user.

The entry to be unlinked is the mount point for a mounted
file system.

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed.

The directory entry to be unlinked is part of a read-only file
system.

Path points outside the process’s allocated address space.
A signal was caught during the unlink system call.

Path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines.

When all links to a file have been removed and no process has the file open, the
space occupied by the file is freed and the file ceases to exist. If one or more

UNLINK(2) UNLINK(2)

processes have the file open when the last link is removed, the removal is
postponed until all references to the file have been closed.

SEE ALSO
rm(1), close(2), link(2), open(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

USTAT(2) USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
dev_t dev;
struct ustat *buf;

DESCRIPTION
The ustat call returns information about a mounted file system. dev is a device
number identifying a device containing a mounted file system. buf is a pointer
to a ustat structure that includes the following elements:

daddr t f_tfree; I* Total free blocks */

Ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /+ Filsys name */

char f_fpack[6]; /« Filsys pack name */

The ustar call fails if one or more of the following are true:

[EINVAL] dev is not the device number of a device containing a
mounted file system.
[EFAULT] buf points outside the process’s allocated address space.
[EINTR] A signal was caught during a ustat system call.
(ENOLINK] dev is on a remote machine and the link to that machine is no
longer active.
[ECOMM] dev is on a remote machine and the link to that machine is no
longer active.
SEE ALSO
stat(2), statfs(2), fs(4).
DIAGNOSTICS

Upon successful completion, a value of Q is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

NOTE
The statfs call obsoletes ustat(2) and should be used in preference to ustar(2) in
new programs.

UTIME(2) UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
int utime (path, times)
char *path;
struct utimbuf *times;

DESCRIPTION
The path parameter points to a path name naming a file. The utime call sets the
access and modification times of the named file.

If times is NULL, the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write permission
to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and
the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or the super-user can use utime
this way.

The times in the following structure are measured in seconds since 00:00:00
GMT, Jan. 1, 1970.

struct utimbuf {

time_t actime; /* access time «/
time_t modtime; /+ modification time »/
H
The utime call fails if one or more of the following are true:
[ENOENT) The named file does not exist.
[ENOTDIR] A component of the path prefix is not a directory.
[EACCES] Search permission is denied by a component of the path
prefix.
[EPERM] The effective user ID is not super-user and not the owner of
the file and times is not NULL.
[EACCES] The effective user ID is not super-user and not the owner of
the file and times is NULL and write access is denied.
[EROFS] The file system containing the file is mounted read-only.
[EFAULT] times is not NULL and points outside the process’s allocated

address space.

UTIME(2) UTIME(2)

{EFAULT] path points outside the process’s allocated address space.
[EINTR] A signal was caught during the utime system call.
[ENOLINK] path points to a remote machine and the link to that machine
is no longer active.
[EMULTIHOP] Components of path require hopping to multiple remote
machines.
SEE ALSO
stat(2).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

WAIT (2) WAIT (2)

NAME

wait - wait for child process to stop or terminate

SYNOPSIS

int wait (stat_loc)
int *stat_loc;

DESCRIPTION

The wait call suspends the calling process until until one of the immediate
children terminates or until a child that is being traced stops, because it has hit a
break point. The wair system call returns prematurely if a signal is received and
if a child process stopped or terminated prior to the call on wait, return is
immediate.

If stat_loc is non-zero, 16 bits of information called status are stored in the
low-order 16 bits of the location pointed ¢ by stat loc. siaius can be used 0
differentiate between stopped and terminated child processes and if the child
process terminated, status identifies the cause of termination and passes useful
information to the parent. This is accomplished in the following manner:

. If the child process stopped, the high-order 8 bits of status contain the
number of the signal that caused the process to stop and the low-order
8 bits are set equal to 0177.

) If the child process terminated due to an exit call, the low-order 8 bits
of status are zero and the high-order 8 bits contain the low-order 8 bits
of the argument that the child process passed to exit [see exit(2)].

. If the child process terminated due to a signal, the high-order 8 bits of
status are zero and the low-order 8 bits contain the number of the
signal that caused the termination. In addition, if the low-order seventh
bit (bit 200) is set, a ‘‘core image’’ will have been produced [see
signal(2)].

If a parent process terminates without waiting for its child processes to
terminate, the parent process ID of each child process is set to 1. This means the
initialization process inherits the child processes [see intro(2)].

The wait call fails and returns immediately if the following is true:

[ECHILD] The calling process has no existing unwaited-for child
processes.

SEE ALSO

exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

WAIT(2) WAIT(2)

DIAGNOSTICS
If wait returns due to the receipt of a signal, a value of -1 is returned to the
calling process and errno is set to EINTR. If wait returns due to a stopped or
terminated child process, the process ID of the child is returned to the calling
process; otherwise, a value of -1 is returned and errno is set to indicate the
error.

WARNING
The wait call fails and its actions are undefined if stat_loc points to an invalid
address.

See WARNING in signal (2).

WRITE(2) WRITE(2)

NAME

write - write on a file

SYNOPSIS

int write (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRIPTION

The fildes argument is a file descriptor obtained from a creat(2), open(2),
dup(2), fcntl (2), or pipe (2) system call.

The write call attempts to write nbyte bytes from the buffer pointed to by buf to
the file associated with the fildes.

On devices capabie of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write, the file
pointer is incremented by the number of bytes actually written.

On devices incapable of secking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set to
the end of the file prior to each write,

For regular files, if the O_SYNC flag of the file status flags is set, the write will
not return until both the file data and file status have been physically updated.
This function is for special applications that require extra reliability at the cost
of performance. For block special files, if O_SYNC is set, the write will not
return until the data has been physically updated.

A write to a regular file will be blocked if mandatory file/record locking is set
[see chmod(2)], and there is a record lock owned by another process on the
segment of the file to be written. If O_NDELAY is not set, the write sleeps until
the blocking record lock is removed.

For STREAMS {see intro(2)] files, the operation of write is determined by the
values of the minimum and maximum nbyte range (packet size) accepted by the
stream. These values are contained in the topmost stream module. Unless the
user pushes [see I_PUSH in streamio(7)] the topmost module, these values can
not be set or tested from user level. If nbyte falls within the packet size range,
nbyte bytes will be written. If nbyte does not fall within the range and the
minimum packet size value is zero, write will break the buffer into maximum
packet size segments prior to sending the data downstream (the last segment
may contain less than the maximum packet size). If nbyte does not fall within

-1-

WRITE(2) WRITE(2)

the range and the minimum value is non-zero, write will fail with errno set to
ERANGE. Writing a zero-length buffer (nbyte is zero) sends zero bytes with
zero returned.

For STREAMS files, if O_NDELAY is not set and the stream can not accept data
(the stream write queue is full due to internal flow control conditions), write
will block until data can be accepted. O_NDELAY will prevent a process from
blocking due to flow control conditions. If O_NDELAY is sct and the stream
can not accept data, write will fail. If O_NDELAY is set and part of the buffer
has been written when a condition in which the stream can not accept
additional data occurs, write will terminate and return the number of bytes
written.

write will fail and the file pointer will remain unchanged if one or more of the

following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY was set,
and there was a blocking record lock.

[EAGAIN] Total amount of system memory available when reading via
raw /O is temporarily insufficient.

[EAGAIN] Attempt to write to a stream that can not accept data with the
O_NDELAY flag set.

{EBADF] fildes is not a valid file descriptor open for writing.

[EDEADILK] The write was going to go to sleep and cause a deadlock
situation to occur.

[EFAULT] buf points outside the process’s allocated address space.

[EFBIG] An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size [sece
ulimit(2)}.

(EINTR] A signal was caught during the write system call.

[EINVAL] Attempt to write to a stream linked below a multiplexor.

[ENOLCK] The system record lock table was full, so the write could not
go to sleep until the blocking record lock was removed.

[ENOLINK] fildes is on a remote machine and the link to that machine is
no longer active.

[ENOSPC] During a write to an ordinary file, there is no free space left

on the device.

WRITE(2) WRITE(2)

[ENXIO] A hangup occurred on the stream being written to.

[EPIPE and SIGPIPE signal]
An attempt is made to write to a pipe that is not open for
reading by any process.

[ERANGE] Attempt to write to a stream with nbyte outside specified
minimum and maximum write range, and the minimum value
is non-zero.

[EDEADLOCK] A side effect of the locking(2) call. (See the WARNING on
the locking (2) manpage.)

If a write requests that more bytes be written than there is room for (e.g., the
ulimit [see ulimit(2)] or the physical end of a medium), only as many bytes as
there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A wriie of 512-bytes will return 20.
The next write of a non-zero number of bytes will give a failure return (except
as noted below).

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file
flag word is set, then write to a full pipe (or FIFO) will return a count of 0.
Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO) will block until
space becomes available.

A write to a STREAMS file can fail if an error message has been received at the
stream head. In this case, errno is set to the value included in the error
message.

SEE ALSO
creat(2), dup(2), fentl(2), intro(2), Iseek(2), open(2), pipe(2), ulimit(2).

DIAGNOSTICS
Upon successful completion the number of bytes actually written is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

INTRO(3)

NAME

INTRO(3)

intro - introduction to functions and libraries

DESCRIPTION

This section describes functions found in various libraries, other than those
functions that directly invoke CTIX system primitives, which are described in
Section 2 of this volume. Certain major collections are identified by a letier
after the section number:

(30)

(3s)

(M)

(3N)

(3X)

These functions, together with those of Section 2 and thosc marked (35),
constitute the Standard C Library libc, which is automatically loaded by
the C compiler, cc(1). The link editor /d(1) searches this library under
the -lc option. A ‘‘shared library’’ version of libc can be searched using
the -lc_s option, resulting in smaller a.outs. Declarations for some of
these functions may be obtained from #include files indicated on the
appropriaie pages.

These functions constitute the ‘‘standard O package’ [see stdio (3S)].
These functions are in the library libc, already mentioned. Declarations
for these functions may be obtained from the #include file <stdio.h>.

These functions constitute the Math Library, libm. They are not
automatically loaded by the C compiler, cc(1); however, the link editor
searches this library under the -lm option. Declarations for these
functions may be obtained from the #include file <math.h>, Several
generally useful mathematical constants are also defined there [see
math(5)].

This contains sets of functions constituting the Network Services
library. These sets provide protocol-independent interfaces to
networking services based on the service definitions of the OSI (Open
Systems Interconnection) reference model. Application developers
access the function sets that provide services at a particular level.

This library contains the functions of the TRANSPORT INTERFACE (TI)
- provide the services of the OSI Transport Layer. These services
provide reliable end-to-end data transmission using the services of an
underlying network. Applications written using the TI functions are
independent of the underlying protocols. Declarations for these
functions may be obtained from the #include file <tiuser.h>. The link
editor /d(1) searches this library under the -Insl_s option.

Various specialized libraries. The files in which these libraries are
found are given on the appropriate pages.

INTRO(3) INTRO(3)

DEFINTITIONS

A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, represented in the C language as \0’. A
character array is a sequence of characters. A null-terminated character array
is a sequence of characters, the last of which is the null character. A string is a
designation for a null-terminated character array. The null string is a character
array containing only the null character. A NULL pointer is the value that is
obtained by casting 0 into a pointer. The C language guarantees that this value
will not match that of any legitimate pointer, so many functions that return
pointers return it to indicate an error. NULL is defined as 0 in <stdio.h>; the
user can include an appropriate definition if not using <stdio.h>.

Netbuf
In the Network Services library, netbuf is a structure used in various Transport

the following members:

unsigned int maxien;
unsigned int len;
char *buf;

buf points to a user input and/or output buffer. len generally specifies the .
number of bytes contained in the buffer. If the structure is used for both input {
and output, the function will replace the user value of len on return.)

maxlen generally has significance only when buf is used to receive output from
the TI function. In this case, it specifies the physical size of the buffer, the
maximum value of /en that can be set by the function. If maxlen is not large
enough to hold the returned information, an TBUFOVFLW error will generally
result. However, certain functions may return part of the data and not generate
an error.

Note that a struct sockaddr goes in all *‘addr’’ TLI netbufs.

INTRO(3) INTRO(3)

FILES

/lib

Nib/libc.a
/lib/libc_s.a
/lib/libm.a
/shlib/libclsw_s
/shlib/libc2sw_s
/shlibflibc2fp_s
/shlib/libnsllsw_s
/shlib/libns12sw_s
/shlib/libns12fp_s
Jusr/lib/libnsl_s.a

SEE ALSO

5tdio(33), math(5).

DIAGNOSTICS

Functions in the C and Math Libraries (3C and 3M) may return the
conventional values (0 or +tHUGE (the largest-magnitude single-precision
floating-point numbers; HUGE is defined in the <math.h> header file) when
the function is undefined for the given arguments or when the value is not
representable. In these cases, the external variable errno [see intro(2)] is set to
the value EDOM or ERANGE.

WARNING

Many of the functions in the libraries call and/or refer to other functions and
external variables described in this section and in Section 2 (System Calls). If a
program inadvertently defines a function or external variable with the same
name, the presumed library version of the function or external variable may not
be loaded. The lint(1) program checker reports name conflicts of this kind as
‘“‘multiple declarations’’ of the names in question. Definitions for Sections 2,
3C, and 3S are checked automatically. Other definitions can be included by
using the -l option. (For example, -lm includes definitions for Section 3M, the
Math Library.) Use of lint is highly recommended.

A64L.(3C) A64L(3C)

NAME
ab4l, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a64l (s)
char +*s;
char *l64a (1)
long i;
DESCRIPTION
These functions are used to maintain numbers stored in base-64 ASCI

characters. This is a notation by which long integers can be represented by up
to six characters; each character represents a ‘‘digit’’ in a radix-64 notation.

The characters used to represent ‘‘digits’” are . for 0, / for 1, 0 through 9 for
2-11, A through Z for 12-37, and a irough z for 38-63.

a64l takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a641 will use the first six.

a64l scans the character string from left to right, decoding each character asa 6
bit Radix 64 number.

164a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, /64a returns a pointer to a null string,

CAVEAT
The value returned by /64a is a pointer into a static buffer, the contents of
which are overwritten by each call.

ABORT(3C) ABORT(3C)

NAME
abort - generate a SIGABRT

SYNOPSIS
int abort ()

DESCRIPTION
The abort routine does the work of exit(2), but instead of just exiting, abort
causes SIGABRT to be sent to the calling process. If SIGABRT is neither caught
nor ignored, all stdio (3S) streams are flushed prior to the signal being sent, and
a core dump results.

The abort routine returns the value of the kill (2) system call.
SEE ALSO
sdb(1), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is writable,
a core dump is produced and the message ‘‘abort - core dumped’’ is written by
the shell,

ABS(3C) ABS(3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;
DESCRIPTION
The abs routine returns the absolute value of its integer operand.

SEE ALSO
floor(3M).

CAVEAT
In two’s-complement representation, the absolute value of the negative integer
with largest magnitude is undefined. Some implementations trap this error, but
others simply ignore it.

ASSERT(3X) ASSERT(3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed,
if expression is false (zero), assert prints

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert statement.

Compiling with the preprocessor option -DNDEBUG [see cpp (1)], or with the
preprocessor control statement #define NDEBUG ahead of the #include
<assert.h> statement, will stop assertions from being compiled into the
program.

SEE ALSO
cpp(1), abort(3C).

CAVEAT
Since assert is implemented as a macro, the expression may not contain any
string literals.

BESSEL(3M) BESSEL(3M)

NAME
bessel: jO, j1, jn, y0, y1, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO (x)
double x;

double j1 (x)
double x;

double jn (n, x)
int n;

double x;
double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;
DESCRIPTION
JO and jI return Bessel functions of x of the first kind of orders 0 and 1,
respectively. jn returns the Bessel function of x of the first kind of order n.

y0 and yI return Bessel functions of x of the second kind of orders 0 and 1,
respectively. yn returns the Bessel function of x of the second kind of order n.
The value of x must be positive.

SEE ALSO
matherr(3M).

DIAGNOSTICS
Non-positive arguments cause y0, yI and yn to return the value -HUGE and to
set errno to EDOM. In addition, a message indicating DOMAIN error is printed
on the standard error output.

Arguments too large in magnitude cause jO, j1, y0 and yI to return zero and to
set errno to ERANGE. In addition, a message indicating TLOSS error is printed
on the standard error output.

These error-handling procedures can be changed with the function
matherr 3M).

BSEARCH(3C) BSEARCH(3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>
char *bsearch ((char *) key, (char #*) base, nel, sizeof (*key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION
The bsearch routine is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where a datum can be
found. The table must be previously sorted in increasing order according to a
provided comparison function. key points to a datum instance to be sought in
the table. Base points to the element at the hase of the table. sel is ithe number
of elements in the table. compar is the name of the comparison function, which
is called with two arguments that point to the elements being compared. The
function must return an integer less than, equal to, or greater than zero as
accordingly the first argument is to be considered less than, equal to, or greater
than the second.

EXAMPLE

The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the
node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and
prints the string and its length, or prints an error message.

#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct node { /+ these are stored in the table */
char *string;
int length;

b
struct node table[TABSIZE]; /« tabie to be searched «/

BSEARCH(3C) BSEARCH(3C)

NOTES

struct node *node_ptr, node;
int node_compare(); /+ routine to compare 2 nodes */
char str_space[20]; /= space to read string into »/

node.string = str_space;
while (scanf("%s", node.string) != EOF) {
node_ptr = (struct node *)bsearch((char *)
(&node), (char *)table, TABSIZE,
sizeof (struct node), node_compare);
if (node_ptr 1= NULL) {
(void)printf("string = %20s,
length = %d\n", node_ptr->string,
node_ptr->length);
} else {
(void)printf("not found: %s\n",
node.string);

}

/+« This routine compares two nodes based on an
alphabetical ordering of the string field. »/
int
node_compare (node1, node2)
char *node1, *node2;
{
return (stremp(
{{struct node *)node1)->string,
{(struct node *)node2)->string));

The pointers to the key and the element at the base of the table should be of
type pointer-to-clement, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Although bsearch is declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

BSEARCH(3C) BSEARCH(3C)

SEE ALSO
hsearch(3C), Isearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS
ANULL pointer is returned if the key cannot be found in the table.

BSTRING(3) BSTRING(3)

NAME
beopy, bemp, bzero - bit and byte string operations
SYNOPSIS
int becopy(sre, dst, length)
char *src, *dst;
int length;
int bemp(bl, b2, length)
char *bl, *b2;
int length;
int bzero(b, length)
char *b;
int length;
DESCRIPTION
The functions bcopy, bcmp, and bzero operate on variable length strings of
bytes. They do not check for null bytes as the routines in string (3) do.

The bcopy routine copies length bytes from string src to the string dst.

The bemp routine compares byte string bl against byte string b2, returning zero
if they are identical, non-zero otherwise. Both strings are assumed to be length
bytes long.

bzero places length 0 bytes in the string b1.

WARNING
The bcopy routine take parameters backwards from strcpy .

BYTEORDER(3) (CTIX Internciworking) BYTEORDER(3)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#include <sys/types.h>
#include <sys/in.h>

netlong = htonl(hostlong);
unsigned long netlong, hostlong;

netshort = htons(hostshort);
ushort netshort, hostshort;

hostlong = ntohl(netlong);
unsigned long hostlong, netlong;

hostshort = ntohs(netshort);
ushort hostshort, netshort;

DESCRIPTION
These routines convert 16- and 32-bit quantitics between network byte order
and host byte order. These routines are defined as null macros in the include file
<sysfin.h> (that is, network byte order is native 680x0 order).

These routines are most often used in conjunction with Internet addresses and
ports as returned by gethostent (3) and getservent (3).

SEE ALSO
gethostbyname(3), getservent(3).
CTIX Network Programmer's Primer.

CLOCK(3C) CLOCK(3C)

NAME

clock - report CPU time used

SYNOPSIS

long clock ()

DESCRIPTION

The clock routine returns the amount of CPU time (in microseconds) used since
the first call to clock. The time reporied is the sum of the user and system times
of the calling process and its terminated child processes for which it has
executed wait (2), pclose (3S), or system(3S).

The resolution of the clock is 1/HZ seconds on CTIX processors (HZ is defined
in <sys/param.h>).

SEE ALSO

BUGS

times(2), wait(2), popen(3S}, system(3S).

The value returned by clock is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this, the
value returned wraps around after accumulating only 2147 seconds of CPU time
(about 36 minutes). The value then accumulates to -2148 and finally wrap
around again to 0.

CONYVY(3C) CONY (3C)

NAME
conv: toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include <ctype.h>

int toupper (c)
int ¢;
int tolower (c)
int c;
int _toupper (c)
int c;
int _tolower (c)
int ¢;
int toascii (¢)
int c;

DESCRIPTION
The toupper and tolower routines have as domain the range of getc(3S): the
integers from -1 through 255. If the argument of roupper represents a
lowercase letter, the result is the corresponding uppercase letter. If the
argument of tolower represents an uppercase letter, the result is the
corresponding lower-case letter. All other arguments in the domain are
returned unchanged.

The macros _toupper and _tolower , accomplish the same thing as toupper and
tolower but have restricted domains and are faster. _foupper requires a
lowercase letter as its argument; its result is the corresponding uppercase letter.
The macro _tolower requires an uppercase letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause
undefined results.

The toascii routine yields its argument with all bits turned off that are not part
of a standard ASCI character; it is intended for compatibility with other
systems.

SEE ALSO
ctype(3C), getc(3S).

CRYPT(3C) CRYPT(3C)

NAME
crypt, setkey, encrypt - generate hashing encryption

SYNOPSIS
char *crypt (key, salt)
char +key, *salt;

void setkey (key)
char *key;

void encrypt (block, ignored)
char *block;
int ignored;

DESCRIPTION
The crypt routine performs password encryption. It is based on a one-way
hashing encryption algorithm with variations intended (among other things) to
frustrate use of hardware implementations of a key search.

The key argument is a user’s typed password. The salt argument is a two-
character string chosen from the set [a-zA-Z0-9./]; this string is used to perturb
the hashing algorithm in one of 4,096 different ways, after which the password
is used as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual
hashing algorithm. The argument of setkey is a character array of length 64
containing only the characters with numerical value 0 and 1. If this string is
divided into groups of 8, the low-order bit in each group is ignored; this gives a
56-bit key which is set into the machine. This is the key that will be used with
the hashing algorithm to encrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 containing
only the characters with numerical value 0 and 1. The argument array is
modified in place to a similar array representing the bits of the argument after
having been subjected to the hashing algorithm using the key set by setkey.
Ignored is unused by encrypt but it must be present.

SEE ALSO
login(1), passwd(1), getpass(3C), passwd(4).
CAVEAT
The return value points to static data that are overwritten by each call.

WARNING
The standard CTIX distribution is the international version, which does not

support encryption.

CRYPT(3X) CRYPT(3X)

NAME
crypt - password and file encryption functions

SYNOPSIS
cc [flag ...] file ... -lcrypt

char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, flag)
char *block;

int flag;

char *des_crypt (key, salt)
char skey, *salt;

void des_setkey (key)
char *key;

void des_encrypt (block, flag)
char *block;
int flag;

int run_setkey (p, key)
int p[2];
char *key;

int run_crypt (offset, buffer, count, p)
long offset;

char *buffer;

unsigned int count;

int p[2];

int crypt_close(p)
int p{2];

DESCRIPTION
The des_crypt routine performs password encryption. It is based on a one-way
hashing encryption algorithm with variations intended (among other things) to
frustrate use of hardware implementations of a key search.

The key argument is a user’s typed password. The salt argument is a two-
character string chosen from the set [a-zA-Z0-9./]; this string is used to perturb
the hashing algorithm in one of 4096 different ways, after which the password

CRYPT(3X) CRYPT(3X)

is used as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password. The first two characters are the salt itself.

The des_setkey and des_encrypt entries provide (rather primitive) access to the
actual hashing algorithm. The argument of des_setkey is a character array of
length 64 containing only the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is ignored; this
gives a 56-bit key which is sct into the machinc. This is the key that is used
with the hashing algorithm to encrypt the string block with the function
des_encrypt.

The argument to the des encrypt entry is a character array of length 64
containing only the characters with numerical value 0 and 1. The argument
array is modified in place to a similar array representing the bits of the
argument after having been subjected to the hashing algorithm using the key set
by des_setkey. If flag is zero, the argument is encrypted; if non-zero, it is
decrypted.

Note that decryption is not provided in the international version of crypt(3X). If
decryption is attempted with the international version of des_encrypt, an error
message is printed.

The crypt, setkey, and encrypt routines are front-end routines that invoke
des_crypt, des_setkey, and des_encrypt respectively.

The routines run_setkey and run_crypt are designed for use by applications that
need cryptographic capabilities [such as ed(1) and vi(1)] that must be
compatible with the crypt(1) user-level utility. run_setkey establishes a two-
way pipe connection with crypt(1), using key as the password argument. The
run_crypt routine takes a block of characters and transforms the cleartext or
ciphertext into their ciphertext or cleartext using crypt(1). The offset argument
is the relative byte position from the beginning of the file that the block of text
provided in block is coming from; count is the number of characters in block,
and connection is an array containing indices to a table of input and output file
streams. When encryption is finished, crypt_close is used to terminate the
connection with crypi(1).

The run_setkey routine returns -1 if a connection with crypt(1) cannot be
established; this occurs on intemnational versions of CTIX where crypr(1) is not
available. If a null key is passed to run_setkey, O is returned; otherwise, 1 is
returned. The run_crypt routine returns -1 if it cannot write output or read input
from the pipe attached to crypt; otherwise, it returns 0.

SEE ALSO
crypt(1), login(1), passwd(1), getpass(3C), passwd(4).

CRYPT(3X) CRYPT(3X)

DIAGNOSTICS
In the international version of crypt(3X), a flag argument of 1 to des_encrypt is
not accepted, and an error message is printed.

CAVEAT
The return value in crypt points to static data that are overwritten by each call.

WARNING
The standard CTIX distribution is the international version, which does not
support encryption.

CTERMID(3S) CTERMID(3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <stdio.h>
char *ctermid (s)
char #s;
DESCRIPTION
The ctermid routine generates the path name of the controlling terminal for the
current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the contents
of which are overwritten at the next call to ctermid, and the address of which is
returned. Otherwise, s is assumed to point to a character array of at least
L_ctermid elements; the path name is placed in this array and the value of s is
returned. The constant L_ctermid is defined in the <stdio.h> header file.

SEE ALSO
ttyname(3C).

NOTES
The difference between ctermid and ttyname (3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal associated
with that file descriptor, while ctermid returns a string (/dev/tty) that refers to
the terminal if used as a file name. Thus, tfyname is useful only if the process
already has at least one file open to a terminal.

CTIME(3C) CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, cftime, ascftime, tzset - convert date and
time to string
SYNOPSIS
#include <sys/types.h>
#include <time.h>

char *ctime (clock)
time_t *clock;

struct tm *localtime (clock)
time_t *clock;

struct tm *gmtime (clock)
time_t *clock;

char *asctime (tm)
struct tm *tm;

int cftime(buf, fmt, clock)
char *buf, *fmt;

time_t *clock;

int ascftime (buf, fmt, tm)
char *buf, *fmt;

struct tm *tm;

extern long timezone, altzone;
extern int daylight;

extern char *tzname|[2];

void tzset ()

DESCRIPTION
The ctime , localtime , and gmtime routines accept arguments of type time_t
(declared in <sys/types.h>), pointed to by clock, representing the time in
seconds since 00:00:00 GMT, January 1, 1970. ctime returns a pointer to a 26-
character string in the following form. All the fields have constant width.

Fri Sep 13 00:00:00 1986\n\0

The localtime and gmtime routines return pointers to tm structures, described
below. localtime corrects for the main time zone and possible alternate
(Daylight Savings) time zone; gmtime converts directly to Greenwich Mean
Time (GMT), which is the time the UNIX system uses.

CTIME(3C) CTIME(3C)

The asctime routine converts a tm structure to a 26-character string, as shown
in the above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are in the
<time.h> header file. The structure declaration follows:

struct tm{

int tm_sec; /+ seconds after the minute — [0, 59] »/
int tm_min; /+ minutes after the hour — [0, 59] »/
int tm_hour; I+ hour since midnight — [0, 23] */

int tm_mday; /+ day of the month — [1, 31] »/

int tm_mon; /= months since January — [0, 11] +/

int tm_year; /+ years since 1900 »/

Int tm_wday; /+ days since Sunday — [0, 6] */

int tm_yday; I/« days since January 1 — [0, 365] +/
int tm_isdst; /= flag for daylight savings time »/

k
If the alternate time zone is in effect, tm_isdst is non-zero.

The cftime and ascftime routines provide the capabilities of ctime and asctime,
respectively, as well as additional ones. The cftime routine takes an integer of
type time_t pointed to by clock and converts it to a character string; ascftime
takes a pointer to a tm structure and converts it to a character string. In both
functions, the characters are placed into the array pointed to by buf (plus a
terminating \0) and the value returned is the number of such characters (not
counting the terminating \0). The fmt argument controls the format of the
resulting string; it is a character string that consists of field descriptors and text
characters, reminiscent of printf(3S). Each field descriptor consists of a %
character followed by another character which specifies the replacement for the
field descriptor. All other characters are copied from fimt into the result. The
following field descriptors are supported:

% % same as %

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%d day of month (01 - 31)

%D date as %m/%d/%y

%e day of month (1-31; single digits are preceded by a blank)
%h abbreviated month name

%H hour (00 - 23)

CTIME(3C) CTIME(3C)

%1 hour (00 -12)

%} day number of year (001 - 366)

%m month number (01 - 12)

%M minute (00 - 59)

%n same as\n

%p ante meridian or post meridian

%r time as %1:%M:%S %p

%R time as %H:%M

%S seconds (00 - 59)

%t insert a tab

%T time as %H:%M:%S

%U week number of year (01 - 52), Sunday is the first day of week
%W weekday number (Sunday =0)

%W week number of year (01 - 52), Monday is the first day of weck
%X Local specific date format

%X Locat specific time format

%y year within century (00 - 99)

%Y year as ccyy (for example, 1986)

%Z time zone name

The difference between % U and %W lies in which day is counted as the first
of the week. Week number 01 is the first week with four or more January days
init.

The example below shows what the values in the tm structure would look like
for Thursday, August 28, 1986 at 12:44:36 in New Jersey.

ascftime (buf, "%A %h %d %]J", tm)

This example would result in the buffer containing Thursday Aug 28 240.

If fmt is (char #)0, the value of the environment variable CFTIME is used. If
CFTIME is undefined or empty, a default format is used. The default format
string is taken from the file that contains the date and time strings associated
with the then current language [see below for details on changing the current
language and cftime(4) for a description of the structure of these files].

The user can request that the output of ¢ftime and ascftime be in a specific
language by setting the environment variable LANGUAGE to the desired
language. If LANGUAGE is empty, unset or set to an unsupported language, the
last language requested will be used (the default is the usa_english strings).

The external long variable timezone contains the difference, in seconds,
between GMT and the main time zone; the external long variable alrzone
contains the difference, in seconds, between GMT and the alternate time zone;

-3-

CTIME(3C) CTIME(3C)

both timezone and altzone default to 0 (GMT). The external variable daylight is
non-zero if an alternate time zone exists. The time zone names are contained in
the external variable tzname, which by default is set as follows:

char «tznamef2] = { "gMr”, * " };

The functions know about the peculiarities of this conversion for various time
periods for the U.S.A (specifically, the years 1974, 1975, and 1987). The
functions will handle the new daylight savings time starting with the first
Sunday in April, 1987.

The zset routine uses the contents of the environment variable TZ to override
the value of the different external variables. The syntax of TZ can be described
as follows:

TZ — z0ne
| zone signed_time
[zone signed_time zone
| zone signed_time zone dst
zone — letter letter letter
signed_time — sign time
/ time
time — hour
| hour : minute
[hour : minute :
dst — signed_time
| signed_time ; dst_date ,
| ; dst_date , dst_date
dst_date — julian

/ julian | time
letter - al/A/b/B]..]z]Z
hour - 00/01/..]/23
minute - 00/01/../59
second - 00/01].../59
Jjulian - 001/002/ ../ 366
sign - -/ +

tzset scans the contents of the environment variable and assigns the different
fields to the respective variable. For example, the setting for New Jersey in
1986 could be either of the following:

"EST5SEDT4;117/2:00:00,299/2:00:00".
HBESTSEDT

CTIME(3C) CTIME(3C)

FILES

A southern hemisphere setting such as the Cook Islands could be the following:
"KDT9:30KST10:00;64/5:00,303/20:00"

When the longer format is used, the variable must be surrounded by double
quotes as shown. For more details, see timezone(4) and environ(5). In the
longer version of the New Jersey example of TZ, tznamel[0] is EST, timezone
will be set to 5¢60*60, tznamelll is EDT, altzone will be set 1o 4*60%60, the
starting date of the alternate time zone is the 117th day at 2 AM, the ending
date of the alternate time zone is the 299th day at 2 AM, and daylight will be
set to non-zero. Starting and ending times are relative to the alternate time
zone. If the alternate time zone start and end dates and the time are not
provided, the days for the United States that year will be used and the time will
be 2 AM. If the start and end dates are provided but the time is not provided,
the time will be midnight. The effects of tzset are thus to change the values of
the external variables timezone, altzone , daylight and tzname. tzset is called by
localtime and can also be called explicitly by the user.

flib/cftime - directory that contains the language specific printable files

SEE ALSO

time(2), getenv(3C), printf(3S), putenv(3C), cftime(4), timezone(4), environ(5).

CAVEAT

The return values for ctime, localtime and gmtime point to static data whose
content is overwritten by each call.

Setting the time during the interval of change from timezone to altzone or vice
versa can produce unpredictable results.

The system administrator must change the Julian start and end days annually if
the full form of the TZ variable is specified.

CTYPE(3C) CTYPE(3C)

NAME
isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct,
isprint, isgraph, isascii, tolower, toupper, toascci, _tolower, _toupper,
setchrclass - character handling

SYNOPSIS
#include <ctype.h>
int isdigit (c);
int c;

tolower(c)
int c;

int setchrclass (chrclass)
char *chrclass;

DESCRIPTION
The character classification macros listed below return nonzero for true, zero
for false. isascii is defined on all integer values; the rest are defined on valid
members of the character set and on the single value EOF [see stdio(3S)]
(guaranteed not to be a character set member).

isdigit Tests for the digits 0 through 9.

isxdigit Tests for any character for which isdigit is true or for the letters a
through f or A through F.

islower Tests for any lowercase letier as defined by the character set.

isupper Tests for any uppercase letter as defined by the character set.

isalpha Tests for any character for which islower or isupper is true and
possibly any others as defined by the character set.

isalnum Tests for any character for which isalpha or isdigit is true.

isspace Tests for a space, horizontal-tab, carriage return, newline,
vertical-tab, or form-feed.

iscntrl Tests for “‘control characters’” as defined by the character set.

ispunct Tests for any character other than the ones for which isalnum,

iscntrl, or isspace is true or space.

CTYPE(3C) CTYPE(3C)

FILES

isprint Tests for a space or any character for which isalnum or ispunct is
true or other ‘‘printing character’’ as defined by the character
set.

isgraph Tests for any character for which isprint is true, except for space.

isascii Tests for an ASCHI character (a non-negative number less than
0200.)

The conversion functions and macros translate a character from lowercase
(uppercase) to uppercase (lowercase).

tolower If the character is one for which isupper is true and there a
corresponding lowercase character, folower returns the
corresponding lowercase character. Otherwise, the character is
returned unchanged.

toupper If the character is one for which islower is true and there is a
corresponding uppercase character, foupper returns the
corresponding uppercase character. Otherwise, the character is

returned unchanged.
toascii Turns off the bits that are not part of the ASCII character set.
_tolower Returns the lowercase representation of a character for which

isupper is true; otherwise, undefined.

_toupper Returns the uppercase representation of a character for which
islower is true; otherwise, undefined.

The conversion macros have the same functionality of the functions on valid
input, but the macros are faster because they do not do range checking.

All the character classification macros and the conversion functions and macros
do a table lookup.

The setchrclass routine itializes the table used by these functions and macros to
a specific character classification set. It uses the value of its argument or the
value of the environment variable CHRCLASS as the name of the datafile
containing the information for the desired character set. These datafiles are
searched for in the special directory /lib/chrclass.

If chrclass is (char #)0, the value of the environment variable CHRCLASS is
used. If CHRCLASS is not set or is undefined, the table retains its current value,
which at initialization time is ascii.

Alib/chrclass - directory containing the datafiles for setchrclass

CTYPE(3C) CTYPE(3C)

SEE ALSO
ascii(5), chrtbl(1), environ(5), stdio(3S).

DIAGNOSTICS
If the argument to any of the character handling macros is not in the domain of
the function, the result is undefined.

If setchrclass does not successfully fill the table, the table will not change
(initiaily “‘ascii’”) and -1 is returned. If everything works, setchrclass returns 0.

CURSES (3X) CURSES (3X)

NAME
curses - terminal screen handling and optimization package

OVERVIEW
The curses manual page is organized as follows:

SYNOPSIS:

»
@)
o)
=3
<3
=5
E
=3
>
=3
3
&
B
S

. Summary of parameters used by curses routines

. Alphabetical list of curses routines, showing parameters
DESCRIPTION:
An overview of how curses routines should be used
ROUTINES {descripiions of each curses routine are grouped under the
appropriate topics):

. Overall Screen Manipulation

J Window and Pad Manipulation

. Output

. Input

. Output Options Setting

. Input Options Setting

. Environment Queries

. Color Manipulation

. Soft Labels

. Low-level Curses Access

. Terminfo-Level Manipulations
. Termcap Emulation
. Miscellaneous
. Use of curscr
ATTRIBUTES
FUNCTION-KEYS
LINE GRAPHICS

CURSES(3X) CURSES(3X)

SYNOPSIS
cc[flag ...] file ... -lcurses [library ...]
#include <curses.h> (automatically includes <stdio.h>, <termio.h>,

and <unctrlh>).

The parameters in the following list are not global variables, but rather this
is a summary of the parameters used by the curses library routines. All
routines return the int values ERR or OK unless otherwise noted. Routines
that return pointers always return NULL on error. (ERR, OK, and NULL are
all defined in <curses.h>.) Routines that return integers are not listed in the
parameter list below.

bool bf

char *#*area,*boolnames|], *boolcodes[], *boolfnames|], *bp
char *cap, *capname, codename[2], erasechar, *filename, *fmt
char *keyname, killchar, *label, *longname

char *name, *numnames[], *numcodes[], *numfnames]

char *slk_label, *str, *strnames|[], *strcodes[], *strfnames|]
char *term, *tgetstr, *tigetstr, *tgoto, *tparm, *type

chtype attrs, ch, horch, vertch
FILE #*infd, *outfd

int begin_x, begin_y, begline, bot, c, col, count

int dmaxcol, dmaxrow, dmincol, dminrow, *erret, fildes
int [*init()], labfmt, labnum, line

int ms, ncols, new, newcol, newrow, nlines, numlines
int oldcol, oldrow, overlay

int p1, p2, p9, pmincol, pminrow, [*putc()], row

int smaxcol, smaxrow, smincol, sminrow, start

int tenths, top, visibility, x, y

short pair, f, b, color, 1, g, b

SCREEN *new, *newterm, *set_term

TERMINAL =*cur_term, *nterm, *oterm

va_list varglist

WINDOW =*curscr, *dstwin, *initscr, *newpad, *newwin, *orig
WINDOW #pad, *srcwin, *stdscr, *subpad, *subwin, *win

addch(ch)
addstr(str)

CURSES (3X) CURSES(3X)

attroff(attrs)

attron(attrs)

attrset(attrs)

baudrate()

beep()

box(win, vertch, horch)

cbreak()

clear()

clearok(win, bf)

cirtobot()

clrtoeol()

copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol, dmaxrow,
dmaxcol, overlay)

curs_set{visibility)

def_prog_mode()

def_shell_mode()

del_curterm(otcrm)

delay_output(ms)

delch()

deleteln()

delwin(win)

doupdate()

draino(ms)

echo()

echochar(ch)

endwin()

erase()

erasechar()

filter()

flash()

flushinp()

garbagedlines(win, begline, numlines)

getbegyx(win, y, x)

getch()

getmaxyx(win, y, x)

getstr(str)

getsyx(y, x)

getyx(win, y, x)

halfdelay(tenths)

has_colors()

has_ic()

CURSES (3X) CURSES (3X)

has_il()

idlok(win, bf)

inch()

init_color(color, r, g, b)
init_pair(pair, f, b)

initscr()

insch{(ch)

insertin()

intrflush(win, bf)

isendwin()

keyname(c)

keypad(win, bf)

killchar()

leaveek(win, bf)

longname()

meta(win, bf)

move(y, x)

mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow, newcol)
mvdelch(y, x)

mvgetch(y, x)

mvgetstr(y, x, str)

mvinch(y, x)

mvinsch(y, x, ch)
mvprintw(y, x, fmt [, arg...])
mvscanw(y, x, fmt [, arg...])
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, Xx, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, X, str)
mvwin(win, y, x)
mvwinch(win, y, x)
mvwinsch(win, y, x, ch)
mvwprintw(win, y, x, fmt [, arg...})
mvwscanw(win, vy, x, fmt [, arg...])
napms(ms)

newpad(nlines, ncols)
newterm(type, outfd, infd)
newwin(nlines, ncols, begin_y, begin_x)

-4-

CURSES(3X) CURSES(3X)

nl()

nocbreak()

nodelay(win, bf)

noecho()

nonl()

noraw()

notimesut(win, bf)

overlay(srcwin, dstwin)

overwrite(srcwin, dstwin)

pair_content(pair, &f, &b)

pechochar(pad, ch)

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)

printw{fmt {, arg...])
putp(str)

raw()

refresh()

reset_prog_mode()
reset_shell_mode()
resetty()
restartterm(term, fildes, errret)
ripoffline(line, init)
savetty()

scanw(fmt [, arg...])
scr_dump(filename)
scr_init(filename)
scr_restore(filename)
scroll(win)
scrollok(win, bf)
set_curterm(nterm)
set_term(new)
setscrreg(top, bot)
setsyx(y, x)
setupterm(term, fildes, errret)
set_attron(attrs)
set_attrset(attrs)
set_attroff(attrs)
slk_clear()
slk_init(fmt)
slk_label(labnum)
slk_noutrefresh()

CURSES(3X) CURSES (3X)

slk_refresh()
slk_restore()
slk_set(labnum, label, fmt)
slk_touch()

standend()

standout()

start_color()

subpad(orig, nlines, ncols, begin_y, begin_x)
subwin(orig, nlines, ncols, begin_y, begin_x)
tgetent(bp, name)
tgetflag(codename)
tgetnum(codename)
tgetstr(codename, area)
tgoto(cap, col, row)
tigetflag(capname)
tigetnum(capname)
tigetstr(capname)
touchline(win, start, count)
touchwin(win)

tparm(str, pl, p2, ..., p9)
tputs(str, count, puic)
typeahead(fildes)

unctrl(c)

ungetch(c)

vidattr(attrs)

vidputs(attrs, putc)
vwprintw(win, fmt, varglist)
vwscanw(win, fmt, varglist)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win)
wdeleteln(win)
wechochar(win, ch)
werase(win)

wgetch(win)

CURSES (3X) CURSES (3X)

wgetstr(win, str)
winch(win)

winsch(win, ch)
winsertln(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win, fmt [, arg...])
wrefresh(win)
wscanw(win, fmt [, arg...])
wsetscrreg(win, top, bot)
wstandend(win)
wstandout(win)

DESCRIPTION

The curses toutines give the user a terminal-independent method of updating
screens with reasonable optimization,

In order to initialize the routines, # include <curses.h> must be included at the
beginning of files that use any curses routines. In addition, the routine initscr()
or newterm{) must be called before any of the other routines that deal with
windows and screens are used. (Three exceptions are noted where they apply.)
The routine endwin() must be called before exiting. To get character-at-a-time
input without echoing, (most interactive, screen oriented programs want this)
after calling initscr() you should call ““cbreak(); noecho();’ Most programs
would additionally call ‘‘nonl(); intrflush (stdscr, FALSE); keypad(stdscr,
TRUE);’.

Before a curses program is run, a terminal’s tab stops should be set and its
initialization strings, if defined, must be output. This can be done by executing
the tput init command after the shell environment variable TERM has been
exported. For further details, see profile(4), tput(1), and the ‘“*Tabs and
Initialization’’ subsection of terminfo(4).

The curses library contains routines that manipulate data structures called
windows that can be thought of as two-dimensional arrays of characters
representing all or part of a terminal screen. A default window called stdscr is
supplied, which is the size of the terminal screen. Others can be created with
newwin(). Windows are referred to by variables declared as WINDOW #; the
type WINDOW is defined in <curses.h> to be a structure. These data structures
are manipulated with routines described below, among which the most basic are
move() and addch(). (More general versions of these routines are included
with names beginning with w, allowing you to specify a window. The routines
not beginning with w usually affect stdscr.) Then refresh() is called, telling
the routines to make the user’s terminal screen look like stdscr. The characters

-7-

CURSES(3X) CURSES (3X)

in a window are actually of type chtype, so that other information about the
character can also be stored with each character.

Special windows called pads can also be manipulated. These are windows
which are not constrained to the size of the screen and whose contents need not
be displayed completely. See the description of newpad() under ‘‘Window
and Pad Manipulation’’ for more information.

In addition to drawing characters on the screen, video attributes can be included
which cause the characters to show up in modes such as underlined or in reverse
video on terminals that support such display enhancements. Line drawing
characters can be specified to be output. On input, curses is also able to
translate arrow and function keys that transmit escape sequences into single
values. The video attributes, line drawing characters, and input values use
names, defined in <curses.h>, such as A REVERSE, ACS _HLINE, and
KEY_LEFT.

Routines that manipulate color on color alphanumeric terminals are new in this

release of curses. To use these routines, start_color() must be called, usually

right after initscr(). Colors are always used in pairs (referred to as color-pairs).

A color-pair consists of a foreground color (for characters) and a background

color (for the field the characters are displayed on). A programmer initializes a

color-pair with the routine imit pair(). After it has been initialized, (ﬁ
COLOR_PAIR(n), a macro defined in <curses.h>, can be used in the same ways N
other video attributes can be used. If a terminal is capable of redefining colors,

the programmer can use the routine init_color() to change the definition of a

color. The routines has_color() and can_change_color() return TRUE or

FALSE, depending on whether the terminal has color capabilities and whether

the user can change the colors. The routine color_content() allows a user to

identify the amounts of red, green, and blue components in an initialized color.

The routine pair_content() allows a user to find out how a given color-pair is

currently defined.

curses also defines the WINDOW # variable, curscr, which is used only for
certain low-level operations like clearing and redrawing a garbaged screen.
curscr can be used in only a few routines. If the window argument to
clearok() is curscr, the next call to wrefresh() with any window causes the
screen to be cleared and repainted from scratch. If the window argument to
wrefresh() is curscr, the screen is immediately cleared and repainted from
scratch. This is how most programs would implement a ‘‘repaint-screen’’
function. More information on using curscr is provided where its use is
appropriate.

CURSES (3X) CURSES (3X)

The environment variables LINES and COLUMNS can be set to override
terminfo’s idea of how large a screen is. These can be used in an AT&T
Teletype 5620 layer, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using curses
checks for a local terminal definition before checking in the standard place. For
example, if the environment variable TERM is set to actd, then the compiled
terminal definition is found in /usr/iibiterminfo/alact4. (The a is copied from
the first letter of act4 1o avoid creation of huge directories.) However, if
TERMINFO is set to SHOME/myterms, curses first checks
$HOME/myterms/a/act4, and, if that fails, then checks /usr/lib/terminfol/alact4.
This is useful for developing experimental definitions or when write permission
on /usr/lib/terminfo is not available.

The integer variables LINES and COLS are defined in <curses.h>, and is filled
in by initscr() with the size of the screen. (For more information, see the
subsection **Terminfo-Level Manipulations.””) The integer variables COLORS
and COLOR_PAIRS are also defined in <curses.h> and contain, respectively,
the maximum number of colors and color-pairs the terminal can support. They
are initialized by start_color(). The constants TRUE and FALSE have the
values 1 and 0, respectively. The constants ERR and OK are returned by
routines to indicate whether the routine successfully completed. These
constants are also defined in <curses.h>.

ROUTINES
Many of the following routines have two or more versions. The routines
prefixed with w require a window argument. The routines prefixed with p
require a pad argument. Those without a prefix generally use stdscr.

The routines prefixed with mv require y and x coordinates to move to before
performing the appropriate action. The mv() routines imply a call to move()
before the call to the other routine. The window argument is always specified
before the coordinates. y always refers to the row (of the window), and x
always refers to the column. The upper-left comer is always (0,0), not (1,1).
The routines prefixed with mvw take both a window argument and y and x
coordinates.

In each case, win is the window affected and pad is the pad affected. (win and
pad are always of type WINDOW #.) Option-setting routines require a boolean
flag bf with the value TRUE or FALSE. (bf is always of type bool.) The types
WINDOW, bool, and chtype are defined in <curses.h>. See the SYNOPSIS for
a summary of what types all variables are.

All routines return either the integer ERR or the integer OK, unless otherwise
noted. Routines that return pointers always return NULL on error.

-9.

CURSES (3X) CURSES(3X)

Sometimes the description of a routine refers to a second routine. If the routine
referred to is prefixed with a w, then you should assume that other versions of
the second routine behave similarly. For example, the description of initscr()
refers to wrefresh(). This implies that the same result occurs if refresh() is
called.

Overall Screen Manipulation
WINDOW =*initscr()

The first routine called should almost always be initscr(). [The
exceptions are slk_init(), filter(), and ripoffline().] This determines
the terminal type and initializes all curses data structures. initser() also
arranges that the first call to wrefresh() clears the screen. If errors
occur, initscr() writes an appropriate error message to standard error
and exit; otherwise, a pointer to stdscr is returned. If the program wants
an indication of error conditions, newterm() shouid be used instead of
initscr(). initscr() should only be called once per application.

endwin()
A program should always call endwin() before exiting or escaping from
curses mode temporarily, to do a shell escape or system(3S) call, for
example. This routine restores #y(7) modes, moves the cursor to the
lower-left corner of the screen, and resets the terminal into the proper
non-visual mode. To resume after a temporary escape, call wrefresh()
or doupdate().

isendwin()
This routine returns TRUE if endwin() has been called without any
subsequent calls to wrefresh().

SCREEN #*newterm(type, outfd, infd)

A program that outputs to more than onec terminal must use newterm()
for each terminal instead of imitscr(). A program that wants an
indication of error conditions, so that it can continue to run in a line-
oriented mode if the terminal cannot support a screen-oriented program,
must also use this routine. newterm() should be called once for each
terminal. It returns a variable of type SCREEN# that should be saved as
a reference to that terminal. The arguments are the type of the terminal
to be used in place of the environment variable TERM; ouffd, a
stdio (3S) file pointer for output to the terminal; and infd, another file
pointer for input from the terminal. When it is done running, the
program must also call endwin() for each terminal being used. If
newterm() is called more than once for the same terminal, the first
terminal referred to must be the last one for which endwin() is called.

-10-

CURSES(3X) CURSES(3X)

SCREEN #set_term(new)
This routine is used to switch between different terminals. The screen
reference new becomes the new current terminal. A pointer to the
screen of the previous terminal is returned by the routine. This is the
only routine which manipulates SCREEN pointers; all other routines
affect only the current terminal.
Window and Pad Manipuiation
refresh()
wrefresh (win)
These routines [or prefresh(), pnoutrefresh(), wnoutrefresh(), or
doupdate()] must be called to write output to the terminal, as most
other routines merely manipulate data structures. wrefresh() copies
the named window to the physical terminal screen, taking into account
what is already there in order to minimize the amount of information
that’s sent to the terminal (called optimization). refresh{) does the
same thing, except it uses stdscr as a default window. Unless
leaveok() has been enabled, the physical cursor of the terminal is left
at the location of the window’s cursor. The number of characters
output to the terminal is returned.

Note that refresh() is a macro.

wnoutrefresh(win)

doupdate()
These two routines allow multiple updates to the physical terminal
screen with more efficiency than wrefresh() alone. How this is
accomplished is described in the next paragraph.

curses keeps two data structures representing the terminal screen: a
Physical terminal screen, describing what is actually on the screen, and
a virtual terminal screen, describing what the programmer wants to
have on the screen. wrefresh() works by first calling
wnoutrefresh(), which copys the named window to the virtual screen,
and then by calling doupdate(), which compares the virtnal screen to
the physical screen and does the actual update. If the programmer
wishes to output several windows at once, a series of calls to
wrefresh() results in alternating calls to wnoutrefresh() and
doupdate(), causing several bursts of output to the screen. By first
calling wnoutrefresh() for each window, it is then possible to call
doupdate() once, resulting in only one burst of output, with probably
fewer total characters transmitted and certainly less processor time
used.

-11-

CURSES(3X) CURSES (3X)

WINDOW *newwin(nlines, ncols, begin_y, begin_x)
This routine creates and returns a pointer to a new window with the
given number of lines (or rows), nlines, and columns, ncols. The
upper-left corner of the window is at line begin_y, column begin_x. If
either nlines or ncols is 0, they are set to the value of lines-begin_y and
cols-begin x. A new full-screen window is created by calling

mvwin(win, y, X)
This routine noves the window to position the upper-left corner at (y,
x). If the move would cause any portion of the window to be off the
screen, it is an error and the window is not moved.

WINDOW *subwin(orig, nlines, ncols, begin_y, begin_x)

This routine creates and returns a pointer t0 a new window with the
given number of lines (or rows), nlines, and columns, ncols. The
window is at position (begin_y, begin_x) on the screen. (This position
is relative to the screen and not to the window orig.) The window is
made in the middle of the window orig, so that changes made to one
window affect the character image of both windows. When changing
the image of a subwindow, it is necessary to call touchwin() or
touchline() on orig before calling wrefresh() on orig.

delwin(win)
This routine deletes the named window, freeing up all memory
associated with it. If you try to delete a main window before all of its
subwindows are deleted, ERR is returned.

WINDOW *newpad(nlines, ncols)

This routine creates and returns a pointer to a new pad data structure
with the given number of lines (or rows), nlines, and columns, ncols.
A pad is a window that is not restricted by the screen size and is not
necessarily associated with a particular part of the screen. Pads can be
used when a large window is needed, and only a part of the window is
on the screen at one time. Automatic refreshes of pads (for example,
from scrolling or echoing of input) do not occur. It is not legal to call
wrefresh() with a pad as an argument; the routines prefresh() or
pnoutrefresh() should be called instead. Note that these routines
require additional parameters to specify the part of the pad to be
displayed and the location on the screen to be used for display.

-12 -

CURSES (3X) CURSES(3X)

WINDOW #subpad(orig, nlines, ncols, begin_y, begin_x)
This routine creates and returns a pointer to a subwindow within a pad
with the given number of lines (or rows), nlines, and columns, ncols.
Unlike subwin(), which uses screen coordinates, the window is at
position (begin_y, begin _x) on the pad. The window is made in the
middle of the window orig, so that changes made to one window affect
the character image of both windows. When changing the image of a
subwindow, it is necessary to call touchwin() or touchline() on orig
before calling prefresh() on orig.

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
These routines are analogous to wrefresh() and wnoutrefresh()
except that pads, instead of windows, are involved. The additional
parameters are needed to indicate what part of the pad and screen are
involved. pminrow and pmincol specify the upper-left comer, in the
pad, of the rectangle to be displayed. sminrow, smincol, smaxrow, and
smaxcol specify the edges, on the screen, of the rectangle to be
displayed in. The lower-right corner in the pad of the rectangle to be
displayed is calculated from the screen coordinates, since the
rectangles must be the same size. Both rectangles must be entirely
contained within their respective structures. Negative values of
pminrow , pmincol, sminrow, or smincol are treated as if they were
Zero.

Qutput

These routines are used to manipulate text in windows.

addch(ch)

waddch(win, ch)

mvaddch(y, x, ch)

mvwaddch(win, y, x, ch)
The character ch is put into the window at the current cursor position
of the window and the position of the window cursor is advanced. Its
function is similar to that of putchar [see putc(3S)). At the right
margin, an automatic newline is performed. At the bottom of the
scrolling region, if scrollok() is enabled, the scrolling region is
scrolled up one line.

-13-

CURSES(3X)

CURSES(3X)

If ch is a tab, newline, or backspace, the cursor is moved appropriately
within the window. A newline also does a wclrtoeol() before moving.
Tabs are considered to be at every eighth column. If ch is another
control character, it is drawn in the Control X notation. [Calling
winch() on a position in the window containing a control character
does not return the control character, but instead returns one character
of the representation of the control character.] Video attributes can be
combined with a character by ORing them into the parameter. This
results in these attributes also being set. [The intent here is that text,
including attributes, can be copied from one place to another using
winch() and waddch().] See wstandout(), below.

Note that ch is actually of type chtype, not a character.
Note that addch(), mvaddch(), and mvwaddch(), are macros.

echochar(ch)
wechochar(win, ch)
pechochar(pad, ch)

These routines are functionally equivalent to a call to addch(ch)
followed by a call to refresh(), a call to waddch(win, ch) followed by
a call to wrefresh(win), or a call to waddch(pad, ch) followed by a
call to prefresh(pad). The knowledge that only a single character is
being output is taken into consideration and, for non-control
characters, a considerable performance gain can be seen by using these
routines instead of their equivalents. In the case of pechochar(), the
last location of the pad on the screen is reused for the arguments to
prefresh().

Note that ch is actually of type chtype, not a character.

Note that echochar() is a macro.

addstr(str)

waddstr(win, str)
mvwaddstr(win, y, X, str)
mvaddstr(y, X, str)

These routines write all the characters of the null-terminated character
string str on the given window. This is equivalent to calling waddch()
once for each character in the string.

Note that addstr(), mvaddstr(), and mvwaddstr() are macros.

-14 -

CURSES (3X)

CURSES(3X)

attroff(attrs)
wattroff(win, attrs)
attron(attrs)
wattron(win, attrs)
attrset(attrs)
wattrset(win, attrs)
standend()
wstandend(win)
standout()
wstandout(win)

beep()
flash()

These routines manipulate the current attributes of the named window.
These attributes can be any combination of A_STANDOUT,
A_REVERSE, A_BOLD, A DIM, A BLINK, A_UNDERLINE, and
A_ALTCHARSET, as well as the macro COLOR_PAIR(). These

constants are defined in <curses.h> and can be combined with the C
logical OR () operator.

The current attributes of a window are applied to all characters that are
written into the window with waddch(). Attributes are a property of
the character, and move with the character through any scrolling and
insert/delete line/character operations. To the extent possible on the
particular terminal, they are displayed as the graphic rendition of the
characters put on the screen.

wattrset(win, attrs) sets the current attributes of the given window to
attrs. wattroff(win, attrs) turns off the named attributes without
turning on or off any other attributes. wattron(win, attrs) turns on the
named attributes without affecting any others. wstandout(win, attrs)
is the same as wattron(win, A_STANDOUT). wstandend(win, attrs) is
the same as wattrset(win, 0), that is, it turns off all attributes.

Note that wattroff(), wattron(), wattrset(), wstandend(), and
wstandout() return 1 at all times.

Note that atrrs is actually of type chtype, not a character.

Note that attroff(), attron(), attrset(), standend(), and standout()
are macros.

These routines are used to signal the terminal user. beep() sounds the
audible alarm on the terminal, if possible, and if not, flashes the screen
(visible bell), if that is possible. flash() flashes the screen, and if that
is not possible, sounds the audible signal. If neither signal is possible,

-15-

CURSES (3X) CURSES (3X)

nothing happens. Nearly all terminals have an audible signal (bell or
beep), but only some can flash the screen.

box(win, vertch, horch)
A box is drawn around the edge of the window, win. vertch and horch
are the characters the box is to be drawn with. If vertch and horch are
0, then appropriate default characters, ACS_VLINE and ACS_HLINE,
are used.

Note that vertch and horch are actually of type chtype, not characters.

erase()
werase(win)
These routines copy blanks to every position in the window.

Note that erase() is a macro.

clear()

wclear(win)
These routines are like erase() and werase(), but they also call
clearok(), arranging that the screen is cleared completely on the next
call to wrefresh() for that window and repainted from scratch,

Note that clear() is a macro.

clrtobot()

wclrtobot(win)
All lines below the cursor in this window are erased. Also, the current
line to the right of the cursor, inclusive, is erased.

Note that clrtobot() is a macro.

clrtoeol()
wclrtoeol(win)
The current line to the right of the cursor, inclusive, is erased.

Note that clrtoeol() is a macro.

delay_output(ms)
Insert a ms millisecond pause in the output. It is not recommended that
this routine be used extensively, because padding characters are used
rather than a processor pause,

-16 -

CURSES (3X) CURSES (3X)

delch()

wdelch(win)

mvdelch(y, x)

mvwdelch(win, y, x)
The character under the cursor in the window is deleted. All
characters to the right on the same line are moved to the left one
position and the last character on the line is filled with g blank. The
cursor position does not change [after moving to (y, x), if specified].
(This does not imply use of the hardware *‘delete-character >’ feature.)

Note that delch(), mvdelch(), and mvwdelch() are macros.

deleteln()

wdeleteln(win)
The line under the cursor in the window is deleted. All lines below the
current line are moved up one line. The bottom line of the window is
cleared. The cursor position does not change. (This does not imply
use of the hardware ‘‘delete-line’” feature.)

Note that deleteln() is a macro.

getyx(win, y, x)
The cursor position of the window is placed in the two integer
variables y and x.

Note that getyx() is a macro, so no ampersand (&) is necessary before
the variables y and x.

getbegyx(win, y, x)

getmaxyx(win, y, x)
The current beginning coordinates {getbegyx()) or size (getmaxyx()]
of the specified window are placed in the two integer variables y and
X.

Note that getbegyx() and getmaxyx() are macros, so no & is
necessary before the variables y and x.

insch(ch)

winsch(win, ch)

mvwinsch(win, y, x, ch)

mvinsch(y, x, ch)
The character ch is inserted before the character under the cursor. All
characters to the right are moved one space to the right, losing the
rightmost character of the line. The cursor position does not change

-17-

CURSES(3X) CURSES(3X)

{after moving to (y, x), if specified]. (This does not imply use of the
hardware ‘‘insert-character’’ feature.)

Note that ch is actually of type chtype, not a character.
Note that insch(), mvinsch(), and mvwinsch() are macros.

insertin()

winsertin(win)
A blank line is inserted above the current line and the bottom line is
lost. (This does not imply use of the hardware “‘insert-line”” feature.)

Note that insertIn() is a macro.

move(y, X)

wmove(win, y, X)
The cursor associaied with the window is moved to line (row) y,
column x. This does not move the physical cursor of the terminal until
wrefresh() is called. The position specified is relative to the upper-
left corner of the window, which is (0, 0).

Note that move() is a macro.

overlay(srcwin, dstwin)

overwrite(srcwin, dstwin)
These routines overlay text from srcwin on top of text from dstwin
wherever the two windows overlap. The difference is that overlay() is
non-destructive (blanks are not copied), while overwrite() is
destructive.

copywin(srcwin, dstwin, sminrow, smincol, dminrow,
dmincol, dmaxrow, dmaxcol, overlay)
This routine provides a finer grain of control over the overlay() and
overwrite() routines. As in the prefresh() routine, a rectangle is
specified in the destination window, (dminrow, dmincol) and
(dmaxrow, dmaxcol), and the upper-left-corner coordinates of the
source window, (sminrow, smincol). If the argument overiay is true,
then copying is non-destructive, as in overlay().

printw(fmt [, arg...])

wprintw(win, fmt [, arg...])

mvprintw(y, x, fmt [, arg...])

mvwprintw(win, y, x, fmt [, arg .. .])
These routines are analogous to printf(3). The string which would be
output by printf(3) is instead output using waddstr() on the given
window.

-18 -

CURSES (3X) CURSES (3X)

vwprintw(win, fmt, varglist)
This routine corresponds to vfprintf(3S). It performs a wprintw()
using a variable argument list. The third argument is a va list, a
pointer to a list of arguments, as defined in <varargs.h>. See the
vprintf(3S) and varargs(5) manual pages for a detailed description on
how to use variable argument lists.

scroii(win)
The window is scrolled up one line. This involves moving the lines in
the window data structure. As an optimization, if the window is stdscr
and the scrolling region is the entire window, the physical screen is
scrolled at the same time.

touchwin(win)

touchline(win, start, count)
Throw away all optimization information about which parts of the
window have been touched, by pretending that the entire window has
been drawn on. This is sometimes necessary when using overlapping
windows, since a change to one window affects the other window, but
the records of which lines have been changed in the other window
does not reflect the change. touchline() only pretends that count lines
have been changed, beginning with line start .

Input

getch()

wgetch(win)

mvgetch(y, x)

mvwgetch(win, y, x)
A character is read from the terminal associated with the window. In
NODELAY mode, if there is no input waiting, the value ERR is
returned. In DELAY mode, the program hangs until the system passes
text through to the program. Depending on the setting of chreak(),
this is after one character (CBREAK mode), or after the first newline
(NOCBREAK mode). In HALF-DELAY mode, the program hangs until a
character is typed or the specified timeout has been reached. Unless
noecho() has been set, the character is also echoed into the designated
window.

When wgetch() is called, before getting a character, it calls
wrefresh() if anything in the window has changed (for example, the
cursor has moved or text changed).

-19-

CURSES(3X)

CURSES(3X)

When using getch(), wgetch(), mvgetch(), or mvwgetch(), do not set
both NOCBREAK mode [nocbreak()] and ECHO mode [echo()] at the
same time. Depending on the state of the #ty(7) driver when each
character is typed, the program may produce undesirable results. If
wgetch() encounters a Control-D, it is returned (unlike stdio routines,
which would return a null string and have a return code of -1).

If keypad(win, TRUE) has been called, and a function key is pressed,
the token for that function key is returned instead of the raw
characters. [See keypad() under ‘‘Input Options Setting.’’] Possible
function keys are defined in <curses.h> with integers beginning with
0401, whose names begin with KEY_. If a character is received that
could be the beginning of a function key (such as escape), curses sets a
timer. If the remainder of the sequence is not received within the
designated time, the character is passed through, otherwise the
function key value is returned. For this reason, on many terminals,
there is a delay after a user presses the escape key before the escape is
returned to the program. [Use by a programmer of the escape key for a
single character routine is discouraged. Also see notimeout() below.]

Note that getch(), mvgetch(), and mvwgetch() are macros.

getstr(str)

wgetstr(win, str)
mvgetstr(y, x, str)
mvwgetstr(win, y, X, str)

A series of calls to wgetch() is made, until a newline, carriage return,
or enter key is received. The resulting value (except for this
terminating character) is placed in the area pointed at by the character
pointer str. The user’s erase and kill characters are interpreted. See
wgetch() for how it handles characters differently from stdio routines
(especially ControlD).

Note that getstr(), mvgetstr(), and mvwgetstr() are macros.

flushinp()

Throws away any typeahead that has been typed by the user and has
not yet been read by the program. Note that flushinp() does not throw
away any characters supplied by ungetch().

ungetch(c)

Place ¢ onto the input queue to be returned by the next call to
wgetch().

-20-

CURSES (3X) CURSES (3X)

inch()

winch(win)

myvinch(y, x)

mvwinch(win, y, x)
The character, of type chtype, at the current position in the named
window is returned. If any attributes are set for that position, their
values are ORed into the valuc returned. The predefined constants
A_CHARTEXT and A_ATTRIBUTES, defined in <curses.h>, can be
used with the C logical AND operator (&) to extract the character or
attributes alone.

Note that inch(), winch(), mvinch(), and mvwinch() are macros.

scanw(fmt [, arg...])

wscanw(win, fmt [, arg .. 1)

mvscanw(y, x, fmt [, arg...])

mvwscanw(win, y, x, fmt [, arg...])
These routines correspond to scanf(3S), as do their arguments and
return values. wgetstr() is called on the window, and the resulting
line is used as input for the scan. The return value for these routines is
the number of arg values that are converted by fmt. arg values that are
not converted are lost. See wgetstr() for how it handles strings
differently than the stdio routines (especially ControlD).

vwscanw(win, fmt, ap)
This routine is similar to vwprintw() in that it performs a wscanw()
using a variable argument list. The third argument is a va list, a
pointer to a list of arguments, as defined in <varargs.h>. See the
vprintf(3S) and varargs(5) manual pages for a detailed description on
how to use variable argument lists.

Output Options Setting
These routines set options within curses that deal with output. All options are
initially FALSE, unless otherwise stated. It is not necessary to turn these options
off before calling endwin().

clearok(win, bf)
If enabled (bf is TRUE), the next call to wrefresh() with this window
clears the screen completely and redraws the entire screen from
scratch. This is useful when the contents of the screen are uncertain,
or in some cases for a more pleasing visual effect.

idlok(win, bf)
If enabled (bf is TRUE), curses uses the hardware *‘insert/delete-line’’
feature of terminals so equipped; if disabled (bf is FALSE), curses very

-21-

CURSES(3X)

CURSES (3X)

seldom uses the hardware ‘‘insert/delete-line’’ feature. (The
“‘insert/delete-character’’ feature is always considered.) This option
should be enabled only if your application needs *‘insert/delete-line’”,
for example, for a screen editor. It is disabled by default because
““insert/delete-line’’ tends to be visually annoying when used in
applications where it isn’t really needed. If ‘‘insert/delete-line’”’
cannot be used, curses redraws the changed portions of all lines, Not

calling idlok() saves approximately 5000 bytes of memory.

leaveok(win, bf)

Normally, the hardware cursor is left at the location of the window
cursor being refreshed. This option allows the cursor to be left
wherever the update happens to leave it. It is useful for applications
where the cursor is not used, since it reduces the need for cursor
motions. If possibie, the cursor is made invisible when this option is
enabled.

setscrreg(top, bot)
wsetscrreg(win, top, bot)

These routines allow the user to set a software scrolling region in a
window. top and bot are the line numbers of the top and bottom
margin of the scrolling region. (Line 0 is the top line of the window.)
If this option and scrollok() are enabled, an attempt to move off the
bottom margin line causes all lines in the scrolling region to scroll up
one line. [Note that this has nothing to do with use of a physical
scrolling region capability in the terminal, like that in the DEC VT100.
Only the text of the window is scrolled; if idlok() is enabled and the
terminal has either a scrolling region or ‘‘insert/delete-line’’
capability, they are probably used by the output routines.]

Note that setscrreg() and wsetscrreg() are macros.

scrollok(win, bf)

This option controls what happens when the cursor of a window is
moved off the edge of the window or scrolling region, either from a
newline on the bottom line, or typing the last character of the last line.
If disabled (bf is FALSE), the cursor is left on the bottom line at the
location where the offending character was entered. If enabled (bf is
TRUE), wrefresh() is called on the window, and then the physical
terminal and window are scrolled up one line. [Note that in order to
get the physical scrolling effect on the terminal, it is also necessary to
call idlok().] Note that scrollok() always returns OK.

-22 -

CURSES (3X)

CURSES(3X)

Input Options Setting
These routines set options within curses that deal with input. The options
involve using ioctl(2) and therefore interact with curses routines. It is not
necessary to turn these options off before calling endwin().

For more information on these options, see UNIX System V Release 3.2
Programmer's Guide.

cbreak()
nocbreak()

echo()

These two routines put the terminal into and out of CBREAK mode,
respectively. In CBREAK mode, characters typed by the user are
immediately available to the program and erase/kill character
processing is not performed. When in NOCBREAK mode, the ity driver
buffers characters typed until a newline or carriage return is typed.
Interrupt and flow-control characters are unaffected by this mode [see
termio(7)]. Initially, the terminal may or may not be in CBREAK
mode, as it is inherited, therefore, a program should call cbreak() or
nocbreak() explicitly. Most interactive programs using cuwrses sets
CBREAK mode.

Note that cbreak() performs a subset of the functionality of raw().
See wgetch() under ““Input’’ for a discussion of how these routines
interact with echo() and noecho().

noecho()

nl()

nonl()

These routines control whether characters typed by the user are echoed
by wgetch() as they are typed. Echoing by the tty driver is always
disabled, but initially wgetch() is in ECHO mode, so characters typed
are echoed. Authors of most interactive programs prefer to do their
own echoing in a controlled area of the screen, or not to echo at all, so
they disable echoing by calling noecho(). Sec wgetch() under
“Input’’ for a discussion of how these routines interact with cbreak()
and nocbreak().

These routines control whether carriage return is translated into
newline on input by wgetch(). Initially, this translation is done;
non}() tumns the translation off. Note that translation by the tty(7)
driver is disabled in CBREAK mode.

-23.

CURSES(3X) CURSES (3X)

halfdelay(tenths)
Half-delay mode is similar to CBREAK mode in that characters typed
by the user are immediately available to the program. However, after
blocking for tenths tenths of seconds, ERR is returned if nothing has
been typed. tenths must be a number between 1 and 255. Use
nocbreak() to leave half-delay mode.

intrifush(win, bf)
If this option is enabled, when an interrupt key is pressed on the
keyboard (interrupt, break, quit) all output in the tty driver queue is
flushed, giving the effect of faster response to the interrupt, but
causing curses to have the wrong idea of what is on the screen.
Disabling the option prevents the flush. The default for the option is
inherited from the tty driver settings. The window argument is
ignored.

keypad(win, bf)

This option enables curses to obtain information from the keypad of
the user’s terminal. If enabled, the user can press a function key (such
as an arrow key) and wgetch() returns a single value representing the
function key, as in KEY_LEFT; if disabled, curses does not treat
function keys specially and the program would have to interpret the
escape sequences itself. If the keypad in the terminal can be turned on
(made to transmit), calling keypad (win, TRUE) enables it.

meta(win, bf)

Initially, whether the terminal returns seven or eight significant bits on
input depends on the control mode of the tty driver [see termio(7)]. To
force eight bits to be returned, invoke meta (win, TRUE); to force
seven bits to be returned, invoke meta (win, FALSE). The window
argument, win, is always ignored. If the terminfo(4) capabilities smm
(meta_on) and rmm (meta_off) are defined for the terminal, smm is
sent to the terminal when meta (win, TRUE) is called and rmm is sent
when meta (win, FALSE) is called.

nodelay(win, bf)
This option causes wgetch() to be a non-blocking call. If no input is
ready, wgetch() returns ERR. If disabled, wgetch() hangs until a key
is pressed.

notimeout(win, bf)
While interpreting an input escape sequence, wgetch() sets a timer
while waiting for the next character. If notimeout(win, TRUE) is
called, then wgetch() does not set a timer. The purpose of the timeout

-24.

CURSES(3X) CURSES (3X)

is to differentiate between sequences received from a function key and
those typed by a user.

raw()

noraw()
The terminal is placed into or out of raw mode. RAW mode is similar
to CBREAK mode, in that characters typed are immediately passed
through to the user program. The differences are that in RAW mode,
the interrupt, quit, suspend, and flow control characters are passed
through uninterpreted, instead of generating a signal. The behavior of
the BREAK key depends on other bits in the tty driver that are not set
by curses [see termio(7)].

typeahead(fildes)

curses does ‘‘line-breakout optimization’’ by looking for typeahead
periodically while updating the screen. If input is found, and it is
coming from a tty, the current update is postponed until wrefresh() or
doupdate() is called again. This allows faster response to commands
typed in advance. Normally, the file descriptor for the input FILE
pointer passed to newterm(), or stdin in the case that initser() was
used, is used to do this typeahead checking. The typeahead() routine
specifies that the file descriptor fildes is to be used to check for
typeahead instead. If fildes is -1, then no typeahead checking is
performed.

Note that fildes is a file descriptor, not a <stdio.h> FILE pointer.

Environment Queries
baudrate()
Returns the output speed of the terminal. The number returned is in
bits per second, for example, 9600, and is an integer.

char erasechar()
The user’s current erase character is returned.
has_ic()
True if the terminal has insert- and delete-character capabilities.
has_il()
True if the terminal has insert- and delete-line capabilities, or can
simulate them using scrolling regions. This might be used to check to
see if it would be appropriate to turn on physical scrolling using
scrollok().

char killchar()
The user’s current line-kill character is returned.

225

CURSES (3X) CURSES (3X)

char *longname()

This routine returns a pointer to a static area containing a verbose
description of the current terminal. The maximum length of a verbose
description is 128 characters. It is defined only after the call to
initscr() or mewterm(). The area is overwritten by each call to
newterm() and is not restored by set_term(), so the value should be
saved between calls to newterm() if longname() is going to be used
with multiple terminals.

Color Manipulation
This section describes the color manipulation routines introduced in this release
of curses.

can_change_color()
This routine requires no arguments. It returns TRUE if the terminal
supports colors and can change their definitions, FALSE otherwise.
This routine facilitates writing terminal-independent programs.

color_content(color, &r, &g, &b)

This routine gives users a way to find the intensity of the red, green,
and blue (RGB) components in a color. It requires four arguments: the
color number, and three addresses of shorts for storing the information
about the amounts of red, green, and blue components in the given
color. The value of the first argument must be between 0 and
COLORS-1. The values that are stored at the addresses pointed to by
the last three arguments are between 0 (no component) and 1000
{maximum amount of component). This routine returns ERR if the
color does not exist (the first argument is outside the valid range), or if
the terminal cannot change color definitions, OK otherwise.

has_colors()
This routine requires no arguments. It returns TRUE if the terminal
can manipulate colors, FALSE otherwise. This routine facilitates
writing terminal-independent programs. For example, a programmer
can use it to decide whether to use color or some other video attribute.

init_color(color, r, g, b)
This routine changes the definition of a color. It takes four arguments:
the number of the color to be changed followed by three RGB values
(for the amounts of red, green, and blue components). (See the section
COLOR for the default color index.) The value of the first argument
must be between 0 and COLORS-1. The last three arguments must
each be a value between 0 and 1000. When init_color() is used, all

-26 -

CURSES (3X)

CURSES (3X)

occurrences of that color on the screen immediately change to the new
definition. It returns OK if it was able to change the definition of the
color, ERR otherwise.

init_pair(pair, f, b)

This routine changes the definition of a color-pair. It takes three
arguments: the number of the color-pair to be changed, the foreground
color number, and the background color number. The value of the first
argument must be between 1 and COLOR_PAIRS-1. The value of the
second and third arguments must be between 0 and COLORS-1. If the
color-pair was previously initialized, the screen are refreshed and all
occurrences of that color-pair are changed to the new definition. The
routine returns OK if it was able to change the definition of the color-
pair, ERR otherwise.

pair_content(pair, &f, &b)

This routine allows users to find out what colors a given color-pair
consists of. It requires three arguments: the color-pair number, and
two addresses of shorts for storing the foreground and the background
color numbers. The value of the first argument must be between 1 and
COLOR_PAIRS-1. The values that are stored at the addresses pointed
to by the second and third arguments are between 0 and COLORS-1.
The routine returns ERR if the color_pair has not been initialized, OK
otherwise.

start_color()

Soft Labels

This routine requires no arguments, It must be called if the user wants
to use colors, and before any other color manipulation routine is
called. It is good practice to call this routine right after imitscr().
start_color() initializes eight basic colors (black, blue, green, cyan,
red, magenta, yellow, and white), and two global variables, COLORS
and COLOR_PAIRS (respectively defining the maximum number of
colors and color-pairs the terminal can support). It also restores the
terminal’s colors to the values they had when the terminal was just
turned on. It returns ERR if the terminal does not support colors, OK
otherwise.

If desired, curses manipulates the set of soft function-key labels that exist on
many terminals. For those terminals that do not have soft labels, if you want to
simulate them, curses takes over the bottom line of stdscr, reducing the size of
stdscr and the variable LINES. curses standardizes on eight labels of eight
characters each. If a curses program changes the values of the soft labels, it can
restore them only to the default settings for that terminal. Therefore, if before

_27.

CURSES(3X) CURSES (3X)

calling a curses program a user changes the values of the soft labels, those
values cannot be reset when the curses program terminates.

slk_init(labfmt)
In order to use soft labels, this routine must be called before initscr()
or newterm() is called. If initscr() winds up using a line from stdsecr
to emulate the soft labels, then labfrmt determines how the labels are
arranged on the screen. Setting labfmt to 0 indicates that the labels are
to be arranged in a 3-2-3 arrangement; 1 asks for a 4-4 arrangement.

slk_set(labnum, label, labfmt)
labnum is the label number, from 1 to 8. label is the string to be put on
the label, up to eight characters in length. A NULL string or a NULL
pointer puts up a blank label. labfmt is one of 0, 1 or 2, to indicate
whether the label is to be left-justified, centered, or right-justified
within the label.

slk_refresh()

stk_noutrefresh()
These routines correspond to the routines wrefresh() and
whnoutrefresh(). Most applications would use slk_noutrefresh()
because a wrefresh() is likely to follow soon.

char *slk_label(labnum)
The current label for label number labnum is returned, in the same
format as it was in when it was passed to slk_set(); that is, how it
looked prior to being justified according to the labfmt argument of
slk_set().

slk_clear()
The soft labels are cleared from the screen.

slk_restore()
The soft labels are restored to the screen after a slk_clear().

slk_touch()
All of the soft labels are forced to be output the next time a
slk_noutrefresh() is performed.

slk_attron(attrs)

slk_attrset(attrs)

sik_attrof(attrs)
These routines correspond to attron(), attrset(), and attrof(). The
have effect only if soft labels are simulated at the bottom of the screen.

-28 -

CURSES(3X) CURSES (3X)

Low-Level curses Access

The following routines give low-level access to various curses functionality.

These routines typically would be used inside of library routines.

def_prog_mode()

def_shell_mode()
Save the current terminal modes as the ‘‘program’ (in curses) or
“‘shell” (not in curses) statc for use by the reset_prog_mode() and
reset_shell_mode() routines. This is done automatically by initscr().

reset_prog_mode()

reset_shell mode()
Restore the terminal to ‘‘program’’ (in curses) or ‘‘shell’” (out of
curses) state. These arc done automatically by endwin() and
doupdate() after an endwin(), so they normally would not be called.

resetty()

savetty()
These routines save and restore the state of the terminal modes.
savetty() saves the current state of the terminal in a buffer and
resetty() restores the state to what it was at the last call to savetty().

getsyx(y, x)
The current coordinates of the virtual screen cursor are returned in y
and x. If leaveok() is currently TRUE, then -1,-1 is returned. If lines
have been removed from the top of the screen using ripoffline(), y and
x include these lines; thercfore, y and x should be used only as
arguments for setsyx().

Note that getsyx() is a macro, so no & is necessary before the
variables y and x.

setsyx(y, x)

The virtual screen cursor is set to y, x. If y and x are both -1, then
leaveok() is set. The two routines getsyx() and setsyx() are designed
to be used by a library routine which manipulates curses windows but
does not want to change the current position of the program’s cursor.
The library routine would call getsyx() at the beginning, do its
manipulation of its own windows, do a wnoutrefresh() on its
windows, call setsyx(), and then call doupdate().

ripoffline(line, init)
This routine provides access to the same facility that slk_init() uses to
reduce the size of the screen. ripoffline() must be catled before
initscr() or newterm() is called. If line is positive, a line is removed
from the top of stdscr; if negative, a line is removed from the bottom.

-29.

CURSES(3X)

CURSES (3X)

When this is done inside initser(), the routine init() is called with two
arguments: a window pointer to the one-line window that has been
allocated and an integer with the number of columns in the window.
Inside this initialization routine, the integer variables LINES and COLS
(defined in <curses.h>) are not guaranteed to be accurate and
wrefresh() or doupdate() must not be called. It is allowable to call

called up to five times before calling initscr() or newterm().

scr_dump(filename)

The current contents of the virtual screen are written to the file
filename .

scr_restore(filename)

The virtual screen is set to the contents of filename , which must have
been written using scr_dump(). ERR is returned if the contents of
filename are not compatible with the current release of curses
software. The next call to doupdate() restores the screen to what it
looked like in the dump file.

ser_init(filename)

The contents of filename are read in and used to initialize the curses
data structures about what the terminal currently has on its screen. If
the data is determined to be valid, curses bases its next update of the
screen on this information rather than clearing the screen and starting
from scratch. scr_init() would be used after initscr() or a system(3S)
call to share the screen with another process which has done a
scr_dump() after its endwin() call. The data is declared invalid if the
time-stamp of the tty is old or the terminfo (4) capability nrrmec is true.
Note that keypad(), meta(), slk_clear(), curs_set(), flash(), and
beep() do not affect the contents of the screen, but makes the tty’s
time-stamp old.

curs_set(visibility)

The cursor is set to invisible, normal, or very visible for visibility equal
to 0, 1 or 2. If the terminal supports the visibility requested, the
previous cursor state is returned; otherwise, ERR is returned.

draino(ms)

Wait until the output has drained enough that it takes only ms more
milliseconds to drain completely.

garbagedlines(win, begline, numlines)

This routine indicates to curses that a screen line is garbaged and
should be thrown away before having anything written over the top of

-30-

CURSES (3X) CURSES(3X)

it. It could be used for programs such as editors which want a
command to redraw just a single line. Such a command could be used
in cases where there is a noisy communications line and redrawing the
entire screen would be subject to even more communication noise.
Just redrawing the single line gives some semblance of hope that it
would show up unblemished. The current location of the window is
used to determine which lines are to be redrawn.

napms(ms)
Sleep for ms milliseconds. mvcur(oldrow, oldcol, newrow, newcol)
Low-level cursor motion.

Terminfo-Level Manipulations
These low-level routines must be called by programs that need to deal directly
with the terminfo(4) database to handle certain terminal capabilities, such as
programming function keys. For all other functionality, curses routines are
more suitable and their use is recommended.

Initially, setupterm() should be called. [Note that setupterm() is
automatically called by initscr() and newterm().] This defines the set of
terminal-dependent variables defined in the terminfo(4) database. The
terminfo(4) variables lines and columns [see terminfo(4)] are initialized by
setupterm() as follows: if the environment variables LINES and COLUMNS
exist, their values are used. If the above environment variables do not exist, the
values for lines and columns specified in the terminfo (4) database are used.

The header files <curses.h> and <term.h> should be included, in this order, to
get the definitions for these strings, numbers, and flags. Parameterized strings
should be passed through tparm() to instantiate them. All terminfo(4) strings
[including the output of tparm()] should be printed with tputs() or putp().
Before exiting, reset_shell_mode() should be called to restore the tty modes.
Programs that use cursor addressing should output enter_ca_mode upon startup
and should output exit_ca_mode before exiting [see terminfo(4)]. Programs
that use shell escapes should call reset_shell mode() and output
exit_ca_mode before the shell is called and should output enter_ca_mode and
call reset_prog_mode() after returning from the shell. Note that this is
different from the curses routines [see endwin()].

setupterm(term, fildes, errret)
Reads in the terminfo(4) database, initializing the terminfo(4)
structures, but does not sct up the output virtualization structures used
by curses. The terminal type is in the character string term; if term is
NULL, the environment variable TERM is used. All output is to the
file descriptor fildes. If errret is not NULL, then setupterm() returns

-31-

CURSES(3X)

CURSES (3X)

OK or ERR and store a status value in the integer pointed to by errret.
A status of 1 in errret is normal, 0 means that the terminal could not be
found, and -1 means that the terminfo (4) database could not be found.
If errret is NULL, setupterm() prints an error message upon finding
an error and exit. Thus, the simplest call is setupterm [(char #)0, 1,
{(int #)0], which uses all the defaults.

The terminfo (4) boolean, numeric and string variables are stored in a
structure of type TERMINAL. After setupterm() returns successfully,
the variable cur_term (of type TERMINAL #) is initialized with all of
the information that the terminfo(4) boolean, numeric and string
variables refer to. The pointer can be saved before calling
setupterm() again. Further calls to setupterm() allocates new space
rather than reuse the space pointed to by cur_term.

set_curterm(ntcrm)

nterm is of type TERMINAL *. set_curterm() sets the variable
cur_term to nterm, and makes all of the terminfo (4) boolean, numeric
and string variables use the values from nterm.

del_curterm(oterm)

oterm is of type TERMINAL #. del_curterm() frees the space pointed
to by oterm and makes it available for further use. If oterm is the same
as cur_term, then references to any of the terminfo(4) boolean,
numeric and string variables thereafter may refer to invalid memory
locations until another setupterm() has been called.

restartterm(term, fildes, errret)

Similar to setupterm(), except that it is called after restoring memory
to a previous state; for example, after a call to scr_restore(). It
assumes that the windows and the input and output options are the
same as when memory was saved, but the terminal type and baud rate
may be different.

char *tparm(str, p,, ,, ---, Py)

Instantiate the string str with parms p.. A pointer is returned to the
result of str with the parameters applied.

tputs(str, count, putc)

Apply padding to the string str and output it. str must be a terminfo (4)
string variable or the return value from tparm(), tgetstr(), tigetstr()
or tgoto(). count is the number of lines affected, or 1 if not applicable.
putc () is a putchar (3S)-like routine to which the characters are passed,
one at a time.

.32

CURSES (3X) CURSES (3X)

putp(str)
A routine that calls tputs [str, 1, putchar()].

vidputs(attrs, putc)
Output a string that puts the terminal in the video attribute mode atirs,
which is any combination of the attributes listed below. The
characters are passed to the putchar (3S)-like routine putc ().

vidattr(attrs)
Like vidputs(), except that it outputs through putchar (3S).

The following routines return the value of the capability corresponding to the
character string containing the rerminfo(4) capname passed to them. For
example, rc¢ = tigetstr("acsc") causes the value of acsc to be returned in re.

tigetflag(capname)
The value -1 is returned if capname is not a boolean capability. The
value 0 is returned if capname is not defined for this terminal.

tigetnum(capname)
The value -2 is returned if capname is not a numeric capability. The
value -1 is returned if capname is not defined for this terminal.

tigetstr(capname)
The value (char *) -1 is returned if capname is not a string capability.
A null value is returned if capname is not defined for this terminal.

char *boolnames[1, *boolcodes| |, *boolfnames(]

char *numnames{], *numcodes/], *numfnames{]

char *strnames|], *strcodes[], *strfnames]/]
These null-terminated arrays contain the capnames, the termcap codes,
and the full C names, for each of the terminfo (4) variables.

Termcap Emulation
These routines are included as a conversion aid for programs that use the
termcap library. Their parameters are the same and the routines are emulated
using the terminfo (4) database.

tgetent(bp, name)
Look up termcap entry for name. The emulation ignores the buffer
pointer bp.

tgetflag(codename)
Get the boolean entry for codename .

tgetnum(codes)
Get numeric entry for codename .

-33-

CURSES(3X) CURSES (3X)

char *tgetstr(codename, arca)
Return the string entry for codename . If area is not NULL, then also
store it in the buffer pointed to by area and advance area. tputs()
should be used to output the returned string.

char *tgoto(cap, col, row)
Instantiate the parameters into the given capability. The output from
this routine is to be passed io tputs().

tputs(str, affcnt, putc)
See tputs() above, in this section.

Miscellaneous
unctrl(c)
This macro expands to a character string which is a printable

o)
representation of the character ¢. Control characters are displayed in

the Control X notation. Printing characters are displayed as is.

unctrl() is a macro, defined in <unctrLh>, which is automatically
included by <curses.h>.

char *keyname(c)
A character string corresponding to the key c is returned.

filter() This routine is one of the few that is to be called before imitscr() or
newterm() is called. It arranges things so that curses thinks that there
is a one-line screen. curses does not use any terminal capabilities that
assume that they know what line on the screen the cursor is on.

Use of curscr

The special window curscr can be used in only a few routines. If the window
argument to clearok() is curscr, the next call to wrefresh() with any window
causes the screen to be cleared and repainted from scratch. If the window
argument to wrefresh() is curscr, the screen is immediately cleared and
repainted from scratch. (This is how most programs would implement a
“‘repaint-screen’’ routine.) The source window argument to overlay(),
overwrite(), and copywin() may be curscr, in which case the current contents
of the virtual terminal screen is accessed.

-34-

CURSES (3X) CURSES (3X)

Obsolete Calls
Various routines are provided to maintain compatibility in programs written for
older versions of the curses library. These routines are all emulated as indicated
below.

crmode() Replaced by cbreak().

fixterm() Replaced by reset_prog mode().
gettmode() A no-op.

nocrmode() Replaced by nocbreak().
resetterm() Replaced by reset_shell_mode().
saveterm() Replaced by def prog_mode().
setterm() Replaced by setupterm().

ATTRIBUTES
The following video attributes, defined in <curses.h>, can be passed to the
routines wattron(), wattroff(), and wattrset(), or ORed with the characters
passed to waddch().

A_STANDOUT Terminal’s best highlighting mode
A_UNDERLINE Underlining

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Half bright

A_BOLD Extra bright or bold

A_ALTCHARSET Alternate character set

COLOR_PAIR Color-pair defined in n (note that this is a macro)

A_CHARTEXT Bit-mask to extract character

[described under winch()]
A_ATTRIBUTES Bit-mask to extract attributes

[described under winch()]
A_NORMAL Bit mask to reset all attributes off

[for example: attrset (A_NORMAL)]
A_COLOR Extract color-pair field information

FUNCTION-KEYS
The following function keys, defined in <curses.h>, might be returned by
getch() if keypad() has been enabled. Note that not all of these can be

-35.

CURSES (3X)

CURSES (3X)

supported on a particular terminal if the terminal does not transmit a unique
code when the key is pressed or the definition for the key is not present in the

terminfo (4) database.

Name

KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME

KEY_BACKSPACE

KEY_FO
KEY_F(n)

KEY_DL
KEY_IL
KEY_DC
KEY_IC

KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR

KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET

Value

0401
0402
0403
0404
0405
0406

0407
0410

[KEY_FO
+()]
0510
0511
0512
0513

0514
0515
0516
0517
0520
0521

0522
0523
0524
0525
0526
0527
0530
0531

Key name

Break key (unreliable)
The four arrow keys . ..

Home key (upward-+left
arrow)

Backspace (unreliable)
Function keys. Space for
64 keys is reserved.
Formula for £ .

Delete line

Insert line

Delete character

Insert char or enter insert
mode

Exit insert char mode
Clear screen

Clear to end of screen
Clear to end of line
Scroll one line forward
Scroll one line backwards
(reverse)

Next page

Previous page

Set tab

Clear tab

Clear all tabs

Enter or send

Soft (partial) reset

Reset or hard reset

-36-

CURSES (3X)

KEY_PRINT
KEY_LL

KEY_Al
KEY_A3
KEY_B2
KEY_Ci1
KEY_C3
KEY_BTAB
KEY_BEG
KEY_CANCEL
KEY_CLOSE
KEY_COMMAND
KEY_COPY
KEY_CREATE
KEY_END
KEY_EXIT
KEY_FIND
KEY_HELP
KEY_MARK
KEY_MESSAGE
KEY_MOVE
KEY_NEXT
KEY_OPEN
KEY_OPTIONS
KEY_PREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME

0532
0533

0534
0535
0536
0537
0540
0541
0542
0543
0544
0545
0546
0547
0550
0551
0552
0553
0554
0555
0556
0557
0560
0561
0562
0563
0564
0565
0566
0567
0570

CURSES (3X)

Print or copy
Home down or bottom (lower-
left).
Keypad is arranged
like this:

Al up A3

Cl down C3
Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Back tab key
Beg(inning) key
Cancel key
Close key
Cmd (command) key
Copy key
Create key
End key
Exit key
Find key
Help key
Mark key
Message key
Move key
Next object key
Open key
Options key
Previous object key
Redo key
Ref(erence) key
Refresh key
Replace key
Restart key
Resume key

-37 -

CURSES(3X)

KEY_SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP
KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT
KEY_SREDO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME
KEY_SSAVE
KEY_SSUSPEND
KEY_SUNDO
KEY_SUSPEND
KEY_UNDO

LINE GRAPHICS

0571
0572
0573
0574
0575
0576
0577
0600
0601
0602
0603
0604
0605
0606
0607
0610
0611
0612
0613
0614
0615
0616
0617
0620
0621
0622
0623
0624
0625
0626
0627
0630

CURSES (3X)

Save key

Shifted beginning key
Shifted cancel key
Shifted command key
Shifted copy key
Shifted create key
Shifted delete char key
Shifted delete line key
Select key

Shifted end key
Shifted clear line key
Shifted exit key
Shifted find key
Shifted help key
Shifted home key
Shifted input key
Shifted left arrow key
Shifted message key
Shifted move key
Shifted next key
Shifted options key
Shifted prev key
Shifted print key
Shifted redo key
Shifted replace key
Shifted right arrow
Shifted resume key
Shifted save key
Shifted suspend key
Shifted undo key
Suspend key

Undo key

The following variables can be used to add line-drawing characters to the
screen with waddch(). When defined for the terminal, the variable has the
A_ALTCHARSET bit enabled; otherwise, the default charcter listed below is
stored in the variable. The names were chosen to be consistent with the DEC

VT100 nomenclature.

-38-

CURSES(3X)

Name

ACS_ULCORNER
ACS_LLCORNER
ACS_URCORNER
ACS_LRCORNER
ACS_RTEE
ACS_LTEE
ACS_BTEE
ACS_TTEE
ACS_HLINE
ACS_VLINE
ACS_PLUS
ACS_S1

ACS_S89
ACS_DIAMOND
ACS_CKBOARD
ACS_DEGREE
ACS_PLMINUS
ACS_BULLET
ACS_LARROW
ACS_RARROW
ACS_DARROW
ACS_UARROW
ACS_BOARD
ACS_LANTERN
ACS_BLOCK

RETURN VALUES

Default

+

+ 4+ 4+ +++

+ —

< V AO % + 1

* ¥ >

CURSES(3X)

Glyph Description

upper-left corner
lower-left corner
upper-right corner
lower-right corner
right tee (4)

left tee (})
bottom tee (|)

top tee (T)
horizontal line
vertical line

plus

scan line 1

scan line 9

diamond

checker board (stipple)
degree symbol
plus/minus

bullet

arrow pointing left
arrow pointing right
arrow pointing down
arrow pointing up
board of squares
lantern symbol
solid square block

All routines return the integer OK upon successful completion and the integer
ERR upon failure, unless otherwise noted in the preceding routine descriptions.

All macros return the value of their w version, except getsyx(), getyx(),
getbegyx(), getmaxyx(). For these macros, no useful value is returned.

Routines that return pointers always return (type *) NULL on error.

SEE ALSO

cc(l), 1d(1), ioctd(2), plot(3X), putc(3S), scanf(3S), stdio(3S), system(3S),
vprintf(3S), profile(4), term(4), terminfo(4), varargs(5), termio(7).
UNIX System V Release 3.2 Programmer’ s Guide.

-39.

CURSES(3X) CURSES(3X)

WARNINGS

BUGS

To use the new curses features, use the version of curses on CTIX Releases 6.1
and higher. All programs that ran curses under CTIX releases prior to 6.1 will
run with CTIX Release 6.1. You can link applications with object files based on
the previous curses/terminfo with the CTIX 6.1 libcurses.a library. You can link
applications with object files based on the CTIX 6.1 curses/terminfo with
previous CTIX releases’ libcurses a libraries, so long as the application does not

use the new features in the CTIX 6.1 curses/terminfo.

The plotting library plo:(3X) and the curses library curses(3X) both use the
names erase() and move(). The curses versions are macros. If you need both
libraries, put the plot(3X) code in a different source file than the curses(3X)
code, and/or #undef move() and erase() in the plot (3X) code.

Between the time a call to initscr() and endwin() has been issued, use only the
routines in the curses library to generate output. Using system calls or the
‘“‘standard I/O package’’ [see stdio(3S)] for output during that time can cause
unpredictable results.

If a pointer passed to a routine as a window argument is null or out of range, the
results are undefined (core may be dumped).

Currently typeahead checking is done using a nodelay read followed by an
ungetch() of any character that may have been read. Typeahead checking is
done only if wgetch() has been called at least once. This will be changed when
proper kernel support is available. Programs which use a mixture of their own
input routines with curses input routines may wish to call typeahead(-1) to turn
off typeahead checking. The argument to napms() is currently rounded up to
the nearest second.

draino (ms) only works for ms equal to 0.

-40-

CUSERID(3S) CUSERID(3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION

The cuserid routine gets the user’s login name as found in /etc/utmp. If the
login name cannot be found, cuserid gets the login name corresponding to the
user ID of the current process. If s is a NULL pointer, this representation is
generated in an internal static area, the address of which is returned. Otherwise,
s is assumed to point to an amray of at least L_cuserid characters; the
representation is left in this aray. The constant L_cuserid is defined in the
<stdio.h> header file.

SEE ALSO
getlogin(3C), getpwent(3C).

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character (\0) will be placed at s/0].

DBM(3X) DBM(3X)

NAME

dbminit, fetch, store, delete, firstkey, nextkey - database subroutines

SYNOPSIS

#include <dbm.h>

typedef struct {
char *dptr;
int dsize;

} datum;

dbminit(file)

char *file;

datum fetch(key)
datum Kkey;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey()

datum nextkey(key)
datum key;

DESCRIPTION

The dbm functions maintain key/content pairs in a database. The functions
handle very large (a billion blocks) databases and access a keyed item in one or
two file system accesses. The functions are obtained with the loader option
-ldbm.

keys and contents are described by the datum typedef. A datum specifies a
string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal
ASCI strings, are allowed. The database is stored in two files. One file is a
directory containing a bit map and has .dir as its suffix. The second file
contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of
this call, the files file.dir and file.pag must exist. (An empty database is
Once open, the data stored under a key is accessed by fetch and data is placed
under a key by store. A key (and its associated contents) is deleted by delete.
A linear pass through all keys in a database can be made, in an (apparently)
random order, by use of firstkey and nextkey: firstkey returns the first key in the

DBM(3X) DBM(3X)

database; with any key nextkey returns the next key in the database. This code
traverses the database:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key)

SEE ALSO

ndbm(3X).

DIAGNOSTICS

NOTE

All functions that return an int indicate errors with negative values. A zero
return indicates ok. Routines that return a datum indicate errors with a null (0)

dptr.

The dbm library has been superseded by ndbm(3), and is now implemented
...... Al IV iovnlizdad fre Anmna 1th Aviating neaoramao

uaulg ndbm. uurn\JA) is included for wulpaublut] wiul UAiDulls Prograinis that

invoke dbm(3X). When writing new programs, use ndbm(3X) instead.

WARNINGS

The .pag file contains holes so that its apparent size is about four times its
actual content. Older UNIX systems can create real file blocks for these holes
when touched. These files cannot be copied by normal means (cp, cat, tp, tar,
ar) without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is
changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block
size (currently 1024 bytes). Moreover all key/content pairs that hash together
must fit on a single block. store returns an error in the event that a disk block
fills with inseparable data.

delete does not physically reclaim file space, although it does make it available
for reuse.

The order of keys presented by firstkey and nextkey depends on a hashing
function, not on anything interesting.

DIAL(3C) DIAL(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
The dial routine returns a file-descriptor for a terminal line open for read/write.
The argument to dial is a CALL structure (defined in the <dial.h> header file).
When finished with the terminal line, the calling program must invoke undial o
release the semaphore that has been set during the allocation of the terminal
device.

The definition of CALL in the <dial.h> header file is as follows:

typedef struct {
struct termio *attr; /* pointer to termio attribute
struct »/
int baud; /+ transmission data rate +/
int speed; I+ 212A modem: low=300,
high=1200 (unused) */
char *line; /+ device name for out-going line */
char *telno; /= pointer to tel-no digits string »/
int modem; /+ specify modem control for direct
lines +/
char *device; /* Will hold the name of the device
used to make a connection
(unused) */
int dev_len; /* The length of the device used to
make connection (unused) »/
} CALL;

The CALL element baud is for the desired transmission baud rate. The rate must
be one of those supported by the operating system (134.5 is rounded to 134). If
the baud is less than 300, the line will be dialed at 300 baud then switched to
the desired rate (unless attr is non-null; see below).

If a particular terminal line is desired, a string pointer to its device-name should
be placed in the line element in the CALL structure. Legal values for such

DIAL(3C) DIAL(3C)

FILES

terminal device names are kept in /usr/lib/uucp/Devices. In this case, if baud is
0, the speed used will be determined by the line in the Devices file for the
terminal device.

The telno element is for a pointer to a character string representing the
telephone number to be dialed. Numbers consist of the following symbols:

0-9 dial 0-9

* dial +

dial

- 4-second delay for second dial tone

= wait for secondary dial tone

On a smart modem, these symbols are translated to modem commands using the
modem description in /usr/lib/uucp/Dialers.

If telno is specified, an ACU entry in the Devices file will be used. If it is NULL,
a Direct entry will be used.

The CALL element modem is used to specify modem control for direct lines.
This element should be non-zero if modem control is required.

The CALL element attr is a pointer to a termio structure, as defined in the
termio.h header file. A NULL value for this pointer element may be passed to
the dial function, but if such a structure is included, the elements specified in it
will be set for the outgoing terminal line before the connection is established.
This is often important for certain attributes such as parity and baud-rate.
Values in this structure override the baud and modem entries.

Information on 801 type dialing units is obtained from the Devices file; thus the
speed , device and dev_len elements are no longer used.

Jusr/lib/fuucp/Devices
Jusr/tib/uucp/Dialers
Jusr/spool/locks/LCK..tty-device

SEE ALSO

uucp(1C), alarm(2), read(2), write(2), Devices(5), Dialers(5), termio(7).

DIAGNOSTICS

On failure, a negative value indicating the reason for the failure will be
returned. Mnemonics for these negative indexes as listed here are defined in
the <dial.h> header file.

INTRPT -1 /+ interrupt occurred +/
D_HUNG -2 /= dialer hung (no return from write) »/
NO_ANS -3 /* no answer within 10 seconds */

-2-

—

DIAL(3C) DIAL(3C)

ILLBep <4 /» lllegal baud-rate +/

A_PROB -5 /+ acu probiem (open() failure) »/

L_PROB -6 /» line problem (open() failure) »/

NO_Ldv -7 /« can’t open LDEVS file »/

DV_NT A -8 /* requested device not available +/
DV_NT K -9 /+ requested device not known */
NO_BD A -10 /+ no device avalleble at requosted baud +/
NO_BD K -1t I+ no device known at requested baud */

WARNINGS

BUGS

Including the <dial.h> header file automatically includes the <termio.h>
header file.

The above routine uses <stdio.h>, which causes it to increase the size of
programs, not otherwise using standard I/O, more than might be expected.

An alarm(2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of ‘‘touching’’ the LCK.. file and constitutes the device
allocation semaphore for the terminal device. Otherwise, uucp(1C) may simply
delete the LCK.. entry on its 90-minute clean-up rounds. The alarm may go off
while the user program is in a read(2) or write(2) system call, causing an
apparent error return. If the user program expects to be around for an hour or
more, error returns from reads should be checked for (errno==EINTR), and the
read possibly reissued.

DIRECTORY (3X) DIRECTORY (3X)

NAME

directory: opendir, readdir, telldir, seekdir, rewinddir, closedir - directory
operations

SYNOPSIS

#include <sys/types.h>
#include <dirent.h>

DIR *opendir (filename)
char #*filename;

struct dirent *readdir (dirp)
DIR *dirp;

long telldir (dirp)

DIR #dirp;

void seekdir (dirp, loc)
DIR *dirp;

long loc;

void rewinddir (dirp)
DIR *dirp;

void closedir(dirp)
DIR *dirp;

DESCRIPTION

The opendir routine opens the directory named by filename and associates a
directory stream with it. The opendir routine returns a pointer to be used to
identify the directory stream in subsequent operations. The pointer NULL is
returned if filename cannot be accessed or is not a directory, or if it cannot
malloc(3X) enough memory to hold a DIR structure or a buffer for the directory
entries.

The readdir routine returns a pointer to the next active directory entry. No
inactive entries are returned. It returns NULL upon reaching the end of the
directory or upon detecting an invalid location in the directory.

The telldir routine returns the current location associated with the named
directory stream.

The seekdir routine sets the position of the next readdir operation on the
directory stream. The new position reverts to the one associated with the
directory stream when the telldir operation from which loc was obtained was
performed. Values returned by telldir are good only if the directory has not
changed due to compaction or expansion. This is not a problem with System V,
but it may be with some file system types.

-1-

DIRECTORY (3X) DIRECTORY (3X)

The rewinddir routine resets the position of the named directory stream to the
beginning of the directory.

The closedir routine closes the named directory stream and frees the DIR
structure.

The following errors can occur as a result of these operations.

Arvom Ay

opendir :

[ENOTDIR] A component of filename is not a directory.

[EACCES] A component of filename denics search permission.

[EMFILE] The maximum number of file descriptors are currently open.

[EFAULT] Filename points outside the allocated address space.

readdir:

[ENOENT] The current file pointer for the directory is not located at a
valid entry.

[EBADF] The file descriptor determined by the DIR stream is no longer

valid. This results if the DIR stream has been closed.
telldir, seekdir, and closedir :

{EBADF] The file descriptor determined by the DIR stream is no longer
valid. This results if the DIR stream has been closed.
EXAMPLE
Sample code which searches a directory for entry name:
dirp = opendir(".");
while ((dp = readdir(dirp)) = NULL)
if (strcmp{ dp->d_name, name) ==0)

{
closedir(dirp);
return FOUND;
}
closedir(dirp);
return NOT_FOUND;
SEE ALSO
getdents(2), dirent(4).
WARNINGS
The rewinddir routine is implemented as a macro, so its function address cannot
be taken.

DRAND48(3C) DRAND48(3C)

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seced48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi{3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

iong jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void lcong48 (param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well-
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions Irand48 and nrand48 return non-negative long integers uniformly
distributed over the interval [0, 23!).

Functions mrand48 and jrand48 return signed long integers uniformly
distributed over the interval [-23!, 23!),

Functions srand48, seed48 and lcong48 are initialization entry points, one of
which should be invoked before either drand48, irand48 or mrand48 is called.
(Although it is not recommended practice, constant default initializer values
will be supplied automatically if drand48, lrand48 or mrand48 is called
without a prior call to an initialization entry point.) Functions erand48,
nrand48 and jrand48 do not require an initialization entry point to be called
first.

DRANDA48(3C) DRANDA48(3C)

All the routines work by generating a sequence of 48-bit integer values, X;,
according to the linear congruential formula:

Xn+l = (aXn + C)modm n20.

The parameter m =2; hence 48-bit integer arithmetic is performed. Unless
lcong48 has been invoked, the multiplier value a and the addend value ¢ are

given by:
a = SDEECE66D ;¢ = 273673163155
c=B 16 = 13 8-

The value returned by any of the functions drand48, erand48, Irand48,
nrand48, mrand48 or jrand48 is computed by first generating the next 48-bit X;
in the sequence. Then the appropriate number of bits, according to the type of
data item to be returned, are copied from the high-order (leftmost) bits of X; and
transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit X; generated
in an internal buffer, and must be initialized prior to being invoked. The
functions erand48, nrand48 and jrand48 require the calling program to provide
storage for the successive X; values in the array specified as an argument when
the functions are invoked. These routines do not have to be initialized; the
calling program must place the desired initial value of X; into the array and pass
it as an argument. By using different arguments, functions erand48, nrand48
and jrand48 allow separate modules of a large program to generate several
independent streams of pseudo-random numbers, that is, the sequence of
numbers in each stream will not depend upon how many times the routines
have been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32 bits
contained in its argument. The low-order 16 bits of X; are set to the arbitrary
value 330E16

The initializer function seed48 sets the value of X; to the 48-bit value specified
in the argument array. In addition, the previous value of X; is copied into a 48-
bit internal buffer, used only by seed48, and a pointer to this buffer is the value
returned by seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point at some
future time — use the pointer to get at and store the last X; value, and then use
this value to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial X;, the
multiplier value a, and the addend value ¢. Argument array elements
param[0-2] specify X;, param[3-5] specify the multiplier a, and param[6]
specifies the 16-bit addend c. After Icong48 has been called, a subsequent call

-2.

DRAND48(3C) DRANDA48(3C)

to either srand48 or seed48 will restore the ‘‘standard’’ multiplier and addend
values, a and c, specified on the previous page.

SEE ALSO
rand(3C).

DUP2(3C) DUP2(3C)

NAME
dup? - duplicate an open file descriptor

SYNOPSIS
int dup2 (fildes, fildes2)
int fildes, fildes2;

DESCRIPTION
The fildes argument is a file descriptor referring to an open file; fildes2 is a
non-negative integer less than NOFILES. (NOFILES is a system-imposed
maximum per process [see creat(2)].) The dup2 routine causes fildes2 to refer
to the same file as fildes. If fildes2 already referred to an open file, it is closed
first.

Note that dup? fails if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.
[EMFILE] NOFILES file descriptors are currently open.
SEE ALSO

creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2), lockf(3C).

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file descriptor,
is retumned. Otherwise, a value of -1 is returned and errno is set to indicate the
erTor.

ECVT(3C) ECVT(3C)

NAME
ecvt, fevt, gevt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char #fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
The ecvt routine converts value to a null-terminated string of ndigit digits and
returns a pointer to that string. The high-order digit is non-zero, unless the
value is zero. The low-order digit is rounded. The position of the decimal point
relative to the beginning of the string is stored indirectly through decpt
(negative means to the left of the returned digits). The decimal point is not
included in the returned string. If the sign of the result is negative, the word
pointed to by sign is non-zero; otherwise, it is zero.

The fcvt routine is identical to ecvt, except that the correct digit has been
rounded for printf ‘“%f"’ (FORTRAN F-format) output of the number of digits
specified by ndigit.

The gcvt routine converts the value to a null-terminated string in the array
pointed to by buf and returns buf. It attempts to produce ndigit significant
digits in FORTRAN F-format if possible, otherwise in E-format, ready for
printing. A minus sign if any, or a decimal point, will be included as part of the
returned string. Trailing zeros are suppressed.

SEE ALSO
printf(3S).

BUGS
The values returned by ecvt and fevt point to a single static data array whose
content is overwritten by each call.

END(3C) END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents.
The address of etext is the first address above the program text, edata above the
initialized data region, and end above the uninitialized data region.

When execution begins, the program break (the first location beyond the data)
coincides with end, but the program break may be reset by the routines of
brk(2), malloc (3C), standard input/output [stdio(3S)], the profile (-p) option of
cc(1), and so on. Thus, the current value of the program break should be
determined by sbrk [(char *)(0)] [see brk(2)].

SEE ALSO
cc(1), brk(2), malloc(3C), stdio(3S).

ERF(3M) ERF(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION
The erf routine returns the error function of x, defined as follows:

2 1.

——=Je " dt

Yx o

The erfc routine, which returns 1.0 - erf(x), is provided because of the extreme
loss of relative accuracy if erf{x) is called for large x and the result subtracted
from 1.0 (e.g., for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

EXP(3M) EXP(3M)

NAME

exp, log, log10, pow, sqrt - exponential, logarithm, power, square root functions

SYNOPSIS

#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double logl10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION

The exp routine returns e*,

The log routine returns the natural logarithm of x. The value of x must be
positive.

The log10 routine returns the logarithm base ten of x. The value of x must be
positive.

The pow routine returns x?. If x is zero, y must be positive. If x is negative, y
must be an integer.

The sqrt routine returns the non-negative square root of x. The value of x may
not be negative.

SEE ALSO

hypot(3M), matherr(3M), sinh(3M).

DIAGNOSTICS

The exp routine returns HUGE when the correct value would overflow, or 0
when the correct value would underflow, and sets errno to ERANGE.

The log and logl0 routines return -HUGE and set errno to EDOM when x is
non-positive. A message indicating DOMAIN error (or SING error when x is 0)
is printed on the standard error output.

The pow routine returns 0 and sets errno to EDOM when x is 0 and y is non-
positive, or when x is negative and y is not an integer. In these cases a message
indicating DOMAIN error is printed on the standard error output. When the

EXP(3M) EXP(3M)

correct value for pow would overflow or underflow, pow returns +tHUGE or 0,
respectively, and sets errno to ERANGE.

The sqrt routine returns 0 and sets errno to EDOM when x is negative. A
message indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr (3M).

FCLOSE(3S) FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *stream;

int fflush (stream)
FILE *Sstream;
DESCRIPTION
The fclose routine causes any buffered data for the named stream to be written
out, and the stream 1o be closed.

The fclose routine is performed automatically for all open filcs upon calling
exit(2).
The fflush routine causes any buffered data for the named stream to be written
to that file. The stream remains open.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS

These functions return 0 for success and EOF if any error was detected (such as
trying to write to a file that has not been opened for writing).

FERROR(3S) FERROR((3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror (stream)
FILE *stream;

int feof (stream)
FILE *stream;

void clearerr (stream)
FILE #stream;

int fileno (stream)
FILE #stream;

DESCRIPTION
The ferror routine returns non-zero when an 1/O error has previously occurred
reading from or writing to the named stream, otherwise zero.

The feof routine returns non-zero when EOF has previously been detected
reading the named input stream, otherwise zero.

The clearerr routine resets the error indicator and EOF indicator to zero on the
named stream.

The fileno routine returns the integer file descriptor associated with the named
stream; see open(2).

SEE ALSO
open(2), fopen(3S), stdio(3S).

NOTES
All the functions are implemented as macros; they cannot be declared or
redeclared.

FLOOR(3M) FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
The floor routine returns the largest integer (as a double-precision number) not
greater than x.

The ceil routine returns the smallest integer not less than x.

The fmod routine returns the floating-point remainder of the division of x by y:
x if y is zero or if x/y would overflow; otherwise the number f with the same
sign as x, such that x = iy + f for some integer i, and 1 f1 <1yl .

The fabs routine returns the absolute value of x, 1 x! .

SEE ALSO
abs(3C).

FOPEN(3S) FOPEN(3S)

NAME

fopen, freopen, fdopen - open a stream

SYNOPSIS

#include <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

FILE *freopen (filename, type, stream)
char +filename, *type;
FILE #stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION

The fopen routine opens the file named by filename and associates a stream
with it. The routine returns a pointer to the FILE structure associated with the
stream.

The filename argument points to a character string that contains the name of the
file to be opened.

The type argument is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append; open for writing at end of file, or create for writing
r+ open for update (reading and writing)

W+ truncate or create for update

a+ append; open or create for update at end-of-file

The freopen routine substitutes the named file in place of the open stream. The
original stream is closed, regardless of whether the open ultimately succeeds.
The routine returns a pointer to the FILE structure associated with stream.

The freopen routine is typically used to attach the preopened streams
associated with stdin, stdout and stderr to other files.

The fdopen routine associates a stream with a file descriptor. File descriptors
are obtained from open, dup, creat, or pipe(2), which open files but do not
return pointers to a FILE structure stream. Streams are necessary input for many
of the Section 3S library routines. The type of stream must agree with the
mode of the open file.

FOPEN(3S) FOPEN(3S)

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be followed directly by input without
an intervening fseek or rewind, and input cannot be followed directly by output
without an intervening fseek, rewind, or an input operation which encounters
end-of-file.

When a file is opened for append (that is, when fype is a or a+), it is impossible
to overwrite information already in the file. fseek can be used to reposition the
file pointer to any position in the file, but when output is written to the file, the
current file pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the output. If two
separate processes open the same file for append, each process may write freely
to the file without fear of destroying output being written by the other. The
output from the two processes will be intermixed in the file in the order in
which it is written.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseck(3S), stdio(3S).

DIAGNOSTICS
The fopen, fdopen, and freopen routines return a NULL pointer on failure.

FPGETROUND(3C) FPGETROUND(3C)

NAME
fpgetrou