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FOREWORD 

Until less than a century ago, men toiled manually to produce the very 
clothes they wore, shelters they lived in, and food they ate. The indus­
trial revolution-derived from the invention of machines that auto­
matically make commodities-was a revolution that vastly enlarged man's 
productive capabilities. The effect is observed upon comparing the daily 
life of a man of a century ago with that of a modern man, in his highly 
mechanized economic and interdependent social civilization. Now we 
are on the threshold of a new kind of revolution, a revolution that may 
in the future have even more far-reaching effects, vastly increasing man's 
"thinking" capabilities of planning, analyzing, computing, controlling. 
This new revolution derives from the availability of machines that auto­
matically compute and control. We know its effects will be great, but 
we now can only speculate on the forms they will take. Not only will its 
influence be directly marked in the physical sciences and in technology, 
but, perhaps even more significantly, it will have a tremendous effect 
on the biological sciences and on the economic, political, and social aspects 
of our civilization. Its effects during the productive life span of the infant 
of 1960 will certainly be greater than those the industrial revolution has 
had during the life span of the infant of 1900. Pivotal in the growth and 
development of this newest of mankind's capabilities will be the digital­
computer and -control engineer, whose primary occupation is the creation 
-the research, development, and production-of these new machines. 

There is another quite remarkable aspect of digital-computer and con­
trol engineering. Never before in the history of human endeavor has a 
new development of such scope and complexity emerged so rapidly. 
Within a single decade this entirely new field, constructing and utilizing 
thousands of new computers, has already penetrated almost all phases of 
our modern society, from nuclear-energy production and missile design 
to the processing of bank checks, business invoices, and medical diagnoses. 
And in the research stages there are already components that might make 
it feasible to build computers manyfold more complex than present-day 
computers. 

Beyond the unique potential to mankind and the phenomenal growth 
of the field is yet a third relatively unique aspect of digital-computer and 
control engineering. It is fast becoming one of the broadest in scope and 
most demanding of all engineering fields, encompassing fundamental 
aspects of logic, mathematics, systems engineering, as well as solid-state 
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FOREWORD 

physics and electrical engineering. Since an error of only a single bit in 
a program or the breakdown of a single gate or component of a digital 
computer or control can result in the failure of the entire system, high 
meticulousness is demanded of the engineer. Thus his training must not 
only cover a wide range of topics but must as well emphasize precise 
attention to detail. 

This book is the first comprehensive elementary engineering text in the 
digital-computer- and digital-control-engineering field (although there are 
several excellent advanced books in more specialized aspects of the field). 
The book seeks to present a new synthesis of educational material 
possessing a unity and breadth arising from the organization of the 
various aspects of digital-computer and -control engineering as a whole. 
It provides the material of a basic field of study for all students of elec­
trical engineering, regardless of their ultimate specialty. However, 
it is hoped that this book may help stimulate a number of young engineers 
to enter this dynamic and vitally young field. 

Samuel N. Alexander 
Chief, Data Processing System Division 
The National Bureau of Standards 



PREFACE 

General Information. The purpose of this book is to fill the need for a 
comprehensive elementary-engineering textbook in the large and still 
rapidly growing field of digital computers and controls. (The term 
control is used to emphasize that digital control and digital computers are 
based on the same principles.) The need for such a text is not confined 
to engineering schools; in industry as well, the graduate engineer with a 
few sporadic encounters with digital circuitry needs a sound introduction 
to the burgeoning literature on all phases of digital computers and 
controls. 

Within the first five years after he earns his degree almost every elec­
trical engineer will deal with some phase of digital circuitry. Therefore 
a course on digital computers is required for all candidates for the bachelor 
of electrical engineering degree at The George Washington University. 
This is indicative of a trend in engineering schools throughout the country. 

This text is based on experience I gained in teaching courses on digital 
computers at The George Washington University School of Engineering. 
It is directed to senior undergraduate engineering students and first-year 
graduate students and is intended primarily for a year's course. Pre­
requisites are college physics, calculus, and at least a first course in 
electronic circuits, although no great proficiency in these subjects is 
required. Since it is an elementary exposition of the principles of digital­
computer and control engineering, the book covers topics in all three 
phases of the subject: the over-all design of digital systems (Parts 1 and 
2); the logical design of digital circuitry (Parts 3 and 4); and the electronic 
design of digital circuits (Part 5). 

An introductory exposition of a field as large and complex as this can 
never hope to treat all subjects exhaustively. Full treatment must be 
left to specialized source books, handbooks, and journal articles. Almost 
without exception, each chapter of this book could be used as the basis for 
an entire book in itself-this is in fact true of some sections as well. Each 
chapter is designed to introduce the student to certain fundamental con­
cepts and techniques of development. The method of teaching is by 
example rather than by generalized exposition. It is felt that the student 
is more capable of grasping abstractions from specifics than of extracting 
concepts from discussions· based on generalizations alone. Hence I 
ha ve tried wherever it was possible to guide the student by means of 
specific, concrete examples. From experience I have found that this 
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pedagogical method is particularly well suited to engineering students. 
Since there has been no previous comprehensive text in the field, there 

is no precedent for the choice of topics. The subjects covered were chosen 
to present a continuous, natural development of the major aspects of the 
field in the limited time available to the engineering student. Of course 
in any field of this size there will exist differences of opinion as to which 
topics should and should not be included. I feel that I have chosen 
those topics of greatest importance and that this comprehensive treat­
ment will satisfy the needs of the largest number of readers. 

Much attention was paid to the exercises, of which more than 750 
appear in the book. The exercises at the end of each section serve to 
illustrate the material of the section, to enable the student to gain compu­
tational facility, and to extend the material to closely related topics not 
covered in the section. Almost every chapter ends with Additional 
Topics, a section designed' to introduce the reader to new material not 
covered in the chapter and to stimulate his further reading in the field. 
The t~xt includes many new results of original research never previously 
compiled into book form, some of which here appear in publication for 
the first time (see Special Technical Features below). 

Outlineo! the Text. Perhaps the most outstanding capability afforded 
by digital techniques is that of decision making, as exemplified by the 
programmed system. Thus Part 1, the first of two parts on digital 
systems, is concerned with the digital programmed system. Its first two 
chapters are introductory in nature: the first is intended to motivate the 
student by delineating the wide range of applications of digital systems 
and controls; the second is designed to orient the student with respect to 
the digital-computer-engineering field. The next three chapters are 
directly concerned with programming; their purpose is to expose the 
engineering student to a large variety of instruction and operation 
formats, as well as to the practice of coding. Sequencing of instructions 
in four-, three-, two-, and one-address-system instruction formats is con­
sidered. The fundamental concepts of the loop, or iteration, and the 
subroutine are introduced, followed by a discussion of the various kinds of 
operat'ions that instructions min involve. At the end of Part 1 we con­
sider the formulation of program-checking and computer-maintenance 
programs. Further automatic-programming techniques lay the ground­
:work for a simplified presentation of the, international algebraic automatic 
program called ALGOL. 

Part 2 is concerned with the functional approach to digital-systems 
design; here again the purpose is to expose the student to a variety of 
possible systems-design concepts. Numerical analysis is considered, as 
the basis of the systems design of the general-purpose digital computer. 
Here the concept of the polynomial-approximation approach is stressed 
as a fundamental method for reducing most mathematical computation 
to additions, subtractions, multiplications, and divisions. Next are 
described computational methods other than those of classical numerical 
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analysis, methods which are, however, of fundamental importance in 
t>usiness and in other activities requiring data reduction. Besides tech­
niques for searching and sorting, examples of methods for redundant and 
irredundant coding are considered. In order to demonstrate clearly the 
possibility of other than general-purpose computers, the digital differen­
tial analyzer is considered, along with real-time control and other tech­
niques. Also a general discussion is included of the concepts under­
lying the "super" computers now in the research and developmental 
stages. Finally I introduce the Pedagac, a small general-purpose com­
puter intended to provide the necessary thread of continuity to the study 
of digital-computer engineering (see below for further discussion of the 
Pedagac). 

Probably the "newest" of the concepts confronting the uninitiated 
reader in digital-computer and -control engineering is that concerned with 
Boolean algebra as the basis for the logical design of digital circuits. 
Thus Part 3, the first of two parts on the logical design of digital circuitry, 
is concerned with the mathematical foundations of Boolean algebra. 
First Boolean algebra is introduced in terms of propositions, for it is 
advisable that the engineer understand the relation of Boolean algebra 
to other concepts as well as digital circuitry. Hence we take up the 
propositional-calculus representation and the class, or set, representation 
before the digital-circuit representation. The method,of using bases and 
associated designation numbers in the succeeding chapters (which was 
first fully developed by the author, although it appeared implicitly in 
some earlier writings) has been found admirably suited to the teaching 
of the logical design of digital circuits. On the basis of this method, 
several modern procedures for the simplification of Boolean functions are 
explained, leading into the design of digital circuits to compute elemen­
tary synchronous recursive functions. In the final three chapters of this 
part, digital computational methods of importance in logical circuit 
design are considered. With few exceptions the methods presented 
are based on the author's original research. Elementary algorithms, 
including methods for solving Boolean equations and their application to 
circuit design, are given. Chapters 13 and 14 consider computations 
with Boolean matrices, the former being concerned with the theoretical 
development of the methods, the latter with applications of these results. 
(Should it be desired to study the applications of the computational 
methods before delving into the details of the proofs, Chap. 13 has been 
written so that the applications of Chap. 14 may be considered directly 
after Sec. 13-3 with no loss of continuity.) 

Part 4 is concerned with the logical design of specific computer com­
ponents. First the serial arithmetic unit is considered, then parallel and 
rapid arithmetic operations. Since the philosophy of teaching general 
principles by specific example is used, a survey of methods of performing 
arithmetic operations is not given. Instead the discussions are centered 
round a few illustrations, carefully chosen for their suitability in demon-
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strating clearly the concepts involved in circuits that perform arithmetic 
operations. Next the various problems are considered that arise in the 
computation of control functions, beginning with a general discussion of 
minimum decoding procedures. Finally the concept of packaging is 
introduced, and with the logical design of the Pedagac as an illustrative 
example, many of the important aspects of the final logical design of a 
complete digital system are elucidated. 

The last part, Part 5, is concerned with what is probably the most 
active field in digital-computer and -control engineering, the electronic 
design of digital circuits. The goals of the electronic design of circuits 
for use in digital computers and controls are derived from considerations 
of the digital-systems design and the logical design already covered. 
Here again the attempt is made to teach concepts through selected 
examples of circuits. Clearly, in these rapidly developing and dynamic 
fields, detailed discussions of many different specific circuits are not 
justified-many of them would certainly be obsolescent before publication 
of the book. Hence specific circuits are used only as concrete illustrations 
of the more general underlying principles. The experienced reader will 
observe that the topics covered in many of the individual sections can 
well afford entire books to themselves. The first chapter of this part is 
concerned with the two most important problems involved in the transi­
tion from abstract systems and logical design to the electronic realization 
of digital circuits, namely, timing, or clock phasing, and reliability. 
Then aspects of the use of semiconductor devices, diodes and transistors, 
in electronic-digital-circuit design are considered. Here the most impor­
tant concept to be learned is a thorough understanding of the use of the 
devices; hence much space is devoted to discussion of the physical opera­
tion and the equivalent circuit of transistors. Consideration of magnetic 
elements in digital-circuit design follows, encompassing magnetic-core and 
muItiaperture gating devices as well as magnetic amplifiers. The discus­
sion ends with a section on two most promising modern circuit develop­
ments, Cryotron and microwave circuits. The next chapter is concerned 
with the closely related memory methods and input-output techniques. 
Only core and film high-speed memories are considered, since the use of 
other high-speed memory forms is rare; for the same reason only tape and 
drum low-speed memories are described. Many of the most important 
input-output methods depend on analog-to-digital and digital-to-analog 
conversion, and these are accordingly included in this chapter. In this 
context a full explanation of the important sampling theorem is given. 
The final chapter illustrates some exceedingly important topics in the 
final design of a computer. through the electronics and wiring diagram 
of the Pedagac. 

Special Technical Features. In Part 1 of the text Sec. 5-9 is concerned 
with the International Algebraic Language (ALGOL). This general 
automatic algebraic programming language contains the primary features 
of other automatic programs, such as FORTRAN, IT, etc., and has the 
advantage of becoming widely accepted. Sponsored by the Association 
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for Computing Machinery and several foreign societies, the universal 
acceptance of ALGOL would undoubtedly have a great beneficial effect 
on the national and international exchange of ideas and methods of 
programming. 

Special features of Part 2 include J. H. Wegstein's general method for 
accelerating the convergence of iterative solutions to equations, in Sec. 
6-3. The Tabledex method and the techniques of searching with relaxed 
conditions given in Secs. 7-3 and 7-4, as well as the new, more accurate 
formulas for evaluating superimposed coding given in Sec. 7-7, are the 
original work of the author. The specific method of Sec. 8-3 for coding 
the control computer was developed by the author, while the method for 
coding the logistics and business computer, appearing in Sec. 8-5, is based 
on the work of W. H. Marlow. 

In Part 3 the computational methods for constraints, logical depend­
ence and independence, solution to Boolean algebraic equations, and 
transformation to the absolute simplest form, given in Secs. 12-2 through 
12-10, are the author's original developments. The method of ante­
cedence and consequence solutions, the fundamental Boolean matrix 
formulas and their proofs, given in Secs. 14-1 through 14-6, are the result 
of the author's original research, as are also the extension of the use of 
designation numbers to three (or more) -valued logic and their appli­
cation to the design of three-valued digital circuits (Sec. 12-11). The 
extension of the fundamental Boolean matrix formulas to multivalued 
logic, as given in Sec. 14-7, was developed by W. R. Smith and N. F. J. 
Matthews; the general solution to the logical matrix equation given in 
that section was developed by W. R. Smith. R. D. Elbourn deserves 
credit for the direct method of finding prime implicants given in Sec. 11-7. 

The discussions of the parallel adder and of rapid multiplication, in 
Secs. 16-2 and 16-4 of Part 4, are based on the work of A. Weinberger and 
J. L. Smith. The rapid-division method of Sec. 16-5 was developed by 
the author and J. B. Wilson. The treatment of minimum decoding 
methods is based on a development of C. H. Page. In Part 5 the proba­
bilistic-logic approach to increasing circuit reliability (Sec. 19-4) is the 
author's adaptation of a development of W. S. McCulloch. The tran­
sistor equivalent circuit, described in Sec. 20-4 for the most commonly 
used grounded-emitter voltage-drive configuration, is based on an original 
development of S. B. Geller. The magnetic amplifier of E. W. Hogue in 
Sec. 21-3 presents a new technique for magnetic amplification. Section 
23-4 on minimum-wiring theory is based on the works of H. Loberman 
and A. Weinberger. 

Special Pedagogical Feature: The Pedagac. It has been my experience 
that, although students might understand most of the various isolated 
aspects of computer engineering, they still might not visualize the com­
plete process of designing and building a computer. In order to provide 
the necessary thread of continuity to the study of computer engineering, 
a simple computer, the Pedagac ("Pedagogic Automatic Computer") is 
designed from start to finish in the book (see Chaps. 9, 18, and 23). At 
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first glance the Pedagac may seem unduly specific. However, . this is 
far from true, for the Pedagac serves as a concrete example by means 
of which many exceedingly important points are illustrated. Many 
of these points would be completely meaningless to the student if they 
were not developed in the context of an entire system. The Pedagac 
was specially designed to illustrate pertinent subject matter most clearly 
from a pedagogical (rather than cost or production, etc.) point of view. 
The arithmetic unit is serial, since a parallel arithmetic unit would have 
overwhelmed the student with primarily repetitive circuitry. The 
registers are static flip-flops, for these are the most easily understood in 
relation to arithmetic operations. The control is of a parallel nature, 
which is in general easier to comprehend. Eight clock phases are used to 
simplify the transition from logical to electronic design. The specially 
designed packages were made as simple in concept as possible. 

Possible Course Structures. This text may be used for college courses 
in several different ways. For a two-term course the first term may cover 
Parts 1 and 2, and Part 3 through Chap. 12; the second term, the remain­
der of the book. Or the book may be used for a two-term composite 
elementary-advanced course: the elementary course may include much 
of . the fundamentals of digital-computer engineering, and then those 
students who wish to pursue the subject in more detail may continue in 
the more advanced course. One suggested elementary course would 
consider Chaps. 1 to 4 of Part 1, Chaps. 6 and 7 of Part 2, Chaps. 10 and 
11 of Part 3, Chaps. 15 and 16 of Part 4, and Chaps. 19 and 20 of Part 5; 
the more advanced course that follows would complete the text. A more 
leisurely treatment of the subject may be given in a three-term course, 
with more attention being paid to the selected readings and other projects 
and subjects mentioned in the Additional Topics sections. Here Parts 1 
and 2 may be covered the first term, Part 3 the second term, and Parts 
4 and 5 the third term. Other, perhaps quite eclectic, arrangements will 
certainly occur to the experienced instructor. 

Acknowledgments. It gives me the greatest pleasure to acknowledge 
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PART 1 

INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS 

CHAPTER 1 

APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 

1-1. Introduction 

The purpose of this chapter is to stimulate the reader to want to know 
what is in the rest of the book. By illustrating how computers can be 
applied, we hope to interest the reader in how he might help design and 
use these remarkable machines. The wide range of potential applica­
tions of digital computers and control in all phases of science, industry, 
and government is truly amazing. In the sciences applications range 
from mathematics and physics to biology and medicine. The early 
applications were in engineering and physics, but perhaps the greatest 
scientific use of computers yet to come is in the biological, medical, and 
social sciences. In business and industry applications range from auto­
matic banking, inventory control, and process control to the precise 
control of milling machines to produce parts requiring complicated high­
tolerance machining and to missile-testing processes. In government 
applications range from automatic patent searching and post-office sort­
ing to large-scale control of defense weapon systems. Present applications 
are already too numerous to list in a single volume, but they are infini­
tesimal compared with the potential future applications. We hope, 
however, that by presenting brief descriptions of just a few applications 
we may impart to the reader a better insight into how digital computers 
and controls are used. 

In general a computer can be conceived as a numerical-transformation 
machine. N umbers are the inputs to it, and the computer transforms 
these numbers into new numbers, which appear as the outputs: 

Input numbers -> I computer 1-> output numbers 

For instance, the input numbers may be the initial conditions of a 
differential equation; the output numbers will be a table of the functional 
solutions. Or the input numbers may be readings from an engineering 
drawing, and the output numbers will be coded instructions to direct a 
special milling machine. Or the input numbers may be codes that 

1 
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represent a patient's symptoms; the output numbers may be codes that 
represent possible alternative disease diagnoses. 

There are two main kinds of electronic computers: digital and analog. 
In digital computers the numbers (digits) themselves are handled explic­
itly by the computer; an analog computer instead deals with a representa­
tion of the numbers, for instance, by voltages, lengths, etc. In this 
book we are concerned with digital computers only. These can be 
classified as general-purpose or special-purpose computers. In the first 
part of this book we shall describe the general-purpose computer; in 
Part 2 we shall consider some of the special-purpose computers. Special­
purpose digital computers are sometimes referred to as digital controls. 
The same engineering principles are involved in the design of either 
general-purpose computers or special-purpose digital-control computers. 
Therefore we have used the two terms in the title of the book. 

For the purposes of this chapter we have arbitrarily classified computer 
applications into four categories; many applications can fall into more 
than one of our categories. First we shall consider numerical solutions 
to equations. This represents an important class of applications, and 
undoubtedly it is these applications which makers of the first computers 
had in mind. The first of these applications described is based on prin­
ciples familiar to every electrical engineer, the motion of charged particles 
in a vacuum. However, the context of the application discussed here 
has far greater significance. Problems involving the solution to equations 
are not limited to the physical sciences; equations can be written to 
describe many biological phenomena as well. The second category is 
process control: Here the need for digital computers with specialized 
capabilities becomes apparent. It is probably not an exaggeration to 
say that the third category came into being because of the great capabili­
ties of the computers: this is simulation. Before the advent of computers, 
simulations (except perhaps laboriously calculated military war games) 
were rarely even discussed because they were clearly not feasible to 
perform. However, with the advent of high-speed computers simula­
tions have become practical, and great new fields of scientific research 
have been opened. Most of the present-day computer applications can 
probably be classed in the fourth category, data processing: Business 
accounting, statistical reductions, information retrieval, and many other 
important but routine procedures can be handled by computers. 

1-2. Numerical Solution to Equations 
Motion of Charged Particles in the Earth's Magnetic Field. Project 

Argus was a major scientific and military experiment conducted by the 
United States (Fig. 1-1). Rockets carried a small atomic bomb more 
than 300 miles above the earth, at this altitude the bomb was exploded, 
and a resulting thin layer of radiation spread quickly round the globe. 
Nuclear and atomic particles were propelled by the exploding bomb and 
streaked through the vacuum of the universe under forces almost entirely 
due to the earth's magnetic. field. Some particles moved. toward. t4e 
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earth's poles and caused artificial auroras (northern and southern lights). 
In order to measure the characteristics of this radiation layer, an earth 
satellite and other rockets were launched with paths passing through the 
layer (see Fig. 1-2). Instruments in the satellite and rockets transmitted 
measurements back to earth. Scientifically the shots rank among man­
kind's foremost experiments. They showed that radiation introduced 
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FIG. 1-1. Announcement of Argus shots. 

into space by man can have significant effects over those of natural 
radiation. Militarily the Argus shots indicated that the additional radia­
tion added to the natural radiation interfered with man's electronic 
communications. The grave consequence is that such interference can 
be caused at will. 

The Argus project tested theoretical calculations of what would take 
place when the small atomic bomb was exploded above the earth's 
atmosphere. Where would the electrons and other particles gO? This 
was a problem in the study of the motion of charged particles in a mag­
netic field (the earth's) and is in principle, except for the shape of the 
field, the same as the problems encountered in magnetically directing 
an electron beam in a television tube, or accelerating particles in a 
betatron, or circulating particles in a cyclotron, etc. If the earth's 
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~a'g~etic field is represented as that of a magnetic dipole, and if x, y, and z 
are cartesian coordinates with the z axis directed along the earth's mag­
netic axis ·from south to north, then from electromagnetic field theory 

FIG. 1-2. Earth satellite measuring characteristics of radiation layer. 

it can be shown that the trajectories of the charged particles are given by 
the solutions to the following differential equations (where the super­
script dots denote differentiation with respect to time): 

x = M q { _ (x2 + y2 + z2)-H[ (2Z2 - x2 - y2)y - 3yzz]} 
me 

ii = M q { - (x2 + y2 + Z2)-%[ (x2 + y2 - 2Z2)X + 3xzz]} 
me 

Z = M q {+3z[k(x2 + y2 + Z2)-% + (X2 + y2) (x2 + y2 + Z2)-4]} 
me 

where 'k = (xy - yx) - (x2 + y2) (X2 + y2 + Z2)-~ 
M = earth's magnetic dipole strength 
m = relativistic mass of particle 
q = charge of particle 
c = speed of light 

The initial conditions are the initial coordinates (xo,Yo,zo) of the particle 
and the components (xo,Yo,zo) of its velocity just after the explosion. 
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These equations can be used to plot the paths of the charged particles 
given their initial velocities and directions. The distribution of the 
initial velocities and directions can be calculated from nuclear physics; 
the trajectories of different kinds of particles can then be computed 
for many different initial conditions in the distribution. The complexity 
of these computations requires the use of a digital computer. The basic 
importance of such a calculation preliminary to the actual experiment is 
evident: by predicting the motion of the particles, proper and adequate 
plans can be made concerning the instrumentations of the satellite and 
the measurements to be made, the best geographical location of the experi­
ment, the optimum altitude for exploding the bomb, and so forth. 

Hydrodynamics of Blood Flow. The partial differential equations that 
describe biological phenomena more often than not defy analytical solu­
tion. Attempts are usually made either to introduce simplifying assump­
tions or to isolate special aspects of the problem for investigation. Both 
these alternatives involve certain compromises on the part of a researcher. 
Such compromises can often be avoided, however, by using an electronic 
computer to solve the original partial differential equations numerically. 

Consider the problem of blood flow through a large artery-an instance 
of pulsed viscous fluid flow in an elastic tube. The first step in an 
investigation of this problem is the formulation of hypotheses about the 
hydrodynamic principles involved and the derivation of the corresponding 
partial differential equations. The second step is to devise an experiment 
from which boundary conditions for the equations may be determined. 
The third step is to solve the equations on a computer, comparing the 
solutions with the data obtained experimentally. Probably adjustments 
will be required in the hypotheses and the equations, and further experi­
ments and computations will have to be devised. In this way the phe­
nomenon can be studied in its entirety. 

For example, the following equations can be derived, assuming laminar 
viscous flow and an exponential functional form for the elasticity of the 
blood vessel: 

where P = pressure 

7rA 4 dP 
F=---

8p. dx 

dP = CAm 
dA 

F = average flow through a cross section 
V = average blood velocity over a cross section 
f.L = coefficient of blood viscosity 
A = radius of aorta 
x = distance along aorta 
t = time 

C, m = constants 
The experiment was to measure the pressure, as a function oi time, at 



6 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 1 

equally spaced intervals along the aorta of an anesthetized dog·· (see 
Fig. 1-3). The intercostal arteries (between the ribs) were th~d, so that 
there was no significant outflow from the aorta, and a flowmeter was 
placed at one end of the aorta. The boundary conditions chosen were 
the flow and the pressure at one end of the aorta; the equations were used 
to predict the pressure at the other points along. the aorta. The accuracy 
of the predictions with respect to the experimental results would indicate 
the degree of validity of the original hypotheses upon which the equations 
were based. Such experiments can have important applications to the 
prevention and cure of heart diseases in man. 

Flowmeter 

Fl =F(XI,t) 

PI"" P~xl,t) 

Pressure 
gauges 

FIG. 1-3. Hydrodynamics of blood flow. 

The Design of a Lens System. The need for accurate high-altitude 
photography has gained importance with the suggestion that aerial 
inspections be used as a means of averting atomic wars. For this work 
lenses of very high resolving power must be designed for aerial cameras. 
Figure 1-4 shows the detail that can be obtained from high-altitude 
photographs using modern lens systems. The scientific design of lens 
systems has become feasible only through the use of electronic computers. 

The problem of designing a lens system consists in tracing the paths 
of many rays, emanating from a single obiectpoint, through the lens system 
to the final image plane (see Fig. 1-5). The extent of deviations in the 
image plane of these rays is a measure of the resolving power of the sys­
tem. The computer computes the path of each ray as it would be 
refracted on passing through each spherical lens surface of the system. 
The initial direction of each ray is taken from the object point under 
consideration, and the position of impingement of this rayon the first 
lens surface is computed. Then the new direction of the ray as it leaves 
this first surface is calculated, and from this its position on the second 
lens surface is computed. In this way the ray is traced through the 
entire lens system, and its position onthefinal image plane is determined 
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FIG. 1-4. Aerial photography (25,000 ft), with enlargement of circled portion of photo­
graph. [Photographs courtesy U.S. Air Force Air Photographic and Charting Service 
(MATS).] 
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TABLE 1-1,. FLOW DIAGRAM OF COMPUTATIONS FOR TRACING A RAY THROUGH 

A LENS SYSTEMt 

Read into the computer three constants for the lens surface presently under 
consideration: 
Cl = curvature of spherical lens surface 

t = distance between this and previous lens surface 

J.l.l = J:l = ratio of indices of refractions of lens surface to left and right, respec-

tively 

t 
Read i'nto the computer six constants for the ray being traced, namely: 
T = (x,y,z) = three coordinates of rayon previous lens surface 
Q = (X, Y,Z) = three components of unit direction vector of ray leaving previous 

surface 

t 
Compute Tl = (Xl,Yl,Zl), the coordinates of the point where the ray strikes this 
lens surface, by means of the following incidence equations: 

Xl = X +LX - t 
Yl = Y +LY 
Zl = Z + LZ 

where L = + C1M2 - 2M., 
e X + ~ 

and ~ = [X2 - Cl(ClM2 - 2M.,)1~2 

M2 = X2 + y2 + Z2 - e2 + t2 - 2tx 
M:x; = X + ex - t 

e = tx - (xX + Y Y + zZ) 

t 
Compute Ql = (Xl,Yl,Zl), the components of the unit direction vector of the 
refracted ray leaving this surface, by means of the following refraction equations: 

Xl = J.l.IX- gCIXl + g 
Y l = J.l.1Y - gCIYI 
Zl = J.l.IZ - gCIZ1 

where g = e - J.l.1~ 
and e = [1 - J.l.1 2(1· - ~2)1~ 

and ~ was found in the previous box. 

Print out Tl = (Xl,YI,Zl) and Ql = (X1,Y1,Zl)' 

.J.. 
Repeat the computation for each lens surface of the system in sequence from left to 
right until the ray position on the final image plane has been determined. 

t The subscripted variables refer to the lens surface under consideration; the non­
subscripted variables refer to the previous surface. 
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(see Table 1-1 and Fig. 1-6). The results of a set of such computations 
from one object point are shown to the right of Fig. 1-5, where each dot 
represents the final position of a rayon the image plane. In an ideal 
lens system all the rays would fall on the same point in the final image 
plane. The dispersion of the dots indicates the resolving power of the 
real lens system. 

FIG. 1-5. Ray tracing. 

y 

x. 

FIG. 1-6. Geometry of ray tracing. 

1-3. Process Control 

Machine-tool Control. t Significant improvements in many manufac­
turing processes can be obtained with the application of digital data­
processing and control techniques. An example is digital machine-tool 
control, used to improve the over-all process of producing many different 
and complicated parts needed in our modern technology. Greater accu­
racy, reproducibility, and versatility are obtained as tooling costs and 
skilled-manpower requirements are reduced. It increases our capabili­
ties to produce greater quantities and varieties of precision-machined 
parts, thus revolutionizing their potential use. 

Consider a milling machine cutting a two-dimensional contour. The 
cutting tool is moved in the x and y directions by means of high-perform­
ance hydraulic servo drives. These servo drives are controlled by 
rapidly sequenced pulses that tell the servos precisely where to move the 

t See Y. C. flo and E. C. Johnson, Design of a Numerical Milling Machine System, 
Proc. Eastern Joint Computer Conf., 1957, Washington, D.C. 
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tool in order to obtain the contour finally desired. For instance, each 
time the x-direction control receives a pulse, it might advance the tool 
0.0002 in. in the x direction; if we assume that there can be up to 20,000 
such pulses per second, the tool can be made to advance in the x direction 
a maximum of 0.0002 X 20,000 = 4 ips = 20 fpm. By varying 
the number of pulses per second, up to the maximum, the speed with 
which the tool moves in the x direction can be precisely controlled. The 
control of the y-direction motion of the tool is similar. Thus the tool 
can be directed to move round any desired contour. The precision of 
machining the desired part is of course limited by the smallest increment 
of distance of the control. 

Part to b.e made 

FIG. 1-7. Cutter offset path. 

The problem of digital machine-tool control reduces to that of trans­
forming information on a blueprint design into an appropriately timed 
sequence of x and y input control pulses. The control pulses direct the 
center of the cutting tool, but the desired contour is formed by the edge 
of the cutter; hence the proper cutter offset must be calculated from the 
blueprint. See, for example, Fig. 1-7, where the circles indicate some of 
the successive positions of the cutter. If we assume in Fig. 1-7 that the 
graph lines are 0.0002 in. apart, then the dots represent the successive 
positions of the offset path of the cutter's center that should be directed 
by the control pulses. (For example, the diagonal cut would be made by 
two pulses in the y direction for each one pulse in the x direction.) Of 
course, in a realistic case the part would be many times the size illus­
trated, and hence the number of input pulses required would be very 
large. Thus it would be a difficult job to start from the blueprint and 
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manually determine the detailed sequences of control pulses. The 
method of interpreting the blueprint design for the automatically con-
trolled milling machine is divided into . L ____ \ 
two steps. First the cutter's offset --r 
path is determined grossly in terms of / I 

the end points of straight-line path Ra,\d,'iu_sEj1-_-_-_-_~--,.\. '\,\ 
segments, and radii of circular con-
tours, and so forth, as shown in Fig. 
I-S. This in itself can present difficult 
problems of curve fitting. (Can you " ___ I . \ 
determine the equations of the offset . 1----------~ 
path for the contour illustrated in FIG. 1-8. Gross determination of 
Fig. I-S?) The second step is to inter- cutter's offset path. 
polate between these points and from 
the radii, etc., to determine finally the precise O.0002-in. input-pulse fine 
structure. 

Two computers are used for this process. The first is a general-purpose 
digital computer into which are put the specifications for the part contour 
taken from the blueprint. These might take the forms "diagonal at 
arctan 2," "straight 4 inches," "horizontal 3 inches," "radius 2 inches," 
etc. Or the input to the digital computer might be the blueprint itself, 

Blueprint 

Input to computer 

FIG. 1-9. Machine-tool control process. 

Automatic 
milling machine 

put into the computer by means of a "picture-reading" machine. The 
computer is programmed to compute from such input data the gross 
data of the offset cutter path. This is perhaps put out in the form of 
punched paper tape, like the rolls of a player piano, or in the form of a 
deck of punched cards. The second computer is used to control the 
milling machine directly. The punched paper tape or card deck is put 
into this control computer, which interpolates, etc., to produce the fine­
structure input pulses to the servo drives. The entire process is illus­
trated in Fig. 1-9. 
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FIG. 1-10. Control of chemical plant. 
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Control of Chemical Plant. In many factories the processing of raw 
materials frequently involves sequences of decisions for which all alterna­
tive possibilities are known. By means of digital computers the entire 
processing can be made completely automatic. Control of this kind 
has the advantages that the decision processes themselves become more 
reliable when performed electronically and that the design of more com­
plicated processes becomes feasible. As a specific example, consider a 
simplified version of a chemical factory that produces Al20 3 (see Fig. 
1-10). t Table 8-2 summarizes the conditions which initiate various 
actions in the plant. The column entitled "Sensed-signal conditions" 
represents the list of conditions requiring some operation to be performed. 
The column entitled" Corresponding signals to be generated" indicates 
the actions to be taken. 

Input signals to the control computer are transmitted by wires from 
critical places in the factory (see Fig. 1-10). These signals, defined in 
Table 8-1, consist essentially of two-valued (on or off) test results which 
in combination tell the computer the present state of the factory. For 
example, signal L(I) will be a pulse when the mixture in mixing tank 1 is 
at or above a predetermined level and no pulse if the mixture is below 
this level. Each signal is initiated by a transducer, a device that con­
verts mechanical information into electrical information, or vice versa. 
The transducers for our example convert fluid levels in tanks, tempera­
tures, chemical concentrations, volumes of precipitate in a centrifuge, 
pressures, and so forth, into the electrical pulses that are the inputs to 
the computer. The outputs from the control computer are electrical 
signals supplied to transducers (servomechanisms) that open and close 
valves or hatches and otherwise operate to change the state of the fac­
tory. Table 8-2 shows under what conditions such changes of state 
will be initiated. 

1-4. Simulations 

Industrial Dynamics. The term industrial dynamics refers to the 
processes and factors influencing the economic development of an indus­
trial corporation considered as an interacting part of a free competitive 
economy. The study of industrial dynamics involves so many factors 
that no complete analytical mathematical analysis is yet possible. 
Many universities in the United States, in cooperation with many 
industrial corporations, are attempting to simulate aspects of the indus­
trial-dynamics problem. Representatives of management take part in 
such simulations, making decisions; the digital computer then computes 
the effects of these decisions and produces a report to the management 
representatives, who make new decisions, etc. (see Fig. 1-11). One 
advantage of such simulations is that they aid in training management 
personnel by presenting them with many and different industrial circum-

t The control of this particular process will be considered in greater detail in Sec. 
8-3; it suffices here to outline briefly the kind of input information supplied to the 
computer and the way the computer then controls the factory. (See pp. 262 to 267.) 



..... 

.;:. 

Corporation No. 1 

Management 

~ 
Decisions~ 

Results ... 

~. 
~ 

Production 

, sal~S 'J~ 
~I 

Transportation 

unJOIIJ 
Inventory 

I I 

.-IJ[ JCl 

. DigitaL 
computer 

CI 

J!:l 

FIG. 1-11. Business simulation. 

Management 

o 
~ 

'.-Decisions 
~ Results 

Corporation No.2 

~ 
~ 



SEC. 1-4] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 15 

stances analogous to real situations. A second advantage is that the 
simulations aid the study of industrial dynamics by bringing before the 
scientists involved situations not encountered through purely academic 
study. And, third, important generalizations can be deduced from the 
progress and results of the simulations. 

As an illustration, consider a multifirm one-product competitive indus­
try. The simulation is designed in such a way that the results of 5 years 
of operations can be simulated in 1 day. Each firm in the simulation is 
represented by a team of executives, who must make the following set of 
" management" decisions: 

1. Price of product 
2. Producing volume 
3. Advertising expenditures 
4. Research and development expenditures 
5. Amount of new investment in plant and equipment 
6. Dividends to be paid, etc. 
One set of such decisions is made by each team firm for each quarter 

of a year. The computer then computes the interactions and effects 
of these decisions on the market; i.e., it simulates what may happen in 
reality and produces for each team a report giving: 

1. Sales volume 
2. Per cent of total products sales handled by this firm 
3. Production capacity of this firm for the next quarter 
4. Statement of profit and loss 
5. Current inventory quantities 
6. Statement of receipts and disbursements 
7. Statement of financial conditions, etc. 
Based on the study of its report, each team makes decisions as to how 

the firm will operate in the next quarter. These decisions are fed into 
the computer, and the simulations progress in this way from quarter to 
quarter. 

The computer processes the decisions made by the teams (firms) and 
produces reports by means of mathematical models. The model is 
essentially a set of hypothetical equations relating the input information 
to the desired output information. For example, increased advertising 
bears a functional relation to increased sales, but this in turn depends 
on the advertising decisions of competitive firms. Increased research 
and development can produce an improved product which may give 
one firm some advantage. Price rises of course offset sales, but adver­
tising can to a certain extent offset an increase in price. Obviously the 
gross profit is the product of sales volume and price per unit product, 
minus administrative costs, overhead, manufacturing costs, advertising, 
research and development, etc. The mathematical model embodying 
such considerations can become very complicated, depending on the level 
at which the simulation is intended. Evidently a great deal of study 
and research must be carried out in connection with the derivation of 
the specific equations that enter into the computer simulation. For a 
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simulation to be at all realistic, the complications will be so numerous 
as to be impossible to perform without digital computers. 

M an-Machine Simulation System. Man-machine simulation is now 
recognized as an essential tool for the development of complex automatic 
systems that involve both electronic and manual controls. Such is the 
case, for example, in air-traffic control, ground control of interceptors, 
ground-controlled approach and landing, weapon assignment, or missile 
guidance systems. The interactions between the electronic control sys­
tem being designed and the team of human operators can be studied 
before the system is actually constructed. This eliminates the only other 
alternative, the frequently prohibitively expensive process of actually 
building the proposed system and carrying out an extensive program of 
tests and modifications. 

Figure 1-12 represents a simulation system that includes both a digital 
and an analog computer, linked with display and control equipment 
which permit human beings to be coupled into the system. The analog­
computer equipment is used for such tasks as accepting continuous con­
trol information and solving complex dynamic equations in real time, 
for which they are suited. The digital computer is used for controlling 
the experiment, for sequencing the stages depending on the outcome 
of each stage, for generating simulated data, for calculating with high 
precision where necessary, for handling variables with large dynamic 
ranges, for making logical decisions, and for statistically analyzing 
experimental results. 

An example of a simulation is a simplified ground-controlled inter­
ceptor system (Fig. 1-12). The digital computer simulates a situation 
in which a large number of aircraft are observed by the search radar. A 
console displays the locations of these aircraft on a cathode-ray tube 
for the ground crew; with each aircraft is also displayed an associated 
identification (i.e., friendly, enemy, unknown, interceptor, bomber, com:" 
mercial, etc.). The ground crew manually assigns targets to the inter­
ceptors; the targets are automatically tracked by the digital computer. 
A model of an interceptor cockpit fully equipped with instruments and 
pilot flying controls enables a human operator to imitate the actions 
of the interceptor pilot in flight. The pilot of the interceptor receives 
his flight-control information either directly from the digital computer 
or from the ground-crew commands. The pilot's control movements are 
interpreted by the analog computer, which then simulates the dynamics 
of the interceptor, operating the instruments in the cockpit. The veloc­
ity components of the interceptor are sent to the digital computer, 
which computes the path of the interceptor. The digital computer also 
displays the computed positions of both interceptor and target on a 
monitor scope for the ground crew. It is this display which gives the 
ground crew its information for the simulated data link with the pilot. 
The research control console enables a research team to set up the initial 
conditions, vary the target aircraft maneuvers, and determine the inter­
ceptor closure tactics. Records are kept of information generated by the 
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interceptor pilot, analog computer, and digital computer during the 
experiment. These can then be analyzed on the digital computer after 
an experimental simulation has been completed. 

1-5. Data Processing 

Inventory Control. The annual industrial inventory of the United 
States has been estimated at 30 billion dollars; the cost of supporting this 
inventory is probably about 3 billion dollars annually in interest lost, 
tied-up money, depreciation, obsolescence, spoilage, storage, handling 
charges, and so forth. It has been estimated that the use of computer 
control and information-processing methods could reduce this inventory 
and its associated cost of support by more than 25 per cent. .(A special­
purpose inventory-control computer will be discussed in a later chapter.) 
Figure 1-13 indicates how a general-purpose computer could be used 
in an inventory-control system. Here the inventory files are electron­
ically recorded in the computer. Inputs to the computer are items initi­
ated outside the inventory records, such as receipts, issues, orders, 
shipping reports, etc. These inputs indicate the alterations· in the 
inventory records that must be made by the computer. The outputs 
of the computer are items that arise from an examination of the inven­
tory records, such as the need for more parts, orders to restock, bills 
or invoices for items shipped, accounting records, and other data about 
the current inventory records that may aid management in planning, 
etc. The analysis of an inventory-control problem for the use of a 
digital computer includes the preparation of a complete report on all 
the processing requirements, process charts of the data flow, and defini­
tions of the controls. These reports and charts correspond to the equa­
tions describing a scientific problem. 

Consider, for example, a concern that manufactures and sells certain 
products, and suppose that the company keeps the following files (see 
Fig. 1-13): (a) a customer master file that contains all customers' names, 
addresses, purchases, balances due, credits, etc.; (b) a products inventory 
master file that contains the kind and number of each product in stock 
as well as its location, price, and other identifying descriptions and num­
bers; (c) a factory parts and raw-materials inventory file that contains 
a list of all parts and materials stocked that enter into the manufacturing 
process, together with descriptive identifications and numbers; and (d) 
a suppliers master file that contains all suppliers' names, addresses, 
supply records, balances due, credits, orders not yet received, and so 
forth. The procedure by which the computer keeps such files up to 
date and generates information from them will now be described; the 
reader should keep in mind that our intention is to give a gross idea 
of the problems involved, and we have hence oversimplified the circum­
stances. More realistically, these problems are characterized by huge 
masses of detailed considerations. 

The customer file would be updated each time an order, payment, or 
return was received from the customer. At the same time the computer 
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would produce the necessary pricing and shipping information (i.e., 
customer discount, location, etc.) if an order was made, or the customer's 
refund order if a return was made. The products inventory file would be 
updated each time a report was received of shipping or completing a 
product. If a product was to be shipped, the computer would produce 
the product description number and warehouse location, and it would 
also produce an order for more products to be manufactured if the ship­
ment r€duced the inventory below a predetermined level. The computer 
can also produce the invoice for a sale from the proper information 
received from the files. The file of parts and raw materials used in the 
manufacturing processes would be updated each time a report was made 
of parts and materials used, returned, or received. The computer would 
determine what replacement orders and returns should be made as well 
as update the inventory. The supplier file would be updated each time a 
bill was received, or report of return or receipt was made. The computer 
would produce the payment orders to the supplier. Finally the computer 
would produce reports requested by management, on the basis of the 
various file records. 

Airline Reservation System. In the reservation system of a nationwide 
airline, every minute hundreds of inquiries about seats availabl€, actual 
sales, cancellations, and unsatisfied demands must be processed. Each 
ticket office in the United States of a particular airline must be able to 
interrogate the same centrally located computer concerning seats avail­
able on particular flights and to make reservations on particular flights; 
the processing of each query must be completed within a few seconds. 
The main advantages of such a system are that the customer is provided 
with an immediate reservation service and the airline is provided with an 
accurate inventory system almost devoid of errors. 

A simplified reservation system is shown in Fig. 1-14. Each ticket 
office contains a reservation interrogation and sales machine, which is 
connected by transmission lines to a central service area. At the central 
service area, records are electronically stored on the availability and dis­
position of all seats on all airplanes to be flown by the airline, for about a 
month in the future. The processing of a reservation starts at the ticket­
office machine. Let us say that a customer desires two seats from 
Washington, D.C., to Chicago on Apr. 30 on the 3 P.M. flight. The 
sales clerk observes that Flight 83 leaves Washington, D.C., at 3 P.M. 

and goes to Seattle via Chicago, and chooses the card for Flight 83 from a 
file box. Each flight card contains information about two flights, one 
on each of the long edges. Along the edge are printed the scheduled 
stops, leaving a margin which is punched with a code representing the 
flight number. The clerk puts the punched margin of the card into a 
slot in the ticket-office machine, then presses buttons indicating the 
number of seats (two) and the date (Apr. 30) desired. The names of the 
cities on. the card appear opposite a row of buttons on the machine, and 
the clerk pushes the buttons next to the names of the desired cities, Wash~ 
ington and. Chicago. Then he presses the I (interrogation) button. 
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Meanwhile the remote scanner (see Fig. 1-14) is searching for a ticket­
office machine with a card in it. When one is located, the remote 
scanner connects the ticket-office machine with the computer. The 
marginal punches on the card are sensed by the computer and tell it 
which flight is being interrogated; the date, number of seats, etc., are 
also transmitted to the computer. If two seats are available on Flight 83 
for Apr. 30, the computer transmits the information to the ticket-office 
machine by illuminating the proper lights on it. If the customer desires 
to make the reservations, the R (reservation) button is pushed and the 
computer subtracts two from the number of seats available on Flight 83. 

Ticket office 

Ticket 
office 

Remote Computer and 

area 

FIG. 1-14. Airline reservation system. 

reservation inlormation 
storage unit 

If no seats were available, the no-seats-available light would have been 
illuminated. Similarly a cancellation can be made, and so forth. Of 
course our illustration has been greatly simplified, but the essential 
operations performed by the computer and the problems involved have 
been demonstrated. 

Aids to Medical Diagnosis. It has been recognized that electronic 
computers can aid certain aspects of medical diagnosis. For example, the 
computer can (1) produce a list of possible diagnoses, consistent with 
medical knowledge, for a given set of symptoms presented by a patient; 
(2) indicate further diagnostic tests which best differentiate between 
remaining diagnostic possibilities; (3) calculate the probabilities for the 
alternate diagnostic possibilities; and (4) enable a more precise statement 
and analysis of the value decisions which may be associated with treat­
ment planning. Such computer applications must be based on extensive 
medical data; hence a further use of computers is (5) to compile statistics 
that (a) relate symptom-disease combinations and that (b) evaluate 
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disease-treatment-prognosis results. These statistics are then used in 
future diagnosis, treatment, and prognosis determination. In addition, 
the computer can serve as an indispensable aid, under certain special 
circumstances: The computer can (6) enable criteria of a more quanti­
tative nature to be utilized in evaluating the results of certain diagnostic 
procedures (such as electrocardiograms, electroencephalograms, etc.) and 
can perform the complicated calculations necessary for the proper inter­
pretation of certain clinical measurements. Finally, the computer can 
significantly aid the important aspect of information retrieval in, for 
example, (7) the rapid retrieval of current information about new pre­
ventive measures, diagnostic techniques, and specific treatments, and 
(8) the accumulation and retrieval of desired aspects of a particular 
patient's total medical history (such as total radiation dosage received, 
previous allergic reactions, individual biochemical and physiologic norms 
and deviations, etc.). 

Physicians 
and hospitals 

Physicians 
and hospitals 

FIG. 1-15. Hypothetical health-computing system. 

Physicians 
and hospitals 

Consider a modern high-speed electronic digital computer, and suppose 
that it has been programmed to aid medical diagnosis. Let us assume 
further that the physician can directly communicate with the computer 
by telephone, teletype, radio, etc. The value of such a computer interro­
gation arises from three factors: (1) the ability of the computer to formu­
late a treatment plan that will maximize the chance of curing the patient; 
(2) the ability to determine the minimum number of necessary medical 
laboratory tests or other diagnostic procedures for the particular patient; 
and (3) the ability to evaluate more accurately diagnostic-test results 
for a particular patient based upon his previously recorded health records. 

A network of such computers could form a hypothetical health­
computing system (see Fig. 1-15). Here each computer can communicate 
with individual physicians and hospitals within its area, receiving, trans­
mitting, and computing medical information as required. However, the 
area computers must be capable of communicating with each other as 
well, since approximately 20 per cent of Americans change addresses 
each year, and probably most of us go on at least one trip per year. 
Also, all the area computers could communicate with a special research 
computer that could sample data as required for various research and 
public health-control investigations. 
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The great significance and importance of such a health-computer 
network cannot be overestimated as an aid to increasing individual 
good health and longevity and as a vast new source of medical information 
concerning mankind. 

1-6. Additional Topics 

a.The following references are not intended to be a complete bibliography on the 
use of digital computers; rather they are intended as sources of past and future 
applications. 

Books 

Alt, Franz L.: "Electronic Digital Computers-Their Use in Science and Engineer­
ing," Academic Press, Inc., New York, 1958. 

Bowden, B. V.: "Faster than Thought," Pitman Publishing Corporation, New York, 
1953. 

Canning, R. G.: "Electronic Data Processing for Business and Industry," John Wiley 
& Sons, Inc., New York, 1956. 

Chapin, Ned: "Automatic Computers--A System Approach for Business," D. Van 
Nostrand Company, Inc., Princeton, N.J., 1959. 

Eckert, W. J., and Rebecca Jones: "Faster, Faster," McGraw-Hill Book Company, 
Inc., New York, 1956. 

Edmundson, H. P., et al.: Studies in Machine Translation, Repts. 1-9, Rand Corp., 
1958. 

Gass, Saul 1.: "Linear Programming Methods and Applications," McGraw-Hill 
Book Company, Inc., New York, 1958. 

Gotlieb, C. C., and J. N. P. Hume: "High-speed Data Processing," McGraw-Hill 
Book Company, Inc., New York, 1958. 

Jeenel, Joachim: "Programming for Digital Computers," McGraw-Hill Book Com­
pany, Inc., New York, 1959. 

Ledley, R. S., and J. B. Wilson: "Programming and Utilizing Digital Computers," 
McGraw-Hill Book Company, Inc., New York, in press. 

Livesley, R. K.: "Digital Computers," Cambridge University Press, New York, 1957. 
Locke, W. N., and A. D. Booth (cds.): "Machine Translation of Languages," John 

Wiley & Sons, Inc., New York, 1955. 
McCracken, D. D.: "Digital Computer Programming," John Wiley & Sons, Inc., 

New York, 1957. 

Periodicals 

The Computer Journal, British Computer Society, Ltd., London. 
Computers and Automation, Edmund C. Berkeley and Associates, New York. 
Computing News, J. W. Granholm, Seattle. 
Control Engineering, monthly, McGraw-Hill Publishing Company, New York. 
Data Processing Digest, Canning, Sisson, & Associates, Los Angeles. 
Datamation (Research and Engineering, the Magazine of Datamation), bimonthly, 

Relyea Publishing Co., New York. 
I BM Journal of Research and Development, International Business Machines Cor­

poration. 
I RE Transactions on Electronic Computers, Professional Group on Electronic Com­

puters, Institute of Radio Engineers, Inc., New York. 
Journal of the Association for Computing Machinery, New York. 
Journal of Operations Research Society of America, Baltimore. 
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Journal of the Society for Industrial and Applied ~f athematics, Philadelphia. 
Machine Translation, Massachusetts Institute of Technology, Cambridge, Mass. 
Mathematical Tables and Other Aids to Computation, National Academy of Sciences-

National Research Council, Washington, D.C. 
Proceedings of the . .. Joint Computer Conferences of the Professional Group on 

Electronic Computers (IRE), the Association for Computing Machinery, and the 
American Institute of Electrical Engineers (AlEE) Committee on Computing 
Devices. 

b. References to Analog-computer Applications. The following are but a few of the 
many available texts describing analog-computer applications: 

Johnson, C. L.: "Analog Computer Techniques," McGraw-Hill Book Company, 
Inc., New York, 1956. 

Korn, G. A., and T. M. Korn: "Electronic Analog Computers," 2d ed., McGraw-Hill 
Book Company, Inc., New York, 1956. 

Murray, F. J.: "The Theory of Mathematical Machines," 2d ed., King's Crown Press, 
New York, 1948. 



CHAPTER 2 

PRINCIPLES AND BLOCK DIAGRAM 

OF A DIGITAL COMPUTER 

2-1. Introduction 

Recapitulation. In the previous chapter we gave some idea of what 
computers can do. We observed that, in general, initial conditions, con­
stants, and other numbers are first read into the computer and that the 
computer then proceeds with the calculations, finally printing out or 
otherwise displaying the results. In addition, the examples presented 
illustrated the kinds of calculations that can be carried out by a computer. 
These concepts are important foundations for an appreciation and under­
standing of the present chapter. 

Orientation. The purpose of this chapter is to orient the student in the 
field of digital-computer engineering; it endeavors to present a bird's-eye 
view of the field. Thus, as the student continues into the detailed 
material of this book, he should always appreciate the relationship and 
significance of each topic in the over-all pattern. Specific, concrete 
examples are used as vehicles for transmitting the over-all ideas of the 
design and construction of digital computers. The student should pay 
strict attention to the general concepts and should use the specific 
examples only as a basis for understanding these generalizations. 

This chapter begins with a description of the block diagram of a 
digital computer. There follows a more detailed discussion of the func­
tioning of the parts of the computer. From this" macroscopic" point 
of view we go to the" microscopic" picture of a computer, glancing at 
various kinds of circuitry techniques. Thus we consider briefly the meth­
ods by which a number is recorded, by which digital circuitry can per­
form specific functions, and by which internal controls are obtained, and 
describe how numbers are memorized by and read into and out of a 
computer. The examples have been chosen solely to be appropriate 
for this orientation phase of study and therefore constitute simpler 
and in many cases less advanced techniques. Finally, we summarize 
our discussion of the main features of digital-computer and -control 
engineering. 

A large part of the orientation in any subject must necessarily be con­
cerned with the specialized vocabulary used to describe basic concepts. 
Therefore there are in this chapter many such basic discussions. 

25 
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2-2. Block Diagram of a Computer 

The purpose of this section is to acquaint the student briefly with the 
parts of a digital computer. To this end the block diagram of a computer 
will be developed in steps, from the simple to the more detailed. 

The Computer. As was seen in Chap. 1, a computer handles numbers; 
it takes numbers that are fed into it and operates on them to form new 
numbers-the output numbers. Hence the simplest block diagram of a 
computer is as shown in Fig. 2-1. 

Input numbers --~~"'I Computer I----+~ O.utput numbers 

FIG. 2-1. Simplest block diagram. 

The computer can perform many different kinds of operations on num­
bers. Most of these operations combine two numbers to produce a 
third number. The two numbers so combined are called the arguments 
of the operation, and the number produced is called the result. Many 
operations that a computer can perform are similar to the familiar oper­
ations used in hand computation, such as adding two numbers to form the 
sum, multiplying two numbers to form the product, etc. Also analogous 
to hand computing is the fact that the computer can perform only one 
such operation at a time. t Hence, when many operations are to be 
performed, they must be performed in some appropriate sequence. 

The computer is told what operations to perform by means of instruc­
tions. An instruction not only contains information about an operation 
to be performed but also designates the two arguments (usually) for the 
desired operation. When the operation specified by an instruction has 
been completed by the computer, i.e., when the result has been obtained, 
the instruction is said to have been executed. 

For example, suppose that we wanted to compute the value of 

y = a(b + c) 

where a, b, and c represent some specific real numbers. A sequence of 
instructions that would tell a computer to form a(b + c) is as follows: 

Operation 1st argument 2d argument Result 

Instruction 1. . . . . . . . . . . . . Add b c x=b+c 
Instruction 2 ............. Multiply a x y = ax 

The computer would first execute instruction 1 and then instruction 2. 
The Memory. The computer itself is composed of two main parts, 

a memory, which stores numbers and instructions, and a computing unit, 
in which the actual computations take place (see Fig. 2-2). The com-

t Modern computers are being developed to perform several operations simul­
taneously. 
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puter's memory stores the numbers to be operated on; it stores inter­
mediate results that are generated during the course of a computation; 
and it stores the final results. For instance, the numbers represented by 
a, b, and c of our example are initially stored in the memory. After the 
first instruction is executed, the intermediate result x is stored in the 
memory. After the second instruction is executed, the final result y is 
stored in the memory. 

The instructions themselves are also stored in the computer's memory. 
Each instruction is transmitted to the computing unit when it is to be 

Input numbers ---.t 1----+ Output numbers 

FIG. 2-2. Memory and computing unit. 

executed. In our example, instruction 1 is first transmitted to the 
computing unit and executed, and then instruction 2 is transmitted to the 
computing unit and executed. 

The reason for having an internal memory in the computer is that 
numbers and instructions can be transmitted between such a memory 
and the computing unit more rapidly than by other means. This 
enables the computations to proceed more quickly; High-speed com­
puters exist such that a number or instruction in the memory can be 
transmitted to the computing unit in as short a time as 1 J.Lsec. On the 
other hand, arithmetic operations such as addition can be performed in 
less than 1 J.Lsec. Hence, it is generally the speed of the memory that 
limits the speed of a computer. 

Input numbers } 
and Instructions 

1---..... Output numbers 

FIG. 2-3. Arithmetic unit and control. 

The Computing Unit. It is seen from the above discussion that the 
computing unit has two functions: it must (1) obtain instructions from 
the memory and interpret them, as well as (2) perform the actual 
operations. Hence it is composed of two parts: the control, concerned 
with the former, and the arithmetic unit, concerned with the latter func­
tion (see Fig. 2-3). 

An analogy can be made between the functioning of an electronic 
computer and the performance of hand computation. The computer's 
memory is analogous to the tabulation of numbers often kept during 
hand computations. The function of the computing unit is analogous 
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to the actual performance of the hand-computational operations. Carry­
ing our analogy with hand computation a little further, the arithmetic 
unit is analogous to the pencil and paper, abacus, slide rule, etc., while 
the control is analogous to the mental processes that take place in deter­
mining what operation is to be performed, choosing the proper arguments 
of the operation, keeping the proper sequence of operations, etc. 

The Control. The control itself must perform two functions. It 
must (1) interpret the instruction; then, based on this interpretation, 
it must (2) tell the arithmetic unit what to do. The latter function is 
accomplished through the use of electronic control signals. 

In accordance with these two functions, we can separate the part of 
the control that interprets, or decodes, the instructions, called the instruc­
tion decoder, from the part that generates the control signals, called the 
control generator (see Fig. 2-4). 

Input numbers } 
and Instructions --~ 

FIG. 2-4. Instruction decoder and control generator. (Solid-headed arrows indicate 
information; hollow-headed arrows indicate control signals.) 

After an instruction has been transmitted to the instruction decoder, 
where it is interpreted, the control generator senses this interpretation 
and then produces signals that tell the arithmetic unit which operation 
to perform. It also generates signals that choose the proper numbers 
(arguments) from the memory and sends them to the arithmetic unit 
at the proper time; and when the operation has been performed, still 
other control signals take the result from the arithmetic unit back to the 
memory. After an instruction has been executed, the control generator 
produces signals that enable the next instruction to go from the memory 
to the instruction decoder. In this way the instructions are performed 
sequentially. 

Input-Output. There are many means by which numbers and instruc­
tions can be initially introduced into and finally read out of the computer 
memory. They can be typed directly into the computer on specially 
adapted electric typewriters, read into the computer by means of punched 
paper tape on a teletypelike machine, punched on cards and read into 
the computer by means of a punched-card machine, memorized on mag­
netic tape and read into the computer by a specially built tape recorder, 
etc. When the computations have been completed, the resulting num­
bers can be read out of the computer by having the computer operate a 
typewriter, punch paper tape, punch cards, put pulses on magnetic 
recording tape, etc. Most computers have several such input units and 
output units. The in-out selector determines which unit will read informa­
tion into or out of the computer; it is controlled by signals from the 
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control generator (see Fig. 2-5). Each of the boxes in Fig. 2-5 represents 
electronic or electromechanical equipment. It is the purpose of this 
book to describe the function, use, and design of this equipment. 

Summary. The computer's memory stores the instructions and the 
initial, intermediate, and final numbers involved in a computation. 
Instructions tell the computer what computations to perform. An 
instruction includes information about the kind of operation to be per­
formed and the arguments involved in the operation. 

Computer 
memory 

FIG. 2-5. Input-output. 

The instructor decoder interprets an instruction. This interpretation 
is sensed by the control generator. Based on that information, the 
control generator produces control signals that transmit the proper 
numbers from the memory to the arithmetic unit and that tell the 
arithmetic unit what operations to perform on these numbers or argu­
ments. When the results have been computed by the arithmetic 
unit, the control signals guide them back to the memory. Then the 
control signals bring the next instruction into the instruction decoder, 
and the cycle continues. When new data is to be read into the memory 
by means of the input units, the control generator directs the in-out 
selector to choose the proper input unit. The control generator takes 
similar action when computed data is to be read out of the memory 
by means of one of the output units. 

EXERCISES 

(a) What are the general purpose and function of an operation? An instruction? 
The computer memory? The computing unit? The arithmetic unit? The control'! 
The instruction decoder? The control generator? Control signals? Input units? 
Output units? The in-out selector? 

(b) If 2 and 3 are added to obtain 5, what are the arguments of this operation? 
The result? 

(c) Write a sequence of instructions by means of which a(b + cd) If can be com­
'puted. Letting a = 6, b = 4, c = 2, d = 3, and f = 5, perform the sequence of 
instructions. 

(d) Write a sequence of instructions by means of which (1 - a2)3 can be computed. 
(e) What four functjons do the control signals perform? . 
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2-3. Functional Description of a Computer 

The functional description of a computer involves consideration of 
further details about the computer's memory and the relation of an 
instruction to the memory. Two fundamental concepts of modern 
digital computers are involved in this relationship. 

Words. The memory of a computer is composed of a large number 
of memory boxes, analogous to mailboxes. The information, or items 
to be memorized, is placed into these boxes as mail is placed into 
mailboxes. Each memory box, like a mailbox, has a name, or address. 
These addresses are usually numbers. For example, if the computer 
contains 100 memory boxes, their respective addresses might be the 
numbers from 1 to 100 (or a through 99). The information or items 
put into the memory boxes are called words and are analogous to the 
mail itself. However, only one word can be stored in a memory box at a 
time. As was seen in Sec. 2-2, there are two basic types of information, 
or words, that can be put into the boxes: words that are numerical 
quantities and words that are computer instructions. 

At this point a short digression on computer terminology will prove 
helpful. The memory box of the previous paragraph is more correctly 
called an address, or alternatively a memory address, memory location, 
storage location, or cell. Instead of saying, "A word is in a memory box," 
computer personnel say, "The contents of an address is a word." 
Instructions are sometimes called commands; quantities are sometimes 
called data. t 

An instruction word looks like a number, and there is no way to tell 
from the word itself whether it is a quantity or an instruction. The 
computer must be told explicitly which addresses contain instructions 
and which contain quantities. Ordinarily a word is treated by the 
control as an instruction and by the arithmetic unit as a quantity. The 
fact that it is only the interpretation of a word that distinguishes instruc­
tions from quantities is the first fundamental concept of modern digital 
computers. This is fundamental because it enables the computer to 
operate on instructions. That is, the computer itself can formulate or 
change an instruction by treating it as though it were a quantity; and 
then, at a later time during the computations, this changed instruction 
can actually be executed. In a certain sense, this gives the computer the 
capability of actually writing instructions as well as executing them; 
i.e., the computer can "tell" itself what to do-which is the closest 
that a computer probably ever comes to "thinking." More will be 
said about this in a later chapter (see Chap. 5). 

Instructions and Addresses. To see the relationship between an 
instruction and the computer's memory, consider, for example, an instruc­
tion that tells the computer to add two numbers. The instruction does 

t See First Glossary of Programming Terminology, J. Assoc. Computing Machinery, 
June, 1954; LR.E. Standards on Electronic Computers: Definitions of Terms, 1956, 
Proc. IRE, vol. 44, no. 9, September, 1956. 



SEC. 2-3] PRINCIPLES AND BLOCK DIAGRAM 31 

not directly tell the computer to add the numbers themselves but rather 
tells the computer to add the numbers that are found as the contents of 
addresses specified in the instruction. If the numbers to be added are 
located in address ex and address {3, the instruction literally says, "Add 
the contents of address ex to the contents of address {3." Of course, the 
proper numbers to be added must have been previously placed into the 
addresses ex and (3. The same instruction might go on to tell the computer 
to put their sum into address 'Y and that the next instruction will be found 
as the contents of address o. Hence, after our add instruction has been 
executed, the number that is the sum will be found as the contents of 
address),. It must be certain that the contents of address 0 is actually 
an instruction and not a number because the contents of address 0 
will be interpreted as if it were an instruction in any case. 

The fact that instructions deal directly with addresses whose contents 
are to be operated on, rather than with the numbers themselves, is the 
second fundamental concept of digital-computing machines. This gives 
the computer an advantage that is exactly analogous to the advantage of 
performing algebra on symbols x, y, .... 

As an example of an instruction, suppose that we wanted to add 125 
and 412 and that we put 125 into address 32 and 412 into address 34. 
Suppose that we want the sum to appear in address 36 and that the next 
instruction is the contents of address 41. Then our add instruction, 
when decoded, would say, "Add the contents of address 32 to the con­
tents of address 34, and put the sum into address 36; then the next 
instruction will be found as the contents of address 41." 

The Accumulator. Consider now what happens in the arithmetic unit 
while an instruction is being executed. In most computers only one 
word at a time can be transferred between the arithmetic unit and the 
memory. Hence, to perform an operation involving two arguments, the 
first argument must be transferred from the memory to the arithmetic 
unit and stored there temporarily while the second argument is being 
transferred. The special memory cell in the arithmetic unit for this 
purpose is called the accumulator (see Fig. 2-6). When the operation is 
performed, the result is formed in the accumulator before it is transmitted 
back to the memory. 

Thus, in the above example, the contents of address 32, namely, 125, 
would be brought into the accumulator first; then this would be added 
to the contents of address 34, namely, 412, and the result, namely, 537, 
would be formed in the accumulator. Then 537 would be transmitted 
from the accumulator into address 36. 

The Instruction Register and the Current-address Register. Next con­
sider the instruction decoder that interprets an instruction. In order 
that the instruction decoder perform its function, it must constantly 
refer to the instruction being interpreted during the time control signals 
are being set up. To facilitate this, while an instruction is being exe­
cuted it is stored in a special memory cell, called the instruction register, 
located in the instruction decoder (see Fig. 2-6). 
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There is another special memory cell located in the instruction decoder, 
called the current-address register (see Fig. 2-6). The contents of this 
register is (nearly) always the memory address from which the instruc­
tion being executed came. The reason for this is related to the fact that 
the address of the present instruction was given as part of the previous 
instruction. 

For example, consider the add instruction described above. Suppose 
that this instruction were originally the contents of address 40. Then, 
while it is being executed, the contents of the instruction register will 

Arithmetic 

Computer 
memory 

unit 
r:-----, 
I Accumulator I L _____ J 

r---·' 
I Current-I 
I address I 
I register I L ___ .J 

FIG. 2-6. Accumulator, instruction register, and current-address register. 

be the add instruction itself, and the contents of the current-address 
register will be 40. After the add operation has been executed (i.e., 
after the sum of 125 and 412 has been put into address 36) and just 
before the next instruction is read into the instruction register, the address 
of the next instruction, namely, 41, is recorded in the current-address 
register. 

The Four Phases. The functioning of a computer during the execution 
of an instruction is often summarized in terms of four phases. Assuming 
that an instruction has already been transmitted into the instruction 
register, phase 1 involves the transmitting of the first argument from the 
memory into the accumulator. During this phase the instruction decoder 
determines the address of the first argument from the instruction, and 
the control generator produces control signals that transmit the contents 
of this memory address into the accumulator. During phase 2 the second 
argument is brought to the arithmetic unit and the operation is per­
formed. Both these functions are included in the same phase because 
most often the operation is performed as the second argument enters the 
arithmetic unit. In this phase the instruction decoder determines from 
the instruction the address of the second argument and what operation 
is to be performed; the control generator generates signals that set up the 
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arithmetic unit to perform this operation and signals that transmit the 
contents of the address of the second argument into the arithmetic unit; 
the arithmetic unit performs the operation, generally leaving the result 
as the contents of the accumulator. During phase 3 the contents of the 
accumulator is transmitted into the memory address specified by the 
instruction. During phase 4 the address of the next instruction is ascer­
tained, and the contents of the current-address register is changed to the 
new address; the contents of this new address is then transmitted into 
the instruction register as the next instruction. Then phase 1 for this 
instruction is initiated, and the process is repeated. 

It should be observed that computers are often designed with phase 1 
or 3 omitted. That is, in some computers the memory address of both 
arguments need not necessarily be specified in a single instruction, nor 
need the memory address into which the result is transmitted always be 
specified. In such computers multiple instructions would be equivalent 
in function to a single instruction as described above. This aspect of 
instructions is discussed in considerable detail in the next chapter, and 
we shall not press the point here, except to note that, although the 
principles described hold in general, the specific details vary with different 
computers. 

Summary. There must be an instruction in the instruction register 
initially so that the whole process may begin, and there must be a way 
to stop the computer. These details will be considered in Chap. 4. 
The important points we wish to emphasize in this section are: (1) 
instructions and quantities are memorized by the computer as the contents 
of memory addresses; (2) they are indistinguishable from each other 
except by interpretation, and (3) instructions explicitly involve only 
addresses and tell the computer what to do with the contents of these 
addresses; (4) the functioning of a com pu ter during the execution of an 
instruction can be summarized in terms of the four phases as described. 

EXERCISES 

(a) Discuss the first two fundamental concepts of modern digital computers, using 
accepted computer terminology. 

(b) Consider the example of Sec. 2-2. Suppose that the value of a is found as the 
contents of address 50, of b as the contents of address 51, and of c as the contents of 
address 52; the value of the intermediate result x is to be put into address 53, and the 
final result y is to be put into address 54. How would instructions 1 and 2 of that 
example be written if these instructions themselves were found as the contents of 
addresses 55 and 56, respectively? 

(c) Describe by naming specific addresses and special memory cells what happens 
during each of the four phases during the execution of the instruction given as an 
example in this section. What is the contents of the instruction register? What is 
the contents of the current-address register? What is the contents of the contents of 
the current-address register? (HINT: The contents of the current-address register is 
an address itself.) 

(d) During phase 1 what is the relation between the contents of the instruction 
register and the contents of the current-address register? 
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2-4. Words and Pulses 

Binary Numbers and Bits. Words are memorized in the computer as 
binary numbers. Hence it is necessary to divert our attention for a 
moment to a description of the binary notation for numbers. Numbers 
written in the binary system make use of only the symbols 0 and 1, 
called bits, just as numbers in the decimal system use the symbols 0, 1, 2, 
3, 4, 5, 6, 7, 8, and 9, called digits. We say, for example, that 1101 is a 
binary number composed of 4 bits, just as 8,675 is a decimal number 
composed of 4 digits. In the decimal system the number 8,675 really 
means (8 X 103

) + (6 X 102) + (7 X 101) + (5 X 100), where 100 = 1; 
analogously, in the binary system the number 1101 really means (1 X 23) 

+ (1 X 22) + (0 X 21) + (1 X 20), where 20 = 1. Since 23 = 8,22 = 4, 
21 = 2, and 20 = 1,1101 is (1 X 8) + (1 X 4) + (0 X 2) + (1 X 1) = 13 
in decimal. A more general and thorough discussion of the binary­
number system appears in Chap. 3. Our purpose here is simply to show 
that binary numbers are made up of bits, 0 and 1, and that a binary num­
ber is just another notation for our familiar decimal numbers. 

Words as Pulse Trains. As can probably be foreseen by the reader 
at this point, the reason for using the binary numbers in digital computers 
is to enable the use of simplified electronic circuitry. For then only two 
signal voltage levels need be distinguished, the voltage level that is to 
represent 1 and the voltage level that is to represent O. A word is memor­
ized by the computer as a series, or train, of 1 and 0 signal voltage levels, 
often called pulses, that represent the bits of the word. The number of 
bits in a single word is called the length of the word. All the words within 
a particular computer are of the same length;t hence, so are the contents 
of all addresses in the computer memory. When the proper signals are 
generated by the instruction decoder, the train of pulses that represents 
a word goes from the memory address to the arithmetic unit. In some 
computers this is accomplished in a serial manner in time; i.e., the pulses 
flow past a fixed point at some fixed rate, say, 1 pulse/ ILsec. The speed 
of a computer is usually denoted by this pulse rate, or equivalently by 
the pulse frequency, i.e., 1 megacycle for our illustration. 

It is often important to be able to denote a particular bit in a word 
by means of its position in the word. For this purpose we number the 
positions from right to left. Then Pn represents the nth bit of a word. 
For example, consider the 30-bit word in Fig. 2-7. Here PI = 0, 
P2 = 0, ... , P6 = 1, P7 = 0, P8 = 1, ... , P23 = 1, P24 = 0, 
etc. 

Time Synchronization and Clock Pulses. In the arithmetic unit two 
word pulse trains are operated on by electronic circuits to form a new 
word pulse train that represents the result of the operation. In the 
control the word pulse train is decoded and interpreted as an instruction 
by other electronic circuits. The circuits that accomplish these func-

t Modern computers are being developed to use different word lengths in different 
l!ections of the machine. 
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tions are called gates, or digital switching circuits. We shall have a 
little more to say about such gates in Sec. 2-5, and much more in the rest 
of the book. However, for the purposes of this section it suffices to 
mention that everything that happens to a word during the four phases 
takes place in these switching circuits, or gates. 

It has been implied in the above discussion that there is some kind 
of synchronization of the pulses in a computer. In most computers 
this is indeed the case: all pulses are synchronized with respect to each 
other by means of clock pulses generated by a clock within the computer. 
The clock is an oscillator, with a frequency that is usually some integral 
multiple of the speed of the computer. Every gate is so connected to 

00'100 '"'\010 .q.("I)C\J .-4oOl 00'"'\0 1O.q.("I) C\J.-40 OlCO" \010* ("I)C\Jrot 
("I) C\J C\J C\J C\J C\J C\JC\J C\J C\J C\J.-4 .-4.-4.-4 .-4.-4.-1 ............... 
r:l.tr:l.tr:l.t&l.tr:l.t&l.t.~r:l.tr:l.tr:l.tr:l.tr:l.t .. r:l.tr:l.tr:l.t r:l.tr:l.tr:l.t r:l.tr:l.tr:l.t.r:l.t&l.tr:l.t r:l.tr:l.tr:l.t r:l.tr:l.t~ 

101 011011 010 011100 011110 100000 

FIG. 2-7. Example of a 30-bit word. 

the clock of the computer that pulses are allowed to enter or leave the 
gates only at those times at which a clock pulse is received. The effect 
is analogous to an orchestra where the conductor beats out the timing, 
like the clock-the individual musicians, the gates, play notes, the pulses, 
according to this rhythm as directed by their music sheets, the design 
of the gating connections. At each beat of the clock all the pulses 
advance in the computer according to the gating connections, just as the 
musicians go on to the next musical beat. The purpose of this is to 
keep the phases of the pulses coordinated, in a manner to be described in 
detail in a later chapter. In addition, the clock pulses usually play an 
important role in reshaping the pulses, which become somewhat attenu­
ated and distorted in passing through the gating circuits. 

Example of Adding. Let us consider what happens in the arithmetic 
unit when two numbers are added. To be specific, suppose that these 
numbers (where An and Bn label the bit positions) are 

00100 ....... <:.0 1.0 ~~C"I 1"'i00l 00 ....... <:.0 1.0~~ C'l1"'i0 ~oo ....... <:.Ol.O~ C"':)C'll""l 
MC"IC"I C"IC"IC'l C"I C'l C"I C"IC"I1"'i 1"'i1"'i1"'i 1"'i1"'i1"'i 1"'i1"'il""l 
~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 

000 010 1 1 0 000 001 111 111 001 1 1 0 011 

o~oo ....... <:.01.0 ~C"':)C"I 1"'i00l 00 ....... <:.0 l.O~M C'l1"'i0 ~oo ....... <:.OI.Q~ C"':)C'll""l 
MC"IC"I C"IC"IC'l C"IC"IC"I C"IC"I1"'i 1"'i1"'i1"'i 1"'i1"'i1"'i 1"'i1"'i1"'i 
~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 

000 001 o 1 1 101 110 101 1 1 1 010 100 000 

(The decimal equivalents are, for A, 46,202,483 and, for B, 24,600,224. 
See Chap. 3 for decimal-to-binary conversion methods.) Suppose that 
we are in phase 2; i.e., the first argument has already been transmitted 
into the accumulator. Suppose also that the pulse rate of the computer 
is 1 f.lsec; then the bits advanced once each microsecond. Figure 2-8 
shows the situation at the start of phase 2; Fig. 2-9 shows the situation 
1 f.lsec later; Fig. 2-10 after 2 f.lsec; Fig. 2-11 after 10 f.lsec; Fig. 2-12 after 
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Second argument from a memory address 

~~~ '<~~ 

000010110000001111111001110011 
\DLOq- ('t)C\I .... 

FIG. 2-8. Start of phase 2. 

Second argument from a memory address 

000 010 110 000_001111111 001110 01 

FIG. 2-9. One microsecond after start of phase 2. 

Second argument from a memory address 

~~~ ~ 

000 010 11 0 000 001 11-1 111 001 110 0 --+I 

Accumulator 

FIG. 2-10. Two microseconds after start of phase 2. 

Second argument from a memory address 
1Oq-('t) C\I .... ............ ........ 
~~~~~ 

000 010 110 000 00111111-------....... 

Accumulator 

FIG. 2-11. Ten microseconds after start of phase 2. 

\D LO o::fo (Y) C\I ..... 
NN NNN N 

~~~~~ ~ 
000 010 110 0---------------.1 

Accumulator, 

FIG. 2-12. Twenty microseconds after start of phase 2. 
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Accumulator 

FIG. 2-13. Thirty microseconds after start of phase 2. 

Adder 
gates 

37 

20 ,usec, and Fig. 2-13 after 30 ,usec. As the two arguments advance 
bit by bit into the adder, the result is formed bit by bit; the partial results 
are stored in the accumulator behind the partially used first argument as 
shown. The double line separates the partial first argument from the 
partial result so far formed in the accumulator. (The partial result is 
to the left of the double line; the remaining first argument is to its right.) 
In Fig. 2-13 the complete result has been formed in the accumulator, 
namely: 

00)00 t-c.ott:l 
~C'IC'I C'lC'lC'l 
t:I.2t:1.2t:1.2 t:I.2t:1.2t:1.2 

000 100 

"<I1~C'I ..... 00) 
C'IC'IC'I C'lC'I ..... 
t:I.2t:1.2t:1.2 t:I.2t:1.2t:1.2 

001 110 

t:I.2t:1.2t:1.2 

011 

(which in decimal is 70,802,707). The computer is then ready to start 
on phase 3. 

Figures 2-8 to 2-13 illustrate what would happen in a so-called "serial" 
computer. However, there are other, "parallel" methods for add­
ing. Both serial and parallel adders are discussed in detail in later 
chapters. Our purpose here was merely to give a general idea of how 
word pulse trains travel through gates in a synchronous fashion during a 
computation. 

Instruction Decoding. We have given an example of how numerical 
quantities are gated. N ext let us illustrate the method by which an 
instruction word is written and decoded. Suppose that the words of a 
hypothetical computer are each 30 bits in length, as above. Let the 
leftmost six bits, P30, P29, P28, P27, P26, P25, represent the operation 
code, i.e., tell what the instruction is to do: add two numbers, or form the 
product of two numbers, etc. Suppose, for concreteness, that the 
binary number 101 011 is the code for "add" (see Fig. 2-14). Let 
the next six bits, P24, ... , P19, represent the address of one of the 
numbers to be added; P18, ... , P13 the address of the other number; 
and P12, . , P7 the address in which the sum is to be stored. The 

g ~ ~ ~ ~ ~ ~ ~ ~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

101 011 011 010 011 100 011 110 100 000 
~~~~~ 

Operation 
code 

The address The address The address 
of one of the other into which the 

operand operand result goes 

FIG. 2-14. Example_of an instruction word. 

The address 
of the next 
instruction 
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last six bits, P6, . . . ,PI, tell where the next instruction is located in the 
memory. When the instruction word goes into the instruction decoder, 
it is stored in the instruction register. This register has a circuit for 
each bit being stored, with an output wire so that, if a 1 is stored, the 
circuit puts out the 1 signal voltage level on the wire and the 0 signal 
voltage level for a zero. The outputs on these wires are sensed by gating 
circuits, and the instruction is thus decoded (see Fig. 2-15). 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
'--v-----' \ 
To control unit for: 

arithmetic unit 
control 

v I '--.y----J t • 

To control unit for: To control unit for: To control unit for: 
choosing proper choosing proper choosing address of 

addresses of operands aadress of result next instruction 

FIG. 2-15. Instruction register. 

The control unit generates control pulses which are also binary in 
character, i.e., are composed only of the 0 and 1 voltage levels. In fact, 
almost all the circuitry in a digital computer is concerned with only these 
two voltage levels. This distinction can be made as to the function of 
pulses in the computer: some pulses represent words (numbers or instruc­
tions); other pulses represent control signals. Such a distinction was 
made in the block diagram of a computer, where solid-headed arrows 
represented the flow of word pulses and hollow arrows represented the 
flow of control-signal pulses. 

EXERCISES 

(a) Define: length of word; pulses; speed of computer; gates; clock pulses. 
(b) In the addition example given in this section what is the contents of the accu­

mulator 15 tlsec after the start of phase 2? 25 tlsec after? 

2-5. Logical Building Blocks 

Almost the entire computer is composed of only three basic kinds of 
simple circuits, often called building blocks. Many of each kind of 
these circuits are connected to make the computer. The functioning 
of the computer depends only on how these basic circuits are wired 
together. Hence the electronic aspect of computers can be divided into 
two fields: (1) the design of these three very basic circuits; and (2) the 
design of the wiring connections between these basic circuits for proper 
functioning of the computer. The three kinds of basic circuits are called 
and gates, or gates, and not gates. Although the internal electronic design 
of these building blocks and the theory of how to design wiring connec­
tions between them comprise the latter parts of this book, it is felt that 
some background material on these subjects will aid the reader to visual­
ize in a general way the over-all structure of computers. 

The Three Building Blocks. An and gate is a circuit with two (or more) 
inputs and one output so that a 1 signal voltage level at the output will 
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FIG. 2-16. The three building blocks as constructed using relays. 
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occur only when a 1 signal voltage level appears on all inputs. An 
or gate has two (or more) inputs and one output; it will have a 1 signal­
voltage-level output only whenever a 1 signal voltage level appears on 
anyone or more inputs. A not gate has one output and one input and 
will have a 1 signal-voltage-level output only whenever a 0 signal voltage 
level appears on its input. Such circuits can be designed using relays, 
electron tubes, diodes, magnetic cores, transistors, etc. Figure 2-16 
illustrates the possible construction of such circuits using relays. 

Flip-flops. There is one other type of circuit, called a flip-flop, com­
monly used in computers. A flip-flop is a circuit that temporarily stores 
a single bit. Its single output can be either a unit or zero voltage level, 
and this level will remain fixed until some change occurs at its inputs. 
Generally a flip-flop has two inputs: a pulse on one input will cause the 
output to rise to the unit signal level; a pulse on the other input will 
cause the output to fall to the zero signal level. Registers are often 

+1------1 t----+--~ Output 
Q 

InputR I ~ 
InputS~ e 

FIG. 2-17. Relay flip-flop. 

made of a number of these flip-flops, one flip-flop being used for each 
bit of the word (see Fig. 2-15). Flip-flops are ordinarily used for registers 
owing to their high speed of reaction as compared with other memory 
devices (see below). They are rarely used for the computer's memory 
because of their high cost and bulk. These points will be discussed in 
considerable detail in Part 5. 

However, it may prove helpful here to illustrate how a flip-flop can 
be made from relays (see Fig. 2-17). When input R is a unit voltage 
level and closes its relay, the output Q becomes a unit voltage level. 
In this case the output relay Q closes, and the unit-voltage-level output 
is continued independently of relay R until relay S is activated by a 
unit voltage level at input S. When relay S is activated, the output Q 
falls to the zero voltage level and relay Q reopens; the zero voltage level 
is maintained until input R is a unit voltage level. In the circuit shown 
the simultaneous occurrence of unit voltages on both Rand S inputs 
will result in the R input overriding the S input. 

Example of Gating Numerical Quantities. N ow we shall show, in a 
quite preliminary way, how the three building-block circuits can be 
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connected so as to perform some function. Consider as an illustration 
the design of a circuit that might be found as part of the arithmetic unit 
of a computer. The circuit uses two numbers to make a third number, 
in a serial fashion. That is, the circuit has two inputs such that PI 
of one number enters on one input wire at the same time as PI of the 
other enters on the other input wire. The output corresponding to these 
inputs is PI of the output number. Then, say 1 J,tsec later, P2 of each 
number enters the input wires of the circuit, and P2 of the output number 
is made, etc. In this way, the 30 bits of the output number are made 
serially as the corresponding bits of each of the input words pass into the 
circuit. In our example the output number is to be constructed accord­
ing to the following rule: Pn of the output number is 1 if Pn of both the 
input numbers is the same, i.e., either both 1 or both 0; otherwise Pn of 
the output number is O. Thus the circuit is to behave as follows: 

Input 1) 
Input 1 output 1 

Input 0) 
Input 0 output 1 

For example, 

If one input number is 
and the other is 

101110 011001 
011100 100001 

Input 1) 
Input 0 output 0 

Input 0) 
Input 1 output 0 

101101 
111111 

011011 
000000 

001100 
101010 

then the output number is 001101 000111 101101 100100 011001 

Such a circuit is called an "equalizer." Figure 2-18 indicates the con­
nections that are necessary to make this circuit. 

Input-~-+I 

Output 

Input -E--r-+I 

FIG. 2-18. Equalizer circuit. 

In order to see that this circuit actually performs the task, examine 
the four diagrams of Fig. 2-19, one corresponding to each of the four input 
possibilities, where the signal voltage level is indicated at each connection. 

Example of Gating Control Pulses. The above example illustrated 
gating of word pulses. We shall now illustrate gating of control pulses 
(see Fig. 2-20). Suppose that there were at least two circuits in the 
arithmetic unit, an equalizer and an adder. Then, according to Fig. 2-20, 
the two arguments to be operated on (i.e., the one coming from the mem-
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Input -..,--+1 

. Input -E-.-tot Output" 

Input--r-~ 

Input-E-......+! 

Input--r-~ 

Input-~r-+I Output 

Input --r---+I 

Input-E-~ Output 

FIG. 2-19. Analysis of equalizer circuit. 

ory and the other already in the accumulator) will enter both the adder 
and the equalizer. But, because of the control signals, the result of only 
one of these circuits will be brought back to the accumulator. For 
example, if an instruction says that the numbers are to be added, then a 
1 signal voltage level must be in the control wire going to the adder's 
output gate and a 0 signal voltage level must be in the control wire 
going to the equalizer's output gate. Then, as can be clearly seen, no 
signals from the equalizer's result will get through the equalizer's output 
gate, but the adder result will go through the adder's output gate. 

N ext let us illustrate how these control signals are generated. Suppose 
that 

101 011 
is the operation code for addition of the instruction. And suppose that 

001 010 
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Control signal that opens 
this gate only during phase three 

, I 
y 

{
From control unit to open 

adder result gate 

{
From control unit to open 

equalizer result gate 

Number from memory -~----'r----";"---' 

To memory 
FIG. 2-20. Example of gating of control pulses. 
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is the operation code for "equalize." The signals for these positions of 
the instruction register (that is, P30-P25) are gated by means of an and 
gate that has more than two inputs. Such a gate will produce a 1 signal 
voltage level only when there is a 1 signal voltage level on all its inputs. 
From Fig. 2-21 it can be seen that the add control signal will occur only 
when 101 011 is in P30-P25 of the instruction register; and the equalizer 
control signal will occur only when P30-P25 is 001 010. The wires 
marked CP represent clock-pulse wires. We have included these in the 
diagram to illustrate how they enter every and gate. Thus we have 
illustrated the way in which signals can be generated to control which 
operation result will be allowed to go back to the accumulator. 

P30 

P29 
Y Not gate 

4 Not gate 
From P28 

instruction 4 Not gate 
register P27 y Not gate 

P26 

P25 
y Not gate 

y Not gate 

1 CPl, CPl, ., 
I And gate I I And gate I 

! ! 
Control signal Control signal 

for adder to equalizer 

FIG. 2-21. Generation of add and equalizer control signals. 
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EXERCISES 

(a) How can the flip-flop of Fig. 2-17 be constructed from and, or, and not gates? 
(b) Draw the voltage-level diagram for the flip-flop of Fig. 2-17. 
(c) Suppose that in Fig. 2-20 the number from the memory is 

000 010 110 000 001 111 111 001 110 010 

and that the contents of the accumulator at the start of phase 2 is 

000 001 011 101 110 101 111 010 100 000 

Then, if the adder result gate is open during phase 2 (and the equalizer gate closed), 
what will be the contents of the accumulator at the end of phase 2? (HINT: See Sec. 
2-4.) What will it be if the equalizer result gate is open and the adder gate is closed? 

(d) Why do we need a gate that is open only during phase 3, as shown in Fig. 2-20? 
(e) Why do we need the clock pulses shown in Fig. 2-21? 
(f) How is Fig. 2-21 related to Fig. 2-15? Draw the proper composite figure. 
(g) Analyze the output of the given circuit by a method similar to that used in 

Fig. 2-19. 

Input --,.------+i 

Input 
Output 

EXERCISE g 

(h) If the following numbers are inputs to the circuit of Exercise g, then what will 
be the output number? 

Input number 
Other input number 

101110 011001 101101 011011 001100 
011100 100001 111111 000000 101010 

2-6. Input, Output, and Memory Systems 

Input Information. As we have seen, there are many ways to get 
information into and obtain information from a digital computer. In 
order to give a more concrete picture of the process, we shall describe 
in some detail the procedures a person would follow in order to put 
information into a computer. The input information usually consists 
of a list of numbers and a list of instructions telling the computer what 
operations to perform on these numbers. For example, a problem might 
be to compute the trajectory of a missile (i.e., to construct a table giving 
the position of the missile at each second during its flight) given its 
initial velocity and angle of take-off. Suppose that the equation of the 
traj ectory is 

x = (Vo cos 8)t Y = (Vo sin 8)t - Y2gt2 

where X,Y = coordinates of missile at any time 
V 0 = initial velocity 

8 = angle of take-off from horizontal 
Among the list of numbers that niust be entered into the computer are 
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the values of V o, cos 0, sin 0, g, and the constant 1 (the time interval of 
1 sec). A list of instructions must also be read into the computer telling 
it how to compute x and y. All these num­
bers and instructions must be entered into 
the computer in binary form. The first 
problem under consideration in this section 
is just how this might be accomplished. 

Punched Paper Tape as an Input Vehicle. 
Suppose that punched paper tape is to be 
used for this process. An electromechanical 
device exists so that a hole in the tape is 
interpreted by the computer as a 1, no hole 
as a O. Consider a paper tape with posi­
tions for three holes per line. If there are 
30 bits to a word, then 10 lines are needed 
per word. Figure 2-22 illustrates how the 
following word would look on a tape: 

111 101 011 110 001 
111 010 110 011 001 

One method for getting the proper holes in 
the paper tape is to use a paper-tape hand 
punch machine. This manual punch ma­

One word 

Electromechanical 
part of computer 

that looks for holes 

000 
o o 

00 
00 

o 
000 

o 
00 

00 
o 

chine has keys: pushing a single key will FIG. 2-22. Punched paper tape. 
punch one line. The keys might be num-

Key 

CO) 

(1) 0 
(2) 0 
(3) 00 
(4) 0 
(5) 0 0 
(6) 00 
(7) 000 

FIG. 2-23. 
Punched­
paper-tape 
code. 

bered from 0 to 7, and the array of holes corresponding to 
each key might be as given in Fig. 2-23. Hence the word 
above would be punched by pushing the following keys in 
succession: 

7, 5, 3, 6, 1, 7, 2, 6, 3, 1 

The person who prepares the list of numbers and instruc­
tions for a problem is called a programmer, or coder, and 
the list itself is called a coding sheet. The code is written 
as a list of computer words. However, the coder does not 
write the words in binary form but instead puts down, as 
a shorthand, the numbers of the keys that are to be 
punched. Hence the coding sheet, instead of the word 
above, would have 

75 36 17 26 31 

The punch operator would push these keys in succession, 
and the paper tape would be punched in a binary mode. 
After the punching is complete, the paper tape is run 

through the computer paper-tape reader, which translates the holes into 
the units and zeros that are electronically stored in the computer's mem­
ory. The computer then calculates the results, and they are read out-



46 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2 

perhaps by having the computer punch a paper tape. This paper tape 
would then be put into a machine that does the reverse of punching, i.e., 
that looks at a paper tape and prints on paper the numbers that appear 
there,' in a manner similar to a ticker-tape machine. Figure 2-24 is a 
photograph of a paper-tape punch machine and a computer paper-tape 
reader. 

FIG. 2-24. Paper-tape punch and reader. (Photograph courtesy Bendix Computer 
Division oj Bendix Aviation Corp.) 

Other I nput-Output Methods. Although in Part 5 of the book we devote 
most of Chap. 22 to input-output methods, mentioning some of these 
here will serve to orient the reader. Besides punched paper tape there 
are punched cards: the cards are punched in much the same manner as 
the paper tape, and the device that reads the cards into the computer 
likewise senses the holes and interprets these in terms of electronic pulses 
(see Fig. 2-25). A typewriter may be rigged with relays so that when a 
key is pushed a code is produced by the relays and transmitted directly 
into the computer. Such methods are often found too slow. A faster 
method for putting a program or code into a computer is by means of 
magnetic tape, like sound-recording tape (see Fig. 2-26): here a small 
magnetized area on the tape is interpreted by the computer as a unit, no 
magnetized area as a zero. However, before this magnetic tape is read 
into the computer, the program must be first" written" onto the tape. 
This may be accomplished on a machine not associated with the computer 



SEC. 2-6] PRINCIPLES AND BLOCK DIAGRAM 47 

itself, often called an "inscriber." There are many varieties of inscrib­
ers; some enable the code to be put on the magnetic tape directly from a 
typewriter, others from previously punched paper tape or cards. For 
example, one procedure may require that the code first be punched on 
paper tape and the paper tape "inscribed" onto magnetic tape, which is 

FIG. 2-25. Punched-card reader. (Photo(}raph courtesy National Cash Re(}ister Co.) 

finally read into the computer. Table 2-1 gives some idea of the speeds in 
bits per second at which information can be transformed from one medium 
to another. Knowing the number of bits per word, one can then calcu­
late the number of words per minute that can be so transformed. 

There are also some unusual means for putting information into the 
computer. One is a reading machine that can translate digits and letters, 
as they appear on a printed page, into a binary code and write this code 
into the memory. 

Most of the methods for taking information from the outside world 
into the computer's memory can be reversed to serve as methods for 
reading information out from the computer's memory to the outside 
world ina form that is readily understandable. Hence the computer 
can work a typewriter, punch paper tape, punch cards, or write onto 



(a) 

(b) 

FIG. 2-26. (a) Magnetic-tape unit; (b) magnetic tape, showing location of bits. 
(Photographs courtesy Potter Instrument Company, Inc.) 
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TABLE 2-1. ORDER OF MAGNITUDE OF RATES 

From To 

Paper tape. . . . . . . . . . . . . . . . . .. Computer memory 
Punched cards ................ Computer memory 
Typewriter. . . . . . . . . . . . . . . . . .. Computer memory 
Magnetic tape. . . . . . . . . . . . . . .. Computer memory 
Paper tape ................... Magnetic tape 
Punched cards. . . . . . . . . . . . . . .. Magnetic tape 
Typewriter. . . . . . . . . . . . . . . . . .. Magnetic tape 
Computer memory. . . . . . . . . . .. Paper tape 
Computer memory .......... " Punched cards 
Computer memory ............ Magnetic tape 
Computer memory ............ Typewriter 
Paper tape. . . . . . . . . . . . . . . . . .. Typewriter 
Punched cards. . . . . . . . . . . . . . .. Printer 
Magnetic tape. . . . . . . . . . . . . . .. High-speed printer 
Computer memory ............ High-speed printer 
Computer memory ............ Cathode-ray-tube printer 

2,000 bits/sec 
3,000 

40 
100,000 

2,000 
3,000 

40 
300 

2,000 
100,000 

600 characters/min 
600 

10,000 
100,000 
100,000 
500,000 

FIG. 2-27. High-speed printer (600 lines per minute, 120 characters to the line). 
(Photograph courtesy Radio Corporation of America.) 

49 
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magnetic tape. Of course the "outscriber" is required to transform the 
i,nformation from punched paper tape, punched cards, or magnetic tape 
into the letter and number characters we are more familiar with. In 
addition there are methods using so-called; "high-speed" printers and 
specially made cathode-ray tubes (see Figs'.'2-27 and 2-28) that, like 
the typewriter, display numbers and letters directly from the computer. 

FIG. 2-28. High-speed printer using Charactron tube (4,680 lines per minute, 120 char­
acters to the line). (Photograph courtesy Stromberg-Carlson Division of General 
Dynamics Corp.) 

Other outputs from a computer may be obtained from attaching 
oscilloscope or 'television tubes to the computer's memory. Then the 
computer literally can draw maps, can indicate the movements of dots 
representing aircraft, etc., or can display other kinds of pictures. 

Acoustic-delay-line Memory. Words read into the computer go into 
the computer's memory. The. function of a computer memory is to 
s'tore the pulses of each word in such a way that they may be called into 
the arithmetic unit rapidly, upon generation of the proper control sig­
nals. In addition, the computer memory must be able to accept rapidly 
the pulse train of a word for storage. The speed of modern computers is 
essentially limited by the speeds of access to their memories. 

There are many ways for memorizing words within a computer, and, 
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some of these will be considered in detail in Part 5 of this book. How­
ever, in order to gain a broader point of view at this time, it might be 
helpful to describe briefly one of these memory methods. Consider as an 
example the acoustic mercury delay-line memory. This memory con­
sists of a set of glass tubes, each about 2 ft long and % in. in diameter 
(see Fig. 2-29). Each tube is filled with mercury and has a quartz 

FIG. 2-29. Acoustic mercury delay-line memory. (Photograph courtesy National 
Bureau oj Standards.) 

Delay-time memory 

--~ --~ - - ~ 01-------, 
~~--------------------------~ 

r;:-:0 __ --------------r---I Amplifier 

Read-out 
signal from 

Write-into control generator 
signal from 

control generator 

FIG. 2-30. Read and write control signals. 

and pulse 
reshaper 

To arithmetic 
unit 

crystal at each end. Electrical pulses make the crystal at one end 
vibrate; the disturbances propagate down the tube in the mercury and 
vibrate the other crystal; these latter vibrations are changed by the 
crystal into electrical impulses, which are then sent to an amplifier. 
The amplifier reshapes the pulses and sends them to the other crystal, 
etc. Thus the pulses of a word travel serially, i.e., consecutively, down 
the mercury, through the amplifier, and around. The proper control 
signals will allow the word pulse train to go to the arithmetic unit or 
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come from the arithmetic unit into the circuit. Of course the timing of 
these processes is critical, because when it is desired to read a word out 
of the memory, the gating must operate precisely as PI of that exact 
word is picked up by the second crystal. To maintain the proper speed 
of propagation in the mercury, the temperature of the line must be held 
within a narrow band. 

FIG. 2-31. Magnetic drum. (Photograph courtesy Royal McBee Corporation.) 

An important point that is true for practically all kinds of memories 
is that when a word is read out of a memory the word is still stored in the 
memory (unless otherwise specifically stated by the instruction-see Chap. 
4). Thus in Fig. 2-30 the read-out control signal opens the gate to the 
arithmetic unit but does not prevent the recirculation of the word through 
the memory. On the other hand, when a word is written into the memory 
from the arithmetic unit, the previous word of that address is automatically 
erased and replaced by the new word. In Fig. 2-30 the write-into control 
signal opens the gate from the arithmetic unit at the same time it closes 
the recirculation gate. 

Other Memory Systems. There are several other memory systems that 
will be described in Chap. 22 of Part 5. However, we shall mention 
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some of these here for orientation. Magnetic tape, described above 
as an input-output system, can as well be used for a computer memory. 
A similar magnetic-pulse technique is incorporated into magnetic drums, 
which are simply rapidly rotating cylinders with magnetizable surfaces 
(see Fig. 2-31). Faster memories are constructed from magnetic cores, 
specially prepared from ferrites having a square hysteresis loop, thereby 
presenting two stable states. Each core then represents one bit of a 
word (see Fig. 2-32). An even faster memory has been constructed, 

FIG. 2-32. Magnetic cores. (Photograph courtesy International Business Machines 
Corp.) 

using diodes and capacitors. As mentioned above, a memory with the 
fastest reaction time is one constructed using flip-flops to record bits. 
The time required to transmit one computer word out of the memory 
to where it will be used is called the memory access time (see Table 2-2). 

In an acoustic-delay-line memory the stored bits come out serially. 
If more than one word is stored in a single line, the computer must wait 

TABLE 2-2. ORDER OF MAGNITUDE OF MEMORY ACCESS TIME 

Memory system Time required to transmit a 30-bit word 

Magnetic tape. . . . . . . . . . . .. 5 msec + time necessary to position tape 
Magnetic drum. . . . . . . . . . .. 10 msec 
Acoustic delay line. . . . . . . .. 100 J.'sec 
Magnetic core. . . . . . . . . . . .. 5 J.'sec 
Diode capacitor. . . . . . . . . . .. 1 J.'Sec 
Flip-flop register. . . . . . . . . .. 1 J.'sec 
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for the proper word to pass the read~out gate. In the magnetic-tape 
memory the whole tape must be searched, and a great deal of time is 
lost just winding and rewinding tape. For the drum the computer must 
wait for the word to rotate to the proper read-out position. The 
magnetic-core arrangement enables any word to be read out with no 
delays except those inherent in the circuitry involved. A word is read 
from a core memory in parallel; i.e., all the bits are transmitted to the 
arithmetic unit at the same time. A similar situation occurs with diode­
capacitor memory or with a memory composed of a set of flip-flop 
registers. 

Unfortunately, the faster the memory, the more it costs per bit. 
Hence a computer usually has several kinds of memory. Most com­
monly, magnetic tapes and drums are used for the so-called "low-speed" 
memory of a computer, while a magnetic-core memory or diode-capacitor 
memory is used as the "high-speed" memory. Often there is also 
included in the larger computers a battery of flip-flop registers for the 
really high-speed work. In this way, various parts of a large program 
can be stored in the relatively low-speed memory system of a computer 
and then transmitted to the high-speed memory when the actual compu": 
tat ions of this part of the program are to occur. We shall have more to 
say about this later (Chaps. 5, 7, and 8). 

EXERCISES 

(a) What keys of a paper-tape puncher would be pushed to punch the number 

101 110 011 001 101 101 011 011 001 100 

(Use the table of Fig. 2-23.) 
(b) Draw a picture of paper tape with the number in Exercise a punched on it. 
(c) What number does the given hole pattern represent? 

o 0 
o 
o 

EXERCISE C 

(d) During what phases might the write-into signal, shown in Fig. 2-30, be "on," 
i.e., have a unit signal voltage level? During what phases must this signal be "off," 
i.e., have a zero signal voltage? 

(e) During what phases might the read-out signal shown in Fig. 2-30 be on? During 
what phases must this signal be off? 

2-7. Digital-computer and -control Engineering 

In this chapter the attempt was made to give a broad picture of how a 
digital computer works. The three disciplines that comprise digital­
computer and -control engineering were introduced. These were 
(1) coding and programming, or the study of writing sequences of instruc­
tions that direct the computer to perform particular tasks; (2) logical 
design of computer circuitry, or the study of designing proper connections 



SEC. 2-8] PRINCIPLES AND BLOCK DIAGRAM 5.5 

between the three building-block gates so that the resultant circuit will 
perform specified functions; and (3) electronic design of computer circuitry, 
or the study of specific electronic-circuit representations of the building­
block gates as well as the electronic design of the input and output equip­
ment associated with a computer. It has been seen how the methods 
and techniques by which a computer is programmed are intimately 
associated with the logical design of the computer, which in turn must 
satisfy the requirements set by the electronic design of the computer gate 
circuits. Hence, in dealing with almost any aspect of computers, the 
engineer must have a thorough grasp of all three of these disciplines. 

In designing a digital computer, perhaps the engineer's first considera:­
tion is choosing the proper coding and programming system which best 
suits the purpose and function for which the computer is to be used. 
Although the basic concepts of programming are invariant, the computer 
engineer can choose from a wide range of possibilities of programming 
systems. This choice is extremely important, for it forms the basis of 
the entire structure of a computer design. The rest of the chapters in 
Part 1 of this book are concerned with this phase of computer engineering. 
Part 2 is concerned with the operation and use of computers pertaining 
to various problems-numerical analysis, searching and sorting, etc. 

H we assume that the electronic design of the basic building-block 
gating circuits has been chosen, the fundamental problem of computer 
engineering becomes that of the logical design of the computer. Part 3 
of the book lays the mathematical foundations for such design techniques, 
and Part 4 applies these to the logical design of common computer com­
ponents. This aspect of computer engineering will perhaps appear most 
unusual to electrical engineers. The laborious analysis carried out in 
Sec. 2-5 is replaced by systematic computational methods based on a 
rather different kind of algebra-called Boolean algebra. 

Part 5 of the book considers the electronic design of the basic building­
block gating circuits, using various hardware components such as diodes, 
transistors, ferrite cores, etc. The usefulness of a computer depends to a 
large extent on the speed, reliability, stability, and other such character­
istics of the circuits from which it is made. Hence the careful design, 
analysis, and testing of these circuits and their components comprise a 
large part of computer engineering. 

2-8. Additional Topics 

a. Analogy with Desk Calculator. Make a detailed analog between a digital elec­
tronic computer and a desk calculator, paying attention to function, structure, 
sequence of steps in their operation, etc. That is, what are analogous to accumulator, 
memory, instruction register, control unit, arithmetic unit, etc.? 

b. Constructing a Cardiac Computer. A Cardiac computer is made by assigning 
each person of the class as one of the units or parts of a computer. Each person so 
assigned becomes responsible for performing all the functions of this assigned part 
of the computer, but no other functions. Then a program or sequence of instructions 
is written, and these instructions are executed by means of this human simulation of a 
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computer. Words and control signals are transmitted by passing around cards or 
pieces of paper. 

c. Memories. For each of five commercially available high-speed digital electronic 
computers list the kinds of memories they include and their memory access times, and 
the kinds of input-output equipment they have and the speeds of these units. For 
example, get commercial advertising from the manufacturer, and consult Martin H. 
Weik, A Second Survey of Domestic Electronic Digital Computing Systems, BRL 
Rept. 1010, June, 1957. 

d. Background. There are several subjects the student may find interesting as 
background material to his study of digital-computer engineering. These are cyber­
netics, information theory, certain aspects of neurophysiology, and the so-called 
"theory of automata." Readings relating to these subjects can be found in: 

Ashby, W. Ross: "Design for a Brain," John Wiley & Sons, Inc., New York, 1952. 
Brillouin, L.: "Science and Information Theory," Academic Press, Inc., New York, 

1956. 
De Latil, Pierre: "Thinking Machines," Houghton Mifflin Company, Boston, 1957. 
McCulloch, W. S., H. Quaster, G. A. Miller, and L. S. Fogel: Human Beings as Com­

puters, a collection of four papers, IRE Trans. on Electronic Computers, vol. 
EC-6, no. 3, pp. 190-202, September, 1957. 

Newman, James R. (ed.): "The World of Mathematics," vol. 4, pp. 2070-2133, 
Simon and Schuster, Inc., New York, 1956. 

Shannon, C. E., and J. McCarthy (eds.): "Automata Studies," Princeton University 
Pf€SS, Princeton, N.J., 1956. 

Wiener, Norbert: "Cybernetics," John Wiley & Sons, Inc., New York, 1948. (Omit 
chaps. II-IV.) 

The student may find it profitable to keep the following questions in mind during the 
course of his readings: What is the definition of information? Of what importance is 
information theory to the study of computers? What is the relation between the 
functioning of a neuron and those of the three building-block gates? In what way is a 
digital computer like the human brain? In what way does the human brain differ 
from a digital computer? Compare and contrast the computer's memory and that of 
the human brain. Can a digital computer think? 

e. Terminology. Discuss the problems involved in standardizing computer ter­
minology; i.e., compare definitions and usages of words as found, for example, in 
First Glossary of Programming Terminology, J. Assoc. Computing Machinery, June, 
1954, and The Institute of Radio Engineers Standards on Electronic Computers: 
Definitions of Terms, 1956, Proc. IRE, vol. 44, no. 9, September, 1956. 

f. History. Discuss the history of digital computers, identifying each advance in 
computer engineering with particular computers; include Babbage's computer, the 
EN lAC, EDV AC, SEAC, DYSEAC, UNIVAC, Whirlwind, lAS computer, Reming­
ton Rand 1103, IBM 704, and NORC, and the modern supercomputers such as 
LARC and Stretch [see B. V. Bowden (ed.), Faster than Thought, Pitman Publishing 
Corporation, New York, 1953, and other references in J. Assoc. Computing Machinery 
and IRE Trans. on Electronic Computers]. Figure 2-33 represents an evolutionary 
tree of digital computers that may be of aid in the discussion. We cannot claim 
that this tree is complete, but we hope that the major trends are reflected. Figure 
2-34 is a montage of present-day computers. These photographs have been included 
to give the student an idea of the variety of modern computers. 
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FIG. 2-34. Present-day computers. (A) FLAC computer for biomedical research; 
(B) Honeywell 800; (C) Datamatic 1000; (D) UNIVAC solid-state computer; (E) 
UNIVAC 1105; (F) RCA 501; (G) air-borne computer; (H) RVS-Mark I (an auto­
matic order-filling system). [Courtesy (B, C) Minneapolis-Honeywell; (D, E) Reming­
ton Rand; (F) Radio Corp. of America; (G) Librascope, Inc.; (H) Industrial Electronics 
Engineers, Inc.] ... 
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FIG. 2-34. Present-day computers (continued). (1) IBM 709; (J) IBM 705; (K) 
IBM 650; (L) Perseus G/7578/1; (M) Burroughs 205; (N) NCR 304; (0) TRAN8AC-
8-2000; (P) Bendix G-I5. [Courtesy (1, J, K) International Business Machines Corp.; 
(L) Ferranti, Ltd.; (M) Burroughs Corp.; (N) National Cash Register; (0) Philco Corp.; 
(P) Bendix Computer Division.] 
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CHAPTER 3 

CODING AND PROGRAMMING A DIGITAL COMPUTER 

3-1. Introduction 

Recapitulation. The previous chapter has given the basic foundations 
necessary for a detailed discussion of how to direct a computer to perform 
desired computations. A code was defined as a list of instructions and 
numbers, the instructions being the specific means by which a person 
tells the computer what to do. The fundamental concept that instruc­
tions are written in terms of addresses, the contents of which are the 
numbers to be operated upon, was emphasized. We described the pro­
cedure by which the instructions are called into the instruction register, 
one instruction at a time and in sequence; and we indicated how the opera­
tions are performed by the computer. The use of the binary number 
system inside the computer and of some kind of shorthand for coding 
purposes was discussed briefly. We described the processes involved in 
transforming numbers written on paper into binary pulses inside the 
computer's memory. And it was noted that a similar process is involved 
in the reverse transformation from pulses in the computer's memory to 
typed numbers on a working paper outside the computer. 

Importance of Coding to the Engineer. It is important for the digital­
computer engineer to be well versed in coding and programming because, 
first, such knowledge is essential for a clear understanding of the prin­
ciples of digital computers; second, occasions often arise when the com­
puter engineer will have to run a problem of his own associated with his 
engineering duties; third, such knowledge is essential in maintaining an 
existing computer or checking out a new computer; and, finally, the 
engineer must be capable of evaluating various designs with respect to 
the final use and application of the computer. 

Material Directed to Engineering Needs. The present chapter is the 
first of three chapters devoted exclusively to programming and coding. 
This chapter is concerned mainly with an introduction to coding and 
instruction formats. The next chapter (Chap. 4) is concerned with sub­
routines and the basis of instruction definitions. The final chapter of 
this group (Chap. 5) considers the principles of automatic programming. 
These chapters are directed to the digital-computer engineer and the 
problems he will face in his work. The engineer must grasp the funda­
mental ideas involved, and his training cannot be restricted to a single 
type of computer instruction format. He must understand the principles 
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behind the definitions of many kinds of instructions, so that he may 
design new ones and evaluate proposed ones. He must also understand 
the basis for automatic programming so that he may use or write such 
programs intelligently in solving engineering problems or in performing 
computer maintenance. Programming and coding are therefore a funda­
mental aspect of computer engineering. 

Manner of Presentation. In successive sections of this chapter we 
consider instructions that include explicitly first four addresses, then 
only three, then two~ and finally only one address. We begin with the 
four-address system because this format includes all the necessary ingre­
dients of an instruction. Then, by omitting one address in the instruction 
format, we arrive quite naturally at a three-address system, and so forth. 
As each address is omitte<;l from the instruction format, it must be 
compensated for by corresponding additional computer circuitry or by 
using several instructions where one sufficed before. In this way the 
advantages and disadvantages of various basic instruction formats are 
clearly observed. 

Examples will show that, the smaller the number of addresses per 
instruction, the greater the ingenuity and work required of the coder, the 
larger the list of instructions that must be available to the coder, and the 
longer the equivalent codes. On the other hand, as the number of 
addresses per instruction is increased, the number of possible addressable 
memory locations is decreased and the words are made longer. In 
designing a computer system all these factors must be carefully evalu­
ated with respect to the intended use of the computer, the amount of 
hardware required, the speed of the computer, the cost of the computer 
and of programming and coding, etc. 

In the current chapter only very basic instruction lists are used in 
order that the material be as simple as possible at first. Only sequences 
of instructions and decisions are illustrated. This leaves the student 
free to concentrate on the fundamental properties and uses of the instruc­
tion formats. Consideration of those most important and fundamental 
programming techniques of loops (i.e., recursions, iterations) and sub­
routines is left to Chap. 4. In that chapter also, a large number of 
more complicated and specialized instruction or operation types are 
considered in detail. We believe that the student will more easily 
understand the principles of programming if consideration of these some~ 
what sophisticated ideas is postponed. Any discussion of ~oding and 
programming must be preceded by a study of number systems, as will 
be found in the next sections of this chapter. 

Stages in Coding. As will be seen, there are five stages in coding. 
First the computations to be performed must be clearly and precisely 
defined. The over-all plan of the computations is diagramed by 
means of a so-called" flow chart." The second stage is the actual coding. 
It is often best to write a code in terms of a symbolic language first, for 
then changes are easily made. N umbers are assigned to the symbols, 
and the final code is prepared. In the third stage some procedure ii:l 
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used to get the code into the memory of the computer. The fourth 
stage consists in "debugging" the code, i.e., detecting and correcting any 
errors. The fifth and final stage involves the running of the code on the 
computer and tabulating the results. In this chapter and the next only 
the first two stages are considered. Techniques for the- fourth stage 
are described in Chap. 5. 

Philosophy of Coding. As will become abundantly clear in the follow­
ing sections, a single error in one instruction invalidates the entire code. 
Hence coding is an exacting technique, requiring attention to details 
without losing sight of the over-all plan. Learning to code must be 
developed from within a person. Following through each instruction 
of the examples given in this chapter is important, but it is not sufficient. 
The student must code problems by himself if he is to become aware 
of all the detailed thinking and reasoning associated with the coding 
technique. The method of teaching in this text is through example. 
The 3tudent should try to do the examples himself, using the text only 
as a guide to the methods involved. 

3-2. Number Systems: Conversion 

Number Systems and the Radix. Preliminary to any discussion of 
coding should come an analysis of various number systems. In Sec. 2-4 
we noted that 8,675 really means 8 X 103 + 6 X 102 + 7 X 101 + 5 X 
10°, where 100 = 1. Since decimal numbers are expanded as illustrated 
in powers of ten, we say that the decimal number system has a radix of ten. 
This concept can be generalized to define number systems based on any 
positive-integer radix q: if a number N is based on radix q, then it can be 
expanded as 

for integer N 2:: 1, or 

.for 0 < N < 1, where ao, aI, ... , a_I, a_2, are nonnegative inte­
gers each less than q. Of course, for noninteger N > 1, the expansion 
contains both the positive and negative powers, 

+ a2q2 + aIq1 + aoqO 
+ a_1q-1 + a_2q-2 + . . . + a_mq-m 

For example, 

8,675.8675 = (8 X 103) + (6 X 102
) + (7 X 101

) + (5 X 10°) 
+ (8 X 10-1) + (6 X 10-2) + (7 X 10-3) + (5 X 10-4) 

that is, a3 = 8, a2 = 6, al = 7, ao = 5, a_I = 8, a_2 = 6, a-3 = 7, and 
a_4 = 5. Even though we are most familiar with the system for-q= ten, 
-history records ancient civilizations that used q = six, q = twelve, and 
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even q = sixty! For our purposes we are most interested in q = 2 (binary 
system), q = 8 (octal system), and q = 16 (sexadecimalt system). 

First note that for radix q the number system must involve q symbols. 
For example, for q = ten, the ten symbols are 0, 1, 2, 3, 4-, 5, 6, 7, 8, 
and 9; for q = 2, the 2 symbols are ° and 1; for q = 16, the 16 symbols 
most often used are 0,1,2,3,4-,5,6,7,8,9, A, B, C, D, E, andF. Then, 
if N = anqn + an_Iqn-1 + .• . . + a2q2 + alql + aoqO, where the ai are 
of course chosen from the q symbols, the number is conventionally written 
by juxtaposition of the coefficients ai as follows: N = anan_l . . . a2alaO. 
If N = a_Iq-1 + ... + a'-mq-m, then the number is usually written 
by juxtaposition of the ai : preceded by ·[.J-that is, .a_Ia_2 ... a_m• 

For noninteger N > 1 we would have an .. '. aO.a-1 ... a_m• With 
this in mind, counting in the four different systems mentioned above is 
accomplished as in Table 3-1. 

Conversion from One Number System to Another. Using number sys­
tems based on different radices is like talking in different languages. 
Just as one can translate one language into another, so also one can 
"convert" from one radix to another. For ex~mple, in Table 3-1 num­
bers on the same row are equivalent-that is, I 

28 (decimal) = 11100 (binary) = 34 (octal) = 1 C (sexadecimal) 

The binary, octal, and sexadecimal equivalents of the decimal numbers 
from 0 to 15 should be memorized. 

In order to derive a systematic method for converting from one num­
ber system to another, we' make us~ of the well-known result that if 
Nand q are positive integers then there always exists a unique (non­
negative) integer r less than q and a unique integer S such that 

N r 
- = S +­q q 

O<r<q 

Let us apply this to convert an integer number with radix p, say N p, 

to its equivalent with radix q, say N q. In other words, we wish to deter­
mine the nonnegative integers ao, aI, ... ,an, each less than q, such that 

Observe that 

N p " ' ao 
- = anqn-l + . . . + a2ql + alqo + -
q , q 

Integer' Fraction 

So + ro 
q 

Since the quotient and rema,inder are each unique, equating the fractional 

t Also less correctly called hexadecimal. 



TABLE 3-1. CONVERSION TABLE 

Decimal Binary. Octal Sexadecimal 
(q = 10) (q = 2) (q = 8) (q = 16) 

0 0 0 0 
1 1 1 1 
2 10 2 2 
3 11 3 3 

4 100 4 4 
5 101 5 5 
6 110 6 6 
7 111 7 7 

8 1000 10 8 
9 1001 11 9 

10 1010 12 A 
11 1011 13 B 

12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 

16 10000 20 10 
17 10001 21 11 
18 10010 22 12 
19 10011 23 13 

20 10100 24 14 
21 10101 25 15 
22 10110 26 16 
23 10111 27 17 

24 11000 30 18 
25 11001 31 19 
26 11010 32 1A 
27 11011 33 IB 

28 11100 34 1C 
29 11101 35 1D 
30 11110 36 1E 
31 11111 37 1F 

32 100000 40 20 
33 100001 41 21 
34 100010 42 22 
35 100011 43 23 

36 100100 44 24 

64 
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parts we have ao = ro and So = anqn-l + ... + a2ql + alqo. Divid­
ing So by q and using our above results, we obtain 

whence al = rl, and so forth. 
Hence the systematic conversion method is as follows: Divide N p by q; 

the remainder is ao. Divide the resulting quotient by q; the remainder is 
at. Divide the resulting quotient by q; the remainder is a2; etc. As an 
example, we have converted 28 (decimal) into binary (q = 2) in Table 
3-2. Hence, 

28 (decimal) = 11100 (binary) 

TABLE 3-2. DECIMAL TO BINARY CONVERSION (N p ;::: 1) 

Remainders 
2~ 
2/14 o = ao 

2~ o = al 

2@. 1 = a2 

21~ 1 = a3 

0 1 = a4 

The work can be more conveniently arranged from right to left, as follows: 

Divide by 2 

t Place remainder 

o - 1 - 3 - 7 - 14 - 28~ 
J t t t t 
1 1 1 0 0 Remainders 

As another example, let us convert 28 (decimal) to octal (q = 8), 

o ~3 ~28~ 
l l 
3 4 Remainders 

whence the converted octal number is 34. 
To convert 28 (decimal) to sexadecimal (q = 16), 

0~1 ~28~ 
1 a 

Hence the converted sexadecimal number is 1a. [Here, of course, 
28 - 16 = 12 (decimal) = a (sexadecimal) from Table 3-1.] 

N ext consider 0 < N p < 1. We wish to find nonnegative integer 



66 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3 

'coefficients a_I, a_2, . . . ,a_m, each less than q, such that 

N p = a_Iq-1 + a_2q-2 + ... + a_mq-m' 
Here qN p = a_I + a_2q-1 + . . . + a_mq-m+1 

= U-I + V-I 

where U-I is the integral part and V-I is the fractional part of qN p; hence 

and 
Again 
whence 

U-I = a_I 
V-I = a_2q-l+ . . . + a_mq-m+1 

qV-:-I = a_2 + a_3q-1 + . . . + a_mq-m+2 = U-2 + V-2 
U-2 = a_2, etc. 

The conversion method thus is as follows: Multiply N p by q; the 
integral part is a-I. Multiply the resulting fractional part by q; the 
integral part is a_2; etc. 

As an example, we have converted 0.28 (decimal) to binary (q = 2) 
m Table 3-3. Hence 0.28 (decimal) = .01000111 ... (binary). The 

TABLE 3-3. DECIMAL TO BINARY CONVERSION (0 < N p < 1) 

Integral parts 

0.28 
X 2 

a_I = 0 .56 
X 2 

a_2 = 1 .12 
X 2 

a_3 = 0 .24 
X 2 

a_4 = 0 .48 
X 2 --

a_5 = 0 .96 
X 2 

a_6 = 1 .92 
X 2 --

a_7 = 1 .84 
X 2 

a_8 = 1 .68 

work can be more conveniently arranged from left to right, as follows: 

Multiply by 2 

Place 
integral ! 
part 

2 X 0.28 --) .56 --) .12 --) .24 --) .48 --) .96 --) .92 --) .84 ~ .68 

! ! ! ! ! ! ! ! 
Integral parts 0 1 0 0 0 1 1 1 
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Note that the process does not necessarily end, as it must for the inte.,. 
gral numbers, but may be carried out to any number of significant 
figures. Conversion to the octal and sexadecimal systems is similarly 
accom plished. 

For nonintegral numbers greater than unity the integral part and the 
fractional part are done separately as just described. 

Note that in converting from binary to octal (or sexadecimal) we 
divide, or multiply, the binary number by binary 100 (or 1000), which is 
equivalent to shifting the fraction point to the left, or to the right, by 
three (four) binary places. Hence for binary to octal conversion we 
start at the point and count off the binary bits in groups of three, to the 
left and to the right. Then we write the octal equivalent for each 
of these groups of three bits. For example, if the binary number is 
11100.110100011, the octal equivalent is 

3 
011 

4.6 
100.110 

4 3 
100 011 

To convert to sexadecimal, we count off similarly by groups of four. 
For the same binary number the sexadecimal number is 

1 
0001 

C.D 
1100.1101 

1 
0001 

(See Table 3-1 for binary-octal and binary-scxadecimal equivalents.) 
The converse will of course hold. 

Converting from Binary to Decimal. Another conversion method, par­
ticularly useful for converting from binary to decimal, is based on the 
following factorization, illustrated for n = 4: 

N = a4q4 + a3q3 + a2q2 + alql + aoqO 
= (((a4q + a3)q + a2)q + al)q + ao 

If N is a binary integer, then q = 2 and the a's are either 0 or 1, but 
a4, the most significant coefficient, must be 1. Hence, to convert N 
to decimal, start out with 1, and double it, obtaining 2; then add ag, 
and double the result; add a2, and double the result; add aI, and doub~e 
the result; finally add ao. For example, 

1 0 1 1 1 (((2 + 0)2 + 1)2 + 1)2 + 1 
= ((4 + 1)2 + 1)2 + 1 
= (10 + 1)2 + 1 
= 22 + 1 = 23 

The method is to accumulate the result while calculating, and the work 
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from left to right might look like this: 

Similarly for N such that 

1 Double/, 
/Add 

1 0 1 1 1 = 23 

l/'l/ l/ l/ 
2 4 10 22 

N = a_Iq-1 + a_2q-2 + a_3q-3 + a_4q-4 

we have the factorization 

If N is given in binary, then q = 2 and the a's are either 0 or 1. The 
decimal conversion is calculated by starting with the least significant 
unit (for example, a_4 in our case), working toward the left as follows: 
Add a-3 to .5, and halve the result; add a_2, and halve the result; add 
a_I, and halve the result. For example, 

.1011 = %(1 + %(0 + }2(1 + 0.5)) 
= %(1 + Y2(0 + 0.75» 
= %(1 + 0.375) = 0.6875 

Of course the method is to accumulate while calculating, and the work 
from right to left might be arranged as follows: 

Halvel~Add 

.1 0 1 1 

l " l "l "l 0.6875 0.375 0.75 0.5 

This method can be used for octal and sexadecimal conversion to decimal 
simply by converting the octal or sexadecimal to binary first; e.g., for 
octal, 

53.53 (octal) = 101011.101011 (binary) 

EXERCISES 

Convert the following decimal numbers to binary, octal, and sexadecimal. Carry 
the conversion far enough so that the converted number differs from the original 
decimal number by less than ~oo. 
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Decimal 

(a) 56 
(b) 0.79 
(c) 56.79 
(d) 0.732 
(e) 87,231 
(f) 87,231. 732 

Answers 

Binary 

111000 
.110010100 

111000.110010100 
.101110110 

10101010010111111 
10101010010111111.101110110 

Octal 

70 
.624 

70.624 
.566 

252277 
252277.566 

Sexadecimal 

38 
.CA 

38.CA 
.BB 

154BF 
154BF.BB 

(g) Convert -56.79 to binary, octal, and sexadecimal. (HINT: A negative number 
is converted as if it were positive, and then the negative sign is affixed to the result. 
Why?) 

Convert to decimal: 
(h) 70 (octal). 
(i) .624 (octal). 
(j) BB (sexadecimal). 
(k) 70.624 (octal). 
(l) Compare the results of Exercise k with those of Exercise c, and explain. 

3-3. Number Systems: Arithmetic 

Addition and Multiplication Tables. We have already considered the 
arithmetic operation of counting in different number systems. Although 
all arithmetic can be accomplished by counting, we are more familiar 
with the laborsaving operations of addition, multiplication, subtraction, 
and division. Of course these operations may also be carried out in 
other than the decimal number system. Addition and multiplication are 
essentially carried out by means of tables. For decimal, binary, and 
octal the tables are shown in Table 3-4. 

Arithmetic Operations. In both addition and subtraction the" carry I) 
or "borrow" is handled in other number systems exactly as it is handled 
in the familiar decimal system. Of course the addition tables are used 
during the calculation. For example, 

1 1 0 1 (binary) 7 5 7 (octal) 

+ 1 0, 1 (binary) + 5, 6 (octal) 
1 0 0 1 0 (binary) 1 0 3 5 (octal) 

1 1 0 1 (binary) 7 5 2 (octal) 
1, 1 0 (binary) 6, 5 (octal) 

0 1 1 1 (binary) 6 6 5 (octal) 

Multiplication and division in other systems also follow the rules 
familiar to us in the decimal system. Of course the multiplication and 
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TABLE 3-4. ARITHMETIC TABLES 

DECIMAL ADDITION TABLE DECIMAL MULTIPLICATION TABLE 

+ 0 1 2 3 4 5 6 7 8 9 X 0 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0 
1 1 2 3 4 5 6 7 8 9 10 1 0 1 2 3 4 5 6 7 8 9 
2 2 3 4 5 6 7 8 9 10 11 2 0 2 4 6 8 10 12 14 16 18 
3 3 4 5 6 7 8 9 10 11 12 3 0 3 G 9 12 15 18 21 24 27 
4 4 5 6 7 8 9 10 11 12 13 4 0 4 8 12 16 20 24 28 32 36 

5 5 6 7 8 9 10 11 12 13 14 5 0 5 10 15 20 25 30 35 40 45 
6 6 7 8 9 10 11 12 13 14 15 6 0 6 12 18 24 30 36 42 48 54 
7 7 8 9 10 11 12 13 14 15 16 7 0 7 14 21 28 35 42 49 56 63 
8 8 9 10 11 12 13 14 15 16 17 8 0 8 16 24 32 40 48 56 64 72 
9 9 10 11 12 13 14 15 16 17 18 9 0 9 18 27 36 45 54 63 72 81 

BINARY ADDI TION TABLE BINARY MULTIPLICATION TABLE 

+ 0 1 X 0 

0 0 1 0 0 0 
1 10 1 0 

OCTAL ADDITION TABLE OCTAL MULTIPLICATION TABLE 

+ 0 1 2 3 4 5 6 7 X 0 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 
1 1 2 3 4 5 6 7 10 1 0 1 2 3 4 5 6 7 
2 2 3 4 5 6 7 10 11 2 0 2 4 6 10 12 14 16 
3 3 4 5 6- 7 10 11 12 3 0 3 6 11 14 17 22 25 

4 4 5 6 7 10 11 12 13 4 0 4 10 14 20 24 30 34 
5 5 6 7 10 11 12 13 14 5 0 5 12 17 24 31 36 43 
G 6 7 10 11 12 13 14 15 6 0 6 14 22 30 36 44 52 
7 7 10 11 12 13 14 15 16 7 0 7 16 25 34 43 52 61 

addition or subtraction tables are used during the calculations. For 
example, 

1011 (binary) 775 (octal) 
X 101 (binary) X 56 (octal) 

1011 5756 
0000 4761 

1011 55566 (octal) 
110111 (binary) 
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1011 (binary) 775 (octal) 
101\110111 (binary) 56\55566 (octal) 

101 502 
111 536 
101 502 
101 346 
101 346 

EXERCISES 

(a) Make an addition and multiplication table for sexadecimal numbers. [HINT: 
In the addition table the rows (and columns) count by 1; the row (or column) of the 
multiplication counts by n if n is the number of the row (column).] 

Perform the following operations in binary: 

(b) 111 + 1 
(c) 1010 + 111 
(d) 1110 - 1 
(e) 1 - 1110 
(f) 1101 X 1011 
(g) 11011 -+- 110 

Perform the following operations in octal: 
(h) 6,754 + 777. 
(i) 73 - 56. 
(j) 555 - 62. 
(k) 5,715 -+- 65. 

Answers 

1000 
10001 

1101 
-1101 

10001111 
100.1 

Using the tables of Exercise a, calculate in the sexadccimal system: 

(l) AFCR + 1AD8 
(m) 842D - 65AE 
(n) 3C X D1 
(0) 1A8E -+- 21 

Answers 

CAA3 
1E7F 
30FC 

CE 

3-4. Coding: Sequences of Instructions 

We shall initiate our detailed discussion of coding using the four­
address instruction system. That is, in this section we shall consider 
instructions which explicitly include four addresses, since a four-address 
instruction system includes all the essential ideas or basic ingredients of 
an instruction. 

Instruction Format. As we have previously seen, some bits of the 
instruction are set aside for the operation code designation-i.e., they 
tell the computer the instruction is add, multiply, divide, etc. The rest 
of the bits usually denote the four addresses. For the more usual opera­
tions that involve two operands, such as addition, multiplication, etc., 
two of the addresses are the addresses of the operands. The third address 
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tells where the result is to be put; the fourth address, where to obtain the 
next instruction. Hence a typical four-address instruction format is as 
follows (where the four addresses are denoted by a, (3, "1, and 0): 

Operation First operand Second oper- Put result in-
Address of 

next in-
code address a and address {3 to address 'Y struction 0 

For any specific computer using a four-address instruction format the 
number of bits in each address and in the operation code must be given, 
as well as the actual operation code itself. In the design of a computer 
the number of bits reserved for an address presents an upper limit to the 
number of words in the addressable memory of the computer. If an 
address is denoted by n bits, no more than 2n words can be contained in 
the addressable memory. 

Octal Shorthand. In order to illustrate the coding techniques devel­
oped in this section, we assume that there are 9 bits in each address 
(29 = 512 addressable memory words) and 6 bits in the instruction code, 
a total of (4 X 9) + 6 = 42 bits in a word. This brings up the first 
important detail of coding: the actual bits in an instruction are not 
written out; rather, some shorthand is written instead. For example, in 
our case the bits would be divided into 14 groups of 3 bits each, and the 
octal equivalent of each group would be written out. In other words, 
two octal numbers would represent the instruction, and each address 
would be represented by three octal numbers. Thus, if 101 011 is the 
binary code for add, then the instruction that says, "Add the contents 
of address 011 010 110 to the contents of address 011 100 101, put the 
result into address 011 110 100, and take the next instruction from 
100 000 001," is written in octal notation as 

Operation {3 

53 326 345 364 401 

In such cases it evidently facilitates matters to call the addresses in the 
memory by their octal numbers. It will be assumed throughout the rest 
of this section that such is the case. Also, numerical quantities will be 
written on the code sheet in octal (i.e., they will have to be converted 
from decimal to octal before being written on the code sheet). 

The Computer Manual. For our computer we must have a "computer 
manual" that gives the operation codes of the different instructions and 
also precisely defines the meaning of the addresses for each instruction 
type. For example, see Table 3-5. As is clearly seen, the coding manual 
must always be at the coder's side. Two further observations must be 
reemphasized before we can proceed with an example. First, when a 
word is called into the arithmetic unit from the memory, it is not erased from 
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its memory address, but remains there also. Second, when a word is put 
into a memory address, it replaces the previous contents of this address, 
i.e., it erases what had been there. 

TABLE 3-5. OPERATION CODES 

Code Operation Meaning 

53 Add Add contents of address a to contents of address {3; put sum into 
address 'Y; take next instruction from address 0 

42 Multiply Multiply contents of address a by contents of address {3; put 
product into address 'Y; take next instruction from address 0 

54 Subtract Subtract contents of address {3 from contents of address a; put 
difference into address 'Y; take next instruction from address 0 

41 Divide Divide contents of address a by contents of address {3; put quotient 
into address 'Y; take next instruction from address 0 

Example 3-1. As we have noted above, a sequence of instructions is 
required for a problem. We shall illustrate such a sequence for a code 
to evaluate 

where Y = altitude of a missile projected with an initial Y velocity 
component of VOy computed at time t. Suppose that VOy = 1,000 fps, 
g = 32 ft/sec 2

, and t = 53 sec. Now 1,000 (decimal) = 1750 (octal), 
32 (decimal) = 40 (octal), and 53 (decimal) = 65 (octal). Let us put the 
numbers 

and 

1750 into address 10 
40 into address 11 
65 into address 12 

2 into address 13 

Let us reserve address 14 for the result of the product VOyt, address 15 
for t2, address 16 for gt2, address 17 for Y2gt2, and finally address 20 for 
VOyt - Y2gt 2• The first instruction would be "Multiply the contents of 
address 10 by the contents of address 12, and put the result into address 
14," where we have yet to indicate where the next instruction will be 
found. This is written as 

Operation a 'Y 

I 42 I 010 012 014 ? 

N ow let us put this instruction into address 1. N ext we would write 
an instruction to form t2 and put this instruction into address 2. Now 
we can finish the first instruction, 

42 010 012 014 002 
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The third instruction would multiply t2 by g; the fourth instruction 
would divide gt2 by 2; and the last instruction would subtract Yzgt2 

from Voyt. A code is written on a coding sheet, which usually has the 
left-hand column labeled with addresses and the remaining columns 
labeled with the parts of an instruction. In this way a clear account is 
made of exactly which instructions are located in which addresses. On 
a coding sheet our code would look like Example 3-1a. The student 
should carefully check each instruction in this code to be sure that each 
does what the" remark" says it does. There are several things missing 
from this code: How do we get the computer started, and how do we 
stop it when the job is finished? 

EXAMPLE 3-1a 

Instruction 

Address 
Opera-

Remarks 

tion a {3 l' 0 

--- --- --- ---

000 
001 42 010 012 014 002 Form VOyt 
002 42 012 012 015 003 Form t2 
003 42 015 011 016 004 Form gt2 
004 41 016 013 017 005 Form "Hgt2 

005 54 014 017 020 006 Form Y 
006 See text 
007 
010 00 000 000 001 750 VOy constant 
011 00 000 000 000 040 g constant 
012 00 000 000 000 065 t constant 
013 00 000 000 000 002 2 constant 
014 VOyt temporary 
015 t2 temporary 
016 gt2 temporary 
017 ~2gt2 temporary 
020 Y = VOyt - Hgt2 

There are many systems in use for initiating a code on a computer. 
For example, after the code is read into the computer, the computer 
might automatically take the very first instruction from address 000. 
In our example we would then have a dummy instruction, say" Subtract 
contents of 007 from contents of 007, put result in 007, and take next 
instruction from 001." We used 007 because our particular code does 
not involve 007. In order to stop the computer when the computation 
has been completed, the last instruction should be one that says simply 
"Stop the computer." For instance, suppose that 60 is the operation 
code for such an instruction; then we could put 

60 000 000 000 000 
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in address 006. In such an instruction the addresses lX, {3, "I, and 0 
have no use. 

The Used Temporaries. Memory space in a computer is often at n, 
premium and should be conserved. From this point of view the above 
code is not satisfactory. For note that, after t2 has been computed, 
address 015 is not used again. In other words, we could have computed 
gt2 and put this result back into 015, and then computed Y2gt2 and put 
this back into 015 also, eliminating the necessity for using 016 and 017. 
Similarly, after computing Y, we could put this result into 015, eliminat­
ing the use of 020 also. 

This brings up an important point about addresses reserved for num­
bers. There are two kinds of numbers contained in addresses: "per­
manent," or constant, numbers, such as 2 and g, and "temporary," 
or transient, numbers, i.e., numbers that appear only in intermediate 
stages of the computation. These temporary numbers can share their 
address with other temporary numbers that appear at some other time. 
Hence we call such memory locations temporaries. In our example 
above, 015 would be such a temporary. The adjusted code becomes 
Example 3-1b. 

EXAMPLE 3-1b 

Instruction 

Address 
Opera-

Remarks 

tion a {3 'Y 0 

---------
000 54 007 007 007 001 Take first instruction from 001 
001 42 010 012 014 002 Form Vout 
002 42 012 012 015 003 Form t2 
003 42 015 011 015 004 Form gt2 
004 41 015 013 015 005 Form Hgt 2 

005 54 014 015 015 006 Form Y 
006 60 000 000 000 000 Stop computer 
007 
010 00 000 000 001 750 VOu constant 
011 00 000 000 000 040 g constant 
012 00 000 000 000 065 t constant 
013 00 000 000 000 002 2 constant 
014 VOyt temporary 
015 Temporary, where final result is 

found 

EXERCISES 

(a) Using the instructions defined in this section, write a code that calculates x = 
a3 - bc, where a = 313 (decimal), b = 983 (decimal), and c = 838 (decimal). 

(b) In the examr~e given in this section why are two temporaries needed, that is, 
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014 and 015? Write a code using only one temporary. [HINT: Vot - %gt2 = 
(Vo - %gt)t.] 

(c) If an instruction format for a computer allowed 12 bits for each address, what is 
the maximum number of addressable words possible for the memory of that computer? 
[Ans. 212 = 4,096 (decimal) words.] If the first address of this memory is 0000, what 
is the last memory address? [Ans. 7777 (octal) (that is, 212 - 1 written in octal).] 

3-5. Coding Decisions 

The Comparison Instruction. We shall next give an example to be 
coded where a simple decision is made by the computer. Such decisions 
are usually made by comparison instructions. For example, a comparison 
instruction might operate thus: "Compare the contents of a with the 
contents of {3; if the contents of address a is greater than the contents 
of address {3, then take the next instruction from address "I; otherwise, 
take the next instruction from address 0." A few simple conventions 
can greatly shorten such a statement: Let (a) stand for "the contents of 
address a" ; and let the word take mean "take the next instruction from." 
Then the above statement becomes" If (a) > ({3), take "I; if (a) ~ ({3), 
take 0." Let the operation code for this instruction be 43. 

Example 3-2. N ow consider the code for the following problem: Three 
numbers, U, V, and W, are found as the contents of addresses 015, 016, 
and 017, respectively. We wish to write a code that will put the largest 
of these numbers into address 020. First note that in any case we shall 
need three instructions that transfer the contents of addresses 015, 016, 
and 017, respectively, into address 020, and the rest of the code is to 
decide which of these three instructions to execute. The transfer prob­
lem is easily taken care of by adding the contents of the desired address 
to the constant zero and putting the result into 020. (Hence we need an 
address whose contents is zero.) Let us put the three such instructions 
into 005, 006, and 007 (see the code below). To determine which of 
these to' execute, let us first compare (015) ~ (016). If this is the 
case, then we would compare (015) ~ (017). If this is also the case, then 
(015) > both (016) and (017), that is, U > V and U > W, and hence 
we would execute (005), i.e., transfer (015) to (020). If (015) ~ (017), 
then (017) 2:: (015) > (016), that is, W 2:: U > V; hence we transfer 
(017) to (020), i.e., execute (007). If (015) ~ (016), then compare 
(016) ~ (017). If this is the case, (016) 2:: both (015) and (017), that is, 
V 2:: U and V > W; hence we transfer (016) to (020), i.e., execute (006). 
If (016) ~ (017), then (017) 2:: (016) 2:: (015), that is, W 2:: V 2:: U; 
hence transfer (017) to (020), i.e., execute (007). The code is shown in 
Example 3-2a. 

Several general observations can be made that are exemplified by this 
code. First, coding is a very exacting technique: every path of every 
instruction must be followed carefully, for a single error invalidates the 
entire code. Second, note that when using a comparison instruction 
the significance of the ~ must be carefully considered, as well as that of 
the>. Reading a code does not teach one how to code-actually writing 
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EXAMPLE 3-2a 

Instruction 

Address Remarks 
Opera-

a {3 0 
tion 'Y 

------------
000 54 021 021 021 001 Take first instruction from 001 
001 43 015 016 002 003 U> V? 

Yes, try U > W; i.e., take 002 
No, try V > W; i.e., take 003 

002 43 015 017 005 007 U > W? 
Yes, U is largest number; i.e., 
take 005 

No, W is largest number; i.e., 
take 007 

003 43 016 017 006 007 V> W? 
Yes, V is largest number; i.e., 
take 006 

No, W is largest number; i.e., 
take 007 

004 
005 53 015 021 020 010 Transfer U to largest number 

cell 
006 53 016 021 020 010 Transfer V to largest number 

cell 
007 53 017 021 020 010 Transfer W to largest number 

cell 
010 60 000 000 000 000 Stop computer 
011 
012 
013 
014 
015 

;} three given numbers 016 
017 
020 Largest number cell 
021 00 000 000 000 000 o constant 

a code does. Most students will undoubtedly feel uneasy about the 
above example until they rewrite it, doing the detailed thinking them­
selves, using the example only as an occasional guide and final check. 

The Sign Bit. Up to now we have been making two tacit assump­
tions, namely, (1) that all numbers are whole numbers (Le., have no 
fractional part) and (2) that all numbers and results are positive. Both 
the assumptions are not necessarily true. They were made in order to 
concentrate on the coding problems so far considered and avoid unneces­
sary complication in those discussions. We shall defer full consideration 
of the first of these problems for a later section, remarking here only that 
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a computer can consider numbers whose magnitudes lie within a restricted 
range which depends on the construction of the computer. We have been 
illustrating a computer with a range of integers from 0 through 242 - 1. 
Hence, before putting a problem on a computer, it must be "scaled" 
so that all numbers that appear will be whole numbers. Similarly prob­
lems must be scaled to fit on other computers, depending on their ranges. 
The second problem is solved as follows: A single bit is added on the left 
to the length of the word, making the word 43 bits long. If this bit is a 
zero, then the machine is wired to interpret the number as being positive; 
if this bit is a unit, then the machine will interpret the number as being 
negative. The circuitry in the arithmetic unit must sense the signs 
of the operands and compute the proper values for this so-called sign bit 
in the results. The meaning attached to this 43d bit, as far as an instruc­
tion is concerned, is different for different computers and is discussed 
below; it is never a fundamental ingredient of the instruction. On the 
coding sheet the sign bit is noted by affixing a + to the left of the number 
if it is positive or zero, and a - if it is negative. 

EXERCISE 

(a) Using the instructions defined in this and the preceding section, write a code 
that calculates X = minimum (U, V, W), where U, V, and Ware the contents of 
addresses 010, 011, and 012, respectively. 

3-6. Coding: Flow Charting and Symbolic Code Aids 

A flow chart is a diagram, or picture, of a code that is often helpful 
for visualizing interrelationships between various parts of a code. Such a 
diagram is almost always made before the specific instructions are writ­
ten. There are essentially three kinds of symbols used in a flow chart 
(see Fig. 3-1). The first represents function calculation; the second repre­
sents decisions and the various associated alternatives; and the third, 
called a (variable) connector, is simply a way to eliminate too many cross­
ing lines in the picture or to indicate which lines to follow when one has to 
con tinue the diagram on another page. 

---1 x = f(u,v) ~x 

Function calculation Decision calculation Connector 
FIG. 3-1. Flow-chart symbols. 

For illustration, consider the example of Sec. 3-4: The functions V Oyt 

and ;,~gt2 are to be calculated, and their difference is the final desired 
result. Hence we would draw the flow diagram in Fig. 3-2. The first 
(left) box represents the instruction in address 001; the second box repre-
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sents the set of instructions in addresses 002 to 004; the third box repre­
sents the instruction in address 005. The arrows indicate the order in 
which the computer does the indicated computing. Note that the sym­
bols representing intermediate results appearing on the left-hand side of the 
equations, namely, x and y, appear later in the chart on the right-hand side 
of an equation. Only symbols that signify end results, like Y, will 
not appear on the right-hand side of an equation. This observation 
gives a superficial way to check that all intermediate results are used 
appropriately. 

~ X=~lit H y=tgt2 1-1·---:')~I·Y=x-y I 
FIG. 3-2. Simple flow chart. 

FIG. 3-3. Flow chart including decision boxes. 

A more complicated flow diagram is associated with the problems of 
Sec. 3-5. Here decision boxes are used (see Fig. 3-3). The lines leading 
away from the ovals represent the different paths the computer will take, 
depending on the outcomes of the decisions. The little symbols (> and 
~) near the lines represent the conditions under which the program will 
go in the corresponding directions. The proper corresponding condition is 
indicated when the symbol replaces the colon; i.e., the computer will follow 
the left-hand path when U > V and the right-hand path when U ~ V. 
The use of the connector is clear. The top decision box represents (001); 
on the next lower level the left-hand box represents (002), the right-hand 
box (003). On the next lower level the left-hand function box represents 
(005), the right-hand box (006), and the lowest box (007). 

Symbolic coding is another intermediate aid between the statement 
of the problem and the final code. Symbolic coding consists in writing 
a code, not in terms of specific numerical addresses, but rather in terms of 
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some name description or other symbolism to represent the addresses. 
Then at a later time specific addresses can be assigned for these symbols, 
or names, to produce the actual code. The intermediate code in terms 
of symbols is called the symbolic code. This technique is extremely use­
ful, particularly in those cases where one must write instructions involv­
ing addresses of constants or of other instructions that have not yet been 
specifically assigned. For example, this difficulty is encountered in writ­
ing the code for the second example of the previous section, since when 
writing the instruction for U: V, the coder must refer to the not as yet 
written or located instructions for U: Wand V: W. A symbolic code 
for this example might be as shown in Example 3-3a. The symbolism 
of this code is as follows: U is the address whose contents is the number 

EXAMPLE 3-3a 

Instruction 

Address 
Opera-

tion 
a {3 'Y 0 

U:V CMP U V U:W V:W 
U:W CMP U W ULN WLN 
V:W CMP V W VLN WLN 
ULN ADD U cp LNC S 
VLN ADD V cp LNC S 
WLN ADD W cp LNC S 
S 
U 
V 
W 
LNC 
cp 

U-that is, (U) = U. V is the address such that (V) = V. W is the 
address such that (W) = W. U: V is the address whose contents has the 
compare instruction concerning U and V, and similarly for U: Wand 
V: W; ULN is the address of the instruction that puts the number U 
into the largest number cell, and similarly for VLN and WLN. LNC is 
the address of the largest number cell; <? is the address whose contents is 
the constant zero; and S is the address of the stop instruction. CMP 
stands for the compare operation code, and ADD stands for the add 
instruction code. The assignment of addresses then is shown in Example 
3-3b. 

Steps in Writing a Code. The procedure for programming or coding 
is as follows: (1) Understand the statement of the problem. (2) Draw a 
flow diagram for the problem. (3) Code symbolically each box of the 
flow diagram. (4) Assign addresses. (5) Write out the final detailed 
code. The flow diagram presents an over-all visual picture of the prob-
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EXAMPLE 3-3b 

Symbolic name 

U:V 
U:W 
V:W 
ULN 
VLN 
WLN 

Address (or code) 

001 
002 
003 
005 
006 
007 

S 010 
U 015 
V 016 
W 017 
LNC 020 
<I> 021 
CMP 43 
ADD 53 

lem, organizing the coding effort so that it can be concentrated on one box 
at a time. Symbolic coding enables an instruction to be written before 
the coder knows the addresses of constants and other instructions refer­
enced by this instruction. In addition, since the symbolic code names 
for these addresses are suggestive of their contents, the symbolic code is 
easier to write and follow. 

EXERCISES 

Using the instructions defined in the previous section, draw the flow diagram, write 
a symbolic code, assign addresses, and finally write the final codes to calculate x 
[where a = 313 (decimal), b = 983 (decimal), and c = 838 (decimal)]: 

(a) x = a3 - b . c. 
(b) x = b(a + c). 

a 3 - b· c 
(c) x = b(a + c) . 

If U, V, and Ware the contents of addresses 010, 011, and 012, respectively, 
calculate: 

(d) x = minimum (U,V,W). 
(e) x = maximum (U2, V2, W2). 
(f) X = maximum (U3 - VW, V(U + W». 
HINT: The same symbolic code for Exercises a and b appears as parts of the symbolic 

code for Exercises c and f. 

3-7. Three-address Instruction Systems 

Using Less than Four Addresses. Up to now we have considered an 
instruction format containing four addresses. It was remarked in 
Sec. 3-1 that each of the four addresses is a necessary ingredient to 
coding and that computers using fewer addresses must compensate by 
(1) having the omitted information wired in and by (2) using more 
instructions to achieve the same ends. From the engineering point of 
view the primary advantage of having fewer than four addresses in the 
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instruction is that for the same word length each address will comprise 
more bits and hence give the computer a larger addressable memory 
capability. In the 43-bit format described in Sec. 3-4, 36 bits were 
reserved for the four addresses, making each address 9 bits long, for a 
maximum of 512 words in the addressable memory. If three addresses 
were used, each would comprise 12 bits, allowing a 4,096-word memory; 
two addresses, 18 bits per instruction, a 262,144-word memory; one 
address, 36 bits, 68,719,476,736 words. Of course shorter words can 
be designed for machines with one- or two-address instructions, and this 
in itself can, as we shall see, save a great deal of hardware. 

The Three-address Instruction. The usual t three-address instruction 
is similar to the four-address instruction except that the 0 address is 
omitted from the format. Hence the format becomes 

Operation Address of first Address of second Address into which 
code operand, a operand, {3 result is put, 'Y 

How does the computer know in what address to find the next instruc­
tion? Except for special instructions the computer will always take as 
the next instruction the contents of the next consecutive address following 
that of the present instruction. That is, the computer will normally 
take the instructions consecutively in the order in which they are written 
into the memory. This is accomplished in the current-address register. 

EXAMPLE 3-1c. THREE-ADDRESS 

Instruction 

Address 
Opera-

Remarks 

tion 
a fJ 'Y 

0000 53 0007 0007 0007 Take first instruction from 0001 
0001 42 0010 0012 0014 Form VOyt 
0002 42 0012 0012 0015 Form t2 
0003 42 0015 0011 0015 Form gt 2 

0004 41 0015 0013 0015 Form Hgt 2 

0005 54 0014 0015 0015 Form Y 
0006 60 0000 0000 0000 Stop computer 
0007 
0010 00 0000 0000 1750 Vou 
0011 00 0000 0000 0040 g 
0012 00 0000 0000 0065 t 
0013 00 0000 0000 0002 2 constant 
0014 VOyt temporary 
0015 Temporary, where final result is 

found 

t Any of the addresses might be omitted at the whim of the designer. 
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This register is first set at the address of the first instruction; then, each 
time an instruction is executed, the contents of this register normally 
is automatically increased by 1 and is taken by the computer as the 
address of the next instruction. (Because of this the current-address 
register is often called the current-address counter.) With this under­
standing of where the computer will find the next instruction the only 
change necessary in the add, multiply, divide, and subtract instructions 
given in Sec. 3-4 is the deletion of the 5 address. However, the com­
parison instruction will need redefining thus: If (a) > «(3), take next 
instruction from 'Y; otherwise take the next consecutive instruction. If 
(a) > «(3), then the current-address counter will automatically be set at 
address 'Y; if (a) :::; «(3), the counter will behave as usual, just increasing 
by l. 

Examples. For instance, the examples coded in Secs. 3-4 and 3-5 
would have to be rewritten as shown in Examples 3-1c and 3-2b. 

There is not much difference between Example 3-1c and its four-

EXAMPLE 3-2b. THREE-ADDRESS 

Instruction 

Address 
Opera-

Remarks 

tion 
a ~ l' 

0000 54 0021 0021 0021 Take first instruction from 0001 
0001 43 0015 0016 0005 U:V 

If U > V, take 0005 
If U ~ V, take 0002 

0002 43 0016 0017 0007 V:W 
If V > W, take 0007 
If V ::::; W, take 0003 

0003 53 0017 0021 0020 Transfer W to largest number cell 
0004 43 0022 0021 0012 Jump to stop 
0005 43 0015 0017 0011 U:W 

I If U > W, take 0011 
If U ::::; w, take 0006 

0006 43 0022 0021 0003 Jump to transfer W instruction 
0007 53 0016 0021 0020 Transfer V to largest number cell 
0010 43 0022 0021 0012 Jump to stop 
0011 53 0015 0021 0020 Transfer U to largest number cell 
0012 60 0000 0000 0000 Stop 
0013 
0014 
0015 ~}giVen numbers 0016 
0017 W 
0020 Largest number cell 
0021 00 0000 0000 0000 a constant 
0022 00 0000 0000 0001 1 constant 
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address version. Consider, however, Example 3-2b. Each branch of 
this code should be carefully reconstructed by the student so that he 
may grasp just what problems arise from ordering the instructions and 
how these problems are solved. Note that there appear in addresses 
0004 and 0010 dummy comparisons, which artificially force a jump to 
address 0012, where the stop instruction is located. Also, a dummy 
comparison was made in address 0006 in order to reuse (0003). A total 
of 11 instructions were necessary in the three-address system, while 
8 sufficed in the four-address system. The placement of the instructions 
was somewhat complicated; this difficulty is relieved by symbolic coding. 

EXERCISES 

(a) By rearranging the order of one of the comparisons together with the order of 
some of the instructions in Example 3-2b above, one instruction can be eliminated­
i.e., the code will take only 10 instructions instead of 11. Can you find this compari­
son and rearrange the instructions properly? (HINT: In address 0005 the instruction 
can be changed so as to jump directly to make W the largest number. But then some 
other instructions must be reordered.) 

(b) Redefine in detail for a three-address system the add, subtract, multiply, and 
divide instructions given in Sec. 3-4. 

(c) Draw flow diagrams for the above examples, and state which sets of instructions 
belong to each box. 

(d-i) Do Exercises a to f of Sec. 3-6, using the three-address instructions defined 
in this section. Carry out each of the five steps of coding in every problem. 

3-8. Two-address Instruction Systems 

The Two-address Instruction. In the two-address instruction usually 
both the 'Y and 0 addresses are eliminated. The format is simply 

Operation Operand Operand 
code address a address {J 

The computer finds the location of the next instruction as in the three­
address system, taking care of the function of o. Where does the result 
of the operation go? This problem is solved in a two-address system by 
having the result of every arithmetic operation automatically left in a 
very special memory location, called the accumulator. This special 
memory cell is located in the arithmetic unit; it has been discussed in 
Chap. 2 of this book. It suffices to note here that 'Y is most often under­
stood to be the accumulator, although as we shall see in Chap. 4 there 
can be many variations to this theme. Hence the definitions of our 
instructions must be rewritten as shown in Table 3-6. 

Of course, after the sum is in the accumulator, it must be transferred 
to an ordinary memory location. Hence we need a transfer instruction. 
Other versions which might be used are also listed (cf. Chap. 4). 

Examples. As mentioned above, the word length is often shortened 
for two", or one-address systems; so let us, for illustration purposes, use a 
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TABLE 3-6. TWO-ADDRESS INSTRUCTIONS 

Code Operation 

53 Add 
42 Multiply 
54 Subtract 
41 Divide 
43 Compare 

52 Transfer 
51 Add and transfer 

Meaning 

Add (a) to ({3), and put result in accumulator 
Multiply (a) by ({3), and put result in accumulator 
Subtract ({3) from (a), and put result in accumulator 
Divide (a) by ({3), and put result in accumulator 
If (a) > (ace), take {3i otherwise go to next consecutive 

instruction (as usual) 
Transfer (ace) into a, and take {3 

40 Multiply and transfer 
Add (a) to (ace), and put result into {3 
Multiply (a) by (ace), and put result into {3 

word length of 24 bits plus one sign bit. In order to increase flexibility, 
the accumulator is often given an address, say, for example, 777. The 
example codes as revised are shown as Examples 3-1d and 3-2c. Note 
that two more instructions were needed in Example 3-1d than for the 
three- or four-address codings. The contents of the accumulator must be 
carefully watched, or errors might creep in. 

In Example 3-2c note how the comparisons were arranged so that the 
next instruction in sequence could be a transfer instruction direct from 
the accumulator. This was successfully accomplished for V and U. 
However, W had to be placed in the accumulator especially for its trans-

EXAMPLE 3-1d. TWO-ADDRESS 

Instruction 

Address 
Opera-

Remarks 

tion 
a {3 

---
000 54 017 017 Take first instruction from 001 
001 42 010 012 Form VOyt in accumulator 
002 52 014 003 Put VOyt into 014 
003 42 012 012 Form t2 in accumulator 
004 42 011 777 Form gt2 in accumulator 
005 41 777 013 Form 7~gt2 in accumulator 
006 54 014 777 Form Y 
007 52 015 016 Put Y into 015 
010 00 001 750 VOy 
011 00 000 040 g 
012 00 000 065 t 
013 00 000 002 2 
014 VOyt temporary 
015 Temporary, where result is found 
016 60 000 000 Stop computer 
017 00 000 000 o constant 
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fer to the largest number cell. In any event it is to be noted that the 
placement of instructions and the order of the comparisons become more 
complicated in a two-address system. Note also that 11 instructions 
were needed, one more than was absolutely necessary for the three­
ada.ress··sYstem (see Exercise a of Sec. 3-7) 'and three more than for the 
four-address system. 

EXAMPLE 3-2c. TWO-ADDRESS 

Instruction 

Address 
Opera-

Remarks 

tion 
a {j 

---

ODD 54 021 021 Take first instruction from 001 
001 53 016 021 Put V into accumulator 
002 43 015 005 U:V 

If U > V, take 005 
If U ~ V, take 003 

003 43 017 010 W: V (since V is already in accumulator) 
If W > V, take 010 
If W :::; V, take 004 

004 52 020 012 Transfer V from accumulator into 020 
005 53 015 021 Put U into accumulator 
006 43 017 010 W:U 

If W > U, take 010 
If W :::; u, take 007 

007 52 020 012 Transfer U from accumulator into 020 
010 53 017 021 Transfer W into accumulator 
011 52 020 012 Transfer W from accumulator into 020 
012 60 000 000 Stop computer 
013 
014 
015 

;} given numbers 016 
017 
020 Largest number cell 
021 00 000 000 o constant 

EXERCISES 

(a) Relate sets of instructions of the above examples to their respective boxes of the 
flow diagrams. 

(b-g) Do Exercises a to f of Sec. 3-6, using the two-address instructions defined in 
this section. 

3-9. One-address Instruction Systems 

The One-address Instruction. In the one-address instruction only one 
operand address, (x, remains. The accumulator does a dual job, standing 
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in for both the second operand address {3 and the address 'Y into which 
the result is put. Address 0 is handled as in the three- and two-address 
systems. There are a large number of variations on this theme, and 
often additional registers or special memory locations are used. How­
ever, in presenting the principles of one-address coding it suffices here to 
consider only one register, the accumulator. In a one-address system 
many more kinds of instructions are found essential. For example, in a 
typical modern one-address computer there are 88 different instructions. 
This should be compared with the 46 and 16 instructions defined for 
typical modern two- and three-address computers. It is evident that, 
the more complex and numerous the instructions that have to be learned 
by the coder, the harder it is for him to code. In order to help the coder 
who deals with a machine with, say, 88 instructions, advanced program­
ming techniques are resorted to; these will be discussed in Chap. 5. 
The necessity for advanced programming techniques to aid the coder 
prepare programs for a one-address computer system becomes even more 
striking when one reads the rather tortuous techniques needed to accom­
plish the simplest of complete operations, such as comparisons, as illus­
trated by the examples to be presented below. The list of one-address 
instructions in Table 3-7 is sufficient to meet our needs for the examples. 

Code 

53 
42 
54 
41 
43 

52 
51 
40 
44 

TABLE 3-7. ONE-ADDRESS INSTRUCTIONS 

Operation 

Add 
Multiply 
Subtract 
Divide 
Conditional jump 

Transfer 
Replace add 
Replace multiply 
Jump 

Meaning 

Add (a) to (ace); put result in accumulator 
Multiply (a) by (ace); put result in accumulator 
Subtract (a) from (ace); put result in accumulator 
Divide (ace) by (a); put result in accumulator 
If (ace) i.; negative, take a; otherwise take next instruction 
in sequence as usual 

Transfer (ace) into a 

Add (a) to (ace); put result into a 

Multiply (a) by (ace); put result into a 
Take next instruction from a 

The transition from two to one address for the add, multiply, subtract, 
and divide instructions is natural enough, but how is comparison per­
formed? To perform a comparison, one of the numbers is put into the 
accumulator and the other subtracted from it; then a conditional jump 
is used. (A computer with more than one register may compare the 
contents of two registers.) 

Examples. Let us shorten our word to 15 bits plus a sign bit, for 
convenience in this presentation; then the codes for our examples can be 
written as shown in Examples 3-1e and 3-2d. 

Note, for the first, that it is necessary to make sure that the contents 
of the accumulator was zero before using the add instruction to transfer 
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a number into the accumulator. Also we calculate Y2gt2 first so that 
after forming VOyt in the accumulator we can subtract ~~gt2 directly 
from the accumulator, thus avoiding an extra clearing, etc., of the accu­
mulator. More instructions are needed than for the other systems: one­
address, 12; two-address, 7; three-address, 7; four-address, 7. One less 
instruction than used will suffice: the student should check this for him­
self, revising the code to require one less instruction. 

EXAMPLE 3-1e. ONE-ADDRESS 

Instruction 

Address Opera-
Remarks 

tion a 

000 44 001 Take first instruction from 001 
001 42 016 

} Clear accumulator, and form t' 002 53 021 
003 42 021 
004 42 020 Form gt2 
005 41 022 Form Hgt 2 

006 52 023 Put Hgt 2 into 023 
007 42 016 

} Clear aceum ula tor, and form V"I 010 53 017 
011 42 021 
012 54 023 Form Y = VOyt - %gt2 

013 52 023 Put Y into 023 
014 60 000 Stop computer 
015 
016 00 000 o constant 
017 01 750 VOy 
020 00 040 g 
021 00 065 t 
022 00 002 2 
023 Hgt2 temporary and result 

There are 25 instructions in the code of the second example as compared 
with 11 for the corresponding code in the two-address system, 10 in the 
three-address system, and 8 in the four-address system. By choosing 
a more convenient set of one-address instructions (cf. Chap. 4) we might 
have reduced the length of the code somewhat, but not significantly. 

One-plus-one-address Systems. There is another kind of two-address 
instruction that deserves mention. It is a two-address instruction where 
the a and 0 addresses are retained, instead of the a and {3 addresses. In 
other words, an addition instruction might read: Add (a) to the accu­
mulator, and take the next instruction from o. Such a system has the 
coding characteristics of a one-address system; the purpose of the second 
address is to allow minimum access coding when a drum is being used 



SEC. 3-9] CODING AND PROGRAMMING A DIGITAL COMPUTER 89 

EXAMPLE 3-2d. ONE-ADDRESS 

Instruction 

Address 
Opera-

Remarks 

tion 
a 

000 44 001 Jump to first instruction of code, 001 
001 42 035 Clear accumulator } 
002 53 032 Put V into accumulator set up comparison 
003 54 031 Form V - U in accumulator 
004 43 015 If (acc) negative, U > V, try U:W; if positive, U::; V, 

try V:W 
005 42 035 Clear accumulator } 
006 53 032 Put V into accumulator set up comparison 
007 54 033 Form V - W in accumulator 
OlD 43 025 If (acc) negative, W > V, W largest; if positive, W ::; V, 

V largest 
011 42 035 Clear accumulator } 
012 53 032 Put V into accumulator V is largest number 
013 52 034 Put V into largest number cell 
014 44 030 Jump to stop 
015 42 035 Clear accumulator } 
016 53 031 Put U into accumulator set up comparison 
017 54 033 Form U - W in accumulator 
020 43 025 If (acc) negative, W > U, W largest; if positive, W ::; u, 

U largest 
021 42 035 Clear accumulator } 
022 53 031 Put U into accumulator U is largest number 
023 52 034 Put U into largest number cell 
024 44 030 Jump to stop 
025 42 035 Clear accumulator } 
026 53 033 Put W into accumulator W is largest number 
027 52 034 Put W into largest number cell 
030 60 000 Stop computer 
031 

;} given numbers 032 
033 
034 Largest number cell 
035 00 000 o constant 

(see Chap. 2). That is, the second address presents some further flexi­
bility in the placing of the instructions in the drum memory. This is 
often called a one-plus-one-address system. 

EXERCISES 

(a) Relate sets of instructions of the above codes with their respective boxes in the 
flow diagrams. 
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(b-g) Do Exercises a to f of Sec. 3-6, using the one-address instructions defined in 
this section. 

(h) Define one-pIus-one instructions corresponding to the one-address instructions 
given above; then redo the second example. Have a significant number of instruc­
tions been saved? 

3-10. Decimal Systems 

Decimal-coded Binary. The only variations in the coding system so 
far described were with respect to the instruction format and, in par­
ticular, to the number of addresses that were explicitly displayed in this 
format. In all these systems numbers were written in octal-coded binary; 
i.e., a set of octal characters represented a binary number. In fact the 
three bits represented by each octal character corresponded to the same 
number with radix 2: 3 (octal) represented 011, 5 (octal) represented 101, 
etc. The instructions were written with the same shorthand, the octal 
character representing the real equivalent 3-bit binary number. 

There is another system for coding numbers and an associated short­
hand for representing the bits in an instruction, called decimal-coded 
binary. Of course, either octal-coded binary or decimal-coded binary 
can be used with four-, three-, two-, and one-address instruction formats. 

Usually, in decimal-coded binary, 6 bits are associated with a single 
decimal number. Since there are 64 different combinations that can be 
formed with 6 bits, the letters of the alphabet are also assigned binary 
codes. These assigned codes depend on the logical design of the com­
puter. For example, one such system (UNIVAC) is as shown in Table 
3-8. 

TABLE 3-8. UNIVAC X-3 CODE 

Binary Binary Binary Binary 
Symbol code Symbol code Symbol code Symbol code 

0 00 0011 A 01 0100 J 10 0100 S 11 0101 
1 00 0100 B 01 0101 K 10 0101 T 11 011U 
2 00 0101 C 01 0110 L 10 0110 U 11 0111 
3 00 0110 D 01 0111 M 10 0111 V 11 1000 
4 00 0111 E 01 1000 N 10 1000 W 11 1001 
5 00 1000 F 01 1001 0 10 1001 X 11 1010 
6 00 1001 G 01 1010 P 10 1010 Y 11 1011 
7 00 1010 H 01 1011 Q 10 1011 Z 11 1100 
8 00 1011 I 01 1100 R 10 1100 
9 00 1100 

In such decimal computers a decimal number is written into a word 
"as is," with no conversion required. Of course the resulting binary 
number is not a number at all, but a binary code. The arithmetic unit 
then handles 6 bits at a time, and is wired so as to produce the correct 
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results. For example, in octal-coded binary we would have 

Corresponding binary operation 
Octal as it would appear in computer words 

5 000 101 
+ 6 +000 110 

13 001 011 

In decimal-coded binary we would have 

Decimal 

5 
+6 

11 

000 011 001 000 
+000 011 001 001 

000 100 000 100 

In a later chapter examples of decimal adders, etc., will be presented. 
Note that a word that contains letters cannot be added to another 

word since addition is defined only for numbers. Also, an address must 
be denoted by pure numbers, not letters (for as we shall see in Chap. 4, 
we must be able to add to or subtract from the addresses). The letters 
can be used only for the operation code or for some letter constant. 

The advantages of a decimal system are simply that no conversion 
need be made for numbers and that letters can be read into and out of 
the computer directly. However, the disadvantage of a decimal system 
is that it is difficult to write codes where the value of a particular single 
bit of a word has significance, as is necessary, for instance, in switch 
sensing; while there are methods for determining the value of some bit 
of the word, in general the bits are used in the computer in groups of six. 

Example. As an illustration of a code in such a system, consider the 
three-address instructions of Table 3-9, where one decimal symbol is 
used for the operation code and three decimal digits are used for each 
address. Here (a) + ({3) ~ 'Y means, "The contents of a are added 
to the contents of {3, and the sum is put into address 'Y," etc. 

TABLE 3-9. THREE-ADDRESS DECIMAL INSTRUCTIONS 

Code Operation Meaning 

A Add (ex) + ({j) ---+ 'Y 

M Multiply (ex) . ({j) ---+ 'Y 

S Subtract (ex) - ({j) ---+ 'Y 

D Divide (ex) -7 ({j) ---+ 'Y 

C Compare If (ex) > ({j), take 'Y 
p Stop computer 
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The code for the first of our examples is shown in Example 3-1f. 

EXAMPLE 3-1f. DECIMAL-CODED BINARY 

Instruction 

Address 
Opera- Remarks 

tion a ~ 'Y 

--- ---

ODD S 007 007 007 Take first instruction from 001 
001 M 008 010 012 Form VOllt 
002 M 010 010 013 Form t2 
003 M 013 009 013 Form gt2 
004 D 013 011 013 Form Hgt2 

005 S 012 013 013 Form Y 
006 P 000 000 000 Stop computer 
007 
008 0 000 001 000 V OII 
009 0 000 000 032 g 
010 0 000 000 053 t 
011 0 000 000 002 2 
012 VOllt temporary 
013 Temporary where final result is found 

EXERCISE 

(a) Recode the second of our illustrative examples in three-address decimal-coded 
binary. 

3-11. Additional Topics 

a. General Background. Read Arithmetic Numbers and the Art of Counting, 
in James R. Newman (ed.), "The World of Mathematics," vol. 1, pp. 418-453, 
~imon and Schuster, Inc., New York, 1956. 

,\. The Real Numbers. The axiomatic development of real numbers is one of the 
highlights of modern mathematics. A good description of this development is given 
by H. A. Thurston, "The Number System," pt. I, Interscience Publishers, Inc., 
New York, 1956. 

c. The Division Algorithm. In Sec. 3-2 we used the reasonable result that, if N 
and q are positive integers, then there always exist a unique nonnegative integer r 
less than q and a unique integer S such that 

N r 
- = S +­q q 

O~r<q 

This is called the division algorithm. For a "proof," see G. Birkhoff and F. MacLane, 
"A Survey of Modern Algebra," pp. 1-20, The Macmillan Company, New York, 1948. 

d. Infinite Decimals: Rational and Irrational Numbers. Observe that the result of 
converting 0.3 (decimal) into binary is .01001100110011 . . .. Of course in a physi­
cal situation one might be told, for example, that 0.3 is good to two significant places, 
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i.e., it would be written as 0.30; then there would be no purpose in carrying the binary 
conversion certainly to more than, say, eight places, i.e., to .01001101 (why?). On 
the other hand, suppose that we consider 0.3 purely as a number; then we can never 
write its binary conversion precisely, for it is an infinite binary fraction. Of course we 

Id . a 3 (d . l) 11 (binary) . 1 I' 11 b 1 k' cou wnte. eC1,ma = 1010 (binary) preCIse y. t IS easy to te y 00 mg at 

(d . l) h' b' 3 (decimal) B h Id 11 d' 1 0.3 eC1,ma t at It can e wntten as 10 (decimal)' ut ow cou we te Irect y 

b 1 k · (b' ) h' b' 11 (binary) ? y 00 mg at .010011001100 . .. mary t at It can e wrItten as 1010 (binary) 

This problem brings up the observation that there are two kinds of real numbers, 
rational and irrational. A rational number can be written as the quotient of two 
integers; an irrational number cannot be so written. The problem stated above thus 
resolves itself into the following: By looking at an infinite radical fraction (in a system 
of any radix q) how can rational numbers be distinguished from irrational numbers? 
For a further discussion of irrational numbers see Edward Kasner and James Newman, 
"Mathematics for the Imagination," pp. 65-111, Simon and Schuster, Inc., New 
York, 1940. 

e. Computer Manuals. For a short description of both a four-address system 
(SEAC) and a three-address system (DYSEAC) see Computer Development at the 
National Bureau of Standards, NBS Circ. 55l. For a two-address system see the 
Remington Rand 1103 computer manual, and for a one-address system see the IBM 
704 computer manual. 

f. Cardiac Computer. Using the Cardiac computer (see Exercise b of Sec. 2-8) as a 
four-address system, compute the codes given in the examples of Secs. 3-4 and 3-5. 
Do the same for the three-, two-, and one-address coding examples given in Secs. 3-7 to 
3-9. 

g. Decision Processes. Decision processes require criteria by which the decisions 
in any particular case are made. If the criteria are sufficient for a particular set of 
decisions, then a computer can be coded to make them. In fact, it is remarkable that 
a single comparison instruction can always effectuate this process. For the criteria 
can be used by the computer to set up numbers representing the various alternatives, 
and comparison instructions can then choose between them. In recent years the 
analysis of decision-making processes has received much thought. The student will 
profit by reading, for example, J. D. Williams, "The Complete Strategyst," McGraw­
Hill Book Company, Inc., New York, 1954. This deals with the theory of games, 
which is essentially a theory of value decisions or strategy. See also Herman H. 
Goldstine and John von Neumann, "Planning and Coding of Problems for an Elec­
tronic Computing Instrument," pt. II, vol. I, Institute for Advanced Study, Prince­
ton, N.J., 1947; R. D. Luce and H. Raiffa, "Games and Decisions-Introduction 
and Critical Survey," John Wiley & Sons, Inc., New York, 1957. 



CHAPTER 4 

PROGRAMMING FUNDAMENTALS 

4-1. Introduction 

In the previous chapter we have introduced the concept of an instruc­
tion in several different instruction systems. We have discussed in some 
detail the concept of a sequence of instructions and the significance 
of the order in which instructions are written. N ow we turn to extended 
and more complicated codes, or sequences of instructions, that are often 
called programs. As we shall note in a future section, almost any compu­
tation requires a fairly intricate sequence of instructions. Although each 
individual instruction is simple enough, the total collection or sequence of 
instructions, the program, can become considerably involved. 

The present chapter considers first recursion codes, or loops, and 
instruction modification (Sec. 4-2). These concepts, together with those 
developed in the previous chapter, comprise all the fundamental concepts 
necessary for coding and programming. The subsequent material simply 
amplifies and presents further details of these methods. The discussion 
of recursion codes leads naturally into a consideration of subroutines 
(Sec. 4-3). It is in the consideration of subroutines that the elements of 
automatic programming arise, as considered in detail in Chap. 5. 

With the material on recursion codes and subroutines in mind, one 
can readily appreciate the importance of the large variety of possible 
instruction types that can be designed for a computer. In the previous 
chapter the definitions of instructions were kept as simple as possible 
so as not to interfere with the basic concepts presented there. However, 
we are now in a position to consider the many possible special-purpose 
instructions that prove so convenient in many coding situations. The 
method of presentation of instruction types (Secs. 4-4 and 4-5) is not the 
giving of precise definitions but rather concentration on the basic concepts 
involved and on the wealth of combinations and variations that can be 
obtained. In designing a computer the final definition of the instructions 
ultimately must be up to the engineer, because of technical electronic 
and logical design problems. Hence it is important for the engineer 
to understand the various ingredients that go into the make-up of various 
instruction types and the special purposes for which they are conceived. 

To appreciate fully the significance of some of the instruction types, 
the engineer should see how they are used in specific codes. In Sec. 4-6 
some special coding problems are considered; in each case some of the 

94 
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special instruction types considered in the previous section can be used 
to full advantage. In almost all the problems considered, the specific 
codes are left for the student to write. However, in order to write these 
codes, the student is expected··to- define precisely those instructions he 
needs that best suit the purposes of the application. It is felt that the 
experience gained in defining instructions based on the principles of 
Secs. 4-4 and 4-5, and then using these instructions in a code, is one of the 
best possible ways for an engineer to gain flexibility and mastery of 
instruction design from a computational point of view. 

Finally, in Sec. 4-7 the operation of the computer through the control 
panel is discussed. There the principles of communicating with the 
computer through the control panel are primarily considered. 

4-2. Recursion Codes and Instruction Modification 

Loops in the Flow Diagram. In Sec. 3-4 we considered the problem of 
determining the altitude at a time t of a missile projected with an initial 
Y component of velocity VOy. A more realistic problem would be to 
determine the trajectory of the missile, i.e., the position of the missile, 
say, after each 10 sec of its flight. For such a problem we use a loop, or 
recursion code, i.e., a code which uses a certain set of instructions over 
again several times. For example, at time ti the x and y components of 
position will be 

Xi = Voxti 
Yi = VOyti - H,gti2 

where Vox is the initial x component of the velocity. To be concrete, 
suppose that Vox = 2,000 fps, VOy = 1,000 fps, and g = 32 ft/sec 2

• 

Then at time tl (= 10 sec) we would have Xl = 20,000 ft and 

Yl = 10,000 - 1,600 = 8,400 ft 

At time t2 (= 20 sec) X2 = 2,000 X 20 = 40,000 ft, 

Y2 = 1,000 X 20 - 16 X 202 = 13,600 ft 

At time ta (= 30 sec) Xa = 2,000 X 30 = 60,000 ft, 

Ya = 1,000 X 30 - 16 X 302 = 15,600 ft 

and so forth. During such a computation it is clear that the same for­
mulas are used over again, each time increasing our t, by 10 sec. How'­
ever, the computation should stop when the missile hits the ground, i.e., 
when Yi is no longer positive. In our case it is easily seen that this is 
when t = 70 and Y7 = 70,000 - 16 X 702 = -8,400 ft. Table 4-1 rep­
resents the final results, and Fig. 4-1 is the flow chart of the process. In 
the flow chart we have introduced the i notation, where ti+l represents 
the next time around and i + 1 ~ i means that for the next iteration we 
replace the old ith values with the new (i + l)st values. 

With this illustration it is seen that there are four basic ingredients 
to a recursion code. It must contain (1) a set of instructions, called the 
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TABLE 4-1. COMPUTATION O~' TRAJECTORY OF MISSILE 

i t, Xi y, 
--

I 10 20,000 8,400 
2 20 40,000 13,600 
3 30 60,000 15,600 
4 40 80,000 14,400 
5 50 100,000 10,000 
6 60 120,000 2,400 
7 70 140,000 -8,400 

iteration instructions, that are to be reused; (2) another set of instructions 
that modifies the original set each time around; (3) a set of instructions, 
often called a tally, that determines when to exit, or break out of the loop, 
and appropriately notifies the computer; and (4) a set of instructions 
that sets up the initial conditions and starts the loop. In addition a 
recursion code often contains (5) a set of instructions that resets the loop 
so that it may be used again by the computer at some future time. A 
generalized loop can be indicated by the flow diagram of Fig. 4-2. 

Sometimes the tally consists of instructions determining whether or 
not the result of each iteration is smaller than some given number, as 
occurs often in function computations; or the tally may just count the 

i+l-i 

Let ti+! = ti +l0 
i.e., increase t by 

10sec 

! 
Print out 

'---
ti,Xi,Yi 

Read in the initial conditions 

VOx =2,000 

Yay = 1,000 
t;,= 10 

i= 1 

i' 
Compute Xi=Yax ti 

Yi = ~y ti-i gt; 
Store Xj,yj,tj 

~ 
Yi :0 

> ~ 

Stop the computer I 

FIG. 4-1. Flow chart for computation of missile trajectory. 
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Set up initial conditions 
(jnitiates the loop) 

Modify the iteration 2 
for round i + 1 

Continue 
iteration 

FIG. 4-2. Flow chart of generalized loop. 
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number of iterations until the desired number have been accomplished. 
As an example of the former tally, consider the computation of VN to 
within an error of E by the following process (see Fig. 4-3): First note that 
-yIN is the x (and the y) coordinate where the curves x = y and N = xy 
intersect. We approach this point by successive approximations starting 
from (xo,Yo), where Xo = N, Yo = 1, moving along a perpendicular to 
x = y, dropping an altitude to point (Xl,Yl) on N = xv, moving from this 

yaxis 

N , 
" , 

" , , , 
" , , 

" " " , , , 

x=y 

N x axis 

FIG. 4-3. Computation of VN. 
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Let xo'" N, i =0 

FIG. 4-4. Flow chart for computation of VN. 

point along a perpendicular to x = y, dropping an altitude to point 
(X2,Y2) on N = xV, and so forth. The next point (Xi+l,Yi+ 1) is found in 
terms of the present point (Xi,Yi) as follows: 

N 
Yi+l =­

Xi+l 

(see Fig. 4-3). When Xi - Yi :::; E, the desired accuracy has been ob­
tained. The flow diagram for this loop is shown in Fig. 4-4. A symbolic 
code for this appears in Example 4-1. 

EXAMPLE 4-1. THE SQUARE-ROOT ROUTINE 

Address Operation a {j 'Y Remarks 
---

ODD 

001 Divide N x 
N 

Y Yi+l = -
Xi+l 

002 Subtract Y x Ll Xi+l - Yi+! 
003 Compare Ll E 005 Ll: E 

004 Stop x = VN 
005 Add x Y x , Xi +Yi 

006 Divide x 2 x f Xi+! = --2-

007 Compare 1 0 001 
010 N 
011 x 
012 i Y 
013 E 

014 2 
015 1 
016 0 

As an example of the latter tally, consider a code that computes xn, 
where x and n are known. Here, after each multiplication, 1 is added 
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to the tally temporary, and comparison is made with the constant n. A 
symbolic code for this is given in Example 4-2. Note that initially the 
contents of the xn temporary must be 1, and the contents of the tally 
temporary must be 0 (why?). 

EXAMPLE 4-2. xn ROUTINE 

Address Opemtion ex (3 'Y Remarks 

000 
001 Multiply x xn tempomry xn temporary Form partial 

product 
002 Add 1 Tally tempomry Tally temporary Adjust tally 

tempomry 
003 Compare n Tally temporary 001 
004 Stop 
005 xn temporary 
006 Tally temporary 
007 n 
010 x 
011 1 

The importance of the recursion code cannot be overemphasized. In 
fact, as we shall see in a future section, special instructions are included 
in many computers to aid the coding of such codes. 

Instruction Modification. One of the fundamental concepts upon 
which modern computers are based is that of instruction modification, 
i.e., having a program automatically modify itself. Let us illustrate how 
instructions can modify instructions by means of the following examples: 

Suppose that, during the course of computing for a problem, the com­
puter often needed to know the value of the binomial distribution func-

tion p(x) = e~O) (0.1)" (0.9)100--", where e~O) is the binomial coefficient, 

for x = 1, 2, 3, 4, or 5. One method for performing such a calculation is 
simply to write a table into the memory of the 'computer and" look up" 
the value each time it is needed. 

Suppose such a table was written into addresses 001 to 005; i.e., in 
address 001 is located 104p(1), in address 002 is located 104p(2), ... ,in 
005 is located 104p(5). Note that we must scale the values of p(x), since 
p(x) is less than 1 (for all values of x) but our computer interprets all 
numbers as greater than 1. Of course the numbers in addresses 001 to 
005 will be written in octal. 

Suppose also that the value of x (which for this problem can only be 
1, 2, 3, 4, or 5) is found in address 006 and that the result, namely, 
104p(x), corresponding to this value, is to be put into 007. To perform 
this task, the code must have a set of instructions that will transfer 
the contents of one of the addresses 001, 002, 003, 004, or 005 into 007. 
U sing the one-address system devised in Sec. 3-9, these instructions 
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(where the contents of 010 is the constant zero) are: 

Operation a Remarks 

42 OlO Clear accumulator 
53 ? Put contents of ? into accumulator 
52 007 Transfer (ace) into 007 

If the contents of 006 were 1, then 001 should replace the?; if (006) = 2, 
then 002 should replace the ?; etc. The problem therefore resolves 
itself into modifying the instruction with the ? so that ? is replaced 

Set up the read­
table instruction 

Reset the read­
table instruction 

FIG. 4-5. Flow chart of table look-up routine, indicating reset instructions. 

by the contents of 006. One way of doing this is to write the instruction 
first as 53 000. Then add (006) to it, the result being 53 001, etc. 

EXAMPLE 4-3. BINOMIAL-COEFFICIENT LOOK-UP ROUTINE 

Instruction 

Address 
Opera-

Remarks 

tion 
a 

001 00 003 
1O'p(1) ! 002 00 020 104p(2) 

003 00 073 lO4p(3) table 
004 00 237 104p(4) 
005 00 523 lO4p(5) 
006 00 004 x = 4 (or 1, 2, 3, 5) 
007 104p(x) = result 
OlO 00 000 o constant 
011 42 010 Start here, and clear accumulator} 
012 53 006 Put (006) into accumulator Set up ? instruction 
013 51 015 Add (ace) to ? instruction 
014 42 OlO Clear accumulator 
015 53 ? Now do ? instruction [(015) reads 53004 by time code 

progresses this far] 
016 52 007 Transfer (acc) into 007 
017 42 OlO Clear accumulator } R t 1 
020 53 023 

... ese 
Put mstructIOn constant mto accumulator . t t' 

021 52 015 Transfer (acc) into 015 ms ruc Ion 
022 44 End here-jump to another part of program 
023 53 000 Instruction constant 

Edgar VViIli3m~ 
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But after the code has been used, an additional set of instructions is 
needed to reset it back to 53 000. The flow diagram is as in Fig. 4-5. 

The entire code, then, is as in Example 4-3. 
Instruction Modification in Loops. Frequently instruction modification 

is necessary for the coding of loops. For example, suppose that it is 
desired to form the sum of a long column of numbers which are located in 
consecutive addresses of the computer memory from address 030 to 

Initiate the process: 
)---~ put the first number in 

'----" the partial sum cell 

Modify the add 
instruction for 

the next number 

Add the next 
number to the 

partial sum 

077: 
address of number 

just added 

> "'1------r-'~ 

FIG. 4-6. Flow chart for instruction modification. 

Reset add 
instruction and 
stop computer 

077. We could use the same add instruction for the successive additions 
provided that the add instruction were modified before each addition 
so as to add the contents of the next successive address to the partial 
sum each time round. The flow diagram is as in Fig. 4-6 and the code 
as in Example 4-4. The arrows in Fig. 4-6 indicate the path of the com­
puter through the instructions. The sum is formed in address OOL 
The student should be sure to understand the purpose. of each of the five 
sets of instructions of Example 4-4. 

Loops within Loops. As an example of multiple loops, or loops within 
loops, consider the computation of a table of sin x by means of the 
infinite series 

x 3 xl> x 7 x9 xll 

sin x = x - 3! + 5! - 7! + 9! - il! + ... 
for each Moo radian from 0 to 7r/2, to eight decimal places (see Sec. 
6-11). First we would have a loop that formed xn/n! by multiplying a 
partial product successively by X/Pi (loop A); then we would need a loop 
that adds or subtracts this result to or from the partial sum and increases 



102 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4 

Address 

000 
001 
002 
003 
004 
005 
006 
007 
010 
011 
012 
013 
014 
015 
016 
017 

020 
021 
022 
023 
024 
025 
026 
027 

~~~ } 
077 

EXAMPLE 4-4. COLUMN-ADDING ROUTINE 

Instruction 

Opera-
tion 

44 

42 
53 
52 
42 
53 
51 
42 
53 
53 
52 
42 
53 
54 
43 

42 
53 
52 
60 
00 
00 
53 
53 

002 

024 
030 
001 
024 
025 
012 
024 
001 
030 
001 
024 
012 
026 
005 

024 
027 
012 
000 
000 
001 
077 
030 

Remarks 

Start at 002 
Final sum (temporary partial sum) 

Put (030) into accumulator Illitlate . process:. put first 
Clear accumulator } ... 

Put (acc) into 001 number Into partIal-sum cell 

. . InS ruc IOn Clear accumulator }. t t· 
Increase a of add InstructIOn by 1 modification 

Clear accumulator } 
Put partial sum in accumulator add next number 
Add instruction to partial sum 
Put partial sum into its temporary 
Clear accumulator 
Put (012) into accumulator j 
Subtract (026) from accumulator I t 11 
53077 > (012)? ( a y 

Yes: add another number ) 
No: sum is complete 

Clear accumUlator} 
reset and stop computer 

Put 53030 into 012 

o constant 
1 constant 
53077 constant 
53030 constant 

Numbers to be added 

n by 2 until the partial sum becomes correct to eight significant figures 
(loop B); and finally we need a loop that increases x by 0.01 and con­
tinues to compute the next value of sin x (loop C). The flow diagram 
for this process appears in Fig. 4-7. 

EXERCISES 

(a) Code the flow diagram of Fig. 4-1 for a one-address system as described above. 
(b) The symbolic codes of Examples 4-1 and 4-2 are incomplete in that they do not 

reset the computer for additional runs. Complete these codes accordingly and assign 
specific addresses. 



SEC. 4-2] PROGRAMMING FUNDAMENTALS 

Set n = 1 and the contents 
of" partial.sum temporary II 

cell equal to 0 

Set 11 = 1 and contents 
of II partial product temporary II 

cell equal to 1 

Add (or subtract) 
Loop B xB 

n! : 0.000000005 x B 

103 

~ to partial sum 
> < 

Print out the value of Xk 

and the corresponding 
value of sin xk 

Stop the computer 

FIG. 4-7. Flow chart of loops within loops. The notation Pi + 1 ~ Pi, ni + 2 ~ nil 
and Xk + 0.01 ~ Xk, etc., is often used to indicate that in the (i + l)st iteration 
Pi+l = Pi + 1, niH = ni + 2, and Xk+l = Xk + 0.01. etc. 

If x is found in 001 and n is in 002, draw flow diagrams and write codes that will 
compute the following functions using the one-address system and also the three­
address system as described above: 

(c) xn/n!. [HINT: Form a partial product by multiplying by x/en - i).] 
(d) e'" = 1 + x + x 2/2! + x 3/3! + .. '. (HINT: Compute enough terms so that 

xn/n! < €; this test will tally the breaking of the loop.) 
(e) The binomial coefficient n!/x!(n - x)!. 
(f) The first moment of the binomial expansion, namely, 

n 

u - x . '" n-'" 2: 
nl 

- x!(n - x)! P q 
X=O 

(g) Write a routine that forms the sum of the squares of numbers found in addresses 
030 to 077. 

(h) Write a routine that puts the numbers found in 030 to 077 in numerical order. 
HINT: Successively interchange locations of numbers in adjacent addresses if they 
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are not in order; keep track of the number of interchanges each time through; when no 
interchanges are necessary, then the numbers are in order; that is, for example, 

;.I.. "" ~ 
1st time through: 4,2,3,1 2,4,3,1 2,3,4,1 2,3,1,4 

r'\. ~ r'\ 
2d time through: 2,3, 1,4 2,3,1,4 2, 1,3,4. 2,1,3,4 

M r'\ r'\ 
3d time through: 2, 1,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

r'\ r'\ r'\ 
4th time through: 1,2,3,4 1,2,3,4 1,2,.3,4 1,2,3,4 

(no interchanges; so numbers are in proper order). 

4-3. The Subroutine 

Use of a Subroutine. A subroutine is a sub code that may be used 
many times during the computation of a program but is written only 
once in the whole code. As the computer proceeds down the main 
program, the control will occasionally jump to this subroutine and then, 
after doing the subroutine, will jump back to the main program where 
it left off. This detour from the main program through the subroutine 
may occur several times during the computation of the program. Hence 
a subroutine must have an entrance, a way of getting into it, and an 
exit, a way of getting out of it. Each time an entrance is made to a 
subroutine, some initial conditions must be set up that are character­
istic of the place in the main program from which the entrance was 
made. For instance, if the subroutine calculates some function, the 
initial values of the independent variables at that point in the main 
program must be given to the subroutine. In addition, as an entrance 
to a subroutine is made, the exit must be set up; i.e., the subroutine 
must be told where to transfer control back to the main program. For 
each time the subroutine is used, its exit is usually to some different 
part of the main program. Hence, in order to use a subroutine, the coder 
must know (1) the entrance, i.e., the address of the first instruction; 
(2) the addresses of the temporaries in which the initial conditions are 
to be set up; (3) the addresses of the temporaries whose contents will 
be the results of the subroutine computation; and (4) the exit, i.e., the 
address of some jump instruction that is to be preset (when entering the 
subroutine) so that, when the computation of the subroutine has been 
completed, the computer will transfer control back to the proper address 
of the main program. 

Consider, for instance, the flow diagram in Fig. 4-8, which illustrates 
the setting up of the initial conditions and different exits of the subrou­
tine. The A in the circle is a connector and of course means that the 
program jumps to the subroutine at that point. The B connector is 
called a variable connector; i.e., it indicates that the program jumps either 
to Bl or to B 2, depending on how the "variable" connector is set. When 
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Start 

_________ -1 

------------------~ 

FIG. 4-8. Flow chart for setting up initial conditions and different exits of a subroutine. 

we say that B = B l , we mean that the B connector is set so that it will 
go from B to B l ; and when we say that B = B 2, then the B is set to go 
from B to B 2• The rest of the flow diagram is self-explanatory but 
should be studied carefully by the student. 

Example. As a specific example of the use of subroutines, consider 
a program which is to compute the radiation intensity S of an antenna at 
a point in space as a function of the directional angles () and cp and the 
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radius R given by the equation t 

S = 30102 [cos (~cos 0) sin (¥ sin 0 cos 1")]2 

271"R2 sin 8 (71" ) 
sin 2 sin 8 cos l{) 

where n = a given integer 
10 = a known constant 

N ow the sine and cosine functions are evaluated by means of their power 
series. Since these functions appear several times as functions of differ­
ent arguments, it would be wise to use their respective power-series codes 
as subroutines. Figure 4-9 is a flow chart for the calculation of Sand 
indicates the use of the subroutines. 

This flow diagram can be used to illustrate some of the details involved 
in using subroutines. For example, suppose that the first instruction of 
the cos x subroutine is located in address 700. Then, using a one-address 
system, the jump instruction to this subroutine would be 44 700, which 
completes the first step in using a subroutine. The second step is to set 
up the exit from the subroutine. One method is to have in address 677 
(the address preceding 700) a jump instruction 44 000, where a is to be 
designated. Suppose that the main program will continue after the 
subroutine, from address 017. Then we would want (677) to be 44 017. 
Then at the end of the subroutine would appear a jump to 677, whence 
the computer will jump to 017. To set up (677), the main program 
would put the constant 44 017 into the accumulator and then perform 
a transfer into 677. Another method of accomplishing this return 
jump to the main program is through some sort of special instruction 
designed for this purpose. In this case the jump to the first instruction, 
for example, 44 700, automatically memorizes the address of this 
instruction in some counter or index register. Then a special jump 
instruction is placed into address 677 that looks at this counter or 
register and jumps back to the main program. 

For the third step in using a subroutine the main routine must some­
how tell the subroutine the values of the initial data, i.e., the independent 
variables. For this purpose a common agreement is made between the 
person who writes the subroutine and the user of the subroutine about 
certain addresses set aside for this purpose. For example, suppose that 
address 676 were agreed upon to be the address of the initial value of x 
in the cos x subroutine. Then, before jumping to the subroutine, the 
main program would transfer the initial value of x into 676 for the use 
of the subroutine. Similarly an agreement might be made that the final 
computed value of cos x be placed in 675; when the computer exits from 
the subroutine back to the main program, the main program first transfers 
(675) to some temporary that the main program uses. Of course, there 

t See, for example, J. A. Stratton, "Electromagnetic Theory," p. 451, eq. (53), 
McGraw-Hill Book Company, Inc., New York, 1941. 
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Set u" cos cp 
t== sin () 

Form v =0 ~'lI" tu 

Form final result 

(sw)2 
S==p tl 

FIG. 4-9. Flow chart for computation of radiation intensity. 

107 
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is an alternative method for performing these two tasks. The main 
program could first tell the subroutine where the initial value of x is 
located and where the final computed value of cos x should be placed, 
and the subroutine could include the transfer instructions. In such a 
case the instructions of the main program that "tell" the subroutine 
would do so by modifying some instructions of the subroutine. 

Library of Subroutines. As illustrated by the example, several sub­
routines may be used in one main program. In fact it is found that many 
common subroutines are used quite often, such as sin x, cos x, eX, Vx, 
etc. Hence it often becomes profitable to have a library of subroutines 
available to the programmer, stored at all times in some part of the 
computer memory. There would also be some catalogue kept outside 
the computer that the programmer can consult when he wants to use a 
subroutine. This catalogue would tell where each subroutine is located 
and all pertinent data about how to use it, such as where to put the 
initial values of the independent variables, where the computed values 
of the dependent variables are found, etc. In addition, as we shall 
discuss in a later section, automatic programming aids are devised to 
make such a library of subroutines easier to use. 

EXERCISES 

Construct a library of subroutines, using our three-address system given above, as 
follows: 

(a) Write a subroutine for Vx for your library. 
(b) Write a subroutine for xm 1m! for your library. 
(c) Write a subroutine for sin x for your library. (HINT: This subroutine will 

itself use subroutine b.) 
(d) Write a subroutine for cos x for your library. 
(e) Write a manual describing how to use your library of subroutines. 
(f) Code the example given in this section, using your library of subroutines. 

4-4. Instruction Types 

In this section we present many of the important kinds of instructions 
that are found in modern digital computers. The object is to describe 
the concepts upon which the various kinds of instruction are based 
rather than specific details of the instructions themselves. The concepts 
are chosen from those which are most commonly used. Instructions 
based on these concepts may take many different forms in the many 
different computers. For purposes of clarity in this presentation these 
instruction concepts have been classified into six major categories: (1) the 
use of auxiliary bits in an instruction; (2) arithmetic instructions; (3) 
logical and bit-handling instructions; (4) decision instructions; (5) recur­
sion-aiding instructions; (6) read and write instructions. Although there 
is some overlapping, it is most convenient to consider each instruction 
as falling into one, and only one, of these categOl'ies. 
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1. Auxiliary Bits. Auxiliary bits are bit positions that are included 
in the format of the instruction words of a particular computer, but 
they are not part of the operation code or the addresses. Two common 
uses of such bits are (a) to halt the computer or to make the program 
jump to some standard memory location, called break points, and (b) to 
indicate relative addresses-both of which will now be described. 

a. BREAK POINTS. As was pointed out above, the "sign" bit is an 
auxiliary bit. The sign bit can be given meaning for instructions as 
follows: if it is 0, the computer continues to compute as usual; if it is 1, 
then the computer halts. Important use is made of such a system in 
detecting errors in a program. Suppose that a coder were running a 
program on a computer for the first time; he might want to stop the 
computer at intermediate stages in the program to see whether or not 
the code were correct up to those points. In order to do this, he would 
put 1 in the sign bits of those instructions at which he wants to stop the 
computer so that he could examine the partial results. An alternative 
to this procedure, which serves the same purpose, is to have the computer 
take the next instruction from a standard, predetermined location in the 
memory whenever a 1 appears in the sign bit of an instruction. At the 
standard position a special code might be located that can do various 
things to aid the coder detect errors and correct this code. 

b. RELATIVE ADDRESSES. Another important use for auxiliary bits is 
concerned with relative addresses. Relative addresses are associated with 
so-called relative counters, sometimes called index registers, and with 
auxiliary bits. A relative counter is a very special memory cell or 
register that can contain only a single address; i.e., it is a "short" memory 
cell. The computer must also have special instructions that can put a 
number into such a relative counter, add to the number in the relative 
counter, etc. Such instructions will be considered later in this section. 

An address appearing in an instruction is said to be interpreted "rela­
tive" to a counter if the computer, instead of considering the contents 
of the address indicated, considers instead the contents of the word 
whose address is the sum of the counter reading and the indicated address. 
For example, if the index register read 002 and the address in the instruc­
tion were 053, then the computer would consider the contents of 

002 + 053 = 055 

The role of the auxiliary bits in connection with relative addresses is as 
follows: The auxiliary bits of an instruction can indicate whether an 
address is to be considered relative or not. For example, consider a 
three-address instruction format that has three auxiliary, i.e., extra, bits 
on the right: 

Operation a {j 'Y 
Auxiliary bits 
P3 P2 PI 
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Suppose that there is one relative counter. Then the following meaning 
can be attached to these bits: If PI is 1, then 'ris to be interpreted as 
relative to the counter; if P2 is 1, then {3 is relative; if P3 is 1, then 
a is relative. Hence, if the auxiliary bits were 101 and the instruction 
were "add," then the contents of "a + (counter)" would be added to 
the contents of {3 and the result put into the address ""/ + (counter)." 

The use of such relative addresses is to aid the coding of iterations, 
or loops. As illustrated by some of the problems of the previous sec­
tions, each time around a loop it is often necessary to increase some 
addresses of the main set of instructions by 1 (or some other integer). 
In such cases a set of instructions modifying the instruction must precede 
the main set of instructions. But with relative addresses all that need 
be done is to increase the counter by 1 (or whatever is the necessary 
integer for a particular case) by means of the counter-setting instruction. 
One variation of this system is to have several such relative counters or 
registers, which can be used in many different ways. For example, an 
instruction preceding the use of relative addresses can determine to 
which counter the addresses are to be considered relative. Or the 
addresses may be considered relative to the sum or some other function 
of the numbers in the counters. 

2. Arithmetic Instructions. These instructions can be divided into 
four classes: add, subtract, multiply, and divide. One of the important 
concepts that appears in arithmetic instructions is the automatic floating 
decimal point. As was seen in some of the above examples and problems, 
in ordinary arithmetic instructions the coder was limited to handling 
numbers within the range of the word length. For example, if the word 
length is 15 bits plus a sign bit, and if all numbers are interpreted as 
being nonfractional, that is, if the binary point is considered to be on the 
right, then only integers that lie between 0 and 215, or -1 and - 215, can 
be handled by the computer. Obviously there mqst be some way out of 
"Iuch a totally unacceptable situation. The method is to multiply all 
numbers involved in a code by an appropriate scaling factor so that they 
fall within the desired range during the computer computations. Of 
course the results put out by the computer must be readjusted to their 
actual values. However, it suffices to mention here that scaling presents 
more work for the coder and is a disadvantage. Many computers avoid 
this disadvantage by having a so-called floating point for arithmetic 
operations. 

In computers with floating-point arithmetic operations a number is 
memorized in a word composed of two parts: a mantissa, which contains 
the significant figures of the number, and an exponent. For example, one 
computer that has a 45-bit word uses 36 bits for the significant figures 
and their sign and 9 bits for the exponent and its sign. Hence this 
computer can handle numbers whose absolute values are as large as 
(235 

0- 1) X 2255 (since 28 = 256) or as small as 2-255, that is, numbers 
within this range with no more 'than 35 significant bits. A range 



SEC. 4-4] PROGRAMMING FUNDAMENTALS 111 

such as this covers most cases that usually occur and hence relieves the 
coder of all scaling considerations. 

The terms normalized and unnormalized are often used in connection 
with floating-point arithmetic operations. These terms are concerned 
with the problem of determining the appropriate exponent of the result 
of an operation. The result of an operation is called normalized if 
the exponent is so adjusted that the leftmost bit of the mantissa is 
a unit bit. This of course maximizes the number of significant figures 
that can be recorded in a word. A computer operation that presents 
normalized results is called normalized; e.g., we would say add-normalized. 
As an example, suppose that a computer had a 24-bit (8 octal position) 

o 0 0 0 1 7 5 3 0 4 4 2 4 7 1 4 Before 
the 

III : : :::: 
000 000 

the 
7 6 5 4 2 2 1 2 3 4 6 0 0 a 0 0 move 

FIG. 4-10. Normalized and unnormalized mantissa. 

mantissa and we multiply-normalized the (octal) numbers (with octal 
exponent): .00033333 X 26 by .04444444 X 23. The unnormalized result 
(double length) is .0000 1753 0442 4714 X 211. Of course this is a 
binary number in the computer, and the problem is to determine that 
exponent which will move the binary number to the left until a unit bit 
appears in the leftmost position. The number of bit positions the man­
tissa will have to be moved to the left in our example is 3 X 4 + 2 
[where 3 X 4 is the number of bit positions corresponding to four zeros; 
and since 1 (octal) is 001 (binary), a move two further positions to the 
left is necessary]. Figure 4-10 illustrates the binary and octal forms 
of the double-length mantissa before and after the move. 

The final normalized result will therefore be .7654 2212 X 2-5 [where 
11 - (3 X 4 + 2) = -5]. Of course the computer will do this auto­
matically and will display only the" single-length" result. (See below for 
further discussion of single- and double-length results of multiplication.) 
Note that, if the computer binary point is understood to be to the right, 
the above multiplication would be 

00033333 X 2-22 X 04444444 X 2-25 = 00001753 04424714 X 2-47 

The product could here be normalized by shifting right 

(3 X 3) + 1 = 12 octal places 

to give 76542212 X 2-:-35 (-47 + 12 = -35). If the product were 



112 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4 

normalized by shifting left, dropping the last eight places would be 
equivalent to multiplying by 2-30 and the exponent would have to be 
corrected accordingly: -47 - [(3 X 4) + 2] + 30 = -35. 

When an unnormalized operation is defined, the method for determin­
ing the exponent must be clearly stated. 

We can now return to a description of the kinds of arithmetic instruc­
tions. Consider" add" first. 

a. ADD. 1. Ordinary addition instruction, as described in previous 
sections. 

2. Floating addition-unnormalized. The exponent of the result will 
be that of the largest exponent of the two operands. 

3. Floating addition--normalized. The exponent of the result will be 
adjusted so that the most significant bit of the number is a unit. 

4. Absolute-value "add." In a two-, three-, or four-address system 
the result would be = l(a)1 + 1(.6)1. 

5. Add into accumulator. In a one-address system (acc) + (a) is put 
into the accumulator. 

6. Add into memory. In a one-address system (acc) + (a) is put into 
a. 

7. Add relative. The instruction code itself tells that the address is 
to be considered relative to some relative counter. 

8. Add with overflow check. If the sum is greater than the larg­
est number that can be stored in a word, then overflow is said to have 
occurred. If overflow occurs, then the computer is to break the sequence 
of instructions; e.g., in a three-address system, if no overflow, then take 
next instruction; if overflow, take 'Y. 

9. Multiply-add. In a two-address system, form (a) . (acc) + (.6), and 
put result into accumulator. 

10. Partial add-a address. In a two or more address system, only the 
a portion of the words is added. Similarly there are add-.6, -'Y address 
instructions. 

b. SUBTRACT. The kinds of subtract instructions are analogous to the 
kinds of add instructions but include also: 

11. Change sign of register. This is not a subtract instruction but only 
changes the sign of the accumulator. 

c. MULTIPLY. Before describing the kinds of multiply instructions we 
must first describe briefly how multiplication takes place in an arithmetic 
unit. First note that, if an n digit is multiplied by an m digit number, 
the result can have as many as n + m digits. In a computer, therefore, 
the result of a multiplication can contain twice as many bits as appears 
in a word. Hence there are usually two registers in the arithmetic unit 
(or one double-word-Iength register) to record the result of the multipli­
cation. If a word has m bits, then the least significant m bits (which are 
found in one of the registers, called the minor register) are called the minor 
multiplication result, while the rest of the bits are called the major multi­
plication result (and are found in the other register, called the major 
register). 
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For example, if we consider a 24-bit (8 octal position) word, and multi­
ply 00033333 by 04444444, we obtain as a result 00001753 04424714. 
Here 00001753 is the major product, and 04424714 is the minor product. 

1. Regular multiplication. Leaving both major and minor results in 
the registers. 

2. Major multiplication-unrounded. The memorized result is the 
major multiplication result. 

3. Major multiplication-rounded. The memorized result is the major 
multiplication result with a least significant unit added to the major 
result if the most significant bit of the minor multiplication result is a 
unit. If the multiplication is normalized also, the normalization is done 
first, then the rounding. 

4. Floating multiplication-unnormalized. The exponents are added, 
and the mantissas are multiplied. 

5. Floating multiplication-normalized. After the multiplication the 
product is shifted and the sum of the exponents adjusted so that the most 
significant bit is a unit. 

6. Rounding only. This is not a multiplication instruction, but the 
number in the major register is rounded with respect to the number in the 
minor register. 

d. DIVIDE. In dividing, the quotient appears in the major register, the 
remainder in the minor register. This brings up some variations in the 
divide instruction. 

1. Quotient divide. The quotient is the memorized result. 
2. Remainder divide. The remainder is the memorized result. 
3. Quotient divide-rounded. 
4. Floating divide-unnormalized. 
5. Floating divide-normalized. 
6. Divide with overflow check on quotient. 

EXERCISES 

(a) Consider the example illustrated by Fig. 4-5. Code this in a three-address 
system in which the instruction format includes three auxiliary bits as described in 
Sec. 4-4, under Relative Addresses. Assume a counter-setting instruction that sets 
the counter to the number a and takes the next instruction from l' (here (3 is not used). 

(b) What would a counter-setting instruction be in a one-address system? 
(c) Code the same problem as in (a), using a one-address system where the instruc­

tion format has a single auxiliary bit. 
(d) Find the unnormalized and normalized sum of 77770000 X 25 and 00007777 X 26 

(where, of course, the numbers are in octal). 
(e) Find the unnormalized difference of 0000 7777 X 2 6 and 7777 0000 X 25. 
(f) For the numbers 7777 0000 X 25 and 0000 7777 X 26 find: 
The unnormalized major product, unrounded. 
The unnormalized major product, rounded. 
The normalized major product, unrounded. 
The normalized major product, rounded. 
The unnormalized minor product. 
The normalized minor product. 
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4-5. Instruction Types (Continued) 

3. Logical and Bit-handling Instructions. These instructions are used 
for two main purposes. First they are used to modify instructions; 
second they are used when it is desired to find whether the bit in a Pi 
position is zero or a unit, as is often necessary when bits represent switch 
inputs in a machine. 

a. LOGICAL ARITHMETIC. 1. Logical addition. There is no carry, and 
the bits in the corresponding positions of the two operands are" added" 
according to the rule 1 l± 1 = 1, 1 l± 0 = 1, 0 l± 1 = 1, 0/+ 0 = O. 
For example, 

Logical + 0101 
0011 
0111 

which can, of course, be generalized to a word of any number of bits in 
length. 

2. Logical multiplication. Similar to logical addition except that 
1 [.1 = 1, 1 [. 0 = 0, 0 [.1 = 0, 0 [. 0 = O. For example, 

Logical X 

which can be generalized as above. 

0101 
0011 
0001 

A 
B 

AC B 

3. Logical ring add (or logical inequality). Similar to logical addition, 
except that 1 ~ 1 = 0, 1 l= 0 = 1, 0 ~ 1 = 1, 0 I~ 0 = O. For example, 

Logical ring + 

which can be generalized as above. 

0101 
0011 
0110 

4. Logical compare (or logical equality). Similar to logical addition, 
except that 1 E 1 = 1, 0 EO = 1, 1 E 0 = 0, 0 I~ 1 = O. For 
example, 

Logical compare 

which can be generalized as above. 

0101 
0011 
1001 

5. Complement. Units are changed to zeros, and zeros to units; e.g., 
if (a) = 0101, the complement of (a) is 1010. 

6. Extract. For a four- or three-address instruction, where a bit ot 
(0:) is a unit, replace the corresponding bit of ('Y) with the corresponding 
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bits of ({3). For example, 

(a) 000 000 011 
«(3) 010 110 

~ (1') 011 010 
Result, found in l' 011 010 110 

7. Odd-even extractor (used for decimal computers). Replace those 
digits of (1') which correspond (in position) to odd digits of (a) with the 
corresponding digits of «(3). For example, 

(a) 
«(3 ) 
(1' ) 

Result 

222 
134 
867 
867 

246 277 

;~~ ~ 
243 810 

b. SHIFT INSTRUCTIONS. 1. Right shift. The whole (a) is shifted to 
the right by the number of positions specified in the instruction. If the 
shift is n positions, the effect is the same as multiplying by 2-n • Those 
bits which run off the right end of the word are lost; those which come 
into the left end are zeros. 

2. Left shift. Like the right shift, but in the other direction, i.e., like 
multiplying by 2n. 

3. Circular shifts. Shifts where the bits that go off one end come back 
at the other as if the ends of the words were connected together. (These 
are also called "end-around shifts.") 

4. Left significant shift. Shift till there is a unit in the most significant 
place. This differs from the above shift instructions in that the number 
of positions to be shifted is not given by the instruction but is determined 
during the operation. The number of positions shifted is often recorded 
in (3; the shift is performed in the accumulator for a one-address system. 

4. Decision Instructions. When a flow chart of a program comes to a 
branch point, some form of decision instruction must be used to deter­
mine which branch should be taken. As far as the segmented execution 
of the instructions in a program is concerned, a branch point means that 
the program either will continue on normally or will jump to another 
part of the program. The term jump is used to indicate that at such a 
branch point the next instruction is taken from some part of the memory 
other than the usual sequence. 

a. COMPARISON OF WORDS. 1. Usual comparisons. If (a) > «(3), then 
take l' for four- or three-address computer; if (a) > (ace), take (3 for 
two-address computers. 

2. Absolute comparison. Same as 1, except that the absolute values of 
the words are compared. 

3. Negative jump. If (ace) is negative, take a. 
4. Positive jump. If (ace) is positive, take a. 
5. Zero jump. If (ace) = 0, take a. 
6. Nonzero jump. If (ace) ~ 0, take a. 
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7. High Jump. If (acc) > (a), skip next instruction. 
8. Low Jump. If (acc) < (a), skip next instruction. 
9. Equal Jump. If (acc) = (a), skip next instruction. 
10. Least significant Jump. If least significant bit of (acc) is 1, then 

jump to a. 
Of course items 3 to 10 are for one-address systems; in items 7 to 9 

the number of instructions skipped may be more than one but would 
be fixed for a given machine. 

b. SENSING OF SIGNAL SWITCHES. 1. Special signal transfer. If a cer­
tain signal specified by the operation is on, then take a. This instruc­
tion is used in conjunction with an instruction that turns on the signal. 
This latter instruction may be separated in the program from the special­
signal-transfer instruction so that the jump occurs some time after the 
signal was turned on. There may be several signals and associated sets 
of instructions. . 

2. Manual Jump. Here a jump will occur only when a manual 
external switch has been set before the program reaches the instruction. 

3. Manual halt and transfer. The computer will stop if the external 
switch specified by the instruction has been turned on. Then, when the 
start button is pushed, the jump to a will occur. If the switch is off, 
the computer jumps without stopping. 

4. Return Jump. In a two-address system the program jumps to ({3) 
for the next instruction; at the same time the contents of the current 
instruction register (i.e., the address of this particular return-jump 
instruction) is recorded as (a). The purpose of this instruction is that 
it is often desirable to jump back to the place from which the original 
program jumped. 

5. Recursion, or Loop-aiding, Instructions. These instructions are 
designed to aid in the programming of loops. In the examples and prob­
lems given above each time around the loop the main set of instructions 
usually needs to be modified by means of additional instructions. As 
was seen above, relative counters or index registers can aid in eliminat­
ing these additional instructions. Also, loop codes require some sort of 
tally to be kept to allow the computer to jump out of the loop. The 
purpose of recursion, or loop-aiding, instructions is to facilitate the use 
of the relative counters and to aid in keeping the tally automatically. 

a. INDEX-REGISTER MODIFIER. Adds 1 to the index register and jumps 
to a. Here the loop tally is not considered. 

b. FILE AND MODIFY RELATIVE COUNTER. This instruction stores the 
contents of one of the relative counters (assuming that there are several 
relative counters) as (a); then another designated by the instruction is 
set to the number {3 (that is, not the contents of {3, but (3 itself), and this 
counter is then considered the relative counter until another file instruc:­
tion occurs. Since resetting and going to another relative counter 
essentially constitutes a jump, this instruction can act as a return jump. 
However, if the number {3 of the file instruction itself is considered relative 
to the same counter that the file instruction is setting, then this counter 
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is set to its original reading + {3; that is, the counter is increased by {3. 
As we have seen in the index-type instructions, resetting a counter is an 
aid to recursion codes; however, no tally is considered. 

c. TALLY JUMP. Subtracts 1 from the number a of the instruction; if 
the result (that is, a-I) is positive, replaces the number a by the num­
ber a-I (in the a-address position) of the instruction, and jumps to 
take as the next instruction the contents of {3; otherwise the program 
continues sequentially as usual. This instruction does not consider the 
relative counters. 

d. MODIFY INDEX REGISTER AND TALLY. Compares the contents of the 
index register with the number a. If the contents of the index register 
is greater than the number a, then the number a is subtracted from the 
index register and the difference placed in the index register. Then 
a jump is made to {3. Otherwise the program continues in sequence. 
N ate that the index register acts both as tally and as a relative counter. 
Of course this must be used in conjunction with an instruction that 
initially sets the contents of the index register. 

6. Read and Write Instructions. These instructions operate the input 
and output electromechanical units. 

a. MAGNETIC TAPES. These instructions can enable the computer to 
move the magnetic tapes forward or backward, or completely to rewind 
them. They enable the computer to read from the magnetic tapes into 
the higher-speed memory. The number of words written onto or read 
from the magnetic tape is specified either in terms of individual words 
or, more usually, in terms of the number of blocks of words, where by a 
block of words we mean some predetermined number of words. If, for 
example, there are eight words in a block, then only multiples of eight 
words can be handled. Similarly, in just moving the magnetic tapes, the 
distance to be moved is specified in either single words or blocks of words. 
The instruction code tells whether to read or write, or move the tapes 
backward or forward; the number a tells how many words or blocks are 
to be considered. For reading and writing the number {3 is the address 
that the first word is written out of or read into. 

b. PUNCHED TAPES AND CARDS. Instructions that tell the machine to 
read in from paper tape or to punch paper tape either give the initial 
and final addresses to be read into or out of or else give the first address 
and the number of words to be considered. Sometimes in reading-in 
paper tape, only the initial address is given, and a signal is put on the 
paper tape to tell the computer when to stop reading. Punched-card 
input-output is similar. 

c. DISPLAY. For displays on an oscilloscope each instruction may tell 
the display to exhibit one dot or other geometrical pattern, and the 
instruction gives the coordinates of that dot or of some point on the 
pattern. 

d. CONCURRENT IN-OUT. Some computers have concurrent input and 
output. In these cases the computer can compute at the same time as 
words are being read into or out of the computer. 
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In addition it should be mentioned that some computers have such 
complicated methods of' reading in and out that special codes must be 
written to facilitate these processes, and these codes must be available at 
all times inside the computer's memory. Often these codes must be put 
into the computer at first by hand methods, in a sort of bootstrap oper­
ation. Once the routines are in the computer, the operation may never 
need to be repeated. However, these methods are so peculiar to the par­
ticular computer involved that it is not worthwhile considering them here. 

EXERCISES 

(a) What combination of other logical instructions would produce the same result 
as an extract instruction, in a binary computer? 

(b) How can return-jump instructions facilitate the use of subroutines? 
(c) Use the modify-index-register-and-tally instruction to code the problem described 

in Fig. 4-5. Write the code in a two-address system. 

4-6. Special Coding Techniques 

M ultiway Branch. Our instruction systems described above allow for 
only a two-way branch in a code. That is, by means of a comparison 

1st branch 

Code (calculatesN) 

2d branch 

r 
I 
I 

3d branch 4th branch 
FIG. 4-11. Split-tree comparisons for multiway branch. 

instruction, the computer can determine along which of two possible 
directions to continue in the code. However, it often occurs that a 
many-way branch is needed in a code; this must be programmed. Just 
as the decision process for a two-way branch was reduced to a comparison 
of numbers, so a many-way branch may be reduced to comparisons of 
numbers. For example, if a code is to have a four-way branch, then, to 
determine which branch is taken in any case, the code might determine 
a number N which can take only the values 1, 2, 3, and 4. Then one 
way of coding the four-way branch would be a split tree of successive 
comparisons as in Fig. 4-11. 

However, there is another, more efficient method for coding a many­
way branch, using a so-called Jump table. Here the number N that 
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decides which branch the computer should take is used as an instruction 
modifier (see Fig. 4-12). The basic jump instruction is modified so that, 
when executed, the computer will jump to the appropriate-branch jump 
instruction of the jump table. This branch jump then jumps to the 
proper branch of the code. 

Switch Sensing. In real-time applications (see Chap. 1) of digital 
computers it is often convenient to con­
nect the outside world to the computer 
by means of a battery of switches. These 
switches are attached to a very specially 
built word in the computer's memory, 
and each switch controls a single bit of 
this word. If a switch is on, then the 
computer reads a unit in the position of 
the word corresponding to this switch; 
if the switch is off, then the computer 
reads a zero. Thus this special word 
gives at any time the status of the corre­
sponding battery of switches. Let us in 
addition assume that this special word 
behaves the same as any other word of 
the computer's memory, except that the 
computer cannot read into it. 

There are two ways of interpreting 
these switches, called on-off switch sens­
ing and one-shot switch sensing. For 
on-off switch sensing the computer is to 
determine for each switch whether it is 
on or off. The nth switch can be sensed 
in this way as follows: Shift the switch 
word left until the nth bit is in the most 

Code (calculates N) 

I 
I 
I 

Reset basic jump instruction to 160 

Modify basic jump instruction to 
Jump to 160 + N 

Execute basic jump to 160 + N 

The Jump table 

Address Branch jump 

161 Jump to 1st branch 

162 Jump to 2d branch 

163 Jump to 3d branch 

164 Jump to 4th branch 

significant place; then compare this FIG. 4-12. Jump table for multiway 
shifted word with a word of all units ex- branch. 
cept in the most significant place. For 
example, consider a one-address system with the following shift instruc­
tion: Shift left (acc) the number of positions a. Thus suppose that 
the switch word was 011 110 101 110 001, and that we wanted to 
determine whether P8 (the eighth bit from the right) were 0 or 1. We 
would place this word into the accumulator and perform: Shift left 7; 
i.e., shift the word left seven positions. To compare, a negative jump 
would be used after subtracting (acc) from 011 111 111 111 111. 
If the result is negative, then the shifted word had a unit in the most 
significant position, that is, P8 = 1; if the result is zero or positive, 
P8 = O. 

For "one-shot" switch sensing the computer senses the switch word 
periodically at a rapid rate. The computer is only to determine which 
switches have been turned on. The one-shot switch is not to be sensed 
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when it is either left on or turned off. Thus one-shot switches are sensed 
according to "rable 4-2. To code this we can use the extract instruction. 

TABLE 4-2. WHEN ONE-SHOT SWITCHES ARE SENSED 

New information Old information 
about switch about switch 

Sensed 

o 0 
1 0 
o 1 
1 1 

No 
Yes 
No 
No 

The old information is extracted with the new onto all units; then in the 
resulting word a zero will occur in the position corresponding to the switch 
that was just turned on. Hence, each time the switching word is sensed, 
it will be recorded in some other memory location. Then both the previ­
ous and the present switching word will be available at all times. To see 
why the extract instruction works, consider the following: 

New word (a) 
Old word ({3) 

('Y) 

010 1 

~
o 11 

1 1 1 1 
1 0 1 1 

Hence only when 0 in the old word corresponds to a 1 in the new word 
will a 0 result. Of course next the position of this zero must be deter­
mined. This can be accomplished by shifting left one position at a time, 
keeping track of the number of times shifted, until a zero is sensed in the 
most significant position. 

Input-Output. Very often the input-output instructions of a computer 
are not adequate to read in a whole code or read out all of a given portion 
of the memory. In such a case a subroutine must be used for reading in 
and out of the computer. For example, consider the following read-in 
instruction for a one-address computer: Read one word into a. If an 
entire code is to be read into successive addresses of the computer's 
memory, then clearly a subroutine that iterates this instruction is needed. 
For example, using such a subroutine, the following procedure might be 
followed in reading in a code, where it is assumed that the subroutine is 
already in the computer's memory (see Fig. 4-13): The first instruction 
of the code to be read in will be a jump to the read-in subroutine. Then, 
when this instruction is read into, say, address 000 and executed, the 
computer will jump to the read-in subroutine. The read-in subroutine 
will read in the next two words of the code; these words will contain the 
initial and final address where the code is to be put in the computer's 
memory. Then the subroutine loads the read-in instruction with this 
initial read-in address and the tally with the final read-in address, and 
the iteration of the read-in instruction begins. When the complete 
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code has been read in, the subroutine will jump to the initial read-in 
address and computation will proceed. It is probably wise to have the 
computer stop before computation proceeds, to give the computer oper­
ator a chance to turn off the input equipment, etc. Then, when the run 
button is pushed (see the next section), the computations will proceed. 

Table Look-up. Consider the problem of coding a computer to look up 
a function table that has previously been stored in the computer's mem­
ory. That is, given a particular value of the independent variable, we 

Obtain first and last addresses 

Set initial condition on read­
in (out) instruction 

Set tally condition on read­
in (out) loop 

Perform read-in (out) loop 

Initiate computation 

FIG. 4-13. Flow chart of input-output 
routine. 

~ lIT 
1 

L 

Address Operation 

To 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

a (3 

Xo {(xo) 

Xl {(Xl) 

X2 {(X2) 

X3 {(X3) 

X4 {(X4) 

X5 {(X5) 

X6 {(X6) 

X7 {(X7) 

FIG. 4-14. Setup of table for table look­
up routine. 

desire a code that will select from the computer's memory the correspond­
ing value of the dependent variable as recorded in the table. 

METHOD 1. We have already illustrated above (see Sec. 4-2 under 
Instruction Modification) one simple technique that can be used when the 
independent variable in the table takes on successive integer values. 

METHOD 2. Consider now the case of nonintegral values for the inde­
pendent variable, but where the intervals between successive values of 
the independent variable given in the table are all equal. In this case, 
given the value of the independent variable for which the value of the 
function is desired, simply divide it by the interval to obtain an integer; 
thence this case reduces to the one considered in method 1. 

The interesting case occurs when the values of the independent vari­
able given in the table do not have equal intervals between them. Here, 
to be specific, suppose that we are in a two-address system and the table 
is recorded in successive cells of the computer's memory as follows: The 
value of the independent variable is found in the a position of a word, 
and the corresponding value of the dependent variable is found in the 
{3 position of the same word (see Fig. 4-14). Let us call the successive 
values of the independent variable xo, Xl, X2, • • .• ,Xii where of course 
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Xo < Xl < X2 < . . . < X" and of the dependent variable f(xo), f(xl) , 
!(X2), ••• , f(x,) , and suppose that they are recorded in addresses 
To, T l, T 2, •.• ,T,. We desire to find feN) for some given value N, 
where it is assumed that N = Xi for some i; that is, no interpolation is 
considered here. 

METHOD 3. One simple procedure is to compare successively N: Xo, 
N:Xl, N:X2, ... , until, for some i, N = Xi; then feN) = f(xi) can be 

A = trr tL rounded 
2 

down to an integer 

> 

'--- t'--tu 

Start 

L tu-tL a -= -2 - rounded 

up to an,; integer 

~------~~ 
>~ 

Print 
(t') 

FIG. 4-15. Flow chart for table look-up, method 4. 

read from the computer's memory as desired. This, of course, can be 
accomplished by a simple iteration. 

METHOD 4. There is another method that on the average will enable 
feN) to be obtained faster. The flow chart for this method appears in 
Fig. 4-15. The method consists in determining in which half of the table 
Xi = N is located; then the halving procedure is again applied to this 
smaller part of the table, etc., until a single cell is left. For example, 
consider Fig. 4-14, and suppose that N is Xs. Then the first step of this 
method is to determine that N is included in T4 through T 7• The second 
step locates N further, as being in T4 or Ts. The third step in this case 
locates N as being in Ts. The code would be written as follows: At any 
'step let tL and tu be the lower and upper addresses, respectively, of 
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the range of addresses in the table under consideration. Then form 
t' = tL +~, the address that divides this range of address into two 
parts, where ~ = (tu - tL) /2. Then we look to see whether N lies in the 
upper or lower half of the range; i.e., is the contents of the a part of t' 
greater or less than or equal to N, that is, (t')a:N? If (t')a > N, then 
t' becomes the upper address of the new range; that is, t' ~ tu. If 
(t')a < N, then t' becomes the lower address of the new range; that is, 
t' ~ tL. Of course, if (t')a = N, we have the desired result. There 
is one little complication, however. When ~ = (tu - tL)/2 is formed, it 
may not be an integer; but t' = tL + ~ is an address and therefore must 
be an integer, hence must be rounded to an integer. A little reflection 
will show that, if (t')a > N, then the next ~ should be the nearest smaller 
integer to (tu - tL) /2, while if (t')a < N, the next ~ should be the nearest 
larger integer to (tu - tL)/2. 

For example, consider Fig. 4-14 in connection with the flow chart 
of Fig. 4-15, and suppose for argument's sake that N = X6 and that 
To = 100, Tl = 101, T2 = 102, ... , T7 = 107. Then we would start 
with tL = 100, tu = 107, whence ~ = (107 - 100)/2 = 3%, rounded 
up = 4. Hence t' = 100 + 4 = 104. Comparing (104)a: N, we find 
N > (104)a. Hence 104 is tL, and we form ~ = (107 - 104)/2 = 1%, 
rounded up = 2. Thus t' = 104 + 2 = 106. Comparing (l06)a:N, 
find N < (106)a. Hence 106 becomes tu. Thus ~ = (106 - 104)/2 = 1, 
whence t' = 104 + 1 = 105. Comparing (l05)a: N, find N = (105)a, 
and the result has been obtained. 

EXERCISES 

In all the exercises below the student should feel free to define explicitly any instruc­
tions that he may require or that may help simplify the code (particularly in the one­
address system), based on the material of the previous two sections (Secs. 4-4 and 4-5), 
unless specifically stated otherwise by the exercise. These instruction definitions 
are to be listed preceding the code. 

(a) Define appropriate one-address instructions, and code both the split-tree and 
jump-table method for a four-way branch. 

(b) Suppose that only a single on-off switch could be on at one time. Define 
appropriate one-address instructions, and code a subroutine that will determine the 
position of a switch that is turned on. 

(e) Write a code for the same problem as (b), but now consider one-shot switches. 
(d) Write an input subroutine, using the one-address input instruction given in this 

section. 
(e) Using a one-address system, with an input instruction that reads in one word 

at a time as described in this section, and assuming that the word format has a single 
auxiliary bit, define appropriate counter-setting instructions, etc., and write a read-in 
subroutine. 

(f) Write a code for method 3 of the table look-up problem. Make use of an extract 
instruction to extract the successive Xi onto all zeros to compare with N; then extract 
feN) onto zeros for the read-out. Also assume that there are two auxiliary bits and 
one relative counter to aid the iteration. 

(g) Code method 4 of the table look-up problem in a two-address system. 
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4-7. The Control Panel 

Purpose of the Control Panel. The control panel has three main 
functions: (1) to enable the operation and monitoring of the computer 
during the computation of a program; (2) to aid the checking, or" debug­
ging," of a new program; and (3) to aid the maintenance of the computer 
by the engineer. The control panel and the program itself are the 
irwin communication links between the operator and the computer. By 
means of the control panel the computer can be started and stopped, 
computations can be initiated, magnetic tapes can be properly positioned 
and other input-output equipment controlled, computer voltage and 
current levels, temperature, power input, etc., can be checked and 
adjusted, and so forth. There are wide variations in the features of con­
trol panels of different computers. In this section we shall discuss some 
of the possible features that a control panel might have (see Fig. 4-16). 

In general, information is transmitted between the operator and 
computer by means of lights and buttons on the control panel. However, 
there is one method for monitoring a program during the computations 
using neither lights nor buttons that deserves special mention. It con­
sists simply of a radio placed near the computer tuned to pick up signals 
generated during the computation. The computer, operating at a mega­
cycle or more, presents a radio frequency; recursion loops generate audio­
frequency modulations that can be detected. Various sound patterns 
will correspond to the different sequences or loops of instructions in the 
program. A coder who is computing many reruns of the same code, as 
would be the case in computing mathematical tables, can frequently 
relate these sounds to the various iterations of his program. A trained 
ear can then often detect errors or other troubles that his computations 
may have, just by "listening" to the program while it is being computed. 

Lights and Signals. Usually one first notices the lights and signals 
displayed by the control panel. By means of these signals the computer 
can tell the operator something about its internal state. There are in 
general three kinds of lights and signals: the first kind tells why the 
computer stops during the course of a computation; the second presents a 
visual picture of the contents of various registers and memory cells; the 
third gives the electrical state of the computer. 

When the computer stops or halts, usually one of several lights comes 
on, indicating the cause for the stop; i.e., a stop instruction has been 
executed (called a final stop), or an instruction being executed may con­
tain an erroneous operation code not meaningful to the computer, or an 
instruction being executed may have reference to an erroneous memory 
address not legal for the computer, t or a check stop due to an auxiliary 
bit may have occurred, and so forth. Control panels are often con­
structed so that, when the computer has stopped or halted, the contents 

t Frequently the full complement of memory address is not constructed for a 
computer. Hence an erroneous instruction would refer to an address that the com­
puter does not have. 



I-' 
t-.:l 
~ 

Volts, etc. 

I \()IDI I~~I 
Power switch 

(®=®)® 

1 

0 

II 
Clear button 

1 

0 

Accumulator 

.00 •• 0 000 800 o •• ••• 00. oeo 
i 

0 •• 00 • • 0. o •• • 00 000 •• 0 • 08
1 

111111 111111 111111 11110 11011 0011 11011 01111 
Bit buttons 

Instruction register 
Operation a addresses 

•• 0 0.0 •• 0 0.0 • 00 •• 0 000 ••• 
00. .0. 00 • • 0. o e. 00 • ••• 000 

II 11011 11110 11110 11011 1100 1100 11011 Ill/II 
Clear button 

1 

o 

Bit buttons 

Current-address counter 

0001 •• 0 10 •• 1 •• 010 •• 

0001008 1.00100.1.00 

o 000 000· 000 000 11011 
Clear button Bit buttons 

Start 
button 

0 

Run 
button 

0 

Fuses 

@@@ 
@@@ 

Final 
stop 

CI) 

StQP 
button 

0 

Mode 

CD 

IIlegal­
operation 

stop 

CI) 

Auxiliary 
bit button 

(j) 
Phase 

CD 

Illegal­
address 

stop 

~ 
Auxiliary 
switch 

tpon 

Off 

External 
selector 

CD 
Magnetic-tape control 

0 0 
Rewind Run 

FIG. 4-16. A simple control panel. . In the illustration the accumulator reads 46243712, the instruction, register reads 62624607, 
\l,nd the current-address counter reads 36363. 



126 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4 

of various registers can be ascertained from sets of lights. For instance, 
there may be two small "grain-of-wheat" neon bulbs on the control 
panel corresponding to each bit of the accumulator. When the top bulb 
of the pair is on, the corresponding bit might be a unit; when the bottom 
bulb is on, the corresponding bit would be a zero. Similarly the contents 
of the instruction register of the current-address counter and of other 
registers and counters can be displayed. If an electronic failure has 
occurred, such as a blown fuse or a change in voltage or current readings 
beyond an allowable limit, appropriate signal lights will come on. Of 
course there will be a pilot light indicating that the power is on, etc. 

Buttons and Switches. The only means the computer operator has to 
control the computer, other than by the code itself, is by the buttons and 
switches on the control panel. Besides the on-off switch for the power 
there is a start button, which initiates the computations. For example, 
when the start button is pushed, the computer may automatically take 
as the first instruction the contents of address 000. There is also a stop 
button; when pushed, the computations cease. In addition to the start 
button there may be a run button, which is used to restart computations 
after a halt has occurred in the middle of a computation. In this case 
the difference between the start and run button is that the run button 
tells the computer to continue to perform the instruction already in the 
instruction register, whereas the start button tells the computer to initisJte 
a particular standard predetermined sequence of events, e.g., take 000 as 
the next instruction. 

The computer can usually be operated in several different modes. 
For example, by setting a switch the computer can be made to execute 
only a single instruction each time the start or run button is pushed. In 
this way a sequence of instructions can be "stepped through" slowly by 
successively pushing the run button. This would be done, for example, if 
one desired to see several of the instructions and their results on the lights 
of the control panel that display the contents of various registers. On the 
other hand a different setting of this mode switch can make the computer 
sequence itself through the instructions of a program at a very much 
reduced rate. Finally of course the mode switch can be set so that the 
computations proceed at full speed. Often in the single instruction 
mode, there is a phase-selector switch which makes the computer proceed 
through just one phase each time the run button is pushed. 

So much for the special methods of starting the. computer; consider 
next special methods for stopping or halting the computer. In previous 
sections we have observed how the operation of manual switches can be 
used to halt the computation when auxiliary bits are present. These 
switches are called auxiliary switches. There can be several auxiliary 
switches, each associated with a different auxiliary bit of the instruction 
word. Then, by setting the proper auxiliary switch, the computer can 
be made to stop at different sets of instructions. Other switches may 
make the computer halt at a particular phase when the stop button is 
pushed, 
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One of the most important uses of a control panel is to insert words 
manually into particular memory locations. Such an occasion may arise, 
for example, when it is necessary to correct only one or two words in a long 
program that is already in the computer's memory. There are several 
methods used to accomplish this. One method is to have one button 
associated with each bit of the registers that may be displayed by lights 
on the control panel. When the computer has been halted, the contents 
of a register may be changed by means of these buttons. For example, 
there may be one" clear" button for each register that, when pushed, 
makes the contents of the respective register all zeros. Then the bit 
buttons of this register are pushed to insert units in the desired bit loca­
tions. Under these conditions the procedure for inserting a word into a 
particular memory position would be as follows: Halt the computer; 
manually insert the desired word in the accumulator; similarly insert an 
instruction in the instruction register that will transfer the contents of the 
accumulator into the desired memory location. Set the mode switch 
for a single instruction, and push the run button. The inserted instruc­
tion will then be executed, and the word will be inserted into the desired 
memory location. Other methods might make use of the external input 
equipment to read a single word into the desired memory address. 

There is usually a set of switches associated with the input-output 
equipment. Although, as we have seen, the selection of input-output 
equipment can be made by the program itself, frequently provision is 
made on the control panel for the manual selection of external equip­
ment. Other switches present a means for manually winding, rewinding, 
and positioning magnetic-tape units. More complicated external equip­
ment such as cathode-ray or television displays of course require still 
additional controls. 

Let us now illustrate a possible procedure for initiating a computation 
by means of our control panel. First the input medium is properly 
set in the input device. N ext the input device itself is turned on, and 
the external selector is set to choose this input equipment. An instruc~ 
tion is inserted into address 000 that will read in the whole program. 
The accumulator, instruction register, and current-address counter are 
all cleared (why?). The mode is set at high speed, and then the start 
button is pushed. The computer will then execute the instruction found 
in 000 first. 

EXERCISES 

(a) Suppose that a characteristic "click" can be heard on the radio monitor each 
time the computer goes through a loop. Suppose also (for simplicity in this exercise) 
that any instruction takes precisely 100 ,usec to execute on our one-address computer. 
Write a code that will play the first few notes of the song" Dixie." (HINT: Look up the 
audio frequency of the first few notes of "Dixie," and code successive loops that will 
repeat at these frequencies.) 

(b) Describe a procedure for finding out, by means of the control panel, what word 
is in a particular memory address. 
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(c) Suppose that a subroutine were necessary in order to read in a program. What 
would be a procedure for initiating a program by means of the control panel? 

(d) If a computer needs a read-in subroutine, how is the read-in subroutine itself 
read in (for the very first time)? 

4-8. Additional Topics 

a. Survey of Instruction Systems. Make a survey and analysis of instruction defini­
tions used in many different presently available computers. Obtain the information 
from the programming manuals of computers such as the Sperry Rand UNIVAC 1103 
and 1105; the IBM 650,704,705, and 709; the Bendix G15; the Datamatic 1000; the 
Datatron; and the Electrodata. Classify the instructions by the categories given in 
this chapter. 

b. Survey of Control Consoles. Make a survey of control consoles and the function 
of the different switches, buttons, and lights on each. Use instruction and mainte­
nance manuals for the computers mentioned above to obtain the information. 

c. Indirect Addressing. If there are n bits in an address, then only 2n memory loca­
tions can be addressed directly. Indirect addressing must be used when it is desired 
to address more than 2n locations. For example, suppose that we desire to address 
w X 2n memory locations. The entire memory would be divided into w parts, each 
with 2n memory locations. For each of these w parts there will be a special register or 
memory location reserved, the contents of which will be the address desired within 
this part. Then, to address one of the w X 2n memory locations, an instruction would 
simply address one of the w special memory registers, and the contents of this address 
would itself be interpreted as the address desired in the corresponding part of 
the memory. Variations of indirect addressing are used in the NBS Pilot computer, 
the Philco TRANSAC 2000 computer, and the IBM 709. Study these uses of 
indirect addressing. 

d. Microprogramming. R. J. Merced defines microprogramming as "the technique 
of designing the control circuits of an electronic computer to formally interpret and 
execute a given set of machine operations as an equivalent set of micro-operations, 
elementary operations that can be executed in one pulse time." There are two 
logically closely related types of microprogramming, one analogous to indirect 
addressing, and the other that is concerned mainly with the logical design of the 
control circuits of the computer. The analogy to indirect addressing occurs when the 
instruction operation is an address, rather than an operation, and the contents of this 
address is interpreted as a sequence of micro-operations. The micro-operations 
might each consist of 4 bits, and there might be 10 of these in a single 40-bit word. 
The micro-operations themselves would indicate transfers of words between various 
registers, setting of switches to be sensed at a later time, various types of shifts, 
arithmetic operations, logical operations, and so forth. The same effect may be 
obtained by sequencing micro-operations by means of coding and decoding matrices. 
See, for example, R. J. Mercer's cited article; M. V. Wilkes and J. B. Stringer, 
Microprograming and the Design of the Control Circuits in an Electronic Digital 
Computer, Proc. Cambridge Phil. Soc., April, 1953; H. T. Olantz, A Note on Micro­
programing, J. Assoc. Computing Machinery, April, 1956; S. V. Blankenbaker, 
Logically Micro-programmed Computers, IRE Trans. on Electronic Computers, vol. 
EC-7, no. 2, pp. 103-109, June, 1958. 

t Robert J. Mercer, Micro-programming, J. Assoc. Computing Machinery, vol. 4, 
no. 2, pp. 157-171, April, 1957. 
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e. The Minimum Computer. It is clear that a general-purpose computer does not 
really "need" the multiplication or division instructions, for these operations can be 
formed by a combination of additions or subtractions. Similarly other operations 
can be omitted and replaced by simpler ones. The question arises: What are the 
minimum instructions necessary for a general-purpose computer-Qr, indeed, what 
criteria can be applied to determine whether or not a computer is actually a general­
purpose computer? These questions have long been of interest to mathematicians 
and logicians. The so-called Turing machine, or "universal computer," was devel­
oped for this purpose (see A. M. Turing, On Computable Numbers, with an Applica­
tion to the Entscheidungs Problem, Proc. London ~Math. Soc., ser. 2, vol. 42, pp. 
230-265; a more readable description is given in Martin Davis's "Computability and 
Unsolvability," chap. 1, McGraw-Hill Book Company, Inc., 1958). More recently 
S. P. Frankel has considered the minimum general-purpose computer; see his On the 
Minimum Logical Complexity Required for a General Purpose Computer, IRE Trans. 
on Electronic Computers, vol. EC-7, no. 4, December, 1958. Frankel's computer can 
only subtract. Can you program multiplication on Frankel's minimum computer 
(called the M icrocephal A C) ? 

f. References on Programming Texts and Periodicals 

Alt, Franz L.: "Electronic Digital Computers-Their Use in Science and Engineer­
ing," Academic Press, Inc., New York, 1958. 

Jeenel, Joachim: "Programming for Digital Computers," McGraw-Hill Book Com­
pany, Inc., New York, 1959. 

Ledley, R. S., and J. B. Wilson: "Programming and Utilizing Digital Computers," 
McGraw-Hill Book Company, Inc., New York, in press. 

Levin, Howard S.: "Office Work and Automation," John Wiley & Sons, Inc., New 
York, 1956. 

McCracken, D. D.: "Digital Computer Programming," John Wiley & Sons, Inc., 
New York, 1957. 

Von Neumann, J., and H. H. Goldstine: "Planning and Coding of Problems for an 
Electronic Computing Instrument," Institute for Advanced Study reports 
written under U.S. Army Ordnance Contract W-36-034 ord 7481, Princeton, 
N.J., 1947-1948. 

Wilkes, M. V., D. J. Wheeler, and S. Gill: "The Preparation of Programs for an 
Electronic Digital Computer," 2d ed., Addison-Wesley Publishing Company, 
Reading, Mass., 1957. 

Wrubel, Marshal H.: "A Primer of Programming for Digital Computers," McGraw-
Hill Book Company, Inc., New York, 1959. 

Periodicals (in which special computer programming problems are discussed) 

Automatic Control, monthly, New York. 
Automation, monthly, Penton Publications, Cleveland, Ohio. 
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New York. 
Control Engineering, monthly, McGraw-Hill Publishing Company, New York. 
Journal of the Association for Computing Machinery, quarterly, New York. 
Journal of Operations Research Society of America, quarterly, Baltimore. 



CHAPTER 5 

ADVANCED PROGRAMMING 

6-1. Introduction 

The previous chapter was concerned with the details of programming 
and coding at the instruction level. The four-, three-, two-, and one­
address instruction formats were described and compared. The octal­
coded binary and decimal-coded binary systems were compared. The 
steps in preparing a flow chart, symbolic code, and finally the code itself 
written in the actual machine language were described. Decision 
branches, instruction modification, and recursion codes were discussed 
and examples given. Coding was found to be detailed and laborious, 
and the one-address system particularly aggravated these qualities. 

Advanced programming techniques attempt to lighten the load of 
the programmer and coder. Its purpose is to try to make the computer 
itself help prepare the program or code, minimizing the amount of 
writing a programmer need do. The means used to accomplish this 
is to prepare or precode the computer with an intermediate, or automatic, 
program which is always available in the computer memory. This inter­
mediate or automatic code encompasses certain aspects of coding that 
are common to many programs and of general applicability. Then, 
when the programmer is coding any specific problem, his work can 
be shortened by taking advantage of already precoded items of the 
automatic program that are already in the computer. Such automatic 
programming can greatly simplify the coding of computers otherwise 
difficult to code. Hence, in the design of some computers, little attention 
is paid to ease of coding, and such advanced programming techniques 
are heavily relied upon to compensate for this. Unfortunately, however, 
the coder must then learn how to use not only the computer but also 
the automatic programming schemes. Evidently a balance must be 
sought in computer design between the amount of automatic program­
ming envisioned and the difficulty of coding. It is clear that automatic­
programming concepts are of great importance to the computer engineer. 

Rarely is a program written that is found to be absolutely correct 
the first time it is run on the computer. Hence in this chapter we first 
consider automatic aids for analyzing an already coded program for 
errors. Having discussed automatic programs to aid the coder to correct 
his code, we turn to such programs that aid the computer engineer to 

130 
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maintain the computer. Next automatic programs designed to lighten 
the load of the programmer are considered. These can be roughly 
classed in two categories-the interpretive routines and the compiling 
routines. Various examples are discussed as illustrative of the methods 
and techniques of formulating and using such automatic programs. The 
specific examples given are intended to illustrate the principles involved, 
and their particular form as chosen for this chapter was dictated by 
pedagogical considerations only. As will become clear during the course 
of the chapter, there are many other ways to solve the problems posed, 
and in actual practice the final choice depends on the primary purpose 
of the code and the detailed characteristics of the computer to be used. 

5-2. Program Debugging Methods and Routines 

The Problem of Program Debugging. The first time a program is 
tried on a computer, it usually does not run correctly. If the start 
button is pushed and the program allowed to run, one of four results 
can occur: First, the computer might run up to a point and then just 
stop, or "hang up." Second, the computer could continue to run for an 
excessively long time, neither stopping nor producing any results. Third, 
the computer could run and, as expected, print out results, but wrong 
results. And finally the program could run correctly. In the first three 
cases an error is indicated in the program, and the problem is to detect 
where-at what instruction or instructions-the error occurs and then 
to correct it. This procedure is often referred to as "debugging" a 
program. 

It is hard to describe in general how to debug a particular program; 
ingenuity on the part of the programmer, systematic and neat flow 
charts, coding sheets with detailed remarks, and a thorough knowledge 
of the code are, of course, all essential. When a program just stops, this 
usually indicates that the computer has been asked to do an illegal 
instruction; for instance, the instruction might have an operation code 
not corresponding to any operation or might contain an address that the 
computer does not have, etc. Illegal instructions are often the result 
of an error in instruction modification. When a program never stops, the 
program usually has a loop with a faulty exit. The exit may not have 
been properly set up, or else a nonconverging iteration may be in process, 
etc. The printing out of wrong results requires examination of these 
results in the light of the problem: Is the scaling wrong? Are the con­
stants correct? Has any phase of the calculation been skipped, etc.? 

However, certain techniques can be discussed that are often used to 
aid the debugging process. These can be generally classified into dynamic 
debugging and post-mortem debugging. Dynamic techniques try to 
check the program while it is actually running on the computer; post­
mortem techniques examine the computer memory after the program has 
stopped, or "hung up." 

Dynamic Program Debugging. Let us first consider dynamic program 
debugging. There are two generally used methods: the first is called the 
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break-point (or check-point) method; the second is called the automonitor 
method. The break-point method consists in writing into the program, 
at critical intermediate points, instructions that either will stop the 
computer so that important intermediate results can be observed or will 
make the computer print out such intermediate results automatically. 
The sign bit on an instruction word is often used to facilitate such a 
process~ For example, some computers are designed so that after 
executing an instruction with a negative sign the computer will stop. 
Usually such computers also have the following additional feature: A 
manual switch on the control panel can be thrown so that in one position 
the computer will not stop after a negative instruction-this being called 
the normal switch position-and so that in the other position the com­
puter will stop-this being called the break-point switch position. The 
advantage of this control-panel switch is clear: in debugging a program, 
the negative instruction stops are used, and the switch is set accordingly; 
when the program has been corrected, these negative stops are no longer 
desired and hence the switch is thrown to normal. 

Another break-point procedure depends on the programmer inserting 
into the program at intermediate critical points manual-switch jump 
instructions. In debugging the program, the switches are positioned 
so that the computer will jump when it encounters such an instruction; 
usually special print-out routines are included in the program, and the 
jump instructions transfer the computer to these routines. When the 
program has been corrected, the switches are turned off and the computer 
simply ignores the jump instructions. 

Use of the A utomonitor Program. The automonitor method for 
dynamic debugging does not require any additions or special considera­
tions in the program itself, as does the check-point method. Instead the 
automonitor method requires the use of a special automonitor pro­
gram which is read into the computer in addition to the program to be 
debugged. The automonitor program is general and once written can be 
used for every program to be debugged. Occasionally the computer 
has the properties of the automatic automonitor program already wired 
in, so that the automonitor process can be carried out simply by throw­
ing a switch on the computer console. An automonitoring program 
makes the computer print out-while each instruction of the program 
being debugged is being executed-the instruction itself, the contents of each 
of the operand addresses, and the computed result. For example, suppose 
the program to be debugged is as follows: 

Address Instruction 

00 Operation ao ~o 'Yo 01 
01 Operation al ~1 'Yl 02 
02 Operation a2 ~2 'Y2 Os 
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Then the automonitor program would have the computer print out the 
following: 

Address Instruction 1st operand 2d operand Result 

00 (150) (ao) ({30) ( 1'0) 
ch (15 1) (al) ({3J) (-YI) 
02 (15 2) (a2) ((32) (1'2) 

In other words, the autoinonitor program gives a complete record for the 
program being debugged of just which instructions are being done by the 
computer and what the results were. With this information it becomes 
easy to spot any error in the program being debugged. Note that the 
automonitor program is a program that operates on another program­
more about this point will be said in the succeeding sections. 

Of course certain instructions of the program being debugged are 
handled somewhat differently. For example, in a compare instruction, 
(y) need not be printed, but just 0, (0), (a), ({3), for the address of the 
next instruction tells which way the comparison went. Common sense 
clearly dictates what an automonitor program should print out. 

An automonitor program for a three-address computer would be 
similar to that just described for a four-address system. For a two­
or one-address system the contents of the accumulator or other registers 
becomes of importance, and hence the contents of the accumulator is 
printed out. For instance, in a one-address system, the print-out would 
look like this: 

(acc) 
(acc) 
(ace) 

The A utomonitor Program Itself. In order to grasp more fully the 
general concept behind an automonitor program, let us examine in a 
cursory way how such an automonitor program itself might be written 
for a one-address system. The flow chart is given in Fig. 5-1. This 
automonitor program is in one part of the memory, and the program to be 
debugged is in another part of the memory. The automonitor program 
must be given the address of the first instruction of the program to be 
debugged. Then the automonitor program prints out the desired record 
and also executes the instructions of the program to be debugged. First 
the automonitor program prints the address of this first instruction, 00; 
then it copies (00) into a special temporary located in the automonitor 
program's part of the memory. This instruction is printed, and (ao) is 
printed. Next the automonitor program directs the computer to execute 
the first instruction in its location within the automonitor program. 
Then (ace) is printed, and the automonitor program goes on to the next 
instruction, etc. There are a few important details that must be attended 
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to. When the program to be debugged is being exe'cuted, the contents 
of the accumulator from instruction to instruction is, of course, important. 
But when the automonitor program executes one instruction at a time 
and inserts print routines, etc., between these instructions, the contents 

Start 

Print 0 

Copy (0) into temporary 

Print (0), i.e., as it appears in 
temporary 

Print (a) 

Reset accumulator and registers, and 
execute the instruction in the temporary 

Record (acc) and (registers) 

Print (acc) 

Determine address 0 of 
next instruction 

of the accumulator becomes lost. 
In order to correct this situation, the 
contents of the accumulator (and 
other registers) must be recorded 
after the execution of each instruc­
tion of the program being debugged. 
Then, before the next such instruc­
tion is to be executed, the registers 
are properly preset. t In this way 
the two programs are properly 
interleaved. 

Post-mortem Program Debugging. 
Consider next post-mortem program 
debugging. The first method is to 
run the program through and ob­
serve the results. From a knowledge 
of the program and the erroneous 
results an error can often be located. 
For example, if the magnitude of the 
results is off, the scaling is checked 
for error, etc. The second method is 
to print out the entire memory of 
the computer after the program has 
been run. If the program got into 
a loop with no exit, then the tallies 
can be checked on this memory print­
out. All instructions that were to 
be modified by the program can be 
checked to see whether or not they 
were correctly modified, etc. A third 
method is to have another program 
that examines the program to be de­
bugged after it has run. This pro­

FIG. 5-1. Flow chart of automonitor gram compares the program to be 
program. debugged with itself before and after 
it has been run and tells the programmer where they differ. In this way 
the programmer can determine if any instructions were inadvertently 
destroyed, if all differences that should appear actually do appear, etc. 

Of course the programmer uses combinations of the techniques that are 
at his disposal. What we have briefly outlined here is in no way com-

t Also, provision is made in the automonitor code so that jump instructions are not 
performed directly but rather operate on the automonitor o-address reading 
instruction. 
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plete but rather indicates some of the directions from which aids to 
programming may arise. 

EXERCISES 

(a) Write out precisely what an automonitor program would print if applied to the 
code of Example 3-lc. 

(b) Suppose that a code contains a negative jump instruction. How can the 
automonitor program handle such an instruction? After the automonitor program 
executes the negative jump, how can it regain control again? 

(c) Write a simple post-mortem debugging program as required for the third 
method. 

5-3. Computer Maintenance Routines 

Maintenance. If a computer circuit is malfunctioning, then the com­
puter will not always produce the correct results. Evidently these 
incorrect results must in some way reflect the course of the malfunction­
ing. Hence it seems possible that specific routines can be designed 
especially for determining a malfunctioning circuit. Such programs 
are called maintenance routines. Of course one must be able to read 
into the computer, read out of the computer, and perform some opera­
tions in order that a maintenance routine be capable of application at all. 
Then there is the fact that even though a programmer using a computer 
may swear that it is malfunctioning, it may often be in perfect operating 
condition. Hence a maintenance routine must check to see whether or 
not the computer is indeed malfunctioning. However, if the user of the 
computer can demonstrate that it gives two different results to the same 
program, then the computer must be malfunctioning no matter what the 
maintenance routines determine. Finally observe that a maintenance 
routine often cannot detect a particular malfunctioning circuit but can 
determine only that one of several circuits is not operating correctly. 
Then, of course, the computer maintenance engineer must make electronic 
tests on these circuits themselves inside the computer. 

Actually maintenance routines are composed after a detailed knowledge 
of the computer logical circuitry has been mastered. However, we have 
placed this discussion in Part 1, rather than at the end of Part 4, to 
illustrate for the prospective computer engineer the necessity of a 
thorough understanding of coding. 

Locating Malfunctioning Parts. Maintenance routines usually are 
designed to determine whether or not some particular part of the com­
puter is working correctly. For example, a routine may test the input­
output equipment, another may test different parts of the memory, 
another may test the add operation, another the multiply operation, etc. 
The logic most often used in interpreting the meaning of a maintenance 
routine test is: if the part of the computer tested by the routine is operat­
ing correctly, then the malfunctioning circuit must be located in some 
other part of the computer. In this way the possible malfunctioning 
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circuit is located by the elimination of correctly operating circuits. The 
fact that a maintenance routine test fails does not necessarily mean 
that the malfunctioning circuit is located in the part tested by this 
routine, whereas the fact that a maintenance routine test passes does 
mean that the circuits in the part tested are in operating order. The 
reason for this is that it is extremely difficult to distinguish by means 
of a maintenance routine between a malfunctioning circuit in the control 
unit and some malfunctioning circuit in the arithmetic unit. 

As an example of a maintenance routine, suppose it has already been 
determined that the first sixteen memory cells are operating correctly, 
in addition to the accumulator and the add, subtract, transfer, and jump 
instructions. The problem is to test the rest of the memory. To see 
whether or not a memory location is dropping a bit, a word of all units 
is read into an address and, after a time, read out again. If the word 
read out is not all units, i.e., has at least one zero, then it can be concluded 
that this address is malfunctioning. Hence the entire memory from 020 
on is filled with words of all units; and the program of Table 5-1 will test 

TABLE 5-1. MAINTENANCE ROUTINE 

Instruction 

Address 
Remarks 

Operation a 
(preload accumulator with 77 777) 

000 
001 Subtract 020 Subtract contents of a memory address from accu-

mulator, and put result into accumulator 
002 Add 012 Add a word of all units to accumulator; if there is an 

overflow, we are assuming that computer will stop 
003 Subtract 012 Clear accumulator 
004 Add 001 

} Modify subtract instruction found as (001) to consider 005 Add 013 
006 Transfer 001 

the next successive memory address 

007 Subtract 001 Clear accumulator 
010 Add 012 } Set up initial conditions for next loop; take next 
011 Jump 001 instruction from 001 
012 77 777 Constant: a word of all units 
013 00 001 Constant: 00 001 

whether or not any bits are being dropped, where it is assumed that 
the computer is designed so that an overflow will cause a stop and that an 
illegal a will also cause a stop. For this code (accumulator) must 
initially be a word of all units-i.e., initially (ace) = 77777. N ow, if a 
memory address being tested does not drop a bit, then the result ·of the 
subtraction will be all zeros and hence, after (012) is added to the accumu­
lator, the initial conditions are once more set up and the next memory 
address can be tested. On the other hand, if a memory address did drop 
a bit; then some unit would be a zero and the result of the subtraction 
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would contain a unit in the position where the memory address had a 
zero. Hence, when this result is added to a word of all units, overflow 
will occur and the computer will stop. (It was, of course, assumed that 
the computer in question had this property.) Then the a address of the 
instruction stored in address 001 is the malfunctioning address; and the 
position where the units of the accumulator turn to zero is the position 
where the bit is being dropped, i.e.: 

Dropped bit 
1 

(. 111 111) - (. 110 111) (. 001 000) 
whence 

( ... 001 000) + ( ... 111 111) = ( ... 000 111) 
i 

Position of dropped bit 

When a bit is dropped, this can often be due to either the control circuitry 
or the memory itself. Then these must be checked electronically. 

A---r--/ 

And 
gate 

gate 

FIG. 5-2. Comparison (or equalizer) circuit. 

I-----C 

As another example, suppose that the add, compare, and transfer 
instructions and the memory were operating; the problem is to check 
the shift-left instruction. Since shifting (a) left n positions is the same as 
forming 2n . x [where (a) = x], we can perform the equivalent of shifting 
by adding a number to itself, and the result to itself, etc., repeated n 
times. Hence we perform the shift and also perform the add interpreta­
tion of a shift, and then see if we have gotten the same answer. Note that 
two things need to be checked: first that the bits do shift from each 
position to the next successive position to the left; also that the number 
of positions shifted is the number called for in the instruction. 

Locating Malfunctioning Gates. Up to now we have discussed main­
tenance routines that attempt to locate the malfunctioning circuit 
down to some rather gross part of the computer. On the other hand it 
is sometimes possible to locate the actual gate or gates that may be 
causing the trouble. For example, consider the comparison (or equal­
izer) circuit described in Sec. 2-5, which is redrawn in Fig. 5-2. 

Suppose that the gates were the relay gates described in Sec. 2-5. 
Let us assume that, if a normally open relay is malfunctioning, its 
contact is dirty and it does not close properly; also that, if a normally 



138 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5 

closed relay is malfunctioning, its relay arm is stuck and it will not open. 
Under these assumptions, let us try to write a routine for determining 
which gates are not operating correctly, if any at all. To do this, note 
that there are only four possible different input conditions for this circuit, 
which are summarized by the four columns in the following table. If 
the circuit is operating correctly, then the outputs for each gate in the 
circuit corresponding to each input are also given in the table. 

Inputs: 
A ................ 0101 
B . ............... 0011 

Outputs: 
Gate 1 ............ 1010 
Gate 2 ............ 1100 
Gate 3 ............ 1000 
Gate 4 ............ 0001 
Gate 5 ............ 1001 

If any other output appears, then the circuit is malfunctioning and the 
problem is: How can such an output be interpreted in terms of a specific 
malfunctioning gate? We shall assume that only one of the gates is ever 
malfunctioning at a time. Hence suppose that the not gate for A is 
malfunctioning. Since it is made of a single, normally closed relay, 
according to our above discussion, instead of putting out not A, it will 
put out all units, no matter what A is. Similarly for the not gate of B. 

N ow consider an and gate. If either of the two relays cannot close, 
the output of the gate will be all zeros. For the or gate, if either relay 
will not close, then the input of this relay will not get through the gate 
but the other input will get through. If both relays will not close, then 
the output will be all zeros. Hence three possible outputs can occur 
if the or gate is malfunctioning. 

We can summarize the above discussion by writing the four possible 
input conditions together with the outputs of each gate of the circuit, 
assuming that one at a time of the gates is malfunctioning: 

Input: 
A .............. 0101 0101 0101 0101 0101 0101 
B ............... 0011 0011 0011 0011 0011 0011 

-- -- -- -- -- --
Output: 

Gate 1. ......... 10lD 1111 t 1010 1010 1010 1010 
Gate 2 .......... 1100 1100 1111 t 1100 1100 1100 
Gate 3 .......... 1000 1100 1010 oooot 1000 1000 
Gate 4 .......... 0001 0001 0001 0001 oooot 0001 

IOOO} 
Gate 5 .......... 1001 1101 1011 0001 1000 0001 t 

0000 

t Malfunction. 

Only the output of gate 5 goes to the memory and can be observed by a 
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computer program. Now suppose that we choose for the input to A 
a word such that P4, P3, P2, and PI are the bits 0101 and for B a word 
such that P4, P3, P2, and PI are the bits 0011. Then the first four bits 
of the output word will correspond to the four different possible input 
conditions. Hence we can say that if P4, P3, P2, and PI of the output 
word (i.e., the output of gate 5) are 

1101 Then gate 1 is malfunctioning 
1011 Then gate 2 is malfunctioning 
0001 Then either gate 3 or gate 5 is malfunctioning 
1000 Then either gate 4 or gate 5 is malfunctioning 
0000 Then gate 5 is malfunctioning 

Hence it becomes clear how a code can be written to determine which 
gate or gates are malfunctioning. Note that in some cases it cannot be 
determined which of two gates is malfunctioning, but only that one or 
the other is. Of course we can again observe that the detailed circuit 
design must be known in order to write such a code. 

EXERCISES 

(a) Write a three-address code to check the shift-left instruction, assuming that the 
add, compare, and transfer instructions are operating, in addition to the memory. 

(b) If add, shift-left, compare, and transfer instructions are operating, how would the 
multiplication instructions-both major and minor-be checked? (HINT: Be careful 
about not allowing any overflow when doing the additions.) 

(c) Write the actual maintenance code for the gating circuit used in the above 
illustration. Use a one-address system. 

If gate 1 is malfunctioning, put a 1 into 001 
If gate 2 is malfunctioning, put a 2 into 001 
If gate 3 or gate 5 is malfunctioning, put a 3 into 001 
If gate 4 or gate 5 is malfunctioning, put a 4 into 001 
If gate 5 is malfunctioning, put a 5 into 001 

(d) Analyze the given circuit which does an extract instruction (in serial-see 
Chap. 2) for a maintenance code (where it is again assumed that the gates are relays 
that can malfunction as described above). 

(a:)-...,------l 

Result [new ('y)] 

(')')------1 

EXERCISE d 

6-4. Interpretive Routines: Mathematical 

A utomatic Programming. There are two general kinds of automatic 
programming, called interpretive routines and compiling routines. The 
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purpose of automatic programming techniques is to reduce the number 
of instructions actually written by the coder. The method for accom­
plishing this is previously to place in the computer a library of subroutines 
that can be used by every coder, so that these routines will not have to be 
rewritten each time they are needed. A set, or library, of particular 
subroutines, together with a method for using them, is called an auto­
matic program. The difference in the two kinds of automatic programs 
lies in their use: In the interpretive program the subroutines are to be 
used by the coder's program while it is running on the computer, whereas 
in the compiling program the subroutines are used by the coder's pro­
gram only at the time the coder's program is read into the computer. 

We have arbitrarily classified interpretive routines into two types: 
(1) mathematical, and (2) simulational. The subroutines of the mathe­
matical type of interpretive routines compute values of functions, while 
those of the simulational type are usually designed to make one computer 
look like some other kind of computer. 

Use of Mathematical Interpretive Routines. Let us first consider an 
example of a mathematical interpretive routine. The purpose of such 
a routine is to enable a coder to form such functions as sin x, cos x, ex, 
x!, Vx, etc., merely by writing a couple of instructions. Of course these 
functions would appear as subroutines already in the computer, as part 
of the interpretive routine. However, the interpretive routine must also 
contain a section that can interpret the instructions that the programmer 
writes. When a function subroutine is to be used, the following informa­
tion must be recorded: (1) the address that contains the value of the 
independent variable x; (2) the address into which the result f(x) is 
to be put; (3) the address in the program from which the jump to the 
subroutine was made, so that after the subroutine has been completed 
the computer will know where to jump back to the original program; and 
(4) the address to which to jump in order to go to the subroutine itself. 
Consider a two-address system: two words are needed to go to a su b­
routine (since four addresses are required) . We could arrange the words 
as follows: 

Operation (3 

Return jump Standard address Address of 1st instruction of 
function subroutine 

Address of x Address of f(x) 

The first word is a return jump instruction; the second word is not an 
instruction but is just to tell the subroutine where x is and where f(x) 
is to be put. Recall that the return jump instruction jumps to (3, and 
in addition the instruction memorizes as the contents of ex its own address. 
Hence the return jump takes care of items 3 and 4 above and the 
second word. of items 1 and 2. Thus the programmer, each time he 
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,yants to use a subroutine listed in the interpreter library to evaluate a 
function, need write only the following "instructions": (a) a return 
jump instruction, where a is a standard address (standard, that is, for 
this particular interpreter), and where {3 is looked up in a book of instruc­
tions for the interpreter which lists the proper (3 for each function; (b) 
the word following the return jump, as described above. This has illus­
trated the procedure for using a mathematical interpreter. 

The Interpretive Routine Itself. N ow let us consider the interpreter 
program itself. Besides consisting of the function subroutines, as we 
observed above, it must also consist of a part that interprets the two 
words that the programmer writes. This part looks at the standard 
address to find out where the address of the return jump is. Knowing 
that the next word gives the locations of x and where f(x) should be put, 
this part of the code then relates that information to the appropriate 
subroutine and transfers control to this subroutine. This part can be 
thought of as a subroutine also; we shall call it subroutine Q. The flow 
diagram might appear as in Fig. 5-3, where, to be specific, suppose that 
it is desired to use a cos x subroutine. The long dashes indicate the 
path of the computer through the program and subroutines; the short 
dashes, the operating of one subroutine on another subroutine. We let 
Z be the address of the return jump instruction; then Z + 1 is the address 
of the data word, and the program should resume at address Z + 2. 

As an example of the type of things that occur in the subroutine Q, 
consider how it inserts the value of x into the subroutine for f(x). Sub­
routine f(x) has a certain cell reserved for the value of x; call this cell 
T:c for "temporary for x"; within subroutine Q is an instruction that 
transfers the value of x to T:c from the address given by the data word 
of the program. Suppose that the instruction were" Transfer (a) into 
{3." Then Q must have a previous instruction that puts into the a address 
of the transfer instruction the address of x as given by the data word, 
i.e., an extract instruction that takes the a address of the contents of 
Z + 1 and puts it into the a position of the transfer instruction. But 
this extract instruction must involve the address Z + 1, which is obtained 
from the standard address associated with the return jump. Hence 
there must be previous instructions that take Z as given in the standard 
address, add 1, and insert this into the a part of the extract instruction. 
N ext consider the (3 part of the x-to-T:c transfer instruction: this must be 
some address specifically reserved in the subroutine of f(x) for the value 
of x. Since subroutine Q is a general subroutine, it must be told this 
address each time a subroutine for f(x) is to be used. This is done in the 
part of the subroutine for f(x) denoted in Fig. 5-3 by "In subroutine Q 
set R = R 2, f(x) = cos x." In this part there is an instruction which 
extracts the address reserved for x into the transfer instruction of sub­
routine Q. This process is valid since the computer will pass through 
this instruction before getting to subroutine Q. Summarizing, there is 
an instruction in the subroutine for f(x) that sets {3 of the transfer instruc~ 
tion; and there is a series of instructions preceding the transfer instruc-
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tion in subroutine Q that leads to the setting up of the a address of 
the transfer instruction. 

Our example of a mathematical interpretive routine has several inter­
esting features: First, one subroutine uses another subroutine-i.e., each 
subroutine for f(x) uses the subroutine Q. Such a feature may occur 
in other ways also. For example, in evaluating cos x, suppose that the 
power series were used, 

00 

1: 
x2n 

cos X = ( - 1) n --
n=O (2n) ! 

Then the subroutine for cos x will use the subroutine for a~/x!, where 
x = 2n in this case. In fact, to use the subroutine for aX / x!, the same 
technique of the return jump and data word is used (why?). Of course 
the use of subroutines by subroutines can be carried deeper than two or 
three. Second, note how many instructions are actually needed to 
perform the simple transfer described above. The moral of this is that 
coding a simple job can be complicated on a computer. Of course this is 
the reason that it pays to have a separate subroutine Q rather than to 
repeat the instructions of this subroutine for each f(x) routine. Finally, 
the main purpose of this mathematical interpretive routine is to make 
the coding problem easier by allowing only two words to be written when 
a function is to be evaluated. Of course the process described here was 
greatly simplified, since many other complications may arise-telling the 
f(x) subroutine to what accuracy the function is to be calculated, taking 
care of the proper scaling, etc. 

EXERCISES 

(a) Write in symbolic code the series of instructions that lead to the setting up of 
the a address of the transfer instruction. 

(b) How would the evaluation of a function of two independent variables affect the 
discussions of this section? 

6-6. Interpretive Routines: Simulational 

Use of Simulational Interpretive Routines. N ext let us consider simu­
lational interpretive routines. The purpose of these routines is to make 
one computer appear as an entirely different computer. For example, 
suppose that we had a computer that did not have floating operations. 
By means of the proper routine we can make this computer appear to be a 
computer that has built-in floating-point operations. Or we can make a 
one-address computer appear to be a two- or three-address computer. 
Another example might be the making of an ordinary computer into a 
special-purpose war-gaming computer. Of course the coding for the 
simulated computer will be quite different from the coding of the actual 
computer. However, the purpose of the simulational interpretive rou­
tine is to enable the programmer to write his code in the language of the 
simulated computer; he need never know that this is not the actual 
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Mathematical interpretive routine . 
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subroutine {(x) to I: jump to Z + 2 : 
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Main part of subroutine {(x) = cos x 

L-_ 

B5 

FIG. 5-3. Flow chart of interpretive routine. 

method of coding for that computer. Obviously, then, the interpretive 
routine must interpret every instruction of the programmer's simulation­
language code. Thus the interpretive routine looks at the first instruc­
tion of a simulation-language code, interprets it, then goes to the next 
instruction of the simulation-language code, interprets it, etc., for each 
instruction passed through in the simulation-language code. Immedi-



144 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5 

at ely we see that the interpretive routine must also keep track of what 
instruction of the simulation-language code to take next; i.e., the inter­
pretive routine must contain a simulated-instruction address counter, a 
simulated" simulation-language" instruction register, simulated decoder, 
simulated accumulator, etc. In other words, the simulation routine 
must perform all the functions that the electronic circuitry would per­
form if the simulated computer had been real. 

The Interpretive Routine Itself. For the sake of illustration let us 
discuss a simulation interpretive routine that makes a two-address non­
floating operation computer appear like a one-address floating operation 
computer. To be specific, suppose that there are 6 bits in the operation 
and 9 bits in each of the two addresses of the real computer. Suppose 
also that in the simulated computer there are to be three octal symbols 
for the operation and five octal symbols for the address. Of course, 
since the real machine can address only 29 memory cells, even though 
theoretically 215 memory cells can be addressed by the simulated one­
address instruction, only 29 memory cells are available. Hence three 
octal positions in the simulated-instruction format are meaningless. 
However, one could interpret these as addressing cells on magnetic tape, 
etc. In so far as the simulated numbers are concerned, the rightmost 
two octal positions of a word will represent the exponent, the rest of the 
positions the value of the number. These formats are then as follows, 
where each wide box represents an 'octal digit (i.e., three binary bits): 

Real computer 

Simulated computer 

{

Instruction 

Number 

(

Instruction 

Number 

+" 

Opera- :0 
tioo a ~ ~ 

,-~.----""-__ ~ U3 

D I I I II 

Opera­
tion 

Number 

~r""-----------" 
I I ., I 

Expo-
Number nent 

----------~----~,,-~ 

I I I 
Let us suppose that the real computer has the two-address operations 

listed in Sec. 3-8, as well as the following additional instructions: 

Code Description of operation 

30 Shift (ace) to left a positions; put result into ~ 
31 Shift (ace) to right a positions; put result into ~ 
20 Extract (a) into ~, using (acc) as the mask; i.e., replace those bits of (~) with 

corresponding bits of (a) in those positions where (ace) has units, and put 
result into ~ 
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Suppose that the one-address instructions to be simulated are: 

Code Description of operation 

001 Add (a) to (acc), put result in acc, floating unnormalized 
002 Multiply (a) by (acc), put result in .;. ..,c, floating unnormalized 
003 Subtract (a) from (acc), put result in acc, floating unnormalized 
004 Divide (acc) by (a), put result in acc, floating unnormalized 
005 Conditional jump: if (acc) is negative, take (a) as next instruction 
006 Transfer (acc) into a 
007 Jump: take (a) as next instruction 

Of course the accumulator referred to in these instructions is the simu­
lated accumulator. To be more specific, let address 776 be the simu­
lated-instruction address counter, 775 the simulated-instruction register, 
774 the simulated accumulator. 

No 

2 
Decode the simulated language 

instruction, i.e., execute the 
simulation instruction 

4 
Advance the Simulated 

instruction counter by 1 
~----No 

Yes 

Yes 

Change the simulated 6 
counter to proper 

simulated address 

FIG. 5-4. General flow diagram indicating how interpretive routine sequences the 
computer through the simulation-language code. 

The programmer will now code in terms of these simulated instructions 
only (never writing down any of the real instructions). It is up to the 
interpretive routine to sequence through these simulation-language 
instructions, interpreting them as it goes along. Obviously the inter­
pretive routine is written in the real machine language. Figure 5-4 
is a general flow diagram showing how the interpretive routine sequences 
the computer through the simulation-language instruction code. The 
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student should study it carefully. We shall first discuss some of the 
details of box 1 of this flow diagram. 

The heart of box 1 is a pair of instructions that transfer the proper 
simulation-language instruction from its location in the code to the 
simulated-instruction register. Preceding this pair of instructions are 
instructions that set up this pair to operate on the proper addresses. In 
symbolic code~ the pair might look like this: 

Operation {3 

Add, i.e., Address of a constant of all Address of proper simula-
53 zeros, i.e., cp tion-Ianguage instruction 

Transfer, Simulated-instruction regis- Address of first instruction 
i.e., 52 ter, i.e., 775 of box 2 

The address of the proper simulation-language instruction is found in 
the simulated-instruction address counter. Hence the contents of the {3 
part of this word (i.e., the contents of 776) must first be extracted into 
the {3 part of our add instructions: 

. Operation {3 Remarks 

: Add, i.e., cp Address of a constant that has all Set up mask 
53 units in (3 position and zeros else-

where 

Extract, 776 Address of above add instruction Do extraction 
i.e., 20 

Suppose that we put the first instruction of box 1 into address 600; then 
we would have altogether for box 1: 

Address 
Opera-

a {3 Remarks 
tion 

---

600 53 604 605 Set up mask 
601 20 776 602 Do extraction 
602 53 604 ... 

} Transfer 
603 52 775 606 
604 00 000 000 Zero constant, i.e., rf> 
605 00 000 777 Mask 

Each of the simulation-language operations is performed, of course, 
by a subroutine contained as part of the interpreter routine. Hence box 2 
consists of these subroutines, in addition to a jumping table that looks 
at the simulation-language operation and jumps to the proper subroutine. 
The shift instruction would be used in this procedure. The simulation-
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language instruction is shifted to the right 17 (octal) positions [15 (deci­
mal)], putting the operation code in the f3 position, leaving zeros else­
where. Then this shifted word is added to the transfer instruction 
that will jump to the proper jump instruction of the jump table. In this 
way the simulated operation code is used to enter the proper subroutine 
from the jump table. Note that first the transfer instruction that jumps 
to the table must be reset, for it becomes modified each time it is used. 
Hence, in the first part of box 2, we have: 

Address Opera-
a {3 Remarks 

tion 

606 53 604 610 Put jump constant into} R t' 
accumulator . ese Jun:p 

607 52 614 611 Put constant into 614 mstructlOn 
610 52 777 614 Constant used to reset jump instruction 
611 53 604 775 } Shift simulated-language instruction to 
612 31 017 777 right 17 (octal) positions in accumulator 
613 51 614 614 Add shifted instruction to jump instruction 
614 52 777 614 .J ump instruction 
615 52 777 Add 

subroutine 
616 52 777 Multiply 

subroutine 
617 52 777 Subtract 

subroutine 
620 52 777 Divide 

Jump table that sends control to proper 
subroutine 

621 52 777 Conditional 
simulated operation subroutine 

jump 
subroutine 

622 52 777 Transfer 
subroutine 

623 52 777 Jump 
subroutine 

When a 52 or transfer instruction is used as a jump, the a address does 
not have much meaning. Hence we always put 777, the address of the 
real accumulator, for a to ensure no change due to this part of the jump 
instruction. 

Let us examine briefly the subroutine for the simulation-language 
mUltiplication, floating unnormalized, as an example of our arithmetic 
subroutines. The purpose of this subroutine is to multiply (a) by (774), 
where a is the address found in the contents of 775, the simulated­
instruction register (see the instruction and number formats for the 
simulated computer above). The result is to be put into 774, the 
simulated accumulator. In order to perform this multiplication, P7 
through P24 of each word are to be multiplied, while PI through P6 of 
each word are extracted into initially empty temporaries, the temporaries 



148 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5 

are added, and. the result extracted into PI through P6 of 774. In 
performing the addition, P7 of the sum must be checked for overflow: the 
exponent of the result cannot be larger than six positions. After per­
forming such a subroutine the computer would go to box 3 of the general 
flow chart. 

EXERCISES 

(a) Write out the subroutine for the multiplication, floating unnormalized, in detail, 
letting 500 be the address of the first instruction. 

(b) Write out a subroutine for the divide, floating unnormalized. 
(c) Write out the codes for boxes 3 to 6 of the flow chart of Fig. 5-4. 

5-6. Memory Space, Speed of Computation, and Automatic Programming 

Sharing 0/ the High-speed Memory. As we have seen above, a com­
puter can have a high-speed memory (often magnetic cores), a medium­
speed memory (magnetic drums), and finally, a slow-speed memory 
(magnetic tapes) .. As one might guess from our previous discussions, 
the high-speed memory may often be filled when an interpretive routine 
is stored in addition to a program. Hence careful attention must be 
paid .to the location of the interpretive routine so that it will not inter­
fere with memory space required for the program. It may often happen 
that the interpretive routine has to be stored on the drum. This may 
slow up the rate of computation because,. as will be recalled, in order to 
use a word from the drum one must wait for the drum to turn to the 
proper address before a word can be read out. 

This problem may be approached as follows: At the time a particular 
subroutine of the interpretive routine is to be used, this subroutine is 
transferred out of the drum into the high-speed memory, where the 
computations take place. In this way subroutines of the interpretive 
routines will be performed in the high-speed memory even though they 
are usually stored in the drum. However, this means that subroutines 
must be continually transferred out of the drum and into the high-speed 
memory and back into the drum, which takes precious time. Also, 
we have added a new requirement for the interpretive routine to perform. 
N ow it must not only interpret the simulated instructions but must also 
transfer from the drum to the high-speed memory the subroutines of the 
interpretive routine as they are needed, and then transfer the subroutine 
back to the drum. 

Complications. This problem becomes quite complicated when one 
is desirous of putting some flexibility into the procedure; for, in general, 
when transferring a subroutine from the drum to the high-speed memory 
it is best to be able to put the subroutine in that part of the high-speed 
memory which may not be in use at the moment. Hence it must be 
determined where in the high-speed memory to transfer the subroutine. 
This means that a subroutine may be located in different places when 
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used at different times. Obviously the assignment of addresses often 
depends upon the exact location of the instructions being performed. 
Hence the interpretive routine must be able to translate this subroutine 
and fix up the addresses as Tequired, depending upon the location of the 
subroutine. We shall discuss this problem in the next section in more 
detail. 

The complexity of an interpretive routine can be increased still further. 
Observe, for example, that a function subroutine may be used repeatedly 
in the course of computation and hence it might be desired to leave it 
in the high-speed memory' after it has been transferred there. Other 
subroutines that are transferred to the high-speed memory may have 
to be used only once in that program and hence after their use need not 
take up room in the high-speed memory. Therefore a distinction must 
be made as to subroutines that should be transferred temporarily. 
Further, during the computation for a problem, one subroutine may use 
another subroutine. Suppose that both these subroutines have already 
been transferred to the high-speed memory. Somehow the interpretive 
routine should remember not only that these subroutines have already 
been transferred to the high-speed memory so that the transfer will not 
have to be repeated, but also where they have been put. The solutions 
to these problems are too complex to be treated in'this textbook. Our 
purpose has been to give the student an appreciation of the complexities 
that can develop in planning and writing interpretive routines. 

Advantages of the Compiler Routine. Until now we have been consider­
ing the use of subroutines as the interpretation of simulation instructions 
during the running or computation of a program. An alternative method 
is initially to replace the simulation instructions with the proper sub­
routines before the program is run. That is, the program is written in 
terms of simulation instructions, but as the program is read into the 
computer, these simulation instructions are automatically replaced by 
the proper subroutines-the subroutines then becoming an integral part 
of the program. Of course, just as the interpretive routine handled 
the subroutines in our above discussions, so in this new case an automatic 
routine called a compiler routine performs the task of initially inserting 
the proper routines into the program. Examples of compiler routines 
will be described in the next section; in this section we wish only to 
discuss why such routines are used. 

The first advantage of a compiler routine over the interpretive routine 
is that, since in the compiler routine the subroutines are initially amal­
gamated into the program before the problem is run, the necessity for 
transferring subroutines from drum to high-speed memory is eliminated. 
Hence the problem of time lost in transferring subroutines during compu­
tation no longer appears, because the subroutines will already have been 
made part of the main program. Another important advantage of the 
compiler routine over the interpreter routine is that, since the compiler 
routine is only used initially, it need not be stored in the computer when 
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the compiled program is running. The interpreter routine must always 
remain in the computer memory since it operates during the running 
of the program. Hence, when a compiled routine is run, more space is 
available for the main program. 

On the other hand, as can immediately be seen, after all the required 
subroutines have been incorporated into the main program, this program 
can be exceedingly long. Some of the space advantage of a compiler 
routine is thereby lost. The usual method for handling such long 
programs is to divide them up into sections, each of which can fit entirely 
into the high-speed memory. Then one section at a time is put into the 
high-speed memory and computed. Meanwhile the other sections are 
stored in the drum and on the magnetic tapes. Of course a relatively 
great amount of time is spent in changing sections from drum and mag­
netic tape to high-speed memory, and hence some of the timesaving 
advantages of the compiler routine are lost. The relative advantages 
of a compiler routine over an interpretive routine, if any, depend on the 
particular characteristics of the routines in question as well as on those 
of the program to which the routines may be applied. Further, compiler 
routines can become very complicated, for the compiler routine must 
break the program into the proper sections and assign the sections to 
parts of the drum or magnetic tapes. It must also form instructions 
additional to the main routine which will change sections at the proper 
time. Another problem arises when a subroutine appears in a program 
many times. For example, suppose that the program uses the sine 
routine often. It would be wasting space to compile the sin x routine 
each time it is required, having duplicates of this sin x routine incorpo­
rated into the program. It would be much wiser to have only one sine 
routine in the memory and to use it in the manner of a usual subroutine. 
If the program is compiled as it is read in, the compiling routine must 
sense that the sin x subroutine will be used many times and so must 
arrange to have it as a subroutine. Of course, if we have too many 
subroutines, so many that we have to put some in the drum, then we are 
in the dilemma described for the interpretive routine. 

In the previous section we have discussed interpretive routines that 
enable a program to utilize subroutines while it is being computed. We 
have seen that owing to lack of high-speed-memory space this can be a 
slow process. The alternative, namely, that of compiling a program 
as it is read in, is considered in the following section. We must always 
keep in mind that the major object in using either interpretive or compil­
ing routines is to reduce the amount of coding that the programmer must 
do. 

6-7. Compiling Routines: Translator; Address Assigner 

Kinds of Compiler Routines. The purpose of a compiling routine 
is to reduce the amount of necessary coding by allowing the programmer 
to write simulated-language instructions which are interpreted by the 
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compiling routine. The difference between interpretive and compiling 
routines is that a compiling routine can be erased from the high-speed 
memory after it has completed its task. Evidently a compiling routine 
can compile mathematical subroutines as well as interpret and compile 
simulation subroutines of the kind described in Sec. 5-5. However, 
there are other uses of compiling routines that lend themselves more 
to the technique, and this section and the one following are devoted 
to these. We shall consider four such uses: (1) as a translator, (2) as an 
address assigner, (3) as a decoder of algebraic symbols, and (4) as a decoder 
of recursion, or loop, symbols. 

Translator. Suppose that we are considering a decimal-coded binary 
computer for which we have written a symbolic code. Ordinarily specific 
addresses would have to be assigned before the symbolic code were put 
into the computer. However, it is possible to construct a compiling 
routine that enables the symbolic code itself to be read into the computer, 
the addresses being assigned automatically by the compiler. Such a 
compiler is called a translator, since it translates from symbolic language 
into computer language. In these discussions the student should keep 
in mind that two codes are under consideration: the compiler routine 
itself and some program upon which the compiler operates. 

To be specific, let us consider a one-address decimal-coded binary 
instruction format having two characters for the operation and three for 
the address. Suppose, for simplicity in illustration, that the program 
is to add two numbers, 8,818 and 7,080. The symbolic code for this 
might be: 

Instruction 

Address Opera-
Remarks 

tion 
a 

CLR MT ZRO Clear accumulator 
A1C AD 1ST Add 1st number to accumulator 
A2C AD 2ND Add 2d number to accumulator 
TRR TR SUM Transfer result into sum temporary 
1ST 08 818 1st number 
2ND 07 080 2d number 
ZRO 00 000 o constant 
SUM ... . .. Result: sum temporary 

If the compiler routine is to assign addresses to these instructions and 
numbers, then, in addition to the instructions themselves, in symbolic 
form, the symbolic address corresponding to each instruction, constant, or 
temporary must also be read into the computer. We might make the 
convention that the symbolic address will be read in immediately pre­
ceding its associated symbolic contents. For example, for our code we 
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would initially read the following into the computer: 

'CLR 
MT ZRO 

A1C 
AD 1ST 

Instructions 
A2C 

AD 2ND 
TRR 

TR SUM 

1ST 
08 818 

2ND 
07 080 

Constants and temporaries 
ZRO 

00 000 
SUM 

00 000 

As yet there is no way for the compiler to distinguish between instruc­
tionsand constants or temporaries. If the convention were made that 
only instructions will appear first and that all the constants and tempo­
rariesare to be put at the end, and if, in addition, the number of instruc­
tions in the program were to be given to the compiler, then the compiler 
would be able to distinguish the instructions from the constants and 
temporaries. Of course the desired first address of the program must also 
be given to the compiler. Hence one word would precede the symbolic 
code, with the convention that the number of instructions appears in 
the operation positions and the first address appears in the a positions. 
For our example this first word would be 

04 600 

if we desired the code to begin at address 600. Of course the symbolic 
code with its first word must be read into a standard position in the 
computer memory so that the compiler routine will know where to work. 
Suppose that the convention is made that the symbolic code is to be read 
into the memory starting with the first word in address 001. 

Writing the Translator Compiler Routine. It now remains to discuss 
how to form a compiler routine that will assign specific addresses to a 
code when all the above-described conventions are adhered to. A 
general flow diagram for such a compiler appears in Fig. 5-5. 

Consider box 1 of Fig. 5-5. First the real addresses would be assigned 
to the symbolic addresses of the i.nstructions. By our conventions it is 
known that these symbolic addresses are found in every other word of the 
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Rymbolic code, starting with the second word. The first symbolic 
address is assigned to the address found in the a position of the first 
word of the code. Next the assignment of real addresses for the constants 
and temporaries is made. This is done by looking at the contents of each 
instruction: if the symbolic address (in its a position) is not that of 
another instruction, then it must be that of a constant or temporary. 
Such addresses are then assigned in sequence. (Note that we cannot 
have the compiler assign addresses to the constants and temporaries 
in the same manner as it did for the instructions since we have not 
informed the compiler of how many 
constants and temporaries there are.) 
A detailed flow diagram of box 1 ap­
pears in Fig. 5-6. 

N ow that a table has been com­
puted assigning real addresses for 
the symbolic addresses, the instruc­
tions and constants can be trans­
ferred into these locations, with the a 

positions of the instructions changed 
from the symbolic to the real address. 
Our convention of preceding each 

\! 
Make symbolic-address assignment table 

~ 
Put the words of the code into the proper ~ 

address and replace each symbolic address 
with its actual address 

~ 
Replace symbolic operation code with ~ 

real operation code 

instruction and constant by its sym- FIG. 5-5. General flow chart of a com­
bolic address again plays an imp or- piler routine. 
tant role. When the code is com-
piled into its real position, the instructions and constants will appear 
in the usual consecutive sequence. 

Finally we must replace the symbolic operation code with the real 
operation code. For this the compiler routine must be given a table 
relating these operation codes. 

Several further details must be observed. There are some instruc­
tions in which no address appears in the a positions, e.g., shift instruc­
tions where the number of positions to be shifted appears instead. Care 
must be taken that this is not interpreted as a symbolic address to be 
assigned a real corresponding address. Hence the instruction itself must 
be examined by the compiler to ensure that it is not one of these excep­
tional cases. Also, some constants may involve a symbolic address. 
Care must be taken to recognize these and replace them with the proper 
real address. 

Summarizing, we can draw the following conclusions from our example: 
First, the writing of a compiling routine can be "tricky" if we are to be 
certain that all possibilities are taken care of. Second, in order to use a 
compiler routine, the programmer must adhere carefully to all conven­
tions required by the routine. 

Address Assigner. Suppose that it is desired to write many sub­
routines and it is not known beforehand where they are to be located 
in the memory. One procedure might be to write each subroutine as if 
it were to be located with its first instruction in some standard address, 
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say 003, and then later to use a compiler to assign new addresses to each 
subroutine when the final decision is made as to where it shall be located. 
(Recall that a similar requirement arose in connection with the trans­
ferring of subroutines from the drum to various locations in the high­
speed memory.) To perform this task, the compiler ,routine merely has 

----No 

No 

-----No 

Have all instructions been 
aSSigned addresses? 

IS.the symbolic address in 
the a position of an instruction 
a symbolic address of another 

instruction? 

Yes 

Have aIlC~~~I~:::.:~tions bJ J 
B 

FIG. 5-6. Detailed flow chart of box 1 of Fig. 5-5. 

to add to each address appearing in the code the difference between the 
desired address of the first instruction and 003. The only problem is to 
determine which are the addresses. For some instructions such as shift 
instructions do not contain addresses in all the address positions, and 
these positions should not be changed. On the other hand some con­
stants may contain addresses, and these must be recognized and changed. 
One procedure is to require the programmer to list all the instructions 
first, then any constants that contain an address, finally any other 
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constants. In addition the programmer is required to insert words in 
front of the program that list (1) the desired address of the first instruc­
tion, (2) the total number of words in the code, (3) the total number of 
instructions in the code, and (4) the total number of words other than 
instructions that contain addresses. Suppose that we were considering 
a two-address system; we could then put these numbers, respectively, 
into the a and {3 positions of the word in 001 and the a and {3 positions 
of the word in 002. 

The compiler routine will first determine which instructions contain 
addresses and will add to these addresses appropriately. Next the 
program will look in the a and {3 positions of the constants that have 
addresses-recognizing these addresses as numbers between 003 and 
003 + the total number of words in the code-and will add to these 
addresses appropriately. Finally the compiler routine will transfer the 
code from the standard position to the required position. 

EXERCISES 

(a) Write the specific code for the flow diagram of Fig. 5-6. 
(b) Write the code for box 2 of Fig. 5-5. 
(c) Draw a detailed flow diagram for the address-assigner compiler routine described 

in this section. 

6-8.· Compiling Routines: Algebraic 

Decoder of Algebraic Symbols. The purpose of this compiling routine 
is to enable the programmer merely to type into the computer an alge­
braic formula, the compiling routine automatically writing the detailed 
machine language code. Of course the programmer must also tell the 
compiling routine in what addresses the values of the independent vari­
ables will be found and into which address the result is to be placed. 
Let us consider first a function involving only the operations addition and 
mUltiplication, such as ((((a + b) . c) + d) . e). In order to avoid ambi­
guity, certain conventions must be observed: A dot is to be used for 
multiplication; i.e., we must write a . b and not abo Also the parentheses 
must be placed wherever necessary and never left understood. For 
example, a + b . c is never written, but rather (a + (b . c). There is 
to be a parenthesis at the beginning and at the end of the function. Also 
the parentheses are to indicate binary operations only-i.e., operations 
involving two operands and no more. Thus a + b + c would never be 
written, but rather ((a + b) + c)-or (a + (b + c»); it makes no differ­
ence. Similarly, a' b . c must be written as ((a' b) . c). 

Evidently the parentheses play an important role in such a formula­
for they tell in what order operations are to be performed. For example, 
in ((((a + b) . c) + d) . e) the order in which the operations must be 
performed is a + b = W; W· C = X; X + d = y; y . e = z, where z is the 
final result. A study of the proper use of parentheses shows that they are 
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never ambiguous. t To see which operations should be done first, number 
the parentheses, say from left to right. Successive opening parentheses 
get successively larger numbers from left to right. A closing parenthesis 
directly facing an opening parenthesis is given the same number as that 
opening parenthesis. Other closing parentheses are given the next suc­
cessive lower numbers that have not previously been used on a closing 
parenthesis. 

Consider the following illustrations: 

(1) ( ( ( (a + b) . c) + d) . e) 
1234 4 3 2 1 

(2) ((a· (b + c» + (d· (e +1») 
12 3 32 4 5 541 

(3) ((((a· b) + (c . d» . e) + (((g + h) + (k + l) . m» 
1234 4 5 53 2 678 8 9 97 61 

Notice that a pair of opening and closing parentheses turns out to 
have the same number, which was of course the purpose for the above 
numbering rules. Also there are the same number of pairs of parentheses 
as there are + and· operations in the expression. 

Now we have gained some insight into how a compiling routine might 
work to code an algebraic function automatically. The compiling rou­
tine would number the parentheses according to the above rule and would 
then proceed to write instructions to perform the operations between 
directly facing opening and closing parentheses which will have the same 
number: i.e., in illustration (1), to compute (a + b); in illustration (2), to 

4 4 
compute (b + c) and (e + f); in illustration (3), to compute (a· b), 

3 3 5 5 4 4 

(c· d), (g + h), and (k + l). Each of these sets of symbols would then 
Ij 58 8 99 

be replaced by the result of the operation: i.e., in illustration (1) let 
8 = a + b; then (1) would read (((8· c) + d) . e). In (2) let t = b + C 

123 3 2 1 

and u = e + 1; then (2) would read ((a· t) + (d· u». In (3) let 
12 2 4 41 

V = a . b, W = c . d, x = g + h, and y = k + l; then (3) would read 
(((v + w) . e) + ((x + y) . m». The computations between the new 
123 3 2 67 7 61 

facing pairs is carried out. Thus in (1) instructions to compute (8 . c) 
3 3 

would be written; in (2) instructions to compute (a . t) and (d· u) would 
2 2 4 4 

be written; and in (3) instructions to compute (v + w) and (x + y) 
3 3 7 7 

would be written. In this way the code for systematically evaluating 
the function would be constructed. 

Writing the Algebraic Compiler. To describe possible additional details 
of such a compiling routine, suppose that we consider a three-address 
system with 12 bits in each address and 6 bits for the operation. Hence 

t See S. C. Kleene, "Introduction to Metamathematics," p. 24, D. Van Nostrand 
Company, Inc., Princeton, N.J., 1952. 
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words will be 42 bits, plus a sign bit, long. N ow suppose that we 
arrange for the paper-tape punch machine to punch a 7 -bit code to dis­
tinguish among letters of the alphabet and the symbols (, ), ., and +. 
That is, when a key corresponding to a letter of the alphabet or a symbol 
is pushed, a unique 7 -bit code will be punched on the paper tape. Then 
successive words will contain the formula; i.e., for illustration (1) we 
shall need 17 X 7 = 119 bits, or 2 and ~t words. Let us suppose that 
the first two bits of the 7 -bit code tell whether or not this is the code for a 
parenthesis, operation, or letter; for example, 10 ___ is a parenthesis, 
01 ___ is an operation, 11 ___ is a letter. In particular let ( be 
1000000 and) be 1010000. Then, when the compiling routine counts 
parentheses, the count can be put into the rightmost four position, for 
example, 1000101 would be (, and 1010101 would be). (Of course this 

5 5 

limits us to 16 pairs of parentheses, but these suffice for our example.) 
Also we could have up to 32 different kinds of operations. Let + be 
0100001 and· be 0100010. Let the letters of the alphabet be denoted by 
their position in the alphabet, that is, a is 1100001, b is 1100010, 
c is 1100011, ... , z is 1111010. For example, illustration (1) would 
look as follows after being punched and read into the computer: 

100 0000 
110 0010 
110 0100 

100 0000 
101 0000 
101 0000 

100 0000 
010 0010 
010 0010 

100 0000 
110 0011 
110 0101 

110 0001 
101 0000 
101 0000 

010 0001 
010 0001 
000 0000 

where the ·last seven bits of the third word are filled in as all zeros and 
it is to be understood that seven zeros have no meaning for a formula. 

First the compiling routine will number the parentheses as described 
above. The result will be 

100 0001 
110 0010 
110 0100 

100 0010 
101 0100 
101 0010 

100 0011 
010 0010 
010 0010 

100 0100 
110 0011 
110 0101 

110 0001 
101 0011 
101 0001 

010 0001 
010 0001 
000 0000 

Next the compiling routine will search these words to determine 
which instructions to write first, as described above. After doing this, 
it will assign another letter to the combination and put all zeros in the 
7-bit groups no longer needed. In illustration (1), as we have seen, 
instructions to compute (a + b) would be written, and then the substitu-

4 4 
tion s = (a + b) would be made, resulting in the following for our three 

4.' 4 

words: 

100 0001 
000 0000 
110 0100 

100 0010 
000 0000 
101 0010 

100 0011 
010 0010 
010 0010 

000' 0000 
110 0011 
110 0101 

111 0011 
101 0011 
101 0001 

000 0000 
010 0001 
000 0000 

where it is to ·be recalled that seven zeros are to be ignored. With these 
new numbers the same thing is repeated·, etc. The flow diagram there­
fore becomes as in Fig. 5-7. 
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It can easily be seen how other operations such as division and sub .. 
traction can be included in the repertoire of the compiling routine. Note 
that five groups of memory addresses are involved in this compiling 
routine: 

1. The locations of the compiling routine itself 
2. The locations of the words punched from the symbols 
3. The location of the table relating the letters of the function to the 

addresses that will contain the values of these letters as independent 
variables 

4. The location of the values of the independent variables 
5. The location of the program written by the compiling routine 
When the compiling routine is writing the function-evaluation pro-

No 

Adjust the original code 
appropriately wi~h this 

operation omitted 

Has the coding been 
completed? 

gram, (1) to (5) are needed; when 
the resulting program is being run, 
only (4) and (5) are needed. 

Recursive Compiler. Consider the 
problem of constructing a compiler 
program that will automatically code 
loops. This problem can become 
very complicated, depending on the 
generality with which it is desired to 
have the program perform. t How­
ever, to illustrate the concept, let 
us consider the following oversim-
plified example. Suppose that we 
desire to construct a compiler that 
will evaluate a single function by 
successive substitutions-in other 
words, one that will automatically 
construct a code to perform the flow 

Exit 
FIG. 5-7. Flow chart of algebraic-com- diagram of Fig. 5-8. Here let us 
piler routine. assume that the function f(x) is 

given by a subroutine: then the only 
information the compiler needs is the number of the subroutine for f(x) , 
the initial value of x, namely, xo, and the accuracy E for which the func­
tion is to be evaluated. Of course in this oversimplified case we are 
tacitly assuming that f(x) has certain properties. (Why?) 

One very simple way of constructing such a compiler is to write a 
code as indicated by the flow diagram of Fig. 5-8. Then all the compiler 
need do is interpret the form in which a particular f(x), Xo, and E are 
introduced into the computer and put these values into the proper 
addresses of the code. Of course conventions must be made for the form 
of the particular f(x) , Xo, and E, for the exit, and for the final location of 
the compiled code. 

Simple extensions of such a compiler might enable it to compile loops 
t For example, see Edward K. Blum, Automatic Digital Encoding System II, 

N A VORD Repts. 4209 and 4411. 
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within loops, where now some notation must be introduced to tell the 
compiler which loops are within which loops. We may make the com­
piler more versatile by enabling it to form partial products or partial 
sums as well as successive iterations. Again perhaps more general 
'functions than these can be introduced. The whole thing could be 

Set x". Xo 

i= 1 

~>-~~ 

L:J 
FIG. 5-8. Flow chart for the evaluation of a single function. 

integrated and amalgamated with the algebraic compiler to act as one 
large compiler, and so forth. 

EXERCISES 

(a) To use the algebraic-compiler routine, a word should precede the code for the 
symbols of the function. What information do you think the compiling routine should 
obtain from this word? 

(b) Write a subroutine, using a three-address system, that would be contained in 
the algebraic compiler to number the parentheses. 

(c) Write a program for the simplified recursive compiler. 

6~9. The International Algebraic Language (ALGOL) 

Languages. The purpose of automatic programming is to make the 
computer itself help prepare the program or code, thereby minimizing 
the amount of writing the programmer must do. In previous sections we 
have studied how the computer can be prepared or precoded with various 
automatic programs to aid the use of subroutine, to translate symbolic 
codes, to transfer parts ofa code, to decode algebraic symbols, and to 
compile a loop, or recursion code. There were essentially two parts to 
·each of these discussions: the part that told how to use the automatic 
program in writing a code, and the part that described how the automatic 
program itself could be constructed. We have been building up to the 
idea of a general automatic language system, where the procedures for 
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using a combination of such automatic programs are unified and stand­
ardized (i.e., the language), and where the collection of such automatic 
programs themselves are made compatible with each other (i.e., the 
system). 

Two processes are involved: First unified language itself (i.e., the pro­
cedures for using the automatic programs) must be established. Second, 
for the particular computer involved, the system of compatible automatic 
programs themselves must be constructed to enable the computer to 
interpret codes written in the language and compile the actual instruc­
tions to be executed. The principles involved in the latter process 
have already been considered in previous sections (see Exercises a and b 
below) and therefore are not considered here. We shall limit our discus­
sion in this section to the former process and illustrate the principles 
involved in terms of a certain unified language. 

With the combinations of methods presented in previous sections it is 
clear that a language can be devised that is independent of particular 
computer instructions. Thus a code can be written in terms of the 
language alone, and specific computer instructions need never be men­
tioned. If automatic programs were written for different computers to 
interpret the same language, then any code written in the language could 
be run equally well on any of the different computers. This fact indi­
cates the feasibility of the important concept of establishing an inter­
national automatic language that may be universally accepted, analogous 
to the universal language of written music. Toward this goal the 
Association for Computing Machinery, representing American computer 
users, and the Association for Applied Mathematics and Mechanics, 
representing European computer users, sent representatives to Zurich, 
Switzerland, in May, 1958, to define a generally acceptable automatic 
language. The language agreed upon by this meeting has been named 
ALGOL, for" algorithmic language." In the remainder of this section 
we shall present a simplified version of ALGOL. (See also Sec. 5-10, 
Additional Topics.) 

Anatomy of a Language. ALGOL and the simplification to be described 
are called algebraic languages. The term algebraic refers to the fact 
that they are intended primarily for algebraic computations. In general 
the requirements for a language are similar to the requirements for a 
specific instruction system: it must be able to tell a computer how to 
compute a function, to jump out of a normal sequence of computations, 
to decide between alternatives, to compute loops, or recursion processes, 
and to use subroutines. 

Three syntactical entities are distinguished: expressions, statements, 
and declarations. The statement is the operational unit that tells the com­
puter what to do and is analogous to a generalized instruction. State­
ments are composed of expressions combined with delimiters (i.e., punctu­
ation marks, etc.), where expressions are numbers, names, labels (i.e., 
symbolic addresses), etc. "Declarations are 'composed as are statements 
but are not operational, i.e., they tell the automatic programs certain 
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facts about the entities referred to within the program, such as whether 
a variable is floating or a fixed point, the size of an array, the definition 
of a function, or what variables are required by a subroutine. 

In order to illustrate how our language works, consider the following 
simple example of a code to compute the roots ofAx2 + Bx + C = 0 
for A +3, B = +1.7, and C = -0.31. One of the two roots is given 
by 

x= 

Then the code becomes 

-B + VB2 - 4AC 
2A 

; A:=3; B:=1.7; C:=-0.31; 
root:= (-B+sqrt(B t 2..J,. -4XA X C»/(2 XA); stop; 

The meaning of this jumble of symbols becomes more or less obvious 
with the following explanation: First the symbols between semicolons 
(; . . . ;) are statements. This is analogous to putting instructions, 
constants, etc., on the separate lines of a coding sheet or to placing 
English sentences between periods. Statements are normally executed 
in sequence. The first three statements record the desired values of 
A, B, and C; the fourth statement computes the root; and the last 
statement stops the routine. In our example the expressions are A, 3, B, 
1.7, C, -0.31, root, 2, 4, C, sqrt(Bt2..J,. -4xAxC), and stop. The other 
symbols, namely,: =, -, +, X, /, t, ..J,., (,), and the semicolon ;, are the 
delimiters. The automatic program that is to interpret this language 
compiles the appropriate instructions, and in case of the square root 
(sqrt) refers to the appropriate subroutine in the library. 

In the following paragraphs we shall describe the detailed anatomy 
of our language in more formal terms. 

Expressions. We shall distinguish five types of expressions: (1) num­
bers, (2) simple variables, (3) SUbscripted variables, (4) junctions, and 
(5) arithmetic expressions. 

1. If a represents a digit, that is, 0, 1, ... ,9, then a number can be an 
integer aa . . . a, a fraction .aa . . . a, or a scale factor 10 ± aa . . . a, 
or any combination of these. For example, 6, 4,711, 137.06, 2.99971012 
(= 2.9997 X 1012), 10-12, and 310-12 are numbers. In this language 
a number can only be the contents of an address, and not the address 
itself. 

2. Simple variables are designations for numbers or scalar quantities, 
as used in ordinary algebra. A little reflection will show that a simple 
variable is essentially an address whose contents is the numerical value 
oj the variable. Simple variables may be represented by several adjacent 
characters the first oj which must be a letter, not a number (so that numbers 
and simple variables may be distinguished). For example, b, P63, 
QR82T, ALPHA are all simple variables. 

3. Subscripted variables designate the addresses of quantities that are 
components of multidimensional arrays, such as, for example, the com-



162 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5 

ponents of a list, a vector, or a matrix, etc. What would normally be 
the subscripts are placed in brackets. Thus a vector Vi would be written 
as VECTOR[i], a matrix Mi,j as MATRIX[i,j], and so forth. The" sub­
scripts" themselves may appear as integral numbers, simple variables, 
subscripted variables, or arithmetic expressions (see below). Note that 
subscripts are intrinsically integer-valued, no matter in what form they 
appear. The comma distinguishes the different subscripts; e.g., a 
three-subscripted variable is VAR[6,ALPHA,3 X i+k]. 

4. Functions are denoted by the usual algebraic functional notation: 
The independent variables, which can be simple variables, subscripted 
variables, or other functions, are enclosed in parentheses and separated 
by commas, for example, FUNCT(x,y,z), where FUNCT (that is, the 
function name) can be thought of as essentially the first address of a 
subroutine that can evaluate the function. The (x,y,z) is the ordered 
set of independent variables, the numerical values of which must be 
ascertained before evaluating the function. Certain function names 
should· be reserved for the standard functions, such as abs(N) for the 
absolute value of a variable N, sign(N) for the sign (i.e., + or -) of the 
value N, sqrt(N) for the square root of N, sin(9) for the sine of 9, and so 
fu~. . 

5. Arithmetic expressions are combinations of simple variables, sub­
scripted variables, or functions with the operators +, -, X, and I, 
which have the usual meaning of addition, subtraction, multiplication, and 
division, respectively. A pair of arrows t and ,J.. are used for exponen­
tiation, i.e., raising to a power. For example, 2 t 3,J.. means 23, 

2t3 t4,J.. ,J.. means 2(34
), 2t3,J.. t4,J.. means (23)4, and so forth. Ordinary 

parentheses are evaluated as described in the preceding section, except 
that the following rule of precedence can be used: X or I before + or -. 
Thus a+bxc means a+(bXc). However, (axb)/c should be used 
rather than aXb/c. An example of the use of all these symbols is the 
arithmetic expression 

(-B+sqrt(Bt2,J..-4XAXC»/(2XA) for 
-B + VB2 - 4AC 

2A 

Finally it is important to remember that an expression which is not an 
actual number really (eventually) represents an address or location of the 
numerical value of the expression and in the case of a function refers 
(eventually) to a subroutine that can compute a value of the function. 
We use the word eventually to denote that an expression can be the address 
of another expression which itself is the address of a number, and so 
forth. 

Statements. N ow that we have described the ingredients from which 
statements are made (i.e., expressions), let us consider the statements 
themselves. Since the statement is the operational unit, we must 
describe what each statement does, analogously to describing the mean­
ing of operations in considering instructions. But first let us recall that 
statements are set apart by semicolons. Thus the statement ; S; means 
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"Execute the computations called for by S." It is often desirable to 
give a statement a label or name, L, analogous to the address of an 
instruction. The label L may be a simple or sUbscripted variable. If 
L is to be the name of statement S, we write ; L: S;. Thus; L: S; tells 
the computer to assign label L to the statement S and perform statement 
S. Then some other statement may refer to the labeled statement 
simply by means of its label L. The analogy to addresses is evident. 

Occasionally it is desired to consider a compound statement, i.e., a 
statement that itself consists of statements. Such compound statements 
are set between the words begin and end, e.g., begin S; S; S; S end is a 
compound statement of four statements. A compound statement can 
also be labeled, but the label must appear after the word end as well as 
before the word begin, for example, ; L: begin S; S; S; Send L; . 

Five types of statements (of a total of seven) can now be described: 
1. The first type, called the assignment or substitution statement, is 

probably the most important, although it is almost the simplest. The 
form of the assignment statement is 

; VAR:=EXPR; 

where V AR represents a variable (simple or SUbscripted) and EXPR can be 
any type of expression. This is a statement telling the computer to 
compute the value of the right-hand side and store that value (i.e., a 
number) in the storage location designated by the left-hand side, i.e., to 
assign the value of the expression to the variable. The coloned equal 
sign := is used to indicate that the left-hand side is to be the name (or 
address) of the value of the right-hand side. If the expression is in terms 
of numbers, such as 1.7 t 2.J,. -4 X 3 X (-0.31), then the indicated opera­
tions are performed. Thus Y : = 1. 7 t 2.J,. -4 X 3 X (-0.31) tells the com­
puter to assign 2.89 + 3.72, or 6.61, as the value of Y. A statement such 
as A:=3 of course requires no computation and merely assigns the value 
of 3 to the variable A. If the expression contains variables and functions, 
then the computer obtains the values of the variables, which must have been 
previously assigned, and evaluates the functions, by means of appropriate 
subroutines. Thus, to compute (-B+sqrt(Y»/(2xA), where Y repre­
sents Bt2.J,.-4XAxC and A is 3, B is 1.7, and Cis -0.31, we would 
write the following sequence of statements, which would be executed 
from left to right: 

; A:=3; B:=1.7; C:=-0.31; Y:=Bt2.J,.-4xAxC; 
root:= (-B+sqrt(Y»/(2 XA); 

When the new value of a variable is a function of the previous value 
of the variable, the expression symbols appear on both sides of the state­
ment. For example, suppose that we desired to add 2 to J. We would 
write ; J: =J +2;, which really means J (new value) = J (previous 
value) + 2. 
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2. The stop statement is used to stop the computer when a code has 
been completely executed. See below for an example. 

3. Normally a sequence of statements is executed in the order in which 
they appear from left to right. This normal sequence of execution can 
be interrupted by the use of a go to statement that is analogous to an 
unconditional jump instruction. The form of the go to statement is 

; go to L; 

where L is an expression specifying the label of the statement to be 
executed. 

4. Another type of statement that can change the normal sequence of 
executing instructions is the if statement, of the form 

; if REL; 

where REL must be a "relational" expression that can be either true or 
false. For example, REL could be (A>N), or (A =B), or (A<B), and so 
forth. For such a statement the computer would first determine whether 
REL is true or false (i.e., whether it holds or not). If REL is true, the 
statement following the if statement will be executed; otherwise it will be 
skipped, and the statement following it will be executed next. As an 
example of both the if and go to statements, consider the problem of 
finding the largest of three given numbers U, V, and W. The sequence of 
statements according to Fig. 3-3 will be . 

; if (U>V); go to UW; if (V>W); go to VLN; WLN:LNC:=W; 
go to T; VLN:LNC:=V; go to T; UW: if (U>W); go to ULN; 

go to WLN; ULN:LNC:=U; T:stopj 

Here the largest number is to be assigned as the value of LNC. Five 
statements were labeled to be referenced by the go to statements, namely, 
WLN, VLN, and ULN (which assign W, V, and U to LNC, respectively), 
UW [if (U> W)], and T, where T is the stop statement. This is somewhat 
reminiscent of a one-address code. 

5. The automatic compilation of loops, or recursion codes, is accom­
plished by the for statement. The for statement causes the next state­
ment (which may be a compound statement) to be executed repeatedly, 
where the value of some variable is changed for each repetition. The 
successive values to be assigned to this changing, or recursive, variable 
are given in the for statement itself by the initial value NUl, the final 
value NUF, and the incremental change in the value AN, which should 
be successively added to the initial value until the final value is attained 
or exceeded. The form of the for statement is 

; for VAR: =NUl(AN)NUF; 

where VAR is a simple variable and NUl, NUF, and AN are numbers or 
simple variables. As an example, consider again the problem of finding 
the largest of three given (positive) numbers N[l], N[2], and N[3]. 

; LNC:=Ojfor J:=1(1)3; begin if (LNC<N[J]);LNC:=NU] end; stop; 
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Here we initially set the contents of LNC at 0; then we compare succes­
sively each of the three numbers with the contents of LNC, assigning 
the number to LNC if it is larger than LNC; finally, then, the value of 
LNC will be the largest of the three numbers. Note that the for state­
ment acts on the statement following, which in this case is a compound 
statement. 

Frequently the number of iterations around the loop, namely, (NUF­
NUI)/AN, is not known beforehand, as is the case in evaluating a func­
tion by means of a power series. Here the exit from the loop is usually 
determined by comparing some computed value with a small number E. 

In such a case the compound statement being iterated contains an if 
and a go to statement that can jump out of the loop before the value 
of the recursive variable has reached the final value. Since it is not 
known how many iterations will be necessary, the final value NUF is 
made very large. For example, consider computing 

(}3 (}5 (}7 

sin () = () - 3! + 5! - 7! + . . . 
until (}2n+lj(2n + I)! < e. The code is as follows: 

; TERM:=O; SUM:=O;for J:=1(1)50; 
begin TERM :=( -1 X TERM X (ot 2.i »/«2 XJ +1) X 2 X J); 

if (TERM <t); go to R; SUM:=SUM+TERM end; 
R:VSIN:=SUM; stop; 

Here we multiply the previous term by -(}2/(2J + 1)(2.1) to obtain the 
present term. One rule, however, must be obeyed: An if statement can 
never immediately precede the word end. 

The index of a for statement need not appear explicitly in the following 
5 

statement. For example, consider the computation of .l ni, where 
i=l 

ni+l = 3nj2 - 9nJ_l' no = 0, and n_l = 1. The code is 

; SUM:=O; na:=l; nh:=O;for J:=1(1)5; 
begin nc :=3 X (nh t 2.i )-9 X (na t 2.i); SUM :=SUM+nc; 

na:=nh; nh:=nc end; stop; 

Each time around the loop J is increased by 1; then the process ends after 
five iterations as desired, when J has become 5. Note that a, b, and c 
really correspond to j - 1, j, and j + 1, respectively. 

Finally observe that loops can contain loops; or in other words fOT 

statements can act upon fOT statements. For example, consider the 
5 3 

code for .l ( .l (i + 1)(j + 2), 
i= 1 i= 1 

; SUM:=O; for i:=1(1)5; begin for j:=1(1)3; 
SUM:=SUM+(i+1)X(j+2) end~ stop; 
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A general rule to apply is that no jump may be made into the range of a 
for statement except during the use of subroutines not affecting the for 
indices. The following diagram indicates valid jumps (i.e., if followed 
by go to statements): 

for ••• ; begin I ~ .~~/ .~end; 
~ <:;subroutm~ ~broutme) 

Declarations. Declarations serve to inform the computer of certain 
facts required by the code. They have no operational meaning as far as 
the code is concerned. Five declarations will now be described. 

1. Array declarations tell the computer how many numbers there are 
in a vector or matrix array, so that the appropriate memory space may 
be reserved. The form of an array declaration is 

; array (VAR[L:U]); 

where VAR is the subscripted variable in question, L is the list of the 
lowest values the subscripts take, and U is the list of the largest values 

the subscripts take. Th~::RIXll = (~~~ ~~:) 
a31 a32 

we would write array (MATRIX[l,l :3,2]). For a vector with five com­
ponents VI, V 2, V 3, V 4, and V 5 we would write array (V[l :5]), and so 
forth. 

2. Type declarations classify variables or functions for the automatic 
program so that they may be treated accordingly. For example, arith­
metic operations involving fixed-point variables differ from those involv­
ing floating-point variables. Labels of statements cannot have numer­
ical values and therefore are treated differently from variables, and so 
forth. A type declaration would be as follows: 

; TYPE (EXPA,EXPB, ... ,EXPC); 

where TYPE stands for some type, as fixed point (FXD) , floating point 
(FLT), or label (LAB), that can be recognized by the program and EXPA, 
etc., represent the variables or functions of that type. 

3. A switch, or variable-connector declaration, specifies (by their labels) 
alternative statements to which a go to statement may jump. The 
form of a variable-connector declaration is 

; switch NAME:=(LA,LB, ••. ,LC); 

where NAME is the name of the connector and LA, LB, ... , LC are 
the ordered set of labels of the possible statements that can be distin­
guished by the connector. The variable connector is used by a go to 
statement in the form 

; go to NAME[N]; 
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where NAME[N] i~ a subscript variable and N is an integer telling which 
label of the switch declaration to use. Thus if LA, the first label, is 
to be used, then N would be set to 1; if the second label, LB, is to be used, 
then N would be set to 2; and so forth. For example, consider the 
problem of forming A = X2 + Y if N = 1, A = X + y2 if N = 2, and 
A = 0 if N = 3. We form the required N and then jump by means of 
a variable connector for the proper arithmetic statement, 

; switch S:=(P,Q,R); J:=N; go to S[J); P:A:=(Xt2.J..)+Y; go to T; 
Q:A:=X+(Yt2j..); go to T; R:A:=O; T: stop; 

4. Comment declarations are used to add informal comments to a 
program; they have no effect on the program and are intended only 
as additional information for the reader. This declaration must start 
with the word comment, and there cannot be a semicolon within the 
declaration. (Why?) For example, 

; Comment This code will compute sin 6 with an error no greater than £; 

5. A function declaration describes the computing rule to be used in 
evaluating the function in terms of its variables. The form of a function 
dec lara tion is 

; FUNCT(VARA,VARB2 ••• ,VARC):=EXP; 

where FUNCT is the name of the function, the independent variables are 
listed in the parentheses, and EXP is the computing rule. For example, 
if f(u,v) = au2 + buv + cv2, we would write 

; QUADRATIC(u,v):=aX(ut2.J..)+bXuXv+cX(vt2j..); 

To use the function in a code, consider the evaluation of 

Z = Af(r2,s2) + Bf(r3,s3) 

After declaring the quadratic as above we would write 

; Z:=AXQUADRATIC(rt2.J..,st2.J..) 
+B X QUADRATIC(r t 3.J.. ,s t 3.J.. ); 

Note that it is the order of the variables appearing in the function declara­
tion that is important. Thus, in QUADRATIC(rt2.J..,st2.J..), since r2 

occurs first it is substituted for u; 8 2 occurring second is substituted for v. 
The computation actually performed is a(r2)2 + b(r2)(s2) + C(82)2. The 
variable substituted may be a function itself, as we shall see in the 
example below. 

The computer computes QUADRATIC(u,v) only when it is confronted 
with the computation of Z. The arguments u and v must first be com­
puted by the program, and then, having u and v (namely, r2 and S2 in the 
first case and r3 and 8 3 in the second), the program can refer to the 
declaration to find out how to compute QUADRATIC (u,v). How does 
the computer distinguish between QUADRATIC(u,v) when it is used as a 
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declaration and when it is used as a function in a statement? If QUAD­
RATIC(u,v) appears to the left of the := relation, it can only be a func­
tion declaration; if it appears to the right of the : = relation, it must 
represent an actual function that refers to a declaration. 

Consider a more complicated function that may be defined by a com­
pound statement rather than a single arithmetic expression. The prob­
lem arises as to where the value of the function, as computed by the 
compound statement, will be found. The convention is used that the 
address of the final result should be called by the name of the function, 
e.g., FUNCT. For example, consider a series approximation to sin e 
such that the last term is less than e: 

; sin(6,E):= begin TERM:=6; SUM:=6;for J:=1(1)50; 
begin TERM :=( -1 X TERM X (6t2~ »/«2 X J +l)X 2 xJ); 

if (TERM <E); go to R; SUM:=SUM+TERM end; R:sin:=SUM end; 

Note that this is all just a declaration of the function sin(e,e), and the 
result is found in the address sin [not sin(6,E), because that represents a 
function, not a variable or address]. This function declaration would be 
used as follows: Consider the computation of 

z = 3 sin2 (u - v, e) + VI - sin2 (u 2 - v2, e) 

for E = lin. After declaring sin(6,E) we would write 

; z :=3X (sin(u-v,1/n»t2~ 
+sqrt(l-(sin(u t2~ -vt2~,1/n»t2~); 

Common functions, such as sqrt(x), abs(x), etc., need not be declared, 
because they are explicitly written into the automatic programming 
routine itself. 

Use of Subroutines: Procedure Statements and Procedure Declarations. 
As previously discussed in Chap. 4, a subroutine must be "told" initial 
conditions and in what addresses to put the final results. (The auto­
matic program takes care of the return jump back to the original code.) 
In our present code this is done by a procedure statement of the form 

; SUBR(IA,IB, ••. ;IC)= :(FL,FM, .•• ,FN); 

Here SUBR is the name of the subroutine, lA, IB, ... , IC are the 
initial conditions (i.e., expressions that can be evaluated), and FL, FM, 
... , FN are the addresses where the final results are to be located 
(i.e., simple or sUbscripted variables). The subroutine itself is considered 
as a procedure declaration. Its form is 

; procedure SUBR(x,y, ... ,z)= :(u,v, . ,w); begin ... end; 
~-----------------v------------------

Procedure-declaration heading 
~----v'-----' 

Declarations and 
statements of 
subroutine 
proper 
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A special statement, denoted simply by return, is placed in the subroutine 
proper at that point from which the return jump back to the original 
code should occur. Note that, if a subroutine has a single value as its 
final result, then we could have as well used a function declaration referred 
to by a function in a statement. As in the case of the function the order 
of the variables is used to distinguish among them. 

As an example, consider a subroutine that computes eZ
, sin x, and 

cos x. Since 

eZ = 1 + x + x2/2! + x3/3! + x4/4! + x5/5! + 
sin x = x - x 3/3! + x6/5! -

and cos x = 1 - x2/2! + x4/4! - ... 

we can form xm/m! and then add this (with the appropriate sign) to the 
respective partial sums as called for by the series (i.e., alternating odd­
and even-power terms). We use a switch declaration for the alteration. 
The procedure declaration (and the included subroutine) would be 

; procedure TRIG(O,£)= :(EXPO,SIN,COS); begin switch SAC:=(S,C); 
TERM:=O; SUME:=1+0; SUMS:=O; SUMC:=l; J:=2; 1:=2; 

B: TERM:=(TERMXO)/J; if (TERM <£); go to R; 
SUME:=SUME+TERM; go to SAC[I]; 

C: SUMC:=SUMC+«-1)tJ/2.!-)XTERM; 1:=1; go to T; 
S: SUMS:=SUMS+«-l)t (J-l)/2.!-)XTERM; 1:=2; go to T; 
T: J:=J+l; go to B; 
R: EXPO:=SUME; SIN:=SUMS; COS:=SUMC; return end; 

Note that the inputs to the subroutine are 0 and E in that order; the 
outputs are EXPO, SIN, and COS in that order. The switch is reset to 
go through the alternate sin (or cos) loop at the end of each loop. Finally 
the computed results SUME, SUMS, and SUMC are assigned to their 
corresponding variables. Next suppose that we wanted to use this sub­
routine to compute e-wt(A sin (wt) + B cos (wt)). The procedure state­
ment with the appropriate code would be simply 

; TRIG«(,)xt,£)= :(U,V,W); Z:=(AXV+BXW)/U; 

As another example of a procedure declaration and its included sub­
routine consider matrix multiplication where it is desired to comput~ 

Cik = LAiiBik' Hi = 1, ... ,I;j = 1, ... ,J;andk = 1, ... ,K, 
j 

the procedure declaration would be 

; procedure MATMULT(A[i,j],B[j,k],I,J,K)= :(C[i,k]); begin array 
(A[l,l:I,J]); array (B[1,1:J,K]); array (C[l,l:I,K]); for i:=l(l)l; begin 
for k:=l(l)K; C[i,k] :=0; begin for j :=1(1)J; C[i,k] :=C[i,k]+A[i,j] 
XB[j,k] end end; return end; 
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Finally consider an example of integration by means of the trapezoid 
rule (see Sec. 6-7, for example), namely, 

A = f f(x) dx = ~ (f(a) + 2f(a + h) + 2f(a + 2h) + ... + f(b)) 

Here we shall include a comment declaration as well: 

; procedure TRAP(F(x),a,b,£,V):=(A); begin comment a and b are the 
min and max, resp., of the points defining the interval of integration. 
F(x) is the function to be integrated, & is the permissible difference 
between two successive trapezoidal sums, and V is greater than the 
maximum absolute value of F(x) on (a,b); Ibar:=VX (b-a); h:=(b-a); 
J:=(1/2)X(F(a)+F(b»; 8:=0; n:=l; for i:=1(1)50; begin for k:= 
l(l)n; S:=S+F(a+hx(k-1/2»; I:=hX(J+8); if (£>abs(I-Ibar»; 
go to T; n:=2tLJ..; h:=h/2; Ibar:=I end; T:A:=I; return end; 

Note that for the ith iteration we add 2i more points to S, namely, the 
points dividing the previous points. Then hX «1/2)X (F(a)+F(b»+8) 
becomes the new approximation to the integral. 

Code: begin procedure statement 8 1 ; procedure statement 82 end 

Procedure declaration 81 
(subroutine uses DII D2) 

Procedure declaration 82 

(subroutine uses D31 D4 ) 

Procedure 
declaration Dl 
(subroutine) 

Procedure 
declaration D2 
(subroutine) 

Procedure 
declaration D3 
(subroutine) 

FIG. 5-9. Use of procedures as building blocks. 

Procedure 
declaration D4 
"(subroutine) 

The building-block method of using procedures (or subroutines) is 
illustrated in Fig. 5-9. The final code can be just a sequence of procedure 
statements; similarly each of these procedure declarations referred to by 
the statements can itself be a sequence of procedure statements, and 
so forth. The advantage of this building-block technique is that a large 
code can easily be subdivided into more elementary codes, and several 
coders and programmers at once can work on the subdivisions. Then 
the parts can be compiled into the large program, in as many levels as 
required. 

EXERCISES 

(a) At the beginning of this section we remarked that by the" .. previous 
sections it is clear that a language can be devised that is independent of particular 
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computer instructions." What previous sections do we have in mind, and how can 
these be used for such a language? (HINT: For example, Sec. 5-8 is concerned with 
an automatic program that interprets algebraic symbols, but the procedure for using 
this program given in that section depends on the word format of the computer. 
However, Sec. 5-7 describes a symbolic address translator, the use of which can easily 
be made independent of the word format. Thus the methods of the two automatic 
programs can be combined to result in a process for using algebraic-symbol inter­
pretation that is independent of computer instructions.) 

(b) Make a flow chart for the automatic program that can interpret each of the 
seven statements given in the above language. 

Write codes in the symbolic algebraic language to compute the following functions: 

(c) n!/x!(n - x)!. 
n 
\' n! 

(d) u = L x x!(n _ x)! pXqn-x. 
x=O 

30102 [cos (~ cos ()) sin (1;71" sin () cos cP )J2 
(e) S = -271"-R-2 ------'-s-=-in-()-=- . (71" . ) 

sm "2 sm () cos cP 

(f) Write a subroutine in the algebraic language to put the numbers Vi (i = 1, 
.. ,n) in numerical order (see Exercise h of Sec. 4-2). 
(g) Write a subroutine in the language for Simpson's integration rule (see Sec. 6-7). 
(h) Write a subroutine in the language to evaluate a determinant. 
(i) Write a subroutine in the language to form the inverse of a matrix. 

6-10. Additional Topics 

a. References to Computer Maintenance and Program Debugging 

Electronic Computers, Session III, IRE Nail. Conv. Record, 1954. 
Ledley, R. S., and J. B. Wilson: "Programming and Utilizing Digital Computers," 

McGraw-Hill Book Company, Inc., New York, in press. 
McCracken, D. D.: "Digital Computer Programming," John Wiley & Sons, Inc., 

New York, 1957. 
Symposium on Diagnostic Programs and Marginal Checking for Large Scale Digital 

Computers, IRE Conv. Record, pt. 7, 1953. 
Von Neumann, J.: Probabilistic Logics and the Synthesis of Reliable Organisms from 

Unreliable Components, "Automata Studies," Princeton University Press, 
Prin(;oton, N.J., 1956. 

Wheeler, D. J., and J. E. Robertson: Diagnostic Programs for the Illiac, Proc. IRE, 
vol. 4], pp. 1332-1340, October, 1953. 

b. The Iniernational Algebraic Language. The automatic language described in 
Sec. 5-9 was a simplification of the proposed International Algebraic Language, 
now called AWOL (see J. Perlis and K. Samelson, for the Association for Computing 
Machinery-GAMM Committee, Preliminary Report-International Algebraic 
Language, CO'.7i'muns. Assoc. Computing Machinery, vol. 1, no. 12, December, 1958). 
In our discussions several statements were omitted and others severely simplified, and 
the Boolean expression was omitted. By referring to the above-mentioned article, 
complete the study of ALGOL. 

c. FORTRAN f and 11. The most well-known algebraic language presently in 
common use is the IBM FORTRAN I and II (FORTRAN means "formula transla-
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tion "). Many aspects of this language are similar to the International language. 
By means of the FORTRAN I and II manuals, compare and contrast FORTRAN 
I and II and the International Language. (See "Programmer's Primer for FOR­
TRAN," "Programmer's Reference Manual, FORTRAN," and "Reference Manual, 
FORTRAN II," all published by IBM for the 704 computer.) 

d. Automatic Coding Systems. In order to give the reader an idea of how extensive 
has been work on automatic programming systems, we present in Table 5-2 a selected 
list of automatic programs, chosen from a more detailed compilation of over 90 that 
can be found in Proc. Fourth Ann. Computer Appls. Symposium, Oct. 24-25, 1957, 
Armour Research Foundation. (See especially R. W. Berner, The Status of Automatic 
Programming for Scientific Problems.) 

TABLE 5-2. LIST OF SELECTED AUTOMATIC PROGRAMMING SYSTEMSt 

Name or acronym 
Inter- Com- Alge-Computer of automatic Developed by 

coding system preter piler braic 

------
IBM 704, 705, AFAC Allison GM x x 

and 709 FORTRAN I and II IBM x x 
------

IBM 650 ....... Bell Li Bell Tel. Labs. 
IT Carnegie Tech. x x x 
FORTRANSIT IBM-Carnegie Tech. x x 
APT Applied Physics Lab. 
SOAP I and II IBM x 

---
Sperry Rand COMPILER I Boeing, Seattle x x 

1l03A USE Ramo-Wooldridge x 
QUICKTRICK Operations Research x x 

Office 
APT Applied Physics Lab. 
IT Carnegie Tech., Ramo- x x 

Wooldridge 
------

Sperry Rand 
UNIVAC I 
and II ....... ,AT3 Sperry Rand x x 

-----' 
Datatron 205 ... IT Purdue University x x 

-_. 
Whirlwind ...... Algebraic MIT x x 

Summer Session MIT x 
---

Proposed for all ALGOL Association for Com- x x x 
computers puting Machinery-

GAMM 

t Information concerning these and many other automatic programs is being made 
available by the Association for Computing Machinery, New York. 



PART 2 

FUNCTIONAL APPROACH TO SYSTEMS DESIGN 

CHAPTER 6 

FUNDAMENTALS OF NUMERICAL ANALYSIS 

6-1. Introduction 1 

The systems design of a digital computer or control is the over-all 
block diagram and description of its parts, including its operational 
characteristics, input-output facilities, and coding or information-han­
dling structure. The purpose of this part of the book is to discuss the 
functional approach to such systems design. 

Consider first the so-called general-purpose digital computer, which is 
designed to perform the processes of numerical analysis. Actually we 
have already described its systems design in Part 1. It is important for 
the engineer to understand the basic concepts of numerical analysis as a 
foundation for appreciating criteria for the systems design of such a 
computer. In the decision on the instruction system of a proposed 
computer the engineer must comprehend the problems involved and the 
techniques used in reducing a mathematical problem to sequences of 
additions, subtractions, multiplications, and divisions. In addition the 
engineer will often find use for these methods in his own analytical 
problems. 

Numerical analysis is a large and growing subject in itself, and our 
discussion must be limited to those aspects which are considered of 
importance to the computer engineer. These questions naturally arise 
in the study of digital computers: If a computer can do little more than 
the elementary arithmetic operations, how can it be used to perform 
function evaluation, integration, or differentiation, or to solve ordinary 
and partial differential equations? Also, in performing long sequences 
of arithmetic operations, how is the accuracy of the computing results 
analyzed and controlled ? We can give in this chapter no more than a 
brief introduction to the answers to these questions, but it is felt that 
such an elementary survey can well serve to orient the student in this 
field. 

The chapter starts with a technique for solving linear simultaneous 
equations (Sec. 6-2), which arise frequently in all fields of science and 
engineering. N ext solution of algebraic and transcendental equations 
by means of successive approximations is considered (Sec. 6-3). Then 

173 
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the following three sections introduce the fundamental concept of poly­
nomial approximations for the evaluation of functions. In passing, 
continued fractions are considered, so that the reader will not think 
there are no other methods for evaluating functions. The best-fit 
polynomial approximations are emphasized because of their extreme 
importance in digital-computer work. In order that the reader may 
develop a "numerical feeling" for such approximations, graphs are given 
of actually computed examples. The next four sections show how the 
same fundamental idea of polynomial approximation is used in numer­
ical integration and differentiation and in the solution of differential 
equations. To complete the picture, the method of undetermined coeffi­
cients is given, so that the student can experiment and derive for­
mulas for himself. 

Up to this point discussion of error was omitted to allow full concen­
tration on the concepts involved: the final section of this chapter is 
concerned with accuracy and error. Our discussion will be limited to 
fundamental definitions and to consideration of the arithmetic operations. 
In performing a computation on a digital computer, the significance and 
accuracy associated with arithmetic operations are usually uppermost in 
the mind of the computer user. Such considerations can greatly influence 
the systems design of new computers through the over-all word format, 
word length, and operations designs. Hence an appreciation of the 
problems involved becomes Of prime importance to the computer engineer. 

6-2. Simultaneous Linear Equations 

The Problem. Consider a set of n simultaneous linear equations in n 
unknowns Xl, . • • ,Xn , 

allXl + a12X2 + 
a2lXI + a22X2 + 

+ alnXn = Yl 

+ a2nX n = Y2 

anlXI + a n2X2 + . . . + annXn = Yn 

These equations admit of a unique set of solutions, 

(1) 
(2) 

(n) 

if at least one Yi is not zero, and if the determinant det (aij) ~ o. t In 
order to describe a method for solving the equations, let us first consider a 
special set of equations with coefficients 8ii = 1 and 8jk = 0 if j > k: 

Xl + 812X2 + 81aXa + 814X4 = Yl 

X2 + 82:jXa + 824X4 = Y2 

Xa + 8a4X4 = Ya 

X4 = Y4 

t See, for example, E. A. Guillemin, "The Mathematics of Circuit Analysis," pp. 
13-18, John Wiley & Sons, Inc., New York, 1951. 
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These four equations can easily be solved for the unknowns Xl, X2, Xa, 

and X4, for X4 = Y4 is already given, and it follows that 

Xa = Ya - 8a4X4 

X2 = Y2 - 824X 4 - 82aXa 

Xl = YI - 8UX4 - 8laXa - 812X2 

Hence it becomes clear that, if we can somehow manipulate Eqs. (1), 
(2), ... , (n) so that the diagonal coefficients become 1 and the coeffi­
cients below the diagonal become zero, then the solutions can be rapidly 
obtained. 

The Method. This process can be accomplished as follows: First 
divide both sides of Eq. (1) by all. If all = 0, then rearrange the order 
of the equations so that all ~ O. (This, of course, can always be done. 
Why?) This results in 

1 . Xl + al2 X2 + ... + aln Xn = VI 
all all all 

(1) 1 

Multiply Eq. (1)1 by a21, and subtract the result from (2), obtaining 

where 

and 

a2Ia12 
b22 = a22 - --

all 

a2IYI 
Y2(l) = Y2 - --

all 

Similarly, multiply (1)1 by a31, and subtract the result from (3), 
obtaining 

where 
a31a12 b32 = a32 ---

all 

d (1) aaIYl an Ya = Y3 ---
all 

+ b3nx n = Y3(l) 

b a31aln 
3n = a3n - -­

all 

(3)1 

Continuing in this, we obtain a new set of Eqs. (1)1, (2)1, ... , (n)I 
such that bu = 1 and bil = 0 for i > 1. Of course, it is clear that our 
new set of equations has the same solution as the original set. 

Next we start with (2)1 and divide both sides by b22• [If necessary, a 
rearrangement of the order of Eqs. (2)1, ... , (n)1 can be made to 
ensure that b22 ~ 0.] We obtain 

(2)2 
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Multiply (2)1 by ba2 , and subtract the result from (3)1, obtaining 

o . X2 + Ca3X3 + . . . + C3nXn = Ya(2) 

where 

and 

Similarly, we obtain 

(3)2 

(4)2 

and the same for (5)2, ... ,(n)2. In this step we have made Ca3 = 1 
and Ci2 = 0 for i > 2. 

Continuing in this way, we finally obtain, for example in the case of 
n = 4, the following equations, in the desired form for easy solution: 

Xl + a12 X2 + a13 X3 + au X4 = J!..2. 
all au all all 

b23 b24 Y2(1) 
X2 + - X3 + - X4 = --

b22 b22 b22 

C34 Ya(2) 
Xa + - X4 =-

Caa C3a 
Y4(a) 

X4 =-­
d 44 

Example. Let us carry this process through for a specific set of four 
equations. 

3X1 + 9X2 + 6xa - 12x4 = 9 
2X1 + 8X2 + 12xa - 2X4 = 2 
3X1 + 12x2 + 21xa - 9X4 = 15 

-Xl - X2 + 8X3 + 8X4 = 5 

Dividing both sides of (1) by 3, we find 

Xl + 3X2 + 2xa - 4X4 = 3 

Now multiply Eq. (1)1 by 2, and subtract from Eq. (2), obtaining 

(1) 
(2) 
(3) 
(4) 

2X2 + 8xa + 6X4 = -4 (2)1 

Similarly, we multiply Eq. (1)1 by 3 and subtract from Eq. (3), obtaining 

3X2 + 15xa + 3X4 = 6 (3)1 

And finally (4) 1 is obtained by multiplying (1) 1 by -1 and subtracting 
from (4), 

2X2 + 10xa + 4X4 = 8 

Continuing, we form Eqs. (2)2, (3)2, and (4)2, 

X2 + 4xa + 3X4 = - 2 
3X3 - 6X4 = 12 
2X3 - 2X4 = 12 

(2)2 
(3)2 
(4)2 
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Finally we have 

and 

Xa - 2X4 = 4 
2X4 = 4 

X4 = 2 

Thus the set of equations from which the solution is obtained is 

Xl + 3X2 + 2X3 - 4X4 = 3 

whence 

X2 + 4X3 + 3X4 = -2 
X3 - 2X4 = 4 

X4 = 2 
X4 = 2 = 2 
X3 = 4 + 2 X 2 = 8 
X2 = -2 - 3 X 2 - 4 X 8 -40 
Xl = 3 + 4 X 2 - 2 X 8 - 3 X (- 40) = 115 

177 

(3)3 
(4)3 
(4)4 

(1)1 
(2)2 
(3)3 
(4)4 

Figure 6-1 is the flow diagram for this method of solving simultaneous 
linear equations. 

Set j= 1 
Set n equal to the number of equations 

Form equation (j)j as the result of 
..-----~ dividing equation (j)Cj-ll 

by the coefficientof Xj 

Multiply equation (jY by the 
coefficient of Xj of 

equation (k)'Ci-ll and subtract 
this result from equation (k)Ci-ll 

to form equation (k)j 

FIG. 6-1. Flow chart for solving simultaneous linear equations. 
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EXERCISES 

(a) Solve 5XI - 2X2 = 3 
4XI - 5X2 = -18 

by following in detail the steps of the flow diagram, keeping track of all the tallies. 

(b) Solve o . Xl + 4X2 + Xa - 3X4 = 1 
4XI + 0 . X2 - 2xa + 2X4 = 14 
8XI - 7 X2 + Xa - 3X4 = -12 

- 5XI + 8X2 + 0 . Xa - X4 = - 2 

Solution. Xl = 8, X2 = 7, Xa = 27, X4 = 18. 
(c) The flow chart of Fig. 6-1 does not account for -zero coefficient in the leading 

term of Eq. (j)i. How can the flow chart be adjusted to account for this? 
(d) Using the three-address instructions of Chap. 3, write a code that solves simul­

taneous linear equations. 

6..;3. Algebraic and Transcendental Equations 

Successive Approximations. The method of successive approximations 
can be used to evaluate the solutions of algebraic and transcendental 

y 

o Xl X3~X4 X2 X 

FIG. 6-2. Finding solution to sin X + 2x - 2 = 0 by the method of successive approxi­
mations. 

equations. Although the best method for making the successive approx­
imations in any case depends on the nature of the functions involved, we 
shall try by means of specific examples to illustrate the general principles 
that apply. Often a graph of the functions involved in the equations 
will help in the determination of the best method of approximation. 
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Consider, for example, the equation 

sin x + 2x - 2 = 0 

to be solved for x. We can write this as sin x = 2 - 2x and graph 
YT = sin x and Y p = 2 - 2x (see Fig. 6-2). The desired value of x is the 
x coordinate of the intersection of the two curves, where sin x will be 
equal to 2 - 2x. We know that the value of x must be between 0 and 1. 
Hence we try Xl such that 0 < Xl < 1. As can be seen from Fig. 6-2, 
if sin Xl > 2 - 2XI, then the solution must lie to the left of Xl, that is, 
X < Xl; if sin Xl < 2 - 2XI, then the solution must be to the right of Xl, 
that is, X > Xl. Suppose that we try Xl = 0.500 (radians of course); then 
sin Xl = 0.479, and 2 - 2XI = 1. Hence 0.500 < X < 1, and so we try 
X2 = 0.750 (that is, half the distance between 0.500 and 1). Then 
sin X2 = 0.682 > 2 - 2X2 = 0.5, whence 0.500 < X < 0.750. We let 
X3 = 0.625 (half the distance between 0.500 and 0.750); then 

sin X3 = 0.585 < 2 - 2X3 = 0.75 

and so we try next 0.687, etc. In each step we find in which half of the 
previous interval the solution lies; Fig. 6-3 shows these calculations. The 
fact that we are halving each time means that we are developing the solu­
tion as a binary number. If the solution lies in the right half of an inter­
val in a step, then a unit corresponds to this step in the solution; other­
wise a zero corresponds. Hence the solution X = .10101111 according to 
Fig. 6-3, column yp. 

(i) Xi YT = sin X YP = 2 - 2x YT Yp 

greater greater 

(1) 0.500 0.479 1 v 
(2) 0.750 0.682 0.5 v 
(3) 0.625 0.585 0.75 v 
(4) 0.687 0.634 0.626 v 
(5) 0.656 0.609 0.688 v 
(6) 0.672 0.621 0.656 v 
(7) 0.680 0.629 0.640 v 
(8) 0.684 0.631 0.632 v 

FIG. 6-3. Calculations for solving the equation sin x = 2 - 2x. 

The flow diagram (see Fig. 6-4) is relatively simple: depending 011 

whether sin Xi < 2 - 2Xi or sin Xi > 2 - 2Xi, we determine the next trial 
solution Xi+! by adding to or subtracting from the previous trial solution Xi 

one-half of the previously used increment AXi. Since each trial deter­
mines an additional bit of the solution, the procedure is repeated the 
same number of times as the number of bits of accuracy desired in the 
solution. 
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Set x,=2-1 

and ~xi=2-1 
Set n equal to the number of 

bits of accuracy in the 
solution 

[CHAP. 6 

Put 0 in the 2- i th position of solution Put 1 in the 2-i th position of solution 

Ax· 
~Xi+l =y (the interval) ~Xi+l = ~Xi (the interval> 

FIG. 6-4. Flow chart for solving the equation sin x = 2 - 2x. 

Accelerating the Convergence of Iterative Processes. t The problem of 
solving an equation F(x) = 0 can be stated in general as that of finding 
a value (root) of x, say X r , such that F(xr) = o. The general iteration 
algorithm involves successive approximations xo, Xl, X2, . . . , which are 
determined as follows: 

1. If F(x) = 0 can be expressed in the form X = f(x), then we let 
Xn+l = f(xn). For some initial guess Xo, we find Xl = f(xo), X2 = f(XI) , 
X3 = !(X2) , • • . , continuing until, for some n, Xn - Xn+l is less thar: 
some preassigned small number, the allowable error. . 

2. If F(x) = 0 cannot be written in the form of X = f(x), then we let 
Xn+l = Xn + OF(xn), where 0 is some suitably chosen nonzero constant, 
and proceed as in case 1 (see Exercise h) . 
. . .t This process was worked out'by J. H. "\Vegstcin and P. Henrici; see J.H; Wegstein, 
Accelerating Convergence of Iterative Processes, Communs. Assoc. Computin?iMachiii;" 
ery, vol. 1, no. 6, June, 1958. . , 
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Let us consider case 1, for what we shall say also holds for case 2; 
Fig. 6-5 describes the process. Since x = f(x), the object is to find the 
intersection of the two curves y = x and y = f(x). From y = f(x,J 
we find Yn; from y = x we find Yn = Xn+l; from Y = f(Xn+l) we find 
Yn+l; from y = x we find Yn+l = Xn+2; and so forth. 

x 
FIG. 6-5. The iterative processes. 

N ow observe from Fig. 6-5 that, instead of taking Xn+l for the substitu­
tion into f(x), we would do better to choose a value X!+l for the substitu­
tion, where 

X!rl = qXn + (1 - q)Xn+l 

i.e., some value between Xn and Xn+l. For instance, in the case illustrated 
in Fig. 6-5, q should be chosen so that 

_q _ _ BC 
1 - q - AC 

Of course we do not know the ratio BC / AC, but we can determine it 
approximately. For PC = BC, and thus 

BC PC 
==== -m 
AC AC 

where m is some value of f'(x) between A and P (applying Rolle's theorem 
from the calculus). From the definition of the derivative, m can be 
approximated by 

Xn+l - Xn 

Xn - Xn-l 
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Hence we can take 

-q--1 _ q - -m or 
m 

q=-­
m -1 

The iterative process can then be described by the flow chart of Fig. 6-6, 
wherein we must observe carefully when x~ or Xn is used. 

Set x~= Xo 
R=Rl 

Is the solution 
No sufficiently accurate? 

X n+l-X n 
m=-*-*­x" -Xn-l 

m 
q= m-l 

X:+1 = qx~+(1-q)xn+1 

FIG. 6-6. Accelerating the convergence of the iterative processes. 

As an example, consider the equation 

x = H(eax - e-ax) 

and with a = - 0.5 let us solve for the root x = 0, using both the 
ordinary and the accelerated iterative processes. Starting with Xo = 1, 
we have Table 6-1 and Fig. 6-7. 

TABLE 6-1. EXAMPLE OF BOTH THE ORDINARY AND ACCELERATED ITERATIVE 

PROCESSES FOR THE ROOT X = 0 OF X = H (e-O.5X - eO. 5,,) 

n 
Xn by ordinary Xn by accelerating Corresponding 

iterative substitution iterative substitution value of m 

0 1.000 1.000 
1 -0.521 -0.521 
2 0.263 -0.00348 0.340 
3 -0.132 -1.32 X 10-5 0.335 
4 0.066 -1.65 X 10-11 0.333 
5 -0.033 
6 0.017 
7 -0.008 
8 0.004 

The ordinary iterative process may result in four types of behavior. 
The successive values of Xn can (1) oscillate and converge, (2) oscillate 
and diverge, (3) converge monotonically, or (4) diverge monotonically. 
The accelerating method just presented will make the nonconverging 
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1 

5 6 7 n 

FIG. 6-7. Comparison of ordinary and accelerated iterative processes for the x = 0 root 
of x = 72 (e-O. 5X - eO. 5x). 

types 2 and 4 converge and will accelerate the convergence of types 1 and 
3. We have illustrated the situation for type 1. Exercises e to g will 
illustrate types 2 to 4. 

EXERCISES 

Solve by successive approximations, to within 0.001 (decimal): 
(a) 1.5 cos x + 2x - 2 = o. 
(b) sin x - tan 2 x = O. 

1 - x 2 X 
(c) -x- - 1 _ x 2 = O. 

(HINT: There are four solutions.) 
1 - x 2 

(d) --' - tan2 x = o. 
x 

Consider the equation x = H (e'U - e-ax ) = sinh aX. Take Xo = 1, and show by 
direct computation: 

(e) If a = -1.2, the ordinary iterative process will be of type 2 but the accelerating 
process will converge. 

(f) If a = 0.5, the ordinary iterative process will be of type 3 but the accelerating 
process will make the convergence more rapid. 

(g) If a = 1.2, the ordinary iterative process will be of type 4 but the accelerating 
process will converge. 

(h) Explain why we let Xn+l = Xn + fJF(xn ) in case 2 above. (HINT: First let 
8 = 1.) 

6-4. Function Evaluation: Series and Continued Fractions 

Series Approximations. In the previous section we have tacitly 
assumed that the values of the functions entering into the equations 
could be somehow obtained by the computer for any given value of x. 
For polynomials no problem arises, since the evaluation of a polynomial 
is easily coded. On the other hand how were the values for sin x com-



184 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6 

puted for a particular x? We shall discuss in this and the next few 
sections three ways in which such functions may be evaluated by the 
computer. These are (1) by power-series approximations, (2) by interpo­
lation in a table, (3) by means of "best-fit" polynomial approximations. 
Of course our primary purpose is to discuss functions that are not them­
selves polynomials or fractions of polynomials, since the methods apply 
trivially for polynomials. 

Many functions can be easily expanded in power series, and then the 
functions can be evaluated by means of these series for values of x within 
the region of convergence of the series. For example, 

x 3 x 6 x 7 

sinx=x--+---+" . 
3! 5! 7! 

Then, if sin 0.5 were required, the computer would be coded to compute 

0.53 0.55 0.5 7 

0.5 - 3T + 51 - 7T + ... 

If it were desired to know sin 0.5 to within ±0.0001, then the series 
would be carried out until some term were less than 0.0001. For exam­
ple, sin 0.5 = 0.5 - 0.02083333 + 0.00026042 - 0.00000155, where we 
stop. Hence, to the desired accuracy, sin 0.5 = 0.4794. Another way 
of interpreting this result is that the polynomial approximation 

x 3 x 5 

sin* x = x - - +-
3! 51 

is sufficiently accurate for our purposes when x = 0.5. We write sin * x 
instead of sin x to indicate that this is just an approximation to sin x. 

On the other hand, some series do not converge quite so rapidly. For 
example, 

x3 x 5 x 7 

arctan x = x - :.- + - - - + 
357 

For x = 0.5 we find 

arctan* 0.5 = 0.5 - 0.041666 + 0.006250 - 0.001116 

which obviously is not accurate to ± 0.0001. 
Often other expansions of a function can be found that might converge 

more rapidly than the power series; e.g., for arctan x we have the series 

x [ 2 X2 2 . 4 X4 ] 
arctan x = 1 + x2 1 + 3 1 + x2 + 3 . 5 (1 + X 2)2 + ... 

Continued-fraction Approximation8. There are other expansions of 
functions that often aid in their evaluation, for example, continued 
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fractions. For instance, 

arctan x = ___ x __ 
x 2 

1+----
4X2 

3 + 9 2 
5 + x 

7 + 16x
2 

9 + .. 

185 

It can be shown t that a continued fraction can be easily evaluated by 
means of 2 X 2 matrices as follows: Given the continued fraction 

P b2 - = al+----­
q ba a2+----­

b4 
aa + b

s a4+---­
a5 + . 

the nth convergent Pn/qn is the result obtained when all terms from n + 1 
on are neglected; e.g., the fourth convergent is 

P4 = al + b2 

q4 + ba 
a2 b4 

aa +­
a4 

The nth convergent may be evaluated from the following matrix equation: 

(~: ~:=:) = (~1 ~) (~: ~) (~: ~) ... (~: ~) 
From this we can find pn and qn, and also pn-l and qn-l. For example, 
for arctan 0.5 we have 

Hence 

(~: ~:) = (~ 6) G.5 6) (~.25 6) (~ ,~) (;.25 ~) 
( 

59.3750 8.00) 
= 128.0625 17.25 

P5 = 59.3750 P4 800 
128.0625 = 0.4636 and - = -' - = 0.4637 q5 q4 17.25 

Thus, arctan 0.5 = 0.4636 to within ± 0.0001 (since the difference 
between the fourth and fifth convergents was 0.0001). We see that the 
infinite-fraction expansion of arctan x converged faster than its power· 
series expansion. 

t See L. M. Milne-Thomson, "The Calculus of Finite Differences, p. 108, The 
Macmillan Company, New York, 1951. 
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There are of course many other kinds of expansions of· functions­
for instance, engineers will be familiar with Fourier-series expansions. 
However, the evaluation of a function by means of an expansion is not 
always the preferred method. Hence other means are often resorted 
to, and we shall consider a few ·of them briefly in the following sections. 

EXERCISES 

(a) Of the second series expansion given above for arctan x, how many terms are 
needed to determine arctan 0.5 to within ±0.001? 

(b) Using the continued-fraction expansion of arctan x, compute the value of 7r to 
seven significant figures. (HINT: arctan 1 = 7r/4.) 

(c) Draw a flow chart for evaluating the nth convergent of a continued fraction. 

6-5. Function Evaluation: Interpolation 

Polynomial Interpolation. Until now we have been considering func­
tions that are memorized in the computer as subroutines. For instance, 
if y = f(x), then for a given Xl the computer will determinef(xI) by means 
of a program, which might be based on some expansion of f(x). On the 
other hand it is often impossible to write a program for a certain function: 
e.g., the function might be empirical data, or perhaps the subroutine 
might require too much time or too much memory space. In these and 
other instances it is often convenient to record values of f(x) in the 
computer memory in the form of a function table which gives the f(Xi) 
corresponding to a set of specific values of Xi. I t appears at first 
glance that this method has great limitations, since only those values of 
f(x) which correspond to a relatively few values of Xi are in the memory 
of the computer. However, by means of interpolation, values of f(x) 
corresponding to an X not listed in the table can be approximated. 

Suppose that it is desired to find the value of f(x) for a value of X not 
listed in the table. It may happen that there are listed in the table 
some values of f(Xi) for Xi near x. Then, in order to find the value of f(x), 
it seems plausible to draw a smooth curve, y = f*(x), through all the 
points listed in the table and to say that y = f*(x) as read from this 
curve is an approximation to y = f(x) (see Fig. 6-8). Such a process is 
called interpolation and is most often accomplished by means of a poly­
nomial approximation. 

If n + 1 points (xo,Yo), (XI,YI), (X2,Y2), ... , (Xn,Yn) of f(x) are listed 
in the table, then a 'unique polynomial of the nth degree, f*(x), can be 
derived that passes through all these n + 1 distinct points. 

For let 

If f*(xo) = Yo, f*(XI) = YI, ... , f*(xn) = Yn, then these are n + 1 
equations which can be solved for A o, AI, ... ,An. Once these values 
haveb~en obtained, we can find for any x' ~ Xi the value of f*(x'). The 
more points considered, i.e., the higher the degree of f*(x), the closer 
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will be the value of f*(x') to f(x'). Let fri.I(X) represent the polynomial, 
of first degree that goes through the points (xo,Yo) and (XI,YI); let fO~I.2(X) 
represent the polynomial of second degree that goes through the points 
.(xo,Yo), (XI,Yl), and (X2,Y2); etc. Suppose that we want the interpolation 
f*(x') to within an accuracy of 0.001. To obtain this, we would calculate 

arc tan x 
0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

7 
7 

7 

7 
7 

rrr
P 

rr 

,~ (DIfferences 
slightly 

exaggerated) 

-+-----r----+-----r----+----~~--1_----r_--~----_+----4X 
-1.0 -0.8 -0.6 -0.4 -0.2 7 0.2 0.4 0.6 0.8 1.0 

~ 0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6 

-0.7 

-0.8 

FIG. 6-8. A third-degree polynomial drawn through the four points (-1, -0.785), 
(-0.2,-0.197), (+0.2, +0.197), (+1, +0.785), as an approximation to arctan x, is 
shown by the solid line. Here f*(x) = arctan * x = 0.995x - 0.210x3. The dashed 
line is the actual arctan. 

~uccessively f~l(X'), fri.I.2(X'), fri.I.2.3(X'), etc., until 

Ifri.I ..... r-I(X') - fO~I ..... r(x') I < 0.001 

and then we would take fri.l .... .rCX') as our result. 
Usually, the more known points used in an interpolation, the better 

becomes the accuracy of the interpolation. However, if the additional 
points are far from the point of interpolation, they may actually make 
the approximation worse. Similarly, with the same number of given 
points, the smaller the interval in which they are chosen, the more 
accurate the polynomial approximation in that interval. To illustrate 
this latter point, in Fig. 6-9 we have drawn the error curves for two poly­
nomial approximations to arctan x. Each error curve has x as abscissa 
and the difference between the actual value of arctan x and its polynomial 
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approximation as the ordinate. The first approximation is based on the 
six points -1, -0.6, -0.2, +0.2, +0.6, and 1; the second approxima~ 
tion, on the six points 0, 0.2, 0.4, 0.6, 0.8, and 1. Figure 6-9 illustrates 
the error curves for 0 ::; x ::; 1. Note that in this interval the maxi-

error 
0.0025' 

O~0020 

0.0015 

0.0010 

0.0005 

--~~~~~~~~~~-=~=-~=T==~X 
0.6 0.7 0.8 0.9 1.0 

-0.0005 

FIG. 6-9. Comparison of the error curves for the interpolation polynomial of arctan * x 
based on the six points -1, -0.6, -0.2, +0.2, +0.6, + 1 (the curve with the big 
hump) and based on the six points 0,0.2,0.4,0.6,0.8, 1 (the curve that hugs the x axis). 
These error curves indicate just how much the interpolation polynomials differ from 
the true value of arctan x. 

mum error in the former case is over forty times the maximum error in 
the latter case. 

Obviously the sequence of calculations for a polynomial interpolation 
would be quite lengthy for each desired value if all the coefficients had 
to be calculated first, and then f*(x'). The process can be shortened by 
calculating f*(x') directly, at essentially the same time as the coefficients 
are calculated. That is, the coefficients are never explicitly given, but 
f*(x') results directly. It should be remembered, however, that the 
meaning of f*(x') is the value at x' of the approximating polynomial 
that goes through the specified points. 
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Aitken's klethod. One method for shortening calculations, called 
Aitken's method, follows. t First note that 

I 
Yo Xo - x I 
YI Xl - X 

Xl - Xo 
(a) 

where IYO Xo - X I is the determinant with value YO(XI - x) - YI(XO - x). 
YI Xl - X 

For 

I Yo 0 I 
YI Xl - Xo 

= Yo 
Xl - Xo 

and I 
yo Xo - Xl I, 

* YI 0 fo,I(XI) = . = YI 
Xl - Xo 

Since fO~I(X) goes through the points (xo,Yo) and (XI,YI) and is of the first 
degree, it is the required (unique) polynomial. Hence, for a given num­
ber x', to find fO~l(X') we just calculate Eq. (a) with this number x' sub­
stituted for the symbol x. 

The polynomial that goes through (xo,Yo), (XI,YI), and (X2,Y2) is given 
by 

where fO~2(X) is the polynomial that goes through (xo,yo) and (X2,Y2). 
For fO~1,2,3(X) we have similarly 

X2,- X I 
X3 - X 

The process can be extended in this way. For example, 

X5 - X I 
X6 - X 

X6 - Xs 

Hence the process can be systematized, with f*(x) being recomputed, 
including more and more points until the desired accuracy is obtained 
(assuming that there are enough points in the table). The following 
scl)eme can be used for performing the calculations, the terms in each 

t See W. E. Milne, "Numerical Calculus," pp. 68-:-72, Princeton University Press, 
Princeton, N.J., 1949. 
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row being determined in order: 

Xo, Yo 
Xl, Yl 
X2, Y2 

Xa, Ya 
X4, Y4 

EXERCISES 

[CHAP. 6 

(a) Show that f;'l,2,3(X) actually does pass through all the points (xo,Yo), (Xl,Yl), 
(X2,Y2), (X3,Y3) and is of degree 3. 

(b) Show that 

(c) Compute arctan 0.9, where arctan x is given by a table for values of x differing 
by 0.4, as shown: 

Xi arctan Xi Solution 

Xo = -1.0 -0.7854 -1.9 
Xl = -0.6 -0.5404 -1.5 0.3783 
X2 = -0.2 -0.1974 -1.1 0.6111 1.2515 
X3 = +0.2 +0.1974 -0.7 0.7707 1.1141 0.8736 
X4 = +0.6 +0.5404 -0.3 0.7890 0.8917 0.7568 0.6691 
X5 = +1.0 +0.7854 +0.1 0.7068 0.6863 0.7334 0.7509 0.7305 

(d) Compute arctan 0.75 from the table values given in the previous exercise. 

6-6. Function Evaluation: Best-fit Polynomial Approximation 

Polynomial Approximations. As we have noted in Sec. 6-4, the evalu­
ation of j(x) by means of terms up to the xn term of its power-series 
expansion can be considered as approximating f(x) by a polynomial of 
degree n, where the coefficients are given by Taylor's formula. Similarly 
the method of interpolation can also be interpreted as the approximation 
of f(x) by a polynomial, even though the polynomial may never be 
explicitly determined by the method given; the coefficients of the interpo­
lation polynomial of degree n are determined from n + 1 known values 
of f(x). For arctan x we have the power-series approximation 

arctan * x = 1.000000x - 0.333333x3 + 0.200000.xo 

For the interpolation approximation (for the points -1, -0.6, -0.2; 
+O~2,' +0.6, and 1 given in Sec. 6-5) we have 

arctan* x = 0.999105x - 0.306897x 3 + O.093190xo 
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In . order to show how good these approximations are, in Fig. 6-10 have 
been drawn the error functions 

e(x) = approximation - function = arctan* x ~ arctan x 

for the range 0 ~ x ~ 1, for both cases. 
Best-fit Polynomials. The question immediately arises: Does there 

exist another fifth-degree polynomial that is a "better fit" to arctan x 

0.0025 

0.0020 

0.0015 

0.0010 

0.0005 

-0.0005 

-0.0010 

E(X) 

E(X) 

for interpolation 
polynomial 

E(X) 

for power-series 
polynomial 

FIG. 6-10. A comparison, by means of error curves, of three fifth-degree polynomial 
approximations to arctan x for 0 S; x S; 1. 

1. . Power-series approximation: 

arctan * x = 1.000000x - 0.333333x3 + 0.200000x5 

2. Interpolation approximation on the points -1, -0.6, -0.2, +0.2, +0.6, and 1: 

arctan * x = O.999105x - 0.306897x3 + O.093190x5 

3. Best-fit approximation: 

arctan * x = 0.995354x ..:.. 0.288679x3 + 0.079331x5 
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forO ~ x ~ 1? We say that fi(x) is a better fit to f(x) than fi(x) for a 
given range of x if within that range max lel(x) 1 < max 1€2(X) I. In gen­
eral the answer to the above question is "yes." For arctan x the best­
fit polynomial for 0 ~ x ~ 1 is given by 

arctan* x = 0.995354x - 0.288679x3 + 0.079331x5 

Figure 6-10 also shows e(x) for this approximation. How one arrives 
at such best-fit approximations is beyond the scope of this book. t 

E(X} 

0.0005 

1.0 2.0 ..[i 

-0.0005 

2 [x 
FIG. 6-11. Error curve for f(x) = V';;' J 0 e-t2 dt. 

The advantage of using a best-fit approximation over a Taylor-series 
approximation or interpolation is easily seen: fewer computations are 
required to obtain the same accuracy than for a Taylor series; and no tables 
need be memorized in the computer, as is necessary for interpolation. 
Hence time and space are saved in the computation. Although we have 
illustrated a best-fit polynomial that is good to within ± 0.0005, best-fit 
polynomials can be formed that will give any desired accuracy. For 
example, a best-fit polynomial for arctan x, for 0 ~ x ~ 1, which is good 
to within ±O.OOOO 01, is given by 

arctan*x = 0.9999 7726 x - 0.3326 2347 x 3 + 0.1935 4346 x 5 

- 0.1164 3287 x7 + 0.0526 5332 x9 - 0.0117 2120 XU 

Best-fit approximations need not be of the forms shown for arctan x 
but should be of some relatively simple algebraic form. For example, 

t For such a discussion see Cecil Hastings, Jr., "Approximations for Digital Com· 
puters," Princeton University Press, Princeton, N.J., 1955. 
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for 0 ~ x ~ 00, a best-fit approximation for 

f(x) = ~f e-" dt 

is given by 

where al = 0.278393, a2 = 0.230389, aa = 0.000972, and a4 = 0.078108. 
In this case e(x) is given in Fig. 6-11, plotted against Vx. This f*(x) is 
easily coded for a computer. 

EXERCISES 

(a, b). Write a code to evaluate each of the best-fit approximations to the arctan x 
given in this section. 

6-7. Integration 

By Definition. In this section we shall see how a computer can inte­
grate. In his previous studies the student has been taught to integrate 
by means of the manipulation of 
abstract symbols. However, a lit­
tle reflection will show that it is 
really numbers being handled, these 
numbers being represented for con- Yi 

venience by symbols. Of course a 
computer cannot directly manipu­
late symbols in the ordinary sense, 
but it can handle numbers. As we 
shall see, the simplest method of 
handling numbers to obtain an in­
tegral is to follow the very defini­
tion of the meaning of integration. 

y 

o Xl Xz ••• p 

Recall now the definition of inte­
gration (see Fig. 6-12). The integral 
of f(x) from x = 0 to x = p, written r p FIG. 6-12. Numerical integration. 
Jo f(x) dx, is the area between the 
curve y = f(x) and the x axis, bounded by x = 0 and x = p. It is found 
by considering the rectangles formed by partitioning the x axis between 0 
and pinto n intervals each of the same length h, where h = (p - O)/n. 
If there are n intervals each of length h, the area of the ith rectangle will 
be hYi and the sum of the areas of all the rectangles will be 
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In another partition that has more intervals the length of each will be 
less. Hence, as the number of intervals becomes infinite, the length of 

each approaches O. The integral foP y dx is defined as the limit of the 
sum of the areas of the rectangles as the number of intervals increases 
and the length of each approaches zero, 

n 

To integrate on a computer, we could just form L hYi. Then we might 
i= 1 

2n 

take a smaller interval, say h/2, and form L (h/2)Yi. If 
i=l 

is less than the allowable error desired for this integration, then the 
integration is completed. If not, we could try intervals of h/4, and 
so on. This process naturally assumes that we have a subroutine to 
evaluate YI = !(Xi) for each Xi under consideration. 

y 

FIG. 6-13. Trapezoidal approximation to 
integration. 

y 

Xo =0 Xl =h x2=2h 
FIG. 6-14. Parabolic approximation to 
integration. 

By the Trapezoid Rule. Although the above method is a good way 
for evaluating an integral, there are methods that may require less com­
putation. Suppose that we considered the trapezoids formed by adding 
little triangles to the rectangles, as shown in Fig. 6-13. Here the area 
of the trapezoid is h[yo + Y2(Yl - Yo)] = (h/2)(yo + VI)' For n trape-
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zoids we have A = (h/2) (Yo + 2Yl + 2Y2 + . . . + Yn). Certainly this 
will be a better initial approximation to the area under the curve than ~vas 
A = h(yo + Yl + ... + Yn). Hence, using this method, we shall not 
need to go to as small intervals to obtain the desired accuracy as we did 
using the previous, cruder method. The method given in this paragraph 
is called the trapezoid rule. 

By Polynomial Approximations. An even better initial approximation 
can be obtained by considering three points at a time instead of two. 
Suppose that we consider the area under the parabola y* = a + bx + cx2 
that passes through three points, as shown in Fig. 6-14. Then 

AO.2 = (a + bx + CX2) dx = ax + - + -!u
2h bX2 cX3 ] 2h 

o 23 0 

= 2h . a + 2h2 . b + %h3 . C 

To determine the coefficients a, b, and c, we note that 

If x = 0, 
If x = h, 
If x = 2h, 

a + o· b + o· C = yo 
a + h· b + h2 • C = Yl 
a + 2h . b + 4h 2 

• c = Y2 

These, when solved for a, b, and c, yield 

a = yo b = - Y2 + 4Yl - 3yo c = Y2 - 2Yl + Yo 
2h 2h2 

whence 
h 

AO.2 = "3 (Yo + 4Yl + Y2) 

Similarly A 2.4 = (h/3)(Y2 + 4Y3 + Y4), and so forth, whence, if n is even, 
we have 

This is known as Simpson's rule. t 
Similarly we could try to make even better initial approximations to 

the area under the curve. Once the method of approximation is decided 
upon, more accurate results can be obtained only by increasing n, the 
number of intervals-as can be seen from the original definition of the 
integral. 

We have been assuming until now that the function y(x) can be 
evaluated at any point x by a subroutine. Suppose, on the other hand, 
that the function f(x) were given by a table of points, spaced at equal 
intervals Xi. Then the above procedures would of course still hold. 
But these methods will evaluate integrals only between points that 'are 
given in the table, and not to other points. However, one might choose 
simply to integrate the approximating polynomial (determined as in the 

t See, for example, Milne, op. cit., pp. 116, 120. 
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previous sections) and then to evaluate this function between any two 
points, whether they are or are not given in the table. 

EXERCISES 

The following table gives the values of arctan x for equally spaced points: 

Xi arctan Xi 

Xo = 0 0.00000 
Xl = 0.2 0.19739 
X2 = 0.4 0.38051 
X3 = 0.6 0.54042 
X4 = 0.8 0.67474 
X6 = 1.0 0.78534 

(o.s 
(a) Evaluate J ° arctan x dx by the rectangular rule, first for partition at Xc, X2, 

and X4, and then for partition at Xc, Xl, X2, X3, and X4; compare the results. 
(o.s 

(b) Evaluate Jo arctan x dx by the trapezoidal rule, first for partition at Xc, X2, 

and X4, and then for partition at Xc, Xl, X2, X3, and X4; compare the results. 
(o.s 

(c) Evaluate Jo arctan X dx by Simpson's rule, first for partition at Xc, X2, and X4, 

and then for partition at Xc, Xl, X2, X3, and X4; compare the results. 
(d) Integrate each of the three polynomial approximations for the .arctan X given 

in the previous section; evaluate each of these integrals from 0 to 0.8, and compare 
the results of each with the results of Exercises a to c. 

(e) Observing that (the indefinite integral) 

J arctan X dx = X arctan X - H In (1 + X2) 

(o.s 
find Jo arctan X dx; compare this result with those of Exercises a to d. 

(f) Write a code for evaluating Simpson's rule, assuming that f(x) is evaluated by a 
subroutine. 

6-8. Differentiation 
By Definition. The derivative of y = f(x) with respect to x, taken at 

x = Xo, is defined by 

(
dY) = . lim f(xo + ~x) - f(xo) 
dx X=XO AX-+O ~x 

and represents the slope of the tangent drawn to the curve y = f(x) at Xo. 
Hence, if f(x) is given at x = Xo and x = Xl, an approximation of the 
derivative might be 

f(XI) - f(xo) 
Xl - Xo 

Unfortunately it is not always feasible with computers to take Xl suc­
cessively closer to Xo and evaluate the fraction each time, for Xl - Xo 
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becomes very small, as does f(XI) - f(xo), and often for a very small 
Xl - Xo the loss of significant figures throws the calculation far off. 

By Polynomial Approximation. Suppose that f(x) is given at Xo = 0, 
Xl = h, and X2 = 2h. Analogous to the process described for integration, 
we might determine as an approximation the derivative of the parabola 

y =f*(x) 

FIG. 6-15. Approximating the derivative from an oscillating polynomial. 

that goes through these three points. Let y = a + bx + cx2, where a, b, 
and c are as in Sec. 6-7. Hence 

dy -Y2 + 4YI - 3yo Y2 - 2YI + Yo 
dx = b + 2cx = 2h + h 2 X 

Then for the derivatives taken at X = xo, X = Xl, and X = X2, respec­
tively, we have 

y=Yo 

The formulas are equally valid for any three points (xo,Yo), (XI,YI), and 
(X2,Y2) equally spaced on the X axis, since translating the curve so that 
Xo = ° does not affect its slope. t If the function is given by means of a 
table, then these rules can be used for evaluating derivatives at points 
given in the table. . 

Of course there are always the approximating polynomials off(x), which 

t See, for example, ibid., p. 96. 
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can easily be differentiated, the resulting derivative being evaluated at 
the requisite points. 

However, numerical differentiation at best is often quite inaccurate. 
For these methods must be based on approximating polynomials that 
depend on values of the function at a few specific points. There is no 
practical way for the computer to tell how the approximating polynomial 
oscillates around the given function. Hence the slope of the polynomial 
at a point may be entirely different from the slope of the function, even 
though the curves lie very close, or even touch (see Fig. 6-15). On the 
other hand the value of the area under the curve is seldom so sensitive 
to these oscillations. 

EXERCISES 

Use the table of values of arctan x as given for the Exercises of Sec. 6-7. 
(a) Determine the derivative of arctan x at x = 0.6, using first .1x between the two 

points at x = 0.4 and x = 0.6, and then between the points at x = 0.6 and x = 0.8. 
(b) Determine the derivative of arctan x at x = 0.6 by using the three points first 

at Xo = 0.6, Xl = 0.8, and X2 = 1.0, then at Xo = 0.4, Xl = 0.6, and X2 = 0.8, and 
finally at Xo = 0.2, Xl = 0.4, and X2 = 0.6. 

(c) Differentiate each of the three approximating polynomials for arctan X given in 
Sec. 6-6, and in each case evaluate the derivative at X = 0.6. 

(d) Using the form 
d 1 

dx arctan X = 1 + X2 

evaluate the derivative of arctan X at X = 0.6, and compare this with the approxima­
tions of (a), (b), and (c). 

6-9. Undetermined Coefficients 

The Method. As was shown in the previous two sections, formulas 
for the integral or derivative of a function can be obtained by integrating 
or differentiating the polynomial approximation functions that pass 
through some given points. However, in these sections formulas were 
specifically derived only where three points were fitted. Formulas 
based on more points can be derived by the method of undetermined 
coefficients, t which follows. We shall develop the method by means of 
illustra tions. 

Suppose that we wish to rederive the formula of Sec. 6-7, Simpson's 

rule, and :find an approximation of (X2 Y dx based on the polynomial Jxo 
y = f*(x) of the second degree passing through the three points (Xo,Yo) , 
(XI,YI), (X2,Y2) with equally spaced abscissas. Since the value of an 
integral does not change if it is translated along the x axis, it will prove 
helpful to take advantage of symmetry, by letting the x coordinates of 
these points be Xo = - h, Xl = 0, X2 = +h. N ow let 

t See ibid., p. 104. 

Aoyo + AIYI + A 2Y2 = (X2 Y dx Jxo 



SEC. 6-9] FUNDAMENTALS OF NUMERICAL ANALYSIS 199 

where A o, AI, and A2 are the as yet undetermined coefficients. This 
formula must be exact (i.e., not an approximation) for y = f(x), when 
f(x) is any polynoml:al of degree 2 or less, because there is a uniquely 
determined polynomial of degree not more than n that passes through 
n + 1 points. Hence this formula must be true for the functions 
Y = 1, y = x, and y = x 2• Substituting these three functions succes­
sively in the equation, we find 

A 0 + Al + A 2 = 2h 
-hAo + 0 . Al + hA2 = 0 

h2Ao + 0 . Al + h2A2 = %h3 

Solving for A o, A 1, and A 2, we find 

A 0 = A 2 = 7Sh and Al = ,~h 

Hence l
X2 h 

xo y dx = '3 (Yo + 4YI + Y2) 

as desired. 
Suppose that we now desire to find a formula for (dy/dx)x=Xl based on 

four points with equally spaced. abscissas, (xo,Yo), (XI,YI), (X2,Y2), and 
(Xa,Ya). Let Xo = -h, Xl = 0, X2 = h, Xa = 2h, 

and 

where B o, B I , B 2, and Ba are the undetermined coefficients. This formula 
must be exact when y is any polynomial of degree not more than 3, and 
hence for the polynomials y = 1, y = x, y = X2, and y = xa. Substitut­
ing these successively into the equation, we find 

Bo + BI + B2 + Ba = 0 
- hB 0 + 0 . B I + hB 2 + 2hB 3 = 1 

h2 B 0 + 0 . B I + h2 B 2 + 4h2 B 3 = 0 
-haBo + 0 . BI + h3B 2 + 8h 3B 3 = 0 

These, when solved for B o, B I , B 2, and B 3, give 

1 
B2 = h and 

whence 

EXERCISES 

B3 = -}~h 

(a) Show that, if (xo,Yo), (Xl,Yl), (X2,Y2), and (Xs,Ya) are four points with equally 
spaced abscissas, then 

{X2 h 
JXl Y dx = 24 (-Yo + 13Yl + 13Y2 - Ya) 
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(HIN'T: Let Xo = -%h, Xl = -h/2, X2 = h/2, and Xa = %h; let the three functions 
be Y = 1, Y = X, Y = X2, and Y = x 3.) 

(b) If five points with equally spaced abscissas are given, (xo,Yo), (XI,YI), (X2,Y2), 

f X3 

(Xa,Ya), and (X4,Y4), then find Y dx. 
Xl 

(c) Derive the formulas given in Sec. 6-8 by the method of undetermined coeffi-
cients. 

(d) If four points with equally spaced abscissas, (xo,Yo), (XI,YI), (X2,Y2), and (Xa,Ya), 
are given, find formulas for 

(e) Find the formula for ( Xl Y dx in terms of the two points (xo,Yo) and (Xl,YI), and 
Jxo 

the derivatives at these points, 

I (dY) Y - -
o - dx %-Xo 

and I (dY) Y - -
I - dx x-x) 

(HINT: Let Xo = 0, Xl = h; let 

f Xl , I 

Y dx = AoYo + AIYI + Boyo + RIYI 
xo 

where Ao, AI, Bo, and BI are undetermined coefficients. Now, when the functions 
Y = 1, Y = X, Y = X2, and Y = X3 are substituted successively into the equation, 
there result four simultaneous equations that determine Ao, AI, Ro, and R I .) 

6-10. Differential Equations 

Meaning of Solution. A differential equation describes how a system 
goes from a known point to the next infinitesimally close point. For 
example, the well-known equation dvldt = F 1m describes the relationship 
of the velocity v of the mass m to the time t, when a force F is applied. 
Given a point (to,vo), the equation says that at an infinitesimally short 
time later, say at tI, the velocity will be VI = (F 1m) (tl - to) + Vo. 
Such equations arise because in nature relationships between physical 
quantities often reduce to linear functions at the infinitesimal level. 

Consider, for example, a differential equation of the first order in the 
form 

dy 
dx = f(x,y) 

The solution is to be determined as a function of x only, that is, y = g(x). 
Of course y = g(x) can be represented as a curve, and the differential 
equation tells us how to draw this curve. One point on the curve, say 
(xo,Yo), must be known or given. Then the differential equation says 
that 

( dY) -d = f(xo,Yo) 
x %=.1:0 
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and hence we know the slope at (xo,Yo). A linear approximation to 
the next point might be obtained (see Fig. 6-16) by continuing along 
the tangent line, i.e., by choosing an Xl and determining YI from 

( dY) YI = -d (Xl - Xo) + Yo 
X X=Xo 

Using (XI,YI), we find that (dy/dx)x=Xl = !(XI,YI) and then, choosing an 
X2, determine Y2 from 

(
dY) Y2 = -d (X2 - Xl) + YI 

X X=Xl 

and in this manner (X3,Y3), 

Y 

are determined and the function Y = g(x) 
Y 

-+----------~--~--~--~-x 
Xo Xl X2 X3 

FIG. 6-16. Linear approximation from 
point to point along a curve. 

-
Yo ----

-+ ______ ~ __ ~ __ ~ __ ~x 
Xo Xl X2 X3 

FIG. 6-17. Polynomial approximation 
from point to point along a curve. 

is approximated. Of course this is just an approximation, even if we 
make Xl - Xo, X2 - Xl, X3 - X2, . . . small, for the differential equation 
taken literally implies that Xl - Xo, X2 - Xl, . . . should be infinites­
imal. What we are essentially saying by this method is that a straight 
line through (xo,yo) is a good approximation to g(x) near (xo,Yo) and 
therefore the next point (XI,YI) ought to lie very close to it. 

By Polynomial Approximation. Consider again a first-order differen­
tial equation dy/dx = !(x,y). A better approximation to y = g(x) might 
be obtained if we started with two points, (xo,yo) and (XI,YI). Then we 
could use a parabola as the approximating curve of g(x) near (xo,Yo) and 
(XI,YI), to determine (X2,Y2) (see Fig. 6-17). Take, for example, the 
second formula for the parabolic approximation of Sec. 6-8, 

(
dY) 1 - = - (-Yo + Y2) 
dx X=Xl 2h 

From this (
dY) Y2 = 2h -d + Yo 

X X=Xl 
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Hence if we take Xl = Xo + h, X2 = Xo + 2h, etc., and if we know (xo,Yo) 
and (XI,YI), then we can determine (dy/dx)x=Xl = !(XI,YI), and from this 
Y2. Our equation from Sec. 6-8 can be written in general as 

Yn+l = 2h (dd
Y

) + Yn-l 
X X=Xn 

Thence we find Ya for Xa = Xo + 3h, using (dy/dx)x=2 = !(X2,Y2), and so 
forth. This process is clear, provided that initially we know (XI,YI) 
as well as (xo,Yo). Given (xo,Yo), we can find (XI,YI) by forming a Taylor·· 
series expansion around (xo,Yo). Since we already know dy/dx = !(x,Y), 
then 

d2y d 
dX2 = dx !(x,Y) etc. 

for the coefficients, and hence (XI,YI) is easily found, 

(dY) (Xl - Xo) 2 (d2y) 
YI = Yo + (Xl - Xo) a- + ') , d2 X X=Xo .., . X X=Xo 

(Xl - Xo) 3 (d3y) 
+ 3! dX3 X=Xo + 

where the first few terms are usually sufficient. 
Similarly higher-degree approximation polynomials can be used to 

estimate successive points. For example, a cubic might be used that 
is based on 

( dY) 
dx X=Xo 

and 

Such formulas can be derived by means of the method of undetermined 
coefficien ts. 

Example. As an example, consider the differential equation 

dy 
dx = 1 + y2 

Suppose that, at Xo = 0, Yo = o. Choose Xl = 0.1, X2 = 0.2, X3 = 0.3, 
etc. Then, by our first, linear method, 

YI = (dd
Y

) (Xl - xo) + Yo = (1 + yo2) (Xl - Xo) + Yo 
X X=Xo 

= (1 + 0)(0.1 - 0) + 0 = 0.1 

y, = (:~)_, (x, - Xl) + Yl = (1 + Yl')(X, - Xl) + Yl 

= 1.01 X 0.1 + 0.1 = 0.201 

y, = (~~) .~., (x, - x,) + y, = (1 + y,') (x, - x,) + y, = 0.3050 

and so forth. 
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Next consider the quadratic method. We must first find YI for 
Xl = 0.1. Taking the first three terms of the Taylor expansion, 

(Xl - xo)2 
YI = Yo + (Xl - xo) (1 + yo2) + 2! 2Yo(1 + yo2) 

(Xl - XO)3 + 3! [2(1 + yo2)2 + 4yo2(1 + yo2)] 

= 0 + 0.1 + 0 + 0.0003 
= 0.1003 

Then 

y, = 0.2 (~~)._., + yo = 0.2 X (1 + Yl') + Yo = 0.2 X 1.0101 + 0 

= 0.2020 

y, = 0.2 (~~)=., + Yl = 0.2 X (1 + y,') + Yl = 0.2 X 1.0408 

+ 0.1003 = 0.3085 

and so forth. The exact solution to dy / dx = 1 + y2 is y = tan x. 
With greater accuracy, we have Yo = tan 0 = 0, YI = tan 0.1 = 0.1021, 
Y2 = tan 0.2 = 0.2035, and Y3 = tan 0.3 = 0.312. 

Since in the numerical solution of a differential equation each point 
depends on previous points, errors are cumulative. Hence the only way 
to get a better solution is to take the interval h smaller for a particular 
method of approximation. 

EXERCISES 

(a) Solve dy/dx = 1 + y2 for h = 0.01 and h = 0.001 by both methods, and com­
pare with a table of tan x. 

(b) Solve dy/dx = V1 - y2 by both methods, with intervals h = 0.1 and 0.01, 
where Xo = 0, yo = O. Compare the solutions with a table of sin x. 

6-11. Accuracy and Error 

Sources of Error. We can distinguish among three contributions to 
the error of a numerical computation: 

1. First is the error due to the approximate nature of the numerical 
analysis of the computations. As we have seen in previous sections, 
frequently the value of a function or the solution to an equation can 
theoretically be obtained only by performing an infinite sequence of 
iterations. Of course the infinite process cannot be completed, and so 
we must stop with some iteration in the sequence, accepting this as an 
adequate approximation to the desired results. The resulting error 
is called a truncated error and often can be made as small as we please. 
The problem here then is to estimate the accuracy of the result after an itera­
tion to determine whether or not it is as precise as required, i.e., whether or not 
more iterations should be made. 
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2. Second is the error due to the approximate nature of experimental 
data used in the calculation; this is called the experimental error. Here 
the problem is so to analyze the experimental data as to obtain the best possible 
estimate of the measurement involved, i.e., to determine the accuracy of the 
experimentally obtained numbers. The accuracy of such numbers 
depends on aspects other than mathematical considerations, and therefore 
from a computational point of view these errors are treated as initial 
constraints on the problem. 

3. Third is the error due to the use of approximate numbers in perform­
ing the numerical calculations; such errors are called round-off errors. 
Any number that we write is necessarily in finite decimal (or binary) 
form, which is only an approximation to its infinite decimal conception. t 
For example, 7r might be approximated by 3.1415927. Numbers can be 
approximated to any degree of accuracy: e.g., a better approximation to 
7r is 3.14159 26535 89793. Experimental numbers may also be considered 
to be finite approximations of some (unknown) infinite decimal. Here 
of course we cannot get any better approximation than those determined 
by methods associated with the above-discussed second source of error. 
Thus the problem here is to perform the four arithmetic operations 'in a 
manner that retains the maximum desired accuracy under the circumstances. 

Consideration of truncated errors forms a large subject in itself. For 
the various iterative formulas given in the previous sections, formulas 
can be obtained for the errors, or for bounds on the errors, after any 
particular iteration. For example, the remainder formula for a Taylor 
series is familiar to the student as a measure of the error of approximation 
of a finite number of terms of a power series. Textbooks on numerical 
analysis consider these formulas in detail; this subject is, however, 
beyond the scope of the present brief treatment. Consideration of 
experimental errors is also beyond the scope of this treatment. (See 
Sec. 6-12, Additional Topics b and c.) 

This section then considers the last of these three problems, the round­
off errors. The importance of this subject to numerical calculators 
cannot be overestimated. During a computation it is not an overstate­
ment to say that consideration of errors that may arise from arithmetic 
operations should be uppermost in the mind of the user of the computer. 
The discussions of this section merely form the basis for such error con­
siderations in a particular computation. Very often it is necessary for 
the user of the computer to determine experimentally the behavior 
of his numbers during the computations, by having the computer perform 
series of trial computations. ThcGC cxpcrimcnt:11 cornplltations can be 
used to determine the correct operational procedures. 

Significant Figures and Round Numbers. The accuracy of a number is 
measured in terms of the number of significant figures it contains. Any 
one of the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 is a significant figure; 0 is some-

t Here we consider, for example, the number 0.5000 ... to be an infinite decimal. 
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times but not always a significant figure. To determine when 0 is a 
significant figure, we distinguish three cases: 

1. The zero lies to the left of all other nonzero digits of the number, 
e.g., as in 0.00123. Here the zero is used simply to fix the decimal point, 
and therefore it is not considered to be significant. None of the three 
zeros in 0.00123 is significant. 

2. The zero or zeros lie between nonzero digits, e.g., as in 3,002. Here 
the zeros are considered to be significant. 

3. The zero lies to the right of all other nonzero digits, e.g., 123,000. 
In this case it cannot be determined from the number itself whether or not 
the zero is significant; it must be determined from the context in which 
it was written. Often, if the zeros in 123,000 are not significant, we 
would write 123 X 103, while on the other hand if the first zero were 
significant we would write 1,230 X 102 to indicate this. 

For example, the number of significant figures in each of the following 
numbers is four: 1,234, 9,072, 5,006, 0.008379, 0.01024, 6,080 X 103, 

7,000 X 103• The leftmost significant figure in a number is called its 
most significant figure; in our examples the most significant figures are, 
respectively, 1,9, 5, 8, 1, 6, and 7. The least significant figure is the right­
most significant figure of a number; in our examples the least significant 
figures are, respectively, 4, 2, 6, 9, 4, 0, and O. 

A number composed of n significant figures is said to be correct to n 
significant figures if its value is correct to within Y2 unit in the least sig­
nificant position. For example, if 9,072 is correct to four significant 
figures, then it is understood that the number lies between 9,072.5 and 
9,071.5 (that is, 9,072 ± 0.5); if 0.01024 is correct to four significant 
figures, then it lies between 0.010245 and 0.010235; if 6,080 X 103 is 
correct to four significant figures, it lies between 6,080,500 and 6,079,500. 

Another term used to describe a number is the number of decimal places 
of the number, being the number of digits to the right of the decimal 
point. Thus 0.008379 has six decimal places, and 0.37 X 10-5 has seven 
decimal placeR. 

To be used during a computation, numbers that are infinite decimals 
must be converted to finite-decimal approximations. Similarly numbers 
that contain more significant figures than are desirable for a particular 
computation must be approximated by numbers of less significant figures. 
The process of reducing the number of significant figures of a number is 
called rounding. Numbers that are rounded so that they contain n 
significant figures are formed so that they will be correct to n significant 
figures; they are then called round numbers. Rounding can be accom­
plished by means of the following rule: To round a number so that it is 
correct to n significant figures, retain the n leftmost significant figures, and 
discard the rest; if the discarded number is greater than ~~ unit in the 
least retained significant figure, then add 1 to this last retained figure; 
if the discarded number is less than 72 unit in the least retained significant 
figure, leave the latter unchanged. The case where the discarded number 
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is exactly Yz unit in the least retained significant figure is often handled 
thus: If the least significant figure is even, leave it unchanged; if odd, 
then add 1 to it. By means of this latter rule the errors due to rounding 
will tend to cancel, since even and odd digits occur on the average with 
equal frequency. Also, by leaving the rounded number in this case as 
an even number we increase our chances that the result of a division 
might be exact. As examples, the following numbers have been rounded 
to four significant figures: 

Number 

3.141\5926 
0.1428\57142 
0.005329\601 

421. 2\4899 
58.76\5000 
93.29\5000 

Rounded number 

3.142 
0.1429 
0.005330 

421.2 
58.76 
93.30 

Relative Accuracy and Absolute Accuracy. The error in a number, as 
compared with its true value, is stated in various ways. The absolute 
error of an approximate number N* from its true value N is defined by 

Ea = IN* - NI 
The relative error Er is defined by 

IN* - NI Ea 

N* N* 
The percentage error Ep is defined by Er X 100 per cent. The relative- and 
percentage-error concepts have the advantage that they are independent 
of the unit of measurement, whereas the absolute error is expressed in 
terms of the unit used. For example, 3.14 is an approximate value 
of the infinite decimal 7T'; the absolute error of this approximation is 
13.14 - 7T'1 < 0.002 (7T' - 3.14 = 0.00159 ... ); the relative error is 
13.14 - 7T'1/3.14 < 0.002/3.14 < 0.0006; the percentage error Ep < 0.06 
per cent. 

The accuracy of an approximate number can be considered from two 
points of view. The first, and that most often considered in using digital 
computers, is the concept of relative accuracy. In this case the accuracy 
is measured by the relative error and not the absolute error. As will be 
shown two paragraphs below, the number of significant figures of an 
approximate number is a measure of the relative error and hence of the 
rehti ... ,re accuracy of the number, Tt.;R for t.hiR mfl.AOn that significant 
figures are so important. To see the importance of relative error as an 
index of the accuracy of a number, consider the measurement of the 
0.002-in. diameter of a human hair to within 1/100,000 in., as compared 
with the measurement of the 240,000-mile distance from the earth to the 
moon, to within 2 miles. The relative error of the measurement of the 
hair is 0.00001/0.002 = 1/200, while the relative error of the measure­
ment of the distance to the moon is 2/240,000 = 1/120,000, while the 
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absolute errors are 0.00001 and 126,720 in., respectively. Clearly the 
measurement of the distance to the moon is 600 times more accurate 
than that of the diameter of the human hair, even though the absolute 
error of t.he former is over 12 X 109 times that of the latter. 

On the other hand the absolute accuracy of a measurement is often 
important from another point of view. For example, in the tolerance of 
machined parts it is the absolute error that counts as the measure of 
accuracy; hence the allowed absolute error is frequently stated explicitly 
by writing the desired sizes as finite decimals followed by ± and the 
tolerance which is the maximum allowable absolute error. In this case 
it is the number of decimal places that plays the important role. 

The relation between the number of significant figures and the relative 
error inherent in an approximate number is given by the following 
theorem, in which €r is the relative error, K is the most significant figure 
of the number, and n is a positive integer: 

If a given number is correct to n significant figures, then 

€ < 1 
r - 2K X 10n- 1 

When the most significant figure is not explicitly known, we can say that 
the relative error €r ~ 1/(2 X lon-I). For any radix q the 10n- 1 in 
these formulas is replaced by qn-l. If q = 2 (binary), then the inequali­
ties are read €7 ~ 1 /2n. 

To see why this theorem is true, note that N* ~ If. X 10p - 1 (for exam­
ple, 521 ~ 500 = 5 X 102), where p locates the decimal point with respect 
to the most significant figure K. t N ow since N* represents an approxi­
mate number, correct to n significant figures, i.e., with an errol' of Yz unit 
in the last (nth) significant figure, then €a ::; Yz X 10p-n and 

Yz X 10p - n 

€r ~ N* 
1 < 1 

2N* X 10n- p - 2K X 10n- 1 

If K is not known, then to ensure that the inequality will hold for every 
K we choose the smallest, namely, 1. 

This theorem is of important practical value in using a digital computer 
having floating-point arithmetic operations. It enables the evaluation 
of the number of significant figures that must be carried to ensure that 
the relative error be kept below a given amount; and conversely it 
enables the evaluation of the relative error for a specified number of 
significant figures. 

Significant Figures in Arithmetic Operations. Since numerical compu­
tation as performed by a digital computer reduces to addition, sub­
traction, multiplication, and division, the problem of retaining significance 
during these operations becomes fundamental. We shall here give rules 
of thumb commonly used by mathematicians regarding the control of 

t For example, 3,000 would be written 3 X 103 = 3 X 104- 1, whence p = 4. On 
the other hand, 0.003 would be written 3 X 10-3 = 3 X 10-2- 1, whence p = -,2. . __ 
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significance during arithmetic operations. In any particular situation 
the rules serve merely as a guide; the details of the process usually 
depend on the particular numbers and errors involved and hence must 
often be carefully examined. In many situations it is just as bad to 
overestimate an error resulting from a computation as it is to underestimate 
one. 

Consider addition first. The rule of thumb is that in adding two 
(positive) numbers there is usually no loss of significant figures; in fact 
the result sometimes has one more significant figure than either of the 
operands. 

For example, suppose that 52,761.2 and 71,436.7 were rounded to 
52,761 and 71,437 and added: 

Rounded 

52,761 
+ 71,437 

124,198 

Unrounded 

52,761.2 
+ 71,436.7 

124,197.9 

The rounded numbers are both correct to five significant figures, and the 
result is correct to six, as is seen on comparison with the addition of the 
unrounded numbers. Here there was no loss of significance, because 
the rounding errors canceled out, and the added significant figure resulted 
from the carry. However, consider 12,761.5 and 11,435.5 rounded to 
12,762 and 11,436 and added: 

Rounded 

12,762 
+11,436 

24,198 

Unrounded 

12,761.5 
+11,435.5 

24,197.0 

Here the result is correct only to four significant figures since, as can be 
seen from the unrounded addition, the rightmost 7 is off by 1 unit. This 
is of course an exception to our rule, chosen so that the errors in the least 
significant figures of the operands were maximum and were added 
together. It is clear that, if one always includes one more significant 
figure than is necessary, he will be more sure of having at least the 
required significance in his result. 

Subtraction, however, is another story. The rule of thumb is simply 
a warning that complete loss of significance is possible and that each 
case must be examined on its own merits. For example, suppose that 
we are forming the difference of 52,763.5 and 52,752.5 as rounded to 
52,764 and 5~,76~: 

Rounded 

52,764 
-52,762 

00,002 

Unrounded 

52,763.5 
-52,762.5 

00,001.0 

Although the subtrahend and the minuend were correct to five significant 
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figures, the difference has no significant figures; i.e., the 2 is off by a full 
unit. More generally, there is not a complete loss of significance, but 
very frequently severe loss of significance occurs. There are two reme­
dies that can be tried. The first is to use many more significant figures 
in the subtrahend and minuend to begin with and hope that enough 
significance will result for the remainder. The other is to try to trans­
form the expression to something else and thereby avoid the subtraction 
altogether. For example, if one had to evaluate 1 - cos x for small x, 
it might be wiser to write 1 - cos x = 2 sin2 (x/2) and evaluate the 
latter expression. 

For multiplication the rule of thumb is that' up to two significant 
figures can be lost, though not necessarily. This same rule applies to 
division. Consider, for example, the product of 811.2 and 112.5, each 
rounded to three significant figures: 

Rounded Unrounded 

811 811.2 
112 112.5 

1622 40560 
811 16224 

811 8112 
90832 8112 

91260.00 

The third figure of the product is off by 4 units and therefore is not 
significant; the second figure from the left is, however, only off by 0.4 unit 
and therefore is significant. The product is thus correct to two sig­
nificant figures, while the multiplicand and multiplier were each correct 
to three. 

As an example of the loss of a significant figure during division, con­
sider 1,761.5 and 1,763.4, rounded to 1,762 and 1,763: 

Rounded 

1.0005 
1,76211,763.0000 

1,762 
1.0000 

Unrounded 

1.001 
17,615117,634.000 

17,615.000 
19.000 

Here the rounded dividend and divisor are correct to four significant 
figures, but the quotient is correct only to three. 

One further rule of thumb might be helpful. In digital computers, 
where it is in general no more difficult to handle numbers with many 
significant figures, keep as many significant figures as possible during the 
computations, and beware of loss of significance through subtraction. 

Pitfalls. A person using an electronic computer always worries about 
whether the results he gets are or are not accurate. For usually only the 
final results of a computation are read out from the computer's memory, 
and intermediate results are neither retained nor observed. The results 
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of computer programs are often checked by comparing a few values with 
some previously hand-computed values. However, the fact that these 
few isolated results check is no guarantee that all the results computed 
by the program will be equally correct. Rarely is every difficulty fully 
anticipated. Automatic programming routines aggravate this situation, 
increasing the possibility of overlooking pitfalls. Hence, when writing 
his program the programmer must plan against the loss of too many 
significant figures in the computation, as well as choose the computational 
method that can best result in the necessary accuracy. During the 
running of the program on the computer the programmer must be acutely 
aware of such pitfalls as overflows, loss of significance, difficulties arising 
in intermediate forms, and other, unanticipated, singular situations. 

For example, consider a pitfall that occurs in evaluating v'x. If 
x = 0.0000 3259, where x is good to seven decimal places and uncertain 
in the last (i.e., the 9), then to eight decimal places we get 

vO.OOOO 3258 = 0.00570789 
vO.OOOO 3259 = 0.0057 0877 
vO.OOOO 3260 = 0.0057 0964 

Hence v'x is good only to five places, is uncertain in the sixth place, and 
is erroneous in the last two places. However, the computer will carry 
these last two places, and the error may be magnified in subsequent 
calculations. 

Another example occurs in computing, say, sin 314,159.3. For if we 
reduce the angle to one whose magnitude is less than 7r /2, we find 

sin 314,159.3 = sin (314,159.3 - 314,159.27) = sin 0.03 = 0.03 

If the last figure of the original angle were 2 instead of 3, we would find 
sin 314,159.2 = -0.07. If 4, we would find sin 314,159.4 = +0.13. 
Hence, even though the original angle is known to within seven sig­
nificant figures with an uncertainty of 1 in the last figure, the result is not 
good to within one decimal place. 

The following quotation t summarizes the general attitude that should 
be maintained in performing numerical computations on a digital 
computer: 

Despite the availability of high speed computers, a successful computation 
depends on a judicious combination of mathematical analysis and numerical 
experimentation. In the actual programming of his problem, the numerical 
~n~hT~t, ~hnllln nnt, 1l~P. Rll hrnllt,lnp.R l'l.nn 1111t,nmfl.t,1p. p.nnp.R hllnnlv. hl1t. Rhn111n 
~~-~~~t~in: that the . logical de~isions made in them will be consi;t~nt with the 
required round-off error and tolerance limits. The possibility of pitfalls will 
always be present in spite of all efforts to avoid them. It is therefore important 
that the numerical analyst interpret his answers according to their true meaning. 
Although the tools of the numerical analysis are all based on rigorous rna thema ti­
cal theorems the application of these theorems requires discretion. In carrying 

t Irene A. Stegun and Milton Abramowitz, Pitfalls in Computation, J. Soc. Ind. 
Appl. Math., vol. 4, no. 4, December, 1956. 
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out a numerical computation program it is often necessary to use experimental 
techniques to establish the correct operational procedures. 

EXERCISES 

(a) Tell how many significant figures are in each of the following numbers, and 
round each to be correct to five significant figures: 

2.7182818 
7.3890568 
0.3183099 
0.3678794 
484,813,681,110 X 10-6 

154. 1500 X 103 

1.11001110 (binary) 
.00110010 X 2-3 (binary) 
101011.00 (binary) 
0011001100 X 23 (binary) 
1010101010 (binary) 
11.001100 (binary) 

(b) Calculate the maximum relative error of each of the above numbers, rounded 
to three significant figures (or bits in the case of binary numbers). 

(c) If all the numbers in a computation were kept to five significant figures, what is 
a bound on the relative error of each number? If these numbers were binary num­
bers, what is the bound on the relative error? 

(d) If it is desired that all numbers involved in a computation have a relative error 
of less than 7-600, how many significant figures should each number contain? 

(e) In a computation involving only binary numbers, if it is desired that all numbers 
should have a relative error of less than 7600, how many significant bits should each 
number contain? 

6-12. Additional Topics 

a. Finite Differences for Polynomials. Consider a polynomial whose values have 
been computed at equal intervals of Xi+l - Xi = h, that is, y(xo), y(xo + h), y(xo + 2h), 
y(xo + 3h), . . .. The differences of successive values of y, namely, y[xo + (i + l)h] 
- y(xo + h), are called the first differences of the polynomial. The differences of 
successive first differences are called second differences, and so forth. An interesting 
result (see the references below) is that the nth differences of a polynomial of the nth 
degree are constant when the values of the independent variable are taken at equal intervals. 
Thus the accuracy of computations based on a polynomial approximation can be 
checked. For example, consider y = 2X2 - X + 1, as tabulated in Table 6-2. The 

TABLE 6-2. DIFFERENCES FOR Y = 2x2 - X + 1 

First differences Second differences 
X 11 t1 1y t1 2y 

---
0 1 

1 
1 2 4 

5 
2 7 4 

9 
3 16 4 

13 
4 29 4 

17 
5 46 
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constant second differences are 4. Suppose that an error was made in computation 
and y(3) was evaluated as 10; how could this be detected? The study of finite differ­
ences has many interesting and important aspects (see the references below, and also 
C. Jordan, "Calculus of Finite Differences," Chelsea Publishing Company, New York, 
1947). 

b. General Formula for Measurement Errors. Suppose that N = f(xI,x2, . . • ,xn) 
. denotes any function of n independent variables Xl, X2, ... , Xn that are subject to 

the experimental errors LlXI, Llx2, ... ,Llxn. Then a formula that gives the resulting 
error in the function N is given by 

(See, for example, the references below.) Suppose that the error of the independent 
variables is not actually known, but it is known that the probability distribution of the 
errors is normal (Gaussian). Then we can define the probable error of a single meas­
urement as a value such that half the errors of a series of measurements will be greater, 
the other half less. If R, rl, r2, ... , rn are the probable errors, respectively, of 
N, Xl, X2, . . . , Xn, then 

For further discussions see Scarborough (see the references below), chaps. XIV-XV, 
and E. Frank, "Electrical Measurement Analysis," chaps. 5-7, McGraw-Hill Book 
Company, Inc., New York, 1959. 

c. Error Formulas for Differentiation and Integration. Milne ("Numerical Calcu­
lus," pp. 108-114; see the references below) gives a method for developing the error 
formula for any differentiation-integration method that may be developed by the 
method of undetermined coefficients. If Q(f) is the integration or differentiation to 
be performed on the function f and P(f) is the formula developed by the method of 
undetermined coefficients for its approximation, then the error R(f) = Q(f) - P(f). 
R(f) is said to be of degree n when R(xm) = 0 for m :s; n, but R(xn+l) ~ O. Also let 

(~ - s)n be defined by (x - s)n = (x - s)n if X > s and (x -: s)n = 0 if x < s. In 
terms of this definition let 

1 --G(s) = nl Rx[(x - s)n] 

in which Rx[(x - s)n] means R[(x - s)n] regarded as a function of the variable x. 
Then it can be shown that 

R(f) = J _"'", j<n+l) (s)G(s) ds 

where f(n+1) is the (n + l)st derivative of f (see Milne for an example). Using this 
technique, derive error formulas for the integration arid differentiation formulas of 
Secs. 6-7 to 6-9 and their exercises. 

a. Runge-Kutta Method. There ,are formulas for the integration of differential 
~quations other than those which 'can be derived by the method of undetermined 
coefficients. One well-known example is the so-called "Runge-Kutta method." 
This has the advantage that the error is of the order of h5 and no special methods are 
Jle(;}d~d to start the solution. Consider y' = f(x,y); then the increment for advancing 
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the dependent variable is given by 

AY = }u (k1 + 2k2 + 2ka + k4) 
k1 = hf(xo,yo) 
k2 = hf(xo + Hh, yo + Hk1) 
ka = hf(xo + Hh, yo + Hk2) 
k4 = hf(xo + h, Yo + ka) 
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Then Xl = Xo + h, and Y1 = Yo + Ay, and the process is continued. (For further 
details see the references below.) 

e. Best Fit. Cecil Hastings's book "Approximations for Digital Computers" (see 
the references below) is an elementary discussion of the method of best-fit approxima­
tions written in a quite unique and entertaining style. It also includes an interesting 
source of best-fit approximations. 

f. Monte Carlo Method and References. Computations that involve successive 
generation of random numbers are often called Monte Carlo calculations. (For 
defini tion of random numbers see W . Feller, "Pro babili ty Theory and I ts Applications," 
John Wiley & Sons, Inc., New York, 1950.) Monte Carlo computations usually are 
associated with computer simulations of real processes, such as military combat, 
growth of cancer cells, business transactions, mortality studies, etc., where some phase 
of the simulation involves a probability distribution. For example, if a missile were 
80 per cent effective against a certain type of target, then in simulating each missile a 
random number between 0 and 9 would be chosen; only if it lay between 0 and 7 would 
a kill be recorded. Similarly the size of a cancer growth is very sensitive to the initial 
rate of mitosis of the generating cells, which is randomly determined. Monte Carlo 

processes have also been used in evaluating integrals. To evaluate 101 
f(x} dx on the 

interval 0 ::; X ::; I, we choose N arguments x at random and evaluate f(x) for each; 
it can be shown that, as N becomes larger, the average of all the f(x) so determined 

converges to !o 1 
f(x) dx. 

The generation of random numbers with a computer is simple. Given a number R i , 

find a new random number Ri+1 as the minor product of pRi, where p is the largest power 
of 5 that can fit into a computer word. Start with Ro = p. For p = 517 the sequence 
has a period of about 1012• 
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CHAPTER 7 

SEARCHING, SORTING, ORDERING, AND CODIFYING 

7 -1. Introduction 

Ingredients. A great proportion of computer and control applica­
tions involve searching, sorting, ordering, and codifying. The general­
purpose computer considered in Part 1 is not by itself best suited for 
these nonarithmetic operations. To understand what special systems­
design features are needed for such operations, we must first study the 
operations themselves. 

The ingredients of searching are items and characteristics and associa­
tions of characteristics with the items. An item is a package of information; 
the characteristics associated with this item are attributes that are 
related to the item. Problems of searching all involve locating an item, 
or items, associated with a given set of characteristics. For example, 
each article reference included in a bibliography is an item; the subjects 
relating to the contents of the article are the characteristics. A bill 
of sale is an item; the name and address of the buyer may be considered 
as the characteristics. A research grant is an item; the name of the 
principal investigator, the amount of the grant, the subject under 
investigation, the name of the school or organization receiving the grant, 
etc., are all characteristics. The inventories of particular replacement 
parts are the items; the serial numbers, costs, acquisition record, etc., are 
the characteristics, and so forth. 

Searching, Sorting, Ordering, and Codifying. Given a set of character­
istics, the process of obtaining every item associated with all the given 
characteristics is called searching. In a bibliographical list of research 
reports one might search for all articles concerning the application of 
nuclear theory. The words application, nuclear, and theory are the char­
acteristics, and the search should result in a collection of references, each 
concerned with the application of nuclear theory. As a specific illustra­
tion, consider the item list of article references and the characteristic list 
of subjects of a sample bibliography given in Fig. 7-1. We have given 
each item a boldface number and each characteristic an italicized num-. 
ber. The item-characteristic associations are given in Table 7-1, where a 
unit indicates that the characteristic of the row of the unit is associated 
with the item of its column. Consider the rows associated with the given 
characteristics. Form a new row that has a unit corresponding only to 
those (column) positions where all the given characteristic rows also have 
units. (This is called logically multiplying these rows; cf. Sec. 4-5.) 

215 
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PART I. THE ARTICLE LIST (BIBLIOGRAPHY PROPER) 

Article 
No. 

1.1 Abrahams, A. P. 
Autoradiographic 
determination of 
radioactivity in rocks. 
Nucleonics 15: 85-86 
Mar 1957 

Article 
No. 

Article 
No. 

2.1 Nicholls, J. Alpha- 3.1 
scintillation monitor 

Senior, D. A. The 
Kerr cell, a high 
speed electro-shutter, 
Pt. II. Instr. Pract. 
11:471-476 May 
1957 

for hands and cloth-
ing. Nucleonics 
15:80,81,83,84 Mar 
1957 

1.2 Aravindakshan, C. A 2.2 
simple arrangement 

Pope, M. I. An 3.2 
automatically record-

Smith, B. 0., and 
Grimshaw, A. G. A 
pneumatic level indi­
cator. Instr. Pract. 
11 :469-470 May 
1957 

for obtaining optical 
transforms of crystal 
structures. J. Sci. 
Instr. 34:250 In 1957 

1.3 Gasstrom, R. V. A 
very fast pulse-height 
analyzer with inde­
pendent uptake, sort­
ing, and storage of in­
formation. Nuclear 
Instruments 1 :75-79 
Mar 1957 

1.4 NBS Circular 850. 
Bibliography on igni­
tion and spark ignition 
systems. Nov 11956 

PART II. THE 

Word No. 

adaptability 3.2 
analysis 4.1 
application 5.1 
p.nnm~pt. fJ.B 
counting 2.1 
design 7.1 
differentiation 3.1 
England 5.2 

ing vacuum balance. 
J. Sci. Instr. 34:229-
232 In 1957 

2.3 Powell, D. A. An 
apparatus giving 
thermogravimetric 
and differential ther­
mal curves simul­
taneously from one 
sample. J. Sci. 
Instr. 34:225-227 In 
1957 

3.3 Stockendal, R., and 
Bergkvist, K. E. 
Evaporation device 
for beta-spectrometer 
samples. Nuclear 
Instruments 1: 53-54 
Jan 1957 

2.4 Seidle, F. G. P., et al. 3.4 
Modification of the 
Brookhaven fast 

Tove, Per-Arne. 
Electronic time ana­
lyzer applied to the 
measurement of the 
half-lives of meta­
stable nuclear states. 
Nuclear Instruments 
1:95-100 Mar 1957 

chopper. Nuclear 
Instruments 1: 92-93 
Mar 1957 

WORD LIST (CODE BOOK AND THESAURUS) 

Word No. 

evaluation 6.1 Netherlands 
gas 2.2 nuclear 
heat 2.3 plan 
hyst~!'~sis 1.1 th~I)!,~r 

im plemen ta tion 5.3 thermal 
instrumen ta tion 5.3 use 
mass 1.2 versatility 

Word No. 

4.2 
4.3 
6.2 
·1.·1 
2.3 
5.1 
3.2 

FIG. 7-1. Illustrative bibliography example. 
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TABLE 7-1. ASSOCIATION OF ITEMS WITH CHARACTERISTICS 

Item 
Characteristic 

1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 

1.1 0 0 0 0 0 0 0 0 0 0 0 1 
1.2 0 0 0 0 0 1 0 0 0 0 0 0 
2.1 1 0 0 0 0 0 0 1 0 0 0 0 
2.2 0 0 0 1 0 1 0 0 0 0 0 0 

2.3 0 0 0 1 0 0 1 0 0 0 0 0 
3.1 0 0 0 0 0 1 1 0 0 0 0 1 
3.2 1 0 0 0 0 0 1 0 0 0 0 1 
4.1 0 0 1 0 0 1 0 0 0 0 1 1 

4.2 0 0 1 0 0 0 0 1 0 0 1 1 
4.3 0 0 0 0 1 0 0 1 0 0 1 1 
4.4 0 0 1 0 0 0 0 1 0 0 1 1 
5.1 0 0 0 0 0 1 1 1 0 1 0 1 

5.2 0 1 0 0 0 1 1 0 1 1 0 0 
5.3 0 0 0 1 0 0 1 1 1 0 1 0 
6.1 1 1 1 0 0 1 0 0 1 0 1 0 
6.2 0 1 0 0 1 0 0 1 1 1 1 0 
7.1 0 1 0 1 1 1 1 0 1 1 0 0 

The units of the resulting row correspond to the columns of the desired 
items. For example, given application (5.1), nuclear (4.3), theory (4.4), 
we logically multiply rows, 

obtaining 

5.1 
4·3 
4.4 

0000 0111 
0000 1001 
0010 0001 
0000 0001 

0101 
0011 
0011 
0001 

with units in columns 3.4 and 2.4 corresponding to items by Tove and 
Seidle. However, it is rarely feasible to display a matrix such as in 
Table 7-1; we have used it simply as an illustration to aid the visualiza­
tion of the searching methods to be described. 

It is difficult to discuss searching without using the terms sorting, 
ordering, and codifying. It is often helpful for temporary use to sub­
stitute a symbolic abbreviation to represent an item or characteristic. 
For example, the use of boldface and italicized numbers in our illustrative 
bibliography made the table of associations easier to display. A code 
is a list of such abbreviations; the making of a code is codifying. t Fre-

t We use the term codifying here in preference to coding to distinguish the process 
being discussed in this chapter from the programming of a computer. 
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quently the code is given in the form of a "dictionary," or "thesaurus." 
In our illustrative bibliography the code for the item (article) list is 
presented in dictionary form, and the code numbers are listed in 
numerical order. The characteristic (word) list is in thesaurus form, 
where the word list is in alphabetical order; here synonyms are given 
the same code number. Codes are used in searching as follows: First the 
thesaurus of characteristics is compared with the list of desired character­
istics, and the corresponding code numbers are found; next the search 
is made to find the code numbers of the resulting items; finally the actual 
items are determined from the dictionary. In computer searching the 
use of codes in this manner is almost always indicated. Further dis­
cussion of codes appears in Sec. 7-7. 

By ordering a list is meant the process of arranging the list according 
to some linear ordering system, such as alphabetically or numerically, 
so that, if element Q of the list is greater than element P, then element Q 
lies further from the beginning of the list than P. By sorting a list is 
meant the process of separating the list into partitions, i.e., mutually 
exclusive classes. In sorting items the equivalence relation by means of 
which the classes, or partitions, are defined is often given in terms of 
associated characteristics. For example, research grants may be sorted 
according to the university that received the grant, etc. Searching may 
be defined as the process of sorting a list of items into two categories, 
those items which are associated at least with all of certain given char­
acteristics, and those which are not. Frequently the classes, or par­
titions, of a sort are ordered. For example, collections of research 
grants sorted by university can be ordered alphabetically by the um­
versity's names. 

Searching and sorting are both closely associated with ordering. For 
instance, to sort research grants by university, all that need be done is 
to order the grants alphabetically by university, and then the result 
will present all grants from the same· university juxtaposed in the list; 
hence the grants will automatically be sorted as the partitions of the sort 
are ordered. 

Summarizing, to sort a list of elements, some equivalence relation 
must be defined that tells when two elements are in the same equivalence 
class or not. To order a list linearly, an ordering relation must be 
defined. Sorting can often be accomplished by means of ordering, when 
the ordering relation is so chosen that the identities of some type of char­
acteristic represent the desired equivalence relation. As we shall see 
in the next section: searching is often carried out by sorting ordered lists. 

7 -2. Methods of Searching 

The First Two Methods. For concreteness we assume in what follows 
that the items and characteristics are listed on magnetic tape. Based on 
this assumption, we shall describe three methods for searching with a com­
puter, using our illustrative bibliography as an example. Each of the 
searching techniques is, as will be shown, intimately associated with the 
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.listing arrangement of items and characteristics on the magnetic tape; 
this is because the associations are indicated by means of the item-character­
istic arrangement on the tape. 

First, consider the case where all characteristics associated with each 
item of the item list appear under that item (see Figs. 7-2a and 7-3a). 
Given a set of desired characteristics, the computer reads an item and 
its associated characteristics from the magnetic tape into the high-speed 
memory and compares to determine whether or not the given character­
istics are included in the characteristics associated with the item; if 

Item Char. 
Char. Item F Char. Item 
Char. Item 

Item 
Item 
Char. Char. 
Char. Item 

f Char. Item 
Char. Item 

Item Char. 
Char. Item 
Char. Item 

F Item Char. 
Char. Item 
Char. Item 
Char. Item 

Item Char. 

F Char. Item 
Char. Item 

Ca) (b) Ce) 
FIG. 7-2. Methods of listing on magnetic tape. 

so, the item would be suitably recorded. This process is accomplished 
for each item and its associated characteristics on the tape, one item 
at a time successively. In this way, after a single pass through the 
tape, every item associated with all the given characteristics is retrieved. 
The advantage of this system is that the items need not be ordered on the 
tape, since every item is searched. The disadvantage is that every sec­
tion of the magnetic tape must be searched in detail, consuming much 
time in the computer. 

Second, consider the case where the characteristic list is recorded on 
the tape and under each characteristic is a list of items associated with 
that characteristic (see Figs. 7-2b and 7-3b). The characteristics must 
appear in some order on the tape-e.g., alphabetically or numerically. 
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Given a set of characteristics, the computer would first order them and 
then would go through the magnetic tape looking for the first, or smallest, 
characteristic; having found this, it would read the characteristic and its 
associated items into the high-speed memory and record all items associ­
ated with it. Continuing the search on the tape, the computer would 
look for the second, or next smallest, characteristic. Having found that, 
the computer would see which items associated with the second character­
istic were also associated with the first and record them. Then the 
computer would look for the third characteristic and record only those 
items associated with it which were also associated with both the first 

... .. . . .. 
1.2 3.2 4.4 
5.2, 6.1, 8.2, 7.1 1.1, 2.3. 3.4 2.4 5.1, 5.3, 6.2 

1.3 4.1 3.4 5.1 

4.1, 4.2, 4.4, 6.1 1.3,2.2,3.3,3.4 3.3 5.3,6.1 

1.3 6.1 
1.4 4.2 

2.2, 2.3, 5.3, 7.1 1.3,2.4,3.3,3.4 5.1 
2.3 5.2, 5.3, 7.1 

2.1 4.3 2.2 5.2, 6.1, 7.1 
4.3, 6.2, 7.1 2.1,2.4,3.3,3.4 

3.2 5.2, 6.2, 7.1 

2.2 4.4 2.4 5.3,6.2 

1.2, 2.2, 3.1, 4.1, 1.3,2.4,3.3,3.4 3.4 
5.1,5.2,6.1,7.1 

2.3 5.1 

2.3, 3.1, 3.2, 5.1, 2.2. 2.3, 2.4, 3.2, 3.4 
5.2,5.3,7.1 

.. . . . . ... 
Ca) (b) ee) 

FIG. 7-3. Sample segments in the lists for each of three methods. 

two characteristics, and so on. The computer need not examine the 
whole tape in detail, but only those sections associated with each of the 
given characteristics; however, both the list of characteristics and the set 
of given characteristics must be preordered. 

Note that, in terms of our association matrix of Table 7-1, the first 
and second methods described above corrmlpond; rp.Rrp.d,lVf~ly} t.o re00rd­
ing the successive columns of the matrix and the successive rows of the 
matrix on the magnetic tape. 

The Tabledex Method. Finally consider a third method for recording 
the items and characteristics on the magnetic tape. The method involves 
the recording of successive tables on the magnetic tape and is therefore 
called the Tabledex method. There is one table for each characteristic. 
A table is formed as follows: All items associated with this characteristic 
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are listed in the table; adjacent to each item are sublisted all those char­
acteristics greater in order than the characteristic of the table which are 
associated with that item (see Figs. 7-2c and 7-3c). For example, in 
Fig. 7 -3c, consider the Tabledex table headed 4.4. Observe from Table 
7-1 that the characteristic 4.4 is associated with items 1.3, 2.4, 3.3, and 
3.4. Now observe that item 2.4 is associated with 2.1,4.2, 4.3, 4.4, 5.1, 
5.3, and 6.2, but only 5.1, 5.3, and 6.2 appear in the sublist, for only 
these are greater than 4.4, the number of the table (see Fig. 7-3c). Simi­
larly the sublists for 3.4, 3.3, and 1.3 were formed for this table. (Note 
that these sublists are ordered in the table on their first characteristics.) 

The tables are listed in the order of their associated characteristic, 
and the items and the sublist of characteristics for each item are also 
listed in the proper order. Given a set of characteristics, the computer 
first puts them in the proper order, then searches the tape for the table 
associated with the lowest ordered characteristic, reading this into the 
high-speed memory, and finally searches the sublists, recording those 
items associated with a sublist containing all the other given character­
istics. For example, if the three given characteristics are 7.1, 5.1, and 
5.2, these would first be written in order as 5.1, 5.2, and 7.1; then the 
table for 5.1 would be searched; and finally, if a sublist were found to 
contain both 5.2 and 7.1, its item would be recorded. As can be seen in 
Fig. 7-3c, the items whose sub lists contained 5.2 and 7.1 are 2.3, 2.2, and 
3.2; hence these are all items each of which is associated with all the given 
characteristics. 

U sing the Tabledex method, only the single section of the tape that 
contains the appropriate table need be searched in detail. 

Population vs. Substantive Ordering of the Lists. The reader may have 
wondered how we arrived at the code number for the characteristics 
and items given in Fig. 7-1. The choice of numbering is related to the 
concepts of population-based ordering and substantive-based ordering. 
Substantive ordering refers to an ordering arrangement based on some 
attribute of the individual terms in the list. Thus an alphabetical order­
ing of .items by author is a substantive-based ordering, an ordering of 
characteristics by research-field classification is substantive-based, etc. 
In Fig. 7-1 the item-list code numbers were assigned substantively to the 
articles, in alphabetical order; in addition the number of an item locates 
its column and line, e.g., item 2.3 is in column 2, line 3. 

Population-based ordering is quite different: it refers to an ordering 
based on the quantities of items or. characteristics in the associations. For 
example, population-based code numbers for each characteristic might be 
assigned as the number of items associated with it. To distinguish 
among characteristics that have the· same number of associated items, a 
decimal number can be· appended. The characteristics of our example 
are ·numberedin this·way. ... Thus-:iIi Fig. 7-1 it is seen that analysis, 
Netherlands, nuclear, and theory each have four associated items; hence 
their population~based numbers 'are 4.1, 4.2, 4.3, and 4.4, respectively. 
Ordering the characteristics by population-based' code numbers can save 
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searching time. In the second method given above, it is most efficient 
to begin searching in the section of the smallest given characteristic 
when population-based numbers are used. (Why?) Similarly, in the 
Tabledex method when population-based numbers are used, tables that 
include many items have short sublists, and tables that have long sub­
lists include few items. (Why?) 

Programming a Computer for Searching. The writing of codes for the 
techniques discussed in this section is in general reasonably straight­
forward. However, consideration of some factors concerning the use of 
magnetic tapes might prove helpful. 

Set tallies K and J 
Set j= 1 

k= 1 

FIG. 7-4. Flow chart to record common numbers on two ordered lists. 

Recall from Chap. 4 that magnetic-tape read-in, read-out, and tape­
moving instructions usually specify the number of blocks to be read in, 
read out, or moved. Hence only multiples of blocks can be handled. 
Therefore, in recording a list on a section of magnetic tape the list is 
usually padded at the end with words of all zeros so that the entire list 
will make up an integral number of hlockR. ThA first, w()rn ()f t.he first 
block of the list is often used as a labeling word: it contains information 
about the contents of the list, and, most important for our discussion, it 
tells how many blocks long the list is. The magnetic tape will then 
consist of a sequence of such lists, each labeled with the number of blocks 
in its length as the first word of the list. 

There are two advantages to labeling the lists: (1) The computer will 
at first observe only one label word of a list. If this list is not the one 
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desired, the computer can then move the magnetic tape by the number 
of blocks indicated in the label, past this list to the next list; the label 
of the next list will be observed, and so forth. In this way the computer 
may jump over parts of the magnetic tape not of interest during the par­
ticular search. (2) When a list is of interest, then each word of the list 
must be examined; this is usually accomplished by some kind of iteration 
or loop. The tally of this loop can be set according to the length of the 
list to be examined, as given in the label word. For example, in the 
second method for searching given above, each characteristic is followed 
by a list of its associated items. Hence the first, or label, word of each 
item list will denote the characteristic and its length, say in the a and 
{3 address positions for a two-address system. Then the computer will 
look for the first of the given (ordered) characteristics by jumping over 
lists until the appropriate list label is obtained. 

When the appropriate section of tape is found, the problem basically 
reduces to the comparison of two ordered lists for common members. 
Suppose that we have two ordered lists of numbers, with K numbers in the 
first list, indexed by k (k = 1,2, ... ,K), and J numbers in the second 
list, indexed by j (j = 1, 2, ... ,J). A flow diagram of a code to 
record every number that appears in both lists is shown in Fig. 7-4. 
If the number in thej list is greater than the number being compared with 
it in the k list, then the code moves along the k list until a common num­
ber is obtained, or until a number in the k list is reached that is greater 
than the one in the j list. Then the code moves along the j list in a simi­
lar way, until the k number is equaled or exceeded. This process depends 
basically on the fact that the j and k lists are ordered. 

EXERCISES 

(a) By means of the information given in Table 7-1 complete the lists and tables 
partially shown in Fig. 7-3a and b. 

(b) Using the information given in Fig. 7-1 and Table 7-1, compile Tabledex tables 
using as the characteristics the words themselves, in alphabetical order. 

(c) Using each of the three lists completed in (a) and (b), search for all items 
associated with each of the following sets of given characteristics: evaluation, concept, 
design; and differentiation, application, England, gas. 

(d) Assign population-based numbers to the items of Fig. 7-1, and compile the 
lists of the first searching method from the information of Table 7-1. 

(e) Draw a flow chart for each of the searching methods given in this section. 

7 -3. Manual Searching Methods 

For each of the three searching methods given above there is an 
analogous manual searching method. Besides being of considerable 
importance in themselves, these manual methods can serve as a con­
crete visualization of the more abstract operations that take place in a 
computer. 

Marginal-punch Cards. The first method given above corresponds to 
the use of marginal-punch cards, where each card represents an item and a 
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marginal position on a card represents a characteristic. Different cards 
represent different items, but the same respective marginal position repre­
sents the same characteristic on each card. The association of character­
istics with an item is made on its card by punching a notch in the mar­

Punched notch 
representing an 

association 

r---------..~ ,....-__ --l.l..-.., 

o 0 
:;,; ~ 

Item 1.4· 

o 

~ ~ 
Item 1.2 

o 0 
""'i ~ 
to t.ci 
Item 1.1 

o 

FIG. 7-5. Marginal-punch cards. 

ginal position of those characteristics 
which correspond to the particular 
item of the card. One type of card 
commonly used has holes correspond­
ing to each marginal position. To 
sort a deck of the cards according to a 
particular characteristic, a needle is 
placed through the holes in the cards 
corresponding to this characteristic; 
then, when the needle is lifted, those 
cards which have been punched in 
this position will fall, the other cards 
will be lifted by the needle, and the 
deck is thereby separated into two 
parts (see Fig. 7-5). A search is per­
formed by repeating this process suc­
cessivelyon the dropped cards (which 
have the desired characteristic) until 
those cards punched in at least all the 
desired characteristic positions are 

obtained. Note that the initial deck of cards need not be kept in any 
particular order whatsoever. 

Peek-a-boo Cards. The second method given above corresponds to 
the use of the so-called "Peek-a-boo cards." Here each card cor­
responds to a characteristic; the surface of a card is laid off in an 

----- 0--. '\..~ 

'\.!?> 0 . '}~ 
o 

6.2 

0-­. '\..~ 

v v 

FIG. 7-6. Peek-a-boo cards. 

x, Y coordinate system with each particular pair of coordinates repre­
senting an item. Different cards represent different characteristics, 
but the same respective X, Y coordinates represent the same item on 
each card. The association of characteristics with items is made by 
punching a hole at the X, Y coordinate positions that represent each 
item associated with the characteristic of the card. A search is made by 
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first selecting from a deck of cards those cards which correspond to the 
given desired characteristics. The selected cards are placed together to 
form a pack; if an item is associated with all the given characteristics, 
then there will be a hole passing completely through the pack at the 
coordinate point corresponding to that item (see Fig. 7-6). Note that 
the initial deck of cards must be kept in some definite order so that the 
cards can be easily selected for a particular search, and note that the 
pack of selected cards must be carefully aligned. 

Programming a Computer to Generate a Manual Tabledex Collection. 
The third method given above corresponds to the manual use of the 
Tabledex tables themselves. Here the tables are printed in conventional 
bound-book form. The use of a collection of tables is directly analogous 
to their use on magnetic tapes. For example, suppose that we have a 
collection of tables corresponding to our bibliography illustrated above 
and that we desire to find all articles on the application of nuclear theory. 
From the alphabetical word list the code numbers are found: application 
5.1, nuclear 4.3, theory 4.4. These are placed in numerical order: 4.3, 
4.4, and 5.1. One then turns in the collection of tables to Table 4.3, 
which would appear as shown: 

TABLE 4.3 

v 2.4 4.4 5.1 5.3 6.2 
v 3.4 4.4 5.1 

3.3 4.4 5.3 6.1 
2.1 6.2 7.1 

The first two rows of Table 4.3 contain both 4.4 and 5.1 and are checked. 
Hence articles 2.4 and 3.4 by Seidle and by Tove are associated with the 
given words. The advantage of the manual use of Tabledex lies in its 
being in bound-book form, without the necessity for the manipulation 
of cards. 

A computer can be programmed to automatically compile and print 
a Tabledex collection for manual use. The method used to compile the 
Tabledex collection is of particular interest as an application of the 
techniques of this chapter. First the characteristics of each articlc­
characteristic association are ordered in themselves. For example, we 
would have the article-characteristic association: item 2.4, character­
istics 2.1, 4.2, 4.3, 4.4, 5.1, 5.3, and 6.2 (see Table 7-1). Second, from 
each such article-characteristic association, a list of all possible rows of 
the tables can be generated. For example, from the associations just 
illustrated the following seven rows can be generated: 

2.4 2.1 4.2 4.3 4.4 5.1 5.3 6.2 
2.4 4.2 4.3 4.4 5.1 5.3 6.2 
2.4 4.3 4.4 5.1 5.3 6.2 
2.4 4·4 5.1 5.3 6.2 
2.4 5.1 5.3 6.2 
2.4 5.3 6.2 
2.4 6.2 
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Third, the list of all such rows generated from every article-characteristic 
association is then sorted by ordering on the first (leftmost) characteristic 
code number. After the ordering, all rows with the same first character­
istic appear adjacent. For example, the following rows appear adjacent: 

2.4 4.3 4.4 5.1 5.3 6.2 
3.4 4.3 4.4 5.1 
3.3 4.3 4.4 5.3 6.1 
2.1 4.3 6.2 7.1 

When the number 4.3 has been removed, the adjacent rows are just Table 
4.3. Thus from this ordered list of rows the tables can be printed out 
by the computer. 

7 -4. Searching with Relaxed Conditions 

The Problem of Relaxed Conditions. It frequently happens that no 
item is associated with all the characteristics given. In such a case it is 
usually advisable to search with relaxed conditions. 

For example, suppose that there are given 10 equally important char­
acteristics and that no item is associated with all of them. Then the 
natural question to ask is: Are there any items associated with all but one 
of the characteristics, i.e., with any 9 of the characteristics? If not, then 
are there any items associated with all except 2 of the characteristics, 
i.e., with any 8 of the 10, and so forth? We shall describe a procedure for 
accomplishing this important kind of search which does not involve trying 
all possible combinations of 9 of the 10 characteristics, then all possible 
combinations of 8 of the 10, etc. This procedure can be extended to include 
a second type of relaxed-condition problem which may arise as follows: 
Suppose that 3 of the 10 given characteristics are most important and 
that it is desired to find all items associated with these 3 characteristics 
and also any 6, or any 5, etc., of the remaining 7 characteristics. The 
procedure can be easily generalized to include almost all relaxed-condition 
situations that occur in searching. 

The idea of a simple 80rt can be used to compare searching techniques. 
A simple sort is a separation of a collection of items into two parts by 
means of a single characteristic C, that is, into a part whose items are 
each associated with C and a part whose items are not. A simple sort is 
analogous to the manual separation of a deck of marginal-punch cards 
into two parts by means of a single needle. 

To see the advantage of the searching technique to be described over 
the straightforward method of trying all possible combinations of lp.R.vlng 
out one of the characteristics at a time, then two at a time, then three at a 
time, . . . , then K = n - r at a time, note that the total number of 
simple sorts required for the straightforward method is 

K , 
'\' n. 

k ~o (n - k - I)! 

However, the number of simple sorts required by the method to be pre-
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sented is simply 

(K + l)(n - K) 
2 

Searching for Items Associated with Any r Out of n Characteristics. 
The method of procedure is illustrated by Fig. 7-7. Suppose that there 
are four given characteristics, represented by C1, C2, C3, and C4• We 
would first sort the collection of items for those associated with C1• Next 
we would sort those which have C1 for those which also have C2• Then 
those having both C1 and C2 would be sorted for those also having C3, 

and so forth, until we find all items that have C1, C2, C3, and C4• In 
Fig. 7-7 we indicate the collection of items that are associated with at 
least C1 by C1, those associated with at least C1 and C2 by C1 • C2, etc. 
The collection of items that do not have C1 is indicated by C1, etc. Then 
C1 • C2 • C3 would represent the collection of items that at least have 
C1 and C2 and not C3• Thus the results of each successive sort of the first 
pass through the collection of items are indicated by the first row of 
Fig. 7-7. Here, in the first sort, the collection of items is divided into 
two parts, the part C1 and the part C1• Then the collection with C1 

is sorted for C2, resulting in a part C1 • C2 and a part C1 • C2 , and so forth. 
After the first pass there will result five collections C1 , C1 • C2 , C1 • C2 • C3, 

C1 • C2 • C3 • C4, and C1 • C2 • C3 • C4 ; all but the last of these will be used 
if another pass is necessary. 

If the collection C1 • C2 • C3 • C4 is empty, i.e., if no items are asso­
ciated with all of C 1 • C 2 • C 3 • C 4, we proceed to the second pass (the 
second row of Fig. 7-7). This time we start by first sorting C1 for C2, 

obtaining C1 • C2 and C1 • C2• We put the collections 01 • C2 and C1 • O2 

together; these are sorted for C 3, and two collections are obtained, one 
with 01 , C2 • C3 and C1 ' C2 • C3 , the other with C1 • C2 • C3 and C1 • O2 • C3• 

This latter collection is put with C1 • C2 • C3 and these sorted for C4 to 
obtain two collections, one with 0 1 ' C2 • C3 • 0 4, C1 • O2 • C3 • 04, and 
C1 • C2 • 63 • C4, the other with 01 ' C2 • C3 • C4, C1 • O2 • C3 • C4 , and 
C1 • C2 • 63 • C4• This latter collection and collection C1 • C2 • C3 • 04 

form the collection of all items having all except one of the given charac­
teristics. If this collection is empty, then we proceed to a third pass, as 
shown in the third row of Fig. 7-7, to find the collection of items with all 
except two of the characteristics, and so forth. 

Searching with Permanent Conditions. Suppose that there were seven 
characteristics given, C1 , C2, ••• ,C7, and that no item of the collection 
under consideration were associated with all these seven characteristics. 
The next step would be to relax the conditions, but suppose that we must 
have items associated with C5, C6, and C7, and with as many of the others 
as possible. The characteristic combination C5 • C6 • C7 is called a 
permanent condition. The searching technique would be first to sort the 
collection to obtain all items associated with C5 • C6 • C7• Then we would 
sort these on C1, C2 , C3, and C4 , as described above, to obtain all items 
each associated with C5 • C6 • C7 and three, or two, or one, of C1, C2, C3, C4, 
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As another illustration of a permanent condition, suppose that we 
desired to obtain all items associated with one or more of C5, C6, and C7, 

and with as many of C 1, C 2, C 3, and C 4 as possible. In such a case we 
would first sort for C 5, sort the remaining items for C 6, and then sort those 
still remaining for C7• These three sets would be put together to form 
the collection of items having one or more of C5, C6, and C7• We would 
next sort this collection on CI , C2, C3, and C4, as described above, to 
obtain all items each of which is associated with C5, C6, and/or C7, and 
three, or two, or one, of C1, C2, C3, and C4. In either of these examples, 
if no items were to have the permanent conditions, no further sorting 
could be accomplished. 

Searching with Preferential Conditions. Suppose that there were nine 
characteristics given, C1, C2, ... ,C9, and that no item of the collection 
were associated with all nine given characteristics. However, suppose 
that a preference were associated with the characteristics so that, say, 
CI , C2, and C3 have the most preference, C4, C5, and C6 have the next 
preference, and C7, Cs, and C9 have the least preference. The search­
ing procedure would first try for all of C 1, C 2, and C 3, or at least two 
of C1, C2, and C3, or at least one, etc., as described above. Having chosen 
the items associated with the greatest number of the most preferred 
characteristics, these would be considered a permanent condition and 
would be sorted for all of C 4, C 5, and C 6, or at least two of C 4, C 5, and C 6, 

or at least one, etc. From the items having the most preferred 
characteristics we would now have chosen the items with the most 
characteristics of the next preference. Considering these as representing 
a permanent condition, we would try next for the items with the most 
characteristics of the least preference, that is, C7, Cs, and C9• 

Note that the process of this section would be the natural one to follow in 
the problems of the previous paragraph when no items satisfy the desired 
permanent condition. The initial permanent condition would then 
be stated in terms of preferential conditions, and the process of this section 
would be used to obtain an approximation to the initial permanent 
condition. 

Relaxing Sets of Conditions. Suppose that it is desired to search for all 
items associated with at least one of GI , C2, and C3, and with at least one 
of C4, C5, and C6, and with at least one of C7, Cs, and C9, and with at 
least one of CIO , Cll , CI2• Suppose that no such item exists; then the 
problem is to find all items that have at least one characteristic from at 
least three of the four sets of characteristics, or from at least two of the 
four sets, and so forth. Here we wish to relax sets of conditions. In 
order to facilitate the discussion, let us represent condition CI , C2, and/or 
C3 by CI, condition C4, C5, and/or C6 by C2, condition C7, Cs, and/or C9 

by C3, and condition CIO, Cll , and/or C12 by C4. Then the searching 
technique becomes as described and illustrated above, with superscripts 
replacing subscripts, and with the single sorts replaced by the combina­
tions of sorts necessary to determine the Ci. 



~ 
~ 

'" 

Pass 
number 

1 

2 

3 

4 

Sort 
number 

Collection 
for sorting 

Results 
of sorting 

Collection 
for sorting 

Resuits 
of sorting 

Collection 
for sorting 

Results 
of sorting 

Collection 
for sorting 

Results 
of sorting 

Collection 
put 

aside 

1 

Desired 
collection 

-1· C2 • C3 • ~IC1· C2 • C3 • C4 

Collection 
put 

aside 

2 

Desired 
collection 

Collection 
put 

aside 

3 

Desired 
collection 

Collection 
put 

aside 

4 

Desired 
collection 

Collection of items 
with all 

characteristics 

FIG. 7-7. Analysis of met.hod of searching for all items each of which is associated with all, all except one, all e~cept two, etc., of the 
. given characteristics 0 1, [J2/ 0 3, and 0 4 , 



230 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 7 

EXERCISES 

(a) Punch a hole in each corner of sixteen 3 X 5 cards. Then write the names of 
the authors (see Fig. 7-1) on these cards, one name on each card. Mark off eight 
equally spaced positions on one 5-in. edge, nine positions on the other 5-in. edge of 
each card. Assign one word for each position, the same on each of the 16 cards. 
Next notch the edge of each card corresponding to the positions of words characteristic 
of this author's article (see Table 7-1). The cards can now be searc.hed by placing a 
knitting needle under the deck of cards at the position of the desired word (see Fig. 
7-8); the notched cards will drop, and the unnotched ones can be separated by putting 
another knitting needle through a corner hole of the raised cards. By appropriately 
separating collections of these cards as in Fig. 7-7, find all items associated with at 
least six, at least five, at least four, and at least three of the following seven given 
characteristics: differentiation, application, England, evaluation, design, gas, and concept. 

FIG. 7-8. Use of knitting needles to search marginal-punch cards. 

(b) Using the cards made in (a), find all items that are associated with design and 
England and as many of the following as possible: differentiation, application, evalua­
tion, gas, and concept. 

(c) Using the cards made in (a), find all items that are associated with either 
evaluation or design or both and as many of the following as possible: differentiation, 
application, England, gas, and concept. 

(d) How can the process of searching for all except one, except two, etc., be accom­
plished by means of the Tabledex tables? (HINT: A succession of tables must be 
used: one table for the first pass, two tables for the second pass, three tables for the 
third pass, etc.) 

(e) Draw a flow chart for a search for items associated with all the given character­
istics except one, except two, etc. First assume the data to be given as in Fig. 7 -2b. 
Then assume the data to be given in terms of the Tabledex tables, as in Fig. 7-2c. 

7 -6. Sorting and Ordering 

As discussed in Sec. 7-1, sorting can always be accomplished by order­
ing; in this section we shall turn our attention to ordering. Sorting and 
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ordering are essentially the same process, except that ordering carries 
the process all the way, while sorting carries the process only part of the 
way. In our discussion of ordering we shall refer to the ordering of a 
given list of numbers in order to be concrete, but it is clear that the 
methods apply for any linear ordering rule. 

M inimum- or M aximum-in-pass. The first of the five methods of 
ordering to be presented is called the minimum-in-pass method. The 
description will be given in terms of the use of magnetic tape, but the 
principles involved are perfectly general. In this method, on the first 
pass over the tape the minimum number is recorded as follows: The first 
number is recorded in a temporary cell and is compared successively with 
the other numbers until a smaller number appears. The first number 
replaces this smaller number on the tape as this number is placed in the 
temporary cell. The successive comparisons are continued until another 
smaller number appears; again the two numbers are interchanged, and so 
forth. At the end of the first pass it is clear that the smallest number 
appears in the temporary cell. This is placed as the first number on the 
tape, and the second pass is started with the second number on the tape, 
proceeding as before. At the end of this pass the second smallest number 
appears in the temporary cell and is placed as the second number on the 
tape, and so forth. The ith pass starts with the ith item, determines 
the ith smallest number, and puts it in the ith position on the tape. For 
N numbers this method requires N - 1 passes through the tape; how­
ever, if the tape can be positioned, starting each pass with the next 
number in turn effectively reduces the number of passes by half, to 
approximately N /2. 

It is obvious that the maximum instead of minimum number could have 
been recorded on each pass (maximum-in-pass) and placed at the end 
of the remaining list; this method would again require about N /2 passes. 
If both the minimum and a maximum are recorded in each pass, the latter 
being placed on the tape at the end of the pass, the former at the beginning 
of the next pass, the number of passes is again halved, to approximately 
N /4. Depending on the size of the high-speed memory, the least two, 
or least three, or least m numbers, and the greatest two, or greatest three, 
or greatest n numbers could be found on each pass (and ordered within the 
high-speed memory), further reducing the number of passes required. 

If more than one tape is available, the minimum-in-pass method can 
be accomplished in parallel. The original list to be ordered is divided 
into sublists (say nl in number). A new list is made from the minima 
which are removed from each of the nl sublists. This new list is divided 
into n2 sublists, and a third list is made from the minima which are 
removed from each of the n2 sublists. As many new lists as desired can be 
made, and the first number of the ordered list will be the minimum of 
the last such list. As a number is removed from a list, it is replaced by 
the minimum from the sublist from which it was originally taken (until 
the sublist is exhausted). Table 7-2 illustrates the process applied to an 
original list of 12 numbers, divided into nl = 4 sublists. The minima 
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from these are divided into n2 = 2 sublists; their minima are then divided 
into n3 = 1 sublist, whose minimum goes into the final ordered list, 
labeled n4. 

Transposition. The second method orders a list by transposition. 
The process is to transpose adjacent numbers on the list if the order of 
their characteristics is inverted. It starts by comparing the first two 
numbers and continues on overlapping pairs through the list. Pass after 
pass is made until no transpositions are required on an entire pass; then 
the list is in order. For example, consider Table 7-3 (where the caret 
represents comparison, the t transposition). Here three passes were 
necessary to order the numbers. The fourth pass will result in no 

TABLE 7-2. MINIMUM-IN-PASS ORDERING USING MULTIPLE SUB LISTS 

nl n2 na n4 nl n2 na n4 nl n2 na n4 nl n2 na n4 nl n2 na n4 

I:}l 1~} 3 I~} Z} I:} 6} 121 6} 

I~}J} lOI9 } IOl9l lO19} 
lO} 18} 4 
9 2 

4} 2 
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~} 5 
11 

Initial First Second Third Fourth 
minima replacemen t replacement replacement replacement 
selected of minima of minima of minima of minima, etc. 

further transpositions, indicating that the list is in order. A variation on 
this method is to order successive overlapping sets of three or more 
(say r) numbers; a single tape may still be used in this process, and the 
number of passes required is approximately divided by r - 1. Table 
7-4 illustrates the procedure for overlapping sets of three numbers. 

Ordering by Radix Coefficients. The third method is probably the most 
obvious of all the methods when a clearly defined radix occurs; in the 
present discussion we shall consider decimal numbers (i.e., radix ten). 
The method consists in sorting the numbers by the most significant figure, 
putting the sorts in order. The numbers within each sort are ordered 
on the second most significant figure; then within each of these stlbsorts the 
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numbers are ordered on the third most significant figure; and so'; forth. 
For an example, see Table 7-5. This method has the disadvantage that 
after the first pass the computer must work on subregions of the tape, 
which can present difficulties. For sorting punch cards, for example, 
this means that individual sorts must be made on successively smaller 
and smaller pieces of the original deck; such handling becomes increas­
ingly inconvenient. 

TABLE 7-3. ORDERING BY TRANSPOSITIONt 

5» 4 4 4 4 

4 5p 1 1 1 

1st 1 It 5p3 3 
pass 

3 3 3 5]>2 

2 2 225 

4}> 1 1 1 1 . 

1 4]>3 3 3 
2d 

3 3 t 4}> 2 2 pass 

2 2 2 4> 4 
5 5 555 

1> 1 1 1 1 

2 2 332 

3d 2 »3> 3 3 pass 

4 4 4 4 '4 

5 5 5 5>5 

t Successive overlapping pairs are scanned. 

The fourth method, which is essentially the inverse of the third, elimi­
nates this difficulty. Here the first sort is made on the least significant 
figure. Then the entire tape is sorted on the second least significant 
figure, and so forth. For an example, see Table 7-6. However, both 
these methods offer the difficulty that simultaneously used multiple tape 
units are indicated. Of course the sub sorts might be made by one of the 
first two methods, whence the entire sorting procedure becomes a mixture 
of methods. 



t-:J 
W 
~ 

TABLE 7-4. ORDERING BY TRANSPOSITION WITHIN OVERLAPPING SETS OF THREE NUMBERS 

12] 3 3]3 3]1 1 
3 6] 6 6 6] 2 2 2] 2 2 
6 12 10 9 9 9 6 1 1 3 3 3 3 

10 10 12]10] 2 2 2 9]6]4. 4 4 4]4]4 4 
9 9 12 10] 1 1 1 9 6]6 6 6 6 5]5 5 

~ 2 1~ ~~]1~] 8 : 4 ~ ~]~] 7 ; 5 ~ ~]~] 7 ~ 
4 4 12 10] 5 5 5 9 8] 8 8 8 8 8] 8 8 
8 . 8 12 10 7 7 7 9 9 9 9 9 9 9 

5 5 12]10]10 10 10]10 10 10]10 
7 7 12 11 11 11 11 11 

11 . 11 12 12 12 
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Suppose that for the fourth method ten bins, or magnetic-tape units, 
in addition to the unit holding the original list, were not available for the 
separation by least significant decimal digit. For example, suppose that 
only 5 units were available, 1 of which contains the original list. Then 

TABLE 7-5. ORDERING BY THE THIRD METHOD 

Sort by Sort by Sort by 
Original most 2d most 3d most 

list significan t significant significan t 
figure figure figure 

345 256 256 255 

344 265 255 256 

537 255 265 264 

256 264 264 265 

554 345 337 337 

447 344 345 344 

337 337 344 345 

265 347 347 347 

255 447 447 446 

466 466 446 447 

446 446 466 464 

464 464 464 466 

347 537 537 336 

264 554 536 337 

536 536 544 544 

544 544 554 554 

we could convert the least significant decimal· digIt of each number to 
two radix-4 digits and in two passes order the list by the least significant 
decimal digit. Similarly two passes would be required for the next least 
significant decimal digit, and so forth. 
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TABLE 7-6. ORDERING BY THE FOURTH METHOD 

Sort by Sort by Sort by 
Original least 2d least 3d least 

list significant significant significant 
figure figure figure 

345 344 536 255 
344 554 537 256 
537 464 337 264 
256 264 344 265 
554 544 544 337 
447 345 345 344 
337 265 446 345 
265 255 447 347 
255 256 347 446 
466 466 554 447 
446 446 255 464 
464 536 256 466 
347 537 464 536 
264 447 264 537 
536 337 265 544 
544 347 466 554 

EXERCISES 

(a) Draw a flow chart for coding each of the above four ordering methods. 
(b) After shuffling a deck of playing cards, order them by each of the four methods 

without reg~rd to suit (Le., the four Queens, for example, will appear adjacent, after 
the Jacks and before the Kings, but not ordered by suit among themselves). 

(c) Suppose that one were ordering alphabetically by the fourth method, using a 
computer with 10 tape units. What radix could be used, and how would the tape 
units be utilized? 

7 -6. Ordering by Merging 

Merging. The fifth method is based on the simple idea of the merging 
of two ordered lists. For example, consider these two ordered lists of 
numbers: 

265 
337 
446 
466 

and 

255 
264 
464 
536 
544 

Forming a single ordered list containing all the numbers is accomplished 
by successively comparing the first numbers on each list and removing 
the smaller number to a third list. Thus, since 255 < 265, 255 becomes 
the first number of the new list; now 264 becomes the first number of the 
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second list, and since 264 < 265, 264 becomes the second number of the 
new list; next, since 265 < 464, 265 becomes the third number of the new 
list; and so forth. In this manner the two ordered lists are merged to 
form a single new ordered list, namely, 

255 
264 
265 
337 
446 
464 
466 
536 
544 

In more mathematical notation, if the two ordered lists are al < a2 < 
... < ar and b1 < b2 < ... < bJ , then the merged list, namely, 
C1 < C2 < . . . < C (I+J), is formed as indicated in the flow diagram of 
Fig. 7-9. 

The initial step of the general ordering by merging process is to separate 
the given list into two lists in a manner that preserves any ordering that 
might have originally appeared among adjacent numbers. The first 
number of the given list is used to start the first of two generated lists. 

i+l' - i 

FIG. 7-9. Flow chart for merging two ordered lists. 

Then successive numbers of the given list are added to this new list so long 
as they appear in the proper order. The first number encountered that 
appears out of order is used to start the second generated list. All 
successive numbers that are in the proper order are placed successively in 
this second list. When a number out of order again appears, it is placed 
in the first list, with those following numbers which are in the proper 
order, and so forth. Thus in forming the two new lists we switch output 
lists whenever a number appears out of order, so that any order within a 
string of adjacent numbers in the given list will be retained in one of the 
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two lists. For the example below, strings of numbers in the origiIiallist 
that appear in the proper order are included in braces; these are alter­
nately placed in the t"vo generated lists. 

Original list 

{345 

{
344 
537 

{
256 
554 

{447 
{337 
{265 

{
255 
466 

{
446 
464 

{347 

{

264 
536 
544 

New list 

{345 

{
256 
554 

{337 

{
255 
466 

{347 

New list 

{
344 
537 

{447 
{265 

{
446 
464 

{

264 
536 
544 

When this initial step is finished, the ordering proceeds as follows: 
Each of the two lists contains sublists that are ordered, and each sublist of 
one can be paired with a sublist of the other, except perhaps the last sub­
list of one of the lists (see the horizontal lines below). The pairs of 
ordered sublists are then merged. The merged results are again placed 
alternatelyt in two new lists as shown below: 

New list New list 

345 344 344 256 
merge 537 345 447 

256 447 537 554 
554 merge 265 255 
337 265 337 264 

merge 446 446 466 
464 464 536 

255 264 544 

466 merge 536 347 
544 

347 

The process is repeated, forming each time two lists of increasingly 
longer ordered sublists, until all the numbers appear in one ordered list. 

t The alternation of the merged sublists in the new lists ensures the maximum 
number of pairings of sublists for the next merge; if the total number of sub lists is 
known, the same result would be obtained by putting the first half on one tape, the 
second half on the other. 
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Second merge Third merge Ordered list 
results results 

256 255 255 347 255 
344 264 256 256 
345 265 264 264 
447 337 265 265 
537 446 337 337 
554 464 344 344 

466 345 345 
536 446 347 
544 447 446 

347 464 447 
466 464 
536 466 
537 536 
544 537 
554 544 

554 

Often four magnetic tape units are used in this ordering process. 
Two of the tape units hold the old lists, and the other two record the 
results of the merging. Then, when both old lists have been exhausted, 
the newly formed lists become the old lists and the pairs of tape units 
exchange functions. In merging two su blists, the end of a su blist is 
sensed when ai > ai+l; when both sublists are exhausted, i.e., when both 
ai > ai+l and bj > bj+l, then the merge starts on the next pair of sublists, 
the results being put on the other receiving tape unit. Figure 7-10 gives 
a flow chart for this process. 

Variations on Merging. The technique of ordering by merging two 
ordered lists is easily extended to ordering by merging more than two 

Start to merge 
next pair of 

ordered sublists 

Yes 

Are both ai> ai+l 

and bj > bj +1? 
No 

Place next number of 
unfinished sublist 

on output tape 
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ordered lists. The initial separation of a list to be ordered can involve 
more than two new lists, and then the merging of ordered sublists would 
be accomplished successively with one sublist from each. If the initial 
step formed m new lists and the merging of sublists from these formed 
n new lists, then m + n magnetic tapes would be involved. Below 
we illustrate the case for three initial new lists (i.e., m = n = 3): 

Ordered 
list, second 

Initial step First merge merge 
Original list New list New list New list results result 

1345 {345 {344 {256 256 255 264 255 
{344 447 537 554 344 265 536 256 

537 {255 f37 {265 345 337 544 264 
{256 466 446 347 447 347 265 

554 464 537 446 337 
{447 r4 554 464 344 
1337 536 466 345 
1265 544 347 

{255 446 
466 447 

{446 464 
464 466 

1347 536 

r4 537 
536 544 
544 554 

Another variation takes further advantage of any intrinsic ordering 
in the original list. Here a tape is not closed off as a smaller item occurs, 
but rather is held ope!! to receive any larger item later in the list. Each 
new item is compared with the final items on each tape, in order of largest 
to smallest, and is put on that tape whose last item is as large as possible 
without exceeding the new item. If the new item is smaller than all the 
final items, it is placed on the tape with the largest item to start a new 
sublist. Using this technique to sort the above list of numbers, merging 
from two lists, gives the following (with the sublists indicated) : 

First merge Second merge 
Initial step results results 

{345 {344 

C
4 

C
6 256 255 

537 55.!,. 345 337 337 264 
{256 {337 537 447 344 265 

447 

r
55 554 464 345 347 

{265 446 r5 466 447 446 
466 464 265 {264 464 536 r7 {264 446 347 466 544 
536 536 537 
544 544 554 
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The third merge, instead of the fourth required above for two-tape 
merging, will give the ordered list. Note how changing tapes for the 
italicized numbers allows the lengthening of the sublists. 

Comparison of Ordering Methods. The number of passes, i.e., the 
number of times one must look through all the numbers of the original list, 
is very large for the first two methods as compared with the merge 
method. The straight minimum-in-pass method requires N /2 (or N /4 
or perhaps less depending on the equipment) passes for N numbers. The 
merge sort using 2T magnetic tape units requires no more than K + 1 
passes, where I( is the smallest integer such that T K ~ N. The merge 
sort has the additional feature that full advantage is taken of any ordered 
sublists that may appear in the original list, and if the numbers are ran­
domly distributed, there ought to be about N /2 ordered sublists. In 
such a case 1 + K' passes are required, where K' is the smallest integer 
such that T K' ~ N /2. For the transposition method there can be as 
many as n(n + 1)/2 passes, but here again any ordered sublists that may 
appear in the original list can reduce this number of passes. The varia­
tion of the transposition method is of course more efficient. Ordering 
by the radix-coefficient methods can compete with the merge sort when all 
numbers from 1 to N are in the list, with practically no ordered sublists. 
But if the numbers have more than K digits, where K is the smallest 
integer such that RK > N, where R is the radix being used, then the 
merge sort would require fewer passes. Since the radix-coefficient 
methods do not take advantage of any ordering that might already exist 
in the list, the merge sort can be still more advantageous. However, if 
only a single tape is available, only the minimum-in-pass or transposition 
can be done. 

Of course the number of passes required for ordering a list is not 
necessarily the only criterion applied in deciding on a method for ordering. 
The nature of the equipment available, e.g., how many magnetic-tape 
units, or bins, are available and whether these can or cannot be used con­
currently, how complex operations can be performed, etc., often limit the 
types of methods that can be used. The number of items or numbers 
to be sorted, the number of times such a process must be repeated, 
etc., all enter into the choice of the ordering system. In general a 
combination of ordering techniques can be used to take advantage of par­
ticular situations that may occur at the different levels of the ordering 
process. However, if we were asked to choose which system is of greatest 
importance, we would say the merge ordering method and its variations 
have the most advantages. 

EXERCISES 

(a) Draw a flow chart for coding a merge sort using four tapes, passing the numbers 
from two tapes to the other two . 

. (b) Draw a flow chart for coding a merge sort, passing the numbers from m tapes 
to n tapes, where m and n can be specified arbitrarily. 
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(c) What is the maximum number of passes required to put a deck of 52 cards in 
some order by suit as well as by denomination, merging from two bins to two bins? 
From three bins to one bin (counting the pass required to redistribute the cards into 
the three bins after each merge)? From four bins to four bins? From five bins to 
three bins? Considering these results, discuss the most efficient way to utilize a 
fixed number of tape units in a merge sort. 

7-7. Codifying: Error Correction and Superimposition 

Encoding, Decoding, and Codifications. By codifyingt is meant the 
process of relating to an item or characteristic a set of symbols, called 
a codification. As we have seen (cf. Sec. 7-1), codifying is intimately 
associated with searching, sorting, and ordering. Codifying is used 
for three purposes: First just for convenience in handling the information 
in a shorter form rather than in raw form; second for making the infor­
mation compatible with a particular mechanical or electronic processing 
device being used; and third to facilitate the particular method of search­
ing, sorting, or ordering being used. 

In general, codifying involves two processes, called encoding and decod­
ing. Encoding is the process of generating the codification related to a 
given item or characteristic; decoding, conversely, is determining the 
items or characteristics related to a given codification. The processes 
of encoding and decoding are accomplished by means of either a code book 
or a relation scheme. For example, a telephone book is an encoding 
code book that gives the codification (i.e., the telephone number) related 
to an item (i.e., a person); the decoding is accomplished after dialing, by 
means of a scheme built into the telephone company's electrical dialing 
equipment. Another example is the biological codification of the genes, 
where the encoding is the evolutionary process and the decoding is the 
ontogenetic process that results in, say, an individual animal. 

The codification of items or characteristics can be either substantive or 
nonsubstantive in character. A substantive codification is one in which 
the symbols have meaning in themselves. A substantive codification 
of names, for example, might comprise simply the first four consonants 
of the last names with the initials. A word in a dictionary is a sub­
stantive codification of its meaning. The genes, of course, represent 
an outstanding example of. substantive codification . 

. For a nonsubstantive codification consider the example of the codifica­
tion of research reports by accession numbers, or the codifying of an 
item in a bibliography by the page and line number on which it is found. 
N onsubstantive codifications are frequently merely addresses that tell 
the locations of the related items or characteristics. An exception to 
this is the population-based (nonsubstantive) codification considered in 
Sec. 7-2, in which the symbol for a characteristic is the number of items 
associated with that characteristic. 

The relationships between encoding, decoding, and information proc­
essing are summarized in Fig. 7-1L For example, consider our illus-

t See footnote on p. 217. 
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trative bibliography discussed above. Here the encoding was the 
relating of population-based numbers to the given characteristics (i.e., 
the given retrieval words) by means of a code book. The processing was 
searching, where, for instance, the Tabledex method might be used, 
which resulted in a collection of numbers related to the associated 
items (i.e., the page and line numbers of desired article references). 
Finally the decoding process was accomplished by locating the items 
at their address (i.e., the entries are retrieved from their page and line 
numbers). The information processing here consisted in transforming a 
set of characteristic codifications into a set of item codifications. 

Encoding I Input 

process I codifications 

Information processing 
(searching, sorting, 

ordering, etc.) 

1--__ O_u_tP_ut_---;~1 Decoding I 
codifications I process 

FIG. 7-11. Relation between encoding, decoding, and information processing. 

Efficiency of Codifications. To determine how many symbol posi­
tions are required in an unambiguous codification using K different 
symbols, we consider each symbol as a number in the base (radix) I( and 
use enough symbol positions to count the number of items in the base 1(. 
That is, with N items (or characteristics) and Ksymbols, the number of 
symbol positions in a codification must be no smaller than the smallest 
integer n such that Kn 2:: N (or n 2:: logK N) if the codification relating to 
an item is to be unique in the list. For example, for 600 items and a 
binary codification (that is, K = 2), we havet 

2.7782 
n 2:: log2 600 = ----0.3 = 9.261 

or n = 10. If the number of positions is greater than n, that is, if more 
positions are being used than are necessary, the codification is called 
redundant. If fewer than the required n positions are used, the codifica­
tion is called irredundant and the code for an item is not unique in the 
list. A codification that is neither redundant nor irredundant is called 
efficient. 

For example, an English word can be considered as a codification of 
an idea using the 26 alphabetical symbols. Suppose that we have a 
dictionary all the words of which are no longer than 10 letters. We can 
make all the words the same length by introducing a 27th letter, say a, 
and filling up with a's all positions to the left of a, word to ~ake 10 
positions altogether, if necessary. It is then possible to have more 
than 145 X 1012 different words in our dictionary. 'However; a:' desk 
dictionary has only approximately 100,000, or 105, words, and so a dic­
tionary is redundant. Then again, that's to be expected. 

In the next paragraphs, we shall consider a use for purposely redundant 
t Recall that logK N = loglo N Iloglo K. For K = 2, log2 N = loglo N Iloglo 2, 

where lOglO 2 ~ 0.3. 
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codification; that discussion will be followed by consideration of a use 
for purposely irredundant codifications. 

Self-correcting Redundant Codification. Frequently situations arise 
where errors may be introduced into a codification during storage or 
transmission. If errors cannot be tolerated, a redundant code can be 
devised with the extra positions of the redundancy used to correct such 
errors as may occur. However, the self-correcting scheme that makes 
use of redundant positions must also be able to correct errors that may 
occur in these extra redundant positions as well. The process can be 
outlined as follows: First from the given information-carrying codification 
there is generated the redundant codification. This redundant codifica­
tion is stored or transmitted, etc., during which time some errors can 

Original 1 
inform~tion-

carrymg 
codification 

Redundant Redundant 
~ codification Storage or 

generator codification transmission 

t 
Source of 

possible errors 

Redundant 
codification 

that may 
have errors 

Information-
carrying 

codification 
regenerator 

... ! Correct 
inform~tion­

carrymg 
codification 

FIG. 7-12. The self-correcting redundant-codification process. 

enter into the codification. Finally, when the information is to be used, 
there is generated from the redundant codification (which may contain 
some errors) the correct information-carrying codification in spite of any 
errors in the redundant codification (see Fig. 7-12). In what foliows 
we shall confine ourselves to binary codification. 

Let us first illustrate a self-correcting technique that will correct a 
single error. The first step is the formation of the redundant codifica­
tion. Suppose that the information-carrying part of the codification 
has 4 bits, 1o, II. 12, I 3-say, for example, 1101. We form an array as 
shown in Fig. 7-13 (with the top row all units and the columns otherwise 
having all possible combinations of zeros and units). The information-

0123 4567 

(10 = 1 1111 1111 
Information-carrying r' ~ 1· 0101 0101 

codification 12 = 0 0011 0011 
13 = 1 0000 1111 

Redundant codification 1010 0101 
FIG. 7-13. Work for forming redundant codification for single-bit self-correction. 

carrying codification is set down beside the array as a column. The 
desired redundant codification is formed· bit by bit by comparing this 
column successively with each column of the array, counting the number 
of units in common (i.e., logically multiplying the columns and counting 
the number of units in common; see Sec. 4-5 and Part 3). If the number 
of units is even, a zero is placed under that column of the array; if odd; 
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a· unit. For example, for the sixth bit, under column 6 we have 

-
:. r6 = 0 

for the seventh bit 

G)'G)-G) 
-

:. r7 = 1 

and so forth. 
Suppose that this redundant codification 1010 0101 is stored, and dur­

ing the storage the third bit r3 becomes changed. Then the incorrect code 
is 1011 0101. Of course we assume that we know nothing about the 
error in the codification except that there may be at most a single error. 
The problem remains to determine the correct bits 1o, II, 12, and 13 of 
the original information-carrying codification. The correct value of 
the bits II, 12, 13, and 1o will each be derived, in this order, in spite of 
the error in the code. First note that, if II = 0, then because of the 

o 2 3 

Incorrect redundant codification: 1 0 1 1 

Lines connecting J 
appropriate pairs 

of positions 

4 6 '1 

o 1 0 1 

:3 pairs different, 
-1 pair same; 11-1 

_ 1 pair different, 
3 pairs same; 12 = 0 

_ 3 pairs different, 
1 pair samei 13= 1 

FIG. 7-14. Work for finding III 121 and la. 

method of formation we would clearly have ro = rl, r2 = r3, r4 = r6, 
and r6 = r7; that is, adjacent pairs of bits would be the same. If II = 1, 
then none of these adj acen t pairs would be the same. A single error can 
affect only a single pair of positions; hence, to find II, we simply check 
to see whether we have more" same" pairs, or more '.' different" pairs. 
More same pairs means II = 0; more different pairs means II = 1. 
Similarly 12 is determined from pairs (rO,r2), (rl,r3), (r4,r6) , and (r5,r7) 
and 13 from pairs (rO,r4), (rl,r5), (r2,r6), and (r3,r7) (see Fig. 7-14 for the 
work). To find 10, consider an array composed of the rows of the 
original array corresponding to the II, 12, or 13 which are found to be 
units and the redundant-code row. Under each column at this array 
place a zero if the number of units in the column is even, a unit if odd. 
If the number so formed is mostly zeros, 10 = 0; if mostly units, 1o = 1. 
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Incidentally this new number clearly shows the position of the single 
error (see Fig. 7-15), 

As another illustration, consider a 5-bit information-carrying codifica­
tion and an extension of the above scheme to correct as many as 3 errone­
ous bits in the redundant codification. Let the original 5 bits be 10 = 0, 
II = 0, 12 = 1, 13 = 1, and 14 = 0. Figure 7-1Ba represents the work 
required to generate the redundant codification which is.to be transmitted 
or stored; the work proceeds just as in the example above. Suppose 

11 = 1 
13= 1 

Incorrect redundant codification 

0123 4567 

0101 0101 
0000 1111 
1011 0101 

New number 
FIG. 7-15. Work for finding 10 • 

1110 1111 f- more units; :. 10 = 1 
(Note that error occurred in position 3.) 

that erroneous codification shown in Fig. 7-16 results from the storage, 
then the work required to determine the correct 5 information-carrying 
codification bits appears in Fig. 7-16b. 

(a) 
. Generating the 

redundant 
codification 

(b) 
Regenerating 

. the original 
. information 

Information- {::: ~ 
carrying 12 = 1 

codification 13 = 1 

14= 0 

Redundant codification: 

Erroneous codification: 

.3 pairs different 
5 pairs same" -
:. 11 = 0 

5 pairs different 
.3 pairs same -
:. 12 = 1 
5 pairs different 
.3 pairs same 
:. 13 = 1 

.3 pairs different 
5 pairs same 
:. 14= 0 

New number: :.10 = 0 

o 1 2 3 

1 1 1 1 

0 1 0 1 

001 1 

o 0 o 0 

o "0 0 0 

0 0 1 1 

0 o 1 0 

V ,U 

,'- .J I-' 

0 0 1 1 

0 0 0 0 

0 0 1 0 

0 0 0 1 

4 5 6 7 

1 1 1 1 

0 1 0 1 

o 0 1 1 

1 1 1 1 

0 0 0 0 

1. 1 0 0 

1 1 1 ·0 

~ I~ 

L ~ f-' 

0 0 1 1 

1 1 1 1 

1 1 1 0 

o 0 1 0 

Note that errors occurred in positions .3, 6, and"12. 

8· 9 10 11 

1 1 1 1 

0 1 0 1 

0 0 1 1 

o 0 0 0 

1 1 1 1 

0 0 1 1 

0 0 1 1 

U u 

I-~"'" 

0 0 1 1 

0 0 0 0 

0 0 1 1 

0 0 0 0 

FIG. 7-16. Scheme illustrating three-error correcting process. 

12 13 14 15 

1 1 1 1 

0 1 0 1 

0 0 1 1 

1 1 1 1 

1 1 1 1 

1 1 0 0 

o 1 0 0 

u IL 

l.Y~ 

o 0 1 1 

1 111 

0 1 0 0 

1 0 0 0 
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Observe that in the first example we used 8 bits to codify 4 informa­
tion-carrying bits, or a redundancy of 4 bits; in the second example we 
used 16 bits to codify 5 bits, or a redundancy of 11 bits. In the first 
case we are trying to recognize 9 different possibilities, i.e., no error, or a 
single error in one of eight positions. This clearly takes 4 bits, the 
redundancy used. For the second case we are trying to recognize 697 
different possibilities, i.e., no error, a single error in one of 16 positions, 

a double error that can occur in e26) = 120 different ways,or a triple 

error that can occur in e36) = 560 different ways. t To distinguish 

among 697 possibilities, we clearly need 10 bits; so the II-bit redundancy 
of the second example is one more than the minimum required. However, 
note that the Oth column of the array could have been omitted, and 
the scheme would work just as well. This would give us our minimum 
10-bit redundancy. 

Superimposed I rredundant Codification. As we have seen, a binary 
codification that will distinguish uniquely between N characteristics 
requires at least log2 N bit positions. Thus, if 4,500 characteristics are 
in the list, 13 bits are required. It frequently happens that, although 
N characteristics could occur, fewer than N of these actually appear in 
a particular situation. However, it is in general not known beforehand 
how many will appear. In such cases, particularly when a substantive 
codification for the characteristics is used, at least log2 N bit positions are 
used for the codification anyway, to take account of all eventualities. 
Thus, even though not all 4,500 characteristics will occur, 13 bits might 
still be reserved for the codification. 

Furthermore, suppose that we are dealing with items each of which is 
associated with X of these characteristics; then, according to our above 
discussion, at least X 10g2 N bit positions must be used to identify an 
item. For example, if X = 3 and N = 4,500, then 3 X 13 = 39 bit 
positions would be necessary. Thus, in principle, NX items can be dis­
tinguished this way; but as we observed above, we are here considering 
situations where they do not all actually appear. Evidently we are 
being wasteful of bit positions because fewer than NX items require 
fewer than X log2 N bit positions for a codification. The problem there­
fore arises: How can we use fewer than X log2 N bits for our codification, say, 
H < X log2 N, and yet maintain our ability to distinguish among all N 
characteristics? The answer is found in the concept of superimposed 
codification. 

By the superimposed codification corresponding to X characteristics 
we mean the result of forming the logical sum (see Sec. 4-5 and Part 3) 
of the individual codifications for these X characteristics. That is, if 
the units represent, for example, notches on the edge of a card, two 

t Recall that the number of ways of taking X objects Y at a time is given by the 

h· . I ffi . (X) X! momm coe Clent y = Y!(X _ Y)!' 
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notches in the same position are equivalent to a single notch. Thus, if 
three characteristics have the following codes: 

Position 
Characteristic 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1st .......... 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 
2d .......... 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 
3d .......... 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 

then the corresponding superimposed codification is 

001 100 101 1 100 1 0 100 1 0 

We shall illustrate by means of an example how superimposed codification 
can be made to satisfy the above criterion of using fewer than X log2 N 
bits and yet maintain the ability to distinguish among all N character­
istics. Suppose as above that N = 4,500. Let us codify the char­
acteristics as follows: Use 20 positions, and let each codification con­
tain precisely 4 units. This codification will allow us to code each 

,------.,...----.-----r--lst characteri stl c 

,------E-T--E-..----E------.- 2d characterisU c 

r--~--~----.-----r- 3d characteristic 

1 2 3 4 5 6 7 8 !l 10 11 12 13 14 15 16 17 13 19 20 

'----------'----.1.----------'---4- False drop 

Item 

FIG. 7-17. Example of superimposed codification. 

characteristic uniquely, because 20 positions can be taken four at a time in 

(
20) 201 . 4 = 41(20 _ 4) 1 = 4,845 dIfferent ways, and 4,845 > 4,500. Finally, 

suppose that each item is associated with three characteristics; that is, 
X = 3. Then let the codification of the item be the superimposed codifica­
tions of its associated three characteristics. Note that the codification 
for an item now comprises only 20 positions, rather than the 39 thought 
necessary above, saving about half the positions. 

The advantages of this technique can most readily be visualized in 
terms of the marginal punched cards described above, where each card 
represents an item, and where the marginal positions are the bit positions 
with a punch representing a unit, no punch a zero (see Fig. 7-17). Sup­
pose that an item is associated with the three characteristics whose 
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codifications appear above and that the 20 marginal positions of the 
item card are punched with the superimposed codification. ThEm, if all 
items associated with the first characteristic are being searched for, the 
sorting needles: are placed in positions 3, 7, 9, and 11, and clearly the 
proper item cards will drop. Similarly for the second or third character­
istic. However, we must evidently pay a price for this convenience and 
saving in item-codification positions. For suppose that the code for 
some other characteristic is 

3 

00100 
10 

00001 
11 

10000 
19 

00010 

Our item card (see Fig. 7-17) is not associated with this characteristic 
but nonetheless will drop in the search for items associated with this 
characteristic. The reason for this is that our codifications overlapped, 
allowing for more than three combinations of 4 units. In fact, in our 
illustrative example, nine punches appear, allowing for 

(:) = 41(9 9~ 4) 1 = 126 

such possibilities, and hence 126 - 3 = 123 possible false combinations. 
However, the situation is not so bad as it seems, for remember that we 

supposed that not all the (2~) = 4,845 possible characteristics actually 

appear, and hence not all the false combinations will ever be sensed. 
The subject of superimposed codification therefore resolves itself into the 

problem of determining the probability p that an item (card) not associated 
with a particular characteristic will be selected (dropped) during the search 
for that characteristic. We shall refer to p as the probability that an 
item (card) will be a false drop. The formulas given below for this 
probability p are based on the assumption that the codes for the charac­
teristics are randomly chosen and that the associations of items with 
characteristics are also randomly chosen. 

Let H = number of positions in superimposed codification· . 
Y = number of units in a characteristic codification 
X = number of characteristics associated with an item 

Then p= 

where 
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(Y)(H - Y + 2)X ·(Y) .(Y -1) E Y- 2 =2 Y - 2 E y - .. 1 EY- 1 

(Y)(H - Y + 3)X (Y) (Y ~ 1) E Y - 3 = 3 Y - 3 E y - 2 E Y-l 

(
y - 2) - 1 E Y - 2 

_ (Y)(H - Y + 4)X _ (Y) I _ (Y - 1) I E Y- 4 - 4 Y 4 E y 3 E Y_ 1 

(
y - 2) (Y - 3) - 2 E Y - 2 - 1 E Y _ 3 

and so forth. 
For our example above, t H = 20, Y = 4, X = 3; hence 

p= 
[ (2~) _ 1]' - (E. + E, + E, + E,) 

_ 0.1131692 X 1012 - 0.10890324 X 1012 _. 77 
- 0.11323941 X 1012 - 0.03 

From probability theory we know that, if there are M items, then the 
expected number of false drops will be M p. For our example, if M = 200, 
we would expect 200 X 0.0377 = 7.54 false-drop cards during the search 
on a particular characteristic. To find the probability P(m) of obtaining 
m false drops, we use the formula from probability theory, 

P(m) ~ (!) pm(l - p)M-m 

In Fig. 7-18 we have graphed some of these values for our example. 
So far we have been considering false drops when searching on one 

characteristic only. N ow we shall discuss the situation that arises 
when more than one characteristic is used in the search. Let n be the 
number of characteristics entering the search. The codifications of 
these particular characteristics may over]ap. Let us suppose that their 
logical sum has precisely h units (punche;s). Then 

j-n-l i=h-l 1 F~j- I 

t For numerical calculations some helpful results are (~) = 1, (~) = U, 

( 
U) = U(U - 1) ... (U - V + 1) 01 = 1 II ~' 1 
V lX2X .. ·XV ,. , .. 
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0 
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m 
FIG. 7-18. Probability of obtaining exactly m false drops for H = 20, Y = 4, X = 3, 
and M = 200. (Here h = 4.) 

where 

. Fn = (~)[ (~) -nY 
F n- 1 = (~)[ (~) - n + 1 r -(~)Fn 
Fn-2 = (~)[ (~) - n + 2 r -(~)Fn - (n 11)Fn-l 
Fn-3 = (~)[ (~) - n + 3 r -(~)Fn . - (n ;- l)Fn_l - (n 12)F~_2 
and so forth, and 

_ (h)(H - h)X Eh - 0 Y 

(h)(H - h + l)X (h) Eh- 1 = 1 , Y ,,- 1 Eh 

(h)(H - h + 2)X (h) (h - 1) Eh- 2 = 2 Y - 2 Eh - 1 Eh- 1 

, (h)(H - h + 3)X (h) , - (h .,- 1) CT (h - 2) Eh - 3 = 3 Y - 3 Eh - 2 E h- 1 - l' Eh- 2 

and so forth. 

Observe that, if (~}» n, then ;~f' F n-; '" (~)x. This is the case 

j=O 

for our example of H = 20, Y = 4, and X = 3. Let us suppose that we 
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are searching on three characteristics with the codifications given above 
(see Fig. 7-17); then h = 9. Thus we have 

(0.113732 - 0.113716) X 1012 
0.113732 X 1012 = 0.00014 

It is interesting to compare P(m) when searching on a single characteristic 
with P(m) when searching on three characteristics that overlap to pre­
sent the nine units of our illustration (see Exercise j). Observe that h 
can range from 4 to 12; some values of p for various values of hare 

: I 0,0:77 I 0,0:61 I 0,0:014 0,0::0003 
Note that, as long as (~)>> n, then the value of h is all-important 

and p is effectively independent of n. However, if, for example, H = 6, 
Y = 2, X = 3, then an n of 1, 2, or 3 can no longer be neglected. 

EXERCISES 

(a) How many codifications can be made of no more than 10 positions with 26 
symbols? If K = 26, what is the most efficient number of positions to use for codify­
ing 100,000 words? 

(b) Given the information code 10101, find the redundant codification, as in Fig. 
7-16. 

(c) If a redundant codification was received as 0100 1000 0001 0011, what was 
the information code sent and in what positions did errors occur? Suppose that 
0100 1000 0001 0001 was received; in what positions are the errors? 

(d) Suppose that there were 6 bits in an information code; if the scheme given 
above were used, how many errors could be detected and how many bits would there 
be in the redundant codification? 

(e) For H = 4, Y = 2, and X = 2, find p by means of the above formulas for 
n = 1, h = 2; for n = 2, h = 2; for n = 2, h = 3; and for n = 2, h = 4. Check your 

result by making an enumeration of the (~)X = (;y = 36 equally probable 

conditions. 
(f) Compute p for H = 6, Y = 2, X = 3 when searching on a single characteristic. 
(g) Compute p for H = 6, Y = 2, X = 3 when searching on three characteristics 

(that is, n = 3) that overlap so that h = 5. 
(h) Compare the results of Exercises f and g by graphing P(m) for M = 50 in both 

cases. 
(i) Find the expected number of false drops for H = 100, Y = 6, X = 4 when 

h = 15. . 
(j) Graph P(m) for a search on three characteristics that overlap to present 9 units 

(Le., h = 9, whence p = O.OOOl4-see above). Compare the results with Fig. 7-18. 
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7 -8. Additional Topics 

a. Equivalence Relation and Linear Ordering. To a mathematician the term relation 
means a rule that can be applied to two objects of a set to determine whether or not 
they are related in a fashion defined by the rule. A relation is usually symbolized, 
and if the relation holds for elements a and b of a set, then we write "a symbol b," 
read "a is in relation to b." An equivalence relation, symbolized by ~, is a relation 
defined for a set such that, if a, b, and c are any elements of the set, then (1) a ~ a (an 
element is in relation to itself, called the reflexive property), (2) if a ~ b, then b ~ a 
(if a is in relation to b, then b is in relation to a, called the symmetric property), (3) if 
a ~ band b ~ c, then a ~ c (called the transitive property). Can you give some 
examples of relations that are equivalence relations (i.e., that are reflexive, symmetric, 
and transitive)? For a particular set and equivalence relation the subset of objects 
that are all equivalent to each other is called an equivalence class. As an example, 
consider the set of all integers and the relation: Two integers are in relation to each 
other if their difference is divisible by 3. Show that this relation is an equivalence 
relation and that there are three equivalence classes: . . . -2, 1, 4, 7, ... ; ... 
-1, 2, 5, 8, . . . ; and ... 0, 3, 6, 9, .... 

The most important property of an equivalence relation is that each object of a set is 
included in one and only one of the equivalence classes generated by an equivalence relation. 
Why is this property important in considering searching, sorting, ordering, and codify­
ing? (See R. L. Wilder, "Introduction to the Foundations of Mathematics," John 
Wiley & Sons, Inc., New York, 1952; or G. Birkhoff and S. MacLane, "A Survey of 
Modern Algebra," The Macmillan Company, New York, 1941.) 

Another important relation is called the linear-ordering relation, denoted by ~ and 
defined as follows: (1) for any two objects a and b of the set, either a ~ b or b ~ a; 
(2) if a ~ band b ~ c, then a ~ Cj (3) if a ~ band b ~ a, then a and b are identical 
(written a = b). A relation is called a partial ordering if (1) does not hold. Can you 
give examples of linear- and partial-ordering relations? In this chapter methods 
were given for ordering objects according to a linear-ordering relation. What could 
"ordering objects according to a partial-ordering relation" mean? How could this 
be accomplished? 

b. References on Sorting and Ordering 

Bell, D. A.: The Principles of Sorting, Computer J., vol. 1, no. 2, pp. 71, July, 1958. 
Davies, D. W.: Sorting of Data on an Electronic Computer, Proc. lEE, vol. 103B 

suppl., p. 87. 
Friend, E. H.: Sorting on Electronic Computer Systems, J. Assoc. Computing M achin­

ery, vol. 3, p. 134, July, 1956. 
Hosken, J. E.: Evaluation of Sorting Methods, Proc. Eastern Joint Computer Conf., 

1955, p. 35. 
Isaac, E. J., and R. C. Singleton: Sorting by Address Calculation, J. Assoc. Computing 

Machinery, vol. 3, p. 169, July, 1956; 
Shannon, C. E.: A Mathematical Theory of Communication, Bell System Tech. J., 

vol. 27, pp. 379-423, 623-656, 1948. 

c. References on Information Retrieval 

Bracken, R. H., and H. A. Tillitt: Information Searching with a 701 Calculator, J. 
Assoc. Computing Machinery, vol. 4, p. 131, 1957. 

Dennis, Bernard K.: Rapid Retrieval of Information, Computers and Automation, 
October, 1958, p. 8. 

Digital Computer Newsletter, vol. 10, no. 4, p. 4, October, 19.58. 
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Fairthorne, R. A.: Automatic Retrieval of Recorded Informati~n, Computer J., voL1, 
no. I, p. 36, April, 1958. ". .. 

Ledley, R. S.: TABLED EX, ANew Coordinate Indexing Method for Bound Book 
Form Bibliographies, Proc. Intern. Conf. S9i. Inform., Area V, 1958, Washington, 
D.C. . . " 

Luhn, H. P.: A Statistical Approach to Mechanized Encoding and Searching of 
Literary Information, IBM J. Research Develop., voL I, p.309, 1957. 

Mooers, C.: Putting Probability to Work in Coding Punched Cards, Zatocoding, Zator 
Tech. Bull. 3, 1947, Zator Company, Boston, Mas's.; also Zatocoding and Develop­
ment in Information Retrieval, Aslib. Proc., vol. 8, no. I, pp. 3-22, February, 
1956. 

National Science Foundation Booklet, "Non-conventional Technical Informatiori 
Systems in Current Use." 

National Science Foundation Booklet, "Current Research and Development in 
Informa tion Retrieval." 

Office of Research and Development, U.S. Patent Office: "Patent Office Research and 
Development Reports/'U.S. Department of Commerce. 

Proc. Intern. Conf. Sci. Inform., Area V, 1958, p. 317. 
Ray, L. C., and R. A. Kirsch: Finding Chemical Records by Digital Computers, 

Science, vol. 126, p. 814,1957. 
Shera, J. H., A. Hert, and J. W. Perry: "Information Systems in Documentation/' 

Interscience Publishers, Inc., New York. 
Waldo, W. H., and M. DeBacker: Printing Chemical Structures Electronically; Encoded 

Compounds Searched Generally with IBM 702, Proc. Intern. Conf. Sci. Inform., 
Area IV, 1958. 

Wildhack, W. A., and J. Stern: "The Peek-a-boo System in the Field of Instrumenta­
tion/' p. 209, Interscience Publishers, Inc., New York. 

d. References on Error-detecting and -correcting Codes. The method given in this 
chapter for constructing er~or-correcting codes is essentially that of Irving S. Reed 
(see A Class of ~ultiple-error-correcting Codes and the Decoding Scheme, IRE 
Trans. on Inform. Theory, vol. IT-4, pp. 34-49, September, 1954). The initial theory 
was first stated in a well-known paper of R. W. Hamming (see Error Detecting and 
Error Correcting Codes, Bell System Tech. J., vol. 29" pp. 147-160, April, 1950). 
Many other papers have recently appeared in this field, and we list some of these 
below. It would be well to consider these papers after Part 3 of the ,text has been 
mastered. 

Brown, A; B., and S. T. Myers: Evaluation of Some Error Correction Methods 
Applicable to Digital Data Transmission, IRE Conv. Record, vol. 6, pt. 4, pp. 
37-55, 1958. 

Elias, P.: Error Free Coding, IRE Trans. on Inform. Theory, vol. IT-4, pp. 29-38, 
September, 1954. 

Golay, M.: Binary Coding, IRE Trans. on Inform. Theory, vol. IT-4, pp. 23-28, 
. September, 1954. 

Huffman, D.: A Linear Circuit Viewpoint on Error Correcting Codes, IRE Trans. on 
Inform. Theory, vol. IT-2, pp. 20-28, September, 1956. 

Peterson, W.: An Experimental Study of a Binary Code, Communs. and Electronics, 
July, 1958, pp. 388-392. 

Sacks, G.: Multiple Error Correction by Means of Parity Checks, IRE Trans. on 
Inform. Theory, vol. IT-4, pp. 145-147, December, 1958. 

Shannon, C. E.: General Treatment of the Problem of Coding, IRE Trans. on Inform. 
Theory, vol. IT-I, pp. 102-104, February, 1953. 
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Shapiro, H. S., and D. L. Slotnik: On the Mathematical Theory of Error-correcting 
Codes, IBM J. Research, January, 1958, pp. 25-34. 

Slepian, D.: A Class of Binary Signaling Alphabets, Bell System Tech. J., January, 
1956, pp. 203-234. 

illrich, W.: Non-binary Error Correction Codes, Bell System Tech. J., November, 
1957, pp. 1341-1388. 

e. Irredundant Coding. To our knowledge Mooers [see the references in (c)] first 
discussed irredundant coding. Formulas that differ from those. given in this chapter 
are found in C. S. Wise, Mathematical Analysis of Coding Systems, in R. S. Carey and 
J. W. Perry (eds.), "Punched Cards," chap. 20, Reinhold Publishing Corporation, 
New York, 1951. The formulas given by Wise are not precise. (Why?) Prove 
the formulas given in this chapter of our text by means of an exact analysis of the 
problem. 



CHAPTER 8 

SPECIAL-PURPOSE DIGITAL-COMPUTER 
SYSTEMS DESIGN 

8-1. Introduction 

Design for a Purpose. In previous chapters we have seen several 
examples of digital-computer systems design. Chapters 2 to 4 were 
primarily concerned with the systems design of a general-purpose digital 
computer; here some of the fundamental ideas of computer engineering 
were introduced. The general-purpose computer might be classified 
basically as a "scientific" computer well adapted to the processes of 
numerical analysis considered in Chap. 6. It appeared from Chap. 7, 
however, that the processes of searching, sorting, ordering, etc., made 
extensive use of the data-handling components of a computer and that 
perhaps special features could be designed into the computer that might 
considerably enhance its effectiveness. Similarly other types of compu­
tational problems that occur frequently may indicate still further special 
computational facilities. Some of these were mentioned in the illustra­
tions given in Chap. 1. 

In the present chapter we shall consider some of these special-purpose 
systems designs. Our intention is to free the student from the rigors of the 
general-purpose-computer systems design, which heretofore has held our 
attention. Our method is to use specially selected examples of systems 
designs ranging from those which differ radically from the general­
purpose computer to those built upon the extended general-purpose 
concept. It is our hope that such examples of computers-having no 
instruction systems at all, having temporary specialized memories, no 
arithmetic functions, great deviations from the conventional instruction 
format, and mUltiple code-handling capabilities-will present a broad 
view of the infinite possibilities that exist in digital-computer systems 
design. 

This does not imply that there are no guiding signs to computer systems 
design. Quite the contrary, the unique features in a computer design 
should be determined solely by the intended purpose of the computer. 
Thus, in analyzing or describing a variety of different systems designs, 
we shall pay close attention to the purpose which indicated each such 
design. 

Outline. We shall consider first the digital differential analyzer. This 
computer has no instruction system but rather consists of a collection p( 

256 
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computer units that are wired together as required by each particular 
problem. N ext we shall consider a logical-control computer, using the 
control of a chemical factory as an example. Here a special" external­
control" instruction is introduced to facilitate the logical computations. 
A special design for a searching computer will then be considered. This 
special-purpose computer can be incorporated in a general-purpose com­
puter as well. Business and logistics problems illustrate the need for 
special features enabling the handling of large arrays of numbers. Here 
a radically different instruction format is illustrated. Finally we con­
sider the mUltiple-general-purpose computer, which is essentially an 
interlocked collection of computers, used in such a manner as will take 
greatest advantage of the special-purpose components of which it is 
comprised. In our illustration this multiple-purpose computer will be 
comprised of the computer components discussed in the previous sections. 

8-2. The Digital Differential Analyzer 

Purpose. Frequently it is necessary to compute the value of some 
function point by point. For example, in the automatic-milling-machine 
application described in Chap. 1, the computer attached to the milling 
machine must guide the tool from point to point along a predetermined 
path that was given only grossly at the input, e.g., a linear interpolation 
between two points or a circle of a certain radius. Similarly in many 
other control operations rapid calculations of sin () and cos () may be 
necessary, as in accurately sweeping an area with an antenna or in com­
puting some functions. Not infrequently the familiar analog techniques 
cannot produce a sufficient number of significant figures for the accuracy 
required. In such cases one can use a digital differential analyzer as a 
small, relatively simple and inexpensive special-purpose digital computer. 

The Concept of the Digital Differential Analyzer. The digital differential 
analyzer computes successive values of a function by means of successive 
differential additions. Consider the problem of computing a table of 
values for a function y = f(x). If we start with a given y(xo), then 
y(Xl) = y(xo) + (Y(Xl) - y(xo)) = y(xo) + (Ay)xo' Similarly we write 
y(X2) = y(Xl) + (AY)xu and so forth. In other words, 

y(Xi+l) = Y(Xi) + (Ay)z; 

N ow suppose that y = e:/). Then dy = eX dx = y dx; or approximately 

(Ay)x; = y(Xi) (Xi+l - Xi) = y(Xi) Ax 

Thus we can compute successive approximate values of eX by 

y(Xi+l) = y(Xi) + y(Xi) Ax 

The smaller we make AX, the more accurate our results will be. How­
ever, there is an obstacle here. Remember that multiplication produces 
a double-length result, so that, if Ax is small enough, the major part of 
y(Xi) Ax will be zero. Thus errors will result when the minor product, 
which contains the significant figures of y(Xi) AX, is dropped. It would 
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therefore be better to work with the double-length extension of Y(Xi); 
However, this is not particularly desirable for what is supposed to be a 
small special-purpose computer. 

The use of a double-length accumulator can be avoided; to find out 
how, let us examine our procedure more carefully. As we have noted, 
each time we form Y(Xi) Ax the major product is zero; but certainly the 
major part of Y(Xi) must change eventually. This must occur during 
the addition Y(Xi) + Y(Xi) Ax and will be the result of a· carry from the 
minor part into the major part. In other words, as we accumulate in 
the minor part, we eventually propagate a carry, or overflow, from the 
minor part into the major part of Y(Xi). If we are working in binary, the 
carry can only be a 1 and the major part of Y(Xi) can change at most by 1 
during any iteration. Hence we do not need a double-length accumulator 
at all-we need a single-length accumulator that simply accumulates suc­
cessive minor parts of Y(Xi) AXi and a counter that holds the major part of 
Y(Xi) and adds 1 to the major part of Y(Xi) each time there is an overflow 
from the minor accumulator. We call the accumulated minor parts the 
residual. 

True multiplication is not essential in finding Y(Xi) AX, for we can 
always take Ax = 1/2q

, and we need only shift Y(Xi) by q positions to 
the right to form Y(Xi) Ax. But since we do not have a major part to our 
accumulator, we can always choose Ax so that the shifting of Y(Xi) need 
not have to occur actually (although of course it occurs virtually). 

To illustrate these points, consider a 4-bit binary word and let 
Ax = .0001 (see Fig. 8-1). In Fig. 8-1a we have illustrated the accumu­
lator that is to hold the residual and the counter that is to hold the major 
part of the function value y. The circle represents the component 
wherein Y is virtually but not actually shifted; this is simply a gate that at 
the proper time passes Y to be accumulated with the previous residual to 
form the new residual. The dash-dot lines represent the "true" juxta­
position of the double-length value of y. For our illustration, start with 
Xo = 0, and yo = eO = 1 preloaded into the counter. Then y(xo) = 01.00 
and y(xo) Ax = 00.00 0100, where 0100 is the residual. Since 

Y(Xl) = y(xo) + y(xo) Ax = 01.00 0100 

the 01.00 remains unchanged in the counter and 0100 is put into the 
accumulator (see Fig. 8-1b). With y(xl)·Ax = 00.00 0100 again, we 
have 0100 + 0100 = 1000 as the residual, and 01.00 remaining still 
unchanged in the counter as Y(X2). Then Y(X3) Ax = 00.000100, 
whence 1000 + 0100 = 1100 is the new residual and 01.00 remains 
unchanged as Y(X4) in the counter. Next Y(X4) Ax = 00.000100, whence 
1100 + 0100 = carry 1 + 0000; now the counter is increased by 1, 
putting 01.01 in the counter as Y(X5) and leaving 0000 as the new residua1. 
We continue with Y(X5) Ax = 00.000101, and so forth. The result of each 
step and the graph of the function so calculated are shown in Fig. 8-1b. 

Computing Units. The combination of accumulator, gate, and counter 
is called a computing unit of a digital differential analyzer. ~. Many units 
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(a) 

(b) 

I-' 
000000001-'1-'1-'1-'1-'1-'1-'1-'0 
00001-'~1-'1-'00001-'1-'~1-'0 

oo~~oo~~oo~~oo~~o 
01-'01-'01-'01-'01-'01-'01-'01-'0 

Carry steps the counter 

--------r ., 
n ~-~ 0 

§ ~ ~ L-_J i 
1i 

.0000 ·01.00.000100.000100.--0100.00----

.0001 01.00 .000100 .001000 .--1000 .00----

.0010 ~ . 01.00.000100.001100.--1100.00----

.0011 ! 01.00 .000100 .010000 .--0000 .01----

.0100 It 01.01-.000101 :000101 .--0101 .00----

.0101 ·01~1 .000101 .001010.--1010.00----

.0110 01.01.000101.001111.--1111.00----

.0111 01.01.000101.010100 .--0100 .01----

.1000 01~0 .000110 ~01010 .--1010 .00----

.1001 01.10 .000110 ·.010000 .--0000 .01----

.1010 01.11 .000111 .b00111 .--0111 .00----

.1011 01.11 .000111 .001110 .--1110 .00----

.1100 01.11 .000111 .010101 .--0101 .01----

.1101 10.00.001000 .001101.--1101.00----

.1110 10.00.001000.010101.--0101.01----

.1111 10.01.001001.001110 ;--1110 .00----
1.0000 10.01 .001001 .010001 .--0001 .01----
1.0001 10.10.001010 .001011 ~--10ll .00----
1.0010 10.10.001010 .010101.--0101 .01----
1.0011 10.11 .001011 .010000 . --0000 .01----
1.0100 11.00 .001100 .001100 .--1100 .00----
1.010i 11.00 .001100 .011000 .--1000 .01----
1.0110 11.01.001101.010101 .--0101 .01----
1.0111 11.10 .001110 .010011 .--0011 .01----
1.1000 11.11 .001111 .010010 .--0010 .01----

FIG. 8-1. Concept of the digital differential analyzer. 
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can be connected together to compute various functions. The contents 
of the accumulator, the residual, is denoted by R; the contents of the 
counter, the functional value, is denoted by Y; the overflow, or carry, 
from the accumulator that steps the counter, i.e., the differential value 
that is to be added to some functional value, is denoted by !ly (see Fig. 
8-2). The gate may cause either addition or subtraction of the contents 
of the counter (virtually but not actually shifted) to the accumulator. 

Accumulator 

Ay 

FIG. 8-2. Computing unit of 
digital differential analyzer. 

As an example of how units can be com­
bined, consider now the problem of computing 
sin x and cos x. Let 

Yl = cos x and Y2 = sin x 

Then the differential equations are 

and 
dYl = - sin xdx = -y2dx 
dY2 = cos x dx = Yl dx 

Thus we have 

Yl(Xi+l) = Yl(Xi) + !lYl 

and 

Y2(Xi+l) = Y2(Xi) + !::.Y2 

Hence the arrangement shown in Fig. 8-3 will compute Yl and Y2. 
Programming. There are three steps to programming a problem: 

First, the proper differential equations must be worked out so that !lYi 
appears in the form Yi !lx. Second, the connections between units must 
be diagramed. And finally the scaling must be worked out. Consider 

FIG. 8-3. Combinations of computing units of digital differential analyzer. 

this latter step first. Note that, since the counter can be increased only by 
1. at a time, then during any iteration Y can increase only by 1. In other 
words, the graph of the function cannot be steeper than 450

• Thus in our 
example of Fig. 8-1 we could not compute eX for any greater values of x. 
However, the slope of any function can be adjusted by scaling so that it 
does not exceed 450 within the range of computation. 
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Consider as another example the problem of computing the product 
Ya = YIY2. Since dYa = YI dY2 + Y2 dYI, we have 

Ya(Xi+I) = Ya(Xi) + flYa flY3 = YI flY2 + Y2 flYI 
Y2(Xi+I) = Y2(Xi) + flY2 

and YI(Xi+I) = YI(Xi) + flYI 

Hence the configuration of Fig. 8-4 will compute Ya = YIY2. Note that 
the counter for Ya has two inputs and that these must be electronically 
arranged so that they do not step the counter at precisely the same time. 

~Y2 

FIG. 8-4. Computing Y3 = YIY2. 

Note also that not all of the computing unit for Ya is used. Another 
feature of this arrangement is that the inputs to the gates are not a single 
flx, but rather flYI and flY2 themselves. 

N ext consider the computation of Y = X2. Here dy = 2x dx and 
Y(Xi+I) = Y(Xi) + fly, fly = 2Xi flx; Fig. 8-5 shows the arrangement. Here 

.6y= 2x.6x 2.6x 
'------r-.... 

FIG. 8-5. Computing y = x2• 

note that one of the counters is loaded with the constant 2 and never 
changes. 

Finally consider the computation of Y = l/x, that is, division. Here 
dy = (-1/x2) dx; letting W = -1/x2, we find dy = w dx and 

Thus 
and 

dw = ~dx = - ~(- !dX) = -2ydy 
X3 x X2 

y(Xi+I) = y(Xi) + fly Ay = w flx 
W(Xi+I) = W(Xi) + Aw AW = - 2y fly 

The arrangement of units for this computation is left as an exercise 
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Advantages. The digital differential analyzer does not require an 
instruction system or a stored program, for the "programming" is 
accomplished simply by appropriately wiring units together. Thus no 
control unit is necessary, and the computer is very inexpensive. Of 
course it is correspondingly quite limited in its capabilities. 

The accumulator and the counter require storage, and for this a drum 
is frequently used. For example, each band around the drum might 
be divided. into two words of storage, one for the accumulator and the 
other for the counter, of a single computing unit. The inputs and out­
puts from the heads of each band would be brought to a plugboard con­
sole. Here the gate and counter inputs and the accumulator (overflow) 
outputs for each of the units could be appropriately connected by 
" jumpers." 

EXERCISES 

(a) Compute sin x and cos x, and graph the results as they would be computed by 
a digital differential analyzer (see, for example, Fig. 8-1). If the word length were 
4 bits, how would the problem be scaled? 

(b) Draw the arrangement of units to compute y = l/x. 
(c) Draw the arrangement of units to compute y = In x. [HINT: dy = (l/x) dx. 

Let w = l/x; then dy = w dx, and dw = (-I/x2) dx = -w dy.] 
(d) Draw the arrangement of units to compute y = xn. {HINT: dy = nxn- 1 dx = 

xn[(n/x) dx] = xn d(n In x) = y d(n In x).} 
(e) Draw the arrangement of units to solve the following simultaneous differential 

equations: 

(f) How can a digital differential analyzer be used in conjunction with machine-tool 
control (see Chap. I)? 

8-3. Real-time Logical Systems Control: A Real-time Control Computer 

An Example. Very often the primary function of an on-line digital 
control system (i.e., a system connected to a dynamic process) is to make 
sequences of logical decisions that depend on the state of certain variables 
associated with the world external to the computer. Here we shall con­
sider the special-purpose systems design of a real-time logical-control 
computer and show how it might be applied in a specific example of 
controlling a chemical factory. By discussing first the specific applica­
tion, the reasons for the various aspects of the control computer will be 
better appreciated. Although the example is concerned with the control 
of a chemical factory performing a specific chemical process, the situa­
tion is conceptually similar in almost all such real-time control problems 
as may occur in other types of automatic factory control, in tactical 
gunnery control, or in distributing tracking data to command centers 
according to predetermined strategies. The example also contains 
a feedback loop by which the results of the input digital disposition influ-
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ence the outside world, which in turn again influences the input to the 
computer. 

Figure 1-10 on page 12 shows the flow chart of a chemical factory 
manufacturing Ah03. Briefly, clay is mixed with water and a detergent 
to make a wash containing the raw material. A certain amount of this 
wash is tapped off into an evaporation tank, where it is concentrated by 
evaporation. Then in another tank HCI gas is mixed with the wash until 
it is saturated. The wash is centrifuged and a precipitate of AICla·6H 20 
is obtained. The precipitate is decomposed, by heating, ihto gaseous 
HCI, which is reused, and into solid Ah03, the desired end product. 
It is of course understood that, even though this problem is based on an 

TABLE 8-1. SIGNALS SHOWING THE STATE OF THE CHEMICAL FACTORY 

Signals generated by factory Symbolism 

Level of L(l) reached .................... L(l) 
Concentration test good .................. C 
Time for concentration test. . . . . . . . . . . . . .. T(C) 
Valve 4 open ........................... V(4) 
Level of L(2) reached .................... L(2) 
Tank 2 empty. . . . . . . . . . . . . . . . . . . . . . . . .. E(2) 
Tank 3 full. . . . . . . . . . . . . . . . . . . . . . . . . . . .. F(3) 
Temperature T(l) .. ..................... T(l) 
Temperature T(2). . . . . . . . . . . . . . . . . . . . . .. T(2) 
Saturation test positive. . . . . . . . . . . . . . . . .. S 
Tank 3 empty. . . . . . . . . . . . . . . . . . . . . . . . .. E(3) 
Valve 7 open ........................... V(7) 
Centrifuging finished. . . . . . . . . . . . . . . . . . .. C(F) 
Centrifuge empty. . . . . . . . . . . . . . . . . . . . . .. E(C) 
Pressure of HCI too high ................. p 
Enough volume. . . . . . . . . . . . .. .......... W 

actual process, it has here been grossly oversimplified and actually 
stylized. I t is not meant to be examined from a chemical-engineering 
point of view, since many details of both the necessary conditions and 
desired results are but casually indicated. 

The state of the chemical factory is given by 16 signals, listed in Table 
8-1. The computer periodically senses these signals, generating from 
them 12 control signals that direct the future state of the factory. The 
future state of the factory results in changes of the input signals, whence 
new control signals are generated by the computer, and so forth. Table 
8-2 gives the relation between the sensed-signal conditions and the neces­
sary control signals to be generated. A symbolic notational form for each 
statement is also given, where· means and and - means not (i.e., no 
signal). 

Programming Logical Control. The computer will have one subroutine 
for each set of the control signals to be generated. Hence a jump table is 
required to initiate the proper subroutine for a given state of the sensed 
signals. However, we need an input to the jump table that tells which 
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TABLE 8-2. CONTROL SIGNALS 

Sensed-signal conditions 
Symbolic 

rep res en ta tion 

1. Level is at L(l), and con- L(l) . (j . T(C) 
centration test is bad, and 
time for testing is due 

2. Level is at L(l), and con- L(l)· C· T(C) . E(2) 
centration test is good, 
and time for testing is due, 
and tank 2 is empty 

3. Level L(l) has not been £(1)· V(4) 
reached, and valve 4 is not 
open 

4. Valve 4 is not open, and V(4)· L(2) . E(3) 
level is L(2), and tank 3 is 
empty 

5. Temperature is T(l), and T(l)· F(3) . V(7) 
tank 3 is full, and valve 7 
is off 

6. Temperature is T(2), and T(2)· F(3) . V(7) 
tank 3 is full, and valve 7 
is off 

7. Saturation test is good, S· V(7) . E(C) 
and valve 7 is closed, and 
centrifuge is empty 

8. Centrifuge finished. . . . . .. C(F) 

9. Pressure of HCI high ..... P 
10. Weight is enough ........ W 

Corresponding signals 
to be generated 

Throwaway solution by open­
ing valve 3, and add clay, 
detergent, and water in tank 
1 by opening hatch 1, valves 
1 and 2 

Tap off certain amount of fluid 
into tank 2 by means of valve 
4 

Add detergent, water to tank 1 
by opening valves 1 and 2 

Transfer fluid to tank 3 by 
opening valve 5 

Cut rate of HCI flow to slow by 
closing valve 6 

Increase rate of HCI flow to 
fast by opening valve 6 

Close flow of HCI by means of 
valve 6, transfer fluid to 
centrifuge by valve 7, and 
start centrifuge 

Put precipitate in furnace by 
opening hatch 2, throwaway 
wash by opening valve 8 

Lower heat of furnace 
Take out resultant AhOa by 
opening hatch 3 

jump instruction to use, and we shall first describe how this input may 
be accomplished. 

At any instant the bits in the signal-sensing word (Fig. 1-10) tell which 
signals are on and which are off. For instance, the word might be as in 
Table 8-3; in the table under each bit of the word is shown the state of the 
corresponding signal. We can similarly use a word for each of the sig­
nificant sensed-signal conditions of Table 8-2, so that the conditions can 

TABLE 8-3. EXAMPLE OF SIGNAL-SENSING WORD 

1010001100001010 

L(l) • C' (TC) . V(4) • L(2) • E(2) • F(3) • T(l) • 1'(2) • S . E(3) • V(7) • C(F)' E(C)' p·'W 
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be matched \vith the state of the sensed signals at any time. For exam­
ple, the first condition, L(l).C.T(C) ... , would be represented by 
101 .. '. But what about the rest of the bits? Condition L(l)·C.T(C) 
does not mention the rest of the signals because for that condition they 
make no difference. They are to be ignored. Thus we need another 

Using 2d word of condition i 
as a mask: 

(a) Extract 1st word of condition i 
into condition temporary 

(b) Extract signal word Into signal 
temporary 

comparison comparison 

Generate 
signals of 

subroutine N 

FIG. 8-6. Flow chart of real-time operating program. 

word that tells what positions are to be considered and what positions 
are to be ignored. This second word will have units corresponding to bits 
that are to be considered and zeros corresponding to bits to be ignored. 
For example, L(l).C.T(C) is denoted by the following two words: 

1st word: 101x xxxx xxxx xxxx 
2dword: 1110 0000 0000 0000 
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where the x means that it makes no difference whether the bit is zero or 
unit. Similarly the fourth condition, V(4) . L(2) . E(3), is denoted by 

1st word: 
2d word: 

xxxO 
0001 

1xxx xxIx xxxx 
1000 0010 0000 

There would then be two words representing each of the 10 conditions of 
Table 8-2. 

Figure 8-6 is a flow chart of a real-time operating program that will 
compare each of the conditions with the sensed-signal word until a favor­
able comparison is obtained; then, depending on which condition com­
pared favorably, a jump will be made to the proper signal-generating 
subroutine. After completing the subroutine, a new sensed-signal word 
will be called into the high-speed memory, and the process will start 
over. If no condition compared favorably, the program would call in a 
new sensed-signal word and repeat the comparisons, and so forth . 

C\ 
s:: 
'iii 
s:: 
Q)"'C 
VI ~ 
I 0 

-;;3: 
s:: 
.~ 
If) 

...!..l5 
~~ s:: Q) 
o t: 
U Q) 

"'CC\ 

~-;; 

Small memory 1---" ~.~ 

Simple 
arithmetic 

unit 

External 
control 

instruction 

Control 
unit 

FIG. 8-7. Real-time logical-control computer. 

VI 

Systems Design of a Special-purpose Logical-control Computer. When 
hundreds of signals must be sensed, as would occur in a more realistic 
case, it may be more efficient to have the two extractions and comparison 
made in one step by a special computer instruction, which we shall call an 
external-control instruction. Such an instruction would have three 
inputs: the sensed-signal word and the first and second condition words. 
If the comparison is unfavorable, the instruction would automatically 
increase a relative counter. This instruction would repeat itself as the 
next instruction. The addresses of the two condition words are taken 
relative to this counter so that they are automatically modified appropri­
ately for the next condition when the external-control instruction repeats 
itself. If the comparison is favorable, the next instruction is taken 
from the address of the external-control instruction plus the counter 
reading; i.e., the external-control instruction would be followed by the 



SEC. 8-3] SPECIAL-PURPOSE DIGITAL COMPUTERS 267 

jump table. The method by which the comparisons are repeated is left 
as an exercise (see Exercise a). 

For a permanent installation the subroutines generating the control 
signals can be wired in. Hence the real-time logical-control computer 
need contain little more than the external-control instruction, an instruc­
tion to clear the relative counter, a comparison instruction, a jump 
instruction, and an add instruction (see Fig. 8-7). 

Since the program will not often be changed, it can be inserted into 
the computer by means of the control panel; therefore no input-output 
equipment is necessary except the signal-sensing word and the wired 
control-signal generator. The memory of such a special-purpose com­
puter need be only a little larger than necessary to accommodate the 
condition words. The speed of the memory need only be fast compared 
with the feedback reaction time of the system it is controlling. For the 
chemical factory here described this need not be particularly fast; for a 
tracking system it must be very high-speed. 

EXERCISES 

(a) How would the external-control instruction break the loop when no comparison 
is successful? (HINT: A dummy comparison would automatically compare favorably. 
How would this dummy comparison be arranged, i.e., what would be the first and 
second words of the dummy condition?) 

(b) Suppose that the input word to a real-time logical-control computer has the 
following inputs (see Fig. 8-8): tank 1 full, L(l); tank 2 full, L(2); valve 1 open, V(l); 

FIG. 8-8. Simple system controlled by real-time logical-control computer. 

valve 2 open, V(2); valve 3 open, V(3). For the output or control-signal word let 
0(1) mean open valve 1; 0(2), open valve 2; 0(3), open valve (3); C(l), close valve 1; 
C(2), close valve 2; and C(3), close valve 3. Define an appropriate instruction, 
including an external-control instruction, for the logical-control computer as discussed 
above, and code the process of filling the two tanks, one at a time. 

(c) Code the problem used in (b) without the use of an external-control instruction. 
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8-4. Systems Design for Special-purpose Information-retrieval Computer 

An Example. The occasion may frequently arise where a special­
purpose searching, sorting, and ordering computer becomes feasible. 
As a specific example of the use of such a computer, which will indicate 
the motivation for its systems design, consider a cost-accounting system 
in a factory. Each workman in the factory is given a job; he procures 
supplies and parts; he spends time using the supplies and assembling the 
parts to produce some final object; then he may be given another job 
(which may be a repetition of the first), etc. The executives and account­
ants of the factory would like to know how many objects of each type 
have been completed, how many supplies and how many parts were used 
during a particular period of time, how many hours a particular workman 
spent on a particular job, how many man-hours altogether were spent in 
making a certain number of these objects, and so forth. The description 
given here of a cost-accounting system is necessarily oversimplified, but 
the basic principles and concepts are the same. 

Suppose that each procurement of supplies and parts, each object 
completed, the time consumed in each job, etc., were recorded by part 
number, workman's name, job number, date, and so forth, at the time the 
action was taken or the job completed; suppose that all this information 
for 1 week could be compiled on a single magnetic tape. The problem 
then reduces to searching, sorting, and ordering the items on the tape to 
answer the above questions. In general a computer that can perform 
these operations need be capable only of comparing, counting, and 
accumulating. Whether or not such a special-purpose computer is 
feasible depends on its cost and on the time it takes to process the neces­
sary number of data. 

A Small Retrieval Computer. Let us suppose that any item can be 
recorded in 50 characters or less (a character being 6 bits). Then the com­
puter will first read a set of 50 characters into the temporary storage, a 
nonending loop of tape (see Fig. 8-9). Selected characters will be appro­
priately compared with characters from the previously loaded argument 
storage, a second loop of tape. Depending on the outcome of this compari­
son, the computer may then add into a partial sum in the accumulator 
some number represented by certain of the 50 characters, or may increase 
the count of the counter, and so forth. Actually several sets of 50 bits 
may be recorded in the temporary storage unit. When writing back onto 
the magnetic tape, the computer can transpose sets if it is ordering the 
information, or can insert new information, and so forth. In summary, 
successive items from the magnetic tape are stored temporarily in the 
computer; here information is extracted from them, or they are otherwise 
processed; then they are replaced on the magnetic tape, perhaps in some 
transposed order. The processing is done in conjunction with information 
preloaded on the argument storage unit. 

The number of instructions to be written into a program will be 
limited to the number of instructions that can be executed from the time 
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FIG. 8-9. Small retrieval computer. 

an item is read from the tape until it is put back again. The instruction 
system can be very simple. Suppose that the instructions were punched 
on cards and the cards for one program put into slots in the control unit, 
where the holes on the cards can be sensed. The arguments on the 
argument-storage-unit tape loop, which are fixed during any program, 
can also be addressed. The instruc­
tion format could be as shown in 
Fig. 8-10. Each instruction is con­
cerned with selected characters, as 
recorded on the cards, of the current 
item in the temporary storage unit. 
An instruction may involve two of 
the arguments of the argument stor­
age unit if, for example, a search for 
characteristics less than a but greater 
than {3 is desired. A two-way exit, 
'Y or 0 depending on the outcome of 
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the comparisons, is allowed for flex- FIG. 8-10. Instruction format. 
ibility in coding. Consider as an 
illustration the computation of the number of hours in a week that work­
man 1224 required to make part 2746 and the number of parts he com­
pleted in that week. Suppose that 40 was the code for an item recording 
a finished job. The instructions would compare the properly selected 
characters of each item with 1224, and 2746, and 40. When an "equal " 
comparison was made, the computer would add 1 to the counter and add 



270 !<'UNCTION AL APPROACH TO SYSTEMS DESIGN [CHAP. 8 

the number of hours recorded on this item to the accumulator. If an 
equal comparison was not made, the computer would just replace the 
item on the tape. By this means the total number of man-hours worked 
in making a particular object during any specified time period can be 
determined in one pass through the tape. Similarly the number of man­
hours that were worked by a certain person, or in a certain shop, etc., or 
the number of a certain part that were consumed, or the amount of a 
certain material that was used, in any shop or by any person, in making 
a particular object, during a specified time, can be determined in a single 
pass, and so forth. Suppose that the magnetic tape runs at a rate of 
100,000 bits/sec, i.e., about 17,000 characters/sec (6 bits = 1 character), 
or 350 items/sec (50 characters = 1 item), or 21,000 items/min. Sup­
pose also that there are 500 workmen in the factory, each generating an 
average of 5 items/day, or a total of 2,500 items/day, or 50,000 items/ 
month (20 working days = 1 month). One pass through the tape con­
taining 1 month's items would take approximately 2 min and 22 sec. 
Comparison with more conventional bookkeeping methods is hardly 

Concurrent 
searching, sorting, 
and ordering unit 

General-purpose 
digital 

computer 

FIG. 8-11. Special-purpose computer attached to general-purpose computer. 

necessary. On the other hand, if we were to run a standard payroll calcu­
lation on the man-hours worked for each of the 500 men, it would take 
(500 men) (2 min 22 sec) = 20 hr. Also we have not mentioned the 
input and output equipment problem, which in the case of payroll, for 
instance, is a subject in itself. 

Integration with a General-purpose Computer. In order to increase the 
working speed of this type of computer, we can enlarge the argument 
storage unit and include more accumulators and counters to accommodate 
more than one comparison, so that in one pass several pieces of informa­
tion can be accumulated; or we can run several tapes in parallel, and so 
forth. The time per information pass can thus be decreased by a factor 
of 10 or 100, that is, to within 20, or even 2, sec. This would increase the 
complexity and hence the cost of the computer. Finally we can attach 
our special-purpose searching, sorting, and ordering computer to a gen­
eral-purpose computer, enabling more complicated processing to be 
accomplished as well as more automatic operation (see Fig. 8-11). In 
such a case the tapes can be searched at the same time as the general­
purpose computer computes other things. The fixed card memory of 
the special-purpose computer will be replaced by a part of the high-speed 
memory shared with the general-purpose computer. Two codes will be 
written, one for the computing unit of the general-purpose computer, 
the other for the simple arithmetic unit of the special-purpose computer. 
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An interlocking buffer must be designed so that the general-purpose 
computer will stop and wait if it needs some information not yet retrieved 
from the special-purpose auxiliary computer, and so that the searching 
computer will stop and wait if it in turn needs information not yet gen­
erated by the general-purpose computer. An auxiliary computer for this 
special purpose can be exceedingly effective and timesaving when large 
amounts of this kind of nonnumerical manipulative computing are 
necessary. 

EXERCISE 

(a) Suppose that a factory item is composed of the following word, 

Number of 
Name of 
worker Date 

hours 
on job 
,~, 

I I I I 

Type number of 
completed object 

where each box can be filled with a digit or an alphabetic character. Define an 
instruction system for a special-purpose retrieval computer as shown in Fig. 8-9, 
and write a code that will determine how many objects of type 54321 were completed 
between Mar. 3, 1959, and Mar. 15, 1959. 

8-5. Manipulations with Rectangular Arrays: A Business and 
Logistics Computert 

The Need. An important class of computations occurring frequently 
in business and in logistics (i.e., processes involved in supply) is con­
cerned with rectangular, matrixlike arrays of variables. The operations 
to be performed on the variables are usually very simple, the main prob­
lem being the manipulations necessary for handling such large-scale 
arrays. In this section we shall first indicate some applications of these 
techniques; we shall then show how a few relatively simple special­
purpose instructions can significantly aid these processes; and finally we 
shall discuss a special-purpose computer especially designed to perform 
manipulations with rectangular arrays. 

As a first example, consider the keeping and updating of a spare-parts 
inventory. Suppose for simplicity that there are 10 parts under con­
sideration and that the first row of the array in Table 8-4 represents the 
desired inventory for each of the 10 parts-i.e., there should be 100 each of 
the parts in stock. The second row represents the actual stock level of 
each of the parts at time t. Now let us suppose that the parts are con­
sumed in the course of three kinds of overhauls and that the number of 
parts used for one of each kind of overhaul appears on lines 4, 5, and 6, 
respectively. Now suppose that since time t there were one overhaul of 
kind 1, two overhauls of kind 2, and three overhauls of kind 3. The 

t The main concepts discussed in this section are based on the original research of 
Dr. W. H. Marlow, principal investigator of The George Washington University Naval 
Logistics Research Project. 
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problem is to determine the present stock levels, i.e., to adjust row 2, and 
to determine how many of each part should be ordered in order to have 
the desired number of spare parts on hand, i.e., to determine row 3. To 
take account in the inventory levels of the parts used for the overhaul 
of kind 1, subtract row 4 from row 2, column by column; for the two 

TABLE 8-4. DATA ARRAY FOR INVENTORY-UPDATING PROBLEM 

Part Part Part Part Part Part Part Part Part Part 
1 2 3 4 5 6 7 8 9 10 

-- - - - - - - - -

Row 1, desired inventory ........ 100 100 100 100 100 100 100 100 100 100 
Row 2, stock on hand (time t) . ... 80 75 90 80 95 90 85 95 70 75 
Row 3, parts to order ........... 
Row 4, overhaul kind 1, parts 

used ........................ 5 15 5 10 5 0 0 5 10 5 
Row 5, overhaul kind 2, parts 

used ........................ 10 0 0 10 10 20 15 5 10 0 
Row 6, overhaul kind 3, parts 

used ........................ 5 0 10 10 5 10 15 20 0 5 

overhauls of kind 2 multiply each figure in row 5 by 2, and subtract the 
result from row 2, column by column; and similarly form 

Row 2 - 3 X (row 6) 

We thus obtain the present stock levels in row 2: 

40 60 55 20 55 20 10 20 40 55 

Subtracting row 2 from row 1 and putting the results in row 3, column 
by column, we obtain the number of parts to order of each type. Of 
course many other related problems can be similarly solved; e.g., we may 
record the usage of parts in each time period and then extrapolate column 
by column to predict usages in the future, and so forth. We have used 
only 10 different parts, but in realistic cases thousands of parts may be 
involved. 

Another example is the calculation of building-material purchase 
schedules and requirements as functions of time, as would be needed in 
the construction of a ship or of a large office building. An array can be 
made of the materials needed at the construction site as a function of 
time. That is, successive rows of the array will represent successive 
times, and the columns of the array will represent the various building 
materials; then an element in the array will indicate how much of a 
certain building material is needed at the building site at a particular 
time. However, there is a certain time lag that must be allowed for the 
delivery of each of the materials from the time it is ordered. This time 
lag differs for different materials and can be represented as a row of the 
array. The problem here is to schedule the orders so that the materials 
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will arrive at the site at the proper time. In addition the costs of the 
materials per unit can be represented in another row. If the materials are 
paid for at the time they are ordered, then a calculation should be made 
as to how much money will be spent during each time period. This 
calculation can be made after the ordering schedules are set by multiply­
ing the number of units to be ordered in a time period (i.e., a row) by 
the cost of each per unit and summing over the elements of the resulting 
row, i.e., adding the columns of that row independently. 

The keeping of bank accounts presents similar array-manipulation 
problems. Here suppose that each row contains the balance of each of 
the savings accounts for successive weeks and that interest is computed 
monthly, based on the minimum weekly balance. Here the minimum 
of the rows each month must be obtained and the interest rate applied to 
each account (Le., each column of the minimum record row). If the 
bank desired to know the total deposits each week, the row for each week 
is totaled. In this way calculations of interest, principal, penalties, 
interest rates, and other banking problems can be made. 

Military and nonmilitary dynamic-operations simulation studies can 
involve these processes. For example, consider air-traffic control (in 
three dimensions). Three rows can record the x and y coordinates and 
altitudes, respectively, of the aircraft represented by the successive 
columns. If the x and y velocity components are known, the coordinates 
of the aircraft can be predicted in time and aircraft that may be flying 
too close appropriately warned. When changes in course are made, 
recalculations of predicted positions of all the aircraft become easy. 

Of course, we could describe above only the simplest of applications. 
Our intention is to stimulate the reader's awareness of the great variety 
of fields in which problems arise that involve the manipulations of large 
arrays. Although a general-purpose computer can handle such problems, 
special-purpose computers can fulfill the need much more effectively and 
efficiently. We shall now describe some special-purpose operations that 
would be incorporated into such a computer. 

Basic Operations and Instruction Format. With the above examples in 
mind the reasons for the definitions of the following basic manipulatory 
operations are clear. In fact it is quite surprising that these few simple 
operations can accomplish the task so well. The instructions that we 
shall illustrate contain the necessary ingredients, although their form in 
actual practice may vary greatly. It is felt that a concrete example may 
best serve to demonstrate the concepts. 

Since we are concerned primarily with arrays of numbers, i.e., with 
numbers arranged in rows and columns, suppose that we literally arrange 
these numbers in such an array in the computer's memory. Figure 8-12 
represents such an arrangement on a drum memory. Then in order to 
"address" a particular number, all we need specify is its row and column. 
For reasons that will presently appear clear, we denote the number in 
row j and column x by the following functional notation: fj(x). See, for 
example, Table 8-5. 
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Column 

o 1 2 .3 4 5 ••• 

FIG. 8-12. Arrays of numbers stored on drum memory. 

The address of fj(x) is thus specified by the pair of indices: j, x. We 
use the phrase generalized address because the instruction actually indi­
cates a collection of addresses in the manner now to be described. Con­
sider a multiplication instruction. Rather than form the product of 
just two numbers, fi(X) . fiCx), we wish now, with a single instruction, 
to form a whole row of successive column-by-column products, that is, 

TABLE 8-5. NOTATION OF THE ARRAY 

Column x 

0 1 2 P q n 

------ ------ --- ------ ---------
0 fo(O) fo(l) fo(2) fo(p) fo(q) fo(n) 
1 fl(O) fl(1) /1(2) /1(p) /1(q) fl(n) 
2 12(0) f2(1) f2(2) · . f2(P) .. f2(q) f2(n) 

. . . . 
i fiCO) fi(l) fi(2) · . fi(p) fi(q) fi(n) 

j h(O) h(l) h(2) h(p) h(q) fi(n) 
· . 

m fm(O) fm(l) fm(2) fm(p) fm(q) fm(n) 

fi(l) . fi(I), and fi(2) . fi(2), and fi(3) . fi(3), and so forth. We might 
represent this as the operation fi(X) . fj(x) for x = 1, 2, 3, . . .. To 
add a little more flexibility to the operation, we might form, with a single 
instruction, fi(X) . fi(X) for p :::; x :::; q, that is, the successive products for 
only the columns p through q. For example, if i = 1, j = 2, p = 5, and 
q = 8 we would form (see Table 8-6) 

and 

Thus the multiplication instruction must now contain the row indices 
i andj, and the column indices p and q; this collection of indices represents 
the so-called" generalized addresses." Suppose that we wish the results 
to be placed in row k of the corresponding columns p to q; then the index 



SEC. 8-5] SPECIAL-PURPOSE DIGITAL COMPUTERS 275 

le must also appear in the instruction. Thus i, i, and le, together with 
p and q, represent the generalized ex, /3, 'Y, and 0 addresses, and all these 
indices m.ust appear in the instruction format itself. 

TABLE 8-6. ILLUSTRATION OF OPERATION h(X)!2(X), 5 ::;; x ::;; 8 

Column 

0 1 2 3 4 5 6 7 8 9 

Row 1 ..... 9 7 8 6 1 5 2 4 3 1 
Row2 ..... 6 2 5 1 0 3 4 8 7 2 
Row 3 ..... 15 8 32 21 

A description of the fourth generalized address, that of the next 
instruction, requires reconsideration of the drum memory. An instruc­
tion would appear as a partial row of numbers and can be recorded along 
with the data on the drum. For greatest efficiency a row length on the 
drum should be a multiple of an instruction length. To address the 
part of a row that is an instruction, only the row and column of the first 
number of the instruction need be known, since the length of theinstruc­
tion is fixed by the instruction format (see below). Let us denote the 
row and column number of the first characteristics of an instruction by 
Or and Dc, respectively. These must also appear in each instruction word. 

There are several other considerations that can lead to greater flexi­
bility in our instruction format. First suppose that we desired to form 
C . fi(X) . fj(x) (for p ~ x ~ q), where C is a constant. Since this is 
frequently desired (e.g., interest and discount rates), it is convenient to 
include the constant C in the instruction format itself, rather than 
address it separately. Second, observe that so far we can work on 
the different rows within the same column but we cannot have a number 
in one column affect a number in another column. Thus, for example, 
the product fi(X) . fj(x) becomes fk(X) in the same column. To circum.,. 
vent such a restriction, it suffices to introduce into the instruction format 
the alternative of placing the result of the operation in corresponding 
columns in the leth row, or of placing the result one column to the left in 
the leth row, i.e., displaced one column. That is, one may choose to have 
the product fi . (x) . fj(x) become fk(X) or fk(X - 1). Finally recall that 
('Y) is usually replaced by the result of the operation. However, great 
flexibility results if there is introduced into the instruction the alternative 
of either replacing ('Y) or else accumulating (adding) the results of the opera­
tion to the original contents of 'Y. As an example, suppose that, given the 
initial rows 1, 2, and 3 of Table 8-7, we formedfl(x) . f2(X) , for 5 ~ x ~ 8 
(that is, i = 1, i = 2, p = 5, q = 8), and accumulated the result in row 3, 
displaced. Then we would have 

fa(x - 1) final = fleX) . f2(X) + fa(x - 1) initial 

for 5 ~ x ~ 8 (see Table 8-7). 
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TABLE 8-7. ILLUSTRATION OF OPERATION fr(X)f2(X), 5 ~ x ~ 8, PLACED 

IN Row 3 DISPLACED BY ONE COLUMN, AND SO AS TO ACCUMULATE 

Column 

0 2 3 4 5 6 7 8 9 

Row 1 ........... 9 7 8 6 1 5 2 4 3 
Row2 ........... 6 2 5 0 3 4 8 7 2 

Row 3, initial .... 3 2 4 6 2 1 5 3 2 6 
Row 3, final ..... 3 2 4 6 17 9 37 24 2 6 

With these considerations in mind we can represent an instruction 
format as: 

Operation 
Row i Row j Row k 

Displaced Accumulated 
C Or Oc 

code 
p q 

or not or not 
--- --- - - - -

We shall use the convention that 1 means displace, 0 means do not, and 
that 1 means accumulate, 0 means do not, in their respective columns. 
The instruction that will produce the final result shown in Table 8-7 is: 

Operation i j k p q Displace Accumulate C Or Oc 
-- - - --I-

Multiply 1 2 3 5 8 1 1 1 

Weare now ready to define seven basic operations, where the column­
by-column disposition of each type of result is understood to be in accord 
with the above discussion, and where only the column-by-column 
operations on the arguments need be given. 

1. Multiplication 

2. Division 

3. Linear combination 

4. Minimum 

The final three instructions require some additional explanation: 
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5. Displaced linear combination Cfi(X - 1) + fiCx). Here the addi­
tion is not performed column by column, but rather displaced column by 
column. Of course, it is always understood that p ~ x ~ q, but then, 
when x = p and p = 0, the meaning of fiCO - 1) is undetermined. 
We therefore define fiCO - 1) = fiCO). 

x 

6. Partial scalar product I C· fi(J1.) . fj(J1.). This defines one result 
I-'=p 

for each x such that p .::;; x .::;; q. For example, if row i and row j were: 

Column 

0 1 2 3 4 5 

Row i ......... 7 6 5 4 3 2 
Row j ......... 2 3 4 5 6 7 

and p = 2 and q = 5, then the results would be 

5 X 4 = 20 5 X 4 + 4 X 5 = 40 5 X 4 + 4 X 5 + 3 X 6 = 58 

and 5 X 4 + 4 X 5 + 3 X 6 + 2 X 7 = 72 

7. Compare (min [fl:(x)]): C. This operation does not yield a column-
p:::;x :::;q 

by-column result; rather it is a two-way exit. If the minimum number in 
row i, columns p to q, is greater than C, then the next instruction is to be 
taken as the instruction that has row j, column k as the address of its 
first number; otherwise, i.e., if min [fi(x)] .::;; C, the next instruction is 

p:::;x:::;q 

to be chosen as usual, from Or, oc. Of course displace and accumulate have 
no meaning for a compare instruction. 

Illustrations of Coding. As a first illustration of using these special­
purpose instructions in writing codes, consider the problem of accumu..,; 
lating the amounts within each column, from row io to row io + h, putting 
the results into row io + h. Suppose for simplicity that the drum has 
22 columns (just twice the instruction length) and that the code is 
written in address 0, 0; 1, 0; 2, 0; etc. The code will make use of 
operation 3, with C = 1, not accumulating the results of summing i and 
i + 1. (Why?) Then a compare instruction will occur for the tally, 
and the iterations will proceed by adding 1 to the generalized addresses 
i, j, and k of the first instruction until the accumulation is completed. 
Since the first instruction is updated on each iteration, its i address can 'be 
used as the tally. The code appears in Table 8-8. 

As a second example, consider a linear extrapolation. Suppose that 
each column represented an aircraft and that rows Xl, YI, and h repre­
sented the x and Y coordinates of each aircraft at time tl , and rows 'X2, 
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Y2, and t2 represented the x and y coordinates of each aircraft at time t2• 

The problem is to make a linear extrapolation of the coordinates of each 
plane at time t. The formulas to be used are 

and 

We first form X2 - Xl in row Xl, Y2 - YI in row YI, t2 - tl in row tl , and 
finally t - t2 in row t. Then we form the quotient of rows Xl and it in 
row Xl and of rows YI and it in row YI. Next we form products of rows t 
and Xl in row Xl and of rows t and YI in row YI. Finally row X2 is added 
to row Xl and put in row X3; and row Y2 is added to row YI and put in row 
Y3; and the extrapolation is completed. The method of coding is straight­
forward, using C = -1 in operation 3 for subtraction. 

TABLE 8-8. CODE TO ACCUMULATE THE Rows io TO io + h, COLUMN BY COLUMNt 

Instruc-
Opera- Dis- Accu-

tion 
tion 

i j k p q 
place mulate 

C ~r 5. Remarks 
address 

------ --------
0, 0 3 io io + 1 io + 1 o 21 0 0 1 1 0 Add i to i + 1; put 

in i + 1 
1,0 7 0 3 0 1 1 '" .,. io + h - 1 2 0 i:io + h - 1 

> : Stop iteration 
~: Continue 

2, 0 3 4 0 0 1 3 0 0 1 0 0 Update (0,0) 
3, 0 Stop computer 
4, 0 0 1 1 1 0 0 0 0 0 0 0 Constant 

t Recall that the columns are numbered 0 through 21. 

As a third example, consider a numerical integration according to the 
rectangular approximation. Suppose that the successive values of the 
function at points X are given by fi(X) and that the intervals are unequal 
and are given in row i + 1. Then for the rectangular approximation we 
want to form the product of rows i and i + 1, column by column, and then 
accumulate this product over the columns. Here we make direct use of 
operation 6 and form 

21 l fi(U)fi+I(U) 
u=o 

in row i + 2. Then the value of the approximation is found in row 
i + 2, column 21. 

Systems Design for a Special-purpose Business or Logistics Computer. 
One of the most important features that a special-purpose computer of 
this type should have is rapid, flexible input-output. A general charac­
teristic of the problems under consideration in this section is the large 
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mass of input data to fill the array and the large mass of data computed 
from the array. This is in fact the main reason for having instructions 
that operate with generalized addresses. The given data may be 
characterized as items and characteristics associated with the items. 
Here the characteristics are the numbers upon which it is necessary to 
perform operations, and the items are the specifications of these numbers. 
Hence on the drum the location of a number can represent the item or 
specification, while the number itself, i.e., the contents of this location, 
will be the characteristics. 

For example, in a naval supply problem an item might consist of the 
set of numbers (XO,XI,X2,X3), where Xo = ship number, Xl = time period 
(e.g., month and year), X2 = Navy material class (e.g., class 75, diesel 
engine parts), and X3 = source of supply (e.g., the vessel itself, an afloat 
activity, a shore activity). The associated characteristics might consist 
of the set of numbers (YO,YI,Y2), where Yo = total number of items con­
sumed, YI = total weight in pounds, and Y2 = total volume in cubic 
feet. The source of this data may have covered 12 ships, during 72 
time periods, for 50 Navy material classes, and from three sources of 
supply, or 129,600 items. For each of these items there appear three 
six-digit numbers representing Yo, YI, and Y2. The data would then con­
tain 2,332,800 digits. 

Processing this data might consist in computing and printing tables 
with entries Yo, YI, and Y2 corresponding to some specified set of the x's. 
For example, the set (XO,XI) would lead to a two-way table of vessel 
number vs. time period, with entries covering all classes of material from 
all sources. Or additional functions of the y's may be desired. Average 
values are about the simplest example: Y3 = yt/yo = average weight in 
pounds; Y4 = y2/yo = average volume in cubic feet; Yo = 2,240y2/YI = 
stowage factor in cubic feet per long ton. 

It often occurs that a characteristic of one problem becomes an item 
specification for another problem, or the reverse. For instance it might 
be desired to compute a table giving the values of Yo, YI, and Y2 for each 
xo, Xl, and Y3, that is, for each ship, time period, and average weight. 
In such a case the numbers Yo, YI, and Y2 will have to be relocated so 
that xo, Xl, and Y3 will now specify their locations. Hence it becomes 
clear that in business and logistics computations searching, sorting, and 
ordering play an important role, in addition to the types of computations 
considered above. 

In the previous section we assumed that the information was recorded 
on a magnetic tape; here, however, we shall consider searching, sorting, 
and ordering of items by characteristics accomplished on an auxiliary 
drum, different from the one with which the computations are performed. 
The input data, which might, for instance, be on punched cards, is read 
onto the searching drum, both the items and the characteristics being 
recorded. This drum is appropriately searched, and the characteristics 
determined by the search are recorded on the computational-array drum 
in positions (i.e., addresses) that specify the associated item. Any 
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rearrangement Qr reordering is accomplished by use of the searching 
drum. 

Our special-purpose business or logistics computer is thus seen to be 
two interlocking computers, an array-manipulation computer and a search­
ing or information-retrieval computer (see Fig. 8-13). Each would have 

Punched-card 
input 

High-speed 
printer output 

Punched-card 
output 

r---------l 
I Information-retrieval I 
I computer 

I I 
I I 

Control and 
computing unit 

I 
I 

) 

r---------, 
I Array-manipulation 
I computer 

I 
I 
I 
I 

Control and 
computing unit 

I // 
I / / r--L-><-.lL....o........, 
L-_____ ..J 

FIG. 8-13. Special-purpose business or logistics computer. 

its own programming system. The array-manipulation computer would 
have special-purpose array-manipulation instructions as described above; 
the information-retrieval computer would have instructions enabling it 
to perform the operations described in the previous section. Ideally the 

Input­
output 

equipment 

Array­
manipulation 

computer 

General-

FIG. 8-14. Large-scale system consisting of information-retrieval, array-manipulation, 
and general-purpose computers. 

two computers should be able to operate concurrently; appropriate inter­
locking conditions would have to be satisfied, so that the two computers 
and computer programs would be properly synchronized. 

In addition we could attach a general-purpose computer to this setup 
to have a large-scale system (Fig. 8-14). Again for concurrent opera­
tion interlocks must be maintained. More will be said about such an 
arrangement in the next section. 
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EXERCISES 

(a) Consider the example of computing building-material purchase schedules and 
requirements. Suppose that the requirements at the site for each month during the 
construction are as follows: 

Type of material 
Month 

0 1 2 3 4 5 6 7 8 9 10 
-- ---------------~ ----

March ............ 100 75 60 54 0 0 20 60 10 20 30 
April. ............ 50 0 40 60 0 0 20 90 10 20 0 
May .............. 25 0 30 50 0 0 30 150 10 30 0 
June .............. 30 115 20 70 0 0 50 50 50 0 20 
July .............. 0 0 10 30 10 20 90 20 70 0 10 
August ............ 0 100 5 50 50 30 100 10 90 50 5 
September ......... 0 0 0 90 100 100 150 0 100 90 0 
October ........... 0 0 0 20 0 150 200 0 150 100 0 

Suppose that the delay time and the cost per unit are as follows (where the cost per 
unit of the material varies with the number of units ordered as shown): 

Type of material 

0 1 2 3 4 5 6 7 8 9 10 
-~ ---------~ --------

Delay time, 
months ...... 3 5 6 2 4 6 5 3 5 6 7 

Units ordered: 
0-9 10 50 35 20 5 40 30 20 30 100 150 

10-19 10 45 35 15 5 35 30 15 30 100 120 
20-49 10 40 30 14 5 30 25 15 25 95 110 
50-99 7 40 25 13 4 25 25 10 25 95 100 

100 or over 7 38 20 12 3 20 20 10 20 90 100 

Determine the schedule for the ordering, and determine how much money will be 
spent each month, assuming that the orders are paid for at the time they are ordered. 

(b) Write a code that will compute Exercise a. 
(c) Write a code for numerical integration by the trapezoidal rule. 
(d) Write a code for the linear extrapolation. 
(e) What situations might require interlocks between the information-retrieval 

computer and the array-manipulation computer? 

8-6. The Large-scale Data Processor 

Systems Design. Perhaps the most important observation about 
systems design is that whenever possible systems design should be 
accomplished for the specific purpose for which the computer is to be 
used. This does not mean that the computer should be of limited 
capabilities-rather, design for a purpose means that the computer's 



282 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 8 

capabilities should be extended to include features that will enhance its 
effectiveness for the special purpose for which it is intended to be used. 
However, one pitfall must be avoided in the design of special-purpose 
computers. It is usually possible to utilize special-purpose computers 
for problems not directly involved with the special purpose for which the 
computer was designed. In such cases the coding may be much more 
difficult. This often leads to increased cost of coding or to making 
undesirable simplifications in a problem to have it more nearly conform 
to the type for which the special-purpose computer was designed. Such 
a situation tends to diminish the advantages to be derived from using a 
digital computer in the first place. Hence it is usually unwise to use a 
special-purpose computer for problems other than those for which it was 
specifically designed. These considerations emphasize the importance of 
carefully evaluating the purpose before embarking on a computer design 
for that purpose, to be certain that the problems under consideration 
are truly in line with the special features of the proposed design. 

The systems design of a digital computer is characterized by the speci­
fications for (1) its computing components, (2) its memory components, 
(3) its input-output components, and (4) its interlock control. The 
specifications of a computing component include the instruction and 
quantity format, the list of instructions, the speed of execution of instruc­
tions, the logical design technique, and the type of electronic circuitry 
used. These last two specifications will be covered in Parts 3 to 5. The 
specifications of a memory component include its type (i.e., magnetic 
core, magnetic drum, etc.), size (i.e., number of words), speed or access 
time, logic (e.g., for a drum whether the words are round the circumfer­
ence or along the axis, etc.), and circuitry. The specifications of the 
input-output components include the kind, speed, and electromechanical 
design. The interlock controls, already mentioned in the preceding 
sections, will be discussed in greater detail below. 

Special Input-Output Problems. When data is collected, the record­
ing scheme used is ordinarily determined from criteria dictated by the 
particular problem, by convenience, etc. Rarely is the best form for 
computer utilization considered as a factor. Also, data produced by a 
computer will not in general be directly compatible for input into another 
type of computer. These problems become extremely serious in, for 
example, missile-testing programs, aircraft-flight evaluations, etc., 
where exceedingly large masses of data are produced very rapidly. The 
problem of conversion of this data to a form that can be read directly 
into the computer for analysis then becomes almost a larger task than 
collecting the data. 

One method for solving this problem is to have a special input drum for 
the computer. Everything that is read into the computer is read directly 
onto this drum just as it appears on the input medium. If the input were 
punched cards with 80 columns and 10 rows, then the data of the cards 
would be read onto the drum just as it appears on the cards, with a 
unit corresponding to a hole, a zero to no hole. Then a special translating 
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computing unit would be coded to interpret this information appropri­
ately. The translating unit would interpret the raw information on the 
drum, change it into appropriately coded binary data, and put it into 
the computer's main memory. This technique is extremely flexible, 
since all that is needed is a method for getting the raw data onto the drum, 
in any digital fashion whatsoever. 

This naturally brings up a second problem. Since reading in and trans­
lating the data will be time-consuming, it would be more efficient if the 
computer could be computing on other data, or even on another program, 
concurrently with the read-in and translation. Such a concurrent-input 
feature presents no problems other than logical and electronic design, 
provided that certain interlocks are observed. In reading data into a 
computer it is certainly known in which part of the main memory the 
information will eventually be stored. A simple type of interlock will 
halt a concurrent computer program that refers to a main memory address 
that has not yet been read into; when the input information is inserted 
into this address, the program automatically continues. 

In so far as output from the computer is concerned, the translator acts 
in reverse, putting information on the special drum in a form which when 
read out from that drum will correspond to any desired external coding 
scheme. Similarly with proper interlocks concurrent output can be 
accom plished. 

The Large-scale Data Processor. The large-scale data processor as 
described in this paragraph (see Fig. 8-15) is a fictitious computer; its 
description is used here as a vehicle for discussing the problems that arise 
in multiple-unit systems design. The purpose of this illustrative computer 
would be to perform general data processing. It encompasses each of the 
three features described in Secs. 8-3, 8-4, and 8-5, in addition to the trans­
lating component. Hence it is comprised of a general-purpose computing 
unit, a logical-control computing unit, a searching, sorting, and ordering 
computing unit, an array-manipulating computing unit, and an input­
output translator computing unit. It contains a high-speed memory, 
a general-purpose magnetic drum, a translator input-output drum, a 
sorting drum, an array-manipulation drum, as well as magnetic-tape 
units. It has conventional input-output equipment and a signal-sensing 
input unit for real-time control. 

The main point, however, to be illustrated by this example is that any 
or all of the computing units may be operating (i.e., computing) con­
currently, using any or all of the memories or input-output units. The 
mechanisms that enable such concurrent operation are found in the in-out 
selector-concurrent input-output interlock control and in the computing­
units interlock control. 

Let us consider the computing-units interlock control first and describe 
two possible ways it can operate. Consider the case where our data 
processor is operating on multiple independent codes simultaneously. 
The instructions for each of these codes are found in the memory units. 
At any time, each code is being computed in a different computing unit. 
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Each computing unit has its own instruction register, ·and 'its own 
current-address register that sequences the program according to 
the instruction definitions of the particular unit in which it is located. 
There are times, however, when one code will want to operate in a differ­
ent unit, will want to change computing units. These change-unit 

~. General-purpose ... 
computing unit I~ 

.... Searching, sorting, and ordering 
computing unit " 

Rectangular-array-manipulation .. computing unit -
log i cal-con tro I ~ 

computing unit -.. 
Input-output translator .. :computing unit 

...J 1 
Computing-units interlock control I .. 

'I r 

..L .... 
High-speed memory ... ... 

..L 

Magnetic-drum memories ....-.. 
~ .... .. Magnetic-tape memories 

I In-out selector-concurrent input-output 1 ~ 

I "'I interlock control r 

.. Output! Typewriter, punched-paper 
units I tape, p~nched cards, .... 

l magnetl c tape, etc. 

~ 

Signal sensing input unit -
I . 

Input : Typewriter, p!lnc~ed-paper -..... units I tape, pu.nched cards, 
I magnetic tape, etc. 

FIG. 8-15. Large-scale data processor. 

instructions are not handled in the computing units; instead they are 
sensed and sent to the computing-units interlock control. This interlock 
control keeps track of which units are being used. If a code wants to 
change to a computing unit that is being used, the code progress is stopped 
until the desired unit is free. A waiting line, or queue, is formed if 
necessary for each computing unit. The order, or priority, in which 
waiting codes are selected from the queues can be made as complicated as 
is considered necessary for the purposes of the computer design. 
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When the desired computing unit becomes available, the contents of 
the instruction address register is transmitted to this computing unit 
and the code is continued in its new unit. In other words, a computing 
unit processes the instructions it retrieves from the memory as directed 
by its current-address register; when changing from one code to another, 
a computing unit merely needs to have its current-address register 
changed. The control mechanism for this change is located in the 
computing-units interlock control. By this means each of the computing 
units can act almost as a separate computer in its own right, except when 
required to idle by the computing-units interlock control. Even though 
this concept for handling multiple codes at the same time is reasonably 
simple, the detailed techniques in a specific case may present many 
special considerations and exceptions. 

The second way in which a computing-unit interlock control might 
operate is to have only a single code being computed. However, it often 
happens that different parts of this code can be computed at the same 
time. That is, the logic or flow diagram of the code may not necessitate 
a completely serial sequencing of operations, but several parts of the code 
might be processable in parallel at the same time. In this mode the 
computing-units interlock control scans the entire code, recognizing 
parts of the code that can be executed independently. It does this by 
observing memory reference locations. If one part of a code never refers 
to a memory location used by another part of the code, then it can be 
accomplished at the same time as that other part of the code. The rules 
for observing this can become rather complicated. The computing-units 
interlock control must accomplish both functions; how thoroughly it 
accomplishes either function depends on the systems design and purpose 
of the computer. 

Finally we consider the in-out selector-concurrent input-output inter­
lock control. Besides in-out selections, this control unit must accomplish 
input-output interlock control similar to that described above. All 
input-output instructions are automatically sensed and sent to this inter­
lock control. If free, the appropriate unit is selected; if not, the code 
will wait, as was the case in the computing-units interlock control. 
This interlock control must communicate with the computing-units 
control, so that a code may be stopped when it wants to use a memory 
location not yet loaded. Again the details can become exceedingly 
com plica ted. 

EXERCISES 

(a) Make a chart with columns labeled with the specification names of the computer 
components and rows labeled with the various purposes considered in this chapter. 
Fill in the table with component specifications, giving a reason for each decision. (For 
example, the entries in the table will state how many addresses the instruction system 
should have, how large the memory should be, the access speed, and so forth.) 

(b) Draw a flow chart of a code that would interpret raw data from cards. Suppose 
that a computer word contains 15 bits, with the decimal point to the right. Assume 
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that the raw data appear on cards with 80 columns and 10 rows, where each card is 
.~.nterpreted as containing 20 four-digit numbers and the digit associated with each 
column is the row location of a single punch in that column. For example, the first 
two numbers on the card illustrated in the figure are 1,340 and 1,235. Assume 

0 1 2 3 4 5 6 7 8 9 10 11 ... 
0 0 
1 D D 
2 D 
3 D D 
4 D 
5 D 
6 

7 

8 ') 
9 1\ 

EXERCISE b 

that the translator drum records the rows of each card in sequence, from 0 to 9. The 
code is to compile the successive numbers (i.e., successive groups of four columns) in 
binary in the main memory of the computer. 

8-7. Additional Topics 

a. References on Digital Differential Analyzers. In general, digital differential 
analyzers are far more versatile and complicated than described in Sec. 8-2. For a 
more thorough understanding of their variations and potentialities see the following 
references: 

Bush, Vannevar: Differential Analyzer, J. Franklin Inst., vol. 212, no. 4, pp. 447-448, 
October, 1931. 

Donan, J. F.: The Serial-memory Digital Differential Analyzer, Mathematical Tables 
and Other Aids to Computation, vol. 6, no. 38, pp. 102-112, April, 1952. 

Hartree, Douglas R.: "Calculating Instruments and Machines," University of 
Illinois Press, Urbana, Ill., 1949. 

Mendelson, Myron J.: The Decimal Digital Differential Analyzer, Aeronaut. Eng. 
Rev., February, 1954, pp. 42-54. 

Palevsky, M.: The Design of the Bendix Digital Differential Analyzer, Proc. IRE, 
vol. 41, pp. 1352-1356, October, 1953. 

Sprague, R. E.: Fundamental Concepts of the Digital Differential Analyzer, M athe­
matical Tables and Other Aids to Computation, vol. 6, pp. 41-48, January, 1952. 

Weiss, E.: Applications of the CRC 105 Decimal Digital Differential Analyzer, IRE 
Trans. on Electronic Computers, vol. EC-1, pp. 19-24, December, 1952. 

Winslow, D. J.: Incremental Computers in Simulation, Meeting of South East Simula­
tion Council, Oct. 30, 1958, Huntsville, Ala. 

b. Multiple-component Computing Systems. In Sec. 8-6 the systems design of 
computers composed of several different interlocked computing components was 
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described. The following references give further details about specific examples of 
systems designs illustrating this principle: 

Dreyfus, Phillipe: France's Gamma60-A Step Forward in Data Processing? Datama­
tion Research Eng. J., May-June, 1958, p. 34. 

Dunwell, S. W.: Design Objectives for the IBM Stretch Computer, Proc. Eastern 
Joint Computer Con!., December, 1956, p. 20. 

Eckert, J. P.: Univac-Larc, the Next Step in Computel Design, Prot. Eastern Join 
Computer Con!., December, 1956, p. 20. 

c. System Engineering. We have been considering the systems design of digital 
computers. However, more often than not the digital computer is itself a component 
of a larger organized system. The study of such large-scale systems engineering is 
considered in a text by Harry H. Goode and Robert E. Machol, "System Engineer­
ing," McGraw-Hill Book Company, Inc., New York, 1957. Chapter 2 of this text 
is devoted to examples of such large-scale systems. How can a digital computer fit 
into each of the systems described in that chapter? Other discussions of systems 
design can be found in M. M. Hunt, Bell Labs 230 Long Planners, Fortune, May, 1954, 
p. 120; and P. F. Drucker, The Promise of Automation, Harper's Magazine, April, 
1955. The following periodicals frequently discuss large-scale systems: Control 
Engineering, a McGraw-Hill publication; and the IRE Transactions on Industrial 
Electronics. 



CHAPTER 9 

SYSTEMS DESIGN OF THE PEDAGAC 

Purpose. Pedagac, which stands for" pedagogic automatic computer," 
is the name of a computer that will be completely designed in this text. 
The purpose of the Pedagac is to provide the necessary thread of con­
tinuity to the study of digital-computer engineering. The process of its 
design as presented in this book will relate the systems design to the 
logical design and to the electronic design of a computer. Its primary 
purpose is to teach; its systems design, logical design, and electronic 
design have been chosen to demonstrate the procedural chain involved 
in the engineering of a computer. In many ways the Pedagac may not 
be appropriate for construction for any purpose other than engineering 
teaching and demonstration; for the oversimplification often used for 

Memory: 
I-------~ magnetic drum t-----., 

FIG. 9-1. Block diagram of the Pedagac. 

pedagogic purposes makes the Pedagac less efficient in computing speed 
and use of electronic hardware than is really necessary. However, the 
Pedagac can be built; it is a general-purpose digital computer. 

Block Diagram. Figure 9-1 is a block diagram of the Pedagac. The 
Pedagac is a binary computer, whose code will be written in octal-coded 
binary notation. The instruction system is a one-address format; the 
binary point is assumed to be to the left of a quantity word (i.e., all 
numbers are less than 1). It has a serial arithmetic unit, its memory 
is a drum, and it has a single output unit and a single input unit. 

Word Format. A Pedagac word contains 19 bits. The instruction and 
quantity formats are summarized in Fig. 9-2. The a address contains 
12 bits; hence the addressable memory has 212 = 4,096 addres~R. froro 
0000 to 7777 (octal). 

288 
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The Pedagac Coding Manual. Table 9-1 summarizes the instructions 
that will be available on the Pedagac. 

TABLE 9-1. INSTRUCTION LIST FOR THE PEDAGAC 

Operation Operation 
code name 

53 Add 
42 Major 

multiplication 
unrounded 

32 Minor 
multiplication 

41 Division 
unrounded 

54 Subtract 

'52 . Transfer 

43 Condition~l 
jump 

44 'Nox:mal ju.mp 

50 Clear 
accumulator· 

71 Logical 
m,ultiplication 

72 ,Logical' addition 

73 Logical 
equivalence 

74 Logical 
nonequivalence 

70 Circular shift 

60 Stop 
00 Read, in 

21 Read out 

Symbolic 
description 

(acc) + (0:) ~ ace 
(ace) X (0:) ~ ace 

(ace) X (0:) ~ acc 

(acc) + (0:) ~ ace 

(ace) - (0:) ~ acc 

(ace) ~ 0: 

(acc) < 0; take 0: 

Take 0: 

o-¥ ace· 

(acc) ~ (0:) ~ acc 

(acc) I± (0:) ~ aec 

(acc) l.::. (0:) ~ ace 

(ace) ,lE. (0:) ~ acc 

. (acc).~~acc)' 

Stop 
Input unit ~ 0: 

(ex) ~ output unit 

Meaning 

Add (0:) to (ace); put result iIi acc 
Multiply.(o:) by (ace); put major 
product into ace 

Multiply (0:) by (acc); put mino, 
product into ace 

Divide (ace) by (0:); put result 
into ace 

Subtract (0:) from (acc); put 
result into acc 

Transfer (acc) into 0:; leave (ace) 
unchanged 

If (ace) is negative; take (0:) as 
next instruction; otherwise take 
next iIistruetion in sequence as 
usual; leave (ace) unchanged 

Take (0:) as next iiistruction; 
leave (ace) unchanged' 

Make (ace) == 0 

Logical~y multiply (acc) by (0:); 
put result .into ace 

Logically add (ace) to (0:); put 
result into acc 

Equalize (acc) with (0:); put 
result into aCQ 

Unequalize (acc)' with (0:); put 
,result into ace 

Circular shift (acc) clockwise by 
'0: positions 

Stop computet 
Read in one wotd from input 
unit into ex 

Read out (0:) to output unit 

The Control Panel. The control panel of the Pedagac is very simple. 
Besides the power on-off button there are only three other manual push 
buttons: the start button, the stop button, and the run button. Before we 
can describe the action of these buttons, we must first describe the idling 
mode and the computing mode of the computer's operation. The computer 
is said to be idling when the power is on but no instructions are being 
executed; it is said to be computing when instructions are being sequenced 
and executed. There are three ways in which the computer can enter 
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the idling mode: (1) it will assume the idling mode just after the power is 
turned on; (2) it will be in the idling mode after a stop instruction has 
been executed; (3) it will be in the idling mode after the stop button has 
been pushed. There are two ways in which the computer can be made to 
change from the idling mode to the computing mode: (1) push the start 
button; (2) push the run button. 

As we have observed, pushing the stop button puts the computer into 
the idling mode. The current-address counter will contain the address 
of the next instruction, and the computer will begin to idle after com­
pleting the execution of the present instruction. The stop button has no 
effect if pushed when the computer is idling. When the run button is 
pushed, the computer will proceed with the program, first executing the 

rnstructlon word format: 

Quantity format: 

Binary point 

Operation' a address 
(6 bits or 12 bits or ...... 

2 octal figures) 4 octal figures .:.a 
~~---.------r-----~------'------T----~~ 

(PO is always 1 for an instruction word) 

18 bits or 6 octal figures 

(P 0 is 1 for positive, 0 for negative) 

FIG. 9-2. The word format of the Pedagac. 

u; 

instruction whose address is in the current-address counter. The run 
button has no effect if pushed when the computer is in the computing 
mode. 

The operation of the start button is more complicated. When pushed, 
first the current-address counter is cleared, second the instruction register 
is cleared, and third the computer changes to the computing mode and 
proceeds to execute the instruction in the instruction register. What 
instruction in the instruction register? Namely, 00 0000, which says, 
"Read one word from the input unit into address 0000 and take the next 
instruction from the address in the current address counter-namely, 
address 0000." In other words, when the start button is pushed, the com­
puter reads one word into the address 0000 and then proceeds to execute 
(0000) as an instruction. The start button has no effect if pushed when 
the computer is in the computing mode. The start button has two 
uses: First, as we shall soon see, it is used to read in the read-in routine. 
Second, it is used in interrupting the program to jump out of the normal 
sequence of instructions; if the programmer desired to jump to a different 
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part of the program, he would push the stop button, place an appropriate 
jump instruction in the input unit, and then push the start button. 

A Read-in Subroutine for the Pedagac. The read-in instruction of the 
Pedagac reads in only one word at a time. Usually in reading in a pro­
gram or data it is desired to read in many words at one time. Thus 
the need arises for a subroutine which will read no words into adjacent 
addresses ao, ao + 1, ac + 2, ... , ao + (no - 1). The read-in sub­
routine can be initiated by a program that is being computed, e.g., to 
call in additional data, or else it can be initiated by pushing the start 
button. Assuming that the read-in subroutine is already in the memory 

FIG. 9-3. Flow chart of read-in routine. 

of the Pedagac, Fig. 9-3 represents a flow chart for it. However, for this 
flow chart to operate properly, the data or words to be read in must be 
preceded by a word with ao, the first address to be loaded, and no, the 
number of words to be read in. If the read-in process is to be initiated 
by the start button, the first word of the data must be a jump to RRl, 
which is the first address of the read-in routine itself (see Fig. 9-4). The 
read-in code itself appears in Table 9-2. Here aiRR represents the 
read-in instruction that is modified, niRR is the address of the tally word 
ni, and ONE is the address of the constant 1. 

Initial Read-in Subroutine for the Pedagac. Suppose that the read-in 
subroutine was not in the memory. Then a special initial read-in sub-
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Jump to RRl 

00 no 

00 l.I!o 

I 

...... '-
I 

I data 

J~P to lst address 
of a program or 
to a stop, etc. 

-- ......... 

[CHAP. 9 

FIG. 9-4. Sequence of words on the input medium to read in a program or data. 

routine must be used. The purpose of this subroutine is to load the 
computer with the normal read-in routine and then give this routine 
control. We assume that the computer and drum have been cleared 
and that the start button is pushed. This reads in one word from the 
input unit into 0000. This word will be an instruction, "Read one word 
into 0001." The computer then will execute this instruction, which is 

TABLE 9-2. THE READ-IN ROUTINE 

Address Operation a Remarks 

RR1 00 niRR Load niRR with no 
RR2 50 0000 

} RR3 53 n,;RR 
Subtract 1 from no 

RR4 54 ONE 
RR5 52 n,;RR 
RR6 00 aiRR Load a,;RR with OOao 
a,RR 00 0000 Read one word into ai 
RR7 50 0000 

} RR10 53 n,;RR Subtract 1 from ni 
RR11 54 ONE 
RR12 43 RR21 } O:n,;RR 
RR13 52 n,;RR 
RR14 50 0000 

} RR15 53 a,;RR 
Add 1 to a,; 

RR16 53 ONE 
RR17 52 a,;RR 
RR20 44 a,;RR Jump to read-in instruction 
RR21 00 0000 Read one word into 0000 
RR22 44 0000 Execute (0000) 
ONE 00 0001 
n,;RR 
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now in 0000 (see description of the start, stop, and run buttons). This 
second word to be read in will be an instruction, "Read one word into 
0002." The current-address counter will be stepped by 1 in its normal 
fashion, and the instruction, which is now in 0001, will be executed. A 
third word will then be read into 0002; this will be a jump instruction to 
jump unconditionally to 0000. Recall that (0000) is the instruction 
"Read one word into 0001." This fourth word will be the instruction 
"Read one word into address RR1," where RR1 is supposed to be the 
first address of the normal read-in routine. The computer will then 
execute this instruction, reading in the fifth word, which is the first 

I Push start button I x=O 

Read the following instruction 
into 0000: 

II Read one word into 0001" ~ 
Execute (0000). 

Execute (0000); ie., If x ~ 21 (octal), then the 
read the following instruction word read-in will be the 

into 0001: instructfon: 
II Read one word into 0002 11 

II Read one word into RRx II 

If x> 22 (octal), then the x+l_x 

word read-in will be the 
Execute (0001); ie., instruction: 
read the following instruction IIJump to RRP 
into 0002:. 

"Jump to 0000 11 ~ 
I E~ecute (0001) ---, 

~ 
I 
I 

I Execute (0002) I I 
L I I 

RRl 
FIG. 9-5. This is not a flow chart of a program. It is a flow diagram illustrating the 
sequence of operations actually performed during the initial read-in routine that 
reads in the read-in routine. 

instruction of the normal read-in routine. The computer will now take 
the next instruction from address 0002, which jumps back to address 
0000. The instruction at 0000 will read in a sixth word into 0001; this 
will be an instruction to read in the second instruction of the norma1 
read-in routine, into address RR1 + 1, of course. This instruction is 
executed; then the jump to 0000 is executed, and so forth. This process 
continues until the read-in subroutine has been completely read into the 
drum memory. Then, when the computer returns to address 0000, it 
will read into 0001 a jump instruction to RR1, that is, the first address of 
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the normal read-in routine (see Fig. 9-5). Note that the sequence of 
words that will pass through the input unit is as follows: 

First word .......................... Read one word into 0001 
Second word. . . . . . . . . . . . . . . . . . . . . . .. Read one word into 0002 
Third word ......................... Jump to 0000 
Fourth word ........................ Read one word into address RRI 
Fifth word. . . . . . . . . . . . . . . . . . . . . . . .. First instruction of normal read-in routine 
Sixth word ......................... Read one word into address RRI + I 
Seventh word. . . . . . . . . . . . . . . . . . . . . .. Second instruction of normal read-in routine 
Eighth word. . . . . . . . . . . . . . . . . . . . . . .. Read one word into address RRI + 2 
Ninth word. . . . . . . . . . . . . . . . . . . . . . . .. Third instruction of normal read-in routine 
Tenth word, etc .................... , Read one word into address RRI + 3, etc. 
Last word of initial read-in word 

sequence. . . . . . . . . . . . . . . . . . . . . . . .. Jump to address RRI 

Additional Topics 

a. Write an automonitor routine for the Pedagac. 

b. Compile a library of subroutines for the Pedagac. 

c. Write an automatic program for the Pedagac so that it can be programmed in 
the simplified International Algebraic Language of Sec. 5-9. 



PART 3 

FOUNDATIONS FOR THE LOGICAL DESIGN 

OF DIGITAL CIRCUITRY 

CHAPTER 10 

INTRODUCTION TO BOOLEAN ALGEBRA AND 

DIGITAL-COMPUTER CIRCUITS 

10-1. Introduction 

Boolean Algebra. Boolean algebra is an algebraic discipline analogous 
to the ordinary algebra with which we are all familiar but which follows 
different rules. We could begin this chapter directly by presenting these 
new rules, but such an approach would not provide the rationale and 
background so necessary to a thorough understanding of the methods 
involved in Boolean algebra. For Boolean algebra was originally devel­
oped, not for designing computer circuits, but as the symbolic interpreta­
tion of some forms of logical reasoning and as the method for describing 
relations between classes and sets. A knowledge of such interpretations 
can aid significantly in the study of Boolean algebra as applied to com­
puter circuits by suggesting analogies and alternative methods for think­
ing through circuit-design problems. 

Therefore in this chapter we introduce Boolean algebra by means of 
logic, in accordance with its historical development. A discussion of 
Boolean algebra itself is then given, followed by its interpretation as the 
algebra of sets. Having dispensed with these preliminaries, we turn to 
the main purpose of this chapter, the interpretation of Boolean algebra in 
terms of digital-computer circuits. 

Historical Background. It is of historical interest to note that this 
algebra was first investigated by George Boole (1815-1864) and the theory 
essentially completed by Ernst Schroeder in his monumental work on the 
algebra of logic before the turn of this century. Boole, Schroeder, and 
other logicians of that time had in mind the practical uses of the algebra 
of logic in the solution of everyday problems. However, they found that 
dealing with just four to five variables made practical computation 
unfeasible, requiring the employment of extremely ingenious methods for 
solution. Hence interest in solving large-scale logical problems of this 
kind was lost. 

It was at that time, too, that Whitehead and Russell, Hilbert, and 
295 
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others realized that logic could be developed to encompass the foundations 
of mathematics, and after the turn of the century the attention of 
logicians became focused on the so-called functional calculus of symbolic 
logic. Problems of extreme metamathematical and philosophical impor­
tance were considered. Such problems are still today of primary interest 
to professional logicians. Their methods have necessarily been esoteric 
and have as yet found little everyday application. 

On the other hand, the advent of digital-computer circuitry brought a 
widespread reawakening of interest in the algebra discovered by Boole. 
The first use of Boolean algebra in circuit design was made by Shannon t 
in 1938. Computational difficulties again limited the direct, practical 
application of Boolean algebra. To help offset some of these difficulties, 
new digital computational methods have recently been developed, and 
these are presented in the chapters of this part. 

It is to be reemphasized that this chapter will proceed as follows: (1) 
Logic will be discussed in order to introduce Boolean algebra in a natural 
way. (2) Boolean algebra itself will be described. (3) The set inter­
pretation of Boolean algebra will be given as an aid to visualizing some of 
the relationships. And (4) the circuit interpretation will be given, 
together with methods for going from the circuit diagram to the Boolean 
function and conversely from the Boolean function to the corresponding 
circuit diagram. 

10-2. Definition of Logic and Propositions 

Symbolic Logic. Logic is the science that teaches how thinking or 
reasoning should proceed; it produces the results of thinking; and it 
encompasses laws by means of which a judgment can be passed as to 
the correctness of the products of thought or reasoning. As H. Reichen­
bach points out, however, "When we call logic analysis of thought, the 
expression should be interpreted so as to leave no doubt that it is not 
actual thought which we pretend to analyze, it is rather a substitute for 
thinking processes, their rational reconstruction, which constitutes the 
basis of logical analysis." In other words, once a result of thinking or 
reasoning is obtained, a chain of thought can be constructed from the 
initial premises to the final conclusions and an analysis of this rational 
reconstruction of thinking reveals those rules called laws of logic. Logic 
presents a means by which thinking or reasoning may be simulated and 
the results of thinking obtained or checked. 

Only when the results of reasoning have been stated in terms of sen­
tences can they be tested or evaluated; logic deals with sentences (e.g., 
statements) and the rules correlating premise and conclusion sentences. 
The best method of handling these sentences in logic is a symbolic method, 
for while simple logical operations can be performed without the help of a 
symbolic notation, the structure of complicated relations cannot be seen 
without the use of symbols. 

t C. E. Shannon, A Symbolic Analysis of Relay and Switching Cire.1lits, Trans. 
AlEE, vol. 57, pp. 713-723, 1983. 
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The Proposition. The methods of symbolic logic that are concerned 
with deduction must lead from true sentences to true sentences. Hence 
the whole sentence becomes a fundamental unit for logic since only a 
whole sentence can be true or false. In fact, attention in this book will 
be limited only to whole sentences with this property, and such sentences 
will be called propositions. A proposition is a whole sentence about which 
it is meaningful to say that its content is true or false. Some authors put 
this somewhat differently, limiting their consideration only to meaningful 
sentences. In their system a sentence is meaningful only if it is verifiable 
as true or false. The part of symbolic logic that deals with propositions 
is called the propositional calculus. 

Examples of propositions and their truth values are as follows: 

Proposition Truth value 

a. 3 is an even number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . False 
b. The grass is green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . True 
c. Logic is the science that teaches how thinking or reasoning should 

proceed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . True 
d. The proposition on the line below is true. . . . . . . . . . . . . . . . . . . . . . . . . False 
e. January is a summer month ................. , . . . . . . . .... .... .. . . False 

In textbooks dedicated solely to symbolic logic a distinction in sym­
bolism is made between propositions and propositions about propositions. 
However, since the purpose of this chapter is only to introduce computa­
tional methods in the propositional calculus of symbolic logic and not to 
expound the subject itself, no consistent attempt will be made to separate 
propositions of these two types. The distinction between propositions 
of these types is to be made by the reader from the context. 

10-3. Definition of Propositional Operations 

The Propositional Operations. It is to be reemphasized that this 
chapter deals with a logic of two truth values, viz., true and false, and 
that the primary interest is in determining the truth value of propositions. 
In considering combinations of propositions, the truth value of the com­
bination is again the primary object. 

Propositions can be combined or manipulated by the words and, or, 
and not (negation), these words being called the propositional operations. 
The operations and and or combine two propositions, whereas the opera­
tion not (or negation) is associated with only one proposition. Given 
the truth value of propositions, the truth value of their combinations 
with the propositional operations is defined as follows: 

1. The and combination of two propositions is true if and only if 
both propositions are true. If either one or both of them are false, the 
combination is false. For example, "The grass is green, and logic is the 
science that teaches how thinking or reasoning should proceed" is true, 
but "The grass is green, and 3 is an even number" is false. The and 
combination of two propositions is often called their conjunction, or 
logical product. 
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2. The or combination of two propositions is true if and only if 
either one or both of the propositions are true. The or combination of 
two propositions is false only if both propositions are false. For example, 
"The grass is green, or 3 is an even number" is true; "3 is an even num­
ber, or January is a summer month" is false. The or combination of two 
propositions is often called their disjunction, or their logical sum. 

3. The negation of a proposition is true if and only if the proposition 
is false. For example, "3 is not an even number" (which is the negation 
of "3 is an even number") is true. 

Propositions may be symbolized by letters: A, B, C, ... , W, X, 
Y, . . .. In a later chapter we shall symbolize propositions by letters 
with subscripts: AI, A 2, ••• ,BI , B 2, •••• We use the symbol· for 
the operation and, + for or, and - (bar) over the letter to indicate nega­
tion. This symbolism is summarized in the following table: 

Operational symbol 

A 
A +B 
A·B 

In terpreta tion Terminology 

Not A Negation 
A or B Disjunction, logical sum 
A and B Conjunction, logical product 

The use of + for the or symbol arises from the parallelism between this 
logical operation and arithmetic addition. For example, 

2 bananas + 3 apples = 5 pieces of fruit 

where pieces of fruit = bananas or apples. The parallelism between the 
logical product and the arithmetical product also holds; for example, 
2 ft . 3 lb = 6 ft-Ib since the unit of work, namely, foot-pounds, is a 
logical and combination. 

Boolean Functions. Combinations of propositions joined by or, not, 
and and can be determined true or false and hence are propositions them­
selves. The uncombined propositions are called elementary elements and 
are usually denoted by letters at the beginning of the alphabet: A, B, 

Propositions combined by the propositional operations are called 
combined elements, or Boolean junctions, and are usually denoted by letters 
at the end of the alphabet: X, Y, . . .. Combined elements are some­
times written in functional form, that is, j(A,B, ... ). 

For example, consider the combined element A + B . C. Suppose 
that A is false, B is true, and C is false (that is, A might represent proposi­
tion a of the examples in Sec. 10-2, B might represent proposition b, 
and C might represent proposition e). In such a case B . C is false (since 
C is false), and A is true (since A is false); hence A + B . C is true 
(since A is true). Note that A . B is distinct from A . B; 'the former is 
read (not A) and (not B), while the latter is read [not (A and B)] (the 
parentheses are for clarity). If A is true and B is false, then A . B is 
false and A . B is true. 
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EXERCISES 

Suppose that A is false, B is true, and C is false; determine the truth value of the 
following combined elements: 

Answer 

(a) A . B . C True 
(b) A . B + A . 13 True 
(c) (A· B + A . B) . C False 
(d) A . C True 

(e) A + B False 
(f) (A + B) . C + (A + C) . C + A . 13 . C False 

10-4. Implication, Equivalence, and Tautology 

There are two particularly important combined elements, namely, 
A + B and A . B + A . B. Their significance and meaning are dis­
cussed here. 

Implication. First consider A + B. This is usually abbreviated 
A ~ B, called" A implies B," or "If A, then B," by logicians. In a 
sense this corresponds to the everyday linguistic use of the word implies, 
for if A is true and A ~ B is true, then B must be true; also, if A ~ B is 
true and B is true, A mayor may not be true. For example, consider 
the proposition" if an airplane is a fighter plane, then it has light armor." 
Certainly, if the airplane is a fighter, it will have light armor, according 
to the proposition; but if the airplane has light armor, the proposition 
does not reveal whether it is a fighter or not, for other types of airplanes 
than fighters have light armor. 

Equivalence. Consider now the important function A . B + A . B, 
called" A is equivalent to B" and abbreviated A = B. If A . B + A . B 
is true, then A and B have the same truth values, for then either A and B 
are both true or they are both false. Also, the meaning of the equals (=) 
sign in logic parallels its meaning in arithmetic, in which any item can 
be substituted for an equivalent one. For it can be shown that, if 
A = B is true, then some combination of the propositions U, V, and A, 
say, feU, V,A), is equivalent to that combination with B replacing A, 
that is, feU, V,A) = feu, V,B). In other words, it is always true that 
(A = B) ~ [feU, V,A) = feU, V,B)] in the propositional calculus. 

Tautology. This naturally brings up the topic of tautology. A 
tautology is a combined element that is always true, independent of the 
truth or falseness of its component propositions. For example, A + A, 
(A . B) + A, (A . B) + (A + B) . (A + B), as well as 

(A = B) ~ [f(U,V,A) = f(U,V,B)] 

are all tautologies, for they are true no matter what the truth values of 
A, B, U, and V are (or what the truth value of the combined element 
f is). Therefore there is no logical reason to distinguish between these 
combined elements, and anyone of them is called the universally true 
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element, or tautology, and denoted by I. The negation of I, namely, I, 
is the universally false element, denoted by o. A consequence of these 
concepts is that 0 -7 X and X -7 I are always true; i.e., the universally 
false element implies everything, while everything implies the tautology. 

To review, then, there are two meanings to truth. One is "tauto­
logically true," and the other is "true because it is a physical fact or 
supposition." "The grass is green" is true in the latter sense; "Today 
is Tuesday, or today is not Tuesday" is tautologically true. Logicians 
often use a special symbol to distinguish these meanings, but for our 
limited purposes this would be an unnecessary complication. 

EXERCISES 

(a) Note that A -7 B is true if both A is false and B is false. Can you think of 
examples of this situation that might occur in real life? 

(b) Consider the sentence" A + A is a tautology." Is this tautologically true, or 
is it factually true? 

10-6. Truth Tables 

The truth values of a combined element depend on the truth values of 
its component elementary elements, as dictated by the definitions of the 
propositional operations. A table can be made presenting all possible 
combinations of truth values; we call this a truth table. Consider, for 
example, A + B. The columns under A and B represent all possible 
truth-value combinations of A and B, and the column under A + 13 
represents the corresponding truth value of A + B, where T stands for 
true and F for false. 

A B A+B 
----~--

T T T 
F T T 
T F T 
F F F 

Similarly the truth tables for A and A . Bare: 

* 
A B A· B 

---- --~--. 

T T T 
F T F T F 

T F F 
F F F 

These truth tables follow from the definitions of the propositional opera­
tions and, conversely, could have been taken to be the definitions of these 
operations. With these basic truth tables in mind the truth table for s.ny 
~)ombined element can be constructed. 
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For example, recalling that A ~ B stands for A + B and that A = B 
stands for A . B + A . B, the following table can be formed: 

A B A~B 11=8 
-----------

T T T l' 
F T T F 
T F F F 
F F T T 

Note that A = B is true only when A and B have the same truth values. 
Similarly truth tables can be made for combinations of any number of 
elementary elements. For example, for three elementary elements A, 
B, and C, the truth table for the combined element A + B . C becomes: 

A B C A +B·C 
----

T T T T 
F T T T 
T F T F 
F F T T 
T T F F 
F T F T 
T F F F 
F F F T 

EXERCISES 

Find the truth tables for: 

(a) (A· B) + A. (b) A . B . c. 
(e) A + B. 

(c) (A·B + A . B) . C. 

(d) A . C. 

Solution 

A B C (A· B) + A A·B·C (A . B + A . B) . C A·C A +B 
---~- ~--

T T T T F F F F 
F T T T F T T F 
T F T T F T F F 
F F T T F F T T 
T T F T F F T F 
F T F T T F T F 
T F F T F F T F 
F F F T F F T T 

Note that (A . B) + A is indeed a tautology since it is true for every combination of 
truth values of the elementary elements of which it is a combination. 

(f) Show that A + A and A . B + (A + B) . (A + B) are tautologies. 
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10-6. Boolean Algebra 

Equations of Boolean Algebra. With the foregoing interpretation the 
algebraic properties of the logical operations can be more clearly under­
stood. The following equations characterize a Boolean algebra. It is 
to be noted that these equations are quite different from the familiar 
rules of ordinary algebra. The subject that comprises algebraic manipu­
lations according to the equations given below is therefore called Boolean 
algebra to distinguish it from ordinary algebra. Some of the equations of 
Boolean algebra are particularly important, and mathematicians have 
given them special names as shown: 

1. A +A = A 
2. A·A = A 
3. A +B = B +A 
4. A·B = B·A 
5. (A + B) + C = A + (B + C) = A + B + C 
6. (A· B) . C = A . (B . C) = A . B . C 
7. A . (B + C) = A . B + A . C 
8. A + B . C = (A + B) . (A + C) 

Name of equation 

Absorption rule for + 
Absorption rule for . 
Commutative rule for + 
Commutative rule for· 
Associative rule for + 
Associative rule for· 
Distributive rule of . over + 
Distributive rule of + over . 

9. A . B = A + jj De Morgan's rule for . 

10. A + B = A . jj De Morgan's rule for + 
11. A + I = I 
12. A· I = A 
13. 0 + A = A 
14.0·A = 0 
15. A + A = I 
16. A· A = 0 
17. A + A·B = A 
18. A + A . B = A + B 
19. A . B + B . C + C . A = (A + B) . (B + C) . (C + A) 
20. A . jj + A . C + B . C = A . jj + B . C 
21. A = A 

These equations are to be interpreted as tautologies. The equals sign 
means that, for any given combination of truth values for A, B, and C, 
the combined element on the right-hand side of the equation has the same 
truth value as the combined element on the left-hand side. Hence these 
equations can be checked by writing the truth tables for the right-hand 
and left-hand combined elements. 

Algebraic Proofs. Some of these equations can be "proved" alge­
braically by using others. For example, let us prove (20) by using 
(12), (15), (7), (6), (4), (3), and (17).t 

t Note how difficult and rather "tricky" it is to prove (20). With experience and 
practice some facility can be gained in performing such manipulations. However, the 
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A·B+A·C+B·C 
=A·B+A·C·I+B·C 
= A . B + A . C . (B + B) + B . C 

by (12) 
by (15) 
by (7) 

303 

= A . B + (A . C) . B + (A . C) . B + B . C 
= A . B + (A . B) . C + B . C + (B . C) . A 
=A·B+B·C 

by (6), (4), and (3) 
by (17) applied t"wice 

New equations may also be proved by using those listed above. To 
show that I· A = A, we have I· A = A . I = A by (4) and (12). 

EXERCISES 

(a) Using I . A = A, (8), and (15), prove (18). 

Solution 

as desired. 

A + A . B = (A + A) . (A + B) = I . (A + B) 
=A+B 

(b) What other equations listed above would be used to prove (19)1 
Solution. (1), (2), (3), (6), (7), (8). [HINT: Start with the right-hand side of (19) 

and apply (8), using (1), (2), (3), (6), and (7) to simplify the terms.] 

Alternative Algebraic Proofs. There is another way of proving equa­
tions, namely, by making use of (15) and (11), for we want to show that 
an equation is a tautology (i.e., the meaning of "proving equations"). 
If we can show that the equation itself is equivalent to I (in truth value), 
then we have shown that it is a tautology, since I is the universally true 
element (i.e., always true for all truth-value combinations of the ele­
mentaryelements). 

For example, consider the proof of (17) : A + A . B = A is an abbre­
viation for 

(A + A . B) . A + (A + A . B) . A 

but, on using (2), (3), (4), (6), (7), (9), (10), (11), and (15), we find that 
this expands to 

A + A . B + A . (A + B) . A = A + A . B + A + A . B 
=A+A+A·B+A·B 
= I + A . B + A . B by (15) 
= I by (11), to complete the proof 

As another example, we can show that A . B ~ A is a tautology, for 
A . B ~ A is an abbreviation for A . B + A, which becomes, by (9), 
A + B + A. But A + B + A = A + A + B [by (3) and (5)] = 
I + B [by (15)] = I [by (11)], to complete the proof. 

student need not dwell on gaining such facility, for in the next chapter a systematic 
and straightforward method will be given for doing such problems. 
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EXERCISES 

Are the following tautologies? 
Answer 

(a) A ·B~ A No 
(b) A ~ A + B Yes 
(c) (A ~ B) = (B ~ A) Yes 
(d) (A· B· C ~ D) = CD· B· C ~ A) Yes 

Another Method for Algebraic Proof. There is still another way for 
proving equations, i.e., to make both sides of the equals sign look identi­
cal. For example, let us prove that (A ~ B) = (B ~ A). From the 
definition of ~ we have A + B = B + A or A + B = A + B, by (21) 
and (3). As another example, let us show that 

A ~ (B ~ C) = A . B ~ C 

By the definition of ~ the left-hand side becomes A + B + C. Simi­
larly the right-hand side becomes A . B + C; by using (9) this becomes 
A + B + C, as desired. 

10-7. Boolean Algebra as the Algebra of Sets 

Sets. We have introduced Boolean algebra as the algebra of propo­
sitional logic. However, Boolean algebra can also be interpreted as the 
algebra of sets, or classes. A class is a collection of objects all of which 
have a certain property; such a well-defined collection of objects is often 
called a set. For example, the collection of all automobiles manufactured 
in the year 1956 and still in operating condition is a set. Or the collection 

FIG. 10-1. A, Ii. 

of people who registered at the national meeting of the Institute of Radio 
Engineers in 1960 forms a set. However, most often for the purposes of 
mathematics a set is visualized as the area inside a closed curve drawn 
on a piece of paper: the set is roughly interpreted as the collection of 
points that lie inside the closed curve (see Fig. 10-1). The objects that 
belong to the set are called elements of the set. For example, the point p 
is an element of the set (the interior of the circle) of Fig. 10-1. Sets 
are often denoted by letters; for example, we call the set in Fig. 10-1 the 
set A. 
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Just as the prime purpose of propositional logic was to determine the 
truth value of a proposition, so the prime purpose of the algebra of sets is 
to determine whether or not a point is in a set. In fact the only difference 
between the propositional calculus of logic and the algebra of sets is that 
the algebra of sets deals with a very restricted kind of propositions. 
These are propositions of the form "The point p is in the set A" and 
combinations of such propositions with and, or, and not. Hence the 
crosshatched area of Fig. 10-1 represents all those points for which the 

FIG. 10-2. A . B. FIG. 10-3. A + B. 

proposition "The point p is in the set A" is true. Let us symbolize this 
proposition by A. Then A is true for all points p not lying in the cross­
hatched area. 

Intersection and Union. All the points for which A . B is true (i.e., 
for which" the point p is in the set A, and the point p is in the set B" 
is true) are represented by the crosshatched area of Fig. 10-2. All the 
points for which A + B is true (i.e., for which" the point p is in the 
set A, or the point p is in the set B" is true) are represented by the cross­
hatched area in Fig. 10-3. The crosshatched area in Fig. 10-2 is called 

FIG. 10-4. A. FIG. 10-5. B. 

the intersection of the set A with the set B, that is, the set of points that 
lie in both A and B. The crosshatched area in Fig. 10-3 is called the 
union of the set A with the set B, that is, the set of points that lie in 
either A or B or both. 

Now, as we have seen, Boolean algebra holds for propositions, and 
hence it must also hold for our set interpretation of propositions. Hence 
we can visualize some of the relations of Boolean algebra by means of the 
set diagrams. For example, consider the relation A· B = A + B. 
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We shall show that A . B and A + B represent the same area. Figure 
10-4 gives the area for A, Fig. 10-5 for B, and Fig. 10-6 for A + B. 
But, observing Fig. 10-2 for A . B, we see that the area for A + B is the 
same as that for A . B. 

Just as in the propositional logic, given the truth value of the ele­
mentary elements, the truth value of a combined element can be deter­
mined, so, given the location of a point p with respect to the elementary 
sets A, B, ... ,we can determine if it is in the set described by a com-

FIG. 10-6. A + E. FIG. 10-7. (A + B) . C. 

bined element. For example, if a point p is in set A, not in set B, not in 
set C, then is it in the set for which (A + B) . C is true? The solution is 
given in Fig. 10-7. The crosshatched areas are all points for which 
(A + B) . C is true, and the point p is in set A, but not in set B or set C. 
Hence p is in the set (.4 + B) . c. 

EXERCISES 

(a) Show by set diagrams that A + B . C = (A + B) . (A + C). 

If a point is in set A, not in set B, and not in set C, then is it in the following sets. 
i.e., in the sets for which the following combined elements are true? 

(b) (A + B) . C 
(c) A + B . C 
(d) A . B . C 
(e) A . (B + C) 
(f) E+A.C 

(g) Draw the set diagram for A -7 B. 
(h) Draw the set diagram for A = B. 

10-8. Digital-computer Circuits 

Answer 

Yes 
Yes 
No 
Yes 
Yes 

In this section and the following sections we shall begin to see why the 
study of Boolean algebra is important for digital-computer circuit 
design. However, first we must make clear just what a digital-computer 
circuit is (see Fig. 10-8). 
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The Condition-function table. Consider a digital-computer-circuit black 
box with, say, two input wires called wire A and wire B and one output 
wire called wire C. Suppose that only one of two voltages may appear 
on wire A, to be specific, say a O-volt and a I-volt signal; the same holds 
for wire B. Hence a table can be made describing all possible input 
conditions: 

Possible input conditions 

0 1 2 3 
--------

Wire A ........... 0 1 0 1 
------

Wire B ........... 0 0 1 1 
== == 

Wire C ........... 0 0 0 1 

Let condition 3 be the case when there is a I-volt signal on both wires A 
and B; condition 2 be the case when there is a O-volt signal on wire A, 
1 volt on wire B; condition 1 when there is 1 volt on wire A, 0 volts on 
wire B; condition 0 when there are O-volt signals on both wires A and B. 
Then the function of the black box will be completely specified if we tell 

A B 

Dfgita(-computer-circuil 

black box 

C 

FIG. 10-8. Digital-computer black box. 

what voltage will appear on wire C for each of the four input conditions 
on wires A and B. For instance, suppose that 1 volt appears on wire C 
only when 1 volt appears on both wires A and B and that 0 volts appear 
on wire C otherwise. Then the table of input conditions can be com­
pleted for the output wire C as shown, and then the function of the black 
box is completely specified by the condition-function table. Such a 
black box is a type of digital-computer circuit. 

Hence we define a (binary) digital-computer circuit as a circuit black 
box the input wires of which are limited to two voltage levels, the output 
wires of which are limited to two voltage levels, and such that the voltage 
levels of the output wires depend on the present voltage levels of the 
input wires. t 

t Circuits that seem to depend on the past history of the input-voltage levels as 
well can always be interpreted in terms of present input-voltage levels provided that 
the number of "inputs" is increased; this will be discussed in a later chapter. 
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EXERCISE 

(a) Make a condition-function table for a circuit with three input wires A, B, C and 
one output wire D such that D will have a unit voltage signal whenever A has a unit 
voltage signal and B has a unit voltage signal, or else when C has a zero voltage signal; 
otherwise D has a zero voltage signal. 

Solution 

Possible input conditions 

0 1 2 3 4 5 6 7 
--------------

Wire A ......... 0 1 0 1 0 1 0 1 
Wire B .... .... 0 0 1 1 0 0 1 1 
Wire C ......... 0 0 0 0 1 1 1 1 

== = = = = 
Wire D ......... 1 1 1 1 0 0 0 1 

10-9. Boolean Algebra as the Algebra of Digital-computer Circuits 

We have introduced Boolean algebra as the algebra of propositional 
logic and have shown that it is in addition the algebra of sets. Boolean 
algebra can also be interpreted as the algebra of digital-computer circuits. 
Just as the prime purpose of propositional logic was to determine the 
truth value of a proposition and that of the algebra of sets was to deter­
mine whether or not a point is in a set, the prime purpose of the algebra of 
digital-computer circuits is to determine the signal-voltage level on a 
wire (e.g., either a O-volt or a I-volt signal). In fact, just as in the algebra 
of sets, the algebra of digital-computer circuits deals with a restricted 
kind of proposition. These are propositions of the form "The wire X 
has a I-volt signal" and combinations of such propositions with and, 
or, and not. 

Suppose that we symbolize by X the proposition "The wire X has a 
I-volt signal." Then we can symbolize, for example, the statement' in 
Exercise a of Sec. 10-8 that describes when wire D will have a I-volt 
signal as follows: A . B + C. In fact, when that combined element is 
true, then D is to be true; that is, D = A . B + C. Hence we can sym­
bolize the conditions that describe the output of a computer circuit in 
terms of its input by means of Boolean algebra. ' 

The condition-function table now becomes analogous to the truth 
tables of propositional logic when 0 corresponds to false and 1 corresponds 
to true. In fact, given the Boolean algebraic conditions for D to have a 
I-volt signal, a function table can be constructed directly in a manner 
similar to the construction of truth tables. 

For example, suppose that the conditions for output wire D of a com­
puter circuit were given in terms of the voltage signals on input wires A, 
B, and C by 

D= A + B· C 
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Then the condition-function table would be: 

Possible input conditions 

0 1 2 3 4 5 6 7 
----------------

Wire A ......... 0 1 0 1 0 1 0 1 
Wire B ......... 0 0 1 1 0 0 1 1 
Wire C ......... 0 0 0 0 1 1 1 1 

=~ =~ == ~~ 
Wire D ......... 1 0 1 0 1 0 1 1 

For example, if A is true (i.e., if "Wire A has a I-volt signal" is true) 
and if B is true and if C is true, then A is false, but B . C is true, whence 
A + B . C is true and therefore D is true (i.e., "Wire D has a I-volt 
signal" is true). Hence for condition 7 we put a unit in the row for wire 
D, and so forth. 

Immediately we see that the description of the same black-box com­
puter circuit can be stated in more than one way in terms of Boolean 
algebra. For example, if an output wire D is given in terms of the input 
wires A, B, C as D = A + B . C, then, since 

A + B . C = (A + B) . (A + C) 

we could equivalently write D = (A + B) . (A + C). On the other 
hand both A + B . C and (A + B) . (A + C) have the same truth 
table and consequently the same condition-function table. 

10-10. From Circuit Diagram to Boolean Function 

The Gates. We shall presently show that any such digital-computer­
circuit black box can be constructed out of three circuit elements, called, 
respectively, an and gate, an or gate, and an inverter. t However, the three 
kinds of circuit elements must first be defined. They are all digital­
computer circuits and can therefore be defined by a condition-function 
table. 

The and gate has two inputs A and B and one output X, which takes 
the voltage values given by the following table: 

Possible input conditions 

0 1 2 3 
--------

Wire A ........... 0 1 0 1 
Wire B ........... 0 0 1 1 

~= == == 
Wire X .......... 0 0 0 1 

t Consideration of "flip-flops" will be deferred until a later chapter. 
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In words, wire X will have a I-volt signal if and only if the wires A and 
B each have a I-volt signal. One possible method for constructing such a 
circuit is illustrated in Fig. 10-9. The arrows indicate the direction of 

A .... __ ......I] t-;":;"1--~ 
t-----x 

B .... __ ..... 1 t--:~=-----l 
R 

+1 volt 
FIG. 10-9. Diode and circuit. 

flow of electron current; Tl and T2 are diodes, and R is a resistor. When 
either wire A or wire B has a O-volt signal, current will flow through the 
resistor until X is at 0 volts; when all of wires A and B are at + 1 volt, 
then no current will flow through R and wire X will be at + 1 volt. t 

The or gate has two inputs, A, B, and one output, X, which takes the 
voltage values given by the following table: 

Possible input conditions 

0 1 2 3 
------

Wire A ........... 0 1 0 1 
Wire B ........... 0 0 1 1 

== = ====-
Wire X .......... 0 1 1 1 

In words, wire X will have a I-volt signal if and only if at least one of 
wire A or B has a I-volt signal. The schematic for such a circuit is 

A". --~~----l 
Tl 

B .... --~-'-----"iI 
Tz 

I----X 

R 

o volts 
FIG. 10-10. Diode or circuit. 

illustrated in Fig. 10-10. Whenever anyone of A or B or C becomes + 1 
volt, electron current will flow until X is at + 1 volt. 

t Detailed description of and gates, or gates, and inverters is given in Part 5. We 
merely indicate how these might be made to enable the student to obtain a more 
concrete picture at this time. 
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An inverter has one input wire A and one output wire X. Wire X 
will have a 1-volt signal if wire A is at 0 volts, and wire X will have a 
O-volt signal if wire A is at 1 volt. The table becomes: 

Possible input conditions 

0 1 

Wire A .......... 0 1 

Wire X .......... 1 0 

Symbolized Gates. Rather than draw the schematic for an and gate, 
or gate, or inverter, we use standardized symbols to represent them, as 
shown in Fig. 10-11. 

A·~ 
BV-X(ClAOB) A-!>-X(=A) 

And gate Or gate Inverter 
FIG. 10-11. Symbolized gates. 

We can generalize the and gate and or gate symbols for more than two 
inputs as shown in Figs. 10-12 and 10-13. 

i~X(d~'B'C'D) 
FIG. 10-12. Symbol for and gate with four 
inputs. 

~3j-X(-A+B+c+m 
FIG. 10-13. Symbol for or gate with four 
inputs. 

From the Circuit Diagram to the Boolean Function. Complicated digital­
computer circuits can be built up by connecting the output of such gates 
to the input terminals of other gates. For example, consider Fig. 10-14. 
The outputs X and Y of the and gates are connected to the inputs of the 
or gate. Hence the output Z of the or gate then depends on the original 
inputs A, B, C, and D of the and gates. What is the precise dependence? 
Note that X = A . Band Y = C . D whereas Z = X + Y. Hence 
Z = A . B + C . D. In other words, the circuit of Fig. 10-14 can be 
thought of as a black box with input A, B, C, and D and output Z such 
that Z = A . B + C . D. 

Hence, given a digital-computer-circuit diagram, the Boolean expres­
sion for its output can now readily be derived. For example, consider 
the circuit of Fig. 10-15. The problem is to write Z in terms of A and B, 
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as given by the cir~uit diagram. This is done ~s follows: Z = X' Y, 
X = A + B, Y = C; therefore Z = (A + B) . C. For another exam­
ple, consider the circuit of Fig._l0-16. Here Z = X + Y, X = A . B, 
Y = U· V, u ::= 4, and V = B. Putting these together, we find that 
Z = A·B +A ·B. 

Summary. The procedure for writing the output Boolean functions 
in terms of the input elements (wires) for a given circuit diagram is as 

z 

FIG. 10-14. Z = X + Y = A . B + C . D. 

A 
B 

c 
z 

y 

FIG. 10-15. Z = X· Y = (A + B) . C. 

follows: First, assign letters to all input wires, all internal connecting 
wires, and all output wires. Second, proceed to write down the successive 
functions for each gate or inverter. Third, substitute in the equations 
until the outputs are given in terms of the inputs. 

The relations between the propositional calculus of symbolic logic and 
the circuit interpretation of Boolean algebra can now be reviewed. The 

A 

B 

A 

B 

x 

z 

FIG. 10-16. Z = X + Y = A . B + U . V = A . B + A . B. 

symbol A corresponds to the proposition "Wire A has a I-volt signal." 
Hence consider the propositional interpretation of the answer to the 
second example: Z = A . B + A . B. This says that "The output 
wire Z has a I-volt signal" has the same truth values as "Either both 
input wires A and B have a I-volt signal, or neither A nor B has a I-volt 
signal." In other words, wire Z will have a I-volt signal whenever 
either both A and B have 1 volt or neither A nor B has a I-volt signal; 
otherwise wire Z will have a O-volt signal. 
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EXERCISES 

Determine the Boolean function (i.e., the combined element) of the inputs A, B, C, 
and D that corresponds to the outputs Yand Z of the following diagrams: 

B 

C 
(a) 

A 

A 

B 

(b) 

A 

C 

A 

B 

(c) 

C 

D 

A 

B 

C 

A 

B 

C 

(d) A 

B 

C 

A 

B 
C 

z 

z 

z 

z 

Solution 

Z-=A+B·C 

Z = (A + B) . (A + C) 

Z=A·B+C·D 

Z =A.,8·C+A·B·C 
+A·,8·C+A.B·C 
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A 

B 

C 

A 

B 

C 

A 
(e) B 

C 

A 

B 

C 

A 
B 

C 
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Y=A·jj·C+A·jj·C+A·B·C+A·jj·C 
Z = A . jj. C + A . B· C + A· jj. C+ A . B· C 

Z 

10-11. From Boolean Function to Circuit Diagram 

In this section is illustrated how to proceed in the direction opposite 
to that of Sec. 10-10: given a desired output Boolean function in terms of 
the inputs, draw a circuit design. Let Z be the ouput and A and B the 
inputs. Suppose that it is desired to design a circuit so that 

Z=A·B+A·B 

The right-hand side is the sum of two combined elements; so let 

Z=X+Y 

where X = A . Band Y = A . B. Now Y is the product of two com­
bined elements: let Y = U· V, where U = A, V = B. Then we draw 

A X(=A·B) 

B t--t--Z(=X+y) 

A 

B 

FIG. 10-17. Z = X + Y = A . B + U . V = A . B + A . jj. 

Z as the result of X + Y, X as A . B, Yas U· V, U as A, and Vas B 
(see Fig. 10-17). For another example, consider 

Z= A·B·C+A·B·C+A·B·C 
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Let Z = U + V + W, where U = A . B . C, V = A . B . C, and 
W = A . B . C. Hence the diagram is as in Fig. 10-18. This example is 
interesting for the following reason : Note that 

A . .8 . 6 + A . B . 6 + A . B . 6 = (A . .8 + A . B + A . B) . C 
= (A . (.8 + B) + A' B) ·6= (A + A . B) . C = (A + B) . C 

or A . .8 . C + A . B . 6 + A . B . C = (A + B) . C, which is just the 
output expression for the second example of the previous section (Sec. 
10-10). In other words, the above circuit diagram gives the same output 
as the circuit diagram of the second example of the previous section. 

A---~ 

B 
C 

A 
B---~ 

C--f~--~ 

A----~ 

B----~ 

C 

U(=A·jj·C) 

V(=X·B·C) 
~---------r-~-Z 

W(=A·B·f> 

FIG. 10-18. Z = U + V + W = A . B . C + .A . B . C + A . B . C. 

Hence we see that the design of a digital-computer-circuit black box is not 
unique and, in general, that there are many ways of arranging the and 
gates, or gates, and inverters to obtain equivalent results. How to choose 
the best design is discussed in the next chapter. 

EXERCISES 

If Z is the output and A, B, C, and D are inputs, draw the circuit diagrams for 
computer circuits such that: 

(a) Z = A . B + .A . B. 
(b) Z = (A . B + A . B) . C + (A . B + .A . B) . C. 
(c) Z = (A + B) . (C + .1). 
(d) Z = (A + B . C) . (..4 + B . C) + D. 

10-12. Additional Topics 

a. Axiomatic Development of Boolean Algebra, and References. Boolean algebra, or 
the propositional calculus of symbolic logic, can be developed from several different 
sets of postulates. As an example, consider a set of postulates defined in terms of the 
following "fundamental concepts": a set S of elements (a,b,c, ... ); a + b, the result 
of the binary operation +; and ii, the result of the operation -. The postulates are: 

1. If a and b are elements of S, then a + b is an element of S. 
2. If a is an element of S, then ii is an element of S. 
3. a + b = b + a. 



316 FOUNDATIONS FOR LOGICAL DESIGN [CHAP. 10 

4. (a + b) + c = a + (b + c). 

5. (a + b) + (a + b) = a. 
The equals sign (=) is interpreted as an equivalence relation (see Sec. 7-8), and 

in addition the following substitution rule is assumed to hold: If x = y, then 
f(x,a,b,c, ... ) = f(y,a,b,c, ... ). From these five postulates and the properties 
of =, all the equations of Boolean algebra can be proved (see Sec. 10-6). Evidently + 
can be interpreted as the logical sum; the logical product is defined as a . b = a + b. 
The tautology I is defined by I = a + ai 0 is defined by 0 = a . a. For example, let us 

prove that a· b = b· a. By the definition a' b = (a + b); by (3), (a + b) = (b + a); 

but (b + a) = b . a, as desired. Can you prove that a + (b· c) = (a + b) . (a + c)? 
A system of postulates is called independent when it is impossible to deduce from 

any portion of the system a conclusion deducible from any other portion. Can you 
prove that the five postulates given above are independent? Since the above set of 
postulates used the set 5 and the operations + and -, we denote this set as the 
(5, +, -) postulate set. Another set of postulates, denoted by (A, +, .), is as follows: 

1. There is an element 0 in A such that 0 + a = a for all a in A. 
2. There is an element 1 in A such that 1 . a = a for all a in A. 
3. O· a = 0 for all a in A. 
4. 1 + a = 1 for all a in A. 
5. A consists of two elements (that is, 0, 1). 
Two sets of postulates P and pI are called equivalent if starting with the postulates P, 

after finding suitable definitions for the primitive concepts of pI in terms of the primi­
tive symbols of P, the postulates of pI can be derived. Can you show that the postu­
late sets (5, +, -) and (A, +, .) as given above are equivalent? This latter set is 
closely related to the techniques to be considered in the next chapter. 

The following references deal with the foundations and the axiomatic approach to 
Boolean algebras: 

Bernstein, B. A.: A Set of Four Independent Postulates for Boolean Algebra, Trans. 
Am. Math. Soc., vol. 17, 1916; Sets of Postulates for the Logic of Propositions, 
Trans. Am. Math. Soc., vol. 28, 1926. 

Boole, G.: "George Boole's Collected Logical Works" (1859), vols. 1 and 2, P. E. B. 
Jourdain (ed.), The Open Court Publishing Company, La Salle, Ill., 1940; "An 
Investigation of the Laws of Thought," Dover Publications, New York, 1951. 

Huntington, E. V.: Sets of Independent Postulates for the Algebra of Logic, Trans. 
Am. Math. Soc., vol. 5, pp. 288-309, 1904; A New Set of Independent Postu­
lates for the Algebra of Logic, Proc. Natl. Acad. Sci. U.S., vol. 18, 1932; New 
Sets of Independent Postulates for the Algebra of Logic, Trans. Am. Math. Soc., 
vol. 35, 1933. 

Jevons, W. S.: "Pure Logic (1864) and Other Minor Works," R. Adamson and H. A. 
Jevons (eds.), The Macmillan Company, London and New York, 1890. 

Schroeder, E.: "Algebra der Logik," vol. 1, Teubner Verlagsgesellschaft, Leipzig, 
1890. 

A discussion of the axiomatic method and techniques for proving the independence 
of and equivalence between axiom systems is found in R. L. Wilder, "Introduction to 
the Foundations of Mathematics," John Wiley & Sons, Inc., New York, 1952. 

b. Formal Rules of Inference. We have been discussing above axioms from which 
the identities or tautologies of Boolean algebra may be derived. We have tacitly 
assumed that the "usual rules" of logic are to be used in such derivations. But it is just 
these rules themselves which we are proposing to study I This is the problem which is 
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considered in logic texts and which will now be briefly treated. We are dealing with 
propositions whose content may be true or false and with tautologies that are stated in 
terms of propositions and that are themselves the rules of logic. However, we must 
start with primitive tautologies (axioms) and some primitive laws of deduction. One 
such primitive set is as follows: The primitive tautologies are: 

l. (x + x) - x. 
2. x - (x + y). 
3. (x + y) - (y + x). 
4. (x + y) - «z + x) - (z + y)). 

The primitive rules are: (1) The rule of substitution (dictum de omni)j we may substitute 
for a propositional variable any other variable or combination of variables, provided 
that the substitution is made wherever that sentential variable occurs. (2) The rule 
of inference (modus ponens)j if x and x - yare tautologies, then y is a tautology. 
From these we can prove all the tautologies of Boolean algebra. For example, let us 
prove that, if z - x and x - yare tautologies, then z - y is a tautology. To show 
this, first note that by our rule of substitution we shall let 2 replace z in (4), obtaining 
as a tautology (x - y) - «2 + x) - (2 + y» or (x - y) - «z - x) - (z - y)). 
Now, by the rule of inference, since x - y is a tautology, then (z - x) - (z - y) is a 
tautology; by our rule of inference again, since z - x is a tautology, then z - y is a 
tautology, as desired. 

For detailed discussions of the formal theory of symbolic logic, the reader is referred 
to the following: 

Church, A.: Introduction to Mathematical Logic, Part I, Ann. Math. Studies 13, 
Princeton University Press, Princeton, N.J., 1944. 

Cohen, M., and E. Nagel: "An Introduction to Logic and the Scientific Method," 
Harcourt, Brace and Company, Inc., New York, 1934. 

Hilbert, D., and W. Ackerman: "Principles of Mathematical Logic," R. E. Luce (ed.), 
Chelsea, New York, 1950. 

Quine, Willard van Orman: "Mathematical Logic," rev. ed., Harvard University 
Press, Cambridge, Mass., 1951. 

Reichenbach, H.: "Elements of Symbolic Logic," The Macmillan Company, New 
York, 1950. 

Rosser, J. B.: "Logic for Mathematicians," McGraw-Hill Book Company, Inc., 
New York, 1953. 

Whitehead, A. N., and B. Russell: "Principia Mathematica," vol. 1, 1910, vol. 2, 
19P, vol. 3, 1913, Cambridge University Press, New York (2d ed., 1925-1927). 

c. Other Logical Operations. As we have observed above, Boolean algebra can be 
accomplished with just two operations, + and -, since the· operation can be given in 

terms of + and - as a . b = a + 6. There are in fact single operations in terms of 
which Boolean algebra can be accomplished. Consider the operation PI(a,b) defined 
in terms of + and - as follows: PI(a,b) = a + b. To show that Boolean algebra can 
be accomplished in terms of this single operation, all we need do is define +, ., and - in 
~erms of PI(a,b). Thus, as can easily be checked from our definition, a = PI(a,a); 
a + b = PI[PI(a,b),PI(a,b)]; and a· b = PI[PI(a,a),PI(b,b)]. Another such single 
operation is P2(a,b) = a:1). Here we have a = P2(a,a), a + b = p2(p2(a,a),P2(b,b)], 
and a . b = p2[p2(a,b),P2(a,b)]. Note that I and 0 can be defined in terms of PI or P2. 
For PI we have I = pdpI[a,PI(a,a)];PI[a,PI(a,a)]}, and then 0 = PI(I,I). Can you 
define I and 0 in terms of P2? If we admit I and 0 as primitive concepts, then there 
are four further single operations that can be defined, namely, P3(a,b) = a + b, 
"P4(a,b) = a + 5, Pr,(a,b) =" a . b, P6(a,b) = a ·5. For example, for P3 we have 
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jj = Pa(a,O), a + b = Pa[Pa(a,O),b], and a· b = Pa{Pa[a,Pa(b,O)],O}. Can you show 
that P4, po, and P6 are each also valid single operations? What algebraic properties do 
PI, ... , ps have? The single operation PI was first introduced by H. M. Sheffer 
[A Set of Five Independent Postulates for Boolean Algebras, Trans. Am. Math. Soc., 
vol. 14, pp. 481-488, 1913, where PI(a,b) was denoted by alb, commonly known as 
Sheffer's stroke]. A single primitive formula can be used in terms of PI (instead of 
the four given in Additional Topic b above), namely, 

PI[PI(X,PI {y,z }),PI(PI {U,PI[U,U]} ,PI {PI[V,Y],PI[PI(X,V),PI(X,V)]})] 

This was first developed by J. Nicod (A Reduction in the Number of the Primitive 
Propositions of Logic, Proc. Cambridge Phil. Soc., vol. 19, pp. 32-42, 1916). 

d. Logical Translation of English. The limitation on the practical application of 
the propositional calculus arises from the difficulty of translation of the practical 
worldly situations into these precise statements. This translation, the first step in 
formulating the problem for solution, is by no means obvious and requires the work of 
a trained logical analyst. Part of this difficulty is the prevalent loose and often 
obscure use of language, and in particular of those very conjunctions which form the 
logical operations. 

TABLE 10-1. TRANSLATIONS OF ENGLISH CONNECTIVES 

English connective Logical translation 

Not A .................................... A 
A and B ............................ ....... A· B 
A or (inclusive) B; A or B or both ............ A + B 
A or (exclusive) B; either A or B ....... ...... A ~ B, A . jj + A . B 
AbutB ................................... A·B 
A although B ..... ......... , ............... A· B 
A unless B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. jj --+ A, B + A 
A on condition that B. . . . . . . . . . . . . . . . . . . . .. B --+ A, jj + A 
A if B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B --+ A, jj + A 
If A, then B; A implies B . .................. A --+ B, A + B 
A only if Bt ..... ................... ~ ...... A --+ B, A + B 
Not unless A then B ....... ................. ...1--+ jj, A +jj 
A provided that B. . . . . . . . . . . . . . . . . . . . . . . . .. B --+ A, jj + A 
A as well as B. . . . . . . . . . . . . . . . . . . . . . . . . . . .. A· B 
A if and only if B. . . . . . . . . . . . . . . . . . . . . . . . .. A = B, A . B + A . R 
Not both A and B ........ .................. A . B, A + jj 
Neither A nor B ........................... A· jj, A + B 
When A, then B ........................... A --+ B, A + B 
A because B ..... .......................... B --+ A, jj + A 

t Often imprecisely synonymous with" A if and only if B." 

For example, the word unless as used in the combined proposition" A unless B" 
is defined by logicians as A + B, since "A unless B" is considered equivalent to "A if 
not B," that is, "if not B, then A," which is written symbolically as jj --+ A. 
However, since not all users of the word unless are familiar with the logicians' 
delineation of the term, one often finds it employcd with an entirely different connota­
tion. For instance, "A unless B" is often used to denote "IfB, then not A," sym:­
bolically B --+ A, or jj + A. A third possibility for" A unless B" might be "A, but 
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if B then not A," which becomes A . (B + ..4\ or A . B. It is thus evident that in the 
formulation of the propositional elements from the original raw sentences one must 
have enough familiarity with the subject matter to be able to discern the intent of a 
sentence in its given context. 

In Table 10-1 we have suggested some translations for various English connectives. 
Caution must be used for the translation of or to distinguish between the inclusive or, 
that is, A or B or both, and the exclusive or, that is, either A or B but not both. Also 
care must be observed in using" If A then B," or "A implies B." Strict logical inter­
pretation is A -7 B, or A + B. Consider, for example, A -7 B . C. This is equivalent 
to (A -7 B) . (A -7 C), which is reasonable in terms of the English translation .. Simi­
larly A -7 (B + C) is equivalent to (A -7 B) + (A -7 C), which again is reasonable. 
However, A· B -7 C is equivalent to (A -7 C) + (B -7 C), which upon English 
translation is not obvious without considerable reflection; i.e., "Both A and B imply 
C" is the same as" A implies C, or B implies C, or both A implies C and B implies C." 
Similarly (A + B) -7 C is equivalent to (A -7 C) . (B -7 C), which again is not 
particularly obvious upon English translation. 

For further discussion of this topic see these works: 

Allen, L. E.: Toward More Clarity in Business Communications by Modern Logical 
Methods, Management Sci., vol. 5, no. 1, pp. 121-135, October, 1958. 

Carnap, R.: "The Logical Syntax of Language," Routledge and Kegan Paul, Ltd., 
London, 1949. 

Ledley, R. S.: Mathematical Foundations and Computational Methods for a Digital 
Logic Machine, J. Operations Research Soc. Am., vol. 2, no. 3, pp. 249-274, August, 
1954. (See also letters on Logical Translation of English by L. Davidson, J. 
Operations Research Soc. Am., vol. 3, no. 2, p. 466, November, 1954, and J. W. 
Gilmore, J. Operations Research Soc. Am., vol. 3, no. 1, p. 104, February, 1955.) 

Reichenbach, H.: "Elements of Symbolic Logic," The Macmillan Company, New 
York, 1947. 



CHAPTER 11 

THE DESIGNATION NUMBERS AND THE DESIGN 

OF FUNCTION CIRCUITS 

11-1. Introduction 

Boolean Algebra. In the last chapter Boolean algebra was introduced 
by means of its logical interpretation. Then it was shown how Boolean 
algebra could also be applied to describe relationships between sets and 
between input and output wires of digital-computer circuitry. This 
latter application is, of course, of primary interest to us. It was shown 
how to draw a circuit diagram corresponding to a Boolean function and, 
conversely, how to write a Boolean function, corresponding to a circuit· 
diagram, for the output wires in terms of the input wires. 

However, certain problems appeared in this study that were not 
resolved. For instance, it was seen that there are in general many 
circuit designs that will do the same job. Also the algebraic manipula­
tions of Boolean algebra seem rather difficult, requiring considerable skill 
and imagination together with a thorough knowledge of many of the rela­
tionships given in Sec. 10-6. This chapter will present systematic com­
putational methods that enable the relatively easy and straightforward 
solutions to these and many more problems that may arise in the design 
of computer circuitry. 

Initial Initial Manipulation Final Final 
Boolean algebraic ==9 deSignation ==9 of designation ===9 designation ~ Boolean algebraic 

formulation nl,lmbers numbers numbers results 
FIG. 11-1. Procedural chain for algebraic manipulation. 

Computational Methods and Circuit Design. The computational 
methods to be given depend on the systematic manipulation of designa­
tion numbers that will be described in this chapter. The procedure is 
first to turn the initial Boolean algebraic functions into designation 
numbers, then to perform the indicated computations with these num­
bers, and finally to transform the resulting numbers back into the final 
desired Boolean algebraic expressions. In this way algebraic manipula­
tions are replaced by the systematic numerical computations to be 
described. This procedure is diagramed in Fig. 11-1. 

As we have seen, two disciplines of study are brought together for the 
design of computer circuitry. The first is that of Boolean algebra, which 

320 
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Circuit diagram .. Boolean functions. > Circuit diagram 

Verbal statement / Function table / 
FIG. 11-2. From verbal statement to circuit diagram. 

has broad applications to many fields. The second is that which is specific 
to digital-computer circuitry. Figure 11-2 diagrams procedures of the 
latter kind, some of which were described in the last chapter. 

The first parts of the present chapter will be devoted to the procedures 
diagramed in Fig. 11-1; the rest of the chapter will be concerned with the 
procedures of Fig. 11-2 and their combination with those of Fig. 11-1. 
In fact the entire circuit-design problem can be summarized by the dia­
gram in Fig. 11-3. The double-lined arrows refer to procedures that 
involve only Boolean algebra and the computational methods; the single­
lined arrows refer to procedures unique to the digital-computer circuit 
problem. 

Initial .. Manipulation of ~inal result Final result F' I 
Boolean ~ Designation ~ ~ 10 terms of in terms of . lOa. 

circuit ~ functions"""" numbers --, designation -, designation =::9 Boolean ~ ~Ircult 

dl::~1 I / numbers numbers algebra doagram 

statement ~ Function 
of table 

problem 
FIG. 11-3. Combination of Figs. 11-1 and 11-2. The circuit-design problem outlined. 

11-2. The Designation Numbers 

The computational methods to be described involve binary numbers 
called designation numbers. To every element, elementary or combined, 
we associate a designation number. In doing a problem, the designation­
number representation for each proposition is obtained; the computations 
are performed in terms of these numbers; and finally the answer is rein­
terpreted in terms of propositions or sentences. The procedure for going 
from propositions to designation numbers will be considered first, and 
that for returning from designation numbers to propositions will follow. 

The Basis. The designation numbers for the elementary elements are 
assigned first. Such an assignment is called a basis. One such basis for 
a system of three elementary elements is 

0123 4567 

# A = 0101 0101 
# B = 0011 0011 
#e = 0000 1111 

where the upper small numbers merely number the positions of the 
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columns of the basis. t For a system of n elementary elements, t there are 
2n digits, or bits, in each designation number and hence 2n columns in a 
basis. Any permutation of the columns of the basis shown will result in 
a different but nonetheless valid basis. The columns of a valid basis for 
n elementary elements need only represent all the 2n possible combina­
tions of 0 and 1 taken n at a time. Hence there can be 2n ! different bases. 

One advantage of the type of basis illustrated above is that it may be 
written out directly for any number of elementary elements as follows: 
the number for the first elementary element alternates zeros and units; 
for the second alternates pairs of zeros and units; for the third alternates 
4 zeros and 4 units; for the fourth would alternate 8 zeros and 8 units, 
and so forth, each such designation number being extended to comprise 
the full complement of 2n bits. The column positions of the basis are 
numbered from the left, from 0 through 2n - 1. Such a basis is called a 
standard basis, and unless otherwise stated it is always assumed that all 
designation numbers refer to this type of basis. Following this convention 
we have, for example, in the case of four elementary elements, the stand­
aId basis: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

#A = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
#B = 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 
#C = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
#D = 0 0 0 0 0 0 0 0 1 1 1 1 1 

Observe that each column of a standard basis, read from the bottom to 
the top, forms a binary number which is the same as the number of the 

1 

column position. For example, column 3 is 6 corresponding to 0011 = 3 
0 

o 
(decimal), and column 14 is ~ corresponding to 1110 = 14 (decimal). 

1 

Determining the Designation Number of a Boolean Function. In order 
to find #(A + B), we define an operation of "logical addition," to be per­
formed on #A and #B, wherein 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, and 
1 + 1 = 1 without carry. For example, with respect to the standard 
basis for two elementary elements, 

#A = 0101 
#B = 0011 

#(A + B) = 0111 

To find #(A . B), we similarly define the position-by-position operation 
of "logical multiplication," wherein o· 0 = 0, O· 1 = 1 . 0 = 0, and 
1 . 1 = 1. For example, 

#A = 0101 
#B = 0011 

# (A . B) = 0001 

t The # symbol means" The designation number of . . . ." 
~ Also called basic symbols. 



SEC. 11-2] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 323 

To find #A, we invert each digit of #A, that is, change 0 to 1 and 1 to O. 
For example, 

#A = 1010 

With these operations on designation numbers in mind, we determine 
the designation number of a combined element merely by performing the 
indicated operations with respect to the chosen basis. For example, to 
find #(A + B . C), we have, with respect to a basis for three elementary 
elements, 

# B = 0011 0011 
#C = 0000 1111 

# (B· C) = 0000 0011 
# A = 1010 1010 

#(A + B· C) = 1010 1011 

There should be no confusion as to the dual role of the symbols +, . , -. 
When applied to propositions A, B, C, ... ,they are the logical opera­
tions or, and, and not, respectively; when applied to designation numbers 
#A, #B, #C, ... ,they are the numerical operations logical add, logical 
multiply, and invert, respectively. 

1 mportant Results. Some important results of this digitalization of 
propositions are: (1) #1 = 1111 ... ; that is, #1 has all units. (2) 
#X = #Y if, and only if, X = Y. (3) X -4- Y if, and only if, #Y has 
units in at least those positions which correspond to the units of #X. 

For example, to demonstrate equivalences, we simply calculate the 
designation number of each side; if they are identical, the equation holds. 
To show that A . B + A . C + B . C = A . B + B . C, we find 

and 

whence 

#(A . B) = 0001 0001 #(A . C) = 0000 0101 

#(B . C) = 0000 1100 

# (A . B + A . C + B . C) = 0001 1101 

but #(A . B + B . C) = 0001 1101 also, whence the equivalence must 
hold. To show that an implication is true, simply show that the implied 
proposition has units in at least the same position as the implier. For 
example, to demonstrate that A . B + B . C -4- A + C, we note that 

3 45 7 

#(A . B + B . C) = 0001 1101, which has units in positions 3, 4, 5, and 
3 45 7 

7; also #(A + C) = 0101 1111, which obviously has units in at least 
these positions. 

Basis and Truth Tables. To see the relationship between the truth 
tables and the basis, observe that, if in the truth table of Sec. 10-5,T is 
replaced by 1 and F is replaced by 0 and the columns are written as rows, 
then a basis results, together with the designation number of A + B . 0. 

0101 0101 = # A 
0011 0011 = # B 
0000 1111 = # C 

1010 1011 = #(A + B· C) 
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The reason for this is as follows: The main feature of our basis is that the 
2n columns represent all the 2n possible arrangements of n digits, each 
place of which can be 0 or 1. This corresponds precisely to all possible 
truth values of n elementary elements. 

The limitations of the truth-table method as compared with our 
numerical basis hinge on the fact that the order of the columns of the 
basis is fixed by the basis, while in the truth table it makes no difference 
in what order the rows are considered. (The truth table illustrated 
above was chosen so as to compare with our basis.) Thus merely to 
specify a particular combined element it is necessary to present a com­
plete "two-dimensional" truth table. The usefulness and applicability 
of truth tables have therefore been confined primarily to elementary 
didactic discussions and visual aid rather than as a notational representa­
tion for extensive computational techniques. 

EXERCISES 

With respect to standard bases determine the following: 
Solution 

(a) # (A + B) 1101 
(b) # (A . B) 0100 
(c) # (A . B + C) 1111 0100 
(d) # [A . (B + C)] 0101 0100 
(e) # [A . B + A . 13] 1001 
(f) # [A . 13 + A . B] 0110 
(g) # [A ·13 + C . 15] 0100 1111 0100 0100 
(h) #[A . (B + C) + 1 . (B + C)] 1101 1011 
(i) # [A . B . C + 1 . B . C] 1000 0001 
(j) #[(A + B + C) . (1 + B + C)] 0111 1110 
(k) #[A . B . C + C· (D + B· E) + 15 . EJ 0011 0100 1111 0100 

1111 1111 1111 0100 

11-3. The First and Second Canonical Forms 

From Designation Number to Boolean Function. Given a designation 
number, there is a systematic method for finding its symbolic Boolean 
algebraic representation in several different forms. For an example of 
five different equivalent representations of the same designation number, 
consider the number 0111 0100. (1) The first canonical form of this 
is A . B . C + A . B . C + A . B . C + A . B' C. (2) The second canon­
ical form is (A + B + C) . (A + B + C) . (A + B + C) . (A + B + C). 
(3) The simplest sum-of-products form is A· B + B . C. (4) The 
simplest product-of-sums form is (A + B) . (B + C). (5) A mongrel 
form is (A + B) . C + A . B . C. All these combined elements are equiv­
alent. In this section systematic methods for obtaining the first two 
forms are given; the methods for finding the latter three forms are given 
in subsequent sections. 

The First Canonical Form. The so-called first canonical form, also 
called the disjunctive normal form, is a sum of elementary products. An 
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elementary product is a product that contains all the elementary ele­
ments or their negations. For example, all possible elementary products 
for three elementary elements are A . B . C, A . B . C, A . B . C, A . B . C, 
A . B . C, A . B . c, A . B . C, and A . B . C. Observe that the designa­
tion of an elementary product always has a single unit. For example, 

# (li. . jj . 6) = 1000 0000 
# (A . fj . 6) = 0100 0000 
#(li.. B· 6) = 0010 0000 
# (A . B . 6) = 0001 0000 
# (li. . jj . C) = 0000 1000 
# (A . B . C) = 0000 0100 
#(.4.. B· C) = 0000 0010 
#(A· B· C) = 0000 0001 

For n elementary elements there are 2n such products. The first canoni­
cal form of a designation number is the sum of only those elementary 
products each of which contributes a unit to the number. For example, 
0100 0011 has units in positions 1, 6, and 7 and can therefore be con­
structed by summing the elementary products whose designation num­
bers have units in positions 1, 6, and 7. Hence, we have 

# (A . B . 6) = 0100 0000 
# (li. . B . C) = 0000 0010 
# (A . B . C) = 0000 0001 

# (A . B . (j + .4. . B . C + A . B . C) = 0100 0011 

i.e., the first canonical form representation of 0100 0011 is 

A·B·C+A·B·C+A·B·C 
The Second Canonical Form. To find the second canonical form, also 

called the conjunctive normal form, note that the designation number of 
the sum of all the elementary elements or their negations has exactly one 
zero: 

#(.4. + B + 6) = 1111 1110 
#(A + B + 6) = 1111 1101 
#(.4. + B + 6) = 1111 1011 
#(A + B + 6) = 1111 0111 
#(.4. + B + C) = 1110 1111 
#(A + B + C) = 1101 1111 
#(.4. + B + C) = 1011 1111 
#(A + B + C) = 0111 1111 

These sums are called elementary sums; for n elements there are 2n 
elementary sums. The conjunctive normal form corresponding to a 
given designation number is the product of those elementary sums which 
correspond to the zeros in the designation number. For example, for 
o 23 45 

0100 0011 we have zeros in positions 0, 2, 3, 4, and 5, and hence 

#[(A + B + C) . (A + B + C) • (.4. + B + C) . (A + B + 6) . (li. + B + 6)] 
= 0100 0011 
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This follows because each elementary sum in the product contributes one 
of the zeros of the designation number. 

as desired. 

#(A + B + C) = 0111 1111 
#(A + B + C) = 1101 1111 
#(A + B + C) = 1110 1111 
#(A + B + C) = 1111 0111 
#(A + B + C) = 1111 1011 

#(product) = 0100 0011 

EXERCISES 

Find the first and second canonical form corresponding to the following designation 
numbers: 

Answer 

(a) 1001 0110 # [A . B . C + A . B . C + A . B . C + A . B . C] 
# [(A + B + C) . (A + B + C) . (A + B + C) 

· (A + B + C)] 

(b) 0101 0101 #[A . B· C + A . B· C + A . B· C + A . B . C] 
# [(A + B + C) . (A + B + C) . (A + B + C) 

· (A + B + C)] 

(c) 1000 0001 # [A . B . C + A . B . C] 
# [(A + B + C) . (A + B + C) . (A + B + C) 

. (A + B + C) . (A + B + C) . (A + B + C)] 
(d) 0111 1110 #[A . B . C + A . B· C + A . B . C + A . B . C 

+A·B.C+A·B·C] 
#[(A + B + C) . (A + B + C)] 

(e) 1011 # [A . B + A . B + A . B] 
#[A +B] 

(f) 0010 # (A . B) 
# [(A + B) . (..4 + B) • (A + B)] 

(g) 1011 0001 0110 0101 # [A . B . C . D + A . B . C . D + A . B . C . D 
+A ·B·C·D +A ·B·C·D +1 ·B·C·D 
+ A . B . C . D + A . B . C . D] 

# [(1 + B + C + D) . (A + B + C + D) 
· (A + B + C + D) . (A + B + C + D) 
· (A + B + C + D) . (A + B + C + D) 
· (A + B + C + D) . (A + B + C + D)] 

11-4. Included and N onincluded Elementary Elements 

Elimination Pairs of Positions. Certain information about a Boolean 
function can be obtained from the designation number even before the 
Boolean function is explicitly displayed. For example, 0011 1111 can 
be written as a function in which A does not appear. To see this, con­
sider the first canonical form of 0011 1111, namely, 

A·B· C + A·B· C+ A·B· C + A·B· C + A·B· C + A·B· C 
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This can be factored as follows: 

(A + A) . B . C + (A + A) . B . C + (A + A) . B . C 

but A + A = I, whence the expression reduces to 

B·C+B·C+B·C 

in which A does not appear explicitly. This example illustrates how it 
may be possible to combine pairs of elementary products so as to elimi­
nate an elementary element from appearing explicitly in the form of a 
Boolean expression. On the other hand, if only one of a pair of ele­
mentary products is in the canonical form, then A could not be elimi­
nated; e.g., consider 0001 1111. The canonical form is 

A·B·C+A·B·C+A·B·C+A·B·C+A·B·C 

and on combining pairs 

or 
A . B . C + (A + A) . B . C + (A + A) . B . C 

A·B·C+B·C+B·C 

in which A appears explicitly. (It can be shown that no equivalent 
function exists in which A does not appear.) Hence we have shown that 
it is plausible to expect that the necessary occurrence or nonoccurrence 
(i.e., necessary inclusion or noninclusion) of an elementary element can 
be determined by observing the canonical form or, what is close to 
the same thing, by directly observing the designation number. Such is 
the case, and the purpose of this section is to present rules for such 
determinations. 

Pairs for A n n 1\ n 
::::~i:SB { t t ~ Ii ~ r~ J 17 
Pairs for a { \~ __ +\ _____ ...,,} _ 

FIG. 11-4. Elimination-pair positions for three variables. 

These rules are given as properties of so-called elimination pairs of 
positions of the designation number. Each elementary element has a 
set of pairs of positions. For three elementary elements, with respect to 
the standard basis the numbers of the positions of these pairs are 

A: (0,1) 
B: (0,2) 
C: (0,4) 

(2,3) 
(1,3) 
(1,5) 

(4,5) 
(4,6) 
(2,6) 

(6,7) 
(5,7) 
(3,7) 

The elimination pairs may be visualized as shown in Fig. 11-4. The 
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extension of this system to four elementary elements follows directly: 

A: (0,1) 
B: (0,2) 
C: (0,4) 
D: (0,8) 

(2,3) 
(1,3) 
(1,5) 
(1,9) 

(4,5) 
(4,6) 
(2,6) 
(2,10) 

(6,7) 
(5,7) 
(3,7) 
(3,11) 

(8,9) 
(8,10) 
(8,12) 
(4,12) 

(10,11) 
(9,11) 
(9,13) 
(5,13) 

(12,13) 
(12,14) 
(10,14) 

(6,14) 

(14,15) 
(13,15) 
(11,15) 
(7,15) 

Nonincluded Elementary Elements. Now that we have defined the 
elimination pairs with respect to the standard basis, the rules can be 
stated. 

RULE 1. A Boolean function can be written that does not involve 
explicitly an elementary element if in the designation number all the 
elimination pairs of positions for that elementary element contain either 
both zeros or both units. 

0123 4'56"7 

For example, consider 0011 ili1. The elimination pairs for A 
satisfy rule 1, for positions (6,7) contain 11, positions (4,5) contain 11, 
positions (2,3) contain 11, and positions (0,1) contain 00. Hence, as we 
have seen, a Boolean function for this designation number can be written 
in which A does not appear explicitly. 

0123 4567 

Consider as another example 1101 1101. Here rule 1 is satisfied for 
the elimination pairs of C; that is, positions (3,7) contain 11, positions 
(2,6) contain 00, positions (1,5) contain 11, and positions (0,4) contain II. 

In fact its Boolean function is just A + B, in which C does not explic­
itly appear. In such a case we say that C is a nonincluded elementary 
element. In the previous example A was the nonincluded elementary 
element. 

Included Elementary Elements. Next we shall give a ·rule for telling 
from the designation number whether an elementary element must appear 
explicitly in every form of the Boolean expression or whether the negation 
of the element must appear. However, we must first discuss the meaning 
of the appearance of an elementary element or its negation. 

An elementary element or its negation is said to appear in a Boolean 
function if it appears when the function is reduced to one in which a bar 
is applied only to individual elementary elements. ' For instance, A 
appears in the expression (A + B) . C, whereas A does not appear. 
However, if we consider the expression A· B + C, it is not clear 
whether it is A or A which appears; if this is reduced to (A + B) . C 
[that is, A . B + C = (A + B) . C] we see that A appears and A does not. 
Similarly, for example, A . B + C = A + B + C, in which A appears, 

and A . B + C = A . B . C, in which A appears. 
RULE 2. An elementary element (as distinguished from the negation 

of an elementary element) must appear explicitly in every Boolean func­
tional representation of a designation number if at least one of the elimina­
tion pairs of positions of that elementary element contains 01. 
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RULE 3. The negation of an elementary element must appear explicitly 
in every Boolean functional representation of a designation number if at 
least one of the elimination pairs of positions of that elementary element 
contains 10. For example, consider 

o 2 3 456 7 8 91011 12 13 14 15 

000 1 110 1 1 1 1 1 110 1 

Here A must appear since the elimination pair (2,3) contains 01. Both B 
and B must appear since the elimination pair (1,3) contains 01 and the 
pair (4,6) contains 10. Also C and 6 must both appear since the elimina­
tion pair (1,5) contains 01 and (10,14) contains 10. Only D appears since 
(0,8), (1,9), and (2,10) each contain 01, but (3,11), (4,12), (5,13), and 
(7,15) each contain 11 and (6,14) contains 00. In fact the Boolean 
function is A . B + B . C + 6· D. In this example we call A, B, B, 
C, 6, and D included elementary elements. 

EXERCISES 

Find the included and nonincluded elementary elements for the following 
designation numberg: 

(a) 0101 0101 
(b) 1100 0011 
(c) 0111 0111 
(d) 1111 1100 1100 1100 
(e) 0000 1111 1010 1010 

11-5. Mongrel Forms 

Included 

A 
B, .8, G, G 
A,B 
B, G,D 
A,G,D,D 

Answer 
N onincluded 

B,G 
A 
G 
A 
B 

Examples of Mongrel Forms. The mongrel form is not a unique form; 
i.e., two people determining a mongrel form for the same designation 
number may not arrive at the same Boolean function. In general, in 
the mongrel form, anything goes, just as long as the final Boolean function 
actually represents the designation number under consideration. For 
example, consider the designation number 0001 0111. We note that 

# A = 0101 0101 
# B = 0011 0011 
#G = 0000 1111 

# (A . B) = 0001 0001 
# (A + B) = 0111 0111 

But since #6 = 1111 0000, then #A . B . 6 = 0001 0000; also, since 
#C = 0000 1111, then #(A + B) . C = 0000 0111, whence 

0001 0111 = #[A . B . 6 + (A + B) . C] 

or A . B . (j + (A + B) . C is a mongrel form. The mongrel form is 
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particularly useful in more complicated cases. For example, consider 
0001 0111 0111 0001 1110 1110 1000 1000. Here we have the basis 

#A = 0101 0101 0101 0101 0101 0101 0101 0101 
#B = 0011 0011 0011 0011 0011 0011 0011 0011 
#C = 0000 1111 0000 1111 0000 1111 0000 1111 
#D = 0000 0000 1111 1111 0000 0000 1111 1111 
#E = 0000 0000 0000 0000 1111 1111 1111 1111 

Since 

# (A . B) = 0001 0001 0001 0001 0001 0001 0001 0001 
#(A + B) = 0111 0111 0111 0111 0111 0111 0111 0111 
#(A + B) = 1110 1110 1110 1110 1110 1110 1110 1110 

#A· B = 1000 1000 1000 1000 1000 1000 1000 1000 

and 

#(C· D· E) = 1111 0000 0000 0000 0000 0000 0000 0000 
# (C . D . E) = 0000 1111 0000 0000 0000 0000 0000 0000 
# (6 . D . E) = 0000 0000 1111 0000 0000 0000 0000 0000 
# (C . D . E) = 0000 0000 0000 1111 0000 0000 0000 0000 

# (D . E) = 0000 0000 0000 0000 1111 1111 0000 0000 
#(D· E) = 0000 0000 0000 0000 0000 0000 1111 1111 

we can immediately write down the following mongrel form: 

(A . B) . (6 . D . E) + (A + B) . (C . D . E) + (A + B) . (6 . D . E) 
+ (A . B) . (C . D . E) + (A + B) . (D . E) + (A . B) . (D . E) 

A useful fact to remember in writing mongrel forms is that 

0110 = #(A ·13 + A . B) 

and 1001 = #(A . B + A . B) 

Of course this can be generalized to observe, for example, that 

0000 1111 1111 0000 0000 1111 1111 0000 = #(C . D + (j . D) 

and 

1111 0000 0000 1111 1111 0000 0000 1111 = #(C . D + (j . D) 

Applying this to 0001 0111 0111 0001 1110 1110 1000 1000, we find 
the mongrel form 

[(A, B) . (C . D + 6 . D) + (A + B) . (C . D + 6 . D)] . E 
+ [(A + B) . D + A . 13 . D] . E 

The writing of "good" mongrel forms depends on ingenuity and 
practice. Of course the individual component products and sums need 
not be written out explicitly as was done above. For example, consider 
0110 1001 1001 0110. A little thought will enable the following mongrel 
form to be written down immediately: 

(A . f3 + A . B) . (C . D + (j . D) + (A . B + A . B) . (C . D + (j . D) 



SEC. 11-6] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 331 

EXERCISES 

Write down directly mongrel forms for: 
"Good" solution 

(a) 0110 1001 (A . B + 1 . B) . C + (A . B + 1 . B) . C 
(b) 1001 0110 0110 1001 (A . B + 1 . B) . (C . D + C . D) 

+ (A . B + A . B) . (C . .0 + C . D) 
(c) 0010 0100 0010 0010 1 . B • (C + D) + (A . B) . (C . D) 
(d) 1010 0010 0010 0010 1·C·.o+A·B 
(e) 0111 1011 1101 1110 (A + B) . C . .0 + (A + B) . C . .0 

+ (A + B) . C . D + (1 + B) . C . D 
(f) 1011 0111 1011 0111 (1 + B) . (C· E) + (A + B)· C· E + (C+ D) . E 

1111 0000 1111 1111 

11-6. Simplest Sum-of-products Representation t 
The Role of the Prime I mplicants. This symbolic representation of a 

designation number has the property of being a sum of products with the 
least number of operations' and +. There may be several such forms 
associated with a single designation number. A systematic process can 
be described that will result in such a form. To understand this process, 
let us first discuss the general nature of a product. 

The number of letters that enter into a product is called the number of 
terms in the product. Thus A . B . C is a three-term product, A . B 
is a two-term product, and A is called a one-term product. In general, 
for n basic symbols, the designation number of an n-term product has 
2° (= 1) unit, of an (n - I)-term product the designation number has 
21 units, of an (n - 2)-term product it has 22 units, ... ,of an (n - s)­
term product the designation number has 28 units. For example, 
# A . B . C = 0000 0100 with 1 unit, # A . B = 0100 0100 with 2 units, 
and #A = 0101 0101 with 4 units. Another observation about prod­
ucts that follows directly is that, if P and pI are products such that 
#P ~ #P' , then pI is formed from P by deleting some of the terms of P. 
For example, #A . B . C ~ #A . B, the latter being formed by deleting C 
from the former. The converse is evidently also true. 

Now we can turn to the discussion of the simplest sum-of-products 
form. If #F is the designation number in question, consider a simplest 
sum-of-products representation of #F. Clearly each product Pi of the sum 
must be such that #Pi ~ #F (that is, #Pi cannot have units in positions 
where #F has zeros), for otherwise the sum of the products would not 
have the same designation number as #F. Also, if this sum is indeed the 
simplest sum of products, then certainly no product Pi of this sum can 
be replaced by a product P~ such that #P i ~ P~, for then the resulting 

t The method of this section is an adaptation of McCluskey's variation of Quine's 
method of simplification. (See E. J. McCluskey, Jr., Minimization of Boolean func­
tions, Bell System Tech. J., vol. 35, p. 1417, November, 1956. See also W. V. Quine, 
The Problem of Simplifying Truth Functions, Am. Math. Monthly, vol. 59, no. 8, 
pp. 521-531, October, 1952.) 
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sum of products would become even simpler (i.e., one of the products 
would have a term deleted). In other words, in order that a product P 
be considered at all for inclusion in a simplest sum-of-products form for 
#F, it mus.t be such that: 

1. #P-t #F. 
2. There exists no pI such that #P -t #pl and #P' -t #F. 
If p. has the first property, it is called an implicant of F; if it also has 

the second, it is a prime implicant of F. 
For example if o#F. = 0111 0100, then A ' B . (J A, B ,(J A· B· (J 

- - - - '" A ,B . C, A· C, A· B, and B· C are all implicants of F, as can be 
readily checked, but only A . 0, A . B, and B ' (J are prime implicants 
of F. To show that A . B is a prime implicant of F, note that the only 
products implied by A ' B are A and B, But #A -h#F, and #f{+#F, 
and hence A . B is a prime implicant of F. (On the other hand, A 0 B . C 
is not a prime implicant because #A ' B . C -t #A 'B and #A . B -t #Fo) 

There are two stages in determining the simplest sum-of-products form 
of F. The jirsfis the systematic generation of all the prime implicants 
of F; the second is the selection from this collection .of.a sub collection of 
products the sum of which \ViII truly be the simplest sum of products, as 
defined above, We shall now describe in detail how to generate alrth~ 
prime iqlplicants of a given designation number. Then we shall show hmv 
with the aid of a so-called prime-implicant chart the final·simplest sum of 
prod1)cts is chosen. 

The First Stage-Generating the Prime I mplicants. The rationale 
for generating the prime implicants can best be understood by examining 
the first canonical form. For 0111 0100 the first canonical form is 
A . B . (J + A . B . (J + A . B ' (J + A 0 B 0 C. The following reduc­
tions coan be made by combining pairs of products: 

A . B ·0 (J + A . B . C = A 0, B 0 ((J + C) = A . B . I ~ A,' B 
A . B . (J + A . B . (J = (A + A) . B . (J = loB 0 (J = B . (J 

Thus the first canonical form reduces to A . jJ + B . (Jo We can deter­
mine whether or not two products can be combined by comparing the pair 
of associated basis columns·: if the two columns differ in just one row, the 
terms can be combined. For instance, the pair A 0 B . (J, A· B . C 

corresponds to the columns g, ~, which differ only in the third row; 

similarly the pair A . B . 0, A . B • 0 corresponds to the columns ~, t, o 0 
which differ only in the first row. Based on these concepts, the first 
stage involves three steps. We shall illustrate these steps by following 
throughoa specific example. 

Consider the following designation number in ·four basic symbols: 
o 1 3 

1 101 

4 6 7 

101 1 

9 10 11 

o 1 1 1 

13 14 15 

o 1 1 1 

The first step is to display only the columns of the basis that correspond 
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to the units of the given designation number, 

0 1 3 4 6 7 9 10 11 13 14 15 

0 1 0 0 1 0 1 1 0 1 
0 0 1 0 1 1 0 1 1 0 1 1 
0 0 0 1 1 1 0 0 0 1 1 1 
0 0 0 0 0 0 1 1 1 

The second step is to arrange these columns in order by the number of 
units contained in each column. 

O-unit I-unit 2-unit 3-unit 4-unit 
columns columns columns columns columns 

0 10 1010 1110 1 
0 00 1101 1101 1 
0 01 0100 1011 1 
0 00 0011 0111 1 

The third step is an iterative process of combining pairs of columns that 
o 1 41 

differ only in a single row. For example, g and g are combined to form g, 
000 

o 0 

where the symbol dl means 0 or 1. Similarly g and ~ are combined to 
o 0 

o 
form g. Note that, since the pairs are to differ in a single row only, 

o 
each u-unit column need be compared with only (u + I)-unit columns. 
To combine with a u-unit column, a (u + 1)-unit column must have u of 
its u + 1 units in the same rows as the u-unit column [i.e., the u-unit 
column must imply the (u + 1)-unit column]. Thus the 1-unit columns 
are combined with the 2-unit columns as follows: 

v v 
1 0 
o 0 
o 1 
o 0 

1 
~ 

o 
o 

1 
o 
o 
~ 

v v v 
1 0 1 0 
1 1 0 1 
o 1 0 0 
001 1 

o 
~ 

1 
o 

When a pair of columns are combined, a check is placed above them to 
record the fact. As will be seen shortly, this checking process is of the 
utmost importance. In this way the adjacent collections of 7l-unit 
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columns and (u + I)-unit columns are successively compared and 
checked. In our example, this results in 

v vv vvvv vvvv v 
o 10 1010 1110 1 
o 00 1101 1101 1 
o 01 0100 1011 1 
o 00 0011 0111 1 

~o 

00 
O~ 

00 

110 
~O~ 

001 
O~O 

11~011~0 

1111~011 

~0110~0~ 

0~0~1111 

111~ 

11~1 

1~11 

~111 

The process is continued on this and each successive set of combined 
columns. But this time for two combined columns to be further com­
bined they must have IDS as well as units in the same rows. The process 
ends when no further combinations can be formed. For our example the 
rest of the work is shown below: 

~o 

00 
O~ 

00 

Vv 
110 
~O~ 

001 
O~O 

vvvvvvvv 
11~011~0 

1111~011 

~0110~0~ 

0~0~1111 

vvvv 
11141 
11411 
1 ~ 11 
~ 11 1 

Duplicate columns have been crosshatched above. The prime implicants 
G! 

can all now be read from the unchecked columns. For example, 8 cor­
o 

1 

responds to B . o· D, or 3 corresponds to A . 0, and so forth. For our 
G! 

example the prime implicants are thus E . O· D, A . E . D, A . C . D, 
A . 0, A . B, B . C, A . D, and B . D. 

The Second Stage-Using the Prime-implicant Chart. A chart showing 
the prime implicants is used in selecting for inclusion in the simplest sum 
of products those prime implicants which will produce the given designa­
tion number with the least number of operations' and +. The chart 
is simply a display of the prime-implicant designation-number unit posi­
tions. For our example this chart is shown in Table 11-1. (Note that, 
to determine, for instance, the unit positions of #E . O· D, we simply 

G! 

observe that E . 0 . D corresponded to 8. The d> in the first row means 
o 

o 1 

that A was eliminated between the two columns 8 and 8; the zeros indi-
o 0 

cate that B, C, and D must be complemented in the two positions. 
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As another illustration, A· (J corresponds to ~; the Ibs indicate that 
III 

Band D have been eliminated, and the zero indicates that C must be 
complemented. ) 

To choose the appropriate prime implicants for inclusion in the 
simplest sum of products, first note that A . D and B . D must be included 
because the units of #F in positions 10 and 13 are covered only by B . D 
and A . D, respectively. If either B . D or A . D were left out of our 
sum, the designation number of the sum, lacking units in positions 10 
or 13, could never be the same as #F. Prime implicants that must for 
this reason be included are called essential prime implicants. Thus 
part of our sum must be A . D + B . D. 

TABLE 11-1. PRIME-IMPLICANT CHART 

Unit positions of the given designation number #F 

o 1 3 4 6 7 9 10 11 13 14 15 

jj·o·jj 0 
A..jj.jj (0 4) 
A.·C·jj 4 6 

A·a CIJ) 9 11 
A·B 3 7 11 15 
B·C CLD 14 15 

~A·D !) 11 @ 15 
~B·D @) 11 14: 15 

Next note that #(A . D + B . D) covers positions 9, 10, 11, 13, 14, 
and 15, leaving only positions 0, 1, 3, 4, 6, and 7 to be covered by addi­
tional prime implicants. The second step in using the prime-implicant 
chart is, then, to choose in the best possible way from the nonessential 
prime implicants those combinations whose sum will cover unit posi­
tions of #F not already covered by the sum of the essential prime impli­
cants. There is no known systematic procedure for doing this, except 
for trying all combinations. For our illustration it can be seen that 
A . fj . jj + A . (J + B . C will cover positions 0, 1, 3, 4, 6, and 7 in the 
best way. (Note that fj. (J . jj + A . C . jj + A . B will also cover 
positions 0, 1, 3, 4, 6, and 7, but has one more operation· than the best 
choice.) 

Thus we finally have for the simplest sum-of-products form of the 
designation number 1101 1011 0111 0111 

A·D+B·D+A·fj·jj+A·(J+B·C 

Summary. Summarizing, the process of finding the simplest sum-of­
products form for a given designation number #F has two stages. The 
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first stage is the determination of all the prime implicants of #F by com­
bining pairs of basis columns that correspond to the unit positions of #F. 
To aid the formation of the combinations, the columns are first ordered 
into a O-unit collection, I-unit collection, 2-unit collection, etc. The 
prime implicants are represented by those columns which do not enter 
into any further combinations, i.e., which are left unchecked when all 
combinations have been made. The second stage is to choose in the best 
way those prime implicants which are to be included in the simplest sum 
of products. As an aid to making this choice the prime-implicant chart is 
constructed, and from this essential prime implicants are noted. Then 
from the nonessential prime implicants a best sum is chosen to cover those 
units of #F not covered by the sum of the essential prime implicants. The 
simplest sum of products then becomes the sum of the essential prime 
implicants and this best sum of the nonessential prime implicants. 

EXERCISES 

Find the simplest sum-of-products forms of the following designation numbers: 

Solution 

(a) 0111 0101 
(b) 0110 1001 

A +B·C 
A·jj·C+A·B·C+A·jj·C+A·B·C 

~) 0100 0100 1111 
(d) 0010 0100 0010 
~) 0011 1010 1001 

0100 A . jj + C . D 
0010 
0010 1000 1101 0100 1011 

The simplest product-oj-sums form is a product of sums that has the least number of 
operations + and·. Find the simplest product-of-sums forms of each of the follow­
ing designation numbers. (HINT: Work with the zeros instead of the units.) 

Solution 

(f) 1001 1010 (A + B) . (A + jj + C) . (A + jj + C) 
(g) 1111 0011 0001 1000 (B + C + D) . (B + C + D) . (A + jj + D) 

. (A + C + D) 
(h) 0100 1001 1101 0110 
~) 0110 0101 1001 1010 
(j) 0001 0011 0111 1111 

11-7. Obtaining Essential Prime Implicants Directlyt 

Preliminary Notational Review. Let us recall the meaning of our (b 
1 1 1 1 

notation. If g is column 1 of a basis, then g represents both g and g. Sim-
o Ib 0 1 

1 11111111 
·1 1 Ib h b· 1 0 0 0 1 0 1 1 1 1 ar Y Ib represents t e 23 aSlS co umns 0, 0, 1, 0, 1, 0, 1, 1. If a column has 

Ib 01001101 

t The method of this section is based on R. D: Elbourri.'s adaptation of a method 
developed by Hp,rris. (See B. Harris, An Algorithm for Determining Minimal 
Representation of a Logic Function, IRE Trans. on Electronic Computers, vol. EC-6, 
pp. 103·-108, June, 1957.) 
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~ in p of its rows, it represents 2v basis columns, in which the prows 
1 

are filled in all 2v possible ways. Recall also that we interpret g to 
41 

1 

mean A . B . 0, with D eliminated; similarly: means A, with B, C, and 
Ib 

D eliminated, and so forth. We interpret a basis column as a binary 
number, with the least significant digit on top, and thus the rows in a 
basis column are associated with successive powers of 2; for example, for. 
four variables 

A ~ 2° = 1 
B ~ 21 = 2 
C ~ 22 = 4 
D ~ 23 = 8 

Hence we shall refer to the power position of a bit in a column (e.g., 
1 1 

column 1, namely, g, has a unit in power position 1, and g has units in 
o 1 

power positions 1 and 8). Finally, observe that the 2v basis column 
numbers represented by a column with p of its components ib can be found 
by taking the number formed with the ibs read as zeros and adding 
all combinations of powers of 2 corresponding to the power position~ 

1 

of the ibs. For example, g represents basis columns 1 and 1 + 8 = 9, 
Ib 

1 

and: represents basis columns 1, 1 + 8 = 9, 1 + 4 = 5, 1 + 2 = 3, 
41 

1 + 8 + 4 = 13, 1 + 8 + 2 = 11, 1 + 4 + 2 = 7, and 1 + 8 + 4 + 2 
= 15. 

Finding the Essential Prime I mplicants Directly. In essence, in the 
previous simplification method we tried all combinations to obtain 
columns with the most ibs by a uniform" building-up" process. These 
columns then represented the prime implicants, and we had to make a 
prime-implicant table in order to choose the essential prime implicants. 
Now, however, we shall approach the problem from a different point 01 
view. We focus our attention on a single column at a time (a column cor~ 
responding to a unit of the given designation number); if we can show 
that this column is in a single prime implicant, then that prime implicant 
must be essential (in such a case we say that the essential prime implicant 
is based on this column). If we make this examination for each (unit) 
column, then clearly we shall have determined all essential prime impli­
cants, because an essential prime implicant is a prime implicant that has 
at least one (unit) column contained in no other prime implicant. 

To find whether a column is in a single prime implicant, first find all 
columns that differ from it in only one power position, i.e., by only 
1 bit. Suppose that there are p such power positions (that is, p columns). 
Then determine whether or not columns occur that have all possible 
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combinations of 0 and 1 in these power positions, that is, 2p columns 
altogether. If so, the original column is in an essential prime implicant. 

, 1 

Suppose, for example, we are given a column 8. The first step is 
o 

to find all columns which differ from this by only 1 bit. Suppose that 
1 1 1 1 

columns g, ~, and 6 also occurred (but no others that differed from g by 
1 0 0 0 

1 bit). Then-and this is the crux of our whole argument-the column, 
1 

g will be in a single prime implicant (i.e., essential) only if columns 
o 
1 1 1 1 

~, 6, L and ~ also occurred, for then we would have the total combina-
1 1 0 1 

1 

tion written as:. The essential prime implicant would be in this case 
6 

1 

simply A. On the other hand, suppose, say, that ~ were missing; then 
1 

we have the following reduction by our above simplification method: 
111 1 111 1 1 1 1 111 1 1 1 1 1 1 1 1 1 
g g ~ 6 ~ 6 L then g g ~ g ~ ~ t 6 ~, then ~ ~ :; that is, g is in 
0100110 600116060 Gl60 0 

three prime implicants. 
Systematic Method of Procedure. A systematic method of procedure is 

as follows : Write out the columns corresponding to units of the designa­
tion number. For any given column under consideration find another 
column that also occurs differing in 1 bit, say in power position Pl. 
N ext find a second column that occurs differing from the original columns 
in 1 bit, say in power position P2; then make sure the other column 
occurs that completes the 22 combinations of 0 and 1 in both these power 
positions, PI and P2. N ext find a third column that occurs differing in 
1 bit from the original column, say in power position P3; make sure all 
other columns also occur that complete all 23 combinations of 0 and 1 
in these three power positions PI, P2, P3; and so forth. This process will 
stop either when. for a certain number of power positions all combina­
tions do not occur (in which case our original column is in more than one 
prime implicant) or when no further columns occur that differ from the 
original column in only one power position (in which case the original 
column is in an essential prime implicant). 

This process can be tabulated. Let us illustrate with the following 
designation number: 

3 4 5 6 7 9 11 13 14 15 

o 1 0 1 111 1 010 1 o 1 1 1 

The first step is to make the prime-implicant table format with the 
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successive power positions to the right, 

1 4 3 5 6 9 7 11 13 14 

Power positions 
DeB A 

15 8 4 2 1 

We have grouped the column numbers according to the number of units 
in the column. Start, say, with the leftmost column as the original 
given column, and write its binary form (as a row for convenience) under 
the power positions; place an x under the 1 to record that this is the 
column under consideration: 

1 4 3 569 7 11 13 14 

x 

15 
DeB A 
842 1 

000 1 

N ow ask: Does the column occur that differs from the original column in 
power position 8, that is, does column 1 + 8 = 9 occur? It does; so we 
record this by placing an 8 under column number 9 and changing 0001 to 
mOOI since both these columns do occur: 

1 4 356 9 7 11 13 14 15 
DeB A 
8 4 2 1 

x 8 too 1 

Next ask: Does the column occur that differs from the original column in 
power position 4, that is, does column 1 + 4 = 5 occur? Yes. Do all 
22 combinations occur? To answer this, note that 9 + 4 = 13, and 
column 13 does occur, so the answer is "yes." Thus we can change mOOI 
to mlbOl, and record the work as follows: 

D C B A 
1 4 3 5 6 9 7 11 13 14 15 8 4 2 1 

x 4 8 4 ~ G! 0 1 

N ext, try power position 2: column 1 + 2 = 3 occurs; so try 5 + 2 = 7, 
9 + 2 = 11, and 13 + 2 = 15. All these columns occur, and hence all 
combinations of 0 and 1 occur in the three power positions 2, 4, and 8; 
hence we have 

D C B A 
1 4 3 5 6 9 7 11 13 14 15 8 4 2 1 

x 2 4 8 2 2 4 2 ~ ~ G! 1 

N ext try power position l. Note that, since column 1 has a unit in power 
position 1, the column that differs from column 1 in this position only is 
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column 1 - 1 = O. But column 0 does not occur, and therefore column 1 
is in a single, hence essential, prime implicant, namely, A. 

At this point we are ready to see the main advantage of the present 
method. Since we have found an essential prime implicant that covers 
columns 1, 3, 5, 9, 7, 11, 13, and 15, we need no longer worry about covering 
them. So our problem is reduced to covering only columns 4, 6, and 14. 
Thus we check off all columns except these and choose column 4 as our 
next given column, 

v v v 'I 'I v v v . DaB A Essential 
1 4 3 5 6 9 7 11 13 14 15 8 4 2 1 prime implicant 

x 2 4 8 2 2 4 2 ell ell ell 1 A 
x o 1 0 0 

The process for column 4 is the same. However, note that, in consider­
ing a power position corresponding to a zero in the original column, we add 
this power of 2 in order to determine what combinations of columns should 
occur, i.e., change the zero to a unit; if the power position corresponds to a 
,unit in the original column, we would subtract this power of 2 in order to 
·determine what columns should occur, i.e., change the 1 to a O. The work 
for column 4 becomes 

VV vv'lv v v v 
1 4 3 5 6 9 7 11 13 14 

x 2 4 8 2 2 4 
x 1 2 1 

v 
15 

2 

DaB A Essential 
8 4 2 1 prime implicant 

A 
D·c 

Here column 4 + 8 = 12 did not occur, nor did column 4 - 4 = O. 
But column 4 + 2 = 6 did occur, and so did columns 4 + 1 = 5 and 
6 + 1 = 7. Thus we can check columns 4 and 6. Only column 14 
remains unchecked; so we choose this column as the next given column~ 
The work appears as follows: 

vv vvvv vvvv 
1 4 3 5 6 9 7 11 13 14 

x 2 4 8 2 2 4 
x 1 2 1 

8 1 x 

v DaB A Essential 
15 8 4 2 prime implicant 

2 

1 

A 
f)·a 
C·B 

Column 14 - 8 = 6 occurs; column 14 - 4 = 10 does not occur; col:'" 
umn 14 - 2 = 12 does not occur; columns 14 + 1 = 15,6 + 1 = 7 do 
occur. Hence C . B is an essential prime implicant. 

Examples and Discussion. Consider the following designation number, 
and let us find its simplest sum-of-products form: 

1 3 
o 1 O. 1 

8 567 
011 1 1 000 000 0 

16 17 19 20 21 22 23 
11Q11111 

26 27 30 
001 1 0 0 1 0 
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The work format appears as follows: 

v v ./ v v v v v v v v v v v v E D 0 B A Essential 
1 8 16 3 5 6 17 20 7 19 21 22 26 23 27 30 16 8 4 2 1 prime implieants 

x 2 4 16 2 2 4 2 41 0 41 41 1 .I). A 
x 0 1 0 0 0 E·D·C·B·A 

x 4 1 0 41 0 41 E·Jj·B 
x 16 41 0 1 1 41 ]j·O·B 

x CD 4 1 1 41 1 0 
x 1 1 0 1 41 E·D·C·B 

8 <D x 1 41 1 1 0 

Note that in adding (or subtracting) to a column number the result is always 
in an adjacent group of column numbers (to the right in adding, to the, left 
in subtracting). For column 1 we find 1 + 16 = 17, which occurs; 
1 + 8 = 9, which does not occur; 1 + 4 = 5,17 + 4 = 21, both of which 
occur; 1 + 2 = 3, 5 + 2 = 7, 17 + 2 = 19, and 21 + 2 = 23, all of 
which occur; but 1 - 1 = 0 does not occur. Thus an essential prime 
implicant has been found, namely, 15 . A, and column numbers 1, 3, 5,17,7, 
19, 21, and 23 need not be used as a given column again. Note that 
nothing combined with column 8. When column number 26 is the given 
column, note that neither 26 - 16 = 10 nor 26 - 8 = 18 occurs; but 
26 + 4 = 30 occurs. Continuing, 26 - 2 = 24 does not occur, but 
26 + 1 = 27 does occur; however, 30 + 1 = 31 does not occur, and no' 
essential prime implicant is found-we encircle the 1 to show that, it 
did not combine with 30. Similarly, when 30 is the given column num-' 
ber, 30 - 8 = 22 occurs, and 30 - 4 = 26 occurs; but 22 - 4 = 18 does 
not occur, and so we have encircled the 4. The only column not covered, 
by an essential prime implicant is column 30; this can be covered in twO, 
ways, namelY,by E . D . B . A or by E . C . B . A. Hence 'the result is 

A . [) + A . B . G . D . E + 13 . 15 . E + B . C . 15 + B'G . D . E 
. +14· B . D . E 

lA·B·C·E 

Consider a six-variable problem with units in the following clesignation­
number positions: 1, 3, 4, 5, 7, 13, 17, 19,20,23, 31, 33, 35, 36, 37, 39, 
44, 45, 49, 51, 52, 53, 55, 60, and 61. The work is shown in Table 11-2, 
in which the columns are grouped appropriately. Here we have intro­
duced a variation of the present method. For example, starting with 
column number 1 we find that 1 + 32 = 33 occurs; 1 + 16 = 17 and 
33 + 16 = 49 both occur; 1 + 8 = 9 does not occur; but although 
1 + 4 = 5 occurs, 17 + 4 = 21 does not occur, and so we encircle 4. 
N ow instead of proceeding as above let us see if we can at this point make 
further use of the information so far obtained, namely, !b !b 0 0 0 1. 
To do this, suppose that we transfer to column number 17 as our given 
column; we indicate this transfer by putting a slash through the 16 
below column number 17, as is shown. Then!D!b 0 0 0 1 still holds 
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for column 17, and we need not try power 32 or power 16 again or, for 
that matter, power 4 (why?). But we must try power 8 again, for we 
have never tried it on this column (why not?). Thus 17 + 8 = 25 does 
not occur; but 17 + 2 = 19, 1 + 2 = 3, 33 + 2 = 35, 49 + 2 = 51 
all occur, giving us !b !b 0 0 !b 1. Finally 17 - 1 = 16 does not occur; 
so we have discovered an essential prime implicant, based on column 
17 rather than on the column we started with, column 1. The next 
two rows of work in Table 11-2 also indicate a transfer to some other 
column number in finding the essential prime implicant. 

Next observe the fourth row of work. Here we meet several further 
circumstances, which we shall explain by means of the illustration. The 
original column number is 7; 7 + 32 == 39 occurs; 7 + 16 = 23 and 
39 + 16 = 55 occur; 7 + 8 = 15 does not occur; 7 - 4 = 3,23 - 4 = 19, 
39 - 4 = 35, and 55 - 4 = 51 all occur, giving so far !b !b 0 !b 1 1. 
Next observe that 7 - 2 = 5, 3 - 2 = 1, 19 - 2 = 17, 35 - 2 = 33 
all occur but that 23 - 2 = 21 does not. Transferring to 23 as above, 
we need not try powers 32, 16, 4, or 2 again. Trying 8, we find that 
23 + 8 = 31 occurs but·that 3 + 8 = 11 does not occur. We could try 
to transfer once again, completing the crossing off of the 16 below column 
number 23 for the record. But we must transfer to a column with the 
following properties: (1) it is not covered by a previously determined essential 
prime implicant and (2) it does not combine with powers that have already 
been tried and circled. If the transfer were made to a column already 

. covered, then this column obviously could not be the basis for another 
essential prime implicant; if the column to which we transferred combined 
with a circled power, then this power clearly would not again allow the 
completion of an essential prime implicant. For our illustration it is 
seen that no further column satisfying !b !b 0 !b 1 1 as well as our con­
ditions 1 and 2 exists. Thus we must go on to a new row of work, i.e., 
another uncovered column. Note that since we already have deter­
mined that no column satisfying !b !b 0 !b 1 1 can be the basis of an 
essential prime implicant we should not go on to any of these columns 
either. For our illustration the next given column will be 44, and the 
rest of the work is completed as above. 

EXERCISES 

Find the simplest sum-of-products forms of the following designation numbers by 
the method of this section: 

(a) 0111 0101. 
(b) 0110 1001. 
(c) 0100 0100 1111 0100. 
(d) 0010 0100 0010 0010. 
(e) 0011 1010 1001 0010 1000 1101 0100 1011. 

Find the simplest product-oj-sums forms of each of the following designation num­
bers. (HINT: Work with the zeros instead of the units.) 

(/) 1001 1010. 



TABLE 11-2. THE SIMPLEST SUM OF PRODUCTS Is A . G . J5 + A . 13 • C . D + A . 13 • C . E + 13 • C . F + A . B . C . E . F- + 
D· B· A, WHERE ONLY THE LAST TERM Is NOT AN ESSENTIAL PRIME- IMPLICANTt 

Essential 
v v v v v v v v v v v v v v v v v v v v v v F EDCBA prime 
1 4 3 5 17 20 33 36 7 13 19 35 37 44 49 52 23 39 45 51 53 60 31 55 61 32 16 8 4 2 1 imp Ii cants 

c:.o x 
t 

2 @ l6' 32 2 2 16 2 ~ ~ 0 0 ~ 1 D·G·A 
x 

@ 
CD ¥ 32 16 ~ ~ 0 100 D·C·jj·if. 
x 8 32 8 ~ o ~ 101 E·C·jj:A 

® _40 0 0 x 4 4 ~ 32 4 ® 16 ~ ~ 0 4! 1 -I 
8 1 x 8 1 116 1 1 ~ ~ 1 0 ~ F· Co' 13 

8 x 0 1 ~ 1 1 1 -P·E· C ·B·.4 

t Note that ~ ~ 0 ~ 1 1, corresponding to D . B . A, in the fourth row covers the unchecked columns. By our method of procedure 
this is as good as any other product which covers them, -and hence we include D . B • A_ in our simplest-sum of products. 
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(g) 0100 1001 1101 0110. 
(h) 1111 0011 0001 1000. 
~) 0110 0101 1001 1010. 
(j) 0001 0011 0111 1111. 

11-8. Simplification of Computer-circuit Design 

The Simplification Procedure. The problem of the simplification of 
computer circuits can be stated as follows: Given a computer-circuit 
design, how can this circuit be redesigned using fewer and gates and or 
gates such that the output of the newly designed circuit is the same 
Boolean function (of the inputs) as the output of the original design? 

A----I 

B 

0----1 r-------~--_+--+_z 

A----I 

0----1 

FIG. 11-5. Circuit for Z = 6 . (A + B) + A . (B + C) + B . (A + C). 

We shall illustrate the procedure by means of an example. Consider the 
circuit of Fig. 11-5. 

By the methods of Sec. 10-10 

Z = (] . (A + B) + A . (B + C) + B . (A + C) 

With respect to the standard basis we then find #Z = 1101 lOll. 
One simplest sum-of-products form is A . B + A . (] + B . C, whence 
the simplified circuit can be made as in Fig. 11-6. 

A 

B 

A---I 

o 

B---,I 

0---1 

t---------f---+-z 

FIG. 11-6. Simplest sum-of-products form 
for Z of Fig. 11-5. 

A-----I 
B 

0---1 

A 
B ---I---1--~ 

C 

Z 

FIG. 11-7. Simplest product-of-sums form 
for Z' of Fig. 11-5. 
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On the other hand the simplest product-of-sums form is 

(A + B + C) . (A + B + C) 

and another simplified circuit is as in Fig. 11-7. 
Summary. The method for simplifying a circuit is first to form the 

Boolean function for the output in terms of the inputs, second to form 
the designation number of this function, third to find the simplest sum­
of-products or product-of-sums form for this designation number, and 
fourth to draw the circuit diagram corresponding to the simplest form. 

EXERCISES 

Simplify the following circuits: 

B 

C 

C 

A 

B 

A 

B----I 
C 
A -----,r---i 

D--.....o..; 
C 
B 

C----I 
A 

D 
B----i 
C----I 

J-------II-_t_ Z 

(a) 

z 

(c) 

B 

C 

B 

C 

A 

B 

C 

A 
B 

C 

z 

(b) 

I-+--X 

I--+--Y 

(d) 



346 FOUNDATIONS FOR LOGICAL DESIGN [CHAP. 11 

This last problem is of interest since it has two outputs, X and Y. The procedure 
is to treat each output separately at first, obtaining the designation number and the 
simplest form for each output. Then those wires which are common to both outputs 
(written in simplest form) are utilized in this dual capacity. Hence A goes to gates 
for both X and Y. 

11-9. The Design of Circuits That Compute Functions 

The Condition-function Table and the Basis. The following discussion 
about the relationship between the condition-function table (of Sec. 10-8) 
and the basis (of Sec. 11-2), albeit seeming trivial perhaps in the light 
of the contents of this chapter, is nevertheless of fundamental importance 
to the whole concept of the design of computer circuits. A clear under­
standing of this relationship should be grasped by the student. 

The relationship between the function table and the basis is analogous 
to the relationship of the truth tables and the basis. The columns of 
both function table and basis are composed of all possible combinations 
of the n units and zeros, for a system of n elementary elements. How­
ever, the order of the columns of a basis is fixed. Hence, if the function 
table is considered as a basis, with the input wires as elementary elements, 
the output-wire row giving the voltage signal (as 0 or 1) becomes simply 
a des~'gnation number-in fact the designation number of the Boolean 
function of the output in terms of the input wires. 

For example, consider the problem of Sec. 10-8. The condition­
function table of the solution was 

Wire A........ . 0 o o o 1 
------11-- ----.-------------

Wire B......... 0 o 1 o o 1 
------1'-----------------
Wire C....... .. 0 o o o 1 1 
======1===== ===== 

Wire D ........ . 1 1 1 o o o 1 

where A, B, C are input wires and D is the output. In order to rein­
terpret this function table as a basis and designation number, we let the 
designation numbers of the input wires be the same as the designa­
tion numbers of the elementary elements. Hence we have 

# A = 0101 0101 
# B = 0011 0011 
#C = 0000 1111 

#D = 1111 0001 

In terms of A, B, C we have D = 0 + A . B; that is, the designation 
number of D with respect to the standard basis for three elementary 
elements is #D = 1111 0001 = #(0 + A . B). Henceforth we shall use 
the basis notation where its meaning as a condition-function table will be 
understood. 
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As another example, consider the following condition-function table: 

# A = 0101 0101 
# B = 0011 0011 
#C = 0000 1111 

# Z = 1010 1011 

where A, B, and C are the inputs and Z is the output. To find Z in terms 
of A, B, and C, consider Z as a designation number, whence we have 
Z = A + B . C as the simplest sum-of-products form. 

Verbally Described Problems. In general the condition-function table 
is not given explicitly; rather some verbal description is given from which 
the function table can be constructed. Once the function table has been 
constructed, the Boolean function of the outputs is determined, usually 
in simplest form. Finally the circuit diagram is drawn. This circuit 
is then a circuit that will perform the duties described in the original 
verbal form of the problem. 

For example, suppose that it is desired to design a circuit with three 
inputs and one output, such that, whenever an even number of inputs 
have a unit signal voltage, so will the output; otherwise the output is to 
have a zero signal voltage. The function table thus becomes 

# A = 0101 0101 
# B = 0011 0011 
#C = 0000 1111 

# Z = 1001 0110 

whence Z = (A . B + A . B) . C + (A . B + A . B) . C. Hence the cir­
cuit of Fig. 11-8 will do the job. 

A--'---i 

B-r+--t 

A --r--t 

B ----..--.~____. 

c z 

FIG. 11-8. Circuit for Z = (A . B + A . B) . C + (A . jj + A . B) . C. Z is 1 volt 
when an even number of inputs are at 1 volt. 
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In many problems the voltage on the input wires is taken to represent 
a bit in a binary number. For example, if there were three input wires, 
the voltage on wire A might represent the bit in the least significant 
position of a 3-bit binary number, B the next most significant bit, and C 
the most significant bit. For instance, to represent 5, or binary 101, 
wire A would have a I-volt signal, wire B a O-volt signal, and wire C a 
I-volt signal. Similarly the output wires would represent the bits of an 
output binary number. 

Suppose that we are to design a circuit that forms 3N, where N repre­
sents a 3-bit number. Since N can go only up to 7, then the output can 
go only up to 21, and five output wires are necessary. Let N 1, N 2, and 
N3 represent the input wires (instead of A, B, C as described above), 

and let M 1, M 2, M 3, M 4, and M 5 represent 
Na N2 Nl the output wires (see Fig. 11-9). 

M5 M4 Ma M2 Ml 

FIG. 11-9. Input-output 
wires of circuit to form 
M=3N. 

Now consider 
0123 4567 

#Nl = 0101 0101 
#N2 = 0011 0011 
#Na = 0000 1111 

The columns represent the possible states of 
the wires N 1, N 2, and N 3. In fact, if the input 
number were 5, then the state of the wires 
would be as shown in column 5, that is, the 
column would form the binary number 5 with, 
the top row the least significant bit, the bot­

tom row the most significant bit. Now, if N = 0, then 3N = 0; if 
N = 1, 3N = 3, etc. Hence we have 

or 

N = 0, 1, 2, 3, 4, 5, 6, 7 
3N = 0, 3, 6, 9, 12, 15, 18, 21 

#Nl = 0101 0101 
#N2 = 0011 0011 
# Na = 0000 1111 

#Ml = 0101 0101 
#M2 = 0110 0110 
#Ma = 0010 1101 
#M4 = 0001 1100 
#M5 = 0000 0011 

This tabulation gives for any state of the N 1, N 2, and N 3 wires the desired 
state of the M 1, M 2, M 3, M 4, and M 5 wires. For instance, if N = 5, then 
3N = 15; that is, if 

Volts 

Wire Nl = 1 
Wire N2 = 0 
.W~re !'Ia. =. 1 
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then 
Volts 

Wire Ml = 1 
Wire M2 = 1 
Wire Ma = 1 
Wire M4 = 1 
Wire M5 = 0 

where of course 101 is 5, 1111 is fifteen, in binary, Now we can read off 
the answers: 

Ml = Nl 
M2 = N 1 ,N2 +N1 ·N2 

M 3 = N 1 • N 2 • N 3 + (N 1 + N 2) , N 3 

The circuit then becomes as in Fig. 11-10. 

M4 = Nl . N2 'N3 + N'}. . N3 
M5 = N 2 ' N3 

NI------------Ml 

N1----i 

N2--,.---i 

N3 

:: ____ [:)~------------.M5 
FIG. 11-10. Circuitry for the output wires of M. 
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Consider now a more complicated problem. Suppose that we are to 
design a circuit to have four inputs, N 1, N 2, M 1, and 1l12. Let N 1 and N 2 

represent a 2-bit binary number N with N 1 the least significant bit, and 
let Ml and M2 represent a binary number M with Ml the least significant 
bit. The circuit is to produce the product of the two input numbers. 
Since each input number has 2 bits, the largest product is 3 X 3 = 9. 
Hence 4 bits for the resulting product outputs, i.e., four output wires, are 
sufficient. Hence a listing of the states becomes 

N 0, 1, 2, 3 0, I, 2, 3 0, 1, 2, 3 0, 1, 2, 3 
M 0, 0, 0, 0 1, I, 1, 1 2, 2, 2, 2 3, 3, 3, 3 

N X M 0, 0, 0, 0 0, 1, 2, 3 0, 2, 4, 6 0, 3, 6, 9 

whence the function table becomes 

N {#Nl = 0101 0101 0101 0101 
#N2 = 0011 0011 0011 0011 

M{#Ml = 0000 1111 0000 1111 
#M2 = 0000 0000 1111 1111 

fR' ~ 0000 0101 0000 0101 
N X M # R2 = 0000 0011 0101 0110 

#R3 = 0000 0000 0011 0010 
#R, = 0000 0000 0000 0001 

Hence we have 

Rl = N 1 • Ml 
R2 = N2 . Ml . M2 + Nl . Ml . M2 + NI . N 2· MI + N 1 • N2· M2 
R3 = N 2· M l ' M2 + NI ' N 2· M2 
R4 = N I . N 2 • MI' M 2 

The multiplying circuit can then be drawn from this result. 
Consider an example of a decoding circuit. Suppose that the input 

code is 3 bits (i.e., three input wires) and that the output code is 3 bits. 
The relation between the input code and output code is 

Input code 0123 4567 
Output code 0647 0377 

i.e., if 1 goes in, then 6 must come out; if 5 goes in, 3 must come out, etc. 
The function table for this decoding scheme is 

whence 

# A = 0101 0101 
# B = 0011 0011 
# C = 0000 1111 

# X = 0001 0111 
# Y = 0101 0111 
# Z ,,; 0111 0011 

X=A·B+A·C+B·C 
Y=A·C+B·C+A·C 
Z ,;; "B"· C + A· C + C' B 

and the circuit diagram appears in Fig. 11,:,,11. 
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A-----I 

B-----I ,-----i--t-x 

A-----1 

c----t 

B-----I 
I--....-.......... ---if---+-y 

c--~ 

A----I 

c 
L...----+--+-z 

B----t 

FIG. 11-11. A decoding circuit. Input code of 0123 4567 corresponds to output code 
of 0647 0377. 

EXERCISES 

Design circuits that perform the following functions: 
(a) A parallel digital squaring circuit where the input is a 4-bit binary number N 

and the output is N2. 
(b) A circuit that forms the positive values of 2N - 1 for N a 4-bit binary number 

(and forms zero for N = 0). 
(c) A circuit the input of which is the 4-bit binary number N, the output of which 

is N + 3 in binary. 
(d) A circuit that will produce a unit output only when an odd number of its four 

input wires contain unit signal voltages. 

11-10. Synchronous Recursive-function Circuits 

Input as a Function of the Output. Until this section the output of 
a circuit depended on the inputs, but the inputs of the circuit have not 
depended in any way on the output of the circuit. In this section circuits 
will be considered in which the inputs depend on the outputs. FOl 
example, consider a digital-computer-circuit black box with three inputf:l 
and three outputs such that the outputs are connected to the inputs 
(see Fig. 11-12)." Hence the future output depends on the past output. 
Such an output function is called a recursive function. Two kinds of 
inputs can be distinguished, external inputs, which are not related to the 
output, and internal inputs, which are related to the output. InFig.11-12 
P is an external input, and A, B, and C are internal inputs. 
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Consider the following example of a recursive-function circuit: Let 
A and B represent a 2-bit binary-number input in the manner of the 
last section, and let A' and B' represent a 2-bit output number. Let P 
represent another input wire which is attached to a push button; i.e., 
when the push button is pushed, a unit signal voltage will appear on P. 
The circuit is to work as follows: Suppose that initially the output 
"number" is 0; when the button is pushed, the output should change to 1; 

p 

A B I c 1 

Black box 

X YIZI 

FIG. 11-12. A recursive circuit with four 
inputs and three outputs. 

p 

A B I 

A' 

B', 

FIG. 11-13. A two-digit counter. 

when the button is pushed a second time, the output is to change to 2; 
when pushed a third time, the output should change to 3; and when 
pushed again, the output should return to 0 again. This cycle can be 
repeated. Such a circuit is called a counter since it counts how many 
times the button is pushed (but only up to three!). 

The output number is to become the future input number, i.e., the 
circuit is to be wired as in Fig. 11-13. Hence the output immediately 
becomes the internal input. The function table becomes 

0123 4567 

#A = 0101 0101 
#B = 0011 0011 
#P = 0000 1111 

#A' = 0101 1010 
#B' = 0011 0110 

To see how this function table was derived, consider, for example, 

column 2. Here the input number is ~, or 2, and the push button is not 

being pushed. Let us assume that, if the push button is not pushed, then 
the output number is the same as the input number. Hence the output 

number becomes also ~, or 2. A similar discussion also holds for col­

umns 0, 1, and 3. 
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Now let us consider column 6, for example. Here the input number is 

~, or 2, and this time the push button is being pushed. Hence the output 

number must be 3, or ~ as indicated in column 6. Similarly in column 4, 

the input number of 0 becomes the output number of 1, in column 5 the 
input number of 1 becomes the output number of 2, and in column 7 the 
input number of 3 becomes the output number of O. 

We can now observe that 

#A' = 0101 
#B' = 0011 

1010 = #(A . P + A . P) 
0110 = #[B . P + (A . B + A . B) . P] 

Timing. But wait! There is something wrong here! Suppose that 
the output number was, say, 2. Then immediately the input number 
will become 2 since A is connected directly to A' and B is connected 
directly to B'. If P is not being pushed, then everything stays in this 
state; i.e., the output that corresponds to an input of 2, with no button 
being pushed, is just 2. However, suppose that now the button is 
pushed. The output immediately changes to 3; this 3 immediately 
becomes the input. Suppose that the button is still being pushed; then 
the output immediately changes to 0, etc., before the button can be 
released. But we only wanted the output to change from 2 to 3 during 
a single push of the button. 

The most obvious way out of this dilemma is to delay the output from 
becoming the new input for a long enough time so that the push button 
can be released. In such a case this p 
is what will happen: Suppose ini­
tially, for example, that both output 
and input were 2 and the button is 
pushed. Then the output immedi­
ately becomes 3, but not the input; 
it stays at 2 because we now have a 
delay in propagation of the signals 

A' 

1 1 

along the wires A' A and B' B. Then 
the button is released, after which 
the 3 propagates to the input. But 
an input of 3 with the button not 

FIG. 11-14. Circuit of Fig. 11-13 with 
pushed produces an output of 3 as unit delays. 
desired. Hence by the introduction 
of the delay the circuit has been made to do what we desired. The wiring 
of the circuit will now look like Fig. 11-14, where the delay is repre­
sented by a rectangle with a number in it that represents the time of the 
delay in microseconds. 

Hence the only other necessary condition is that the duration of the 
push-button signal is shorter than the delay. Of course the push-button 
signal is not really manually operated: it is an external electronic signal 
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11------, 

I----A 

~--A' 

P'--~--+-+---~~------------~ 

B 

'---+----A 

B' 

'----1---- P 

B 

~--------------------~ 1 ~------~ 

FIG. 11-15. The detailed circuitry of the two-digit counter. 

generated in some other circuit. Using our Boolean-function derivation 
above, we can now draw the complete circuit diagram as in Fig. 11-15 .. 
Circuitry- that depends on the synchronization of the pulses in this 
manner is called synchronous circuitry. 

The Timing Diagram. The time sequencing of signals in the wires A, 
B, P, A', and B' can be visualized by the voltage-time diagram. Here 
the. voltage as a function of time is plotted for each wire, as shown in 

A' 6 
B' 1 o 

I--
f--

I--

I 

j 
7, 

~ ~ 
J., 

I-- r-- r-- r-- r-- r-- ~~ ~ I--
P--- I-- P--- f-- f- f- f-

~ 
J l '" Y J r--

r--

FIG. 11-16. Voltage levels vs. time for the two-digit counter. 
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Fig. 11-16. Figure 11-17 illustrates the voltage levels in wires A and B 
when the 2-bit binary number represented by A and B (with A the least 
significant bit) is 0, 1, 2, and 3, respectively. Let us return now to 
Fig. 11-16. At time to, suppose that both A, B and A', B' represent 
the "number" 2 and that the button was not being pushed. At it 
(say 1 ,usec later) the button is pushed; A', B' then form the "number" 3 
almost immediately, but A, B stay the 
same. At t2 the 3 has propagated 
through to A, B. Note that A', B' 1 
stay the same at 3 since A, B form A 0 
3 and the button has been released. 
When the button is again pushed at 

o 1 2 

t3, A', B' form 0 but A, B stay at 3 B ~ 
since the 0 has not propagated through 
t th t B t thO t' FIG. 11-17. Voltage levels for A o em ye . y 4 IS propaga IOn and B. 
has occurred, and A, B form 0, etc. 

Summary. Given the voltage levels of A, B, and P at ti, the voltage 
levels for A' and B' at ti are determined by means of the function table; 
the voltage levels of A and B at ti+1 are the same as those of A' and B' 
were at ti (see crosshatching and arrows in Fig. 11-16). 

We have shown how to design a recursive-function digital-computer 
circuit, i.e., a circuit whose present input depends on its past output. 
The computational procedure is almost the same as for the nonrecursive 
case discussed in the previous section. However, delay lines have to be 
included in the circuit to delay the output from changing the internal 
input too fast, and any external input signal must have a duration a 
little less than the delay time. 

p 

EXERCISES 

(a) Consider a circuit with one internal input A, one output A', and one external 

,..--------i 1 1-----, 

A' 

input P, again a push button. If the input 
has a 1-volt signal and the button is pushed 
(i.e., wire P has a 1-volt signal), then the out­
put changes to zero. If the output is zero 
volts and the button is pushed, the output 
signal changes to 1 volt. Design this circuit. 

Solution 

#A = 0101 
#P = 0011 

# A I = 0110 = A . P + A . P 

FIG. 11-18. Solution to Exercise a. 
The circuit diagram is as shown in Fig. 11-18. 

(b) Design a circuit that counts as follows: 0, 1, 3, 2, 0, 1, 3, 2, ... (i.e., the ~output 
wires, say A', B', form a 2-bit binary number; the count is stepped by a push button 
satisfying the above requirements). 
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. Solution. The function table is 

# A = 0101 0101 
#B = 0011 0011 
#P = 0000 1111 

# A I = 010 1 1100 = A . P + fJ . p 
# B' = 0011 0101 = B . P + A . P 

The circuit diagram is as shown in Fig. 11-19. 
(c) Draw the voltage-time diagram for Exercise b. 

r------------11t------, 

p 

A' 

B 

p 

------------flt-----' 

FIG. 11-19. Solution to Exercise b. 

11-11. The States of Circuits 

Boolean Matrices. Boolean matri­
ces are involved in the discussion of 
the states of circuits. A Boolean ma­
trix is a rectangular array of zeros and 
units, for example, 

(
01010) 
10010 
01011 

The columns are labeled by succes­
sively increasing integers starting 
with 0, from left to right. The 
rows are similarly labeled from top to 
bottom: 

j 01234 

i 0 (01010) 
1 10010 
2 01011 

The zeros and units are called the elements of the matrix. An element of 
the matrix can be represented by aij, where i is the row in which the ele­
ment appears and j is the column in which it appears. (The mnemonic 
Roman Catholic can be used to recall that the first subscript refers to 
the row, the second subscript to the column.) Thus in our example 
a13 = 1, and a20 = 0. The whole matrix is represented symbolically by 
placing parentheses around the symbol for an element, thus: (aij). In 
summary a Boolean matrix is the same as the usual concept of a matrix 
except that the elements can only be zero or unit and the numbering of 
the rows· and columns starts with 0. 

Boolean matrix multiplication, indicated by the symbol ®, follows 
the same rules as ordinary matrix multiplication except that logical 
multiplication and logical addition of the elements are employed. That is 
to say, if (Cij) is the matrix resulting from the Boolean multiplication 
of the matrix (aik) by the matrix (bkj), that is, (Cij) = (aik) ® (bkj ), then 
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the elements of (Cij) are determined by 

where . represents logical multiplication and + now represents logical 
addition. For example, if 

0 1 2 
0 1 2 3 4 0 

1 0 1 1 0 0 

°c (aik) = 1 1 0 0 1 D and T (bjk) = 2 1 1 II 2 0 1 0 1 3. 0 0 
4 0 1 

then 

(f#YhWhWV I 0 

II 
0 1 2 

0 

°e 
0 D ~ (e,,) 1 0 0 1 0 0 1 

= ~ ~ 0 
o 1 0 1 1 0 1 

~ 

To form CUO, note that 

Coo = I aOk • bko = aOO • boo + aOI • bio + a02 • b20 + a03 • b30 + a04 • b40 

k 

EXERCISES 
Show that 

G 
1 0 1) CO) C 1 

D 0 1 00
000

=0 0 
0 o 0 0 1 0 0 

010 

(a) 

G 
1 0 n0G)~G) 0 1 
1 0 

(b) 

(c) 1) 0 G 1 0 n ~ (0 (0 1 0 1 1 0) 
1 0 

G 
0 

D0G 
1 

D~G 
1 

D 1 0 0 
0 1 1 

Cd) 

States of a Circuit. Now we are ready to consider the definition of 
"states of a circuit." First let us restrict ourselves to recursive circuits 
where the outputs are connected to the inputs through delay lines; 
in addition suppose that the circuits have no external input and have the 
same number of output wires as input wires, as in Fig. 11-20. As we 
saw in the last section, at a given time the signals in the wireR A', B ' , C' 
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are not necessarily the same as those in A, B, C. Hence we associate 
two "states" with a circuit: the state of the input wires and the state 
of the output wires. The state of the input wires at any given time is 
defined as the set of signals in the input wires at that time; the state of 
the output wires at any time is the set of signals in the output wires at that 
time. Recalling that the columns of the function-table basis give all 

ABC 

~o~ 

(7 \ 
6 2 

At B' C' \ J 
5 g 

'---4/ 
FIG. 11-20. Recursive circuit with no 
external inputs. 

FIG. 11-21. Input-state diagram of circuitry: 
A' = 1 B' = A . B + A . B 

C' = A . B . C + (1 + B) . C 

possible states of the input wires, we can use the column number of the 
standard basis for a shorthand way of representing a state. 

For example, suppose that the function table for a circuit were 

0123 4567 

#A = 0101 0101 
#B = 0011 0011 
#C = 0000 1111 

1234 5670 

#A' = 1010 1010 
#B' = 0110 0110 
#C' = 0001 1110 

o 1 
Then we let 0 represent the state 0, let 1 represent the state 0, 2 the o 0 

state ~, 3 the state ~, and so forth. Hence according to the function 
o 0 

table the input state 0 corresponds to the output state 1, the input state 1 
corresponds to the output state 2, input 2 corresponds to output 3, 
input 3 to output 4, etc. 

Suppose that initially we set this circuit so that the input state is 0 

(that is, 8) and then let it go. We can represent the successive input 
o 

states as in Fig. 11-21. This is called an input-state diagram for a circuit. 
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There is another way to trace the successive input states of a circuit, 
using Boolean matrices. Here we suppose that the rows of the matrix 
are labeled by the input states, the columns by the output states. Then 
an element of the matrix is a unit, provided that its row and column are 
labeled by corresponding input-output states. 

For example, consider the following function table: 

Hence we have 

0123 

#A = 0101 
#B = 0011 

1230 

#A' = 1010 
#B' = 0110 

o 1 2 3 (output states 1 !-,sec later) 

(Input states) i G ~ ~ D 
Such a matrix is called the state matrix for the circuit. In the example 
aOl = 1 because input state 0 corresponds to output state 1, a12 = 1 
because input state 1 corresponds to output state 2, and so forth. 

Assuming, to be concrete, that the delay is 1 p.sec, if this circuit is 
initially set at input state 0, it will have input state 1 after 1 p.sec. This 
fact can be read directly from the input-state matrix. Now, after 2 p.sec, 
the input state will be 2. If it was initially at input state 1, after 2 p.sec 
it will be at input state 3, and so forth. This information can be obtained 
by multiplying the input-state matrix by itself and reading the resulting 
matrix. 

o 1 2 3 (output states 2 !-,sec later) 

(
000

1 

~ ~. ~) @(~ ~ ~~) ~(~ ~ ~ 0~1) 
00 1 000 1 -2100 
00 0 1 0 0 0 3 0 1 0 

Hence, given an initial input state corresponding to one of the rows, the 
input state after 2 p.sec can be taken from the matrix by observing the 
column number of the unit of that row. To find the states 3 p.sec later, 
simply multiply this matrix again by the original one on the right: 

o 1 2 3 (output states 3 "sec later) 

(~ ~ ~ ~) @ (~ ~ ~ ~) = ~(~ ~ ~ ~) 
1000 000120100 
0100 100030010 

The result is read the same way, etc. 
Hence, to find the input-state matrix that gives the input state of a 
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circuit after n delay-time periods, multiply successively n times on the 
right by the initial input matrix. 

For example, let us find the input-state matrix after two, three, four, 
and five delay-time periods for the circuit with the following function 
table: 

We then have 

1 0 
o 0 
o 0 
1 0 
o 0 
1 0 
1 0 
o 0 
1 0 
o 0 
o 0 
1 0 
o 0 
1 0 
1 0 
o 0 
1 0 
o 0 
o 0 
1 0 

#A = 0101 
#B = 0011 

#A' = 1011 
#B' = 0010 

as original matrix 

after 1 delay time 

after 2 delay times 

after 3 delay times 

after 4 delay times 

after 5 delay times 

The student should draw the input-state diagram for this function table 
and compare the results with the matrices. 

EXERCISES 

Draw the input-state diagrams, and find the input-state matrix after two, three, 
four, five, six, seven, and eight delay-time periods of the circuits with the following 
function tables: 

(a) #A = 0101 
#B = 0011 
#A' = 1010 
#B' = 0110 

(b) #A = 0101 
#B = 0011 

#A' = 0110 
#B' = 1000 
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(c) #A = 0101 0101 (d) #A = 0101 0101 
#B = 0011 0011 #B = 0011 0011 
#C = 0000 1111 #C = 0000 1111 

#A' = 1010 0111 #A' = 0011 1111 
#B' = 1100 0011 #B' = 0011 0111 
#C' = 0011 0011 #C' = 1001 1101 

11-12. Additional Topics 

a. Representations of Boolean Algebra. As we have pointed out in the previous 
chapter, the functions of Boolean algebra can be represented by areas of intersecting 
sets. Such diagrams are called Venn diagrams (attributed to Venn by Schroeder). 
Figure 11-22 is such a diagram for four variables. 

D 

FIG. 11-22. Four-variable Venn diagram. 

A geometric representation of a Boolean algebra may be obtained by considering 
the columns of the basis as coordinates of points that form a hypercube. For two vari­
ables we obtain a square (see Fig. 11-23a). The vertices are the elementary products 
and the edges are the functions formed by the sum of the adjacent vertices. For three 
variables we obtain a cube, where now the faces are the sum of the adjacent vertices 

A·B·C 

B'C;1111) 

A'B A.B ;reB A·B (or-B~) ~OMIB'C-+----f"A.B'C 

_ _ B _ Ji. B' 0 A . BB' 0_{_00_1_} --A' B: B (101) 

..4 .• B A·'B {OOO} (100) 
(00) (1O) 

(a) (b) 

l!'IG. 11-23. Two- and three-dimensional hypercubes. The numbers represent basis 
columns. 
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(or edges), and so forth (see Fig. 11-23b). In Fig. 11-23b we have labeled the edges; 
can you label the faces? 

Another representation of a Boolean lattice diagram is illustrated in Fig. 11-24, 
for a two-elementary-element system. A point Y on the lattice is said to include 
another point X on the lattice if a continuous upward path can be found from X to Y 
along the lines drawn on the lattice diagram. For example, on our lattice, A + B 
includes A . B; A + B includes A, and so forth. One point of the lattice is said to be 
below (above) another point if it is on a row below (above) the row of the other point. 
For example, on our lattice, A . B is below B, A + B is above A . B + A . B, etc. 

A 
0101 

FIG. 11-24. The lattice diagram (two variables). 

A 
1010 

The lattice is so constructed that the logical sum of two elements is the lowest point 
which includes both elements. For example, A + B is the logical sum of A and B, 
A + B is the logical sum of A . Band B, etc. The logical product of two clcments is the 
highest point which is included by both elements. For example, A . B is the logical 
product of A and B; A . B is the logical product of A + B and B. The numbers now 
represent designation numbers (not basis columns as shown in Fig. 11-23). 

b. Chart Methods for Simplification of Boolean Functions. Besides the methods 
given in this chapter for finding the simplest sum-of-products form, thcre are some 
semisystematic, so-called chart methods of procedure. Consider the following four­
variable basis and designation numbers: 

A 0101 0101 0101 0101 
B 0011 0011 0011 0011 
C 0000 1111 0000 1111 
1) 0000 0000 1111 1111 

1100 1100 0011 1111 



SEC. 11-12] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 363 

The work is arranged in a chart as follows: 

~ 
0 1 0 1 

0 0 1 1 

==-
0 0 1 1 0 0 

1 0 1 1 0 0 

0 1 0 0 1 1 

1 1 1 1 1 1 

The rows in the chart proper correspond to the successive groups of four positions 
of the designation number. In this form it is easier to see that the units in the 
bottom row correspond to all possible combinations of A and B and hence will be 
covered by C . D. The four units in the upper left quarter correspond to all combina­
tions of conditions on A and C and hence will be covered by 13 • fJ; similarly the four 
units in the lower right quarter can be covered by B . D: 

~ 
0 1 0 1 

0 0 1 1 

=~ == 
0 0 11 11 0 0 

1 0 11 11 0 0 

0 1 0 0 1 1 

1 1 11 1 I 1 

Thus the simplest sum of products becomes C . D + 13 • fJ + B . C. This method 
is due to Veitch (see reference below). A variation due to Karnaugh (see reference 
below) rearranges the columns and rows so that the units of A and C become adjacent. 
For example, consider the designation number 0101 0111 0101 1111 and the fol­
lowing chart: 

;x 0 1 1 0 

0 0 1 1 
C D 

0 0 0 1 1 0 
------------

I 0 0 1 1 1 
------------

I 1 1 
-------------

0 0 0 
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From this it is seen that the simplest sum of products is A + B ' C + C, D. Try 
this with a chart not having the rearranged rows and columns, and the advantages of 
the rearrangement will become clear. (Note that the rearranged chart is really just 
a Venn diagram.) For further information on these methods see the references 
below. 

c. Decimal Method for Determining Included and Nonincluded Elementary Elements. 
First note that the elimination pairs for an Ai are simply those pairs of (positions 
corresponding to) basis columns that are identical except in the ith rOWj for example, 

9 13 

AlII 
A2 0 0 
Aa 0 1 
A4 1 1 

are an elimination pair for Aa. 
Next observe that, if p and q are decimal representations of an elimination pair of 

positions for Ai, then we have p + 2i- 1 = qj for example, 9 + 23- 1 = 9 + 4 = 13 as 
desired. Finally note that it is an easy matter to determine whether a basis column 
has a unit or a zero in the ith row directly from the decimal position number, for all 
we do is to divide it by 2i- 1• If the integral part of the result is even, the column has a 
zero in the ith row j if the integral part is odd, the column has a unit in the ith row 
(why?). For example, for i = 3 and the column in position 9, we have 9/23- 1 = % = 
2Hj since 2 is even, there is a 0 in the third row of this column. For i = 3 and the 
column in position 13 we have 13/2a- 1 = 1 %: = 37.:tj since 3 is odd, there is a 1 in 
the third row of this column. 

Now we are ready to present the decimal procedure in three steps. Consider, 
for example, 

o o 0 

4 5 6 7 

1 o 
9 

o 0 

12 13 14 15 

111 

and A 3• The first step is to separate those positions having units in the designation 
number into two groups, corresponding to whether the position has a unit or a zero 
in the ith row: 

Positions having zero 
in 3d row 

1,9 

Positions having unit 
in 3d row 

4, 5, 6, 7, 12, 13, 14, 15 

Second, add 2 i - 1 to the positions having zero in the ith row: 1 + 4 = 5, 9 + 4 = 13. 
Third, compare the adjusted numbers with the numbers of the positions having units 
in the ith row: if the two groups of numbers are identical, neither Ai nor Ai is includedj 
if a number appears in the unit group that does not appear in the adjusted zero group, 
then Ai is includedj if a number appears in the adjusted zero group that does not 
appear in the unit group, then Ai is included. For our example we have the two 
groups: 

Adjusted zero group 

5,13 

Unit group 

4,5, 6, 7, 12, 13, 14, 15 

Since numbers appear in the unit group that do not appear in the adjusted zero group 
(but not the reverse), we have that A3 (but not A3 ) is included. For Al these groups 
are (5,7,13,15) and (1,5,7,9,13,15), whence Al is includedj for A2 these groups are 
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(3,6,7,11,14,15) and (6,7,14,15), whence 12 is included; for A, these groups are 
(9,12,13,14,15) and (9,12,13,14,15), whence A, is not included. 

d. Decimal Method for Simplification. t The work of finding the simplest sum-of­
products form by the method of Sec. 11-6 can be shortened by considering the decimal 
numbers denoting basis columns instead of the columns themselves. Consider again 
the example of that section, the designation number 

o 3 4 6 7 91011 13 14 15 

#F=l 101 101 1 o 1 1 o 1 

Instead of writing the columns in groups of ascending numbers of included units, 

o 1 0 1 0 
o 0 0 1 1 
o 0 1 0 1 
o 0 0 0 0 

we merely writ6 the groups of decimal numbers of those columns: 0; 1, 4; 3, 6, 9, 10; 
7, 11, 13, 14; 15. Note that if a column is to combine with another in the next adja­
cent group then the number in the latter group must be greater than the number in the 
former by a power of 2. Hence we need list (in groups) for the combined result 
only the least number, and the difference, which corresponds to the power position in 
which the columns differ: 0-1 for columns 0 and 1, 0-4 for columns 0 and 4, 1-2 for 
1 and 3, 1-8 for 1 and 9, 4-2 for 4 and 6 (but not 4-1 for 4 and 3), 3-4 for 3 and 7, etc. 
Just as combined columns recombine only if they have (b in the same positions, so these 
pairs combine only if they have common differences: thus 1-2 and 9-2 combine, and 
we write 1-2,8 (also 1-8 and 3-8 combine to form 1-2,8). The work for this example 
would be tabulated as in Table 11-3. No combinations are possible in the final row 
of the table, because no pairs have the same two differences. 

The prime implicants are represented by the unchecked numbers of Table 11-3: 
namely, 0-1; 0-4; 4-2; 1-2,8; 3-4,8; 6-1,8; 9-2,4; 10-1,4. The prime-implicant chart 

TABLE 11-3. WORK FOR THE DECIMAL METHOD 

v vv' v'v'v' v' v'v' v' v' V 
o 1 1; 4 13; 6; 9; 10 17; 11; 13; 14115 

v'v v'v'v' v' v' v' v v' v v' 
0-1; 0-4 11-2; 1-8; 4-2 13-4; 3-8; 6-1; 6-8; 9-2; 9-4; 10-1; 10-4 I 7-8; 11-4; 13-2; 14-1 

1-2,8; 1-8,2 13-4,8; 6-1,8; 6-8,1; 9-2,4; 9-4,2; 10-1,4; 10-4,1 

or, on eliminating duplications, 

1-2,8 1 3-4,8; 6-1,8; 9-2,4; 10-1,4 

(see Table 11-1) is formed by adding to each least number all combinations of its 
associated differences. To find the expression for one of these combination numbers, 
we omit the variables whose power positions correspond to the differences and bar 
those variables whose powers do not add to make the first number, to the left of the 
dash. Thus 9-2,4 corresponds to A . D (since Band C are deleted and 1 + 8 = 9) 
and 4-2 corresponds to 1 . C· jj (since B is deleted and 0 + 4 + 0 = 4). 

t This method was developed by James Bruce Wilson. 
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Roth, J. P.: Algebraic Topological Methods for the Synthesis of Switching System I, 
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f. Switching Circuits and References. The and, or, and not gates that we have been 
considering are unidirectional-i.e., the signal is propagated in the forward direction 
only. In fact this is the only reason for having a special or gate, for otherwise the 

A· 

B 

J\ 
z 

TAB ""x+y·~ 
TBC =Y+X·Z 
TAC =z+x'Y 

-c 

FIG. 11-25. Switching circuit and transmission functions. 

same result could be obtained with a simple soldered joint. However, there are cir­
cuits that can be described in terms of Boolean algebra, in which the signal can propa­
gate in both forward and backward directions; these are called switching circuits. 
The usual implementation of switching circuits is with relays, although in special cases 
transistors can produce the same effect. It will suffice for our purposes to indicate 
switching circuits in terms of simple open or closed switches, as in the circuit of 
Fig. 11-25. Each switch is denoted by a Boolean variable, where a bar over the 
variable indicates an open switch, no bar a closed switch. The transmission function 
between two terminals indicates the switch conditions under which signal transmission 
can take place between these terminals, and is a Boolean function. Thus in the 
figure there will be transmission between A and B only when either switch x is closed, 
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or both switches y and z are closed; thus the transmission function, denoted by T ..tB, is 
given by TAB = X + y . z. 

Although many of the problems of gating circuits and switching circuits are analo­
gous, their characteristics can differ greatly. The first use of Boolean algebra in 
electrical engineering was made by C. E. Shannon in his well-known paper A Symbolic 
Analysis of Relay and Switching Circuits (Trans. AlEE, vol. 57, pp. 713-723, 1938). 
More recently F. E. Holm and L. R. Schissler applied Boolean matrices to these 
problems in their paper Boolean Matrices and the Design of Combinational Relay 
Switching Circuits (Bell System Tech. J., vol. 34, pp. 177-202, 1955). Their use of 
matrix methods is different, however, from those to be considered in Chap. 13 of this 
text, where we develop and apply the theory of Boolean matrices to gating circuits. 
Further reading on the design of switching circuits can be found in the works below: 

Caldwell, S. H.: "Switching Circuits and Logical Design," John Wiley & Sons, Inc., 
New York, 1958. 

Higonnet, R. A., and R. A. Grea: "Logical Design of Electrical Circuits," McGraw­
Hill Book Company, Inc., New York, 1958. 

Huffman, D. A.: The Design and Use of Hazard-free Switching Networks, J. Assoc. 
Computing Machinery, vol. 4, pp. 47-62, January, 1957; The Synthesis of Sequen­
tial Switching Networks, J. Franklin lnst., vol. 257, nos. 2, 3, pp. 161-190, 
275-303, March, April, 1954. 

Humphrey, W. S., Jr.: "Switching Circuits," McGraw-Hill Book Company, Inc., 
New York, 1958. 

Keister, W., A. E. Ritchie, and S. H. Washburn: "The Design of Switching Circuits," 
D. Van Nostrand Company, Inc., Princeton, N.J., 1951. 

Mealy, G. H.: A Method for Synthesizing Sequential Circuits, Bell System Tech. J., 
vol. 34, pp. 1045-1080, September, 1955. 



CHAPTER 12 

ELEMENTARY COMPUTATIONAL METHODS 

IN CIRCUIT DESIGN 

12-1. Introduction 

The material of this chapter and Chaps. 13 and 14 is based on the 
original research of the author. It is here presented for the first time 
in a complete and continuous development. 

The previous two chapters have discussed (1) the method of writing 
the Boolean function for a circuit diagram and conversely drawing the 
circuit diagram that corresponds to a Boolean function, and (2) the 
method of writing the designation number for a Boolean function and 
conversely determining a Boolean function corresponding to a designa­
tion number. The present chapter deals with computational methods 
that involve designation numbers and illustrates applications of these 
methods to circuit design. 

Three main topics are considered in this chapter. First the concept 
of constraints and the related concepts of logical dependence and inde­
pendence are introduced and applied to circuit design. N ext methods 
are given for solving Boolean equations, and applications of these methods 
to circuit design are discussed. Finally the concept of absolute simplest 
form is given, and applications are discussed. In each case the computa­
tional method is presented separately so that when applications to circuit 
design are given the student can concentrate solely on the engineering 
aspects of the problem. 

12-2. Constraints 
The Problem. Up to now we have been considering systems of inde­

pendent elementary elements. That is, for elementary elements with the 
basis given above, the truth value of each elementary element is inde­
pendent of the truth value of any other elementary element. It often 
happens, however, that this is not the case; the truth value of an ele­
mentary element may depend on the truth values of the other elementary 
elements for a particular problem. Such a dependence is given in terms 
of a combined element which is to remain true for this problem. For 
example, in a problem we might always have that A --7 B. The effect 
of such a constraint is to limit the possible combinations of truth values 
that A and B can take simultaneously. If A --7 B is to hold, then B 
cannot be false when A is true; i.e., the combination of truth values A 
true, B false cannot occur. 

368 
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Summarizing, a constraint is a logical relation between the elementary 
elements (i.e., a combined element) which is to be considered as tautologically 
true (i.e., always true) because of the stated or intrinsic circumstances of the 
problem. Put another way, constraints are factually true combined 
elements which are to remain true throughout a problem and therefore, 
with respect'to this problem, can be considered as tautologies. In this 
section will be given a systematic computational method that auto­
matically guarantees the maintenance of any desired constraints through­
out the solution of a problem, so that all advantages produced by the 
constraints can be obtained in a straightforward manner. 

In terms of digital-computer circuitry a constraint is a relation between 
the input-wire signals. The effect of constraints is to limit the number 
of input states; i.e., some simultaneous combinations of voltages on the 
wires are forbidden by the constraints. For example, suppose that a 
circuit had three input wires A, B, and C such that no two of the wires 
could both have I-volt signals simultaneously, and it never occurs that 
all three of the wires have O-volt signals simultaneously. These con­
straints can be written as follows: A . B = 0, A . C = 0, B . C = 0, and 
A . B . (J = 0 (where we recall that A means that "wire A has a I-volt 
signal" is true, etc.; see Chap. 10). 

We have remarked that, when the usual basis is considered as a circuit 
function table, for n input wires there are 2n columns in the basis (or 
table), one column for each of the 2n possible input states. With con­
straints, however, some of these 2n states are forbidden. Hence it seems 
plausible that in order to take account of the constraints during a problem 
we should simply cross off those columns in the basis which represent 
forbidden states of the particular problem-forming a new, reduced, con­
strained basis. Then we should proceed as described in the previous 
chapters, except that all computational methods should be performed with 
respect to this constrained basis. This is the method for taking account of 
constraints. 

The first problem that arises is: Given a set of constraints as Boolean 
functions, which columns of the basis are to be crossed off to form the 
constrained basis? Conversely, if we are given the columns to be crossed 
off or the constrained basis, what is the Boolean form of the constraints? 
J'he next problem is: How are the computational methods of the previous 
chapter performed with respect· to a constrained basis? 

Determining the Constrained Basis. Let us consider the first of these 
problems, to find the constrained basis, given the constraints. Suppose 
that fl(A,B,C, ... ), f2(A,B,C, ... ), ... , fn(A,B,C, ... ) are con­
straints which are all to be tautologically true simultaneously. We form 
the logical product of the designation numbers of the constraints, 

n 

n #h(A,B,C, ... ) = fl(A,B,C, ... ) . f2 . f3' .... in 
;=1 

It can be seen that the positions of the zeros in the resulting number 
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correspond to input states that can never occur if the constraints are 
all to remain true. Hence the· constrained basis is formed by crossing 
off those columns of the usual basis that correspond to the positions of the 
zeros of the product number. 

For example, consider the designation numbers of the constraints of 
the above example, 

#(A . B = 0) = 1110 1110 
#(A . C = 0) = 1111 1010 
#(B. C = 0) = 1111 1100 

#(A . jj • (J = 0) = 0111 1111 

Product 0110 1000 
o 3 567 

Crossing off columns 0, 3, 5, 6, and 7 of the usual basis, we find for the 
constrained basis 

#A = 100 
#B = 010 
#C = 001 

Conversely, given a constrained basis, the explicit form of the con­
straints can be determined as a Boolean function. We shall give this 
procedure by means of an example. Suppose that the constrained basis 
is 

#A = 0101 01 
#B = 0011 00 
#C = 0000 11 

The columns of this constrained basis correspond to the columns in posi­
tions 0, 1, 2, 3, 4, and 5 of the standard basis. Hence we know that the 
designation number of the constraint must have units in these positions, 

01 23 45 

and zeros elsewhere: 11 11 11 00. With respect to the (uncon­
strained) standard basis this is the designation number of B + 0, which 
is the desired constraint. Note that B + 0 can equivalently be written 
as B + 0 = I or B . C = O. In finding a constraint from a constrained 
basis only a single constraint, corresponding to the final product of con­
straints, will appear, as was the case in our example. 

Designation Numbers with Respect to a Constrained Basis. As stated 
above, when constraints exist in a problem the computational methods for 
that problem are to be carried out with respect to the constrained basis. 
Hence we must be able (1) to find the designation number of a Boolean 
function with respect to the constrained basis and conversely (2) to find 
the Boolean function corresponding to a given designation number (in any 
of the various forms considered in Chap. 11) with respect to the con­
strained basis. These computations are identical with those discussed in 
Chap. 11 except that all procedures are with respect to the constrained 
basis. However, for clarity we shall illustrate these procedures. 

For example, consider the following constrained basis: 

#A 0101 01 
#B 0011 00 
#C 0000 11 
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To find #(A. + B . C) with respect to this basis, we have 

#B = 0011 00 
#C = 0000 11 

#(B . C) = 0000 00 
#A = 1010 10 

#(A + B . C) = 1010 10 

Note that in this case it is simply #A. 
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For the con verse problem of finding the Boolean function of a given 
designation number with respect to a constrained basis, the designation 
number can be given in two different ways: either (1) with the same num­
ber of positions as columns of the constrained basis, in which case it is 
assumed that the positions of the designation number correspond to the 
columns of the constrained basis, or (2) with 2n positions, for n elementary 
elements. In this second case the positions of the given designation 
numbers that correspond to the missing columns of the constrained basis 
are crossed off, and the second case is thereby reduced to the first case. 
For instance, suppose that it were desired to find the Boolean function 
corresponding to 1010 1011 with respect to the constrained basis given 
in the above example. Columns 6 and 7 of the standard basis are missing 
in this constrained basis; hence we cross off positions 6 and 7 of our num­
ber: 1010 10 ~. 

The methods given in Chap. 11 for finding the simplest sum-of­
products form can easily be adapted to take constraints into considera­
tion. Every constrained basis column (i.e., eliminated column) can be 
used freely if it combines with nonconstrained columns corresponding to 
the units of the designation number. However, positions corresponding 
to constrained columns do not necessarily have to be covered by a prime 
implicant (as do the unit positions of the constrained designation number). 
In other words, the constrained positions can be thought of as units or 
zeros, whichever helps best to simplify the function. 

For example, consider 1111 01 with respect to the constrained basis 
of the above example. By our first simplification method we have 

Constrained 
columns 

displayed/or 
possible use 

v vv vv 
0 

I 
10 

I 
11 

0 01 10 
0 00 01 

011 1 1 
1 1 

VV VVV 
410 

I 
11410 

O\l.l \l.l011 
00 041041 

"-

11 {FOrmed by 
141 r combination with 
411 constrained columns '----It ...... t __ _ 

~ I 
141 
\l.ll 
(!(! 



372 FOUNDATIONS FOR LOGICAL DESIGN [CHAP. 12 

The table of prime implicants (omitting columns 6 and 7) becomes 

023 5 

COl 2 3 
A 1 3 5 
B 2 3 

whence (j and A are essential prime implicants whose sum covers the unit 
positions of the constrained designation number; thus 

1111 01 = #(A + (j) 
The second method given in Chap. 11 for finding the simplest sum of 

products can likewise be adapted to handle constrained designation num­
bers. Consider again the number 1111 01 as an example: 

~ 6 7 ij 

C B A 
0 1 2 3 5 4 2 1 

x 1 2 1 

" " 

0 <J) <J) C 
4 2 x 2 <J) <J) 1 A 
~ 

Constrained 
positions 

Note that we had to make use of constrained column 7 in order to form all 
combinations with B (power 2) in the second line of the illustration. 

The methods for going from the constrained designation number to 
other Boolean function forms, e.g., the first and second canonical forms, 
follow easily. 

Constrained Boolean Algebra. An important point arises from the last 
example. Note that, with respect to the constrained basis given above, 
many strange relations hold; for example, 

A = A . (B + (j) A+B=A·B+B·(j+A·C 

Such relations obviously do not hold with respect to the standard uncon­
strained basis. In other words, with respect to a constrained basis, we 
obtain a constrained Boolean algebra which is different from the uncon­
strained Boolean algebra described in Chap. 10. That is, additional 
relations hold in a constrained Boolean algebra that do not hold in the 
unconstrained algebra-but all relations that hold in the unconstrained 
algebra also hold in the constrained algebra. In general these additional 
relations in the constrained algebra often allow Boolean functions 
to be further simplified; that is, A· (B + (j) becomes just A, and 
A . B + B . (j + A· C becomes A + B with respect to the constrained 
basis of the above example. This of course means that in designing a 
circuit any knowledge of constraints should be used to greatest advantage 
for further simplifying the design. However, it is not always possible 
to simplify a function further; for instance, A . (j + A . :C cannot be put 
into simpler form with respect to the constrained basis of the above 
example. 
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EXERCISES 

Find the constrained basis for the following sets of constraints: 

(a) A . B = 0 

(b) B· 0 = 0 

(c) A + B· C = 0 
A·O = 0 

(d) A -+ C 
C-+ B 

(e) A . (B . 0 + B . 0) = 0 
A ·B-O 
B +.6 = 1 

Answer 

#A = 010 
#B = 001 

#A = 0101 01 
#B = 0011 00 
#0 = 0000 11 

#A = 11 
#B = 01 
#0 = 00 

#A = 0001 
#B = 0111 
#0 = 0011 

#A = 0100 000 
#B = 0010 111 
#0 = 0001 101 
#D = 0000 011 

Find the constraints corresponding to the following constrained bases: 

(f) #A = 010 
#B = 001 

(g) #A = 111 
#B = 010 
#C = 001 

(h) #A = 0001 
#B = 0111 
#0 = 0011 

Answer 

A.+ B = 1 

A·O+B·O =1 
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With respect to the constrained basis given in the example above, find the designa­
tion numbers of: 

(i) A . B + 0 
(j) A· (B + 0) 
(k) A . B . 0 + A . B . 0 
(l) A . (B + C) + A . (B + 0) 

Answer 

1111 01 
0101 01 
1000 00 
1101 10 

With respect to the constrained basis given in the example above, find the simplest 
sum-of-products form of: 

Answer 

(m) 0101 01 A 
(n) 0111 01 A +B 
(0) 1010 01 A·C+A·O 
(p) 0101 0100 A 
(q) 0111 0101 A +B 
(r) 1010 0101 A·O+A·O 
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12-3. Logical Dependence and Independence 

Logical Independence. Boolean functions are logically independent 
(with respect to each other) if they can take on all possible combinations 
of truth values. There are 2n possible combinations of truth values that 
n Boolean functions can have (since each can take either of two truth 
values). Hence, in order to test the independence of n Boolean functions, 
we need examine only the combinations of truth values that can occur: 
if all 2n are possible, then they are independent; otherwise they are not. 
This can be done by means of the designation numbers for the Boolean 
functions. The procedure is illustrated by means of an example. 

Suppose that we desire to know whether or not the functions of 
A . B + A . Band B are independent. Write their designation numbers 
on successive rows, 

#(A . B + A . B) = 1001 
#13 = 1100 

The columns represent all possible combinations of truth values. Since 
all four column combinations are there, we can say that A . B + A . B 
and B are independent. 

As another example, consider A . B + B . C and .A . B + B . C. We 
write 

#(A . B + 13 . 0) = 1101 0001 
#(.if.. ·13 + B . C) = 1000 1011 

Here i, 6, ~,and g all appear; so the functions are, indeed, independent. 

Consider next the three functions A . B + A . B, B, and A . B + A . B. 
Write 

#(A . B + .if.. . B) = 1001 
#13 = 1100 

#(A ·13 +.if.. . B) = 0110 

Here we need 23 = 8 possible combinations in order that the three func­
tions be independent. But only four columns appear; hence the functions 
are not independent. 

Logical Dependence. Boolean functions that are not logically inde­
pendent are said to be logically dependent. This means that there must 
be some logical relations between them that can be expressed as a com­
bined element. For instance, we know that A· B and A + Bare 
logically dependent because clearly A . B ~ (A + B). Given a set of 
n Boolean functions that are logically dependent, the explicit form of this 
dependence can be found by means of the designation numbers, in two 
steps. This first step is to write their designation numbers in successive 
rows. In this array of designation numbers cross off columns so that no 
two identical columns remain. Since the functions are dependent, there 
will be fewer than 2n columns remaining. Put these columns in their 
standard order, and consider this resulting array as a constrained basis. 
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The second step is to find the constraint in the same manner as in the 
previous section, remembering that the rows are labeled by the given 
functions (and not elementary elements). For example, consider the 
functions B . C + A . C, A . C + B . C, and B. Let us denote these by 
/I, /2, and fa, respectively. Then we have 

#/1 = 1100 
#/2 = 1010 
#!3 = 1100 

and on rearrangement in standard order we obtain the constrained basis: 
012 56'1 

#fl = 010 101 
#/2 = 001 011 
#f3 = 000 111 

Hence the designation number of the constraint is 1110 0111. This 
designation number is to be evaluated with respect to the following 
standard (unconstrained) basis (see Sec. 12-2): 

#f1 = 0101 0101 
#f2 = 0011 0011 
#f3 = 0000 1111 

whence we have 1110 0111 = #Ul + J2) . J3 + (fl + /2) . /3. Hence the 
logical dependence between iI, i2, and i3 is given by 

#Ul + J2) . J3 + (f1 + h) . i3 = I 

as can be easily verified by substituting for iI, h, and i3 their correspond­
ing functions in terms of A, B, and C. 

EXERCISES 

Are the following sets of functions independent? 

(a) A . B + A· B 
A.B+A·B 

(b) A 
B 

(c) B 
A 
(A . B + A . B) . (j + (A . B + .A . B) . C 

(d) B· (j + A . C 

A·C+B·C 
(A + B) . (J + A . B . C 

(e) B· C + A· C 
A·C+B·C 
B 

Answer 

No 

Yes 

Yes 

Yes 

No 
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Find the logical dependence between the following sets of functions: 

Answer 

(f)it =A·B+A.B 
h=A·fJ+A.B 

It = J2 (that is, it ·]2 + Jl . h = I) 

(g) 11 = A· B 
h=A+fJ 

(h) it = A . B 
h=A+B 

it -+ 12 (that is, Jl + 12 = J) 

12-4. Constraints in Circuit Design 

Simplification by Constraints. If some input states of a circuit are 
forbidden (Le., it is known that these states will never occur), or if a 
logical relation (or dependence) is known to exist between the input 
wires of a circuit, then the circuit can be designed in terms of a constrained 
Boolean algebra. In other words, the computation may be performed with 
respect to the constrained basis. 

There are important advantages in recognizing constraints in the 
inputs to a circuit. For as we mentioned in Sec. 12-2, Boolean functions, 
and hence the corresponding circuits, can often be further simplified 
in the constrained system. In this section illustrations will be given 
of the use of the computational methods associated with constraints 
in the design of circuits. 

For example, suppose that it is desired to design a circuit with two 
input wires such that a I-volt signal output will exist whenever there are 
either O-volt signals on both wires A and B or else I-volt signals on both 

A-,----t 

B-t--r---; 

z 

A and B. Hence, if Z represents 
the output, we have for the func­
tion table 

#A = 0101 
#B = 0011 
#Z = 1001 = #(A . B + A . fJ) 

Hence the circuit appears as in Fig. 
12-1. 

FIG. 12-1. Circuit for Z = A . B + A . B. N ow suppose, in addition, that it 
is known that wire B will have a unit signal whenever A has one; i.e:, if A 
has a unit signal, then B has one, or A ~ B. Since #(A ~ B) = 1011, 
the constrained basis becomes 

#A = 001 
#B = 011 

#Z = 101 = #(A + fJ) 
: =c:Dt------t--z 
FIG. 12-2. Circuit for 

whence the circuit design appears as in Fig. Z = A + B. 
12-2. 

Hence the introduction of the constraint enabled a significant simpli­
fication in the circuit design. 
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Examples. As another example, suppose that it is desired to design a 
counter, with three input and three output wires, that counts: 1, 2, 3, 
4, 5, 1, 2, 3, . . .. The function table for such a counter becomes 

#A = 0101 0101 
#B = 0011 0011 
#C = 0000 1111 

#A'= 010 11 
#B'= 110 00 
#C' = 001 10 

The statement of the problem does not specify the output states corre­
sponding to input states 0, 6, and 7. In fact, if the counter is initially 

c-r------; 

A -r---I>-"'--I--I 

B 

set at input state 1, and if it is de­
signed correctly, input states 0, 6, 
and 7 will never occur. Hence a 
constrained basis can be used, 

#A = 101 01 
#B = 011 00 
#C = 000 11 

#A' = 010 11 = #(A + C) 
#B' = 110 00 = #(A + B) . (J 
#C' = 001 10 = #(A . B + A . B) 

and the circuit is as in Fig. 12-3. 
I t is interesting to find out what 

would happen in this circuit if the 

FIG. 12-3. Counter that counts 1, 2, 3, 4, 
5,1, 2, 3, .... 

FIG. 12-4. State diagram of counter of Fig. 
12-3 with initial erroneous input 0, 6, or 7. 

initial input state were erroneously 0, 6, or 7. To determine this, we 
simply list the designation numbers (with respect to the standard uncon­
strained base), 

#(A + C) = 1010 1111 
#(A + B) . (J = 1110 0000 

#(A . B + A . B) = 1001 1001 

whence the state diagram becomes as in Fig. 12-4. Thus there is no 
difficulty, as all three states return to the loop. 

Consider next a four-input circuit, two wires of which represent one 
2-bit binary number N and the other two wires of which represent another 
binary number M. The problem is to design this circuit so that the 
result will be N - M, where it is known beforehand that N ~ M; that is, 
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a negative number will never result. The function table for this circuit 
becomes 

Nl 0101 0101 0101 0101 
N2 0011 0011 0011 0011 
Ml 0000 1111 0000 1111 
M2 0000 0000 1111 1111 
Zl 0101 010 01 0 
Z2 0011 001 00 0 

where input states 4, 8, 9, 12, 13, and 14 can never occur according to 
the statement of the problem. Hence a constrained basis is used, 

Nl 0101 101 01 1 
N2 0011 011 11 1 
Ml 0000 111 00 1 
M2 0000 000 11 1 
Zl 0101 010 01 0 = #(N1 • Ml + Nl . M 1) 

Z2 0011 001 00 0 = #(Nl + M1) • N 2 • M2 

and the circuit becomes as in Fig. 12-5. 
As another example, suppose that it is desired to design a circuit that 

will have a I-volt output signal whenever at least one, and no more than 

N1--r-----. 

M2--~~>-----------~ 

FIG. 12-5. Circuit forming N - M (N ~ M). 

two, of the three input wires have I-volt signals. Calling the inputs 
U, V, and Wand the output Z, we have for the function table 

U 0101 0101 
V 0011 0011 
W 0000 1111 
Z 0111 1110 = U . V + -0. V + U . W + O· W 

Now suppose that U, V, and Ware themselves outputs of a certain circuit: 
U = B . (J + A . C, V = A . (J + B' C, and W = B. The question is: 
Should Z be formed as the above function, or can Z be simplified owing 
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to our additional knowledge of U, V, and W? To answer this question, we 
must determine whether U, V, and Ware independent or whether they 
are dependent. It turns out that they are dependent (see Exercise e of 
Sec. 12-3). Thus the next step is to find explicitly this dependence, 

#U = #(B . C + A . C) = 1100 1010 
#V = #(A . C + B . C) = 1010 1100 
#W = #B = 1100 1100 

The method of Sec. 12-3 gives the designation number of the constraint 
between U, V, and Was 1110 0111. This means that the input states 3 
and 4 cannot occur. We evaluate Z 
with respect to the constrained basis, U----..----1 

U 010 101 
V 001 011 
W 000 111 
Z 011 110 = U . iT + (j . V 

V-~------1 

z 

which is simpler than the case above, FIG. 12-6. Simplified circuit diagram. 
where we knew nothing about the 
dependence between U, V, and W. Hence the circuit is simply as in 
Fig. 12-6. 

EXERCISES 

(a) Design a circuit that computes 2N - 7, where it is known that negative results 
will never occur and N is a 3-bit binary number. 

(b) Design a circuit that computes 2N - 7, where it is known that positive results 
will never occur and N is a 3-bit binary number. 

(c) Design a counter that counts successively in even numbers from 0 through 14, 
then returns to 0 and repeats. 

(d) Design a counter that counts successively in odd numbers from 1 through 15 
and then returns to 1 and repeats. 

(e) Design a circuit with four inputs U, V, W, and X that produces a unit output 
only when the input state is a multiple of 3. Assume that U, V, W, and X are the 
outputs of the following circuits: 

U=A·B+A·C 
V=A·B+B·C+A·C+B·C 
W = (A + B) . (B + C) 
X = A . (B + C) + A . (B + C) 

12-6. Linear Boolean Equations 

Boolean Equations. Just as in physics the solutions to many problems 
are obtained by considering ordinary algebraic equations in one or more 
unknowns, so in circuit design solutions are obtained by considering 
Boolean algebraic equations. An example of a Boolean algebraic equa­
tion is X' (A + B) = A . B . C, where X is an as yet unknown Boolean 
function of A, B, and C. Boolean algebraic equations may be solved by 
means of the designation numbers. 
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For example, in order to find an X that satisfies 

X . (A + B) = A . B . C 

we observe that #(A . B . C) = 0000 0001 and that 

#(A + B)= 0111 0111 

[CHAP. 12 

Since #(A . B . C) must be identical to #[X . (A + B)] if the equation 
is to hold true, #X must be of the form _000 -001, where the two 
blanks may be filled with either zeros or units. There are thus exactly 
four nonequivalent combined elements that satisfy this equation, cor­
responding to the four designation numbers 0000 0001, 1000 0001, 
0000 1001, and 1000 1001. It can be verified that they are A . B . C, 
A . B· C + A ·13· 0, C' (A . B + A . B), and A ·13+ A . B· C . 
. Similarly we can solve an implication, for example, 

X . (A + B + 0) ~ A . B + B . C 

Now #(A + B + 0) = 1111 0111, while #(A . B + B· C) = 0001 1101, 
whence X must have the form 000 __ -0-. There are therefore 
24 = 16 solutions, or nonequivalent X's, that satisfy this equation. 
These can be seen to be 0 A· B . 0 A· B . CA· B . CA· B . C - - - '- -' -' - - , , 
A . B . C + A . B 'C, A(B . C + B . C), A . B, B· C, (A . B + A . B) . C, 
A . C, A . B . 0 + B . C, A . B + A . B . C, A . (B + C), (B + A) . C, 
and A . B + B . C. 

Since in general there will be many solutions to such equations as 
those considered above, it is probable that solutions satisfying certain 
given conditions will usually be desired. For example, it might be desired 
to find only those solutions X of the implication 

X . (A + B + 0) ~ A . B + B . C 

which also imply A . B + A . B and satisfy 

X + B . 0 + A . B . C = C' (A + 11) + B . 0 

Since #(A . B + A . B) = 1001 1001, positions 1, 2, 5, and 6 must be 
zero; and since 

and 
#[C· (A + B) + B . 0] = 0011 1101 

#(B . 0 + A . B . C) = 0011 0100 

X must have units in positions 4 and 7 and zeros in 0, 1, and 6. Thus 
X must be of the form 000- 1001, where only position 3 is arbitrary. 
(N otice that the conditions on X must be consistent with respect to each 
other.) Hence, of the original 16 possibilities for X, only 2 are left, 
0000 1001 = #[C· (A, B + A· B») and 0001 1001 = #(A·B +A 'B'C), 
Of course there are equations that have no solution, for example, 
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Some Further Notation. At this point it is important to discuss some 
further notation. We have noted above that occasionally subscripts 
were used to distinguish among elementary elements, as in A 1, A 2, • • • , 

An. Superscripts, on the other hand, will be used to denote position 
in a designation number. Hence #Bi represents the bit, 0 or 1, in the ith 
position of #B. For example, if #B = 0011 0011, then #B3 = 1, 
#B4 = 0, etc. 

In this notation we can conveniently rewrite our well-known rules 
for logical addition, multiplication, and negation of designation numbers 
as follows: 

# (A + B)i = # Ai + # Bi where 1 + 1 = 1 + 0 = 0 + 1 = 1 
and 0 + 0 = 0 

# (A . B)i = #Ai. #Bi where 1· 0 = O· 1 = 0·0 = 0 and 1·1 = 1 
and #Ai = 0, 1 when #Ai = 1,0, respectively 

It is occasionally important to tell explicitly what the elementary 
elements of a basis are. Thus, if we wish to talk about a basis for A, B, 
and C, we would write b[A,B,C], while for U, V, and HT we would write 
b[U,V,W]. 

Our superscripts can be used again to denote a position-this time 
of a column of a basis. Hence b[A,B,C]5 would represent the fifth column 
of the (standard) basis or 

1 
o 
1 

Solution to Linear Equations. An equation of the type 

R+P'X+Q'X=S 

where R, P, Q, and S are known elements (elementary or combined) and 
X is an unknown element (elementary or combined), is called a unilateral 
linear equation in a single unknown X. The solutions to this equation are 
combined elements which, when substituted for X in the equation, make 
the equation true. The solutions are found in terms of designation num­
bers as follows (where Xi represents the bit 0 or 1 in the ith position of 
#X): 

For the equation R + P . X + Q . X = S we can show that, in the 
designation number of X, 

if Si . (Ri + Pi) + Si . (Ri + Pi) = 1 
if Si . (Ri + Qi) + Si . (Ri + Qi) = 1 

for i taking the values of all· positions. If both conditions are satisfied 
for a position, two solutions are possible for that position; if neither is 
satisfied for a position, no solution exists. These formulas can be easily 
verified as follows: Suppose that Si = 1 for some i; then if Xi = 1, Xi = 0, 
and the unit of Si must be contributed by either Ri or pi . Xi, .whence 
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Si. (Ri + Pi) = 1; but if Si = 0 and Xi = 1, Xi = 0, then both Ri. and 
pi must be zero, or Si. Ri. . pi = Si. (Ri + Pi) = 1. Similarly for 
Xi = 0, Xi = 1. 

As an example, consider the equation 

A . f3. C + B· X + (A + C) . X = A . B + A . C 

Here with respect to the usual basis 
45 

#8 = #(A . B + A . C) = 1011 0001 
#P = #B = 0011 0011 
#R = #(A . B· C) = 1000 0000 
#Q = #(A . C) = 1111 0101 

Let us illustrate the use of the formulas for the specific cases of i = 5. 
We have 

S5. (R5 + P5) + S5 . (R5 + P5) = 0 . (0 + 0) + 0 . (0 + 0) 
= 1 . (1) + 0 . (0) = 1 

and hence X5 can be 1. Also, 

S5. (R5 + Q5) + So. (R5 + Qo) = (} . (0 + 1) + 0 . (0 + 1) 
= 1 . (0) + 0 . (1) ~ 0 

and hence XO cannot be o. Thus 1 is written for the fifth position of the 
designation number of X. 

Consider i = 4. We have 

S4. (R4 + P4) + S4 . (R4 + P4) = 0 . (0 + 0) + 0 . (0 + 0) 
= 1 . (1) + 0 . (0) = 1 

S4. (R4 + Q4) + S4 . (R4 + Q4) = 0 . (0 + 0) + 0 . (0 + 0) 
= 1 . (1) + 0 . (0) = 1 

Hence X4 can be 0 or 1 (producing two different solutions). We shall 
denote this by writing d> in the fourth position of the designation number 
for X. 

Following this procedure for i = 0, 1, 2, 3, 4, 5, 6, and 7, we find 
# X = d>1d>d> d>10d>. Hence there are 25 = 32 solutions. 

An equation of the type R + P . X = Q . X + S is called a bilateral 
equation in a single unknown X. The solutions for 

are 
Xi = 1 
Xi = 0 

R+P·X= Q·X+S 

if Si . (Ri + Pi) + Si . (Ri + Pi) = 1 
if Ri . (Si + Qi) + Ri . (Si + Qi) = 1 

for i taking the values of all positions. If neither condition is satisfied 
for a position, no solution exists. 
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For example, consider the equation 

(B, C + A . B' C) + (C + 1 . B) . X 
= (1 . C + B . C + A '"B . C) . X + B, . C 

Here 
#S = #(B· C) = 0000 1100 
#P = #(C + X . B) = 0010 1111 
#R = #(B· 6 + A . B . C) = 0011 0100 
#Q = #(X ·6 + B . 6 + A . B· C) = 1011 0100 

and therefore # X = 1d>00 1d>00, with 22 = 4 solutions. 
Simultaneous Linear Equations. Consider now m simultaneous equa­

tions with a single unknown of either the unilateral or the bilateral type 
or both. The following procedure will produce all solutions each of which 
satisfies all the m equations. We first take the solutions of each equation 
and place them in a column beneath each other. To find those solutions 
which satisfy all the m equations simultaneously, we consider each digital 
position separately and" multiply" the respective digits of various solu­
tions according to the following table (where d> is used as above): 

"Multiply" 0 1 
-----1--- -----

o 0 None 0 
1 None 1 1 
41 0 1 41 

For example, let us find the solution which satisfies both the equations 
solved above: 

Solution to 1st equation = d>1d>d> d>10d> 
Solution to 2d equation = 1d>00 1d>00 

Desired result = "product" of solutions = 1100 1100 = # B 

Hence X = B is the only solution that satisfies both the above equations. 

EXERCISES 

(a) Solve the following equation for X as a function of A, B, and C: 

A . B· C + X· 6· (A + B) + X· C ·(X + B) = A ·6 + X· C - B· C 

Solution. A· 6, (A + B) . 6, A . (B + C), A . B + B . C. 
(b) How many solutions are there to the following equation? 

X . (A . B . C + A . B) = A . B . C + X . 13 . 6 Ans. 25 = 32 

(c) How many solutions are there to the following implication? 

A . B + A . B . C - X . (A . B + B . C + A . C + 13 . 6) 

(d) Find X if 
X . (A . B . C + A . 13) = A . B . C + A . 13 . 6 

Ans. 25 = 32 
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(e) Find X if 
x . C . (A + B) + 1 . C = g . c . (1 + B). 

(f) Solve the equations in (d) and (e) simultaneously. 
Solution. #X = 1000 0101 = #(1· B· C + A . C). 

[CHAP. 12 

12-6. The General Method for Solution to Any Number of Simultaneous 
Equations in Any Number of Unknowns 

Equivalence. The general method for obtaining all solutions to an 
equivalence in many unknowns is best illustrated by an example. Con­
sider the equation 

A + B . X . Y + 0 . Y = A . X . Y + B . X + (0 + A . B)· (12-1) 

Recall that in the solution of equivalence equations the fundamental 
principle is that the designation numbers of each side of the equation must 
be identical. The system to be given here is designed to facilitate the 
calculation of those designation numbers for the unknown elements X and 
Y which fulfill this condition. The designation numbers of the unknowns 
are calculated one position at a time so that this position becomes the 
same for the total designation number of each side of the equation. 

The solutions for each position i of the unknowns must be among the 
set: (Xi, yi) = (0,0); (1,0); (0,1); (1,1). With the aid of the work sheet 
shown in Table 12-1 each of these pairs is substituted into the equation; 
if a pair makes both sides equal, it is admitted as a possible solution. 

TABLE 12-1. WORK SHEET 

Coefficients and designation 
Corre- Possible pairs of solutions nu'mbers' 

sponding Xi; 0 1 '0' 1 
unknown yi: 0 0 1 1 

0123 '4 567 

#A = 0101 0 101 I 1 1 1 1 
#B = 0011 0 011 X·y 0 1 0 0 
#C = 0000 1 111 Y 0 0 I' 1 

#1 = 1010 1 010 g.y 1 0 0 0 
#B = 1100 1 100 g 1 0 1 0 

#(C + A . B) = 0001 1 111 I 1 1 1 1 - ,--:,-, 

RESULT ARRAY 

i 0 1 2 3 4 5 6 7 
-' ---------
#X 1, 1 0,0 0,1 0, 1,0, 1 0,1 0, 1,0, 1 1,0; 1 0, 1,0, 1 
#T 0, 1 0, 1 I, 1 0,0, I, 1 1, 1 0,0, 1, 1 0, I, 1 0,0, 1, 1 
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On the work sheet are put the designation numbers of the coefficient 
of each unknown and the value corresponding to that unknown computed 
with each of the possible pairs. Thus in our example the coefficient of 
X . Y is B, 0011 0011. When the pair (0,0) is substituted into X . Y, 
the result is zero; for (1,0), a unit; for (0,1), a zero; for (1,1), a zero. 
Each line is treated similarly; but observe that for terms not involving 
either unknown the tautological element I is placed in the unknown 
column. To check the ith position of both sides of the equation for a 
pair of solutions, the column corresponding to that solution is logically 
mUltiplied by the column of the coefficients corresponding to the ith 
position. The results above and those below the line are added logically, 
and the two sums are compared. If the sums are the same, that pair of 

TABLE 12-2 

0·1 = 0 
0·0 = 0 
1·1 = 1 

1·0 = 0 
1 . 1 = 1 
1 . 1 = 1 

solutions is admissible for that position. Consider in our example the 
pair (0,1) and the fourth position (see Table 12-2). Then 

0'1+0'0+1'1=1 
as does 

1'0+1'1+1·1 = 1 

Therefore the pair (0,1) is admissible as a solution for the fourth position 
and is recorded in the result array. The pair (1,1) is also a solution for 
this position, but (1,0) and (0,0) are not. When this procedure is repeated 
for all combinations, we obtain the results as shown in Table 12-1. 
There are thus 

2 X 2 X 2 X 4 X 2 X 4 X 3 X 4 = 3,072 

different nonequivalent pairs of solutions to the equivalence equation 
of the example. Note that all nonequivalent pairs of solutions have been 
obtained. 

Simultaneous Equivalences. The general method for obtaining all solu­
tions to any number of simultaneous equivalences in many unknowns is 
again best illustrated by an example. 

Consider the two simultaneous equations 

A + B· X· Y + C· Y = A· X' Y + B· X + (C + A· B) 
B . X . Y + C . (A + B) . Y = B . X . Y 

(12-1) 
(12-2) 

We want to find combined elements that when substituted for X and Y 
in the equations will make both true simultaneously. The method for 
obtaining these solutions is evidently to record in the table of results only 
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TABLE 12-3. WORK SHEET 

Coefficients and designation 
Corre- Possible pairs of solutions numbers 

sponding Xi: 0 1 0 1 
unknown yi: 0 0 1 1 

0123 4567 

#A = 0101 0101 I 1 1 1 1 
#B = 0011 0011 X·y 0 1 0 0 
#C = 0000 1111 Y 0 0 1 1 

#A = 1010 1010 g.y 1 0 0 0 
#B = 1100 1100 g 1 0 1 0 

#(C + A . B) = 0001 1111 I 1 1 1 1 

#B = 0011 0011 X·Y 0 0 0 1 
#[C· (A + B)] = 0000 0111 Y 0 0 1 1 

#B = 1100 1100 g.y 1 0 0 0 

RESULT ARRAY 

i 0 1 2 3 4 5 6 7 
--- ------ --------- ------

#X 1, 1 0 0 0, 1,0 0, 1 1 1 0, 1 
#y 0, 1 1 1 0,0, 1 1, 1 0 0 0,0 

those position solutions which satisfy both the simultaneous equations. 
The procedure is analogous to that of the single equation (see Table 12-3). 
Now there remain 2 X 1 X 1 X 3 X 2 X 1 X 1 X 2 = 24 nonequiv­
alent pairs of solutions to both these equations. 

Simultaneous Equivalences and Implications. The solution to an impli­
cation in several unknowns is obtained in the way described above for an 
equivalence, except that, for the implication L ~ R, it is not necessary 
that Rand L have identical numbers; but R must have a unit at least 
wherever L has a unit. Thus for implications one follows the whole 
procedure described above, except that for any digital position the result 
is not recorded only when there is a calculated unit above the line cor­
responding to a calculated zero below (here we assume L above the line 
and R below). 

The extension of these results to simultaneous implications as well 
as to mixed systems of simultaneous equivalences and implications is 
immediate. For example, consider the following mixed system of simul­
taneous statements: 

A + B . X . Y + C . Y = A ,. X . Y + B . X + (C + A . B) 
B . X . Y + C . (A + B) . Y = B . X . Y 

A . C . (X + Y) + A . B . (X + Y) ~ X . Y + A . C 

(12-1) 
(12-2) 

(12-3) 
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TABLE 12-4. WORK SHEET 

Coefficients and designation 
Corre- Possible pairs of solutions numbers 

sponding Xi: 0 1 0 1 

0123 4567 
unknown Vi: 0 0 1 1 

#A = 0101 0101 1 1 1 1 1 
#B = 0011 0011 X·y 0 1 0 0 
#C = 0000 1111 Y a a 1 1 

#1. = 1010 1010 g.y 1 0 0 0 
#B = 1100 1100 g 1 0 1 0 

# (C + A . B) = 000 1 1111 1 1 1 1 1 

#B = 0011 0011 X·Y 0 0 0 1 
#[C· (A + B)] = 0000 0111 Y a 0 1 1 

#B = 1100 1100 goy 1 0 a a 

#(A . C) = 0000 0101 x+y a 1 1 1 
#(A 0 B) = 0001 0001 X+y 1 1 0 1 

-- - - ---- --------------------------------- --.---------- ---- ---- --- ---- - - ---------------_. 
#1 = 1111 1111 Xoy a 0 a 1 

#(A 0 C) = 0000 0101 1 1 1 1 1 

RESULT ARRAY 

i a 1 2 3 4 5 6 7 
------------------

#X 1, 1 a a 0 0, 1 1 1 0, 1 
#y 0, 1 1 1 1 1, 1 0 a 0,0 

The work leading to the results is shown in Table 12-4. Note that a 
dashed line is used to denote implication. There remain only 

2XIX1X1X2X1X1X2=8 

pairs of nonequivalent solutions for this system of two equivalences and 
one implication. Written out explicitly, the eight pairs of solutions are 

x = A . (B . C + B . C) + A . B . C 
Y = C 0 (A + B) + A 0 B 0 C 

X = A . (B . C + B 0 C) + A . B . C 
Y=C+A·B 
X = C 0 (A + B) + A . B 
Y = C 0 (A + B) + A . B . C 

X = C . (A + B) + A . B 
Y=C+A·B 

X = C . (A + B) + A . B . C 
Y = C . (A + B) + A . B . C 

X = C . (A + B) + A . B . C 
Y=C+A'B 
X=C+A'B 
Y = C . (A + B) + A . B . C 

X=C+A·B 
Y=C+A·B 
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One can verify any of these pairs by direct substitution back into the 
original three statements. 

EXERCISES 

Solve the following sets of simultaneous Boolean equations for the unknowns 
X and Y: 

(a) (A + B) . X + A . X . Y = A, A . Y + X = A + B, X . Y -+ B. 
Solution. X = A, Y = A . B + A . E; X = A, Y = A + E. 

WORK SHEET FOR EXERCISE a 

Coefficients and designation 
Corre- Possible pairs of solutions numbers 

sponding Xi: 0 1 0 1 

0123 
unknown yi: 0 0 1 1 

#(A + B) = 0111 X 0 1 0 1 
#A = 0101 X·Y 1 0 0 0 

#A = 0101 I 1 1 1 1 

#A = 1010 Y 1 1 0 0 
#1 = 1111 X 0 1 0 1 

#(A + B) = 0111 I 1 1 1 1 

#1 = 1111 X·Y 0 1 0 0 
------------------------------------- ------------ ............. --- --_ .. -- -- -_ ... -- .. _ ......... -- -- ---_. 

#E = 1100 I 1 1 1 1 

RESULT ARRAY 

i 0 1 2 3 0101 = A 
----------- 1001 = A . B + A . E 

#X 0 1, 1 0 1 
#y 1 0, 1 0 1 0101 = A 

1101 = A + E 

(b) X· Y = A· B, A + B = A· Y + X, (A + B)· X + A· Y = A. 
Solution. X = A, Y = A . E + A . B. 
(c) X· Y = A . B, A . B = A . Y + X, (A + B) . X + A . Y = A. 
No solution. Why? 
(d) X· (A + B) + Y . (A + C) = (X . Y + X . Y) . (A + E + C), 

X . (A . B + A . E) -+ Y + A . B + C. 
There are four sets of solutions: 

X = A . C + (A + B) . C 
Y=C+A·B+A·B 

X = (A + B) . C + (A + E) . C 
Y-C+A·B+A·B 

X = A . C + (A + E) . C 
Y = C + (A + E) . C 

X = (A + B) . C + (A + E) . C 
Y = C + (A + E) . C 
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12-7. Solution to Equations in Circuit Design 
Examples. In circuit design, problems that involve solutions of equa­

tions are often of an exploratory nature-for example, they may arise 
in the investigation of various alternative circuits. The method of solu­
tion to equations enables the design engi-
neer to determine what additional cir- X Y A B 
cuitry will be needed if combinations of 
existing circuits are to be used to pro­
duce a given desired result. As in ordi­
nary algebraic problems the formulation 
of the equations requires ingenuity in 
interpreting the physical situations in 
terms of mathematical concepts. 

For example, suppose that the circuit 
shown in Fig. 12-7 had already been 
constructed. It is desired to have the 
output be 

Z=A'B+A'C+B'C+B'C 

Z 

The problem is to design two circuits, 
with inputs A, B, and C, such that when 
their outputs are attached to input 
wires X and Y, the desired Z will be 
obtained. As the circuit now stands, 

Z = (A + B) . X . Y + (A + B) . Y 

FIG. 12-7. Circuit output of Z = 
(A + B) . X . Y + (1 + B) . Y. 

and hence we want to find X = X(A,B,C), Y = Y(A,B,C) such that 

(A + B) . X . Y + (A + B) . Y = A . B + A . C + B . C + B . C 

Solving this equation by the method of the previous section, we obtain 
the result array: 

i 0 1 

I 
2 3 4 5 6 7 

--- --
#X 0, 1 1,0,1 

I 

1,0,1 1 0, 1 1,0,1 0 1 
---------,-----

#y 0,0 0,1,1 0,1, 1 0 1, 1 0, 1, 1 I 0 0 
I 

and hence there are 2 . 3 . 3 • 1 . 2 . 3 . 1 . 1 = 108 sets of solutions. The 
problem now reduces to choosing from these a simple solution. Note 
that we might choose 

#X = 0101 0101 
#y = 0~10 1~00 

where X = A. However, even though we would have 2 X 2 = 4 choices 
for Y, none of them is very simple. 
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From the result array it is easily determined by means of the elimina­
tion pairs that Y must include Band C. Choosing the only Y that does 
not involve A, we find # Y = 0000 1100 = B . C. With this Y we must 
have # X = d>111 d>d>Ol, from which we can choose 

A C B C # X = 1111 0101 = A + C 

x y 

Thus as a simple solution to the prob­
lem we have the circuits of Fig. 12-8. 
This example has illustrated that solv­
ing the required equation is not always 
enough. From the various alternative 
solutions must be chosen the one that is 
most desirable and suited to the situ a­

FIG. 12-8. Circuits for X = A + 0, tion at hand. Often the criterion of 
Y = B . c. simplicity is used. 

As another example, suppose that the circuit of Fig. 12-9 has already 
been constructed and that our problem is to design circuits with outputs 
X and Y such that Z = A . B . C + (A + B) . C and such that neither 

B.-M--r---t-i 

x 

s 

y-----4 

FIG. 12-9. Circuit for Z = X . [(A· B + A . B) . C + (A . B + A . B) . OJ + Y. 

X nor Y will involve A. First note that 

S = (A . B + A . B) . C + (A . B + A . B) . C 

z 

whence we wish to solve the following equation for X and Y in terms of 
A, B, and C: 

X . [(A· B + A . B) . C + (A . B + A . B) . C] + Y 
= A . B . C + (A + B) . C 

Observing the result array with respect to the elimination pairs of A, we 
find the following set of solutions not involving A: 

X=B+C Y = B·a 
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As an example in simultaneous equations, suppose that the two circuits 
Zl and Z2 shown in Fig. 12-10 are already constructed. It is desired 
to design two circuits such that, when their outputs are connected to X 

A 

B 

c 

A 

B 1----''---- Y --+--..----1 

c 

FIG. 12-10. Circuits for Zl = X + Y, Z2 = X· Y + X . Y. 

and Y of Zl, there will result Zl = A . B + A . B + C and, when con­
nected to Z2, there will result Z2 = A . B . (j + (A . B + A . B) . C. 
Here we are required to solve the two simultaneous equations 

X+Y=A·B+A·B+C 
X . Y + X . Y = A . B . (j + (A . B + A . B) . C 

One simple result is X = A . B + C and Y = A . B + A . B. 

EXERCISES 

(a) Suppose that the circuit of Fig. 12-11 has already been constructed and that 
it is desired to have Z = A . B . C + (A . B + A . B) . C. The problem is to design 

X ----I---r----i 

\---I---+- Z 
Y --r-t-----i 

(a) 

A B 

w 

B C 

x 
(b) 

.FIG. 12-11. (a) Circuit for Exercise ai (b) a simple solution. 

A C 

y 



392 FOUNDATIONS FOR LOGICAL DESIGN [CHAP. 12 

A B A c 

x---r----1 

y ---If-r---i 

z 

x y 

(a) (b) 
FIG. 12-12. (a) Circuit for Exercise b; (b) a simple solution. 

z 

FIG. 12-13. Circuit for Exercise c. 

U --w------i 

v--r-+----t 

FIG. 12-14. Circuits for Exercise d. 
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simple circuits which would each have inputs A, B, and C such that, when their out­
puts are connected to W, X, and Y, the output of the given circuit is the desired Z. 
One solution is shown in the figure. 

(b) Suppose that the circuit of Fig. 12-12 had already been constructed. Design 
simple circuits with outputs to be connected to X and Y to give Z = (A + B) . C + 
(A + B) . C. One simple solution is shown in the figure. 

(c) Suppose that a circuit had been constructed with output S = (A . B + 1· B) . C 
+ (A . B + 1 . B) . C. It is desired to transform this circuit as shown in Fig. 12-13 
so that the output will be Z = (A + B) . C + (1 + B) . C, as shown. The problem 
is to find simple circuits for X and Y. One solution is X = Band Y = B. 

(d) Suppose that the two circuits of Fig. 12-14 have already been constructed. 
Design three circuits such that, if their outputs are connected, respectively, to U, V, 
and W, then Zl = A . B + 1 . B + C and Z2 = A . B . C + (A . B + A . B) . C. 
One set of solutions is U = A . (B + C), V = B· C + A . B, and W = B. 

12-8. The Absolute Simplest Form and Change of Variables 

The Absolute Simplest Form. It can be shown that a designation 
number for n elementary elements with u units cannot be represented as 
a combined element with fewer than n - k - 1 operations of the type' 
and +, where k is the largest integer such that 2k is a factor of u. An 
element with this minimum number of operations is called an absolute 
simplest form and can easily be systematically constructed. Some of 
them are given in Table 12-5. 

A method for constructing an absolute simplest form, given nand u, 
involves four steps as follows: (1) First write u as a binary number. 
(2) Fill in zeros to the left of this binary number to make n bits alto­
gether. (3) Starting at the left, number these bits by n, n - 1, n - 2, 
... ,1. (4) Then, denoting the elementary elements by An, An-I, 
... , AI, an absolute simplest form is obtained by working successively 
from left to right and corresponding to the ith bit placing" Ai . (" if the 
ith bit is a zero and placing" Ai + (" if the ith bit is a unit. This process 
ends on the last (rightmost) unit of the binary number u. 

For example, let us find an absolute simplest form for a designation 
number with ten units and five elementary elements, that is, n = 5 and 
u = 10 (decimal). Since u = 1010 (binary), we affix one zero to the left 
and number the positions, obtaining 

o 
5 

1 
4 

o 
3 

1 0 
2 1 

An absolute simplest form is then obtained as indicated, 

o 1 0 1 0 
5 . 4 3 2 1 

A5 . (A4 + (A3 . (A 2))) = A 6 • (A4 + Aa . A 2) 

where the final expression is in terms of the more common use of paren­
theses. 

As another example, let us construct an absolute simplest form for 
a designation number that contains 31,792 units in 17 variables. The 
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TABLE 12-5. ABSOLUTE SIMPLEST FORMS FOR n ELEMENTARY ELEMENTS 

WHOSE DESIGNATION NUMBERS CONTAIN U UNITS 

n=2 n=3 n=4 n=5 

u= 1 A2 ·A I Aa' A 2 · Al A4 . As . A2 . Al As . A4 . A3 . A2 . Al 
u= 2 A2 Aa' A2 A4 . Aa' A2 As . A4 . Aa . A2 
u= 3 A2 + Al Aa' (A2 + AI) A4 . As . (A2 + AI) As . A4 . A3 . (A2 + AI) 
u= 4 I Aa A 4 • A3 A 6· A 4 · Aa 
u= 5 Aa + A 2 · Al A 4 · (Aa + A2 . AI) As . A4 . (Aa + A2 . At) 
u= 6 Aa + A2 A 4 · (Aa + A 2) As . A4 . (Aa + A 2) 
u= 7 Aa + A2 + Al A4 . (Aa + A2 + AI) As . A4 . (Aa + A2 + AI) 
U= 8 I A4 A 5· A4 
u= 9 A4 + Aa . A2 . Al As . (A4 + Aa . A2 . AI) 
u = 10 A4 + Aa' A2 As . (A4 + Aa . A 2) 
u = 11 A4 + Aa . (A2 + At) As . (A4 + Aa . (A2 + AI» 
u = 12 A4 + Aa As' (A4 + Aa) 
u = 13 A4 + Aa + A2 . Al As . (A4 + Aa + A2 . At) 
u = 14 114 + Aa + A2 As . (A4 + Aa + A 2) 
u = 15 A4 + Aa + A2 + Al As' (A4 + Aa + A2 + AI) 
u = 16 I As 

u = 17 As + A4 . Aa . A2 . Al 
U = 18 As + A4 . Aa . A2 
u = 19 As + A4 . Aa . (A2 + At) 
u = 20 As + A 4 · Aa 
u = 21 As + A4 . (Aa + A2 . AI) 
u = 22 As + A4 . (Aa + A 2) 
u = 23 A5 + A4 . (Aa + A2 + At) 
u = 24 As + A4 
U = 25 As + A4 + Aa . A2 . Al 
U = 26 A6 + A4 + Aa . A2 
U = 27 As + A4 + Aa . (A2 + At) 
u = 28 As + A4 + Aa 
u = 29 As + A4 + Aa + A2 . Al 
U = 30 As + A4 + Aa + A2 
U = 31 As + A4 + A3 + A2 + AI 
U = 32 I 

binary representation of 31,792, with two zeros affixed to the left, is 

o 
17 

o 
16 

1 
15 

1 
14 

1 
13 

1 
12 

1 
11 

o 000 1 
10 9 8 7 6 

1 000 0 
54321 

Thus an absolute simplest form (removing unnecessary parentheses) will 
be 

A 17 · Al6 . (AI5 + Au + Al3 + Al2 + Au 
+ A 10 . A9 . As . A7 . (A6 + A5)) 

Corresponding to a given nand u, there are in general many possible 
absolute simplest forms. For example, for n = 3, U = 5, we could have 
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as well as A3 + A2 . Al the 24 nonequivalent functions given in Table 
12-6. In fact it might be wise to say that the absolute simplest form 
in this case is X3 + X 2 • Xl, where Xl can be Al or AI, A2 or A2, or A3 or 
A3 provided that the same symbol is not used for more than one Xi. 
Note, however, that, since the operations· and + are each commutative, 
not all possible combinations give nonequivalent functions. 

TABLE 12-6. ALL 24 POSSIBLE ABSOLUTE SIMPLEST FORMS FOR n = 3, u = 5 

A3 + A 2· Al 
A3 + A 2· Al 
A3 + A 2· Al 
A3 + A 2· Al 
A3 + A 2· Al 
A3 + A 2 • Al 
A3 + 11 2 , Al 
A3 + A 2· Al 

A2 + Aa' Al 
A2 + Aa' Al 
A2 + A 3 • Al 
A2 + A 3 • Al 
A2 + A3 • Al 
A2 + A 3 • Al 
A2 + A3 • Al 
A2 + A 3 • Al 

Al + A 3 • A2 
Al + A 3· A2 
Al + A 3 • A2 
Al + A 3 • A2 
Al + A3 • A2 
Al + A 3 • A2 
Al + A 3 • A2 
.it + A3 • A2 

Change of Variables. The question naturally arises as to the value 
of absolute simplest forms. The answer to this concerns the concept of 
change of variables, which we shall now discuss. The concept. of change 
of variables in Boolean algebra is similar to the concept of change of 
variables in ordinary algebra. If A, B, and C are elementary elements, 
we perform a change of variables by letting 

A = A(A',B',C') B = B(A',B',C') C = C(A',B',C') 

where A', B', C' are new variables. 
If A, B, and C are independent, we must be sure that the new variables 

are independent, i.e., that no dependence between A, B, and C is intro­
duced by the particular Boolean functions chosen for A(A',B',C'), 
B(A',B',C'), and C(A',B',C'). For example, suppose that we wish to 
change from variables A and B to new variables A' and B' by the 
transformation A = A' . B' + A' . E', B = A'. It can easily be seen 
with respect to the standard basis b[A',B'] that A' . B' + A' . E' and A' 
are independent; so the transformation is valid, i.e., keeps A and B 
independent. Hence all Boolean functions of A and B can now be written 
in terms of A' and B'. For example, in the new variables 

A . E + A . B = (A' . B' + A' . E') . A' + (A' . B' + A' . B') . A' = B' 

In addition the new (primed) variables can be found in terms of the old 
(unprimed) variables. In our case A' = E, B' = A . E + A . B. 

Now we can again consider the problem of the value of the absolute 
simplest form. For any combined element we can, by counting the units 
in its designation number, find its corresponding absolute simplest form. 
This form can always be obtained by making a change of variables; i.e., 
a particular change of variables can be made so that the given Boolean 
function will be transformed into its absolute simplest form in terms of the 
new variables. The need for such a technique in circuit design can be 
understood from the following consideration: First the circuit that 
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generates an absolute simplest form cannot be further simplified. In 
some cases there will be a saving in circuitry if a given function is formed 
by transforming to new variables and passing these through a circuit 
which generates the absolute simplest form. In fact it is often possible 
to find a single transformation that will put several output functions 
into their absolute simplest forms! 

The procedure for determining that change of variables which trans­
forms a Boolean function into its absolute simplest form is described in 
the next section. 

EXERCISES 

(a) What is the least number of + and· operations required in the Boolean repre­
sentation of a designation number for 30 elementary elements which has 24 units? 
(Ans. 30 - 3 - 1 = 26.) For 20 elementary elements and 16 units? (Ans. 
20 - 4 - 1 = 15.) 

(b) Find the absolute simplest forms for n = 5 and u = 0, 1, 2, ... ,32. 
(c) Find a single transformation that will take A . B + 1 . C and A . B + 

B . (1 + G) into absolute simplest form. 
HINT: Solve the simultaneous equations 

A· B + 1· C = C' 
A . B + B . (1 + G) = A' . B' + C' 

for the "unknowns" A, B, and C in terms of A', B', and C'. One solution is A = C', 
B = A' + B' + G', C = C'. Show that a "change of variables" to the absolute 
simplest form does not exist in this case. That is, from the result array show that 
independent solutions do not exist. 

12-9. Transformation to the Absolute Simplest Form 

The Theory. Suppose that we had a combined element X(A,B,C, ... ) 
and we wished to know what change of variables A = A(A',B',C', ... ), 
B = B(A',B',C', ... ), C = C(A',B',C', ... ), . would transform 
X(A,B,C, ... ) into Y(A',B',C', ... ), that is, 

X(A,B,C, ... ) = Y(A',B',C', .) 

If a transformation R could be found such that 

R[X(A,B,C, ... )] = Y(A,B,C, ... ) 

with the additional properties that 

R[X + Y] = R[X] + R[Y] R[X . Y] = R[X] . R[Y] 

and R[X] = R[X] 

then our problem would be solved. For then 

X(A,B,C,. .) = R-l[Y(A,B,C, ... )] 
= Y(R-l[A],R-l[B],R-l[C], .) 

or A' = R-l[A] B' = R-l[B] C' = R-l[C] etc. 

whence A = R[A'], B = R[B'], C = R[C'], etc. 
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Use of Permutation Matrices. The work is of course done with the 
designation numbers; R turns out to be a Boolean matrix such that # Y is 
# X multiplied by R. For example, suppose that it is desired to find the 
change of variables that will make A = A' . B' + A' . B', that is, 
X = A and Y = A'· B' + A'· B'. Since#X = 1010 and#Y = 0110, 
we may take 

(

0100) (0 100) 0001 . 0123 0001 0123 
R = 0010 ,SInce (1010) (8) 0010 = (0110) 

1000 1000 

(See Sec. 11-11 for a description of Boolean matrix mUltiplication. 
Note that since 1010 is a row, we must multiply by a matrix on the right, 
as indicated, in order to obtain another row.) Such a matrix is called a 
permutation matrix, since it has the effect simply of permuting the posi­
tions of the designation number it multiplies. Here the unit in position 0 
is carried into position 1, the zero in position 1 is carried into position 3, 
the unit in position 2 is carried into position 2, and the zero in position 3 
is carried into position O. 

This is in fact the manner in which the matrix R is derived for a prob­
lem. Decide for each position of # X into what position its bit should 
be carried so that the result will look like # Y. Then, if position k is 
to be carried into position h, the matrix element Rkh = 1, otherwise zero. 
Note that in the above example we could as well have had position 0 
carried into position 2, position 1 into position 0, position 2 into position 1, 
and position 3 into position 3. In this case R02 = 1, RIO = 1, R2I = 1, 
and R33 = 1, whence 

(

0010) 
R = 1000 

0100 
0001 

Checking, 

(1010) (8) (~~~~) = (0110) 
0100 
0001 

Now that we have found R, we can determine the change of variables 
as follows: 

# A = R[# A'] = (0101) (8) (!~~~) = (1001) 

0001 

whence, with respect to b[A',B'], 1001 = # (A' . B' + A' . B'). Also, 

# B = R[# B'] = (0011) (8) (!~~~) = (0101) = # A' 

0001 
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Hence A = A' . B' + A' . B' and B = A' is the desired change of vari­
ables. To check this, note that 

A = (A' . B' + A' . B') = A' . B' + A' . B' 

as desired. 
The inverse change of variables, that is, A' = A'(A,B,C, ... ), 

B' = B'(A,B,C, ... ), C' = C'(A,B,C, ... ), ... , can be found from 
A' = R-l[A], B' = R-l[B], C' = R-l[C], . . .. Given the Boolean per­
mutation matrix, the matrix R-l is found by interchanging the rows and 
columns of R; for example, if 

then 
(

0100) 
R-l = 0010 

1000 
0001 

(

0010) 
R = 1000 

0100 
0001 

and R ~ R-l = 0100 
0010 (

1000) 

0001 

In our example, then, 

# A' = (0101; ~ (~~~~) = (0011) = # B 
1000 
0001 

# B' = (0011) ~ (~~!~) = (1001) = # (A . B + A . B) 

0001 . 

To check that this is truly the inverse change of variables, note that 

A' . B' + A' . B' = B . (A . B + A . f3) + B . (A . B + A . B) 
= B· (A . B + A . B) + A . B = A . B + A . B = A(B + B) = A 

as desired. 
Simultaneous Change of Variables. If we want a change of variables 

such that, in addition to X(A,B, ... ) = Y(A',B', ... ), we also have 
U(A,B, ... ) = V(A',B', ... ) and W(A,B, ... ) = T(A',B', ... ), 

, then we write the designation numbers under each other, 

#X(A,B, ... ) # Y(A',B', ... ) 
# U(A,B, ... ) # V(A',B', ... ) 
#W(A,B, ... ) # T(A',B', ... ) 

The transformation now must be designed to permute the columns of the 
right-hand array so that it will look like the left-hand array. For 
example, suppose that we desired to have a change of variables so that 



SEC. 12-9] ELEMENTARY COMPUTATIONAL METHODS 

A + E = A' + B' and A = A'· E' + A'· B'. Form 
0123 

#(A + E) = 1110 
# A = 1010 

0123 

0111 = # (A' + B') 
0110 = # (A' . E' + A' . B') 

399 

The method for forming the permutation transformation matrix R is 
similar to the above. Decide for each column in the left-hand array into 
what column it should be carried so that the final array will look like the 
right-hand array. Then, if column Ie is to be carried into column h, the 
element Rkh = 1; otherwise it is zero. For example, we can have 
column 0 carried into column 2, column 1 into column 3, column 2 into 
column 1, and column 3 into column O. Then we would have R02 = 1, 
RIa = 1, R2I = 1, and Rao = 1: 

(

0010) 
R = 0001 

0100 
1000 

Checking, 

( 1110) @ (~~~~) = (0111) 
1010 0100 0110 

1000 

Hence the change of variables becomes 

(

0010) 
# A = R[# A'] = (0101) @ 0001 = (1001) = # (A' . B' + A' . B') 

0100 
1000 

(

0010) 
# B = R[# B'] = (0011) @ ~~~~ = (1100) = # (B') 

1000 

To check this, note that 

A + E = (A' . B' + A' . E') + (E') = A' . E' + A' . B' + B' 
= A'· E' + B' = A' + B' 

and A = (A' . BI + A' . B') = A' . E' + A' . B' 

The inverse change of variables is found by considering R-l = (~~~~): 
0100 

# A' = R-l[# A] = (0101) @ (~m) = (0110) = # (A . B + A . B) 

0100 

# B' = R-l[# B] = (0011) @ (m~) == (1100) = # (B) 

0100 
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Change to Absolute Simplest Form. With the above computational 
procedures we are now able to generate transformations to the absolute 
simplest form. For example, consider A . (0 + B) + C . B + A . E . C 
with the designation number 0111 1001, where n = 3, u = 5. The abso­
lute simplest form is A' . B' + C', with designation number 0001 1111. 
Hence R could be 

R= 

0100 0000 
0001 0000 
0000 0001 
0000 1000 

0000 0010 
0010 0000 
1000 0000 
0000 0100 

whence the change of variables 

A = B' . C' + E' . C' 
B = A' . E' + A' . C' 
C = A' . (B' + C') + A' . E' . C' 

will reduce the given element to its absolute simplest form. However, 
suppose that we also desire to have A = A' and B = B', as well as 
A . (C + B) + C . E + A . E . C = A' . B' + C' . Under these condi­
tions the transformation R becomes 

1000 0000 
0000 0100 
0000 0010 
0001 0000 

R= 
0000 1000 
0100 0000 
0010 0000 
0000 0001 

which gives as the required change of variables 

A = A' 
B = B' 
C = A' . (E' . C' + B' . C') + A' . (E' . C' + B' ·0') 

EXERCISES 

Find the inverse change of variables of: 
(a) A = B' . 6' + jj' . G', B = A' . jjl + A' . G', G = A' . (B' + 6') + A' . jj' . G'. 
(b) A = A', B = B', G = A' . (jj' . 6' + B' . G') + A' . (B' . G' + B' . 6'). 

12-10. The Absolute Simplest Form in Circuit Design 

As an example, suppose that it is desired to construct a circuit with the 
following four outputs: 
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El = Al . A2 . A3 + (Al . A2 + Al . A 2) . Aa 
E 2 = (A 1 • A 2 + AI' A 2) • A 3 + (A 1 ~ A 2 + AI' A 2) • A a 
E3 = Al + A2 . A3 + A2 . A3 ' 
E4 = Al . A2 + Aa " (AI ,+ A 2) + 41 . A2 . A3 

Here n = 3, and for E 1, u = 3; for E 2, u = 4; for E a, U = 6; for E 4, 
U = 5. We have for the respective absolute simplest forms 

E, = A ~ . (A~ + A~) 
E2 == A~ 

E3 = A~ + A~ 
E4 = A~ + A~ . A~ 

The problem is to design the change of variable circuits whose outputs 
are A~, A~, and A~ (that is, the inverse change of variables is, explicitly 
needed: A~ = R-l[A 1], A~ = R-l[A 2], and A~ = R-l[A3])' One valid 

A1-------.-------.------, 

A 2 ---,---+---.---+--. 
A3--~~-4----r-~---+---r----, 

Ai A2 AJ 

Change of variables 

1----------------- E2. 

Absolute simplest 
1--4--------- E3 forms 

FIG. 12-15. Change of variables and resulting absolute-simplest-fqrm circuitry for a 
multiple-output circuit. 
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solution is 

#A~ 
#A~ 
#A~ 

1100 
1010 
1001 

FOUNDATIONS FOR LOGICAL DESIGN 

1100 = #A2 
1010 =#Al 
0110 = # (A 1 • A 2 + AI' A 2) • A 3 

[CHAP. 12 

+ (A 1 • A 2 + AI' A 2) • A 3 

Here 9 operations are required to make A~, A~, and A~ and 5 more to 
make E 1, E 2, E 3, and E 4, or a total of 14 altogether, as compared with the 
25 operations required to make the Ei directly from the Ai (see Fig. 12-15). 

EXERCISES 

(a) Supply the details for the above example. 
(b) Suppose that it is desired to make a circuit with the following four output 

functions: 
EI = Al • A3 + (AI + A 2) • A3 
E2 = (AI + A2) . A3 + (AI + A 2) . A3 
E3 = Al . A2 . A3 + (AI' A2 + iL . A 2) . A3 
E4 = (AI' A2 + Al . A 2) • A3 + (AI' A2 + Al . A 2) . A3 

The problem is to design change-of-variable circuits that will simplify the generation 
of E I , E 2, E 3, and E 4• 

One solution is to choose A~ . A~ + A~, A~ + A~, (A~ + A~) . A~, and A~, respec­
tively, as the absolute simplest forms of E I , E 2, E3, and E 4• Then we find 

A~ = (AI' A2 + Al . A 2) . A3 + (AI' A2 + Al . A2) . A3 
A~ = Al . A3 + A2 . A3 
A~ = Al . A2 + A2 . A3 

Can you find a simpler change of variables? 

12-11. Additional Topics 

a. Solution of Equations by Matrices. In Table 12-2 we tested the pair (X4,y4) = 
(0,1) by multiplying column 4 of the coefficient table by the third column of the 
unknown table, summing both above and below the line, and comparing only the sums. 
Note that this is equivalent to matrix multiplication, if one column were transposed 
to be a row. Similarly it is easily seen that, if the table of coefficients above (or below) 
the line, considered as a matrix, is mUltiplied on the left by the transpose of the matrix 
of the table of its unknowns, then the product gives, in row i, column j, the result of 
multiplying unknown column i by coefficient column j. Comparison of the products 
formed for the tables above and below the line (i.e., for the left- and right-hand sides 
of the equation) shows the allowable solutions for each column of the basis for A, B, C 
(reading the x, y pairs downward). A solution is allowable in an equivalence if in its 
corresponding position the two matrices have the same character, either both units 
or both zeros. A solution is allowable in an implication unless there is a unit in the 
corresponding position of the implier matrix (the tail of the arrow) and a zero in that 
position of the implicand matrix (the head of the arrow). For a set of equivalences 
and implications we can form a result matrix for each, with a unit in each position 
corresponding to an allowable solution, a zero otherwise; then those solutions which 
are allowable for all the equivalences and implications will have a unit in the corre­
sponding position in every result matrix. 
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For example, consider the three simultaneous statements of Sec. 12-6, 

A + B . X . iT + C . Y = A . X . iT + B . X + (C + A . B) (12-1) 
B· X· Y + C· (A + B). Y = B· X· iT (12-2) 

A . C . (X + Y) + A . B . (X + iT) ~ X . Y + A . C (12-3) 

Comparing with Table 12-4, we see that the matrices for Eq. (12-1) would be 

(~~~) ~ (~~~~ ~~~~) = (~~~~ ~~~~) 
101 0000 1111 0101 1111 
101 0101 1111 

above the line 

and 
(

111) (1010 1010) (1111 1111) 001 ~ 1100 1100 = 0001 1111 
011 0001 1111 1101 1111 
001 0001 1111 

below the line 

Comparing these matrices for equality, we obtain the result matrix of allowable 
solutions: ' 

(

0101 0101) 
1001 0111 
0111 1111 
1011 1111 

[Recalling that the first row (row 0) corresponds to the column for (Xi,yi) = (0,0), 
row 1 to (Xi,yi) = (1,0), row 2 to (Xi,yi) = (0,1), and row 3 to (Xi,yi) = (1,1), we see 
that this solution matrix corresponds exactly to the result array of Table 12-1.] Simi­
larly Eq. (12-2) gives the matrices 

(gg) 0 (0011 (000 0000) 
0011) = 0000 0000 

01 0000 0111 0000 0111 
11 0011 0111 

(D 0 (1100 COO 1100) 
and 1100) = 0000 0000 

0000 0000 
0000 0000 

The result matrix is 

C
11 0011) 1111 1111 

1111 1000 
1100 1000 

Implication (12-3) gives the matrices 

e) 0 (0000 COl 0001) 
0101) = 0001 0101 

10 0001 0001 0000 0101 
11 0001 0101 

C~) 0 (1111 
COO 010) 

and U11} = 0000 0101 
01 '0000 0101 0000 0101 
11 1111 1111 
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The result matrix has zeros only where the upper product has a unit and the lower a 
zero: 

(

1110 
1110 
1111 
1111 

1111) 1111 
1111 
1111 

Examining the three matrices for common units, we have the following compound­
solution matrix, which corresponds exactly to the result array of Table 12-4: 

(

0000 0001) 
1000 0111 
0111 1000 
1100 1000 

[More systematically the result matrices can be formed as in the equations #(A = B) 
= #(A· B + A· B) and #(A - B) = #(A + B), substituting the matrices for the letters 
on the right and performing the multiplication bit by bit, not row by column as in 
regular matrix multiplication. The compound solution is then the bit-by-bit product 
of the result matrices for each statement. The method presented here can of course be 
extended to any number of statements in any number of knowns and unknowns. If 
any column of the compound-solution matrix has all zeros and no units, then there is 

Q c 

(a) (b) 

no solution to the problem, unless there 
exist some constraints on the knowns 
A, B, C, ... which remove that column 
from their basis.] 

b. Flip-Flop Problems. The use of flip­
flops for storage in recursive circuits fre­
quently generates problems that involve 
the solution of equations. For example, 
consider a flip-flop with two states Q and Q 
such that if it is in state Q then an input­
pulse signal T will change its state to Q and 
if it is in state Q then an input-pulse signal 
T will change its state to Q; otherwise the 
flip-flop will stay in its present state. If 
Q' is the final state, then (see Fig. 12-16a) 

Q' = T· Q + 'i'. Q 
FIG. 12-16. Flip-flop representation and 
example of a circuit. (Can you develop this equation for Q'?) 

Now suppose that it is desired to make a 
recursive circuit with inputs A, B, and C, and with output C' connected to the input C, 
such that C' = A . B + (A + B) . C. If we are to use the above flip-flop, the 
problem is to design the input pulse T so that the output Q' is the desired C', that is, 
such that Q' = c' = A . B + (A + B) . C. Thus we desire to solve the equation 

A . B + (A + B) . C = T . C + 'i' . C 

for the unknown T, where we have substituted C for Q (why?). The solution turns 
out to be T = A . B . C + 11 . B . C (see Fig. 12-lGb). 

Consider next a flip-flop with two inputs Rand S such that an input pulse on Swill 
change the state of the flip-flop to Q, while an input pulse on R will return the state 
to Q. Both Rand S cannot be pulsed at the same time (see Fig. 12-17a). The equa-
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tions for this flip-flop are 

Q' = S + R· Q and R·S = 0 

Suppose that we desired to make a circuit using two flip-flops, to have inputs A, B, 
and C and two outputs (one from each flip-flop): 

C' = A . B + (A + B) . C and D' = (A . B + A . B) . (} + (A . B + A . B) . c 
This set of equations must be solved: 

A . B + (A + B) . C = So + Ra . C 
(A· B + A . B) . (} + (A . B + A· B) . C = Sn + Rn' D 

Ra,Sa = 0 
Rn' Sn = 0 

The solutions (see Fig. 12-17b) are 

Rc = A . B Rn = (A . B + A . B) . C + (A . B + A . B) . (} 
So = A . B Sn = (A . B + A . B) . (} + (A· B + A . B) . C 

Many other kinds of flip-flops can be conceived. For example, suppose that in the 
R-S flip-flop we let both Rand S be pulsed at the same time and that this causes the 

A B A B 

Q'=S+R'Q 

R S 

clf Re Se 

Q 

(a) 

c D 
(b) 

FIG. 12-17. Flip-flop representation and example of a circuit. 

flip-flop to change state. Then the equation of the flip-flop would be 

Q' = S·Q +R·Q 
c. Absolute Simplest Form and Symmetries of Boolean Functions. As far as circuit 

design is concerned, the labels assigned to the input variables are immaterial, and 
whether the input element is called Ai or .t.L: is also immaterial. Thus only the 
Boolean functional form of the output of a circuit is important; all functions of the 
same form that differ by permutations or inversions of the variable labels represent the 
same circuit, so long as the substitutions are made consistently. For n variables, 
m of which must explicitly appear in the functional form, the number of circuits 
equivalent in the above sense becomes 
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which can be a very large number. The converse problem immediately suggests 
itself: How many nonequivalent (in the above sense) functional forms of n variables 
are there? This problem was considered by D. Slepian in his On the Numbers of 
Symmetry Types of Boolean Functions of n Variables, Can. J. Math., vol. 5, pp. 
185-193, 1953, where it was shown that the results of J. A. Todd, The Groups of 
Symmetries of the Regular Polytopes, Proc. Cambridge Phil. Soc., vol. 27, pp. 212-231, 
1931, could be applied. 

We have observed such symmetries associated with the absolute simplest form above 
for n variables and u units in the designation number. This suggests the following 
extension of the above problem, also considered by Slepian: For n variables and u 
units how many different (in the above sense) functional forms are there? The 
absolute simplest form is evidently only one type of functional form. 

d. Three-valued Logic. Until now we have considered circuits where only two 
signal levels can be distinguished, namely, 0 and 1. Suppose that three values of 
signal levels can be distinguished, say 0, 1, and 2. This leads to the consideration 
of three-valued logics. Since each input to a circuit can have three values, for a three­
input circuit there are 3 X 3 X 3 possible input conditions, namely, 

#AI = 012 012 012 
#A 2 = 000 111 222 
#A3 = 000 000 000 

012 012 012 
000 111 222 
111 111 111 

012 012 012 
000 111 222 
222 222 222 

This array forms a basis in a three-valued logic. For n variables there are 3n columns 
in a basis. Our computational techniques in terms of designation numbers can then 
be directly extended as soon as we define the logical operations. 

We wish to define a set of operations that will give us a complete Boolean algebra. 
A complete Boolean algebra is one in which all the 3(a

n
) possible designation numbers 

(i.e., Boolean functions) can be generated from the basis by means of the defined 
operations. There are many such sets of operations (just as there were many possible 
types of operations for the two-valued logic). We wish to choose a "simple" set that 
has "nice" algebraic properties. Analogous to our simple set +, " and - of two­
valued logic we define a set of three-valued operations as follows: 

2+0=2 
2·0=0 

2+1=2 2+2=2 
2·1=1 2·2=2 

0=1 1=2 

1+0=1 1+1=1 
1 . 0 = 0 1· 1 = 1 

and 2 = 0 

0+0=0 
o . 0 = 0 

To show that this set results in a complete Boolean algebra, we need merely show that 
designation numbers can be generated that are all 0 except for a single 1 in any position 
or with a single 2 in any position. To see this, we observe that for one variable 
# A = 012, # A = 120, and A =- 201, whence 

#A ·1 = 100 

#A· A = 010 
#A . A = 001 

#(A + A) = 200 

#(A + A) = 020 

#(A + A) = 002 

With these relations in mind can you generate the designation numbers required 
above for three variables? lHINT: To generate, for instance, 000 000 200 000 

000 000 000 000 000, we simply form # (AI + AI) . # (A2 + 1 2) • # (Aa + A3)'] 
What algebraic properties does this Boolean algebra have? Can you define other 

sets of three-valued-logic operations that will result in a complete Boolean algebra? 
What algebraic properties do these algebras have? 

Circuit design in three-valued logic is analogous to that in two-valued logic. For 
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example, let us design a three-valued serial adder (see Chap. 15) where the numbers 
are ternary, i.e., to the radix 3. We have the following function table: 

#A = 012 012 012 012 012 012 012 012 
#B = 000 111 222 000 111 222 000 111 
#C = 000 000 000 111 111 111 222 222 

Result #R = 012 120 201 120 201 012 201 012 
Carry # Cf = 000 001 011 001 011 111 011 111 

Using a mongrel-form technique, we then find 

R = [A . (B + B) + A . (B + B) + 1 . (B + B)] . (C + C) 
+ [A· (B + B) + 1 . (B + B) + A . (B + .8)]. (C + C) 
+ [1 . (B + B) + A . (B + B) + A . (B + .8)] . (0 + C) 

C (A . 1 . B . B + A . B . B) 
+ (A . A + A . B . B + B . .8) . C 

+ (A . B . .8 + B . B + A . B) . (C + C) 

012 
222 
222 
120 
112 

Evidently our adder function table depended upon the interpretation of the values of 
signal levels 0, 1, and 2 as the ternary digits 0, 1, and 2, respectively. Other inter­
pretations will result in other functions for Rand C'. Can you design a three-valued 
serial adder for the other algebras that you generated above? (Note that C' = 2 
only when C = 2. This would never happen in the real case, so that the basis may be 
constrained by the removal of its last third. How would this affect the forms of 
Rand C' above?) 

Can you extend the computational techniques given in this chapter to analogous 
methods for our three-valued logic? 

e. Generalized Concept of the Searching Problem in Terms of Boolean Algebra. Refer­
ring back to Sec. 7-2, the searching problem can be easily couched in terms of Boolean 
algebra. This is accomplished by observing that an item is uniquely defined (at 
least as far as the search is concerned) by the pattern of characteristics that are and 
are not associated with it. With three characteristics AI, A 2, and A3 a total of eight 
items X o, Xl, X 2, X 3, X 4, Xs, ~s, and X 7 can be distinguished, 

Xo = Al . A2 . Aa 
X 4 = Al . A2 . Aa 

Xl = Al . A2 . A3 
XS = Al . A2 . A3 

X2 = Al . A2 . Aa 
Xs = AI· A 2 • Aa 

X3 = Al . A2 . Aa 
X 7 = Al . A2 . A3 

Here, for example, Xs = AI· A2 . A3 means that item Xs is associated with charac­
teristic Al and A3 but not with A 2• If the basic symbols are chosen to be the charac­
teristics, then the columns of the basis can represent items distinguishable by these 
characteristics, where a unit in a row of a column indicates that the item of that 
column is associated with the characteristic of that row and a zero means that it is 
not. Thus 

#Al = 0 1 0 1 
#A2 = 0 0 1 1 
#Aa = 0 0 0 0 

010 1 
001 1 
111 

The simple searching problem is then solved as follows: To find all items associated 
with Al . A 2, simply form 

Xa 

000 
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whence Xa'and X 7 are the desired items. Of course there is not always an item asso­
ciated with every combination of characteristics; in such a case the columns for which 
there is no associated item are omitted from the basis, i.e., a constrained basis is used. 
Thus Table 7-1 can be considered as a constrained basis. 

With this interpretation the searching problem can be generalized as follows: 
Suppose that it is desired to find all items associated with characteristic Al and at 
least one of the characteristics A2 or A a, that is, associated with Al . (A 2 + Aa). We 
simply form #AI . (A 2 + A 3) = 0001 0101, whence the answer is X a, X 6, and X 7• 

As another illustration, consider Table 7-1 (page 217), and find all articles associated 
with nuclear theory or nuclear plans or both. Observing that 

we have 

Nuclear = 4.3 = 0000 
Theory = 4.4 = 0010 

Plans = 6.2 = 0100 

(4.3) . [(4.4) + (6.2)] = 0000 

1001 
0001 
1001 

1001 

0011 
0011 
1110 

0011 

Hence articles 2.1, 2.4, 3.3, and 3.4 by Nicholls, Seidle, Stockendal, and Tove are the 
final desired results. Summarizing, when it is desired to find all items specified by a 
Boolean function of the characteristics, the designation number of the function is formed; 
the positions of the units indicate the desired items. 

One of the primary reasons for the advantages of the Tabledex method can be 
understood in terms of our Boolean algebraic interpretation of searching. When the 
search proceeds within a table, the problem has already been significantly reduced 
since in general only a small fraction of all the items are associated with a particular 
characteristic. In addition the constrained basis to which a table corresponds includes 
only rows corresponding to characteristics of a greater order than that of the table, 
thereby further reducing the basis and hence the searching problem. For example, 
from Table 7-1 it is seen that the column-constrained and row-reduced basis with 
respect to Table 5.1 of Fig. 7-3c on page 220 is 

~ C') "<:II ~ ~ 
c:-i c:-i c:-i c.) c.) 

5.2 1 1 0 1 0 
5.3 0 1 1 0 0 
6.1 1 0 0 0 0 
6.2 0 0 1 1 0 
7.1 1 1 0 1 0 

f. Sentential Examples. In the Additional Topics of Chap. 10 we discussed the 
logical interpretation of English. We shall now present examples of applications of 
our computational methods to word or sentential problems. It is of historical 
interest to note that many such problems were presented in E. Schroder's" Algebra der 
Logik," Teubner Verlagsgesellschaft, Leipzig, 1890, but he did not have the advan­
tages of our computational methods. (Our first two examples are taken from R. S. 
Ledley, Mathematical Foundations and Computational Methods for a Digital Logic 
Machine, J. Operations Research Soc. Am., vol. 2, no. 3, pp. 249-274, August, 1954.) 

First Example: Consistency, Redundancy. Suppose that an intelligence agency 
receives the following messages from fairly, though not completely, reliable sources, 
concerning fighter and bomber airplanes of the Lower Slobbovian air force: 

1. A plane with jet engines and a short range is a bomber. 
2. Conventional engine bombers have heavy armor. 
3. Conventional engine fighters have a short range. 
4. Long-range conventional engine planes have light armor. 
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5. Jet planes have heavy armor. 
6. Heavy armored planes with a short range are fighters. 
7. Either long-range planes or fighter planes have light armor. 
8. Either conventional engine planes or short-range planes have heavy armor. 
The intelligence agency now makes an analysis of these statements and in this 

connection desires the answers to the following questions: 
a. Are these statements all consistent? 
b. If not, suppose that there is a high probability that only one of them was incor­

rect; can a single statement be omitted so that the remaining ones are consistent, and 
if so, which statements are they? 

c. Are any of the statements related? 
d. Are any of the statements redundant, i.e., not necessary? 
e. With various assumptions as to which is an incorrect statement, what conclusions 

can be drawn? 
Solution. First note that only fighter and bomber airplanes are discussed by 

hypothesis and that an engine must be either jet or conventional; the opposite of 
long-range is short-range, and the opposite of light armor is heavy armor; and in 
addition, only airplanes, engines, range, and armor are discussed in the statements. 
Thus the eight statements can all be expressed in terms of the following four elemen­
tary elements (where "It" refers to "the plane"): 

A = It is a fighter plane B = It has jet engines 
A = It is a bomber plane 13 = It has conventional engines 
C = It has a long range D = It has light armor 
a = It has a short range D = It has heavy armor 

Thus the first statement is: It has jet engines and it has a short range implies that 
it is a bomber. In symbols this is B . C --t A. Now in terms of + and· this means: 

B . C + A. In terms of the regular basis extended to four elementary elements find 

# (B . C + A) = 1110 1111 1110 1111. Similarly we have for the whole set of 
statements 

1. B·O-A: B·O +A: 1110 1111 1110 1111 

2. A ·13- D: A ·13 + D: 1111 1111 0111 0111 

3. A ·13- 0: A ·13 + 0: 1111 1011 1111 1011 

4.13· C- D: 13· C + D: 1111 0011 1111 1111 
5. B- D: 13 + D: 1111 1111 1100 1100 

6. D· C- A: D·O+A: 0101 1111 1111 1111 

7. A + C- D: A + C +D: 1010 0000 1111 1111 

8. 13 + 0- D: 13 + C + D: 1111 1111 0000 0011 

Now we are ready to answer the questions. First, note that the product of all the 
designation numbers is #O-in other words, always false. This means that the state­
ments are not consistent and there must be a contradiction. So the answer to (a) is 
"no." For the answer to (b) observe that, if any or all of statements 1, 2, 3, and 4 
were omitted, the remaining statements would still be contradictory. However, if 
any of statements 5, 6, 7, and 8 were omitted, no contradiction would result; i.e., the 
product of the remaining statements would have some units. The answer to (b) is 
thus "yes: 5, 6, 7, or 8." As far as (c) is concerned, if statements 7 and 8 are true, 
then 1, 2, 3, and 4 are all implied true. It is easily seen that statement 8 alone implies 
statement 2, while statement 7 alone implies statement 4. Thus, of statements 
1, 2, 3, 4, 7, and 8, only statements 7 and 8 need be stated, since statements 1, 2, 3, 
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and 4 are redundant; this answers (d). It would be most reasonable for one of the 
two nonrelated statements 5 and 6 to be taken as incorrect. Suppose that from other 
considerations it was decided that statement 6 is incorrect. Thus we are left with 
statements 1, 2, 3, 4, 5, 7, and 8, of which statements 1, 2, 3, and 4 are redundant; so 
we are left with statements 5, 7, and 8. Since these are all true at the same time, the 
product of their designation numbers, namely, 1010 0000 0000 0000, contains 
the most information. This is A . C . D. Thus there is a type of airplane with the 
following characteristics: It is a bomber and has short range and heavy armor, which 
is not a particularly obvious observation to deduce from statements 5, 7, and 8. If 
it is assumed that statement 5 is incorrect, we are left with statements 6,7, and 8-the 
product of which turns out to be B . C . D: a jet with long range and light armor. 
These last two conclusions are the most general statements that can be made under 
the circumstances presented in the problem, in the sense that they imply the most 
possible other statements. For example, if A . C . D is true, A is implied false, 
showing that statements 5, 7, and 8 imply no fighter airplanes. 

Second Example: Change of Variables. Suppose that the army sent a military 
observer to observe the military tactics of the Blefuscudians during their war with the 
Lilliputians. The observer was to notice especially the relation between the physical 
circumstances of the battlefield and the infantry tactics used. Mter watching many 
battles the observer sent back his final report with four general observations: 

1. In hilly terrain on clear days, localized infantry attacks were used in conjunction 
with long-range artillery, but no tanks. 

2. On flat plains, at night or in bad weather, the Blefuscudians used short-range 
artillery but did not use a generalized infantry assault on a broad front that was 
supported by armored tanks. 

3. In hilly terrain at night, or in bad weather in the daytime, armored tanks were 
used with localized attacks, or long-range artillery with an assault on a broad front 
was used. 

4. In bad weather on flat terrain or at night, or in good weather in hilly country, 
either a localized attack was used or long-range artillery and tanks together with an 
assault on a broad front were resorted to by the Blefuscudians. 

The problem is: From this report made by the military observer, what can the army 
learn about the effects on the Blefuscudians' infantry tactics of (a) flat terrain, (b) 
night fighting, and (c) bad weather? Conversely, under what physical circumstances 
will (d) an assault on a broad front be made, (e) long-range artillery be used, and (f) 
armored tanks be used? Suppose that the battle is to take place on the plains, on a 
clear day, what (g) will be the Blefuscudians' tactics? 

To solve this problem, we first observe that terrain is either flat or hilly but not both, 
day is the opposite of night, good weather the opposite of bad weather. Also an 
infantry attack either is localized or is an assault on a broad front, only battles with 
infantry attacks being observed. In addition long-range and short-range artillery 
are opposites; the use of armored tanks and no armored tanks are opposites. Thus we 
symbolize the elementary elements by 

A 
A 

(The terrain was) flat 
(The terrain was) hilly 

B = (It was) night 
B = (It was) day 

C = (The weather was) bad 
C = (The weather was) good 

In the primed set of elementary elements we leave the completion of the sentences 
understood, 

A' = an assault on a broad front 

A' = localized attack 

B' = long-range artillery C' = armored tanks 

B' = short-range artillery C' = no tanks 
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The four observations can now be symbolized thus: 

1. A . B . (j = A' . B' . C' 3. A . B + jj. C = A'· C' + A'· B' 
2. A . (B + C) = B' . (A I • C') 4. C· (A + B) + A . (j = A I + A I • B' . C' 

Evidently the primed elementary elements are independent, and so we have a 
change-of-variables problem, where to determine the answers to questions a, b, and 
c we solve for A, B, and C in terms of A', B', and C', and for A', B', and C' in terms of 
A, B, and C. The results are 

a. A = B' d. A I = A . (j + A . C 

b. B = B' . C' + B' . C' e. B' = A 
c. C = A' . B' + A' . B' f. C' = A . jj + A . B 

However, there is another set of results, where (a), (b), (e), and (f) are the same but 
(c) and (d) become 

c. C = A I • (B' + C') + A I • B' . C' d. A I = (j . (A + B) + A . jj . C 

The meaning of the first set of results is as follows: On flat terrain short-range 
artillery is used with the attack. At night the infantry attack is made with either 
long-range artillery and armored tanks or short-range artillery and no tanks. In bad 
weather either an assault on a broad front supported by long-range artillery or local­
ized attacks supported by short-range artillery are made. Infantry assaults on a 
broad front are made on flat terrain in good weather or on hilly terrain in bad weather. 
Long-range artillery is used in hilly country. Armored tanks are used on flat plains 
in the daytime or on hilly country at night. The second set of results should also be 
interpreted. 

To answer question g, consider first the first set of results: A . jj . (j = A' . B' . C', 
as can be easily demonstrated by the use of the designation numbers. Thus the 
Blefuscudians will use an infantry assault on a broad front supported by short-range 
artillery and armored tanks, according to the logical analysis of the military observer's 
report. Similarly the second set of results can be used to give an alternate procedure 
that might be used by the Blefuscudians, which is also a logical conclusion of the 
report. This complete analysis of the military observer's report would certainly be 
difficult to obtain by other means. 

Third Example: Solution for Simultaneous Equivalence Equations. Suppose that 
there were two aircraft-identification towers on an island. For a few days the same 
enemy airplanes kept flying overhead. Recognition of the types of enemy airplanes 
observed was very difficult and led to some controversy between the two observer 
posts. It was thought, although it was far from certain, that there were four types of 
enemy airplanes. Call these types A, B, X, and Y: it was fairly certain that types 
A and B existed. On three successive days the reports from each post read as follows: 

1st day: 

2d day: 

3d day: 

Post 1 
The planes were of both types X 

and Y 
The planes were of type A or B, or 

both 

The planes were of type X and 
either type A or B, or both; or 
else they were type A and 
type Y 

Post 2 
The planes were of type A and 

not type B 
The planes were of type Y and 

not type A, or else they were 
of type X 

The planes were of type A 
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The question is: Is it at all possible, purely on the basis of these reports, that air­
planes of type X and type Y were really airplanes of types A and B? 

Solution. If we can solve successfully for X and Y in terms of A and B, then the 
answer would be "yes." The equations are 

X·Y=A·B A+B=A·Y+X (A + B) . X + A . Y = A 

The solution: 

X=A 
Y = AB + AB 

that is, X could have been type A 
that is, Y could have been either type A or type B, but not both 
types 

Now suppose that the data had been the same as above, except that on the second 
day post 1 said that the airplanes were of type B and not type A. Would it then be 
possible, in the light of the observers' data, for the enemy to have only two types 
of airplanes? 

Solution. The equations 

X·Y=A·B A·B=A·Y+X (A + B) . X + A . Y = A 

do not have a solution, and therefore no assumption as to the identity of types X 
and Y with types B and A can be made consistent with the observers' reports. 

Fourth Example: Solutions to Simultaneous Implications. The board of directors 
of a certain manufacturing firm had a meeting to decide on their future business 
policies in the light of their goals. They discussed the relationships between money 
spent on advertising, the price of the commodity they manufactured, the per cent 
of the salesmen's commissions, and a possible change-over to an improved design of 
their product, and also the effects various courses of action would have on the final 
total profit of the firm and on the quantity of the product sold. The goals of the 
firm were clearly decided upon: to make a large profit, which was their responsibility 
as the directors of the firm, and to sell large quantities of the article they manu­
factured, so as to keep the factory operating at its maximum possible capacity. They 
all agreed on the following five points: 

1. If the policy is either to change to a better-designed pattern or to cut the adver­
tising expenditures, or if they give high salesmen's commissions or raise the retail 
price of the commodity, and if only a small number of articles are sold, then the 
profits will be small. 

2. If large sums are spent in advertising and there is no alteration of design, or if 
there is a change-over to a new design but the advertising allotment is cut, then there 
cannot be both a large sales volume and large profit. 

3. If the firm makes a large profit or if its sales volume is high, then the retail 
price of the articles is low and the advertising expenditure must be high; or else the 
retail price must be low with a small advertising budget, and there must also be a 
change to a new improved design coupled with low salesmen's commissions. 

4. If the retail price is low, if there is no cut in advertising, and if there are high 
salesmen's commissions, or if the price is low and the salesmen's commissions are 
low but there is a change to an improved product design, then a great quantity of 
items must be sold. 

5. If there are large advertising expenditures with a change-over to a new and 
improved design, but the retail price is kept low and many articles are sold, then a 
high profit will result. 
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The problem is: With these general rules as a guide what must be the policy decision 
of the board so as to have a large profit, to sell many articles, and both to have a 
large profit and to sell many articles? 

To solve this problem first note that the five statements are combinations of the 
following sentences or propositions: 

A, spend large sums of money on advertising. 
B, change over to a better product design. 
C, have a high retail price. 
D, have high salesmen's commissions. 
X, make a large profit. 
Y, have a large sales volume. 

The five points can be symbolized in terms of these sentences: 

1. (B + A + D + C) . Y ~ X 
2. A . jj + A . B ~ X . Y 
3. X + Y ~ A . C + A . B . C . 15 
4. A . C . D + B . C . 15 ~ Y 
5. A . B . C . Y ~ X 

There are three pairs of solutions to this set of five implications: 

X = A . C . (B + 15) X=A·B·C X=A·B·C 
Y = C . (A . D + B . 15) Y = C . (A + B . 15) Y = C . (A . D + B . 15) 

Two policies consistent with these five rules ~an be obtained from the first set 
of results: 

A policy incorporating a large advertising campaign with low retail prices, and 
either a change-over to a better design or low salesmen's commissions, is necessary 
and sufficient to ensure large profits. 

Low retail prices, and either a large amount of advertising together with high 
salesmen's commissions or a new design and low salesmen's commissions, are necessary 
and sufficient for a large sales volume. 

(The second and third sets of results should also be interpreted.) 
In order to achieve both goals of large profits and a large sales volume, it is necessary 

and sufficient to have a large advertising budget, low retail prices, and a change-over 
to a new design, according to the first set of results. 

The second and third set of results indicate that a large profit implies a large sales 
volume, and a large profit is obtained through large advertising costs, low retail 
prices, and a change-over to a new design, which are the identical requirements 
indicated from the first solution above. 

g. Additional aspects of the material presented in this chapter and Chaps. 13 
and 14 can be found in the following references by R. S. Ledley: Mathematical 
Foundations and Computational Methods for a Digital Logic Machine, J. Operations 
Research Soc. Am., vol. 2, no. 3, pp. 249-274, August, 1954; Digital Computational 
Methods in Symbolic Logic, with Examples in Biochemistry, Proc. Natl. Acad. Sci. 
U.S., vol. 41, no. 7, pp. 498-511, July, 1955; Boolean Matrix Equations in Digital 
Circuit Design, IRE Trans. on Electronic Computers, vol. EC-8, no. 2, pp. 131-139, 
June, 1959. 



CHAPTER 13 

BOOLEAN MATRIX EQUATIONS AND 

THE FUNDAMENTAL FORMULAS 

13-1. Introduction and Statement of the Problem 

Computational J.11 ethods. The first chapter of Part 3 introduced 
Boolean algebra and logic and described how a Boolean function can be 
interpreted as a circuit design and how conversely a digital-circuit 
design can be interpreted as a Boolean function. However, the problem 
immediately arose that there are in general many circuit designs, some 
simpler, some more complicated, that produce equivalent results, since a 
Boolean function can be written in many different equivalent forms. 
Chapter 11 tackled this problem by introducing a numerical-computation 
method that systematically enabled the reduction of a Boolean function 
to certain standard equivalent forms. Chapter 12 continued to produce 
further applications of the digital computational methods: constraints, 
solution to Boolean equations, transformation to the absolute simplest 
form. These last two applications were relatively specific methods for 
handling certain important types of problems. 

In this chapter and the next the computational methods are extended 
in a more general way. Many problems that arise in Boolean algebra 
of the kind we consider in circuit design can be formulated in terms of 
these methods. In fact the solution to equations and the change of 
variables become special cases of the methods described in these chapters. 
The applications presented in this textbook are of necessity very limited, 
but in general the realm of applicability of these computational methods 
in electronic circuit design is broad. We reemphasize that individual 
originality is required to make full use of these methods. Practical 
application of the methods in engineering research ultimately depends 
on the ingenuity and skill of the user. 

Problems 01 These Chapters. The kind of digital-circuit-design prob­
lems solved by the methods presented in this and the next chapter can 
most easily be described by means of a generalized example. Figure 13-1 
is a block diagram of a circuit that has been separated into the circuits 
11,/2, and F. The inputs to circuit 11 are the wires labeled AI, A 2, and Aa. 
Its single output is labeled 11, where of course the signals produced in 11 
represent some Boolean function of the signals in the inputs; that is, 
11 = 11(A1,A2,Aa). Function 12 is considered similarly. The circuit F 
has as inputs the wires labeled 11,/2, Xl, and X 2 and as output the wire 

414 



SEC. 13-1] MATRIX EQUATIONS AND FUNDAMENTAL FORMULAS 415 

labeled F. The signal produced by F represents some Boolean function 
of the signals of its inputs, that is, F = F(fl,!2,XI,X2). However, since 
fl = h(AI,A2,Aa) and f2 = f2(AI,A2,Aa), we can evidently also describe 
the signals in F as a Boolean function of A 1, A 2, A a, X I, and X 2. For 
clarity we write this as E(AI,A2,Aa,XI,X2), where in a certain sense 
F = E. 

Now that we have described our 
example, let us see what elemen­
tary problems of circuit design can 
arise here. First, suppose the cir­
cuits fl, f2, and F have already been 
constructed. The problem might 
be to determine the result of wiring 
them together as in Fig. 13-1; that 
is, the problem would be to deter­
mine E(Al,A2,Aa,XI,X2) (see Fig. 
13-2a). Second, suppose that only 
the circuitsfl andf2 have been con­
structed and that it is desired to 

F 

E(Al,A2,A3,Xl,X2) 
make another circuit F using as FIG. 13-1. Block diagram of circuits 11,12, 
inputs fl, f2, XI, and X 2 such that and F. 
the end result will be the given 
desired function E(AI,A2,Aa,XI,X2)' The problem here is to determine 
the circuit design for F (see Fig. 13-2b). Third suppose that only the cir­
cuit F has been constructed and that it is desired to make circuits fl and 
f2 so that when wired to F as in Fig. 13-1 the final result will be the given 
desired function E(AI,A2,Aa,XI,X2). The problem in this case is to 

E 

(a) (b) 
FIG. 13-2. Elementary problems of circuit design. 

E 

(c) 

design fl and f2 (see Fig. 13-2c). The general mathematical formulations 
of these problems are as follows: 

1. The function F(fl, ... ,!J,XI, ... ,XK) is given explicitly, and 
the functions fl(A I , ••• ,AI), ... , fAA I , ••• ,AI) are each given 
explicitly; the problem is to find the unknown function 
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2. The function E(A1, ... ,Ar,Xl , ... ,XK ) is given explicitly, and 
the functions fl(A 1, ... ,Ar), ... , fJ(A 1, ... ,Ar) ~e each given 
explicitly; the problem is to find the unknown function 

F(f1, ... ,jJ,X1, ... ,XK ) 

such that E = F. 
3. Both the Boolean functions E(Al, ... ,Ar,X1, ... ,XK ) and 

F(Al, ... ,Ar;Xl, ... ,XK ) are given explicitly; the problem is to find 
unknown functions h(A l, ... ,Ar), ... ,fJ(A1, ••• ,Ar) such that 
E =F. 

The first problem presents no difficulty, for in order to find E we merely 
substitute in F the explicit expression for each f:i of the Ai. The E so 
determined is always such that F = E. 

The second and third problems are more difficult to solve, and syste­
matic methods for their solution involving the designation numbers 

E=? 
FIG. 13-3. Problem of type 1. 

will be given in the next sections. A solution can always be found for 
the second problem; this is not so for the third problem. It may happen 
in certain instances that no solutions to the third problem exist. In 
such an event solutions exist only if certain constraints hold between 
AI, A 2, ... ,Ar. These constraints may then be obtained, as well as 
the solutions which are possible provided that these constraints occur. 

Examples. An example of a problem of type 1 is as follows: Suppose 
that three circuits, each with inputs A 1, A 2 , and A 3, have been con­
structed with outputs A1 . A2 + A1 . A 3, A1 . A2 + Al . A 3, and Al . A2 
+ A2 . A 3 , respectively. Also suppose that another circuit has been con­
structed with inputs fl' f2, f3, Xl, and X 2 and with output J1 . f3 + 
Xl . f1 . J2 + X 2 • f2 . J3. The problem is this: If the output of each of the 
former three circuits were connected, respectively, to inputs f1, f2, and f3, 
what would be the output of the latter circuit in terms of A1, A2, A 3, and 
Xl and X 2? The answer is A1 . A2 + Xl' A 2· A3 + X 2· (AI' A3 + A2) 
(see Fig. 13-3). . 

As an example of the problem of type 2" suppose that three circuits, 
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each with inputs AI, A 2, and A 3, have been constructed with outputs 
f1, f2, and f3, such that f1 = Al . A2 + Al . A 3, f2 = Al . A2 + Al . A 3, 
and f3 = Al . A2 + A2 . A 3. Suppose that it is desired to use these 
circuits in the construction of another circuit F, such that the output of F 
is E = AI' A2 + Xl' A2 . A3 + X 2 • (AI' A3 + A2)' The problem is 
this: How shall the outputs of the already constructed three circuits 
be gated so that E will result; i.e., what is the design of the circuit F 
that has inputs f1, f2, f3, Xl, and X 2 and output E? It turns out that F 
should be Jl . f3 + XI' fl . J2 + X 2 • f'J . J3 (see Fig. 13-4). 

E= Al 'A2 +X1 'A 2 'A3 +XZ ' (A 1 'A3+Az) 

FIG. 13-4. Problem of type 2. 

As an example of a type 3 problem, suppose that it is desired to make a 
circuit E with output 

AI' A 2 + XI' A 2 • A 3 + X 2 • (A 1 • A 3 + A 2) 

In addition suppose that a certain circuit F has already been built which 
has inputs it, f2, f3, Xl, and X 2 and output 

F = 11 . f3 + Xl' f1 . J2 + X 2 • f2 ·13 
The problem is this: What three circuits shall be constructed that have 
inputs AI, A 2, and A3 and outputs connected to inputs f1, f2, and f3 of 
F, respectively, such that the output of the already constructed F will be 
the desired output E? 

It turns out that the three circuits should be 

and 

(see Fig. 13-5). 

Al . A2 + Al . A3 
Al . A2 + Al . A3 
Al . A2 + ..12 . A3 

connected to fl 
connected to f2 
connected to f3 

As will be shown, there are many other kinds of digital-circuit-design 
problems that can be solved by the methods to be presented. However, 
these simple pictures serve to give the reader a general idea of the kind 
of problems that can be approached by means of the numerical compu­
tational methods given in these chapters. 
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Methods to Be Developed. In the methods that are the subject of 
this chapter and the next the computations are not always carried out 
in terms of the designation numbers. Rather, the designation num­
bers are turned into Boolean matrices; the computations involve these 
matrices. The resulting matrix is changed back into the designation 
numbers and the explicit Boolean function comprising the solution is 

E=A1 ·A2+X1 'A2'A3+X2'(Al'A3+A2) 

FIG. 13-5. Problem of type 3. 

derived from its number. This process is summarized in Fig. 13-6. It 
is interesting to note that the computations involving the matrices make 
use of only three pairs of fundamental formulas. 

In this chapter we shall be primarily concerned with the statement 
of the computational methods and the proofs of the formulas; in the 
next chapter we shall present applications of the methods. Although 

Initially Corresponding 
given ~ given ~ Designation ~ 

circuits Boolean functions numbers 

Finally ~~~~~~~ Solution 
desired ~ function of ~ designation ~ 
circuit solution number 

Boolean 
matrices 

Use of the three 
Computation ~ __ pairs of the 
of solution fundamental 

Solution 
Boolean 
matrix 

formulas 

FIG. 13-6. Summary of solution to circuit design. 

the proofs of the formulas can substantially help in understanding the 
general approach to the applications, they are not a necessary part of the 
computational methods. Therefore, after Sees, 13-2 and 13-3, con­
sideration of Sees. 13-4 through 13-6 may be postponed without loss of 
continuity until after Chap. 14 has been covered. 

Prerequisite to the proofs of the fundamental formulas is a discussion 
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of the general Boolean matrix equation and its solution, given in Sec. 
13-4. Then in Sec. 13-5 we apply the general solution to a special type 
of Boolean matrix equation, which is of considerable importance for our 
purposes. Finally, in Sec. 13-6 we develop the fundamental matrix 
equation that relates the Boolean matrix equations to the designation 
numbers of the circuit-design problem. Then proofs of the fundamental 

13-1 Statement of the general 
circuit design problem 

FIG. 13-7. Logical developmental relations among sections of Chap. 13. 

formulas follow easily. Figure 13-7 summarizes the true logical develop­
mental relations among the sections of this chapter. 

13-2. Designation Numbers and Boolean Matrices 

Functions to AI atrices and Reverse. We shall see that the computational 
methods involve three Boolean matrices. One of these matrices is 
associated with E(Al, ... ,Ar,X1, ••• ,XK ) and is denoted by (Eki); 

another is associated with F(fl, ... ,fJ,XI , ••• ,XK ) and is denoted 
by (Fkj); and the third is associated with the set of functions 

fl(A I , ••• ,AI), ... , fJ(A I , ••• ,AI) 

and is denoted by (Rji) (see Fig. 13-1). 
The given functions of the problem are transformed into these matrices, 

the matrix for the desired function (or functions in the case of the f's) is 
derived from the given matrices, and the desired function is then explic­
itly obtained from its matrix. Going from the function to the matrix 
or from the matrix to the function involves the designation numbers. 
This section is devoted to the method for transforming function into 
matrix and back. 

The Function E. The matrix (Eki) can be derived from the Boolean 
function E(Al, ... ,Ar,X1, ••• ,XK ) in two steps: First form the 
designation number # E with respect to the basis 
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For example, if E = Al . A2 + Xl .1 2 • A3 + X 2 • (AI· 13 + A 2), then 
with respect to b[AI,A2,A3,Xl,X2] we have 

#Al= 0101 0101 0101 0101 0101 0101 0101 0101 
#A2= 0011 0011 0011 0011 0011 0011 0011 0011 
#A3= 0000 1111 0000 1111 0000 1111 0000 1111 

#Xl = 0000 0000 1111 1111 0000 0000 1111 1111 
#X2 = 0000 0000 0000 0000 1111 1111 1111 1111 

#E = I 0001 0001 0001 1101 0111 0011 0111 1111 

And, second, separate the positions of the designation number # E into 
2K successive groups of positions, with 21 positions in each group. Index 
the groups from left to right by k (k = 0, 1, 2, ... , 2K - 1) and the 
positions within each group by i (i = 0, 1, 2, ... , 21 - 1). Then 
the rows of the matrix (Eki) are simply these respective groups of positions. 
For our example, K = 2, 2K = 4, I = 3, 21 = 8, whence 

#E = 0001 0001 0001 1101 0111 0011 0111 1111 

i 0123 4567 0123 4567 0123 4567 0123 4567 
k 0 1 2 3 

and therefore 

i 0123 4567 

k 0 (0001 0001) 1 0001 1101 
(Eki ) = 2 0111 0011 

3 0111 1111 

What we are really doing is forming the successive rows of (Eki) cor­
responding to the successive subbases for AI, A 2, A3 by appropriately 
"folding" the # E, as indicated by the boxes. 

The converse process, from (Eki) to the explicit function E, is simply 
the reverse of the above procedure. Given (Eki) , we can immediately 
form # E. Then E(AI, ... ,A1,XI, ... ,XK ) as an explicit Boolean 
function can be found in any form desired by means of the usual pro­
cedures with respect to b[A I,A2, ... ,A1,X1,X2, ... ,XK ]. 

The Function F. The matrix (Fkj) is derived similarly by folding # F, 
where of course the basis b[iI,!2, ... ,!J,X1,X2, ... ,XK ] is used in 
computing#F. Thus groups of #F are indexed by k (k = 0,1,2, ... , 
2K - 1) and the positions in each group by j (j = 0,1,2, ... ,2J - 1). 
The rows of the matrix (Fkj) are simply these respective groups of posi­
tions. For example, if 
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then with respect to b[ll,j2,j3,X1,X2] we have 

#fl = 0101 0101 0101 0101 0101 0101 0101 0101 
#f2 = 0011 0011 0011 0011 0011 0011 0011 0011 
#f3 = 0000 1111 0000 1111 0000 1111 0000 1111 

#Xl = 0000 0000 1111 1111 0000 0000 1111 1111 
#X2 = 0000 0000 0000 0000 1111 1111 1111 1111 
#F = 0000 1010 0100 1110 0011 1010 0111 1110 

j 0123 4567 0123 4567 0123 4567 0123 4567 
k 0 1 2 3 

(000 1010) 
and 0100 1110 

(Fk;) = 0011 1010 
0111 1110 

The converse process, finding F as an explicit Boolean function given 
(Fkj) , is the reverse of the above procedure. First #F is formed, and 
from this the explicit Boolean function F(h, ... ,IJ,X1, ••• ,XK) is 
found with respect to basis b[ll,j2, ... ,fJ,X},X2, ... ,XK]. 

The Set of Functions fs. The matrix (Rji) is formed in quite a different 
manner from the other matrices. To describe the relation between the 
function set fl(A 1, ••• ,AI), f2(A 1, ••• ,AI), ... ,fJ(A 1, ••• ,AI) 
and the matrix (Rji), we first form the set of designation numbers for 
11,12, ... ,IJ, each with respect to b[A 1,A2, ... ,AI], and place these 
numbers in successive rows starting with #11. For example, if 

11 = Al . A2 + Al . A3 
12 = AI· A2 + Al . A3 
13 = Al . A2 + A2 . A3 

then with respect to b[A 1,A 2,A 3] we have 

i 0123 4567 

#Al = 0101 0101 
#A2 = 0011 0011 
# A3 = 0000 1111 

#fl(A 1,A2,A3) = 0100 1110 
#h(A 1,A2,A3) = 0111 0010 
#f3(A 1,A2,A a) = 0001 1101 

i 0326 5534 

Next index each column of b[Al, ... ,AI] by i (i = 0, 1, 2, ... :' 
21 - 1), and note below each column of the fs array of designation num­
bers the binary number formed by that column (considering the top bit 
the least significant, the bottom bit the most significant). Notice that, 
if we form the basis b[hJ2, ... ,IJ] and index the columns by j (j = 0, 
1, 2, ... ,2J - 1), then the index of each column of the fa array is the 
same as the index of the similar column of b[h,j2, ... ,IJ]' 
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Now the elements of the Boolean matrix (Rji) can be determined. An 
element Rji of the matrix (Rji ) is a unit if corresponding to the ith column 
of b[Al, ... ,AI] there is a column of the is array indexed by j; other­
wise Rji is zero. In our example we have the following correspondences: 
(j,i) : (0,0), (3,1), (2,2), (6,3), (5,4), (5,5), (3,6), and (4,7). The only unit 
elements of the matrix (Rji) are Roo, R 3I , R 22, R 63 , R 54 , R 55, R 36, and R 47• 

We have for our example 

i 0123 4567 

j 0 1000 0000 
1 0000 0000 
2 0010 0000 
3 0100 0010 

(Rii) = 
4 0000 0001 
5 0000 1100 
6 0001 0000 
7 0000 0000 

Note that each column has just one unit but that this is not necessarily 
true of the rows. . 

The reverse process of generating il(A l , ••• ,AI), i2(A l, ... ,AI), 
... ,iJ(A l, ... ,AI) from any given (Rji) is not unique, in contrast 
to the other processes described in this section. Several sets of is are 
often possible, while, on the other hand, it may happen that there are no 
sets is corresponding to a given (Rji). Two bases are consulted in this 
process, namely, b[il, ... ,jJ] and b[Al, ... ,AI], both written in the 
usual pattern. The desired solution is computed by means of the result 
array, as yet empty, with 21 columns and J rows: the columns are indexed 
by i in order from left to right, the rows by ii, ... , iJ, from top to 
bottom. For those pairs of indices j, i for which Rji = 1, we place the 
jth column of b[il, ... ,iJ] in the ith column of the result array. The 
rows of the result array thus filled are the designation numbers of the 
corresponding iI, ... ,iJ with respect to the basis brA!, ... ,AI] and 
hence give the desired explicit functions 

il(A I , ••• ,AI), ... ,iJ(AI , ••• ,AI) 

For example, consider 
i 0123 4567 

j 0 1000 0000 
1 0000 0000' 
2 0010 0000 
3 0100 0010 

4 0000 0001 
5 0000 1100 
6 0001 0000 
7 0001 0010 
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j 0123 4567 

#/1 = 0101 0101 
#/2 = 0011 0011 
#/3 = 0000 1111 

i 

# /1 (A I,A 2,A 3) 
#/2(A I,A 2,A a) 
#/a(Al,A%,A a) 

0 

0 
0 
0 

RESULT ARRAY 

1 2 3 
- - -

1 0 0, 1 
1 1 1,1 
0 a 1, 1 

4 5 6 7 
--------

1 1 1, 1 0 
0 0 1, 1 0 
1 1 0,1 1 

whence there are four possible sets of solutions which with respect to the 
usual basis b[A I ,A 2,A3] are seen to be 

fl = Al . A2 + Al . A3 f1 = Al . A2 + Al . A3 + AI' A3 
f2 = Al . A2 + Al . A3 f2 = Al . A2 + AI' A3 
f3 = AI' A2 + A2 . A3 fa = Al . A2 + A3 

f1 = Al . A2 + AI' Aa 
f2 = A1 . A2 + Al . A3 
fa = A1 . A2 + A3 

f1 = A1 . A2 + AI' A3 + AI' A3 
f2 = Al . A2 + Al . A3 
f3 = Al . A2 + A2 . A3 

If a column of (Rji) were all zeros, then the corresponding column of the 
result array would be left blank and no solutions would exist. 

EXERCISES 

(a) Find the matrix (Eki) for E = AI' A2 . Xl + AI' A2 . Xl. 

Solution. (Eki ) = (~~~~). 
(b) If (EM) = (0110), find E. 
Solution. E = AI' A2 + Al . A 2• 

(c) Find the matrix (Fki ) for F = [(/1 = Xl) . (/2 = X 2)]. [HINT: Recall that 
(/1 = Xl) can be written as /1. Xl + Jl . Xl.] 

Solution. (Fki) = (m~)· 
0001 

(d) If (F,,) = GO. find F. 

Solution. F = (/1 . Xl + JI . Xl) . X 2 + (/1 . Xl + Jl . Xl) . X'J.. 
(e) Find the matrix (Rji) for 

/1 = Al . A2 + Al . Aa 
/2 = Al . A2 + A2 . Aa 

. 0100 0010 

(

1010 0000) 

Solut'tOn. (Rji) = 0001 0001 . 

0000 1100 

(f) If (Ri') = (~~~~), find the set fs. 

Solution. None. 



424 FOUNDATIONS FOR LOGICAL DESIGN [CHAP. 13 

(

1010 0000) 
0101 0010 

(g) If (Ri') = 0001 0101 I find the set or sets J •. 
0000 1100 

13-3. Antecedences and Consequences, and the Fundamental Formulas 

Antecedence and Consequence Solutions. In Sec. 13-1 (see Fig. 13-1) 
we described three types of problems; these can be summarized in terms 
of the set of functions heAl, .. ,AI), ... , jJ(A 1, •• ,AI), the 
functions F(/l, ... ,!J,Xl, ... ,XK ), E(A l,. ,AJ,Xl, ... ,XK ), 

and the equivalence equation t 

F(/l(A l, ... ,AI), ... ,!J(A l, ... ,AI),Xl, ... ,XK ) 

= E(Al, ... ,AI,X l , ••• ,XK ) (13-1). 

For type 1 problems the function F and the set of functions /1, ... ,/J 
are given, and the problem is to find a solution E satisfying Eq. (13-1). 
In type 2 problems the function E and the set of functions /1, ... ,/J 
are given, and the problem is to find a solution F that satisfies Eq. (13-1). 
For type 3· problems the functions F and E are given, and the problem 
is to find the set of solutions /1, ... ,/J that satisfies Eq. (13-1). 

It turns out, however, that· it is more convenient to solve problems 
of types 2 and 3 in tWQ ~arts, on~ in'.'olving the equation 

Fa(/l(A l, ... ,AI), ... ,fAA 1, ••• ,AI),Xl, ... ,XK ) 

~ E(Al, ... ,AI,Xl, ... ,XK ) (13-2). 

and the other involving the equation 

E(Al, ... ,AI,XI , ••• ,XK ) 

~ Fe(fl(A l, ... ,AI), ... ,!J(Al, ... ,AI),X1, ••• ,XK ) 

(13-3) • 

For i/ a solution satisfies both Eqs. (13-2) and (13-3), then it satisfies Eq· 
(13-1); that is, if Fa = Fe = F, then F = E. Solutions of Eq. (13-2) are 
called antecedence solutions, and solutions of Eq. (13-3) areca,lled conse­
quence solutions. 

The meaning of the antecedence and consequence solutions can be 
understood as follows: Recall that the function E (that is, the final 
desired output of the circuit) gives those combinations of input conditions 
that are to result in zero and unit output signals. An antecedence 
solution represents a circuit design that will produce a zero output signal 
for at least all input conditions for which E is to be zero; it may have a 
zero output signal for other input conditions as well. A consequence 
solution represents a circuit design that will produce a unit output signal 
for at least all input conditions for which E is to be a unit; it may have a 
unit output signal for other input conditions as well. Thus antecedence 
and consequence solutions do not necessarily represent circuits that have 

t Black diamonds indicate the more important formulas. 
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an output identical to E but do represent circuits whose outputs are 
" close" to that of E. 

For example, if the designation number of E is 0110, then the designa­
tion numbers of all possible antecedence solutions are 0100, 0010, and 
0000, while the designation numbers of all possible consequence solutions 
are 1110, 0111, and 1111. 

As is illustrated by this example, it is not very difficult to produce 
antecedence and consequence solutions to a given equation. The 
importance of antecedence and consequence solutions arises from the fact 
that circuit-design problems always require antecedence and consequence 
solutions of a specified form, or involving only certain specified input 
wires, or both. 

For example, suppose that E = (AI' A2 + Al . A 2) . Xl and that it is 
desired to find antecedence solutions of the form Fa = il . i2 . Xl. Since 
E and F are given and we want to find iI, i2, this is a type 3 problem. 
First observe that with respect to b[AI,A2,X 1] we find # E = 0000 0110. 
An antecedence solution will have fewer units than # E in its designation 
number, as, for example, 0000 0100 = # Al . A2 . Xl. So, if we let 
il = Al and i2 = A 2, we have found an antecedence solution, i.e., 

Fa(f}(Al,A2),h(Al,A2,),Xl) = il(A l ,A 2) . i2(A l ,A 2) . Xl = AI' A 2 ' Xl 

and Al . A2 . X 2 ~ (AI' A2 + Al . A 2) . Xl as desired. 
As another example, suppose that E = (AI' A2 + AI' A 2) . Xl as 

above, that il = AI, i2 = A2, and that we desire to find a consequence 
solution F c (it,!2,XI ). Since E, it, and i2 are given and we want to find Fe, 
this is a type 2 problem. Again # E = 0000 0110. A consequence 
solution will have more units than # E in its designation number-for 
example, 0000 0111 = # (AI + A 2) . Xl. So, if we let 

Fe = (f 1 + J 2) . Xl 

we have found a consequence solution, for 

Fc(fI(AI,A2),!2(AI,A2),XI) = (f1(A I,A2) + J2(A I,A2)) . Xl 
= (A 1 + A 2) • Xl 

and (AI' A2 + Al . A 2) . Xl ~ (AI + A 2) . Xl as desired. 
Note that the trial-and-error methods of these examples is far from 

desirable. We shall now present the fundamental formulas that enable 
the systematic computation of antecedence and consequence solutions. 

The Fundamental Formulas. The formulas are given in terms of the 
Boolean matrices developed in the previous section. There are six funda­
mental formulas, an antecedence formula and a consequence formula 
for each of the three types of problems. Observe that in terms of the 
matrices the problems of types 1, 2, and 3 can be distinguished as follows: 

For type 1 the matrices (Flcj) and (Rji ) are given, and the problem is 
to determine (Eki)' 

For type 2 the matrices (Eki) and (Rji ) are given, and the problem is to 
determine (F kj). 
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For type 3 the matrices (EM) and (Fkj) are given, and the problem is to 
determine (Rji). 

Let us first recall (see Additional Topics, Sec. 13-7) that, if (M pq) 
is a Boolean matrix, then (M pq) is the matrix formed by changing all 
zero elements of (M pq) to units and all unit elements of (M pq) to zeros. 
Also (M qp), the matrix formed by interchanging the rows and columns of 

(Mpq), is called the transpose of (Mpq). For example, if (Mpq) ~ (gt} 
- (10) (00) then (Mpq) = 10 and (Mqp) = 11 . Also remember from Sec. 11-11 

that Boolean matrix multiplication, indicated by @, is identical to 
ordinary matrix multiplication, except that the logical sum and logical 
product replace the ordinary sum and product. 

We now present the formulas that enable antecedence and consequence 
solutions to be determined for each of the above types of problems, where 
the subscript.s a and c are used to distinguish between the determination 
of matrices corresponding to antecedence or consequence solutions: 

Antecedence Consequence 

Type 1 (Fkj) @ (R ji) = (Eki) (Fkj) @ (Rji) = (Eki) 

Type 2 (Rji) @ (Eik) (Fjk) a (Rji) @ (Eik ) = (Fjk)c (13-4) • 
Type 3 (Fjk ) @ (Eki ) = (Rji)a (Fjk) @ (Eki) = (Rji)c 

Properties of the Solutions. As will be shown in the succeeding sec­
tions, the solutions have the following properties: 

TYPE 1 PROBLEMS. In problems of type 1 the antecedence and con­
sequence solutions E are the same (and hence there was no necessity 
for using subscripts a and c); the formulas give two ways of determining 
E. In this case we always have F = E. The principal application of 
the formulas for type 1 is as a quick method for performing substi­
tutions: we are given F(fI, ... ,!J,X1,X2, ••• ,XK ), and then the 
E(A1, ... ,AI,X1, ... ,XK ) determined by the formula is the result of 
substituting the given functions !I (A 1, ••• ,AI), ... ,fJ(AI , ••• ,AI) 
into F. 

TYPE 2 PROBLEMS. A solution to problems of type 2 is in the form of 
a single function. Most often there are multiple solutions; i.e., there 
are many functions which are each good solutions. There is always at 
least one antecedence or consequence solution. Suppose that F I , F 2, 

... ,FN are the multiple solutions for an antecedence problem of type 2; 
then Fn"""" E (n = 1, 2, ... ,N). A surprising property of such a list 
of multiple antecedence solutions is that one of these solutions is implied 
by all the rest; i.e., there exists an F m among the solutions such that 
F n ......" F m for all n. We call this the solution "closest" to E, because 
F m ......" E, but for all other solutions F n ......" F m"""" E. 

Similarly suppose that F I , F 2, ••• ,FN are the multiple solutions for 
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a consequence problem of type 2; then E ~ Fn (n = 1, 2, ... , N). 
Again, there always exists a closest solution to E; that is, there exists 
some solution F m such that F m implies all other solutions: E ~ F m ~ F n 

for all n. These closest solutions can easily be picked out and are usually 
the most useful. 

An important application of the formulas for problems of type 2 is 
as an alternative method for determining any constraints between given 
functions. Use for (Eik ) the single-column matrix (column vector) of 
21 rows every element of which is a unit, and determine (Rji) as usual from 
the given functions fl(A l, ... ,AI), ... , fJ(A l , ... ,AI) between 
which the constraint is being determined. A solution F(fl, ... ,fJ) 
that is both an antecedence and consequence solution is the desired con­
straint. If no solution exists that is both an antecedence and conse­
quence solution, then the functions iI, ... , jJ are independent (see 
Sec. 14-2). 

TYPE 3 PROBLEMS. The solutions to problems of type 3 are in the form 
of a set of functions. It is possible to have multiple solutions, i.e., many 
sets of functions which are perfectly good solutions, analogous to multiple 
solutions to algebraic equations. Occasionally one of these sets of solu­
tions contains a function f = I or f = 0, that is, # f = all units, or 
# f = all zeros; these are trivial solutions. It is also possible that no 
solution exists. As we have indicated above, when no solution exists 
conditions can be determined under which solutions will exist. These 
conditions are given in terms of constraints between the A 1, A 2, • • • , 

AI. The general method for determining these constraints is to compute 
the Boolean row vector or single-row matrix (Ci ) from the formula 

(Vj ) ® (Rji) = (Ci ) 

where (Vj) is a row vector consisting of all units. Then (Ci ) is the desig­
nation number of the desired constraints or conditions for the existence 
of solutions, referred to b[Al, ... ,AI]' In order to impose this 
constraint, new bases constrained by the condition must now replace 
b[A l , ... ,AI,Xl , ... ,XK ] and b[Al, ... ,AI], and the solution is 
found as described above except that the range of i is from 0 to u - 1, 
where u is the number of units in (Ci ). 

As mentioned in Sec. 13-1, the reader may go directly to Chap. 14 
for immediate examples of applications of these formulas. 

EXERCISES 

(a) If E = ..42 ' Xl + Al • Xl, /1 = Al . A 2, and /2 = Al . A 2, find both ante­
cedence and consequence solutions F a (fl,f2, X 1) and F c(/1,f2,X 1)' Show that F a ~ E 
and E ~ Fe. (HINT: Substitute for /1 and f2 in terms of Al and A2 in the functions 
F a and Fc, find their designation numbers, and compare with the designation number 
of E.) 

(b) If E = A 2 · Xl + A l · Xl and F = (fl +f2)' Xl +/1./2' gl, find the sets of 
antecedence and consequence solutions f •. 

(e) From Exercise b choose the set of antecedence solutions #/1 = 1000, # f2 = 1100, 
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and show that for antecedence Fa --+ E, using the formula of type 1. Choose the 
set of consequence solutions #/x = 1010, #/2 = 1110, and show that E --+ Fe, using 
the formula of type 1. 

13-4. Solution to the General Boolean Matrix Equation t 
The General Boolean Matrix Equation. Consider the matrix equation 

(13-5) • 

where (aij), (Xjk), and (bik ) are Boolean matrices. Suppose that (aij) and 
(b ik) are known and that the problem is to determine the Boolean matrix 
(Xjk) that satisfies this equation. This is similar to the problem of the 
solution of ordinary matrix equations, but the conditions for the existence 
of a solution and the character of the solutions when they exist differ 
greatly. For example, consider the following Boolean matrix equation: 

(~m g~~:) @(Xik)=(m:) 
1001 1000 0110 

As can be readily checked, each of the following is a solution: 
0110 0110 0010 0000 
1111 0000 0000 0000 
1011 1011 0000 0010 
0110 0000 0100 0000 

0110 
1110 
1111 
1011 

0000 
1000 
0000 
0000 

0000 
1100 
0000 
1011 

0110 
1110 
0000 
1001 

In fact there are more than 217 possible solutions to this equation. On 
the other hand, the equation 

(m~ ~m) @ (Xik) = (m~) 
1001 0110 1001 

has only one solution, namely, 
0000 
1101 
0000 
1001 

0010 
0000 
0000 
0000 

t The sections that follow presuppose the reader's familiarity with the operations 
and properties of Boolean matrices given in the Additional Topics of this chapter 
(Sec. 13-7). 
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and the equation 

(

1010 0100) (0010) 0110 0011 1101 
1010 0111 (8) (Xik) = 1111 
1001 0110 1001 

has no solution. 
Solution to the Equation. We shall show below that a necessary and 

sufficient condition that a solution to Eq. (13-5) exists is thatt 

(13-6) • 

Similarly a necessary and sufficient condition for a solution to exist for 

is that 

«bki) 0 (aji)T) 0 (aji) = (bki) 

Evidently, if condition (13-6) holds, then 

(13-7) 

(13-8) 

(13-9) • 

is a solution to Eq. (13-5) (this, by the way, proves sufficiency). In 
fact such an (X;k) is a very special solution, for as we shall see, if another 
solution (Xjk) to Eq. (13-5) exists, then (Xjk) ~ (X;k). That is, (X;k) is 
implied by all other solutions; we shall therefore say that it is the least 
upper bound of solutions to Eq. (13-5). Analogous results are true for 
Eq. (13-7), for which any solution (Xkj) ~ (x~j), where 

(13-10) 

Proofs. Proof of the necessity of condition (13-6) [or (13-8)], i.e., 
that if a solution exists then Eq. (13-9) [or (13-10)] gives one, is based on 
the following considerations: Recall that from the definition of Boolean 
matrix multiplication, given in Sec. 11-11, Eq. (13-5) is equivalent to the 
set of (1 times K) equations 

(13-11) 

where L indicates that the logical summation is to be taken of all the 
i 

logical products over the range of j. From these equations it is clear 
that each column of (Xjk) depends only on the matrix (aij) and the cor­
responding column of (bik ) and is independent of the other columns of 
(bik). Hence, if the existence condition can be shown to hold for each 
column of Eq. (13-5), it holds for the entire matrix. Similarly Eq. 

t The superscript T denotes transposition, i.e., for example, (aij)T = (aji)-see 
Sec 13-7. 
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(13-7) is equivalent to the set of equations 

l Xkj . aji = bki 
j 

[CHAP. 13 

(13-12) 

from which it is seen that the rows are independent of each other. 
We consider as an example the first column of Eq. (13-5) (that is, 

k = 0). This column must satisfy the following subset of Eq. (13-11): 

L ail . XjO = bi~ 
j 

(13-13) 

Let us assume that a solution exists; then consider those i for which 
biO = O. In such an ith row, for each j such that aij = 1, the correspond-
ing XjO must be zero in order that L ail· XjO = O. For each j such that 

j 

ail = 0 the corresponding XjO can be either 1 or o. Next consider those 
i for which bi~ = 1: here there must be at least one value for j for which 
both ail = 1 and XjO = 1. By the assumption that a solution exists it will 
be obtained if we make XjO = 1 for all j except those j where bi~ = 0 and 
where aij = 1 for at least one value of i require that XjO = O. Let us 
denote this set of XjO by (x~o). 

The condition that x;o = 0 can be expressed as (b io + iiij) = 0 for at 
least one i. In other words, n (biO + iiij) = 0, or equivalently 

L biO . aij = 1 
i 

Since otherwise x;o = 1, we can set x;o = L biO . aij. This is equivalent 
i 

to the matrix equation 

(13-14) 

Equation (13-9) follows by extension. Equation (13-10) follows by 
similar reasoning. 

We have shown that if there is any solution to Eq. (13-13) then x;o 
is also a solution; we shall now show that if XjO satisfies Eq. (13-13) then 
XjO ~ x;o. For suppose there exists a solution to Eq. (13-13), say (Zjo). 
Clearly ZjO = 1 cannot occur for any j for which x;o = 0, by the definition 
of (ZjO) , and therefore ZjO ~ x;o. [Note that we say that (Mjk) ~ (Njk) 
when M jk ~ N jk for each k and j.] 

The matrices (x;~) and (x~j) have a property of great importance in the 
cases where Eqs. (13-5) and (13-7) have no solution. Observe that in 
any case we have formed (x;o) such that (aij) @ (x;o) has zeros at least 
wherever (bio) has zeros. Therefore (aij) @ (x;o) ~ (bio). By extension 
it follows that 

(13-15) •. 
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even when no solution (Xik) exists for Eq. (13-5). Similarly, for the 
problems represented by Eq. (13-7), 

(X~i) @ (aii) ~ (bki) (13-16) 

For example, consider (~~) G (Xj,) = G~> since (x~.) = Gg), we find 

(~~) G Gg) = (~g) -> G~} 
Character of Solutions to the Equation. We have shown above that 

(X~i) is the least upper bound to solutions to Eq. (13-5), if any solutions 
exist. However, there is in general no unique greatest lower bound. For 
example, consider the equation 

Gm G (Xj,) = G~) 
There are 5 solutions to this equation, which are shown in Fig. 13-8. 
In this case there are 2 lowest solutions (dark parentheses), i.e., solutions 

( 
~ ~) Least upper 

bound 

~ ItO _______ 

GO GD on 
,/ 

( 
~ ~) Lowest 

solution 
1 0 

Lowest 
solution 

FIG. 13-8. Five solutions to the equation (~~~) (8) (Xik) = (~~)-

that are implied by no other solutions. In the example shown above 
with the over 217 solutions there are 72 lowest solutions. The lowest 
solutions have an interesting property: if (Yik) is any lowest solution of 
Eq. (13-5), then all matrices (Wik) such that 

(13-17) • 

are also solutions. In fact the totality of solutions for a Boolean matrix 
equation is found as follows: Compute (X;k); then find all the lowest 
solutions; finally for each lowest solution generate all solutions (Wik). 
The solution (X;k) is found by means of the above formulas; and we shall 
discuss below how to find the lowest solutions (Yik). To find the solu­
tions (Wik) , simply start from the corresponding lowest solution (Yik) , 
and replace those zeros of (Yik) that do not correspond to zeros of. (X;k) 
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with units, one at a time, two at a time, and so forth. Of course anal­
ogous remarks hold for (x~j) corresponding to Eq. (13-7), that is, 

(Yki) ~ (Wki) ~ (X~i) (13-18) 

For the example equation above 

(xi.) = (~~~y 0 G~) = GD 0 (g~) = G~) = GD 
Since (11;;) 0 (xi.) = (g~~) 0 GD = O~) = (b .. ), a solution exists. 

It will be shown below that there are two lowest solutions, namely, 

GD and GD· Hence we have for (w;.) the matrices 

(~~) (~~) (~~) (~~) (t~) 
There are only these five different solutions, as shown in Fig. 13-8. 

Computing the Lowest Solutions. t The problem of computing all solu­
tions, if any solution exists, now reduces to the determination of the 
lowest solutions (Yik). Here the method is only semisystematic. Let us 
present the method by means of an example. Consider the equation 

(

1000 0100) (1110) 0010 0001 1011 
1010 0111 ® (Xjk) = 1111 
1001 1000 0110 

0110 
1111 
1011 
0110 

0110 
1110 
1111 
1011 

The possible columns of the matrix (Yik) are determined one at a time in 
three steps. Let us start with (Yio). (1) Form the array composed of 
only those rows of (aii) which correspond to units of the column (b io). 

In our example these are rows 0, 1, and 2. (2) Copy under this array 
as a row the (x;o) column of (X;k)' Then cross off those columns of the 
array corresponding to the zeros of (x;o), thus: 

·0 12 

~ 00 
~ ·01 
~ 01 
~ 11 

567 

100 
001 
111 
111 

t A systematic method for finding all solutions will be found in Sec. 13-7, Additional 
Topics. 
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(3) The final step is semisystematic and is concerned only with the 
remaining columns of the array, that is, 1, 2, 5, 6, and 7. The goal is to 
choose columns whose logical sum is all units, i.e., whose logical sum· 
yields the three units of column (bio ). For example, choose columns 2 
and 5. Then one possibility for (YiO) is a column with units in rows 2 and 
5. However, the process of deriving columns for (YiO) in this manner 
must proceed in the following order: First try to choose a single column 
of the array that is all units. N ext try for pairs of columns of the array 
whose logical sum is all units; then for triplets of columns; etc. Each 
such choice determines a possible column for (Yio) that has units only in 
rows corresponding to the columns of the array included in the choice. 
However, to ensure the lowest solutions the successive choices must 
adhere to the following rule: The present choice must include at least 
one column of the array not included in each of the previous choices 
and must not include a column of the array that is included in each of 
the previous choices. When this can no longer be done, all possible 
co~umns for (YiO) have been found. Thus the possible columns are chosen 
so that each produces column (biO) in the multiplication but so that no 
(YiO) implies any other. The process is repeated for (Yil), (Yi2), etc. 

For our illustration, to determine possible columns for (Yio) first note 
that no single column of the array has all units. So try for pairs. First 
choose array columns 2 and 5. Take array columns 5 and 7 as the second 
choice, which differs appropriately from the first choice, array columns 2 
and 5. No more pair choices exist, nor are there any triplet choices. 
(We need not look for quadruplet choices, since the array has only three 
rows.) Hence (YiO) can be either 

0 0 0 0 
1 0 1 0 
2-1 2 0 
3 0 or 3 0 
4 0 4 0 
5-1 5-1 
6 0 6 0 
7 0 7-1 

Similarly for our example we find 

(Yil) : 1 0 0 (Yi2) : 1 1 0 0 0 0 (Yi3) : 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 1 1 0 0 1 0 
0 1 0/ 0 0 0 1 0 1 0 0 

0 0 1 0 0 1 0 1 0 0 0 
0 1 1 0 0 1 1 1 1 0 0 
0 0 o. 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 1 1 0 1 

Hence, to determine all the (Yik), we take all combinations of the two 
possibilities for column 0, the three for column 1, the six for column 2: 
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and the two for column 3, to make altogether 2 X 3 X 6 X 2 = 72 lowest 
matrices (Yik), that is, 

and so forth. 

0110 
0000 
1011 
0000 

0000 
1000 
0000 
0000 

0110 
0000 
0011 
0000 

0000 
1000 
0000 
1000 

0010 
0000 
1011 
0100 

0000 
1100 
0000 
0000 

EXERCISES 

(a) Find all solutions of (~~~) @ (Xik) = (~~)-

0010 
0000 
0011 
0100 

0000 
1100 
0000 
1000 

(b) Find all solutions of (~~~~) @ (Xik) = (~~)I and graph their implications as 

in Fig. 13-8. 
(c) Find the least-upper-bound solution and all lowest solutions of 

(

1101 0000) (1011) 0100 1011 1111 
1001 1000 ~ (Xik) = 1101 

0010 0111 1001 

(d) Find the least-upper-bound solution and all lowest solutions of 

13-6. Solution to the Unitary Matrix Equation 

The Unitary Matrix Equation. The matrix equation 

(akj) ® (Uii) = (bki) (13-19) • 

where (Uii) is a matrix that has precisely 1 unit in each column, t is called 
a unitary (or pseudopermutation) matrix equation and is of particular 
importance for our purposes. The effect of multiplying a matrix on the 
right by (Uii) is to permute the columns of that matrix; if element Uji = 1, 
then column j will go into column i. For example, let 

(

0001) 0000 
(Uji) = 1000 

0110 
(

1100) (0001) (0001) 1010 0000 1001 
then 0011 @ 1000 = 1110 

1100 0110 0001 

t To avoid confusion, we shall not include in our discussion matrices having just 
1 unit in each row. Such a matrix permutes the rows of another matrix which it 
multiplies on the left. Our work can be generalized to these matrices by applying the 
relation on tranposes of products (see Exercise e). 
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where column 0 went to column 3, column 2 to column 0, and column 3 to 
column 1 and also to column 2. It is clear that if a matrix is comple­
mented and its columns permuted the result is the same as if its columns 
were permuted first and then complemented; thus 

(13-20) • 

In general there may arise three types of equations associated with Eq. 
(13-19) involving unitary matrices, corresponding (1) to (bki ) unknown, 
(2) to (akj) unknown, and (3) to (Uji) unknown except for its unitary 
nature. 

Solutions to Type 1 Equations. For an equation of the first type a 
matrix (akj) and a unitary matrix (Uii) are known, and a matrix (bki) is 
sought which satisfies Eq. (13-19). Here the solution is obvious: (bk1-) 

is obtained directly by multiplication. Obviously (bki) so obtained is 
unique. We note also that by applying Eq. (13-20) we obtain 

(13-21) 

Solutions to Type 2 Equations. For an equation of the second type a 
matrix (bki) and a unitary matrix (Uii) are known, and a matrix (akj) is 
sought which satisfies Eq. (13-19). This is an equation of the type illus­
trated by Eq. (13-7), and we obtain from Eq. (13-10) the least upper 
bound of solutions, 

(13-22) 

Complementing and applying the relation that the transpose of a product 
of matrices is the product of the transposes of the factors taken in reverse 
order, we obtain 

(13-23) • 

where (bik) = (bki)T, etc. (In what follows we usually indicate a trans­
pose by this method of transposing the indices.) 

A consequence of Eq. (13-20) is that the set of solutions for type 2 
equations, if any exist, will have a greatest lower bound as well as a least 
upper bound. We see that Eq. (13-21) must hold for every solution (akj) 
to Eq. (13-19). If we now consider Eq. (13-21) as an equation of the 
second type in (akj) as the unknown, we can solve for a least upper bound 
for (aki), namely, 

(akj) = (bki) @ (Uji)T 

Complementing and transposing, we have 

(at,.) = (Uji) @ (bik) (13-24) • 

Since (alk) is the least upper bound of (ajk), then (alk) is the greatest lower 
bound of (ajk) and hence is the unique lowest solution to the equation of type 
2. The totality of matrices (ajk) such that 

(ajk) -+ (ajk) -+ (aJk) (13~25) • 
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are all the solutions to Eq. (13-19), considered as a type 2 equation (see 
Exercise d below). 

Solutions to Type 3 Equations. For an equation of the third type 
matrices (akj) and (bki) are known, and a unitary matrix (Vii) is sought 
that will satisfy Eq. (13-19). This is an equation of the type illustrated 
by'Eq. (13-5), and we obtain from Eq. (13-9) the least upper bound of 
solutions [such that (Vii) -7 (X;i)], 

From Eq. (13-15) we see that (aki) ® (X;i) -7 (bki). If (Vii) -7 (X;i), it 
follows (see Sec. 11-11) that 

(aki) ® (Vii) -7 (bki) (13-27) 

Consider now Eq. (13-21) as an equation of type 3. The least upper 
bound to solutions to this equation [such that (Vii) -7 (xt)] is 

(X~) = (aik) ® (bki) 

Again from Eq. (13-15) it follows that, if (Vii) -7 (xii), then 

(aki) ® (Vii) -7 (bki) 

Remembering that, if P -7 Q, Q -7 P, we obtain 

(bki) -7 (aki) ® (Vii) 

If (Vii) is unitary, Eq. (13-20) gives 

(bki) -7 (aki) ® (Vii) 

(13-28) • 

(13-29) 

(13-30) 

Hence, by implications (13-27) and (13-30), every unitary matrix (Vii) 
such that (Vii) -7 (X;i) and (Vii) -7 (xii), that is, such that 

(Vii) -7 (X;i) . (x~) (13-31). 

satisfies Eq. (13-19), namely, (aki) ® (Vii) = (bki), as desired (recalling 
that P -7 Q and Q -7 P if and only if P = Q). 

Conditions for Existence of Solutions. From the nature of the type 1 
equations it is obvious that a unique solution always exists, which may 
be found from either Eq. (13-19) or Eq. (13-21), which are equivalent. 
In type 2 and 3 equations, however, no solutions need exist, and if a 
solution does exist, it need not· be unique. 

In the type 3 equations, even though there may be matrices that 
satisfy Eq. (13-19), none of these may be unitary; i.e., none may also 
satisfy Eq. (13-21). Recalling that the function of the unitary matrix 
(Vii) in Eq. (13-19) is to permute the columns of (aki) into the columns of 
(bki), 'with perhaps omissions and duplications, it is obvious that a solu­
tion of an equation of type 3 will exist only if for every column of (bki) 
there is an identical column. of (akj) , though the reverse need not hold. 
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For example, in the equation 

(~m) @(Uii) = (m~) 
1111 1111 

. ... : . (~~~.~) (~~~!) (!~~~) . (Uji) IS obvIOusly 0100 ; but 0110 ~ (Uji) = 1110 has no unItary 
1000 1110 1111 

solution, even though (Uji) ':= (m~) (among others) will satisfy it. 

1000 
In the type 2 equations, if (Uji ) is a true permutation matrix, having 

1 unit in each column and 1 unit in each row, then we see immediately 
that Eq. (13-20) can be applied to Eq. (13-22) to give . 

(a~j) = (bki) ~ (Uji)T = (bki) ~ (Uji)T. 
or (a;k) = (Uji) ~ (b-ik) 

Comparing this with Eq. (13-24), we see that implication (13-25) reduces 
to an equality. Thus we see that, if (Uji) is a true permutation matrix, 
then Eq. (13-19) has a unique solution for (ajk) = (akj)T, given by Eq. 
(13-24). For example, for the equation 

(aki) @ (~~~~) = (~m) 
, 0010 1111 

(
0100) (1111) (01i!) I * 0001 0111 0001 

(aik) = (aik ) = (aik) = 1000 @ 0011 = 1111 

0010 0001 0011 

or 

If (Uji) is not a true permutation matrix, then, as we have defined it, 
it will have some columns which are duplicates of others. In any product 
(akj) ~ (Uji) = (bki ) the columns of (bki ) will show the same duplications 
as those of (Uji). An equation of type 2 involving such a (Uji) can have 
no solution unless this condition on the duplication of the columns of 
(bki) holds. It is obvious that, since (Uji) merely rearranges the columns 
of (akj) in forming (bki ), a solution (akj) can always be formed by rearrang­
ing the columns of (bki), provided only that (bki) has the same duplications 
of columns as does (Uji). Further, if thejth row of (Uji) is all zeros, then 
the jth column of (akj) never appears in (bki) so that this column of (akj) 
is entirely arbitrary iI?- the solution of a type 2 equation. For example, 
the equation 

(

0001) (0000) 1010 0001 
(aM) @ 0000 = 0101 

0100 1111 
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has a solution, 

(aki) = (:~:~) 
1111>1 

(where the !b symbols indicate that the third column is arbitrary), while 
the equation 

(
0001) (0000) 1010 0001 

(akj) I8l 0000 = 1001 
0100 1111 

has no solution. 

EXERCISES 

Find all solutions for the following equations: 

(
0100) (1011) 

(a) (Xki) @ ~~~~ = 1001. 
0010 1101 

Solution 

(0100) (0100) (1000) (0111) (x~i) = 0110 @ ~~~~ = 1001 = 0110 0010 0100 0001 1110 

(1011) (0100) (0101) 
(xii) = 1001 @ ~gg~ = 0100 

1101 0100 1100 
Hence the solutions are 

Greatest 
lower 
bound 

(0111) (0111) 

(0101)/(!:~~)X(!::~)\rOl11) Least 0100 ~ 0110 0100 ~ 0110 upper 

1100 \. 1100 X 1110 .' 1110 bound 

(0101) (0101)1 0100 ~ 0110 1110 1110 
(1011) (10) (b) 0100 @ (Xjk) = 11 . 

(0100) (1011) (c) (Xki) @ 1011 = 1100 ~ 

(
0100) (0001) 0001 0001 

(d) (Xkj) @ 0000 = 0101 . 
1010 1011 
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(e) Derive equations corresponding to the numbered equations of this section for the 
matrix equation (Vkj) ~ (aji) = (bki), where (Vkj) is a matrix having just 1 unit in 
each row (ef. footnote on page 434). 

13-6. Derivation of the Fundamental Matrix Equation and the Funda­
mental Formulas 

The Pseudopermutation Transformation. The derivations of the funda­
mental formulas are based on the antecedence formula for problems of 
type 1, which is 

(13-32) • 

For this reason Eq. (13-32) is called the fundamental matrix equation 
relating Boolean matrices with digital-circuit design. To see how this 
formula arises, let us first consider F to be of the form F = F(fI,j2,fa), 
where we have omitted the Xl, ... , X K of the more general formula­
tion. In this case the formula for type 1 reduced to (FOi) ® (Rii) = (Eoi) , 
where (F OJ) and CEoi) are matrices with only one row. More specifically 
they are the designation numbers themselves; that is, (FOi) = #F, and 
(Eoi) = #E. Then we want to show that #F ® (Rii) = #E. 

This equation follows clearly from two simple observations. The first 
observation is merely a restatement of the meaning of a designation 
number with respect to the standard basis. Whenever the signal values 
(that is, 1 or 0) in the input wires to a circuit correspond to column p of 
the basis, then the signal value (1 or 0) in the output wire is the value 
of the pth position of the designation number of the output wire. For 
example, if F = JI . J2 + fl . fa, then we have with respect to b[jI,j2,ja] 

j 0 1 2 3 4 5 6 7 

#!t = 0 1 0 1 0 1 0 1 
#12 = 0 0 1 1 0 0 1 1 
#13 = 0 0 0 0 1 1 1 1 

#F = 1 1 0 0 0 1 0 1 

Then if the input values correspond to column zero of the basis, i.e., 8, 
o 

then the output value on wire F will be a unit, and so forth. 
The second observation is essentially the same, except that we are 

considering more than one output wire, i.e., more than one circuit with 
the same inputs. For example, let fl = A2 + A3, f2 = (AI + A 2) . A3, 
and fa = AI' A2 + (AI + A 2) . A;l. Then we have with respect to 
b[A I,A2,A31 the array for iI, f2, f3 shown in Fig. 13-9. In this case, for 
example, if the input values of AI, A 2, A3 correspond to column 4 of 
b[A 1,A2,A3], i.e., to 8, then the set of output values of fI, f2, andf3 will be 

1 

found in position 4 of each of #fI, #f2, and #f3, namely, 8. In other 
o 

words, column 4 of b[A I,A2,A 3] corresponds to column 0 of b[fI,j2,j3]. 
To find the value of the fourth position of the #F with respect to b[Al, 
A 2,A3], observe that column 4 of b[AI,A2,A3] corresponds to column 0 
of b[fI,f2,j3], which in our example corresponds to a unit in the zeroth 
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position of #F with respect to b[fl,/2,/a1. Hence we conclude that the 
value of the fourth position of #F with respect to b[Al,A2,Aa] (that is, 
the fourth position of #E) is a unit. 

Summarizing, #E (that is, #F with respect to b[Al,A2,Aa]) can be 
found from #F (with respect to b[fJ'/2,/a]) by rearranging the positions of 
#F. For our example we have found above that the value of position 0 
now becomes the value of position 4 in the rearrangement. Similarly 
the rest of the positions are rearranged as in Fig. 13-10. Observe that 

o 1 2 3 4 5 6 7 
r-

:ff:Al o 1 0 1 o 1 0 1 
:ff:Az 0 0 1 1 0 0 1 1 
:ff:Aa 0 0 o 0 1 1 1 1 

:ff:h 1 III 0 0 1 1 
:fI:fz 011 1 0 0 o 0 
:ff:fa o 0 0 1 0 1 1 1 

:ff:F - .- - - 1 - - - =:fI:E 
L-

FIG. 13-9. Array for 11, 12, and 13. 

Position o 1 2 3 4 5 6 7 

:fI:F 110 0 010 1 

~ 
:fI:E 100 1 10 1 1 

FIG. 13-10. Rearrangement of the posi­
tions of #F. 

such a rearrangement can be made with a unitary or pseudopermutation 
matrix [which we call (Rji)], having just 1 unit in each column (see Secs. 
11-10 and 13-5). For our example we have 

#F @ (R;i) = (1100 0101) @ 

0000 1000 
1000 0000 
0000 0000 
0110 0000 

0000 0100 
0000 0011 
0000 0000 
0001 0000 

= (1001 1011) = #E 

Such an R matrix can obviously be found for any other rearrangement 
which might be required and depends only on the form of the functions 
fl(A l,A2,Aa, ... ), f2(A 1,A2,Aa, ... ), etc. 

The Fundamental Equation. In the more general case, where 

F = F(fl, ... ,fJ,Xl, ... ,XK) 

only the variables fl' ... ,fJ are affected. Observe that in a standard 
basis b[fl, ... '/J,Xl, ... ,XK1 the first J rows consist of the stand-
ard basis b[fr, ••• ,jJl repeated 2K times. Thus we can subdivide the 
basis b[fl, ... ,fJ,Xl, . .. ,XK], and consequently #Fl, into 2K ·groups. 
A rearrangement of the columns of bfjl, ••. ,fJ] to correspond to an 
array of the designation numbers of the fl' ... , fJ, such as is shown in 
Fig. 13-9, has the effect of rearranging the bits of #F only within each 
of . these groups. Furthermore, the bits with every group undergo the 
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'same rearrangement. We recall that a unitary matrix such as (R ji ) has 
the effect of rearranging the columns of a matrix which it multiplies on 
the right; i.e., mUltiplying by (Rji ) rearranges the bits within each row of a 
matrix. Thus we form a matrix, called (Fkj) , by folding #F so that its 
group becom~s individual rows, mUltiply by the proper (Rji ) to rearrange 
the bits within the rows, and unfold the resulting matrix to form a new 
number. This number is the required #E, since it represents the neces­
sary rearrangement of #F; thus Eq. (13-32) is justified (see page 420). 

The Fundamental Formulas. The fundamental equation is of course 
a unitary equation, and hence all the results of Sec. 13-5 apply. Sub­
stituting the matrices (Fkj), (Rji), and (Eki) for matrices (akj), (Uji), and 
(bki), respectively, in Eqs. (13-19), (13-21), (13-23), (13-24), (13-26), and 
(13-28), we find the six fundamental formulas of Eq. (13-4). Compari­
son of Secs. 13-3 and 13-5 will show that the solutions toEq. (13-32) 
are the antecedence solutions, and solutions to CFkj) @ (Rji ) = CEki ) [see, 
for example, Eq. (13-21)] are consequence solutions. In the fundamental 
formulas, Eq. (13-4), we have used the subscripts a and c to distinguish 
between the determinations of matrices corresponding to antecedence 
and consequence solutions, which were denoted by the prime, (') and 
asterisk (*) in Sec. 13-5. 

EXERCISES 

(a) Describe the meaning of Eq. (13-25) in terms of the type 2 circuit-design 
problem. 

(b) Describe the meaning of Eq. (13-31) in terms of the type 3 circuit-design 
problem. 

(c) Using the methods of Secs. 13-5 and 13-6, prove the assertions made in Sec. 13-3 
under Properties of the Solutions. 

13-7. Additional Topicst 

a. Operations and Properties of Boolean Matrices. Besides the operation of Boolean 
matrix multiplication defined in Sec. 11-11, we utilize in these chapters two matrix 
relationships (equality and implication), four matrix operations (and, or, not, and 
transposition), and three matrix properties (associativity, product transposition, and 
invariance of implication under multiplication): - - , 

Equality. (Aii) = (Hii) if Aii = Bii in every position. That is, (Ai;) and (Bii) 
have units and zeros in exactly the same positions. 

Implication. (Aii) - (Bi i) if Aii - Bii in every position. That is, (Bii) has 

~riits in'at least'e~ery position in which (Aii) has uni~s,for example,{~~)- (~~). 
As with the designation numbers (Aii) - (Bii) and (Bii ) - (Aii) only if (Aii) = (Bii)' 

And (logical multiplication). (Aii)' (Bii ) = (Cil) means that Cii = Aii . Bii for 
every position. That is, the logical product has units only where (Aii) and (Bii) 

both have units; for example, (~~) '. (~~) = (~~)-
, , 

t The' 'rn:aterial of Additional Topi~ b was d~veloped by William Ruthven Smith 
and James Bruce Wilson, and that of Additional Topics c, d, and e by William Ruthven 
Smith, when they were graduate students of the author's at the George Washington 
University (see W. R. Smith, Master's thesis, June, 1959). 
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Or (logical addition). (Ai;) + (Bi;) = (ai;) means that Ci; = Ai; + Bi; for every 
position. That Ls, the logical sum has units wherever either (Ai;) or (Ri;) or both 

. (01) (01) (01) have umts; for example, 01 + 10 = 11· 

Not (complementation). (Bi;) = (Ai;) means Bij = .• ·t; for every position. 
That is, (Aii) has zeros where (Ai;) has units, units where (Ai;) has zeros, for example, 

(~~) = (~~)- Because of the definition we may write (Ai;) = (iL;) (that is, the 

complement of the matrix equals the matrix of the complements). 
Transposition (denoted here by a superscript T). (Aii)T = (Bii ) means Bii = A;i 

for each value of i and j. That is, the transpo(s~ 10)f T a matrix is formed by inter-

changing its rows with its columns, for example, ~~ = (~~~)-
Notice that equality, implication, and logical multiplication and addition are 

defined only between matrices of the same dimensions. Complementation of a 
matrix results in a matrix of the same dimension, while transposition results in a 
matrix whose width is the former depth and whose depth is the former width. 

The following three properties are easily verified from the definitions of the oper­
ations involved: 

Associativity 

«Ai;) • (Rij» • (Cii) = (Ai;) . «Bii) . (Ci i» = (Ai;) . (Bii) . (Ci;) 
«Aii) + (Bii» + (Cii) = (Aii) + «Ri;) + (Cii» = (Ai;) + (Ri;) + (Cii ) 
«Ahi) @ (Bi i» @ (Clk) = (Ahi) @ «Bii) @ (Cik» = (Ahi) @ (Bii) ~ (Cik) 

Product transposition 

That is, the transpose of the product of matrices is equal to the product of the trans­
poses of the factor matrices, taken in reverse order. 

Invariance of implication under multiplication. If 

and 
then 

(Ai;) -t (Cii) 
(B;k) -t (D;k) 

(Ai;) @ (R ik) -t (Cii) @ (D;k) 

Obviously the implication of the conclusion holds if either implication of the hypothe­
ses is equality. 

References 
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b. Generation of E and F Matrices by Direct M atrix Multiplication. Consider an E 
function of the form 

E(All ..• ,Ar,XI, .. ; ,XK) = P(XI ... ,XK) . Q(A I, ... ,AI) 

It is ciear from the manner in which (Eki ) is formed that in such a case 

(Eki) = (#P)T @ (#Q) 
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For example, if P :c Xl + X2 and Q = AI· A2 + AI· A2, then 

(

0110) 0110 
(1101)T 0 (0110) = 0000 == (E".) 

0110 

In fact, if E = PIQI + P 2Q2 + ... , where Pm = Pm(XI, ••• ,XK ) and Qm = 
Qm(Al, ... , AI), then it follows that 

(
#I)T (#AI. A2 ) (1111)T (0001 0001) 

(E"i) = # Xl ® # ~~2 • A! = 0101 ® 0000 1100 
# X 2 # (AI· A3 + A 2 ) 0011 0111 0011 

(

0001 0001) 
_ 0001 1101 
- 0111 0011 

0111 1111 

as in Sec. 13-2. (Note that the numbers for the functions are formed from 
b[XI, ... ,XK ) and b[AI' ... ,AI), respectively.) 

We can generalize these results. If E = W[S(A,X),T(A,X), ... ), then (Eki) = 
W[(Ski), (Tki ), ... ). That is, if the function E is expressed as a function of sub· 
functions S(A,X), T(A,X), etc., then the matrices for the subfunctions can be 
formed as above and these combined according to the operations of the main function 
to form the matrix for E. For example, consider 

We have 

On a different grouping of the terms, we could have equivalently 

and so forth. 
These results of course also hold for the generation of the F matrix. For example, 

considerF = II ·/3 + XI ·/1·12 + X2 ·/2 ·13. Here 

(F"i) = (: il)T ® (:~: : ~:) = (~~~~)T ® (~~~~ ~~~~) 
# X 2 #/2 . /3 0011 0011 0000 

M in Sec. 13-2. 

(

0000 1010) 
0100 1110 

= 0011 1010 
0111 1110 

c. Finding (R ii ) Directly in Type 3 Problems. From Eq. (13-31) we observe that 
(Rii) = (Rii)a . (Rji)c for problems of type 3. However, the same (Rii) Gan be 
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obtained directly from (Fki) and (Eki) provided that we introduce a new kind of 
matrix-multiplication operation, called the· theta product, defined as follows: (Sii) 
(P ik) e (Qki) if and only if for each position 

For observe that 

. Sii = n (P ik = Qki) 

k 

= Il (P ik . Qki + f>ik . Qki) 
k 

(Rii) = (Rii)a . (Rii)c = (Fki)T 0 (Eki) • (iJ'kj)T 0 (Eki) 

or R;, = L F ik . Eki . L Fik . Eki 
k k 

which by De Morgan's rules becomes 

Rii = Il (Fik + E ki ) . Il (Fik + E ki ) 
k k 

= Il (Fik + E ki ) • (F;k + E ki )· 
k 

= Il (Fik . Eki + F;k . Eki) 
k 

= Il (Fik = Eki) . 
k 

Thus in terms ~f our theta matrix product 

which is the desired result. 

d;·;Pii1:ding (Rii) for a Set of Given Functions fl' ... , Ii by Theta Matrix Multi-
plic~'tio-n:'From the concep.t of typc.\ problems observe that . 

.. .. #il(b[h, ..... . ,iJ]) .0. (Rii) = #fl(A l, ... ,Ar) 

and likewise for 12, .... , iJ . . Hence· 

For example, suppose that 
II = Al . A2 + Al . Aa 
12= Al ·A2 + Al . ..4a 
f3= Al ·A 2 + 12 . Aa 

,AI) are known, 
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Then-with respect to b[Al,A2,Aa] we have 

#/1 = 0100 1110 #12 = 0111 0010 and #13 = 0001 1101 

Substituting into our formula, 

as in Sec. 13-2. 

(

0101 0101)T (0100 
(Rii) = 0011 0011 e 0111 

0000 1111 0001 

000 
100 
010 
110 

1110) 
0010 
1101 

1000 
0000 
0010 
0100 

0000 
0000 
0000 
0010 

e 0111 0010 = 
(

0100 1110) 

001 
101 
011 
111 

0001 1101 0000 0001 
0000 1100 
0001 0000 
0000 0000 

e. All Solutions to the Boolean Matrix Equation. Given the matrix equation 

(aik) (8) (Xki) = (bij) 

-where i = 0, I, ... , I;j = 0,1, ... ,J; and k = 0,1, ... , K-first form 

When (8mj) is interpreted as an R-type matrix, all solutions to the matrix equation 
can be found. For example, consider 

(~~~) (8) (Xki) = (~~) 

(

0101 0101) 
Here k = 0, 1, 2, and hence (b[XO,X1,X2]) = 0011 0011 , that is, just the basis 

0000 1111 
for K + 1 = 3 variables. Thus we have from our formula 

(Smj) = {(~~~) (8) (~~~~ ~~~~)}T e (~~) 
0000 1111 

= (0101 1111)T e (10) 
0011 1111 11 

j 01 

00 m o 00 
10 1 00 
01 2 01 
11 

e (~~) = 
3 10 

11 4 10 
11 5 10 
11 6 10 
11 7 10 
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From (8mi) we write a result array for (Xki), using the basis columns indicated by m: 

j=O j = 1 

k=O 1, 0, 1, 0, 1 0 
k = 1 1, 0, 0, 1, 1 1 
k = 2 0, 1, 1, 1, 1 0 

This gives rise to five matrices, 

GD (m GD GD and GD 
Note that in general m = 0, 1, ... , 2K - l. 

To see why the formula holds, observe that the matrix equation is really equivalent 
to J + 1 sets each of I + 1 equations. The equations forj = 0 are, for example, 

aOO • XOO + aOI • XIO + . . . + aOK . XKO = boo 

alO • Xoo + au . XIO + . . . + alK . XKO = b lO 

aIO . Xoo + all • XIO + .. + aIK • XKO = biO 

Now note that the columns of the basis b[Xo, •• ,XKJ are all possible combinations 
of values that the XOO, XIO, , XKO could possibly take. Thus 

gives the values rOk which the left-hand side of the zeroth equation has when the 
Xoo, XIO, ••• , XKO take on the combination of values given by the kth column of the 
basis. Similarly the values of the left-hand sides of all the equations for each column 
of the basis can be determined from 

Consider the matrix equation 

(i.e., just the first set of equations written out explicitly above). A column vector 
(XkO) that satisfies this equation is simply that basis column corresponding to a 
column of (Rim) identical to the column (biO). Another way of putting this is to 
·form 

and then interpret the row number of a unit in (8mo) as the position of the basis 
column that satisfies the equation and hence is (XkO). Clearly this argument can be 
extended to include all the columns of (b ii), and our formula is proved. 

If .the Booleanmatri~ equation is 

(Xik) ® (aki) = (bii) 
then {(b[X I , ••• ,XKJ)T ® (aki)) 9 (bii)T 
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where the direct interpretation of (8mi) gives (Xki) = (Xik)T. For example, let 

( 010) (000) (X a) ~ 010 = 000 
010 

Then { (
0101)T (01O)} (OOO)T 

(8m i) = 0011 ~ 010 e 000 
010 

= {GD ® (g~g)} e GgD 
i 012 

(
000) (000) m 0(110) = 010 e 001 = 1 001 
010 000 2 001 
010 3 001 

( 001) (000) (001) . Thus (Xki) = 000 ' 001 ' 001 ,or the solutIOns are 



CHAPTER 14 

APPLICATIONS OF MATRIX EQUATIONS 

IN CIRCUIT DESIGN 

14-1. Type 1 Proble~s in Circuitry 

Introduction. In the previous chapter we have described a general 
problem in the logical design of :digital circuitry and have shown how 
to solve it by means of· Boolean matrices. In this present chapter 
we give examples of the applications of that problem under a variety, 
of circumstances. . 

Substitution. We shalL consider: first the solution to the type 1 prob­
lem of Sec. 13-1, with f~ = Al . A2 + Al . A 3, f2 = Al . A2 + Al . A 3, 
and fa = Al . A2 + A2 . A3 and F = 11 . f3 + Xl . fl ·12 + X 2 . f2 ·13. 
If we did not know about our computational method, we would substi­
tute for fI, f2, and f3 in F, obtaining E, 

and try to simplify this result. Or, better yet, we might find the desig­
nation number of E with respect to b[AI,A2,A3,XI,X2] and from this 
find a simple form. However, we can find the designation number of F 
directly without performing the substitution, by using the formula for 
problems of type 1. To illustrate the process, we first find (Rii) cor­
responding to fI, h, and f3. This was done in Sec. 13-2 for the given 
fI, f2, and f3: 

1000 0000 
0000 0000 
0010 0000 
0100 0010 

(R;i) = 
0000 0001 
0000 1100 
0001 0000 
0000 0000 

;448 
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The matrix(F k;) for our F was also found in Sec. 13-2 and is 

(

0000 1010) 
0100 1110 

(Fki) = 0011 1010 

0111 1110 

whence, to find (Eki), we use the formula for type 1 problems, 

1000 0000 
0000 0000 
0010 0000 
0100 0010 

(

0000 1010) 
0100 1110 

(Fki) 0 (Ri') = 0011 1010 0 
0111 1110 0000 

0000 
0001 
1100 
0000 
0000 

0001 
0000 

(

0001 0001) 
_ 0001 1101 
- 0111 0011 = (Eki) 

0111 1111 

From this matrix, 

#E = 0001 0001 0001 1101 0111 0011 0111 1111 

which in Sec. 13-2 was seen to correspond to 

E = AI' A 2 + Xl' A 2 • A 3 + X 2 • (A 1 • A 3 + A 2) 

449 

Often, when it is desired to check E in problems of types 2 and 3, the 
matrices (R ji) and (Fkj) already have been obtained. The formula for 
type 1 problems then becomes a valuable tool, as will be illustrated in 
subsequent sections. 

(a) Let 

EXERCISES 

F(jI,/2,f3,X1,X2) = (jl . X2 + J2 . Xl) . (j3 . Xl + J2 . X2) 
/I = (A 1 + A 2) • A 3 

f2 = (AI' A2 . A3 + Al • A2 . A 3) 
f3 = (A 2 • A 3 + AI' A 2) 

Find E = F(Al,A2,A3,XI,X2). 
(b) Let 

F = II . J2 + f2 . J3 + f3 . Jl 
II = AI' A2 + A2 . A3 
f2 = A 2·A3 +A3·AI 
f3 = A3 . Al + Al . A2 

Find E = F(A I,A2,A a,Xl,X2), 
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14-2. Type 2 Problems in Circuitry 

Constraints. The determination of logical dependence or constraints 
between given elements has been mentioned as a special case of the 
determination of consequence solutions to a type 2 problem. If 
h(Al, ... ,AI), f2(A l, ... ,AI), ... , fJ(A l, ... ,AI) are J given 
functions, the constraint between them is a function C(fl,j2, ... ,fn) 
such that with respect to b[Al, ... ,AI] we have 

C[fl(A l, ... ,AI),j2(A l, ... ,AI), ... ,heAl, ... ,AI)] = I 

Observe the elementary fact that if I ~ WeAl, .. ,AI) then I = W. 
Hence we can write the C as a constraint if 

I ~ C[h(A l, ... ,AI),j2(A l, ... ,AI), .. ,fJ(A l, ... ,AI)] 

Thus the constraint C is found as a consequence solution of type 2 in the 
special case where E is I; it is therefore determined by 

where (Cjk ) is used instead of (Fjk ) to emphasize the special nature of the 
formula. For example, suppose that 

fl = AI· A2 + AI· A3 
f2 = Al . A2 + Al . A3 
f3 = Al . A2 + A2 . A3 

To determine the constraint between fl, f2, and f3, first form (Rji), which 
in this case has been determined in Sec. 13-2. The range of i and j is 
given by the number of elements Ai and functions fil but the range of k 
depends on the particular problem under consideration. In our case let 
k = 0 only, whence we have 

1000 0000 1 l' 
0000 0000 1 0 
0010 0000 1 1 
0100 0010 1 1 

(Rii) 0 (I ik ) = 0 = (eik) 

0000 0001 1 1 
0000 1100 1 1 
0001 0000 1 1 
0000 0000 1 0 

Therefore #C = 1011 1110, and C = (Jl + h) . J.J + (Jl + }2) . f3. This 
method becomes especially useful in problems where only # C is desired 
and where (Rji) may have been determined previously. 

Circuit-design Example. We now proceed with general problems of 
type 2, which often make good use of the special case just described. 

Suppose three circuits with outputs, respectively, Al . A2 + Al . A 3, 
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Al . A2 + Al . A 3, and Al . A2 + A2 . A3 have already been constructed. 
Suppose that it is desired to construct a new circuit with output 

AI' A 2 + Xl' A 2 • A 3 + X 2 • (A 1 • A3 + A 2) 

The problem is to construct the new circuit whose inputs are Xl and X 2 

and the outputs of each of the three circuits already constructed. This 
problem is essentially one of finding the form F(fl,f2,f3,Xl,X2), where 
h = Al . A2 + Al . Aa, f2 = Al . A2 + Al . A a, fa = Al . A2 + A2 . Aa; 
and E(Al,A2,Aa,Xl,X2) = AI' A2 + Xl . A 2· Aa + X 2 • (AI' Aa + A 2) 
are given. For antecedence solutions we have, by the formula,. for prob­
lems of type 2, 

(Rji) ® (Eik) = (Fjk)a 

or, from the examples of Sec. 13-2, 

1000 0000 0000 1111 
0000 0000 0011 0000 
0010 0000 0011 1100 
0100 0010 1111 1100 

(Fik)a = 0 
0000 0001 0101 0000 
0000 1100 0101 1010 
0001 0000 0011 0000 
0000 0000 1111 0000 

[where we recall that (Eik) is the same as (Eki) with the rows and columns 
interchanged]. Hence 

(

0100 1011) 
0100 1111 

CFki)a = 0111 1011 
0111 1111 

or 
#Fa = 0100 1011 0100 1111 0111 1011 0111 1111 

We could now find F with respect to b[il,hJa,X 1,X 2], except that doing 
this would imply that iI, i2, ia, Xl, and X2 are all independent, i.e., that 
no constraint exists between them. However, this is not necessarily 
true: most often iI, f2, and ia are not independent. This constraint with 
respect to b[il,f2,ia,X 1,X 2] is determined by 

1000 0000 1111 1111 
0000 0000 1111 0000 
0010 0000 1111 1111 
0100 0010 1111 1111 

CRii) 0 Clik) = 0 = (Cik) 
0000 0001 1111 1111 
0000 1100 1111 1111 
0001 0000 1111 1111 
0000 0000 1111 0000 
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Hence 

# C = 1011 1110 1011 1110 1011 1110 1011 1110 

Thu~ we must find Fa with respect to the constrained basis bc[fl,f2'/a,X 1,X 2J, 

#h = 001 010 001 010 001 010 001 010 
#h = 011 001 011 001 011 001 011 001 
#13 = 000 111 000 111 000 111 000 111 

#Xl = 000 000 111 111 000 000 111 111 
#X2 = 000 000 000 000 111 111 111 111 
#Fa = 000 101 000 111 011 101 011 111 

This gives Fa = Jl . fa + Xl . /I . J2 + X 2 . f2 . Ja 

However, we are not yet finished, for all we now have is an Fa such that 
Fa ---+ E. To see whether or not Fa (fl,f2,!3,Xl,X2) is E, we must substi­
tutefl(Al,A2,A3),f2(Al,A2,A3), andf3(Al,A2,Aa) into Fa and see whether 
or not #Fa = #E with respect to b[Al,A2,Aa,Xl,X2]. Hence we form 

1000 0000 
0000 0000 

(0100 1011) 
0010 0000 COl 000) 0100 1111 0 
0100 0010 0001 1101 

(Fki) 0 (Rii) = 0111 1011 
0000 0001 

= 0111 0011 = (Fki)a 

0111 1111 0000 1100 
0111 1111 

0001 0000 
0000 0000 

Hence 
0001 1101 

(

0001 0001) 

(Fki)a = 0111 0011 = (Eki) 

0111 1111 

as desired. In this example Fa is truly the desired solution, that is, 
Fa = E. 

Further Discussion. Whether Fa = E or not is determined in most 
cases by means of the type 1 formulas. Consider the circumstances 
where Fa ~ E. In such a case, since Fa ---+ E, we can always find by 
inspection a function WeAl, ... ,Ar,Xl, ... ,XK):such thatF + W = E. 
Similarly if Fe ~ E, then since E ---+ Fe, we can always find by inspection 
a function VeAl, ... ,Ar,Xl, ... ,XK) such that Fe' V = E. The 
problem in each of these cases reduces to choosing from all possible func­
tions W (or V) the one that best suits the particular situation in question. 
In any case, before determining F explicitly, any constraint that exists 
between the fs must be calculated by means of the formula given at the 
beginning of this section; then F is determined with respect to the 
constrained basis bc[fl, .•. ,fJ, Xl, ... ,XK]. 
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EXERCISES 

Draw the logical circuit diagrams for all results. 
(a) Suppose that two circuits have already been constructed with outputs 

Al . A2 + ... L . A2 and Al . A2 + Al . A 2. The problem is to connect these circuits 
so that the following output will result: 

E = Al . A2 • (Xl + X 2) + Al • (A2 • Xl + A2 . Xl) + AI' A2 . Xl . X2 

Solution. #Fa(A I ,A2,Xh X 2) = 0110 1001 0000 1001, while #E(A I ,A2,XI ,X2) 
0110 1001 0011 1001, whence Fa;:e E. A function W can be found so that 
Fa + W = E. One W evidently is such that # W = 0000 0000 0011 0000. To 
determine Fa explicitly as F(ft,hX I ,X2), find the constraints between 11 and 12, and 
then with respect to the constrained basis bc[fI,!2,X I ,X2] we have 

Fa + W = 11' XI + 12' Xl' X2 + A 2 • Xl' X 2 = E 
~ --.....--

Fa W 

(b) Consider Exercise a, but this time find the consequence solution Fe. 
Solution. #Fc(AI,A2,XI,X2) = 0110 1001 1111 1001, whence Fe ;:e E. An appro­

priate V is V = A2 + Xl + X2 (that is, # V = 1111 1111 0011 1111), whence 
F . V = (ft . (Xl + X 2) + 12' Xl) . (A2 + Xl + X2) = E. 

14-3. Type 3 Problems in Circuitry 

Five Examples. In this section five examples will be given. The first 
example illustrates a normally complicated situation; the second con­
siders the case when solutions cannot be obtained such that F = E; the 
third illustrates the situation in which many solutions turn up and addi­
tional criteria are required; the fourth considers the case when no solu­
tions exist; the fifth illustrates how solutions may be obtained that involve 
only certain specified elementary elements. 

The First Example. Suppose that a circuit F has been constructed 
with inputs JI, J2, Xl, and X 2 such that its output Boolean function is 
given by 

F = JI . J2 . X2 + JI . J2 . X2 + JI . J2(XI . X2 + Xl' X 2)·+ Jl . J2' Xl . X2 

It is desired to produce, by attaching additional circuits to the JI and J2 
inputs of this F circuit, the following output result: 

E = (AI' Aa + A2' Aa) . Xl . X2 + (AI' Aa + Al . A2) . Xl . X2 

+ (AI' Aa + A2 . A 3) . Xl . X2 

+ (AI' A2 . A3 + Al . A2 . A 3) . Xl . X2 

The problem is to design the two circuits, with inputs AI, A 2, and A 3, 
whose outputs should be connected to !I and J2, respectively. The 
first step in the solution is to find the sets of antecedence solutions 
!I(A I,A2,A3), J2(AI,A2,A3). Then Fa(JI(AI,A2,A3),f2(AI,A2,A3),XI,X2) 
-t E. The next step is to find the sets of consequence solutions; then 
E -t Fc. Now, for those sets of solutions that are both antecedence and 



454 FOUNDATIONS FOR LOGICAL DESIGN [CHAP, 14 

consequence solutions, F = E, and hence these will be the desired solu­
tions from which the circuits can be designed, 

With respect to b[AI,A2,As,XI,X2], 

#E = 1010 1100 1011 0001 0101 0011 

i 0123 4567 0123 4567 0123 4567 
k 0 1 2 

C
IO 1100) 

whence 1011 0001 
(Eki) = 0101 0011 

0100 0010 

Next, with respect to b[II,!2,XI,X2], 

whence 

#F = 1001 1010 0110 0100 

j 0123 0123 0123 0123 
k 0 1 2 3 

(

1100) 0011 
(Fik) = 0110 

1000 

For antecedence solutions 

0100 0010 

0123 4567 
3 

-, (~~~~) (g~g~ ~~~~) (~~~~ ~~~~) -
(Fik) ® (Eki) = 0110 ® 1010 1100 - 1110 1110 = (Rii)a 

1000 1011 1101 0101 0011 

and therefore 

Hence 

i 0 
----

#/1 0,1 
#/2 0, 1 

0123 

(

1010 
0100 

(Rii)a = 0001 

1010 

4567 

0000) 0010 
0001 
1100 

RESULT ARRAY 

1 2 3 4 5 
----------

1 0, 1 0 1 1 
0 0, 1 1 1 1 

6 7 
----

1 0 
0 1 

There are four antecedence solutions: 

11 = Al ' .12 + Al ' As 
11 = Al ' .12 + Al ' As + Al ' A2 

I2=A I 'A 2+A2,Aa 
12 = Al ' A2 + .12 ' A3 + A2 ' As 
12 = Al ' A2 + A2 ' A3 + Al ' A2 11 = A2 + Al ' As 

/1 = Al + A2 J2 = Al ' A2 + .12 ' As + Al ' A2 + A2 ' Ai> 
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For the consequence solutions we have 

(I' ik) ~ (Eki) = (m~) ~ (m! ~~~!) = (!m 
0111 0100 0010 1111 

0011) 1101 -
1110 = (Rii)c 

0011 

(

CD 0 CD 0 1 1 0 0) 
OCDOO OOCDO 

(Rji)c = 0 0 0 CD 0 0 0 CD 
0000 CDCDOO 

In order to obtain those solutions which are both consequence and 
antecedence solutions, we encircle those units which are common with the 
antecedence (Rji)a matrix. This solution is the common one: 

RESULT ARRAY 

i 0 1 2 3 4 5 6 7 
- - - - - - - - -

#f1 0 1 0 0 1 1 1 0 it = Al . A2 + Al . A3 
#/2 0 0 0 1 1 1 0 1 or f2 = Al . A2 + A2 . As 

The desired circuits are therefore as in Fig. 14-1. 

Ai A2 Aa Ai A2 Aa 
---, r-- --I 

I I I 
I I I 
I I I 
1 I I 
I I I 
I I I I I I I 
I I I 

I I I I 
I I I 
I L _____ I 

-------' 
_____ ..1 

i i 

r1fJ 
h. 

I I 

E 
FIG. 14-1. Solution to the first example. 

The Second Example. Suppose that E were the same as in the previous 
example, but that the circuit F had been constructed slightly different, 
as follows: 

F = il . i2' (Xl + X2) + il . i2 . X2 + il . i2 . (Xl' X2 + Xl . X 2) 
+ il . i2 . Xl' X2 
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Weare to construct an il and an i2, as in the previous example. The 
antecedence solutions would be 

(

0000 0000) 
0100 0010 

(Rii)a = 0001 0001 

1010 1100 

And for consequence solutions we would have 

0100 0010 

(

1011 1101) 

(Rii)c = 0001 0001 

0000 1100 

Comparing the units of the antecedence and consequence R matrices, 
we see that since there are no common units in columns 0 and 2 there 
are no solutions that are both antecedence and consequence solutions. 
This means that no set of input functions il(A 1,A 2,A 3) and j2(A 1,A 2,A 3) 

will make the output of F = E. We can only have Fa ~ E for ante­
cedence sets of solutions and E ~ Fe for consequence sets of solutions. 
However, we can always find a W such that, if Fa ~ E, then Fa + W = E, 
or some V such that, if E ~ Fe, then Fe . V = E. 

Since there is only one set of antecedence solutions, let us consider 
this case first. By the formula for type 1 problems we find #Fa with 
respect to b[Al,A2,A3,Xl,X2]: 

8 10 

#Fa = 1010 1100 0001 0001 0101 0011 0100 0010 

We compare this with #E: 

#E = 1010 1100 1011 0001 0101 0011 0100 0010 

We note first that #Fa does indeed imply #E, as expected, and that 
#Fa differs from #E in that #Fa is missing 2 units, in positions 8 and 10. 
In order that Fa + W = E, W must be chosen so as to contribute these 
units. We could solve for W, but it can be easily obtained by inspection. 
Let W = AI· A3 • X2, 

1010 0000 1010 0000 0000 0000 0000 0000 

Now #Fa + #W = #E, as is easily seen. Hence our final circuits will 
be as in Fig. 14-2. 

Similarly, we can choose one of the nontrivial consequence solutions iI, 
i2 and determine some V such that F· V = E. [Note from the conse­
quence (Rji)c that there are 16 possible solutions, i.e., four columns have 
2 units each.] Suppose that.it is desired to choose a nontrivial conse­
quence solution and determine the circuits for it, i2, and V. For exam-
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I 
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I 

_--1 

Al A2 
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I 
I 
I 
J 
I 
I. 
1 
I 
I L ____ ...,._ 

A3 --, 
I 
I 

,......a---'--, I 
I 
I 
I 
I 
I _______ J 

Al A3 X2 

E 

-, 
I 
I 
I 
I 
I 
I L ______ .l 

FIG. 14-2. Solution to the second example. 

pIe, choose the nontrivial solution corresponding to 

This gives 

#F(AI,A2,A3,Xl,X2) 

(

1011 0001) 
0100 0010 

(Rji) = 0000 0000 

0000 1100 

3 7 16 18 

457 

= 1011 1101 1011 0001 1111 0011 0100 0010 

On comparing this with #E we see that V must change the units in 
positions 3, 7, 16, and 18 to zeros. Hence we can have 

V = (AI + A2 + Xl + X 2) . (AI + A3 + Xl + X2) 

by inspection. 
Too Many Solutions. It sometimes happens that there are many ante­

cedence or consequence solutions. This merely means that additional 
criteria are needed to choose the desired solution. Such criteria are 
often that the desired solutions be both antecedence and consequence 
solutions (so that E = F), that the set of functions of the solution be as 
simple as possible, that the set be independent, that the set satisfy some 
given constraints, etc. These additional criteria will quickly reduce the 
number of allowable solutions. This is actually an exceedingly interest-
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ing point, for here the mathematics is essentially disclosing whether or 
not the original formulation of the problem was adequately precise. 

In order to illustrate these points, let us first solve the type 3 problem 
that was given in Sec. 13-1. [We determined (Eki) and (Fjk ) in Sec. 13-2.] 
To find the antecedence solutions using the formula for type 3 problems, 
find 

i 0123 4567 

j 0 1111 1111 
1 0001 1101 
2 0111 0011 
3 0111 0011 

(Rii)a = 
4 0001 0001 
5 0001 1101 
6 0001 0001 
7 1111 1111 

Hence there are 2 X 4 X 4 X 8 X 4 X 4 X 4 X 8 = 131,072 sets of solu­
tions. 

This seems to be a large number of possible solutions, but after all 
it was narrowed down from the 88 = 16,777,216 total possible sets of 
three functions of three variables! However, we are interested in solu­
tions such that F = E, and our antecedence solutions assure us only that 
Fa ---7 E. Therefore let us find the consequence solutions such that 
E ---7 Fe, and then any solutions that turn out to be both antecedence and 
consequence solutions will satisfy F = E. For consequence solutions we 
have, upon substitution in the formula for type 3 problems, 

CDOOO o 0 0 0 
1 0 0 0 CD CD 0 0 
1 CD CD 0 o 0 CDO 
1 CD CD 0 OOCDO 

(Rii)c = 

1 1 1 CD 1 1 1 CD 
1 0 0 0 CD CD 0 0 
1 1 1 CD 1 1 1 CD 
CDOOO 000 0 

Comparing the antecedence (Rji)a with this consequence (Rji)c, we note 
that they have in common only the units circled above; hence only 
solutions corresponding to these units will be both antecedence and 
consequence solutions as desired. Filling in for the common units only, 
we find the result array: 

i 0 1 2 3 4 5 6 7 
-----------------~ ---

#jl(Ax,A 2,Aa) 0, 1 0, 1 0,1 0,0 1, 1 1, 1 0, 1 0, 0 
#j2(A 1,A 2,A a) 0, 1 1, 1 1, 1 0, 1 0,0 0,0 1, 1 0, 1 
#ja(A 1,A 2,Aa) 0, 1 0, 0 0,0 1, 1 0, 1 0, 1 0, 0 1, 1 
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Thus the number of desired solutions has been reduced from 131,072 to 
2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 = 256 solutions, but there are still too 
many. Hence we can add another criterion to our desired solution, e.g., 
that it be as simple as possible. In passing, note that one set of valid 
solutions is that given in Sec. 13-1 [see the discussion of matrix (Rji) in 
Sec. 13~2]. 

To choose a simple solution from the 256 possible solutions, let us see 
whether or not any set of solutions has an elementary element as one 
of the functions. It is clear that f2 cannot be expressed as an elementary 
element or its bar, for in #f2(A I,A2,Aa) positions 1 and 2 must both be 
units and therefore f2 cannot be AI, 1 1, A 2, or 1 2 ; and since position 5 
must be a zero and 6 must be a unit, /2 cannot be A3 or la. Similar 
reasoning shows also that f3 cannot be so expressed. However, note that 
fl can be chosen to be an elementary element, namely, 1 2 • Throwing 
away solutions not involving fl = 1 2, we have the result array: 

i 0 1 2 3 4 5 6 7 
------------

#jl(A 1,A 2,A 3) 1 1 0 0 1 1 0 0 = #A~ 
#j2(A 1,A2,A3) 1 1 1 0, 1 0 0 1 0, 1 
#j3(A 1,A 2,A3) 1 0 0 1 0, l' 0, 1 0 1 

But this array still gives a choice of 2 X 2 X 2 X 2 = 16 sets of solu­
tions, because of columns 3, 4, 5, and 7. Let us try to choose f2 as simple 
as possible. From the elimination pairs of Al it is clear that f2 can be 
chosen not to involve AI. Then 

Note also that fa can be chosen so as to eliminate Aa: 

#!a = 1001 1001 = #[A I . A2 + 11 . 1 2] 

Hence a simple set of solutions is given by the array: 

i 0 1 2 3 4 5 6 7 
- - - - - - -

#ft(A 1,A 2,A 3) 1 1 0 0 1 1 0 0 = #A2 
#j2(A 1,A 2,A 3) 1 1 1 1 0 0 1 1 = #[A2 + A3] 
#ja(Al,A2,A3) 1 0 0 1 1 0 0 1 = # [A 1 • A 2 + AI· A 2] 

The three desired circuits are shown in Fig. 14-3. 
No Solutions. It can happen that antecedence or consequence solu­

tions do not exist. For example, suppose that it is desired to find a 
function fl(A I,A2) such that, if the output of its circuit is connected to 
the input of another circuit F whose output is fl . Xl + J1 . Xl, the total 
resulting output E will be 11 .12 + 1 1. Xl + 1 2 • Xl. Let us start by 
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A2 
r-- --, 
I I 
I I 
I I 
I I 
I I 
L_ :-_.J 

r­
I 
I 
I 
I 
I I 
I I L ____ -J 

Al A2 
r- ---, 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I L _______ ~ __ .J 

f3 

FIG. 14-3. Solution to the third example. 

trying for antecedence solutions: 

#!t = 0101 #A t = 0101 0101 
#A 2 = 0011 0011 
# Xl = 0000 1111 

#XI = 0011 

#F = #[/1 . Xl + 11' Xd = 1001 

#E=#[AI·A2+.t!t,Xl+A2,XI] = 1100 1010 

whence (E.,) ~ G~m 
Substituting in the antecedence formulas, 

(F;k) ® (E,,) ~ (m ® (~~~D ~ (~~~D ~ (il;;), 

whence (R;;), ~ G~~~) 
To interpret (Rji), we have 

RESULT ARRAY 

i 0 1 2 3 
----------

#!t 0, 1 0 1 None 

Hence no antecedence solution exists. The condition for the existence 
of a solution is computed (see "Type 3 Problems" in Sec. 13-3) by 

(V;) ® (R;;) ~ (11) ® G~~~) = (lllO) 

to be interpreted with respect to b[A I,A 2]: #AI = 0101, #A2 = 0011. 
Hence 1110 = #[AI + A2]' In order to have an antecedence solution, 
the signals on wires Al and A2 must satisfy Al ~ A 2 ; that is, if a unit 
signal level appears on wire AI, then a zero signal level must appear on 
wire A 2• Suppose that this were actually the case. To find the ante-
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cedence solution, we note that bc[A 1,A 2,X d becomes 

#A 1 =01O 010 
#A 2 =001001 
#Xl = 000 111 

whence 

and ( 110) (Eki) = 101 

Then 

( 10) (001) (001) -01 0 010 = 010 = (Rji)a and 

This gives the result array: 

o 2 

#f 0, 1· 0 1 

which, interpreted in terms of the constrained basis bc[A 1,A 2] 

#Al = 010 

becomes 
or 

#A2 = 001 

#/1 = 001 = #A2 
#/1 = 101 = #Al 

461 

which gives two alternatives for the desired solution. However, it 
can be observed that these solutions make Fa ~ E, but F ~ E. 

Specifying the Variables. Suppose that it is desired to find consequence 
solutions of 

E = A . (B . C + B . D) + A . (j . (B . [) + B . D) 

that do not involve C. In other words, we want to determine all F 
such that E ~ F does not involve C. To do this, we rename our ele­
mentary elements A, B, C, and D as A 1, A 2, Xl, and A 3, respectively. 
Then we find consequence solutions of type 3 for E, where F is simply fl. 
Thus 

#E = #[A 1 • (A2 . Xl + A2 . A 3) + A1 . Xl . (A2 . A3 + A2 . A 3)] 
= 0010 1001 0100 0101 

and #F = #f1 = 0101 with respect to b[f1,Xtl. Hence 

and 

- (11) (0010 1001) (0110 1101) -
(Fjk) 0 (Eki) = 00 0 0100 0101 = 0000 0000 = (Rji) 

(
1001 0010) 

(Rji) = 1111 1111 
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and hence there are eight solutions.: 

RESULT ARRAY 

i 0 1 2 3 4 5 6 7 
------------------

f 0, 1 1 1 0, 1 1 1 0, 1 1 

Three simple nontrivial solutions are 

and 

Al + A2 + A3 = A + B + D 
Al + A2 + A3 = A + B + D 
Al + A2 + A3 = A + B + tJ 

EXERCISES 

Suppose that the circuit F has already been constructed and that it is desired to 
construct a circuit with output E. How should the circuits fl' f2' and fa be 
constructed? 

(a) F = (fl + fa) . Xl' X 2 • Xa + fa' Xl' X 2 • Xa + (f2 + fa) . Xl' X 2 • Xa 
+ fl' Xl . X 2 • Xa + fa' Xl' X 2 · Xa + fl' f2' Xl . X 2 · Xa 
+ h . Xl . X 2 • Xa + (f3 + f2 . it) . Xl . X 2 • Xa. 

E = «AI + A 2) . A3 + A3 . (AI' A2 + Al . A 2)) . Xl . X 2 • Xa 
+ (A 2 • A 3 + AI' A 2 • A 3) • Xl' X 2 • X a 
+ «AI + A 2) . A3 + Aa . AI) . Xl . X 2 • Xa 
+ (AI' A2 . A3 + Aa . (AI' A2 + Al . A 2)) . Xl . X 2 • Xa 
+ (A2 . Aa + Al . A2 . A 3) . Xl . X 2 • X3 + Al . A2 . A3 . XI . X 2 • Xa 
+ (AI' A2 . A3 + Al . Aa) . Xl . X 2 • X3 + A2 . XI . X 2 • X 3. 

Solution. fl = AI' A 2 • As + As' (AI' A2 + Al . A 2),f2 = AI' A 2 · A3 + AI' Aa 
f3 = A 2 • Aa. I 

(b) F = Xl . fl . h . ia + Xl . it . i2 . i3 + il . h . f3. 
E = Xl . X 2 • (Aa . (AI' A2 + AI' A 2) + Aa . (AI' A2 + Al . A 2)) + Xl' X2· Al 

+ Xl . X 2 • (Aa . (AI + A 2) + A3 . (AI + A2)) 
+ Xl . X 2 • (Aa . (AI' A2 + AI' A 2) + Al . A2 . A3). 

(c) F = Xl . X 2 • (f2 . i3 + it . i2 . f3) + XI . X 2 • (Jl . f2 . i3 + f3 . (Jl + f2)) 
+ Xl . X 2 · (fl' i2 . J~ + J2 . f3) + XI . X 2 • (Jl . J2' J3 + fl' h)· 

E = XI . X 2 • (AI' A2 . A3 + A2 . A 3) 
+ Xl . X 2 • (AI' A2 . A3 + A3 . (AI' A2 + AI' A 2)) 
+ Xl . X 2 • (A3 . (AI' A2 + Al . A 2) + A3 . A2 .... L) 
+ Xl . X 2 • (A3 . A2 . Al + A3 . (AI' A2 + Al . A 2)). 

14-4. Constraints in the Problems 

The Introduction of Constraints. There are four possible ways in which 
constraints can appear in antecedence and consequence problems. There 
may be logical dependence among the AI, . . . , AI themselves, among 
the Xl, ... ,XK , among thefl' ... ,fJ, or between the AI, ... , AI 
and the Xl, ... ,XK • In this section we consider how the first three 
such constraints affect the formation of the matrices; the fourth will be 
considered in the next· section. 
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Constraints in the E and F Matrices. If constraints occur between the 
AI, ... , Ar themselves, then in b[A l, ... ,Ar,XI, ... ,XK] some 
columns of index i will be omitted. The corresponding columns of (Eki) 

will also be omitted. Similarly, if some constraints occur between the 
Xl, ... , X K, in b[Al, ... ,Ar,Xl, ... ,XK] some columns of index k 
will be omitted; the corresponding rows of (Eki) will also be omitted. 
For example, suppose that the logical dependence between AI, A 2, and 
A3 is given by Al = A2 + A3 and A2 = Al + A 3. Suppose also that 
the logical dependence between Xl and X 2 is such that X 1 ~ X 2. Then 
from the normal b[AI,A2,A3,XI,X2] we have 

#A1 = 0101 0101 0101 0101 0101 0101 0101 0101 
#A2 = 0011 0011 0011 0011 0011 0011 0011 0111 
#A3 = 0000 1111 0000 1111 0000 1111 0000 1111 
#X1 = 0000 0000 1111 1111 0000 0000 1111 1111 
#X2 = 0000 0000 0000 0000 1111 1111 1111 1111 

#[(A1 = A2 + A 3) . (..4 2 = A1 + A 3)] 
= 0110 1000 0110 1000 0110 1000 0110 1000 

# (Xl + X 2) = 1111 1111 0000 0000 1111 1111 1111 1111 
II # (constraints) = 0110 1000 0000 0000 0110 1000 0110 1000 

i 0123 4567 0123 4567 0123 4567 0123 4567 
k 0 1 2 3 

Hence the constrained basis bc[A I,A 2,A 3,X 1,X 2] becomes 

#A1 = 100 100 100 
#A2 = 010 010 010 
#A3 = 001 001 001 
#X1 = 000 000 111 
#X2 = 000 111 111 

i 124 124 124 
k 0 2 3 

Now suppose that E = AI' A2 + Xl . A2 . A3 + X2 . (AI' Aa + A 2), as 
in Sec. 13-2. Then with respect to bc[A1,A2,Aa,XI,X2] 

#E = 000 110 111 and 
(

000) (Eki ) = 110 
111 

In general we can say that, if the constraints between AI, ... , Ar are 
such that bc[AI, ... ,Ar] has u columns and between Xl, ... , X K 
such that bc[X1, ••• ,XK] has v columns, then the designation number 
of E with respect to bc[AI, ... ,Ar,XI, ... ,XK] is divided into v parts 
each of u positions; the successive parts form the successive rows of 
(Eki). 

We have a similar situation when considering (Fkj). For example, 
suppose that the logical dependence between iI, f2, and f3 is such that 
J1 = f2 + f3 andJ2 = f1 + f3 and between Xl and X2 such that Xl ~ X 2• 
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#f1 = 100 100 100 
#f2 = 010 010 010 
#fa = 001 001 001 

#X1 = 000 000 111 
#X2 = 000 111 111 

[CHAP. 14 

If F = J1 . fa + Xl . f1 . J2 + X 2 . f2 . Ja as in Sec. 13-2, then with respect 
to bc[fI,f2,!a,XI,X2] we have 

#F = 001 011 111 and 
(

001) 
(Fkj) = 011 

111 

Constraints in the R Matrix. Consider next the effect of constraints on 
matrix (Rji). Suppose fl = Al . A2 + Al . A a, h = Al . A2 + Al . A a, 
and f3 = Al . A2 + A2 . A 3, as in Sec. 13-2. Then by Sec. 14-2 the 
constraint betweenf1, f2, andf3 is given (for k = 0, 1,2, and 3) by 

1 
o 
1 
1 

1 
1 
1 
o 

With respect to b[f1,f2,!3] we have #C = 1011 1110, and be [f1,!2,!3] 
becomes 

#fl = 001 010 
#f2 = 011 001 
#f3 = 000 111 

Now suppose that in addition Al = A2 + A3 and 12 = Al + Aa; then 
bc[Al,A2,Aa] becomes 

#Al = 100 
#A2 = 010 
#Aa = 001 

Now we can determine (Rji ) with the constraints, for with respect to 
bc[Al,A2,Aa] we have 

i 124 

j 0 000 
2 010 

#iI = 101 3 100 
#/2 = 110 whence (R;/) = 
#/3 = 001 4 000 

5 001 
6 000 
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Note that introducing a constraint on the AI, A 2, A3 in turn:introdu'ce'd 
an additional constraint on !1, !2, !3, for 

000 0 
010 1 
100 1 

(ei) = (Rii) ® (Ii) = ®(D= 
000 0 
001 1 
000 0 

or with respect to bc[f1,!2,!3] we have #C =,:011 010. Hence bcc[!1,!2,!3] 
(where the subscript cc indicates the double constraint) becomes 

#!1 = 101 
#!2 = 110 
#!3 = 001 

i 124 

j 2 (010) whence (Rji) = 3 100 
, 5 001 

where the indices given for i and j refer to the- unconstrained bases. 

EXERCISES 

Consider the situation where the constraints bet\veen' AI, A 2, and Aa are Al = 
A2 + Aa and ..42 = Al + Aa. ,Let the constraint between Xl and X 2 be Xl -7 X 2• 

Let /t(A l,A2,Aa), f2(A),A 2,Aa), and fa(A l,A2,A3) be the same as used above (i.e., the 
same as in Sec. 13-2). Under these circumstances: 

(a) Find bcc[/t,hfa,Xl ,X2]. 

(b) Find bc[Al,A2,A3,Xl,X2] and bc[A l,A2,A 3]. 
(c) Let F = 11 . f3 + Xl . fl ·12 + X 2 • f2 .]a, and find E, using the type 1 formula. 

,(d) Let E = Al . A2 + Xl . A2 . Aa + X 2 . (AI' ..43 + A 2) as in Sec. 13-2.' Using 
the f. given above, find F(ft,hfa,X l ,X2) such that F = E. ' 
" (e) Let F be as in Exercise c and E be as in Exercise dj determine it, f2, and fa such 
that F = E. 

14-5. Ordinary Equations 

The Problem. The methods discussed in the previous section 'for tak':' 
ing account of constraints in circuit-design problems "are relatiyely 
straightforward. In all the cases discussed the AI, . : . , A! a~d t~e 
Xl, . . . , X K were independent of each other even though there' may 
have been some logical dependence among the AI, ... , A! themselves 
and among the Xl, . . . , X K themselves. 'In this section we sha1l 
investigate problems where there is a logical dependence between the 
AI, ... , A! and the Xl, ... , X K.' ' 

. First it must be noticed that if we tried to form (Eki) with respect to: 
bc[A1, ... ,A1,X1, ... ,XK ], where the constraint is between the A's 
and X's, the matrix would not be rectangular, i.e., some of the elements 
would be missing-and we shall not consider nonrectangular matrices. 
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For example, suppose that Al ~ Xl and Xl . X 2 ~ A 2• Let 

E = A I • A 2 + X I • A 2 + X 2 • (A I + A 2) 

with respect to bc[AI,A2,XI,X2], 

#Al = 00 0101 00 01 
#A2 = 01 0011 01 11 
#Xl = 00 1111 00 11 
#X2 = 00 0000 11 11 
#E = 00 1101 01 11 

i 01 0123 01 23 
k 0 1 2 3 

(E,;) ~ (!~::) 

[CHAP. 14 

which is not rectangular and has no meaning for us. In fact a little 
reflection will show that the whole meaning of problems of types 1, 2, 
and 3 vanishes if we let Xs = Xs(AI, ... ,Ar) directly. Hence let us 
consider in more detail the kinds of problems that can occur where 
Xs = Xs(AI, ... ,Ar). 

If there is some relation between the AI, ... ,Ar and Xl, ... ,XK, 
then the problem can be interpreted in terms of the problem of the 
solution to ordinary equations as considered in Chap. 12. In general 
these problems involve a function E'(A I , ••• ,Ar,XI , ... ,XK ) which 
is to be a tautology, i.e., always true, when appropriate functions 

Xs = Xs(AI, ... ,Ar) 

are substituted into E'. Two questions may arise concerning these prob­
lems: (1) Can XI(A I , ••• ,Ar) be found which when substituted into 
a given E' will make E' a tautology? (2) Can an E' be found such that, 
when given functions XI(A I, ... ,Ar), ... , XK(A I, ... ,Ar) are 
substituted into it, it becomes a tautology? These are essentially inverse 
problems to each other. The first question was really considered first 
in Chap. 12, where the function F was usually of the form of a Boolean 
equation, 

H(AI, ..• ,Ar,XI, ... ,XK) = G(AI, ... ,Ar,XI, ... ,XK) 

For simultaneous equations the function E' is simply the product of 
the given Boolean equations. The second question, however, was not 
considered previously. In this section we shall present methods for the 
solution of both of these equations in terms of Boolean matrices. 

Ordinary Equations as an Antecedence-solution Problem. In order to 
recast the solution-to-equations problem into the types of problems 
considered in this chapter, note that we either are given or desire to find 
functions 
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Hence let X, = fB(A l , ... ,AI)' Then we desire that these solutions 
make E a tautology, i.e., make E = I. In other words, we want 

([Xl = fl(Al, ... ,AI)]' [X2 = f2(A l , ... ,AI)] ... 
[XK = fK(A I , ••• ,AI)]} 

~ {E'(A I , ••• ,AI,XI , ••• ,XK) = I} 

Hence our questions simply relate to antecedence solutions of the form 
F = [(Xl = fl) . (X2 = il) ... (XK = fK)] of E = [E' = I]. Question 
1 becomes an antecedence-solution problem of type 3, and question 2 
becomes an antecedence-solution problem of type 1. 

Two observations should be made: First recall that #(E' = I) = #E', 
and hence the Boolean equation E' itself is the function E. Second, 
observe that the form of F is known. In this case it turns out that 
(Fkj) is a matrix with units on the diagonal and zeros elsewhere. For 
consider F = [(Xl = fl) . (X2 = f2)], 

# (Xl = II) = 1010 0101 1010 0101 
# (X2 = h) = 1000 0100 0010 0001 

#F = 1000 0100 0010 0001 and 
(

1000) 
(F. ) = 0100 

lk 0010 
0001 

This is an important observation, for if we denote such a diagonal matrix 
by (Ijk ), it is easy to see that for any Boolean matrix (akj) 

(Ijk ) ® (akj) = (akj) 

In other words, mUltiplying a matrix by (Ijk) results in the same original 
matrix. Thus, in finding antecedence solutions for type 3 problems 
with this F, 

or 

Hence the matrix multiplication need never be performed, the (Rji) being 
found directly as the (Eki). A similar situation occurs for antecedence 
solutions for type 1 problems with this F, where the (Eki) matrix is found 
directly as the (Rji) matrix. 

1. Solul'£on to Equations. Here the equation E is given, and the 
problem is to find solutions X8 = X 8 (A I , ••• ,AI)' As an example, 
consider the equation E to be 

(AI + A 2) . Xl' X2 + (AI + A 2) . X2 = AI' A2 + AI' A2 

A quick method for finding #E is first to find #H and #G, t and then to 
note that #E has units in those positions where the corresponding bits of 
#H and #G are both zero or both units; the #E has zeros elsewhere. 
Thus 

# (Al + A 2) • Xl . X 2 + (Al + A 2) • X 2 = 0000 0111 1110 1110 
#Al . A2 + Al . A2 = 1001 1001 1001 1001 

# E = 0110 0001 1000 1000 

t Recall that Hand G are the left- and right-hand sides of the equation, respectively. 
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0001 . . (0110) 
Thus (Eki) = (Rji) = 1000' and the result array becomes 

1000 

i 0 1 
------

#h 0, 1 0 
#/2 1, 1 0 

whence Xl = fl = Al . A2 
or Xl = It = AI' A 2 + AI' A2 

2 3 
----

0 
0 

1 
0 

X 2 = f2 = Al . A2 
X 2 = f2 = Al . A2 

[CHAP. 14 

Summarizing, to find solutions to the equation E, (1) form #E and then 
(Eki), and (2) note that (Eki) = (Rji), whence the solutions follow from 
(Rji). 

2. Inverse Solution to Equations. Here the functions 

Xs = fs(A 1, ... ,AI) 

are given, and the problem is to find an equation E. For example, given 

Xl = Al . (A2 . A3 . + A2 . A 3) + Al . 12 . A3 = 11 
X 2 = A 3 • (A 1 + A 2) + 11 . A 2 . A 3 = 12 

what single equation has Xl and X 2 as solutions? To determine (Rji), 
find, with respect to b[A 1,A2,A 3], 

#fl = 1000 0110 1000 0110 
(

0000 0001) 

#/2 = 0111 1000 whence (R ji ) = (Eki) = .0111 1000 

0000 0000 

an<;l #E = 0000 0001 1000 0110 0111 1000 0000 0000 

However, note that, if E' is an equation such that E -7 E', then the 
solutions to E are also solutions to E'. This allows us the opportunity 
of choosing a more desirable E' for our equation . 

. To determine a good E', let us choose E' of the form 

H(Al,A2,A3,X1,X2) = G(A1,A2,A3) 

which is a form often found in circuit-design problems. Let us choose 
G explicitly to be Al . A2 + Al . A3 + A2 . A3 + A2 . A 3• With respect 
to b[A1,A2,A3,X1,X2] we have 

#E = 0000 0001 1000 0110 
#G = 0111 1101 0111 1101 

0111 1000 0000 0000 
0111 1101 0111 1101 

We determine H so that #E = #(G = H): 

#H ~'1000 0011 0000 0100 1111 1010 1000 0010 

That is, the bit of #H is the same as the corresponding bit in #G if #E 
has ~ u.nit in that position; in positions where #E has a zero, the cor-
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responding bit in #H is different from that in #G. However, this H 
is too complicated; perhaps we can find an E' such that E ~ E', for 
which H will be simpler. Since E ~ E', #E' can be formed only by 
changing some zeros of #E to units, and this has a corresponding effect 

r------------------

_____ ______ _ ____ -'- ____ ---J 

Al ·A2 +A1'Aa +A2 'Aa+A2 'Aa 
FIG. 14-4. Example of inverse solution to equations. 

on #H. If (b means that we can fix #E' so that #H can have either a 0 
or a 1 in that position, the choices for #H are seen to be 

One simple #H that is included in these possibilities is 

0101 0101 0101 0101 1111 1111 0000 0000 
= # (A 1 • X 2 + Xl' X 2) 

Hence we can have for the equation 

AI' X2 + Xl . X 2 = AI' A2 + AI' A3 + A2 . A3 + A2 . A3 

Summarizing the technique, first (1) use (Rji) = (Eki ) to determine 
#E from iI, i2, ... ,in; then (2) let E = (H = G), where G is given by 
the problem, and determine a simple H, making sure that E' is such that 
E~E'. 

As an application of this procedure to circuit design, suppose that two 
~ircuits with inputs AI, A 2, and A3 have been constructed such that the 
output of one is Xl = Al . (A2 . A3 + A2 . A 3) + Al . A2: A3 ap.d of the 
other X 2 = A3 . (AI + A 2) + Al . A2 . A 3. Suppose that it is now 
desired to gate the outputs of these circuits to form a new circuit whose 
output is Al . A2 + Al . A3 + A2 . As + ..42 . A 3. The problem is how 
to design the gating. The solution, as found above, appears in Fig. 14-4. 
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EXERCISES 

(a) Suppose that two circuits with outputs Xl = (AI' A2 + A2 . A3) and 
X 2 = (AI' A2 + A2 . A 3) have been built. How can the outputs of these circuits 
be gated so that the final output is the following G? 

G = Al . A3 + Al . A2 + A2 . A3 + Al . Aa 

One solution is Xl + X 2 = G. 
(b) Suppose that three circuits have already been built with outputs Xl = Al • A2 + 

Al . A2 . A 3, X 2 = Al . A2 + (Al + A 2) . A 3, X3 = Al . A2 + (AI + A 2) . As. It is 
desired to form from these a circuit with output 

The problem is to form the desired circuit. One solution is 

14-6. More General Circuit-design Problems 

Properties of the General Net. Until now the functions fl' f2, •.. ,fJ 
were considered to be functions of AI, A 2, ... , AI directly, that is, 
f. = f.(A I, ... ,AI)' However, in the present section we extend our 
results to the more general situation where fI, f2, ..• ,fJ are functions 
of other functions, say gI, g2, ... , gp, that is, fs = fs(gI, ... ,gp); 
the functions gl, g2, . . . , gp may themselves be considered in turn 
as functions of still other functions, and so forth, until finally a set of 
functions hI, h2, . . . , hQ are direct functions of the A 1, A 2, • • • , AI. 
In Fig. 14-5 we give an example of three levels of such functions fs, gil, 
and hs, although in general there can be as many levels as necessary, and 
each level can contain as many functions as necessary. In the most 
general case each function will involve all the functions of the preceding 
level. 

The most important observation for our generalization is concerned 
with the R matrices. If the functionsfl, f2, ... ,fJ are given explicitly, 
then in the usual fashion the R matrix can be derived (where gl, g2, . . . , 
gp replaces the previous use of AI, A 2, ... ,AI)' Let us denote this 
matrix by (Rj /) , where the superscript f indicates that the R matrix 
refers to the set of functions fl' .f2, ••. ,fJ' Similarly, if the functions 
gI, g2, ... , gp are given explicitly, we can derive (Rpl), and so forth, 
until finally from an explicit form of hI, h2, . . . , hQ, we can derive 
(Rg!,). 

Now the function F(fl, ... ,jJ,XI , ••• ,XK ) has, in a manner of 
speaking, no way of knowing that the input wires fI, h, ... ,fJ involve 
such a complicated net; it can still consider fs as an "eventual" function 
of AI, ... ,AI. Hence F "sees" a total matrix (Rji), as in the problem 
of Chap. 13. The important observation that we can make is thatt 

t See Sec. 13-7, Additional Topic a. 
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(14-1) • 

In other words, we are stating that for the general case the fundamental 
matrix equation (13-32) becomes 

(Fkj) @ [(Rj /) @ (Rp/,) @ ••• @ (Rqih)] = (Eki) (14-2). 

Similarly it is clear that if in the situation of Fig. 14-5 we let 

and 

we have 

and 

and so forth. The general rule of thumb is that the R matrix correspond­
ing to a set of functions nearer F appears nearer the left in the product, 
while the R matrix corresponding to a set of functions farther from F 
appears nearer the right in the product. 

E(Al,A2,A3,Xl,X2) 

FIG. 14-5. The general circuit-design problem. 

As an example, suppose that in Fig. 14-5 we had 

whence 
(

1000 0000) 
.h _ 00 10 0000 

(Rq, ) - 0100 0000 
0001 1111 

and 
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whence 

and 

whence 
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II = gl + g2 

0010 
0001 
1000 
0000 

0100 
0000 
0000 
0000 

(

1000 
. f _ 0100 

(R 1P ) - 0000 

0011 

0000) 0000 
1000 
0111 

By algebraic means we have 

[CaAP.14 

and 
II = (A2 + Aa) . (AI + Aa) + (A2 + Aa) . (AI + Aa) 
12 = (A2 + Aa) . (AI + Aa) + (A2 + Aa) . (AI + Aa) 

whence 
(

0100 0000) 
0001 1111 

(Rji) = 0010 0000 

1000 0000 

To check this by our formula, we compute 

0010 
0001 

(~~~~ ~~~~) 0 ~~~~ 0 (~~~~ ~~~~) = (~~~~) 0 (~~~~ ~~~~) = (g~~~ ~~~~) 
0000 1000 0100 0100 0000 0100 0100 0000 0010 0000 
0011 0111 OOOp. 0001 1111 1000 0001 1111 1000 0000 

0000 
0000 

as expected. 
Solving Circuit-design Problems. For circuit-design problems of type 1 

the extension of the problem presents nothing new, except that the over­
all (Rji) matrix is computed from the individual-level R matrices accord­
ing to the method just described. Similarly, for circuit-design problems 
of type 2 little change is required in the method of solution, (Rji) being 
calculated from the individual-level R matrices by Eq. (14-1). However, 
consider problems of type 3. Here as before, given (Fk.i) and (Eki) , all 
possible over-all (Rji) can be computed. However, suppose that it is 
known, for example, that there are three levels of functions, namely, 
fs, Us, and hs, and that the function sets gs and hs are known explicitly; 
then it might be required to find the function set fs. In this case from 
Eq. (14-1) we have 

. (Rjl) (8) [(RplL(8) (Rqih)] = (Rji).c 
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:where (Rji) has just been calculated and the matrices in the square 
brackets are known. Thus, to find (Rj /) , that is, the function set fs, 
simply solve the equation for the matrix (Rj /), using Eqs. (13-19) and 
their correspondent from Exercise e of Sec. 13-5. This technique can 
be used, for the product in the square brackets will be of the form (U pi), 
and (Rj/) corresponds to (ajp) considered in that section. If on the other 
hand (Rj/) and (Rqih) are known explicitly and it is desired to find (Rpl), 
we would write 

(Rj/) ® (Rpl) ® (Rqih) = (Rj/) ® (Rpioh) = (Rji) 

and solve for (RpiOh) , by the methods of Sec. 13-5. When (Rpioh) has 
been determined, we would solve 

(Rpl) ® (Rqih) = (RpirJh) 

for the desired (Rpl). 
Summarizing, to solve circuit-design problems of type 3, the over-all 

(Rji) matrix is first computed as usual from the appropriate fundamental 
formulas. Next by Eqs. (13-15) and (13-16), Eq. (14-1) relating the 
level R matrices with (Rji) is solved for the desired results. As is imme­
diately clear, there are in general many ways of tackling the same prob­
lems, using different variations of the techniques presented. 

Examples. As a first example, consider a circuit synthesis problem, and 
suppose that the situation is as in Fig. 14-5, where hI = A2 + A3J 
h2 = Al + A 3, gl = hI . h2, g2 = hI . h2, g3 = hI . h2, 

F = (JI + f2) . Xl . X 2 + (fl + f2) . Xl . X 2 + (fl . h + jl . J2) • Xl . X 2 

and E = (A 2' Aa + Al . As' Xl) . X 2 + (AI + A2 + As) . Xl' X 2 are 
all given. That is to say, the circuits hI, h2, gl, g2, and ga have already 
been constructed and wired together; the circuit F has already been built. 
It is desired to determine how to build circuits fl and f2, with inputs 
gI, g2, and g3, so that the output of the entire system in terms of AI, A21 
A a, XI, and X 2 will be the function E. 

First we determine (Rji) by the type 3 formulas, finding 

(

0100 0000) 
0001 1111 

(Rji) = 0010 0000 
1000 0000 

as the only common antecedence and consequence solution. Next we 
observe that 

0100 0000 
0001 1111 
1000 0000 
0000 0000 

(Rpqfl) ® (Rqj,h) = = (Rpj,H) 
0010 0000 
0000 0000 
0000 0000 
0000 0000 
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whence we desire to solve (Ri/) 0 (RpiR ) = (Rii) for the matrix (Ri/). 
It turns out [from Eqs. (13-23) and (13-24)] that 

(

1001 0111) 
(R. I') = 0101 0111 

,p 0001 1111 
0011 0111 

(

1000 0000) 
(R. 1*) = 0100 0000 

,p 0000 1000 
0010 0000 

(

1001b Olblblb) 

whence by Eq. (13-25) (Ripl) = ~~~: ~::: 
0011b Olblblb 

Columns 0, 1, and 2 indicate that!l must involve gl and g2, and columns 0, 
2, and 4 indicate that f2 must involve g2 and gs (by the elimination pairs 
of positions). Hence a simple solution is seen to be: 

0 1 2 3 4 

------------

#h 0 1 1 1 0 
#/2 0 0 1 1 1 

Another set of valid solutions is: 

5 6 
----

1 1 
1 1 

7 
--

1 
1 

= gl • {i2 + {i1 • g2 

= g2 • {i3 + {i2 . g3 

As the second example, consider a circuit-maintenance problem. Sup­
pose that a circuit has been constructed'such that 

gl = Al . A2 + A2 . As g2 = A2 . As + Al . A3 
fl = gl + U2 f2 = Ul + g2 

and F = fl . J2 + Jl . !2 

The output of this circuit is seen to be E = Al . A2 + (AI + ..4 2) • A 3, 
where #E = 0100 1110. Now suppose that the circuit breaks down, 
that it does not produce the proper output. The problem is to deter­
mine which of the circuits gl, g2, !l, f2, or F is not operating correctly. 
The information at our disposal for this investigation is (1) the original 
circuit design, i.e., the explicit (correct) functions gl, g2, fl' f2, and F, and 
(2) how the circuit is malfunctioning. This latter information is obtained 
by putting into the AI, A 2, and A3 inputs each of the eight possible input 
states and recording the output bit for each state. Suppose that these 
output states are 0000 1010 for the usual successive input-state order as 
given by the standard basis. This malfunctioning-output result is of 
course actually the designation number of the output of the malfunction­
ing circuit with respect to b[Al,A2,As], that is, 

#Em(Al,A2,Aa) = 0000 1010 

Our purpose is to use this information to explore all possible ways in 
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which the circuits /1, /2, gl, g2, and F can malfunction to give the output 
result #Ern. 

Let us begin by first making the reasonable assumption that only one 
of these circuits is malfunctioning. To be specific, let us see whether 
/1 or /2 can malfunction to produce #Em. Observe that #F = 0110, 
whence 

(Fio) 0 CEoi) = (0011) 0 (1111 0101) = (~~~~ ~~~~) 
1111 0101 
0000 0000 

(111 111) 0000 1010 
(R;i)a = 0000 1010 

1111 0101 

(

1) (0000 1010) - a 10 10) = 0000 0000 
(Fio) 0 (Eoi) = 0

l

.

J 

0 (0000 0000 0000 

0000 1010 

(1111 0101) 1111 1111 
(Rii)c = 1111 1111 

1111 0101 

(~~~~ ~~~~) ,(~~~~ ~~~~) 
and (Rji) = 0000 1010' Next we observe that (Rpio) = 0000 1010 . 

1111 0101 0011 0000 

Hence, solving (Rj /) ® (Rpio) = (Rji) for (Rj /), find 

1000 
0100 

.. (0000 1010) ~~~~ (1101) 
(R . I') = 1111 0101 10\ 0010 

11', 1111 0101 \CI - 0010 
0000 1010 0010 1101 

0100 
0010 
1000 
1000 
0100 

(

1111 0101) ~~~~ (1101) 
(R . 1*) = 0000 1010 10\ 0010 

11' 0000 1010 \CI - 0010 
1111 0101 0010 1101 

0100 
0010 
1000 

(

1101) 
Hence (Rp/) = ~~~~ with the result array: 

1101 

a 1 2 3 
--------------
it 0,1 0, 1 0, 1 0, 1 
/2 0,1 0, 1 1, a 0,1 
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giving all possible pairs of functions that will result in the malfunctioning. 
Suppose that !I is good; then since #fl = #(01 + 02) = 1101, we find 
that #f2 = 1111 = #1, which is certainly a reasonable way for a mal­
functioning circuit to act. Suppose instead that we assume that f2 is 
good; then since #f2 = #(g1 + 02) = 1011, we find that 

#fl = 1001 ,= #(01 . 02 + 01 . 02) 

which is rather an unreasonable way for a circuit to break. Of course 
the evaluation of alternative malfunctioning explanations ultimately 
depends on the electronic design of the circuit. Similarly the circuits 
01, 02, and F could be examined. 

EXERCISES 

(a) For the circuit-maintenance problem discussed above explore the possibilities 
of malfunctioning circuits gI, g2, and F that can explain the erroneous output # Em. 

(b) For the circuit-synthesis problem discussed above suppose that the following 
circuits have already been built: hI = A2 + A 3, h2 = Al + A 3, fl = gl + g2, and 
f2 = g2 + g3, with F as described above. How can the circuits gl, g2, and g3 be con­
structed so that when wired in as shown in Fig. 14-5 the function E described above 
will result? 

14-7. Additional Topicst 

a. Logical Interpretation of Antecedence and Consequence Solutions, and Examples. 
The majority of logical problems involve given or accepted premises, hypotheses, 
rules, or other logical relationships which are the given equations and essentially 
comprise the statement of the problems. There are two types of solutions to a set 
of given equations, the antecedence solutions and the consequence solutions. Ante­
cedence solutions are hypotheses or theories from which the given equations can be 
deduced; consequence solutions can be deduced from the given equations. In other 
words, the truth of the antecedence solutions is sufficient for the truth of the given 
equations, but the truth of the consequence solutions is necessary for the truth of 
the given equations. If the given equations are true, then the consequence solutions 
are true, while the antecedence solutions mayor may not be true; but the truth of the 
given equations can be deduced from the hypotheses embodied in the antecedence 
solutions, this latter being the method for theory construction. In terms of our 
above notation the function E represents the given equations and the functions Fa 
and Fc the antecedence and consequence solutions, respectively. 

First Example. Suppose that the Lower Slobbovian army had three kinds of 
companies: rifle companies AI, machine-gun companies A 2, and submachine-gun 
companies A 3• Consider, in addition, the following pieces of equipment: a light 
machine gun Xl, a scout car X 2, and a sub machine gun X 3• Now suppose that 

t The material of Additional Topics b, c, and d was developed by Neely F. J. 
Matthews and that of Additional Topics e and f by William Ruthven Smith when 
they were graduate students of the author's at The GeorgeWashington University 
(see W. R. Smith, Master's thesis, June, 1959, and N. F. J. Matthews, Master's 
thesis, June, 1959). 
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military intelligence has determined that the distinguishing features that identify 
the three types of companies in terms of the equipment they carry are as follows: 

Al = Xl . Xa + X 2 • Xa 
A2 = X 2 . Xa + Xl . Xa 
A3 = Xl . X 2 + X 2 • Xa 

It happened that in a certain field an observer noticed that soldiers were carrying 
either machine guns or submachine guns, or both, he could not be sure, and there 
was no scout car-i.e., the observer reported (Xl + Xa) . X 2• Suppose in addition 
that it was known that a submachine-gun company never accompanies a machine-gun 
company, that is, Aa ~ ..4 2• The problem then is: Assuming that at least one is 
present in the field, what companies of the Lower Slobbovian army are in the field? 
In more precise form the problem is: What are the consequence solutions to the 
given intelligence equations, of the form 

(Xl + Xa) . X 2 = f(AI,A2,Aa) 

under the constraint Aa ~ ..42? To solve this problem, find 

Hence 

and 

(
1011 0011) 
0100 1100 

(
0011 1101) 

(R i .) = 1100 0010 

#f = 1100 0010 

0000 1000 
0100 0000 
0010 0000 
0001 0000 

0000 0010 
1000 0000 
0000 0001 
0000 0100 

However, at least one company must be in the field-that is, Al + A2 + Aa = I is a 
second constraint. Since #(A I + A2 + A3 = I) = 0111 1111 and #(Aa ~ ..42) 
1111 1100, we find that 

#f = _100 00 --- = Al . ..42 . ..4 3 

In other words, from the observer report, together with the given intelligence infor­
mation, it can be deduced that only AI, a rifle company, is in the field. 

Second Example. In biochemistry an enzyme often cannot be isolated easily, and 
therefore_ experiments performed with one enzyme often will involve several others. 
Consequ"ently a combination of reactions must be observed. In such a complex 
situation the ordinary, simple logical analysis usually employed in experimental 
sciences is found inade:quate. In these cases our logical computational methods can 
be extremely useful' for evaluating experimental results and planning future experi­
ments to yield the maximum information. 

Suppose that a chemist is studying enzymes AI, A 2, Aa in relation to reactions Xl, 
X 2,"X:i; Suppose that he. has done the following four experiments: (EI ) A solution 
containing none of A I, A21 A3 produced reaction X 2, but not Xl and not Xa. (E2) The 
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solution contained Al and either A2 or A a, or both; he could not be sure. The reac­
tion was neither X 2 nor both Xl and Xa. (Ea) The solution. had A2 but not Al or 
else did not have A2 but had Aa. Reactions Xl and X 2 occurred, or reaction Xa 
occurred, but Xl did not. (E4) The solution was obtained from a source that had 
A a, and Al or A2 or both, or else had neither Al nor Aa; the solution turns color, 
which means that Xl does not take place or that both X 2 and Xa do. 

The antecedence problem is: What theories about the enzymes associated with 
each reaction will explain the experimental results? The consequence problem is: 
What combinations of enzymes are necessary for each reaction to take place? 

The experiments and their designation numbers with respect to brA 1,A 2,A a,X 1,X 2,X 3] 
are as follows: 

E I : Al . A2 . Aa = Xl . X 2 • Xa 
0111 1111 0111 1111 1000 0000 0111 1111 0111 1111 0111 1111 0111 1111 0111 1111 

E 2: A I • (A 2 + A a) = X 2 • (X I • X a) 
0001 0101 0001 0101 1110 1010 1110 1010 0001 0101 1110 1010 1110 1010 1110 1010 

Ea: Al . A2 + A2 . A3 = Xl . X 2 + Xl . Xa 
1101 0001 1101 0001 1101 0001 0010 1110 0010 1110 1101 0001 0010 1110 0010 1110 

E 4 : Aa' (AI + A 2) + Al . Aa = Xl + X 2 • Xa 
1010 0111 0101 1000 1010 0111 0101 1000 1010 0111 0101 1000 1010 0111 1010 0111 

Thus #(EI . E2 . Ea' E,) = 
0000 0001 0001 0000 1000 0000 0000 1000 0000 0100 0100 0000 0010 0010 0010 0010 

For the antecedence problem the form of the solution is Xl = it, X 2 = f2, X3 = f3. 
Recall for antecedence solutions of this special form that (Eki) = (Rii). Hence 

from which the solutions are read. 

#it 0 1 
#f2 1 0 
#f3 0 1 

0000 0001 
0001 0000 
1000 0000 
0000 1000 

0000 0100 
0100 0000 
0010 0010 
0010 0010 

RESULT ARRAY 

1,0 1 1 0 
1, 1 0 1 0 
1, 1 0 0 1 

1,0 0 
1, 1 0 
1, 1 0 

Thus there are four sets of antecedence solutions of the form X, = f" namely, 

Xl = it = Al . Aa + Al . A a, or Aa . (AI + A 2) + AI' A 2· A a, 
or A a • (A I + A 2) + A I • A 3, or A I • A 3 + A I • A 2 • A 3 

with X 2 = /2 = Al and X3 = fa = Al . A2 + AI' A2 

The first two sets are logically independent. The last two sets of solutions imply 
that the reactions are not independent but that X 2 • Xa ~ Xl and Xl' X 2 • X3 = 0, 
respectively. For the consequence· problem, the form of the solution and corre­
sponding designation numbers with respect to b[hhfa,XI ,X2,X3] are as follows: 
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#(XI ~ iI) = 
1111 1111 0101 0101 1111 1111 0101 0101 1111 1111 0101 0101 1111 1111 0101 0101 

#(X2~h) = 
1111 1111 1111 1111 0011 0011 0011 0011 1111 1111 1111 1111 0011 0011 0011 0011 

#(Xa~ fa) = 
1111 1111 1111 1111 1111 1111 1111 1111 0000 1111 0000 1111 0000 1111 0000 1111 

#[(XI ~ It) . (Xl ~ h) . (X 3 ~ /3)] = 
1111 1111 0101 0101 0011 0011 0001 0001 0000 1111 0000 0101 0000 0011 0000 0001 

Hencet 
1000 0000 0000 0001 
1100 0000 0001 0001 
1010 0000 1000 0001 
1111 0000 1001 1001 

(Fik) and (R i.) = (if'ik) ® (Ek') 
1000 1000 0000 0101 
1100 1100 0101 0101 
1010 1010 1000 0101 
1111 1111 1111 1111 

This gives the result array: 

#f1 1010 11 1 1111 11 1010 1 dI 
#f2 1111 10 1 1010 11 1100 1 dI 
#/a 1100 11 1 1100 10 1111 1 dI 

The most significant set of solutions for this form is the minimum set, i.e., the solu­
tions with the most zeros; we choose 

or 

#iI = 0111 1010 = #[Aa . (AI + A 2 ) + Al . Aa] 
#/2 = 1010 1010 = #AI 
#/a = 0110 0110 = #[A 1 • A2 + Al . A 2] 

X I ~ A a • (A I + A 2) + AI' A a 
X2~AI 
Xa~ A 1 ·A2 + A I ·A 2 

b. Boolean Matrix Equations in Three Values. Until now we have been considering 
Boolean matrices the elements of which can be either 0 or 1. Suppose now that the 
elements of the matrix can take on three values, say 0, 1, and 2. However, we 
must define our operations for these values. Suppose that we define the operations 
+ and· as in Sec. 12-11d, namely, 

+ 0 1 2 0 1 2 

0 0 2 0 0 0 0 
1 1 1 2 and 1 0 1 1 
2 2 2 2 2 0 1 2 

with the - as '0 = 1, I = 2, and 2' = O. Then the matrix equation 

means 
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where the summation and product are computed as above. Using the analogy of 
the solution to the two-valued matrix equations, we shall find an (x~i) solution such 
that, if (Xki) is also a solution, then (Xki) - (x~i)' Here we use the - in the sense 
0- 1 - 2, 0 - 0, 1- 1, 2 - 2. Also (pki) - (qki) if Pki - qki for each k and j. 
In order to determine our (x~i)' let us first observe that for a particular (aik) and (bi i ) 
the greatest value that Xkj can take so that aik . Xkj - bi i is as follows (where "greatest" 
is in terms of our - relation): 

aik 012 012 012 
bii 000 111 222 
Xkj 200 221 222 

For example, if aik = 0 and bij = 0, then 0 ·2 = 0 - a so that Xki can be 0, 1, 2; 
the remaining eight cases are treated similarly. In terms of our t~ree-value~ oper-
ations we may write (omitting the subscripts) x = 'a + if, + (b + b) . if, + b; " Now 
consider a new operation, denoted by c as derived from this relation: 

b 

c 0 1 2 

o 2 2 2 
a 1 0 2 2 

2 0 1 2 

(Note that this operation is not commutative.) Based on this definition, consider the 
matrix operation 

(aki) @ (bij) = (Cki) 

defined by Cki = I1 (aki c bii) = min(aki c bii) 

Then (x~i) = (aik) T @ (bi i ) 

is the desired solution. If a, solution to. our original matrix equation exists, then 

(aik) 0 [(aik)T @ (bi i )] = (bi~Y 
Otherwise (aik) 0 [(aik)T @ (bij)] - (bij) 

c.' Problems of Types 1 and 2 in Three Values. With the above in mind we can 
extend our matrix methods for antecedence and consequence solutions to this three­
valued logic. The matrix (Eki) is now formed from a designation number with three 
possible values for each position, and similarly for (Fki)' The matrix (Rji) must 
now have only a single 2 in each column, in order to perform the necessary pseudo-
permutation. Then the fundamental equation . 

(Fkj) 0 (Rji) = (Eki) 

still holds. For example, let F = (fl + J2) • X, /1 = Al . ..4 2, and /2 = Al + ..4 2• 

Then 
#/1 = 012 012 012 012 012 012 012 012 012 
#/2 ~ 000 111 222 000 111 222 000 ,111 222 
#X = 000 ' 000 000 111 111 111 222 222 222 
#F = 000 000 000 110 000 110 220 000 120 

.012 345 678 
#Al = 012' 012 012 
#A2 = 000 111 222 

#fl = 122 120 111 
#/2 = 220 000 120 



SEC. 14-7] APPLICATIONS OF MATRIX EQUATIONS 

000 002 000 
000 200 002 
002 020 000 

000 000 000 000 
Hence COO (Fk;) = 110 000 110 

000) 
and (R;.) = 000 000 200 

Then 

or 

and 

220 000 120 

(

000 000 
(Fk;) 0 (R;,) = 100 101 

200 202 

000 000 000 

000 000 000 
200 000 020 
020 000 000 

000) 011 = (Eki) 
022 

#E = 000 000 000 100 101 all 200 202 022 

481 

Thus it is clear how to solve problems of type 1, that is, substitution problems. 
For type 2 problems we solve the fundamental equation by finding 

and then substitute into 

to determine whether or not (E~i) = (Eki ), that is, whether or not a solution to the 
circuit-design problem actually exists. 

Suppose that 

and 

E = {(Al + Al) . (A2 + A2) + (Al . A l) . (A 2 + 1 2) + (Al . A1) • (A2 + 1 2)} • X 

as above; then, to find F, we compute 

000 002 000 012 012 
000 200 002 000 012 
002 020 000 000 000 

000 000 000 012 222 
000 000 200 @ 000 000 = (Fik) 
000 000 000 012 222 

000 000 000 000 222J 
200 000 020 012 012 
020 000 000 012 000 
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Since 11 and /2 are constrained, we find F with respect to the constrained basis, 

#ft = 012 
#/2 = 000 
#X = 000 
#F = 000 

which is now the same as the F used above. 

12 
22 
22 
20 

There are two other equivalent forms to the fundamental equation which follow 
directly, since (Rii) is a pseudopermutation: 

and 

These give rise to three types of logical problems: antecedence, intercedence, and 
consequence problems. Can you find equations analogous to the fundamental formulas 
for type 2 problems corresponding to antecedence, intercedence, and consequence 
problems? 

d. M-valued Postt Logics. The three-valued logic discussed above has the property 
that +(a,b) = max(a,b) and .(a,b) = min(a,b), where 0 < 1 < 2 as usual. Also 
the - permuted cyclically 0, 1, 2. We can generalize these operations to (m + 1) 
values 0, 1, 2, ... , m and define +(a,b) = max(a,b), '(a,b) = min(a,b), and - to 
permute cyclically. For example, for five-valued logic we would have 

+ 0 1 2 3 4 0 1 2 3 4 

0 0 2 3 4 0 0 0 0 0 0 () = 1 
1 1 1 2 3 4 0 1 1 1 1 1=2 
2 2 2 2 3 4 2 0 1 2 2 2 2=3 
3 3 3 3 3 4 3 0 1 2 3 3 3=4 
4 4 4 4 4 4 4 0 1 2 3 4 4=0 

All the above results can be directly carried over, provided that the c operation 
becomes 

c 0 1 2 3 rn 

0 m m m m m 
1 0 m m m m 
2 0 1 m m m 
3 0 1 2 m m 
4 0 1 2 3 m 

rn 0 2 3 m 

or for five-valued logic 

c 0 2 3 4 

0 4 4 4 4 4 
1 0 4 4 4 4 
2 0 1 4 4 4 
3 0 1 2 4 4 
4 0 1 2 3 4 

t From E. L. Post (see References below), 
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e. Problems of Type 3 in an 1I1-valued Post Logic. The many-valued generalization 
of the e matrix product is particularly useful for problems of type 3 in an (m + 1)­
valued Post logic. We define 

(Ckj) = (aki) e (bij) 

such that Ckj is m if the kth row of (aki) is identical to the jth column of (bij); other­
wise Ckj is O. With this in mind we have from the fundamental equation that 

from which the solutions can be found that have a single m in each column. For 

example, if m + 1 = 3 (that is, three-valued logic) and F = (/1 + J2) . X and 

E = {(Al + Al ) . (A2 + A2) + (A l • ./L) . (A2 + A2) + (A l · Al )· (A2 + A2)} • X 

then 
012 200 202 022 
012 200 202 022 
000 022 020 200 

000 Coo 000 000) 022 020 200 
(R ji ) 000 e 100 101 011 022 020 200 

000 200 202 022 022 020 200 

011 000 000 000 
012 200 202 022 
000 022 020 200 

The 3 X 5 X 5 X 3 X~X 5 X 3 X 3 = 151,875 sets of solutions include the 

set fl = AI' A2, f2 = Al + A2• 

It is interesting to note the relation between the e and the @ operations at this 
point, namely, 
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for. our three-valued logic. Can you prove this? An analogous relation holds for 
an (m + I)-valued Post logic . 

. . j. All Solutions to Boolean Matrix Equations in a Many-valued Logic. Let @ be 
any matrix-type logical operation [that is, for (Cpr) = (apq ) @ (bqr), each Cpr is some 
logical function of corresponding (qth) elements of the pth row of (apq) and the rth 
column of (bqr)]. Then if 

all matrix solutions, if any exist, can be found from 

by the usual R-matrix type of procedure, generalized as required. The operations 
e and © can be considered as specialized examples of the general matrix operation @. 



PART 4 

LOGICAL DESIGN OF DIGITAL-COMPUTER CIRCUITRY 

CHAPTER 15 

SERIAL ARITHMETIC OPERATIONS 

16-1. Introduction 

Generalized Concept of a Computer. As we have observed in previous 
chapters, only one word at a time can be transmitted between the com­
puter's memory and its computing unit. In the computing unit are 
temporary storage locations or registers 
which receive the words from the memory; 
we have previously noted some of these 
registers, such as the accumulator and the 
instruction register. As a word is trans­
mitted from a memory location to a regis-
ter or back, it passes through logical gating 
networks of the types considered in Part 3. 
The computations take place in these logical 
gating networks; i.e., in these gating net­
works the numbers are transformed or com­
bined according to the operation being ex­
ecuted. Thus we can conceive a computer 
as consisting of a temporary storage and a 
more permanent storage, with gating net­
works in between (see Fig. 15-1). Words 
are transmitted from the permanent stor­
age, the computer memory, through the 
gating networks to the temporary storage, 
the computing-unit registers, and then back 
again through the gating networks. This 

Permanent 

storage 

Temporary 

storage 

chapter is concerned with the gating net- FIG. 15-1. Generalized concept 
works by means of which numbers are of a computer. 

transformed according to the computations involved in arithmetic 
operations. 

Serial and Parallel Computers. In a serial computer a word is trans­
mitted serially in a train, one bit at a time, to and from the computer's 
memory through the gating networks (see Fig. 15-2). In Chap. 2 such 
a sequence of events was described where the accumulator was the register 

485 
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involved and the adder was the gating network. The length of time during 
which 1 bit is transmitted from the memory, through the gating network, 
and into the register is called a unit time interval. Thus, if a word has 
w bits, it will take w unit time intervals to transmit it to a register, or 
back, in a serial computer. 

Computing unit 

~---~ Registers 

Memory' 

Serial computer 

r---------, 
I I 

Computing unit I 
r-~~------~ I 

Memory !------__t.e:: 

I 
I 
I 
I 
( 
I 
I 
I 

I , L ________ .J 

Parallel computer 

FIG. 15-2. Serial VS. parallel computer. 

In a parallel computer,. on the other hand, the bits of a word can be 
transmitted through the gating network from the memory to a register or 
back all at the same time, in parallel (see Fig. 15-2). Thus it takes 
only one unit time interval to transmit an entire word to the registers 
through the gating network. Thereby parallel computers can be many 
times faster than serial computers. On the other hand this increased 
speed is gained at a cost of additional hardware; for a serial computer 
need handle only 1 bit at a time, whereas a parallel computer must be 
able to handle all the bits of a word simultaneously. Thus a serial 
computer will in general be much less expensive and slower than a parallel 
computer. 
, Topics to Be Covered. In this chapter and the next we shall consider 
both serial and parallel arithmetic units, both ,binary and decimal. In 
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general there are several ways for solving each of the problems posed. 
We take the point of view that it is better to consider one method in detail 
than to survey all methods known. It is felt that the specific method 
chosen in each case will contain all the essential features common to 
other methods. 

This chapter starts with a section on simple, common computer com­
ponents such as shift registers, counters, adders, and so forth. N ext we 
discuss concepts involving the synchronous operation of a computer, 
which are basic to the subsequent material. The serial arithmetic unit 
is then discussed, where we have used a combination adder-subtract or 
unit rather than the more popular input-output complementary-adder 
technique. The approach is pedagogically sound, since the subtract or is 
almost identical to the adder. It is felt that this will help the student to 
grasp the fundamentals more rapidly. The exercises then proceed sys­
tematically to build up the input-output complementer technique, which 
now becomes easy to master. The excess-three decimal-coded binary 
scheme is used to illustrate the decimal arithmetic unit. Although there 
are other decimal techniques (see Additional Topics, Sec. 15-7), excess­
three can be treated as a simple extension of binary methods. In addition 
the parallel decimal arithmetic unit can be treated as a variation of the 
parallel binary arithmetic unit. This is done in the following chapter. 

15-2. Common Computer Components 

Synchronous Dynamic Flip-Flop and Shift Register. As will be illus­
trated in Part 5 of this text, flip-flops as described in Chap. 2 can be 
constructed from electronic circuits with two stable states. However, 
they can also be constructed by means of and and or gates. Consider, 
for example, the synchronous dynamic flip-flop. This is called a dynamic 
flip-flop because it has a recirculation loop (as considered above); if a 
unit signal voltage is recirculating, the flip-flop is said to be in the unit 
state; otherwise it is in the zero state. Besides the recirculation C the 
input is a signal pulse A and a clock pulse P. Here the synchronous 
aspect enters; for a unit signal pulse in A occurring synchronously with 
the clock pulse will turn the flip-flop to its unit state; a zero signal pulse 
in A occurring synchronously with the clock pulse will turn the flip-flop 
to its zero state; when no clock pulse appears, the flip-flop will not 
change its state. Thus this flip-flop acts like a I-bit storage cell, storing 
whatever signal pulse was last synchronized with the clock pulse. Thus 
the function table becomes 

#A = 0101 0101 
#C = 0011 0011 
#P = 0000 1111 

#C' = 0011 0101 = C . P + A . P 

and the circuit diagram appears in Fig. 15-3. Note that the recirculation 
is called C on one side of the unit delay line, while it is called C' on the 
other (why?). 



488 LOGICAL DESIGN OF DIGITAL-COMPUTER CIRCUITRY [CHAP. 15 

A set of such flip-flops cascaded together, i.e., the output of one becoming 
the input signal to the next, is called a shift register. When a clock 
pulse appears, each flip-flop takes on the state that the previous flip-flop 
had. Hence, if Ci- l is the state (output) of the previous flip-flop and Ci 

that of the flip-flop under consideration, then 
the function table for the new state of the P 
flip-flop C~ is J..------r---.., 

#C'-1 = 0101 0101 
#C, = 0011 0011 
#P = 0000 1111 

#C~ = 0011 0101 = C,·p + C'-1·P 

Figure 15-4 illustrates such a shift register. 
Observe that we had to move the unit delay 
line round from its position in Fig. 15-3 
(why?). The accumulator in a serial com­
puter is an example of such a shift register, 
where, as each result leaves the adder and 
enters the accumulator, the contents of the 
latter are shifted each unit time period to 
make room for the entering result bit. 

1 

P A 

c' 

Output 

FIG. 15-3. Flip-flop circuit. FIG. 15-4. Shift register. 

Cascaded Counters. We have considered the design of counters pre­
viously. For example, we know how to design a counter that counts 
0, 1, 2, ... , p, 0, 1, 2, ... , p, 0, 1, ... , and so forth. Now sup­
pose that we had two such counters and connected them together so 
that whenever the first increased past p to 0, it would increase the count of 
the second by 1. Then the second counter would register how many 
times the first counter passed p. Thus suppose that the first counter 
is counting clock pulses (i.e., increases by 1 for each unit signal voltage 
of its input clock pulse); then if the count on the first counter is ao 
and the count on the second is aI, the total number of clock pulses counted 
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will be alql + aoqO (where q = p + 1, qO = 1). Similarly, if the sec­
ond counter is connected in this way to still a third counter of the same 
kind, and if the counts on the three counters are a2, aI, and ao, then 
the number of clock pulses counted will be a2q2 + alqI + aoqO, and so 
forth. Thus it becomes clear that the counts of counters cascaded in this 
way represent the digits of a number to the base, or radix, q (see Fig. 15-5). 
Note, however, that when a component counter reaches the count of q, 
although it sends a signal to increase the count on the next counter, its 
own count will really be zero. This of course is necessary since ai < q. 

The count: The count: The count: 
az al ao 

FIG. lS-S. Cascading counters of radix q. 

t--------r- Q 

FIG. 15-6. Cascading counters for q = 2. 

For instance, if q = 4, the counts of three cascaded counters would 
sequence as follows: 

1st counter: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
111 1 

2d counter: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 
1 

3d counter: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 . 

As a first example, let us consider the simple case of q = 2. Let Q 
denote the signal that increases the count of a component counter, C the 
signal generated by the component counter to increase the next counter, 
and B the count of the component counter itself (where only 1 bit is 
required in this case). Thus we have for the function table 

B 0101 
Q 0011 
B' 0110 = B . Q + B . Q 
C 0001 = B· Q 

Figure 15-6 is a diagram of four such counters cascaded together. 
As the second example, let us consider q = 4. Then our component 

counter will be a 2-bit counter that counts 0, 1, 2, 3, 0, 1, 2, 3, 0, ... 
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and that generates the triggering signal for the next cascaded counter. 
For instance, we would have 

0123 4567 
Bl 0101 0101 
B2 0011 0011 
Q. 0000 1111 

B~ 0101 1010 = B 1 • Q + jj 1 • Q 
B~ 0011 0110 = B2 . Q + Bl . B2 . Q + Bl . B2 
C 0000 0001 = Bl . B 2 • Q 

This counter counts in binary, as shown in Table 15-1. However, there 
is no necessity for a counter to count in the usual binary sequence; so let 

TABLE 15-1. BINARY AND CYCLIC COUNTING SEQUENCES 

Binary Cyclic 

Decimal 
B2 Bl B; B~ 

------
0 0 0 0 0 
1 0 1 0 1 
2 1 0 1 1 
3 1 1 1 0 
0 0 0 0 0 

. . . . . . . . . . . . ... 

us consider a counter that counts in the so-called cyclic sequence shown in 
Table 15-1. In this case we have 

Bl 0101 0101 
B2 0011 0011 
Q 0000 1111 

B~ 0101 1100 = Bl . Q + B2 . Q 
B~ 0011 0101 = B2 . Q + Bl . Q 
C 0000 0010 = B 1 • B 2 • Q 

Two such counters cascaded together are shown in Fig. 15-7. Comparing 
this with Fig. 15-6, it is seen that our cyclic counter is somewhat simpler. 
If we compare our cyclic counter with a binary counter for q = 4, we 
see that the cyclic counter is much simpler. 

~--------,,------------~Q 

FIG. 15-7. Cascading cyclic counters with q = 4. 
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Parallel Counter. Observe that in cascaded counters, after the signal Q 
(which is to increase the count) enters the first counter stage, its effect 
must propagate sequentially through all the stages before the actual count 
finally appears. In practice this can consume a relatively large portion 
of time. There is, however, a method of arranging the cascaded counters 
so that the count appears immediately, with no propagation time lag. 
Consider, for example, a straight binary counter with q = 2. Observe 

FIG. 15-8. Parallel counter composed of cascaded stages. 

that stage ai should change (from 0 to 1 or 1 to 0) only when stages 
ai-I, ai-2, ... ,ao are all units and a signal Q is received-for example, 

001111 + 1 = 010000 

Hence, to have a parallel counter we simply make the signal Ci, that 
changes the ai stage, as follows: 

Ci = ai-I' ai-2' .. ao' Q 

Figure 15-8 illustrates these connections. Figure 15-8 should be com­
pared with Fig. 15-6. 

EXERCISES 

(a) Design a flip-flop circuit that has, besides its recirculation input and the clock 
input, two other inputs A and B such that a unit pulse in A synchronized with the 
clock pulse will put the circuit in its unit state, while a unit pulse in B synchronized 
with the clock pulse will put the circuit in its zero state. Assume that unit pulses 
in both A and B will never occur simultaneously (i.e., a constraint). 

(b) Design a shift register using the flip-flops of Exercise a. 
(c) Design a cascaded counter using units with q = 8 (that is, 3 bits) where each 

unit counts in the following sequence: 000, 001, 011, 010, 110, 111, 101, 100, 
000, . . .. Compare 2 of these units with the circuit found by cascading 6 of the 
q = 2 units. 

(d) Design a cascaded parallel counter with q = 4, where each of the counter 
stages counts in cyclic. (HINT: The solution to this problem will be related to 
Fig. 15-7 in the same way Fig. 15-8 is related to .Fig. 15-6.) 

15-3. Common Computer Components (Continued) 

Simple Adders and Subtractors. Consider the addition of two binary 
numbers as ordinarily.accomplished by hand. First the least significant 
bits are added, forming: the least significant sum bit and a carry bit. 
Then the next least significant bits are added, with the carry, forming the 
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next sum and carry bits, and so on. A serial adder is a circuit whose 
inputs are the 2 corresponding bits from the two numbers to be added, 
and the carry bit from the preceding sum; the outputs are the new sum 
and carry bits. The two numbers are fed serially and synchronously 
into the adder (in the manner illustrated in Chap. 2), and the carry 
recirculates. Figure 15-9 shows four phases in the addition of 10101 and 

10101 
By hand: ,I 0,0,1,1 

101000 

10101 

~ I 
Sum 

10011 
Carry 

I [I] 
1010 

~ I 
0 

1001 
1 

I [I] 
101 

~ I 
00 

100 

I 
1 

[I] 
10 

2 I 
000 

10 1 

I IT] 
FIG. 15-9. Several stages in the serial addition of 10101 and 10011. 

10011, where the last carry becomes the most significant bit of the 
completed sum. If the ith bit of each of the numbers is denoted by Ai 
and B i , respectively, and the ith bit of the sum by Ri and the generated 
carry by Ci, then the function table for a serial adder becomes 

A, 0101 0101 
B, 0011 0011 
Ci_l 0000 1111 

R, 0110 1001 = (Ai' Ih + Ai . Bi) . Oi-l + (.ii; . Bi + Ai . Bi) . C,-1 
Co 0001 0111 = Ai . Bi + (Ai + B i) . Ci-l 

The design of a serial adder is shown in Fig. 15-10. 
For a different design of the serial adder note that the designation 

numbers of Ri and Ci (1110 1000) differ in only two positions. This 
suggests that we might construct Ri from Ci • To find all ways of doing 
this, let Ri = Ci . X + Y, and solve for X and Y. On performing the 
computations, find that 

x = 011eb 1ebebeb and # Y .= OebebO ebOO 1 

One simple solution is X = Ai + Bi + Ci- l and Yi = Ai' Bi . ai-I. 
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FIG. 15-10. Serial adder. 

Ci_1:---o----------------r-----, 

FIG. 15-11. Serial adder. 

Hence we have the serial adder of Fig. 15-11. Perhaps an even simpler 
adder could be constructed if we note that between Ri and Ci only five 
elementary productst are needed. This observation results in the adder 
of Fig. 15-12. 

t Or five elementary sums. 
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In a similar way let us consider a serial subtractor, where for the 
present we shall assume that the result of the subtraction is always 
positive. Our function table becomes (where Di now represents the 
subtractive carry) 

Ai 0101 0101 
Bi 0011 0011 
D i - 1 0000 1111 

Ri 0110 1001 
Di 0010 1011 

Note that the difference (Ri) in subtraction and the sum in addition are 
identical; only the carries differ. In the case of subtraction we have 

Di = ~,L . Bi + (Ai + Bi) . Di- I 

Note that Di has the same form as Ci, except that Ai replaces Ai (where the 
notation Di- I replaces Ci - I ). Hence, if we complemented Ai, we could 

FIG. 15-12. Serial adder. 

use the same circuitry to generate both the subtraction and addition 
carries. Thus, if the sum were desired, we would send Ai into the carry­
generating circuitry; if the difference were desired, we would send .,t 
into this circuitry. For example, suppose that, if the signal P is a unit, 
the sum is to be formed; if P is a zero, the difference is to be formed. 
This can be arranged as in Fig. 15-13. 

The subtractor can easily be formed in still another way from the 
adder. For if in the circuit of Fig. 15-12 we added an and gate forming 
.it . Bi . Ci-I, we could form Di as well as Ci. Then either Ci or Di would 
be recirculated depending on whether the sum or the difference is to be 
formed. Again this can be controlled by a signal P (see Exercise f of 
this section). 

Logical Operations Derived from Adder. Consider the function tables 
for serial logical addition, logical multiplication, logical equalization, and 
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logical nonequalization, respectively: 

Ai 0101 Ai 0101 Ai 0101 Ai 0101 
B. 0011 Bi 0011 Bi 0011 Bi 0011 

Li 0111 Mi 0001 E. 1001 Fi 0110 

Circuits for these functions are easily formed. However, observe the 
addition carry of the last paragraph, namely, Ci = 0001 0111, and 
note that, when Ci - 1 is held at unity, Ci becomes simply Li; and when 
Ci- 1 is held at zero, Mi is obtained. Similarly observe Ri of addition: 
when Ci - 1 is held at unity, Ei is obtained; when Ci - 1 is held at zero, Fi is 
obtained. Thus by fixing Ci - l we can enable our serial adder to double 
as a logical unit. 

R, 
FIG. 15-13. Adder and subtractor combination forms sum for P = 1, forms difference 
for P = O. 

To see how the carry may be controlled, suppose that I(L, K M , K E , 

and KF are control signals that take on unit signal voltage whenever 
the logical operation indicated by the respective SUbscript is to be accom­
plished. Let Ct represent the controlled carry. Then since only one 
of K L , KJl[, I(E, and KF can be "on" at a particular time, we have the 
following function table of all possible input conditions for Ct-l: 

KL 01000 01000 
K.\[ 00100 00100 
KE 00010 00010 
Kp 00001 00001 

C'- l 00000 11111 

CLI 01010 11010 = KL + KE + KM . Kp . C'-1 

On the other hand the Ri output of the adder must be modified so that it 
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will produce the logical results as well. Calling this modified output Rt, 
we find the function table: 

R. 0101 0101 0101 0101 0101 
Ci 0011 0011 0011 0011 0011 
KL 0000 1111 0000 0000 0000 
KM 0000 0000 1111 0000 0000 
KE 0000 0000 0000 1111 0000 
KF 0000 0000 0000 0000 1111 

R7 0101 0011 0011 0101 0101 = R • . XL . KM + Ci • (KL + KM) 

Hence we have the modified input-output adder as in Fig. 15-14. When 

Adder 

1 

none of the signals K L , K M , K E , or 
KF is on, the adder will behave as an 
ordinary adder; but if anyone of 
these signals is on, the adder will 
behave as a logical unit. 

Subtractive Complementer. The 
subtractive complement of an integer 
N to the base q and of p significant 
figures is defined as C(N) = qP - N. 
For decimal numbers 

C(N) = lOp - N 

for binary numbers 

C(N) = 2p - N 

KL KM For example, if N = 10110 (base 2), 
then p = 5, whence we should have 
C(N) = 100000 - 10110 = 01010. 
If N = 77 (base 10), then p = 2, 
whence C(N) = 100 - 77 = 23. 

The importance of the subtractive 
complement is related to the process 
of subtraction. Recall that, in the 
subtractor designed above, we as-

R"f sumed that the result would always 
• 

FIG. 15-14. Use of adder for logical be positive. Since our subtract or 
operations. formed A - B, this was the same 

as assuming that A > B. But sup­
pose that B > A, what would the circuit we designed do then? It 
would of course still form A-B. An illustration in terms of decimal 
numbers may clarify this situation. If we perform the subtraction 
87 - 64, we find 23 as the result; on the other hand, if asked to perform 
64 - 87, we could call - 23 the result. But if we perform 64 - 87 digit 
by digit, we find 

64 
87 

... 9977 
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or, on keeping only the two least significant figures, find 77. This is 
what our subtractor would do. However, notice that 

C(77) = 100 - 77 = 23 

which is the correct result when preceded by a minus sign. 
Thus the importance of the subtractive complementer becomes clear: 

for a subtractor designed to form 
A - B, the case of B > A is treated 
by taking the subtractive complement 
of the result. To see this more pre­
cisely, note that the "cutting off" 
of the 9s and retaining only the 
77 is equivalent to forming 100 + 
64 - 87, that is, qP + A-B. 
Thus, if B > A, then, as desired, 

C(qP + A - B) 
R, = qP - (qP + A - B) 

= -(A - B) = B - A FIG. 15-15. Subtractive complementer. 

To design a subtractive complementer, observe that we are merely 
subtracting N from all zeros; the 2p in C(N) = 2p 

- N is taken care of 
by terminating the calculations. The function table therefore becomes 
(where Ci is the recirculating carry) 

o 0000 

N. 0101 
C'-1 0011 
R, 0110 = N • . 0.-1 + if • . C'_1 

C. 0111 = N. + C'-1 

Hence the circuit appears as in Fig. 15-15. 

EXERCISES 

(a) Design a serial adder by forming C. from R.; that is, let C. = R • . X + Y. 
(b) How can an adder be made to subtract? [HINT: Note that A + C(B) = 

A + 2p - B = 2p + (A - B). Thus, if the unit in the 2p position is ignored, A - B 
is formed.] Illustrate with an example. 

(c) If subtraction is accomplished as in Exercise b, what happens when B > A? 
How can this be remedied? Illustrate with an example. 

(d) Observe that C(N) for binary N can be formed by complementing N (that is, 
forming if) and adding 1. For instance if N = 10110, observe that 01001 + 1-= 
01010 (where + stands for ordinary addition), which is C(10110). How can you 
explain this? 

(e) Design a circuit which has as inputs two serial binary numbers A and B (like the 
adder) and whose output will be a unit if A > B, zero otherwise. 

(f) Design an adder-subtractor combination analogous to the adder of Fig. 15-12, 
so that the combination forms the sum A + B when a signal P is a unit and the 
difference A - B when P is a zero. 
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16-4. Preliminaries to Synchronous Operation 

Phase Pulses. In Sec. 2-3 we distinguished four phases in the execution 
of an instruction. For example, consider the execution of an addition 
instruction that reads" Add (a) to «(3), put the sum into 'Y, and take the 
next instruction from 0." During phase 1, «(3) would usually be trans­
mitted into the accumulator; during phase 2, (a) would be transmitted 
into the arithmetic unit and added to (ace) (see Figs. 2-8 to 2-13); 
during phase 3, (ace) would be transmitted into 'Y; during phase 4 the next 
instruction would be transmitted into the instruction register. In order 
that the different parts of the computer know which phase of operation 
is in progress, phase pulses are emitted by the control unit. We denote 
by Fl, F2, F3, and F4 the phase pulse signals that are units only during 
phases 1, 2, 3, and 4, respectively. We shall consider the generation of 
these signals in detail in Chap. 17. It suffices here, however, to note 
that phase 4 occurs in three-, two-, and one-address systems, when the 
next instruction is brought into the instruction register. Phase 2 of 
course also occurs in the three-, two-, and one-address systems, where a 
modified definition of phase 2 must be made for certain instructions of 
the two- and one-address systems. 

Unit Time Intervals and Minor Cycles. In Sec. 2-4 we discussed clock 
pulses and briefly described how the entire computer was synchronized 
by these pulses. These pulses define units of time that are indivisible 
in so far as the computer is concerned. Thus a clock pulse is said to be a 
unit time interval in width (for example, the interval between ti and ti+l 
in Fig. 11-18). A minor cycle of a computer is a measure of time in terms 
of unit time intervals; its numerical value is equal to the number of positions 
in the accumulator shift register. That is, once a word has been selected 
from the memory, a minor cycle is the number of unit time intervals 
required for the word to be propagated down the accumulator shift 
register, at the rate of one shift per unit time interval. As we shall 
see below, the number of positions in the accumulator is usually greater 
than the number of bits in a word. 

Phases 1, 3, and 4 usually consist of one minor cycle each; phase 2 
will consist of one minor cycle for addition and subtraction but more than 
one minor cycle for multiplication and division, as we shall see below. 
The minor cycles are numbered within each phase, starting from 1; the 
unit time intervals are numbered within each minor cycle, starting from 
O. Thus, within a phase, a particular unit time interval can be indicated 
by denoting its number and minor cycle. The nth unit time interval 
of the qth minor cycle is denoted by Tn q. This notation will be used 
extensively below. A signal pulse that is a unit only during the nth 
unit time interval of each minor cycle is denoted by Tn. Such pulses are 
generated by a counter that counts the clock pulses themselves. The 
synchronous operation of a computer is directed by these pulses. 

The Continuously Shifting Register. A topic that will prove of impor­
tance in discussing the serial arithmetic unit is an analysis of the con-
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tinuously shifting register. The accumulator is such a register, for, as 
we have seen in Sec. 2-4, as each bit of a word is transmitted from the 
memory into the accumulator the contents of the accumulator must 
shift one stage, to make room for the entering bit. Thus after each 
unit time interval the contents of the accumulator must shift. For 
example, consider a 5-bit continuously shifting register accepting a 
4-bitwordP3P2P1PO. Label the stages of the shiftregisterbyO, 1,2,3, 
and 4, from left to right as indicated in Fig. 15-16; then the contents of 

---.. 0 1 2 :3 4 
Shift I 

register '--_-l'----_....1.-_-.L __ ....I..-._---I 

T,l 
a Po 

Tl PI Po 

T21 P2 PI Po 

731 P3 P2 PI Po 

T1 
4 

P3 P2 PI Po 

T02 P3 P2 PI 

T12 P3 Pz 

Tl P3 

T3
2 

T2 
4 

FIG. 15-16. A 4-bit word shifting through a 5-bit continuously shifting register. 

this register as a function of time is shown, where it is assumed that PO 
enters stage 0 at Tol. 

Next consider the more complicated situation where the output of the 
shift register is recirculated, as in Fig. 15-17. In the timing rows we 
have omitted the P, and the numbers represent the respective bits of our 
4-bit word. In (i), straight recirculation, note that each minor cycle 
(after the first) is identical. That is, at Toq, PO is at stage 0, Pi is at 
stage 4, P2 is at stage 3, etc. On the other hand consider the case where 
the recirculation loop is shortened as in (2). Here our word" precesses," 
so to speak: e.g., at Tot, PO is at position 0; at To2, PO is at position 1; at 
T 03, PO is at position 2, etc.; at Toq, PO is at position q - 1 (for q :::; 5). 
In (3) a lengthened precession is considered: PO is at position 0 at T 01, at 
position 0 at T 12, at position 0 at T 23; so in general PO iS'at position 0 at 
T~_l for q :::; 5. 

Let us generalize these observations. Let p represent a stage number 
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of the shift register and 8 a bit number of a word. Then for the situation 
pictured in (3) of Fig. 15-17, that of lengthened precession, we find that 
n - (q - 1) - P = 8. Thus, given T1'I Q

, we can determine 8 for a par­
ticular p or, conversely, p for a given 8. For example, for T3 2 and p = 1 

(1) Straight recirculation (2) Shortened precession (3) Lengthened precession 

[S! 0 11 I 2 1314ft! 0 11 I 21,1 4 ~[7! 0 11 12 ~ 

x~ 0 

xl 1 0 

Tl 2 1 0 

Tl3210 

Tl -3210 

o - 3 2 1 

7i2 1 0 - 3 2 

722 210-.3 

732 3 2 1 0 -

T: - 3 2 1 0 

Ta3 0- 321 

xl 1 0 - 3 2 

723 210-3 

733 32.10-

Tl - 3 2 1 0 

o - 3 2 

1 0 3 2 

2 1 0 - 3 

T34 3 2 1 0 -

T: -.3 2 1 0 

o 
1 0 

210 

321 0 

o 3 2 1 0 

o 1 0 3 2 1 

12103 2 

2 3 2 1 0 3 

3 0 3 2 1 

- 103 2 1 

0210.32 

13210.3 

2 0 3 2 1 0 

3 1 0 3 2 1 

- 2 1 0 3 

o .3 2 1 0 

1 0 3 2 1 

2 1 0 3 2 

3 2 1 0 3 

- .3 2 1 0 

o 

1 0 

210 

3 210 

- 3 2 1 0 

o .. - 3 2 1 

1 0 .. - 3 2 

2 1 0 3 

3 2 '1 0 

0.3210-

1 - .3 '2 1 0 

2--.321 

3 0 - - .3 2 

0. 1 0 - - 3 

1 2 1 0 -

2.3210-

3-.3210 

o 

1 0 

210 

321 

3 

FIG. 15-17. Continuously shifting register with various recirculation situations. 
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we find 3 - 1 - 1 = 1, as can be easily confirmed from (3). However, 
for T 23 and p = 3 we find 2 - 2 - 3 = -3, which clearly is not one of 
the values taken by 8 since 8 = 0, 1, 2, and 3. 'In such a situation let us 
note that if there were w stages to the shift register, that is, p = 0, 1, 2, 
. . . ,w - 1, then Tn Q == T~+~; that is, T 1'1 Q and T~+! represent the same 
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time period. For our example, w = 5; hence we replace T 23 by T72, 

whence we find 7 - 1 - 3 = 3, which is correct. 
Next consider the situation in (2) of Fig. 15-17. Here note that 

n + (q - 1) - p = s. For example, for T I 3 and p = 0, 1 + 1 - 0 = 2, 
which can be checked in the proper 
chart of Fig. 15-17. However, if 
p = 4, for example, we would have 
1 + 1 - 4 = -2. The solution to 
this dilemma is to note that TI2 = Tel, 
whence 6 + 0 - 4 = 2, which is 
correct. 

---- ----

T T T 
FIG. 15-18. Delay line. 

In general it is now easy for us to see that if ~ is the number of stages 
lengthened (and - ~ is the number of stages shortened) then 

n - ~(q - 1) - p = s 

where we shall often have to use the fact that 

to obtain the proper solution. 

(15-1) 

(15-2) 

These formulas are primarily of use in discussing serial multiplication 
and division. The recirculation of the accumulator for addition and 
subtraction is analogous to (1) of Fig. 15-17, where the formulas are not 
really necessary. 

~ad 

~ 
Drum 

FIG. 15-19. Using a drum for a delay-line shift register. 

The continuously shifting register is important, not only because the 
serial accumulator is one, but also because all delay-line registers are of 
this type. Until now we have considered registers as shift registers. 
However, delay lines can be used for the temporary storage required for 
registers. Previously we have used the concept of a unit delay when 
discussing recursive functions; delay lines that are used as part of a 
register usually afford many time periods of delay. Figure 15-18 repre­
sents a possible method of constructing a delay line. For the purposes of 
logical design the most important difference between a shift register 
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and a delay-line register is that the pulses in a shift register may be shifted 
or not at any time, depending on the occurrence of a controlling shift 
pulse, but that, as is clear from Fig. 15-18, the pulses in a delay-line 
register keep moving all the time. A delay-line register is thus like a 
shift register that is always shifting. The advantage of a delay-line 
shift register is its often low cost as compared with a shift register. 
For example, a small computer with a drum could use part of the drum 
for a delay-line shift register (see Fig. 15-19). Here the pulses are put 
on the rotating drum in sequence and are picked up after the delay of 
rotation at the reading head. A great disadvantage of delay-line regis­
ters is that they are not appropriate for parallel computers, as will be 
seen below. 

EXERCISES 

(a) The Pedagac has a minor cycle of 23 unit time intervals. Design a cascaded 
counter that will generate To, T I , ••• ,T22. (See Fig. 18-16, pages 612, 613.) 

(b)' Draw the detailed logical diagram for the shift register of Fig. 15-17, and indi­
cate where the connections would be made for each of the recirculation situations of 
the figure. Show that the recirculation loops are connected correctly in each case. 

(c) For A = -1, w = 5, locate P2 at T22; locate P2 at T02 (that is, find p). Check 
results with the charts of Fig. 15-17. 

(d) For A = +1, w = 5, locate P2 at T4 3 ; locate P2 at T 03. Check results with 
the charts of Fig. 15-17. 

(e) For A = +1, w = 5, what bit will be located at p = 2 at T 23? (That is, 
find 8.) Can you explain the result obtained? Check result with the charts of 
Fig. 15-17. 

(f) For the arrangement shown in Fig. 15-19, how can shortened and lengthened 
precession be obtained without using additional heads? (HINT: Use the drum for 
only part of the register.) 

16-5. Serial Arithmetic Unit: Addition and-Subtraction 

The Addition of Words. We have shown in Sec. 15-3 how a serial 
adder is designed. Now consider the problem of incorporating such an 
adder into the arithmetic unit of a serial computer. In general only 
one word at a time can be transmitted from the memory to the arithmetic 
unit. Hence in adding two words, say A and B, the word B is usually 
transmitted to the accumulator first, during phase 1. Then during phase 
2 this word is recirculated from the accumulator through the adder at the 
same time as A is being transmitted from the memory through the adder, 
and in this way A and B are added and the sum put into the accumulator. 
In the three- or four-address systems it is convenient during phase 1 to 
transmit into the accumulator through the adder; here B is added to all 
zeros, which is accomplished by gating the recirculation from the accumu­
lator with F2, which is off during phase 1 (see Fig. 15-20). However, 
the other input to the adder must be open during both phase 1 and phase 2 
and is therefore gated with Fl + F2. For one-address addition systems 
the contents of the accumulator is taken as one of the arguments directly, 
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phase 1 being eliminated. The two-address system may work either 
way. 

The sign bits of the words are not sent through the adder; they are 
recorded in flip-flops (not shown in Fig. 15-20) until needed. Therefore 
PI is the first bit of a word to enter the accumulator, since the PO bit 
is the sign bit. I t is customary to arrange the timing so that, when a word 
is transmitted from the memory to the accumulator, its PI bit enters the 
zeroth stage at TIl. For the present we shall assume that it takes no 
appreciable time for a pulse to go through the adder or, in fact, through 
any gating levels. Of course this is not actually so, as we shall see when 

Fl 

F2 

1'0-------1 
From memory -----i 

F2-----i 

FIG. 15-20. The addition of words. 

I--~~ To memory 

we discuss the electronic design of the gates. Thus, in phase 1, bit Bl 
enters the zeroth stage of the accumulator shift register at TIl; in phase 
2, the sum of BI and AI, namely, RI, enters the zeroth stage at 1\1. 

The Sum and the Difference. Since each word may be either posi­
tive or negative, sometimes even when subtraction is called for, the sum 
may be required, and when addition is called for, the difference may be 
required. Let us define some terms in order to facilitate the discussion. 
Henceforth we shall mean by addition and subtraction the operation written 
into any instruction. On the other hand by sum and difference we shall 
mean that which is carried out by the arithmetic unit in any instance. 
Table 15-2 summarizes all possibilities. 

TABLE 15-2. SUM AND DIFFERENCE CONDITIONS 

SA SB Operation W Result P 
--

+ + Add Sum 
- + Add Difference 

+ - Add Difference 
- - Add Sum 

+ + Subtract Difference 
- + Subtract Sum 

+ - Subtract Sum 
- - Subtract Difference 
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Our adder-subtractor combination of the previous section forms the 
sum or difference of A and B depending on whether the sum carry C 
or the difference carry D is recirculated. The signal P that determines 
this must itself then depend on three signals: the sign of the number A, 
denoted by SA, the sign of the number B, denoted by SB, and the opera­
tion. Let SA and SB be 1 for a positive number and 0 for a negative 
number. Let W represent the operation, such that for addition W is 1 
and for subtraction o. Then from Table 15-2 we can form the following 
condition-function table for P, where it is recalled that when P is 1 the 
sum is to be formed, when P is 0 the difference is to be formed: 

SA 0101 0101 
SB 0011 0011 
W 0000 1111 

palla 1001 = (SA· SB + SA . SB) . TV + (SA· SB + SA . SB) . W 

The next problem is to determine the sign of the result. For this 
we need one additional piece of information if the difference was formed, 
namely, whether IAI > IBI or IBI > IAI. Then the sign conditions are 
summarized in Table 15-3. Let us suppose for the moment that this 

TABLE 15-3. SIGN CONDITIONS FOR A ± B = Ct 

(+A) + (+B)} = (+C) 
(+A) - (-B) 

(-A) + (+B)} = {(+C) for IBI ~ IAI 
C -A) - C -B) C -C) for IBI < IAI 

(+A) + C-B)} = {C+C) for IAI ~ IBI 
(+A) - (+B) (-C) for IAI < IBI 

(-A) + (-B)} = (-C) 
(-A) - (+B) 

t (+A) means that A is positive, (-A) means that A is negative, and similarly 
for Band C. Note that zero is positive. 

can be determined and that, if IBI > IAI, then X is 1 and, if IAI > IBI, 
then X is o. Let S be the sign (1 if positive, 0 if negative) of the sum or 
difference as the case ,may be; then the condition-function table for S 
becomes 

910 12 15 

SA a 1 a 1 a 101 0101 a 1 a 1 
SB 0011 a all 0011 a all 
W 0000 1 1 1 1 0000 1111 
X 0000 0000 1 1 1 1 1 111 

S 0101 010 1 1100 o 0 1 1 = SA . X + (SB . TV + SB . W) . x 

Note that the case for A = B was not covered. This must be taken 
care of separately, as we shall see below. 

As can be seen from Table 15-3, the only time X is important is when 
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a difference is being calculated by the adder-subtractor. For the adder­
subtractor described above, the difference calculation always performed is 
IAI - lEI. When lEI> IAI, the result is 2p + IAI - lEI and the sub­
tractive complement of the result must be taken. Now if p is taken 
greater than the length of the word, units would appear to the left of the 
word. For example, consider 5-bit words with the difference carried to 
eight places, 

000 01010 
000 10110 

---I 
11110100 
i 

The subtractive complement is 01100, and the result is negative. How­
ever, the important point to note is the propagation of units to the left 

W--t>I 

From 
memory -t---&.~ 

Sign 
generator 

Complementer 
---r---control 

x 

Accumulator 

FIG. 15-21. Adder and subtractor combination with controls. 

To 
memory 

in the result. This will occur whenever the difference is formed with 
lEI> IAI. Hence it is this propagation of units that tells us when 
lEI> IAI or lEI < IAI. Thus a propagated unit can be taken for X. 
It is wisest to choose a unit in position p + 2 (as indicated by the arrow), 
where p is the number of positions in the word, for position p + 1 could 
possibly become a unit due to normal overflow, but not p + 2. When X 
is chosen as this bit, it is easily seen that conditions 9, 10, 12, and 15 
will never occur, for here the sum of the numbers is being formed. Hence 
these columns can be dropped, forming a constrained basis. Under this 
constraint S reduces to 

S = SA . X + SA . X 

In Fig. 15-21 we have summarized the developments so far in this 
section. For the addition and subtraction of words we described an 
adder-subtractor combination (that formed IAI + lEI and IAI - IE/) 
followed by an elongated accumulator. However, to take care of the 
case when lEI> IAI, we need an output subtractive complementer. 
Also we need controls to tell the adder combination when to form the 
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sum and' when to form the difference, controls to determine the sign 
of the result, and a control for the output subtractive complementer. 
This latter control is particularly simple: if a unit is propagated two 
positions more significant than the most significant (leftmost) position 
of a word, then the complementer is turned on; otherwise it is left off. 
The sign bits SB and SA that precede the entrance of B and A from the 
memory are sensed as they enter the arithmetic unit and are not used 
in the adder itself; the sign of the result is placed in the word just before 
it goes to the memory. Note that the accumulator must be at least 
2 bits longer than the word length itself (why?). 

Decimal Addition and Subtraction. In Sec. 3-10 we discussed the con­
cept of decimal-coded binary computer design. Here we shall discuss a 
particular system of decimal-coded binary which contains the basic 
ingredients of any such system. The specific circuits used for decimal 
addition and subtraction of course depend on the particular decimal-coded 
binary code used. We shall choose a code called the excess-three code, in 
terms of which these operations are especially simple to perform. Table 
15-4 gives the excess-three code. If V is a decimal digit, then its excess­
three code is found by converting V + 3 to binary, which we shall 
represent by (V + 3h. 

The first obvious advantage of this code concerns the decimal carry. 
In adding two decimal digits a carry is obtained when the sum of the 

TABLE 15-4. DECIMAL-CODED BINARY IN THE EXCESS-THREE CODE SYSTEM 

Decimal Excess-three code 

0 0011 
1 0100 
2 0101 
3 0110 
4 0111 

5 1000 
6 1001 
7 1010 
8 1011 
9 1100 

digits is 10 or greater. In the excess-three code, if we add in the usual 
binary fashion the codes representing two such digits, we find t 

(U + 3)b + (V + 3h = (U + V)b + (3 + 3h ~ lOb + 6b = 16b 

but binary 16 has a fifth bit, which corresponds to the decimal carry. 
This suggests a method for performing the addition of two excess-three 
binary-coded decimal words. Simply add the corresponding digits 
(groups of 4 bits) as if they were actually binary numbers; if there ·is a 
carry from the previous 4-bit addition result, add this in also. Of 

t Recall that if U and V are decimal digits (U + Vh = Ub + Vb, where the 
:subscript b means "converted to binary." 
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course the binary sum will not be the proper excess-three code and hence 
must be adjusted accordingly, as will now be considered. 

Suppose that we desire to form the following sum, where we use 4-digit 
numbers as an example: 

N4 N3 N2 Nl 
+ M4 M3 M2 Ml 

R5 R4 R3 R2 Rl 

where N i, M i, and Ri are the decimal digits of the arguments and the 
result. Now, if NI + MI :::;; 9, then NI + MI = RI. However, we 
desire the digit RI in excess-three code, i.e., as (RI + 3)b. Suppose 
that we added the excess-three codes of N I and M I directly; we would 
obtain (Nl + 3)b + (MI + 3h = (N I + MI + 6)b = (RI + 6h. Thus, 
to obtain the correct excess-three result, we would form the sum of the 
excess-three codes of corresponding digits and subtract 3; that is, 

(RI + 3)b = (N I + 3h + (M I + 3)b - 3b 

Next consider N I + M 1 > 9. In this case R is the least significant 
figure of the addition. The most significant digit, 1, becomes the carry 
to the next position (e.g., if NI = 6, N2 = 7, then NI + N2 = 13 and 
RI = 3 with the 1 becoming the carry). Thus Rl = NI + MI - 10, 
and the desired excess-three code result is (N I + M I - 10 + 3)b. We 
observed above that, under these conditions, the binary sum of the excess 
3 digits will contain 5 significant bits; we use the fifth bit as a carry, 
retaining only the other 4. The 4-bit result of the excess-three addition 
becomes (NI + 3h + (MI + 3h - 16b = (NI + Ml - 10h. To this 
we must add 3 to obtain the correct excess-three result: 

[(NI + Ml - 10) + 3]b = [(NI + 3)b + (MI + 3hl - 16b + 3b 

Summarizing, the rules for addition are as follows: To form the excess­
three result of adding (summing) the corresponding digits of two numbers, 
sum their excess-three codes and then subtract 3 if no carry results, or add 3 
if a carry does result. The carry increases Mi+1 by 1, and hence also its 
excess-three code. Thus the carry is added to the addition of the least 
significant place of Mi+1 just as in an ordinary binary adder. For exam­
ple, consider the following addition: 

Decimal 

274 
+465 

Result 739 

Binary sum ....... 
Carry record ...... 
Adjustment ....... 

Consider now subtraction. Forming 

Decimal-coded binary 

0101 1010 0111 
+0111 1001 1000 

1101 0011 1111 
No Yes No 

-0011 +0011 -0011 

1010 0110 1100 

(NI + 3)b - (Ml + 3)b = (Nl - Mlh 
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we see immediately that, if N 1 ~ M 1, all we need do is add 3 to this result, 
that is, R1 + 3 = (N 1 - M 1 + 3)b = (N 1 + 3h - (M 1 + 3)b + 3b. On 
the other hand suppose that M1 > N 1; then we desire 

R1 = 10 + N1 - M1 

whence (R1 + 3)b = (10 + N1 - M1 + 3)b. We form 

24b + (N1 + 3)b - (M1 + 3)b - 3b = (16 + N1 - M1 - 3)b 
= (10 + N 1 - M 1 + 3)b 

Notice that in this latter case the binary subtraction will produce a carry 
from the most significant position (which is the reason for the 24

b), and 

From 

Adder-subtractor 
control 

Digit recirculation loop 

Output 
subtractive 

complementer 

To memory 

FIG. 15-22. Adder and subtractor combination for excess-three decimal-coded binary 
words, with controls. 

hence the carry indicates that the difference between (N1 + 3)b and 
(M 1 + 3)b must be reduced by 3. 

Summarizing, the rules for subtraction are as follows: To form the 
excess-three result of subtracting (differencing) corresponding digits, differ­
ence their excess-three codes and then add 3 if no carry results or subtract 3 
if a carry does result. Again any carry is added to (Mi+1 + 3)b, and the 
subtraction then takes place in these four bit positions, etc. 

Figure 15-22 represents a block diagram of a serial excess-three adder 
and subtractor and associated control circuits. The 4 units of delay 
adjacent to the accumulator hold the 4 bits of the sum or difference of 
the excess-three codes of corresponding digits before the recirculation 
through the adder for ±3 adjustment. The 3b generator generates 0011 
to be added to or subtracted from the recirculating 4-bit result. During 
this recirculation no further bits of A or B enter the adder. When the 
recirculation and ± 3 adjustment have been accomplished, the next 
digits, i.e., the next 4 bits each, of A and of B enter the adder. The 
process continues alternating: sum or difference next 4 bits, recirculate 
result adding or subtracting 3, sum or difference next 4 bits, recirculate 
result, etc. The carry must be recorded in a flip-flop, held during the 
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recirculation, and then inserted just as the next digits of A and of B 
enter the adder. The ± 3b control signal, denoted by P r , determines 
whether the 3b should be summed or differenced during the recirculation, 
while the adder-subtractor control signal P does this during the process­
ing of the next digits. The signal P is generated in the same way as 
in the binary case of the previous paragraph; the signal P r depends on P 
and on the carry CD, as described by our above rules. Since Pis 1 when 
the two numbers are being summed and 0 when they are being differenced, 
the function table for P r becomes 

OD 0101 
P 0011 

P r 1001 = OD·P + CD·P 

The sign generator is as in the binary case, except that sometimes the 
sign itself is coded into 4 bits. The output subtractive complementer is 
actuated this time by a 9 in the overflow decimal position. 

The subtractive complement of an integer N having p significant 
figures in base ten is lOp - N. If the rightmost digits of N are zeros, then 
C(N) ends in the same number of zeros; thence the rightmost nonzero 
digit of N is subtracted from 10, and each succeeding leftward digit is 
subtracted from 9. For example, we have 

100000 
55500 
44500 

Observe that the inverse iii of the ith digit of N represented in excess-three 
is 15b - (Ni + 3)b = 12b - (Ni)b = (9 - N i ) + 3b, that is, the excess­
three representation of 9 - N i . Note also that 10 - Ni = (9 - N i ) + l. 
Our subtractive complementer (Fig. 15-23) is designed to pass all right­
most zeros, form 10 - Ni = iii + 1 t for the rightmost nonzero digit, 
and then form 9 - Ni = iii for the leftward digits. 

Referring to Fig. 15-23, if the least significant excess-three digit of N 
is zero (i.e., if P4 P3 P2 PI = 0011 at Toq, with K = 0), gate 1 sets the 
flip-flop to the unit state, through gate 2. As long as each later digit is 
a zero (for K = 1, 2, ... ), the flip-flop will remain set. The first non­
zero digit will reset the flip-flop to the zero state, through gate 3. As 
long as the flip-flop is set, C = 1 and gates 6 and 7 (and their associated 
not gates) form R = Ni = Ni (that is, so long as Ni = 0). As the flip­
flop is reset, its last unit bit is delayed, so that C will still be 1 as (Ni)o 

t According to the following function table for eN,);, the jth bit of the ith digit of N: 

(N')i 0101 
o 0011 

R 1001 
0' 0010 

where C is the carry (0') delayed, and j = 0 - 0 = 1, so that the 1 is added to Ni. 
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of the first nonzero digit of N enters the complementer, initiating the 
10 - Ni function. If N 1 ~ 0, Toq entering gate 4 will make C = 1 for 
(N1)o, to initiate 10 - N 1. After 10 - Ni is formed for the first nonzero 
digit, no carry can result [unless by error (Ni + 3)b == 1111], and since 

Accumulator 

T~---r-+--r-~-----r-------------------. 

I--+-I:>--R 

74'k------r-I I 
L.. _______ J L.....-____ --' 

(3) Flip-flop 

FIG. 15-23. Excess-three subtractive complementer. T 4Kq marks the beginning of 
each successive digit as K = 0, 1, 2, .... 

the flip-flop will be reset, C will be 0 and gates 5 and 7 will form 
R = N~ == 9 - Ni for all following digits. 

EXERCISES 

(a) Consider a word that is 15 bits plus a sign bit long. Suppose that the signal X 
as defined above is to be sensed from stage 1 of the accumulator at time Tn l • What 
should be the value of n? (Ans. Tl7l .) 

(b) What is the purpose of To in Fig. 15-20? 
(c) In Exercise b of Sec. 15-3 it was described how an adder could subtract. This 

requires an input subtractive complementer (o the adder as well as an output subtractive 
complementer. Suppose that it is decided always to form G(B) if B is negative (where 
B enters the arithmetic unit first, before A enters). Then the decision on whether 
to form G(A) is determined by the operation Wand the signs SA of A and SB of B. 
Suppose that this complementation is not to take place when control signal Q is 0 
and is to take place when Q is 1. Determine Q = Q(SA,SB, W). (HINT: Recall from 
Exercise b of Sec. 15-3 that, if the difference of A and B is to be computed, only one 
of A or B, but not both, must be subtractive-complemented; if the sum of A and B is 
to be formed, either both A and B must not be subtractive-complemented or else 
both A and B must be subtractive-complemented.) 

(d) If X is the output-subtractive-complementer control, how is it generated in 
the binary system of Exercise c? [HINT: The difficult case is when G(A) + G(B) is 
formed in the accumulator. Here the sum is 2p - A + 2p - B = 2p +1 - (A + B). 
Hence we must form by means of the output complementer 2p +1 - (2 p +1 - (A + B».J 

(e) For the system of Exercise c design a circuit to generate the proper sign. 
(f) How can advantage be taken of the adder to simplify the input-subtractive­

complementer circuit of the system of Exercise c? (HINT: See Exercise d of Sec. 15-3.) 
(g) Describe in detail a decimal system using excess-three decimal-coded binary 

words, where only an adder is available, together with input and output subtractive 
complementers. 

(h) In a computer zero is always considered to be positive. Can a negative zero 
occur. in the b.inary sign-generating system .described in this section? (Ans. Ye~.) 
'Under precisely what conditions? .. ::/iJ 
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(i) A zero sensor circuit determines if the result of an addition or subtraction is zero. 
Design such a circuit for a binary system, and show how it can be made to override 
the sign generator when necessary. 

(j) Design a zero sensor for the decimal system described in this section. 
(k) Is a zero sensor necessary for a binary system as described in Exercise c? 
(l) In Fig. 15-22 the 4 units of delay arc followed by a direction-control box. This 

circuit is to recirculate the 4 bits for the ± 3b adjustment and then send these 4 bits 
to the accumulator. Design a circuit that includes a 3-bit counter that will perform 
this task. 

15-6. Serial Arithmetic Unit: Multiplication and Division 

Multiplication. Binary multiplication as accomplished by a serial 
computer is similar to the ordinary hand method except that it is more 
convenient to form the partial sums directly instead of summing last. 
For example, consider the following multiplication M X N = P: 

By hand 

11101 Multiplicand N 
10011 Multiplier M 

----
11101 

11101 
00000 

00000 
11101 

1000100111 Product P 

By serial computer 

11101 Multiplicand N 
10011 Multiplier M 
1110:1 1st partial sum 

11101i 
10101:11 2d partial sum 
00000\ 
1010:111 3d partial sum 

00000; 
0101:0111 4th partial sum 

11101: 
10001:00111 Product P 
--..-: --..-

Major Minor 

Hence, in a serial computer, the product P is formed by successively 
adding to the partial sum either all zeros or the appropriately shifted· 
multiplicand N, as directed by the multiplier M. In ·the following dis­
cussion we assume that M and N are positive, since the sign of the prod­
uct P is generated independently. Also recall that the sign bits never 
enter the register but are recorded for later use in the sign generator. 

The method for implementing the multiplication process involves two 
additional shift registers besides the accumulator. One of these registers 
will record the multiplicand so that it will be readily available for form­
ing the partial sums; this register is called the icand register. The other 
register records the multiplier and presents the appropriate bit to direct 
the partial-sum formation at each stage of the multiplication; this register 
is called the ier register. The ier register has another function also. 
Recall that a product can be twice the length of a word, and therefore 
major and minor multiplication is obtained (see above example). The 
ier register is used to store the minor product as it is formed. To see 
how this double function can be accomplished by the ier register, observe 
that, after a bit of the multiplier has directed the formation o~ its cor-
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responding partial product, it can be di~carded. Also note that the bits 
of the minor product are generated one at a time by each successive 
partial product (indicated by dashed line above). Hence, as a bit of the 
multiplier is discarded, it can be replaced in the ier register by the newly 
generated bit of the minor product at the end of the multiplication 
process. The major product is found in the accumulator. 

Figure 15-24 is a simplified block diagram of the circuits used in serial 
multiplication for a three-address system. During phase 1 the multiplier 
enters the ier shift register (where the signal Fl is a unit during phase 1). 
From memory 

\.. Recirculation ~ 

To memory 
1--tf----3~ 

FIG. 15-24. Serial multiplication: arrangement shown for multiplication only. 

During phase 2 the multiplicand is brought into the arithmetic unit 
(where the signal F2 is a unit during phase 2), and the multiplication is 
executed. In the first minor cycle of the phase the mUltiplicand enters 
the icand register to be stored; at the same time the first sum is formed, 
such that only if PI of the multiplier is 1 will the multiplicand be allowed 
to enter the adder. 

During the second minor cycle the icand register recirculates the multi­
plicand and at the same time sends it to the adder. At T02 the multiplier 
is shifted right one position, putting P2 in the controlling position, and 
spilling PI, as PI of the product is simultaneously inserted into the 
most significant position of the ier register. The mUltiplicand enters the 
adder or not depending on P2. At this time the first partial product is 
being recirculated through the adder, to be added to the multiplicand 
(or to all zeros, depending on P2). In the above example P2 is a unit. 
Note, however, that, when this addition is accomplished, the first partial 
product must be displaced one position to the right with respect to the 
multiplicand. This displacement is accomplished by recirculating the 
first partial product one position before it reaches the end of the accumu­
lator. Thus P2 of the first partial product is added to PI of the multi­
plicand, etc., to form the second partial product. Since PI of the first 
partial product does not contribute to the second partial product and has 
already been stored in the register, it is not recirculated. 
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At 'P 03 the ier register is again shifted right as the next least significant 
bit of the minor product is inserted. This puts P3 of the multiplier 
in the controlling position and spills P2. Again the icand register recircu­
lates the multiplicand, sending it as well to the adder. The second 
partial sum begins to recirculate one position before the end of the 
accumulator. And so the third and following partial products are 
generated, until the entire product has been formed. By this scheme 
a serial computer with n bits to a word will consume n minor cycles during 
multiplication. 

In phase 3 either the major or the minor product is transmitted to 
the memory as indicated by the output gates from the accumulator and 
ier register as controlled by F3 and the signal J, which is 1 when the major 
product is desired, 0 when the minor product is desired in Fig. 15-24. 

Let us now examine some of the timing factors involved in multiplica­
tion. The multiplier M is transmitted to the ier register so that Ml 
enters the zeroth stage at T 11 of phase 1 (since the sign bit is recorded 
elsewhere). M is shifted down the ier register so that Ml reaches the 
end and can be presented to control the adder input at TIl of the first 
minor cycle of phase 2. During each subsequent minor cycle of phase 2 
the ier register shifts at T 1q, presenting the bit Mq of M. The multi­
plicand N is transmitted from the memory to both the icand register and 
adder during the first minor cycle of phase 2 so that Nl enters the zeroth 
stage at TIl. Of course, depending on Ml, it mayor may not get into 
the adder. However, it is shifted down the icand register and recircu­
lated in it each minor cycle so that Nl is presented to the adder at T 1q. 

To describe the timing associated with the accumulator, we need some 
special notation. Let Pq be the qth partial product generated during the 
qth minor cycle of phase 2. Then the least significant bit of Pq, namely, 
P ql (since no sign is attached to Pq), is actually the Pq bit of the (minor) 
final product. We want to recirculate Pq so that P q2 enters the adder 
during T 1q+l. Thus we must stop the accumulator at the stage in 
which P q2 resides at Toq+l. Using our formulas of Sec. 15-4, we have 
T oq+l = Twq, whence w - O(q - 1) - 2 = w - 2 (since A = 0; why?). 
Since stage w - 1 is the last stage, stage w - 2 is next to the last stage 
as shown in Fig. 15-16. Next we want P q l to be transmitted to the ier 
register at T 1q+t, whence it must be at position w - 1 at Toq+l. 

Division. Binary division is accomplished in a serial computer by 
a method quite different from the familiar hand technique. Let us con­
sider the case in which the quantity format places the binary point to the 
left of a word, i.e., in which all numbers are less than 1. Let N be the 
dividend, D the divisor, and Q the computed quotient; assume that N 
and D are positive, the sign of Q being determined in a separate circuit. 
Thus we can write 

D>N 

where Ql is the most significant, Qn the least significant bit of the desired 
quotient. Now form 
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N' = 2N - D = D(2Q - 1) 
= D( Ql - 1 + Q22-1 + Q32-2 + ... + Qn2-n+1) 

Observe that, if Ql = 1, then Ql - 1 = 0 and since Q22-1 + Q32-2 + 
. . . + Qn2-n+1 is positive, 2N - D would be positive or zero. How­
ever, if Ql = 0, since Q22-1 + Q32-2 + ... + Qn2-n+1 < 1, we have 
2N - D negative. Thus, depending on whether 2N - D is positive 
or negative, we can determine that Ql is 1 or O. 

FIG. 15-25. Flow chart of serial-division process. 

Suppose that Ql = 1 (N' ~ 0); then 

N' = 2N - D = 0 + D(Q22-1 + Q32-2 + ... + Qn2-n+1) = DQ' 

Next form 

Nil = 2N' - D = D(2Q' - 1) 
= D(Q2 - 1 + Q32-1 + Q42-2 + ... + Qn2-n+2) 

whence Q2 is determined to be 1 or 0 depending on whether 2N' - D is 
positive or negative. 

However, suppose that Ql = 0 (N' < 0); then 

This time form 

Nil = 2N' + D = D(2Q' + 1) 
= D( - 2 + 1 + Q2 + Q32-1 + Q42-2 + ... + Qn2-n+2) 
= D(Q2 - 1 + Q32-1 + Q42-2 + ... + Qn2-n+2) 

which is exactly the same Nil as above. Hence we can flow-chart the 
division mechanism as in Fig. 15-25. The process ends when Qn has 
been determined (this not being shown in our flow diagram of Fig. 15-25). 

Of course, when N(i) becomes zero, the division has come out even. 
The computer, however, continues the process, but each succeeding N(f) 

will be negative, so that each succeeding Qj will be zero. 
As an example, suppose that N = .10110110 and D = .11100000. 

Then the calculations would proceed as follows: 
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Form 2N - D 
1.01101100 

- .11100000 
+.10001100 = N' > 0 hence Ql = 1 

Form 2N' - D 
1.00011000 

- .11100000 
+.00111000 = Nil > 0 hence Q2 = 1 

Form 2N" - D 

0.01110000 
-.11100000 
-.01110000 = Nil' < 0 hence Qa = 0 

Form 2N"' + D 

-0.11100000 
+.11100000 
+.00000000 = N(iv) = 0 hence Q4 = 1 

and the process is complete for this case, with Q = .110100 

From memory 

F2 

DiViSion--£>--, 
signal I 

p 

Divisor D 

Addition-subtraction 
sign determiner 

515 

icand register 
I--.-_T--,o~memory 

FIG. 15-26. Serial division: arrangement shown for division only. 

Figure 15-26 is a simplified block diagram of the circuitry used in 
serial division. During phase 1 the dividend N enters the accumulator. 
During the first minor cycle of phase 2 the divisor D enters hoth the adder 
and the icand register. In the icand register D is recirculated each minor 
cycle, successively sending D to the adder. Now during the first minor 
cycle of phase 2 we wish to form 2N - D. Forming 2N is simple, for 
all we need do is shift N to the left one position, or, equivalently, delay 
the entrance of N into the adder for 1 unit of time. Thus effectively 
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2N enters the adder at the same time as D enters the adder. In this way 
N' = 2N - D is formed in the adder during the first minor cycle. Next 
the addition-subtraction sign generator operates: if N' = 2N - D ~ 0, 
QI = 1; if N' < 0, QI = 0. Since a positive sign is a unit and a negative 
sign a zero, the sign bit itself is equal to the value of QI and therefore is 
put into the ier register, where the quotient will be formed 1 bit at a time. 

During the second minor cycle of phase 2 we wish to form N" as either 
2N' - D or 2N' + D depending on the value of QI (see above). By 
delaying N' as it recirculates from the accumulator to the adder 2N' is 
effectively formed. The recirculating icand register sends D to the adder, 
where Nil = 2N' - D (or 2N' + D) is formed. The sign of Nil is 
determined and becomes Q2. Now Q2 is less significant than QI and 
therefore must appear in the quotient adjacent to QI on its right. To 
accomplish this, QI has been recirculated around the ier register with an 
additional unit delay so that it will reenter the ier register just after Q2 
is placed there. Thus Q2 will be to the right of QI as desired. During 
the third minor cycle Q3 is formed as usual, and the partial quotient QIQ2 
is recirculated again with a unit delay, enabling Q3 to be placed to the 
right of QIQ2, forming QIQ2Q3, and so forth. 

Consider Table 15-2, Sum and Difference Conditions, as applied to 
the special case of division. The denominator D, which corresponds to 
the second operand B of the table, will always be positive. If a given 
N(i), which corresponds to the first operand A of the table, is positive, 
N(i+I) is formed by subtracting: N(i+O = 2N(i) - D. From the table we 
see that the result is formed by differencing. If a given N(i) is negative, 
N(HI) is formed by adding: N(i+I) = 2N(i) + D. Again the table shows 
that the result is formed by differencing. Hence in division the signal P 
of both the table and Fig. 15-26 can be forced off during the entire 
operation. 

EXERCISES 

(a) Design a sign generator for multiplication and division. (HINT: If the signs 
of the arguments are the same, the sign of the result is +; if different, the sign is -.) 

(b) Suppose that a continuously shifting register were used for the ier register for 
multiplication. How should the recirculation loop be designed? 

(c) How many minor cycles does multiplication take during phase 2? 
(d) How many minor cycles does division take during phase 2? 
(e) Suppose that N > D in division. How can this be detected in the division 

method described in this section? 
(f) Check the method of recirculation of the accumulator and the ier register by 

means of the formulas of Sec. 15-4. 
(g) How would serial division take place in a computer in which the binary point 

is to the right (i.e., every number is an integer)? 
(h) Discuss serial decimal multiplication and division based on a serial decimal 

adder and subtractor. [HINT: Multiplication is rather straightforward. For division 
one simple method is to let N ID = Q, whence N = DQ = D(Q1IO-l + Q21O-2 + 
Q310-3 + ... ). Form ION - tD = D(QI - t + Q21O-1 + Q310-2 + ... ) for suc­
cessive values of t = 1, 2, ... , 10, until ION - tD becomes negative, whence 
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Ql = t - 1. Then we have N' = ION - tD = D( -1 + Q21O-l + Qa10-2 + ... ). 
Now form ION' + tD for successive values of t = 1, 2, ... , 10, until !ON' + tD = 
«t - 10) + Q2 + Qa10- l + ... ) becomes positive, whence Q2 = 10 - t. Then 
Nil = ION' + tD = (Q 310- l + Q4 1O-2 + ... ), and we are back to a situation 
analogous to that for Ql'] 

(i) What extra circuitry might be needed to detect "even" division, that is, 
N(i) = 0, or 2N(i) ± D = ±D?" 

16-7. Additional Topics 

a. Cyclic and Decimal-coded Binary Codes. We have alluded above to the cyclic 
code; The main property of this code is that successive numbers differ by only a 
single bit position, as can easily be seen from Table 15-5. The cyclic code given in 
this table can be derived from the corresponding binary number as follows: If the 
bit positions are indexed from right to left by i, then Ci, the ith bit of the cyclic code, 
can be found from the b, and bi+l bits of the binary code by means of the following 
formula: 

The conversion would then be accomplished from right to left. The reverse COIl­

version, from cyclic to binary, can be accomplished by solving the above formula 
for bi. in terms of Ci and bi.+l, 

The conversion in this case would be accomplished from left to right. The cyclic 
code is advantageous mainly in the use of relay circuits, for then a sticky relay will 
not give a false state as it is delayed in going from one cyclic number to the next. 
There are many other cyclic codes that have this property. Can you construct 
some of them? 

TABLE 15-5. EXAMPLES OF CYCLIC AND DECIMAL-CODED BINARY CODES 

Decimal Binary Cyclic Excess-three Biquinary 5-421 2-421 5-cyclic Features 

------ --

0 0000 0000 0011 0 0000 0 000 0000 0 000 
1 0001 0001 0100 0 0001 0 001 0001 0 001 
2 0010 0011 0101 0 0010 0 010 0010 0 011 
3 0011 0010 0110 0 0100 0 011 0011 0 010 
4 0100 0110 0111 0 1000 0 100 0100 0 110 
5 0101 0111 1000 1 0000 1 000 1011 1 000 
6 0110 0101 1001 1 0001 1 001 1100 1 001 
7 0111 0100 1010 1 0010 1 010 1101 1 011 
8 1000 1100 1011 1 0100 1 011 1110 1 010 
9 1001 1110 1110 1 1000 1 100 1111 1 110 

------ --
v v % Binary arithmetic 

--- --
v v v v v Binary carry = deci-

mal carry 
--- --

v v 9s complement = 
inversion 

---
v v v v Constant weights 

---
v v v Sequence D-4like 5-9 
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The other codes shown in Table 15-5 are used for decimal-coded binary arithmetic. 
(We have already discussed such arithmetic for the excess-three codes.) The use 
of the biquinary code in this respect is typical. The binary part (i.e., the most 
significant bit) and the quinary part (the other 4 bits) are first added separately; 
then the quinary carry is added to tne binary part. If a binary carry is generated, 
this is propagated to the quinary part of the next decimal digit to the left. For 
example, consider the following work for adding 26 and 34: 

Decimal 

36 
+24 

60 

Biquinary 

o 0100 
o 0010 

~~OOOO 

1 0001 
o 1000 

11· /0000 
IC Quinary carry 

1 0000 ~O 0000 
1 0001k' 0 0000 Decimal carry 

Similarly addition in the 5-421, 2-421, and 5-cyclic codes is accomplished in two 
parts. 

Only two of the codes enable binary addition. Having the binary carry the same 
as the decimal carry from one digit to the next digit on the left is useful in designing 
an adder. If the code admits constant weights, it is more convenient for rapid 
decimal interpretation [i.e., in the 2-421 code 1011 means (1 X 2) + (0 X 4) + 
(1 X 2) + (1 X 1) = 5]. We have already seen the advantages of having the inver­
sion of a binary number as its nines complement (nines complement of x is 9 - x) 
when we discussed the excess-three code. Evidently there are many more possibilities 
for decimal-coded binary codes, which can be constructed to have various features. 
Can you construct a code that is 5-cyclic and for which the nines complement is the 

inversion [i.e., for which 9999 - (C4CaC2Cl) = ~]? Further reading on this prob­
lem may be found in G. S. White, Coded Decimal Number Systems for Digital 
Computers, Proc. IRE, vol. 41, p. 1450, October, 1953; and in L. B. Wadel, Negative 
Base Number Systems, IRE Trans. on Electronic Computers, vol. EC-6, no. 2, p. 123, 
June, 1957. 

b. Logically design the components of a digital differential analyzer, as described 
in Sec. 8-2. 

c. Logically design the computing components of the small retrieval computer 
described in Sec. 8-4. 

d. Logically design the functional part of the control computer described in Sec. 
8-3. 



CHAPTER 16 

PARALLEL AND RAPID ARITHMETIC OPERATIONS 

16-1. Introduction 

In Chap. 15 we considered the basic ideas involved in the logical 
design methods and techniques of enabling a computer to perform arith­
metic operations. In the present chapter we consider what may be 
referred to as refinements of those basic ideas that result in more rapid 
processing of these operations. Again we choose specific examples of 
parallel and rapid techniques, for it is felt that the student will gain more 
from a thorough discussion of one particular technique than from a 
cursory discussion of many methods. The addition and subtraction 
operations can be handled in parallel; i.e., all the bits of both arguments 
enter the adder at the same time, and all the bits of the result are formed 
simultaneously. However, complete parallel operation is not feasible 
for multiplication or division. Various observations will be made that 
allow short cuts eliminating some of the additions and subtraction 
required by the essentially serial character of the multiplication and 
division techniques. These short cuts for rapid multiplication and 
division can be used in conjunction with serial addition and subtrac­
tion, or with parallel operations for further speed in computation. At 
the end of the chapter is presented a discussion of how floating operation 
might be accomplished. 

As will become quite apparent, the gain in speed arising from the 
parallel and rapid techniques is offset by the requirement of many more 
gates. In fact the great advantage of serial techniques is that a minimum 
of circuitry is necessary. In other words, speed costs money. On the 
other hand the ability to perform calculations rapidly is one of the pri­
mary purposes of computers, and hence the increased cost of building a 
more rapid computer may itself be offset by the greater potentialities 
the computer offers by its increased speed. Both serial and parallel 
computers have their places and their uses, and we believe that both 
types will continue to be designed. 

16-2. The Parallel Adder:t Logical Design 

Parallel Binary Carry Generation. In a parallel adder all the bits 
of both arguments enter the adder at once, and all the bits of the sum 

t Sections 16-2 to 16-4 are based in part on A. Weinberger and J. L. Smith, Methods 
for High-speed Addition and Multiplication, NBS eire. 59!. 
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are formed at once. Recall that in Sec. 15-3 we found the Ri bit of the 
result to be Ri = (Ai' Bi + Ai' Bi) . Ci- l + (Ai' Bi + Ai' Bi) . Ci-l. 
Hence, if Ai, Bi, and Ci- l were available, Ri could be determined. Since 
all the bits of the arguments enter a parallel adder at once, we certainly 
have Ai and Bi available for every bit position i. However, we must still 
obtain Ci - 1 = Ci_I(AI,BI,A2,B2, ... ,Ai-I,Bi- l ) and this carry genera­
tion becomes the fundamental problem of parallel addition. 

In forming the carries there are three limitations, which are essen­
tially electronic in nature but nonetheless do affect the logical design 
of parallel adders. The electronic aspects will be discussed in detail 
in Part 5; here we shall consider only the resulting limitations on the 
logical design. The first limitation is that the output of a single gate 
can be the input to only a limited number of other gates. The second 
is that there can be only a limited number of inputs to a single gate. 
The third concerns our previous approximation that no time is consumed 
when a pulse travels through a gating array. This approximation holds 
when a single pulse travels through a chain of just a few gates from the 
memory to the accumulator or other register. But when a pulse travels 
through a chain of many gates, the delay through the gating circuitry 
can no longer be neglected. This limits the number of gates in the chain 
through which a single pulse can travel within a unit time interval and 
precludes the use of a propagated carry. 

In a serial computer these three limitations are usually less stringent 
than those of the logical design, and they can often be neglected. Even 
in parallel circuitry some of the limitations may be disregarded, depend­
ing on the electronic design of the gates. For example, the first limitation 
for certain tube and core-transistor circuitry is so large that it need not 
be considered as a limitation at all. On the other hand, for a transistor 
gate at high speeds, the number of outputs a single gate can have is 
frequently severely limited by the electronic design. 

The method for generating Ci is by direct substitution as follows: 

C1 = AI· BI 

C2 = A 2 • B2 = A 2 • B2 
+ (A 2 + B 2) • C1 + (A2 + B 2 ) • Al . BI 

Ca = Aa • Ba = Aa . Ba 
+ (Aa + Ba) . C2 + (Aa + Ba) . A2 . B2 

+ (Aa + Ba) . (A2 + B 2 ) • Al . Bl 

C4 = A4 . B4 = A4 . B4 
+ (A4 + B 4) . Cs + (A4 + B 4) . Aa . Ba 

+ (A4 + B 4) . (Aa + Ba) . A2 . B2 
+ (A. + B 4) • (Aa + Ba) . (A2 + B 2) . AI· Bl 

C5 = Ali' Bli = Ao . Bo 
+ (As + Bo) . C4 + (As + Bs) . A • . B4 

+ (As + Bo) . (A4 + B.) . Aa . Ba 
+ (As + Bs) . (A. + B 4) . (Aa + Ba) . A2 • B2 
+ (Ao + Bs) . (A. + B.) . (A3 + Ba) . (A2 + B 2) . AI· Bx 
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and so forth. Thus a 5-bit parallel adder can be constructed as in Fig. 
16-1. 

Let us examine this adder with respect to the above limitations. 
Consider the first, the loading of each output. Table 16-1 summarizes 

the number of outputs required 
A5 A4 A3 A2 Al for some of the gates of the adder. 

If any gate could have six outputs, 
Bs B4 B3 B2 BI we would be safe. However, sup-

FIG. 16-1. Five-bit parallel adder. 

pose, for example, that a gate could 
have no more than three outputs. 
We can still squeeze through, how­
ever, by paralleling gates, as shown 

FIG. 16-2. Generating up to nine outputs 
Aa + B a• 

in Fig. 16-2 for A3 + B 3• No gate has more than three outputs, and yet 
we can generate up to nine functions A3 + B 3• 

Consider next the second limitation. The gate that has the larg­
est number of inputs in our parallel adder is the and gate that forms 
(As + Bs) . (A4 + B4) . (A3 + B 3) . (A2 + B 2) • Al . B I , which has six 
inputs. To see how this limitation can affect the design of our parallel 
adder, let us assume that a single gate can have no more than six inputs. 
This means that if we wanted to design, say, a parallel adder for more 

TABLE 16-1. NUMBER OF OUTPUTS REQUIRED FOR 5-BIT PARALLEL ADDER 

Function 

AI' Bl 
A 2 • B2 
Aa ·Ba 
A 4· B4 
As' B5 
A2 + B2 
A3 + Ba 
A. + B4 
A5 + B5 

Number of outputs needed 

5 
4 
3 
2 
1 
4 
6 
6 
4 

than 5 bits, the complete expressions for C6, C7, etc., analogous to the 
expression given above for Cs, can no longer be used, since to con­
struct C6 would require a seven-input and gate, and to construct C7 
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FIG. 16-3. Nine-bit parallel adder. 

would require a seven- and an eight-input and gate, and so forth [i.e., 
corresponding to the partial expressions: +(Ae + Be) . (A5 + B 5) . 
(A4 + B4) . (A3 + Ba) . (A2 + B2) . Al . B I , etc.]. 

One way out of this dilemma is to note that 

Ce = Ae . Be 
+ (Ae + Be) . C5 

C7 = A7 . B7 = A 7 · B7 
+ (A7 + B 7) . Ce + (A7 + B 7) . Ae . Be 

+ (A7 + B7) . (Ae + Be) . C5 

Cs = As' Bs = As' Bs 
+ (As + Bs) . 0 7 + (As + Bs) . A7 . B7 

+ (As + Bs) . (A7 + B 7) . Ae . Be 
+ (As + Bs) . (A7 + B 7) . (Ae + Be) . C5 

and so forth. By this method we can extend our adder to 9 bits added 
in parallel within this limitation, as in Fig. 16-3. 

However, a pulse may now have to travel through a longer chain of 
gates, which brings up the third limitation. For example, consider a 
pulse arising from A5 that goes into the formation of C5 and then eventu­
ally of R7• Figure 16-4 shows that it must travel through a chain of 
seven gates altogether. 

A uxiliary Carry Functions. Suppose that we wanted to design an 
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adder of more than 9 bits but could not allow any pulse to go through a 
chain longer than seven gates. This problem is solved by the use of 
auxiliary carry functions as follows: It is clear that C 10 cannot be made 
based on C5, because of the limitation on the number of inputs to a gate. 
It is also clear that we cannot base C 10 directly on C 9, for this would 
lengthen the chain of gates that a pulse must go through. However, note 

R7 

FIG. 16-4. Chain of seven gates through which pulse A5 must travel to contribute to 
the formation of R 7• 

that the formation of C6 , C7, Cs, and C9 is delayed until C5 has been 
produced. Thus perhaps we could break up the construction of C10, Cll, 

etc., into two parts, one part of which would be made concurrently with 
C1, C2, C3, C4 , and C5 and the final part of which would be made simul­
taneously with C6, C7, Cs, and C9• To see how this can be accomplished, 
let us write out C10• 

CIO = AIO . BIO 
+ (A lo + B lO) • A9 . B9 
+ (A lo + B lO ) • (A9 + B 9) . As . Bs 
+ (A lo + B lO) • (A9 + B 9) . (As + Bs) . A7 • B7 
+ (A lo + B lO ) • (A9 + B 9) . (As + Bs) . (A7 + B7) . As . Bs 
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Call the function in the triangle X 10 and in the rectangle below Y 10. 
Then 

The auxiliary carry function X 10 satisfies our requirements on the number 
of inputs to a single gate (no more than six), and so does Y 10. Thus we 

FIG. 16-5. Fourteen-bit parallel adder using auxiliary carry functions. 

can form X 10 and Y 10 first, and then form C 10 from these. U sing these 
auxiliary carry functions, we can also form 

Cll = All . Bll = All' Bll 
+ (All + B ll) . C10 + (All + B ll) . X 10 

+ (All + B ll ) . Y 10 . C6 

C12 = A12 . B12 = A12 . B12 
+ (A12 + B 12) . Cll + (A12 + B 12) . All . Bll 

+ (A12 + B 12) . (All + B ll) . X10 

+ (A12 + B 12) . (All + B ll ) . Y 10 . C6 

and similarly C13 and Cu. Hence we have the 14-bit parallel adder as 
shown in Fig. 16-5. 

Generating C16 again raises a problem, for this would involve a seven-
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input gate even with the use of our auxiliary carry functions X 10 and 
Y 10. However, we can construct, as follows, other carry functions, called 
X 15 and Y 15, which will do the job. Writing out CIS, we find 

C16 = A ls ' B15 , 
+ (A lS + B.IS) • Au' Bu 
+ (A lS + B1s) • (Au + Bu) . A13 . Bl3 
+ (A16 + B 16) • (Au + Bu) . (Au +B13) • Au . B12 
+ (A15 + Bl5) • (Au + Bu) . (Au +B13) • (A12 +B12) • An' Bn 

+ (Al5 + B l5 ) • (Au + B 14 ) • (Al3 +B13) • (A12 +B12) • (An +Bll) • X IO 

+ (A 15 + B lO ) • (Au + B 14 ) • (Al3 + B 13) • (Au + B 12 ) • (All + Bll) • Y10 • Cs 

whence we write 

where XIS and Y 15 can be formed concurrently with X lO, Y lO , and Cs. 
Summarizing, we observed three possible limitations on the logical 

design of the parallel adder and discussed methods and techniques for 
overcoming these difficulties. It is clear that the exact form of the 
logical design of a parallel adder depends on the specific values of the 
limitations involved and can be no more than the best possible compro­
mise with these limitations. 

EXERCISES 

(a) Draw the logical details of the circuits represented by boxes Cl , C2, C3, C4, 

and Cs of Fig. 16-1. 
(b) Draw the logical details of the circuit represented by box R4 of Fig. 16-1. 
(c) If C6 had been made directly from As, Bs, A 4, B 4, ••• , AI, B l , how many 

more gates would be in the chain that the pulses As would have to travel to con­
tribute to the formation of R6? 

(d) By using additional auxiliary carry functions, show how Fig. 16-5 can be 
extended to add two 21-bit binary numbers in parallel under the limitations of no 
more than six inputs to a single gate. Explicitly display the additional auxiliary 
carry functions necessary. 

16-3. Parallel Arithmetic Units 

The Parallel Adder-Subtractor Combination. When forming the differ­
ence between two numbers, we have seen that Ri is the same as for the 
sum. However, con:sider the parallel generation of the carry for sub­
traction. We shall in this section continue to use Ci for the carry for 
subtraction as well as addition. We then have by successive substitution 
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the carries for subtraction: 

0 1 = AI' Bl 

O2 = A 2' B2 
+ (A2 + B 2) . 0 1 

0 3 = A3 • B3 

+ (A3 + B 3) • O2 

= A 2' B2 
+ (A2 + B 2) . Al . Bl 

= A 3' B3 
+ (A3 + B 3) . A2 . B2 
+ (A3 + B 3) . (A2 + B 2) . Al . Bl 

and so forth. It becomes immediately clear that if Ai is replaced by Ai 
these expressions become identical with those for addition given above. 
Thus, in order to subtract, all we need do is replace Ai by Ai in the carry 
and auxiliary carry functions and use the same circuitry as was used for 
parallel addition. Hence, with this added feature, the parallel adder 
designed above becomes a parallel subtractor also. 

To incorporate our parallel adder-subtractor combination into an arith­
metic unit, we must be able to take the subtractive complement of our 
result when necessary. This can easily be performed in parallel by mak­
ing use of the parallel circuitry already available, for the subtractive 
complement of R is simply 2p - R. Thus we send the result R back 
into the parallel adder via the route used previously by B and form the differ­
ence 2p - R. Note that we did not reuse the serial adder for this 
purpose, because it would have required recirculating the contents of the 
accumulator back through the adder again, using up another minor cycle; 
it was more convenient to perform this operation in serial as the contents 
of the accumulator was being transferred to the memory. However, in 
our parallel arithmetic unit, it requires only an extra unit time interval 
to form the subtractive complement in the adder, and has the added 
advantage of using no further circuitry except for control purposes. 

Parallel Decimal Addition and Subtraction. Again considering binary­
coded decimal in the excess-three system, we shall show how the circuitry 
of our parallel binary adder can be extended to handle parallel decimal 
addition as well. As was shown in Sec. 15-5, the carry from one 4-bit 
coded decimal digit to the successive one during addition is the ordinary 
binary carry produced in the binary addition of the digit codes. Not only 
that, but the decimal sum was obtained by adding the arguments as if 
they were binary numbers, and then adjusting each 4-bit group of the 
result by adding or subtracting 3 to form the decimal-coded result. The 
method for extending our binary parallel adder to become a decimal 
parallel adder now becomes clear. First add the two arguments in 
parallel as if they were binary numbers, but recording the carries C4, Cs, 

C 12, C 16, etc. Now send the result back to the adder, and this time 
operate only on the successive groups of 4 bits independently; subtract 3 
if no carry from this group occurred; add 3 if a carry from this group did 
occur. The trick then is to operate in this way on the groups independ-
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ently. This may be accomplished simply by cutting out any contribu­
tion to the result, carry, or auxiliary carry functions from any place 
other than these four positions. In Fig. 16-6, which is an adaptation 
of Fig. 16-5, we have indicated which pulses would be stopped from 
propagating for this ± 3b adjustment phase of decimal addition. With a 
carry Oi = 1, Ci = 0, and we add CiCiOi l == 0011 to the corresponding 
4 bits. With no carry Oi =0, Ci = 1, and we add 1101 = (24 - 3)b 

Cs Cs Cs 1 

FIG. 16-6. Binary parallel adder illustrated during its use for ±3b adjustment when 
adapted for a 3-digit decimal parallel adder. The crosses indicate which pluses are 
to be stopped from propagation. 

(without carry). In adjusting the third decimal digit (R9 to R 12), 

0 12 = 1 indicates overflow in the addition. 
Parallel decimal subtraction can be accomplished by means of an 

adaptation of our binary parallel adder in a clearly straightforward man­
ner, using the appropriate rules for the ± 3b adjustment. 

Another technique would be to add or subtract 3b from each digit 
(as indicated by the carry in summing or differencing) by means of special 
circuitry for each group of 4 bits. It turns out that if R4 , R3, R2, R1 
represent an unadjusted group of 4 bits, then, whether differencing or 
summing, the only conditions when - 3b adjustment may be required are 
given by the following constrained basis (see Exercise c), where the 
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adjusted values of the digits appear below: 

Rl 01 0101 0101 
R2 11 0011 0011 
Ra 11 0000 1111 
R4 00 1111 1111 

Rld 10 1010 1010 = Rl 
R2d 10 0110 0110 = Rl . R2 + Hl . R2 
Rad 01 1110 0001 = Rl . R2 . Ra + (Rl + R2) . Ra 
R4d 00 0001 1111 = Rl . R2 . Ra + Ra . R4 

This then is the circuitry required for the -3b adjustment. Similarly it 
can be shown that, whether differencing or summing, the conditions when 
+3b adjustment may be required are the same for either case. Then 
(see Exercise d) we find for the circuitry that will form the +3b adjusted 
group of 4 bits: 

RId = RI 
R2d = RI . R2 + RI . R2 
R3d = (RI + R2) . R3 + RI . R2 . R3 
R4d = (Rl + R2) . R3 + R4 

If P = 1 means sum, P = 0 means difference, and C is the carry, then 
the signal that tells which set of circuitry to use, i.e., whether to add 3 
(Z = 1) or subtract 3 (Z = 0), becomes (according to Sec. 15-5) 

Z=p·C+p·(J 

EXERCISES 

(a) Draw a detailed schematic of a parallel arithmetic adder-subtractor unit, and 
discuss the function and operation of each of the necessary components. 

(b) Describe in detail parallel decimal subtraction. 
(c) Find the constrained basis representing all possible conditions on the unadjusted 

group of 4 bits R4RaR2Rl after summing two excess-three decimal digits that can 
require -3b adjustment. Show that the conditions after differencing that can 
require -3b adjustment are the same. (HINT: The smallest unadjusted sum of 
2 digits is 6b; the largest unadjusted sum of 2 digits that generates no carry is 15b, etc.) 

(d) Derive equations for circuitry that will form the +3b adjusted group of 4 bits 
after summing or differencing 2 decimal excess-three digits. 

(e) What are the advantages and disadvantages of the two methods shown in the 
text for forming the ±3b adjustment? 

16-4. Rapid Multiplication 

Short Cuts for Rapid Multiplication. The methods for short-cut multi­
plication depend on the following observations: First note, for example, 

76543210 
that the binary number 00100100 can be written as 25 + 22. Hence, 
to form (OOlOOlOO)(N), we need merely add 25N + 22N. Second observe 

6543210 
that, for example, the binary number 0011111 can be written as 25 - 2°, 
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that is, 0100000 - 1 = 0011111. In general it follows that 

a+l a a-la-2 2 1 0 
1 1 0 0 ... 0 0 0 = 2,8+ 1 - 2a 

Thus, when a multiplier has a string of units, we need not form the partial 
product for each unit, but merely subtract (2a) (mUltiplicand) from 

6543210 
(2,8+1)(multiplicand). Third consider a binary number, say 0011011; 
this can be written in the form 25 - 22 - 2°, since it is the same as 
0011111 reduced by 22. Hence 0011011 is said to have a string of units 
with an included zero. Note that the effect of an included z~ro is a 
subtraction of the corresponding power of 2. Clearly this holds for 
more than one included zero: thus, for example, if a string of units from 
positions a to (3 has included zeros in positions 'Y and, 0, then it can be 
written as 2,8+1 - 2'Y - 20 - 2a. 

Our three observations can be combined to write any binary number in 
terms of powers of 2, where the object is to have the least number of 
powers of 2 in the representation. For example, 

15 14 13 12 11 10 !) 8 7 6 5 4 3 2 1 0 
a 1 1 a 1 1 1 a 0 1 0 a 1 1 1 1 

= 215 - 212 - 29 + 26 + 24 - 20 

As an illustration, let us form the product 

1111 1111 1111 1111 Multiplicand N 
0110 1110 0100 1111 Multiplier M 

1111 1111 1111 1111 _20 factor (partial product) 
+1111 1111 1111 1111 0000 +24 factor 

+ 1110 1111 1111 1111 0001 Partial product 
+11 1111 1111 1111 1100 0000 +26 factor 

+ 100 1110 1111 1111 1011 0001 Partial product 
-1 1111 1111 1111 1110 0000 0000 _29 factor 

1 1011 0000 1111 1110 0100 1111 Partial product 
-1111 1111 1111 1111 0000 0000 0000 _212 factor 

1 0001 1011 0000 1110 1110 0100 1111 Partial product 
+111 1111 1111 1111 1000 0000 0000 0000 +215 factor 

+110 1110 0100 1110 1001 0001' 1011 0001 Product 

This may be checked by the long method. 
Let us now discuss various problems that arise when choosing- the 

appropriate powers of 2 for such a multiplier reduction. The problem is 
to determine when to add the multiplicand to the partial prqduct, when 
to subtract it, and when to just shift the partial product and pass. A 
little notation can aid this discussion; rather than explicitly write 
out the powers of 2, let + above a bit position of the multiplier indicate 
the fact that the multiplicand should be added to the pa~tial product 
from that position, let - above a bit position indicate a subtraction 
from that position, and . above a bit position indicate a pass. In this 



530 LOGICAL DESIGN OF DIGITAL-COMPUTER CIRCUITRY [CHAP. 16 

notation the mUltiplier of our above example becomes 

+ .. - .+.+ 
0110 1110 0100 1111 

The computer will sense the multiplier from right to left, i.e., from 
least toward successively more significant bits. At each bit it must 
decide whether to add, subtract, or pass. A good decision is one that 
will pass the largest number of bits, i.e., postpone or put off to the left 
as far as possible any addition or subtraction. For example, consider 

.. ++.- .+._.-
the number 01011. This may be interpreted as 001011 or as 001011. 
In the former case we considered the adjacent units to be a string, and 
in the latter case we considered all 3 units as belonging to a string with 
an included zero. However, the latter case was a better decision, for 
we postponed the addition farther to the left than in the former case 
(i.e., in the former case the addition was done at P3 and in the latter 

+ .. _- +._.+ 
at P4). Similarly consider 01101 and 01101; the latter is considered 
better than the former. 

These observations can best be summarized in terms of the concept of a 
string of units. Two or more adjacent units constitute a string of units, 
and as noted above, the least significant unit of a string is interpreted as 

1, while the zero to the left of the most significant unit is interpreted as 
+ .+ .... -
0, for example as in 0011111. A string may include isolated zeros, i.e., 

-
zeros each of which is flanked by units; such zeros are interpreted as 0, 

.+. '-'-'-
for example as in 001101011. Isolated units, i.e., units each of which is 

+ 
flanked by zeros and is not a member of a string, are interpreted as 1, 

.. +.+ .. 
for example as in 0010100. Thus working from right to left, as a string 
of units is met, a subtraction must take place, and only subtraction 
can take place within the string; in exiting from a string, an addition takes 
place, and only additions can take place outside a string. Finally let us 
note that our above discussion showed that, when working from right to 
left, we should not initiate a string until at least two adjacent units occur, 

._.+ . '--
that is, ... 1101 is better than' .. 1101, and we should not stop a .+._.. -
string until at least two adjacent zeros occur, that is, 001011 ... 1 is 

.. ++.. -
better than 001011 ... 1. Based on the remarks of this paragraph, it is 
clear that Table 16-2 gives the rules determining whether the computer 
should add, subtract, or pass in considering the ith bit of the multiplicand. 

Rapid Multiplication in Serial and Parallel Computers. Rapid multi­
plication can be designed into a serial computer provided that the icand 
register is of the shift-register type, i.e., is not a delay line. The pro­
cedure would be to examine each bit of the multiplier, together with the 
next most significant bit and a record of the previous operation, to deter­
mine whether to recirculate the partial product in the accumulator for an 
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addition or subtraction with the multiplicand, or just to shift. This 
process is clear, and no further description is necessary. However, 
let us consider the storing of the minor product in the ier register. When 
the partial product is negative, trouble arises, for what is effectively 
needed is the subtractive complement of those bits of the minor product 
formed in shifting a negative partial product (see Exercise c). 

TABLE 16-2. CONDITIONS GOVERNING ADDITION OR SUBTRACTION OF THE 

MULTIPLICAND TO OR FROM THE PARTIAL PRODUCT OR PASSING 

WITHOUT AN QPERATIONt 

Condition 

In terpreta tion 
Presen t operation 

Pi+l Pi Last operation performed 
to be performed 

1 1 Add Initiating a string Subtract 
0 0 Subtract Exiting a string Add 
1 0 Subtract Within a string Subtract 
0 1 Add Outside a string Add 

All other conditions Pass 

t Based on P i+1, Pi of the multiplier and a knowledge of the last operation performed 
(which reflects whether Pi is in a string or not). 

In a parallel computer an addition or subtraction takes only one unit 
time interval, and hence just the replacement of a shift for an addition 
or subtraction would not in itself save time. Thus, in order to take 
advantage of the rapid multiplication method in a parallel computer, the 
shift must be combined with the operation to be performed all in one 
unit time interval. For example, the computer may determine whether 
to add or subtract and then shift all the way to the bit where the next 
operation is to take place-during one unit time interval. As illustra .. 
tion, the arcs drawn below represent the processes completed during one 
unit time interval. 

111 1 

However, it is not always feasible to design a computer that can shift any 
number of positions all in one unit time interval, for to shift a word n 
positions in one unit time interval means that direct connections must 
exist between each stage and all stages up to n positions farther down the 
register. Thus the possible number of positions that can be shifted 
must be limited. J. L. Smith and A. Weinbergert have shown that a 
good choice for this limitation is to allow the shift register to shift one, 
two, three, or four stages. By "good" we mean that negligible additional 
savings in time would occur if shifts of five or more stages were allowed. 

t Methods for High-speed Addition and Multiplication, NBS Cire. 591. 
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1.0 

Worst sequences 

Random sequences 

1 3 4 5 6 7 
Maximum number of stages shifted at once 

FIG. 16-7. Effectiveness of short-cut multiplication. 

8 

Figure 16-7 shows the effectiveness of short-cut mUltiplication as a func­
tion of the maximum number of stages allowed for a unit-time-interval 
shift. 

We have seen above how the computer will decide when to add, sub­
tract, or pass. The additional problem for parallel computers now is 
how far the computer should shift after the operation. As we have seen, 
there is good reason to allow the computer a choice of only one, two, three, 
or four positions. The first limitation on the number of positions is 
that, since the operation and the subsequent shift are to occur all in one 
unit time interval, the shift can only be up to the position where the next 
operation is required. If the next operation is required more than four 
positions away, then the shift is the maximum, or four positions; then, 
in the next unit time interval, the operation is passed, and the number 
of positions to shift recalculated and executed, etc. If the number of 
positions till the next operation is four, three, two, or one, then this is 
the number of positions to be shifted, of course. To determine the 
number of positions to be shifted after the operation is performed on Pi, 
the bits PHI, P i+2, and P iH must be sensed. It can be shown from 
Table 16-2 that Table 16-3 gives the shift conditions (see Exercise f). 

EXERCISES 

(a) Design a circuit to determine whether to add, subtract, or pass during rapid 
multiplication (see Table 16-2). Suppose that only Pi+1 , Pi, and the sign of the 
partial product are known; how can it be determined whether to add, subtract, or 
pass? 

(b) Describe the functions and operation of the registers during rapid multipli­
cation in a serial computer. 

(c) Design the circuit that determines the proper bits of the minor product that 
are generated in serial operation when a negative partial product is shifted. 
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TABLE 16-3. RULES FOR SHIFTING 

Pi+3 Pi+2 Pi+! P" Operation performed on p. (and past Action 
t condition other than shift) 

-
1 0 Pass (if last operation was add) Shift 1 position 

~ 1 Pass (if last operation was subtract) 

+ 
1 0 1 Add Shift 2 positions 

0 1 0 Subtract 

+ 
1 0 0 Add; pass (if last operation was add) 

-
0 1 1 Subtract; pass (if last operation was 

subtract) 

1 0 0 
+ 
1 Add Shift 3 positions 
-

0 1 1 0 Subtract 

T 
1 0 0 0 Add; pass (if last operation was add) 

-
0 1 1 1 Subtract; pass (if last operation was 

subtract) 

0 0 0 
+ 
1 Add Shift 4 positions 

1 1 1 0 Subtract 

T 
0 0 0 0 Add; pass (if last operation was add) 

-
1 1 1 1 Subtract; pass (iflast operation was 

subtract) 

t The superscript plus or minus sign indicates the operation to be performed on Pi; 
the superscript dot indicates a shift. 

(d) How are the rules of Table 16-2 to be interpreted when i is the least significant 
bit of a word and when i is the most significant bit of a word? 

(e) Design a 12-bit shift register that can shift ahead one, two, or three positions, 
respectively, within one unit time interval. 

(j) Derive the rules given by Table H?-3. 

16-5. Rapid Division 

The Method. We shall first present the method of rapid division and 
then discuss why it works. The method takes advantage of sequences of 
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adjacent units that may occur in the quotient and generates them all at 
once. The flow chart of Fig. 16-8 summarizes the procedure, which 
ends when i equals the number of bits in a word. 

We shall assume that the binary point of the computer word is to the 
left and that for N / D = Q, D > N, D is normalized (i.e., the most 
significant bit is a unit: D = .1 ... ). The first step is to form 

N' = N - D 

Since in this first step N' is negative, we follow the negative loop. If 
N' has a zeros to the right of the binary point, then Q has at least a-I 
units to the right of the point. In this initial step, Qi = 0 for i = 0 
merely means that Q < 1. Now we form Nil = N' + D with our nor­
malized N'. If the result is negative, we can complete Qa = 0 and 
place units for additional bits of Q. If the result is positive, we can 
complete Qa = 1 and place zeros for additional bits of Q. The pro­
cedure continues in this way, differencing and normalizing each time, 
and determining Qi and Qi+l through Q(i+a)-l at each step. For example, 
consider 

Dividend N = .1001 1111 0000 1100 Q quotient 
Divisor -D = .1101 0000 0000 0000 

N' xO 0.11 0000 11 11 0100 O.l? 

+ .11 0100 0000 0000 ! 
N" + xO 0 00.11 0000 1100 .11000? 

.1 1 0100 0000 ! 
N'" xO 0 00.11 0100 .110000111 ? 

+ .11 0100 ! 
NCiv) .00 0000 .11000011110000 ... 

As a further example consider 

Dividend N = .1011 0000 0101 Q quotient 
Divisor -D = .1101 0000 0000 

N' xO 0 0.1 1 111 1011 0.11 ? 

+ .1 1010 0000 ! 
Nil xO 0.101 1011 .1101 ? 

+ .110 1000 ! 
NIII + xO 0 0 .1101 .1101100? 

.1101 ! 
NCiv) . 0000 .11011001000 . 

Rapid Division in Computers. For a serial computer we again must 
have a shift register rather than a delay line for this rapid-division 
technique. The normalizing and differencing would occur in the same 
recirculation time. A circuit must sense the zeros of the result so as 
to form the proper bits of the quotient. For a parallel computer, again, 
as in rapid mUltiplication, the only way time can be saved is by shifting 
and adding or subtracting all in one unit time. 
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Start 
i;"O 
s = 1 

Normalize D 

Binary point is to the left of 
the word 

N= DQ, D> N, Dis normalized 

Process ends when i -= n'umber 
of bits in a word 

FIG. 16-8. Flow chart for rapid division. 

Rationale of Rapid Division. Some preliminary observations will aid 
the subsequent discussion of rapid division. First note that 

1 2 a 1 2 

2-a = .0 0 . . . 0 1 0 0 . . . and 1 - 2-a = .1 1 ... 1 1 0 0 

a 

Next note that, if (.1 ... ) X (X) = .00 ... 01 ... , then 

X = .00 .. ·0 I 0 1 ... 
1 ... 

For example, if (.1 ... ) X (X) = .00001 ... ,then 

or else 

.1 .. 
a 

X .0001 
.00001 ... 

.1 ..• 
a 

X .00001 
.00001 Carry 

""-J 
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Next observe that 
a 

1 - (.00 ... 01 ... followed by at least one other unit in any place) 
a 

= (.1 1 ... 1 0 ... ) 

whereas 
a 

1 - (.0 0 ·0 1 0 0 . followed by all zeros) 
a 

= (.1 1 ... 1 1 0 0 ... ) 

Our initial conditions are N = DQ, D > N, 2N > D, D = .1 .... 
The first step is to form N' = N - D = D(Q - 1), where N' < o. Sup-

1 2 a 

pose that N' = -.0 0 ... 0 1 .. ; then we have 

Q _ 1 = -.~ ~ . . . 0 J 0 1 . . '. 11 ... 

whence Q = .i ]' ... 1 1 ~ + 2-aQ', where Q' < 1. Thus we have 

determined the first a-I bits of Q. 
Next form Nil = N' + 2-a D = D(Q - 1 + 2-a ), where D > o. 

Three cases may arise: 
a 

1. Nil = O. Then Q = 1 - 2-a , whence Q = .1 1 ... 1 1 + 2-a Q', 
where clearly Q' is zero and the division is concluded. 

a 

2. Nil > o. Then Q > 1 - 2-a , or Q > .1 1 ... 1, whence 

1 2 a 

Q = .1 1 . . . 1 1 + 2-a Q' 

a 

Hence Q - 1 + 2-a = .1 1 . . . 1 1 + 2-aQ' - 1 + 2-a = 2-aQ' and 
1 2 {3 

2aN" = DQ'. If 2a N" = :0 0 ... 0 1 .. ,then 

, {3 . 

1 2 J 0 1 . . . 1 2 (3-1 J 0 
Q' = .0 0 . . . 0 1 1 . .. =.0 0 . . . 0 11 + 2-fJQ" 

1 2 a 

3. Nil < O. Then Q < 1 - 2-a , or Q < 0.1 1 ... 1, whence 

a-I 

Q = .1 1 . 1 0 + 2-a Q' 

Hence 
I 2 a-I 

Q - 1 + 2-a = .1 1 . 1 0 + 2-aQ' - 1 + 2-a 

= 1 - 2-(a-l) + 2-aQ' - 1 + 2-a 

= 2-a (1 - 2 + Q') = 2-a (Q' - 1) 
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1 2 ,3-1 

whence 2aN" = D(Q' - 1). If 2aN" = -.0 0 ... 0 1 . then 

1 2 ,3-1 J 0 1 . 
Q' - 1 = -.0 0 . . . 0 1 1 . 

and 
1 2 ,3-1 J 0 

Q' = .1 1 ... 1 1 1 + 2-flQ" 

Thus we have now completely determined at least a + ({3 - 1) posi­
tions of Q. Consider N" > 0, and form 

N'" = N" - 2-(a+fl)D = 2-aD(Q' - 2-fl ) 

Three cases may arise: 
1 2 

4. N'" = O. Then Q' = 2-fl = .0 0 
Q" is zero, and the division is concluded. 

5. N'" > O. Then Q' > 2-fl , or Q' 
1 2 fl 

,3-1 

. 0 1 + 2-flQ", where clearly 

1 2 ,3 

+0.0 0 ... 0 1 + 2-flQ". 

Hence, Q' - 2-fl = .0 0 . . . 0 1 + 2-flQ" - 2-fl = 2-flQ", and 

2a+flN'" = DQ" 

which is just like case 2 over again. 
1 2 ,3 

6. N'" < O. Then Q' < 2-fl , Q' = +.0 0 o 0 + 2-flQ". Hence 

1 2 ,3 
Q' - 2-fl = .0 0 ... 0 0 + 2-flQ" - 2-fl = 2-fl (Q" - 1) 

and 2a+flN'" = D(Q" - 1) 

which is just like case 3 over again. Thus for N" 2:: 0 we have completely 
determined at least a + {3 + ('Y - 1) positions of Q, where 'Y is the num­
ber of zeros beginning N"'; we have noted that case 4 refers to case 1 
and case 6 refers to case 3 to complete the loops in these cases. 

Consider N" < 0, and form 

N'" = N" + 2-(a+{l) D = 2-a D(Q' - 1 + 2-fl ) 

Again three cases may arise, which are just like cases 1, 2, and 3. This 
completes the rationale for our rapid-division method. 

EXERCISES 

(a) Design a circuit that counts the zeros and generates the appropriate bits of the 
quotient during the rapid-division process. 

(b) Describe in detail rapid division in serial and parallel computers. 
(c) Construct an example where the rapid-division method presented in this 

example does not reduce the number of differences taken over that of the previous 
method given. Additional Topic e (Sec. 16-7) shows how to overcome this slowness. 
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16-6. Floating Operations 

Addition and Subtraction. As described in Chap. 4, a word in a 
floating-point computer is divided into a "mantissa" and an exponent. 
In performing summation the exponents of the two arguments must be the 
same. In order that the least amount of significance be lost, the best 
procedure is to normalize both arguments first (i.e., adjust the exponent 
and shift the mantissa so that the most significant bit is a unit) and then 
shift the mantissa of the argument with the smallest exponent to the 
right until its exponent is the same as the largest of the previously normal­
ized exponents. For example, for a mantissa having 8 bits, consider 
0000 1101 X 24 + 0110 1000 X 2-3• On normalizing, these become 
1101 0000 X 2° + 1101 0000 X 2-4 ; adjusting the smallest exponent to 
equal the largest, we have 

1101 0000 X 2° + 0000 1101 X 2° = 1101 1101 X 2° 

as the sum. In the event that there is an overflow, the exponent of the 
result must be increased by 1 and the resulting mantissa shifted right 
one position so that the overflow digit assumes the most significant 
position. Note that with this operation the result will always be normal­
ized automatically. If an unnormalized result is desired, it is understood 
by convention (see Chap. 4) that the exponent of the result is to be that 
of the largest exponent of the original arguments. Thus an additional 
right shift would be necessary until the appropriate exponent is reached. 
Differencing is performed in the same way, normalizing first and then 
su btracting. 

The process of normalizing a number consists in shifting the number 
to the left until a unit appears in the most significant position. The 
number of positions shifted is recorded on a counter, and the final count 
is subtracted from the exponent. 

Multiplication and Division. In floating-point multiplication there is 
no need to normalize the numbers first, although there is no harm in 
doing so (why?). The exponents that are to be attached to the unnor­
malized major and minor products depend on the location of the binary 
point in the mantissa part of the word. For example, suppose that the 
point is to the left; then we would have, say, for a 5-bit mantissa: 

.01010 X 2a 

.01101 X 2b 

01010 
o 0000 

01 010 
010 10 

.0000 0 
.00100 00010 X 2aH --- -...-Major Minor 
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Thus the major product would become .00100 X 2a+b, while the minor 
product would have to be written as .00010 X 2aH- 5• Hence the 
exponent of the major product is just the sum of the exponents of the 
arguments, while the exponent of the minor product is the sum of the 
exponents of the arguments minus the number of bits in the mantissa 
part of the word format. On the other hand suppose that the binary 
point was to the right; then we would find, for example, 

01010. X 2a 

01101. X 2b 

00100 00010. X 2a+b 

-....- -....-
Major Minor 

Here the major product becomes 00100. X 2aHH, while the minor product 
becomes 00010. X 2a+b (see Exercise b). When normalized major or 
minor products are desired, the exponent of the respective product is 
adjusted accordingly. For example, in the former example, the normalized 
major product would be .10000 X 2aH- 2, and the normalized minor 
product would be .10000 X 2aH- 5- 3• 

Division, on the other hand, requires more analysis in order to obtain 
the maximum significance in the result. Suppose, for example, that the 
binary point of the mantissa is always understood to be at the left; 
i.e., all mantissas are less than 1. Now, to obtain the maximum sig­
nificance, we desire the quotient to have a unit in the most significant 
position. This can be arranged as follows: First normalize both argu­
ments; then compute 2N - D, which will be positive. t If 2N - D < 1, 
proceed; if 2N - D ~ 1, shift N to the right one position. Again com­
pute 2N - D, which is positivet and less than 1. With 2N - D > 0, 
Ql = 1, and the division then proceeds as usual. The exponents and 
Nand D must be adjusted after each shift. The quotient has thus been 
automatically normalized. The adjusted exponents are subtracted. 

The Exponent Unit. In order to facilitate handling the exponents, it is 
sometimes desirable to have a separate exponent unit in which the expo­
nents can be added and subtracted. Since the normalization and other 
shifting operations require addition (or subtraction) of a count to an 
exponent, this process may be accomplished in the exponent unit also. 
The exponent unit should also be capable of sensing an exponent overflow 
or underflow, which may only occur during multiplication and division. 
It is probably wisest to have an error halt in this event, since if the 
computer tries to fix up the mantissas to avoid the overflow, they may be 
cleared or otherwise undesirably altered. Such overflows or underflows 
would indicate an error in coding in any event. 

t Normalized, H:S; N < 1, and H:S; D < 1, or -1 < -D ~ -Hi thus 
o <2N -D < %. 

t Shifted N is N /2; doubling gives N again. Thus -H < N - D < H. But 
2N - D ~ 1, or N < H + D /2. Hence N - D ;::: H + D /2 - D = H - D /2. 
But -D > -Ii so -D/2 > -%. Therefore N - D > o. 
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EXERCISES 

(a) Design a parallel 4-bit exponent unit. 
(b) Formulate a general rule for determining the exponent of the major product 

and the minor product for words of w bits in the mantissa and with binary point p 
positions from the right. 

(c) How might significance be lost if in addition or subtraction the arguments 
were not normalized first? Give specific examples of each. 

(d) How might significance be lost in division if Q was not normalized as it was 
formed? Give examples. 

(e) In unrounded addition and subtraction is it necessary to normalize the argu­
ments first to ensure maximum significance? 

(f) For unnormalized division could significance be lost by not first preparing N 
and D as described above? Give an example. 

(g) In what common computing device are mantissas of the arguments of division 
prepared automatically as the division starts? Explain. 

(h) Discuss the design of floating operations in a decimal-coded binary computer. 

16-7. Additional Topics 

a. Derive a formula giving the effectiveness of the rapid-multiplication scheme of 
Sec. 16-4 as summarized in Fig. 16-7. See, for example, J. L. Smith and A. Wein­
berger, Shortcut Multiplication for Binary Digital Computers, in NBS Circ. 591. 

b. Design a 53-bit parallel binary adder so that no single pulse need travel through 
more than 12 gates, under the limitations given in Sec. 16-2. See, for example, 
A. Weinberger and J. L. Smith, A Logic for High-speed Addition, in NBS Circ. 591 
(see also their A One-microsecond Adder Using One-megacycle Circuitry, IRE Trans. 
on Electronic Computers, vol. EC-5, no. 2, pp. 65-72, June, 1956). 

c. Design a 12-bit parallel comparator. 

d. Utilizing only or-not gates (that is, A nor B = A + B), design a 36-bit parallel 
adder. Assume that each gate can drive at most six additional gates and that no 
gate can have more than six inputs (other than a clock pulse). (For notation see 
Sec. 18-2, Fig. 18-3.) Show that no pulse need travel through more than nine gates. 

e. The method for rapid division given in Sec. 16-5 was developed by R. S. Ledley 
and J. B. Wilson. Modification of the techniques presented there is necessary if full 
advantage is to be taken of the possibilities of the method. To see this, work out 

and 
.01100001000000001 + .10000001 = .110000001 

.1000101010001 + .1101 = .101010101 

following the flow chart of Fig. 16-8 exactly. 
Case 1. The first example above illustrates overshifting. Work the example 

again, but this time shift the arguments one place less before the second differencing. 
Observe that, if D = .10 ... , N(i) = .01 ... with Q(i) = .10 ... or .11 ... , 
for N(i) = Q(i)D. (Show this by multiplying maximum and minimum values.) 
The effect of this is that normalizing N(i) shifts it one place beyond the first bit of 
Q(i). If Q(i) = .10 ... , this is desired (explain, considering the 1 as an isolated 
unit.), but not if Q(i) = .11 .. '. Note, however, that if % < Q(i) < %:, the first 1 
may be considered either as an isolated unit or as the first of a string of units with an 
isolated zero as the next bit (why?). Thus if it can be shown that 72 =:::; Q(i) < %:, 
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then N(il should be normalized; if it can be shown that % < Q(i) < 1, then N(i) 

should be shifted one place less than to normalize; but if it can be shown that % < 
QW < 1, then either shift is permissible. With this in mind, show (by computing the 
maximum and minimum possible values for Q(i) in each case) that for D = .10 
the following rules apply: 

Shift one place less than to normalize 
1. If D = .1000 ... and N(i) begins 11 
2. If D = .100 ... and N(i) begins 111 
3. If D = .1Od>0 ... and N(i) begins 1111 .. 
4. If D = .100 ... and N(i) begins 111])11 .. or 

If D = .10010 ... and N(i) begins 111])11]) ..• 
Otherwise normalize 

Case 2. The second example above illustrates undershifting. Work the example 
again, but this time shift the arguments one place more before each differencing. Note 
that, if D = .11 ... and N(i) = .011 ... , then Q(i) = .10 ... ; normalizing 
N(i) shifts beyond this first unit of Q(i), as is desired. If D = .11 . . . and N(O = .11 
... , then Q(i) = .11 ... ; normalizing N(i) shifts to the first unit of Q(i), as is 
desired. However, if D = .11 ... and N(i) = .10 ... , we desire to shift beyond 
the first unit of Q(i) whenever that unit is an isolated unit. Remembering that, if 
% < Q(i) < %, the first unit of Q(i) may be considered isolated or not, as is convenient, 
show that the following rules apply for D = .11 

Shift one place more than to normalize 
1. If D = .11 ... and NW begins 1000 
2. If D = .111 ... and N(i) begins 100 
3. If D = .1111 ... and N(i) begins 1011>0 .. 
4. If D = .111])11· and N(i) begins 100 .. or 

If D = .111])111> ... and N(i) begins 10011>0 ... 
Otherwise normalize 

Show that the rules apply equally well for negative N(i), and hence for Q(i) beginning 
with a zero. (The above modifications of the rapid-division method are the work of 
J. B. Wilson.) 
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CHAPTER 17 

CONTROL 

17 -1. Introduction 

Orientation. In the previous two chapters we considered how arithme­
tic operations can be performed by a digital computer. Our discussions 
were limited solely to the examination of various gating configurations 
that can produce the sum of two arguments, the difference, the product, 
the quotient, and so forth. The present chapter is concerned with 
necessary control that enables a computer to perform those operations 
automatically, directed by a sequence of instructions. 

There are two aspects to the control functions: arithmetic operation 
control and instruction sequencing control. The former is concerned with 
the arithmetic unit, which needs control signals to perform each of the 
various operations as directed by the instruction. Some of these signals 
are generated within the arithmetic unit itself as the operation is being 
performed; others are generated external to the arithmetic unit, in the 
so-called "operations signal generator." The instruction sequencing 
control is concerned with control signals that must be generated to direct 
the automatic execution and sequencing of instructions so that a complete 
program can be computed. The sequencing-control functions involve 
both the sequencing of the chain of instructions that constitute a program 
and the sequencing of phases during the execution of a single instruction. 

Role of the Phases. . The design of control circuitry takes place in two 
steps. In the first, control signals are designed that enable the computer 
to perform all the necessary functions that take place within each phase; 
the second step is to design controls for properly sequencing the phases. 
Before proceeding with the present chapter, let us review the functions 
performed in each phase, as defined for each of the four-, three-, two-, and 
one-address systems. Of course the naming of the phases is arbitrary; 
the assignment of functions to the different stages is also arbitrary to a 
large extent. However, to be specific, we have given in Table 17-1 a 
summary of the conventions to be used in this text. The table illustrates 
the function assigned to each phase for "typical" instructions, based on 
the instruction definitions given in Chap. 3. 

The functions to be distributed among the phases are of five kinds. 
First there is the function of determining the address of the next instruc­
tion. For the four-address system this is 0 unless the instruction was a 
comparison, when it might be 'Y. For the three-, two-, and one-address 

543 
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TABLE 17-1. SUMMARY OF THE FUNCTIONS ASSIGNED TO THE PHASES OF THE 

FOUR-, THREE-, Two-, AND ONE-ADDRESS SYSTEMS ILLUSTRATED 

FOR "TYPICAL" INSTRUCTIONSt 

I 
Phase 1 Phase 2 Phase 3 Phase 4 

Four-address: 
Add ......... Select a; read (a) Select fJ; read (fJ) Select "I; Select 0; read (0) 

into accumu- into arithmetic put (ace) into instruction 
lator unit, and per- into "I register; decode 

form operation operation 
Compare ..... Select a; read (a) Select fJ; read (fJ) ........ Select next in-

into accumu- into arithmetic struction from 
lator unit, and per- (0) or ("I); read 

form operation; it into instruc-
determine tion register; 
address of next decode oper-
instruction ation 

Three-address: 
Add ......... Select a; read (a) Select fJ; read (fJ) Select "I; Select next in-

into accumu- into arithmetic put (ace) struction; read 
lator unit, and per- into "I it into instruc-

form operation; tion register; 
update current- decode operation 
address counter 

Compare ..... Select a; read (a) Select {J; read (fJ) ........ Select next in-
into accumu- into arithmetic struction; read 
lator unit, and per- it into instruc-

form operation; tion register; 
determine decode operation 
address of next 
instruction 

Two-address: 
Add ....... ,. Select a; read (a) Select fJ; read (fJ) ........ Select next in-

into accumu- into arithmetic struction; read 
lator unit, and per- it into instruc-

form operation; tion register; 
update current- decode operation 
address counter 

Compare ..... .............. Select a; read (a) . ....... Select next in-
into arithmetic struction; read 
unit, and per- it into instruc-
form operation; tion register; 
determine decode operation 
address of next 
instruction 

Transfer ..... ............. . .............. Select a; Select fJ; read (fJ) 
put (ace) into instruction 
into IX register; decode 

operation 
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TABLE 17-1. SUMMARY OF THE FUNCTIONS ASSIGNED TO THE PHASES OF THE 

FOUR-, THREE-, Two-, AND ONE-ADDRESS SYSTEMS ILLUSTRATED 

FOR "TYPICAL" INSTRUCTIONS t (Continued) 

Phase 1 Phase 2 Phase 3 Phase 4 

One-address: 
Add ......... Select instruc- Select a; read (a) 

tion; read it into arithmetic 
into instruction unit, and per-
register; decode form operation 
operation; 
u pda te curren t-
address counter 
for next instruc-
tion 

Jump ........ Select instruc-
tion; read it 
into instruction 
register; decode 
operation; de-
termine address 
of next instruc-
tion 

Transfer ..... Select instruc- .............. Select a; 
tion; read it put (ace) 
into instruction into a 
register; decode 
operation; 
update current-
address counter 
for next instruc-
tion 

t Note that in the one-address system phase 1 really corresponds to what is called 
phase 4 in the four-, three-, and two-address systems. 

systems this address depends on the operation: for all operations other 
than compare or jump, the address of the next instruction is obtained 
simply by adding 1 to the current-address counter, i.e., updating the 
current-address counter. On the other hand, for a jump or compare 
instruction in three-address, depending on the outcome of the operation, 
the address of the next instruction can be 'Y; for two-address it can be {3; 
for one-address it can be a. Second there is the function of the selection 
of an address. Having determined an address, the computer must locate 
this address in the memory. The address selected may be the address 
of an argument, such as a or {3; or it may be the address into which a word 
is to be transferred; or it may be the address of the next instruction. 
Third there is the function of actually transferring a word between the 
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memory and the computing unit, e.g., reading the contents of the selected 
address into the computing unit, or writing the contents of the accumu­
lator into the selected address. Fourth is the operation decoding function; 
and fifth is the performance of the operation. 

In the four-, three-, and two-address systems the functions are gen­
erally assigned to the phases so that phase 1 is concerned with reading 
the first argument into the arithmetic unit; phase 3 is concerned with 
writing a word out of the arithmetic unit; phase 2 is concerned with 
reading the second argument from the memory into the arithmetic unit, 
performing the operation, and subsequently determining the address 
of the next instruction; and phase 4 is concerned with the next instruction 
and decoding its operation. In the one-address system phase 1 never 
occurs in the sense just mentioned. On the other hand, since the naming 
of the phases is arbitrary, what corresponds to phase 4 in a multiaddress 
system is usually called phase 1 for a one-address system; phases 2 and 3 
still keep their general characterization. 

The one-address system also presents another peculiarity. Since 
phase 2 does not always occur, it is necessary to relegate the determination 
of the address of the next instruction to phase 1. However, since the 
negative jump instruction does not require an operation, the determina­
tion of the address of the next instruction can occur immediately following 
the decoding of the operation. This means that, for a negative jump 
instruction, the address of the next instruction is prepared even before 
the operation of the present instruction is performed. 

It will be of use to recall that transferring a word between the comput­
ing unit and the memory consumes one minor cycle. Only phase 2, 
wherein operations are performed, may take more than one minor cycle. t 

Outline of This Chapter. Before considering the specific problems 
associated with control we first consider a type of logical gating structure 
that occurs frequently in control gating, namely, the decoding circuit 
(Sec. 17 -2). Second, consideration is given to the various functions 
that control circuits must perform within the phases. The method of 
teaching is through illustration. The illustrations are chosen from the 
Pedagac design, which has a one-address format. It is felt that the 
general characteristics and problems involved in control-circuit design 
can best be obtained by examining in detail a few specific but typical 
examples (Secs. 17-3 to 17 -5). The discussion of the functions that 
occur within the phases ends with the consideration of memory-selection 
techniques (Sec. 17-6) . Next the sequencing control of the phases them­
selves is considered (Sec. 17-7). Finally the problems involved in design­
ing the counters and timing generating signals are considered. 

EXERCISES 

(a) In Table 17-1 what is the difference between the three- and four-address system 
with regard to the functions of the phases? 

t An exception to the rule occurs in the Pedagac, whose shift instruction takes two 
minor cycles in phase 3. 
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(b) \Vhy does the compare operation have no phase 3? 
(c) Could the decoding of the operation be accomplished as well in phase 1 in the 

four-address system? In the three-address system? In the two-address system? 
Cd) In the two-address system why is there no phase 1 or 3 for the comparison 

instruction? Why is there no phase 1 or 2 for the transfer instruction? 

17-2. The Decoding Circuitt 

Decoding Circuits. A decoding circuit has n independent input wires 
AI, A 2, ••• , An and 2n output wires; each output corresponds to one 
of the 2n possible elementary products (see Sec. 11-3) of AI, A 2, ••• ,An. 

Al------~-----------_T------------~~----------_, 

Bo 
FIG. 17-1. The simplest nontrivial decoding circuit. 

For example, the simplest nontrivial decoding circuit has 2 input wires 
and 22 = 4 output wires as shown in Fig. 17-1. In general partial decod­
ing circuits are used, where not all the 2n possible outputs are actually 
produced. However, for the purposes of this section we shall assume 
throughout that all 2n outputs always appear. Note that, by definition, 
the outputs of a decoding circuit are mutually exclusive, i.e., only one at a 
time can have a unit voltage. 

When a decoding circuit has more than two inputs, it can be con­
structed with more than one stage, as shown, for example, in Fig. 17-2, 
where four inputs are used. As is clear from the figure, the number of 
gates used is greater when the gating is accomplished in more than one 
stage. However, the total number of inputs to any gate is less when more 
than one stage is used. In Fig. 17 -2 the one-stage circuit requires 
4 X 24 = 64 inputs, whereas the other circuit requires only 

2 X 22 + 2 X 22 + 2 X 24 = 48 inputs 

In this respect two situations can occur: the amount of electronic hard­
ware needed to construct a circuit may be measured primarily by the 
number of gates or, on the other hand, by the number of gate inputs. 
In the former situation it is clearly more efficient to perform the decoding 
function all in one stage, while the reverse is true for the latter situation. 

Diode Decoding Matrices. To see how this latter situation arises, con­
sider diode gates, as discussed in Sec. 10-10. In Fig. 17-3 the top diagram 

t This section is based on private communications with Chester Page of the 
National Bureau of Standards. 
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represents the circuit of Fig. 17-1 redrawn in terms of diode gates. It is 
easily seen that the positions of the diodes can be rearranged as in the 
bottom diagram of Fig. 17-3. In this arrangement the diodes are called 
diode jumpers, and such a circuit is called a diode decoding matrix. It is 
often found very convenient to place diodes at the crossings of the pairs 

r-------------------------------, 
All I 
A I I 
. 2 I 

I I 
~ I 

I 
~ I 

I I 
I I 
L J 

B7 Ba Bg B IO Bll BI? BI3 BI4 B l5 

r 1------------------------------
I 
! 'J ~ '~ ~ 

r-r"\ 
) 

I---"'\ 
..... .) 

-t>-~ 
-t-i) I 

L L _____ ~ . 
_J 

Bo BI B2 Ba B4 B5 B6 B7 Ba Bg BIO Bll Bl2 Bl3 Bl4 BIs 

FIG. 17-2. Two ways of constructing a decoding circuit with four inputs AI, A 2, As, 
and A 4. In our notation the top circuit is represented by {AIA2AsA41, and the 
bottom circuit is represented by {{AIA21 {AsA41 I. 

of wires, and such diode matrices are used extensively. In diode matrices 
it is often important to reduce to a minimum the number of diodes used, 
which corresponds to reducing the number of inputs to the gates to a 
minimum. 

Computing the Number of Inputs to the Gates. The problem therefore 
arises as to what configuration of stages will result in the most efficient 
decoding circuit from the point of view of minimizing the total number 
of inputs to the gates. In order to facilitate this discussion, let us intro­
duce some special notation. Let {AIA2 ... An} represent a circuit 
with n inputs AI, A 2, ... , An and as many outputs as there are 
possible input states. The outputs are mutually exclusive, each having a 
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Al--~------------------------------------r-------------------~ 

A2---T----------------~----------;--------+--r-----+-~ 

+1 +1 

A2--,-----------------;-------~----~~~----~_T-

FIG. 17-3. The top diagram shows the use of diode gating in the circuit of Fig. 17-l. 
The bottom diagram shows the same circuit redrawn as a "jump" diode decoding 
matrix. (The crossed wires are not connected.) 

I I I 1 yyyyyyyyyyyyyyyy 
FIG. 17-4. Circuit corresponding to the expression {RIR2R3R4S1S2S3S4}, wherein only 
one at a time of the R, and only one at a time of the S, can have a unit signal voltage. 

unit signal voltage for only one corresponding input state. For example, 
if AI, A 2, ... , An are independent, then {AlA2 ... An} represents 
a one-stage decoding circuit, with 2n outputs. As another example, if 
R l, R 2, R 3, R4 are mutually exclusive and Sl, S2, S3, S4 are also mutually 
exclusive, then {RlR2R3R4SlS2S3S4} will· have 4 X 4 = 16 outputs (see 
Fig. 17-4). 

Expressions with multiple braces are interpreted as circuits formed by 
stages "from inside out," similar to the use of parentheses in ordinary 
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algebra. For example, observe that the circuit {A 1A 2 } (that is, the 
circuit of Fig. 17-1) and the circuit {A3A4} each have four mutually 
exclusive outputs. Then the expression {{AIAd {A3A4}} represents a 
circuit similar to that of Fig. 17-4, but where RIR2R3R4 and S1S2S384 
are replaced by the mutually exclusive outputs of {A 1A 2} and {A3A4}. 
This is just the lower circuit of Fig. 17-2. Similarly the multiple-braced 
expression {{A 1A 2}A3} represents the circuit of Fig. 17-5. More com­
plicated multiple-braced expressions can similarly be unambiguously 
interpreted as decoding circuits. 

Al------~------~--------~------~ 

A2--------~--.---_+--~----~--._--4_--~ 

B6 B2 7 B3 

FIG. 17-5. The circuit corresponding to the expression {{AIA2IAa}. 

Now observe that the number of gates and hence the number of 
inputs to the gates can be easily calculated from the braced expression 
of a decoding circuit. For example, {A lA 2 • • • An} clearly has 2n 
gates and n X 2n inputs to the gates (see Fig. 17-1 for n = 2 and Fig. 
17-2 for n = 4). The circuit {R1R 2 ... RpS18 2 ... Sq}, where Ri 
and Si are mutually exclusive within themselves, has pq gates and 2pq 
inputs to the gates (see Fig. 17-4 for p = 4, q = 4). For an expression 
with two levels of multiple bracing the number of gates in the last stage 
(and hence the number of mutually exclusive final outputs of the circuit) 
is given by 

(Product of no. of mutually exclusive outputs 
of each of 1st-stage braced expressions) X 2(no. of unbraced terms) 

For example, the number of gates in the last stage of { {A 1A 2} {A3A4} } is 
22 X 22 X 2° = 16 (see Fig. 17-4) and of {{AIA2}A3} is 22 X 21 = 8 (see 
Fig. 17-5); for the more complicated case {{ A 1A 2A 3} {A4A5} A6A7As} 
we have 23 X 22 X 23 = 256. We can now compute the number of 
inputs to the gates of the last stage as 

(No. of 1st-stage braced expressions + no. of unbraced terms) 
X (no. of gates in last stage) 
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For example, for {{ AIAd {A3A4}} the number of inputs to the gates in 
the last stage is 2 X 16 = 32, for {{ A 1A 2} As} we have 2 X 8 = 16, 
and for {{ AIA2A3} {A4AS} A6A7As} we have 5 X 256 = 1,280. 

Of course for the entire circuit of a multiply braced expression the 
number of gates is the sum of the number of gates of each stage, and the 
number of inputs to the gates is the sum of the numbers for each stage. For 
more than two levels of bracing the process is continued in the same 
manner. Thus for { {AIA2} {A 1A 2} } we find a total of 

22 + 22 + 22 X 22 = 24 gates 
and 2 X 22 + 2 X 22 + 2 X 22 X 22 = 48 inputs to the gates 

For {{AIA2}A3} we find a total of 

22 + 22 X 21 = 12 gates 
and 2 X 22 + 2 X 22 X 21 = 24 inputs to the gates 

For the expression { {AIA2A3} {A4As}A6A7AS} we have 

23 + 22 + 23 X 22 X 23 = 268 gates 
and 3 X 23 + 2 X 22 + 5 X 23 X 22 X 23 = 1,312 inputs to the gates 

For a more complicated example including more than two levels of bracing 
consider the total number of inputs to the gates of the following expression 
(a more detailed discussion of brace or parenthesis interpretation can be 
found in Sec. 5-8): 

{{ {A 1A 2} {A3A4}} {A6A6A7l} 

I I 
2 X 222 X 22 

2~22 3 X23 

~ 
2 X 22 X 22 X 23 

whence 2 X 22 + 2 X 22 + 2 X 22 X 22 + 3 X 23 + 2 X 22 X 22 X 23 

= 328 inputs to the gates are needed. 
Minimizing the Number of Inputs to the Gates. We are now ready 

to give a general rule of thumb that will enable the design of a decoding cir­
cuit with a minimum number of inputs to the gates. The rule is as follows: 
Start with a single braced expression that contains all the input wires: 
{AIA2 ... An}. Introduce another level of bracing that separates 
the input wires as closely as possible in half, thus: 

{{AIA2 ••• An/2} {An/2+1An/2+2 ... An}} 

if n is even; on the other hand if n is odd, then one of the two braces 
will have an extra wire. Continue the same process on each brace, until 
there remain only braces with either two or three wires. The reason 
it does not pay to break up a three-wire brace is that the number of 
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inputs to the gates for {AIA2A3} is the same as for { {AIA2} A 3 }, that is, 
3 X 23 = 2 X 22 + 2 X 22 X 21 = 24. 

As an example, consider five input wires AI, A 2, A 3, A 4, and A 5. The 
minimum decoding circuit is { {AIA2A3} {A4A5}} according to the above 
rule, and has 3 X 2 3 + 2 X 22 + 2 X 2 3 X 22 = 96 inputs to the gates. 
For six inputs we have {{AIA2A3} {A4A5A6} }, which has 

3 X 23 + 3 X 23 + 2 X 23 X 23 = 176 inputs to the gates 

For seven input wires we have {{ {AIA2} {A3A4} } {A5A6A7}}, which 
requires 328 inputs to the gates, as was computed above. It is instruc­
tive to display all the possible decoding circuits for five input wires. 
This is done in Table 17-2. The proof of our rule of thumb is beyond 
the scope of this text. 

TABLE 17-2. ALL POSSIBLE (ESSENTIALLY DIFFERENT) DECODING CIRCUITS 

WITH FIVE INPUT WIRES 

Circuit expressions 

{AIA2A3A4A S} 
{ {AIA2A3A4}Ad 
{ {AIA2A3}A4As} 
{ {AIA2IAaA 4AsI 
{{AIA21 {AaA41A51 
{{AIA2A 31 {A4Ad I 
{ { {AIA2AaIA4IA 51 
{{ {AIA2I A aA 4IA51 
{{ {AIA2IAaIA4Ad 
{{ {AIA2IAal {A4Ad I 
{{ {AIA21 {A 3A41lA51 
{{ {{AIA2IAalA4IAd 

Total number of inputs to the gates 

5 X 26 = 160 
4 X 24 + 2 X 2S = 128 
3 X 2 3 + 3 X 2 S = 120 
2 X 22 + 4 X 25 = 136 
2 X 22 + 2 X 22 + 3 X 25 = 112 
3 X 23 + 2 X 22 + 2 X 25 = 96 
3 X 2 3 + 2 X 24 + 2 X 25 = 120 
2 X 22 + 3 X 24 + 2 X 25 = 120 
2 X 22 + 2 X 23 + 3 X 25 = 120 
2 X 22 + 2 X 2a + 2 X 22 + 2 X 25 = 96 
2 X 22 + 2 X 22 + 2 X 24 + 2 X 2 5 = 112 
2 X 22 + 2 X 23 + 2 X 24 + 2 X 2 5 = 120 

EXERCISES 

(a) Draw the gating circuit for {{ {AIA21 {AaA41 }As}. 
(b) Draw the diode decoding matrix corresponding to {{ {AIA2} {AaA41IA51. 
(c) Form all possible essentially different braced expressions for a decoding circuit 

with four input wires, and find the number of inputs to the gates of each. 
(d) Why do the expressions {{AIA2A31 {A4Ad I and {{ {AIA2IAal {A4A 5} I both 

have 96 inputs to the gates (seEi Table 17-2)? 
(e) For a decoding circuit with six input wires form the braced expression that 

will minimize the number of inputs to the gates, and determine what this minimum 
number is. 

(f) For a decoding circuit with nine input wires form the braced expression that 
will minimize the number of diodes necessary in the diode matrix decoding circuit, 
and determine how many diodes are required. 

(g) List all possible (essentially different) braced expressions for a decoding circuit 
with seven input wires, and determine the total number of inputs to the gates for 
each expression. 
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(h) Every decoding circuit has associated with it an encoding circuit which when 
attached to the decoding circuit will yield the original inputs. Find the encoding 
circuit associated with the decoding circuit of Fig. 17-1. [HINT: Solve the equation 
B o = ... L .1 2, Bl = Al .1 2, B2 = AI' A 2, and Ba = Al . A2 for Al = fl(B o,Bl,B2,Ba) 
and A2 = h(Bo,B l ,B2,B 3).] 

17 -3. Arithmetic Control: Instruction Decoder and Operations Signal 
Generator 

Instruction Decoder. Control of an arithmetic operation starts in the 
instruction decoder, where the operation is decoded. The bits stored in 
the operation positions of the instruction register are the inputs for the 

Instruction register 

Oi'vide 

From memory -----~ 1----. To memory 

FIG. 17-6. Arithmetic control. 

decoder, and the decoder has one output for each operation that can be 
performed by the computer. In the previous section we have discussed 
aspects of the design of such decoding circuits. The outputs of the 
instruction decoder are the inputs to the operations signal generator. 
Here the control signals necessary for each arithmetic operation are 
generated. These control signals then become inputs to the circuits 
of the arithmetic unit, together with the arguments of the operation 
(see Fig. 17-6). 

The word detail characterizes the essential nature of most control 
circuits. Their design depends on the circumstances of the computer 
characteristics and of the particular function to be controlled. The 
instruction decoder and operations signal generator are no exceptions 
to the generalization. Therefore it is felt that the nature of the funda­
mental problems involved can best be described in terms of a specific 
example of a particular control circuit. We choose for our illustration 
the control of certain arithmetic operations of the Pedagac (see Chap. 9). 
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The operations (and their codes) under consideration will be: addition 
(53), subtraction (54), major multiplication (42), minor multiplication 
(32), division (41), and circular shift (70). 

Starting with the instruction decoder, recall that the leftmost 6 bits 
represent the operation of the instruction word. Calling these W6, W5, 

W4, W3, W2, and WI, respectively, a possible decoder appears in Fig. 17-7. 
The method used is to decode each octal position separately and then to 

Instruction register 

70 50 40 30 4 3 2 o 

70D 54D 53D 42D 41D 32D 

FIG. 17-7. Example of an instruction decoder. 

combine the proper octal digits to form the operation signal wire output, 
labeled with the respective operation code followed by the letter D. 

The Operations Signal Generator. Continuing with our illustration, 
these six operation signals become inputs to the operations signal gen­
erator. Here they are gated with each other and with unit-time-interval 
pulses and with minor-cycle pulses to form the control signals that control 
the operations under consideration. The gating performed on the input 
signals in the operations signal generator varies in complexity from no 
gating at all to extensive gating combinations. The simplest of the 
signals in our illustration is the shift signal, called SHS, which is on when­
ever the shift instruction is called for, that is, [SHS] = [70DH; thus no 
gating is necessary. Another simply generated control signal is required 
whenever major or minor multiplication is called for; let this be called 
the multiplication decode signal MDS; thus, [MDS] = [42D] + [32D]. 
A similar signal is on whenever multiplication or division is on, namely, 
[PQS] = [42D] + [41D] + [32D] (see Fig. 17-8). 

t The brackets on the multiletter symbols are for clarity; they have no intrinsic 
meaning. 



SEC. 17-3] CONTROL 555 

A more complicated type of control signal often generated is exemplified 
in the division control signal, called DCS. This signal is on during the 
computational part of the division process. Since there are 18 bits (plus 
a sign) in the word under consideration, it takes 18 minor cycles to form 
the quotient. On the other hand the computation proceeds only during 
TI through TIS of each minor cycle, even though the minor cycle is 
23 unit time intervals in length. Thus we desire DCS to be off during 
To and T 19- 22 of each of the 18 minor cycles. The one-address division 
instruction actually takes 19 minor cycles, the 19th minor cycle being 

70D 

SHS MDS PQS 

42D 41D 32D 

~9--~--~----~--~--~----~--r-~ 

T19--~--r-----~r-~r-~----rr--r.--r---~ 

Tl--~~r-----~rr~r.~----~~r+, 

DCS MCS PQT MMI 
FIG. 17-8. Part of control signal generator. 

utilized to transfer the quotient from the ier register where it was 
formed to the accumulator where the result is to be found. However, 
we do not want DCS to be on during this 19th minor cycle when no actual 
computing is done. Hence we have 

[DCS] = [TI9] . [T1] . [41D] + [1\9] . [DCS]d 

where [DCS]d represents the recirculation of [DCS]. The left-hand prod­
uct loads the circuit at TI of every minor cycle except T19 during the 
divide instruction (41); the right-hand product keeps this signal on from 
Tl through TIS and turns it off at T 19. We have here of course a dynamic 
flip-flop (see Fig. 17-8). 

A signal similar in nature to DCS is the multiply control signal MCS. 
This signal is to be on during the computational part of major or minor 
multiplication, i.e., from TI through TIS of minor cycle TI through T18. 
Thus we have 

[MCS] = [T19] . [Td . [32D] + [T19] . [T I ] • [42D] + [1\9] . [MCS]d 

The product-quotient transfer signal PQT controls the transfer of the 
quotient or the minor product from the ier register to the accumulator 
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during T 1-18 of the 19th minor cycle, thus: 

[PQT] = [TI9] . [T1] • [32D] + [TI9] . [T1] • [41D] + [1\9] . [PQT]d 

For major multiplication the 19th minor cycle is used only to shift the 
accumulator to the right one position, i.e., at T019, to transfer the most 
significant bit of the minor product which remains in the accumulator 
at the end of the 18th minor cycle. Hence for major multiplication a 
signal is needed that inhibits the accumulator from shifting after To 
of the 19th minor cycle, called the major multiplication inhibit signal, 
MMI; whence [MMI] = [T19] . [42D] (see also Fig. 17-8), which will 
later be inhibited by To. 

One of the most complicated operation control signals generated is the 
shift control signal. Here the number of positions to be shifted is found 
in the a address of the instruction. In order to control the number of 
positions to be shifted, a "count-down" is made from a each time the 
accumulator is shifted; when the count reaches zero, a signal is generated 
that inhibits any further shifting of the accumulator. This inhibiting 
signal is called SCC (see Exercise b). 

Initial Clearing of the Recirculation Loops. When a recirculation loop, 
or flip-flop, is to be used, the loop must be cleared to ensure that initially 
there is no bit recirculating in it. This can be accomplished in a manner 
similar to the clearing of a shift-register stage when it is being loaded, by 
gating the loading with a Ti signal and at the same time inhibiting any 
recirculation with a Ti signal. Often the clearing of a recirculation loop 
takes care of itself; i.e., it becomes cleared automatically because of the 
particular nature of the recirculation gates. 

EXERCISES 

(a) How are the dynamic flip-flops for the signals DCS, MCS, and PQT initially 
cleared? (HINT: Remember the sequencing of instructions.) 

(b) Design a count-down circuit that starts with 5 bits, a5, a4, a3, a2, aI, for the 
shift control signal for an 18-bit word. Note that the initial count a can never be 
greater than 18, the maximum number of positions that can be shifted. Thus a 
constraint appears which can introduce significant simplifications. Assume that the 
count-down starts at Ts (that is, since the length of the accumulator is 22 stages and 
the word length 18 bits, we have 22 - 18 + 1 = 5). Hence at Ts "load" each stage 
of the count-down circuit with ai, as the initial count. The circuit should then 
reduce the count by one each unit time interval. Call the count at any time 
AsA4A3A2Al; then SCC, which is to come on when the count reaches zero, becomes 
SCC = As . A4 . A3 . A2 . iL. However, then sce must remain on until the end 
of the minor cycle, whence SCC = As . A4 . A3 . A2 . Al + [To] . [SCe]d. One fur­
ther remark must be made: The recirculation loops of the count-down circuit and 
of sec must be cleared at Ts to ensure that no miscellaneous pulses have preloaded 
the loops. Thus we have see = A5 . A4 . A3 . A2 . Al + [To] . [To] • [SCC]d. For 
the recirculation loops the "loading" gate is [ail . [To], while each recirculation gate 
must have a To in its and gates. 

(c) Design a signal generator that will present an output for multiplication or 
division during Tl through T18 of each minor cycle Tl through TIS, 
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17 -4. Arithmetic Control: Internally Generated Signals and Register 
Control 

Internally Generated Signals. Some of the control signals used in the 
arithmetic unit are generated there during the execution of the operation. 
For example, as we have seen in Chap. 15, whether the adder-subtract or 
will form the sum or difference depends on a signal generated in the 
arithmetic unit from the signs of A and B and the operation signals for 
add or subtract. Also used to control processes within the arithmetic 
unit are the carry of the adder-subtractor, the overflow signal (which 
indicates that the subtractive complement of a number has been pro­
duced), the signal indicating that a result is zero (i.e., the zero signal), 
the multiply control signal (which controls whether or not the contents 
of the icand register or zero is to be added to the partial sum), and so 
forth, all generated within the arithmetic unit. The sign of the result 
may be considered as an internally generated signal; in a one-address 
system this sign will control a negative jump instruction. 

As a specific example, consider the multiply control signal that deter­
mines whether to add zero or the multiplicand to the partial product. 
In the Pedagac this signal is called MUS. Because the Pedagac is a 
one-address computer, during the first minor cycle of a multiplication 
operation the multiplier is the recirculating contents of the accumulator, 
denoted by B. However, during this first minor cycle, B is also trans­
ferred to the ier register, and hence, during all minor cycles except the 
first, the multiplier is the contents of the multiplier register. Thus the 
first bit of the multiplier, sensed at TIl, appears as the least significant bit 
of B, whereas the ith bit of the multiplier, sensed at Tli (that is, TI of the 
ith minor cycle), appears as the end bit of the (ier). If the bit of the 
multiplier sensed at Tli is a unit, then signal MUS remains on for the 
rest of that minor cycle, opening the gate for the multiplicand to be 
added to the partial product; if the multiplier bit is a zero, then MUS 
remains off for the rest of that minor cycle. Hence we have for MUS 

[MUS] = [B] . [TI] . [T I ] . [MDS] . [F2] 

+ [TI] . [T I ] • (IER) . [MDS] . [F2] 
+ [To] . [MUS]d . [F2] 

The MDS signal is used to generate MUS during a multiplication instruc­
tion. The least significant bit of the ier register that keeps MUS on 
(or off) during a complete minor cycle is cleared at To of every minor 
cycle so that a new control bit can be presented at T I • 

Register Shift Control. The shift registers of the arithmetic unit, such 
as the accumulator, icand, and ier registers, need two types of control, 
which are generated within the arithmetic unit. First there must be 
a control that shifts the register as required, called the register shift 
control; second, there must be control of the input to the register, called 
the register input control. 
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Continuing with our example started in Sec. 17-3, consider the accu­
mulator shift control. Let us analyze all the circumstances under which 
the accumulator should be shifted. For addition, multiplication, and 
division (phase 2 operations) the accumulator should be shifted each 
unit time interval of a minor cycle, except at each To when the signs of 
the arguments are sensed. Observe that for multiplication, but not 
division, the accumulator must be shifted at To for minor cycles T2-I9, 
because at T oi+1 the ith bit of the minor product is transferred to the ier 
register. During the 19th minor cycle the shifting is continued through­
out Tt:'22 for division and minor mUltiplication but not major mUltiplica­
tion, as observed in Sec. 17-3. 

The shift instruction (a phase 3 operation) takes two minor cycles in 
the Pedagac. In the first minor cycle, (acc) is just recirculated through 
the output subtractive complementer; during the second minor cycle 
the shifting takes place. In this way the shifted result will always 
be complemented whenever necessary. For the shift instruction the 
accumulator should be shifted during TL22, and during the second minor 
cycle it should be shifted from T I) until the count is zero. 

We have collected in the previous paragraphs all the information 
needed to construct the accumulator shift control signal ASP. First 
observe that the term [To] . [F2] . [MMI] will take care of addition and 
subtraction (F2 being on in this case for TI only) and multiplication· 
and division during TI-I9 (except for major multiplication, which is inhib-
ited at TI9). However, we must add the term [TI] . [To] . [F2] . [MDS] 
so that To will be on during T2-I9 for multiplication and division. The 
term [TI] . [To] . [F3] . [SHS] shifts the accumulator for the first minor 
cycle of F3, and [T2] . [To] . [F3] . [SHS] . [SCC] shifts the accumulator 
appropriately during the second minor cycle, i.e., as directed by SCC. 
'rhus we have all together 

[ASP] = [To] . [F2] . [MMI] + [TI] • [To] . [F2] . [MDS] 

+ [TI] . [To] . [F3] . [SHS] + [T2] . [To] . [F3] . [SHS] . [SCC] 

Adder Input Control. The direct input to the accumulator is particu­
larly simple, being merely the output of the adder-subtract or. However, 
the input to the adder-subtract or is nontrivial and can be thought of as 
the virtual input to the accumulator. There are two inputs to the adder­
subtract or, which we shall denote by A and B'. 

Consider first the A input for our simplified example of six instructions 
of a one-address serial computer. Looking at the first minor cycle of 
phase 2 instructions, clearly A is (ex) except for the multiplicationinstruc­
tions. For the multiplication instructions A is (ex) provided that MUS 
is on, as was discussed above. Thus we have the following terms for A: 

[TI] . [F2] . (ex) . [MDS] + [TI] . [F2] . (ex) . [MCS] . [MUS] 

During both multiplication and division for the minor cycles after TI, 
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A becomes the recirculating output of the icand register, except during 
multiplication when MUS is off. Hence we have the following terms: 

['[11] . [F2] . (ION) . [DOS] + [TI] . [F2] . (ION) . [MSC] . [MUS] 

The shift instruction presents no input to A; that is, during phase 3, 
there is no A input. Hence 

A = [TI] . [F2] . (ex) . [MDS] + [1'1] . [F2] . (ex) . [MOS] . [MUS] 

+ [TI] . [F2] . (ION) . [DOS] + [TI] . [F2] . (ION) . [MOS] . [MUS] 

For the B' input to the adder-subtract or, during addition or subtrac­
tion, we have the recirculating cont~nts of the accumulator, called B: 
this gives B' the term [F2] . [TLIS] . [B] . [PQS]. For division the B' 
input is the recirculating contents of the accumulator, which is the partial 
dividend delayed by 1, that is, Bd , during TI-IS; hence we have the term 
[F2] . [B]d . [DOS] (since DOS is only during TI-IS). For multiplication 
the B' input is the recirculating contents of the accumulator, i.e., the 
partial sum, and this holds for minor cycles T2-IS, but not for TI; hence 
we have the term [F2] . [TI] . [B] . [MSO]. Finally, for minor multipli­
cation or division, during TI9 the transfer from the ier to the accumulator 
takes place; hence the term [F2] . (IER) . [PQT]. The recirculation of 
the contents of the accumulator for the shift instruction also passes 
through the B' input; this gives the term [F3] . [B] . [To]. Hence 

B' = [F2] . [TLIs] . [B] . [PQS] + [F2] . [B]d . [DOS] 

+ [F2] . [TI] . [B] . [MOS] + [F2] . (IER) . [PQT] + [F3] . [B] . [To] 

EXERCISES 

(a) Construct the signal that determines whether the adder-subtractor will form 
the sum or difference for a one-address serial computer with the instructions dis­
cussed in this section. 

(b) Explain why no addition or subtraction control signal explicitly appears in the 
expression constructed for ASP. 

(c) Why are signals MDS and MCS both necessary for the construction of A? 
(d) In the construction of B' why is there no input during Tl of multiplication? 
(e) Describe the shift control of the icand register for a one-address serial computer 

with the operations considered in this section. 
(f) Describe the icand-register shift control for a one-address serial computer with 

the operations considered in this section. 

17 -6. Control of Memory Address Selection and Instruction Sequencing 

Instruction Register and Current-address Register. The control of 
memory selection and instruction sequencing takes place in the instruc­
tion register, current-address counter, and associated circuitry. Three 
basic functions are performed here: (1) determination is made of the 
addresses to be used during any phase; (2) the normal sequencing of 
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instructions is controlled; and (3) the abnormal sequencing of instruc­
tions, the jump, is accomplished. 

Consider the first of these functions. Memory addresses to and from 
which words are transmitted are found in only two locations: Addresses 
of operands or for results are found in the instruction register; addresses 
of instructions are found in the current-address counter. Whether an 
address is selected from the instruction register or from the current­
address counter depends on the phase during which the selection is 
made. As an illustration, consider a one-address computer in which 
the next instruction is selected during phase 1, and an operand is obtained 
from the memory during the first minor cycle of phase 2 or returned 
to the memory during the first minor cycle of phase 3. We let ai be the 
ith bit of the a in the instruction register, and a'i be the ith bit of the 
current-address counter. Then, for a*i, the ith bit of the address upon 
which the selection is made, we have 

[a*i] = [Fl] . [a'i] + [F2] . [TI] . [ail + [F3] . [TI] . [ail 

Now consider the second and third functions taken together. For a 
three-, two-, or one-address system the current-address register is an 
actual counter, so that, in the normal sequencing of instructions, the 
address of the next instruction is obtained by adding 1 to the count. 
For a jump an address recorded in the instruction register must be 
transferred to the current-address counter, to replace the previous con­
tents of the counter. 

As a specific illustration, let us consider a simplified version of a 
one-address instruction register, current-address register, and associated 
circuitry. In Fig. 17-9 the current-address register is a counter; when a 
jump is made, the signal J clears the counter and inserts the bits of the a 
address of the instruction register. N is the signal that increases the 
count by 1 for the normal sequencing of instructions. It can be shown 
(see Exercises a and b) that 

[a'l] = [all . J + [a'l]d . N + [a'l]d . N . ] 
The a*i are formed as described above. For our simplified example the 
shift control for the instruction .register is [Tl - 18] • [Fl], and the input 
control is simply (a) . [Fl]. 

Serial and Parallel Systems, and Relative Counters. The operation of 
the instruction register and current-address counter as described above 
is adequate for parallel operation provided that the counter is a parallel 
counter and that the instruction register is loaded in parallel. 

The instruction register may be a recirculating delay line. In such 
a case the instruction decoder must end in flip-flops, which are set 
as the instruction enters the instruction register. The current-address 
counter need not be a counter at all, but merely a shift register, which 
may also recirculate. The recirculation must pass through an adder 
so that a unit can be added to the current address to determine the address 
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of the next instruction in normal sequence and so that an address from the 
recirculating instruction can be inserted into the current address in case 
of a jump. The bits of a*i would be gated with F1, F2, and F3 as above, 
except that now only a single set of gates would be necessary through 
which the ai and a'i pass. 

The operation of a relative counter becomes clear at this point. For 
serial operation, as the instruction enters the instruction register it 

(a) 

FI 

Current-address register 

Instruction register 

r---------.-- J 
(----....---1 

rJ-----+,.-- N 

FIG. 17-9. The instruction register, current-address register, and associated circuitry. 

passes through a special single-address adder; if the appropriate control 
signals are present, this adder adds the contents of the relative counter 
to one or more addresses of the instruction. For parallel operation a 
parallel adder having the same length as the address is necessary. Occa­
sionally the instruction format is so arranged that the relative count 
cannot be added to the instruction as it enters the instruction register. 
In such a case the addition of the relative count to the address would be 
accomplished as a separate function. 

EXERCISES 

(a) Show that [a'l] = [all . J + [a'l]d . N + [a'l]d . N . J. 
(b) Derive an expression for a'i. 
(c) Draw in detail two more stages of the current-address counter, instruction 

register, and a*i generator, as indicated by the rectangles of Fig. 17-9. 
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(d) Draw a block diagram to show in detail all associated circuitry necessary 
for· a recirculating delay-line serial instruction register and similar current-address 
counter. Describe its operation and the flow of words and addresses. 

(e) Describe in detail the operation of a relative counter in a parallel computer. 
Draw a block diagram of the system. 

17 -6. Memory Selection 

Obtaining a Word from the Memory. In the previous sections we have 
seen how the address to be selected, called a*, is chosen either from the 
instruction register or from the current-address counter. The topic 
under consideration in this section is how this address is used to obtain 

Read-write heads 

a word from the memory or to 
replace a word into the memory. 
However, for a moment let us first 
consider the following question: 
Suppose that a word has been ob­
tained from the memory; how does 
the computer know where to send 
it, to the arithmetic unit or to the 
instruction register? In essence 
we have already given the answer 
to this question in Secs. 17-4 and 
17-5. In the arithmetic unit in 
our illustrations, (a) was always 

FIG. 17-10. Layout of memory cells on a gated with F2. In other words, 
rotating drum. as (a) comes out of the memory it 

goes to both the arithmetic unit and 
the instruction register, but it is the phase that determines which location 
it enters. 

Serial Memories. Before describing how a* selects a word from the 
memory, we must first briefly describe the physical layout of the memory 
cells. We shall use a rotating magnetic drum as an illustration, but all 
serial memories pose the same basic problems. As mentioned in Chap. 
2, a rotating magnetic drum consists of a cylindrical surface with a coat­
ing of a magnetizable substance. We shall consider the electronic aspects 
of the drum in Part 5 of this book. The cylindrical surface of the drum 
is divided into bands called channels, and each channel is divided into 
lengths called sectors. The bits of a single word are recorded on this 
drum as a chain, or sequence, of small magnetized areas in one sector of a 
channel (see Fig. 17-10). Thus, by specifying its particular channel and 
sector, a word can be located, i.e., addressed. There is one reading-and­
writing head for each channel which can sense the magnetic pulses, or 
bits, as they pass under the head (reading) or can place ·magnetic spots 
on the rotating-drum surface as it passes the head (writing). 

As we shall describe in detail in a later section of this chapter, the 
computer is so synchronized with the drum that 1 bit passes underneath 
a head each unit time interval. The words (or sectors) are spaced so 
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that precisely one minor cycle elapses between the passage of the first 
bit of one word under a head and the passage of the first bit of the next 
word. Ordinarily this means that there is some blank space between 
words (see crosshatched areas in Figs. 17-10 and 17-11). For example, 
the Pedagac has an IS-bit word plus a sign bit, but a 23-unit-time­
interval minor cycle. Thus there will be 
four spaces after one word before the 00 01 10 11 
next word starts. 

Consider the unrolled surface of a hy­
pothetical drum, shown in Fig. 17-11. 
The columns represent the channels and 
the rows the sectors. The numbers ap­
pearing in each word location (each 
channel-sector location) are the addresses. 
Here there are four channels of eight sec­
tors each. Any address can be formed by 
placing the binary column (channel) num­
ber adjacent to the binary row (sector) 
number, the most significant 2 bits of the 
address specifying the channel, the least 
significant 3 bits the sector. Thus address FIG. 17-11. The organization of 
5 becomes 00101, address 21, 10101, and addresses on the drum memory. 
so forth. This illustration is not realistic, 
for even the small drum used for the Pedagac has 32 channels with 12S 
sectors per channel, making a total of 25 X 27 = 212 = 4,096 words. 
There are drums having as many as 100,000 words. 

Serial Memory Selection. Given an address a*, the proper word is 
located on the drum as follows: The proper channel is selected by choos­
ing the corresponding read-write head; the proper sector is selected 
by counting each sector as it passes under the head. (The former is a 
space, the latter a time, selection.) Let us consider the sector selector 
first. The count of a counter synchronized with the drum increases by 
1 each time the first bit of a new word comes under the head; i.e., it 
increases by 1 at To of every minor cycle. If we wished to read from or 
write into the fifth sector, we would compare 101 (of a*) with the reading 
of this sector counter. When the count equals 101, the reading (or 
writing) would commence. The sector counter will be reset to zero when 
the start of the zero sector passes under the heads. In Fig. 17-12, a*3, 
a*2, a*l represent the sector-selector bits of a* and C3, C2, C1 the count 
of the sector counter. The circuit shown will produce the coincidence 
signal COl only when [a*l] = C1, [a*2] = C2, and [a*3] = C3. The 
signal is needed only at To and is therefore gated with To. As we shall 
see in the following section, this coincidence signal chooses the sector by 
initiating the read or write process. 

Having shown how to choose the proper sector, we now turn our 
attention to how the proper channel is chosen. The method is simply to 
decode the channel-selecting bits of a* (see Sec. 17-2 for a detailed 
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discussion of decoding circuits). The output of each channel is gated 
with the corresponding output of the decoder, and only the signals to or 
from the selected channel will enter or leave the drum (see Fig. 17-13). 
The output (a) is gated with TL18 since only during the first minor 
cycle of a phase is a word read out of the memory. This may occur 
only during phase 1 or 2 for a serial one-address computer. Writing into 
the memory occurs only during phase 3 during T 0-18 of one minor cycle. t 

a*3 ---,.----, 
C3 -,.---t--, 

a*2 -----,.--_-, 
C2 --r--t---, 

COl 

a *1 --......,.-----, 
Cl ---...---r----'-..... 

FIG. 17-12. Generation of the sector-selector coincidence signal. 

The waiting time from when a * is first produced to when the proper 
sector has been selected (i.e., to when the sector-counter bits agree with 
the a* bits) is called the memory access time. For the drum we have 
described, the shortest access time is zero, i.e., when the first bit of the 
desired word is under the head at To of the minor cycle in which a * 
is formed. The longest access time occurs when the desired word has 
just been missed, since the drum must rotate a complete revolution 
minus one sector before the word comes round again. The average 
access time is often taken as half the longest access time. . 

Parallel Memories and Selection. In parallel memory selection all the 
bits of a word enter the instruction register or the accumulator at the same 
time. Similarly, in replacing a word in the memory, all the bits are 
replaced simultaneously. A drum memory can be used in a parallel 
fashion, when a word is recorded on the drum cylinder parallel to the 
axis instead of round the circumference. If only one word can be fitted 
along the length of the drum, then in this arrangement each of. the drum 
heads reads (or writes) 1 bit of the word, and there must be· as many 
heads as bits in the word format. This eliminates the need for channel 
selection. The need still remains for sector selection, but now there are 

t Note that a write control signal must be fed to the write amplifiers to turn th~m 
on; absence of this signal will prevent writing onto the drum. 
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a*4----------------~~------~------~------~ 
a*5--------------~~r_--_r--4_----~_4--~ 

Write 
input 

n-~~~, 
~ signal 

Read 
output 

Read-write head (0:) 

FIG. 17-13. The channel selector with associated read-in and -out circuitry. 
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as many sectors as words (see Fig. 17-14). Of course, if there are two 
or more words on the axial length of the drum, group selection is necessary. 

The most common parallel memory in use is composed of magnetic 
cores; each core stores a single bit. Magnetic cores are made from ferrite, 
which has a relatively square hyster­
esis loop (see Fig. 17-15). They are 
usually formed in the shape of tiny 
rings which are magnetized in one 
direction to record, say, a unit, and 
in the other direction to record a 
zero. In Part 5 there are more de­
tailed descriptions of the magnetic 
properties of cores and of the elec­
trical-engineering aspects of their 
use. For our present purpose, FIG. 17-14. Parallel access to a drum. 
namely, logical design, it suffices to 
observe that the direction of the magnetic flux in the core can be changed 
or detected by means of wires placed through the hole of the core. 

In Fig. 17-15 we have illustrated a core that requires a current Ie 
to be flipped (i.e., change of polarity); note that Y2Ie or %Ie will not flip 
the core if it is initially at zero. The simplest method of wiring a mag-
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netic-core .memory requires the use of three wires. through each core 
(see Fig. 17-16). The cores are arranged as the points of a three-dimen­
sional coordinate system; the X and Y coordinates of a core represent the 
address of the word of which that core is a member; the Z coordinate 
determines which bit of the word the core stores. Thus a single column 
of cores (i.e., all cores with the same X and Y coordinates) represents 
a single word. Through each core there is a wire representing its Z 
coordinate or bit number. The wiring is so arranged that all cores 
with the same X, Y, or Z coordinate have the same X, Y, or Z wire 
through them. The X-coordinate wires are the outputs of a decoding 

-Ie 

I 

B 

I 
Unit flux direction 

I 
Ie 
2" 

-Ie 
2" 

J 
Zero flux direction 

I 

R 
Ie Magneti c core with 

magnetic flux in 
clockwise direction 

FIG. 17-15. Hysteresis loop and shape of a magnetic core. 

circuit (see Sec. 17-2) that decodes (i.e., has as inputs) half the bits 
of an address; the Y-coordinate wires are outputs of a decoding circuit 
for the other half. The Z wires are the parallel input to the registers 
of the computer. 

To select a word with this system, a current of - %Ie is passed through 
the X wire corresponding to the X half of the desired address; another 
current of - %1 e is passed through the Y wire corresponding to the 
Y half of the address. Only cores in the proper X, Y column will then 
have the full current - Ie passing through them; and of these cores only 
those which are recording units will flip to zero, while the zero cores 
will stay at zero. Only the Z wires through those cores which flip will 
have induced voltage to operate the registers, all the bits of the stored 
word being sensed at the same time (see Fig. 17-16). Since reading 
a word from the memory clears this word, the word must be immediately 
written back into the memory. 

To write into the memory, the selected address must first be cleared 
as above, with - Y2Ie in the corresponding X and Y wires. Then a 
current of '73Ie is passed through each of these wires, while '73Ie is also 
passed through only those Z wires which correspond to unit bits of the 
word being read in. The only cores flipped will be those receiving the 
current Ie, that is, those in the selected address corresponding to the 
unit bits in the word which was read in. 
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There are many variations to the wiring arrangements and the current 
values described above. For example, in writing into the memory all 
the X wires may carry -72' I c except the selected X wire, which would 
not carry current. The selected Y wire would carry 72' I c and the 
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FIG. 17-16. Access and sensing wires of a core memory. The figure represents a 
memory with 4-bit addresses containing nine words each of 4 bits length. The dark 

x y 

wires indicate the selection of the word that is the contents of address 10 00. 

other Y wires no current.. A current of 72' I c through the Z wires corre­
sponding to unit bits of the word being read in would cause a total current 
of I c to pass through only the corresponding cores of the selected word 
(since outside the selected word the -72'1c X currents will cancel the 
+ 7~1c Y currents). Alternatively the bits of the address can be sep-
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arated into three sets instead of two. We then would have a four­
dimensional array, with W, X, and Y wires selecting the word and Z the 
bits of the word and three decoding circuits instead of two. 

Note that with a magnetic-core memory there is no time selection; 
only decoders are used. (Hence there are no idling phases in selecting 
a word-see next section.) 

EXERCISES 

(a) Diagram the control gates through which (a) must pass when being trans­
mitted from the memory (1) to the instruction register and (2) to the arithmetic unit 
and (3) when being transmitted from the arithmetic unit to the memory; consider 
serial four-, three-, two-, and one-address computers. (HINT: During what phases 
are these gates open?) 

(b) What would be the diameter of a drum that in a single channel stores 128 words 
of 23 bits each, if the bits are stored 100 to the inch? 

(c) How long (in microseconds) would a unit time interval be if the drum described 
in Exercise b rotated at 1,800 rpm? 

(d) What would be the average access time of the drum of Exercise c? 
(e) In Fig. 17-12 a parallel comparator is illustrated for use in selecting the proper 

sector; i.e., all the bits of C and a* are compared simultaneously. How would a 
serial comparator be constructed, to compare 1 bit of C and a* at a time? (HINT: At 
what T, would the sector counter have to be increased in order that the serial com­
parison be completed by the time To?) 

(f) Compare the selection problems involved in serial-drum, parallel-drum, and 
magnetic-core memories with respect to time and space. 

(g) How can the currents be arranged in a three-dimensional core memory so that 
the currents through the cores of nonselected words are only ~'3Ic? (HINT· Try 
different directions of currents for selected and nonselected X and Y wires.) 

(h) Repeat Exercise g for a four-dimensional core memory. 

17-7. Control of Instruction Execution 
Sequencing of Phases. Up to now we have studied the controls that 

act once we are in a particular phase. The subject of the present section 
is how we control the phases themselves; i.e., what are the controls 
that sequence the phases during the execution of an operation? The 
answer to this problem completes the control picture. 

There are three aspects to the control of a phase signal: (1) it must be 
turned on; (2) it must be kept on for the duration of the phase; and (3) 
it must be turned off. Consider phase 1 for a four-address system (see 
Table 17-1). During this phase the address a is selected and read into 
the accumulator, in one minor cycle. In order to construct the phase 1 
signal, we observe that phase 4, which precedes it, is only one minor 
cycle in length. Thus we have for phase 1 

[F1] = [F4]d . [To] + [F1]d . [To] 

Here by delaying F4 by one unit time interval we initiate F1 at To just 
as F4 goes off; the right-hand product keeps F1 on until the next To, 
which is the start of phase 2. Note that if F4 had been longer than one 
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minor cycle this formula for Fl would not work but would make Fl go on 
during the second minor cycle of phase 4. 

Remember that phase (2 and 3t), the operation computing phase, 
can last for more than one minor cycle. For these phases a special pulse 
called the operation ending pulse OEP is needed; it comes on only during 
the last unit time interval of the operation computing phases. Now 
consider Fl for a one-address system (see Table 17-1), which may follow 
either phase 2 or phase 3, depending on the previous instruction. Hence 
it must be initiated by OEP, 

[Fl] = [OEP]d + [Fl]d . [To] 

In the case of phases, such as F2, that may last for more than one 
minor cycle, signal OEP must be used to end them, 

Signal OEP is delayed so that F2 remains on throughout its last minor 
cycle. 

Thus the sequencing of phases rests with the construction of the signal 
OEP, produced in the operations signal generator. We shall illustrate 
the construction of this signal for the simplified one-address example 
that we were following in Sees. 17-3 and 17-4. Signal OEP is to come 
on at T 22 of the last minor cycle of the operation being performed in 
phase 2 or 3. For addition and subtraction this is T 221; for mUltiplication 
and division this is T 22 19; for shift this is T222. In our example we assumed 
that in phase 2 the only operations performed are the arithmetic; hence 
PQS can be used for the addition and subtraction signal: 

[OEP] = [F2] . [PQS] . [T221] + [F2] . [PQS] . [T22 19] + [F3] . [SHS] . [T222] 

where PQS is on during multiplication and division and SHS is on during 
shift. 

The Selection or Idling Phases. As we have seen in Sec. 17-6, when 
using a drum memory the computer must wait for the drum to rotate 
to the proper sector; this waiting period must be some integral number of 
minor cycles. It is convenient to denote such a period as an idling 
phase, because the primary components of the computer merely idle until 
the proper sector is selected. The coincidence signal COl comes on at 
To of the minor cycle that coincidence is made; hence this signal can 
'be used to end an idling phase and to initiate the next functional phase 
in sequence. Such an idling phase will precede any phase that requires 
drum memory access. For example, suppose that an idling phase pre­
ceded phase 2; call this phase IF2 (idling phase 2) : 

[IF2] = [Fl]d' [To] + [IF2]d . [COl] 

t See footnote on page 546. 
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Then we would have for F2 itself 

For a one-address system where an idling phase IF1 would precede phase 
1, we have 

and also 

[IF1] = [OEP]d + [IF1]d· [Cal] 

[F1] = [IF1]d . [Cal] + [F1]d . [To] 

By initiating the change of phase from an idling phase, Cal selects 
the proper sector. For as soon as the computer changes from the idling 
phase, Cal opens the gates that read B into the memory or (a) out of 
the memory, and the reading or writing proceeds. 

The Input-Output Phases and Synchronization. Transmitting words 
between the outside world and the computer's memory by means of the 
input-output equipment presents a special problem, because the input­
output external equipment generally operates at much slower speeds 
than does the computer. This problem is often solved by the use of an 
input-output buffer, which is a shift register designed in such a way that 
it may be controlled at times by the computer and at other times by the 
external equipment. For a computer with a drum memory three phases 
each for input and output can be distinguished as follows: (1) the IF 
phase during which an address is selected in the computer memory; 
(2) a phase Fa during which a word is transmitted (in either direction) 
between the memory and the in-out buffer; and (3) a phase FB during 
which a word is transmitted between the in-out buffer and an external 
input or output unit. 

Let us consider as an example the input and output instructions of the 
Pedagac. For the read-out instruction, phase IF Out (signal IFO) is 
initiated after F1 and lasts until Cal comes on at coincidence. Then 
phase Fa Out (signal Faa) is initiated. During this phase the buffer 
shift register is loaded by the computer proper, at its rapid speed, while 
the buffer is being shifted under the control of the computer; this phase 
lasts one minor cycle. The end of phase Fa Out initiates FB Out. 
During this latter phase the word is read out of the buffer to the output 
unit, the buffer being shifted by the output equipment, at the slower 
speed. When the word has been completely read out, the output equip­
ment notifies the computer; phase FB Out has ended, and the execution 
of the instruction "Read out one word from address a" has been com-" 
pleted. For phase signals IFO and Faa we have 

[IFO] = [F1] . [21D] . [To] + [IFO]d . [Cal] 
[Faa] = [IFO]d . [Cal] + [FOO]d . [To] 

where 21D is the instruction decode signal for read-out. For the genera-
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tion of signal FBO let the signal EWO be initiated by the external output 
unit when the word has been read out of the buffer. Signal EWO neeci 
not come on at To, and so we must end phase FB Out only at [EWO] . [Tol. 
Thus 

[FBO] = [FOO]d' [To] + [FBO]d . [EWO] . [To] 

= [FOO]d' [To] + [FBO]d' [EWO] + [FBO]d . [7\] 

The problem remains of how to generate the signal EWO. One pro­
cedure is to have the output unit count each bit that it receives, presenting 
a signal to the computer when a complete word has been received. Let 
us assume that it is turned into a signal EWO'. This signal, which in 
general lasts several unit time intervals but less than a minor cycle, 
initiates EWO. Then EWO should stay on until the next To, at which 
time it stops FBO and initiates IF!, the next phase in sequence: 

[EWO] = [EWO'] . [To] . [IF1]d + [EWO]d . [IF1]d 

The IF1 signal is used to inhibit EWO' if it stays on past To; it is used 
to stop EWO. (See Exercise c below concerning the 'i' 0 in the left-hand 
product.) 

This process for forming and using EWO is generally applicable to 
external signals from control-panel push buttons or from external in-out 
units. The original external signal is converted into one or more com­
puter signals by electronic circuits called synchronizers. The synchron .. 
izer outputs initiate other signals to be used at specific times to initiate 
phases, etc. The signals so initiated can be used to turn off their initiat­
ing signal. 

EXERCISES 

(a) Suppose that, in the one-address drum computer that we have been using for 
illustration, phase 3 also included the transfer instruction as well as the shift. Con­
struct the signals for IFl, Fl, IF2, F2, IF3, and F3. 

(b) Write expressions that for a one-address drum computer generate the input 
phase signals IFl, FOI, FBI, using the signal OOD, the instruction decode signal 
for "Read one word into address a," and the signal EWI' produced by the input unit 
synchronizer when a complete word has been transferred into the buffer. 

(c) Why must To inhibit the initiation of EWO? (HINT: Suppose that it did not 
inhibit EWO, but that EWO were initiated at To; would FBO be turned off? What 
about IF1?) 

17 -8. Timing and Counters 

Review. In Sec. 15-4 we introduced the ideas of minor cycles and 
unit time intervals, based on the clock pulses described in Sec. 2-4. In 
this section we shall describe the generation of clock pulses. Let us 
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review again the over-all synchronous plan. The basic timing is' kept 
by means of clock pulses which measure off the unit time intervals. A 
unit-time-interval counter counts these clock pulses, the count at any 
time being denoted by Ti • A certain number of these clock pulses con­
stitute a minor cycle, and each time this number has been counted off 
the unit-time-interval counter is reset to zero. Another counter counts 
minor cycles, the count at any time being denoted by Ti. A signal Ti 
is on during every unit time interval of the ith minor cycle. A certain 
number of minor cycles constitutes a phase, the number depending on the 
particular phase and operation. A phase signal Fj is on during every 

o Reading head 

I':l Reading and 
l....)I writing head 

unit time interval of every minor cycle of phase j. At the end of the 
phase the minor-cycle counter is reset to its initial count. 

Serial and Parallel Clocking. Basic to all the counters and time­
keeping signals are the clock pulses, denoted by cpo For a serial or 
parallel access magnetic-drum memory these clock pulses may arise from 
evenly spaced unit bits prerecorded on a special channel of the magnetic 
drum, called the clock-pulse drum channel (see Fig. 17-17). Then, while 
the drum is rotating, these bits are read'from the drum by a separate 
head to form the clock pulses. In this way the synchronization of the 
entire computer is based directly on the rotating-drum speed, a far easier 
accomplishment than adjusting the speed of the drum to some outside 
clock frequency. 

Consider next the situation that arises when the computer is turned off 
for the night with information from some previous computations recorded 
on the drum. When the power is cut, the drum stops rotating but 
the contents of the memory remains. The next morning, when the 
power is turned on and the drum starts rotating again, it is often desired 
to use the information that remained on the drum during the night. 
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However, to read a word out of the drum, To must be synchronized with 
PO (that is, the first bit of the word). The problem is: In starting the 
drum rotating how is synchronization reattained? 

One common solution to this problem is to have on the drum a sep­
arate channel, called the drum-synchronizing channel, containing one 
single pulse (see Fig. 17-17). After the drum is started, the very first 
time this bit is recognized the unit-time-interval counter is started. 
Hence, as the unit-time-interval counter starts, the position of the reading­
writing head is known to be at PO of the zeroth· word on each channel; 
and this will be the same position each time the drum is started. Also 
at this very first To time the sector counter starts. In this way the 
address locations on the drum remain invariant for the life of the drum. 

For a computer with a parallel magnetic-core memory the clock,; is 
simply an oscillator with a fixed frequency. Since memory selection 
does not depend on time, the difficulties encountered with the, drum 
do not occur. 

The Unit-time-interval Counter. The unit-time-interval counter cotints 
the time intervals during a minor cycle. As an illustration, consider 
the Pedagac, with time intervals To through T 22• The Pedagac counter 
does not start to count until the drum-synchronizing pulse appears for 
the first time when the drum is started rotating, and then with each clock 
pulse the count is increased by 1 until it reaches 22. Then after the T22 

signal the count must return to To again; i.e., the count should be cleared 
after T 22• 

The Sector Counter. The sector counter counts the words within 
each channel. The Pedagac is designed to have 128 = 27 words per 
channel. The sector counter therefore has seven stages, whose outputs 
are compared with the last 7 bits of the a address in generating the 
coincidence signal. Starting at zero when the drum-synchronizing pulse 
first appears, the count is increased by 1 with each succeeding To. Since 
the total number of sectors is an integral power of 2, the counter overflows, 
returning to zero, each time the drum-synchronizing pulse returns, and 
hence need not be specially reset. 

The Minor-cycle Counter. As we have seen above, the minor-cycle 
counter presents signals for the operations signal generator, the arith­
metic unit, and the phase generator. The minor-cycle count at which the 
counter is reset depends on the phase and operation being performed. 
The minor-cycle counter of the Pedagac starts with a count of 1 and can 
go up either to the count of 2 during the execution of the shift instruction 
or to the count of 19 during the execution of the multiplication and 
division instructions. Hence the main problem is to reset the counter 
at the proper time. This is done in phases 2 and 3 by using the OEP 
signal to reset the counter to 1. Since during other phases (including 
the idling phases) we need never count past 1, the count is forced to 1 
at To of every minor cycle of these phases as well as at To of the first 
minor cycle of phases 2 and 3. 
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EXERCISES 

Consider the Pedagac with 128 word channels, a 23-unit-time-interval minor cycle 
(TO- 22), a word containing 18 bits plus a sign bit, and instructions as described. 
Suppose that the following three-instruction program is being computed: 

Address Operation a Remarks 

0010 53 0000 Add 
0011 42 3725 Multiply 
0012 70 0016 Shift 

(a) What is the count on the sector counter when the add instruction has been 
completed? 

(b) What is the count on the sector counter when the multiply instruction has been 
completed? 

(c) How many minor cycles have passed from the time that coincidence was made 
on the sector selector with address 0010 until the shift instruction has been completed? 



CHAPTER 18 

PACKAGING AND THE LOGICAL DESIGN 

OF THE PEDAGAC 

18-1. Introduction 

Thread of Continuity. In the preface we mentioned that to maintain 
the thread of continuity throughout this book a complete digital com­
puter would be designed. To this end we have considered in Chap. 9 
the systems design of the Pedagac. We consider now the logical design 
of the machine. 

In the preceding three chapters we have described the operation of 
various computer components, such as the adder, the sign generator, 
counters, multiplication and division controls, and the instruction 
decoder. We shall now consider an integrated example of how all these 
components are organized and assembled to form an operating system. 
New principles will arise that are associated with the complete organiza­
tion of such a system, and it is felt that these can best be displayed by 
means of specific examples. 

Point of View. The ability to design a complete computer system 
results to a large extent from experience. Probably the only way the 
student can gain any such experience is by following through a detailed 
example. Such is the point of view of this chapter. However, we must 
add that although we shall spend much time on the particular details 
of our illustration, this by no means implies that logical designs are 
limited to the methods and techniques here used. We intend that 
through his detailed study the reader shall grasp the principles involved 
and the pitfalls encountered in a complete systems design. The Pedagac 
has been designed to emphasize such principles. In presenting the log­
ical design of the Pedagac we shall utilize methods which may aptly 
be termed vertical and horizontal description. The vertical descriptions 
relate to the specific function and purpose of each gate during the differ­
ent operations; the horizontal descriptions follow the path of a bit as it is 
propagated through the computer during the execution of the various 
instructions. However, merely reading these descriptions will not be' 
sufficient to give the student the sought-after experience. Therefore 
included in this chapter are an extraordinarily large number of exercises. 
These exercises differ from those of other chapters in that they are not 
intended to give the student practice in the methods considered; rather 
their purpose is to guide the student in his study of the functioning of the 

575 
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Pedagac. These exercises will illustrate the intricate details involved in 
complete logical-systems design. They are essential to the teaching 
method of this chapter. 

Outline of the Chapter. Computers are usually constructed by con­
necting together preassembled combinations of and, or, and not gates. 
Such combinations are called packages. Thus, preliminary to the dis­
cussions of the Pedagac we consider packaging, in Sec. 18-2. The 
remainder of the chapter is then concerned with the details of the Peda­
gac. First (in Sec. 18-3) the phases and block diagram of the Pedagac 
are covered. This section is fundamental, since all that follows is based 
directly on its material. 

In Sec. 18-4 is considered the operations signal generator, whose output 
signals determine the mode of operation of the arithmetic unit, wherein 
most operations are performed. In Sec. 18-5 the vertical description 
of the arithmetic unit is given, and Sec. 18-6 integrates these two pre­
ceding sections in the horizontal descriptions of the arithmetic unit. 

Two methods are commonly employed for recording the detailed log­
ical design of a digital-computer or -control system. One method is by 
use of logical circuit diagrams, the other by use of the corresponding 
Boolean equations. Since, as we have seen previously (Secs. 10-11 and 
10-12), the equations and their corresponding logical diagrams are 
equivalent, either method is completely satisfactory. It is felt, however, 
that the logical diagrams are probably easier for the student to grasp, 
and hence for the Pedagac these are given. Since for many purposes the 
Boolean equations may be more convenient, we have also included these 
in the text (see Appendix), using a symbolism consistent with the cor­
responding logical diagrams. 

18-2. Packaging 
The Package. The concept of a package must be discussed before 

considering the detailed logical design of the Pedagac. It has been 
found from experience that it is neither convenient nor economical to 
build a computer directly with the three basic building blocks, and gates, 
or gates, and not gates. Instead combinations of these building blocks 
are used as elementary modules. For example, a convenient package 
may consist of three and gates all feeding into an or gate (see Fig. 18-1). 
All these components are put in a single-circuit module, which in our 
example has nine inputs. Most often two outputs are used, one output 
being simply the negation of the other, as shown in Fig. 18-1. These 
packages are constructed in mass-production style, and the computer 
is made by wiring the packages together according to the logical design. 
Part 5 of this text will consider the electronic design of such package 
circuits. However, it is appropriate to point out here that, in addition 
to performing the logical gating of signals, the package also has the 
function of reshaping, amplifying, and resynchronizing the pulses. 

The type of package shown in Fig. 18-1, called the and-or package, 
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has the advantage that it produces a sum-oj-products form, that is, 

D = Al . A2 . A3 + BI . B2 . B3 + CI • C2 . C3 

and also D. Another type of pacKage, particularly suited for parallel 
adders, is the or-and-or package, as shown in Fig. 18-2. Here the output 

E = (AI + A 2) . (BI + B 2) + (C I + C2) • (DI + D2) 

There are many variations in the kinds of packages. An important 
class of packages involves the use of a transistor. These packages in 
general only have a single output instead of the usual inverse outputs. 

...------1I---+-,,....--D 

15 

FIG. 18-1. Example of an and-or package 
with nine inputs and two outputs. 

I---+r---E 

E 

FIG. 18-2. The or-and-or package. 

There are two basic types. In the first, called the or-not circuit (some­
times also referred to as a nor circuit), if the inputs are AI, A 2, A 3, the 
output is Al + A2 + A 3, or equivalently AI' A2 . A3 (see Fig. 18-3). 
For the second type, called the and-not circuit (sometimes also referred 
to as a nand circuit), if the inputs are A 1, A 2, A 3, the output is AI' A 2 • A 3, 
or equivalently Al + A2 + A 3. Of course these definitions are easily 
generalized to any number of inputs (see symbolism of Fig. 18-3). 

Besides being advantageous from an electronics point of view, the 
advantage from a logical point of view is seen when combinations of these 
packages are considered. The sum of products, product of sums, straight 
and, and straight or can all be obtained. 

Packaging Limitations. As was remarked in the discussion of the 
parallel adder, certain electronic limitations can affect the logical design. 
Using the and-or package for illustration, there are (1) the limitation 
on the number of and gates in a single package, (2) the limitation on the 
number of inputs allowed to a single and gate, and (3) the limitation on 
the number of packages to which the output can be sent, i.e., limitation 
on the "drive" of the output. 
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There is in addition a fourth electronic constraint, the delay time 
through the package. For the most part we have assumed, and will 
continue to assume throughout this chapter, that the gating of a signal 

Or-not circuit (nor) 

Al~ A2 
Al+A2+A3+A 4 

A3 

A4 

And-not circuit (nand) 

FIG. 18-3. The or-not and and-not circuits and their resulting combinations. 

occurs instantaneously. The effect of the actual delay will be considered 
at the end of Part 5, when its electronic nature and causes can be more 
thoroughly understood. The alteration of the computer design to take 

cp 

r------------....., 
I 
I 
I 
I 
I 
I 
I 
I 

account of these delays will then be 
straightforward. 

The Clock Pulse and Packaging. 
The concept of the clock-pulse cp, 
used for synchronization, was intro­
duced in Sec. 2-5, where it was noted 
that it enters every and gate. Let us 

D use the and-or package to illustrate 
---..,------;---15 how this might be accomplished. 

L _____________ J 

One input to each and gate of every 
package is reserved solely for the 
clock pulse. Since the clock pulse 
is on in every unit time interval and 
is included as an input to every 

FIG. 18-4. And-or package showing the 
clock-pulse input to every and gate. and gate, it is never indicated but 

always understood to be present. For 
example, the package illustrated in Fig. 18-1 really is as in Fig. 18-4. 
The clock pulse is logically nonfunctional; the reason for its use will be 
given in Part 5. 

The Packages of the Pedagac. For the logical design of the Pedagac 
we shall choose the and-or package class. Five different types of pack-
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ages will be used, having one and gate, two and gates, three and gates, 
four and gates, and five and gates, called types A, B, C, D, and E respec­
tively. We assume that each and gate is limited to no more than five 
inputs (other than the clock pulse). There will be two outputs, normal 
and inverted. Rather than draw the entire circuit, we symbolize a 

is represented by 

FIG. 18-5. Package representation. 

I------..--Q 1------,.-Q 
C------I c-------I 

1 1---------' 

Logical Packaged 

FIG. 18-6. Example of the packaging of a counter stage. 

package with only the and gates indicated, it being understood that there is 
an or gate before the output (see Fig. 18-5). The inverted output is not 
shown, however; when the inverted output is to be used, it is indicated 
where it is used in the usual way. This convention reduces the number of 
lines on the drawing. For example, a counter stage drawn with the pack­
age convention appears in Fig. 18-6. Here one package of type A and 
one of type B are used (cf. Fig. 15-6). 

EXERCISES 

(a) Package the circuits shown in Fig. 17-8, using and-or packages. 
(b) Package a counter stage, using and-not and or-not packages. (HINT: Compare 

Figs. 15-6 and 18-6.) 
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(c) Package a counter stage, using only or-not packages. 
(d) Package the 5-bit parallel adder shown in Fig. 16-1, using or-and-or packages. 
(e) Package the 5-bit parallel adder of Fig. 16-1, using and-or packages. 
(f) Package the 5-bit parallel adder of Fig. 16-1, using and-not and or-not packages. 
(g) Package the 5-bit parallel adder of Fig. 16-1, using only or-not packages. 

18-3. Phases and Block Diagram of the Pedagac 

Outline of Phase Sequencing. A thorough understanding of Fig. 18-7 
is basic to an understanding of the logical design of the Pedagac. The 
general plan is as follows: During phase 1 the instruction to be executed 
is read into the instruction register, and the decoding of the operation is 
performed. In this phase also, after the operation has been decoded, 
the current-address register is set to the address of the next instruction, 
either by advancing it 1 or in the case of a jump instruction by inserting 
in it the a address from the instruction register. The arithmetic, logical, 
and input and output operations involve the address a in the memory, 
so that for these operations phase 1 will be followed by an idling phase, 
which ends when address a has been located on the drum. (For a stop 
instruction the idle stop phase ISF is initiated. This phase is analogous 
to the other idle phases in that the computer does not perform any func­
tions except marking time; this phase will continue until the run or 
start buttons are pushed.) When the coincidence signal, which indicates 
that address a has been found, ends the idling phase, the operation called 
for by the instruction is performed, during phase 2 or phase 3. In phase 2 
computation commences simultaneously with the reading of the second 
argument from address a into the adder-subtract or. Performing a 
typical arithmetic operation such as add consumes two phases: the 
memory selector phase IF2 and the computation phase F2. The input 
or output instructions, however, require three phases, for, besides the 
idling phase (IF a or IFI) and the phase required to transfer the word 
between the drum and the buffer (Faa or FOI), a third phase (FBI or 
FBO) is needed for transferring the word between the buffer and the 
input or output equipment. After an instruction has been executed, the 
next instruction must be selected. The proper drum address is selected 
during IFI (for the current-address counter already contains the address 
of this next instruction); the instruction is read into the instruction 
register during Fl, and the process continues as before. 

PHASE 1. At the start of phase 1, (a) the instruction to be executed is 
read into the instruction register from the address on the drum held 
in the current-address counter (see Fig. 18-14). Thereafter during this 
phase the following functions are performed: (b) the operation is decoded 
in the operations decoder (see Fig. 18-14); (c) the control signals are 
generated by the operations signal generator (see Fig. 18-10); (d) the 
current-address counter is set to the address of the next instruction (see 
Fig. 18-14); and (e) the signal for the phase that should follow is pro­
duced in the phase generator (see Fig. 18-17). 

The decoding and operations-signal generating functions take place 
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FIG. 18-7, Flow' chart showing the sequencing of phases during the execution vf aL 
instruction. 
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immediately after the instruction is read in. If the instruction is not a 
jump, the current-address counter is increased by 1. If a jump is to be 
made, then the contents of the current-address counter is replaced by the 
a part of the instruction register. In the Pedagac the functions per­
formed during phase 1 after the instruction register is loaded are each 
essentially performed as parallel operations and therefore consume only 
a few unit time intervals. During T 1-18 of phase 1 the instruction register 
is loaded; then during T 19- 22 the other functions are performed. Updat­
ing the current-address counter is left until T 22 to ensure that a possible 
jump instruction will have been decoded. 

When the instruction is a jump, normal or conditional, the entire 
operation (i.e., setting the current-address counter) is completed in 
phase 1 and Fl is followed directly by the idling phase IFI for the 
next instruction. If the instruction is one of the arithmetic or logical 
operations, which involve another argument in addition to the contents 
of the accumulator, phase IF2 will follow Fl. Of the phase 3 operations 
the computer need select an address only for the transfer instruction and 
in that case IF3 follows F1. For the shift or clear instructions phase 3 
follows directly after phase 1. For a stop instruction the idling phase 
ISF follows phase 1. For a read-out instruction a memory address must 
be selected, and so phase IFO follows phase 1; for read-in there follows 
phase FBI, in which a word is read into the buffer from the input unit. 

PHASES IFl, IF2, IF3, IFO, AND IF!. The appropriate drum sector 
is selected during these phases by the drum sector selector (see Fig. 18-15). 
The result of this selection process is the coincidence signal Cal, which 
indicates that the drum has rotated to the proper word. Since it takes 
one minor cycle for each word in a channel to pass under the read-write 
head, the duration of these phases will be some integral number of minor 
cycles. For the Pedagac there are 27 = 128 words in a channel, and the 
duration of such a phase can be as short as 1 t or as long as 128 minor 
cycles. Then during the following phase (Fl, F2, F3, Faa, and FOI, 
respectively) a channel is selected by the drum channel selector (see 
Fig. 18-15), and the word is transferred to or from the drum. 

PHASES F2, F3, Faa, AND Fa!. As we have seen, phase F2 can be 
from 1 to 19 minor cycles in duration, depending on the operation. Dur­
ing the first of these minor cycles the selected word is read into the adder­
subtractor (see Figs. 18-11 to 18-13), and the operation is initiated. 
Addition, subtraction, and the four logical operations are completed 
in this first minor cycle; the others take 19 minor cycles each. At T 22 

of the final minor cycle a signal OEP appears, which is generated in the 
operations signal generator (see Fig. 18-10) to initiate the following phase, 
IFI (see the phase generator, Fig. 18-17). For the transfer instruction 
the coincidence signal ends IF3, opening the writing gates to the proper 
channel; phase 3 then lasts one minor cycle. For the clear and shift 
instructions no memory reference is made, and F3 follows Fl immediately. 

t The (delayed) idling-phase signals are used to initiate the following operating 
phases, and hence each must last at least one minor cycle. 
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The clear instruction requires only one minor cycle; the shift requires two, 
the first to ensure that the contents of the accumulator will be comple­
mented, if necessary, and the second for the shifting itself. During 
phases FOO and FOI one word is transferred between the drum and the 
buffer, with the buffer under the control of the computer. 

PHASES ISF, FBI, AND FBO. These are atypical phases. The ISF 
phase is an idling phase during which no functions are performed except 
time-interval and sector counting, i.e., during which the computer simply 

Input unit 

Output unit 

In-out phase 
generator 

Buffer 

FIG. 18-8. Detailed block diagram of the Pedagac. 

Unit time 
interval counter 

(see Fig. 18·16) 

Current-address 
counter 

Instruction 
register 

Instruction 
decoder 

and literally marks time. It can be initiated by the stop instruction 
or by the stop button; it can be ended by the run button or the start 
button. (See the discussions of the stop, start, and run buttons in 
Sec. 18-8.) This phase is used in debugging a program or adding addi­
tional data to a program or to initiate a manual read-out, etc. The 
FBI (or FBO) phase takes place when a word is to be read from (to) 
the input (output) unit to (from) the buffer (see Fig. 18-18). During 
these phases the input or output unit has control of the buffer shifting 
pulse. When the shifting has been completed, the computer must wait 
for the next To before beginning the next phase, in order that the machine 
will remain synchronized with the drum. 

Block Diagram of the Pedagac (see Fig. 18-8). The heart of a com­
puter is the arithmetic unit; directly or indirectly, all other parts of the 
computer service the arithmetic unit. The unit-time-interval and minor­
cycle counters supply it directly with timing signals. The operations 
phase generator supplies it with phase pulses, in particular those of 
phases 2 and 3 during which it operates. The operations signal generator 
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supplies it with signals specific to the operation being performed. The 
drum sector selector and drum channel selector deliver to and receive 
from it the words that are being operated on. The current-address 
counter, the instruction register, and the instruction decoder are all 
needed to generate their various· signals and may be thought of as 
indirectly servicing the arithmetic unit in this sense. Similarly the 
input-output unit, the in-out phase generator and buffer, and of course 
the memory are all necessary for the delivery and receipt of the words 
to be operated on and can therefore be considered as indirectly servicing 
the arithmetic unit. 

The arithmetic unit generates one control signal that is used in the 
operations signal generator-the sign bit of the accumulator, used during 
a conditional jump instruction. Otherwise the operations signal generator 
receives most of its input signals from the instruction decoder and in a 
sense acts as the instruction-decoder output interpreter for the arithmetic 
unit. The operations phase generator also uses the outputs of the opera­
tions signal generator in determining phases. The operations phase gen­
erator in turn supplies the signal generator with signals used in forming 
the important instruction-ending pulse OEP and the conditional jump 
signal. The signal generator is also fed by the various counters. 

The operations phase generator steps the computer through the proper 
phases. One phase signal, and only one, is on at all times when the 
computer is operating. A phase signal starts at To of a given minor cycle 
and ends at T22 of the same or some later minor cycle. In general the 
phases essentially sequence themselves; i.e., each phase signal is initi­
ated by the termination of the previous phase signal. Since a phase 
signal begins in the next unit time interval after the previous phase 
signal ended, a phase signal must be delayed 1 unit of time before it 
enters the gate generating the next phase signal. In addition two other 
important phase-ending signals are supplied to the operations phase 
generator: OEP, generated by the operations signal generator, and COl, 
generated by the drum sector selector. The former determines the end 
of phase 2 or 3, while the latter determines the end of IFl, IF2, IF3, IFO, 
or IF!. 

The drum channel selector receives its input directly from the current­
address counter in phase 1 or from the instruction register in other phases. 
In the Pedagac there are 25 = 32 channels, the gates to only one of 
which can be open at a time. By opening the proper gates a channel 
is selected directly. However, the proper sector, or word within a 
channel, is selected indirectly. The drum sector selector compares 
the sector counter with the current-address counter in phase IFI or 
with the ex part of the instruction register in other idling phases. When 
coincidence occurs, the word can be read out of (or into) the drum, 
starting immediately at the To of coincidence. The coincidence signal 
COl does not open any gates directly, as do the signals generated by 
the channel selector; rather it simply steps the computer into the next 
phase, in which it reads into or from the drum. It is the signal for this 
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next phase that directly opens the proper gates-the gates to the arith­
metic unit in F2, from the arithmetic unit in F3 (for transfer only), to 
the buffer in phase FOO, or from the buffer in phase FOr. In other words 
the channel selector opens the gate to the proper place or channel of the 
drum, but the sector selector, indirectly through the phase generator, 
opens the gates to or from the arithmetic unit or buffer at the proper time. 

As noted above, besides supplying and receiving words the drum gen­
erates two signals, the clock pulses and the drum synchronizing pulse, 
which are considered again below in more detail. 

Block Diagram of the Arithmetic Unit. In Fig. 18-9 the arithmetic 
unit has been divided arbitrarily into six sections. A combination adder­
subtractor is used, and hence the adder-subtract or control generator is 

~ To operations E 
Q) signal generator 
E ~ 

0 
E Adder-subtractor Output subtractive E 
0 

Sign generators and 
Q) 

Li: and complementer and E 

associated circuitry 
associated circuitry associated circuitry 0 .... 

icand register and Accumulator and ier register and 
associated circuitry associated circuitry associated circuitry 

FIG. 18-9. Block diagram of the arithmetic unit. 

needed. During multiplication or division the icand register is inti­
mately associated with the adder-subtract or, since it holds the multi­
plicand or the divisor. Besides receiving input words directly from the 
memory and the icand register, the adder-subtract or receives words 
from the recirculation of the accumulator (through the output subtrac­
tive complementer) and from the ier register. The word from the ier 
register is the minor product or the quotient; it is recirculated through 
the adder when it must be transferred to the accumulator as the final 
result. Similarly there is a recirculation through the adder during a shift 
instruction and a transfer instruction. Hence the input gating to the 
adder becomes somewhat formidable. 

Further complexity is added by the different shifting requirements 
of the various instructions and by the necessity for overflow determina~ 
tion. The sign generators, one for addition and subtraction and one for 
multiplication and division, are complicated by the zero sensor and the 
sign holder, and by the need for the sign-of-partial-dividend generator. 

The accumulator feeds directly into the output subtractive comple­
menter. The output of the complementer may be sent to the memory 
through the drum-address-selector unit; or within the arithmetic unit 
it may go to the adder-subtract or or, when multiplication is initiated, 
to the ier register. During multiplication the partial-product bits are 
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sent from the complementer to the ier register as they are generated, 
and the ier register supplies bits to the multiplier control-signal gen­
erator. During division the ier register receives the partial-quotient 
bits from the second stage of the accumulator. 

Besides its receiving external control signals, some of the arithmetic 
unit's control signals are generated internally. These are indicated by 
the hollow-headed arrows between the boxes of the block diagram. The 
adder-subtractor receives the sign of the accumulator as a control signal 
during addition or subtraction; it also receives the multiplier control 
signal from the ier register (indirectly). The sign generators and the 
complementer receive the overflow as a control signal. In the zero sensor 
the result of an operation is used as a signal. 

EXERCISES 

(a) Trace on Fig. 18-7 the phases involved in the execution of each of the 17 instruc­
tions of the Pedagac. 

(b) Trace the phases involved if the stop button is pushed, and then the run 
button; the stop button, and then the start button. 

(c) Trace the phases involved if a stop instruction is executed and then the run 
button is pushed; if then the start button is pushed. 

From the logical diagrams associated with each of the boxes of Fig. 18-8, determine: 
(d) Precisely what pulses are received by the arithmetic unit from each source 

indicated. 
(e) Precisely what pulses are received by the counters from each source indicated. 
(f) Precisely what pulses are received by the current-address counter and instruc-

tion register. 
(g) Precisely what pulses are received by the operations signal generator. 
(h) Precisely what pulses are received by the operations phase generator. 
(i) Precisely what pulses are received by the channel and sector selectors. 
(j) Precisely what pulses are received by the in-out phase generator and buffer. 
(k) Precisely what pulses are received by the input and output units. 

(1) During what phases are each of the boxes of Fig. 18-8 functioning? 
(m) The solid arrows in Fig. 18-9 indicate the flow of words between the boxes 

of the arithmetic unit. What word does each arrow represent, and during what 
operation does such a word flow? 

18-4. Operations Signal Generator 

The operations signal generator of the Pedagac generates 5 trivial 
and 19 nontrivial signals. In essence these signals tell the arithmetic unit 
what time period of a phase the computer is passing through and hence 
direct the unit in initiating, ending, and changing its various operations. 

A description of each output signal of the generator is given in the 
Appendix. The composition of each signal is best shown by its logical 
diagram, all of which are given in Fig. 18-10. The exercises below are 
to be used as a guide to understanding the figure. A detailed analysis 
of the operations signal generator might be postponed until the arithme­
tic unit has been studied. However, during his study of that unit the 
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student will need to know the general functions of the operations signals 
to understand why they are inputs to the various packages of the unit. 

The operations signals can be classified broadly into four categories: 
First are signals which remain on throughout an operation and which 
serve to distinguish among the operations, namely, ADD, SUB, MDS, 

TABLE 18-1. OPERATIONS SIGNALS AND THeIR DURATIONS FOR EACH INSTRUCTION 

Category II, Category III, 
Category 

minor-cycle- unit-time-interval-
IV, 

Category I. determining determining 
OEP 

Operation and decode signal operation- signals signals 
Phase 

determining 
signals 

Signal l\linor 
Signal 

Time 
Time 

cycle intervals 

--- --- -

Addition, 53D ....... ......... ADD = 53D t Tn l F2 
Subtraction, 54D .... ......... SUB = 54D t T221 F2 
Major multiplication, 42D ... .. MDS MMI TI9 T22 19 F2 

PQS TI-18 MCS Tl-18 

Tl-18 PQC Tl_18 
l\linor multiplication, 02D . .... l\IDS TI9 PQT TI-18 1'2219 F2 

PQS Tl-18 MCS TI_18 
TI-18 PQC TI-18 

Division, 42D .... ............ PQS DDS d T22 19 F2 
DRI T210nly 

I "" I 
PQT TI_18 

TI-18 DCS TI-18 

TI-l8 PQC T1-18 

Logical multiplication, 71D .. .. LDS (LMS) r LMS T1-18 T221 F2 
Logical addition, 72D ... ...... LDS (LAS) ..... t LAS Tl-18 T221 F2 
Logical equivalence, 73D .. : ... LDS (LES) ..... t LES Tl_18 TZ2l F2 
Logical nonequivalence, 74D ... LDS (LIS) ..... t LIS Tl-l8 T22l F2 
Shift, 70D ..... .............. SHS = 70D 

,...----
T2 SIC As T222 F3 

required 
T2 SCC As 

<-
required 

Clear, 50D ................... CLS = 50D t T22l F3 
Transfer, 52D .... ............ TRS = 52D t T221 F3 
Jump, 44D . ................. (JCS) t JCS T22 Fl 
Conditional jump, 43D ...... .. (JCS if SOB t JCS T22 Fl 

is 0) 

t Single minor-cycle instructions, 

PQS, LDS, SHS, CLS, and TRS. Of these, three are on during more 
than one operation, MDS, PQS, and LDS. Second are signal~ that dis­
tinguish among the minor cycles within a phase, namely, MlVII and DDS, 
Third are signals that distinguish among the unit time intervals withil'-.. 
a minor cycle, namely, ASC, MCS, PQC, PQT, DRI, DCS, LMS, LAS, 
LES, LIS, SIC, SCC, and JCS. The five signals JCS, LMS, LAS, LES, 
and LIS also serve to distinguish among the operations, as did the signals 
of the first category (in Table 18-1 these signals are therefore entered 



FIG. 18-10. Logical design of 
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parenthetically in the "Category I" column). Signals MCS, PQC, PQT, 
DCS, SIC, and SCC are not on during every minor cycle of an operation 
and hence serve to distinguish among minor cycles, as did the signals 
of the second category (the minor cycles during which these signals 
are on are thus entered under the" Category II" column). Alone in the 
fourth category is the operations-ending pulse OEP. Table 18-1 shows 
the operations signals that are on during each instruction, and their 
durations. 

The most complicated of the operations signals, the shift signals SIC 
and SCC, deserve a further word. During Tl of the shift instruction while 
the contents of the accumulator is recirculating for complementation, 
the number of places to be shifted is held as the a address of the instruc­
tion register. During T2, starting at TS2, the countdown is made until 
all zeros are obtained; then the shift inhibit control signal SIC is initiated. 
Signal SIC in turn initiates SCC (in package GSCC of Fig. 18-10), which 
performs the actual shift control function. 

EXERCISES 

(a) Discuss the functions of packages GASC, GMMI, GPQT, and GPQC. 
(b) Describe the operation of the package GOEP. Give the function of each gate 

in detail. 
(c) In package GMCS why is '1'19 used in the recirculation gate?" 
(d) Why does package GOEP include as inputs signals F2 and F3, whereas they 

do not appear as input signals to the other external signal-generating packages? 
(e) The external control signals are used in the arithmetic unit only during phases 

............ 11 .,. .,. • ..... .. .... .. ".' ... ..-.. .. r.n 

'" allU i). vv uy Lueu are Llley gelleraLeu uunllg l111ai:le ~ 111 aUUHIUll LU 11lHti:lei:l ,:, ltllU oJ l 

(f) Explain the operation of packages GLDS, GPQS, and GMDS. 
(g) How does SCC control the shift instruction in the arithmetic unit during T1 

and T2? 

18-5. Arithmetic Unit: Vertical Description 

This section gives the function of each input gate of each package 
of the arithmetic unit, in the form of an extended outline. It is not 
specifically intended that this be read before the horizontal description. 
The vertical description is intended rather to be used with Table 18-1 
and the logical diagrams of Figs. 18-11 to 18-13 as reference material 
as the student follows the paths of the bits in the horizontal description. 
The reader is cautioned, however, that he will not understand the arith­
metic unit fully until he understands both this section and the next 
and that, though he might postpone working the exercises below until 
after the next section has been examined, he should not therefore neglect 
them entirely. 

The vertical description of the arithmetic unit (see Figs. 18-11 to 18-13, 
pages 596 to 600) is as follows: 



SEC. 18-5] PACKAGING AND LOGICAL DESIGN OF PEDAGAC 591 

(a) Sign sensor SOAH 
Gate 1 loads the sign of (a) at TOI of F2. 
Gate 2 holds the sign of (a) until OEP. 

Adder-subtractor control generator ASCG 
Gates 1, 2, 3, and 4 form the appropriate sum or difference control 

signal for the add and subtract instructions. For multiplication we 
sum all the time, and gate 5 forces OPS on. For division we differ­
ence all the time; so all gates are inhibited with DDS. 

Adder-subtractor (a) input package ASAI 
Gate 1 allows (a) to enter the adder during addition, subtraction, 

the four logical instructions, and the first minor cycle TI of division, 
i.e., not. during mUltiplication. 

Gate 2 allows (icand) to enter the adder for division T2-1S. CPo 
is not needed since DCS can be on only during T1- 1S, during division.) 

Gate 3 allows (a) to enter the adder gated with MUS during 'PI of 
multiplication. (Like DCS above, MCS is off at 'Po.) 

Gate 4 allows (icand) to enter the adder gated with MUS during 
T2-18 of multiplication. 

Adder-subtractor B input package ASBI 
Gate 1 allows (acc) to enter the adder during phase 2 of addition, 

subtraction, and the four logical instructions (not during multipli­
cation and division). 

Gate 2 recirculates (acc) during TI of phase 3 of the shift and transfer; 
it forces (acc) to zero during phase 3 of clear. During T2 of the 
shift, Tl's being off prevents the full-length recirculation of (acc). 

Gate 3 allows 2Ni to go into adder during division TI-IS. 

Gate 4 passes (acc) into the adder during T2-18 of multiplication 
[because TI in multiplication concerns only (a)]. 

Gate 5 passes the minor product or quotient from the ier register 
into the accumulator during TI9 (the PQT signal). 

Stage 1 of the icand register, S 1 IR 
Gate 1 loads icand initially (during TI of F2) in division or multiplica­

tion. 
Gate 2 recirculates (icand) during T2-IS of multiplication and division. 
Gate 3 holds the bit until shifted, during Tlg-To of the appropriate 

minor cycles. 

Stage n of the icand register, SnIR (S2IR is shown as an example) 
Gate 1 receives bit from Sen - I)IR during shifting. 
Gate 2 holds the bit until shifted. 

Input to carry former ITCF (see Sec. 15-3) 
Gate 1 passes B' to form sum COPS = 1). 
Gate 2 passes 13' to form difference (OPS = 0). 
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Gate 3 passes B' during logical mUltiplication and addition, since for 
these operations the result is the additive carry C' (with the C input 
to the carry former appropriately constant). 

Carry input to adder-subtract or ClAS (see Sec. 15-3) 
Gate 1 forms the carry input (C == 1) for logical addition and equiva­

lence. 
Gate 2 inhibits the delayed carry for logical multiplication and in­

equivalence (C == 0) but otherwise passes the regular carry. 

Adder-subtractor result former ASRF 
Gates 1, 2, 3, and 4 form the sum-difference result (see Sec. 15-3). 

Adder-subtractor carry former ASCF 
Gates 1, 2, and 3 form the carry (see Sec. 15-3). 

Result zero-detector generator RZDG 
Gate 1 loads the result from the adder. 
Gate 2 holds any unit found in the result until the next To. 

Add-subtract sign generator ASSG 
Gates 1 and 2 form the sign for addition and subtraction. 
Gate 3 ensures a positive sign if the result is zero. 

Product-quotient sign generator PQSG 
Gates 1 and 2 form the sign of the product or quotient. 
Gate 3 ensures a positive sign if the result is zero. 

Sign of partial-dividend generator SPDG 
Gate 1 forces SOD positive during Tl. 
Gates 2 and 3 form the signs of the partial dividends during Tl-18. 

Gate 4 ensures a positive sign if a partial dividend is zero. 
Gate 5 holds SOD until the next sign is formed at T 21. 

Sign of B holder SOBH 
Gate 1 loads the sign of the add and subtract instruction result B. 
Gate 2 loads the sign of the multiplication and division instruction 

result B. 
Gate 3 holds the sign of B for the nonarithmetic instructions. 
Gate 4 ensures a positive sign when the accumulator is cleared. 
Gate 5 holds the sign of B during the arithmetic operations until 

the new sign is formed at OEP. 

Accumulator-shift pulse signal generator ASPS 
Gate 1 shifts the accumulator at each clock pulse except To during 

every minor cycle of phase 2, except the 19th minor cycle of major 
multiplication. 

Gate 2 shifts the accumulator during the transfer and clear instruction, 
except at To. 

Gates 3 and 4 shift the accumulator during Tl and T2 of the shift 
instruction, as directed by SCC from shift sensor (see Exercise t). 
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Gate 5 shifts the accumulator during first pulse period (To) of each. 
minor cycle of both multiplication instructions. 

Stage 1 of the accumulator register SIAR 
Gate 1 reads the result from the adder into the accumulator, except 

for logical mUltiplication and addition. 
Gate 2 reads the additive carry into the accumulator as the result 

for the logical addition and multiplication instructions (see Sec. 
15-3). 

Gate 3 holds the bit until shifted. 

Stage 5 of accumulator register S5AR 
Gate 1 passes the shortened contents of the accumulator during 'P2 

of the shift instruction. 
Gate 2 loads the signal from P4 during Tl of the shift instruction. 
Gate 3 loads the signal from P4 except during the shift instruction. 
Gate 4 holds the bit until shifted. 

Overflow holder OFLH 
Gate 1 loads the overflow holder at each To. 
Gate 2 holds the bit until the next To. 

Output-complementer carry former OCCF (see Sec. 15-3) 
Gates 1 and 2 form the carry for the complementer (see Exercise cc). 

Output-complementer result former OCRF (see Sec. 15-3) 
Gates 1, 2, and 3 form the result of the subtractive complementation 

(see Exercise dd). 

MUltiplier control signal generator MUSG 
Gate 1 forms the multiplier control signal from PI of (acc) during Tl. 
Gate 2 forms multiplier control signal from PI of (ier) during T2-18. 

Gate 3 holds the bit until the next minor cycle. 

Ier-shift pulse signal generator ISPS 
Gate 1 shifts the contents of accumulator into the ier register during 

Tl of the multiplication instructions. 
Gate 2 shifts in minor product bits during T2-19 of the mUltiplication 

instructions. 
Gate 3 shifts for the recirculation of (ier) during the division instruction. 
Gate 4 shifts (ier) out to the accumulator dul'ing T19 of minor multi­

plication and division. 

Stage 1 of the ier register S 1 ER 
Gate 1 loads the contents of accumulator into the ier register (see 

Exercise hh). 
Gate 2 loads the least significant bit of the accumulator into the ier 

register (see Exercise ii). 
Gate 3 recirculates (ier) during division. 
Gate 4 holds the bit. 



594 LOGICAL DESIGN OF DIGITAL-COMPUTER CIRCUITRY [CHAP. 18 

Stage 18 of the ier register S18ER 
Gate 1 loads each quotient hit. 
Gate 2 passes the normal output from stage 17 during normal shifting. 
Gate 3 recirculates the contents of stage 18 during the division instruc·-

tion. 
Gate 4 recirculates the contents of stage 18 during instructions other 

than division. 

EXERCISES 

(a) In package ASAI gate I, under what conditions will (a) enter the adder? 

(b) For the clear instruction why is input CLS necessary only in gate 2 of package 
ASBI? 

(c) How would the inputs to gate 2 of package ASAI be modified if DCS were 
replaced by DDS? 

(d) Compare the functions of packages SOBH and SOAH. 
(e) Explain the operation of the adder-subtractor control package ASCG during 

division. 
(f) Explain the operation of package AS AI and ASBI during the transfer 

instruction. 
(g) What occurs in each gate of packages ASAI and ASBI during phase I? 

(h) Explain the purpose of input PQS to gate 1 of package ASBI. 

(i) What are the functions of the Tl inputs to gates 2 and 4 of package ASAI 
and to gate 2 of package SlIR? 

(j) What is the function of gate 3, package SlIR? When does the package act to 
store a bit? 

(k) How is B' forced through package ITCF for logical multiplication and addition? 
Why is F2 necessary at gate 2 but not at gate I? 

(I) How are the special cases of C formed for the logical instructions? 
(m) Show one condition in which To is essential to the proper operation of the 

adder-subtractor result former. 
(n) Explain the purpose of To in package ASCF. 
(0) Describe the operation of packages ASRF and ASCF during the transfer and 

shift instructions. 

(p) What is the purpose of the LES and LIS signals of gate 2, package SlAR? 

(q) What is the purpose of the LDS and LDS signals of package CIAS? 
(r) The countdown for the shift instruction starts at 1'0. How is this arranged 

for in the logical design? (HINT: See packages ASPS and GSCC.) Describe thE:' 
operation of package S5AR during a shift instruction. 

(s) In package ASPS why are the inputs SHS and F3 used in gates 2, 3, and 4? 
(t) Describe the functions of gates 3 and 4 of package ASPS. 

(u) Why can the zero detector be on during every minor cycle? 
(v) Under what conditions is gate 3 of package ASSG essential? 

(w) Why is a separate package SPDG necessary, in addition to package ASSG? 
(x) Why must SOD of package SPDG be forced positive during Tl of the division 

instruction (gate I)? 
(y) Why is recirculation necessary for package SPDG and not for package ASSG? 
(z) What are the functions of gates 3 and 5 of package SOBH, and why are the 

two used instead of one? 
(aa) Why is the sign of B held? 
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(bb) Why must OF be held in package OFLH? 
(cc) Construct a vertical description of package OCCF. 
(dd) Construct a vertical description of package OCRT. Why is neither OF 

nor OF an input to gate 2? 
(ee) In package MUSG why arc both gates 1 and 2 necessary? 
(ff) 'Vhy must signal MUS be held in package MUSG? 
(gg) What is the purpose of the T 1- 17 input to gate 3 of package ISPS? 
(hh) 'Vhen is gate 1 of package SlER used? 
(ii) When is gate 2 of package SlER used? 
(jj) 'Vhat happens to the least significant bit of the ier register during T2-18 of 

multiplication? 

(kk) In gate 3 of package S18ER why are both 1'21 and SPI necessary? 
(ll) 'Vhy arc both gates 3 and 4 necessary in package S18ER? 

(mm) Redesign the ier register so as to read the quotient bits into stage 1 instead 
of into stage 18. Include any additional changes in the computer, including gener­
ators for any additional control signals required. 

18-6. Arithmetic Unit: Horizontal Description 

Phase 1 of All Instructions. During phase 1 the next instruction is 
being read into the instruction register and decoded, etc. The arithmetic 
unit idles. The accumulator holds the result of the last operation; the 
icand register, the multiplicand of the last multiplication or the divisor 
of the last division; and the ier register, the minor product of the last 
major multiplication, unless it has been cleared by a minor multiplication 
or a 9i vision. (Since the icand and ier registers are cleared before they 
are reused, their contents are noted but hereafter ignored.) The sign 
of the accumulator is held in package SOBH, but package SOAH (holds 
the sign of the a operand) has been cleared at the end of the last operation. 
The zero detector was cleared after SOB was formed, but package OFLH 
will hold a bit if there was an overflow into the second stage of the 
accumulator (as the result of a differencing with a larger subtrahend). 
The input gates to the arithmetic unit will all be closed. 

Addition and Subtraction Instructions. At Tol of phase 2 the sign of (a) 
is fed from package GMOa in the memory selection unit to the sign-of-a 
holder (package SOAH). The signals SOA and SOB along with signal 
ADD for addition or SUB for subtraction form signal OPS in package 
ASCG. OPS is fed to package lTCF, where it determines whether the 
sum or difference will be generated (see Sec. 15-5). 

During T 11 the least significant bit of (a) and the least significant 
bit of (acc), which will have been complemented if signal OF is present, 
are passed through the adder-subtract or input packages ASAl and ASBI. 
In package ITCF the input to the adder-subtract or carry generator is 
formed by gating signals B' (from package ASBl) and OPS as follows: 
B' " OPS + B' . OPS (Sec. 15-3). The outputs of packages lTCF, ASAl, 
ASBI, and ClAS are fed to ASCF, where the carry is formed. The 
output of package ASCF is delayed one unit time interval and fed back 
to package ClAS (which passes it during all arithmetic operations). 
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Since there is no previous carry during 'T 1, the least significant bit of (0:) 
is gated with the least significant bit of (acc) in package ASRF to form 
the result R. Signal R is fed to stage 1 of the accumulator (package 
S1AR) as well as to the zero detector (package RZDG). 

During T2 the next to least significant bits of (0:) and (acc), with the 
carry formed during T 1, are fed to packages ASRF and ASCF, following 
the same path as the least significant bit. Again the output to package 
ASRF is fed to packages S1AR and RZDG, and the output of package 
ASCF is fed to package CIAS. Also during this unit time interval the 
(acc) is shifted one bit position to the right, thereby placing the least 
significant bit of the result in stage 2 of the accumulator. 

This process continues for an additional 16 unit time intervals. At 
'1\8 the most significant bit of the result is formed, with a possible carry. 
A carry at T 18 may be due either to an overflow in summing (i.e., a 
result greater than 1) or to an overlarge subtrahend in differencing. 
During T 19- 22 the A and B inputs are zero, and the result R is determined 
solely by C. Signal R from package ASRF continues to be fed to pack­
ages S1AR and RZDG until T 22. At T 22 package GOEP forms signal 
OEP, which gates the sign of the result, formed in package ASSG, into 
package SOBR and concurrently kills the recirculation of signal SOA in 
package SOAR. Signal OEP also acts as an operation-ending pulse 
causing the machine to end the arithmetic operation and move on to 
phase IFl. 

Multiplication Instructions. During T01 of phase 2 the sign of (0:) is 
fed from package GMOo: to package SOAR, where it is stored. Opera­
tion signal MDS at gate 5 of package ASCG keeps signal OPS on until 
the end of the phase, and the adder-subtract or thus acts as an adder 
throughout this instruction. During T1 the least significant bit of (acc) 
is sent through the output complementer (complemented if signal OF is 
present) to gate 1 of package MUSG and stage 1 of the ier register (gate 1 
of package! S1ER). Simultaneously signal B is gated with signal MDS 
in package 'MUSG to form the multiplier signal MUS. This signal is held 
throughout the minor cycle by recirculation through gate 2 of MUSG. 
Also during TIl the least significant bit of (0:) is passed into the icand 
register through gate 1 of package SIIR and fed to gate 3 of package 
ASA!. In that package it is gated with signal MUS such that (0:) is 
allowed to enter the adder only if MUS is on. Then (0:) (if MUS is 
present) and (acc) arefe d to the adder-subtract or through packages 
ASRF, ITCF, and ASCF. In package ASRF the result of addition is 
formed, and in package ASCF the carry into the bit position is formed. 
The output of package ASRF is fed to the first stage of the accumulator, 
through gate 1 of package S1AR, and to the zero detector, package 
RZDG. The output of package ASCF is delayed by one unit time inter­
val and fed into package CIAS, which passes it on to packages ASRF 
and ASCF to be combined with the next bits of (0:) and (acc). During 
T2 the second least significant bit of (acc) is fed to stage 1 of the ier 
register, as the least significant bit of (acc) previously stored there is 
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shifted one position. The second least significant bit of (0:) is fed simul­
taneously, through the same paths as the least significant bit, to stage 1 
of the icand register, the least significant bit being shifted once to make 
room for it, and to package ASAl, where it is gated with the MUS signal. 
During T 3- 18 the remainder (0:) and (acc) follow the same paths, forming 
the first partial product in the accumulator and storing the multiplier 
[the original (acc)] in the ier register. At T 19 the carry generated in T 18, 

if there was one, will be fed to the accumulator via the adder as the 
accumulator is shifted one position. During T 20-22 the accumulator 
will be shifted three positions, so that the least significant bit of the 
partial product (which is in fact the least significant bit of the minor 
product) will be in the least significant position of that register. 

During T02 this least significant bit will be transferred out of the 
accumulator into gate 2 of package SIER of the ier register, as the ier 
register is shifted one position to receive it. The least significant bit 
of the multiplier is thus "spilled over," and the second least significant 
bit assumes the end position of the register. During T12 this bit is fed 
to gate 2 of package MUSG, where the multiplier signal for the second 
minor cycle is generated. During this time interval the least significant 
bits of the accumulator and the icand register will be fed to the adder­
subtract or input packages. The least significant bit of the icand register 
will also be fed back into the icand register through gate 2 of package 
SllR. The flow of the operands through the adder-subtract or during 
this minor cycle will proceed as described for the first minor cycle. 

This procedure will continue for a total of 18 minor cycles, to complete 
Jl. _ .1,·_.,· ,. 1 ., " • 
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product, and the most significant bit of the minor product. will be in the 
accumulator; the rest of the minor product, with the most significant 
bit of the original (acc), will be in the ier register. 

For either major or minor multiplication (instruction 42 or 32), the 
most significant minor-product bit will be transferred at T 0 19 into the 
ier register as that last bit from the multiplier is spilled over from ier 
stage 18. If the instruction is minor mUltiplication, then at T 119 the 
least significant bit of the minor product, stored in package SI8ER, will 
be transferred to the most significant position of the accumulator, through 
gate 5 of package ASBl, gate 2 of package ASRF, and finally gate 1 of 
package SIAR, as the least significant bit of the major product is spilled 
over from the end of the accumulator. This process continues for an 
additional 17 unit time intervals, at the end of which the complete minor 
product will have been transferred to the accumulator. During T~~-22 
the accumulator is shifted four more positions, to place the least sig­
nificant bit of the minor product in the least-significant-bit position of the 
accumulator. If the instruction is major multiplication, the major 
product is left in the accumulator and the minor product in the ier 
register, with the machine idling for T~:'21' At T 22 19 of either operation 
signal OEP comes on, gating the product's sign, which has been generated 
in package PQSG, into gate 2 of package SOBH, and killing the recircula-
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tion of signal SOA in package SOAH. Signal OEP also acts as an opera­
tions-ending pulse, causing the machine to move on to phase IF!. 

Division Instruction. During T01 of phase 2 the sign of (0:) is fed from 
package GlVIOo: to gate 1 of package SOAH. Operation signal DDS is 
fed to all gates of package ASCG to inhibit signal OPS. (The absence 
of signal OPS will cause the adder-subtract or to form the difference 
throughout this instruction; see Sec. 15-6.) Signal DDS is also fed to 
gate 1 of package SPDG, where it acts as a primer to set the sign of the 
partial difference (SOD) positive initially. During TIl the least sig­
nificant bit of the accumulator is sent through the output complementer 
(complemented if signal OF is present), then into gate 3 of package ASBI, 
delayed by one pulse period to form B' (see Sec. 15-6). Also during TIl 
the least significant bit of (0:) :8 passed into the icand register through 
gate 1 of package SlIR and through gate 1 of package AS AI into the 
adder-subtract or. Since package OCRF of the complementer was cut off 
at To, the B' input to the adder-subtractor will be zero at T 1• In pack­
age ASRF the first bit of 2(acc) - (0:) = B' - A is formed as package 
ASCF forms the carry into the next position, which is delayed and fed 
into package CIAS. The result of the subtraction, signal R, is fed to 
the zero detector, package RZDG, and to the first stage of the accumu­
lator, package SIAR. At T21 the second least significant bit of the 
original (acc) is routed through the same path as the least significant bit. 
As the second least significant bit of (0:) is fed to the adder-subtract or 
and stage 1 of the icand register, the least significant bit of (0:) is shifted 
to stage 2. In the adder-subtract or this bit is combined with the carry 
from TIl, and with the delayed least significant bit of the original (ace), to 
form the second bit of 2(acc) - (0:). This second bit is fed to the zero 
detector and to stage 1 of the accumulator, as the first bit is shifted 
to stage 2. The carry formed during T 2 is delayed and sent to the carry 
input package CIAS. This process continues through T 18, at which time 
(0:) will have been transferred to the icand register and the first 18 bits 
of the first partial dividend will have been formed and stored in the 
18 most significant bit positions of the accumulator. At T 19 any carry 
generated in T 18 will be fed to the (shifted) accumulator through the 
adder-subtract or. Such a carry, indicating that 2(acc) - (0:) < 0, will 
be propagated until T 22 (see Sec. 15-6). At T 211 the output of stage 2 
of the accumulator (signal OFR) is gated with signal SOD in package 
SPDG to form the new SOD. This new SOD is fed to gate 1 of package 
SI8ER, where it is stored temporarily as the most significant bit of the 
quotient. 

During TL17 the most significant bit of the quotient which is stored in 
S18ER is shifted 17 positions circularly, to package SI7ER. The genera­
tion of the next most significant bit of the quotient is formed in the same 
way as the most significant bit, except that (0:) = (icand) is fed into the 
subtract or, through gate 2 of package ASAI, and is subtracted from the 
absolute value of (acc). 

This process continues for an additional 16 minor cycles, at the end 
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of which we shall have formed the 18 most significant bits of the quotient, 
which are stored in the ier register. 

At T 119 the least significant bit of the quotient which is held in package 
S18ER will be transferred to the most-significant-bit position of the 
accumulator by way of gate 5 of package ASBI, then to gate 2 of package 
ASRF, and finally to gate 1 of package SlAR. This process continues 
for an additional 17 unit time intervals, at the end of which time the 
quotient will have been transferred to the accumulator. During TtL22 
the accumulator is shifted four positions, so that the least significant 
bit of the quotient is in the least significant position of the accumulator. 
Also at T 22 19 signal OEP comes on, gating the sign of the quotient (gen­
erated in package PQSG). into gate 2 of package SOBR and killing the 
recirculation of signal SOA in package SOAR. Signal OEP also acts 
as an operation-ending pulse, causing the machine to move on to phase 
IFl. 

Logical Instructions. During TOI of phase 2 of any logical instruction 
the sign of (a) is fed from package GMOa to package SOAR. (This 
action will not have any effect on the logical instructions.) 

In the logical-addition instruction, during Tl the least significant bit 
of (a) is fed through gate 1 of package ASAI to package ASCF; the 
corresponding bit of (acc) (complemented if OF is present) is fed through 
gate 1 of package ASBI to package ITCF. Gate 3 of package ITCF 
allows (acc) to be fed to package ASCF. At the same time the carry 
input is held on by signal LDS at gate 1 of package CIAS. Then the 
outputs of packages ASAI, ITCF, and CIAS are gated together in pack­
age ASCIi' to iorm the result of the logical addition, signal Cf (see Sec. 
1.1)-~) rrhl~ ~lzn~.l i~ fed to the ~.~~1..!~1..!!!!t0!, t!!!'0'.!g!! g!!t~ 2 ~£ P!!~!:!!g~ 
SlAR. This process continues until the most significant bit of the logical 
addition is formed at TIS. The sign of the result is SOB, the sign of the 
original (acc), recirculating through gate 3 of package SOBR. During 
T 19-22 the accumulator is shifted four positions, so that the least sig­
nificant bit of the result is in the least significant position of the accumu­
lator. At T22 signal OEP comes on, ending the logical operation, 
inhibiting the recirculation of signal SOA in package SOAR, and moving 
the machine into phase IF!. 

In the logical-multiplication instruction, during Tl (a) is started 
through gate 1 of package ASAI to package ASCF, and (acc) (comple­
mented if signal OF is present) is started through gate 1 of package 
ASBI to package ITCF. Gate 3 of package ITCF allows (acc) to enter 
package ASCF. Signals LMS and LDS in gates 1 and 2 of package 
CIAS inhibit C (see Sec. 15-3). In gate 3 of package ASCF, (a) and 
(acc) are gated together to form the result of logical multiplication, 
signal C'. This signal is fed to the accumulator through gate 2 of pack­
age SIAR. This procedure continues until the most significant bit of the 
logical multiplication has been formed at TIS. The operation during 
T 19-22 is identical to that in logical addition. 

In the logical-equivalence instruction, during T I - 18 (a) is fed through 
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gate 1 of package ASAI to package ASRF, and (acc) (complemented 
if signal OF is present) is fed through gate 1 of package ASBI to package 
ASRF. The carry input is held on during this minor cycle by signal LDS 
at gate 1 of package CIAS (see Sec. 15-3). Signals A, B' , and Care 
combined in gates 3 and 4 of package ASRF to form the logical equiva­
lence result, signal R. This result is fed to the accumulator through 
gate 1 of package SlAR. This process continues until the most sig­
nificant bit of the logical equivalence is formed at T 18• The operation 
during T 19- 22 is identical to that in logical addition. 

In the logical-in equivalence instruction, during T I- 18 (a) is fed through 
gate 1 of package AS AI to package ASRF, and (acc) (complemented if 
signal OF is present) is fed through gate 1 of package ASBI to package 
ASRF. Signals LIS and LDS in gates 1 and 2 of package CIAS inhibit 
C (see Sec. 15-3). Then signals A and B' are gated together in gates 1 
and 2 of package ASRF to form the logical inequivalence result, signal R. 
This result is fed to the accumulator through gate 1 of package SIAR. 
The procedure continues until the most significant bit of the logical 
inequivalence is formed at T 18• The operation during T 19- 22 is identical 
to that in logical addition. 

Shift Instruction. During TL22 of phase 3 (acc) is sent to package 
OCRF, where it is complemented if signal OF is present. The output B 
of package OCRF is fed through gate 2 of package ASBI, then through 
gate 2 of package ASRF, and back to the accumulator through gate 1 
of package SlAR. Thus, at the end of the first minor cycle, the contents 
of the accumulator has been complemented if necessary and restored to 
its original position. The accumulator shift pulse signal ASP for the 
second minor cycle is generated in gate 4 of package ASPS. Starting 
again at T5 2, the accumulator is shifted until signal SCC from package 
GSCC prevents further shifting by killing signal ASP. The shortened 
shift is accomplished by feeding the output of stage 22 of the accumu­
lator, package S22AR, to gate 1 of package S5AR. The arithmetic 
unit will idle from the time that signal SCC comes on until signal OEP 
comes on at T222. Signal OEP ends the operation and causes the machine 
to move on to phase IFI. The sign of the result is the original sign of 
(acc), recirculating through gate 3 of package SOBH. 

Clear Instruction. During To of phase 3 of the clear instruction the 
sign of B is forced positive by gate 4 of package SOBH. During T 1-22 

the accumulator shift pulse signal (ASP), generated in gate 2 of package 
ASPS, shifts the accumulator 22 positions. Since all inputs to the 
adder-subtract or are cut off during the operation, the accumulator is 
cleared. At T22 signal OEP comes on, ending the operation and causing 
the machine to move on to phase IF!. 

Transfer Instruction. During TOI of phase 3 signal SOB from package 
SOBH is transferred to the address of the memory through gate 3 of 
package GMIB (see Fig. 18-15). The sign of B is still retained in 
package SOBH by recirculation through gate 3. During T I - 18 (acc) is 
fed into output complementer package OCRF, where it is complemented 
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if signal OF is present. The output of the complementer, signal B, is, 
transferred to address a through gate 2 of package GMIB. During 
T l - 22 signal B is also fed through gate 2 of package ASBI, then through 
gate 2 of the adder-subtract or (package ASRF), and back into the 
accumulator through gate 1 of package SIAR. By T22 the original (acc) 
will have been restored to its original position in the accumulator (com­
plemented if necessary). At T22 signal OEP comes on, ending the trans­
fer operation and causing the machine to move on to IFl. 

18-7. Instruction Register, Current-address Register, Instruction 
Decoder, Memory-selection Unit, and Counters 

Instruction Register, Current-address Register, and Instruction Decoder 
(see Fig. 18-14). We have denoted the a bits of the instruction by ai, 
the reading of the current-address counter by a'i, and the generated 
bits for memory selection, which may be a'i during phases IFI and Fl 
or ai otherwise, by a *i. 

The current-address counter is a straightforward cascading counter, 
which increases its count by 1 at each pulse from package lCSG. This 
package will have an output at T22 of each phase 1, unless a jump is 
directed by signal JCS. When a jump is required, each ai is transferred 
to and loaded in the current-address counter, in a parallel fashion, by a 
pulse from package JCLG, as the previous ai are automatically erased. 

The instruction register is a shift register stepped only during Fl in 
receiving (a) from the drum. The 6 most significant bits of the instruc­
tion, w6 to wI, enter the instruction decoder, which is simply a decoding 
matrix (see Exercises a through I). If the start button is pushed during 
-I-h~ ;;I1;~~ ~hnnn TC!1J' -I-hn n"~~n~-I- nr1r1~nnn n~,,~-I-~~ n~r1 -I-hn ;~~.j._"n.j.~n~ 
" ...... v ..1.. .......... ..1...1. .... 0 t" ... .Lt..NJ.Jv ..L"-'''&', " ...... v v ............ V..L..I.\J f.AI'\A.~"'V""""'" VV'-A.L.a.VV", Lt/..I...I.'-A. \).1..1.\....1 .1..1...LIVlJ.1.\A.V\J.1.V.1..1. 

register are both completely cleared by signal STC from package STCG. 
The Channel and Sector Selectors (see Fig. 18-15). The signals a*12, 

a*ll, a*10, a*9, and a*8 open one of the 32 gates to the channels. Both 
the read-in and read-out gates are opened at the same time. A word 
will be read in or out depending on the gates of packages GMIB and 
GMOa. ' 

The sector selector really chooses a time rather than a sector as directed 
by a*7 through a*l. It chooses that time when all the pairs of bits 
(Ci, a*i) are identical. This will occur first at To of the proper minor 
cycle and will continue until the sector counter is again stepped at To 
of the next minor cycle. The signal generated, called COl, changes 
the phase from an idling phase to an active phase. The active phase 
signal opens GMIB or GMOa so that a word may be read in or out. 

Since we have decided against having a large or-gate package for the 
Pedagac, to obtain (a) we must use the principle that 

Some complications arise, however, for package GMOa. We need a 
{unction of the general form 
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(Xl + X 2 + X 3) • T· (Y I + Y 2) = Xl . X2 • X3 + T + YI • Y2 

Hence we form Xl . X2 • X3 + '1' + Y1 • Y2 by means of our package 
format and invert the output to obtain the desired result (see Exercises 
g through n). 

The Unit-time-interval, Sector, and )J![ inor-cycle Counters (see Fig. 
18-16). These are all parallel counters. The unit-time-interval counter 
is started by means of the drum synchronizing signal. The sector 
counter is not a single counter but is composed of two cascaded parallel 
counters, one of 4 bits and one of 3. This arrangement was necessary 
because each package has been allowed no more than five inputs to any 
and gate. The minor-cycle counter is stepped at To by T22 delayed, 
except when it must be reset. The minor-cycle counter is reset to 1, 
not to 0 as are the other counters (see Exercises 0 through w). 

EXERCISES 

(a) Derive the expression for a'i from lCS, JCL, ai, and its own recirculation. 
Remember that lCS and JCL are mutually exclusive. 

(b) Why are three gates needed to construct a*i? 
(c) Where is a*lO used? Where is a*3 used? 
(d) Why is it necessary that STC inhibit only gate 1 of the ai in the instruction 

register, whereas it inhibits both gates 1 and 2 of the a'i in the current-address counter? 
(e) As the instruction register is being loaded with (a), the instruction decoder 

generates a series of miscellaneous signals. Why is it that these generally erroneous 
miscellaneous signals do no harm? When do they become the correct signals? 

(f) Redesign the current-address counter as a parallel counter (see Sec. 15-2). 
(g) When should (a) be read into the arithmetic unit? 
(h) When should (a) be read into the instruction register? Into the buffer? 
(i) Why is no provision made in package GMOa for reading (a) into the arithmetic 

unit, the instruction register, or the buffer? 
(j) Why is it necessary to invert only the output of GMOa? 
(k) Derive the specific Boolean equation for (a) from the logical design drawing 

for GMOa. 
(l) Why are three levels of gating necessary to form COl? 

(m) Why should COl occur only at To? 
(n) How is the sign of B read into the memory during the transfer instruction 

(i.e., through what gate of what package)? 
(0) Does UTS come on at To? How do you explain this in the light of the fact 

that when DSS (the drum-synchronizing signal) comes on for the first time the count 
should start at To? 

(p) Why does the package that forms T I -1 9 have T zo to inhibit the recirculation? 
(q) Why need only signals To, T 1, TIS, T 19, Tzo, T z1 , and TZ2 be formed? 
(r) Why does the sector counter not have a clearing signal? 
(8) Why is the sector counter stepped by a delayed T 2z rather than a To? 
(t) How does the minor-cycle counter behave during phase IF2? 

(u) How does the minor-cycle counter behave before UTS comes on? 
(v) Describe the operation of package UTSG. (HINT: See Sec. 17-8.) 

(w) Why is the minor-cycle counter reset to 1 at To of every minor cycle except 
during phase 2 or 3? 
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18-8. Phase Generater, Buffer, and Push Buttons 

The vertical description of the operations phase generator (see Fig. 18-17, 
Exercises a through p) is as follows: 

Phase 1 signal generator FlSG 
Gate 1 initiates Fl after phase IFI unless the stop button has been 

pushed. 
Gate 2 holds Fl until the next minor cycle begins. 

Idling phase IF2 signal generator IF2G 
Gate 1 initiates IF2 for the add instruction. 
Gate 2 initiates IF2 for the subtract instruction. 
Gate 3 initiates IF2 for all logical instructions. 
Gate 4 initiates IF2 for the multiply and divide instructions. 
Gate 5 holds IF2 until the proper sector has been selected. 

Phase 2 signal generator F2SG 
Gate 1 initiates F2 after IF2. 
Gate 2 holds F2 from To! until the end of the operation. 

Idling phase IF3 signal generator IF3G 
Gate 1 initiates 1F3 for the transfer instruction. 
Gate 2 holds IF3 until proper sector is selected. 

Phase 3 signal generator F3SG 
Gate 1 initiates F3 for the shift instruction. 
Gate 2 initiates F3 for the clear instruction. 
Gate 3 initiates F3 after IF3, for the transfer instruction. 
Gate 4 holds F3 from To! until the end of the operation. 

Phase I*Fl auxiliary signal generator I*FIG 
Gates 1 and 2 initiate IFI after a jump instruction. 
Gate 3 initiates IFI after a phase F2 instruction. 
Gate 4 initiates IFI after a phase F3 instruction. 
Gate 5 initiates IFI for the run button. 

Phase IfFI auxiliary signal generator IfFI G 
Gate 1 initiates IFI after a word has been read into the output l~; :! 

from the buffer. 
Gate 2 initiates IFI after a word has been read into the drum fl'DL 

the buffer. 

Idling phase signal IFI generator IFI G 
Gates 1 and 2 initiate IFI from I *Fl or IfFl. 
Gate 3 holds IF! until the proper sector has been selected or the stop 

button has been pushed. 

Stopped idling phase signal ISF generator ISFG 
Gate 1 initiates ISF at the first T! pulse formed after the power is 

turned on. 
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Gate 2 initiates ISF for a stop instruction. 
Gate 3 initiates ISF when the stop button is pushed. 
Gates 4 and 5 stop ISF at the next To after the run button or start 

button is pushed. 

The vertical description of the in-out phase generator (see Fig. 18-18, 
Exercises q through w) is as follows: 

Output idling phase signal IFO generator IFOG 
Gate 1 initiates IFO. 
Gate 2 holds IFO until the proper sector has been selected. 

Output operating phase signal FOO generator FOOG 
Gate 1 initiates FOO after IFO. 
Gate 2 holds IFO on for one minor cycle. 

Output buffer phase signal FBO generator FBOG 
Gate 1 initiates FBO after FOO. 
Gates 2 and 3 hold FBO until To of the first minor cycle after the 

complete word has been read out of the buffer. 

Input buffer phase signal FBI generator FBIG 
Gate 1 initiates FBI after phase 1 for a read-in (that is, 00) instruction. 
Gate 2 initiates FBI at To of the first minor cycle after the start button 

has been pushed after ISF. 
Gates 3 and 4 hold FBI until To of the first minor cycle after the word 

has been completely read into buffer. 

Input idling phase signal IFI generator IFIG 
Gate 1 InItIates llfl alter Ifl:H. 
Gate 2 keeps IFI on until proper sector is selected. 

Input operating phase signal FOI generator FOIG 
Gate 1 initiates FOI after IF!. 
Gate 2 holds FOI for one minor cycle. 

The Start, Run, and Stop Buttons (see Fig. 18-18, Exercises x through 
aa). The start button is used in initiating a new program on the com­
puter. After the stop button has been pushed or a stop instruction has 
been executed, the start button breaks the sequence of instructions that 
were being computed. The start button will have effect only if pushed 
when the computer is in the stopped idling phase ISF. When it is 
pushed during ISF, the computer reads one word from the input unit 
into address 0000 and then takes (0000) as its next instruction. If the 
word read in is a jump instruction, the computer can be made to jump to 
any desired memory location and proceed with a desired program. The 
advantage of such a procedure, besides its being used for the initial read­
in, is that it can be used for debugging purposes, as a manual method of 
jumping to different programs, and so forth. 

Pushing the start button initiates signal STB' in the start-button 
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synchronizer of the control panel. If the button is pushed during phase. 
ISF, STB' initiates STB in package STBG immediately (except not at the 
beginning of a minor cycle). Signal STB in turn initiates STC (package 
STCG of Fig. 18-14), which clears the current-address counter and the 
instruction register. At the beginning of the next subsequent minor 
cycle STB initiates FBI (package FBIG) and allows ISF to be killed 
(package ISFG). Then at T I , FBI (delayed) kills STB. Now, since 
the instruction is all zeros, the instruction operation will appear as 00 
and the computer will proceed to read one word into 0000 during the 
successive phases IFI and FO!. Next follows phase IFl, and since the 
current-address register is all zeros, (0000) will be taken as the next 
instruction, to be executed as usual. If the start button is pushed when 
the computer is not in ISF, it will have no effect. 

The stop button forces the computer into the stopped idling phase. 
That phase will be initiated only during or after phase IFl, bypassing 
phase Fl. The reason for this will be made clear in the discussion of the 
run button. 

The run button will have effect only if the computer is in the stopped 
idling phase. If the run button is pushed then, the computer will 
proceed with the computations from the point where it left off, taking 
the next instruction in proper sequence. If the stopped idling phase was 
initiated by a stop instruction, the current-address counter contains the 
address of the next instruction, for phase 1 had been completed. When 
the run button is pushed, this address will be taken as that of the next 
instruction. If the idling phase was entered via the stop button, the 
computer had gone from phase IFI directly to the idling phase and had 
not brought the next instruction into the instruction register or increased 
the current-address counter, since phase 1 had been bypassed. Then, 
when the run button is pushed, the computer will read into the instruc­
tion register the instruction it would have read if the stop button had 
not been pushed. 

The vertical description of the push buttons and in-out buffer (see Fig. 
18-18, Exercises bb through jj) is as follows: 

Start-button signal generator STBG 
Gate 1 initiates STB with signal STB' from the start-button synchro­

nizer only when the computer is stopped. 
Gate 2 holds STB on until FBI comes on. 

Stop-button signal generator SPBG 
Gate 1 initiates SPB with signal SPB' from the stop-button synchro­

nizer unless the computer is already stopped. 
Gate 2 holds SPB until ISF comes on. 

Run-button signal generator RUBG 
Gate 1 initiates RUB with signal RUB' from the run-button syn­

chronizer only when the computer is stopped. 
Gate 2 holds RUB until IFI comes on. 
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End of write-out signal EWO generator EWOG 
Gate 1 initiates EWO when the buffer has been completely read into 

output unit. 
Gate 2 holds EWO until IFI has been initiated at the next To. 

End of write-in signal EWI generator EWIG 
Gate 1 initiates EWI when the buffer has been completely loaded 

from the input unit. 
Gate 2 holds EWI until IFI has been initiated at the next To. 

Read into buffer from input unit RIBG 
Gate 1 tells the input unit to start shifting (pulse RIB initiates SIU). 

Read out of buffer to output unit ROBG 
Gate 1 tells the output unit to start shifting (pulse ROB initiates 

SOU). 

First package of buffer BUI 
Gate 1 lets the contents of the input unit (signal IEQ) enter the buffer 

during phase FBI. 
Gate 2 lets (a) enter the buffer during phase FOO. 
Gate 3 holds the bit until shifted. 

Buffer-shift pulse generator BSPG 
Gates 1 and 4 produce shifts synchronous with the input and output 

'UnitG. 
Gates 2 and 3 produce shifts synchronous with the computer clock. 

Synchronization. The Pedagac is so designed that signals SPB', RUB', 
and STB' can be of indefinite length. Hence the push-button syn­
chronizers may be merely type A packages in which the outputs of the 
actual buttons are gated with clock pulses. In order that no error 
result from pushing two buttons simultaneously, we have SPB' inhibit 
RUB' and STB', and we have RUB' inhibit STB'. In addition we have 
STB inhibit RUB', in case the start button were pushed immediately 
before the run button. 

Synchronizing the input and output units of the Pedagac is equally 
simple. The input unit, for example, will put out a signal indicating 
when it is ready to deliver the next bit of a word. That signal initiates 
SIU in a type A package; SIU is then killed by the inversion of that 
signal, delayed by one unit time interval [cf. gate 1 of package ISFG 
(Fig. 18-17)]. Signal SOU is similarly generated by the output equip­
ment. The end-of-shift signals for the buffer, EWI' and EWO', are also 
synchronized in this manner, but with two units of delay (why?). This 
method assumes that the signals of the input and output unit have been 
processed to eliminate intermittencies, such as might result from relay 
chatter. 
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EXERCISES 

(a) How does gate 2 of package FISG keep FI on during rL22? 
(b) What is the purpose of having the stop-button signal SPB inhibit the initiation 

of phase I? 
(c) In gates I to 4 of package IF2G why are To and the unit delay on FI both 

necessary? . 
(d) In package IF2G at what unit time interval will IF2 go off, and why? 
(e) In gate 2 of package F2SG, why are the unit delays necessary? 
(f) Both IF2 and IF3 perform the same function, namely, selecting the drum 

sector. Are they both necessary? (HINT: How would F2 and F3 be initiated if IF2 
and IF3 were not available? Remember that only five gates are allowed to each 
package.) 

(g) Why should the run button initiate phase IFI in package I*FIG? Why must 
both ISF and RUB act on gate 5 of package I *F I G? 

(h) Why is an auxiliary I*FIG package necessary? 
(i) Show that I'FI can come on only once after phase FBO. 
(j) Why is FI initiated in package FISG from two sources? 
(k) What are all the functions of the signal ISF generated by package ISFG 

(that is, where is this signal used, and why is it necessary)? 
(l) Why are both button conditions for stopping ISF necessary (see gate 3 of 

package ISFG)? 
(m) How does the minor-cycle counter behave when ISF is on? 
(n) Show that gate I of ISFG turns ISF on only when UTS comes on for the first 

time. Why is it necessary to resort to an unconventional technique in this case? 
(0) Why is it necessary to have the computer idling in phase ISF before the start 

button is pushed for the first time? 
(p) Suppose that the start button is pushed when the computer is not in phase ISF; 

'TTl n 
"uy: 

(q) What must be done on the control panel before the start button is pushed if it 
is desired to read in one word into 0000 during the course of debugging a program? 

(r) Why is To necessary in gate I of package IFOG? 
(8) Why can FOO be inhibited simply by a To? (See gate 2, package FOOG.) 
(t) Why can FBI be initiated after either phase I or phase ISF? (See gates 1 

and 2 of package FBIG.) 
(u) In gate I of package IFIG why did we not use a delayed FBI with To? 
(v) How does the computer know that a word is to be read into the drum from 

the buffer during FOI, but from the drum into the buffer during FOO? 
(w) Since both phases IFO and IFI perform the same function, namely, selecting 

a drum sector, why are they both necessary? (HINT: If both IFO and IFI were not 
available, how would FOO and FOI be initiated? Remember also the start button.) 

(x) Describe all ways for entering idling phase ISF. 
(y) Describe all ways for going out of idling phase ISF. 
(z) When the stop button is pushed, why is it advantageous for the computer first 

to complete one minor cycle of phase IFI and thep to change directly to the idling 
phase, bypassing phase FI? (HINT: Remember the operation of the run button and 
that the computer must pass through at least one minor cycl~ of phase IFl during 
every instruction-execution cycle.) 

(aa) Trace on the diagrams the actions of the start, run, and stop buttons. 
(bb) Why must STB (start-button signal) be turned off as FBI comes on? (HINT: 

Suppose that STB was left on; what would happen? See packages ISFG and FBIG.) 
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(cc) Why must gate 1 of STBG have a To input? (HINT: See the instruction shift 
register, and note that an error would result if STB' were pushed at To. Why?) 

(dd) Are the 'i'o inputs to gate 1 of packages SPBG, RUBG, EWOG, and EWIG 
necessary? Why? 

(ee) Why must the ISF input to package SPBG be delayed? 
(ff) What is the purpose of the EWI and EWO inhibitions on gates 1 and 4 of 

package BSPG? 
(gg) Are the TL18 inputs of gates 2 and 3 of package BSPG strictly necessary? 

Why? 
(hh) Why must EWI and EWO wait, respectively, for IF1 and IFI to come on 

before they are turned off? 
(ii) What is the purpose of package RIBG, and of package ROBG? 
(jj) In package BUI of the buffer why is it not necessary that the shift pulse be 

included as an input into gates I and 2, as it is into gate I of BU2? 

18-9. Additional Topics 

a. Redesign the Pedagac, using delay-line registers (including the current-address 
register and the instruction register). 

b. Modify the design of the Pedagac to include other instructions such as the 
replace arithmetic operations and to admit relative addressing (see Chap. 4). 

c. Design the Pedagac as a floating-point computer. 

d. Redesign the Pedagac with a parallel arithmetic unit and parallel rapid multi­
plication and division. 

e. Design the special-purpose business and logistics computer described in Sec. 8-5. 

f. Incorporate the comparator unit, control computer unit (see Sec. 15-7, Addi­
tional Topics c and d), business unit, and general-purpose Pedagac into a unified 
system as described in Sec. 8-6. 





PART 5 

ELECTRONIC DESIGN OF DIGITAL CIRCUITS 

CHAPTER 19 

PROBLEMS AND LIMITATIONS 

IN ELECTRONIC REALIZATION 

19-1. Introduction 
In Parts 3 and 4 we considered digital circuits to be abstract "black 

boxes" with certain logical properties; we abstractly represented digital 
information by means of the symbols 0 and 1. Assuming the availabil­
ity of such digital circuitry, we showed how a digital computer could be 
logically designed by appropriately connecting such circuits. In this 
part of the book we shall consider the problems involved inside our black 
boxes, problems of the electronic design of the digital circuits themselves. 

Electronic signals are the physical realization of information processed 
in a digital electronic computer. In this part of the book we shall be 
concerned primarily with the electronic processing of these signals. The 
present chapter is concerned with the effect of the actual electronic 
circuits themselves on our building-block organizational concept. No 
longer can we neglect signal delay through amplifiers, or package-coupling 
problems, or absolute package reliability. The results of this present 
chapter are tacitly assumed in discussing the general considerations of 
circuits using semiconductors (diode and transistor) elements, in Chap. 
20, and of circuits using magnetic elements, in Chap. 21. Memory 
methods and input-output techniques present many special problems, 
some of which will be considered in Chap. 22. Finally in Chap. 23 we 
shall return to the design of the Pedagac; and, specifying the electronic 
design of a particular type of package, we shall consider the nontrivial 
wiring diagrams, giving the actual pin connections between packages. 

It should be emphasized, however, that almost every topic covered in 
this part of the book is a full-fledged and rapidly growing field in its 
own right. We can expect to do no more than present some of the 
basic principles involved. As with the previous parts of the book, the 
method of exposition of principles is by specific examples selected for 
that purpose. The extensive bibliographies given in the Additional 
Topics attest to the fact that only introductory material can be covered 
in such a short treatise as this. 

623 
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In the present chapter various systems for the electronic realization 
of 0, 1 are first d6lscribed. The next· general problem in the physical 
realization of digital circuits is the effect of finite delay during amplifica­
tion, which demands an introduction of the concept of clock phases. 
Finally, the actual use of circuits brings up the problem of reliability, 
which although not directly influencing general circuit considerations 
falls naturally into this chapter. 

19-2. Types of Digital Gating Systems 

Electronic Functions of Paclwges. In general the package must per­
form four functions: (1) gating, (2) amplification and reshaping, (3) 
retiming (i.e., resynchronization), and (4) storage. The gating must 
be accomplished for the logical processing of the signals. This logical 
processing requires the signals to pass from package to package, through 
various circuit components such as resistors, transistors, diodes, capaci­
tors, and inductors, which cause the signals to become somewhat attenu­
ated and distorted (see Exercise a). In order that the signals may not 
become so distorted as to be undetectable by a following package, they 
must be amplified and reshaped. For proper operation of the logical 
processing all signals entering the same gate must be synchronized, even 
though they may have passed through different sets of components 
(involving different numbers of gates) on the way to this gate. Finally, 
delaying or storing the signal is often an important part of the logical 
processing. 

We would not leave the reader with the idea that all these four 
features must be included in every package, for frequently these functions 
are distributed OVRr RRt.R of R:pp(l.inli'Z~rl r'~J~k~_g~~- A~!:'..!!. i!!'..!~t!'!:'..ti~!!., it 
sometimes happens that signals pass through a special amplification and 
reshaping package after having passed through several packages that 
perform only the gating and synchronizing functions; there are of course 
many possible variations. On the other hand some provision must 
always be made for the accomplishment of each of the four functions. 

We shall consider in detail three methods for performing these func­
tions: the dynamic, or regeneration, method; the static, or flip-flop, 
method; and the phase, or parametric, method. The general principles 
involved will be presented by means of examples, but the practical 
implementation of these methods in computer technology is by no means 
limited to these illustrations. 

Dynamic, or Regeneration, Method. In this method the unit signal rep­
resentation is in the form of a (synchronized) square voltage pulse, the 
zero in the form of no pUlse. Amplification of the pulse is accomplished 
by standard circuitry, but the pulses are reshaped and retimed by means 
of logical gating. As an illustration, consider Fig. 19-1a, where the pulse 
representations of 0 and 1 are shown. A typical package is shown in 
Fig. 19-1b; specific circuits for the gates and amplification will be con­
sidered in detail in the next chapters. Because of the clock pulse at 
every input and gate the transmission of a pulse from one package to the 
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next occurs only as the clock pulse is on. The clock pulse itself, always 
correctly shaped and timed in a special clock oscillator, is sent directly to 
each input and gate. The leading edge of the clock pulse can therefore 
be used to reshape the leading edge of an attenuated input unit pulse, 
as illustrated in Fig. 19-1e. The input signal must enter the and gate 
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FIG. 19-1. Dynamic, or regenerative, method. 

ahead of the clock pulse, so that the resulting waveform at point A 
of the circuit will be as shown. The trailing edge of the input pulse still 
remains to be shaped. To do this, the amplified pulse is recirculated 
through a special two-input and gate with a clock pulse, but without a 
delay (other than that of the amplifier itself). The recirculation through 
this and gate will hold the output at the unit level until the clock 
pulse goes off. Then the trailing edge of the clock pulse will shape 
the trailing edge of the signal pulse. The output signal with and with­
out such regeneration reshaping is shown in Fig. 19-1e (the offset of the 
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output signal to the right in the figure indicates the effect of delay 
inherent in the amplifier). Note that the circuit of Fig. 19-1b is of the 
type used in the package of the Pedagac; in our logical drawings we have 
always omitted the clock pulses and the recirculation and gate (cf. 
Fig. 19-1d). 

This scheme has resulted in a package that gates and amplifies the 
signals, and reshapes and retimes them by using clock pulses to deter­
mine the leading and trailing edges of the signals. For storage, how­
ever, we must connect to the package a special delay line, as shown in 

.A 
'h 

Gating Logical gating fevels 
cp 

OUlput 

Storage 1 amplification 
A 

cp 
Reshaping cp 
Retiming 

Output 
Output Time+-

(a) IL\ 
\VJ 

FIG. 19-2. Static, or flip-flop. method. 

Fig. 19-1d. Frequently special packages are made containing only such 
delay lines; these are then wired in as required by the logical processing 
diagrams. A variation of this technique is an or-and-or gating arrange­
ment, rather than just the and-or arrangement. The inputs to the circuit 
would be to the first level of or gates; the clock pulses and leading-edge 
shaping would occur in the next level of and gates, with the recirculation 
accomplished as already described. 

Static, or Flip-Flop, .M ethod. In this system the electronic signals pass 
through a gating network into a flip-flop. The unit or zero is recorded 
as the state of the flip-flop. The flip-flops usually have two stable voltage 
levels, one representing a unit, the other a zero. The voltage level held 
in the flip-flop is gated out by a clock pulse to become the information 
pulse signal for the gates of the next package. The 0 and 1 signal 
representations are voltage pulses in the gates but are constant voltage 
levels in the flip-flops. Figure 19-2a represents the gating and flip-flop 
combination, with the and gate that combines flip-flop output and clock 
pulse. Amplification is virtually accomplished in the flip-flop; retiming 
and reshaping are accomplished by the clock pulse in the output and gate 
(see Fig. 19-2b). The flip-flop is of course capable of storage as well. 
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A standard gating arrangement and flip-flop combination can be 
incorporated into a single package. However, it is frequently more 
convenient to have separate flip-flop and gating packages. In either 
case there must be a limit on the number of gating levels or packages 
through which a signal can be sent before a flip-flop is used. Sometimes 
the gating packages themselves contain provision for amplification, or 
separate amplification packages are included, to increase the number of 
gating packages possible between flip-flop packages. However, the flip­
flops would still accomplish the retiming, storage, and reshaping func­
tions. We consider specific gating and flip-flop circuits in the next 
chapters. 

Phase, or Parametric, Method. This system is entirely different from 
the two mentioned above. We include it here to indicate the diversity 
of conceivable methods; the principles involved also have important 
application to digital microwave circuitry (see Sec. 21-5). The 0, 1 
information is represented in this case by the phase of a signal sine wave 
with respect to a standard "clocking" sine wave of double the frequency. 
(Compare the above methods, which represent information by the 
amplitude of a signal.) The technique is based on the phenomenon of 
parametric amplification, which we now describe. 

We introduce the concept of a parametric amplifier by means of the 
rough mechanical analogy shown in Fig. 19-3a. As the bob of the 
pendulum swings past the lowest point of its path, with its greatest 
velocity, the cord is pulled, reducing the effective length l of the pendulum 
by fll. Since angular momentum is conserved, the linear velocity of the 
weight increases by the ratio l/ (l - fll) and the swing is amplified. At 
the top of the ascending arc the cord is released, allowing the arm to 
return to its original length l, and the procedure is repeated on the return 
arc. Thus the frequency of the exciting pull on the cord is twice the frequency 
f of swing of the pendulum (see Fig. 19-3b). The energy absorbed by the 
pendulum as its swing is amplified is the difference between the work 
required to pull the cord against the combination of the weight of the 
bob and its centrifugal force F at the low point of its swing and the work 
returned as the bob drops at the top of its swing without centrifugal 
reaction. The instantaneous input power is P = F dl/dt, and the work 

absorbed per cycle is 101
/
1 

Pdt. Thus for a small sinusoidal change of 
length of frequency 2f = 2(w/271"), we have l = lo - fll sin 2(wt + a), 
with a giving the phase relation. Assuming a small swing of the pendu­
lum (of angular frequency w = 271"f), and noting that the centrifugal force 
F will be proportional to the square of the velocity of the swing, we have 
approximately F = I{ sin2 wt = YzK(1 - cos 2wt). Thus the work per 
cycle is 

f wt=2'l1" ( 2'l1"/w 
flW = wt=O Pdt = Jo 72](1 - cos 2wt)[ -2w fll cos 2(wt + a)] dt 

= 7I"k Al cos 2a 
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which has its maximum positive value when a = 0 or 7r, which is when 
the pull has its maximum velocity at the low point of the pendulum 
swing (i.e., at times t l , t3, ••• of Fig. 19-3b). Note that, if the pendulum 
was initially at rest, no horizontal motion would be produced by pulling 
the cord: there must be an initial swing to the pendulum in order that 
amplification take place. The initial phase a of this motion should be 
o or 7r for maximum amplification; clearly the amplified motion will have 
the same phase as the initial motion. 

We can now understand the parametric amplifier, illustrated in Fig. 
19-3c, in terms of the mechanical analog. The coils on cores A and B 
are wound in opposite directions, an exciting current-source wire threads 
the two cores, and a bias keeps the cores near the knee, or bend, of the 
hysteresis if!-I curve (see Fig. 19-3d). The exciting wire is driven with a 
current source Id of frequency 2/, where / is the resonant frequency of 
the main LC circuit. As we have seen in the mechanical analog, there 
must be some small oscillation at the start. At time tl the small main­
circuit current Ie will increase the flux if! in one core, say B, and decrease 
the flux in the other, A (see Fig. 19-3d). Thus for the same !::..Id the 
increase !::..if!A will be greater than !::..if!B, the latter being practically zero. 
The induced voltage in A, namely, VA = dif!A/dt, is in the direction to 
increase Ie. This is just like the pull up on the bob at the bottom of the 
swing. At t2, Ie = 0; hence both cores are at the same point on the 
hysteresis loop and the induced voltages, being opposed, cancel-i.e., 
like letting out the bob at the top of its swing. At t3 the cores inter­
change positions on the hysteresis curve since the current Ie is reversed; 
since Li<.PA wiii be negligible, VB = dif!B/dt, in the reverse direction, will 
hAl,!) inm'pfI.!SP t.hp (ll1l'l''=.'nt. !o:.o Tb.e g!!!!! !!! ~~'.';T!!!" (£8!" ~8il:::; Gf }{ ti.i.:Liio 
each) is 

P = NI dif! = NI dip dId 
d dt . d dId dt 

where if! = if! A + if! B. Hence, since the bias on I d is large with respect 
to its total variation, we have for the work input the approximation 

!::..fV = Pdt = NId - -dt J
wt = 211" 10211" Iw dip dId 

wt=O 0 dId dt 

We have just seen that, with a sinusoidal current Ie of frequency / in the 
LC circuit, the slope dif!/dId = dipA/dId + dif!B/dld varies with a 
frequency 

w 
2/= 2-

27r 

Thus, to a first approximation dip/dId = K(l - (]' cos 2wt), with K and 



~ 
~ co 

ill 
--1..-

(,,,~ t::.l;t) " " \,.,"'" ;/ 
'" ..... ""',It! '-_>C-K~ 

(a) The pendulum 

Core A 

Core B 

(c) A parametric amplifier 

Amplified 
velocity" v 

of swing, for 
pendulum; I( 'X #.: I I 
current Ie 
of swing, 

for circuit 

Exciting 
t::.l for 

pendulum; l , • 
A~ for '" 
circuit 

to tl t2 

(b) Exciting frequency and amplified frequency 

il!t Bias Bias 

B ~ 
t::.~B 

A 

A~A 

t::.Id I AId 

SitUation at h Situation at t3 

(d) Operation of cores during parametric amplification 

FIG. 19-3. The parametric amplifier. 

t::.iI!B 

I 



(330 ELECTRONIC DESIGN OF DIGITAL CIRCUITS 

u appropriate constants. For the current I d we have 

Id = Ib + D.Id sin 2(wt + a) 

whence 
dId di= 2w D.ld cos 2(wt + a) 

[CHAP. 19 

Thus the integral for D. W is of the same form as for the pendulum above. 
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FIG. 19-4. Phase, or parametric, method. 

Summarizing, the parametric amplifier will use energy of a frequency 
2/ to amplify an initial small oscillation of frequency j, and the amplified 
result will have the same 0 or 7r phase as the initial small oscillation (see 
Fig. 19-4a). This latter observation is most important, for a 0 or 1 
is represented by an oscillation in the 0 or 7r phase, respectively. The zero 
or unit information is transmitted into the amplifier by means of weak 
coupling, as illustrated in Fig. 19-4b, to initiate a small oscillation of 
appropriate phase; this is in turn amplified. The output is a coupling 
device to another amplifier. The exciting set of pulses of frequency 2j 
synchronizes the timing and is analogous to the clock pulse described 
above. Different sets of exciting pulses are used for the previous, pres-
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ent, and next successive packages (see Fig. 19-4c). Each set of pulses 
overlaps slightly as shown, and in this way the signal is transmitted from 
one package to another. Figure 19-4d represents a schematic for a 
parametric-amplifier package, where the M part is the input coupler, and 
the circle is the amplifier supplied with leads for the exciting pulses. 
Storage can evidently be obtained simply by direct recirculation, as 
shown schematically in Fig. 19-4e. 

Gating can be accomplished as follows: Suppose that there are three 
coupling windings. The coupling will be in the same phase as the 
majority of the three windings, since if two of the windings are in differ­
ent phases (71" radians apart) they will cancel and the phase of the third 
winding will prevail. Hence, to make an and gate, let the winding ]( 
(see Fig. 19-4b and d) be in phase 0; then the phase of the exciter will be 71" 

only if both A and B are in phase 71" (that is, both units). To make an 
or gate, we let winding ]( have phase 71". Then the exciter will be in 
phase 71" if the phase of A or B (or both) is 71". Negation can be obtained 
by reversing the polarity of the coupling transformer input. This circuit, 
called a Parametron, is symbolically illustrated in Fig. 19-4d, where M 
means majority. 

EXERCISES 

(a) If a square waveform is introduced into a pure (1) resistor, (2) diode, (3) capaci­
tor, (4) inductor, and (5) transistor, how will the attenuation affect the shape of the 
output in each case, assuming a series resistive load? Show mathematically how to 
account for each change of shape. 

(b) Consider a flip-flop package with two inputs Rand S such that the output Q' is 
given in terms of its state Q by Q' = RQ + S. Design a serial adder, using the 
static, or flip-flop, method. (HINT: The carry and result should be the outputs of 
flip-flops.) 

(c) Logically design a serial adder, using only four Parametrons each of which has 
three inputs as in Fig. 19-4. The circuit should form both the carry and the result. 
(HINT: Use the Parametrons directly as majority gates, and not as and or or gates.) 

19-3. Clock Phases and Synchronization 

Transfer, Repetition, and Overlap Times. In dealing with actual com­
ponents, certain electronic-circuit responses become important. The first 
of these relates to the transfer time (tT ), the time required for the leading 
edge of a pulse to pass through a package. Since the leading edge of a 
pulse may not be vertical, we should more precisely define the transfer 
time as that interval of time from the moment when the leading edge 
of the incoming pulse is high enough to be detected, to that moment 
when the resulting output pulse of the package rises to this same level 
(see Exercise a). On the other hand, the repetition time tR is the time 
interval that must elapse between two successive input pulses, i.e., the 
time required for a circuit to settle down so as to be able to distinguish 
the next successive input pulses. Even though the output information 
signal resulting from the logical processing of input signals by a gating 
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network may be detected, it does not follow that the network is ready 
to acquire another input. In general it is the repetition time that limits 
the speed with which digital information can be processed by a circuit, 
although not infrequently the proponents of a particular circuit may 
quote the usually shorter transfer time instead. Finally the overlap time 
tL must be considered; this is the time interval during which the input 
signal must be sustained in order to be detected. 

Clock Phases and the Unit Time Interval. In Part 4 we deliberately 
avoided the problems that arise because of the finite response times 
of the package circuitry. However, as becomes clear from the considera­
tions of Sec. 19-2, we can no longer postpone such a discussion. For this 
purpose let us first review our concept of the unit time interval tu as 
the indivisible unit of time in so far as the logical design of the computer 
is concerned (see, for example, Sec. 15-4). The unit time interval is the 
shortest possible time interval that can exist between the leading edges 
of two successive pulses entering the same gating circuit. Clearly then 

tu ~ tR 

For purposes of logical design all times were taken as integral multiples 
of the unit time interval, and also for simplicity we chose tu as the time 
required for a bit to go from the memory through a gating network 
to a register (see Sec. 15-1). Thus, for our logical considerations, the 
leading edges of the clock pulses were one unit time interval apart. 
However, from the electronic-design point of view this situation is not 
realistic. A pulse certainly passes through more than one package in a 
unit time interval; there is a finite delay through each package; and 
therefore for each successive package a distinct clock pulse must be 
available to synchronize input pulses. Thus, if the pulses had to pass 
through four packages in a unit time interval, there would be four 

successively delayed clock pulses, 
denoted by cp1, cp2, cp3, and cp4. 
These are called clock-phase pulses, 
and with just the four pulses we 

---'I'------T,-,Trailing would speak of a four-phase clock. 

·1 

edge A package can then be denoted by 
the clock phase with which it is 
synchronized, as a cp1 package, a 
cp2 package, etc. Evidently it is 

Time~ more efficient to have the same clock 
FIG. 19-5. Timing diagram for a pack- phases for all parts of the computer. 
age, where tw is the pulse width. Hence the number of phases at mini-

mum must be equal to the maximum 
number of packages that any single pulse in the computer will have to 
traverse in a pulse period. We shall analyze these timing considerations 
in more detail. 

Clock-phase Sequencing. In Fig. 19-5 we have diagramed the various 
times associated with a package. The shaded area represents the input 
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overlap time tL between packages; the input and output pulses are offset 
by the transfer time tT; the pulse width is represented by two Figure 19-6 
illustrates these times for a four-clock-phase system; the diagram of 
Fig. 19-5 is there repeated for each package. Each unit time interval 
then contains the four clock-phase pulses cp1, cp2, cp3, and cp4. Observe 
that tu ~ 4(tw + tT - tL), or for n clock phases tu ~ n(tw + tT - tL). 

·1 

~1~ .. ~--~--~--.... ~--+---~--J-.. 
~2~--~"~~~----~--~""L-~----L-__ 
~3~--~--~ .... __ --~---1----"""---l __ _ 
~4~--+---~--~ .... ~--J---~---J .... ~--

1st package 1"""''''''''-............ 

2nd package 

3rd package 

4th package 

~--------tu---------+~--------tu---------++---

Time~ 

FIG. 19-6. Timing diagram for a four-clock-phase system. 

The times tw, tT, and tL are not necessarily independent, since they are 
determined by the characteristics of the circuit. Suppose that tw = tL; 
then tu ~ ntT, or n ::::; tU/tT. Information can be processed most rapidly 
when tu is a minimum, i.e., when tu = tR. In this case 

< tR n -
- tT 

which gives the electronic limitation on the maximum number of pack­
ages or gating levels that can be used in a unit time interval for most 
rapid operation. Observe, however, that it is not always possible to have 
tw = tL, as is the case, for example, in the dynamic package, where the 
leading edge of the clock pulse must be coincident with the maximum 
rise of the incoming pulse. Then all we can say is that the limitation on n 
is given by 

n < tR 
- tw + tT - tL 

As mentioned above, all parts of the computer will be synchronized 
by the same clock phases. However, sometimes some particular gating 
network requires a pulse to go through fewer than the maximum number 
of packages in a unit time interval. There are two methods for handling 
such a situation. The first is simply to delay the output pulse during the 
other clock phases. The second is to arrange the timing of the circuitry 
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in such a way that some clock phases may be skipped. In a four-clock­
phase system, if the timing were arranged as in Fig. 19-7 the output of a 
cp1 package could become the input of a cp4 package, as illustrated by 
the shading. Thus either one or two clock phases could be skipped, in 
the situation of the figure. (See Exercise c.) 

12341234 

cpl package 

cp2 package 

cp3 package 

cp4 package 

---------------~ Time 
FIG. 19-7. Skipping clock phases. 

EXERCISES 

(a) Discuss the transfer time, repetition time, and overlap time for the following 
pure components: (1) resistor; (2) capacitor; (3) inductor; (4) transistor. Assume 
a square-wave input. 

(b) Using Fig. 19-1, describe tT, tR, and tL for a dynamic package. 
(c) Suppose that a circuit were designed so that tT = %tL, tR = 4tL, and 

tu - tw ~ tL. Find a value for tw that will minimize tu and still allow for skipping 
up to two clock phases. 

(d) For Parametrons the clock pulse has the analogy of a group of sine waves of 
frequency 2f. Suppose that 20 of these waves are required (i.e., "pulse" width) and 
that the overlap time must be 5 of these waves. Draw a diagram analogous to 
Fig. 19-6 for a three-clock-phase system of this type, indicating the waves as in 
Fig. 19-4a. 

19-4. Methods for Increasing Circuit Reliability 

General Considerations. Circuit reliability is of primary importance 
for digital-computer and -control systems, for clearly even a single inopera­
tive gate can cause entirely erroneous results. Two possible methods of 
solutions to this problem are, first, increasing the reliability of the 
electronic-circuit design itself and, second, increasing the circuit reliabil­
ity through redundant information-processing components. 

A digital circuit has the general characteristic that it either operates 
successfully or does not; there is no gradation in its operation, such as 
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would be characteristic of radio circuits. The object of digital-electronic­
circuit design is to obtain a circuit that will operate successfully under a 
wide variation of component parameter conditions. For instance, con­
sider the problem of choosing resistance values R for a transistor circuit 
that will utilize transistors of widely varying {3 [ratio of collector (output) 
current to base (control) current] and a not too well regulated voltage 
source V. (A full discussion of transistors will be found in the next 
chapter.) Suppose that only the clear area on the V-{3 plane of Fig. 19-8 
represented those values of V and {3 for which resistance values could be 
chosen to make the circuit work and that for a given point (V,{3) the 
value of R could vary within the volume illustrated. Then that resistance 

{3 

FIG. 19-8. Operating range of characteristics. 

value Ro should be chosen which will maximize the area of intersection 
of this volume and the plane of constant resistance. Of course in general 
many more parameters are involved, and much more complicated situa­
tions occur than that illustrated. Also such calculations may be sensi­
tive to the precise definition of when the circuit is or is not working. 

Redundant information can be introduced for increasing circuit reli­
ability in a variety of ways. The simplest is perhaps the parity-bit check, 
often used in reading a word into the computer. Here either a zero or a 
unit, the parity bit, is used as an extra bit of the word to make the total 
number of units of the word always odd or always even as desired. For 
example if the word were 0110 and we desired an even number of bits, 
the parity bit would be 0 and the final word 00110; if the word were 0111, 
the parity bit would be 1 and the final word 10111. When the word 
is read, the number of bits is checked; in this way a single error that 
may have occurred during storage or calculations can be detected. Of 
course more elaborate systems can be used incorporating self-correcting 
codification schemes into increased reliability techniques (see Sec. 7-7). 
These methods, however, lend redundancy to the digital system rather 
than to the component digital circuits themselves. 

We shall here consider two approaches. for the introduction of redun­
dancy directly into the gating circuits themselves; these are called the 
probabilistic-logic approach and the majority-logic approach. 
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Probabilistic Logic. t A digital circuit has a nonzero but usually small 
probability p of failure at any time. By means of electronic-circuit 

FIG. 19-9. If each and gate of the 
configuration has a failure proba­
bility p, then it = Al . A2 (and 
12 = Al . A 2) has a failure proba­
bility p3/4. 

design p is made as small as possible. The 
question arises: Can a logical combination 
of such circuits have a probability of fail­
ure q« p? The answer is affirmative. 
For consider a collection of and gates each 
with probability of failure p, such that if 
A I and A 2 are inputs the output with 
failure will be A I (instead of A I • A 2). 

Then, as we shall presently show, either 
output of the configuration of Fig. 19-9 
will be the logical product of the inputs, 
Al . A 2, with a failure probability of p3/4 
(p3/4 «p for small p). In fact, if we 
used n levels of gating, the total circuit 
would be equivalent to an and gate with 
failure probability pn/4. 

First let us observe how to write the 
designation number of a function circuit 
with a failure probability. Consider, for 
example, the function hI of Fig. 19-9, 
where hI = Al . A2 when operating but 
hI = Al with failure probability p. Note 

0123 0123 
that #(AI . A 2) = OOlH and#Al = UIUl 

differ only in position 1; in fact position 1 will have a unit with probability 
p and a zero otherwise. Hence we write 

Posit.ion 0 1 2 3 

Probability 1 
1 

1 P 1 P 
--1------

#h I 0 0 1 1 0 1 

where p = 1 - p. Similarly, if h2 = A2 at failure,with probability p, 
and h2 = AI' A 2 otherwise, then we would write 

Probability 11 I-I-I-P-!-p-I-l-
#h2 0 0 O! 1 1 

Our probabilistic logic involves a probabilistic matrix (Pji), which 
~orresponds to an (Rji ) matrix of the kind described in Chap. 13. The 
probabilistic matrix has probabilities as its elements, and a nonzero 
element Pji of (Pji ) means that the jith element of the corresponding (Rji ) 

t This method is based on the author's adaptation for reliable circuit theory of a 
concept proposed by W. S. McCulloch in connection with neuron net theory (see 
MIT Research Lab. Electronics .. Quart. Progr. Rept. 49, Apr. 15, 1958). 



PROBLEMS IN ELECTRONIC REALIZATION 637 

matrix is a unit with probability Pji. Recall that (Rji) is associated with 
an array of designation numbers and that a unit in the jth row and 
ith column of (Rjl ) means that the ith position (column) of the array is 
composed of the binary number j. Hence a nonzero probability element 
in the jth row and ith column of (Pji ), namely, pji, means that the prob­
ability that the array's ith position is composed of the binary number j is Pji. 
As an illustration, consider the array of designation numbers (where we 
have repeated the basis for convenience) : 

0 2 3 

#A 1 0 1 0 1 
#A 2 0 0 1 1 

#h 1 0 0 1 0 
I 

0 I 
I 

#h2 
I 

0 0 0 0 I 1 I 
I , , --,----,----

I 

Probability p I 

P 
I 

I P I P I I 

From this 
i 0 2 3 

j 0 1 P P 

D 
(P,,) ~ 1 (0 P 0 

2 0 0 P 
3 0 0 0 

where p = 1 - p as above. Observe that since the elements in a column 
of the (Rji ) matrix are associated with a mutually exclusive and exhaus­
tive set of possibilities (i.e., possible columns of the designation-number 
array) then the arithmetic sum of the probabilities in a column of the 
corresponding (Pji ) matrix must be unity. 

Let us recall that the (RjJ matrix associated with two levels of gating 
is the logical matrix product of the (Rji ) matrices of each level. This is 
also true of the corresponding (Pji ) matrices, except that the ordinary 
(not the logical) matrix multiplication is performed. For example, sup­
pose that failure of gate gl (see Fig. 19-9) will result in gl = hI and failure 
of gate g2 in g2 = h2, each with failure probability p; then the same (Pji ) 
matrix will be associated with the second gating level as for the first. 
Thus we form 

(

1 P P 0) (1 P P 0) (1 P + pp P + pp o p 0 0 X 0 p 0 0 = 0 p2 0 
o 0 p 0 0 0 p 0 0 0 p2 
0001 0000 00 0 

To see that this result is the desired probabilistic matrix, observe that 
the value of each element represents the probability that the element is a unit 
in the corresponding (Rji ) matrix. For the arithmetic sum of products 
involved in finding an element of the result matrix is simply the sum of the 
probabilities of the exhaustive and mutually exclusive ways in which the 
corresponding (Rji ) element can be a unit. Each product of this sum has 
two terms, which represent the probabilities of independent events (of 
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being units) that must occur if the element is to be a unit in that way. 
From our resulting adapted matrix we can now form the result array 
[observing that p + pp = (1 - p) + (1 - p)p = 1 - p2 = p2]: 

Position i 

Probability 

o 

1 

o 
o 

1 2 3 

I i 
p2 1 p2 p2! p2 

, , --,----,----
0:1 0:0 1 
0100111 

A word of caution at this point: We cannot in general take this result array 
as representing all possible designation numbers by choosing all combina­
tions of columns in each position, as we did above when solving type 3 
problems with the (Rji) matrix. For in general designation numbers 
can be formed from the probabilistic result array that cannot result 
from any simultaneous combination of gate failures. On the other hand 
all designation numbers that can result from gate failures can be formed 
from some column combinations appearing in the result array. 

In our example suppose that we desire to find for the first two levels 
of gating the probability that an erroneous result for gl will be obtained. 
This probability is equal to 1 minus the probability that gl is not in 
error. For no failure gl = Al . A 2; thus, from the probabilistic array, 
#gl = 0001 with probability 1· p2 . (p2 + p2) . 1 = p2 = 1 - p2, and 
the probability of failure is 1 - (1 - p2) = p2. 

CGn.tin.~in.g ... ~,?ith v~r e;";:C1:1.ilple of Fig. 1G-G, iii;6Ul11~ LhaL Lhe failure of 
gate fl will result in fl = gl and failure of the f2 gate in f2 = g2. Then 
the same (Pji ) matrix holds for the third level of gating, and we form 

(
1 P P 0) (1 p2 p2 0) (1 p2 + pp2 p2 + pp2 O~l) o p 0 0 X 0 p2 0 0 = 0 p3 0 
o 0 p 0 0 0 p2 0 0 0 p3 
0001 0001 00 0 

Observing that p2 + pp2 = 1 - p3 = p3, we have the array: 

Position i 

Probability 

o 1 2 3 

, 
p3 : p3 p3 p3 1 , , 

--:----:----
o oll olo 1 
00:00/11 

As is easily seen, for no failure fl = Al . A 2 ; hence the probability that 
#fl = 0001 is 1 . p3 . (p3 + p3) . 1 = p3 = 1 - p3, and the probability 
of failure is 1 - (1 - p3) = p3. 

One further remark is necessary. We have just determined the prob­
ability of functional failure of the output of the circuit of the figure. 
Observe that, even if there is functional failure of the circuit, for three 
of the four possible values of AI, A2 the bit output will be correct, namely, 
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when AI, A2 take on values 

Al 0 0 1 
A2 0 1 1 

639 

Let us suppose that they occur randomly, i.e., that the probability of a 
given combination of Al and A2 is Y.4:. Then the probability of a bit 
failure is p3/4. In Fig. 19-10 we have graphed the probability of bit 
failure (dashed lines) and functional failure (solid lines) for our exam­
ple, as functions of p. 

1 

0.5 

o 0.5 1 
FIG. 19-10. P is the probability of failure 
of a gate; q is the probability of failure 
of the configuration in Fig. 19-9. 

r----
I 
I 
I 
I 
I 
I , 
I 
I 
I , 
" 

I 
I 
I 
I L.. ________ -_-I 

FIG. 19-11. Configuration for increasi~ 
the reliability of or gates. 

It is easy to see that our probabilistic-logic technique is perfectly 
general and will apply to any sets of functions appropriately connected 
in levels (see, for example, Fig. 14-5). However, in order to cover all 
possible output functions with their corresponding probabilities, the 
nature of the malfunction and its probability must be explicitly stated. 
A little experimentation will show that only for certain special arrange­
ments of some functions and malfunctions will the output be significantly 
more reliable than the component circuits. Our example illustrated 
one of these special cases. Consider now two further important exam .. 
pIes, one concerned with increasing reliability of or gates and the other 
concerned with alternate levels of or-not and and-not circuits. The 
or-gate configuration appears in Fig. 19-11, in which for inputs, say 
WI, W 2, the failure results in an output of WI (instead of WI + W 2). 

Each level has the same (Pji), namely, 

(~ ~ ~ ~) 
o 0 p 0 
o p P 1 
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For n levels the functional-failure probability is pn as in the case of the 
and-gate configuration. The alternate or-not, and-not circuit levels of 
Fig. 19-12, where for inputs WI, W2 the failure results in an output of 
WI (instead of WI + W 2 in the former or WI . W 2 in the latter), present 

respective probability matrices 

'(OPP1) ° ° p ° ° p ° 0 1 000 

and 
(

0 0 0 1) o 0 p 0 
o p 0 0 
1 P P 0 

If there are an odd number of levels n, then the 
functional-failure probability for the or-not cir­
cuit is pn. 

Majority Logic. The probabilistic-logic ap­
proach has the disadvantage that the precise 
forms of possible functional failures must be 
known. The majority-logic approach does not 
have this disadvantage; however, the increased 
reliability that can be gained is probably riot so 
great. An additional circuit element must be 
used, called a majority circuit, and as we shall 

FIG. 19-12. Configuration see, to gain any reliability at all the failure 
for increasing the reliabil- probability of the majority circuit must be less 
ity of or-inverter gates. than that of the gating circuits themselves. 

The majority-logic technique depends on the formation of three replicas 
of the gating functions, each being fed into the majority circuit (see 
Fig. 19-13a, where M represents the majority element). At any time 
the output bit of the majority circuit will be that of the majority of the 
inputs. Thus, if Pm represents the probability that an operating major­
ity element will put out an erroneous result and p the failure probability 
of a gating circuit (where in Fig. 19-13a F 1, F 2, and F3 are gating circuits), 
then 

pm = 3p2(1 - p) + p3 = 3p2 - 2p3 (19-1) 

since for failure either two of the three inputs or all three inputs must 
have failed. Of course it is possible to have majority circuits work on a 
majority of three out of five inputs, four out of seven, etc. (see Exercise g). 
In any case the majority element itself may fail, with failure probability 
m. Thus the total probability of failure of the output of the majority 
element becomes 

p' = Pm(l - m) + m = m(l - Pm) + Pm (19-2) 

We certainly desire that p' < P if the majority-logic scheme is to con­
tribute at all to increased reliability. Solving for m in p' < p, find 

p - Pm P - 3p2 + 2p3 
m < = ~--~----~ 

1 - pm 1 - 3p2 + 2p3 
(19-3) 
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«p, since p is less than unity). Note that, as p ~ 72 or p ~ 0, m ~ 0; 
thus m has a maximum for 0 < p < 72. To find this maximum, let 

p - 3p2 + 2p 3 
m= 1 - 3p2 + 2p3 

and set dm/dp = 0, finding 

4p 3 - 9p2 + 6p - 1 = 0 (19-4) 

Factoring, we get (4p - 1)(p - 1)(p - 1) = 0, whence p = % for maxi­
mum m. SUbstituting p = % into Eq. (19-3), m < 79 at best. 

(b) 

(a) 
FIG. 19-13. (a) Use of majority circuits; (b) same circuitry without majority elements. 

Since p' is limited by the probability of the majority circuit, let us use 
three such circuits, as shown in Fig. 19-13a. The probability p~ that 
either or both inputs to any F3 of the figure are erroneous becomes 

p~ = 2p'(1 - p') + p'2 = 2p' - p'2 

The probability of an erroneous output for F 3, considering both failure 
of F3 and erroneous inputs, is 

p" = PI(1 - p) + p 

If we did not use the majority circuits (see Fig. 19-13b), this probability 
would be 

8 = 1 - (1 - p)3 = 3p - 3p2 + p3 

Observe that, if we let m equal the expression in Eq. (19-3), then p" = 8; 
that is, there would be no point in using the majority circuits at all unless 
'm is less than that value. 
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N ow let us consider the next level of majority circuits shown in Fig. 
19-13a. Analogous to Eqs. (19-1) and (19-2), we have 

p'/n = 3p"2 - 2p"3 
and p'" = p~(1 - m) + m 

giving us, analogous to Eq. (19-3), 

p" - p~ 
m < 1 " - Pm 

From Eq. (19-4), by substituting p" for p, we can find that value of p" 
for which m is a maximum, namely, p" = Ji. But the largest value m 
can take is (p" - p'/n) / (1 - p'/n), which gives 

p" = 8 = 3p - 3p2 + p3 

Hence the maximum value of m must correspond to a p that satisfies 

3p - 3p2 + p3 - ~~ = 0 

Solving this for p, p = 1 
Eq. (19-3), we find that 

~ = 0.092. Substituting this back into 

m < 0.070 

for any advantage to be obtained from two levels of majority circuits. 
In fact m. would have to be even smaller if we chose p other than 0.092 
for our example. Thus we find that the effectiveness of majority 
n;.,..nl';+C1 ;'" 'h;O"hl .. Y' rln'Y·H"' ...... rl", ...... -4- ,,-vt +h ___ 1: ..... ]......:1!.4.. .... _~ -4-l.. .... _ ..... ! __ !J.. •• ..... !_ ....... !.t. ..... 
v ...... VIl,A. ... "...., ... ...., .a..a. ... b ......... J ...... ""jJ\J ...... \A.\J.I..I.1U V.L.L \J.L.l.V J..v.1..1.UJUJ...I...lU"y V~ lJ.I..l.\J .1..1.1"'JV.L.l.lJ'y \.J.l.J.\JU.1lJO 

themselves. 

EXERCISES 

(a) Devise the logical design of a circuit that will accomplish a parity check. 
(b) Devise the logical design of a circuit that will correct two errors in an error­

correcting codification of the type described in Sec. 7-7. 
(c) Using the methods of probabilistic logic, determine the failure probability of 

n levels of and gating of the type shown in Fig. 19-9. 
(d) Consider the probabilistic analysis of an and-gating configuration of the type 

shown in Fig. 19-9, but allow three inputs to each gate, and have three such and gates 
on each level. 

(e) Consider the extension of the configuration of Fig. 19-12 to n levels of 
or-inverter and and-inverter gating. What function is generated at the output of 
the even-level gates? What are the odd- and even-level output failure probabilities? 

(f) Form a configuration, similar to that of Fig. 19-12, starting the first 
level with and-not circuits and then alternating. Analyze this configuration for failure 
probabilities. 

(g) In majority logic suppose that 2n + 1 functions FI are connected to a majority 
circuit whose output will be that of the majority of the inputs. What would be the 
general expression for pm in terms of p? (HINT: Recall the binomial expansion.) 

(h) Let m = 0, and graph p' as a function of p for n = 1, 2, and 3, where 2n + 1 
is the number of inputs to the majority circuit. 
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(i) Logically design a majority circuit for three inputs, using and gates and or 
gates. 

(j) Plot p'" as a function of p for various values of m. 

19-6. Additional Topics 

a. Para met ron References. The following articles contain additional information 
concerning the Parametron: 

Goto, E.: New Parametron Circuit Element Using Non-linear Reactance, KDD 
Hankyu Shiryo, no. 52, November, 1954. (In Japanese.) 

---: On the Application of Parametrically Excited Non-linear Resonators, Denki 
Tsushin Gakkai-shi, vol. 38, pp. 770-775, October, 1955. (In Japanese.) 

---: The Parametron, a Digital Computing Element Which Utilizes Parametric 
Oscillation, Proc. IRE, vol. 47, pp. 1304-1316, August, 1959. (A correction, by 
E. Goto, R. G. Allen, and J. E. Mezei, appeared ibid., p. 1840, November, 1959.) 

Hushimi, D., and K. Kataoka: Memory for the Parametron, Employing Nondestruc­
tive Readout of Information Stored as Residual Polarization, Proc. Japan. Inst. 
Elec. and Communs. Engrs., vol. 40, pp. 448-453, April, 1957. (In Japanese.) 

Introduction to Parametron, Kenshi Kogyo, vol. 4, no. 11, p. 4, 1955. (In Japanese.) 
Muroga, S.: Elementary Principle of the Parametron and Its Application to Digital 

Computers, Datamation, vol. 4, pp. 31-34, September-October, 1958. 
--- and K. Takashima: The Parametron Digital Computer MUSAS(H)INO-1, 

IRE Trans. on Electronic Computers, vol. EC-8, pp. 308-316, September, 1959. 
Takada, S.: "Hipac-1 (Hitachi Parametron Automatic Computer)," Hitachi, Ltd., 

Tokyo, December, 1958. 
Takahashi, H.: The Parametron, Taugakkai-shi, vol. 39, no. 6, p. 56, 1956. (In 

Japanese.) 
Terada, H.: The Parametron an Amplifying Logic Element, Control Eng., April, 1959, 

pp. 110-115. 
Wigington, R. L.: A New Concept in Computing, Proc. IRE, April, 1959, pp. 516-523. 
Yamada, S., et al.: Magnetic Core Memory of the Parametron Digital Computer 

Musasino-1, Japan. lEE J., vol. 33, pp. 1149-1155, November, 1958. (In 
Japanese, English summary.) 

b. References on Reliability 

Bellman, R., and S. Dreyfus: On the Computational Solution of Dynamic Program­
ming Processes-XVI: Reliability of Multicomponent Devices, Rand Corp. Rept. 
RM-2245, Sept. 2, 1958. 

Depian, L., and N. T. Grisamore: Reliability Using Redundancy Concepts, George 
Washington Univ. Tech. Rept., February, 1959. 

Lowenschuss, 0.: Restoring Organs in Redundant Automata, Inform. and Control, 
vol. 2, no. 2, pp. 113-136, June, 1959. 

McCulloch, W. S.: Stable, Reliable, and Flexible Nets of Unreliable Formal Neurons, 
MIT Research Lab. Electronics, Quart. Progr. Repl., April, 1958, pp. 118-129. 

---: Stability of Biological Systems, Brookhaven Symposia in Biol., vol. 10, 
pp. 207-215, 1958. 

--- and W. Pitts: A Logical Calculus of the Ideas Immanent in Nervous Activity, 
Bull. Math. Biophys., vol. 5, 1943. 

Moore, S. F., and e. E. Shannon: Reliable Circuits Using Less Reliable Relays, 
J. Franklin Inst., vol. 262, pp. 191-208, 281-297, 1956. 

Moskowitz, F., a~d J. McLean: Some Reliability Aspects of System Design, Astia 
Document AD 66802. 
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Pieruschka, E.: Mathematical Foundation of Reliability Theory, Astia Document 
AD 203824. 

Proc. Statist. Tech. Jlissile Evaluation Symposium, Aug. 5-8, 1958. 
Von Foerster, H.: Basic Concepts of Homeostasis, Brookhaven Symposia in BioI., 

vol. 10, pp. 216-242, 1958. 
Von Neumann, J.: Probabilistic Logics, in C. E. Shannon and J. McCarthy (eds.), 

"Automata Studies," pp. 43-98, Princeton University Press, Princeton, N.J., 
195a .. 

Wing, Omar: Reliability Study of Communication Systems, Astia Document AD 
204139. 



CHAPTER 20 

SEMICONDUCTOR ELEMENTS 

IN DIGITAL-CIRCUIT DESIGN 

20-1. Introduction 

Modern computers are almost all being constructed with transistors 
and other solid-state components, because of the generally greater reli­
ability, longer life, smaller size, and lower power requirements of these 
components, compared with vacuum tubes. In this text we therefore 
consider only circuits using solid-state components, since in any case 
the tube circuits used in the older computers are almost directly analogous 
to their transistor counterparts. First, in Secs. 20-2 and 20-3 the physics 
of diodes and transistors is briefly discussed, so that the reader may gain 
an intuitive grasp of their properties and functional mechanisms. Next, 
in Sec. 20-4 is presented a simplified transistor equivalent circuit, which 
is most suitable for digital-electronic-circuit design. Since the subject 
of transistor equivalent circuits constitutes a large field in itself, many 
loose ends are left for the inquisitive reader to follow up elsewhere; but 
the main transistor properties useful for our purposes are stressed. 
Sections 20-5 and 20-6 discuss various examples of the application of 
diodes and transistors to digital circuits. Since computer-circuit engi­
neering is advancing rapidly, our purpose in presenting these examples 
primarily is to illustrate the principles of the methods employed, and not 
the specific circuits themselves. Finally in Sec. 20-7 we present a brief 
introduction to the potentially highly important tunnel diode. 

20-2. Solid-state Semiconductor Devices 

Semiconductors. The solid-state devices under consideration all 
depend for their operation on the properties of semiconductor materials, 
which have an electrical conductivity less than the high conductivity 
of a metal but greater than the low conductivity of an insulator. Ger­
manium (Ge) and silicon (Si) are the most commonly used semicon­
ductors. As solids they form crystals in which the atoms are arranged 
in a lattice, each atom being surrounded by four other atoms. Each 
germanium atom has four valence electrons, and in the lattice structure 
each of these valence electrons is shared with one of the neighboring 
atoms through a covalent bond. The pairs of dots between adjacent 
atoms in the lattice pictured in Fig. 20-1a indicate the shared electrons 
of the covalent bond. The core of each germanium atom (i.e., the 

645 
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nucleus and the filled shells of electrons) has a net +4 charge (in units 
of electron charge) , which is balanced by the four valence electron 
charges so that the lattice is electrically neutral. The valence bonds 
are relatively weak and can be broken by the thermal energy of the 
lattice vibrations. A broken bond will free an electron so that it may 
carry current, leaving in its place what is called a hole (see Fig. 20-1b). 

V\-!\-I 
) (Ge\.rGe'\erGe'\·C 
\±V.\±Ve~. 

)·~·~·iG:\·C .\±V.~.~. 

) ·!G:\·IG::\·!G:\·C 
.~.~.~. 

!-\r\(\ 
(a) 

11. type (donor) 

Cc) 
p type (acceptor) 

Cd) 
FIG. 20-1. Diagrammatic representation of a germanium lattice section. The pairs of 
dots represent shared electrons. (a) No free electrons, no holes; (b) thermal energy 
frees an electron leaving a hole; (c) pentavalent impurity presents a free electron; (d) 
trivalent impurity leaves a hole. 

The energy required to break a bond and free an electron (i.e., to make a 
hole) is about 0.75 ev for Ge and 1.12 ev for Si. The neighborhood of 
the free electron will of course have a net negative charge, and similarly 
the neighborhood of the hole will have a net positive charge. 

The conductivity of the material arises from two sources: the first is 
the free electrons; the second is concerned with the holes. When a hole 
appears, it is relatively easy for a neighboring covalent electron to break 
its bond and fill the hole, leaving a hole in its previous position. Thus it 
appears as though the hole had moved, as though there were movement 
of a positive charge. For this reason we speak of the conductivity due 
to the virtual movement of holes whenever an electron fills one hole, leaving 
another. Electron-hole pairs are continually being formed by thermal 
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agitation, while other electron-hole pairs disappear by recombination. 
The conductivity is proportional to the number of electron-hole pairs 
available at any time: for pure germanium at room temperature there is 
about one electron-hole pair for each 5 X 1010 germanium atoms. 

The electronic properties of interest to us, however, arise when minute 
amounts of impurities are introduced into the crystal lattice. First 
consider a five-valence-electron impurity such as antimony (Sb). As 
shown in Fig. 20-lc, the Sb atom will find a place in the Ge lattice and 
share four of its valence electrons with its Ge neighbors in covalent 
bonds. However, the fifth valence electron will not be bound and there­
fore will behave as a free electron, contributing to the conductivity 
of the material. (More accurately this fifth electron is lightly bound 
but can be freed by an energy of about 0.01 ev.) Such an impurity is 
called a donor, or n-type impurity, because it contributes (donates) 
electrons, or negative (n) charges. These electrons appear in addition 
to those being formed normally in the germanium by thermal energy. 

On the other hand a three-valence-electron impurity, such as indium 
(In), can be introduced into the lattice. As shown in Fig. 20-ld, the 
three valence electrons of the In atom will form covalent bonds with its 
Ge neighbors; but the fourth bond will be incomplete, leaving a hole 
which can accept an electron. Such impurities are called acceptors, or 
p-type impurities (p for positive). These holes appear in addition to 
those normally appearing in the germanium. 

In summary, in a pure semiconductor (called an intrinsic semicon­
ductor) the numbers of free electrons and holes are equal and are deter­
mined by statistical equilibrium in pair formation and recombination. 
In a semiconductor with pentavalent or trivalent impurities (called a 
doped semiconductor) the conductivity is increased by electric-charge 
carriers that are either predominantly electrons (n-type) or predom­
inantly holes (p-type). 

Semiconductor Junctions and Diodes. The motion of the holes and 
electrons through a semiconductor is due not to mutual repulsion or 
attraction but rather to the process of diffusion, which is a "random­
walk" phenomenon analogous to the motion of gas molecules. In 
general, if there is a high concentration of holes in one part of a semi­
conductor and a low concentration in another part, the holes will diffuse 
from the high-concentration area into the low-concentration area. The 
application of an electric field will cause the diffusing holes to drift 
generally in the direction of the field. The same of course holds for the 
free electrons (drifting against the field). 

Suppose that we form a junction between a p-type and an n-type semi­
conductor [see Fig. 20-2a(1)]. Initially there will be relatively greater 
concentrations of holes in the p-type and of electrons in the n-type semi­
conductor. Hence the holes of the p type will diffuse across the junc­
tion into the n type, and the free electrons of the n type will diffuse into 
the p type. The result will be a recombination of holes and electrons 
near the junction to form negative ions of, for example, In in the p-type 
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semiconductor and positive ions of Sb in the n-type semiconductor. A 
net charge density will be formed, as shown in Fig. 20-2b(1). This 
charge density will of course be associated with an electric potential, as 
shown in Fig. 20-2c(1). The effect of this potential is evidently to inhibit 
the diffusion of holes into the n-type and of electrons into the p-type 
material. Thus a state of equilibrium will be established. 

This equilibrium is, however, dynamic-i.e., there are still random 
holes and free electrons moving back and forth across the boundary. 
The movement of holes from the p-type to the n-type material, or of 
free electrons from the n-type to the p-type material, is called majority­
carrier current (1maj), since the movement is of the majority charge carriers 
(due to the doping) in the materials in which the movements originate. 
Conversely the movement of holes from the n type to the p type, and of 
electrons from the p type to the n type, is called minority-carrier current 
(I min). This latter current is due to hole-free electron pairs being formed 
in each material when Ge bonds are broken by thermal energy; then holes 
produced in the n type will "fall down the potential barrier" into the 
p-type material, while the electrons produced in the p type will be drawn 
into the n type by theelectr on potential. In equilibrium, then, with due 
regard to the directions of these currents, I = 1mai - 1min = 0, as illus­
trated in Fig. 20-2d(1). 

Consider now the effect of applying across the p-n junction a poten­
tial which opposes the flow of I maj (said to be in the reverse direction), 
as shown in Fig. 20-2(2). Holes in the p type, and electrons in the n 
type. will drift away from the junction, the charge density will extend 
farther from the junction on both sides, and the potential barrier to 
majority-carrier current will be increased, whence the majority-carrier 
current itself will be decreased. The minority-carrier current, on the 
other hand, is dependent only on the rate of formation of hole-electron 
pairs and hence will stay approximately the same as for the condition 
of no applied voltage. The net current across the junction in the reverse 
direction, i.e., from n-type to p-type material, will therefore be very 
small. 

But consider the effect of applying a potential across the junction 
in the direction of 1mai (that is, in the forward direction), as shown in 
Fig. 20-2(3). In this case the charge density is confined closer to the 
p-n boundary, the potential barrier is reduced, and more majority 
carriers are able to diffuse across the boundary. The minority-carrier 
current still remains about the same, being relatively independent of the 
applied voltage. 

It can be shown by means of statistical mechanics that 

1maj = 1minev/" 
and hence I = 1mal - 1min = 1min(ev/K. - 1) 

where I = net current, amp (in direction of majority current) 
V = applied voltage 

K = TIC 

(20-1) 
(20-2) 
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with T the temperature of the semiconductor in degrees Kelvin and C 
the ratio of the electronic charge to Boltzmann's constant (11,600)-see 
the solid line in Fig. 20-3. A semiconductor device with one such 

1 
I 

Current II· 

I' 
k-Zener 
:. . effect 
I 

Voltage V 

p-n junction across which a voltage can be 
applied, called a diode, has the character­
istic of high conductivity in the forward 
direction and low conductivity (very high 
back resistance) in the reverse direction. 
However, if the reverse voltage is made 
very large, an entirely different phenom­
enon occurs, the Zener effect: at some crit­
ical reverse voltage the back resistance 
goes practically to zero, and the current is 
limited only by the voltage-source resist­
ance (see the dashed line in Fig. 20-3). 
The Zener effect is caused by the break­
down of valence bonds to produce new 

FIG. 20-3. Voltage-current char- current carriers; these carriers acquire 
acteristic of an n-p junction 
diode. energy from the field and cause further 

carriers through ionization by collision, 
and so forth, as so-called avalanche breakdown occurs. 

EXERCISES 

(a) If I min = 10 p.a, compute the voltage-current characteristic of a diode at 20°C 
and at 30°C. 

(b) What other elements besides Ge, Sb, and In can be used to make a semi­
conductor diode? 

20-3. Transistors 

Physical Description. The physical model of a transistor can most 
easily be understood as an extension of the diode model. In the diode, 
or single-junction case, the small minority-carrier current across the 
junction is approximately independent of the applied voltage because it 
depends primarily on the rate of production (by thermal agitation of the 
Ge covalent bands) of holes in the n-type and electrons in the p-type 
semiconductors. The only way to increase this reverse current is to 
supply the n-type material with holes or the p-type with electrons. Since 
a p-type semiconductor can be a supplier of holes, suppose that we form a 
second junction with a p-type material to the right of our original diode 
(see Fig. 20-4). With no applied voltage we still have not increased 
the current in the reverse direction, for the holes and electrons will come 
to equilibrium as shown in 1a of Fig. 20-4, to give an equilibrium electric 
potential as shown in lb. However, if we decrease the potential difference 
of the middle n-type with respect to the added right-hand p-type material, 
then as we have already seen above, holes will diffuse into the n-type 
material. These holes can now diffuse across the n-type substance and 
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into the left-hand p-type substance, causing an increase in the reverse 
current across the left junction, as desired. We can better our chances 
of getting a reverse current by increasing the potential difference across 
the junction in question (the left junction) so that the holes diffusing 
across the n-type substance will "fall down the potential hill." The 
resultant potential curve is illustrated in Fig. 20-4(2). 

The two-junction device just described is called a p-n-p transistor, 
the center n-type substance is called the base, the right-hand p-type 
supplier of holes the emitter, and the left-hand p-type substance the 

Collector Base 

p type n type 

Emitter 

p type 

collector. The use of transistors in 
digital circuits depends primarily 
on their switching properties. The 
emitter-to-base voltage controls the 
conduction of current through the 
device, from the emitter through 
the base to the collector. If the 
applied emitter-to-base voltage Ve 
is small, no diffusion of holes can 
occur across the emitter-base junc­
tion. Increasing Ve in the forward 
direction allows holes to enter the 

FIG. 20-5. p-n-p transistor symbolism, b f th' d'ff 
with conventional current and applied- ase rom e emItter, to I use 
voltage directions. across the base, to fall down the 

collector-base potential hill V e, and 
thus to contribute to an increased collector current. Figure 20-5 pre­
::;euL::; Lhe COIl velltional symbolism for a transistor and also gives the con­
ventional current directions, in terms of which the actual collector and 
base currents, Ie and h as shown in Fig. 20-4c(2) , are of course negative 
during conduction. 

It is important that the base current Ib be relatively small during 
conduction so that voltage or current amplification can be obtained. 
This goal is achieved in the physical design of the transistor. To mini­
mize the contribution to Ib of electrons crossing the base-emitter junction, 
the doping of the base is made much smaller than the doping of the 
emitter; thus the base-emitter current consists primarily of holes. Sec­
ond, the contribution to Ib of electrons recombining with the holes 
diffusing across the base is minimized by making the base very thin; this 
reduces the time required for the holes to diffuse across the base from 
emitter to collector, preventing too many recombinations. Since the 
conduction through the base-emitter junction is mainly by holes, a 
measure of the number of recombinations that do occur in the base is 
the proportion actually reaching the collector, of the holes that crossed 
the emitter-base junction. This is given by the ratio of the change in 
magnitude of the collector current Ie to the change in magnitude of the 
emitter current Ie for a fixed voltage across the collector-hase junction. 
Calling this ratio lX, we have 
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I 
!:l.Ie I a- -

- !:l.Ie Vo=eonst 
(20-3) 

The value of a is close to unity, typical values being around 0.08. 
Since from the diode equation (20-2) the contribution from the collec­

tor-base junction is I min(ex - 1) for x = Vel K and the contribution from 
the holes of the emitter current is ale, we have (observing our current 
conventions for transistors), replacing I min by leo, the collector minority 
carrier current, approximately 

Ve 
for x =­

K 
(20-4) 

When the transistor is conducting, the collector-base junction is reverse­
biased; eX is very small compared with unity and can be neglected. 
Hence Eq. (20-4) reduces to the approximation Ie = - leo - ale. 
From our current convention we have 

(20-5) 

whence Ie = - leo + ex(Ib + Ie). Thus at constant V e, for the ratio, 
called (3, of the changes in magnitude of the collector and base currents, 
we have 

(3 _1_!:l.Iel __ a - !:l.h Vo 1 - ex 
(20-6) 

Characteristic Curves of Transistors. Figure 20-6a shows typical Ve 
versus Ie characteristic curves, for constant Ie, of a transistor in the 
grounded-base configuration. Observe that the Ve and Ie axes are negative 
according to our current and voltage conventions (Fig. 20-5). Three 
regions of transistor operation can be distinguished (see Fig. 20-6a): the 
cutoff region 1, the active region 2, and the saturation region 3. In the 
cutoff region the base-emitter voltage difference is too large to allow for 
diffusion of holes into the base from the emitter, even though there is 
a reverse voltage applied to the collector-base junction. Thus Ie = 0, 
and since the base-emitter voltage is reversed, eX « 1; hence from Eq. 
(20-4), Ie = -leo. In the active region the transistor conducts as 
described above. Saturation occurs when the collector-base voltage 
difference is too small to keep the holes flowing through the junction. 
The collector p-type material then becomes saturated with holes, and the 
collector current drops to zero. In fact the collector may become for­
ward-biased and supply holes back to the base: the base then receives 
holes from both the emitter and the collector, and the hole density 
in the base becomes large. We shall have more to say about this phe­
nomenon when we discuss over-all time responsiveness of transistors. 

Figure 20-6b shows a set of Vee versus Ie characteristic curves for 
constant h, for the same transistor connected in a grounded-emitter con­
figuration. The active and saturated regions are clearly seen; the cutoff 



0) 
01 
~ 

ItS 
E 

.... 
s:: 
~ :; 
(.) 

:... 
.3 
(.) 

~ 
o 
(.) 

Grounded-base confj~uration 
a= 0.98 

Ie = 10 rna 

Ie= 9 rna 

Ie= 8 rna 

Ie= 7 rna 

=6rna 

N Ie=5rna -s::~-
l----~ _ .~ 

QJ~--0: 
Ie =4rna 

Ie = 3 rna 

Ie= 2 rna 

Ie = 1 rna 

o -5 " -10 -15 
Collector ... base voltage l~, vofts 

V~I R 
Yc 

(a) __ :.!: __ ' -=-

ItS 
E 

~~-
.... 
s:: 
~ 

"::3 
(.) 

:... 

.3 o 
~ 
'0 
u 

o 

(b) 

Grounded-emitter configuration 
(j= 60 

-5 -10 

.~ 
t) 
ItS 

N 
s:: 
.~ 
en 
QJ 

~ 

-15 
Collector-emitter voltage ~e' volts 

V~ 
-J;-T. ~ 

FIG. 20-6. (a) Grounded-base Ie versus Ve characteristic curves for constant values of Ie; (b) grounded-emitter 
Ie versus Vee characteristic curves for (:onstant values of lb. Curves are approximately those for the Raytheon 
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region is not, because the base current at cutoff is equal to or greater than 
leo. These curves are generally more useful than the Ve-Ie curves 
because the current gain {3 can be easily calculated from these. For 
example, if the collector is attached to a -10-volt supply, through a 
resistor R = 2,000 ohms, then from the active region in the curves we 
can observe that a change in Ib from 0 to -100 /-La will cause changes in 
Vee of from -9.8 volts to -0.2 volt and in Ie of from -0.005 ma to 
- 4.82 rna (see the load line in Fig. 20-6b). 

Response Times. There is a delay in transmitting the leading edge 
of a pulse through a transistor. This delay can be related to the density 
of holes in the base (i.e., of the prin-
cipal minority current carriers with 
respect to the collector-base junc­
tion). Consider, for example, Fig. 
20-7, which illustrates the density 
distribution of holes in the base. 
In the cutoff region both emitter 
and collector are reverse-biased with 
respect to the base, and hence what­
ever holes (minority carriers) due to 
thermal pair generation are present 
in the base will diffuse toward the 
emitter and collector, so that the 
hole-density distribution is as shown 
in the figure. When an input signal 
drives the emitter-base junction into 

t 

p type 

Collector Base Emitter 

FIG. 20-7. Density distribution of holes 
in the base of a transistor for the cutoff, 
active, and saturation regions. 

the active (forward-biased) region, holes diffuse from the emitter into the 
base and the hole density builds up near this junction as shown in Fig. 
20-7. The hole-density gradient stimulates the diffusion of holes to 
the collector-base junction; they are quickly gathered into the collector 
by the potential hill at that junction, to produce the collector signal 
response. The delay in the transmission of the leading edge of the 
signal, i.e., the rise time, is therefore the time required to build up the 
hole-density gradient in the base and initiate the final hole-diffusion 
rate. When the input signal is removed, collector current will con­
tinue to flow until the gradient is sufficiently reduced; the time required 
for this is the fall time, the lag in the trailing edge of the signal. If 
an input signal drives the transistor into the saturation region, the den­
sity of holes will rise at the collector-base junction as well. When the 
input signal is turned off, all these holes must be removed from the base 
by the collector before the output voltage signal can begin to fall. This 
delay, or storage, can be several times the fall time for the active region. 
Clearly for transistors used as switches, where speed is essential, care 
should be taken to keep the transistor from operating in its saturation 
region. However, in a large proportion of digital circuits the transistor 
is driven into saturation by the input pulse because of other considera­
tions; these will be discussed in the next section. 
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As an illustration of the storage time t8 , consider the grounded-emitter 
configuration of Fig. 20-8a. With an input base-voltage pulse V bI of 
width tw a base current hI = Vbt! Rb will flow, provided that Rb is large 
compared with the internal impedance of the transistor. The rise time 
tT of the collector current includes a very small initial delay (not indicated 
in the figure). During the storage time t8 the impedance of the transistor 
is still small, and Ib2 = Vbd Rb• After the transistor has returned to 
its active region, Ib falls to zero as the impedance of the transistor 

(a) 

(b) 

(e) 

,.3\ 
\I.kl 

increases, during the normal fall 
time (see Fig. 20-8b, c, and d). 

Elementary Analysis. An ele­
mentary analysis of a transistor, 
approximately valid in all three 
regions, can be instructive. The 
main difficulty of such an analysis 
is that constants such as a or I co can 
vary appreciably in different tran­
sistors of the same type (although 
manufacturers are steadily improv­
ing reliability). The analysis is 
based on Eq. (20-4), which we 
repeat here, using an to signify the 
" normal" a: 

Ie = Ieo(ex - 1) - anIe 
/ V\ 
,fOr x = ~) (20-7) 

This is simply the equation for the 
characteristic curves giving leas a 
function of Ve for constant values of 
Ie (see Fig. 20-6a). Suppose that 
next we consider the transistor used 
in reverse, i.e., the collector used as 

FIG. 20-8. Grounded-emitter transistor 
as a switch, with the input signal driving 
the transistor well into saturation. 
Shown here are (a) the circuit configura­
tion, (b) the applied base-voltage pulse, 
(c) the input base-current pulse, and (d) 
the resulting delayed collector-current 
(output) pulse. 

the emitter and the emitter used as 
Then we can write an equation analogous to (20-7): the collector. 

Ve y =-
K 

(20-8) 

where ar is the a of our "reverse" transistor. In writing Eqs. (20-7) 
and (20-8) we must be careful of the sign conventions for Ie, Ie, Ve, etc., 
which were summarized in Fig. 20-5. By substituting Eq. (20-8) into 
(20-7) we can determine Ie as a function of the parameters leo, leo, an, 
and ar and the voltages Ve and Ve, 

(20-9) 
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Similarly by substituting Eq. (20-7) into (20-8) we find 

I - . I eo (eY _ 1) _ (XI I eo (ex - 1) 
6 - 1 - anar 1 - anal 

(20-10) 

However, (Xn, aI, leo, and leo are not independent; it can be shown (from. 
the physics of the device) that they are related by the equation· 

(20-11) 

Equations (20-7) and (20-8) can be solved for the junction voltages Vc 
and V e, 

(20-12) 

(20-13) 

The characteristic curves giving Ie as a function of Vee for constant Ib 
(see Fig. 20-6b) can be derived by observing that Vee = Ve ~ Ve. ThenJ : 

letting z = (Ve - Ve)/K, from Eqs. 
(20-1) and (20-2), using (20-5) and I;. 
(20-11), we have n type p type n type . 

Ie = al(l - ez)Ieo - an(ar + ez)Ib 
(Xn(ar - ez) - (XI(1 - anez) 

(20-14) 

n-p-n Transistor. A transistor can 
also be constructed by placing a p-type 
semiconductor between two layers of 
n-type substance, as shown in Fig. 
20-9. The arrow on the emitter lead 
specifies the direction in which cur­

+ ~e 
Collector ~- Emitter 

~---

1c~ +\ ~ _ j,:-le 

Yc"'-- t ~ 
1b 

Base 
FIG. 20-9. n-p-n transistor symbolism 
with current and voltage conventions. 

rent will flow when the emitter-base junction is biased in the forward· 
direction, for active-region operation. However, in both the n-p-n and: 
p-n-p transistors the conventional currents Ie, Ie, and Ib are directed 
into the transistor (see Exercises h through m). 

EXERCISES 

(a) How would you make an analogy between a transistor and a triode vacuum 
tube? 

(b) Explain from our physical model of the transistor why a is close to but les~ 
than unity. (HINT: Where does the base current h arise?) 

(c) What is the physical explanation of the flatness Qf the Ve versus leI constant leI 
curves? 

(d) In Fig. 20-8 suppose that the input signal Vbl did not drive the transistor all 
the way to saturation; how would curves c and d appear for Ib and leI respectively? 

(e) For the p-n-p transistor of Fig. 20-6 in the grounded-base configuration t if the 
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collector is connected through a 2,000-ohm resistor to a -lO-volt supply, and if 
Ib = -75 p.a, find the values of Vee, Ve, Ve, Ie, and Ie. . 

(f) Find an expression for Ve at cutoff. (HINT: At cutoff Ie = 0, Ie = leo.) 
(g) Derive an expression for h when the transistor is in the cutoff region. 
(h) Draw a figure analogous to Fig. 20-4 for an n-p-n transistor. 
(i) For an n-p-n transistor, how would typical Vee versus Ie, constant Ie, and 

Ve versus Ie, constant Ib, characteristic curves appear? (HINT: Be careful of con­
ventional current directions.) 

(j) How would an n-p-n transistor be used in the grounded-emitter configuration 
as a switch? 

(k) What are the main current carriers in the base of an n-p-n transistor operated 
in its active region? 

(l) Derive an equation for the Ve versus Ie, constant Ie, (grounded-base) charac­
teristic curves of an n-p-n transistor. 

(m) Derive an equation for the Vee versus Ie, constant Ie, (grounded-emitter) 
characteristic curves of an n-p-n transistor. 

20-4. Transistor Equivalent Circuitt 

Equivalent Circuits. The preceding section has discussed the develop­
ment of the junction transistor from the viewpoint of qualitative physical 
theory and the steady-state direct-current (d-c) voltage equations. In 
order to apply the transistor as an element in an electronic circuit, it is 
necessary to redescribe the physical device in a form more useful from 
the viewpoint of circuit-design techniques. This is accomplished by 
means of the transistor's equivalent circuit, describing the device in 
terms of familiar circuit elements which can be treated by the standard 
mAt.ho(J~ of nAt,work ~n!'lJy~l~. Th~ ~m.it.t~:r, b8.~~, ~!!d ~011~~t0:r te:rm.i!!9Js 
of the transistor can be connected to the external circuitry in three 
possible configurations, the grounded-emitter, grounded-base, and 
grounded-collector modes. Because of its superior switching character­
istics the grounded-emitter mode is most widely used in logical switching­
circuit design and will be dealt with exclusively in this section. And 
since the majority of digital transistor circuits employ a voltage-step 
input to the base (rather than a current-step input), we shall limit our­
selves to this type of input. 

In this section we shall show a transistor equivalent circuit, in several 
forms, emphasizing how the circuit is used. The discussions given con­
cerning the origin of the circuits are largely descriptive and heuristic in 
nature and should not be interpreted as "proofs" in any sense. The 
development of the small- and large-signal circuits themselves is beyond 
the scope of the text. 

Our main purpose will be to derive the transient rise-time, saturation­
state, storage-time, and transient fall-time characteristics of the transistor 
in the grounded-emitter mode for a large-signal input voltage pulse 
applied through the base. This involves a preliminary study of the 

tThis section is based on a private communication on an original development of 
Sidney B. Geller, Paul A. Mantek, and Don R. Boyle of the National Bureau of 
Standards. 
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large-signal d-c behavior as well as the small-signal behavior of the 
transistor. It is well first to digress for a moment to review the IRE 
notational standards for variable 
d-c and modulation parameters. 
The d-c parameters are indicated 
by capital letters, the transient, or 
modulation-level, parameters by 
lower-case letters (as illustrated in 
Fig. 20-10 for voltages). The sub­
scripts indicate the reference points: 
A capital subscript means that a 
reference point is at true zero, that 
the total displacement is involved; 
a lower-case subscript indicates 
the d-c reference, involving only 
the local modulation displacement. 

v 

o 
FIG. 20-10. Notational review. 

(Constant parameters may be denoted by any convenient symbols, pro­
vided that no ambiguity arises.) 

Large-signal D-C Equivalent Circuit. From the equations of the pre­
vious section (with 1 B substituted for 1b) it can be shown that 

1 ev./« 
1 eo 
B= 

(1 -- alan)(~ 1r 1) 

However, since 1eo« 1B in the active and saturated regions, and also 
since 

1eoev ./« leo -------» --------
(1 -- alan)(~ 1r 1) (1 -- alan)(~ 1r 1)2 

we find approximately 

Also 

(20-16) 

(20-17) 

Solving for Ve/1B in Eq. (20-16), with K r-..J ~9 at room temperature, 
we find 

(20-18) 

The variable resistance RBE can be interpreted as a diffusion-process 
resistance in the base. However, the effective base-to-emitter voltage 
is somewhat less than the external voltage; the reduction is the loss 
across a small equivalent internal resistance, denoted by rbb, which must 
be separated from the diffusion resistance. We shall replace the symbol 
Ve by V BE, to represent the effective internal base-to-emitter voltages. 
With V BE replacing Ve, Eqs. (20-17) and (20-18) enable us to draw 
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the main features of the circuit (Fig. 20-11); here Rx is the external 
resistance and V x the externally applied voltage step. The value of rbb, 
from 50 to 1,000 ohms, is usually obtained by disconnecting the emitter 
and then measuring the collector-to-base resistance, at high frequency 

Collector ~ Emitter 
Ie 

Ic~{3IB rBE ~E 

i 
~ 

Rx 

FIG. 20-11. Direct-current large-signal equivalent circuit. 

so that the capacitance from base to collector effectively short-circuits the 
Gurrent generators. 

From the figure, with no output current 

IB(Rx + rbb) - Vx = VBE 

Since by Eq. (20-18) V BE (that is, V e) is a function of I B, this equation 
can be solved by finding the intersection of the graphs of 

y = I B (R x + rhh) - V X" and y = V!! E 

when they are plotted as functions of IB (see Sec. 6-3). Figure 20-12 
IB gives this latter curve of V BE as a 

function of lB. The V BE-I B curve 
is a key feature of this development 
and will be utilized extensively in the 

. following discussions. It is easily 0 b­
tained, either from Eq. (20-18) or by 
direct d-c measurement of a particular 
transistor. 

rnE = l/slope Dynamic Behavior and ihe Small-
signal Equivalent Circuit. The tran­
sition from the d-c to the dynamic be­
havior of the transistor can be made 

VBE as follows: In the d-c state IBis the 
FIG. 20-12. The V BE-I B curve, ob- current that flows through the diffu­
tained from Eq. (20-18) or by direct sion resistance, contributing to V BE 
measuremen t. 

as shown in Fig. 20-11. In the 
dynamic case, however, a capacitance appears to parallel the diffusion 
resistance. The axes of Fig. 20-12 should be relabeled with iBE anq 
VBE, in accordance with the IRE notation. The curve, however, remains 
the same; in Fig. 20-13 it has been redrawn more accurately for a typical 
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2N414 transistor. A capacitance appears which is a combination of the 
diffusion-process capacitance and the space-charge capacitance at the 
base-collector junction; it is denoted by Cdl• For the dynamic state 

1.0 

0.9 
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0.1 

Small-signal case: 
rbe = 1/ slope 

o 0.05 0.10 0.15 0.20 0.25 vBE 

FIG. 20-13. The VBE-iBE curve of a typical 2N414 transistor. 

we can rewrite Eqs. (20-16) and (20-17) appropriately: 

and 

(20-19) 

(20-20) 

The small-signal case occurs when in a steady d-c state, with applied 
voltage V x, a small increase in voltage is applied, say .1 V x = Vx, pro­
ducing small increases in iBE, Ie, and VBE, of .1iBE = ibe, .11e = ie = {jibe, 
and .1VBE = Vbe, respectively. However, for a small signal the diffusion 
resistance can be taken as a constant with the value vbe/ibe = .1VBE/ .1iBE 
(see Fig. 20-13). On taking the derivative of Eq. (20-19) we find this 
resistance to be 

Vbe 1 
rbe = -;- = -..,---

'tbe (1/ K)iBE 
(20-21) 

Thus we can draw the small-signal (variational) equivalent circuit as 
shown in Fig. 20-14. A circuit analysis easily yields, for small signals, . 

ibe(t) = Vx 11 - exp [- tjrbeCdf(Rx + rbb)]) (20-22): 
Rx + rbb + rbe Rx +rbb + rbe 

for a small step vx• (For the return step, see Exercise b.) From the­
physical analysis that describes the alternating-current (a-c) behavior 
of a transistor it can be shown that Cdl = (l/K)ibeT~, where T~ is a 
constant for a given collector load resistance RL and collector supply 



662 ELECTRONIC DESIGN OF DIGITAL CIRCUITS 

FIG. 20-14. Small-signal equivalent circuit. 

voltage Vee. Thus from Eq. (20-21) we have 

rbeCd! = T1 

[CHAP. 20 

(20-23) 

which can be substituted into Eq. (20-22). Therefore T1 is an invariant 
time constant, independent of rbe and Cd" which vary with rBE. To 
obtain T1, note that if Rx is very large, i.e., if the base is driven by a 
current source iz, then Vz = izRx and Eq. (20-22) becomes approximately 

ibe = ix (l - e-tITB*) 

and T1 becomes the time required for ibe to rise to 1 - e-1 = 63.2 per 
cent of its final value i z • (There is an analytic method for obtaining T1 
for any value of RL from a single rise-time measurement, due to Geller, 
Mantek, and Boyle of the National Bureau of Standards.) 

Large-signal Equivalent Circuit: Rise Phase. The large-signal eQuiv­
alent circuit is shown in Fig. 20-15. The main difference between it 

FIG. 20-15. Large-signal equivalent circuit. 

and the small-signal circuit is that rbe is replaced by the diffusion resistance 
rBE and leo no longer cancels out. Because of the nonlinearity of rBE 

and Cd" the exact equation for iBE(t) is difficult, if not impossible, to 
obtain. A simple graphical method, however, is available, based on the 
nodal differential equation for the currents into the junction of Cd! 

and rbb: 

Vz - VBB _. + I + C dVBR 

R + - tBE eo d! -dt 
X rbb 

(20-24) 
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From Eq. (20-23), Gdl = T;/rbe; from Fig. 20-13 we see that 

1 diBE 
rbe dVBE 

(i.e., the slope), and hence Gdl = T~(dinE/dvnE). Substituting in Eq. 
(20-24) we have, since (dinE/dvnE)(dvnE/dt) = dinE/dt, 

Vz - VnE _. + 1 + T* dinE 
Rx + rbb - ~BE eo B dt 

Solving for diBE/ dt, 

d:E 
= ;~ [ (~: ~ V:"E _ I w) - iRE ] (20-25) 

Hence at any point the slope of the iBE(t) curve is represented by the 
hypotenuse of a triangle constructed at that point having the constant 
T~ as base and the bracketed expression as altitude. 

Figure 20-16a shows the construction, by linear approximation (cf. 
Sec. 6-10), of the iBE(t) curve for an input voltage pulse of constant 
voltage V x and of relatively long duration starting at t = O. To the 
left is drawn the vBE-inE curve, with ordinates to the same scale as on 
the iBE(t) curve. Intersecting this curve is drawn the "load" line repre­
senting the equation 

i = Vx - VBE _ 1 
Rx + rbb eo 

(20-26) 

Observe that the distance between the line and the curve, along a line of 
constant VnE, is the bracketed expression of Eq. (20-25) (displaced by the 
proper inE). Starting from zero, the inE(t) curve is approximated by 
line segments at constant intervals of time. From a given point of the 
curve a horizontal line is drawn intersecting the vnE-inE curve to find 
the VBE corresponding to the current at this point. From this intersec­
tion a vertical line is drawn intersecting the "load" line, measuring off 
(V x - vnE)/(Rx + rbb) - leo - iBE• From this latter intersection a 
horizontal line is drawn back to a point T~ beyond the abscissa of the 
original point on the iBE(t) curve. The curve is then extended, along 
the line (the hypotenuse) joining these latter two points, to the next 
incremental value of t. 

The process is continued until inE reaches saturation, and the curve 
levels off as shown in Fig. 20-16. The intervals of time chosen need 
not be uniform, but for greater accuracy may be made smaller in the 
region where the curvature of the graph is greatest. 

Saturation and Storage. Saturation is initiated when 

1 _ Vee 
(: - RL (20-27) 

When saturation occurs, then we have iBE = Vcc/{3RL = IBs and 
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iBE _______________ _ ..!:PlE. _______ _ 

t 

(a) Rise phase with saturation; the slope is recomputed every ilt 

~TB ·1 

(b) Fall phase after saturation and storage 

FlO. 20-16. Graphical method for determining iBE(t). 
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VBE = VccrBE/ (3RL = V BS. Thus in our graphical iteration we must 
stop when the saturation value of iBE is obtained, and this value then 
continues until the end of the storage time. To account for this phe­
nomenon in our equivalent circuit, we introduce a diode in series with a 
battery of strength V BS = VccrBE/ (3RL for rBE and (3 at saturation (sec 
Fig. 20-17a). During saturation the circuit behaves as in Fig. 20-17b, 

(b) 
FIG. 20-17. Large-signal equivalent circuit including provision for saturation. (a) 
Equivalent circuit adapted for saturation; (b) behavior of equivalent circuit during 
saturation. 

where a small-interval collector resistance Rs of about 4 ohms now 
appears. We have drawn R8 in Fig. 20-17a also, but because of Ie it has 
no effect before saturation is reached. 

As the trailing edge of the V x pulse cuts off, storage begins, saturation 
lasting until the storage is ended. If the base current during saturation, 
but before storage begins, is denoted by I Bl; if the reverse base current 
during saturation but after storage has begun (i.e., after V x = 0) is 
denoted by I B2 ; and if I Bs = V ee/(3RL , then it can be shown that the 
storage duration is given by 

IBl - IB2 
ts = Ks In I I (20-28) 

BS - B2 

where Ks is constant for relatively deep saturation. Here Ks is the 
excess base charge stored per unit excess base current. Equation (20-28) 
holds only for the case when I B2 is a constant reverse current; for the 
case when I B2 is not constant, e.g., if a capacitor is placed across Rx , other 
techniques, beyond our present scope, must be used to obtain the storage 
time. 
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Large-signal Equivalent Circuit: Fall Phase. When storage has ceased, 
the fall phase begins. Or if V x returned to zero before saturation was 
reached, the fall phase would then be initiated immediately. For the 
fall phase the equivalent circuit of Fig. 20-15 is again valid. Equation 

Time, }J.sec 

0 1 234 1 2 3 4 
0 I 1 I 1 

~ -2 
"0 
> -4 ~ 

-6 

~ _o.:~ 
~ -0.2 ----_~ 
~ 

-0.3 

!! 
"0 
> 
~ -0.2 

~Il:l 

(b) 
FIG. 20-18. Response of 2N414, with input pulse Vx = 0.52 volt (voltage drive to the 
brink of saturation). (a) Simulated; (b) experimental. 

(20-25) holds, with V x = o. Figure 20-16b repeats the graphical analy­
siE', of Fig. 20-16a, with the "load" line given by Eq. (20-26), with 
Vx = 0: 

i= 
VBE _ I 

Rx + rbb 00 

Neglecting leo (as is usually done), the line passes through the origin. 
Summary. The analysis of Fig. 20-16 may be used for large-signal 

inputs other than the voltage pulse. Here the two "load" lines would 
be replaced by a family of lines, found by evaluating Eq. (20-26) for V x 
at corresponding time increments. 

Given the iBE(t) curves, we can deduce the Vc(t) curve, since 

Vc(t) = icRL ,= Rd3iBE (t) 

Figure 20-18 compares an oscilloscope tracing with the computed rise 
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and fall curves of Vc(t) for a voltage pulse at the base of a 2N414 transis­
tor. The increments used for the computed curve were taken fairly 
small, to illustrate the adequacy of the construction. 

EXERCISES 

(a) Derive Eq. (20-15) from the equations of the previous section. 
(b) Derive Eq. (20-22) from the equivalent circuit of Fig. 20-14, and show that 

the return-step current is given by 

~ -t 
Rx + rbb + Th. exp rb.Cd/(Rx + rbb)/(Rx + rbb + rbe) 

Consider a 2N414 transistor for which fJ = 55, Tbb = 100 ohms, and Ks = 2 J.lsec. 
For the purposes of the following exercises take 

T; ~ 1.5 X 10-6 + RL (14 X 19-12)56 

At room temperature 11K = 39.6. 
(c) If Rx = 20,000 ohms, RL = 1,000 ohms, and Vee = -12 volts, and if a voltage 

pulse V x of -12 volts and 5 J.lsec duration is applied, draw a graph describing the 
transient behavior of the voltage at the collector terminal during the rise phase, 
saturation (including storage time), and the fall phase. Use the curve of Fig. 20-13. 

(d) For the situation of Exercise c find the time required for the collector current 
to rise to 90 per cent of its final value. What are the emitter current, base current, 
and base voltage at this time? 

(e) Repeat Exercise c, but let RL = 500 ohms. Compare the results and give a 
qualitative explanation. 

(f) Repeat Exercise c for RL = 300 ohms and V x a voltage pulse of -4 volts and 
1 J.lsec duration. Compare the results and give a qualitative explanation. 

20-5. Diode-gated Circuits 
Diode Gating. Figure 20-19 indicates the conventions and symbols 

used for a diode. Suppose that a unit of a 
computer word is represented by some signal­
voltage level V + and a zero by a lower signal­
voltage level V _ (this is sometimes referred 
to as positive logic). Then the diode cur­
rent arrangement in Fig. 20-20 will yield an 
or gate. For the output voltage will be the 
zero signal level V _ only if no diode is con­
ducting; i.e., if anyone of the inputs is a 
unit voltage V +, the current through resist­
ance R will raise the output potential to the 
unit signal level V +. For two diodes the 
condition-function table would be 

A 0101 
B 0011 

Output 0111 = A + B 

The dashed diode connections in Fig. 20-20 

+ 
p type n type 

~I 
I ------3~~ 

FIG. 20-19. Conventional 
diode symbolism for semi­
conduction diode. Polarity 
of applied voltage V for con­
duction, and directions of 
low-resistance current I and 
high-resistance current 10 are 
shown. 

indicate that the gate can have any number of inputs. 
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Suppose on the other hand that we let V + be the zero voltage level and 
V_be the unit level (negative logic). Then our condition-function table 
would be 

A 0101 
B 0011 

Output 0001 = A . B 

Thus we see that the interpretation of the signal-voltage levels is important 
for the logical analysis of the gate. In Fig. 20-21 we have turned the diodes 

Circuit 

R 
Inputs 

A o--.. lt----I 

B o--f!M-----,!. 

• , 
c o--~--""l . o---.t-_ J 

I nterpretati on 

o 
1 

Output A+B A'B 

FIG. 20-20. Diode 
gating for or or and, 
depending on the 
interpretation of 0, 1. 

Circuit Interpretation 

V+ JlV
+ 

1 0 

R > 
V_ 0 1 

Inputs < 
A'B A+B r--oOutput 

A~ L .... 
I ..... 

B I .... FIG. 20-21. Diode I ..... I 
I 

gating for and or or, . 
C 0--+4---: depending on the 

• 
o--~_J interpretation of 0,1. 

around and attached the output through the resistor to a V + voltage 
supply. It is seen that, for the same interpretation of 1 and 0, reversing 
the diodes changes an or gate into an and gate and an and gate into an 
or gate. 

In our discussion so far we have neglected the effect of the diode 
forward resistance rf. When this is taken into account, it is seen that 
the voltage swing from V_to V + on the input side of the diodes will be 
greater than that on the output side and will depend on the number of 
diodes conducting at any time. For the circuit of Fig. 20-20, with an 
input voltage swing from V _ to V~ and with n diodes conducting, the 
output voltage V + will be given by 

V+ = V_ + R (V' _ V_) = rfV + nRV~ 
R + rf/n + rf + nR 

which increases toward V~ as n increases. When a constant value for V + 
is required, the output voltage can be "clamped" through a diode so that 
it will never exceed a predetermined V +. This clamping voltage should 
clearly be not more than (rfV- + RV~)/(rf + R), the value of V+ above 
for n = 1. Similarly for the circuit of Fig. 20-21, with an input voltage 
swing from V~ to V +, the output could be clamped to a predetermined 
V _." However, one should note that the supply voltages connected to 
the resistors R must be the same as the maximum or minimum input 
voltages V~ or V~ (why?). The outputs from several of the circuits of 
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Fig. 20-21 can be the inputs to a circuit of Fig. 20-20 (or vice versa); 
here both V + and V _ could be clamped. Figure 20-22 shows such a 
combination with the input to the amplifier clamped between V + and 
V _, where V + ~ V~ and V _ 2:: V~ > V~. The supply resistors (R in 
Figs. 20-20 and 20-21) should be large enough to keep the supply current 
small but should not be large compared with the back resistance rb 
of the diodes. 

1 J1.V~ 
o V': 

Al 0--14---1 

A2o---~-~ 

A3 o--te---J 

B 1 0>-----1<11l1li-----1 
B2 o--i4I----I 
B 3 O--...... ---J 

C1 o--ie----~ 

C2 o---tI4l---~ 

C3 0--...... ----' 

Inputs and 
gates 

Amplifier 

or Voltage 
gate clamp 

FIG. 20-22. A diode-gate and-or circuit. 

J1.. V: 
V": 

AI' A 2 • A3 

+BI • B2 • B3 
+C1 • Cz ' Ca 

Output 

Transistors as Amplifiers. An ordinary diode is a passive circuit 
element with no means for reinforcing signal strengths, so that after a 
few levels of such diode gates as described above the output signals 
become too much attenuated to be usable. Therefore in all diode-gated 
circuitry some form of active element is included to reamplify, and some­
times reshape, the signals. The earliest computers used vacuum tubes 
as amplifiers, but the postwar developments in solid-state devices have 
brought tubes to obsolescence in computer uses. We consider in this 
section transistors used purely as amplifiers of diode-gate output, as 
we shall consider magnetic elements purely as amplifiers in Sec. 21-3. 

Figure 20-23a shows the simplest of gated-amplifier circuits, a single 
gate followed by the amplifier. For the 0, 1 levels as shown, the diode 
configuration acts as an or gate; the transistor amplifies the gate output, 
but in reverse polarity. Note that a clock pulse cannot be used here, in 
the ordinary way, since the output would be a zero whenever the clock 
was on. Hence this circuit is usually employed in conjunction with 
flip-flop synchronization and retiming. (Compare Exercise b of Sec. 
20-6. . Because of the lack of clocking, and because of considerations 
required by the logic used with these packages, they are generally called 
or inverters rather than or-not gates.) In the design of such a package the 
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collector load resistor RL should be as small as possible, since the base 
currents for succeeding stages are drawn through RL (when this transistor 
is cut off), and the drop across it must not be too great. Similarly R 
must be as large as possible, to limit the currents through the preceding 
load resistors, but not so great that it cuts down the base current when 
the previous stages are fully loaded (i.e., have the maximum drop across 

A o-~f-I 

Bo-~-I 

Co-~""" 

Gating 

A+B+C 

Amplification 

(a) 

Output 

o n Ground 
1..J L -12 v 

.:31 900 
n 

A 0---141---4 

B 0---141-1 

C 0---141-1 

D 0---141---1 

(b) 

-12 v 

FIG. 20-23. Or-inverter packages. 

°nl'+ nV
-1 ~I 

r 
I 
i 
I 
I 
1~-foII....-t 

Ao-..... ~I-I 
I Bo-t .... ...,..,-' 
r 

C o-t~+-I --I 
I 

Gating 

A'B+C'D 
--0 

Amplification Output 

(a) 

or Partial 
gate Amplification and gates 

(b) 

FIG. 20-24. (a) Two input gating levels; (b) input and output gating levels. 

their load resistors). The small base-to-emitter resistor r helps reduce 
saturation and consequent storage time. Figure 20-23b shows the opti­
mum values for the circuit parameters, for a type 2N414 transistor, as 
computed from the equivalent circuit given in Sec. 20-4. (Observe that 
Rx for the equivalent circuit is computed from the parallel combination 
of Rand r and that the V x used must be reduced to its Thevenin equiv­
alent.) The 100-}.t}.tf capacitor shunting R helps remove the excess holes 
in the base when the input goes positive. 

More than one level of diode gating can be used with transistors. 
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Figure 20-24a illustrates a level of and gates followed by an or gate. Of 
course each and gate can have more inputs than the two illustrated, 
but once a package is designed the number of inputs to each and gate is 
fixed. Another arrangement of levels of diode gating is illustrated in 
Fig. 20-24b. Here, instead of having both levels of gating precede the 
transistor, one level precedes and one level follows the transistor. In 
both circuits the parallel combination of and-gate resistors in the follow­
ing stages acts as a collector resistor. The circuits of Fig. 20-24a and b 
differ only in the packaging: the dashed line in (a) shows where the 

cpo-...... -...J 

Regeneration 
Ao--.t---1 
Bo--.t---1 
cpO-.... -_......I 

Co-.... ---~ 
Do-.... ----! 
cp O---.!---...J 

A'B+C'D 

Gating Amplification Inversion Output 

FIG. 20-25. Dynamic circuit with regeneration. 

separation was made in (b), and the dashed line in (b) shows where thf\ 
separation was made in (a). Of course each of the Ol!tput diodes of It 
is connected to a different succeeding package, and each input is connected 
to several preceding packages. An advantage of the circuit of (b) over 
that of (a) is that the packaging has now limited the number of outputs 
rather than the number of inputs; for packages whose output capacity 
is quite limited by electronic-design considerations, this arrangement is 
more natural. 

Retiming and reshaping, as well as amplification, can be incorpo­
rated into a transistor diode-gating package by means of regeneration as 
described above. Figure 20-25 illustrates such a package, designed as a 
simple extension of the circuits of Fig. 20-24a and b. Note that a second 
transistor must be used to invert the output before recirculation; thus 
we have available both the direct and complemented outputs. A col­
lector resistor must be added for the first transistor, to allow for the case 
of no loading on the complemented output. Pulse transformers could 
also be used to provide the inversion for the regeneration; here again both 
direct and complemented outputs result. 
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EXERCISES 

(a) For the diode voltage-current characteristic drawn in Exercise a of Sec. 20-2, 
calculate V~, V _, and V + of Fig. 20-22 for V~ = 6 volts and V~ = -6 volts and 
R = 10,000 ohms. 

(b) For the circuit of Fig. 20-23a compute Ie, Ve, Ie, iBE, and VB for V _ = -12 
volts, RL = 620 ohms, R = 3,900 ohms, R = 620 ohms, and V x = -12 volts, when 
the output is connected to 1, 5, and 10 other packages. 

(c) Find the rise and fall times for an input voltage swing from 0 to -12 volts for 
the circuit of Fig. 20-23a, for the values given in Exercise b, when the output is 
connected to 1, 5, and 10 other packages. (Use the transistor values given under the 
Exercises in Sec. 20-4.) 

(d) In order to increase the number of packages that can be driven from the 
circuit of Fig. 20-24a, how would you adjust the value of the and-gate resistor? The 
transistor base resistors? What are the limitations to such an adjustment? 

(e) In order to increase the number of packages that can be driven from the circuit 
of Fig. 20-23a, how would you adjust the resistors R L , R, and r? What are the 
limitations to such an adjustment? 

(f) For the circuit of Fig. 20-25 predict the output voltage rise and fall as a 
function of time for each transistor, when the and-gate resistance is 5,000 ohms, the 
input resistance to the base of each transistor is 2,000 ohms, the base-emitter shunt 
resistance is 500 ohms, and the collector resistance of the first transistor is 5,000 ohms, 
for a voltage input swing of 0 to -10 volts, of duration 1 ~sec, and for five additional 
packages being driven from each output; for one additional package being driven 
from each output. (Use only four segments in the graphical approximation, and the 
values of (3, TB, etc., as given under the Exercises in Sec. 20-4, as well as the curve 
of Fig. 20-13.) 

20-6. Transistor Gating and Flip-Flops 

Resistance-coupled Transistor Circuits. Figure 20-26a illustrates an 
or-inverter circuit gated with resistors only. The circuit is designed 
so that, if anyone of the inputs A, B, or C receives a negative voltage 
signal, the current through the input resistance is sufficient to turn the 
transistor on; hence, with the negative signal representing a unit, the out-
put is A + B + C. The advantages of such a resistance-gated circuit 
are low cost, simplicity, and high reliability, since semiconductor com­
ponents are minimized by the elimination of diodes. The disadvantage 
of the circuit is that if two or more inputs are on at the same time the 
operating speed is lowered. This occurs because the transistor is driven 
more deeply into saturation as more inputs are actuated; the effect of 
more inputs is to place more input resistors in parallel between V_and 
the base, lowering the effective resistance of the input and increasing 
the base-emitter current. In order to maximize the number of transis­
tors that any stage can drive, the collector resistor should be made as 
small as possible: For when the transistor is not conducting, connecting 
more outputs to the collector (i.e., more drives) requires a larger current 
through the collector resistor; the collector voltage may rise to such a 
value that the succeeding transistors can no longer be turned on. Note 
that only one level of gating can be accomplished per transistor stage. 



SEC. 20-6] SEMICONDUCTOR ELEMENTS IN DIGITAL-CIRCUIT DESIGN 673 

In Sec. 18-1 the advantages of combinations of or and and inverters 
were described from a logical point of view. In Fig. 20-26b is illustrated 
a mutually compatible or-inverter-and-inverter circuit pair. The and 
inverter uses an n-p-n transistor instead of the p-n-p of the or inverter. 
Since the or inverter operates between 0 and -12 volts, the emitter of 
the n-p-n transistor ( and inverter) is connected to -12 volts and the 
collector load resistor is grounded, so that this circuit too may operate 
over this range. However, matching problems still occur, for the 
p-n-p transistor operates near and below ground, while the n-p-n transis­
tor operates near and above -12 volts. On the other hand, the or 

A 

B 

C 

Gate Amplification 

(a) 

A+B+C 
Output 

A 
B 

A 
B 

(b) 
FIG. 20-26. (a) Resistor-coupled or-inverter package; (b) dual p-n-p and n-p-n circuits. 

inverter must be able to drive either an and inverter or another or 
inverter, as also must the and inverter. One solution to this problem 
is to have the bias resistor or collector load resistor adjustable according 
to the succeeding circuit requirements. 

Direct-coupled Transistor Circuits. Figure 20-27 illustrates direct­
coupled transistor logic. The advantage of this type of circuit is that 
it minimizes the number of different component types and the necessary 
power supply voltages and presents low power dissipation. In (a) is 
shown the and inverter, whose output (inverted) will appear only when 
A and Band C are units; in (b) is shown an or inverter, whose output 
(inverted) will appear if either A or B or C is a unit. Even though the 
voltage swing from 0 to 1 is small, the transistors are driven into satura­
tion because of the direct coupling, limiting the switching speed. The 
transistors being driven must be evenly matched as to the base voltage 
necessary for saturation. Suppose in Fig. 20-27c that transistor Tl is 
saturated at -0.3 volt, while T2 requires -0.4 volt for saturation. As 
the driving transistor is cut off and the voltage falls to -0.3 volt, Tl 
will conduct; its base current might be enough to keep the voltage from 
falling to -0.4 volt, and T2 would never be driven to saturation. 
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A B c 

(a) (b) (c) 

FIG. 20-27. Direct-coupled transistor circuits. (a) and inverter; (b) or inverter; (c) 
direct-coupled driving. 

Current-switching Transistor Logic. As we have seen in Sec. 20-3, 
transistors driven into saturation can have long storage-time delays. 
For higher switching speeds, therefore, it is desirable to use only small 
voltage swings for 0 and 1 representation and to avoid using the transis­
tors in the saturation region. The current-switching transistor method 
now to be described is designed for this purpose. The basic concept of 

R 

R 

Output 

FIG. 20-28. Transistor current switching. 

current switching can be discerned from consideration of the circuit of 
Fig. 20-28. Here the emitters of both transistors are connected to a 
constant-current source. The base of transistor T 2 is grounded, while the 
base of transistor Tl receives the input to the circuit, a voltage swing 
just large enough to cause the transistors either to conduct or to be cut off. 
Suppose that Tl is conducting. Then the current will go through the 
top resistor to - V through T1, raising the output voltage at the top to 
- V + (leo + cd)R. The emitter-base voltage on T2 is too small for 
conduction; hence T2 is in cutoff so that only leo flows through the bottom 
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resistor and the lower output voltage remains - V + leoR. Now sup­
pose that Tl is cut off by the input signal. The current source will raise 
the voltage applied to the emitters until T 2 starts to conduct. The 
current will now flow through T 2, raising the bottom output voltage to 
- V + (leo + al)R; the top output voltage level drops to - V + leoR. 
In this way a small input voltage swing switches the current through 
one or the other of the transistors, thereby altering the two comple­
mentary output voltages. 

+0.6 vJl 
-0.6 v 

-s.4V J1 
-6.6 v 

Input 

-6v 

r------r----,.--ofi -5.4 v 
-6.6 v 

200 !2 

-6 

200 !2 ms 

'------.......... ----L.--o~ r -5.4 v 
U -6.6 v 

Current switch Output 

(a) 
r------r------r--oIl +0.6 v 

-0.6 v 

200 !2 

200 !2 

'--____ -'--__ -'-_.()~ r +~.6 V 

U -0.6v 
Current switch Output 

(b) 
FIG. 20-29. Current-switching circuits for alternate matching. 

In order that the voltage swing of the output be symmetric about 
- V, the configurations of Fig. 20-29 are used. Consider, for example, 
Fig. 20-29a: when Tl is conducting (i.e., the input is at -0.6 volt), 
approximately 3 ma of the 6-ma source will go to the top current" sink" ; 
the other 3 ma will pass through the 200-ohm resistors to the bottom cur­
rent" sink," raising the top output voltage to approximately -5.4 volts, 
and lowering the bottom output voltage to about - 6.6 volts. When the 
input is raised to +0.6 volt, T 1 is cut off and T 2 conducts, reversing the 
potentials at the outputs. The voltage levels given here are approximate 
because an exact calculation must take into account the effective internal 
resistances of the transistors; and, in addition, a current source is usually 
comprised of a large resistor in series with a voltage source, so that the 
current cannot be held precisely constant. 
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The outputs of the circuit of Fig. 20-29a swing between - 5.4 and 
-6.6 volts, whereas its input changes from +0.6 to -0.6 volt. We 
must have another current-switching circuit, shown in Fig. 20-29b, whose 
input swing is -5.4 to -6.6 volts and whose output change is from 
+0.6 to -0.6 volt. Note that n-p-n transistors are used in circuit b 
and that the base of the bottom transistor is held at - 6 volts instead 
of at ground level. Circuits of these two types are connected alternately. 

,-----,------,--------,------.--0 A+B +C 

v 

A+B+C 
(a) Output 

0Jl v+ 
1 V_ 

A·B·C 

A 

Gating B inputs 

V 
C 

~----.L...-__ _L___<l A· B· C 

(b) 
Output 

FIG. 20-30. Current-switching gating. (a) or gate; (b) and gate. 

Current-switching logical operations are performed as shown in Fig. 
20-30. In circuit a, if any of the transistors A or B or C is turned on, the 
current is switched, giving the complementary outputs A + B + C and 
A + B + C. In circuit b all three transistors A and Band C must 
be turned on to switch the current, giving the complementary outputs 
A . B . C and A . B . C. 

Transistor Flip-Flop Circuits. The circuit of Fig. 20-31 is typical of 
transistor flip-flop circuitry. In one of the two stable states of the flip­
flop, transistor T 2 is conducting, its collector voltage rising almost to 
o volts (ground). This collector voltage is applied through the resistor 
to the base of transistor T 1, cutting it off. Since TI is not conducting, 
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its collector voltage will be about -12 volts; this voltage is applied to 
the base of transistor T 2, to keep it conducting (in saturation). The 
other stable state has Tl conducting and T2 not. Again the base-to­
collector connections between Tl and T2 keep Tl on (in saturation) and 
T2 off (in cutoff). The outputs of the flip-flop, which are the two collector 
voltages, now reverse. Switching the flip-flop is accomplished by means 
of the capacitor and diode connected to the base of each transistor. 
The normal state of each input is at -12 volts; the diode prevents a 
reverse current from the base of the cutoff transistor. Suppose that T2 

+12 v 

o u tpu t 0----,------1 1----.----0 Ou tpu t 

5100n 5100n 

OoOOlPf

y 

yOo001Pf 

Input (set) Input (reset) 

FIG. 20-31. Flip-flop package. 

is conducting and Tl is cut off. When a positive signal is applied to thG 
reset input, T 2 is cut off and its collector voltage falls to -12 volts. 
putting Tl in saturation and reversing the state of the flip-flop. A 
positive pulse in the set input will now change the state back again. 
The switching of the flip-flop in this fashion is called R-S switching (from 
"Set-Reset"). This mode of operation corresponds to that described 
in Sec. 12-11, Additional Topic b. The small capacitor paralleling the 
resistor between the base of each transistor and the collector of the other 
acts simply to decrease the switching time by helping to clear out holes 
in the respective bases. 

A single trigger pulse can be made to switch the flip-flop. Consider 
Fig. 20-32, which is the same circuit as that of the previous figure, except 
that the inputs have been connected together. Suppose that T2 is 
conducting and T 1 is in saturation. The quiescent input voltage is 
-12 volts. The collector of T 2 will be at around 0 volts, while the col­
lector T 1 will be at -12 volts; the base of T 2 will be at a small negative 
potential, while that of Tl will be slightly positive. Observe that the 
voltage across the T 2 input capacitor will be 12 volts, while the voltage 
across that of the Tl input will be about 0 volts, since the resistors R 
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are connected from each input capacitor to the corresponding collector. 
As a positive pulse (with 0 volts peak) appears at the input, the voltages 
across the capacitors remain momentarily unchanged. The voltage on 
the base of T1 is unchanged since it was more positive than the input 
pulse peak; the base of T 2, however, is driven positive by the charge 
on its capacitor, far into the transistor's cutoff region. As the capacitors 
charge and discharge, T 2 is held at cutoff long enough for its collector 
voltage to bring T 1 on and the circuit settles into its other stable state. 
(The trailing edge of the pulse has no effect because of the diodes.) 

+ 12 v 

Output o--,-----l 1---,-----0 0 utput 

R R 

+ . 
O.001,ttf

T

O v 12 v_TO.OQIPJ 

Unit triggering nOv 
pulse: ...J L-12 v Input 

l-12 v 

FIG. 20-32. Triggering the flip-flop with a single pulse. 

Another positive pulse will of course again change the state, this time 
cutting off T 1, and so forth. This mode of operation corresponds to the 
T flip-flop described in Sec. 12-11, Additional Topic b. 

Figure 20-33 shows several of these flip-flop circuits connected to form 
a shift register. Suppose that a unit in the flip-flop is represented by the 
right-hand transistor conducting, the left-hand transistor not, and a 
zero by the other flip-flop state. When the triggering shift pulse appears, 
we desire to transfer the state of the first flip-flop stage to the second 
flip-flop stage. This is accomplished by connecting the resistor part 
of our diode-capacitor inputs to the collector of each first-stage transistor 
as above, so that the state of the first stage can be "recorded" in the 
capacitors; but the diodes are now connected to the bases of the transis­
tors of the second stage, so that the triggering excitation will have its 
effect there. However, we want the second stage to attain the same state 
that the first stage was in, and therefore we must connect the capacitor 
that senses the T 2 collector of the first stage to the base of the T 1 transis­
tor of the second stage and the capacitor that senses the T 1 collector 
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of the first stage to the base of the T 2 transistor of the second stage 
(why?), and so on, down the line of successive flip-flops in the register. 
Note that the first stage has two capacitors attached to its transistors' 
collectors. The other pair of capacitors load the shift register in the 
manner described for the circuit of Fig. 20-31. 

1st-stage output 2d-stage output 3d-stage output 

L __ 

To shi ft -c;:r -c;:r 
the registe~ =--.L..T ~ 

:;~::: { Re~:::! . 
j----

FIG. 20-33. Flip-flop shift register. 

EXERCISES 

(a) Discuss the circuit of Fig. 20-26, considering rise and fall times, number of 
inputs, saturation, and number of drives, etc. (HINT: Base the discussion on the 
transistor equivalent circuit.) 

(b) Describe a method for graphically analyzing the rise and fall collector voltage­
time curves for the circuit of Fig. 20-27 c. 

(c) How can the flip-flops of Fig. 20-31 be connected (through the G-H terminals) 
to make a serial binary counter? 

(d) How can the flip-flops of Fig. 20-32 be connected to make a parallel binary 
counter? 

(e) Discuss the use of clock pulses in a computer using the or inverter of Fig. 20-23, 
with and without the use of flip-flops. (HINT: In the latter case treat succeeding 
or inverters as or gates followed by and gates.) Does this discussion apply to the 
or-inverter circuit of Fig. 20-26? 

20-7. The Tunnel Diode 

Operating Principles of Tunnel Diodes. t The so-called tunnel diode 
is a new solid-state device, with a negative-resistance region in its char-

t The tunnel diode was discovered by Dr. Leo Esaki; see L. Esaki, New Phenomenon 
in Narrow Ge p-n Junctions, Phys. Rev., vol. 109, pp. 603-604, Jan. 15, 1958. 
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acteristic curve, which can be used in microwave digital circuits for 
amplification and gating (see Fig. 20-34a). Utilizing this device, repeti­
tion rates (i.e., l/unit time interval) of 1,000 to 3,000 megacycles, or 
more, may be realizable. Thus its potential advantage is very great 
speed in a comparatively reliable solid-state device. At present there 
are disadvantages, associated with problems of reproducibility and uni­
formity of characteristics as well as with the many circuit-design problems 
introduced by the high speed, which must be overcome. 

The tunnel diode consists of a junction between extremely heavily 
doped (doped to "degeneracy") n-type and p-type semiconductors. It 
depends for its operation on the quantum-mechanical phenomenon known 
as tunneling, from which the diode derives its name. t Tunneling is an 
effect in which an electron can "tunnel" through a potential barrier, 
even though it does not have sufficient energy to "surmount" the barrier, 
provided the barrier is "thin" enough. The explanation of the tunnel 
diode's characteristics must therefore be given in terms of available 
energy states. The tunneling of electrons from the n-type side to the 
p-type side of the diode will occur provided that the junction potential 
barrier is thin, that electrons are available in the n-type side to do the 
tunneling, and that states are available in the p-type side into which the 
electrons can go. Figure 20-34b represents an energy-band diagram of 
the p and n sides of a tunnel diode, showing forbidden, empty, and filled 
energy states and their relation to the Fermi level in the diode. To 
simplify the illustration, the picture is shown for low-temperature con­
ditions, under which the energy level between filled and empty states, 
as indicated by the Fermi level, is well defined; but this is not essential 
to our discussion. Any electron that tunnels through the barrier must 
fill an empty energy state at the same energy level from which the electron 
originally came. That is, in the diagram of Fig. 20-34b, electrons from 
the n side must tunnel into empty energy states" horizontally opposite" 
on the p side. Thus for zero bias no tunneling can occur, for there are 
no p-side empty energy states available at the same energy level as the 
n-side electron state. A small forward bias, however, brings the n-side 
electron states to a point horizontally opposite empty p-side states on the 
diagram, and tunneling occurs, accounting for the initial tunneling peak 
in the V-I characteristic. Further increase in the forward bias puts the 
n-side electron states opposite p-side forbidden energy states; tunneling 
ceases, accounting for the valley in the V -I characteristic. As the 
forward voltage becomes sufficiently large, the minority current dominates, 
as in the usual diode case, producing the rightmost diode action portion 
of the V-I characteristic. 

Use of Tunnel Diodes in Digital Circuits. As an example of the use 
of the tunnel diode consider the circuit of Fig. 20-35a, due to E. Goto. 
The circuit is analogous to the Parametron considered above (Sec. 19-2) 

t See, for example, L.1. Schiff, "Quantum Mechanics," chap. 5, pp. 92-95, McGraw­
Hill Book Company, Inc., New York, 1949; or D. Bohm, "Quantum Theory," 
chap. 11, pp. 238-242, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1951. 
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FIG. 20-34. Tunnel-diode characteristic and explanation of tunneling by available energy-band levels. 
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in that the clock pulse is utilized to build up a weak input signal; it 
differs from the Parametron in that its clock pulse and signal inputs and 
outputs are direct-current pulses and not wave pulses. The circuit uses 
two tunnel diodes in series and two clock pulses of opposite polarities; 

Op.--------~~------

(nputs Dl 
A -vvvvv....... Output 

B 1+ {ifIx=O,A+B ! q if Ix= -I, A'B 

. 1_ V:TL1 
.Ix~ A: • Dz --, I 1 V-L....I 0 

x 

Op--------~------
'--.r 

(a) Digital circuit utilizing tunnel diodes 

(c) Difficulty with mismatched diodes 

I(D1) or I(D~ 

\ m J 

,,={\)-I 

v 

(b) Successive -stages in the operation 
of the circuit in (a) 

FIG. 20-35. Diagram and operation of a digital circuit utilizing tunnel diodes. 

the input to the circuit is a small current signal, which behaves as a small 
current source either into or out of node q depending on the sum of the 
currents through the large input resistors (see Fig. 20-35a). To see how 
this current signal is built up into a large voltage level by the diodes, 
consider the successive stages of the operation of the circuit illustrated 
in Fig. 20-35b. Here the vertical axis represents the current through 



SEC. 20-7] SEMICONDUCTOR ELEMENTS IN DIGITAL-CIRCUIT DESIGN 683 

either diode; the horizontal axis represents the voltage V of node q with 
respect to ground. Thus when the clock pulses are zero (Le., no pulse), 
V must be negative to forward-bias diode D 1, positive to forward-bias 
diode D 2, as shown in the top diagram of Fig. 20-35b. As the positive 
clock pulse attached to Dl comes on, its effect is to move the Dl character­
istic curve further to the right; as the negative clock pulse comes on, its 
effect is to move the D2 curve further to the left, as shown successively 
in the lower diagrams. An input current I to node q will be divided 
between Dl and D 2, moving the voltage of node q slightly positive until 
current I, as shown by the heavy vertical line in the top diagram, is 
achieved between the two curves. As the clock pulses come on, the 
movement of the curves forces the voltage of node q to move further 
positive, always keeping the difference between the currents through Dl 
and D2 equal to I, as shown by the successive positions of the heavy 
vertical line. Thus the signal is amplified, during a single clock-pulse 
period, and the voltage VIis approximately reached by node q, as shown in 
the bottom diagram. We say "approximately," for current will now be 
supplied to the output and after the clock pulse of the previous gate is 
turned off, current may also be drawn backward through the input. A 
similar argument shows that a voltage of approximately Vo is reached if 
the original input signal was a negative current. 

Observe that the two tunnel diodes of this circuit must be matched 
for approximately equal tunnel-peak heights of the characteristic. 
Consider the effect of a current mismatch of /)"h, as shown in Fig. 20-35c. 
If the input current signal /),.1 is less than /)"h, then as the clock pulses are 
applied the direction of movement of the voltage V of node q cannot be 
predicted, for as the characteristic curves move across each other, an 
unstable point appears at which the voltage could either increase or 
decrease as indicated by the arrows on the figure. On the other hand, 
if /),.1 > /)"h, the voltage of node q must remain on the same side of zero, 
as desired. Note, in the lowest diagram of Fig. 20-34b, that the limit on 
the total number of inputs plus outputs of the circuit is the difference in 
height between the tunnel peak and 
the valley, divided by /),,1; that is, CI~ck ~ 
ni + no :::; (h - y)//)"I, for ni inputs, p~ "'---

==~----------~--====-no outputs, tunnel-peak height h, 
Signal 

valley height y, and input current build-up / "--
signals of magnitude /),.1. ==~~----------=::~===--

Since the generated signal can prop- cp~ 
agate both forward and backward, ..-L ____ ~ ___ r=='\'--__ ---30.. __ 

we have a situation again analogous cp_2 ____ r==:'\ __ -"-__ -'~"___~_ 
to the Parametron, as described in cp 3 ~ r= 
Sec. 19-2 (see Fig. 19-4). The same ~---~--~----'!:....--

FIG. 20-36. Parametron analogy, 
solution to that problem can be ap- showing signal build-up with clock 
plied here: three clock phases are pulse and a three-clock-phase system. 
utilized, as shown in Fig. 20-36. The 
method of gating is also analogous to that of the Parametron in that 
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it is essentially of the majority-gate type. Thus, as indicated in Fig. 
20-35a, if input X has no current, then an input on either A or B will 
result in a positive voltage output, producing an or gate if V + is a unit. 
If the input X has negative current (i.e., out of node q), then both A and B 
must be unit inputs in order that V + result, for an and gate. Observe 
that there is no negation. In the Parametron of Sec. 19-2 we simply 
reversed the two leads, since transformers coupled the circuits illustrated 
there. Here, however, two independent gates must be maintained foJ' 
each gating operation, one for the direct, one for the inverse, output. 

EXERCISES 

(a) On transparent paper, draw the characteristic curves of Fig. 20-34a for Dl and 
D 2 ; by sliding the curves across each other, as in Fig. 20-35b, observe carefully what 
happens as the two tunnel peaks cross. 

(b) Design a serial adder using the circuit given in Fig. 20-35a. More than three 
inputs may be utilized. What is the minimum number of circuits required? 

(c) Design a shift register utilizing the tunnel-diode circuit of Fig. 20-35a. How 
is the "delay" accomplished? 

(d) Design a digital circuit using only a single tunnel diode. (HINT: Current-bias 
the tunnel diode just below the tunnel peak; then an additional current pulse will 
drive the voltage to the diode action slope. What is the limitation on the number of 
inputs and outputs of this circuit? Why is a three-phase clock necessary? How can 
gating be accomplished?) 
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CHAPTER 21 

MAGNETIC ELEMENTS IN DIGITAL-CIRCUIT DESIGN 

21-1. Introduction 

Magnetic Circuits. Magnetic elements can have high reliability, 
mechanical strength, small size, light weight, small power consumption, 
and relatively low cost. As such they are an important kind of com­
ponent for digital circuits. After a brief review in this section of some 
of the laws of physics governing magnetic phenomena, we consider in 
the next section properties of those magnetic materials most frequently 
used in digital circuits. Application of magnetic components to ampli­
fication in diode-gated circuits is considered in Sec. 21-3. In Sec. 21-4 
application of the magnetic components to the gating functions is 
described, including the multiaperture cores that give promise of digital 
circuits devoid even of diodes and transistors. Finally in Sec. 21-5 we 
consider modern developments still in experimental stages, the Cryotron 
operating on magnetic principles, and microwave gating operating on 
electromagnetic principles. The topics of this chapter by no means 
cover all the types of magnetic components or circuits that have been 
reported in the literature. Our purpose primarily is to introduce the 
reader to as large a variety of concepts as possible without embarking 
on too extensive a discourse. Each of the concepts studied has many 
possible variations; and it is hoped that the basic principles of the use of 
magnetic components in digital circuitry, illustrated by the examples 
chosen for this chapter, will enable the student to understand other 
techniques appearing in the literature that must be omitted here. 

Review of Ampere' 8 Law. A magnetic vector field is associated with 
every current, every moving charge. According to Ampere's law, the 
infinitesimal contribution dH to the magnetic field at a point P made by 
the infinitesimal length dlr of wire carrying current I is given by the 
vector product 

dH = I dlr X r 
41rr3 

(21-1) 

where r is the position vector from dlr to point P (see Fig. 21-1a). 
Then according to the right-hand rule (see Fig. 21-1b) the direction of 
dH is perpendicular to the plane of dlr and r. Consider, for example, 

689 
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the field at the center of a circular loop, carrying a current I (see Fig. 
21-1c) : 

H = rz I dlr X r = I (27r r dO'. k = !.... k 
Jo 47T"r 3 Jo 47T"r2 2r 

where k is a unit vector, here directed toward the reader perpendicular 
to the plane of the figure. For N turns, each carrying the current I, 

H = NI k 
2r 

(21-2) 

The current-related dimensions for H are thus ampere-turns per meter. 

(a) 

H 
~ 

(e) 
FIG. 21-1. (a) Ampere's law; (b) the right-hand rule for H; (c) field in the center of a 
wire loop. 

(a) (b) (e) 
FIG. 21-2. (a) Path enclosing loop of wire; (b) path enclosing N loops; (c) path inside 
toroid. 

A concept closely related to the magnetic field is that of magnetomotive 
jorce, mmf (which is not a force at all but rather is associated with work 
or energy), defined as the line integral of the scalar product 

(21-3) 

Itcan be shown that, if the line of integration is taken as a closed path 
around a current I, then 

~ = §H· dIp = I (21-4) 

and is independent of the particular path chosen, so long as it encloses I 
(see Fig. 21-2a). If for a coil of N turns carrying a current I, the closed 
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path is taken through the center and then round the outside of the coil 
(see Fig. 21-2b), then from Eq. (21-4) 

g: = N I (21-5) 

'"rhus g: can have the current-related dimensions of ampere-turns. Con­
sider, for example, the path taken inside a toroidal coil (see Fig. 21-2c) 
of radius R such that H (the magnitude of H) is constant along the 
path. Then from Eq. (21-3), g: = Hl; but, from (21-5), g: = NI; hence 
H = NI/l, where l = 27rR. 

Review of Faraday's Law. A magnetic field can be represented by 
lines whose directions at all points are those of the magnetic field vectors 

(a) (b) 

Toroidal 
f---\---,-- current I 

(c) 

Induced 
current I' 

FIG. 21-3. (a) Flux change through coil; (b) toroid with secondary coil; (c) induced 
current direction. 

at those points. By convention the number of these lines crossing a 
unit area taken normal to their direction is made equal to the magnitude 
of the field vector. Such lines are called lines of induction, or lines of 
flux. The total number of lines of induction passing through a surface 
is called the magnetic flux through the surface. Consider a coil of N 
turns enclosing magnetic flux <I> (see Fig. 21-3a); if the flux is varied 
with time at a rate d<I>/dt, then according to Faraday's law a voltage V 
is induced across the windings, of magnitude 

d<I> 
V = -Ndi (21-6) 

Note that, since H is given in ampere-turns per meter, we could give <I> 

in ampere-turn-meters; but then V would become something different 
from a volt. Because of this, <I> is more often given in dimensions of 
volt-seconds per turn, called the weber. Thus 1 volt is induced across 
one turn enclosing a flux change of 1 weber/sec. Since H is essentially 
flux density (flux per normal unit area), we can now express it in terms 
of webers per square meter. When expressed in these units, it is called 
the magnetic induction, or flux density, and is denoted by B. Thus 
B = ,uoH, where J.l.o is a constant of proportionality between the different 
kinds of units (i.e., webers per square meter and ampere-turns per meter) i 
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and in fact P.o = 477" X 10-7 = 1.257 X 10-6 weber/amp-turn-m (for a 
vacuum; see below). 

Note that the flux density inside the toroid of Fig. 21-2c is B = J.toNI/l. 
If the radius of the loops is r, then the flux in the loop is <I> = BA, or 

p.oANI NI 
<P = -l- = l/ p.oA 

where A = 77"r2. If we place a second coil of M turns inside the toroid 
(see Fig. 21-3b), then the voltage induced across this second coil, due 
to a rate of change of current equal to dI / dt in the toroid coil, becomes 
V = -M d<l>/dt = -MN (dI/dt)/(l/uoA). 

(a) (b) 

FIG. 21-4. Coils with cores showing flux lines. 

(c) 

.1 
T 
l2 

The direction of the induced voltage is given by Lenz's law, which 
states that the direction of an induced voltage is such as to oppose the 
cause producing it. Thus, as the flux inside a coil increases, the direction 
cf the vcltagc induced n1ust be sU0h LhitL a re:::;ulLiug eUl'l'ent will produce 
a flux tending to decrease the imposed flux change; and as the imposed 
flux decreases, the resulting current will produce a flux tending to increase 
the imposed flux. For example, in our toroid when dI/ dt is positive 
the induced dI' /dt is negative, and vice versa (see Fig. 21-3c). 

Ferromagnetism. When certain materials, such as iron, nickel, cobalt, 
and their alloys, are placed in a magnetic field H, the flux density inside 
the material becomes greater than the applied field. This phenomenon 
is due to subatomic currents associated with electron spin, nuclear spin, 
or planetary motion in atoms. When an external field is applied, the 
subatomic currents are lined up so that their fields are in the same 
direction and the vector sum of these fields produces the observed phe­
nomenon. The amount of this additional flux density is (roughly) 
proportional to the applied field. Thus the total flux density inside the 
material becomes 

B = p.oH + xH = (J.to + x)H = p.H 

where X is called the magnetic susceptibility of the material and J.t is 
called the permeability of the material. The constant P.o introduced 
above is called the permeability of space. For example, if a wire of N 
windings carries a current I around a ferromagnetic core of susceptibility 
X (see Fig. 21-4a), then B = p.oNI/l + xN1/l = p.NI/l. For the.flux 
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we have <P = BA = NII(lIJ.l.A).· Even if the windings are located only 
on one part of the core, since the permeability of the core is so much 
greater than that of the surrounding space, most of the flux is still con­
fined inside the core (see Fig. 21-4b). If a small air gap were made in the 
core, most of the flux lines would cross the gap and enter the material 
on the other side (see Fig. 21-4c) and the flux would be almost the same 
all around the ring. 

Reluctance. Let us assume that the flux in Fig. 21-4c is confined 
within the ring, which has a constant cross-sectional area A 1, and within 
a constant area A 2 across the air gap. Choosing within the ring as a 
path of integration a line of constant magnetic field intensity HI, Eq. 
(21-3) gives 

~I = HIlt 

where II is the length of the line within the metal. Integrating along 
the continuation of this line (having constant field intensity H 2) in the 
air gap, we find 

~2 = H2l2 

where l2 is the length of the line within the gap. By Eq. (21-4) 

5" = 5"1 + ~2 = HIll + H2l2 

Since the total flux <P is constant across A 1 or A 2, we have 

<P = BIAI = B2A2 

or BI = <PI Al and B2 = <PI A 2. Applying Eq. (21-7), we find HI = <pIJ.l.IAI 
and H 2 = <PI J.l.2A 2, with J.l.I and J.l.2 the permeabilities of the ring and air 
gap, respectively. Substituting these values in the above equation and 
solving for <P, we have 

where (Ri = lil J.l.iAi is called the reluctance of the path. As with resist­
ances, the reluctances of series paths add, and the reciprocals of the 
reluctances of parallel paths add. 

21-2. Magnetic Properties and Materials for Digital Circuits 

Square-hysteresis-Ioop Materials. Consider a plot of B versus H for a 
magnetic core made of "square-loop" material (see Fig. 21-5). As the 
field H is applied, the flux through the core reaches a maximum, beyond 
which additional H will not produce appreciably more B. In this state 
practically all the subatomic currents are lined up, and the core is said 
to be saturated (see point a in Fig. 21-5). If the field is decreased to zero, 
the core will retain most of its flux, i.e., will behave as if it were a perma­
nent magnet. The flux density B at this point (b in Fig. 21-5) is called 
the retentivity, or remanence. As H is decreased still more (i.e., as H is 
reversed in direction), the flux will suddenly start to drop rapidly (point 
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c). The magnitude of H for which B = 0 (point d) is called the coercive 
force, or coercivity. The direction of the flux density will now change, 
and the core will again become saturated, but oppositely to the previous 
saturation state (point e). Further decrease of H will not appreciably 
change B (point f). If H is now increased, the plot will follow the lower 
line of Fig. 21-5 (pointsf, g, h, i, j, a), passing through the retentivity, or 
remanence, for this state (point g) and the coercivity (point i) for positive 
H. Thus the core can have two remanent states, which in binary 
circuits represent a unit (e.g., point b) and a zero (e.g., point g). The 
processes of changing H so that the core goes from one remanent state 

f 

B 
to the other is called flipping, or 
switching, the core. (If the coercive 
force is not exceeded, partial flipping 

__ E--~b:--..... _~",,-~- a of the core may occur-see the dashed cr P lines of Fig. 21-5.) The reader should 
" remember that not all magnetic ma-

~ terials exhibit such a square hysteresis 
loop. d 

o H 

g 

FIG. 21-5. Square hysteresis loop. 

The most commonly used cores are 
made of ferrite materials, molded 
ceramics composed of iron oxide and 
other metallic oxides. The powdered 
ceramic is pressed into toroidal molds 
and sintered at around 1300°F until 
proper crystallization has occurred. 

Such cares ~rc man.ufactured in a. variety of 8i.~e:::;, fur memories some as 
small as 0.05 in. in diameter. Cores have also been made with ultrathin 
(3i mil) metallic tapes wound on ceramic or steel bobbins, the layers 
reducing eddy currents. The ferrites are nonconductors, and therefore 
their eddy currents are automatically kept small. Crystal structure and 
uniformity of composition are important factors in obtaining a square 
hysteresis loop. 

It has been shown that there exist in ferromagnetic substances small 
regions called domains. Within each domain all the electronic spins are 
parallel to each other-i.e., the domain is saturated. Adjacent domains 
have different directions of spins, i.e., of intrinsic B. The region between 
two domains is called the domain wall. Here the spin directions gradu­
ally change as the wall is crossed from one domain to another. In 
unmagnetized material the domain may have a linear dimension of 
0.1 mm; the wall thickness is about 10-4 mm. When a field is applied, 
the domains originally oriented in the direction of the field begin to grow 
larger at the expense of the other domains; this is accomplished by the 
movements of the domain walls. Another process, called domain rotation, 
may also occur, where all the spins of a domain simultaneously rotate 
to the direction of the applied field. 

Flipping the Cores. The dot notation for core windings is a very 
important point for an understanding of core circuits. The factors 
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involved are (1) the zero or unit state of the core, (2) the primary (ener­
gized) coil and the secondary (induced) coil, and (3) the direction of the 
current in (i.e., polarity of the voltage across) each coil (see Fig. 21-6a and 
b). The dot notation organizes these factors according to the following 
conventions: 

1. Flipping to zero (Fig. 21-6a). The driving current I or impressed 
voltage V will tend to flip the core to the zero state when the current 

(a) Flipping to zero 

o state 1 state 

(b) Zero and unit states consistent with (a) 

(c) Flipping to unit 

FIG. 21-6. Dot convention for flipping cores. 

enters the lead adjacent to the dot. When a core is flipped to the zero 
state, the induced current in the secondary coil will leave the coil at the 
lead adjacent to the dot as the induced voltage makes that lead more 
positive than the other. 

2. Flipping to unit (Fig. 21-6c). The driving current I or impressed 
voltage V will tend to flip the core to the unit state when the current 
leaves the dot lead. When a core is flipped to the unit state, the induced 
current of the secondary coil will enter the coil at the dot lead, as the 
induced voltage makes the dot lead more negative than the other. 

If the current is such as to drive a core into the state which it already 
occupies, evidently no flipping of the core will result, and hence no 
voltage will be induced in the secondary coil. 
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Consider a two-winding core (such as in Fig. 21-6a) which has a 
constant-current pulse source applied to its primary coil to switch it. 
Figure 21-7 illustrates the shapes of the resulting flux and corresponding 
induced-voltage curves, as functions of time, during the switching process. 
Of course the induced voltage appears in each of the coils, as a counter 
emf in the primary and as an induced emf in the secondary. Observe 
that there is an initial rise in the flux, CPi, and a peak in the voltage associ­
ated with the initiation of the current from the source. As the domains 

\ 
\'---_----11 

(a) Applied current source I 

State 11 L 
~1Zi I~' :s: 

State 0 i ~ 
(b) Induced flux <P 

] ~ :Ci Induced VOltbJ ~ 

)­

Time 

'): 

Time 

" Time 

FIG. 21-7. Flipping the core with a constant-current source. 

become aligned, the flux increases, with its rate of change being reflected 
in the magnitude of the induced voltage. When the saturation flux 
CP8 is obtained, there is no further increase in the flux and the voltage 
drops to zero. When the current is turned off, the flux is slightly reduced 
to the remanent value CPr, and a corresponding spike appears in the 
voltage. If the current source now reverses direction, the core flips 
back to its original state. 

When a voltage source V is applied to the driving coil (see Fig. 21-8), 
there is an initial current rise of 10 through the coil, until point c or h 
of Fig. 21-5 is reached. Then the switching of the core begins, and the 
counter emf in the driving coil limits the current flow to 18 (see Fig. 
21-8b). During this time the coil appears as an approximately constant 
resistance Re. Of course the voltage source must be connected with a 
resistor R in series with the coil, so that after the core is flipped (and 
Re becomes zero) the current will rise onJiy to a value I = V / R. Letting 
V8 be the voltage across the coil during switching, we have ' 

and 
V8 = (18 - IO)~b 
V = IR = (18 - Io)Re + I8R 

(21-8) 



SEC. 21-2] MAGNETIC ELEMENTS IN DIGITAL-CIRCUIT DESIGN 697 

From these equations we find 

v = RRe(1 - 10) 

8 R + Re 

I = V + loRe 
8 R + Re 

(21-9) 
and 

The core switching resistance Re appears only during the time the core 
is switching, i.e., when dip/dt »0. Note that Re is approximately con­
stant in the constant-voltage case (i.e., the 18 part of the I curve of Fig. 

\ .. 
Time \L...-_----IJ 

(a) Applied voltage source V 

+1 

0 
Time 

-I (b) CUrrent I in driving coi I 

Sm,. :1 /r. ~ ::. 
State 0 ~ Time 

(c) Induced flux cI> 

FIG. 21-8. Flipping the core with a constant-voltage source. 

21-8 is approximately flat), but the approximation is not so good for the 
constant-current case. (Why? See Fig. 21-7.) 

The value of Rc can be estimated by means of considerations concern­
ing the switching time of the core, the time T required to switch or flip a 
core. This is frequently defined as the time required to switch the core 
through 80 per cent of <I>8' It has been found experimentally that if a 
constant mmf ~8 (that is, constant N Is) is used to switch a core, then the 
switching time is inversely proportional to the mmf ~s. Since the 
coercivity must be applied before the core switches, the plot of l/T versus 
~s appears as in Fig. 21-9. The equation of this straight line is 

1 ~s - ~o 

T S 

N(ls - 10) 

s (21-10) 

where S is the slope of the line. If d<I>/dt is considered constant during 
the switching (that is, Re is constant), then dip/dt = 0.8<I>s/T, whence 
from Eq. (21-6) V8 = 0.8N<I>8/T. Then by Eqs. (21-8) and (21-10) we 
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(21-11) 

If Re cannot be considered constant, then we can find an average Rc 
defined such that Re = Vs/(Is - 10). 
However, the average voltage during 
switching, by Eq. (21-6), is 

Vs =! (r V dt = 0.8NcI>s 
T )0 T 1 

T 

Then, from Eq. (21-10) we have once 
more 

(21-12) 

~ 
FIG. 21-9. Experimental plot of the 
reciprocal of the switching time T 

versus the mmf 5"" (5"0 = Nlo is the 
coercive mmf). 

Getting back to the switching time, 
let us find the effect of the impressed 
voltage V in the case of constant-volt­
age drive, and, of the driving current 
I in the case of constant-current drive. 

From Eqs. (21-10) and (21-9) 

! = N 1-10 R 
T S R + Re 

we find 

and .!. = N V - RIc 
T S R + Rr 

The constant-current case requires R » Re, whence 

S 
r=----

N(I - 10 ) 

whereas for the constant-voltage case Re » R, whence 

S Re 0.8N<I>s 
T = - = ------

N N(V - RIo) V - RIo 

EXERCISES 

(a) Prove Eqs. (21-9) from Eqs. (21-8). 
(b) If, for a core, S = 0.66 X 10-4 (amp-turn)(sec)jm, N = 50 turns, 10 = 3 rna, 

and <I>8 = 4 X 10-8 weber, find Rc in ohms. 
(c) Find the switching time T for the core of Exercise b when a current source 

I = 10 rna is applied; when a voltage source of 10 volts through a resistance of 
'2,000 ohms is applied. 

21-3. Diode-gated Magnetic-amplifier Circuits 

Problems of Digital Magnetic Circuits. A discussion of an elementary 
core. shift register will display the three important problems that arise 
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in connection with magnetic circuits, namely, (1) separation of the input 
and output phases of each core stage, (2) signal amplification, and (3) 
signal isolation of a core from its adjacent stages. In the operation of a 
core the initial state is a zero; the core is flipped for a unit input and 
remains unchanged for a zero input. To sense the bit stored in a core, 
an attempt is made to flip it to the zero state: if an output signal is 
induced in a sensing coil, a unit was stored; no signal indicates that a 
zero was stored. Figure 21-10 illustrates the elementary register to be 
described, which has two cores per register bit. Each core of our shift 
register has three windings: an input coil that will flip the core if a unit 
signal arrives from the previous stage; a clock coil that is driven by a 

Input coil 

A B A B 
FIG. 21-10. Elementary core shift register, two cores per hit. 

constant-current 'Source to try to flip the core to zero; and an output coil 
that senses if the core was actually flipped by the clock. Note that the 
A and B clocks operate in alternate cycles. The simultaneous current 
pulses from the A clocks will produce output signals from stages 0 and 2, 
as these stages are" cleared" to the zero state. These output signals 
become the respective input signals to stages 1 and 3. When clocks B 
are activated, stages 0 and 2 are cleared and are in their input phases, 
while stages 1 and 3 are in their output phases. Because the cores are 
alternately cleared as the information is shifted from stage to stage, the 
register requires two cores per bit. 

Assume that the B clocks are energized and that the stage 1 core- is 
thereby flipped from the unit state to the zero state. Let the switching 
flux change be <I>l; then a voltage V(t) = N d<I>I/dt will be induced in the 
N turns of the stage 1 output coil. This voltage will be impressed across 
the M turns of the stage 2 input coil, flipping it to the unit state. But as 
core 2 flips, a voltage is induced across its clock and output coils. How­
ever, the A clocks are off, and no current can flow in the clock coil; and 
the induced voltage in the output coil reverse-biases the diode so that 
no current will flow. Thus during the flipping of the stage 2 core by the 
stage 1 core, the rate of induced flux is d<I>2/dt = V(t)/M. To find the 
total induced flux, observe that 

JOT V dt = N<I>1 = M<I>2 

If M < N, then <I>2 > <I>l. This amplification of the signal is necessary 
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to ensure that the stage 2 core will flip even if there is some resistive 
loss and even if the clock and output coils of stage 2 do have some effect. 

We have seen how stage 3 is isolated from stage 2 by the diode wheQ 
the latter stage is flipped by stage 1. The problem still remains as to the 
effect of stage 1 on stage 0, for as the B clock flips stage 1, a voltage will 
be induced in the input coil of stage 1 and the resulting current will be 
in the forward direction of the diode. Since current will flow, clearly 
flux will be induced in the core of stage 0, but the induced flux CPo will 
be only a fraction of <1>1, since <1>0 = (M / N)<I>1. Actually <1>0 will be even 
smaller because of resistive loss and because of some small effect of the 
input and clock windings on the core of stage 0, and only partial reversal 
of the flux will occur. But stage 0 is also receiving an input at this time; 
if the input is a unit, no problem exists, for the core will be flipped the 
rest of the way; if a zero input occurs, the partial flux reversal will remain. 
Now consider the effect of this partial reversal when clock A is energized. 
Some small voltage will be induced in the output coil of stage O. There 
is danger of this being amplified by the ratio N / M; in practice this 
does not happen, for the coercive force must first be met, and also the 
diode will still have appreciable resistance at low forward biases. Thus a 
small voltage will not be amplified, whereas, as we have seen above, a 
large voltage will be amplified. 

Series Clock-pulse Core Logic. In the shift register, signal amplifica­
tion was obtained by having a smaller number of turns on the input coil 
than the output coil. Although this proves adequate for driving one 
core, other techniques must be employed to drive more than one. Sup­
pose, for example, that the core of Fig. 21-11a is in the zero state. A 
positive voltage swing of the clock will tend merely to drive the core 
further into the zero state and there will be little change of flux in the 
core. Hence the output coil will appear as little or no resistance, and 
the clock will essentially be connected directly to the output. The out­
put voltage will very nearly follow the positive clock voltage. On the 
other hand, if the core is in the unit state a positive voltage swing of the 
clock will flip the core back to the zero state. As we have seen in the 
previous section, the output coil will then appear as a resistance through 
which the clock is connected to the output. Now if R c » R 1, most 
of the voltage drop from the clock voltage to - V will appear across the 
output coil and the output voltage will not rise appreciably. In this 
way the core acts as a resistance that can be switched in or out, and the 
output is driven directly by the voltage-source clock (and not by the 
core). This type of amplifier is generally called a Ramey magnetic 
amplifier. Note that in this circuit, as in the shift register above (and 
the circuits below), the input phase of one stage is the output phase of 
the preceding stage, and thus there is necessarily a half-unit-time-interval 
delay between successive gates. 

Let us now consider the entire circuit of Fig. 21-11a. Here gating is 
accomplished in the usual fashion by the input diodes. At the start 
of the input phase the core is always in its zero state. During the input 
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phase a positive pulse arriving from A or B or C will flip the core into its 
unit state. Note that we must distinguish between zero and unit signal 
levels and zero and unit core states. We have chosen a positive signal 
pulse to represent a unit signal level : thus the core is flipped into its unit 
state by a unit pulse. During the input phase, however, the clock 
voltage will be negative, reverse-biasing the output-coil diode, so that 
no current flows in the output coil. During the output phase the output 
coil flips the core back to the zero state; the output voltage remains 
close to ground, and a zero output signal results. Thus the circuit acts 
as an or inverter. As the core is flipped, the input coil reverse-biases the 
input diodes and no current flows. The grounded diode near - V on the 
input coil assures that the input diodes will be truly reverse-biased 
(why?). 

The circuit can be used to produce an uninverted output by reversing 
the input coil and using a bias coil connected to a current source (see 
Fig. 21-11b). During the input phase the bias coil tends to flip the core 
to its unit state. If there is a unit input signal (i.e., positive signal), 
then the input coil will drive against the bias coil, tending to keep the 
core in its zero state. The result will be no net change in the flux of the 
core, and the core will remain in the zero state. During the output phase 
the output-coil resistance will be negligible and a positive (unit) signal 
pulse will result. However, for all-zero input signals (near ground 
voltage level), the bias coil will succeed in flipping the core to its unit 
state; then during the output phase the output coil will present its switch­
ing resistance, and a zero output signal will result. 

Parallel Clock-pulse Core Logic. In the above circuit the voltage source 
is connected in series with the output coil. Magnetic amplification can 
also be obtained by connecting the voltage source in parallel with the 
input coil (see Fig. 21-12). In the input phase, if all the previous cores 
connected to an and gate are in the unit state, then they will present a 
(divided) switching resistance between the +40- and + i-volt supplies, 
so that a unit signal will pass through the or gate. But if at least one 
of the cores of each and gate is in the zero state, each and gate then 
presents a small resistance, the inputs to the gates will all fall to near 
1 volt, and the output of the or gate will be a zero signal. Note that the 
previous cores of the active and gates are flipped back to the zero state 
by the current from the 40-volt supply (in part-see below). 

During the input phase the voltage-source clock output will be positive. 
If the output from the or gate is a unit (a positive voltage at point S 
of the figure), a current will flow through the input coil of the core to 
ground, flipping the core to the unit state. If the output from the or 
gate is a zero, point S is near ground potential, the positive clock voltage 
reverse-biases its diode so that no current flows through the core input 
coil, and hence the core remains in the zero state. 

During the output phase the voltage-source clock output swings nega­
tive, pulling down the voltage at S and with it the voltages at P and Q. 
The and-gate diodes isolate these negative voltages from the previous 
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gates, which are now in their input phases. At the same time the clock 
voltage is applied to the input coil of this gate in a direction to flip the 
core to the zero state. If the core is left in that state, the flow of current 
will not be impeded by the core nor will the core state be altered. If the 
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FIG. 21-12. Parallel clock-pulse core logic. 

core is left in the unit state, the clock voltage on the input coil, together 
with the current in the output coil from the 40-volt supply if the output 
is connected to an active and gate, will flip the core back to the zero 
state, ready for the next input phase. The circuit of Fig. 21-12 ~s.1{nown 
as the Hogue magnetic amplifier. 

EXERCISES 

(a) Why must a voltage source be used in the Ramey amplifier circuit (see Fig. 
21-11)? 
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(b) Draw the states of the core of the Ramey amplifier after the input phase and 
after the output phase, for both zero and unit pulse inputs. 

(c) Why is the small + V needed in Fig. 21-11b? (HINT: Where will current flow 
in the and-gate-or-gate network during the output phase?) 

(d) For the Ramey amplifier describe the state of the preceding core stage and the 
input coil of the present stage during the output phase of the present core circuit. 

(e) For the Hogue amplifier (Fig. 21-12) describe the states of the preceding core 
stage and the input coil of the present stage during the output phase of the present 
core circuit. 

(f) For the Hogue amplifier describe the effect on the next successive stage of 
flipping the core to a unit during the input phase. 

(g) Discuss the source or sources of amplification (power) in the Ramey and 
Hogue circuits. 

(h) Devise a system for negation using the Hogue circuit. (HINT: Use an extra 
core.) 

(i) Suppose in the Ramey amplifier of Fig. 21-11a that V = -10 volts, R = 2,000 
ohms, the clock voltage source is a ± 1O-volt square wave at 200 kc, the core is as 
described in Exercise b of Sec. 21-2 with 50 turns on the input, 100 turns on the 
output windings, and inductances, respectively, of 2 and 4 ph. Calculate the maxi-

mum number of cores that can be driven. [HINT: Recall that Jot v dt = Li(t) when 

current flows through a coil and the core is not being flipped.] 

21-4. Magnetic Gating 

Gating with Cores. In the previous section we were concerned with the 
use of cores for magnetic amplification. We now consider the use of 
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(e) Mirror notation for induced current (d) Illustrating two turns 

FIG. 21-13. Mirror notation. 

cores for the logical gating functions as well. But first we consider a new, 
shorter notation for core windings, the mirror notation. In this notation 
a core is represented by a vertical bar (see Fig. 21-13a); the unit and zero 
(counterclockwise and clockwise) flux directions of the core are imagined 
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as upward and downward flux directions in the bar, respectively. A 
coil on the core is represented simply by an intersecting horizontal line 
(see Fig. 21-13b). A dot at the side of the bar could be used to represent 
the dot lead of the coil, as shown in the second column of Fig. 21-13b; 
the mirror notation replaces the dot by a diagonal line, slanted so that it 
acts like a mirror, "reflecting" the input-current direction into the 
resultant flux direction. For induced currents, see Fig. 21-13c, which 
shows the directions of the induced currents for both types of diagonal 
line. Frequently each intersection is considered a single turn, in which 
case more than one intersection must be used for several turns (see Fig. 
21-13d) . 

Sense Sense -Jiense 
~ -

Output Output OU!pul 
- A+B - A'B - A 

(a) or gate (b) and gate (c) Negation 

FIG. 21-14. Gating with cores. 

Gating is accomplished in two phases, as was amplification. In the 
input phase the logical function is formed in the core, represented by the 
resulting zero or unit state of the core. During the output phase a reset 
winding is pulsed to reset the core to zero. A sense winding then deter­
mines whether the core flips or not, i.e., whether its state was a zero or 
unit; the current induced by flipping is a unit output. For example, 
consider the gating configurations of Fig. 21-14. In (a) is illustrated 
an or gate with inputs A and B. Either input A or input B alone 
provides sufficient current to switch the core to the unit state during 
the input phase. If both A and B occur, there will of course be twice 
as much current as necessary to switch the core, but the flux change will 
still be only to saturation, that is, <1>8' During the output phase the reset 
pulse causes the sense wire to be energized if the core was left in a unit 
state, for an output A + B. In the circuit of (b) we introduce a new 
element, the bias wire whose current alone is sufficient to flip the core. 
During the input phase the bias works against inputs A and B, so that 
if the core is to be flipped to the unit state, both A and B must be ener­
gized. In the output phase the output will represent A . B. Since this 
bias tends to change the core to the zero state, it is called a 0 bias. A 
1 bias can also be used to produce negation, as shown in Fig. 21-14c. 
By the appropriate use of one or more bias wires any elementary Boolean 
product can be obtained. For example, Fig. 21-15a is a circuit generating 
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A . B . C . D. Note that for each negation there is a corresponding I-bias 
and, for an n-term product, n - 1 of the 0 biases must appear. However, 
each pairing of a 1 bias and a 0 bias cancels and hence can be eliminated, 
as shown in Fig. 21-15b. With less than n - 1 (gross) 0 biases the core 
logic becomes a logic of majority gating. For example, in Fig. 21-15c 
an output will appear if more than four of the inputs A, B, C, D, E, or F 
occur. Negations can be handled in the same manner as for the ele­
mentary products. 

A o-----'lor--­

B o----,l~-­

C o----.:f~-­

DO--~--

o bias o----'tr---

o--~-- } For the 
product 

Reseto--~--
Sense Sense 

,J·B·C·D A·B·C·jj 

(a) Product (b) Simplified product 

FIG. 21-15. Generating elementary products. 

Sense 

More than 
four 

(e) Majority 

We have not yet considered the problems of isolation and amplifica­
tion for our core-logic gating method. Adaptations of the Ramey or 
Hogue magnetic-amplifier circuits can be used, with a gating stage 
followed by an amplifying stage, and so forth. Or if the output need 
drive no more than a single subsequent core, the method used in the 
shift register of Fig. 21-10 can be employed. Figure 21-16a shows that 
shift register in the mirror notation, and Fig. 21-16b illustrates shifting 
into an and gate. 

Gating with Flux. Note that when gating with cores we still had to 
use diodes for the transmission of information between cores. Gating 
by flux switching eliminates the necessity for using other than magnetic 
elements in the circuit: isolation, as well as a certain amount of amplifica­
tion, can be obtained. Gating by flux switching is accomplished by 
means of multiaperture devices (abbreviated MAD), which are disks of 
square-loop ferrite material in which variously shaped holes have been 
made. The basic principle of a MAD can be described in terms of the 
two-hole device (called a Transfiuxor) of Fig. 21-17. There are two 
windings, one through each hole as shown. If sufficient current I is 
passed through the larger hole, the direction of the flux (lines with arrow­
heads) will be the same all the way round. This is called the clear state. 
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In particular the flux in leg L1 and leg L2 will be saturated (Fig. 21-17a). 
A current in winding N R cannot change the flux locally round the small 
hole (see dashed lines), for this would imply an increase in flux in one 
of the already saturated legs L1 or L 2• However, if the current in N R 

is large enough, the flux can be reversed in leg L 1, but such a reversal 
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FIG. 21-16. Use of shift-register method with core gating. 

must extend to the flux all the way round the large hole (see Fig. 21-17b), 
because the lines of flux must close on themselves. 

With the flux lines in this set state, a smaller current in N R can now 
vary the amount of flux round the small hole (within the limits of 
saturation). For, in changing from the clear to the set state, the flux 
in the long path round the large hole has to be reversed; this requires a 
larger g: = N RI = Hl than does just changing the flux in the shorter 
path round the small hole in the set state. To see how this occurs, 
consider the flux in leg L1 of the MAD in the clear state (see point a 
of Fig. 21-18). As the current in N R is increased, the flux goes from a 
to b to c, at which point the flux reversal begins, to the saturated state d, 
and on further driving to e. At and beyond d the MAD is in its set state. 
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Reversing the current in N R, the flux of leg Ll now follows the dashed 
line of Fjg. 21-18, going to j, to g, from which point the flux in the smaller 
loop is switched, to h. The flux in leg Ll can now be varied round the 
path h, (i),j,j, g by varying the current in N R. Note that, in the set state, 

(a) Clear (zero) state (b) Set (unit) state 

FIG. 21-17. Two-hole MAD (Transfluxor) showing clear and set states. 

a small mmf g:s will switch some flux in L 1, whereas in the clear state this 
will not occur (see point b' in Fig. 21-18), since then g:c is needed. 

The operation of a three-hole MAD can be described in terms of the 
principles developed for the two-hole MAD. In the clear state, induced 

by a strong current through the 
" clear" wire, a small current in N R 

g f d e. 
.----J----
I 'I I 
, .... ·/1 I , ~:I I 

-~ I 11 I~ 

a b b' c 

or NT cannot cause any flux change 
(see Fig. 21-19a). A large current in 
N R will put the MAD in the set state 
(see Fig. 21-19b). Note that the re­
versal of flux takes place primarily in 
the shortest possible path round the 
large hole, through L3 rather than L4• 

This is to be expected: g: will roughly 
be inversely proportional to the dis­
tance from the wire, and as g: is in­
creased, the coercive force for flux 

FIG. 21-18. Switching flux in £1, clear reversal is reached sooner round a 
and set states (solid line, clear state; 
dashed line, set state). shorter path than round a larger 

path. The exact geometry of the 
MAD thus becomes an important factor in its operation. In the set 
state a small current in NT or N R will be able to change the flux locally 
round its respective small hole. 

Note that a change in the flux round the small NT hole will not affect 
the state oj the MAD. This principle is used for isolation in MAD logic. 
Amplification is obtained as follows: Consider the coil NT of one MAD 
connected to the coil N R of another, as shown in Fig. 21-20. Let the 
set state represent the unit, and let the MAD receiving the unit initially 
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be in the clear state. A relatively small current pulse I in the split 
winding shown in Fig. 21-20a will encounter a switching resistance in the 

r ...... 
(a) Clear (zero) state (b) Set (uniU state 

FIG. 21-19. Diagrammatic illustration of the flux lines in the clear and set states of 
the three-hole MAD. 

set MAD; but low values of I will not affect the flux in the clear MAD, 
and no resistance will be developed. Hence the current will almost all 

Set (unit) 

(a) 

Clear (zero) Clear (zero) 

(b) 

pass through the clear MAD, finally 
rising to a level high enough to change 
the clear MAD into the set, or unit, 
state. This effect can be increased by 
making turns NT greater in number than 
turns N R. If a zero is to be transmitted 
(Fig. 21-20b), then both MAD's are in 
the clear state initially. The current 
pulse will be equally divided through NT 
and N R but will not be great enough in 
either to change states. Amplification 
results from this current-switching phe­
nomenon. A shift register can be made 
on this principle (see Fig. 21-21), again 
using two cores (stages A and B) for each FIG. 21-20. (a) Transferring a unit; 

(b) transferring a zero. 
bit. There must now be four phases 
(the pulse wires of the figure) to shift each bit. First the B stages must 
be cleared, and then the A-to-B transfer pulse sets the B stages. Third, 
the A stages are to be cleared, and last the B-to-A transfer current pulse 
sets the A stages. 

FIG. 21-21. MAD shift register. 
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FIG. 21-22. Diagrammatic illustration of flux linkages in gating with flux. 

Logical gating can be achieved in a single MAD element. Figure 
21-22a represents an or gate. The zero state of an output aperture 
occurs when the flux is in the same direction in both legs about the 
aperture, i.e., when the flux does not link locally round the aperture. 
The unit state of an output aperture occurs when the flux does link 
locally round the aperture. If no unit (i.e., current pulse) is received 
in either A or B, the or MAD remains in the clear state; i.e., the output 
is a zerO, But if an input is received at A, for example, the shortest path 
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that will allow a flux change in the outside leg of aperture A is round the 
large hole as shown. This flux linkage leaves the output hole locally 
linked, and hence a unit output occurs. By symmetry it is seen that a 
unit output will result from A + B. Negation is a little more compli­
cated-see Fig. 21-22b. Here the clear wire sets the output aperture 
to a locally closed state, i.e., a unit (note carefully the path of the clear 
wire). An input zero of course leaves this state unchanged, and the out­
put is a unit. A unit input pulse, however, reverses the flux round the 
shortest possible path, the periphery of the core as shown. (Note that 
a hold wire keeps the flux in the cross leg in the direction shown, in both 
the clear and set states.) Thus the resulting flux round the output 
aperture does not link it, to form a zero output. An and gate (Fig. 
21-22c) operates as follows: Consider a single unit input at B. A flux 
reversal in the outside leg of aperture B can occur by linking the nearest 
half of the center hole as shown. But the output aperture is still linked 
round the other half of the center hole and hence still remains a zero. 
It is clear that, if an input occurs at A and B at the same time, the output 
aperture will be linked locally. 

EXERCISES 

(a) Using the mirror notation, design a core circuit that will have an output if 
more than four of A, B, C, D, E, and i!' are inputs. Minimize the number of necessary 
wires. 

(b) Making use of the majority feature of core gating, design a serial adder using 
only four cores (cf. Exercise c of Sec. 19-2). 

(c) Draw a flux-linkage diagram for the case of A and B both being inputs to the 
MAD or gate. 

(d) Draw a flux-linkage diagram for the case of A and B both being inputs to the 
MAD and gate, showing the unit output. 

(e) Design a serial adder using MAD logical elements. 
(f) How can single-aperture cores be used, in a way analogous to the use of multi­

aperture devices, to form and, or, and not gates without the use of diodes or any 
other elements? (HINT: Use combinations of single-hole cores with different hole 
diameters wired appropriately together.) 

21-5. Modern Computer Techniques 

The Cryotron. t Cryogenics is the study of extremely low-temperature 
phenomena. Cryotron is the name given to a switching device whose 
operation is based on superconductivity, which occurs at extremely low 
temperatures. When certain elements are cooled to near absolute zero 
temperature, their electrical resistivity drops practically to zero. This 
transition into the superconductive state occurs at a sharply defined 
temperature, which is characteristic of the element but can be altered 
by an applied magnetic field. In general, the greater the magnetic field, 
the lower becomes the transition temperature This magnetic phenome­
non is the basis for the Cryotron. Figure 21-23 shows the transition 

t The Cryotron as a computer element was invented in 1955 by Dudley A. Buck. 
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temperature as a function of the applied magnetic field for tin (Sn) 
and lead (Pb), two metals capable of superconductivity. (Such low 
temperatures can be maintained in liquid helium.) 

Figure 21-24 pictures the simplest of Cryotrons, consisting of crossed 
"wires" of tin and lead, operated at a temperature of about 2 to 3°K. 
When no current is flowing in the lead wire, both wires are superconduct­
ing. When current flows in the lead wire, the magnetic field created by 
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FIG. 21-23. Superconductor transition temperature as a function of applied magnetic 
field for Sn and Pb. 

FIG. 21-24. A Cryotron. 

this current flow forces the tin wire out of the superconducting state (see 
the dashed line in Fig. 21-23). The tin "wire" is made about ten times 
wider than the lead wire, to reduce its current density so that its magnetic 
field will not bring the lead wire out of the superconductive state. The 
lead wire, which is thus always in a superconducting state, is the con­
trolling element; the tin wire, whose superconducting state is dependent 
on the current flow in the lead wire, is the controlled element. Because 
of the negligible resistance encountered, it is convenient to have a current 
source and to use the Cryotron as a current switching device. Figure 
21-25a shows a Cryotron and gate; Fig. 21-25b shows an or-gate. In 
each circuit the current is switched to one or the other of the two outputs. 

In connection with Cryotrons it has been suggested that an electron-
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microscope beam be used to aid the construction of the circuit patterns 
from thin films. The use of film wires as illustrated may have the 
advantage of decreasing the required switching time to the millimicro­
second range. According to this suggested technique a thin film of 
Sn (or Pb) is placed as the object of the electron microscope and the 
electron beam moved to trace the desired path of a wire. It happens 
that, wherever the beam hits, a hard substance, namely, Si0 2, is formed 
from the tetraethoxysilane present in the beam chamber because of the;> 

A-B 

(a) 

A+B 

(b) 
FIG. 21-25. Cryotron and and or gates. 

oil-diffusion vacuum system. A small quantity of chlorine gas introduced 
into the chamber will etch the film, removing all metal not covered by 
Si0 2• Hence the trace of the electron beam is left as a flat wire. Finally, 
if desired, the Si02 can be removed by introducing a small amount of 
hydrogen fluoride gas into the chamber. It is expected that by this 
procedure "wires" of a diameter approximating 0.1 p, (10-5 cm) can be 
formed, several layers of such wires being formed over each other to 
complete the Cryotron gates. If this technique can be fully developed, 
then we can have over 100 million gates within 1 square centimeter. 
Such a process could significantly change the logical design concepts and 
introduce an entirely new capability into digital-computer engineering. 
However, such techniques are still in their early experimental stages. 

A Cryotron computer would operate inside a Dewar flask, or the like, 
filled with liquid helium, into which must lead the wires connecting the 
computer with the outside world. In the case of component failure 
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there would be no way to repair the computer. This, coupled with the 
fact that a practically unlimited number of gates can be incorporated 
into the computer, indicates the possibly great effectiveness of the 
probabilistic-logic approach to increasing the reliability of gating circuit 
outputs (see Sec. 19-4). 

Microwave Computer Components. Microwaves can be conveniently 
transmitted and gated by means of so-called strip-line components (see 
Fig. 21-26a). A strip line consists of a copper ground plane, covered 

Copper strip 

~ 
(b) 

(a) 

(d) 

(e) 

FIG. 21-26. Microwave components. (a) The strip line; (b) coaxial connection; (c) 
line termination with carbon wedge; (d) diode in the strip line. 

by a layer of dielectric material, on top of which are placed strips of 
copper. Microwaves will be guided along the strip line, confined approx­
imately between the ground plane and the top copper strip itself. It 
may be desirable to place another layer of dielectric on top of this and 
finally another copper ground plane; however, we do not illustrate this 
in our diagrams for the sake of clarity. Energy from a klystron or 
magnetron can be inserted into the strip line by means of a coaxial con­
nection (see Fig. 21-26b). A line can be terminated by a wedge of carbon 
placed at its end to convert the electromagnetic energy into heat (see 
Fig. 21-26c). Diodes can also be placed in the line (see Fig. 21-26d). 

Attempts are being made to utilize strip-line microwave techniques 
to obtain gating components with unit time intervals in the millimicro­
second range. One technique is to use a carrier wave of approximately 
2,000 megacycles, modulated at about 500 megacycles, for unit-zero 
information transmission. Using these figures for illustrative purposes, 
a unit (or zero) signal would be represented by a burst of four 2,000-mega­
c.ycle oscillations; actually, however, groups of 10 to 15 oscillations are 
presently being employed. There are two ways of representing unit 
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and zero bits with these 2,OOO-megacycle pulse bursts, called the phase­
script and pulse-script methods. The concept of phase script is just 
that described previously (Sec. 19-2) for a Parametron; the pulse script 
is analogous to the usual dynamic operation (see Fig. 21-27). Since it 
is easy to convert from pulse to phase script, and vice versa, either 
method can be utilized in different parts of the same computer, as 
convenience or electronic considerations may require. 

Phase script 

Unit 

Zero 

Pulse script 

I 
I 

----------~I 

FIG. 21-27. Unit and zero representations in phase and pulse scripts. 

FIG. 21-28. Microwave parametric amplifier. 

Consider the phase script first. A parametric amplifier (see Fig. 21-28) 
can be used, with a 4,OOO-megacycle primary source of energy entering 
the strip line at P. Any 2,OOO-megacycle input signal, coupled into the 
amplifier at C, will be amplified with its same phase in the 2,OOO-mega­
cycle half-wave resonator R. A diode D in this resonator serves as a 
variable reactor; a 4,OOO-megacycle half-wave resonant strip Hallows 
the 4,OOO-megacycle drive to enter R but prevents the 2,OOO-megacycle 
energy from escaping. A loosely coupled output arm F guides the ampli­
fied 2,OOO-megacycle signal to the rest of the circuit. 

An and gate can be constructed by means of a so-called hybrid ring 
(see Fig. 21-29a). The ring is a circular section of strip line 1>2 wave-
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lengths in effective circumference. A constant train of microwaves 
entering the ring through arm K as shown in the figure can split and go 
round the ring in both directions. When the two halves meet at C, 
they will be in phase; but when they meet at either arm A or arm B, 

A : unit phase 

B : unit phase 

A : zero phase 

B : unit phase 

A : unit phase 

B : zero phase 

A : zero phase 

B : zero phase 

K---
A----
B-----

r.--:4-----JJ'-f-.,.--+-~~ tUn i t phase 

I'--+--lr-+-.L---\-----l~ t Zero phase 

fL--\l--lr-+--'----\-----l~ t Zero p has e 

'fL--w.----",-t--'---t---t~ t Zero phase 

Inputs Resultant 
at C sum at C 

(b) 
FIG. 21-29. (a) Hybrid ring; (b) time-phase relationships at arm C. 

they will be Yz wavelength out of phase and will therefore cancel, feeding 
no energy into A or B. Neither will this energy be reflected back into 
arm K, because it will be Yz wavelength out of phase with the incoming 
wave at K. Similarly the energy entering the ring at A will cancel at 
arms K and Band will not be reflected back at A but will be in phase at 
C; energy entering at B will cancel at K and A, will not be reflected back 
at B, but will be in phase at C. If the constant wave is in the unit 
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phase at 1(, then both A and B inputs will have to be in the unit phase 
for the resulting wave in arm C to be in the unit phase. For the con­
stant wave entering at J( will reinforce a zero-phase wave entering A or 
B or both (see Fig. 21-29b). Thus C = A . B, and we have an and gate. 
An or gate can be obtained by having the constant input in the zero 
phase when it enters at 1(, instead of the unit phase. Negation is of 
course obtained by sending the wave through an extra Y2 wavelength of 
strip line. 

Output 

FIG. 21-30. Pulse-script and gate. 

The pulse-script gating techniques use the hybrid ring also. For 
example, consider the ring used as an and-gate (see Fig. 21-30). Note 
again that the clockwise and counterclockwise waves due to an input 
at A cancel at B, and conversely waves entering at B cancel at A. If 
there is only one input, e.g., a train of pulses entering at A but not B, 
then half the power is absorbed at D and the other half enters C. On the 
other hand, if a train of wave pulses enters A and B at the same time 
(and in the same phase), then they will cancel at D (i.e., no power will 
be lost in D) and will reinforce at C. Therefore four times the power 
will appear at C when there is an input at both A and B than will appear 
at C when there is only one input. The operation of the not gate of 
Fig. 21-31 is as follows: If no pulse enters A, then the constant power 
entering at J( will be divided between D and the output A, presenting 
a pulse of waves at arm A. If a group of waves enter at A, then there is 
canceling at A due to the constant input J( and there is no output; 
all the power is absorbed at D. 

Observe, however, that the parametric amplifier cannot be used in the 
pulse script, for even if there is no pulse (zero) input to the 2,000-mega­
cycle resonator, 2,000-megacycle energy will still be accumulated (in an 
essentially random phase). Hence the pulse script must be converted 
into phase script; the phase script is amplified and then converted back 
to pulse script. For conversion from pulse to phase script consider the 
hybrid ring of Fig. 21-32, where the A input is delayed by a half wave-
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FIG. 21-31. Pulse-script not gate. 

length so that it will be 7r radians out of phase with A. Only one at a 
time of these inputs will contain energy, and hence the wave output pulse 
will be in the unit or in the zero phase script depending on which input 
contains the energy. For conversion from phase to pulse script consider 
Fig. 21-33. A unit phase input at A will be reinforced at C by the 

Input 
(7r radians out of phase) 

FIG. 21-32. Converting from pulse to 
phase script. 

Constant 
(unit phase) 

FIG. 21-33. Converting from phase to 
pulse script. 

constant. A zero phase input will interfere with and cancel the constant 
at C, and no output will result; the energy will be dissipated at D (why?). 

EXERCISES 

(a) Design a serial adder, using the Cryotron gates illustrated in Fig. 21-25. 
(b) Design a microwave serial adder, using hybrid rings in the phase script. Take 

advantage of the majority principle, and use only four rings (cf. Exercise c of Sec. 19-2 
and Exercise b of Sec. 21-4). 
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CHAPTER 22 

MEMORY AND" INPUT-OUTPUT METHODS 

22-1. Introduction 

Memory systems were touched upon briefly in Chap. 17, where our 
major concern was their integration into the logical design of the control 
circuitry. In the present chapter some of the electronic features of 
memory systems are considered. Only magnetic-core and -film memories 
and magnetic tapes and drums are considered in the brief treatment here 
presented, since these are by far the most important. In Sec. 22-2 
problems concerning the selection ratio and the read-write cycle are 
discussed. Section 22-3 considers thin-film memories. We present the 
principle of nondestructive and simultaneous read-out in connection 
with thin-film memories, for it is felt that these concepts can most 
easily be given in this context. However, the principles involved can 
also be applied with single- or multiaperture cores, as is brought out in 
the Exercises. Section 22-4 emphasizes the problems involved in the 
interpretation of results obtained from magnetic tape and drum heads, 
in various forms of digital representation on magnetic surfaces. Mag­
netic tapes and drums are properly considered input-output equipment, 
and hence further consideration of input-output problems, in Secs. 22-5 
and 22-6, follows naturally. Conversion of information from analog to 
digital representation and the reverse, considered in Sec. 22-5, is of 
Gentral importance to many input-output devices. " An introduction to 
the important sampling theorem is presented, and the principles of 
analog-to-digital conversion, and the reverse, are illustrated by examples. 
We refrain from detailed discussion of such circuits as voltage compara­
tors, electronic switches, and ramp or saw-tooth wave generators, since 
these are not digital circuits and since adequate treatments of them can 
be found elsewhere. Finally in Sec. 22-6 we present several examples 
of the various types of input-output devices, to illustrate the variety of 
applicable techniques and available methods. 

22-2. Magnetic-core Memories 

Increasing the Selection Ratio. In Sec. 17-6 the elements of magnetic­
core-memory coincident current selection were described (see Fig. 17-16 
on page 567). In the simple system described in that section, to select 
a word two currents, each of - I c/2 (half the coercive-force current), 
were passed through the cores, one current through the X wire, the other 

724 
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through the Y wire, corresponding, respectively, to the X and Y parts 
of the desired address. Only the cores of the proper address will then 
have the full current - Ie; of these only the cores recording units will 
flip to zero and be sensed by the Z wire. Some cores, not of the proper 
address, will be" half-selected," i.e., will have a current of - Ie/2 threaded 
through them. The ratio of the current in the selected core to the cur­
rent in a half-selected core is called the selection ratio, in this case 2: 1. 

We shall discuss two methods for increasing the selection ratio to 3: 1. 
In Fig. 22-1a we show just a single x-v plane. Here currents of - I e/2 
are passed through the x and V wires, as before. However, through 

(a) (b) 
FIG. 22-1. Two methods for increasing the selection ratio to 3: 1. 

all other x and y wires a current of + Ie/6 is passed. The total current 
through the selected cores will be the desired - Ie, but that through the 
nonselected cores will be either - I e/3 or + I e/3; thus the selection 
ratio is 3: 1. . The selection just described is for reading a word; for 
writing, the currents would be reversed. The second method for increas­
ing the selection ratio involves the use of extra wires (see Fig. 22-1b) 
each of which threads all the cores in a single x-y plane. A current of 
- 2Ie/3 is passed through the x and V wires corresponding to the desired 
address; a current of + Ie/3 is passed through the extra wire. The 
result is a current of - Ie in the selected core, and either - I e/3 or 
+ I e/3 in the other cores, giving the 3: 1 selection ratio. Again, for 
writing, the currents are reversed. 

Core Selection Matrix and Read-Write Cycle for Core Memories. The 
theory of decoding matrices was discussed in Sec. 17-2, and in Chap. 18 
selection matrices for the drum of the Pedagac were designed, using the 
diode-gated Pedagac packages. We now consider the design of selection 
matrices for core memories using cores as the gating elements. The 
technique is based on the methods of Sec. 21-4. Consider, for example, 
a 16-word core memory, with a*l, a*2 the x part of an address and a*3, 
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a*4 the y part. The x selection matrices appear as in Fig. 22-2. One 
of the cores, the selecting core, w'ill flip to the unit state, and hence only 
one of the sense wires will carry a current, as desired. Of course for large 
memories several levels of gating may be necessary, as described in the 
theory of decoding matrices in Sec. 17-2. 

Observe that, in writing into a core memory, all the cores of the 
selected memory location must be initially in the zero state. Then only 
the cores corresponding to the unit bits of the word will be flipped. 
In reading out of a core memory the attempt is made to flip all the 

0:*1 

0:*2 

Bias 

0:*100:*2 0:*1 '0:*2 0:*1'0:*2 0:*1'0:*2 

Reset --~~------~~------~------~~--

Sense 

~ _________ To core 

~------------------- memory 

FIG. 22-2. Core selection matrix. 

cores of the selected memory location to the zero state. The unit cores 
of the word will then flip, and hence the unit bits will be sensed--but 
the memory location will be left all zeros. Therefore the word that has 
been read out must be stored and written back into this memory location.! 
In order to facilitate the initial clearing before writing and the final write­
back after reading, a single read-write cycle is usually established, 
which is repeated for every memory address selection, either read or write. 
First the selection matrices are set, and the selected word is read out 
of the memory into a memory buffer register, clearing the memory 
location. Note that at this time the selecting cores are the only cores of 
the x and y selection matrices that are in the unit state. N ow the x and 
y reset signals are initiated, and the selecting cores flip back to the zero 
state, reversing the current in their sensing leads. As we have just seen, 
this reversed current performs the selection for writing into the memory. 
If the instruction being performed is "Read," then the word in the buffer 
is written back into the selected memory location as it is also transferred 
to some other part of the computer. If the instruction being performed 
is "write," the buffer is first loaded with the new word, which is then 
written into the selected memory address. 

Memory Applications of Multiaperture Devices. A disadvantage of the 
core memory systems described above is that the current through a single 
wire cannot be greater than the coercive force of the core for selection by 
coincident currents. This limitation in drive current places an upper 
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limit on the memory-system speed with which the memory cores can 
be flipped. However, from the discussion of Sec. 21-2 it is clear that, if 
the selection, read, and write currents could be made large, the switching 
time could be made very small. We shall now describe a non-coincident­
current memory system with this advantage, utilizing three-hole cores. 

The three-hole ferrite device has a single wire through each hole (see 
Fig. 22-3a). The Y wire (through left hole) distinguishes the bits of the 

YWS YWS 

~ Clear =t> ~ Unit 

YWS~ YWS~ 
~ Z ~Disturbed 
~ ero ~ unit 

(a) Flux configurations of the four states for the 
three-hole core memory element 

Word 1 Word 2 Word :3 
~ Read 

(b) Three-hole core memory array of 
three words, each of four bits 

FIG. 22-3. Three-hole multi-aperture-device memory. 

words; the W wire (through middle hole) distinguishes the words of the 
memory; the S wire (through right hole) senses the bits for read-out. 
Starting from the clear state (see Fig. 22-3a, upper left) produced by a. 
current in the W wire, the unit state (upper right) is effected by a reversed 
current through the W wire and the zero state (lower left) by current~ 
through both the Y and W wires. A typical memory configuration is 
shown in Fig. 22-3b. To write a word, the W wire for the desired memory 
location is selected, and through it a drive current is applied, upward 
as shown in the figure. At the same time currents are applied only in 
those Y wires corresponding to the zero bits of the word being read in. 
But consider the effect that a current in a Y wire has on a nons elected 
bit element. If the bit is in the zero state, the Y current has no effect; 
if the bit is in the unit state, the Y current will change the unit state to a 
disturbed unit state (lower right of Fig. 22-3a). Thus unit bits may be 
in either the normal unit or the disturbed unit stage. To read a word 
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out of the memory, a large current is applied again to the W wire, in a 
direction opposite to the write selection current. The core will be set 
to the clear state (upper left). In so switching, the flux direction round 
the rightmost hole is the same as that of the zero state but is reversed 
from that of the normal unit and disturbed unit states. Hence the 
sense wire S will have a current induced corresponding to a unit, but not 
to a zero (see Fig. 22-3b). 

EXERCISES 

(a) Describe a technique for producing a 4: 1 selection ratio. 
(b) Two-dimensional coincident-current selection methods have been discussed in 

the text. How would a three-dimensional coincident-current selection method work? 
(HINT: Break the address into three parts.) What selection ratios will be obtained? 

(c) Design a core x-selection matrix for 4 bits in the x part of the address. 
(d) Using the decoding techniques described in Sec. 17-2, design a two-level 8-bit 

x-selection matrix using cores. 
(e) How would selection matrices operate for the three-hole core memory described 

in the text? How does this differ from the selection techniques described earlier? 

22-3. Magnetic-film Memories 

Thin Films. Thin-film memories require no threading of wires through 
holes and therefore can more easily be constructed by printed circuit 
techniques. The storage elements are vacuum-deposited nickel-iron­
alloy films with square hysteresis loops, shaped into ~ 6-in.-diameter 
round spots about 2,000 A thick. The films are deposited in the presence 
of a magnetic field and as a consequence show a preferred direction of 
magnetization. The direction of magnetization can be represented by a 
magnetic dipole (like a compass needle) which has two stable states 
parallel to the preferred direction, the unit and zero states (see Fig. 
22-4a). An appropriately applied magnetic field can cause the film 
dipole to rotate out of its unit or zero state; when the field is removed, the 
dipole will rotate back to the nearest stable state (that state requiring 
the least angle of rotation). Three (printed) wires are required, the 
W wire characteristic of a word, a Y wire characteristic of a bit of the word, 
and an S wire that senses the read-out signal for a bit, oriented as shown 
in Fig. 22-4e with respect to the preferred direction of the film spot. 

The films of a storage location are always reset to zero before a word 
is written into it. The directions of the Wand Y wires are parallel at the 
film spot, making an angle of 30° with the spot's preferred direction. 
When it is desired to write into a memory location, a current is applied 
to the corresponding W wire. For the unit bits of the word a current 
in the same direction as that of the W wires is applied to the Y wire; for 
the zero bits of the word a current in the opposite direction is applied 
to the Y wire. For the unit bits the combined applied fields of both W 
and Y wires rotate the magnetization to the W direction (see Fig. 22-4b); 
when the applied field is removed, the magnetization rotates to the unit 
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preferred state since this is closest. For the zero bits the effects of the 
fields applied by the JV and Y wires cancel, and the magnetization stays 
in the zero state. The field applied to the nonselected word spots by the 
current in the Y wire is not of itself sufficient to rotate the magnetization 

I , I I 
I 

~f~ 
I , 

0 

w(J)B- ~ 

.r 
I 

I Y' I 

W current 

Read 0 

Read 1 

Film spot Writing Reading 

(a) (b) (c) (d) Sensed currents when reading 

Word 1 Word 2 Word 3 

~ Read 

tWrite 

(e) Film memory 

FIG. 22-4. (a) Film spot with compass representation; dashed lines show preferred 
direction, with 0 and 1 states. (b) Writing a unit, showing rotation to Wand then to 
the unit state. (c) Reading, showing rotation to R and then to zero state. (d) 
Sensed currents when reading (both returning to the zero state). (e) Assembly of a 
film memory showing planes of printed wires and spot plane. 

over 90° from the preferred direction, and hence those spots are not 
affected. 

To read a word from the memory, a current is applied to the W wire in 
the direction opposite to that for writing. The zero-state spots rotate 
from the zero direction to R (see Fig. 22-4c); the unit-state spots rotate 
from the unit direction also to R, but the rotation occurs in the opposite 
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sense to that of the zero-state spots. The sense wire S, placed perpen­
dicular to the W wire to minimize stray pickup, gets a negative induced 
current from the former rotation and a positive induced current from 
the latter rotation; these currents correspond, respectively, to senscd 
zeros and units (see Fig. 22-4d). 

However, both unit and zero spots will return to the zero state, and, 
as in the case of the memories described above, the word must be read 
back by means of the usual read-write cycle. Figure 22-4e shows a 
memory of three 4-bit words; the three wire planes are printed separately 
and placed over the spots as shown. Actually for greater sensing signals 
two spots per bit are used in a slightly different arrangement. 

Nondestructive and Simultaneous Read-out from Thin-film Memories. 
In all memory systems considered so far, a read-write cycle and a memory 
buffer register were necessary, because the read-out destroyed the stored 
information. A nondestructive read-out memory has the advantage of 
eliminating the buffer register and the circuitry needed for a complete 
read-write cycle. In addition nondestructive read-out memory systems 
frequently enable reading from one word of the memory while simul­
taneously writing into another. This is because in such memories the 
mechanism of the write process is distinct from the mechanism of the 
read process. 

As an illustration, consider the nondestructive read-out thin-film 
memory of Fig. 22-5. For each bit there are a pair of film spots, one for 
storage and one to facilitate read-out. The remanent state of the storage 
film spot is sensed by switching the read-out film spot in such a way 
as not to alter the magnetic state of the storage spot. The storage 
film spot is made of high-coercivity material and the read-out spot of 
low-coercivity material (see Fig. 22-5a); the two spots for a bit are 
placed close together (see Fig. 22-5b), with their preferred directions at 
right angles. The flux of the storage spot passes through the read-out 
spot as shown in that figure. To sense the state of the storage spot, a 
current is applied to a W wire running parallel to the preferred direction 
of the storage film. Suppose the magnetization of the read-out spot is 
initially parallel to its preferred direction with the north pole as indicated 
in Fig. 22-5c. Then two magnetic fields will be applied to the read-out 
film: the field of the storage film (shown as transverse arrows) and the 
field of the current in W. The latter field will reverse the direction of 
magnetization of the read-out film, but the direction of rotation for 
reversal will depend on the direction of the field due to the storage film, 
as shown in Fig. 22-5c. Depending on its direction, this rotation will 
induce an initial positive or negative current in a sense wire. Since the 
coercivity of the storage spot is greater than that of the read-out spot, the 
direction of magnetization of the former spot will not be affected pro­
vided that the reading current is only sufficient to flip the latter. A 
reverse current of the same limited magnitude must be applied through 
the W wire to reset the read-out spot so that its north pole is in the proper 
initial direction. 
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FIG. 22-5. Nondestructive read-out thin-film memory. If the magnetization of the 
storage spot points to the 0, then a zero is stored; if it points to the 1, a unit. The N 
and S stand for the poles of the magnetization of the read-out film in the reset or 
normal state. 

Figure 22-5d represents a memory of three 4-bit words. To read, the 
W wire for the desired word is selected and pulsed, the spots being sensed 
nondestructively as just described. To write into the memory, a current 
in the reversed (writing) direction is passed through the proper word 
wire, as at the same time currents corresponding to the desired zeros and 
units are passed through the Y wires. If a storage spot is to flip, both 
its Wand Y wires must have currents; thus storage cores in nonselected 
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words will not respond. Simultaneous read and write can occur (involv­
ing different words) provided that the coercivity of the read-out film is 
sufficiently less than that of the storage film. If word 3 were being read, 
for example, as word 1 is written, the currents in the sensing wires will 
not be great enough to influence the writing of word 1. The problem is 
rather to prevent the writing operation from influencing the reading of 
word 3. The writing current in word 1 holds its read-out spots in the reset 
state, so that none will flip to give a false read-out as the word 1 storage 
spots are flipped. The currents in the Y wires might contribute, with the 
resetting current in the W wire of word 3, to flipping a word-3 storage 
spot. This will not occur, however, if the reading and resetting current 
is much less than the required writing current; the difference between 
the currents depends on the difference in the coercivity of the spots of 
the pair. 

EXERCISES 

(a) In practice the rotation of a single spot may not induce sufficient current in 
the sense wire. How can the arrangement of Fig. 22-4 be revised so that two spots 
per bit are sensed? 

(b) The two-aperture devices described earlier (Sec. 21-4) can be used for non­
destructive and simultaneous read-out forms of memories. Using the principles 
developed in this section, design such a memory system. (HINT: Use the coincident­
current method to select the large hole for writing into, and the small hole for reading 
out of, the memory.) Be careful when explaining why simultaneous read-out can 
occur. 

22-4. Magnetic Tapes and Drums 

Return-to-zero Writing Method. Both magnetic tapes and drums oper­
ate on the principle of writing onto and reading from magnetic material 
deposited on a moving surface. Figure 22-6a shows a reading and writing 
head. For writing, a current pulse I induces flux, some of which magne­
tizes the material on the moving tape or drum surface (see Fig. 22-6b). 
In the sensing of such a magnetized spot, as the spot moves past the head 
the lines of flux will pass through the read coil, inducing a small voltage 
difference. The writing current and induced reading voltage are small 
(a few milliamperes or millivolts, respectively). Figure 22-6c illustrates 
R current pulse and the intensity of the resulting spot of flux along the 
length of the tape; the shape of the induced voltage pulse across the read 
~oil is shown, as is the final result of amplifying and limiting this voltage 
pulse. It is desirable that the head be designed to write with a small 
current, to produce a small spot on the tape, and to produce as large a 
reading voltage as possible. The gap in the head should be small to 
localize the spot and reduce magnetic-circuit reluctance and should 
maximize fringe effects so that the lines of flux pass into the tape. A low­
reluctance path will increase the flux through the head on reading, and 
hence the head should have a short path and a large relative cross-sec­
tional area as well as a small gap, and should be made of high-permeability 
material. 
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One of the first methods used to record binary information on a mag­
netic surface is illustrated in Fig. 22-7. The sequence of bits is shown in 
(a). For a unit there is a positive current pulse, for a zero a negative 
current pulse, but after each pulse there is a return to zero as shown in 

. (b). If the spots are sufficiently spaced, at, say, m bits/in. on the tape, 
then the magnetization or flux per unit length is as shown in (c). If the 
spots are placed closer together, they may overlap, particularly for 
repeated units or repeated zeros, as shown in (d). When the spots are 
well spaced, as in (c), the voltage induced in reading this flux is as shown 

Read 
coil 

~n ~~~~?j~~~ 
"'Matrix backing 

(a) 

~ 
(b) 

Writing t n 
current I I-__ .... _J-____ ~" tor s 

Flux cp t /'"'... 
on tape J,.._~L'-=__ __ ~ __ ~>_ 

Reading 1 L\ 
voltage V I--'---\-v--:;;OO-----,~~ 

V amplified 
and limited t--..c:..--+-----:; __ ~ 

(c) 

FIG. 22-6. (a) Magnetic reading and writing head; (b) flux spot in the magnetic 
material; (c) writing current flux, reading voltage, and processed reading voltage as a 
function of time t or distance s on the moving surface. 

in (e). These pulses can be amplified and limited; then when the output 
is sampled at appropriate times, a voltage curve similar to (b) as desired 
will have been formed. For example, the sampling times may correspond 
to the pulses above the line in (f). Since each positive voltage swing 
is followed by a negative swing and each negative swing by a positive 
swing [see (e)], the output can be checked by sampling a second time 
for each bit, as shown in (f) by the pulses below the line (to indicate 
inversion). If a pair of samples do not agree, an error is indicated. 

When the bits are packed densely, repeated units and repeated zeros 
require further consideration. For such repetitions can cause the accu­
mulation of flux in the magnetic head', as shown in Fig. 22-8g, and this 
accumulation tends to saturate the head. The resulting voltage wave­
form is as shown in (h). Amplifying and limiting this voltage can cause 
erroneous results in the sampling. The wavy pulse lines in (i) represent 
positions at which errors can result, since as the head approaches satura­
tion some of the positive and negative induced voltage swings are close 
to zero, as indicated by the three arrows in (h). In order to interpret a 
.waveform such as (h) correctly, we might form its derivative, counting 
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on the slopes to preserve the information. However, the derivative 
of a curve is very sensitive to noise; hence it is better to take a difference 
instead between the voltage waveform and itself delayed by one-half 
the distance between bit centers. The two waves are depicted in Fig. 
22-9j, their difference in (k). This difference, while related to the 
derivative, is not so sensitive to errors due to noise (why?). When the 
waveform of (k) is amplified and limited, the pulse train of (l) results. 
These pulses are to be sampled within the first half period following the bit 
center (why?), as shown in (m). When the sampled pulses are inverted, 
the desired result is obtained, as shown in (n). 

N on-return-to-zero Methods. Some of the problems that occur in the 
return-to-zero method arise from the fact that, when neighboring spots 
are magnetized in the same direction, their flux lines tend to link and 
thus between-bit sensing is weakened. In the first non-return-to-zero 
method that we shall discuss there is at least one reversal of magnetiza­
tion direction per bit. Consider, for example, Fig. 22-10. Here a unit 
[of the word in (a) ] is represented by a pulse crossing the zero axis 
from below, a zero by a pulse crossing from above [see arrows in (b)]. 
Between bit positions there may be an appropriate reversal, to get into 
position. The pulses of (b) represent the write current pulses. The 
voltage waveform of (c) is the result of reading a tape in this mode when 
close bit packing is used. The differencing method can then be applied 
[see the dashed lines in (c)], and the resulting difference will appear as in 
(d). After amplifying and limiting, the waveform of (e) is obtained, 
which when sampled in the first half of the period results in the desired 
pulses, shown in (f). It has been reported that with this method pulses 
packed at 880 bit.s/in. can be read. Normal packing densities (for all 
methods) range from 200 to 400 bits/in. for tapes. 

A second non-return-to-zero method is illustrated in Fig. 22-11. In 
this method the flux on the tape is made to change direction only when a 
unit appears. Thus the write current appears as in (b) for the bit pat­
tern of (a). The voltage waveform on reading will have a spike when­
ever a unit occurs [see (c)]. These spikes may be rectified to preserve 
symmetry [see dashed lines in (c)]. The amplified and limited result 
will then have a pulse for a unit, no pulse for a zero. The output from 
the head should be compared with a constant voltage of about half the 
normal peak, and any pulses below that level should be ignored as noise. 

Clocking. In the previous paragraphs we have tacitly assumed some 
kind of sampling pulse generator synchronized with the reading of the 
tape so that the processed information is sampled at appropriate times. 
One technique for accomplishing this is to have on the tape an extra 
channel containing clocking pulses only. For example, in Fig. 22-12a 
we illustrate a four-channel tape with the fourth channel used for clock 
pulses. If this were the second non-return-to-zero scheme, the writing 
current pulses for each channel would appear as in (b); the voltage spikes 
that result from reading are shown in (c). Then to read channel 1, 2, 
or 3, the output of that channel is gated with the output of channel 4 as 
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FIG. 22-9. Return-to-zero: method of differencing. 
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FIG. 22-10. Nonreturn to zero with differencing. 
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10001110101 
00011101010 
10001001110 
11111111111 

l:[)- ~=D- l=t)--

)10001110101 
jOOOll101010l 

(e) 1 0 0 0 1 0 0 1 1 1 0 
11100100000 

(n 

IJl. 

2 
(g) 

3 

4.J\.....JLJ\ n. 

(h) ! B- ~=t)-- ~=t)-- ~::D-
FIG. 22-12. Clocking methods. 
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shown in (d). A slightly different scheme uses the extra channel to 
record an odd parity bit for pulses being read at the same time; this is 
illustrated in (e). As the 4 bits on each line are read out [(f) and (g)] by 
the four heads (one for each channel), the odd parity bit can be checked. 
The four outputs (g) are combined in an or gate, which has a unit output S 
for every line of pulses, because of the odd parity. Then S can be gated 
with channels 1, 2, and 3 as a clocking pulse [as in (h)]. 

The first non-return-to-zero method lends itself to a self-clocking 
scheme. It is easily observed that there are either one or two axis 
crossovers per bit of the processed information (see Fig. 22-10d). Where 
there are two crossovers, only one of them contains the desired significant 
information; the problem is to determine which this is. Starting with 
a significant crossover, an "information gate" can be formed that is 
one-half period in length and starts three-fourths period delayed from 
the significant crossover. This gate will then "bracket" another sig­
nificant crossover. The sign of the differential crossover spike, indica t­
ing which way the crossover was made, will indicate whether the bit is a 
unit or zero. This scheme permits some variability in the periods, since 
they can vary by one-fourth period and still allow the information to be 
sensed. The clock starts from the new crossover each time and so is 
adjusted continually. In order to start the process, an information 
sample of alternating zeros and units is used, since these contain only 
significant crossovers. 

Drums and Tapes. We have previously described various arrange­
ments of words on the drum in channels and sectors, as well as methods 
for synchronizing the drum with the computer and for memory selec­
tion (see Sees. 17-6 and 17-8). The rotating speeds vary from 440 to 
12,500 rpm, with 50 to 100 bits/in. along a channel and 15 to 30 chan­
nels/in. The reason for the low bit density is that to eliminate frictional 
wear the spacing between the head gap and the drum surface is as great 
as 0.001 to 0.002 in. This spacing results in considerable loss of spot 
resolution. In addition any eccentricity of the drum will vary the drum­
to-head distance, introducing further aberrations. The drum surface is 
coated with a magnetic material, such as Fe203, or plated with the 
desired magnetic metal. There are a wide variety of drum diameters 
and lengths, diameters ranging from 2 in. to 4 ft, and lengths from 
7:4: in. to 3 ft. 

Disks coated with magnetic material can also be used for storage. 
Figure 22-13 shows one such mechanism, whose read-write head is moved 
mechanically along the rapidly spinning disks to the proper disk level 
and is then inserted to the proper radius. By using an air cushion the 
separation between the head and disk can be made very small and kept 
relatively constant even if the disk were somewhat warped. Both sides 
of the disk are used, making the total available surface area very large. 
Each disk contains 7 X 105 bits; for a system utilizing 50 disks, the aver­
age access time is about 0.6 sec. 

Magnetic tapes are coated strips of plastic (usually Mylar) or other 
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nonmagnetic material, varying in width from Y2 in. to several inches, the 
wider tapes containing more channels. Usually seven channels are used; 

FIG. 22-13. Disk memory, showing mag­
netic head positioned between disks. 
(Photograph courtesy International Busi­
ness Machines Corp.) 

each 7 -bit rank represents an al­
phabetic or numeric character, but 
the seventh bit is a parity check or 
clocking channel bit. As we have 
discussed above, the ranks are or­
ganized in blocks; there is space 
containing no information left be­
tween blocks (equivalent to about 
three ranks) as an allowance for 
starting and stopping the tape be­
tween blocks. The mechanism for 
moving the tape must be capable 
of producing high acceleration on 
starting and stopping, for the tape 
speed while reading or writing must 
be relatively constant. One method 
is to have the tape pass over rapidly 
spinning wheels (see Fig. 22-14a). 
When the tape is to be moved, it 
is squeezed between one of these 
spinning wheels and an idling pres­
sure wheel that is driven against 
it; the increased friction between 
the tape and the spinning wheel 

quickly brings the tape to full speed. To reduce inertia, the tape itself 
may be stored loosely in bins, as 
shown in Fig. 22-14a. Frequently 
reels of tape are used, as shown in 
Fig. 22-14b. Here, in order that 
the tape-driving wheels need not 
accelerate the reels, the proper 

~ ~ 
FIG. 22-14. Magnetic-tape movement mechanisms. (a) Tape bins; (b) tape reels. 
(Photograph courtesy Potter Instrument Co., Inc.) 
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amount of slack tape is maintained by servomechanisms that drive the 
reels. Complete loops of tape, or tape belts, have the advantage of not 
needing to be rewound to obtain information at the beginning, if the tape 
is located at the end. Short tape belts can also be used for temporary 
storage, as illustrated by the small retrieval computer of Fig. 8-9 on 
page 269. 

EXERCISES 

(a) When the spots are well spaced, as in Fig. 22-7c, draw the amplified and limited 
waveform and the result of sampling. 

(b) Draw the waveform of the derivative of Fig. 22-Sh and then the result of 
amplifying and limiting this derivative. 

(c) Draw a possible flux pattern for the write current shown in Fig. 22-10b, together 
with the read-head voltage waveform and the differential spikes. 

22-5. Conversion from Analog to Digital and from Digital to Analog 

Analog and Digital Conversion. Mountains of raw data continue to 
pile up at such a rate that research laboratories and test facilities are 
burdened with unreduced information. The recordings produced by 
strip chart pens, galvanometer deflections from oscillographs, frequency­
modulated carriers on magnetic tape, oscilloscope waveform photographs, 
as well as outputs of thermocouples, strain gauges, manometers, theodo­
lites, etc., can have no meaning until processed and analyzed. Digital 
computers have the capability of processing such data at rates compar­
able to those with which it was produced. However, the data must 
first be converted into a form usable by the digital computer. Rapid 
automatic analog-to-digital converters can fulfill this need. In addition, 
when a computer is used to control experimental procedures or manu­
facturing processes, the digital control signals must be interpreted in 
terms of mechanical displacements or electrical responses; hence the need 
also arises for automatic and rapid digital-to-analog conversion. 

Digital information is represented in the form of numbers; analog 
information is represented in forms other than numbers, such as a 
mechanically generated shaft-rotation angle or an electronically gen­
erated voltage value. In general the converters can be placed in two 
categories, depending on whether the analog information is in the form 
of mechanical or electrical measurements. Of course there can be con­
version between mechanical and electrical analog information prior to 
(or after) the digital conversion. Converting an analog measurement 
into a number containing more significant digits (or bits) than required 
by the relative error (see Sec. 6-11) of the analog information would not 
be desirable. Conversely converting a digital number into· an analog 
measurement with a system capable of smaller relative analog error than 
would be required by the number of significant digits in the original 
number is unnecessary. Thus the analog-to-digital or digital-to-analog 
equipment should be well matched with regard to relative error or sig­
nificance. A large variety of analog-to-digital and digital-to-analog 
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converters are available, using many different techniques adapted to differ­
ent special characteristics of the analog information. In this section 
we shall present by example some of the basic concepts involved. 

Effects of Discrete Sampling. Usually analog information is presented 
to the converter in what appears as a continuously varying function 
(often of time), such as a varying angular velocity or a voltage waveform. 
The result of a single digital conversion, a number, can correspond to 
only one point of the analog function; the digital conversions must be 
made for a sequence of points-discrete samples-of the analog function. 
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The problem always arises of how 
close together the samples of analog 
information should be chosen, i.e., at 
what increments of the independent 
variable (e.g., time) the digital con­
version of the analog representation 
of the dependent variable should be 
made. Consider, for example, a 
localized burst of oscillations of fre­
quency f of the dependent variable 
(see Fig. 22-15). Clearly, to ensure 
that at least the rms values of the varia­
tion of the oscillations will be "seen" 
in the sequence of digitalized values, 

Time ~ the sampling rate must be no less than 
FIG. 22-15. Sampling at frequency 41 to 4f. Figure 22-15 shows two cases 
obtain at least the rms value. of a 4f sampling rate, one where the 
maximum and the other where the rms variation value can be seen in 
the sampled sequence. (Note that the value seen will be at least the 
rms value.) 

Consider next the problem of determining the necessary frequency 
of sampling that will enable the original signal to be recovered from the 
samples. By recovering a signal is meant the determination of all the 
coefficients of the Fourier series required for the exact reconstruction 
of that signal. We shall show that it is necessary to take more than two 
points per cycle of the highest significant frequency component in a signal 
in order to recover that signal. Consider a signal that is sampled at 
frequency f, that is, at times . . . , - 21f, -llf, 0, l/f, 2 If, . . . , 
. . . , kif, . . . for integral k. The frequency components of the signal 
greater than f /2 cannot be distinguished from frequencies in the range ° to f/2. To see this (noting thatfl2 cps is the same as 7rf radians/sec), 
we need simply observe that for ° ~ E ~ fl2 

and 
cos [(n7rf + €)t + so] = cos [(7rf - €)t - so] 
cos [(n7rf - €)t + so] = cos [(7rf - €)t + so] (22-1) 

for odd integers n > 0, whenever t = kif, that is, whenever t is a sampling 
time. Equations (22-1) mean that at times kif each frequency greater 
,han 7rf radians/sec, that is, f/2 cps, is indistinguishable from some 
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frequency in the range 0 to f 12. In other words, we are dividing the 
frequency scale into intervals of length f 12 and observing that any 
frequency will fall in an interval nf 12 + e or nf 12 - € (for 0 :::; e :::; f 12 
and odd n > 0) and hence, at t = lelf, will correspond to some frequency 
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Ca) Correspondence of frequencies from 0 to 1/2 with frequencies greater than fl2 

02 302 502 
IS - - - - - --1\..- - - - - - -/\ - - --
J\~~ 
r,~~ 

r T~\J\ 
L '\~~ L ______ ~~~ 

o I 2f 3[ 

(b) The correspondence visualized as folding 

FIG. 22-16. The frequency scale folded to illustrate the sampling theorem. 
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FIG. 22-17. Distortion of a frequency below half the sampling rate f by a frequency 
above half the sampling rate. 

7rf - € in the interval 0 to f 12. This correspondence is illustrated in 
Fig. 22-16a, where the lines indicate the correspondences on the frequency 
scale. Figure 22-16b shows how the correspondence can be visualized 
as a "folding" of the frequency scale, all frequencies on the same hori­
zontal line being indistinguishable when t = lelf. Figure 22-17 illus-
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trates the effect of this correspondence. The cos (7rf + e)t wave appears 
identical to the cos (7rf - e)t wave when t = kif. The result is an effec­
tive doubling of the amplitude of the cos (7rf - e)t wave, in so far as the 
information contained in the samples is concerned (see the vertical lines 
in the figure), since, by Eqs. (22-1), cos [(7rf + e)klfJ = cos [(7rf - e)klfJ. 

N ow suppose that a signal has negligible frequencies higher than f*. 
Then, in order to sample the signal unambiguously, it must be sampled 
at a frequency f such that fl2 2:: f*, whence the sampling frequency 

f 2:: 2f* (22-2) 

This result is called the sampling theorem. It is important to point 
out a pitfall in the use of the sampling theorem. It does not mean that 
it is necessary only to take more than two points per cycle of the highest 
frequency which is of interest in a particular application. In other 
words, it is not true that high frequencies cannot be passed by low­
frequency sampling, since the high frequencies do affect the sample by 
falsely appearing as frequencies in the 0 to f 12 range. Another way of 
putting this is: "Sampling is folding; sampling is not filtering." If high 
frequencies are present in a function for which a low sampling rate is to 
be used, i.e., for which only the low frequencies are of interest, then the 
high frequencies must first be filtered out before the analog-to-digital 
conversion. 

Mechanical Conversion. Consider first the digital conversion of the 
angular position of an analog shaft. This may be accomplished by means 
of the drum of Fig. 22-18. In this simplified illustration 16 different 
positions can be recognized as the four brushes sense the conducting 
pattern (shaded areas) on the drum surface. Notice that a cyclic code 
is used so that in the transition from one angular position to the next no 
serious error can result, since only one bit position at a time changes 
between successive angular positions. 

The digital-to-analog conversion for an angular shaft position could 
make use of the analog-to-digital converter. A digital comparator deter­
mines when the angular position of the rotating shaft has the same 
magnitude as the digital input; at the instant of successful comparison 
the motor is stopped (see Fig. 22-19). 

Mechanical analog-to-digital conversion and the reverse are capable 
of high accuracy, to over 12 significant bits. For example, the instan­
taneous angular position of the Pedagac drum can be obtained to within 
the position of a single bit, and there are 27 X 23 = 2,944, or more than 
211, bits around a channel. This incidentally can be adapted as another 
method for analog-to-digital conversion. 

Electronic Digital-to-analog Conversion. Let us consider two illustra­
tions of digital-to-analog conversion. Our digital input can be repre­
sented as N = a_12-1 + a_22-2 + a_32-3 + . . . + a_m2-m , where of 
course a_k can have only the values 0 or 1 (see Sec. 3-2). Figure 22-20a 
illustrates a converter using constant-current sources, with the digital 
input taking the form of electronic switches opened or closed as shown, 
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(a) Drum with brushes 

(b) Corresponding cyclic-code 
pattern wrapped around drum 

FIG. 22-18. Direct-drive angular-shaft-position analog-to-digital converter. 

Digital input 

Signals to motor 

FIG. 22-19. Angular-shaft-position digital-to-analog converter. 

743 
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depending on the value of a-k. In the figure we have illustrated only 
5 bits, though a circuit to convert any number of bits, within the limits 
of accuracy, may be constructed by using an extended ladder. Note 
that the value of the end resistances is half that of the interior resistances. 
The output here is the voltage Vo across the leftmost resistor. The 
precise analysis of the circuit will be left to the reader. But we shall 
note here that the three right-hand resistors can be combined into a 
single resistor of value R connected between point D and ground, so 
that, looking to the right from point C (or B, or A), we see the same 
resistance, 2R, as from D. Similarly the resistance looking left from 
branches B, C, D, or E is 2R, so that the current from B, C, or D divides 
into three equal parts, while the currents from branches A and E divide 
with "731 horizontal and %1 vertical. To reach the output resistor the 
current from branch C passes the node at B, where it is halved; also the 
current from branch D passes the nodes at C and B and is thus halved 
twice; and so forth. Therefore the current through the output resistor 
will be %1, if any, from branch A, plus "731, if any, from branch B, 
plus 7&1, if any, from branch C, plus ... ; and the output will be 

Vo = %IR(a_I2-1 + a_22-2 + a_32-3 + a_42-4 + a_52-5) 

(since % X 2-1 = %, etc.) 
A digital-to~analog converter that employs a single constant voltage 

source is illustrated in Fig. 22-20b. Note that when a_I = 1 the a_I 
switch presents V - Vo across the 2-1 R resistance in arm A; but if 
a_I = 0, the a_I switch leads to ground, presenting Vo across the 2-IR 
resistor, with the current in the opposite direction. The current in 
arm A can therefore be written as IA = (a_IV - Vo)/2-IR, where a_I 
is either a unit or a zero. This general form is true for the currents 
I B, Ie, and I D in arms B, C, and D, respectively. But, with no load on 
Vo, IA + IB + Ie + ID = 0; hence 

a_I V - Vo + a_2 V - Vo + a-3 V - Vo + a_4 V - Vo = 0 
2-1R 2-2R 2-3R 2-4R 

Solving for Vo, 

as desired. 
Electronic Analog-to-digital Conversion. Three methods of analog­

to-digital conversion will be described briefly. Many of the circuits 
involved, such as voltage comparators, voltage ramp generators, elec­
tronic switches, etc., are not primarily of a digital nature, and since 
their detailed design is well covered in other texts, we shall not consider 
it here. However, it is important to mention that many of these func-
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tions can be performed by means of operational amplifiers, used in con­
junction with standard analog-computer techniques. 

Our first conversion method, the feedback method, makes use of a 
digital-to-analog converter, which might be of the types described above. 
For illustration, let us assume that the range of input voltage is 0 to 
24 - 1 volts. The decision unit first generates the binary number 23, 

Constant-source 
voltage 

1 

1 

A 

o 

o 

B 

o o 

o 1 

c D 

(b) Vro = _v_ (a_12-1+ a_z2-2+ a_32- 3+ a_42- 4) 
. 1-2-4 

Input 

Constant-current 
sources 

Electronic switches 

Input 

Electronic switches 

FIG. 22-20. Two forms of digital-to-analog converter, using (a) constant-current 
sources and (b) a constant-voltage source. 

or 1000, by making a3 = 1; this is converted to an analog voltage Vd 
and compared with the input voltage Vi. If Vd ~ Vi, then a3 is left a 
unit; otherwise a3 is returned to zero. Next a2 is made a unit, and the 
analog representation of this number, namely, V~, is generated and com­
pared with the input voltage. If V~ ~ Vi, then a2 is left a unit; other­
wise a2 is returned to zero. The process continues until all the bits 
of the converted number have been determined (see Fig. 22-21a). 

The second, doubling method does not require digital-to-analog con­
version. The bits of the digital result are sequentially generated, again 
in order from most significant to least significant bits. A standard 
voltage V h, of one-half the full voltage range, is required. This is COffi-
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pared with the input voltage in the voltage comparator. If Vi ~ VhJ 

the most significant bit is a unit; if Vi < V h, it is a zero. If it is a unit,' 
then Vi - V h is formed in the voltage subtract or and sent to the voltage 
doubler. If it is a zero, then Vi is sent directly to the voltage doubler . 

Voltage 
comparator 

Input 
voltage 
~ 

Standard 
voltage 

Input voltage 

1'£*---- -o --- --
t 

. ' 
Digital 

decision unit 

CIa al ~~ 

Dig i tal-to-anal og 
converter 

(a) Feedback converter 

Voltage 
subtractor 

Shift register for 
digital output 

(b) Doubling converter 

(c) Ramp converter 

-;:: 
~ 

a3 

: Digital output 
ao 

Voltage 
doubler 

FIG. 22-21. Three types of electronic analog-to-digital converters. 

Here either 2(Vi - Vh ) or 2Vi is formed and sent back as an input to 
the voltage comparator to be compared once more with Vh• The reRult 
of this comparison determines the next most significant bit, and the 
process continues until all the bits of the number are· formed (see Fig. 
22-21b). The two methods just described take one unit time interval 
for each bit of the number generated. 
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The third, or ramp, method is essentially a counting method, but it 
does not require extensive control circuitry. A linearly increasing 
voltage generator is initiated and its output sent to a zero comparator. 
When the voltage reaches the zero level, the counter is activated and 
begins to count clock pulses. Meanwhile the ramp, or increasing, 
voltage is being compared with the input voltage. When the ramp 
voltage equals the input voltage, the counter is stopped; the final digital 
count so obtained is proportional to the input voltage. In this method 
the time required depends on the magnitude of the analog voltage (see 
Fig. 22-21c). 

EXERCISES 

(a) Describe both of the electronic digital-to-analog methods for n bits (i.e., 
develop the appropriate formulas for a general integer n). 

(b) Logically design the decision unit for the analog-to-digital converter of Fig. 
22-21a. 

22-6. Input-Output Methods 

Electronic Digital Transducers. Almost all information put into a 
computer is generated in other than electronic binary form. Such input 
information may be generated by a computer programmer in the form of 
handwritten numbers on a coding sheet, by a strain gauge in the form 
of a voltage waveform, by missiles in the form of a radar signal, by bank 
checks in the form of printed serial numbers, by an experimental process 
in the form of the sequential frames of motion-picture film, and so forth. 
Similarly output information generated by the computer in electronic 
binary form usually must be converted into a more easily assimilated 
form: for example, the conversion of generated functions into graphs or 
tables, of military data into map or pictorial displays, of business informa­
tion into bills and invoices, of processed statistical data into printed 
results, and so forth. A transducer may be considered a device to 
convert information from one form to another; if one of these is an 
electronic binary or digital form, the device is called an electronic digital 
transducer. The study of such computer input-output transducers is in 
itself a large field, which cannot be adequately covered in this short 
section. The methods and techniques involved are not, for the most 
part, closely related to digital circuits. However, brief descriptions of 
some specific examples will give the reader an understanding of many 
of the general problems that occur. The use of conventional electric­
typewriter, punched-paper-tape, punched-card, and magnetic-tape inputs 
and outputs for computers has already been mentioned. We shall there­
fore in this section consider other forms of input-output devices, stressing 
the digital aspects of these mechanisms. 

Let us first note that input digital transducers must perform three 
functions: The input information must first be put into digital form 
by an analog-to-digital converter or by some switching mechanism such 
as brushes sensing holes in cards, or intermittent light sensed by a photo-
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tube. Next the digital information must be converted into the proper 
electrical form, using conventional electronic techniques. Finally the 
electronic bits must be transformed into a word format and appropriately 
synchronized with the clock of the computer. Output digital transducers 
must perform the reverse process. Some aspects of these problems have 
already been considered when the push buttons and input-output buffer 
of the Pedagac were described (Sec. 18-8). 

Direct Switched Input. Other than push buttons, the so-called joy 
stick is the simplest mechanism for computer input. It consists of a 
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FIG. 22-22. Joy stick and display system. 

stick that can be moved in two dimensions; the displacement of the 
stick is mechanically digitalized and recorded directly in a special word 
of the computer's memory, analogously to the signal sensing word of 
Sec. 8-3. One typical application of a joy stick is as an aid in tracking 
aircraft, inserting into the computer the X, Y coordinates of a radar­
signal pip on a cathode-ray tube. A code is written so that the displace­
ment of the joy stick directs, through the computer, the position of a 
spot on the cathode-ray tube. Then by means of the joy stick the oper-· 
ator maneuvers the spot until it appears directly over the radar-signal 
pip. Then a button is pushed, and the computer records the position 
of the joy stick, which now gives the position of the radar-signal pip 
(see Fig. 22-22). A great many variations of this technique exist. For 
example, the position of the spot may be directly proportional to the 
displacement of the stick; a foot pedal might be added so that when it is 
pushed the spot will acquire a velocity proportional in magnitude and 
direction to the displacement of the stick. 

Manual Write-in. Another simple input to a computer is a writing 
sensor plate, whose purpose is to enable numbers to be written directly 
into the computer. The scheme is based ona system of writing numbers 
around a pair of dots previously printed on a paper. The paper is 
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placed on a board that senses whether the pencil crosses the lines a, b, c, 
d, e, j, and g as a digit is written in each position (see Fig. 22-23). Each 
digit crosses the lines or not in a different pattern, as shown in the array 
of the figure: a unit means that the pencil crosses the corresponding 
line when writing that number, and a zero that it does not, as recorded 
by the sensing plate. After the number has been completely written, 
the pencil is touched to the square in the lower right-hand corner, and the 
7 bits of each number are recorded by the computer. The computer 
then interprets this code appropriately. A similar innovation can be 
made for the entire alphabet, printed or script. An application of such 
a scheme is to enable many long-distance telephone operators to record 
telephone numbers into an automatic bill-forming computer. 

1 2 3 4 5 '6 7 8 9 0 
a 0001110111 
b 0110111111 b! c! ___ ~ ___ «l 
c 1111001111 I 

d 01111'10110 d: 
e 0100'010101 ----+----
f 0110110101 ·e ,: g 

4-' -tit f --~----+ 
----~ ----,- -- ---"1 --- ---+ -

I I 
I I I I 

g 1 0 1 1 1'1 1 1 1 1 SenSing elements Sensor plate for four digits 
'Binary interpretation 

--+t- -t-- -~- #t --$- -$-- --~ -$- -11--- -+- - --@ -- -·t- -- - ... ---- ----t- - ---of --. ---of- - - -"t- -- ---of -- - -+ - ----f- -- -- -~-- -
I 0 I 0 I I I 

Formation of the digits 

FIG. 22-23. Writing sensor plate and binary interpretation of digits. 

Character-reading Machines. t There are many methods for auto­
matically reading printed matter into a computer. We have chosen to 
describe a method that utilizes digital circuitry extensively and is cap­
able of reading 10,000 characters/sec. As shown in Fig. 22-24, a lens 
focuses a vertical-strip area of the character onto sensing phototubes. 
The phototubes divide the strip image into 11 squares, considering each 
as black (a unit) or white (a zero). These 11 bits are then recorded in 
11 rows of a shift register. The character is sensed in this way five 
times as the paper on which it is printed moves past the lens. Each 
time, each of the 11 shift-register rows is shifted to accommodate the 
new information, which enters only on the right. When the fifth strip 
is sensed, the full character has been recorded as shown, as zeros or units 
in a 5 X 11 matrix. The machine is able to separate characters as they 
come past because the shifting is initialed only when the first black area 
is sensed; then the machine shifts only five times and after a short delay 
waits for the next black area. To avoid errors due to varying vertical 
displacement of the characters on the paper, after the 11 shift-register 

t Based on private communication with J. Rabinow, Rabinow Engineering Co., 
Takoma Park, Md. 
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rows have been loaded the columns become shift registers, and the 
recorded information is shifted down until a unit reaches the bottom 
row. The value (0 or 1) of each bit in the registers can now be sensed 
by two wires from each of the bit locations, the direct and inverted out­
puts. Seven wires (for example) are chosen from critical areas for each 
character, so that if that character is recorded the voltages of the seven 

·Shift 
~ 

00000 
00000 
1 1 111 
10000 

Shift I 1 1 1 1 1 l 00001 
00001 
0000 1 

Double- 1 1 1 1 1 
shifting 0 0 0 0 0 
register 0 0 0 0 0 

00 000 
00 000 
00 000 
00 000 
11 III 
10 000 
1 1 III 
00 001 
00 001 
00 001 

Representation of 
Sshifted down 

Summing 1 1 III 

~
~\V' ~C'r~'ts '----Choo-----'ses 

~ ~ Ch~~t~ter 
~'3 

Paper with character 

Input to computer 

FIG. 22-24. Parallel-scan character-reading machine. 

wires will add up to seven times the voltage on each wire. In order to 
determine which character is recorded in the registers, we need merely 
look for the one corresponding to the maximum voltage. This maximum 
type of decision is used to avoid errors due to broken printed characters, 
dirt spots, etc. 

Another technique has the characters printed in magnetic ink. Again 
a vertical strip is sensed, this time by a magnetic recording head; an 
induced voltage waveform is generated, characteristic of the figure 
passing by (see Fig. 22-25a). The characters are so designed that the 
wa veforms can easily be distinguished. This method has been standard­
ized for reading serial numbers on bank checks (see Fig. 22-25b). For 
sorting mail automatically still another scheme has been proposed. On 
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the lower right-hand corner of each letter is sprayed a strip of magnetic 
material, which acts like magnetic tape. An operator reads the hand- or 
typewritten address and with a keyboard puts a coded address onto the 

(a) (b) 
FIG. 22-25. Magnetic printing and character recognition. (a) Induced voltage wave~ 
form when magnetic head covers area shown as the number moves past; (b) check. 
reading machine showing the rotating drum that holds the check and the magnetic 
head that reads the stylized numbers. (Photograph courtesy International Business 
Machines Corp.) 

RABINOU ENGINEERING CO. INC. 
7212 Ntl.l HAMPSH ru: PIJG. 

UASHIItGTOI1 12. II. Co 

...... ~\\ .. 
\~~:~."" ,,\>- ~ c \\)~~'\ 

t-\ C'..;.'.:"" 
t:.",: .. :.t~f""V Rabinow Engineering Co., Inc. 

7212 New Hampshire Avenue 

Washington 12, D. C. 

~.f: .. 
. . ""='" .Q.: 

FIG. 22-26. A letter that was sent across the country, showing the magnetic-ink strip 
in the lower right-hand corner. Even though" Not Here" was written over the strip, 
the code was not disturbed. (Photograph courtesy Rabinow Engineering Co., Inc.) 

strip as the letter passes by the magnetic writing head. This magnetic 
address can be read for automatic sorting at various postal distribution 
points. Writing or stamping over the strip does not affect the code (see 
Fig. 22-26). 
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Lead screw 

(a) 

(b) 

Optical system 

I Information to pulse 
f digitalizing circuits 

(c) 

[CHAP. 22 

FIG. 22-27. (a) Mechanism of picture reader; (b) finding the boundary of the letter L; 
(c) the result of repeating the process; note what happened to a spot of dirt in the 
lower left-hand corner. 

Picture-reading Machine. An input device of particular interest is 
a picture reader. Here a photomultiplier tube scans the picture as if 
it were marked off in squares like graph paper. If a particular square 
is darker than some relative index, then this square is recorded in the 
computer as a unit, otherwise as a zero (see Fig. 22-27a); in this way the 
picture is recorded in the memory. The contents of the memory can be 
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displayed on a cathode-ray tube so that a unit bit presents a bright 
spot and a zero a dark spot. This display indicates essentially how the 
zeros and units actually appear in the memory. Such a picture-reading 
machine has great potentialities. Maps may be rapidly recorded in a 
computer's memory for weather investigation, real-estate studies, or the 
simulation of military situations. Drawings of electronic circuits, chem­
ical structures, and mechanical configurations can be recorded in the 
computer's memory for patent searching or other information retrieval 
processing. A pair of stereographic aerial photographs can be recorded 
in the computer's memory and the computer programmed to produce 

Dig ital-to­
analog 

converter 

Address from 
computer 

FIG. 22-28. Picture-reading machine using negative. 

a corresponding contour map, and so forth. As an example of picture 
processing, Fig. 22-27b shows a letter L processed so that only the 
boundary appears black. Processing this figure in the same way over 
and over again, we obtain the shape shown in Fig. 22-27c. 

A second type of picture-reading machine places a negative or a 
positive transparency between a cathode-ray tube and a phototube. The 
computer is programmed to direct the electron beam scanning the picture 
and simultaneously to record from the phototube a unit or a zero (see 
Fig. 22-28). 

Large Fixed Memory. t There are many applications of computers 
that require a fixed memory, such as a dictionary for a language-trans­
lating machine or an address-zone number correspondence for a mail­
sorting machine. Of the many mechanisms available we shall describe 
one that depends on the transmission of light through aligned holes in 
plates. Consider, for example, a memory with a 3-bit address, with 
each of the eight addresses containing 4 bits (see Fig. 22-29). The 
memory consists of a cover plate and of three other plates each of which 
can be moved laterally into either of two possible positions, corresponding 
to a unit and a zero. Behind the plates four phototubes each sense 
one-fourth the area of the plates representing one of the 4 bits. An 
address is represented by the appropriate displacement of the three mov-

t Based on private communication with J. Rabinow. 
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able plates. Each of the four areas represents one of the four bit 
positions of a word. The presence of a unit (or zero) in a bit position is 
sensed if light passes through aligned holes (or not) in the appropriate 
area of all three of the plates. To insert a word initially, the plates are 
shifted according to the desired address, and holes are made through 
all three plates in only those areas representing unit bit positions. In 
practice holes are prepunched in all the plates and then filled by a layer 
of paint. Then, to insert a unit, a needle is passed through the holes, 

1 0 1 0 Word sensed 
Address 

interrogated 

0 

1 Plate in unit position 

0 Plate in zero position 

0 0 f 0 0 0 0 0 0 0 ~ 0 0 0 0 0 
0 1 3 0 1 2 3 0 1 3 0 1 2 3 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 

FIG. 22-29. Plate memory. 

easily punching out the paint layer. Each of the bit areas of the cover 
plate has as many holes in it as there are addresses. These holes serve 
as guides for inserting units into the corresponding~ addresses. The 
figure shows the .three plates in position for address 010; as shown, the 
contents of this address is 1010. A memory of this type has been built 
for 3,000 addresses, each of 12 bits. Frequently it is desired to use 
more movable plates than necessary, to give the address registration 
more flexibility. 

Another kind of fixed memory can be made with the cathode-ray 
picture reader described above. Here information can be read onto 
unexposed film by means of the beam spot; the processed negative can 
then be sensed by the same setup. An address might be a row number, 
and the bits in a row be the bits of the word, read out in a single scan. 

High-speed Printers. Mechanical high-speed printers (see Fig. 22-30) 
can print 600 to 1,000 lines per minute, at 120 characters per line. A 
rotating drum contains 120 channels of metallic type-face forms, each 
channel having the complete alphabet and the digits. The paper lies 
between the type drum and a row of electronically controlled hammers, 
one for each channel. The entire line to be printed is recorded in a 
buffer storage unit. In its simplest form the binary code for each type 
face is the angle of rotation at which this type face will be opposite 
the hammer. The angle of the drum, converted to digital form, is com­
pared with the character code for each channel. When a successful 
comparison is made, the hammer bangs the paper against this type face, 
printing the character. In a single revolution of the drum the proper 
character from each channel is printed-i.e.) one line is printed per 
revolution of the drum. 
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An even higher-speed printer is based on the so-called Charactron 
tube. By this_method over 4,500 lines of 120 characters can be printed 
per minute. At this rate a 300-page book can be printed in 3 min. 
The Charactron tube displays alphabetic and numerical symbols by shap­
ing the electron beam. The beam is shaped by passing it through a 
stencil plate with holes in the shape of letters (see Fig. 22-31a). The 

FIG. 22-30. Mechanical high-speed printer showing type-face drum. (Photograph 
courtesy Potier Instrument Co., Inc.) 

characters are formed by directing the beam through the appropriate 
hole. Masks with 64 characters have been made. This technique is 
coupled with that of the xerography process as follows (see Fig. 22-31b): 
A selenium-coated rotating drum is charged and exposed to the image 
of the characters formed by the Charactron tube. Special ink powder 
can then be transferred from the exposed part of the drum to paper. 
There are seven stages in this transfer process: the selenium drum is 
charged; the Charactron image is projected on the surface; the special 
ink powder is put on; the blank paper is charged; the image is transferred 
to the paper; the image is heat-fixed on the paper; and finally the drum 
is cleaned for the repeat process. 

Picture Displays. Cathode-ray tubes can be used to display the plots 
of graphs by sending the x and y coordinates of each point into a digital-
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to-analog converter -to control the voltages for the x and y plates of the 
tube. In a similar fashion a television tube can be connected to a 
magnetic drum, so that as the drum rotates each line is displayed by the 
tube. In this setup the picture display is repeated each time the drum 
makes a revolution. To alter the picture, the programmer merely 
changes the pattern of bits, zeros and units, on the drum. In this way 

Display-positioning 
electrodes drum Lens 

Selenium- wharactron tube 
coated 

.d~Drum surface charger· 

Ink pow~ \ I Brushing off surface 

~'. Heating 
",.,,...... chamber 

Ca) 

(b) 
FIG. 22-31. The Charactron tube coupled with the xerography process for high-speed 
printing. 

the computer can display a moving picture of the successive results 
of computation. Simulations carried out by the computer, such as 
war games, traffic queueing problems, etc., can be directly displayed; 
Another scheme is to use an electroluminescent surface, which emits 
light when a voltage is applied across it. Wires buried in the surface 
can be controlled by the computer to generate voltages, and hence light, 
as desired for picture displays. 

EXERCISES 

(a) Write a program for the Pedagac that will enable a joy stick and foot pedal 
to be used as described in this section. 

(b) Suppose in the manual write-in system that the 1 is sometimes written to the 
left of the two dots, that the top of the 2 may curl round too far, that the middle 
of the 3 does not always cross the line connecting the two dots (line d), and that the 
tails of the 7 and the 9 are occasionally placed on the wrong side of the lower dot. 
How can the system handle such variations? 

(c) For the manual write-in system, using four dots and 12 lines, demonstrate 
a way of writing the letters of the alphabet so that they may be distinguished, as 
well as the digits. Develop the binary coding table. 

(d) Logically design the two-way shift register required for the parallel-scan 
character-reading machine, using dynamic flip-flops. 

(e) How would the G-H connections be made between flip-flops of the type described 
in Sec. 20-6 for the two-way shifting register of the parallel-scan reading machine? 

(f) Write a code for the Pedagac that will develop the border, or outline, of a 
picture recorded in its memory. 
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CHAPTER 23 

THE ELECTRONIC DESIGN OF THE PEDAGAC 

23-1. Introduction 

In this chapter the attempt is made to complete the thread of con­
tinuity-from the systems design of a general-purpose computer, through 
its logical design, to its electronic design and final wiring tables. The 
chapter may at first seem ~pecific in that it illustrates the electronic design 
of a single, simple machine. However, the reader should realize that the 
purpose of discussing the Pedagac is to bring up in a natural and realistic 
way some very important general problems applicable to all computer 
and control designs. Consideration of each problem had to be post-

cp(x+1) 

, cpx o-..r-----.,...-+--__ -i 

r----' 
I I output : ~~:------------+----o 

I L ____ ...I 

RI - 10Kn 
R2 - 4.7Kn 
R3 - 2.4 Kn 
R4 - 470n 
C - 0.001 p.f 

T1 • T2 - 2N643 
Type DR435 diodes 

Output 

-10vQ---~~~~----------------~ 

FIG. 23-1. Type C package schematic wiring diagram. (The portion of the figure 
enclosed in the dashed rectangle is discussed in Sec. 23-3.) 
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poned until all the necessary background had been developed. N ow in 
this chapter we can finally discuss the all-important specific timing prob­
lem, illustrated by its solution for the Pedagac. Then there are the delay 
and negation problems, for which the Pedagac solutions are given. 
Finally we shall be in a position to appreciate the wiring-table problem, 
which in practical cases becomes far from trivial. 

23-2. Problems in the Electronic Design of the Pedagac 

Basic Design of Pedagac Packages. 
gated transistor-amplifier regenera­
tion circuit (see Sec. 20-5). Figure 
23-1 is a schematic wiring diagram 
of a type C package (see Sec. 18-2), 
which has three input and gates 
feeding an or gate. Note that the 
regenerative and gate is wired in­
ternally. The direct and inverted 
outputs can each drive six other 
packages. The time required for 
the leading edge of a negative input 
pulse to pass through both transis­
tors, i.e., the transit time tT , is 0.47 
Itsec. Figure 23-2 illustrates the 
output waveforms from a package. 

• 1 ra,; 

'j l1 
fJ 

.. , 

,~ 

11 ., 
I' rJ 

1"1 

~. 
II 

FIG. 23-2. Output waveforms of a 
'Pedagac package driving eight direct 
and eight inversion inputs. (Top) 
Input at 200 kc; (center) inverted out­
put; (bottom) direct output. Each ver­
tical division represents 1.25 volts; each 
horizontal division represents 0.135 Jo'sec . 

The Pedagac package is a diode-

112131415161718 112131415161 

cpl 

FIG. 23-3. Clock-phase system of the 
Pedagac: eight phases, 50 per cent duty 
cycle. Observe that the delay time of 
the trailing edge of each pulse allows 
skipping of three clock phases (cf. Fig. 
23-5). Compare this figure with Figs. 
19-5 and 19-6 on pages 632 and 633. 
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Packages of types A, B, D, and E differ from Fig. 23-1 only in that they 
contain, respectively, one, two, four, and five input and gates. 

Timing and Repeater Problems. For the Pedagac we have chosen 
an eight-phase clock (see Sec. 19-3) with a unit time interval of 5 J,tsec. 
The pulse width tw is taken to be a little more than four of the clock­
phase divisions, or slightly more than half a unit .. time interval. Each 
clock-phase division is % = 0.62 J,tsec in length. Since for the regenera­
tion circuit it is sufficient to have an overlap time no shorter than the 

Frornmemory (a) 

FIG. 23-4. Tracing (a) from channel 3 of the drum to the first stage of the accumulator. 

cp 1 ----.---{'''' 
Input --f--~ 
Load --,+-~ 

(a) Flip-flop logical diagram 

cp7cpScpl cp2cp3cp4cp5cpScp7 cpS cplcp2cp3 cp4 

Input. B 

(e) Clock-phase dia~ram for flip-flop 

cpl 
Input 
Load ~b ~output 

(b) Flip-flop showing F-type package 

Regenerative 
loop . 

j...-4--L __ Output 
)-_-1 to B 

(d) Type F package showing regenerative 
loop and gate 

FIG. 23-5. Skipping phases for delay with type F package. 

transit time (0.47 J,tsec for thk Pedagac package), then an overlap of one 
clock-phase division (0.62 J,tsec) is adequate for the transfer of a signal 
from one package to the nex:t (see Fig. 23-3). A detailed examination 
of the logical design diagram of the Pedagac shows that no signal (except 
1CS in the cur~ent-address counter) traverses more than seven packages 
during a single minor cycle; the eight-phase clock is more than adequate 
to handle this. Figure 23-4 illustrates a signal that traverses seven 
'packages from the memory to the accumulator in one unit time interval. 

The 50 per cent· pulse duty cycle coupled with the short necessary 
overlap time is desirable for skipping clock phases (see Sec. 19-3). For 
our purposes the most important application of the clock-phase-skipping 
capability is its use in connection with the electronic realization of the 
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unit delays that so frequently appear in the logical diagrams. The delay 
line will be represented by a regenerative Pedagac type of package with 
a minimum of inputs. In Fig. 23-5 
we illustrate its use for the delay 
in a dynamic flip-flop. Suppose 
that the flip-flop package B is gated 
with input clock phase 1. Then its 
output will last from clock phase 2 
through and including clock phase 5. 
But the delay packageF is gated with 
input clock phase 5, and can there­
fore accept the output of package 
B. The output of the delay pack­
age F will last from clock phase 6 
through and including clock phase 1 
of the next unit time interval; if its 
output is connected to the input of 
package B, then package B can FIG. 23-6. Generating To and 'l'o outputs, 
sense the delayed signal. The using F-type packages as repeaters. 
delay package we shall call a type 
F package; it is constructed especially for this purpose, with a single two­
input and gate and a regeneration gate. 

Each Pedagac package is limited to a maximum of six outputs. But 

FIG. 23-7. Fifty-pin 5- by 7-in. card. The printed-circuit card is fitted into the con­
nector as shown; electrical contact is made by spring clips above and below the card. 
The large holes on the sides of the connector are for mounting on the racks. The 
small holes, three to each pin, are for wiring, as illustrated by the jumper wire. The 
projecting pins are for testing. 
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observe from the logical diagrams that some Pedagac signals will be 
required as inputs many more than six times. Such signals must pass 

r--------------, through multiplying repeater pack­
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ages to gain more outputs. The re­
peater package is simply the F-type 
package, just described for use in 
delays. For example, 34 direct out­
puts of To and 32 inverted outputs of 
To (i.e., To) are required. We let 
the direct output of the To genera­
tor drive six F-type repeater pack­
ages; each output of the F-type 
packages is able to drive six more 
packages, for a total of 36 available 
direct To outputs and 36 available 
inverted, or To, outputs; these are 
more than adequate for this situation 
(see Fig. 23-6). 

From our unit-time-interval speci­
fications we can calculate the required 
speed of the magnetic memory drum 
of the Pedagac and the average ac­
cess time. Since there are 27 = 128 
sectors around the drum and each 
sector contains 23 bits per channeli 
there are 128 X 23 = 2,944 bits per 
channel, or 2,944 unit time intervals 
per revolution. Since a unit time 
interval is 5 }.Lsec, we have a basic 
clock rate of 1/ (5 X 10-6) = 200 kc. 
The drum speed in rpm is therefore 

60 
2,944 X 5 X 10-6 = 4,076 rpm 

The average access time in milli­
seconds is 

Y2 (time of 1 revolution) 
7~ X 2.944 X 5 X 10-3 = 7.4 msec 

PedagacPackages and Cards. The 
L _____________ _ next step in the design of the Pedagac 

FIG. 23-8. Type 2 card. (The portions is a discussion of the assembly of the 
of the figure enclosed in the dashed cir- packages into cards, the printed­
cles are discussed in Sec. 23-3.) circuit modules of the Pedagac. 

We have selected a 50-pin card 7 in. long and 5 in. wide (see Fig. 23-7). 
The pins of the card fit into a connector, on the other side of which are 
holes for the insertion of taper-pin tipped wires. Each type B, C, D, and 
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E package is paired with a type F package, since many of these packages 
are associated with unit delays (e.g., the shift-register packages, etc.). 
For the Pedagac we make use of six types of cards: 

Type 1 card with five type A packages 
Type 2 card with two type B and two type F packages 
Type 3 card with one type C and one type F package 
Type 4 card with one type D and one type F package 
Type 5 card with one type E and one type F package 
Type 6 card with nine type F packages 

Figure 23-8 illustrates a type 2 card with its associated pin connections; 
Table 23-1 lists the pin connections for all the cards. To reduce the 
required number of pins per package, each Pedagac card includes a com­
mon ground and a common power bias. Thus only two voltage pins 
are needed, pin 1 for ground and pin 50 for the required -10-volt supply. 

EXERCISES 

(a) From the specifications of the Pedagac, and from the fact that no signal trav­
erses more than seven packages in a unit time interval, observe that a seven-phase 
clock seems feasible. Perform all the calculations analogous to those described 
above for such a seven-phase clock system. (HINT: What duty cycle will allow the 
use of F-type packages as a delay?) What will be the average access time? 

(b) Consider a signal that must drive 26 packages. Design a repeater system 
using only 4 repeater packages such that all 26 signals are available at the same time. 
(HINT: Skip clock phases.) 

(c) Signal1CS may be required to traverse up to 12 packages in a unit time interval. 
One method of preventing this is to design the current-address register as a parallel 
counter (see Exercise f of Sec. 18-7). Why is this unnecessary in the Pedagac? 
(HINT: See footnote on p. 582.) 

23-3. Problems in Assigning Clock Phases 

Negation Problem. With the background of the previous section we 
are now in a position to understand the negation problem. Consider 
a package with input clock pulse cpl. If this package is putting out a 
unit, the unit will appear at approximately cp2 through cp5, being 
delayed from the input clock pulse by one clock-phase division. During 
cp6 through cp8 and the next cp 1, that is, "between" clock pulses, the 
output will be zero. But consider the inverted output. During cp2 
through cp5 it will have the opposite polarity to the direct output and 
will be zero. But during cp6 through cp8 and the next cp1, that is, 
between clock pulses, the inverted output will be a unit. A problem 
arises because this negation output is a unit between clock pulses, 
whereas we have heretofore tacitly considered it to be zero. For exam­
ple, consider an input and gate that is to form X' Y, gated at cp4, 
with the X output "on" from cp4 through cp7, but with the Y output 
"on" from cp2 through cp5. Suppose that Y is a unit. Then there 
should be a zero output from the X . Y and gate; and there is during cp4 
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TABLE 23-1. CARD-PIN LAYOUT 

Type 1 Card 

Pin No. I Package and I 
gate No. 

Function 

1 ... . Ground 
2 lAI cpx input 

3-7 lAI Inputs 
8 lAa cpx + 1 input 
9 lA Output 

10 lA Output 

11 2Al cpx input 
12-16 2A1 Inputs 

17 2Aa cpx + 1 input 
18 2A Output 
19 2A Output 

20 3A1 cpx input 
21-25 3A1 Inputs 

26 3Aa cpx + 1 input 
27 3A Output 
28 3A Output 

29 4A1 cpx input 
30-34 4A1 Inputs 

35 4Aa cpx + 1 input 
36 4A Output 
37 4A Output 

38 5A1 cpx input 
39-43 5A1 Inputs 

44 5Aa cpx + 1 input 
45 5A Output 
46 5A Output 

47-49 .... Blank 
50 .... -10 volts 

Type 3 Card 

Pin No. Package and 
gate No. 

1 
2 

3-7 
8 

1C1 
1C1 
1C2 

Function 

Ground 
cpx input 
Inputs 
cpx input 

Type 2 Card 

Pin No. 
Package and 

Function 
gate No. 

1 .... Ground 
2 1Bl cpx input 

3-7 1B1 Inputs 
8 1B2 cpx input 

9-13 1B2 Inputs 
14 1Ba cpx + 1 input 
15 1B Output 
16 IB Output 

17 1F2 cpx + 4 input 
18 1F2 Input 
19 1Fa cpx + 5 input 
20 IF Output 
21 IF Output 

22 2B1' cpx input 
23-27 2B1 Inputs 

28 2B2 cpx input 
29-33 2B2 Inputs 

34 2Ba cpx + 1 input 
35 2B Output 
36 2B Output 

37 2F2 cpx + 4 input 
38 2F2 Input 
39 2Fa cpx + 5 input 
40 2F Output 
41 2F Output 

42-~9 .... Blank 
50 .... -10 volts 

Type 4 Card 

Pin No. 
Package and 

Function 
gate No. 

1 Ground 
2 1D1 cpx input 

3-7 1D1 Inputs 
8 1D2 cpx input 

9-13 1D2 Inputs 
14 1D3 cpx input 
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TABLE 23-1. CARD-PIN LAYOUT (Continued) 

Type 3 Card (Continued) Type 4 Card (Continued) 

Pin No. 
Package and 

Function 
gate No. 

Pin No. 
Package and 

Function gate No. 

9-13 1C2 Inputs 15-19 1D3 Inputs 
14 lC3 cpx input 20 ID4 cpx input 

15-19 1C3 Inputs 21-25 ID4 Inputs 
20 1Ca cpx + 1 input 26 IDa cpx + 1 input 
21 1C Output 27 1D Output 
22 1C Output 28 1D Output 

23 1F2 cpx input 29 IF2 cpx + 4 input 
24 1F2 Input 30 1F2 Input 
25 1Fa cpx + 1 input 31 1Fa cpx + 5 input 
26 IF Output 32 IF Output 
27 IF Output 33 IF Output 

28-49 ... . Blank 34-49 .... Blank 
50 ... . -to volts 50 .... -10 volts 

Type 5 Card Type 6 Card 

Pin No. 
Package and 

Function 
gate No. 

Pin No. 
Package and 

Function 
gate No. 

1 ... . Ground 1 .... Ground 
2 lEI cpx input 2 1F2 cpx input 

3-7 lEI Inputs 3 1F2 Input 
8 1E2 cpx input 4 1Fa cpx + 1 input 

9-13 1E2 Inputs 5 IF Output 
14 1E3 cpx input 6 IF Output 

15-19 1E3 Inputs 
20 1E4 cpx input 7 2F2 cpx input 

21-25 1E4 Inputs 8 2F2 Input 
26 1E5 cpx input 9 2Fa cpx + 1 input 

27-31 1E5 Inputs to 2F Output 
32 lEa cpx + 1 input 11 2F Output 
33 IE Output 
34 IE Output .... . .... . ........... 

35 1F2 cpx + 4 input 42 9F2 cpx input 
36 1F2 Input 43 9F2 Input 
37 1Fa cpx + 5 input 44 9Fa cpx + 1 input 
38 IF Output 45 9F Output 
39 IF Output 46 9F Output 

40-49 ... . Blank 47-49 .... Blank 
50 ... . -10 volts 50 .... -10 volts 
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and cp5. But at cp6 the signal Y is "off"; hence the signal Y would 
become a unit, and the X . Y gate is turned on erroneously. 

There are several solutions to the negation problem. One solution 
is to force the inverted output to zero between clock pulses by means 
of the clock pulse itself. But an inverted output unit should come out 
delayed, just as a direct output unit does. Hence a clock pulse one phase 
division later is used, as shown in Fig. 23-9. Then both the direct and 

Recirculation loop 

Negation and gate cpl-~--I 

cp2-+--------+----------~~ J----t---B 

t--......... ---B 

(a) 

t-+-+--+-+-IO 
---- - - - ':"'" - - - - - .... -+-+-~,- - 1 

o 
1---+--+--+-""",-- - - - - - - - - r - - - - - -r-- 1 

(b) 
FIG. 23-9. Solving the negation problem with a delayed clock pulse. (Tl and T2 
are transistor amplifiers.) 

inverted outputs will be "off" between clock pulses but will have opposite 
polarities during the clock pulses, as desired. A second solution to the 
problem is to send the inverted output into a type F package and utilize 
only the direct output of the type F package (why?). A third solution 
is to use an appropriate clock-pulse input to all and gates having the 
negation as input. 

Assigning Clock Phases to Packages. Each package is associated with 
the clock pulse entering each of its input and gates and its regeneration 
gate. The phase of this clock pulse is called the clock phase of the package. 
For each package of the Pedagac an appropriate clock phase must be 
assigned depending on the times the input signals are available. As an 
example, Fig. 23-10 repeats Fig. 18-12, with the clock phases assigned 
to the packages. There are two steps in making such an assignment: 
the first is to determine the availability of each signal, the second to 
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assign package clock phases as determined by these availabilities. For 
example, in Fig. 23-11 we trace (a) from the memory to SlAR, assuming 
that (a) leaves the memory at cpl. Note that any information from the 
memory will not be available to the arithmetic unit until cp5. The result 
of the arithmetic operations is available at cp7, at which time it enters 
SlAR for temporary storage. To assign a clock phase to a package, 
all the input signals are marked as to clock-phase availability; the clock 
phase of the package then becomes the clock phase of the last signal to 
enter the package, in order that the output will be on for the full half 
unit time interval. Figure 23-12 shows the availability of signals 
entering package S5AR. The last signal will enter at cp5, and so a clock 
pulse of cp5 is assigned to S5AR. Note, however, that the signal SHS 
is available only during cp1 through cp4; thus we must delay SHS by 
one or more clock-phase divisions before it enters the package. In Fig. 
23-10 we have included all the type F packages necessary for delay 
purposes, in addition to assigning the proper clock phase to each package. 

We have assumed above that (a) will be available from the memory 
at cp1, even during To. However, this requires that the selection 
mechanism of the IF phases begin its operation earlier than To. For 
this reason all IF packages must be adjusted to present outputs earlier 
than was indicated in Fig. 18-17 at To. Investigation of the figure 
indicates that this is possible. Other signals must similarly be adjusted, 
particularly those concerned with the instruction register and current­
address counter. We shall not go into the details of this process (see the 
Additional Topics), except to note that the minor cycle was made three 
unit time intervals longer than the number of bits in a word especially 
to allow time for the selection processes before cpl of To. 

EXERCISES 

(a) If the polarity of the unit and zero pulses were reversed, how would this affect 
the negation problem discussed above? 

(b) Discuss the assignment of clock phases to the input-output equipment. 
(c) Discuss other possible means of correcting for a signal cut off before the clock 

phase of a package it must enter. 
(d) Assuming that information from the drum [(ex)] is available at cpl, assign clock 

phases to the packages of Fig. 18-11. 

23-4. Minimum-wiring Theoryt 

The Wiring Problem. Modern large-scale computers can require more 
than 100,000 wire connections between packages. (Even our Pedagac 
requires ap~roximately 5,000 wire connections.) The planning of. these 
connections turns out to be far from trivial and in fact can be accom­
plished feasibly only with the aid of a computer. Systematic rules must 
therefore be devised in order that the computer can be programmed. 
The wiring itself can be feasibly accomplished by hand; for a simple 

t This section is based in part on H. Loberman and A. Weinberger, Formal Pro­
cedures for Connecting Terminals with a Minimum Total Wire Length, J. Assoc. 
Computing Machinery, vol. 4, no. 4, pp. 428-437, October, 1957. 
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To ASCG 
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FIG. 23-10. Logical diagram of the arithmetic unit: sign generator 
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MOCl,2, ••• ,8) I--~'""i 

A71ASRF ~R~ .SlAR 

~ Indicates a signal of duration cpl· cp4 
cp4 

[CHAP. 23 

(a) 

FIG. 23-11. Tracing (0:) from memory to SIAR, with clock-phase availability times. 

calculation based on the assumption that a technician using taper-pin 
connectors (no soldering required) can place one wire per minute indi­

cp5-----4 
T2 _-.;.cP....".5-l 

2 cpS 
ACC....;;cP...."......--l 

cp5 cp5 
ASP cpS 
SHS ("",cP_I_) _--I 

(cp4) cp5 

F3 cpS 

cp5-----I 
Tl _---.:cp....".5-l 

cpS 
P4

d 
....;;cp-=-5_---I 
cpS cp5 

ASP cpS 
SHS( ,....;cP.....,.l_) --l 

(cp4) cp5 
F3 ----=-cp~8-l 

cp5----l 

P4
d 

_----'cp-::-2_l 
cp5 

ASP -'cp'-::5_---4 
cps 

SHS __ {cP_I--ll 
(cp4) 

cp5-----I 

ASP __ cp_5-l 
cps 

P5
d 

_----'cp'-::2_l 
cp5 

cates that four men working a 40-hr week 
would require approximately 3 months to 
wire such a computer. 

The wiring problem takes on specific form 
as follows: The computer cards will be as­
sembled into female connectors mounted on 
racks. For the Pedagac only one rack is 
needed, as illustrated in Fig. 23-13. The 
cards are assigned row and column positions 
in the rack, which means that each pin num­
ber on the other side of the female connector 
(i.e., the holes for taper pins) now is associ­
ated with a specific signal (see Fig. 23-7). 
The technician connecting the wires must be 
supplied with a table giving the row and col­
umn of the card and the pin number for each 
end of every wire to be connected. I t is 
highly desirable, for efficiency as well as for 
electronic purposes, to plan the wiring table 
so that a minimum length of wire is used. 
For example, suppose in Fig. 23-14 that pin 
1 must be connected to pins 2, 3, 4, 5, 6, and 
7, where for ease of access wires can be strung 
only along horizontal and vertical paths. 
The left-hand picture shows a bad connec­
tion; the right-hand picture shows the mini­
mum connections. 

FIG. 23-12. Assignment of We shall present below two algorithms for 
clock phase to package S5AR. determining the minimum wire length. The 

algorithms are applied separately to each set 
of pins that is associated with a particular signal, including both its source 
and destination. The inputs to the algorithm are the distances between 
all possible pairs of this set of pins, calculated according to the wire-path 
rules determined by the rack setup. If there are n pins, then there are 

(;) = n(n 2- 1) distances to be specified. 
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61 

~-----31----~~ 

FIG. 23-13. Pedagac card rack. 

Definitions. Before proceeding with the theory we must introduce 
further terminology, derived in part from mathematical topology and 
in part from electrical-circuit theory. A proper pattern of connections 
is one in which there is only one path from each terminal to every other 
terminal and there are no loops formed by redundant connections. Fig­
ure 23-15 shows two possible proper patterns for connecting five terminals. 
All terminals are referred to as nodes. The direct connection between 
two nodes is called a branch, the magnitude of which is the distance 
between its end nodes. A path between two nodes is a connection of one 
or more branches. A graph is a structure consisting of a number of 

:Fl: :H: 2{:5 2~5 
-Bad Good 1 1 

FIG. 23-1·1. Minimum and llonminimum FIG. 23-15. Proper-pattern connections. 
wiring connections. 
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nodes connected pairwise by one or more branches. A tree is a graph 
having only one path between every two nodes (a proper pattern). A 
proper pattern where the length of wire is minimum is a minimum tree. 
A subtree is a tree consisting of m of n nodes, where m < n. 

Two Algorithms. To connect n nodes into a tree, it is obvious that 
exactly n - 1 branches are required. If more than n - 1 branches are 
used, there will be redundant connections forming loops. On the other 
hand, if fewer than n - 1 branches are used, the tree will be incomplete. 
If n - 1 branches are used, but incorrectly, then both loops and uncon­
nected nodes will result. It can be shown that the number of possible 
trees for n nodes is nn-2; obviously, as n becomes great, the number 
of possible trees becomes overwhelming. A system which would gen­
erate all trees and select the minimum tree therefore appears impractical. 
However, since the total number of branches between each node and every 
other node is n(n - 1)/2, then for n > 5 the total number of branches is 
considerably smaller than the total number of trees. Solutions to sys­
tems which have a large number of nodes must make use of algorithms 
which work on the branches. 

For the first of the two algorithms we shall describe, the branches are 
sorted according to length, from short to long. The first branch is always 
used, its nodes being recorded as belonging to a subtree. Then each 
branch is examined, in order, for one of four possible conditions. The 
rules governing these four cases are as follows (see the flow chart of 
Fig. 23-16): 

1. Neither of the nodes is present in a recorded subtree: the branch is 
accepted, and the nodes are recorded as constituting a new sub­
tree. 

2. Only one node is present in a recorded subtree: the branch is 
accepted, and the new node is added to the subtree containing the other 
node of this branch. 

3. Each of the nodes is recorded, but in different subtrees: the branch 
is accepted, and two subtrees containing the nodes are combined into a 
single subtree. 

4. Both nodes are present in the same subtree: the branch is rejected. 
The process is completed when it is determined (1) that all the n 

nodes are in the recorded tree or (2) that a total of n - 1 branches have 
been recorded. 

Using the above algorithm, let us now construct the minimum tree 
for signal SOB of the Pedagac. Signal SOB goes to seven different 
locations: we shall therefore have eight nodes in our tree (one output 
and seven input), with 28 possible branches [(8)(8 - 1)/2 = 28]. The 
seven destinations of signal SOB are SOBH gate 3, SOBH gate 5, ASSG 
gate 1, PQSG gate 1, ASCG gate 2, ASCG gate 4, and GMIB gate 3. 
In order to simplify the writing of the 28 possible branches, let us assign 
code numbers to the various packages as follows: SOB = 1; SOBH-3 = 2, 
SOBH-5 = 3; ASSG-l = 4; PQSG-l = 5; ASCG-2 = 6; ASCG-4 = 7; 
and G MIB-3 = 8. 



-.:r 
-.:r c:o 

Sort the n(n-l)/2 branches 
sequentially in order of 

increasing le"ngth 

Set a tally = 1 indicating 
the sequence position of 

the branch being examined 

Do either of the two nodes 
belong to a subtree? 

Accept the first (shortest, 
i.e. tally = 1) branch 
for the minimum tree 

Is the number of accepted 
branches equal to n-l? 

Or are all n nodes in one tree? 

Yes 

Only one of the nodes 

Yes 

Halt! All branches 
of the minimum tree 

have been determined 

belongs to a subtree? J I No 

Each node belongs 
Yesl \ to a different subtree? 

Combine the nodes of both 
subtrees into one subtree 

FIG. 23-16. Flow chart for forming minimum tree by the first algorithm. 
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The branches (br) and their associated lengths (len) are shown below. 
(The method of determining the lengths of the branches will be indicated 
in the following section.) 

br len 

1-2 3 br len 

1-3 3 2-3 3 br len 

1-4 8 2-4 8 3-4 8 br len 

1-5 7 2-5 7 3-5 7 4-5 6 br len 

1-6 15 2-6 15 3-6 15 4-6 12 5-6 13 br len 

1-7 15 2-7 15 3-7 15 4-7 12 5-7 13 6-7 3 br len 

1-8 46 2-8 46 3-8 46 4-8 49 5-8 48 6-8 56 7-8 56 

Ordering the list according to the length of the branches, we obtain 

1-2 3 3-5 7 5-7 13 1-8 46 
1-3 3 1-4 8 1-6 15 2-8 46 
2-3 3 2-4 8 1-7 15 3-8 46 
6-7 3 3-4 8 2-6 15 5-8 48 
4-5 6 4-6 12 2-7 15 4-8 49 
1-5 7 4-7 12 3-6 15 6-8 56 
2-5 7 5-6 13 3-7 15 7-8 56 

Rather than go through a detailed description of the procedure to 
form this particular tree, we have elected to illustrate the procedure 
by means of a diagram (Fig. 23-17) which indicates the various steps 

I~ n 7/6 H 7/6_ H 
(1) (2) (3) 

4 5 

(4) 

6 ~3 
/ 1 A-J~ A-R 
7 452 7 4 5 2 7 4 5 2 8 

(5) (6) (7) 

FIG. 23-17. Seven stages in the construction of the eight-node SOB tree (not to scale). 

in forming the tree. Note that in the tree we have disregarded the 
branch from the output node of the generating package to the input node 
of the associated F-type package. (Recall that the connection is neces­
sary whenever a signal is recirculated within a card for dynamic flip-flop.) 
Since this branch will always be equal to the shortest possible length, 
it will always be incorporated in the tree. In order to reduce the size 
of the tree and the associated computations, we have chosen to ignore this 
branch in the present treatment. However, in the next section such 
branches will be included when the wiring tables are formed. Note 
further that the branch from SOB to SOBH gate 3 is actually measured 
from the output of the type F package to gate 3 of the SOBH package 
and that the branches SOB to PQSG gate 1 and SOB to GMIB gate 3 
are made from the output of the SOBH package. 
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Sort the n(n-l)/2 branches Set tally = 1 indicating Accept the first branch Record the nodes of 
sequentially in order of sequence position of for the minimum tree (j.e., the first accepted 

increased length branch being examined tally = I, shortest branch) branch as a subtree 
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FIG. 23-18. Flow chart for forming minimum tree by the second algorithm. 
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The flow chart for the second algorithm is shown in Fig. 23-18, which 
is self-explanatory. In the first algorithm several disconnected subtrees 
can be formed, and these subtrees must be checked as each new branch 
is considered. In the second algorithm a single tree is formed. How­
ever, the branches which were previously rejected must be rechecked 
each time a new node is added to the tree. 

EXERCISES 

(a) Prove that the maximum number of trees possible is nn-2. 

(b) Write a Pedagac program for the first algorithm (see Fig. 23-16). 
(c) Form the minimum tree for signal SOB, using the second algorithm. Use the 

data given above for the example of the first algorithm. 
(d) Write a Pedagac program for the second algorithm (see Fig. 23-18). 
(e) Compare the minimum-tree problem with the traveling-salesman problem 

(see J. B. Kruskal's article mentioned in the Additional Topics, Sec. 23-6). 

23-5. Wiring Table for the Pedagac 

We are now in a position to develop the minimum wiring table for 
the Pedagac. Since the Pedagac requires about 5,000 wires, we shall 
consider here only a portion of the arithmetic unit, specifically that 
shown in Fig. 18-12. 

Figure 23-13 shows the Pedagac rack, Fig. 23-19 the card locations 
within the rack. The bus shown in Fig. 23-13 serves as a common source, 
from which are tapped the various clock-phase signals, the ground con­
nection, and the -10-volt supply. Situated immediately below the bus 
(not shown in the figure) are the channels through which the wires are 
strung. For the Pedagac we shall assume that all wires are to run along 
horizontal and vertical paths. With the location of the cards and the 
distance between cards known, the formula for the length of wire required 
to connect two terminals is 

Length of wire = Kl X (difference in row numbers) 
+ K2 X (difference in column number) + K3 

where K 1 = distance between rows = 7 in. 
K 2 = between columns = 1 in. 

and K3 is a constant compensating for differences in pin numbers. 
Since a wire may be required between pin 8 of one card and pin 47 of 
another, we assign a length of 5 in. (the card height) to K 3 ; but for con­
nections to be made between pins of a single card we have arbitrarily 
assigned K 3 = 3 in. 

Referring to Fig. 18-12, we see that there are 33 output signals (direct 
or inverted). Accordingly we must form 33 separate, distinct trees for 
the outputs in this figure. The majority of these trees will be trivial, 
consisting of only two or three nodes. The wiring table, based on these 
33 minimum trees, can take on several forms. First, we may form a 
table in which the branches of the various trees are ordered according to 
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FIG. 23-19. Location of cards in the Pedagac rack shown in Fig. 23-13. Numbers at 
tops of cards indicate their types. Packages for each card are as indicated. 
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TABLE 23-2. SCHEMATIC WIRING TABLE FOR FIG. 18-12t 

1 2 3 4 1 2 3 4 

1 4-A-25 SOB 5-B-4 13 41 6-A-31 ASP 6-B-12 6 
2 5-B-4 SOB 5-1-8 12 42 6-A-33 ASP 6-C-4 7 
3 5-B-4 SOB 5-B-16 3 43 6-B-12 ASP 6-C-7 6 
4 5-B-1O SOB 5-1-2 12 44 6-B-17 PI 6-B-26 3 
5 5-B-1O SOB 5-B-22 3 45 6-B-22 PI 6-B-24 3 

6 5-H-4 OFR 6-C-21 17 46 6-B-22 PI 6-C-3 6 
7 5-H-4 OFR 5-J-1O 7 47 6-C-4 ASP 6-C-24 3 
8 5-H-1O SEZ 5-H-21 3 48 6-C-7 ASP 6-C-28 3 
9 5-H-15 SEZ 5-1-14 6 49 6-C-1O P2 6-C-21 3 

10 5-H-16 SEZ 5-H-18 3 50 6-C-16 P2 6-C-18 3 

11 5-H-30 OF 5-H-40 3 51 6-C-21 P2 6-C-23 3 
12 5-H-34 OF 5-N-4 11 52 6-C-24 ASP 6-D-4 6 
13 5-H-35 OF 5-H-38 3 53 6-C-28 ASP 6-D-7 6 
14 5-H-35 OF 5-ilf-4 10 54 6-C-30 P3 6-C-40 3 
15 5-1-8 SOB 5-L-31 8 55 6-C-35 P3 6-C-38 3 

16 5-1-8 SOB 5-J-8 6 56 6-C-40 P3 6-D-3 6 
17 5-1-14 SEZ 5-J-15 6 57 6-D-4 ASP 6-D-24 3 
18 5-1-21 SAS 5-£-2 8 58 6-D-7 ASP 6-D-28 3 
19 5-J-2 SOB 5-£-33 7 59 6-D-1O P4 6-D-21 3 
20 5-J-2 SOB 5-1-2 6 60 6-D-16 P4 6-D-18 3 

21 5-J-4 OFR 6-C-19 19 61 6-D-20 P4 6-E-I0 6 
22 5-J-4 OFR 5-1(-12 6 62 6-D-21 P4 6-E-15 6 
23 5-J-1O OFR 5-1(-18 6 63 6-D-23 P5 6-E-32 6 
24 5-J-15 SEZ 5-1(-24 6 64 6-D-24 ASP 6-E-5 G 
25 5-J-22 SQP 5-£-8 7 65 6-D-28 ASP 6-E-17 6 

26 5-1(-11 SOD 5-1(-37 3 66 6-D-30 P6 6-D-40 3 
27 5-[(-11 SOD 5-1(-27 3 67 G-D-;)5 P6 6-D-38 3 
28 5-[(-16 SOD 5-1(-36 3 68 6-D-40 P6 6-F-3 7 
29 5-[(-33 SOD 6-X-4 25 69 G-E-4 Ace 6-M-40 13 
30 5-1(-33 SOD 5-1(-35 3 70 6-E-5 ASP 6-E-1O 3 

31 5-L-15 SOB 5-£-27 3 71 6-E-7 P5 6-E-30 3 
32 5-£-27 SOB 5-£-37 3 72 6-E-1O ASP 6-E-15 3 
33 5-£-33 SOB 5-£-35 3 73 6-E-15 ASP 6-F-4 6 
34 5-£-33 SOB 9-Y-13 46 74 6-E-17 ASP 6-F-7 6 
35 5-ilf-4 Ace 6-ilf-40 12 75 6-E-22 P5 6-E-32 3 

36 5-M-4 Ace 5-N-4 6 76 6-F-4 ASP 6-F-24 3 
37 5-ilf-4 OF 5-M-1O 3 77 6-F-7 ASP 6-F-28 3 
38 5-M-1O OF 5-N-16 6 78 6-F-1O P7 6-F-21 3 
39 5-N-4 ACC 5-N-1O 6 79 6-F-16 P7 6-F-18 3 
40 5-N-16 ACC 6-M-39 13 80 6-F-21 P7 6-F-23 3 
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TABLE 23-2. SCHEMATIC WIRING TABLE FOR FIG. 18-12t (Continued) 

1 2 3 4 1 2 3 4 
-

81 6-F-24 ASP 6-G-4 6 118 6-J-1O P15 6-J-21 3 
82 6-F-28 ASP 6-G-7 6 119 6-J-16 P15 6-J-18 3 
83 6-F-30 P8 6-F-'10 3 120 6-J-21 P15 6-J-23 3 
84 6-F-35 P8 6-F-37 3 121 6-J-24 ASP 6-](-4 6 
85 6-F-40 P8 6-0-3 6 122 6-J-28 ASP 6-](-7 6 

86 6-0-4 ASP 6-G-24 3 123 6-J-30 P16 6-J-40 3 
87 6-G-7 ASP 6-G-28 3 124 6-J-35 P16 6-J-37 3 
88 6-G-1O P9 6-0-21. 3 125 6-J-40 P16 6-](-3 6 
89 6-G-16 P9 6-G-18 3 126 6-](-4 ASP 6-](-24 3 
90 6-G-21 P9 6-G-23 3 127 6-](-7 ASP 6-](-28 3 

91 6-G-24 ASP 6-H-4 6 128 6-](-10 P17 6-](-21 3 
92 6-G-28 ASP 6-H-7 6 129 6-](-16 P17 6-](-18 3 
93 6-G-30 PlO 6-G-40 3 130 6-](-21 P17 6-](-23 3 
94 6-G-35 PlO 6-G-37 3 131 6-](-24 ASP 6-L-4 6 
95 6-G-40 PlO 6-H-3 6 132 6-](-28 ASP 6-L-7 6 

96 6-H-4 ASP 6-H-24 3 133 6-](-30 P18 6-](-40 3 
97 6-H-7 ASP 6-H-28 3 134 6-](-35 P18 6-](-37 3 
98 6-H-10 P11 6-H-21 3 135 6-](-40 P18 6-L-3 6 
99 6-H-16 P11 6-H-18 3 136 6-L-4 ASP 6-L-24 3 

100 6-H-21 P11 6-H-23 3 137 6-L-7 ASP 6-L-28 3 

101 6-H-24 ASP 6-1-4 6 138 6-L-1O P19 6-L-21 3 
102 6-H-28 ASP 6-1-7 6 139 6-L-16 P19 6-L-18 3 
103 6-H-30 P12 6-H-40 3 140 6-L-21 P19 6-L-23 3 
104 6-H-35 P12 6-H-37 3 141 6-L-24 ASP 6-M-4 6 
105 6-H-40 P12 6-1-3 6 142 6-L-28 ASP 6-!Jf-7 6 

106 6-1-4 ASP 6-1-24 3 143 6-L-30 P20 6-L-40 3 
107 6-1-7 ASP 6-1-28 3 144 6-L-35 P20 6-L-37 3 
108 6-1-10 P13 6-1-21 3 145 6-L-40 P20 6-1l1-3 6 
109 6-1-16 P13 6-1-18 3 146 6-M-4 ASP 6-M-24 3 
110 6-1-21 P13 6-1-23 3 147 6-M-7 ASP 6-!J1-28 3 

111 6-1-24 ASP ·6-J-4 6 148 6-M-1O P21 6-M-21 3 
112 6-1-28 ASP 6-J-7 6 149 6-M-16 P21 6-M-18 3 
113 6-1-30 P14 6-J-40 6 150 6-M-21 P21 6-!J1-23 3 
114 6-1-35 P14 6-1-37 3 151 6-M-24 ASP 6-N-4 6 
115 6-1-40 P14 6-J-3 6 152 6-M-28 ASP 6-N-7 6 

116 6-J-4 ASP 6-J-24 3 153 6-M-30 P22 6-M-40 3 
117 6-J-7 ASP 6-J-28 3 154 6-M-35 P22 6-M-37 3 

t Column 1 indicates row, column, and pin number of first node of the branch. 
Column 2 indicates name of tree of which the branch is part. Column 3 indicates 
row, column, and pin number of second node of the branch. Column 4 indicates the 
length of the branch. 
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node locations, i.e., ordered by rack, row, column, and pin number. This 
type of table is referred to as the schematic wiring table; Table 23~2 is the 
schematic wiring table for the outputs of Fig. 18-12. This is the table 
to be used by the wiring technicians. A second type of table;-,the 
alphabetic table, is formed directly from the minimum trees, by ordering 
the signal names alphabetically. Table 23-3 is a portion of the alpha­
betic table for Fig. 18-12. 

TABLE 23-3. PORTION OF ALPHABETIC TABLE FOR FIG. 

Signal name Origin Destination 

ACC 6-M-40 5-M-4 
ACC 5-M-4 5-N-4 
ACC 5-N-4 5-N-I0 
ACC 6-M-40 6-E-4 

ACC 6-M-39 5-N-16 

SOB 5-L-33 5-L-35 
SOB 5-L-33 9-Y-13 
SOB 5-L-37 5-L-27 
SOB 5-L-27 5-L-15 
SOB 5-L-33 5-J-2 
SOB 5-J-2 5-1-2 
SOB 5-1-2 5-B-1O 
SOB 5-B-1O 5-B-22 

EXERCISES 

(a) Complete the alphabetic table for Fig. 18-12. 
(b) Form the trees for Fig. 18-11, using the first algorithm. 
(c) Form the trees for Fig. 18-11, using the second algorithm. 
(d) Form the schematic wiring table for Fig. 18-11. 
(e) Form the alphabetic table for Fig. 18-11. 

23-6. Additional Topics 

a. Articles Concerning Wiring Diagrams 

18-12 

Cayley, A.: A Theorem on Trees, "Mathematical Papers," vol. 13, pp. 26-28, Cam­
bridge University Press, London, 1897. 

Kruskal, J. B., Jr.: On the Shortest Spanning Subtree of a Graph and the Traveling 
Salesman Problem, Proc. Am. Math. Soc., vol. 7, pp. 48-50, 1956. 

Loberman, H., and A. Weinberger: Formal Procedures for Connecting Terminals 
with a Minimum Total Wire Length, J. Assoc. Computing Machinery, vol. 4, 
no. 4, pp. 428-437, October, 1957. 

Weinberger, A., and H. Loberman: Symbolic Designations for Electrical Connections, 
J. Assoc. Computing Machinery, vol. 4, no. 4, pp. 420-427, October, 1957. 

b. With the information given in Chaps. 18 and 23 assign clock-phase signals to 
all the and gates of the Pedagac packages. 

c. Prepar~ complete schematic and/or alphabetic wiring tables for the Pedagac. 



APPENDIX 

TABLE A-I. ARITHMETIC-UNIT EXTERNALLY GENERATED OPERATIONS SIGNALS 

(See Fig. 18-10) 

Name Time Destina tion Gener-
of Equation period ation Remarks 

signal present Package Gate location 

Al [a1] . [T2] . [T6] As gener- GSIC I SHA1 Least significant 
+ [AId] . [T2] ated SHA1 2d bit of shift 
· [7\] SHA2 2d,3d count-down 

SHA3 2d,4d 
SHA4 2d,5d 
SHA5 2d 

A2 [a2] • [T2] . [T6] As gener- GSIC I SHA2 Fourth significan t 
+ [T2]. [7\] ated SHA2 2d,3d bit of shift 
• [Ald' A2d SHA3 3d,4d count-down 
+ Ald' A2d] SHA4 3d,5d 

SHA5 3d 
Aa [et3] . [T2] . [T6] Asgener- GSIC I SRA3 Third significant 

+ [T2] . [1\] ated SHA3 2d, 3d, bit of shift 
· [Ald' A3d 4d count-down 
+ A 2d' A3d SHA4 4d 
+ Ald' A 2d 
• A 3d] 

A, [a4] • [T2] . [T6] As gener- GSIC I SHA4 Second significant 
+ [T2] . [1\] ated SHA4 2d,3d, bit of shift 
• [Ald' A4d 4d count-down 
+ A 2d . A4d 
+ A3d . A4d 
+ Ald' A2d' A 6d] 

A6 [a5] • [T2] . [T6] As gener- GSIC I SHA5 Most significant 
+ [T2] • [7\] ated SHA4 5d bit of shift 
· [A6d] • [AId] SHA5 2d,3d count-down 
+ [A 2d] 

ADD 53D As gener- ASCG 3,4 (53D) Addition decode 
ated IF2G 1 signal 

(GASC 1) 

787 
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Name 
of 

signal 

ASC 

CLS 

DCS 

DDS 

DRl 

JCS 

LAS 

LDS 

APPENDIX 

TABLE A-I. ARITHMETIC-UNIT EXTERNALLY GENERATED OPERATIONS 
SIGNALS (Continued) 

Time Destination Gener-
Equation period ation Remarks 

present Package Gate location 

[53D]· [To] '1'0 ASSG 1,2 GASC Add-subtract con-
+ [54D] . [To] SOBH 1,3 trol signal, on 

during addition 
and subtraction 
instruction 

50D As gener- ASBl 2 (50D) Clear instruction 
ated SOBH 4 control signal; 

F3SG 2 this signal in-
hibits contents 
of accumulator 
from entering 
adder, thereby 
clearing accumu-
lator; it also en-
sures that sign 
of accumulator 
is positive after 
clearing 

[41D] . [TI9] . [T1] T I- 18 ASAl 2 GDCS Division control . 1-18 + [DCSd] . ['1'19] ASBl 3 signal 
GDCS 2d 

[4ID] . [T19] TI-18 ASCG I, 2, 3, GDDS Division d~eode 
4, '5 signal 

SPDG 1,2,3, 
4,5 

, SIER 3 
SI8ER' 1,3,4 ; 

lSPS 3 : 
[4ID] . [T21] T21 SIER 4 GDRl Division recircu-

lation inhibit 
signal; it kills re-
circulatio~ in SI 
of ier . 

[43D] . [SOB] )11, T22 JCLG 1 GJCS Jump con~rol sig-
. [T 22 ] • [FI] ICSG I nal 
+ [44D]. [Td 
. [FI] I 

[72D] . [TIl Tl - 18 SIAR I GLAS Logical-ad~ sig-
+ [LASd] • [1'19] : GLAS 2d nal 

71D + 72D As gener;. lTCF 3 GLDS Logical de~ode 
+ 73D + 74D ated ClAS 1,2 signal; t~is sig-

SIAR 2 : 
nal is on when 

lF2G 3 any of the four 
logical instruc-
tions is present 
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TABLE A-l. ARITHMETIC-UNIT EXTERNALLY GENERATED OPERATIONe. 
SIGNALS (Continued) 

Name Time 
Destination 

Gener-
of Equation period ation Remarks 

signal present location 
Package Gate 

LES [73D]· [Td T I- 18 ITCF :3 GLES Logical-equiva-
+ [LESd] . [T 19 ] SlAR 2 lence signal 

GLES 2d 
LIS [74D] . [Ttl T I- 18 ITCF :3 GLIS Logical-inequiv-

+ [LISd] . [TI9 ] CIAS I alence signal 
SlAR 2 
GLIS 2d 

LMS [71D] . [Ttl T I- 18 CIAS I GLMS Logical-multiply 
+ [LMSd] . [T I9 ] SlAR I signal 

GLMS 2d 
MCS [42D] • [T19] . [Td T~:~~ ASAI 3,4 GMCS Multiply control 

+ [32D] • [~l'19] ASBI 4 signal 
· [Ttl SlER 1 
+ [MCSd] . [T I9] ISPS 1 

GMCS 3d 
MDS 32D + 42D As gener- ASCG 5 GMDS Multiplication 

ated ASAI I decode signal 
ASPS 5 
MUSG 1,2 
SlER 2 
ISPS 2 

MMI [42D] . [TIG] Tl9 ASPS I GMMI Major-multipli-
cation inhibit 
signal; prevents 
contents of ac-
cumulator from 
recirculating 
during 19th 
minor cycle 

OEP [PQS] . [Tl] . [Tn] T22 at SOAR 2 GOEP Operation-ending 
· [F2] + [PQS] end of SOBR 1,2,5 pulse 
• [TI9]. [Td opera- PQSG 2 
• [F2] + [SHS] tion MCCL 2d,3d 
· [T2] . [Td . [F3) F2SG 2d 
+ [SHS] . [TI] F3SG 4d 
• [T22] . [F3] I*F1G 3d,4d 

PQC [32D] . l11J9] . [Td T I- 18 
1-18 SlIR 1,2, :3 GPQC Product-quotient 

+ [41D] . [TI9] S2IR 1,2 control signal 
• [T1] + [42D] S3IR 1,2 
• [TI9] . [Ttl GPQC 4d 
+ [PQCdl . [Tl9l 
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Name 
of 

signal 

APPENDIX 

TABLE A-I. ARITHMETIC-UNIT EXTERNALLY GENERATED OPERATIONS 
SIGNALS (Continued) 

Time 
I! Destination Gener-

Equation period ation Remarks 
present Package Gate location 

---
PQS 

PQT 

SCC 

SHS 

SIC 

SUB 

TRS 

Name 
of 

signal 

A 

- ~ 

32D + 41D + 42D As gener- PQSG 1,2,3 GPQS Product-quotient 
atcd SOBH 2,3 sign read -in; 

IF2G 4 gates SOA and 
GOEP I, 2 SOB into prod-
ASBI I uct-quotient 

sign generator 
[32D] . [T19] . [Td T~:18 ASBI 5 GPQT Prod uct-quotien t 
+ [41D] . [T19] ISPI 4 transfer signal 
· [Td GPQT 3d 
+ [PQTd]· [1'19] 

[SIC] . [Td . [1\] T~IC_22' ASPS '4 GSCC Shift control sig-
• [1'3]· [1'4] GSCC 2d nal 
+ [SCCd]· [1'1] 
• [F3] 

70D As gencr- ASPS 2, 3, 4 (70D) Shift decode sig-
ated GOEP 3, '4 nal 

F3SG 1 
S5AR 1,2,3 

[AI] . [A2] . [A 3] As gener- GSCC 1 GSIC Shift inhibit con-
· [A 4]· [A 5] ated trol signal 

54D As gener- ASCG 1,2 (54D) Subtraction de-
ated IF2G 2 code signal 

(GASC 2) 
52D As gener- GMIB I~' 3 

(52D) Transfer decode 
ated IF3G signal 

TABLE A-2. ARITHMETIC-UNIT INTERNALLY GENERATED SIGNALS 
(See Figs. 18-11 to 18-13) 

Time Destination Gener-
Equation period ation Remarks 

present Package Gate location 

[(a)] . [MDS] . [TI] F2 ASRF 1,2,3,4 ASAI a input to 
· [F2] + [1 CN] ASCF 1,3 adder-sub-
· [DCS] . [TI] tractor 
· [F2] + [(a)] 
· [MCS] . [MUS] 
· [Tl]. [F2] 
+ [ICN]· [MCS] 
· [MUS] . [Tl] 
· [F2] 
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TABLE A-2. ARITHMETIC-UNIT INTERNALLY GENERATED SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present 
Package Gate 

location 

(ACC) [P21d] . [ASP] F2 or F3 OCRF 1,2,3 Accu- Contents of 
+ [P22d] . [ASP] OCCF 1 mula- accumulator 

S5AR 1 tor entering out-
put comple-
menter 

ASP [MMI] . [To] . [F2] F2 or F3 SIAR 3 ASPS Accumulator 
+ [SHS]' [To] S2AR 1,2 shift pulse 
· [F3] + [SHS] through signal 
· [SCC] . [To] S22AR 
· [T2] . [F3] except: 
+ [MDS]· [To] S5AR 1,2,3,4 
· [TIJ· [F2] 
+ [SHS] . (Tl] 
· [To]' [F3] 

B [To] . [OF] . [ACC] F2 or F3 SIER 1,2 OCRF Contents of 
+ [To] • [COd] MUSG 1 accumulator 
. [ACC] ASBI 1,2, 3d, 4 out of output 
+ (To]' (OF] GMIB 2 complemen-
· [ACe] . [CCd] ter 

B' [B] . [PQS] . [F2] F2 or F3 IFCF 1,2,3 ASBI B input into: 
· [TL1S] . [To] ASRF I, 2, 3, 4 adder-sub-
+ [B]· [CLS] tractor 
· [F3] . [To] . [Tl] 
+ [Bd] . [DCS] 
· [F2] + [B] 
· [MCS] . [F2] 
· [TIJ + [(IER)] 
· [PQT] . [F2] 

B" [B'] . tOPS] + lE'] F2 ASCF 2,3 ITCF B input into 
· lOPS] . [F2] carry gener-
+ [B'], [LDS] ator 
· [LES] . [LIS] 
· [F2] 

C· [LDS] . [LMS] F2 ASCF 1,2 CIAS Carry input 
· [LIS] . [F2] ASRF I, 2, 3, 4 into adder-
+ [LDS] . [C~] subtract or 
• [To] . [F2] 

C' [A]· [C]· [To] F2 CIAS 2d ASCF Carry signal 
+ [B"] . [C] . [To] SIAR 2 from adder-
+ [A] . [B"] . [To] subtractor 

carry gen-
erator 
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TABLE A-2. ARITHMETIC-UNIT INTERNALLY GENERATED SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate 
location 

CC [(ACC)]· [OF]· [1"0] F2 or F3 OCCF 2d OCCF Carry from 
+ [CCd] . [OF] OCRF 2d,3d output com-
· [To] plementer 

(ICN) [P17 d) . [PQC] F2 SlIR 2 S18lR Contents of 
+ [P18d] . [PQC] ASAI 2,4 icand regis-

ter 
(IER) [P17 d) . [SPI] F2 SIER 3 S18ER Contents of 

+ [(IER)] . [SPI] MUSG 2 ier register 
· [F2] . [DDS] ASBI 5 
+ [T2d . [(IER)] 
. [SPI] . [F2] 
. [DDS] 
+ [SOD] . [F2] 
· [DDS] . [T2I ] 

MUS [B] . [MDS] . [TI] F2, T~:~~ MUSG 3d MUSG Multiply con-

· [Td· [F2] ASAI 3,4 trol signal; 
+ [(IER)] this signal is 
· [MDS] . ['1'1) used to gate 
· [T I]· [F2] contents of a 

+ [MUSd] . [1'0] and contents 
· [F2] of icand reg-

ister into the 
adder during 
multiplica-
tion instruc-
tions 

OF [OFR]· [Tol TO_22 OFLH 2d OFLH Overflow sig-

+ [OF d] . [To] OCRF I, 3 nal to output 
OCCF 1,2 complemen-

ter 

OFR {[Pl d] . [ASP] T 21, ASSG I, 2 S2AR Overflow due 

+ [P2d] . [ASplld TOEP SPDG 2,3 to result of 
OFLH 1 arithmetic 

operation; 
this signal is 
used to de-
termine sign 
of B as well 
as to deter-
mine value 
of quotient 
hit 

-
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TABLE A-2. ARITHMETIC-UNIT INTERNALLY GENERATED SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate location 

OPS [SOA] . [SOB] F2 ITCF 1,2 ASCG Operation se-
· [SUB] . [DDS] lector signal; 
· [F2] + [SOA] the presence 
· [SOB] . [SUB] of this signal 
· [DDS] . [F2] causes adder 
+ [SOA] . [son] to add; ab-
· [ADD] . [DDS] sence causes 
· [F2] + [SOA] adder to sub-
· [SOB] . [ADD] tract 
· [DDS] . [F2] 
+ [MDS] 
· [DDS] . [F2] 

P5AR- [P5d] . [ASP] As gener- S5AR 4d S5AR Contents of 
+ [P4d] . [ASP] ated S6AR Id stage 5 of ae-
· [SHS] cumulator 
+ [P4d][ASP] register 
· [SHS]. [TI] 
· [F3] + [(ACC)] 
· [ASP] . [SHS] 
· [T2]. [F3] 

Pn [P(n - l)d] As gener-
SnIR I [Highest SnIR Recirculation 

· [shift pulse sig- ated or gate SnEll of contents of 
nal] + [Pnd] SnER number SnAll nth stage of 
· [shift pulse sig- or in pack- icand, ier, or 
nalJ SnAR age]d accumulator 

register 
R [A]· [B']. [6] F2,F3 RZDG 1 ASRF Results from 

· [1\] + [A] . [B'] SIAR 1 adder-sub-
· [61· [7"0] + tA] tractor 
· [B']· [C]· [To] 
+ [A]·[B'] ·[C] 
· [To] 

SAS [SOB] . [OFR] F2 SOBR 1 ASSG Sign of R as 
· [ASC] . [F2] result of ad-
+ [SOB] . [OFR] dition or sub-
· [ASC] . [F2] traction 
+ [SEZ] . [F2] 

SEZ [R]· [To] F2 RZDG 2d RZDG Sum equals 
+ [SEZd] . [To] ASSG 3" zero signal 

PQSG 3" 
SPDG =1 

SOA [(a)] . [TI] . [To] T~ to SOAR 2d SOAH Sign of a 
· [F2] + [SOAd] OEP, ASCG 1,2,3,4 
. [OEP] F2 PQSG 1,2 
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TABLE A-2. ARITHMETIC-UNIT INTERNALLY GENERATED SIGNALS (Continued) 

Name 
of 

signal 
--
SOB 

SOD 

SPI 

SQP 

Name 
of 

signal 

OOD 

21D 

Time Destination Gener-
Equation period ation Remarks 

present Package Gate location 

[SAS] . [ASC] F2,F3 SOBH 3d,5d SOBH Sign of con-
· [OEP] . [F2] ASSG 1, '2 tents of ac-
+ [SQP] . [PQS] PQSG 1, '2 cumulator 
· [OEP] . [F2] ASCG I, 2, 3, 4 
+ [SOBd] . [PQS] GMIB 3 
+ [CLS] . [To] GJCS I 
· [F3] 
+ [SOBd] . [OEP] 

[DDS] . [Tol] . [F2] F2 SPDG 2d, 3d, 5a SPDG Quotient sig-
+ [SODd] S18ER 1 nal 
· [OFR] . [DDS] 
· [T2d' [F2] 
+ [SODd] 
· [OFR] . [DDS] 
· [T2d' [F2] 
+ [SEZ] . [DDS] 
• [T21 ] . [F2] 
+ [SODd] 
· [DDS] . [T2l ] 
· [F2] 

[MCS] . [Tl] . [F2] F2 SIER 4 ISPS Ier shift pulse 
+ [MDS]· [To] S2ER } signal 
· [1'1) . [F2] through 1, '2 
+ [DDS] . [T l - 17] S17ER 
· [F2] S18ER 2,3,4 
+ [PQT] . [F2] 

[SOA] . [SOB] F2 SOBH 2 PQSG Sign of 
· [PQS]· [F2] quotient or 
+ [SOA] . [SOB] product 
· [OEP]· [PQS] 
· [F2] + [SEZ] 
· [PQS] . [F2] 

TABLE A-3. CURRENT-ADDRESS AND INSTRUCTION SIGNALS 
(See Fig. 18-14) 

Time Destination Gener-
Equation period ation Remarks 

present Package Gate location 

[w6' w5' w4] As gener- FBIG 1 GOOD Input-unit 
· [w3 . w2 . wI] ated read-in 

decode signa.-l. 
[w6 • w5 . w4] As gener- IFOG 1 G21D Output-unit 

• [ w3 . w2 . wI] ated read-out 
decode signal 
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TABLE A-3. CURRENT-ADDRESS AND INSTRUCTION SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate location 

32D [w6' w5 . w4] Asgener- GMCS 2 G32D Minor-multi-
· [w3 . w2 . wI] ated GMDS I plication 

GPQC 1 decode signal 
GPQS I 
GPQT 1 

41D (w6 . w5 . w4] As gener- GDCS 1 G41D Division 
· [w3 . w2 . wI] ated GDDS 1 decode signal 

GDRI 1 
GPQC 3 
GPQS I 
GPQT 2 

42D [w6 . w5 . w4] As gener- GMDS I G42D Major-multi-
· (w3 . w2 . wI] ated GMMI 1 plication 

GPQC 2 decode signal 
GPQS I 
GMCS 1 

43D (w6 . w5 . w4] Asgener- GJCS 1 G43D Conditional 
· [w3 . w2 . wI] ated I*FIG 1 jump decode 

signal 
44D [w6· w5 . w4] As gener- GJCS 2 G44D Normal-jump 

.. [w3 . w2 . wI] ated I*FIG 2 decode signal 
50D [w6 . w5 . w4] As gener- Directly to CLS G50D Clear-accumu-

· [w3 . w2 . wI] ated signal lator decode 

1 signal 
52D [w6 . w5 . w4] As gener- Directly to TRS G52D Transfer-

· [w3 . w2 • wI] ated signal contents-of-

11 

accumulator 
decode signal 

53D [w6 . w5 . w4] As gener- GASC G53D Addition 
· [w3 . w2 . ",1] ated Directly to AD D decode signal 

signal 
54D [w6· ",5, ",4] Asgener- GASC 12 G54D Subtraction 

· [",3 . ",2 . ",1] ated Directly to SUB decode signal 
signal 

60D [w6 . ",5· ",4] As gener- ISFG 
j2 

G60D Stop decode 
. [",3 . ",2 . ",1] ated signal 

70D [",6· ",5· ",4] Asgener- Directly to SHS G70D Shift decode 
. [",3 . ",2 . ",1] ated signal signal 

71D [w6· ",5 . ",4] As gener- GLDS I G71D Logical-multi-
· [",3 . ",2 . ",1] ated GLMS 1 ply decode 

signal 
72D [",6· ",5· ",4] Asgener- GLAS 1 G72D Logical-addi-

· [",3 . ",2 . ",1] ated GLDS I tion decode 
signal 
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TABLE A-3, CURRENT-ADDRESS AND INSTRUCTION SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate location 

73D [w6 'w5., w4] As gener- GLDS I G73D Logical-equiva-
, [w3 . ",2 ' wI] ated GLES 1 lence decode 

signal 
74D [w6, w5 'w4] As gener- GLDS I G74D Logical-in-

, [w3 ' w2 ' wI] ated GLIS 1 equivalence 
decode signal 

1CS [JCS] , [F1] , [Td F1, Tn . {i from 1 1CSG Current-ad-
ala 1 to 12 dress-register 

'{i from 1,2' stepping 
al 1 to 12 signal 

JCL [JCS] , [F1] , [T22 ] F1, T22 '{i from I, 3 JCLG Jump load 
al 1 to 12 signal (this 

signal is used 
to load cur-
rent-address 
register with 
the a portion 
of the instruc-
tion) 

STC [STB] , [ISF] As gener- '{i from I STCG Start clear 
ated al 1 to 12 signal 

" al I, '2 
wj/j = 1-6 I 

IRS [F1] , [T l - IS ] F1, T 1 _ 1S wj{j = 1-6 I IRSG Instruction 
wj{j = 1-5 2 register shift 
ai {i = 1-12 1,2 signal 

al {[a2] , [IRS] As gener- al 1 a1 a1 bit of in-
+ [STC] , [IRS] ated a*l 3 struction 
, [a1]}d a'l 3 register 

SHAI 1 
a2 {[a3] , [IRS] As gener- al 2 a2 a2 bit of in-

+ [STC] , [IUS] ated a2 1 struction 
, [a2]}d a*2 3 register 

a'2 3 
SHA2 1 

a3 {[a4] , [IRS] As gener- a2 2 a3 a3 bit of in-
+ [HTC] , [IRS] ated a3 1 struction 
, [a3J}d a*3 3 register 

a'3 3 
SHA3 1 

a4 {[a5] , [IRS] As gener- a3 2 a4 a4 bit of in-
+ [STC] , [IRS] ated a4 1 struction 
, [a4J}d a*4 3 register 

a'4 3 
SHA4 1 
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TABLE A-3. CURRENT-ADDRESS AND INSTRUC'fION SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate location 

0:5 {[0:6] . [IRS] As gener- 0:4 2 ! 0:5 0:5 bit of in-
+ [STC] . [IRS] ated 0:5 1 struetion 
· [0:5]}d 0:*5 3 register 

0:'5 3 
SHA5 1 

0:6 {[0:7] . [IRS] As gener- 0:5 2 0:6 0:6 bit of in-
+ [STC] . [IRS] ated 0:6 1 struction 
· [0:6]}d 0:*6 3 register 

0:'6 3 
0:7 {[0:8] . [IRS] As gener- 0:6 2 0:7 0:7 bit of in-

+ [STC] . [IRS] ated 0:7 1 struction 
· [0:7]} d 0:*7 3 register 

0:'7 3 
0:8 {[0:9] . [IRS] As gener- 0:7 2 0:8 0:8 bit of in-

+ [STC] . [IRS] ated 0:8 1 struction 
· [0:8]} d 0:*8 3 register 

0:'8 3 
0:9 {[0:1O] . rIRS] As gener- 0:8 2 0:9 0:9 bit of in-

+ [STC] . [IRS] ated 0:9 1 struetion 
· [0:9]}d 0:*9 3 register 

0:'9 3 
0:10 {[0:11] ·;[IRS] AsgEmer- 0:9 2 0:10 0:10 bit of in-

+ [STC] . [IRS] ated 0:10 1 struction 
· [0:10Ud 0:*10 3 register 

, 0:'10 3 
0:11 {[0:12] . [IRS] As gener- 0:10 2 0:11 0:11 bit of in-

+ [STC] . [IRS] ated 0:11 1 struction 
· [0:11]} d 0:*11 3 register 

0:'11 3 
0:12 {[w1] . [IRS] As gener- 0:11 2 0:12 0:12 bit of in-

+ [STC] . [IRS] ated 0:12 1 struction 
· [0:12]}d 0:*12 3 regist~r 

0:'12 3 
0:*1 [F1] . [a'l] + [IFi] As gener- To memory select- 0:*1 Memory-

· [0:'1] :+ [F1] ated ors selector ad-
· [IFll . [0:1] I dress 

0:*2 [F1]· [~'2] As g~ner- To memory select- 0:*2 Memory-
+ [IF.!] . [0:'2] : ated ors selector ad-
+ [FI] . [IF1] 

, 

I 
dress 

: i 
· [0:2] , , 

0:*3 [F1]· [a'3] As gcner- To me!n0ry select- 0:*3 Memory-
+ [IF1] . [0:'3] atetl ors selector ad-
+ [Fl] . [IF1] 

I 
dress 

· [0:3] , 
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TABLE A-3. CURRENT-ADDRESS AND INSTRUCTION SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package I Gate location 
--
a*4 [F1]· [a'4] As gener- To memory select- a*4 Memory-

+ [IF1] . [a'4] ated ors selector ad-
+ [F1] . [IF1] 

I 
dress 

· [a4] 
a*5 [F1]· [a'5] As gener- To memory select- a*5 Memory-

+ [IF1] . [a'5] ated ors selector ad-
+ [F1] . [IF1] 

I 
dress 

· [a5] 
a*6 [FI] . [a'6] As gener- To memory select- a*6 Memory-

+ [IFI] . [a'6] ated ors selector ad-
+ [FI] . [IFI] 

I 
dress 

· [a6] 
a*7 [F1]· [a'7] As gener- To memory select- a*7 Memory-

+ [IF1] . [a'7] ated ors selector ad-
+ [F1] . [IFI] 

I 
dress 

· [a7] 
a*S [F1]· [a'S] As gener- To memory select- a*8 Memory-

+ [IF1] . [a'S] ated ors selector ad-
+ [FI] . [IFI] 

I 
dress 

· [a8] 
a*9 [F1]· [a'9] As gener- To memory select- a*9 Memory-

+ [IF1] . [a'9] ated ors selector ad-
+ [FI] . [IFI] 

I 
dress 

· [a9] 
a*lO [F1] . [a'lO] Asgener- To memory select- a*lO Memory-

+ [IFI] . [a'IO] ated ors selector ad-
+ [F1] . [IFI] 

I 
dress 

· [alO] 
a*ll [F1] . [a'll] As gener- To memory select- a*ll Memory-

+ [IF1] . [a'll] ated ors selector ad-
+ [FI] . [IFI1 

I 
dress 

· [all] 
a*12 [F1] . [a'12] As gener- To memory select- a*12 Memory-

+ [IF1] . [a'12] ated ors selector ad-
+ [F1] . [IFI] dress 
· [a12] 

a'l [ICS] . [STC] As gener- a'la 1d a'l 1st bit of cur-
· [a'l d] . [JCL] ated a'l 1d,2d rent-address 
+ [STC] . [1 CS] a*l 1,2 register 
· [dld] 
+ [JCL] . [all 

a'2 [a'la] . [ST'C] As gener- a'2a ld a'2 2d bit of cur-
[a'2d] . [JCL] ated a'2 1d,2d , ,rent-address 
+ [STC] . [a'la] a*2 1,2 regist~r 

.. [72d] i 

+ [JeL] . [a2] 
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TABLE A-3. CURRENT-ADDRESS AND INSTRUCTION SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate location 

a'3 [~]'[STC] Asgener- a'3a 1d a'3 3d bit of cur-
· [a'3d] . [JCL] ated a'3 1d,2d rent-address 
+ [STC]' [a'2a] a*3 1,2 register 
· [T3d] 
+ [JCL] . [a3] 

a'4 [~]'[STC] As gener- a'4a 1d a'4 4th bit of cur-
· [a'4d] . [JCL] ated a'4 1d,2d rent-address 
+ [STC] . [a'3a] a*4 1,2 register 
• [74d] 
+ [JCL] . [a4] 

a'5 [dTa] . [STC] As gener- a'5a 1d a'5 5th bit of cur-
· [a'5d] . [JCL] ated a'5 1d,2d rent-address 
+ [STC] . [a'4a] a*5 1,2 register 
· [a'5d] 
+ [JCL] . [a5] 

a'6 [~]'[STC] As gener- a'6a 1d a'6 6th bit of cur-
· [a'6d) . [JCL] ated a'6 1d,2d rent-address 
+ [STC] . [a'5a] a*6 1,2 register 
· [a'6d] 
+ [JCL] . [a6] 

a'7 [a'Gal . [STC] As gener- a'7a 1d a'7 7th bit of cur-
· [a'7 d) . [JCL] ated a'7 1d,2d ren t-address 
+ [STC) . [a'6a] a*7 1,2 register 
· [a'7d] 
+ [JCL] . [a7] 

a'8 [a'7a] . [STC] As gener- a'8a 1d a'8 8th bit of cur-
· [a'8d] . [JCL] ated a'8 1d,2d rent-address 
+ [STC] . [a'7a] a*8 1,2 register 
· [a'8d) 
+ [JCL] . [a8] 

a'9 [a' Sa] . [STC] As gener- a'9a 1d a'9 9th bit of cur-
· [a'9d) . [JCL] ated a'9 1d,2d ren t-address 
+ [STC] . [a'8a] a*9 1,2 register 
· [a'9d] 
+ [JCL] . [ag] 

a'10 [d§a] . [STC] As gener- a'10a 1d a'10 10th bit of cur-
· [a'lOd] . [JCL] ated a'lO 1d,2d rent-address 
+ [STC] . [a'ga] a*10 1,2 register 
· [a'lOd] 
+ [JCL] . [alO] 

a'l! [a/lOa] . lSTC] As gener- a'lla 1d a'll 11 th bit of cur-
· [a'lld] . [JCL] ated a'll 1d,2d rent-address 
+ [STC] . [a' lOa] a*ll 1,2 register 
· [dfid] 
+ [JCL] . [all) 
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TABLE A-3. CURRENT-ADDRESS AND INSTRUCTION SIGNA.LS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present 
Package Gate 

location 

a'12 [a'lIa] . [STC] As gener- a'12a ld a'12 12th bit of cur-
· [a'12d] . [JCL] ated a'12 ld,2d rent-address 
+ [STC] . [a'lIa] a*12 1,2 register 
'[~d] 
+ [JCL] . [a12] 

a'la [aild] . [lCS] As gener- a'2 1,2 a'la 1st auxiliary 
at cd a'2a 1 bit 

a'2a [a'2 d] . [a'la] As gener- a'3 I, 2 a'2a 2d auxiliary 
ated a'3a 1 bit 

a'3a [a'3 d] . [a'2a] As gener- a'4 I, 2 a'3a 3d auxiliary 
ated a'4a 1 bit 

a'4a [a'4d] . [a'3a] As gener- a'5 I, 2 a'4a 4th auxiliary 
ated a'5a 1 bit 

a'5a [a'5d] . [a'4a] As gener- a'6 I, 2 a'5a 5th auxiliary 
ated a'6a 1 bit 

a'6a [a'6d] . [a'5a] As gener- a'7 I, 2 a'6a 6th auxiliary 
ated a'7a 1 bit 

a'7a [a'7 d] . [a'6a] As gener- a'S I, 2 a'7a 7th auxiliary 
ated a'Sa 1 bit 

a'Sa [a'Sd] . [a'7a] As gener- a'9 I, 2 a'Sa S th auxiliary 
ated a'9a 1 bit 

a'9a [a'9d] . [a'Sa] As gener- a'lO I, 2 a'9a 9th auxiliary 
ated a'lOa 1 bit 

a'IOa [a'lOd] . [a'ga] As gener- a'll I, 2 a'IOa 10th auxiliary 
ated a'lla 1 bit 

a'lIa [a'lI d] . [a'lOa] As gener- a'12 1,2 a'lla 11 th auxiliary 
ated a'12a 1 bit 

wI {[w2] . [IRS] As gener- a12 2 wI 1st bit of in-
+ [wI] . [IRS] ated wI 1 struction 
· [STC]ld To instruction register 

decoder 
w2 {[w3] . [IRS] As gener- wI I~ w2 2d bit of in-

+ [w2] . [IRS] ated w2 struction 
· [STClld To instruction register 

decoder 
w3 {[w4] . [IRS] As gener- w2 I~ w3 3d bit of in-

+ [w3] . fIRS] ated w3 struction 
· [STC]ld To instruction register 

decoder 
w4 {[w5] . [IRS] As gener- w3 I~ w4 4th bit of in-

+ [w4] . [IRS] ated w4 struction 
· [STC]}a To instruction register 

decoder 

I 
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TABLE A-3. CURRENT-ADDRESS AND INSTRUCTION SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate location 

w5 {[w6] . [IRS] As gener- w4 2 w5 5th bit of in-
+ [w5] . [IRS] ated w5 1 struction 
· [STC]ld To instruction register 

decoder 
w6 {[F1] . [(a)] As gener- w5 I~ w6 6th bit of in-

+ [w6] . [IRS] ated w6 struction 
· [STC]ld To instruction register 

decoder 
I 

TABLE A-4. CONTROL-UNIT SIGNALS, CHANNEL SELECTOR, SECTOR SELECTOR 

(See Fig. 18-15) 

Name Time Destination Gener-
of Equation period 

Package I Gate 
ation Remarks 

signal present location 
--

B* [BUF] . [TLI8] FOI, To memory GMIB One word from 
· [FOI] + [B] T~_18 buffer or ac-
· [TRS] . [T I - 18] cumulator 
· [F3] + [SOB] being trans-
· [TRS] . [To] . [F3] ferred to 

memory 
COl {[C1] . [a*l] To FISG 1 GCOI Coincidence 

+ [GI] . [a*I]1 F2SG 1 signal from 
· {[C2] . [a*2] F3SG 3 memory 
+ [G2] . [a*211 FOIG 1 sector selector 
· {[C3] • [a*3] FOOG 1 
+ [G3] . [a*3Jl IFIG '3 
· {[ C4] . [a*4] IF2G "5 
+ [C4] . [a*411 IF3G '2 
· {[C5] . [a*5] IFIG '2 
+ [C5] . [a*511 IFOG '2 
· {[ C6] . [a*6] 
+ [C6] . [a*611 
· {[C7]· [a*7] 
+ [C7] . [a*7]\ . [To] 

(a) [a] . [TLI8] . {[FI] Fl, ASAI 1,3 From Contents of ad-
+ [F2] + [FOO] I TL18 BUI 2 memory dress a of 

F2, SHR I through memory 
TL18 SOAR 1 GMOa 

FOO, w6 2 
T O- 18 
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Name 
of 

signal 

ep 

DSS 

UTS 

Name 
of 

signal 

BSP 

BUF 

EWI 

APPENDIX 

TABLE A-5. UNIT-TIME-INTERVAL COUNTER SIGNALS 
(See Fig. IS-16) 

Time Destination Gener-
Equation period ation 

present Package Gate location 

Drum clock-pulse All time To every To Drum 
signals package every clock 

and track 
gate 

Drum synchro- See Sec. UTSG 1 Drum 
nizer signal IS-7 synchro-

nizer 
track 

[ep] . [DSS] As gener- UTSG 2 UTSG 
+ [ep] . [UTSd] ated UClaS 1 

UCIS 1,2" 
UC2aS 1 
UC4aS 1 
UCSaS 1 
ISFG I,Id 

TABLE A-6. OPERATIONS PHASE-GENERATOR SIGNALS 
(See Figs. IS-17 and IS-IS) 

Time Destination Gener-
Equation period ation 

present Package Gate location 

[SIU]· [EWI] TLlS BUI 3" BSPG 
· [FBI] + [SOU] BU2 } 
· [EWO] . [FBO] through 1,2" 
+ [TLlS] . [FOI] BU19 
+ [TLlS] . fFOO] 

[BUI9d] . [BSP] Falor GMIB to 1 BUl9 
+ [BUlSd] FBO output 
· [BSP] unit or to 

drum 
[EWI'] . [To] To' FBI BSPG I EWIG 

· [IFld] EWIG 2d 
+ [EWld] FBIG "4 
· [IFld] IFIG 1 

Remarks 

Clock-pulse 
signal 

Drum synchro-
nizer signal 

Unit time 
signal; this 
signal acts as 
the unit-time-
count signal 

Remarks 

Buffer shift 
pulse signal 

Out of buffer 

External word-
in signal indi-
eating that a 
complete 
word has 
been sent 
into buffer 
from input 
unit 



APPENDIX 803 

TABLE A-6. OPERATIONS PHASE-GENERATOR SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate location 
EWO [EWO']· [1'0] 1'0' FBO BSPG 4 EWOG External word-

· [IFld] EWOG 2d out signal in-
+ [EWOd] FBOG 3 dicating that 
· [IFld] I'FIG 1 a complete 

word has been 
read out of 
buffer into 
output unit 

Fl [COL] . [SPB] F1 1CSG 1 FlSG Phase 1 signal 
· [IFld] FlSG 2d 
+ [1'0] . [Fld] F3SG Id,2d 

FBIG 1d 
GJCS 1,2 
GMOa :3 
IFOG 1d 
IF2G Id, 2d, 

3d,4d 
IF3G 1d 
IRSG 1 
ISFG 2d 
I*F1G 1d,2d 
JCLG 1 

a*l } 
through 1, :3 
a*12 

w6 2 
F2 [COL] . [IF2d] F2 ASAI 1,2,3, F2SG Phase 2 signal 

+ [OEPd] . [F2d] 4 
ASBI 1,3,4, 

5 
ASCG 1,2,3, 

4,5 
ASPS 1,5 
ASSG 1,2,3 
CIAS 1,2 
F2SG 2d 
GOEP 1,2 
GMOa :3 
ISPS 1,2,3, 

4 
ITCF 2,3 
I*F1G 3d 
MCCL I d,2d 
MUSG 1,2,3 
PQSG 1,2,3 
SlAR 2 
SlER 1,2,3, 

4 
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TABLE A-6. OPERATIONS PHASE-GENERATOR SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate location 

F2 SI8ER 1,3,4 
SIIR 1,2 
SOAH 1 
SOBH 1,2 
SPDG 1,2,3, 

4, 5 
F3 [SHS] . [To] . [FId] F3 ASBI 2 F3SG Phase 3 signal 

+ [OLS] . [FId] ASPS 2,3,4 
· [To] F3SG 4d 
+ [001] . [IF3d] GMIB 2,3 
+ [OEPd] . [F3d] GOEP 3,4 

GSOO 2 
I*FIG 4d 
MOOL Id,3d 
SOBH 4 
S5AR 1,2 

FBI [ODD]· [To] FBI BSPG 1 FBIG Phase FBI 
· [FId] + [STB] BUI 1 signal; during 
· [To] • [I SF d] FBIG 3d,4d this phase one 
+ [To] . [FBld] RIBG 1 word from 
+ [EWI] STBG 2d input unit is 
· [FBld] read into 

buffer 
FBO [To] . [FOOd] FBO BSPG 4 FBOG Phase FBO 

+ [To]' [FBOd] FBOG 2d,3d signal; during 
+ [EWO] ROBG 1 this phase one 
· [FBO d ] word from 

buffer is read 
into output 
unit 

FOI [001] . [IFId] FOI BSPG 2 FOIG Phase FOI 
+ [To] . [FOld] FOIG 2d signal; during 

GMIB 1 this phase one 
I'FIG Id word from 

buffer is read 
into drum 

FOO [001] . [IFOd] FOO BSPG 3 FOOG Phase FOO 
+ [To] . [FOOd] BUI 2 signal; during 

FBOG Id this phase one 
FOOG 2d word is read 
GMOa 3" from drum 

I 
into buffer 

IFO [2ID] . [To] • [FId] IFO FOOG Id IFOG Phase IFO 
+ [001] . [IFOd] IFOG 2d signal; this is 

an idle phase; 
drum section 
is being 
selected 
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TABLE A-G. OPERATIONS PHASE-GENERATOR SIGNALS (Continued) 

Name Time Destination Gener-
of Equation period ation Remarks 

signal present Package Gate location 

IFI [I'FI] + [I*FI] IFI EWOG la,2a IFIG Phase IFI 
+ [COl] . [IFlal FISG Ia signal; idle 
· [ISF] IFIG 3a phase signal 

ISFG 3a 
RUBG 2a 

a*1 } 
through 2, :3 
a*12 

I'FI [EWO]· [To] IFI IFIG 2 I'FIG Phase I'FI 
+ [FOla] . [To] signal; auxili-

ary idle phase 
signal 

I*FI [43D] . [pIal IFI IFIG I I*FIG Phase I*FI 
+ [44D] . [Fial signal; auxili-
+ [OEPa] . [F2a] ary idle phase 
+ [OEP a] . [F3a] signal 
+ [RUB] . [To] 
· [ISFa] 

IF2 [ADD]· [To] IF2 F2SG Ia IF2G Phase IF2 
· [FIa] + [SUB] IF2G Sa signal; idle 
· [To] . [Fla] phase signal 
+ [LDS] . [To] 
· [Flal + [PQS] 
· [To] • [Flal 
+ [COIl· [IF2a] 

IF3 [TRS] . [To] . [PId] IF3 F3SG 3a IF3G Phase IF3 
+ [COl] . [IF3a] IF3G 2d signal; idle 

phase signal 
IFI [EWI]· [To] IFI EWIG la,2a IFIG Phase IFI 

+ [COl] . [IFldl FOIG Id signal; idle 
IFIG 2a phase signal 

ISF rUTS] . [UTSa] ISF FBIG 2a ISFG Phase ISF 
+ [GOD] . [To] ISFG 4a, Sa signal; this is 
· [FId] + [SPB] I*FIG Sa the stopped 
· [To] . [IFIa] RUBG I idle . phase 
+ [1'0] . [I SF a] SPBG la,2a signal 
+ [8TB] . [RUB] STBG I 
· [ISFal STCG I 

IFIG 3 
RIB [To] . [FBI] To Input-unit syn- RIBG Signal to in-

chronizer put-unit syn-
chronizer, 
allowing input 
unit to take 
over control -_. 
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TABLE A-6. OPERATIONS PHASE-GENERATOR SIGNALS (Continued) 

Name Time Destina tion Gener-
of Equation period 

I Gate 
ation Remarks 

signal present Package location 

HOB [To]' [FBO] To Output unit syn- HOBG Signal to out-
chronizer put-unit syn-

chronizer, al-
lowing output 
unit to take 

1 
over control 

RUB [RUB'] . [To] As gener- ISFG "5 RUBG Run-button 
· [ISF] + [RUBd] ated I*FIG 5 signal 
· [IFld] RUBG 2d 

SPB [SPB'] . [To] As gener- FlSG I SPBG Stop-button 
· [ISFd] ated ISFG 3 signal 
+ [SPBd] . [ISF d) SPBG 2d 

STB [STB'] . [To] As gener- FBIG 2 STBG Start-button 
· [ISF] + [FBld] ated ISFG "5 signal 
· [STBd] STBG 2d 

STCG 1 

TABLE A-7. SIGNALS FROM LINE SYNCHRONIZERS (EXTERNAL EQUIPMENT) 

Name of 
Time Destina tion 

Generation 
signal 

period 
location 

Remarks 
present Package Gate 

EWO' As gener- EWOG 1 Buffer read-out External signal from buffer, 
ated synchronizer indicating a word has been 

completely read out of 
buffer 

EWI' As gener- EWIG 1 Buffer read-in External signal from buffer, 
ated synchronizer indicating a word has been 

completely read into buffer 
IEQ As gener- BUI 1 Input-unit This signal is the word from 

ated synchronizer the input unit being read 
into buffer 

RUB' As gener- RUBG 1 Run-button External run-button signal 
ated synchronizer 

SIU As gener- BSPG 1 Input-unit Shift-pulse signal from input 
ated synchronizer unit 

SOU Asgener- BSPG 4 Output-unit Shift-pulse signal from 
ated synchronizer output unit 

SPB' As gener- SPBG 1 Stop-button External stop-button signal 
ated synchronizer 

STB' As gener- STBG 1 Start-button External start-button signal 
ated synchronizer 
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Absolute simplest form, 393 

change of variables, 393-396 
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in two-address system, 544 

Adder, 35-37, 491 
input control signal, 558 
logical operations using, 496 
parallel, auxiliary carry functions, 522-

525 
binary, logical design, 519-526 
decimal, logical design, 526-528 

serial, 35-37 
binary, logical design, 491-494 
decimal, logical design, 506-510 

three-valued logic, 407 
(See also Addition) 

Adder and subtractor combination, 
parallel, binary, 525 

decimal, 526 
of Pedagac, 597 
serial, binary, 494 

decimal, 508 
with input subtractive complemen­

ter, 510 
with output subtractive complemen­

ter, 510 
Addition, binary, 69 

biquinary, 518 
decimal, advantage, 506 

biquinary, 518 
excess-three, 91, 506-508 

rules for, 507 
definition, 503 
logical (see Logical addition) 
octal, 69 
sexadecimal, 71 

Addition instructions, 112 
Addition operation, floating, 538 

in serial arithmetic unit, 502 
Addition tables, 70 
Address, assignment, 151, 153-155 

definition, 30 
generalized, 274-278 
relative, 109 
selection, 543-546, 559-561 

Addressing, indirect, 128 
Airline reservation system, 20-21 
Algebra of digital circuits, 308 

symbolization, 308 
Algebraic compiler, 156-158 

flow chart, 158 
writing, 156-158 

Algebraic decoder, 155-156 
Algebraic language, definition, 160 

IBM Fortran I and II, 171 
internation (see ALGOL) 

.ALGOL (algorithmic language), 159-171 
procedure, 168 
subroutines, use, 168~170 
syntax, 160 

de clara tions, 166-168 
815 
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ALGOL (algorithmic language), syntax, 
expressions, 161-162 

statements, 161-166 
a of transistor, 652, 653 
Alphabetic wiring table, 786 
Ampere's law, review, 689-691 
Amplification, dynamic gating system, 

624, 626 
magnetic, diode-gated packages, 698-

703 
static gating systems, 626 
transistor, diode-gated package, 669-

671 
Amplifier, transistor, 669 
Analog computer applications, bibliogra­

phy, 24 
Analog-to-digital conversion, 739, 742, 

744-747 
bibliography, 760-762 
discrete sampling, 740-742 
electronic, 744-747 

doubling method, 745-746 
feedback method, 745 
ramp method, 747 

mechanical, 742 
recovering a signal, 740 
sampling frequency, 742 
sampling theorem, 742 

Anatomy of language, 160 
and gates, 38-40, 309 

basic building blocks, 38-40, 576 
core, 705 
cryotron, 712, 713 
microwave, phase-script, 715, 716 

pulse-script, 717 
muItiaperture device, 710, 711 

and inverter, 540, 577, 578, 669,673,674 
and-not gate, 540, 577, 578, 669,673,674 
and-or diode-gated packages, 577, 669 
Antecedence solution, 424 

logical interpretation, 476-479 
of type-2 circuit problems, 451 

Applications, of analog computers, bibli­
ography,24 

of digital computers and control, 1-24 
aids to medical diagnosis, 21-23 
airline reservation system, 20-21 
bibliography, 23-24 
data processing, 18-23 
design of lens systems, 6-9 
hydrodynamics of blood flow, 5-6 
machine-tool control, 9-11 
man-machine simulation system, 16-

18 
motion of charged particles (Argus 

project), 2-5 
numerical solutions to equations, 2-9 

Applications, of digital computers and 
control, process control, 9-13 

simulations, 13-18 
Approximation for digital computers, 

reference, 213 
Arguments, definition, 26 

selection, 28 
Argus project, 2-5 
Arithmetic control, 553-559 

instruction decoder, 553 
internally generated signals, 557-559 

adder input control, 558 
register shift control, 557 

operations signal generators, 554-556 
Arithmetic instructions, 110-113 
Arithmetic operations, control, 543 

(See also Control) 
floating, 538-540 
number system, 69 
parallel, 519-528 
rapid, 528-537 
significant figures in, 207-211 

Arithmetic units, 27 
bibliography, 542 
block diagram of Pedagac, 585 
control, 28 

(See also Control) 
differencing, 503 
parallel, 525-528 
Pedagac, 288, 590-606 

horizontal description, 595-606 
vertical description, 590-594 

summing, 503 
Array-manipulation computer, 280 

(See also Business logistic computer) 
Array notation, 274 
Associativity of Boolean matrix oper­

ations, 442 
Automata bibliography, 56 
Automatic coding systems in operation, 

172 
(See also Automatic programming; 

Automatic programs) 
Automatic programming, 130-172 

computing speed, 148-150 
memory allocation, 148 
purpose, 159 

Automatic programs, 139-172 
compiler routine, address assigner, 151, 

153-155 
advantages, 149 
algebraic, 155-159 
decoder, of algebraic symbols, 151, 

155 
of loop symbols, 151, 158 

recursive, 151, 158 
translator, 151 
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Automatic programs, interpretive rou­
tines, simulational, 142-148 

Automonitor program, 132-133 
Auxiliary bits, 109-110 

break points, 109 
relative addresses, 109-110 
uses, 109 

Auxiliary carry functions, parallel adder, 
522-525 

Auxiliary switches, 126 
Avalanche breakdown in diode, 650 
Axiomatic development of Boolean alge-

bra, 315 
bibliography, 316 

Base of transistor, 652 
(See also Transistors) 

Basis, 321 
constrained, 369, 505 

designation numbers with respect 
to, 370 

determining, 369 
logical, 321 
positions of columns, 321 
standard, 322 
and truth table, 323 

Best-fit polynomial, approximation, 184, 
190-193, 213 

{3 of transistor, 653 
Bibliography, analog-to-digital conver­

sion, 760 
applications, analog-computer, 24 

of digital computers and controls, 23 
arithmetic units, 542 
Boolean algebras, foundation and axio-

matic approach, 316 
Boolean functions, simplification, 366 
Boolean matrices, 442 
brain mechanism, 722 
cryotron, 722 
cybernetics, 56 
digital-to-analog conversion, 760 
digital differential analyzer, 286 
diode digital circuits, 685 
error detecting and correcting codes, 

254 
information retrieval, 253 
input-output methods, 762 
logical translation of English, 319 
magnetic-core circuits, 720 
magnetic-element physics, 719 
maintenance and program debugging, 

171 
memory systems, 757-759 
microwave components, 723 
Monte Carlo method, 213 

Bibliography, multiaperture magnetic 
devices, 721 

mUltiple-component computing sys-
tem, 287 

multivalued logic, 483 
numerical analysis, 213-214 
parametron, 643 
programming, 129 
rapid arithmetic operations, 541 
reliability, 643 
semiconductor devices, 685-688 
semiconductor physics, 684 
sorting and ordering, 253 
switching circuits, 367 
symbolic logic, formal theory, 317 
system engineering, 287 
thin-film techniques, 759 
transistor digital circuits, 685 
transistor equivalent circuits, 685 
tunnel diodes, 687 
wiring diagrams, 786 

Binary addition table, 70 
Binary arithmetic operations, 69-71 
Binary-coded decimal (see Decimal-

coded binary codes) 
Binary codification, 244 
Binary-decimal conversion, 67-69 
Binary division, rapid, 533-537, 540 

in serial arithmetic unit, 513 
Binary mUltiplication, rapid, 528-533 

in serial arithmetic unit, 511 
table, 70 

Binary number system, 63, 64 
Binary numbers and bits, 34 
Binary-octal conversion, 67 
Binary point, 290 
Binary-sexadecimal conversion, 67 
Binary words, 34 
Binomial-coefficient look-up routine, 

100 
Biquinary addition, 518 
Biquinary code, 517 
Bit dropping, 136 
Bit failure, 639 
Bit-handling instructions, 114-115 
Bits, auxiliary, 109-110 
Block of words, 117 
Block diagram, digital computer, 26-33 

Pedagac, 580-586 
arithmetic unit, 585 

Boolean algebra, 295, 302-304, 320 
as algebra, of digital circuits, 308-315 

symbols for, 311 
of sets, 304-306, 361 

axiomatic development, 315-316 
bibliography, 316 
constrained, 372 
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Boolean algebra, equations, 302 
historical background, 295 
operations, 298, 317-318 
postulates, equivalent, 316 

independent, 316 
primitive (tautologies), 316-317 
sets, 316 

representation, as hypercube, 361 
as lattice diagram, 362 

searching problem in, 407 
Sheffer's stroke, 318 
substitution rule, 316 
use in sentential problems, 408 
(See also Logical addition) 

Boolean equations, in circuit design, 
389-391 

of equivalence, solution, 384-386 
of implication, solution, 386-388 
inverse solution, 468-470 
linear, 379-383 
method of recording logical design, 576 
Pedagac, 787-806 
simllItaneous, general method of solu­

"'tion, 384-388 
linear, 383 

solution by Boolean matrices, 466-468 
Boolean functions, chart methods for 

simplification, 362-364 
to circuit diagram, 314 
constrained basis, 371 
definition, 298 
designation number, 322 
E,414-419 
F,414-419 
/B, 414-419 . 
first .canonical form, 324 
included and nonincluded elementary 

elements, 326-329 
logical dependence, 374 
logical independence, 374 
mongrel form, 328-331 
relation to Boolean matrices, 419-424 
second canonical form, 325 
simplest product of sums, 336, 342 
simplest sum of products, by Harris-

Elbourn method, 336-342 
by Quine-McCluskey method, 331-

336 
unknown, 379 
(See also Boolean equations) 

Boolean lattice diagram, 362 
Boolean matrices, bibliography, 442 

constraints, E matrices, 463 
F ,matrices, 464 
Rniatrices, 464-465 

definition, 356 
elements, 356 

Boolean matrices, multiplication, 356 
operations and properties, 441-442 
as permutations, 397 
symbolism for, 356 
transpose, 442 
types, (Eki ), 419-420, 442-443 

(Fki), 420-421, 442-443 
(Rii), 421-423, 443-445 

use in change of variables, 397 
Boolean matrix equations, general, 

solution, 428-434 
solutions, all, 445 

many-valued logics, 484 
in three-value logic, 479 
unitary (see Unitary matrix equations) 

Bounds of matrix solutions, greatest 
lower, 435 

least upper, 429 
lowest, 432-434 

Brain mechanism bibliography, 722 
Branch, definition, 777 
Break points, 109 
Buffer, input-output, 570 

logical design, 618 
Building blocks, and gate, or gate, not 

gate, 38-40, 576 
Business logistic computer, 271-281 

basic operations, 273 
example, building-material purchase, 

272 
keeping bank accounts, 273 
spare-parts inventory, 271 

illustration of coding, 277 
instruction format, 273 

Business simulation, 14 
Buttons (see Pushbuttons) 

Canonical form, first, 324 
second, 325 

Capacitor memory, 53 
Card rack of Pedagac, 777 
Cardiac computer, 55, 93 
Cards, marginal-punched, 223 

Pedagac, 767-771 
peek-a-boo, 224 
searching, 223-226 
sorting, 217, 224, 226 

Cascaded counters, 488-490, 606 
Cell, 30 

(See also Memory) 
Change of variables, 395-402 

absolute simplest form, 396 
Channel, of magnetic drum, 562 

synchronizing, 573 
unit-time interval, 573 
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Channel selector, logical design, 610-611 
Pedagac, 606 
in serial memories, 563, 565 

Character-reading machines, 749-752 
Characteristic curves, grounded-base 

transistor, 654 
grounded-emitter transistor, 654 
transistor, 653 
tunnel diode, 681 

Characteristic list, searching, 519 
Characteristics, definition, 215 
Charactron tube, 755, 756 
Charge density in p-n junction, 649 
Chart, prime implicant, 332, 334-336 
Chart methods of simplification of 

Boolean functions, 362-364 
Karnaugh map, 363 
Veitch, 363 

Checking program ("debugging"), 62, 
131-135 

Chemical plant, control, 12-13, 262-267 
Circuit design, absolute simplest form 

in, 400-402 
computational methods, 320 
constraints in, 376-379 
elementary computational methods, 

368-413 
problems, outline, 321 

types (see Types of circuit prob­
lems) 

simplification by constraints, 376 
(See also Simplification) 

solution to equations, 389-393, 402-
404, 408-413, 465-470 

in three-valued logic, 406 
Circuit diagrams, from Boolean func­

tion, 314-315 
to Boolean function, 309-312 
method of recording logical design, 576 

Circuits, cryotron, 711-714 
current switching transistors, 675 
decoding, 547-552 

diode matrices, 547 
(See also Selection) 

diode-gated, 667-672 
magnetic amplifier, 698-704 

direct-coupled transistor, 674 
dynamic, with regeneration, 624, 671 
magnetic, 689-711 

gating with cores, 704-706 
Hogue amplifier, 702 
multiapertuie device, 706-711 
Ramey amplifier, 701 
shift register, 699 

maintenance problem of general ne't, 
474-476 -

(See also Maintenance routines) 

Circuits, majority, 631, 640-642, 706, 718 
microwave, 714-718 
number of inputs to decoding, 548-551 
parametron, 627-631 
Pedagac, 765 
reliability, general considerations, 

634-635 
methods of increasing, 636-642 

resistor-coupled transistor, 673 
states, 357-360 
synthesis problem of general net, 473 
transistor flip-flop, 676-679 
tunnel diode, 680-684 

Clamping voltage, 668 
Class, 304 

equivalence, 253 
Clock (oscillator), 35, 573 
Clock phases, 632-634 

pulses, 632 
sequencing, 632 
skipping, 634 
system of Pedagac, 765 

Clock pulse, 34, 487, 488, 571, 572 
drum channel, 572 
in dynamic circuit, 625 
in flip-flops, 626 
generation, 571 
in packages, 578 
in tunnel diodes, 683 

Clocking, drum, 572-573 
magnetic-tape, 734-737 
parallel, 572 
serial) 572 

Code, codification, definition, 217 
program, definition, 45, 60 

Coder, definition, 45 
Codes, binary, 72, 517 

biquinary, 517 
decimal, 90-92, 517-518 
excess-three, 90-92, 517 
5-cyclic, 517 
5-421, 517 
2-421,517 

Codification, binary, 244 
irredundant, 247-252 
non substantive, 242 
redundant, self-correcting, 244-247 
SUbstantive, 242 
superimposed, irredundant, 247-252 

Codifying, decoding, 242 
definition, 217 
efficiency, 243 
encoding, 242 
purpose, 242 

Coding, 54, 60-172 
decimal system (see Codes) . 
decision, 76-78 
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Coding, introduction to, 60-62 
minimum access, 88 
special techniques, 118-123 

input-output instructions, 120, 291-
294 

multiway branch, 118 
switch sensing, 119 
table look-up, 121-123 

stages in, 61 
(See also Codification; Programming) 

Coding manual, 72 
Pedagac, 289 

Coding sheet, 45 
Coercive force in magnetic materials, 694 
Coincidence signal in serial memory selec-

tion,563 
Collection, empty, 227 
Collector of transistor, 652, 654, 657 
Column-adding routine, 101, 102 

(See also Business logistic computer) 
Combined element, definition, 298 

designation number, 323 
(See also Boolean functions) 

Commands, definition, 30 
(See also Instructions) 

Comparison, dummy, 84 
Comparison circuit, 137 
Comparison instruction, 76, 85, 87 

functions assigned to phases, 544 
(See also Decision instructions) 

Compiler, recursive, 158 
Compiler routines, 139 

address assigner, 150, 153-155 
advantages, 149 
algebraic, 155-171 
decoder of algebraic symbols, 155 
flow chart, 153 
purpose, 150 
translator, 150-153 

Complement, 114 
subtractive, 496, 526 
(See also Inversion of bit ; Negation; 

not gate) 
Complementation, Boolean matrices, 442 
Complementer (see not gate; Subtractive 

complementer) 
Computational-array drum, 279 
Computer, analog, 2 

applications, 1-24 
array-manipulation, 280 
block diagrams, 26-29, 266, 269, 280, 

284,288 
business logistic, 271-281 
components, accumulator, 488 

adder-subtractor combination, 494, 
495 

counters, 488-491 

Computer, components, parallel adder, 
519-525 

parallel subtractor, 525-526 
serial adder, 492-493 
serial subtractor, 494 
shift register, 488, 498 
subtractive complementer, 496 
synchronous dynamic flip-flop, 487-

488 
decimal, 90 
digital, 2 
digital differential analyzer, 257-262 
evolutionary tree, 57 
functional description, 30-33 
general-purpose, 2 
generalized concept, 485 
history, 56 
information-retrieval, 268-271, 280 
large-scale data processor, 281-285 
maintenance, 135-139, 474-476 

bibliography, 171 
minimum, 129 
operating modes, 126, 289 
operations performed by, 26 
parallel, 37, 485-486 
pictures, 58-59 
real-time control, 262-267 
searching, 268-271, 280 
serial, 37, 485 
special-purpose (see Special-purpose 

computers) 
speed, 27, 34, 148-150 
systems control, 262-267 
terminology, 30, 56 
types, 2 

Computer words, 30, 45 
Computing unit, 26 

of digital-differential analyzer, 260 
Condition function table, 307, 346 
Conditional jump, 87 

(See also Negative jump) 
Conditions of existence of solution of 

unitary matrix equations, 436 
Conjunction, 298 
Conjunctive normal form, 325 
Consequence solution, 424 

logical interpretation, 476-479 
of type 2 circuit problems, 450 

Constrained basis, designation numbers 
in, 370 

determination, 369 
Constrained Boolean algebra, 372 
Constraints, 368-372 

in circuit design, 376-379 
in E and F matrices, 463 
in matrix equation problems, 462-465 
in R matrix, 464 
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Constraints, simplest sum of products 
under, 371 

in type 2 circuit problems, 450 
Continued fractions, 184-186 
Control, of computer, 543-574 

examples, 553-559 
of instruction execution, 568-571 
of instruction sequencing, 543-546, 

559-561 
of memory address selection, 559-

568 
by phases, 543-546 

digital, 2 
applications, 1-24 

chemical plant, 12-13, 262-267 
inventory, 18-20 
machine-tool, 9-11 
process, 2, 9-13 

Control consoles, 128 
Control generator, 28, 555 
Control panel, 124-127 

buttons and switches, 126 
lights and signals, 124 
Pedagac, 289 
purposes, 124 

Control pulses, 38, 543-574 
gating, 43 

Control signals, 38, 543-574 
for logical operation, 495 

Control units, 27, 38, 543-574 
logical design, 608 

Conversion, analog-to-digital (see Ana­
log-to-digital conversion) 

digital-to-analog (see Digital-to-analog 
conversion) 

number, 62-69 
from binary to octal or sexadecimal, 

67 
of fractional parts, from decimal, 66 

to decimal, 68 
of integers, from decimal, 65 

to decimal, 68 
Conversion table, 64 
Core flipping (see Cores, magnetic, 

switching) 
Core gates, 705 
Core gating, 704-711 

majority, 706 
mirror notation, 704 
multihole, 706-711 

Core logic, parallel clock-pulse, 702 
series clock-pulse, 700 

Core memory, 53, 565-568, 724-728 
access wires, 567 
core selection matrix for, 725 
four-dimensional array, 568 
increasing selection ratio, 724 

Core memory, multihole, 726-728 
read-write cycle for, 725 
selection ratio, 725 
sensing wires, 567 
word selection, 563-566 

Core selection matrix for magnetic-core 
memories, 725 

Core shift register, 699 
Core switching (see Cores) 
Cores, magnetic, 53, 693-698 

circuits, bibliography, 720 
reading from, 54 
shape, 566 
square-hysteresis loop materials for, 

555-566, 693-694 
switching, 694-698 

with constant-current source, 696 
with constant-voltage source, 697 
dot notation, 694-695 
time of, 697-698 

wiring method, 565 
Counters, cascaded, 488-490 

as current-address register, 606 
in computer control, 571-574 
current-address (see Current-address 

register) 
cyclic sequence for, 490 
in digital differential analyzers, 258 
minor-cycle, 573 
parallel, 491 
Pedagac, 607, 612-613 
as recursive circuits, 606 
relative, 109, 561 
sector, 563, 573 
unit time interval, 573 

Counting code, cyclic sequence, 490 
Covalent bonds in semiconductor de­

vices, 645 
Cryotron, 711-714 

and and or gates, 712 
bibliography, 722 
kilomegagate systems using, 722 

Current, majority and minority, 648 
Current-address counter (see Current­

address register) 
Current-address register, 31, 32, 82, 545 

in instruction sequencing, 559-561 
logical design, 559-561 
Pedagac, 606, 608-609 

Current-switching transistor circuits, 
674-676 

gating in, 676 
Curve fitting, 11 

(See also Polynomial approximations) 
Cutoff region, transistor, 655 
Cybernetics and bibliography, 56 
Cyclic code, 490, 517 
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Cyclic code, in analog-to-digital· conver­
sion, 743 

conversion to binary, 517 

Data, definition, 30 
Data-processing application, 18-23 
Debugging, 62, 131-135 
Decimal, infinite, 92 
Decimal arithmetic, 70, 90-92, 518 

bibliography, 171 
parallel, 526-528 
serial, 506-510, 516 

Decimal-coded binary codes, 517-518 
excess-three, 90-92, 506-510, 526-528 

Decimal coding system, 90-92 
Decimal conversion, 65-68 
Decimal method for determining in­

cluded and nonincluded elementary 
elements, 364 

Decision instructions, 108, 115-116 
coding with, 76-78 
(See also Comparison instruction) 

Decision processes, 93 
Decisions, management, 15 
Decoder, of algebraic symbols, 151, 155 

instruction, 37, 28, 31, 553-554 
(See also Control) 

Pedagac, 606, 608-609 
Decoding and encoding, 242 
Decoding circuits, mutually exclusive 

outputs, 547 
number of inputs to gates in, 548-552 

minimizing, 551 
special notation for, 548 

Decoding function, role of phases in, 546 
Delay, through package, 631, 655, 665 

unit, 353, 501 
use of package as, 767 

Delay line, 501 
De Morgan's rules, 302 
Density distribution of holes in base of 

transistor, 655 
Derivation of fundamental matrix equa­

tion and formulas, 439-441 
Design of circuits that compute func­

tions, 346-351 
condition function table, 346 
(See also Circuit design) 

Designation numbers, 321-324 
basis, 321 
to Boolean function, 324-343, 362-366 
of Boolean functions, 322 
Boolean'matrices and, 419-423 
of combined elements, 322 
under constrained basis, 370-372 
of elementary elements,· 321 

Diagonal matrix, 467 
Difference, definition, 503 
Differencing, 503 

(See also Addition; Subtraction) 
Differential equatiotls, 200-203 
Differentiation, 196-198, 199 

by definition; 196 
by polynomial approximation, 197 
by undetermined coefficients, 199 

Diffusion, in semiconductors, 647 
in transistors, 651-652 

Digital-to-analog conversion, 739, 742-
744 

bibliography, 760-762 
electronic, 742 
mechanical, 742 
(See also Analog-to-digital'conversion) 

Digital computer applications (see Ap­
plications) 

Digital computer block diagram, 25-26 
Digital control (see Applications; Con­

trol) 
Digital differential analyzer, 257-262 

advantages, 262 
bibliography, 286 
computing units, 258 
concept, 257, 259 
programming, 260 
purpose, 257 

Digital switching circuits (see Gates; 
Gating) 

Digital transducers, 747 
(See also Input-output methods) 

Digitalization (see Designation numbers) 
Diode decoding matrices, diode jumpers, 

547-548 
Diode digital circuits, bibliography, 685 
Diode-gated circuits, 667-671, 698-703 

magnetic amplifier, 698-703 
negative logic, 668 
positive logic, 668 
transistor amplifier, 667-671 

Diode gates, 310 
Diode jumpers, 548 
Diode matrices as decoding circuits, 547 
Diode memory, 53 
Diodes, semiconductor, 647-650 

avalanche breakdown in, 650 
majority-carri~rcurrent, 648 
minority-carrier current, 648 
state of equilibrium, 648 
Zener effect, 650 

symbol for, 667 
tunnel (see Tunnel diode) 

Direct-coupled transistor circuits, 673, 
674 

Direct switched input transducers, 748 
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Discrete sampling in analog-to-digital 
conversion, 740-742 

Disjunction, 298 
Disjunctive normal form, 324 
Disks, magnetic, 737 
Division, binary, 513-516 

decimal, 516-517 
floating-point operation, 538 
rapid, 533-537 

in computers, 534 
flow chart, 535 
method, 533 
rationale, 535-537 

Division algorithm, 92 
Division instructions, 113 
Domains in magnetic materials, 694 
Donor impurities, 647 
Doped semiconductors, 647, 680 
Doubling method of analog-to-digital 

conversion, 745, 746 
Dropping a bit, 136 
Drum, magnetic, 52, 737 

nonreturn-to-zero writing methods, 
734 

reading and writing head, 562 
return-to-zero writing, 732-734 

Drum memory, array of numbers stored, 
274,563 

channels, 562 
clocking with, 572 
computational-array, 279 
parallel read-out, 564 

. searching, 279 
sectors, 562 
serial read-out, 562-564 

Drum synchronizing channel, 572-573 
Dummy comparisons, 84 
Dummy instruction, 74 
Duty cycle of Pedagac, 766 
Dynamic behavior of transistor, 660-

667 
Dynamic circuitry, 624-626 
Dynamic flip-flop, 487, 488 

initial clearing, 556 
Dynamic gating systems, 624-626 
Dynamic program debugging, 131-134 

automonitor, 132 
break-point, 132 

E function, 419 
E matrix, 420 

generation, 420, 442 
under constraints, 463 

(See also Fundamental matrix equa-
·ti6ns) ; 

Efficiency of codifying, 243 

Electron conduction in semiconductors,.: 
546 

Electronic aspects of computer, 38 
Electronic design of computer circuitry,· 

55 
Electronic design of Pedagac, 764-786 

(See also Pedagac) 
Electronic functions of packages, 624 
Elementary computational methods in 

circuit design, 368-413 
Elementary elements, 298 

designation numbers, 321 
included, 326-329 

determining, 328-329, 364 
independent, 368 
nonincluded, 328 

Elementary product, 325 
Elementary sum, 325 
Elements of Boolean matrix, 356 
Elimination pairs of positions, 326-329 
Emitter of transistor, 652 

grounded, 653-654, 656 
equivalent circuit for, 658-667 

Encoding, 242 
Encoding circuits, 553 
Energy-band diagram of tunnel diode, 

680, 681 
English, logical translation, 318 . 
Equality of Boolean matrices, 441 

(See also Equivalence) 
Equalizer circuit, 41, 42, 137, 312, 314 

comparison, 137 
Equations, algebraic, 178-183 

Boolean algebraic, proving, 302-304 
(See also Boolean algebra) 

linear, simultaneous, 174-177 
numerical solutions as computer ap­

plications, 2-9 
transcendental, 178-183 

Equilibrium in junctions (diodes), 648 
Equivalence, Boolean, 299 

Boolean equations of, 379-391 
simultaneous, 385 

(See also Boolean algebra) 
Equivalence class, 253 
Equivalence relation, 253 
Equivalent circuit (see Transistor) 
Error, curves for, in function evaluation, 

187, 188, 191, 192 
experimental, 204 
formulas for, in differentiation and 

integration, 212 
pitfalls from, 209-211 
reliltive, 207 . 
sources, 203-204 
truncated, 203 
(Se¢ also A.ccuracy) . 
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Error detecting and correcting codes, 
244-247 

bibliography, 254 
Essential prime implicants, 335 

finding, 337-343 
Evolutionary tree of computer develop­

ment, 57 
Excess-three adder-subtractor, 508-510, 

526-528 
Excess-three addition, 507, 526 
Excess-three code, 90, 506-510, 517, 

526-528 
(See also Decimal-coded binary codes) 

Excess-three subtraction, 507-508, 527 
Excess-three subtractive complementer. 

509-510 
Execution of an instruction, 26 

control of, 568-571 
Expansion of function (see Functions) 
Experimental errors, 204 
Exponent, floating-point, 110, 538 
Exponent unit, 539 
Expressions in ALGOL, 161-162 
Extract instruction, 114-115 

use, 26,5 

F function, 420 
F matrix, 421 

generation, 421, 442 
under constraints, 463 

(See also Fundamental matrix equa­
tions) 

Fall phase in transistor equivalent circuit, 
666 

Fall time in transistor, 655 
False drop, probability, 249-252 
Faraday's law, review, 691-693 
Feedback method of analog-to-digital 

conversion, 745, 746 
Ferrite cores, 694 

(See also Cores) 
Ferromagnetism, 692 
File instruction, 116 
Film (see Magnetic-film memory) 
Finite differences for polynomials, 211 
5-cyclic code, 517 
5-421 code, 517 
Fixed memory, large, 753 
Flip-flop, 40, 404, 405 

synchronous dynamic, 487 
initial clearing, 556 

transistor, 676-679 
Flipping cores (see Cores, magnetic, 

switching) 
Floating point, 110 
Floating-point operations, 538-539 

Flow charting, 78-79 
symbols for, 78, 95 

Flow charts, accelerating convergence of 
iterative processes, 182 

algebraic-compiler, 158 
computation, of radiation intensity, 

107 
of yN, 98 

computer routine, 153 
evaluation of single function, 159 
generalized loop, 97 
initial read-in routine, 293 
instruction modification, 101 
interpretive routine, 143 

sequencing, 145 
loops within loops, 103 
merging of ordered lists, 237 
minimum wiring algorithm, 779, 781 
missile trajectory, 96 
ordering by merging, 239 
Pedagac phase sequencing, 581 
rapid division, 535 
ray tracing, 8 
read-in routine, 291 
real-time operating program, 265 
record common numbers on two 

ordered lists, 222 
serial division, 514 
setting up of subroutines, 105 
solution, of simultaneous linear equa-

tions, 177 
of sin x = 2 - 2x, 180 

split-tree method of table look-up, 122 
table look-up routine, 100 

Flux density, 691 
Flux switching (see Multiaperture 

devices) 
Folding theorem, 741-742 
for statements in ALGOL, 164 
Format, word, 71-77, 82, 84, 86-88 
Foundations of Boolean algebra, bibliog-

raphy, 316 
Four-address format, 71-77 
Four-address instruction system, func-

tions assigned to phases, 544 
Free elections in semiconductors, 646 
Function declarations in ALGOL, 167 
Function expressions in ALGOL, 162 
Function table, definition, 307, 346 
Functional calculus of symbolic logic, 296 
Functional description of computer, 

30-33 
Functional failure, probability, 636-640 
Functions, evaluation, 183-193, 198-200, 

213 
best-fit polynomial approximations, 

190-193, 213 
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Functions, evaluation, expansion, con­
tinued fraction approximation, 
184-186 

series approximations, 183 
flow chart, 159 
interpolation, 186-190 

Aitken's method, 189 
Monte Carlo method, 213 
polynomial approximations, 

190-193, 213 
undetermined coefficients, 198-199 

Fundamental formulas, 425, 439 
derivation, 439-441 

Fundamental matrix equations, deriva­
tion, 440 

in m-valued Post logic, 483 
in three-valued logic, 480 

Gates, 35, 38-40, 309-312 
and (see and gates) 
and-not, 540, 577, 578, 669, 673, 674 
cryotron, 711-714 
current-switching, 676 
decoding, 548-551 
digital-differential analyzer, 258-

260 
inverter, 311 
or (see or gate) 
or-not, 540, 577, 578, 669, 673, 674, 

701-702 
symbols for, 311, 578 

Gating, control pulse, 41-43 
(See also Control) 

core, 704-711 
dynamic, 624-626 
flip-flop, 626 
flux, 706-711 
magnetic, 704-711 
majority, 631, 640-642, 706, 718 
microwave, 714-718 
numerical quantity, 40 
parametric, 627-631 
phase, 627-631 
regeneration, 624-626 
static, 626 
types, 624-631 
(See also Packages) 

General net problem, 470-476 
General-purpose computer, 2 
Generalized address, 274-278 
go to statements in ALGOL, 164 
Graph, definition, 777 
Greatest lower bound of matrix solu­

tions,435 
Grounded-base transistor, 653-654 

Grounded-emitter transistor, 653-654, 
656 

equivalent circuit for, 658-667 

Half-adder, 44 (Ex. g) 
(See also Logical inequality) 

Head, reading and writing, 562, 572, 733 
Health computing system, 22 
Hexadecimal (see Sexadecimal) 
High-speed printer, 49, 754-755 
History, computer, 56 
Hogue magnetic amplifier, 703 
Holes in semiconductor, 646 
Hybrid ring, 715-718 
Hydrodynamics of blood flow, 5 
Hypercube representation of Boolean 

algebra, 361 
Hysteresis loop of magnetic core, 566, 

694,708 

Icand register, 511-513, 515-516 
Idling mode, 289 
Idling phases, 569 
Ier register, 511-513, 515-516 
if statements in ALGOL, 164 
Implicant, definition, 332 

(See also Prime implicant) 
Implications, 299 

Boolean matrices, 441 
solution to equations of, 386-388, 

402-404 
Impurities in semiconductors, 647 
In-out selector, 28 
Included and nonincluded elementary 

elements, determining, 328-329, 364 
elimination pairs of positions for, 

326-328 
Included zero, 529 

(See also Isolated units and zeros) 
Increasing circuit reliability, 634-642 
Index register, 109, 561 
Indexing (see Tabledex) 
Indirect addressing, 128 
Infinite decimals, 92 
Information retrieval, 2, 22 

bibliography, 253 
(See also Business logistic computer) 

in-out selector, 28 
Input-output buffer, 570 
Input-output instruction execution, 

phases, 570 
Input-output methods, 28, 732-763 

analog-to-digital conversion, 739, 742, 
744-747 

bibliography, 762 
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Input-output methods, character-reading 
machines, 749-752 

direct switched, 748 
high-speed printer, 754 
magnetic tapes and drums, 732-739 
manual write-in, 748 
picture displays, 755 
picture-reading machine, 752 
speeds, 49 

Input-output problems, large-scale data 
processor, 282 

Input-output units, Pedagac, synchroni-
zation, 619 

Input-state diagram of circuit, 358 
Input subtractive complementer, 510 
Inscriber, 47 
Instruction decoder, 28, 31, 37, 553-554 

Pedagac, 606, 608-609 
Instruction execution, 26 

control, 568-571 
Instruction format, business logistic 

computer, 273-277 
four-address, 71-77 
one-address, 86-89 
Pedagac, 290 
three-address, 81-84 
two-address, 84-86 

Instruction modification, 99-102 
Instruction register, 31, 559-561 

Pedagac, 606, 608-609 
Instruction sequencing (see Control) 
Instruction types, 108-118 

arithmetic, 110-113 
bit-handling, 114-115 
comparison of words, 115 
decision, 115-116 
input-output, 117 
logical, 114 
read and write, 117 
recursion-aiding, 116-117 
register-modifying, 116-117 
shift, 115 
switch-sensing, 116 

Integration, by definition, 193 
by polynomial approximations, 195 
by Simpson's rule, 195 
by trapezoid rule, 194 
by undetermined coefficients, 198-200 

In tercedence, 482 
International Algebraic Language (see 

ALGOL) 
Interpolation, 186-190 
Interpretation of word, 30 
Interpretive routines, 139-148 

complications, 148 
mathematical, 139-142 
simulation ai, 142-148 

Intersection of sets, 305 
Intrinsic semiconductors, 647 
Invariance of implication under multipli­

cation of Boolean matrice~, 442 
Inventory control, 18-20 

(See also Business logistic computer) 
Inversion of bit, 323 
Inverter gate, 311 

(See also and-not gate; not gate; or-not 
gate) 

Isolated units and zeros, 530, 540 
Isolation of magnetic core stages, 699 
Item, 215 
Item list searching, 219 
Iteration, 95 

and recursion codes, 95-99 
Iterative process, accelerating, 180-183 

Jump, negative, 115 
Jump instruction, conditional (see 

Comparison instruction; Decision 
instructions) 

unconditional, 85, 87 
Jump table, 118-119, 263 
Junctions, semiconductors, 647-650 

(See also Diodes) 

Karnaugh map, 363 
Kilomegagate systems, 722 

Labeling of words, 222 
Language, 159 

anatomy of, 160 
International Algebraic (see ALGOL) 

Least upper bound of matrix solution, 
429 

Levels of diode gating in transistors, 
670-671 

Library of subroutines, 108 
Limitations, of packages, 577-578 

in parallel carry generation, 520 
Linear Boolean equations (see Boolean 

equations) 
Linear ordering, 253 
Lines of induction, 691 
List, characteristic, 215 

item, 215 
ordering, 218, 230-241 
popUlation-based, 221 
searching, 219 
substantive-based, 221 

Logic, core, parallel clock-pulse, 702-703 
series clock-pulse, 701-702 

current-switching,. 674-676 
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Logic, majority, 640-642 
negative, 668 
probabilistic, 636-640 
(See also Boolean algebra; Symbolic 

log~c) . . . 
Logical addition, 114,298, 322 

Boolean matrix, 442 
Logical building blocks, 38-43 
Logical-control computer, 262-267 
Logical design, adder-subtractor, parallel, 

519-525 
serial, 491-496 

complementer, 496-497 
decimal, 509":"510 

of computer circuitry (see Types of 
circuit problems) 

control (see Control) 
counter, 488-491 
flip-flop, dynamic, 687-688 
methods of recording, 576 
Pedagac, 586-621 

Logical inequality, 114, 495 
Logical instructions; 114-115 
Logical mUltiplication, 114, 297, 322 

Boolean matfi~; 441 
Logical operations, 297-298, 317-318 

derived from adder, '494-496 
Logical translation of English, 318 

bibliography, 319 
Logical unit,,494-496 
Logistic computer (see Business logistic 

computer) , . 
. Look-up routine, binomial-coefficient, 100 
Loops (see Recursion codes; Recursive 

compiler) , . 
Loops within loops, 101, 103 
Lowest solution, general Boolean matrix 

equations, 432-434 . 

MAD (see Multiaperture'devices) 
Magnetic amplifier circuits, 698-703 

Hogue, 703 
Ramey, 701 

Magnetic circuit, 689-693 
reluctance, 693 
susceptibility, 692 

Magnetic cores (see Cores; Multiaperture 
devices) 

Magnetic disks, 737 . 
Magnetic drum (see Drum) 
Magnetic~'el~llle'nts, physics, bibliog-

raphy,719 
Magnetic-film memory;' 72g:,:. 732 

bibliography, 759 
·nondestructive read":out, 730-732 
simultaneous read-write, 73~732 

Magnetic flux, 691 
Magnetic gating, 704-711 
Magnetic materials, ferrite, 694 

properties, 693-698 
square hysteresis loop, 693 

Magnetic susceptibility, 692 
M;agnetic tape (see Tape) 
Maintenance, 474-476 

bibliography, 171 
Maintenance routines, 135-139 
Major mUltiplication, 112, 511 

inhibit signal, 556 
Majority-carrier current in junctions and 

diodes, 648 
Majority circuit, 631, 640-642, 706, 718 
Majority gating, 631, 640-642, 706, 718 
Majority logic, 640-642 
Man-machine simulation, 16-18 
Management decisions, 15 
Mantissa, floating-point word, 110, 538 
Manual searching methods, 223-226 
Manual write-in input methods, 748 
Many-valued logic (see Multivalued 

logic) 
Marginal-punch cards, 223 
Mathematical interpretive routine, 

139-142 
Matrix, diagonal, 467 

permutation; 437 
pseudopermutation, 434, 439-441 

(See also Unitary matrix equations) 
selection, core, 725, 726 

diode, 547-552 
state,'359 
(See also Boolean matrices; Boolean 

matrix equations) 
Matrix equations (see Boolean matrix 

equations) 
Mechanical analog-to-digital conversion, 

742 
Medical diagnosis, aids to, 21-23 
Memory, 26-27 

large fiXed, 753-754 
parallel, 564-568 
serial, 562-564 
speed, 49 
(See also Cores; Disks; Drum; Mag,. 

rietic-film memory; Memory sys­
tems; Multiaperture devices; Tape) 

Memory access time, definition, 53 
in serial memories, 564 

Memory address, definition, 30 
Memory selection, 562-568 
Memory space, sharing, 148 
Memory systems, 50-54 

bibliography, 757-759 
Merging, ordering by, 236-241 
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Microprogramming, 128 
Microwave computer components and 

gating, 714-718 
bibliography, 723 

Microwave computers, representation of 
information, 714-715 

Minimizing circuits (see Simplification) 
Minimum access coding, 88 
Minimum computer, 129 
Minimum tree, definition, 778 
Minimum-wiring algorithms, 778-782 
Minimum-wiring theory, 773-782 

definitions of terms, 777 
Minor cycle, definition, 498 
Minor multiplication, 112, 511 
Minority carrier current in junctions 

and diodes, 648 
Mirror notation in core gating, 704 
Modern computer techniques, 679-684, 

711-718 
Mongrel form, 329-330 
Monte Carlo method and bibliography, 

213 
Multiaperture devices, 706-711, 726-728 

bibliography, 721 
gating with, 706-711 
memory, 726-728 
shift register, 709 

Multihole cores (see Multiaperture 
devices) 

MUltiple-component computing system, 
bibliography, 287 

MUltiple-unit systems, design, 283 
Multiplication, binary, serial, 511-513 

Boolean matrix (see Boolean matrices) 
decimal, serial, 516-517 
and division, 69-71. 
floating, 113, 538-539 
major, 113, 511 
minor, 113, 511 
rapid, 528-533 

in parallel computer, 530-533 
in serial computer, 530-531 
short cuts, 528, 529, 531 

MUltiplication instructions, 113 
Multiplication tables, 70 
Multiply control signals, 555 
Multivalued Post logics, bibliography, 

483 
solution to Boolean matrix equations, 

484 . 
Multiway branch, coding, 118 

n-type impurities, 647 
n-p junction (see p-n junction) 
n-p-n typ~ transistor, 657 

nand circuit, 540, 577, 578, 669, 673, 
674 

Negation, 298 
(See also not gate) 

Negation problems in assigning clock 
phases, 771-772 

Negative jump, 115 
Negative logic, 668 
Net, general, 470-476 
Nodes, wiring theory, 777 
Nondestructive read-out, 730-732 
Nonincluded elementary elements, 

328-329 
Nonreturn-to-zero writing, 734 
nor circuit, 540, 577, 578, 669, 670, 673, 

674, 701-702 
Normalizing, 111, 538 
not gate, 40, 311 

basic building blocks, 38-40, 576 
core, 705 
microwave, 718 
multiaperture, 710-711 

Number expressions in ALGOL, 161 
Number systems, 62-71 
Numbers, input-output, 1, 44 

random, 213 
types in computers, 75 

Numerical analysis, 173-214 
bibliography, 213-214 

Numerical approximations, errors, 
203-204 

Numerical solutions to equations, 2-9 

Octal number system, 63 
addition tables, 70 
conversion, 63-67 
multiplication tables, 70 

One-address format, 86-88 
One-address instruction system, 86-88 

functions assigned to phases, 545 
One-plus-one address instruction system, 

88 
Operations (see Instruction format; 

Instruction types) 
Operations phase generator, logical 

design, 614-615 
Operations signal generator, 554-556, 

586-590 
Pedagac, 586-590 

or gate, 38-40, 310 
basic building blocks, 40, 576 
core, 705 
cryotron, 712-713 
microwave, 717 

or inverter, 540, 577, 578, 669, 673, 674, 
701-702 



SUBJECT INDEX 829 

or-inverter package, 670 673 
or-not gate, 540, 577, 578, 669, 673, 674, 

701-702 
Ordering, 230-241 

bibliography, 253 
definition, 218 
linear, 253 
methods, comparison, 241 

maximum in-pass, 231-232 
merging, 236-241 
minimum in-pass, 231-232 
radix coefficients, 232-233 
transposition, 232 

partial, definition, 253 
population-based, 221 
substantive-based, 221 

Oscillators, clock, 35, 573 
Out-scriber, 50 
Output devices, 28, 747-756 
Output digital transducers, 748 
Output subtractive complementer, 505, 

510 
Overflow, 112, 505 
Overlap time, 632-633 

p-type impurities, 647 
p-n junction, recombination current, 

649 
thermal current, 649 

p-n-p transistor, 651, 652 
(See also Transistors) 

Packages, 576 
and-or, 577 
electronic design of Pedagac type, 

765-771 
electronic functions, 624 
function, 576 
limitations, 577-578 
or-and-or, 577 
or-inverter, 670, 673 
Pedagac, 578 

output waveform, 765 
representation, 579 
timing diagram, 632 
transistor flip-flop, 677 
transistor type, 577-578 
use of clock pulse, 578 

Parallel adder, auxiliary carry functions 
for, 522-525 

binary carry generation, 519-522 
logical design, 519-525 

Parallel adder-subtractor combination, 
525-526 

Parallel arithmetic unit, 525-528 
Parallel clock-pulse core logic, 702-703 
Parallel clocking, 572 

Parallel computers, 485-486 
arithmetic operations, 530-533 

Parallel counters, 491 
of Pedagac, 607, 613, 614 

Parallel decimal addition and subtrac­
tion, 526-528 

Parallel memories, 564-568 
(See also Core memory; Magnetic-film 

memory; Multiaperture devices) 
Parametric amplification, 627-631 
Parametric amplifier, gating, 630, 715 
Parametron, 630-631 

analogy with tunnel diode, 683 
bibliography, 643 

Parity bit, 635, 737 
(See also Redundant codifying) 

Partial ordering, definition, 253 
Path, wiring theory, definition, 777 
Pedagac, 288-294, 575-621, 764-806 

alphabetic wiring table, 786 
arithmetic unit, 288, 585, 590-606 
block diagram, 288, 583 

arithmetic unit, 585 
card rack, 777 
cards, 768-771 
clock-phase assignment, 771-773 
clock-phase system, 765-766 
coding manual, 289 
electronic design, 764-786 

problems in, 765-771 
initial read-in subroutine; 291 
logical design, 575-619 

of arithmetic unit, 596-600 
equations for, 790-794 

of buffer, 617-619 
equations for, 802-804 

of control unit, 608-613 
equations for, 794-802 

of in-out phase generator, 619 
equations for, 802-806 

of operations phase generator, 614 
equations fo'r, 802-806 

of operations signal generator, 
588-589 

equations for, 787-790 
of push-button signal generators, 619 

equations for, 805-806 
packages, 578, 764-766, 768 
phases, 580-583 
read-in routine, initial, 291-292 
schematic wiring table, 786 
systems design,288-294 
wiring problem,776 
wiring table, 782-786 
word format, 288, 290 

Peek-a-boo ,cards, 224 
Peirce arrow function (see and-not gate) 
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Permanent conditions in searching, 
definition, 227 . 

Permeability, 692 
Permutation matrices, 397, 434, 437 
Phase.,to-pulse script conversion, 718 
Phase pulses, 498 
Phase-script method of information 

representation, 715 
Phase-selector switch, 126 
Phase sequencing, in instruction execu­

tion, 568-571 
of Pedagac, 581 

Phase signal representation, 627 
Phases, functions assigned to, four-, 

three-, two-, one-address systems, 
544-545 

of Pedagac, 580-583 
role of, 543-546 

Picture displays, 755 
Picture-reading machine, 11, 752 
Polynomial approximations, 190 

best fit, 191-193, 213 
differentiation by,197 
integration by, 195 
series, 183-184 
solution to differential equation by, 

201 
Polynomial interpolation, 186 
Population-based ordering, 221 
Positive logic, 667 
Post logics, many-valued, 482-484 
Post-mortem program debugging, 131, 

134 
Power positions, definition, 337 
Power-series approximation, 184 
Precession in shift register, 499, 500 
Prime implicant, 331, 332 

charts, 332, 334 
essential, 335 

obtaining directly, 336-342 
generating, 332 

Primitive rules, of inference, 317 
of substitution, 317 

Primitive tautologies, 317 
Probabilistic logic, 636-640 
Probabilistic matrix, 636 
Product, elementary, 325 

logical (see Logical multiplication) 
transposition of Boolean matrix, 442 

Program, 94 
automonitor, 133 
debugging, 62, 131-134 

bibliography, 171 
Programmer, definition, 45 
Programming, bibliography, 129 

business logistic computer, 277-278 
,., digital-differential analyzer, 260 

Programming, real-time control com·' 
puter, 264 

for Tabledex, 225 
Proper pattern, wiring theory, 777 
Propositional calculus, 297 

(See also Symbolic logic) 
Propositional operations, 297-298 
Pseudopermutation transformation, 434, 

439-441 
(See also Unitary matrix equations) 

Pulse-to-phase-script conversion, 718 
Pulse-script method of information 

representation, 715 
Pulses, 34 

amplification, 576, 625-627 
attenuation, 35 
clock (see Clock pulse) 
clock-phase, 632 
overlap time, 632.:....633 
repetition time, 631 
resh,aping, 576, 625-627, 630, 671 
synchronizing, 576, 625-627 
transfer time, 631 
width, 633 

Punched cards, as input and output 
method, 28, 46, 223 

reader, 47 
Punched paper tape, 28, 45 
Pushbuttons, functions, 126, 289-290, 

581 
signal generator, logical design, 

616-619 
synchronization, 618 

Quotient, rapid division, 534, 541 
serial division, 513 

R matrix, 397, 421 
generation, 421-423 

under constraints, 464-465 
(See also Fundamental equation) 

R-l permutation matrix, 398 
Radix, 62 

ordering by, 232-233 
Ramey magnetic amplifier, 701 
Ramp method of analog-to-digital 

conversion, 746-747 
Random numbers, generation, 213 
Rapid arithmetic operations, 528-541 

bibliography, 541 
Rapid division, 533-537, 540-541 

flow chart, 535 
Rapid mUltiplication, 528-533 

effectiveness, 531 
parallel computer, 53D. 



SUBJECT INDEX 831 

Read-in routine, flow chart, 291 
initial, 120, 291 
Pedagac, 292 

Read and write, simultaneous, 730-732 
Read-write cycle for magnetic-core 

memories, 725-726 
Read and write instructions, 108, 117, 

120 
Reading, from magnetic core, 54, 725 

into magnetic-film memories, 729 
Reading heads, 562, 572, 733 
Real numbers, 92 
Real-time control computer, 262-267 

external-control instruction, 266 
programming, 264 

Recombination current in p-n junction, 
649 

Recursion-aiding instructions, 108, 
116-117 

Recursion codes, 95-99 
Recursive circuits, 351-355, 404 
Recursive compiler, 158 
Redundancy, majority logic, 640 

probabilistic logic, 636 
Redundant codifying, 243-247 
Redundant information, parity-bit, 

635 
Regeneration gating, 624-626 
Registers, accumulator (see Accumulator) 

current-address (see Current-address 
register) 

delay line (continuously shifting), 
498-501 

icand, 511-513, 515-516 
ier, 511-513, 515-516 
index, 109, 561 
shift, 488 
shift control, 557 
temporary storage, 485 

Relative address, 109 
Relative counters, 109, 561 
Relative error, 207 
Relaxed conditions of searching, 226-229 
Relay gates, 39-40 
Reliability, bibliography, 643 

general considerations, 634-635 
majority logic, 640-642 
methods of increasing, 634-643 
probabilistic logic, 636-640 

Reluctance of magnetic circuits, 693 
Repeater packages of Pedagac, 768 
Repetition time, 631 
Representation, of Boolean algebra, 

hypercube, 361 
lattice diagram, 362 
Venn diagram, 361 

of package, 578-579 

Reservation system, airline, 20-21 
Reshaping of pulses, 576, 625-627, 630, 

671 
Resistance-coupled transistor circuits, 

672 
Response time of transistor, 655, 662-667 
Result array, 384, 423, 446 
Result matrix, 403 
Retentivity in magnetic materials, 693 
Retiming in transistor diode-gated 

package, 671 
Retrieval of information, 22 

(See also Searching) 
Retrieval computer, 269 
Return jump instruction, 116, 140 
Return-to-zero writing on tapes and 

drums, 732 
Right-hand rule, 689 
Rise phase, 662 
Rise time in transistor, 655 
Role of phases, 543-546 
Round numbers, 204, 205 
Round-off errors, 204 
Rounding, 205 
Routine (see Subroutine) 
Rules, primitive logical, 317 

of thumb, minimizing number of 
inputs to gates of decoding 
circuits, 551 

significant figure loss, 208-209 
Run button (see Pushbuttons) 
Runge-Kutta method of solution of 

differential equation, 212 

Sampling, discrete, effects of, 740-742 
Sampling theorem (folding theorem), 742 
Saturation, in magnetic materials, 693 

in transistors, 655, 663-665 
Scaling, 78, 110, 260 
Schematic wiring table of Pedagac, 786 
Searching, definition, 215 

drum, 279 
methods, 218-230 

with computers, 218 
manual, 223 
Tabledex, 220-222, 408 

with permanent conditions, 227 
with preferential conditions, 228 
problems of, in terms of Boolean 

algebra, 407 
programming for, 222-223 
for r out of n characteristics, 227 
with relaxed conditions, 226, 228-229 
(See also Codifying; Sorting) 

Searching computer, 257, 268-270 
Sector, definition, 562 
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Sector counter, 563, 573 
Pedagac, 607, 612-613 

Sector selector, 563, 564 
Pedagac, 606, 610-611 

Selection, address, 543-546, 559-561 
argument, 28 

Selection ratio in magnetic-core 
memories, 724-725 

Selector, in-out, 28, 618 
Self-clocking on magnetic tape, 737 
Self-correcting redundant codification, 

244-247 
Semiconductor devices, bibliography, 

685-688 
Semiconductor physics, bibliography, 

684 
Semiconductors, 645-647 

doped, 647 
electrical conductivity in, 645 
free electrons in, 646 
holes in, 646 
impurities in, 647 
junctions and diodes, 647-650 
pure (intrinsic), 647 

Sensing of core memory, 567, 694-698, 
704, 724-726 

Sentential examples, 408-413, 476-479 
Separation of magnetic-core inputs and 

outputs, 698 
Sequencing of clock phases, 568-571, 

632-634 
Serial adders (see Adder) 
Serial clocking, 572 
Serial computers, 37, 485 
Serial division, 513-516 

binary, 513 
decimal, 516 
flow chart for, 514 
sign generator for, 516 

Serial memories, 562-564 
(See also Disks; Drum memorYi Tape) 

Serial multiplication, 511-513 
binary, 511 
decimal, 516 
sign generator for, 516 
use in, of accumulator, 511, 512 

of icand register, 511, 512 
of ier register, 511, 512 

Serial subtractor (see Adder and sub­
tractor combination) 

Series approximation, 183-184 
(See also Polynomial approximations) 

Series clock-pulse core logic, 701-702 
Sets, definition, 304 

elements, 304 
Sexadecimal, 63, 64 

conversion, 63-67 

Sharing high-speed memory, 148 
Sheffer stroke, 318 

(See also or-not gate) 
Shift instructions, 115 
. Shift registers, 488 

continuously shifting, 498-501 
formula for, 501 

control, 557 
core, 699 
multiaperture device, 709 
precession in, 499-501 

Sign bit, 77, 503 
Sign conditions for sum and difference, 

504, 505 
Sign generator, multiplication and 

division, 516 
Signal amplification (see Amplification) 
Signal isolation in magnetic-core circuits, 

699 
Significant figures, 204-211 
Simplest form (see Absolute simplest 

form) 
Simplest product of sums, 342 
Simplest sum of products, 344-345 

constrained basis, 371-372 
decimal method for, 365 
Harris-Elbourn method, 336-343 
Quine-McCluskey method, 331-336 

Simplification, of Boolean functions, 
bibliography, 366 

chart methods, 362-364 
of circuit design by constraints, 376 

Simpson's rule, integration by, 195 
Simulation, 2 

industrial dynamics, 13-16 
man-machine, 16-18 

Simulational routine, 140, 142-148 
Simultaneous Boolean equations, 

379-388, 402, 404 
Simultaneous changes of logical variables, 

398-400 
Simultaneous linear equations, 174-178 
Simultaneous read-write, 730-732 
Skipping of clock phases, 634, 766 
Small-signal equivalent circuit of 

transistor, 660-662 
Solid-state devices, semiconductors, 645 

tunnel diodes, 679 
Solutions of Boolean matrix equations 

(see Boolean matrix equations) 
Sort, simple, 226 
Sorting, bibliography, 253 

definition, 218 
of marginal-punched cards, 224 
(See also Ordering) 

Space, memory, sharing, 148 
Special coding techniques (see Coding) 
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Special-purpose computers, 2, 256-281 
business logistics, 271-281 
digital differential analyzer, 257-262 
information retrieval, 268-271 
real-time logical control, 262-267 

Speed, of computer, 27, 34, 148-150 
of information conversion from one 

medium to another, table, 47, 49 
Split tree, 118 
Square-hysteresis loop, 693 
Standard address for return jump, 141 
Standard basis, 322 
Start button (see Pushbuttons) 
Sta te diagram, 358 
State matrix, 359 
Statements, 162 
States of circuit, 357-360 
Static (flip-flop) gating systems, 626 
Stop button (see Pushbuttons) 
Stop instruction, 74, 289, 581, 583 
stop statements in ALGOL, 164 
Storage location, definition, 30 
Storage time in transistor, 655, 663-665 
String of units in rapid multiplication, 

529,530 
Strip lines, 714 
Stroke, Sheffer, 318 
Subroutine, binomial-coefficient look-up, 

100 
column-adding, 102 
definition, 104 
flow chart for setting up, 105 
library, 108 
Pedagac read-in, 291 
sin x, 102 
square root, 98 
table look-up, 122 

Substantive-based ordering, 221 
Subtraction, binary and octal, 69 

binary parallel, 526 
binary serial, 491-497 
decimal, in excess three, 506-508 

parallel, 526 
definition, 503 

Subtraction instruction, 112 
Subtractive complementer, 496-497 

excess-three, 509-510 
input, 510 
output, 505, 510 
parallel arithmetic unit, 526 

Subtree, definitions, 778 
Successive approximations, 178-183 
Sum, and difference, condition table, 503 

sign conditions, 504 
elementary, 325 

definition, 503 
Superconductivity in cryotron, 711-712 

Superimposed irredundant codification, 
247-252 

Susceptibility, 692 
Switch, one-shot and on-off, 119 
Switch declarations in ALGOL, 166 
Switching circuits, 366-367 

bibliography, 367 
transmission functions, 366 

Switching core (see Cores) 
Symbolic address, 151 
Symbolic code, 80 
Symbolic coding, 79, 84 
Symbolic language, 61 
Symbolic logic, 296-301 

axiomatic development, 315 
bibliography, 316 

combined elements, equivalence, 299 
implications, 299 
tautology, 299 

elementary elements, 298 
formal theory, bibliography, 317 
propositional operations, 297-298 
propositions, 297 
truth tables, 300-301 

Symbols, core mirror notation, 704 
diode, 667 
flow chart, 78, 95 
gate, 311, 578 
logical operation, 114, 298, 299 
matrix operation, 356, 441-442, 444, 

480, 484 
package, 579 
transistor, 652, 657 
tunnel diode, 681 

Synchronization, 34, 624 
of input-output units of Pedagac, 618 

Synchronizers, 571, 619 
pushbuttons, 619 

Synchronous dynamic flip-flop, 487 
Synchronous operation, 498 
Synchronous recursive function circuits, 

351-356 
timing diagram, 354 

Syntax (see ALGOL) 
System engineering and bibliography, 287 
Systems design, digital computers, 

specifications, 282 
large-scale data processor, 281-286 

mUltiple-unit, 283, 284 
Pedagac, 288-294 
purpose, 256 
special-purpose computers (see 

Special-purpose computers) 

Table look-up, 121-123 
differentiation by, 197 
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Tabledex,: 220-221 
advantages, 408 
computer generation of manual, 225 

Tally, 96 
Tape, magnetic, 48, 737 

clocking, 734 
input devices, 46, 48 
nonreturn-to-zero writing, 734 
odd parity bit, 737 
output devices, 28, 46 
return-to-zero writing, 732-734 
self-clocking scheme, 737 

Tautology, 299-300 
Taylor series, 190, 192 
Thermal current in p-n junctions, 649 
Theta product of Boolean matrices, 

444-447 
in multivalued logic, 483, 484 

Thin films (see Magnetic-film memory) 
Three-address format, 82 
Three-address instruction system, 81-84 

functions assigned to phases, 544 
Three-valued logic, 406-407 

Boolean matrix equation, 479-482 
(See also Multivalued logic) 

Timing, and counters, 571-573 
problems in, 766-768 
synchronous circuits, 353 

Timing diagram, four-clock phase 
system, 638 

package, 632 . 
synchronous circuit, 354 

Transducers, 13, 747 . . 
Transfer instruction, 84, 85, 87 

functions assigned to phases, 544,545 
Transfer time of pulse, 631, 632 ' . 
Transfluxor, 706 
Transformation to absolute simplest 

form, 396-400 
Transistors, 650-679 

a ratio, 653 
as amplifier, 669-671 
base, 652 
fJ ratio, 653 
bibliographies, 685-687 
characteristic curves, 653-655 
circuits using, current-switching, 

674-676 
diode-gated, 669-672 
direct-coupled, 673-674 
flip-flops, 676-679 

shift register, 679 
resistance-coupled, 672-673 

collector, 652 
conventional current directions in, 

652, 657 
emitter, 652 

Transistors, equivalent circuit for, 658-
667. 

bibliography, 685 
large-signal, fall phase, 664, 666 

rise phase, 662-663, 664 
saturation and storage in, 663-665 

large-signal d-c, 659 
small-signal, 660-662 
variational, 660-662 

fall time, 655 
grounded-emitter, as switches, 656 
n-p-n type, 656 
operating range (cutoff, active, 

saturation), 655 
response time, 655 
rise time, 655 
storage time, 655 
symbolism for, 652, 657 

Transitive property of equivalence 
relation, 253 

Translating computing unit, 282-283 
Translation of English, logical, 318 

bibliography, 319 
Translator compiler, 151-153 
Transmission functions, 366 . 
Transpose of Boolean matrix, 426, 442 
Transposition, ordering by, 232 
Trapezoid rule for integration, 194 
Tree, definition, 778 

split, 118 
Truncated errors, 203 
Truth tables, 300-301, 323 
Tunnel diode, 679-684 

bibliography, 687 
characteristics, 681 
digital circuit, 682 
energy-band diagram, 681 
parametron analogy, 683 
symbol for, 681 

Tunneling, 680 
Turing machine, 129 
Two-address instruction format, 84 
Two-address system, 84-86 

functions assigned to phases, add 
instruction, 544 

2-421 Code, 517 
Types, of circuit problems, 415-418 

with constraints, 462-465 
examples, general net, 470-476 

ordinary equations of equivalence, 
465-468 

inverse solution to, 468-469 
type 1, 448-449 
type 2, 450-452 
type 3, 453-462 

fundamental formulas for, 426 
of unitary matrix equations; 43?-:-43?, 
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Undetermined coefficients, function 
evaluation by, 198-200 

Union of sets, 305 
Unit delay, 353, 501 
Unit time interval, 486, 498, 632-634 
Unit-time-interval counter, 573, 607, 

612-613 
Unitary matrix equations, 434-438, 

442-447 
conditions for existence of solution, 

436-438 
in multivalued logic, 479-483 
solution to types 1, 2, and 3, 435-439, 

480-483 
Unknown Boolean function (see Boolean 

equations) 
Unnormalized, definition, 111 
Unnormalized result, floating-point 

operation, 538 

Variable connector, 104-105 
Variables, expressions for, in ALGOL, 

simple, 161 
subscripted, 161 

'T eitch chart method of Boolean 
simplification, 362-363 

Venn diagram, 361 
Verbally described problems, 347-351 
Voltage clamping, 668 

Waveform of Pedagac packages, 765 
Wiring diagrams, bibliography, 786 
Wiring problem in computers, 773-782 
Wiring tables, 782-786 
Word block definition, 117 
Word format, 71-77, 82, 84, 86-88 

Pedagac, 288, 290 
Words, computer, definition, 30 

form, 34 
interpretation, 30 
labeling, 222 

Write, 725-726, 730-732 
Write instructions, 108, 117, 120 
Writing of code, steps in, 80 
Writing head, 562, 572, 733 

Xerography, 756 

Zener effect, 650 




