=

o)
g U it

5 t i

. b X SIS

at T-M

cGR
3

F:

@

IS

DIGITAL COMPUTER AND
CONTROL ENGINEERING

McGRAW-HILL ELECTRICAL AND ELECTRONIC
ENGINEERING SERIES

Freperick Emmons TerMAN, Consulting Editor
W. W. HarmaN anp J. G. TRUXAL,
Assoctate Consulting Editors

AHRENDT AND SAVANT - Servomechanism Practice

ANGELO - Electronic Circuits

ASELTINE + Transform Method in Linear System Analysis
ATwATER - Introduction to Microwave Theory

BamLey anp Gauvr - Alternating-current Machinery

BERANEK - Acoustics

BraceEwELL - The Fourier Transform and Its Application
BRENNER AND JAVID « Analysis of Electric Circuits

BRrowN : Analysis of Linear Time-invariant Systems

BRrUNs AND SAUNDERS + Analysis of Feedback Control Systems
CAGE - Theory and Application of Industrial Electronics

CAUER - Synthesis of Linear Communication Networks

CHEN + The Analysis of Linear Systems

CHEN - Linear Network Design and Synthesis

CHIRLIAN - Analysis and Design of Electronic Circuits

CHIRLIAN AND ZEMANIAN - Electronics

CLEMENT AND JouNsoN - Electrical Engineering Science

Cote AND OAKES - Linear Vacuum-tube and Transistor Circuits
Cuccra - Harmonics, Sidebands, and Transients in Communication Engineering
CUNNINGHAM - Introduction to Nonlinear Analysis

D’Azzo anp Hourrs - Feedback Control System Analysis and Synthesis
EastvAN - Fundamentals of Vacuum Tubes

FEINsTEIN « Foundations of Information Theory

FirzGERALD AND HigGiNBoTHAM - Basic Electrical Engineering
FirzgeEraLD AND KiNgsLEY - Electric Machinery

FraANK - Electrical Measurement Analysis

FrieprLanp, WiING, AND AsH - Principles of Linear Networks
GHAuvsI - Principles and Design of Linear Active Circuits
GHosE - Microwave Circuit Theory and Analysis

GREINER - Semiconductor Devices and Applications

Hammono - Electrical Engineering

HaNcock - An Introduction to the Principles of Communication Theory
HarpeLL AND HEssELBERTH - Engineering Electronics

HarMAN - Fundamentals of Electronic Motion

HarwmAN - Principles of the Statistical Theory of Communication
HarmaN AND LyTLE - Electrical and Mechanical Networks
HARRINGTON - Introduction to Electromagnetic Engineering
HARRINGTON « Time-harmonic Electromagnetic Fields

Havasar - Nonlinear Oscillations in Physical Systems

Hayr - Engineering Electromagnetics

Hayr AND KEMMERLY ¢ Engineering Circuit Analysis

Hivy - Electronics in Engineering

JAviD AND BRENNER - Analysis, Transmission, and Filtering of Signals
Javip aAND Brown - Field Analysis and Electromagnetics
JonnsoN - Transmission Lines and Networks

KoeNIG AND BLACKWELL - Electromechanical System Theory
Kraus - Antennas

Kraus - Electromagnetics

Kun anp PepERsON - Principles of Circuit Synthesis

LepLey - Digital Computer and Control Engineering

LEePAgE - Complex Variables and the Laplace Transform for Engineering
LeEPAGE AND SEELY + General Network Analysis

Ley, LuTz, AND REHBERG * Linear Circuit Analysis

LinviLL aND GiBBoNsS - Transistors and Active Circuits
LitTauEeR - Pulse Electronics

LyncH AND TRUXAL - Introductory System Analysis

LyNcH AND TRUXAL - Principles of Electronic Instrumentation
LyNcH AND TRUXAL - Signals and Systems in Electrical Engineering
MiLLMAN - Vacuum-tube and Semiconductor Electronics
MiLLmAN AND SEELY - Electronics

MiLLmMaN AND Taus - Pulse and Digital Circuits

MiLLMaN AND Taus - Pulse, Digital, and Switching Waveforms
MisHRIN AND BraUN - Adaptive Control Systems

Mooge - Traveling-wave Engineering

NANAVATI - An Introduction to Semiconductor Electronics
PerrIT - Electronic Switching, Timing, and Pulse Circuits
PETTIT AND MCcWHORTER - Electronic Amplifier Circuits
PerTiT AND MCcWHORTER * Concepts of Probability Theory
PrEIFFER - Linear Systems Analysis

REza - An Introduction to Information Theory

REzA anND SEELY - Modern Network Analysis

RogeRs : Introduction to Electric Fields

RYpER - Engineering Electronics

ScuwARTZ + Information Transmission, Modulation, and Noise
ScHWARZ AND FRIEDLAND © Linear Systems

SEELY - Electromechanical Energy Conversion

SEELY * Electron-tube Circuits

SEeELY - Electronic Engineering

SEELY - Introduction to Electromagnetic Fields

SEeELY - Radio Electronics

SEIFERT AND STEEG * Control Systems Engineering

SiskIND - Direct-current Machinery

SkiLLING - Electric Transmission Lines

SKILLING * Transient Electric Currents

SPANGENBERG - Fundamentals of Electron Devices
SPANGENBERG + Vacuum Tubes

StEVENSON - Elements of Power System Analysis

StEwWART - Fundamentals of Signal Theory

STORER - Passive Network Synthesis

StraUss - Wave Generation and Shaping

Su - Active Network Synthesis

TEeRMAN - Electronic and Radio Engineering

TERMAN AND PETTIT - Electronic Measurements

THALER - Elements of Servomechanism Theory

THALER AND BROWN - Analysis and Design of Feedback Control Systems
THALER AND PASTEL - Analysis and Design of Nonlinear Feedback Control Systems
THOMPSON - Alternating-current and Transient Circuit Analysis
Tov - Digital and Sampled-data Control Systems

Tovu - Modern Control Theory

TRUXAL - Automatic Feedback Control System Synthesis
VaLpgs - The Physical Theory of Transistors

VaN BrapeL - Electromagnetic Fields

WEINBERG - Network Analysis and Synthesis

WiLLiams AND YoOUNG ¢ Electrical Engineering Problems

DIGITAL COMPUTER AND
CONTROL ENGINEERING

- ROBERT STEVEN LEDLEY

ASSOCIATE PROFESSOR OF ELECTRICAL ENGINEERING
THE GEORGE WASHINGTON UNIVERSITY
CONSULTANT MATHEMATICIAN
TO THE NATIONAL BUREAU OF STANDARDS

WRITTEN WITH THE ASSISTANCE OF
LOUIS S. ROTOLO JAMES BRUCE WILSON

Research Scientist Research Associate
The George Washington University

McGRAW-HILL BOOK COMPANY, INC.
New York Toronto London
1960

DIGITAL COMPUTER AND CONTROL ENGINEERING

Copyright © 1960 by the McGraw-Hill Book Company, Inc. Printed
in the United States of America. All rights reserved. This book, or
parts thereof, may not be reproduced in any form without permission
of the publishers. Library of Congress Catalog Card Number 59-15055

VII

36981
THE MAPLE PRESS COMPANY, YORK, PA.

TO MY SONS
TREDDY AND GARY

FOREWORD

Until less than a century ago, men toiled manually to produce the very
clothes they wore, shelters they lived in, and food they ate. The indus-
trial revolution—derived from the invention of machines that auto-
matically make commodities—was a revolution that vastly enlarged man’s
productive capabilities. The effect is observed upon comparing the daily
life of a man of a ecentury ago with that of a modern man, in his highly
mechanized economic and interdependent social civilization. Now we
are on the threshold of a new kind of revolution, a revolution that may
in the future have even more far-reaching effects, vastly increasing man’s
“thinking”’ capabilities of planning, analyzing, computing, controlling.
This new revolution derives from the availability of machines that auto-
matically compute and control. We know its effects will be great, but
we now can only speculate on the forms they will take. Not only will its
influence be directly marked in the physical sciences and in technology,
but, perhaps even more significantly, it will have a tremendous effect
on the biological sciences and on the economie, political, and social aspects
of our civilization. Its effects during the productive life span of the infant
of 1960 will certainly be greater than those the industrial revolution has
had during the life span of the infant of 1900. Pivotal in the growth and
development of this newest of mankind’s capabilities will be the digital-
computer and -control engineer, whose primary occupation is the creation
—the research, development, and production—of these new machines.

There is another quite remarkable aspect of digital-computer and con-
trol engineering. Never before in the history of human endeavor has a
new development of such scope and complexity emerged so rapidly.
Within a single decade this entirely new field, constructing and utilizing
thousands of new computers, has already penetrated almost all phases of
our modern society, from nuclear-energy production and missile design
to the processing of bank checks, business invoices, and medical diagnoses.
And in the research stages there are already components that might make
it feasible to build computers manyfold more complex than present-day
computers.

Beyond the unique potential to mankind and the phenomenal growth
of the field is yet a third relatively unique aspect of digital-computer and
control engineering. It is fast becoming one of the broadest in scope and
most demanding of all engineering fields, encompassing fundamental
aspects of logic, mathematics, systems engineering, as well as solid-state

X

X FOREWORD

physics and electrical engineering. Since an error of only a single bit in
a program or the breakdown of a single gate or component of a digital
computer or control can result in the failure of the entire system, high
meticulousness is demanded of the engineer. Thus his training must not
only cover a wide range of topics but must as well emphasize precise
attention to detail.

This book is the first comprehensive elementary engineering text in the
digital-computer- and digital-control-engineering field (although there are
several excellent advanced books in more specialized aspects of the field).
The book seeks to present a new synthesis of educational material
possessing a unity and breadth arising from the organization of the
various aspects of digital-computer and -control engineering as a whole,
It provides the material of a basic field of study for all students of elec-
trical engineering, regardless of their ultimate specialty. However,
it is hoped that this book may help stimulate a number of young engineers
to enter this dynamic and vitally young field.

Samuel N. Alexander
Chief, Data Processing System Division
The National Bureau of Standards

PREFACE

General Information. The purpose of this book is to fill the need for a
comprehensive elementary-engineering textbook in the large and still
rapidly growing field of digital computers and controls. (The term
control is used to emphasize that digital control and digital computers are
based on the same principles.) The need for such a text is not confined
to engineering schools; in industry as well, the graduate engineer with a
few sporadic encounters with digital circuitry needs a sound introduction
to the burgeoning literature on all phases of digital computers and
controls.

Within the first five years after he earns his degree almost every elec-
trical engineer will deal with some phase of digital circuitry. Therefore
a course on digital computers is required for all candidates for the bachelor
of electrical engineering degree at The George Washington University.
This is indicative of a trend in engineering schools throughout the country.

This text is based on experience I gained in teaching courses on digital
computers at The George Washington University School of Engineering.
It is directed to senior undergraduate engineering students and first-year
graduate students and is intended primarily for a year’s course. Pre-
requisites are college physics, calculus, and at least a first course in
electronic circuits, although no great proficiency in these subjects is
required. Since it is an elementary exposition of the principles of digital-
computer and control engineering, the book covers topies in all three
phases of the subject: the over-all design of digital systems (Parts 1 and
2); the logical design of digital circuitry (Parts 3 and 4) ; and the electronic
design of digital circuits (Part 5).

An introductory exposition of a field as large and complex as this can
never hope to treat all subjects exhaustively. Full treatment must be
left to specialized source books, handbooks, and journal articles. Almost
without exception, each chapter of this book could be used as the basis for
an entire book in itself—this is in fact true of some sections as well. Each
chapter is designed to introduce the student to certain fundamental con-
cepts and techniques of development. The method of teaching is by
example rather than by generalized exposition. It is felt that the student
is more capable of grasping abstractions from specifics than of extracting
concepts from discussions based on generalizations alone. Hence I
have tried wherever it was possible to guide the student by means of
specifie, concrete examples. From experience I have found that this

X1

xii PREFACE

pedagogical method is particularly well suited to engineering students.

Since there has been no previous comprehensive text in the field, there
is no precedent for the choice of topics. The subjects covered were chosen
to present a continuous, natural development of the major aspects of the
field in the limited time available to the engineering student. Of course
in any field of this size there will exist differences of opinion as to which
topics should and should not be included. I feel that I have chosen
those topics of greatest importance and that this comprehensive treat-
ment will satisfy the needs of the largest number of readers.

Much attention was paid to the exercises, of which more than 750
appear in the book. The exercises at the end of each section serve to
illustrate the material of the section, to enable the student to gain compu-
tational facility, and to extend the material to closely related topics not
covered in the section. Almost every chapter ends with Additional
Topics, a section designed to introduce the reader to new material not
covered in the chapter and to stimulate his further reading in the field.
The text includes many new results of original research never previously
compiled into book form, some of which here appear in publication for
the first time (see Special Technical Features below).

Outline of the Text. Perhaps the most outstanding capability afforded
by digital techniques is that of decision making, as exemplified by the
programmed system. Thus Part 1, the first of two parts on digital
systems, is concerned with the dlgltal programmed system. Its first two
chapters are introductory in nature: the first is intended to motivate the
student by delineating the wide range of applications of digital systems
and controls; the second is designed to orzent the student with respect to
the digital-computer-engineering field. The next three chapters are
directly concerned with programming; their purpose is to expose the
engineering student to a large variety of instruction and operation
formats, as well as to the practice of coding. Sequencing of instructions
in four-, three-, two-, and one-address-system instruction formats is con-
sidered. The fundamental concepts of the loop, or Iteratlon, and the
subroutine are introduced, followed by a discussion of the various kinds of
operatlons that instructions can involve. At the end of Part 1 we con-
sider the formulation of program-checking and computer-maintenance
programs. Further automatic-programming techniques lay the ground-
work for a simplified presentation of the international algebraic automatic
program called ALGOL.

. Part 2 is concerned with the functional approach to dlgltal-systems
de31gn here again the purpose is to expose the student to a variety of
possible systems-design concepts. Numerical analysis is considered, as
the basis of the systems design of the general-purpose digital computer.
Here the concept of the polynomial-approximation approach is stressed
as a fundamental method for reducing most mathematical computation
to additions, subtractions, multiplications, and divisions. Next are
described computational methods other than those of classical numerical

PREFACE xiit

analysis, methods which are, however, of fundamental importance in
business and in other activities requiring data reduction. Besides tech-
niques for searching and sorting, examples of methods for redundant and
irredundant coding are considered. In order to demonstrate clearly the
possibility of other than general-purpose computers, the digital differen-
tial analyzer is considered, along with real-time control and other tech-
niques. Also a general discussion is included of the concepts under-
lying the “super’’ computers now in the research and developmental
stages. Finally I introduce the Pedagae, a small general-purpose com-
puter intended to provide the necessary thread of continuity to the study
of digital-computer engineering (see below for further discussion of the
Pedagac).

Probably the ‘“newest’ of the concepts confronting the uninitiated
reader in digital-computer and -control engineering is that concerned with
Boolean algebra as the basis for the logical design of digital circuits.
Thus Part 3, the first of two parts on the logical design of digital circuitry,
is concerned with the mathematical foundations of Boolean algebra.
First Boolean algebra is introduced in terms of propositions, for it is
advisable that the engineer understand the relation of Boolean algebra
to other concepts as well as digital circuitry. Hence we take up the
propositional-calculus representation and the class, or set, representation
before the digital-circuit representation. The method.of using bases and
associated designation numbers in the succeeding chapters (which was
first fully developed by the author, although it appeared implicitly in
some earlier writings) has been found admirably suited to the teaching
of the logical design of digital circuits. On the basis of this method,
several modern procedures for the simplification of Boolean functions are
explained, leading into the design of digital circuits to compute elemen-
tary synchronous recursive functions. In the final three chapters of this
part, digital computational methods of importance in logical circuit
design are considered. With few exceptions the methods presented
are based on the author’s original research. Elementary algorithms,
including methods for solving Boolean equations and their application to
circuit design, are given. Chapters 13 and 14 consider computations
with Boolean matrices, the former being concerned with the theoretical
development of the methods, the latter with applications of these results.
(Should it be desired to study the applications of the computational
methods before delving into the details of the proofs, Chap. 13 has been
written so that the applications of Chap. 14 may be considered directly
after Sec. 13-3 with no loss of continuity.)

Part 4 is concerned with the logical design of specific computer com-
ponents. First the serial arithmetic unit is considered, then parallel and
rapid arithmetic operations. Since the philosophy of teaching general
principles by specific example is used, a survey of methods of performing
arithmetic operations is not given. Instead the discussions are centered
round a few illustrations, carefully chosen for their suitability in demon-

xiv PREFACE

strating clearly the concepts involved in circuits that perform arithmetic
operations. Next the various problems are considered that arise in the
computation of control functions, beginning with a general discussion of
minimum decoding procedures. Finally the concept of packaging is
introduced, and with the logical design of the Pedagac as an illustrative
example, many of the important aspects of the final logical design of a
complete digital system are elucidated.

The last part, Part 5, is concerned with what is probably the most
active field in digital-computer and -control engineering, the electronic
design of digital circuits. The goals of the electronic design of circuits
for use in digital computers and controls are derived from considerations
of the digital-systems design and the logical design already covered.
Here again the attempt is made to teach concepts through selected
examples of circuits. Clearly, in these rapidly developing and dynamic
fields, detailed discussions of many different specific circuits are not
justified—many of them would certainly be obsolescent before publication
of the book. Hence specific circuits are used only as concrete illustrations
of the more general underlying principles. The experienced reader will
observe that the topics covered in many of the individual sections can
well afford entire books to themselves. The first chapter of this part is
concerned with the two most important problems involved in the transi-
tion from abstract systems and logical design to the electronic realization
of digital circuits, namely, timing, or clock phasing, and reliability.
Then aspects of the use of semiconductor devices, diodes and transistors,
in electronic-digital-circuit design are considered. Here the most impor-
tant concept to be learned is a thorough understanding of the use of the
devices; hence much space is devoted to discussion of the physical opera-
tion and the equivalent circuit of transistors. Consideration of magnetic
elements in digital-circuit design follows, encompassing magnetic-core and
multiaperture gating devices as well as magnetic amplifiers. The discus-
sion ends with a section on two most promising modern circuit develop-
ments, Cryotron and microwave circuits. The next chapter is concerned
with the closely related memory methods and input-output techniques.
Only core and film high-speed memories are considered, since the use of
other high-speed memory forms is rare; for the same reason only tape and
drum low-speed memories are described. Many of the most important
input-output methods depend on analog-to-digital and digital-to-analog
conversion, and these are accordingly included in this chapter. In this
context a full explanation of the important sampling theorem is given.
The final chapter illustrates some exceedingly important topics in the
final design of a computer, through the electronics and wiring diagram
of the Pedagac.

Special Technical Features. In Part 1 of the text Sec. 5-9 is concerned
with the International Algebraic Language (ALGOL). This general
automatic algebraic programming language contains the primary features
of other automatic programs, such as FORTRAN, IT, etc., and has the
advantage of becoming widely accepted. Sponsored by the Association

PREFACE Xv

for Computing Machinery and several foreign societies, the universal
acceptance of ALGOL would undoubtedly have a great beneficial effect
on the national and international exchange of ideas and methods of
programming,

Special features of Part 2 include J. H. Wegstein’s general method for
accelerating the convergence of iterative solutions to equations, in Sec.
6-3. The Tabledex method and the techniques of searching with relaxed
conditions given in Secs. 7-3 and 7-4, as well as the new, more accurate
formulas for evaluating superimposed coding given in Sec. 7-7, are the
original work of the author. The specific method of Sec. 8-3 for coding
the control computer was developed by the author, while the method for
coding the logistics and business computer, appearing in Sec. 8-5, is based
on the work of W. H. Marlow.

In Part 3 the computational methods for constraints, logical depend-
ence and independence, solution to Boolean algebraic equations, and
transformation to the absolute simplest form, given in Secs. 12-2 through
12-10, are the author’s original developments. The method of ante-
cedence and consequence solutions, the fundamental Boolean matrix
formulas and their proofs, given in Secs. 14-1 through 14-6, are the result
of the author’s original research, as are also the extension of the use of
designation numbers to three (or more) -valued logic and their appli-
cation to the design of three-valued digital circuits (Sec. 12-11). The
extension of the fundamental Boolean matrix formulas to multivalued
logic, as given in Sec. 14-7, was developed by W. R. Smith and N. F. J.
Matthews; the general solution to the logical matrix equation given in
that section was developed by W. R. Smith. R. D. Elbourn deserves
credit for the direct method of finding prime implicants given in Sec. 11-7.

The discussions of the parallel adder and of rapid multiplication, in
Secs. 16-2 and 16-4 of Part 4, are based on the work of A, Weinberger and
J. L. Smith. The rapid-division method of Sec. 16-5 was developed by
the author and J. B. Wilson. The treatment of minimum decoding
methods is based on a development of C. H. Page. In Part 5 the proba-
bilistic-logic approach to increasing circuit reliability (Sec. 19-4) is the
author’s adaptation of a development of W. S. McCulloch. The tran-
sistor equivalent circuit, described in Sec. 20-4 for the most commonly
used grounded-emitter voltage-drive configuration, is based on an original
development of S. B. Geller. The magnetic amplifier of E. W. Hogue in
Sec. 21-3 presents a new technique for magnetic amplification. Section
23-4 on minimum-wiring theory is based on the works of H. Loberman
and A. Weinberger.

Special Pedagogical Feature: The Pedagac. It has been my experience
that, although students might understand most of the various isolated
aspects of computer engineering, they still might not visualize the com-
plete process of designing and building a computer. In order to provide
the necessary thread of continuity to the study of computer engineering,
a simple computer, the Pedagac (“Pedagogic Auiomatic Computer’’) is
designed from start to finish in the book (see Chaps. 9, 18, and 23). At

xvi PREFACE

first glance the Pedagac may seem unduly specific. However,. this is
far from true, for the Pedagac serves as a concrete example by means
of which many exceedingly important points are illustrated. Many
of these points would be completely meaningless to the student if they
were not developed in the context of an entire system. The Pedagac
was specially designed to illustrate pertinent subject matter most clearly
from a pedagogical (rather than cost or production, etc.) point of view.
The arithmetic unit is serial, since a parallel arithmetic unit would have
overwhelmed the student with primarily repetitive circuitry. The
registers are static flip-flops, for these are the most easily understood in
relation to arithmetic operations. The control is of a parallel nature,
which is in general easier to comprehend. Eight clock phases are used to
simplify the transition from logical to electronic design. The specially
designed packages were made as simple in concept as possible.

Possible Course Structures. This text may be used for college courses
in several different ways. For a fwo-term course the first term may cover
Parts 1 and 2, and Part 3 through Chap. 12; the second term, the remain-
der of the book. Or the book may be used for a two-term composite
elementary-advanced course: the elementary course may include much
of the fundamentals of digital-computer engineering, and then those
students who wish to pursue the subject in more detail may continue in
the more advanced course. One suggested elementary course would
consider Chaps. 1 to 4 of Part 1, Chaps. 6 and 7 of Part 2, Chaps. 10 and
11 of Part 3, Chaps. 15 and 16 of Part 4, and Chaps. 19 and 20 of Part 5;
the more advanced course that follows would complete the text. A more
leisurely treatment of the subject may be given in a three-term course,
with more attention being paid to the selected readings and other projects
and subjects mentioned in the Additional Topics sections. Here Parts 1
and 2 may be covered the first term, Part 3 the second term, and Parts
4 and 5 the third term. Other, perhaps quite eclectic, arrangements will
certainly occur to the experienced instructor.

Acknowledgmenis. It gives me the greatest pleasure to acknowledge
the help and cooperation I have received from many persons during the
preparation of this book. My sincerest thanks go to James B. Wilson,
who carefully and tirelessly edited the entire manuseript, contributing
many important and valuable improvements to the style and technical
presentation; to Louis S. Rotolo, who assisted in the designing of the
Pedagac and with the Pedagac chapters, was extremely helpful in the
preparation of the manuscript, and contributed many valuable sugges-
tions; and to William R. Smith, who critically read the entire manuscript,
prepared most of the technical illustrations, and helped in numerous
other ways. I would like also to express my gratitude to R. D. Elbourn
for reviewing the manuscript, making many constructive criticisms.
The encouragement and support given by E. Frank and N. T. Grisamore
have been greatly appreciated. Many colleagues helped by supplying
advice and information on various technical points. Of these the
author particularly wishes to mention A. Weinberger, J. A. Cunning-

PREFACE xvii

ham, S. B. Geller, E. W. Hogue, J. H. Wegstein, the late M. Abramo-
witz, H. Loberman, S. Greenwald, E. R. Toense, W. W. Youden, J. L.
Smith, D. R. Boyle, C. H. Page, W. H. Marlow, N. F. J. Matthews, and
J. Rabinow. The author is indebted to G. U. Uyehara, N. T. Grisamore,
and R. A. Toense for assisting in the design of the Pedagac package. The
quality of the illustrations is in large part due to the skill and talent of
J. E. Ozefovich, D. K. Anand, and A. Bucek, as well as W. R. Smith. The
author wishes to thank Eva March Cuddy, Edna Crum, and Judith
Holsberg for typing most of the manuscript. He gratefully acknowledges
the partial support of the Mathematics Division of the Air Force Office
of Scientific Research, Air Research and Development Command, and
the Information Systems Branch of the Office of Naval Research, without
which the preparation of the manuscript would have been impossible.

Robert Steven Ledley

CONTENTS

Foreword .

Preface

PART 1. INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS

Chapter 1. Applications of Digital Computers and Control

1-1. Introduction 1

1-2. Numerical Solution to Equations 2
1-3. Process Control 9

1-4. Simulations 13

1-5. Data Processing 18

1-6. Additional Topics 23

Chapter 2. Principles and Block Diagram of a Digital Computer

2-1. Introduction 25

2-2. Block Diagram of a Computer 26

2-3. Functional Description of a Computer 30
2-4. Words and Pulses 34

2-5. Logical Building Blocks 38

2-6. Input, Output, and Memory Systems 44

2-7. Digital-computer and -control Engineering 54
2-8. Additional Topics 55

Chapter 3. Coding and Programming a Digital Computer

3-1. Introduction 60
3-2. Number Systems: Conversion 62
3-3. Number Systems: Arithmetic 69
3-4. Coding: Sequences of Instructions 71
3-5. Coding Decisions 76
3-6. Coding: Flow Charting and Symbolic Code Aids 78
3-7. Three-address Instruction Systems 81
3-8. Two-address Instruction Systems 84
3-9. One-address Instruction Systems 86
3-10. Decimal Systems 90
3-11. Additional Topics 92

Chapter 4. Programming Fundamentals

4-1. Introduction 94
4-2. Recursion Codes and Instruction Modification 95
4-3. The Subroutine 104

xix

XX

4-4.
4-5.
4-6.
4-7.
4-8.

CONTENTS

Instruction Types 108

Instruction Types (Continued) 114
Special Coding Techniques 118
The Control Panel 124

Additional Topics 128

Chapter 6. Advanced Programming.

5-1.
5-2.
5-3.

5-4.

i~ B-5.-

. 5-6.

5-7.
5-8.
. 59,
5-10.

Introduction 130

Program Debugging Methods and Routines 131
Computer Maintenance Routines 135
Interpretive Routines: Mathematical 139
Interpretive Routines: Simulational 142

Memory Space, Speed of Computation, and Automatic Programming

148
Compiling Routines: Translator; Address Assigner 150
Compiling Routines: Algebraic 155
The International Algebraic Language (ALGOL) 159
Additional Topics 171

PART 2. FUNCTIONAL APPROACH TO SYSTEMS DESIGN

Chapter 6. Fundamentals of Numerical Analysis .

6-1.
6-2.
. 6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.
6-12.

Introduction 173
Simultaneous Linear Equations 174
Algebraic and Transcendental Equations 178

Function Evaluation: Series and Continued Fractions 183

Function Evaluation: Interpolation 186

Function Evaluation: Best-fit Polynomial Approximation
Integration 193

Differentiation 196

Undetermined Coefficients 198

Differential Equations 200

Accuracy and Error 203

Additional Topics 211

Chapter 7. Searching, Sorting, Ordering, and Codifying .

7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.

Introduction 215

Methods of Searching 218

Manual Searching Methods 223

Searching with Relaxed Conditions 226

Sorting and Ordering 230

Ordering by Merging 236

Codifying: Error Correction and Superimposition 242
Additional Topics 253

Chapter 8. Special-purpose Digital-computer Systems Design .

8-1.
8-2,
8-3. Real-time Logical Systems Control: A Real-time Control Computer

8-4. Systems Design for Special-purpose Information-retrieval Computer

Introduction 256
The Digital Differential Analyzer 257

262

268

130

. 173

215

256

CONTENTS

8-5. Manipulations with Rectangular Arrays: A Business and Logistics Com-
" puter 271

8-6. The Large-scale Data Processor 281

8-7. Additional Topics 286

Chapfé‘r 9. Systems Design of the Pedagac

- PART 3. FOUNDATIONS FOR THE LOGICAL DESIGN OF
DIGITAL CIRCUITRY

Chapter 10. Introduction to Boolean Algebra and Digital-computer Circuits

10-1. Introduction -295

10-2. Definition of Logic and Propositions 296

10-3. Definition of Propositional Operations 297

10-4. Implication, Equivalence, and Tautology . 299

10-5. Truth Tables 300

10-6. Boolean Algebra 302

10-7. Boolean Algebra as the Algebra of Sets 304

10-8. Digital-computer Circuits 306

10-9. Boolean Algebra as the Algebra of Digital-computer Circuits 308
10-10. From Circuit Diagram to Boolean Function 309
10-11. From Boolean Function to Circuit Diagram 314
10-12. Additional Topics 315

Chapter 11. The Designation Numbers and the Design of Function Circuits .

11-1. Introduction 320
11-2. The Designation Numbers 321
11-3. The First and Second Canonical Forms 324
11-4. Included and Nonincluded Elementary Elements 326
11-5. Mongrel Forms 329 o
11-6. Simplest Sum-of-products Representation 331
11-7. Obtaining Essential Prime Implicants Directly 336
11-8. Simplification of Computer-circuit Design 344
11-9. The Design of Circuits That Compute Functions 346
11-10. Synchronous Recursive-function Circuits - 351
11-11. The States of Circuits 356
11-12. Additional Topics 361

Chapter 12. Elementary Computational Methods in Circuit Design

12-1. Introduction 368

12-2. Constraints 368

12-3. Logical Dependence and Independence 374
12-4. Constraints in Circuit Design 376

12-5. Linear Boolean Equations 379

xxi

288

295

320

368

12-6. The Ceneral Method for Solution to Any Number of Simultaneous

Equations in Any Number of Unknowns 384
12-7. Solution to Equations in Circuit Design 389
12-8. The Absolute Simplest Form and Change of Variables 393
12-9. Transformation to the Absolute Simplest Form 396
12-10. The Absolute Simplest Form in Circuit Design 400
12-11. Additional Topics 402 ‘

xxii CONTENTS
Chapter 13. Boolean Matrix Equations and the Fundamental Formulas . . 414
13-1. Introduction and Statement of the Problem 414
13-2. Designation Numbers and Boolean Matrices 419
13-3. Antecedences and Consequences, and the Fundamental Formulas 424
13-4. Solution to the General Boolean Matrix Equation 428
13-5. Solution to the Unitary Matrix Equation 434
13-6. Derivation of the Fundamental Matrix Equation and the Fundamental
Formulas 439
13-7. Additional Topics 441
Chapter 14. Applications of Matrix Equations in Circuit Design 448
14-1. Type 1 Problems in Circuitry 448
14-2. Type 2 Problems in Circuitry 450
14-3. Type 3 Problems in Circuitry 453
14-4. Constraints in the Problems 462
14-5. Ordinary Equations 465
14-6. More General Circuit-design Problems 470
14-7. Additional Topics 476

PART 4. LOGICAL DESIGN OF DIGITAL-COMPUTER CIRCUITRY

Chapter 156. Serial Arithmetic Operations 485

" 15-1.

15-2.
15-3.

15-4.

15-5.
15-6.
15-7.

Introduction 485

Common Computer Components 487

Common Computer Components (Continued) 491
Preliminaries to Synchronous Operation 498

Serial Arithmetic Unit: Addition and Subtraction 502
Serial Arithmetic Unit: Multiplication and Division 511
Additional Topics 517

Chapter 16, Parallel and Rapid Arithmetic Operations 519

16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
16-7.

Introduction 519

The Parallel Adder: Logical Design 519
Parallel Arithmetic Units 525

Rapid Multiplication 528

Rapid Division 533

Floating Operations 538

Additional Topics 540

Chapter 17. Control o b43

17-1.
17-2.
17-3.

17-4,

17-5.
17-6.
17-7.
17-8.

Introduction 543

The Decoding Circuit 547

Arithmetic Control: Instruction Decoder and Operations Signal Gener-
ator 553

Arithmetic Control: Internally Generated Signals and Register Con-
trol 557

Control of Memory Address Selection and Instruction Sequencing 559

Memory Selection 562

Control of Instruction Execution 568

Timing and Counters 571

CONTENTS xxiii

Chapter 18. Packaging and the Logical Design of the Pedagac 575
18-1. Introduction 575

18-2. Packaging 576

18-3. Phases and Block Diagram of the Pedagac 580

18-4. Operations Signal Generator 586

18-5. Arithmetic Unit: Vertical Description 590

18-6. Arithmetic Unit: Horizontal Description 595

18-7. Instruction Register, Current-address Register, Instruction Decoder,

Memory-selection Unit, and Counters 606
18-8. Phase Generator, Buffer, and Push Buttons 615
18-9. Additional Topics 621
PART 5. ELECTRONIC DESIGN OF DIGITAL CIRCUITS

Chapter 19. Problems and Limitations in Electronic Realization 623
19-1. Introduction 623

19-2. Types of Digital Gating Systems 624

19-3. Clock Phases and Synchronization 631

19-4. Methods for Increasing Circuit Reliability 634

19-5. Additional Topics 643 :
Chapter 20. Semiconductor Elements in Digital-circuit Design. 645
20-1. Introduction 645

20-2. Solid-state Semiconductor Devices 645

20-3. Transistors 650

20-4. Transistor Equivalent Circuit 658

20-5. Diode-gated Circuits 667

20-6. Transistor Gating and Flip-Flops 672

20-7. The Tunnel Diode 679

20-8. Additional Topics 684
Chapter 21. Magnetic Elements in Digital-circuit Design 689
21-1, Introduction 689

21-2. Magnetic Properties and Materials for Digital Circuits 693

21-3. Diode-gated Magnetic-amplifier Circuits 698

21-4. Magnetic Gating 704

21-5. Modern Computer Techniques 711

21-6. Additional Topics 719
Chapter 22. Memory and Input-Output Methods 724
22-1. Introduction 724

22-2. Magnetic-core Memories 724

22-3. Magnetic-film Memories 728

22-4. Magnetic Tapes and Drums 732

22-5. Conversion from Analog to Digital and from Digital to Analog 739

22-6. Input-Output Methods 747

22-7. Additional Topies 757
Chapter 23. The Electronic Design of the Pedagac 764
23-1. Introduction 764

23-2. Problems in the Electronic Design of the Pedagac 765

XXiv: CONTENTS

23-3. Problems in Assigning Clock Phases 769
23-4. Minimum-wiring Theory 773

23-5. Wiring Table for the Pedagac 782

23-6. Additional Topics 786

Appendix.
Name Index .
Subject Index

787
807
815

PART 1

INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS

CHAPTER 1

APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL

1-1. Introduction

The purpose of this chapter is to stimulate the reader to want to know
what is in the rest of the book. By illustrating how computers can be
applied, we hope to interest the reader in how he might help design and
use these remarkable machines. The wide range of potential applica-~
tions of digital computers and control in all phases of science, industry,
and government is truly amazing, In the sciences applications range
from mathematics and physics to biology and medicine. The early
applications were in engineering and physics, but perhaps the greatest
scientific use of computers yet to come is in the biological, medical, and
social sciences. In business and industry applications range from auto-
matic banking, inventory control, and process control to the precise
control of milling machines to produce parts requiring complicated high-
tolerance machining and to missile-testing processes. In government
applications range from automatic patent searching and post-office sort-
ing to large-scale control of defense weapon systems. Present applications
are already too numerous to list in a single volume, but they are infini-
tesimal compared with the potential future applications. We hope,
however, that by presenting brief descriptions of just a few applications
we may impart to the reader a better insight into how digital computers
and controls are used.

In general a computer can be conceived as a numerical-transformation
machine. Numbers are the ‘nputs to it, and the computer transforms
these numbers into new numbers, which appear as the outputs:

Input numbers — | computer | — output numbers

For instance, the input numbers may be the initial conditions of a
differential equation; the output numbers will be a table of the functional
solutions. Or the input numbers may be readings from an engineering
drawing, and the output numbers will be coded instructions to direct a
special milling machine. Or the input numbers may be codes that

1

2 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS (CHaP. 1

represent a patient’s symptoms; the output numbers may be codes that
represent possible alternative disease diagnoses.

There are two main kinds of electronic computers: digital and analog.
In digital computers the numbers (digits) themselves are handled explic-
itly by the computer; an analog computer instead deals with a representa-
tion of the numbers, for instance, by voltages, lengths, ete. In this
book we are concerned with digital computers only. These can be
classified as general-purpose or special-purpose computers. In the first
part of this book we shall describe the general-purpose computer; in
Part 2 we shall consider some of the special-purpose computers. Special-
purpose digital computers are sometimes referred to as digital controls.
The same engineering principles are involved in the design of either
general-purpose computers or special-purpose digital-control computers.
Therefore we have used the two terms in the title of the book.

For the purposes of this chapter we have arbitrarily classified computer
applications into four categories; many applications can fall into more
than one of our categories. First we shall consider numerical solutions
to equaitons. This represents an important class of applications, and
undoubtedly it is these applications which makers of the first computers
had in mind. The first of these applications described is based on prin-
ciples familiar to every electrical engineer, the motion of charged particles
in a vacuum. However, the context of the application discussed here
has far greater significance. Problems involving the solution to equations
are not limited to the physical sciences; equations can be written to
describe many biological phenomena as well. The second category is
process conirol: Here the need for digital computers with specialized
capabilities becomes apparent. It is probably not an exaggeration to
say that the third category came into being because of the great capabili-
ties of the computers: thisis simulation. Before the advent of computers,
simulations (except perhaps laboriously calculated military war games)
were rarely even discussed because they were clearly not feasible to
perform. However, with the advent of high-speed computers simula-
tions have become practical, and great new fields of scientific research
have been opened. Most of the present-day computer applications can
probably be classed in the fourth category, daia processing: Business
accounting, statistical reductions, information retrieval, and many other
important but routine procedures can be handled by computers.

1-2. Numerical Solution to Equations

Motion of Charged Particles in the Earth’s Magnetic Field. Project
Argus was a major scientific and military experiment conducted by the
United States (Fig. 1-1). Rockets carried a small atomic bomb more
than 300 miles above the earth, at this altitude the bomb was exploded,
and a resulting thin layer of radiation spread quickly round the globe.
Nuclear and atomic particles were propelled by the exploding bomb and
streaked through the vacuum of the universe under forces almost entirely
due to the earth’s magnetic field. Some particles moved toward the

SEc. 1-2] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 3

earth’s poles and caused artificial auroras (northern and southern lights).
In order to measure the characteristics of this radiation layer, an earth
satellite and other rockets were launched with paths passing through the
layer (see Tig. 1-2). Instruments in the satellite and rockets transmitted
measurements back to earth. Scientifically the shots rank among man-
kind’s foremost experiments. They showed that radiation introduced

New Work Times, E2=

Towp. 1eaget =29, Yoserday 1 336278,

NEW YORK, THURSDAY, MARCH 19, 1959, T TR R e Y FIVE CENTS

ML U, S. ATOM BLASTS 300 MILES UP
i MAR RADAR, SNAG MISSILE PLAN;
i 1.d CALLED ‘GREATEST EXPERIMENT’
R Stded 3 DRVICES FIRED
Explorer Also Helped

President Signs Bill |RADIATIONSPREAD

oL cowzi | For Hawau s Entry

of reserve funds to

] RS Test Created Curtain;

- Mayor Wagner and| _ Sewcal 1o Tue e

e Tumes,
o Bt e anower et | AToUNd the Earth Gain Knowedge of
‘::g.' :‘h:‘":':,‘;,:: :::‘43;:::";“;’:3“: Fora Short Time Magnehc Field

K fiftteth state.

o !"‘,‘n’: D‘;““‘,‘.’: It has gives me great
satisfaction to algn the act | By WALTER SULLIVAX- |
providing for the admlssion of ptember the Unit

:}l’t;l:“ﬂ:‘ ﬂi; l:‘-l)or Hawall into the Unlon. Since States drew a thin curtatn of|
Vs i et my Inauguration In 1858 I [radiation around the easth. For
problem of budget.| Mve conslstently urged that (4 Perlod whose duration fs st
problem of budget-| inis lepisiation be enacted, so [SEGret [t enveloped aimoat the
{mposing more nul-| 11 ction of the Congress so [entire iuhadited portion of tae|
9N ot Testrict-| o1y (n this session is moat [Slobe.

By HANSON W, BALDWIN
il | “Becret muclesr test datonss
7| {uons at more then 300 raites
7||.|above the earth wers conducted

|| [nave not previousty veen re-
veiad und are bloved Lo bave

slated pay rises for| " Kn =
tifylng,” he said. own a3 Profect Argus, the| other coune
res, cortalling ciry] FTHO S the ifeat Was regarded by some of e mag. [tries, resulted n data of great
by comblning,all or| , 11¢ Scnate spproved the LML Y BLASTS IN SPACE: Lines of force witkin eastha mag-
. enabling act by a vote of eading participants a4 thel military and scientltle {mpor
se steps. L by N o restest - schontiie oxsenmenc| Netle field determined shape of radiation shell produced {mHte

extion tiat the eity) ¢ o i, Tt T (6 all ime, Thousands of men| bY Project Acgus. Explosions over Johaston iland (1) I8 \W5 111, 1y gh tncomptete
Teserves was m i August fired electrons along the magnetic lines to pro~ .

3| tha mext day by a23—gs, |were Iavolved in the world:| 9il'Lyrora at Samot, but the effect did not eavelop the ey Ryt
earth, Argus shots (2) in September created a8 816 OF | iy voser and radio by Aighe
s00n vote to decide whether [sosred into space from the| A1 /OVIRE clectrons that produced auroras over North | rituge nuclear detonations, In
tals would make| pooit y7 o S in full (United States and abeoad t| #2d SOuth Atlantic (3), Effect drifted east (arrow, 4) | "miitary sense the finiags
avallable for 1959- enveloping the globe within sa hour. The Bav it petential sigwifl-

e statehood. A favorable decis imonitorthe effects, An Ameri- ¢ greal 7

purposes. sion of perhaps elght or nine [can _satelite—Explorer _JVo| BemAUC, 8nd does Bot show exact aite of Argus blasts. |cance te the development of s~

by Governor Rocke:| “'qq "president nated , that [§irdling observations.

o Republican leaders,
elature, ‘They eni| e citizens of Hawal would | By presrrangement, rockels

F1a, 1-1. Announcement of Argus shots.

into space by man can have significant effects over those of natural
radiation. Militarily the Argus shots indicated that the additional radia-
tion added to the natural radiation interfered with man’s electronic
communications. The grave consequence is that such interference can
be caused at will.

The Argus project tested theoretical calculations of what would take
place when the small atomic bomb was exploded above the earth’s
atmosphere. Where would the electrons and other particles go? This
was a problem in the study of the motion of charged particles in a mag-
netic field (the earth’s) and is in principle, except for the shape of the
field, the same as the problems encountered in magnetically directing
an. electron beam in a television tube, or accelerating particles in a
betatron, or circulating particles in a cyclotron, etc. If the earth’s

4 *-"INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 1

magnetm field is represented as that of a magnetic dipole, and if «, v, and 2
are cartesian coordinates with the z axis directed along the earth’s mag-
netic axis-from south to north, then from electromagnetic field theory

F1e. 1-2. Earth satellite measuring characteristics of radiation layer.

it can be shown that the trajectories of the charged particles are given by
the solutions to the following differential equations (where the super-
script dots denote differentiation with respect to time):

& = 11;_@ {— @+ y2 + 2)7(22 — 22 — ¥y — 3y}

§= 20 (@ g+ MG o+t — 298+ Bandl
8= fnicq {+3efk(x? + y2 + 25)7% + (2 + y?) (2 + y2 + 22~}

where k = (zy — y2) — (2* + ¢*)(2* + y* +)%
M = earth’s magnetic dipole strength
m = relativistic mass of partlcle
g = charge of particle
: ¢ = speed of light
The initial conditions are the initial coordinates (zo,y0,20) of the particle
and the components (Zo,70,20) of its velocity just after the explosion.

SEC. 1-2] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 5

These equations can be used to plot the paths of the charged particles
given their initial velocities and directions. The distribution of the
initial velocities and directions can be calculated from nuclear physics;
the trajectories of different kinds of particles can then be computed
for many different initial conditions in the distribution. The complexity
of these computations requires the use of a digital computer. The basic
importance of such a calculation preliminary to the actual experiment is
evident: by predicting the motion of the particles, proper and adequate
plans can be made concerning the instrumentations of the satellite and
the measurements to be made, the best geographical location of the experi-
ment, the optimum altitude for exploding the bomb, and so forth.

Hydrodynamics of Blood Flow. The partial differential equations that
describe biological phenomena more often than not defy analytical solu-
tion. Attempts are usually made either to introduce simplifying assump-
tions or to isolate special aspects of the problem for investigation. Both
these alternatives involve certain compromises on the part of a researcher.
Such compromises can often be avoided, however, by using an electronic
computer to solve the original partial differential equations numerically.

Consider the problem of blood flow through a large artery—an instance
of pulsed viscous fluid flow in an elastic tube. The first step in an
investigation of this problem is the formulation of hypotheses about the
hydrodynamic principles involved and the derivation of the corresponding
partial differential equations. The second step is to devise an experiment
from which boundary conditions for the equations may be determined.
The third step is to solve the equations on a computer, comparing the
solutions with the data obtained experimentally. Probably adjustments
will be required in the hypotheses and the equations, and further experi-
ments and computations will have to be devised. In this way the phe-
nomenon can be studied in its entirety.

For example, the following equations can be derived, assuming laminar
viscous flow and an exponential functional form for the elasticity of the
blood vessel:

1 dP TA*dP
V=—_% 4 F=-—T2 %
8u dx 8u dx
9 ,, 9 dP
_ — A2 — Jhadnii m
P A + Py V=0 7A CA
where P = pressure
F = average flow through a cross section
V = average blood velocity over a cross section
p = coefficient of blood viscosity
A = radius of aorta
z = distance along aorta
t = time

C, m = constants
The experiment was to measure the pressure, as a function of time, at

6 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHap. 1

equally spaced intervals along the aorta of an anesthetized dog (see
Fig. 1-3). The intercostal arteries (between the ribs) were tied, so that
there was no significant outflow from the aorta, and a flowmeter was
placed at one end of the aorta. The boundary conditions chosen were
the flow and the pressure at one end of the aorta; the equations were used
to predict the pressure at the other points along the aorta. The accuracy
of the predictions with respect to the experimental results would indicate
the degree of validity of the original hypotheses upon which the equations
were based. Such experiments can have important applications to the
prevention and cure of heart diseases in man. '

Pressure
gauges

| Flowmeter

F 1= F (xllt)
P 1 = P (xut) —————eeeeeeee
Fia. 1-3. Hydrodynamics of blood flow.

P2=P(x2:t)

The Design of a Lens System.. The need for accurate high-altitude
photography has gained importance with the suggestion that aerial
inspections be used as a means of averting atomic wars. For this work
lenses of very high resolving power must be designed for aerial cameras.
Figure 1-4 shows the detail that can be obtained from high-altitude
photographs using modern lens systems. The scientific design of lens
systems has become feasible only through the use of electronic computers.

The problem of designing a lens system consists in tracing the paths
of many rays, emanating from a single object point, through the lens system
to the final image plane (see Fig. 1-5). The extent of deviations in the
image plane of these rays is a measure of the resolving power of the sys-
tem. The computer computes the path of each ray as it would be
refracted on passing through each spherical lens surface of the system.
The initial direction of each ray is taken from the object point under
consideration, and the position of impingement of this ray on the first
lens surface is computed. Then the new direction of the ray as it leaves
this first surface is calculated, and from this its position on the second
lens surface is computed. In this way the ray is traced through the
entire lens system, and its position on the final image plane is determined

SEc. 1-2] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 7

F16. 1-4. Aerial photography (25,00 ft), with enlargement of circled portion of photo-
graph. [Photographs courtesy U.S. Air Force Air Photographic and Charting Service
(MATS).]

8 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 1

TaBLE 1-1. FLow DiagraM oF CoMPUTATIONS FOR TRACING A RAY THROUGH
A Lens SystEM{ :

Read into the computer three constants for the lens surface presently under
consideration:
C: = curvature of spherical lens surface
t = distance between this and previous lens surface
N

M=y = ratio of indices of refractions of lens surface to left and right, respec-
1

tively’

1

Read into the computer six constants for the ray being traced, namely:

T = (z,y,2) = three coordinates of ray on previous lens surface

Q = (X,Y,Z) = three components of unit direction vector of ray leaving previous
surface

1

Compute T, = (z1,y1,21), the coordinates of the point where the ray strikes this
lens surface, by means of the following incidence equations:

nn=z2+LX -1

y1=y+LY
2 =2z + LZ
CiM? — 2M,
where L=c¢+ X T &
and £ =[X? — Ci(C: M2 — 2M)]
M2 =22 4 g2 22— + 2 — 2z
M,=2+e —1

tr — @X + yY 4 22)
1

Compute @, = (X,,Y1,Z,), the components of the unit direction vector of the
refracted ray leaving this surface, by means of the following refraction equations:

X, = ,u1X — gCﬁBx +g

)
]

Y, = I-‘IY - ngyl

Z1 = p.lz - ngzl
where g=¢t —mé
and =11 — 21—)t

and £ was found in the previous box.
Print out Ty = (xy,y1,21) and Q1 = (X1,Y,Z)).

4

Repeat the computation for each lens surface of the system in sequence from left to
right until the ray position on the final image plane has been determined.

t The subscripted variables refer to the lens surface under consideration; the non-
subscripted variables refer to the previous surface.

SEc. 1-3] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 9

(see Table 1-1 and Fig. 1-6). The results of a set of such computations
from one object point are shown to the right of Fig. 1-5, where each dot
represents the final position of a ray on the image plane. In an ideal
lens system all the rays would fall on the same point in the final image
plane. The dispersion of the dots indicates the resolving power of the
real lens system.

] Wmage plane

Object plane
7
(
I
1
1
1

F1a. 1-6. Geometry of ray tracing.

1-3. Process Control

Machine-tool Control. Significant improvements in many manufac-
turing processes can be obtained with the application of digital data-
processing and control techniques. An example is digital machine-tool
control, used to improve the over-all process of producing many different
and complicated parts needed in our modern technology. Greater accu-
racy, reproducibility, and versatility are obtained as tooling costs and
skilled-manpower requirements are reduced. It increases our capabili-
ties to produce greater quantities and varieties of precision-machined
parts, thus revolutionizing their potential use.

Consider a milling machine cutting a two-dimensional contour. The
cutting tool is moved in the z and y directions by means of high-perform-
ance hydraulic servo drives. These servo drives are controlled by
rapidly sequenced pulses that tell the servos precisely where to move the

1 See Y. C. Ho and E. C. Johnson, Design of a Numerical Milling Machine System,
Proc. Eastern Joint Computer Conf., 1957, Washington, D.C.

10 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 1

tool in order to obtain the contour finally desired. For instance, each
time the z-direction control receives a pulse, it might advance the tool
0.0002 in. in the z direction; if we assume that there can be up to 20,000
such pulses per second, the tool can be made to advance in the z direction
a maximum of 0.0002 X 20,000 =4 ips =20 fpm. By varying
the number of pulses per second, up to the maximum, the speed with
which the tool moves in the z direction can be precisely controlled. The
control of the y-direction motion of the tool is similar. Thus the tool
can be directed to move round any desired contour. The precision of
machining the desired part is of course limited by the smallest increment
of distance of the control.

g
N
=3
-~
c
3
®
3
o
=%
(1]

Fie. 1-7. Cutter offset path.

The problem of digital machine-tool control reduces to that of trans-
forming information on a blueprint design into an appropriately timed
sequence of x and y input control pulses. The control pulses direct the
center of the cutting tool, but the desired contour is formed by the edge
of the cutter; hence the proper cuiter offset must be caleulated from the
blueprint. See, for example, Fig. 1-7, where the circles indicate some of
the successive positions of the cutter. If we assume in Fig. 1-7 that the
graph lines are 0.0002 in. apart, then the dots represent the successive
positions of the offset path of the cutter’s center that should be directed
by the control pulses. (For example, the diagonal cut would be made by
two pulses in the y direction for each one pulse in the « direction.) Of
course, in a realistic case the part would be many times the size illus-
trated, and hence the number of input pulses required would be very
large. Thus it would be a difficult job to start from the blueprint and

SEc. 1-3] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 11

manually determine the detailed sequences of control pulses. The
method of interpreting the blueprint design for the automatically con-
trolled milling machine is divided into
two steps. First the cutter’s offset
path is determined grossly in terms of
the end points of straight-line path
segments, and radii of circular con-
tours, and so forth, as shown in Tfig,
1-8. Thisin itself can present difficult
problems of curve fitting. (Can you
determine the equations of the offset
path for the contour illustrated in g 1.8 Gross determination of
Tig. 1-8?) The second step is to inter- cutter’s offset path.

polate between these points and from

the radii, ete., to determine finally the precise 0.0002-in. input-pulse fine
structure.

Two computers are used for this process. The first is a general-purpose
digital computer into which are put the specifications for the part contour
taken from the blueprint. These might take the forms ‘“diagonal at
arctan 2,” ‘““straight 4 inches,” ‘“horizontal 3 inches,” ‘“radius 2 inches,”
ete. Or the input to the digital computer might be the blueprint itself,

Blueprint General-purpose

Automatic
milling machine

Control
computer

Specifications

Input ¢o computer

F1e. 1-9. Machine-tool control process.

put into the computer by means of a “picture-reading’’ machine. The
computer is programmed to compute from such input data the gross
data of the offset cutter path. This is perhaps put out in the form of
punched paper tape, like the rolls of a player piano, or in the form of a
deck of punched cards. The second computer is used to control the
milling machine directly. The punched paper tape or card deck is put
into this control computer, which interpolates, ete., to produce the fine-
structure input pulses to the servo drives. The entire process is illus-
trated in Fig. 1-9.

Valve 2

=- Detergent .
: Hatch
; q 1 YV valve

2 Water
| &4
' -
| = -
L Valve Tome

3 Mixing tank 1 " Concentration

[) Valve

Control
signals
to

" ', tester
Disposal l \4

------------------- (1)~
Evaporation tank 2
Valve 6 T(2) =]
® Vi l Valve 5 S—
3 »

T— E(3)~]

.- HeL .o Y

-~ saturation tank 3/

- o

~—
Valve 7 M] saturation tester

Centrifuge

I e
R—

Valve 8 Disposal

Signal-sensing word

Computer

= Hatch 1

- Valve 1
- Valve 2
~Valve 3
- Valve 4
- Valve 5
= Valve 6
- Valve 7
~Valve 8§
I Hatch 2
- Furnace

=Hatch 3

Fia. 1-10. Control of chemical plant.

Sec. 1-4] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 13

Control of Chemical Plant. In many factories the processing of raw
materials frequently involves sequences of decisions for which all alterna-
tive possibilities are known. By means of digital computers the entire
processing can be made completely automatic. Control of this kind
has the advantages that the decision processes themselves become more
reliable when performed electronically and that the design of more com-
plicated processes becomes feasible. As a specific example, consider a
simplified version of a chemical factory that produces Al.O; (see Fig.
1-10).1 Table 8-2 summarizes the conditions which initiate various
actions in the plant. The column entitled ‘‘Sensed-signal conditions”’
represents the list of conditions requiring some operation to be performed.
The column entitled ‘‘ Corresponding signals to be generated’’ indicates
the actions to be taken.

Input signals to the control computer are transmitted by wires from
critical places in the factory (see Fig. 1-10). These signals, defined in
Table 8-1, consist essentially of two-valued (on or off) test results which
in combination tell the computer the present state of the factory. TFor
example, signal L(1) will be a pulse when the mixture in mixing tank 1 is
at or above a predetermined level and no pulse if the mixture is below
this level. Kach signal is initiated by a transducer, a device that con-
verts mechanical information into electrical information, or vice versa.
The transducers for our example convert fluid levels in tanks, tempera-
tures, chemical concentrations, volumes of precipitate in a centrifuge,
pressures, and so forth, into the electrical pulses that are the inputs to
the computer. The outputs from the control computer are electrical
signals supplied to transducers (servomechanisms) that open and close
valves or hatches and otherwise operate to change the state of the fac-
tory. Table 8-2 shows under what conditions such changes of state
will be initiated.

1-4. Simulations

Industrial Dynamics. The term industrial dynamics refers to the
processes and factors influencing the economic development of an indus-
trial corporation considered as an interacting part of a free competitive
economy. The study of industrial dynamics involves so many factors
that no complete analytical mathematical analysis is yet possible.
Many universities in the United States, in cooperation with many
industrial corporations, are attempting to simulate aspects of the indus-
trial-dynamies problem. Representatives of management take part in
such simulations, making decisions; the digital computer then computes
the effects of these decisions and produces a report to the management
representatives, who make new decisions, ete. (see Fig. 1-11). One
advantage of such simulations is that they aid in training management
personnel by presenting them with many and different industrial circum-

t The control of this particular process will be considered in greater detail in Sec.
8-3; it suffices here to outline briefly the kind of input information supplied to the
computer and the way the computer then controls the factory. (See pp. 262 to 267.)

4

Advertising

Corporation No. 1

Management

yy

‘ -l

Transportation

Ty

Inventory

%}

and development

= =

Corporation No, 2

Management

A~
Decisions -»wag\
\/P_Ms%&

il

_Digital-
computep

’&57« Decisions

W/

F1c. 1-11. Business simulation.

OFIT,

SEC. 1-4] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 15

stances analogous to real situations. A second advantage is that the
simulations aid the study of industrial dynamics by bringing before the
scientists involved situations not encountered through purely academic
study. And, third, important generalizations can be deduced from the
progress and results of the simulations.

As an illustration, consider a multifirm one-product competitive indus-
try. The simulation is designed in such a way that the results of 5 years
of operations can be simulated in 1 day. Each firm in the simulation is
represented by a team of executives, who must make the following set of
“management’’ decisions:

Price of product

Producing volume

Advertising expenditures

Research and development expenditures

Amount of new investment in plant and equipment
Dividends to be paid, ete.

One set of such decisions is made by each team firm for each quarter
of a year. The computer then computes the interactions and effects
of these decisions on the market; i.e., it simulates what may happen in
reality and produces for each team a report giving:

Sales volume

Per cent of total products sales handled by this firm
Production capacity of this firm for the next quarter
Statement of profit and loss -

Current inventory quantities

Statement of receipts and disbursements

. Statement of financial conditions, etc.

Based on the study of its report, each team makes decisions as to how
the firm will operate in the next quarter. These decisions are fed into
the computer, and the simulations progress in this way from quarter to
quarter.

The computer processes the decisions made by the teams (firms) and
produces reports by means of mathematical models. The model is
essentially a set of hypothetical equations relating the input information
to the desired output information. Tor example, increased advertising
bears a functional relation to increased sales, but this in turn depends
on the advertising decisions of competitive firms. Increased research
and development can produce an improved product which may give
one firm some advantage. Price rises of course offset sales, but adver-
tising ecan to a certain extent offset an increase in price. Obviously the
gross profit is the product of sales volume and price per unit product,
minus administrative costs, overhead, manufacturing costs, advertising,
research and development, ete. The mathematical model embodying
such considerations can become very complicated, depending on the level
at which the simulation is intended. Evidently a great deal of study
and research must be carried out in connection with the derivation of
the specific equations that enter into the computer simulation. For a

S o o

NG

16 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHaP. 1

simulation to be at all realistic, the complications will be so numerous
as to be impossible to perform without digital computers.

Man-Machine Simulation System. Man-machine simulation is now
recognized as an essential tool for the development of complex automatic
systems that involve both electronic and manual controls. Such is the
case, for example, in air-traffic control, ground control of interceptors,
ground-controlled approach and landing, weapon assignment, or missile
guidance systems. The interactions between the electronic control sys-
tem being designed and the team of human operators can be studied
before the system is actually constructed. This eliminates the only other
alternative, the frequently prohibitively expensive process of actually
building the proposed system and carrying out an extensive program of
tests and modifications.

Figure 1-12 represents a simulation system that includes both a digital
and an analog computer, linked with display and control equipment
which permit human beings to be coupled into the system. The analog-
computer equipment is used for such tasks as accepting continuous con-
trol information and solving complex dynamic equations in real time,
for which they are suited. The digital computer is used for controlling
the experiment, for sequencing the stages depending on the outcome
of each stage, for generating simulated data, for calculating with high
precision where necessary, for handling variables with large dynamic
ranges, for making logical decisions, and for statistically analyzing
experimental results.

An example of a simulation is a simplified ground-controlled inter-
ceptor system (Fig. 1-12). The digital computer simulates a situation
in which a large number of aircraft are observed by the search radar. A
console displays the locations of these aircraft on a cathode-ray tube
for the ground crew; with each aircraft is also displayed an associated
identification (i.e., friendly, enemy, unknown, interceptor, bomber, com-
mercial, ete.). The ground crew manually assigns targets to the inter-
ceptors; the targets are automatically tracked by the digital computer.
A model of an interceptor cockpit fully equipped with instruments and
pilot flying controls enables a human operator to imitate the actions
of the interceptor pilot in flight. The pilot of the interceptor receives
his flight-control information either directly from the digital computer
or from the ground-crew commands. The pilot’s control movements are
interpreted by the analog computer, which then simulates the dynamics
of the interceptor, operating the instruments in the cockpit. The veloc-
ity components of the interceptor are sent to the digital computer,
which computes the path of the interceptor. The digital computer also
displays the computed positions of both interceptor and target on a
monitor scope for the ground crew. It is this display which gives the
ground crew its information for the simulated data link with the pilot.
The research control console enables a research team to set up the initial
conditions, vary the target aircraft maneuvers, and determine the inter-
ceptor closure tactics. Records are kept of information generated by the

21

Velocity components

r of interceptor

LA —

= OO0

—/

/ General-purpose
/ analog computer
* Computes new velocity components
of interceptor
* Computes new readings of instruments
of the interceptor

Pilot flying
control signals

Air crew)

« Controls for flying
interceptor

¢ Instruments

Research control console
o Analog-to-digital conversion
« Digital switching
« Initial data for experimental run
» Target maneuvers
 Interceptor closure tactics

T T

Ground crew controls and displays
o Target assignment
e Monitoring of interceptor control

General-purpose digital computer
e Control of experimental sequencing of events
o Kinetic computations of trajectories of both

interceptor and target

o Generation of simulated data (other aircraft)

and their trajectories

» Display locations and descriptions of aircraft

in experiment

» Statistical processing and analysis of the

experimental results

* Fic. 1-12. Man-machine simulation.

Anay
T e
Ww

Digital-to-analog
conversion

Data-recording
equipment

18 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHap. 1

interceptor pilot, analog computer, and digital computer during the
experiment. These can then be analyzed on the digital computer after
an experimental simulation has been completed.

1-6. Data Processing

Inventory Control. The annual industrial inventory of the United
States has been estimated at 30 billion dollars; the cost of supporting this
inventory is probably about 3 billion dollars annually in interest lost,
tied-up money, depreciation, obsolescence, spoilage, storage, handling
charges, and so forth. It has been estimated that the use of computer
control and information-processing methods could reduce this inventory
and its associated cost of support by more than 25 per cent. (A special-
purpose inventory-control computer will be discussed in a later chapter.)
Figure 1-13 indicates how a general-purpose computer could be used
in an inventory-control system. Here the inventory files are electron-
ically recorded in the computer. Inputs to the computer are items initi-
ated outside the inventory records, such as receipts, issues, orders,
shipping reports, etec. These inputs indicate the alterations in the
inventory records that must be made by the computer. The outputs
of the computer are items that arise from an examination of the inven-
tory records, such as the need for more parts, orders to restock, bills
or invoices for items shipped, accounting records, and other data about
the current inventory records that may aid management in planning,
etc. The analysis of an inventory-control problem for the use of a
digital computer includes the preparation of a complete report on all
the processing requirements, process charts of the data flow, and defini-
tions of the controls. These reports and charts correspond to the equa-
tions describing a scientific problem.

Consider, for example, a concern that manufactures and sells certain
products, and suppose that the company keeps the following files (see
Fig. 1-13): (a) a customer master file that contains all customers’ names,
addresses, purchases, balances due, credits, ete.; (b) a products inventory
master file that contains the kind and number of each product in stock
as well as its location, price, and other identifying descriptions and num-
bers; (¢) a factory parts and raw-materials inventory file that contains
a list of all parts and materials stocked that enter into the manufacturing
process, together with descriptive identifications and numbers; and (d)
a suppliers master file that contains all suppliers’ names, addresses,
supply records, balances due, credits, orders not yet received, and so
forth. The procedure by which the computer keeps such files up to
date and generates information from them will now be described; the
reader should keep in mind that our intention is to give a gross idea
of the problems involved, and we have hence oversimplified the circum-
stances. More realistically, these problems are characterized by huge
masses of detailed considerations.

The customer file would be updated each time an order, payment, or
return was received from the customer. At the same time the computer

61

Customer

“Orders master file Customer refund
Customer Updating
| a; t
(Sales dept.) Payments customer file S5
Retums \ Customer pricing
I and shipping data
Invoicing }—{ Invoice H>—
Products Products i“fVle"tOl'y I Product description
A master file and shipping data
shipped Parts and
Rel}°l’f of Updating Manufacturing order Manufacturing materials used
Shipping ‘ shipping products file | for more products department [Product
department \ Yo
Report of ‘ S S - completed
returns NN
N\
Returns to - N\)
suppliers Parts and materials ————————]
: inventory file | |
Updating |]
inventory file I l Information
I I requests
'—| Bills \\ L l\
Supplier Supplif;rls N\ =~ Computing answers to
master fi
(Supply dept.) rI:;:tes ;r[lg aster tile e ———— e ———— - accounting and
i ~ _ —_————— —_———— management problems
Updating Pa :
suppliers file
Receiving Report of Reports
department receipts

F1a. 1-13. Inventory-control system.

20 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHaAp. 1

would produce the necessary pricing and shipping information (i.e.,
customer discount, location, ete.) if an order was made, or the customer’s
refund order if a return was made. The products inventory file would be
updated each time a report was received of shipping or completing a
product. If a product was to be shipped, the computer would produce
the produet description number and warehouse location, and it would
also produce an order for more products to be manufactured if the ship-
ment reduced the inventory below a predetermined level. The computer
can also produce the invoice for a sale from the proper information
received from the files. The file of parts and raw materials used in the
manufacturing processes would be updated each time a report was made
of parts and materials used, returned, or received. The computer would
determine what replacement orders and returns should be made as well
as update the inventory. The supplier file would be updated each time a
bill was received, or report of return or receipt was made. The computer
would produce the payment orders to the supplier. Finally the computer
would produce reports requested by management, on the basis of the
various file records.

Airline Reservation System. In the reservation system of a nationwide
airline, every minute hundreds of inquiries about seats available, actual
sales, cancellations, and unsatisfied demands must be processed. Each
ticket office in the United States of a particular airline must be able to
interrogate the same centrally located computer concerning seats avail-
able on particular flights and to make reservations on particular flights;
the processing of each query must be completed within a few seconds.
The main advantages of such a system are that the customer is provided
with an immediate reservation service and the airline is provided with an
accurate inventory system almost devoid of errors.

A simplified reservation system is shown in Fig. 1-14. Each ticket
office contains a reservation interrogation and sales machine, which is
connected by transmission lines to a central service area.” At the central
service area, records are electronically stored on the availability and dis-
position of all seats on all airplanes to be flown by the airline, for about a
month in the future. The processing of a reservation starts at the ticket-
office machine. Let us say that a customer. desires two seats from
Washington, D.C., to Chicago on Apr. 30 on the 3 p.m. flight. The
sales clerk observes that Ilight 83 leaves Washington, D.C., at 3 ».M.
and goes to Seattle via Chicago, and chooses the card for Flight 83 from a
file box. Each flight card contains information about two flights, one
on each of the long edges. Along the edge are printed the scheduled
stops, leaving a margin which is punched with a code representing the
flight number. The clerk puts the punched margin of the card into a
slot in the ticket-office machine, then presses buttons indicating the
number of seats (two) and the date (Apr. 30) desired. The names of the
cities on the card appear opposite a row of buttons on the machine, and
the clerk pushes the buttons next to the names of the desired cities, Wash-
ington and . Chicago. Then he presses the I (interrogation) button.

SEc. 1-5] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 21

Meanwhile the remote scanner (see Fig. 1-14) is searching for a ticket-
office machine with a card in it. When one is located, the remote
scanner connects the ticket-office machine with the computer. The
marginal punches on the card are sensed by the computer and tell it
which flight is being interrogated; the date, number of seats, etc., are
also transmitted to the computer. If two seats are available on Flight 83
for Apr. 30, the computer transmits the information to the ticket-office
machine by illuminating the proper lights on it. If the customer desires
to make the reservations, the R (reservation) button is pushed and the
computer subtracts two from the number of seats available on Flight 83.

Ticket
office

Flight card

file box Q&S
°e:°: ;: e: o:}s%Q Seats available
ceesey, Cancell
SN
, % A
Ticket office % % \ V.o
&\f;a\ Remote Computer and
“@\\fa\\‘@s scanner reservation information

storage unit

Central service
area

Fi1g. 1-14. Airline reservation system.

If no seats were available, the no-seats-available light would have been
illuminated. Similarly a cancellation can be made, and so forth. Of
course our illustration has been greatly simplified, but the essential
operations performed by the computer and the problems involved have
been demonstrated.

Aids to Medical Diagnosts. It has been recognized that electronic
computers can aid certain aspects of medical diagnosis. TFor example, the
computer can (1) produce a list of possible diagnoses, consistent with
medical knowledge, for a given set of symptoms presented by a patient;
(2) indicate further diagnostic tests which best differentiate between
remaining diagnostic possibilities; (3) calculate the probabilities for the
alternate diagnostic possibilities; and (4) enable a more precise statement
and analysis of the value decisions which may be associated with treat-
ment planning. Such computer applications must be based on extensive
medical data; hence a further use of computers is (5) to compile statistics
that (a) relate symptom-disease combinations and that (b) evaluate

22 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHaAP. 1

disease-treatment-prognosis results. These statistics are then used in
future diagnosis, treatment, and prognosis determination. In addition,
the computer can serve as an indispensable aid, under certain special
circumstances: The computer can (6) enable criteria of a more quanti-
tative nature to be utilized in evaluating the results of certain diagnostic
procedures (such as electrocardiograms, electroencephalograms, ete.) and
can perform the complicated calculations necessary for the proper inter-
pretation of certain clinical measurements. Finally, the computer can
significantly aid the important aspect of information retrieval in, for
example, (7) the rapid retrieval of current information about new pre-
ventive measures, diagnostic techniques, and specific treatments, and
(8) the accumulation and retrieval of desired aspects of a particular
patient’s total medical history (such as total radiation dosage received,
previous allergic reactions, individual biochemical and physiologic norms
and deviations, etc.).

Physicians
and hospitals

Physicians
and hospitals

Area
computer

Research
computer

Physicians

computer
and hospitals

F1a. 1-15. Hypothetical health-computing system.

Consider a modern high-speed electronic digital computer, and suppose
that it has been programmed to aid medical diagnosis. Let us assume
further that the physician can directly communicate with the computer
by telephone, teletype, radio, etc. The value of such a computer interro-
gation arises from three factors: (1) the ability of the computer to formu-
late a treatment plan that will maximize the chance of curing the patient;
(2) the ability to determine the minimum number of necessary medical
laboratory tests or other diagnostic procedures for the particular patient;
and (3) the ability to evaluate more accurately diagnostic-test results
for a particular patient based upon his previously recorded health records.

A network of such computers could form a hypothetical health-
computing system (see Fig. 1-15). Here each computer can communicate
with individual physicians and hospitals within its area, receiving, trans-
mitting, and computing medical information as required. However, the
area computers must be capable of communicating with each other as
well, since approximately 20 per cent of Americans change addresses
each year, and probably most of us go on at least one trip per year.
Also, all the area computers could communicate with a special research
computer that could sample data as required for various research and
public health-control investigations.

SEc. 1-6] APPLICATIONS OF DIGITAL COMPUTERS AND CONTROL 23

The great significance and importance of such a health-computer
network cannot be overestimated as an aid to increasing individual
good health and longevity and as a vast new source of medical information
concerning mankind.

1-6. Additional Topics

a. 'The following references are not intended to be a complete bibliography on the
use of digital computers; rather they are intended as sources of past and future
applications.

Books

Alt, Franz L.: “Electronic Digital Computers—Their Use in Science and Engineer-
ing,” Academic Press, Inc., New York, 1958.

Bowden, B. V.: “Faster than Thought,”” Pitman Publishing Corporation, New York,
1953.

Canning, R. G.: “Electronic Data Processing for Business and Industry,”’” John Wiley
& Sons, Inc., New York, 1956.

Chapin, Ned: ‘“Automatic Computers-—A System Approach for Business,”” D. Van
Nostrand Company, Inc., Princeton, N.J., 1959.

Eckert, W. J., and Rebecca Jones: ‘Faster, Faster,” McGraw-Hill Book Company,
Inc., New York, 1956.

Edmundson, H. P., et al.: Studies in Machine Translation, Repts. 1-9, Rand Corp.,
1958.

Gass, Saul I.: “Linear Programming Methods and Applications,” McGraw-Hill
Book Company, Inc., New York, 1958.

Gotlieb, C. C.,, and J. N. P. Hume: ‘High-speed Data Processing,” McGraw-Hill
Book Company, Inc., New York, 1958.

Jeenel, Joachim: “Programming for Digital Computers,” McGraw-Hill Book Com-
pany, Inc., New York, 1959.

Ledley, R. 8., and J. B. Wilson: “Programming and Utilizing Digital Computers,”’
MecGraw-Hill Book Company, Inc., New York, in press.

Livesley, R. K.: “Digital Computers,” Cambridge University Press, New York, 1957.

Locke, W. N., and A. D. Booth (eds.): “ Machine Translation of Languages,” John
Wiley & Sons, Inc., New York, 1955.

McCracken, D. D.: “Digital Computer Programming,” John Wiley & Sons, Inc.,
New York, 1957.

Periodicals

The Computer Journal, British Computer Society, Ltd., London.

Computers and Automation, Edmund C. Berkeley and Associates, New York.

Computing News, J. W. Granholm, Seattle.

Control Engineering, monthly, McGraw-Hill Publishing Company, New York,

Data Processing Digest, Canning, Sisson, & Associates, Los Angeles.

Datamation (Research and Engineering, the Magazine of Datamation), bimonthly,
Relyea Publishing Co., New York.

IBM Journal of Research and Development, International Business Machines Cor-
poration.

IRE Transactions on Electronic Computers, Professional Group on Electronic Com-
puters, Institute of Radio Engineers, Inc., New York.

Journal of the Association for Computing Machinery, New York.

Journal of Operations Research Society of America, Baltimore.

24 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 1

Journal of the Society for Industrial and Applied Mathematics, Philadelphia.

Machine Translation, Massachusetts Institute of Technology, Cambridge, Mass.

Mathematical Tables and Other Aids to Computation, National Academy of Sciences—
National Research Council, Washington, D.C.

Proceedings of the . . . Joint Computer Conferences of the Professional Group on
Electronic Computers (IRE), the Association for Computing Machinery, and the
American Institute of Electrical Engineers (AIEE) Committee on Computing
Devices.

b. References to Analog-computer Applications. The following are but a few of the
many available texts describing analog-computer applications:

Johnson, C. L.: “Analog Computer Techniques,”” McGraw-Hill Book Company,
Inc., New York, 1956.

Korn, G. A., and T. M. Korn: “Electronic Analog Computers,” 2d ed., McGraw-Hill
Book Company, Inc., New York, 1956.

Murray, F. J.: “The Theory of Mathematical Machines,”” 2d ed., King’s Crown Press,
New York, 1948.

CHAPTER 2

PRINCIPLES AND BLOCK DIAGRAM
OF A DIGITAL COMPUTER

2-1. Introduction

Recapitulation. In the previous chapter we gave some idea of what
computers can do. We observed that, in general, initial conditions, con-
stants, and other numbers are first read into the computer and that the
computer then proceeds with the calculations, finally printing out or
otherwise displaying the results. In addition, the examples presented
illustrated the kinds of caleulations that can be carried out by a computer.
These concepts are important foundations for an appreciation and under-
standing of the present chapter.

Orientation. The purpose of this chapter is to orient the student in the
field of digital-computer engineering; it endeavors to present a bird’s-eye
view of the field. Thus, as the student continues into the detailed
material of this book, he should always appreciate the relationship and
significance of each topic in the over-all pattern. Specific, concrete
examples are used as vehicles for transmitting the over-all ideas of the
design and construction of digital computers. The student should pay
strict attention to the general concepts and should use the specific
examples only as a basts for understanding these generalizations.

This chapter begins with a description of the block diagram of a
digital computer. There follows a more detailed discussion of the func-
tioning of the parts of the computer. Irom this ‘“macroscopic’ point
of view we go to the ‘“microscopic’ picture of a computer, glancing at
various kinds of circuitry techniques. Thus we consider briefly the meth-
ods by which a number is recorded, by which digital circuitry can per-
form specific functions, and by which internal controls are obtained, and
describe how numbers are memorized by and read into and out of a
computer. The examples have been chosen solely to be appropriate
for this orientation phase of study and therefore constitute simpler
and in many cases less advanced techniques. Finally, we summarize
our discussion of the main features of digital-computer and -control
engineering.

A large part of the orientation in any subject must necessarily be con-
cerned with the specialized vocabulary used to describe basic concepts.
Therefore there are in this chapter many such basic discussions.

25

26 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

2-2. Block Diagram of a Computer

The purpose of this section is to acquaint the student briefly with the
parts of a digital computer. To this end the block diagram of a computer
will be developed in steps, from the simple to the more detailed.

The Computer. As was seen in Chap. 1, a computer handles numbers;
it takes numbers that are fed into it and operates on them to form new
numbers—the output numbers. Hence the simplest block diagram of a
computer is as shown in Fig. 2-1.

Input numbers Output numbers

F1c. 2-1. Simplest block diagram.

The computer can perform many different kinds of operations on num-
bers. Most of these operations combine two numbers to produce a
third number. The two numbers so combined are called the arguments
of the operation, and the number produced is called the result. Many
operations that a computer can perform are similar to the familiar oper-
ations usedin hand computation, such as adding two numbers to form the
sum, multiplying two numbers to form the product, etc. Also analogous
to hand computing is the fact that the computer can perform only one
such operation at a time.t Hence, when many operations are to be
performed, they must be performed in some appropriate sequence.

The computer is told what operations to perform by means of instruc-
tions. An instruction not only contains information about an operation
to be performed but also designates the two arguments (usually) for the
desired operation. When the operation specified by an instruction has
been completed by the computer, i.e., when the result has been obtained,
the instruction is said to have been executed.

For example, suppose that we wanted to compute the value of

y =al+c)

where a, b, and ¢ represent some specific real numbers. A sequence of
instructions that would tell a computer to form a(b + ¢) is as follows:

Operation | 1st argument | 2d argument Result
Instruction 1.............| Add b c z=b+c
Instruction 2............. Multiply a z Yy = ax

The computer would first execute instruction 1 and then instruction 2.
The Memory. The computer itself is composed of two main parts,

a memory, which stores numbers and instructions, and a computing unit,

in which the actual computations take place (see Fig. 2-2). The com-

t Modern computers are being developed to perform several operations simul-
taneously.

Sec. 2-2] PRINCIPLES AND BLOCK DIAGRAM 27

puter’s memory stores the numbers to be operated on; it stores inter-
mediate results that are generated during the course of a computation;
and it stores the final results. For instance, the numbers represented by
a, b, and ¢ of our example are initially stored in the memory. After the
first instruction is executed, the intermediate result z is stored in the
memory. After the second instruction is executed, the final result y is
stored in the memory.

The instructions themselves are also stored in the computer’s memory.
Each instruction is transmitted to the computing unit when it is to be

Input numbers ———p! 'cn%;":::;': ———» Output numbers

v 1

I Computing unit

F1c. 2-2. Memory and computing unit.

executed. In our example, instruction 1 is first transmitted to the
computing unit and executed, and then instruction 2 is transmitted to the
computing unit and executed.

The reason for having an internal memory in the computer is that
numbers and instructions can be transmitted between such a memory
and the computing unit more rapidly than by other means. This
enables the computations to proceed more quickly: High-speed com-
puters exist such that a number or instruction in the memory can be
transmitted to the computing unit in as short a time as 1 usec. On the
other hand, arithmetic operations such as addition can be performed in
less than 1 psee. Hence, it is generally the speed of the memory that
limits the speed of a computer.

Input numbers Computer ~ ——— Qutput numbers
and Instructions memoty
0 -
Arithmetic Control
unit K-

Fi@. 2-3. Arithmetic unit and control.

The Computing Unit. It is seen from the above discussion that the
computing unit has two functions: it must (1) obtain instructions from
the memory and interpret them, as well as (2) perform the actual
operations. Hence it is composed of two parts: the control, concerned
with the former, and the arithmetic unit, concerned with the latter func-
tion (see Fig. 2-3).

An analogy can be made between the functioning of an electronic
computer and the performance of hand computation. The computer’s
memory is analogous to the tabulation of numbers often kept during
hand computations. The function of the computing unit is analogous

28 INTRODUCTION' TO DIGITAL PROGRAMMED sSYSTEMS [CHAP. 2

to the actual performance of the hand-computational operations. Carry-
ing our analogy with hand computation a little further, the arithmetic
unit is analogous to the pencil and paper, abacus, slide rule, etc., while
the control is analogous to the mental processes that take place in deter-
mining what operation is to be performed, choosing the proper arguments
of the operation, keeping the proper sequence of operations, ete.

The Control. The control itself must perform two functions. It
must (1) interpret the instruction; then, based on this interpretation,
it must (2) tell the arithmetic unit what to do. The latter function is
accomplished through the use of electronic control signals.

In accordance with these two functions, we can separate the part of
the control that interprets, or decodes, the instructions, called the instruc-
tton decoder, from the part that generates the control signals, called the
control generator (see Fig. 2-4).

Input numbers } Computer —— Output numbers

and instructions memory
Arithmetic L Control jg—=d Instruction
unit 4 | generator o decoder

Fig. 2-4. Instruction decoder and control generator. (Solid-headed arrows indicate
information; hollow-headed arrows indicate control signals.)

After an instruction has been transmitted to the instruction decoder,
where it is interpreted, the control generator senses this interpretation
and then produces signals that tell the arithmetic unit which operation
to perform. It also generates signals that choose the proper numbers
(arguments) from the memory and sends them to the arithmetic unit
at the proper time; and when the operation has been performed, still
other control signals take the result from the arithmetic unit back to the
memory. After an instruction has been executed, the control generator
produces signals that enable the next instruction to go from the memory
to the instruction decoder. In this way the instructions are performed
sequentially.

Input-Output. There are many means by which numbers and instrue-
tions can be initially introduced into and finally read out of the computer
memory. They can be typed directly into the computer on specially
adapted electric typewriters, read into the computer by means of punched
paper tape on a teletypelike machine, punched on cards and read into
the computer by means of a punched-card machine, memorized on mag-
netic tape and read into the computer by a specially built tape recorder,
etc. When the computations have been completed, the resulting num-
bers can be read out of the computer by having the computer operate a
typewriter, punch paper tape, punch cards, put pulses on magnetic
recording tape, etc. Most computers have several such input units and
output units. The in-out selector determines which unit will read informa-
tion into or out of the computer; it is controlled by signals from the

Sec. 2-2] PRINCIPLES AND BLOCK DIAGRAM 29

control generator (see Fig. 2-5). Tach of the boxes in Fig. 2-5 represents
electronic or electromechanical equipment. It is the purpose of this
book to describe the function, use, and design of this equipment.

Summary. The computer’s memory stores the instructions and the
initial, intermediate, and final numbers involved in a computation.
Instructions tell the computer what computations to perform. An
instruction includes information about the kind of operation to be per-
formed and the arguments involved in the operation.

Input » » Output
unit < > C;:mpz:;' —{ unit
Input ‘T Z » Output
unit gy —{ unit
Input » Output
unit |fg— - o unit
VL A
In-out Arithmetic 4 Control [Instruction
selector unit generator [—{ decoder
L |

F1a. 2-5. Input-output.

The instructor decoder interprets an instruction. This interpretation
is sensed by the control generator. Based on that information, the
control generator produces control signals that transmit the proper
numbers from the memory to the arithmetic unit and that tell the
arithmetic unit what operations to perform on these numbers or argu-
ments. When the results have been computed by the arithmetic
unit, the control signals guide them back to the memory. Then the
control signals bring the next instruction into the instruction decoder,
‘and the cycle continues. When new data is to be read into the memory
by means of the input units, the control generator directs the in-out
selector to choose the proper input unit. The control generator takes
similar action when computed data is to be read out of the memory
by means of one of the output units.

EXERCISES

(a¢) What are the general purpose and function of an operation? An instruction?
The computer memory? The computing unit? The arithmetic unit? The control?
The instruction decoder? The control generator? Control signals? Input units?
Output units? The in-out selector?

(0) If 2 and 3 are added to obtain 5, what are the arguments of this operation?
The result?

(¢) Write a sequence of instructions by means of which a(d + ¢d)/f can be com-
‘puted. Letting a =6, b =4, ¢c =2, d = 3, and f = 5, perform the sequence of
‘instructions. -

(d) . Write a sequence of instructions by means of which (1 — a2)3 can be computed.

(e) What four functions do the control signals perform? .

30 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

2-3. Functional Description of a Computer

The functional description of a computer involves consideration of
further details about the computer’s memory and the relation of an
instruction to the memory. Two fundamental concepts of modern
digital computers are involved in this relationship.

Words. The memory of a computer is composed of a large number
of memory boxes, analogous to mailboxes. The information, or items
to be memorized, is placed into these boxes as mail is placed into
mailboxes. Bach memory box, like a mailbox, has a name, or address.
These addresses are usually numbers. For example, if the computer
contains 100 memory boxes, their respective addresses might be the
numbers from 1 to 100 (or 0 through 99). The information or items
put into the memory boxes are called words and are analogous to the
mail itself. However, only one word can be stored in a memory box at a
time. As was seen in Sec. 2-2, there are two basic types of information,
or words, that can be put into the boxes: words that are numerical
quantities and words that are computer instructions.

At this point a short digression on computer terminology will prove
helpful. The memory box of the previous paragraph is more correctly
called an address, or alternatively a memory address, memory location,
storage location, or cell. Instead of saying, “ A word is in a memory box,”
computer personnel say, ‘“The contents of an address is a word.”
Instructions are sometimes called commands; quantities are sometimes
called data.}

An instruction word looks like a number, and there is no way to tell
from the word itself whether it is a quantity or an instruction. The
computer must be told explicitly which addresses contain instructions
and which contain quantities. Ordinarily a word is treated by the
control as an instruction and by the arithmetic unit as a quantity. The
fact that it is only the interprefation of @ word that distinguishes instruc-
tions from quantities is the first fundamental concept of modern digital
computers. This is fundamental because it enables the computer to
operate on instructions. That is, the computer itself can formulate or
change an instruction by treating it as though it were a quantity; and
then, at a later time during the computations, this changed instruction
can actually be executed. In a certain sense, this gives the computer the
capability of actually writing instructions as well as evecuting them;
i.e., the computer can “tell” itself what to do—which is the closest
that a computer probably ever comes to ‘thinking.” More will be
said about this in a later chapter (see Chap. 5).

Instructions and Addresses. To see the relationship between an
instruction and the computer’s memory, consider, for example, an instrue-
tion that tells the computer to add two numbers. The instruction does

t See First Glossary of Programming Terminology, J. Assoc. Computing Machinery,
June, 1954; I.R.E. Standards on Electronic Computers: Definitions of Terms, 1956
Proc. IRE, vol. 44, no. 9, September, 1956.

Sec. 2-3] PRINCIPLES AND BLOCK DIAGRAM 31

not directly tell the computer to add the numbers themselves but rather
tells the computer to add the numbers that are found as the contents of
addresses specified in the instruction. If the numbers to be added are
located in address @ and address 8, the instruction literally says, “Add
the contents of address o« to the contents of address 8.” Of course, the
proper numbers to be added must have been previously placed into the
addresses o and 3. The same instruction might go on to tell the computer
to put their sum into address v and that the next tnstruction will be found
as the contents of address 5. Hence, after our add instruction has been
executed, the number that is the sum will be found as the contents of
address v. It must be certain that the contents of address 6 is actually
an instruction and not a number because the contents of address &
will be interpreted as if it were an instruction in any case.

The fact that instructions deal directly with addresses whose contents
are to be operated on, rather than with the numbers themselves, is the
second fundamental concept of digital-computing machines. This gives
the computer an advantage that is exactly analogous to the advantage of
performing algebra on symbols z, v, . . .

As an example of an 1nstruct10n, suppose that we wanted to add 125
and 412 and that we put 125 into address 32 and 412 into address 34.
Suppose that we want the sum to appear in address 36 and that the next
instruction is the contents of address 41. Then our add instruction,
when decoded, would say, ‘“Add the contents of address 32 to the con-
tents of address 34, and put the sum into address 36; then the next
instruction will be found as the contents of address 41.”

The Accumulator. Consider now what happens in the arithmetic unit
while an instruction is being executed. In most computers only one
word at a time can be transferred between the arithmetic unit and the
memory. Hence, to perform an operation involving two arguments, the
first argument must be transferred from the memory to the arithmetic
unit and stored there temporarily while the second argument is being
transferred. The special memory cell in the arithmetic unit for this
purpose is called the accumulator (see Fig. 2-6). When the operation is
performed, the result is formed in the accumulator before it is transmitted
back to the memory.

Thus, in the above example, the contents of address 32, namely, 125,
would be brought into the accumulator first; then this would be added
to the contents of address 34, namely, 412, and the result, namely, 537,
would be formed in the accumulator. Then 537 would be transmitted
from the accumulator into address 36.

The Instruction Register and the Current-address Register. Next con-
sider the instruction decoder that interprets an instruction. In order
that the instruction decoder perform its function, it must constantly
refer to the instruction being interpreted during the time control signals
are being set up. To facilitate this, while an instruction is being exe-
cuted it is stored in a special memory cell, called the instruction register,
located in the instruction decoder (see Fig. 2-6).

32 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

There is another special memory cell located in the instruction decoder,
called the current-address register (see Fig. 2-6). The contents of this
register is (nearly) always the memory address from which the instruc-
tion being executed came. The reason for this is related to the fact that
the address of the present instruction was given as part of the previous
instruction.

For example, consider the add instruction described above. Suppose
that this instruction were originally the contents of address 40. Then,
while it is being executed, the contents of the instruction register will

Inp:ltt ﬁ: Computer > Out;llut'
un (< > memory r_D unit
Input i B Output
unit [<— —> unit
Input : Output
unit K~ 4 unit
I v L 2
In-out Arithmetic | Control [a— Instruction
selector unit generator [y decoder
r——=—=—" ===
1Accumulator| Instruction|
L————- 4 I reglister |
rC'Err_enT—‘-}
| address
| register | |
[PAR—

F1a. 2-6. Accumulator, instruction register, and current-address register.

be the add instruction itself, and the contents of the current-address
register will be 40. After the add operation has been executed (i.e.,
after the sum of 125 and 412 has been put into address 36) and just
before the next instruction is read into the instruction register, the address
of the next instruction, namely, 41, is recorded in the current-address
register.

The Four Phases. The functioning of a computer during the execution
of an instruction is often summarized in terms of four phases. Assuming
that an instruction has already been transmitted into the instruction
register, phase 1 involves the transmitting of the first argument from the
memory into the accumulator. During this phase the instruction decoder
determines the address of the first argument from the instruction, and
the control generator produces control signals that transmit the contents
of this memory address into the accumulator. During phase 2 the second
argument is brought to the arithmetic unit and the operation is per-
formed. Both these functions are included in the same phase because
most often the operation is performed as the second argument enters the
arithmetic unit. In this phase the instruction decoder determines from
the instruction the address of the second argument and what operation
is to be performed; the control generator generates signals that set up the

Skc. 2-3] PRINCIPLES AND BLOCK DIAGRAM 33

arithmetic unit to perform this operation and signals that transmit the
contents of the address of the second argument into the arithmetic unit;
the arithmetic unit performs the operation, generally leaving the result
as the contents of the accumulator. During phase 3 the contents of the
accumulator is transmitted into the memory address specified by the
instruction. During phase 4 the address of the next instruction is ascer-
tained, and the contents of the current-address register is changed to the
new address; the contents of this new address is then transmitted into
the instruction register as the next instruction. Then phase 1 for this
instruction is initiated, and the process is repeated.

1t should be observed that computers are often designed with phase 1
or 3 omitted. That is, in some computers the memory address of both
arguments need not necessarily be specified in a single instruction, nor
need the memory address into which the result is transmitted always be
specified. In such computers multiple instructions would be equivalent
in function to a single instruction as described above. This aspect of
instructions is discussed in considerable detail in the next chapter, and
we shall not press the point here, except to note that, although the
principles described hold in general, the specific details vary with different
computers.

Summary. There must be an instruction in the instruction register
initially so that the whole process may begin, and there must be a way
to stop the computer. These details will be considered in Chap. 4.
The important points we wish to emphasize in this section are: (1)
instructions and quantities are memorized by the computer as the contents
of memory addresses; (2) they are indistinguishable from each other
except by interpretation, and (3) instructions explicitly involve only
addresses and tell the computer what to do with the contents of these
addresses; (4) the functioning of a computer during the execution of an
instruction can be summarized in terms of the four phases as described.

EXERCISES

(a) Discuss the first two fundamental concepts of modern digital computers, using
accepted computer terminology.

(b) Consider the example of Sec. 2-2. Suppose that the value of a is found as the
contents of address 50, of b as the contents of address 51, and of ¢ as the contents of
address 52; the value of the intermediate result z is to be put into address 53, and the
final result y is to be put into address 54. How would instructions 1 and 2 of that
example be written if these instructions themselves were found as the contents of
addresses 55 and 56, respectively?

(¢) Describe by naming specific addresses and special memory cells what happens
during each of the four phases during the execution of the instruction given as an
example in this section. What is the contents of the instruction register? What is
the contents of the current-address register? What is the contents of the contents of
the current-address register? (Hint: The contents of the current-address register is
an address itself.)

(d) During phase 1 what is the relation between the contents of the instruction
register and the contents of the current-address register?

34 INTRODUCTION TO DIGITAL PROGRAMMED sYSTEMS [CHAP. 2

2-4. Words and Pulses

Binary Numbers and Bits. Words are memorized in the computer as
binary numbers. Hence it is necessary to divert our attention for a
moment to a description of the binary notation for numbers. Numbers
written in the binary system make use of only the symbols 0 and 1,
called bits, just as numbers in the decimal system use the symbols 0, 1, 2,
3,4,5,6,7, 8, and 9, called digits. We say, for example, that 1101 is a
binary number composed of 4 bits, just as 8,675 is a decimal number
composed of 4 digits. In the decimal system the number 8,675 really
means (8 X 10%) - (6 X 10%) 4 (7 X 10Y) 4 (5 X 10%), where 10° = 1;
analogously, in the binary system the number 1101 really means (1 X 23)
4+ (1 X 22 4 (0 X 21 + (1 X 29, where 20 = 1. Since2® = 8,22 = 4,
2! = 2,and2° = 1,1101is (1 X 8) 4+ (1 X 4) + (0 X 2) + (1 X 1) = 13
in decimal. A more general and thorough discussion of the binary-
number system appears in Chap. 3. Our purpose here is simply to show
that binary numbers are made up of bits, 0 and 1, and that a binary num-
ber is just another notation for our familiar decimal numbers.

Words as Pulse Trains. As can probably be foreseen by the reader
at this point, the reason for using the binary numbers in digital computers
is to enable the use of simplified electronic circuitry. For then only two
signal voltage levels need be distinguished, the voltage level that is to
represent 1 and the voltage level that is to represent 0. A word is memor-
ized by the computer as a series, or train, of 1 and 0 signal voltage levels,
often called pulses, that represent the bits of the word. The number of
bits in a single word is called the length of the word. All the words within
a particular computer are of the same length;T hence, so are the contents
of all addresses in the computer memory. When the proper signals are
generated by the instruction decoder, the train of pulses that represents
a word goes from the memory address to the arithmetic unit. In some
computers this is accomplished in a serial manner in time; i.e., the pulses
flow past a fixed point at some fixed rate, say, 1 pulse/usec. The speed
of a computer is usually denoted by this pulse rate, or equivalently by
the pulse frequency, i.e., 1 megacycle for our illustration.

Tt is often important to be able to denote a particular bit in a word
by means of its position in the word. For this purpose we number the
positions from right to left. Then Pn represents the nth bit of a word.
For example, consider the 30-bit word in Fig. 2-7. Here Pl = 0,
P2=0,...,P6=1 P7=0, P§=1,..., P23 =1, P24 =0,
ete.

Time Synchronization and Clock Pulses. In the arithmetic unit two
word pulse trains are operated on by electronic circuits to form a new
word pulse train that represents the result of the operation. In the
control the word pulse train is decoded and interpreted as an instruction
by other electronic circuits. The circuits that accomplish these func-

t Modern computers are being developed to use different word lengths in different
sections of the machine.

SEc. 2-4] PRINCIPLES AND BLOCK DIAGRAM 35

tions are called gates, or digital switching circuits. We shall have a
little more to say about such gates in Sec. 2-5, and much more in the rest
of the book. However, for the purposes of this section it suffices to
mention that everything that happens to a word during the four phases
takes place in these switching circuits, or gates.

It has been implied in the above discussion that there is some kind
of synchronization of the pulses in a computer. In most computers
this is indeed the case: all pulses are synchronized with respect to each
other by means of clock pulses generated by a clock within the computer.
The clock is an oseillator, with a frequency that is usually some integral
multiple of the speed of the computer. Every gate is so connected to
AR, n.n.n-. PRy R P, R Ry Ryl
11010011100011110100000

Fia. 2-7. Example of a 30-bit word.

o
(3]
Ry

P22

QOO0 NOLD <
AN NANN N
R ARy RYRLRY Ry
1010110

the clock of the computer that pulses are allowed to enter or leave the
gates only at those times at which a clock pulse is received. The effect
is analogous to an orchestra where the conductor beats out the timing,
like the clock—the individual musicians, the gates, play notes, the pulses,
according to this rhythm as directed by their music sheets, the design
of the gating connections. At each beat of the clock all the pulses
advance in the computer according to the gating connections, just as the
musicians go on to the next musical beat. The purpose of this is to
keep the phases of the pulses coordinated, in a manner to be described in
detail in a later chapter. In addition, the clock pulses usually play an
important role in reshaping the pulses, which become somewhat attenu-
ated and distorted in passing through the gating circuits.

Ezample of Adding. Let us consider what happens in the arithmetice
unit when two numbers are added. To be specific, suppose that these
numbers (where An and Bn label the bit positions) are

0 b~ © W N—=O S0~ QLo <H Sk R

O 0 S OWw Hoo A -OO

MAN [K] AN AN~ — - — = -

g9 g O=w ghEw Jd9}9d k] << 9w g} 9}y
000 010 110 000 001 111 111 001 110 O11
O DOy HON =HOOD OO 1O0HMN ON—O ook ©IoH MmN~
DA AN NN AN AN~ - r— r— - vt] -t

AR AR AR QAR QAR MR AR QAR QAR QR
600 001 011 101 110 101 111 010 100 oO0O0O

(The decimal equivalents are, for A, 46,202,483 and, for B, 24,600,224.
See Chap. 3 for decimal-to-binary conversion methods.) Suppose that
we are in phase 2; i.e., the first argument has already been transmitted
into the accumulator. Suppose also that the pulse rate of the computer
is 1 usec; then the bits advanced once each microsecond. Figure 2-8
shows the situation at the start of phase 2; Fig. 2-9 shows the situation
1 psec later; Fig. 2-10 after 2 psec; Fig. 2-11 after 10 psec; Fig. 2-12 after

36 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

Second argument from a memory address Ot ON
< <<¢ W
000010110000001111111001110011—»
o oa~ Adder
Accumulator MM QAR gates
4r*@°°W°1N11h°1h1°h01h1fh1£h0°W°0F—’
Fia. 2-8. Start of phase 2.
Second argument from a memory address vt MmN
AR A
000 010110000001 111111001110 01—>
- o TmN Adder
%} Accumulator MM ARG gates
[tHPOWOOUO1h1°h11W1°h11h°1ﬁ10W00F—'
|
Fi1g. 2-9. One microsecond after start of phase 2.
Second argument from a memory address owna M
<< <
000010110000001111111001110 0——m>j
Nt O OTm Adder
Accumulator m MM gates
rﬂ;ﬂﬂooqo1op14@11h01p1fh10h01@04}—»
, |
Fi1c. 2-10. Two microseconds after start of phase 2.
Second argument from a memory address
a3nan
YUY U
00001011000000111]_.11 >
QN0 N0 FMN st mat Adder
N NN NN NN v Accumulator ‘M M gates
rﬂo1qooqooqqpqooqloq11Q11ﬂo1q11H—J
1
Fi1G. 2-11. Ten microseconds after start of phase 2.
SRR
U
0000101100 >
O ITM Nt Lus N Adder

Accumulator, 0 NN N M AR ‘gates
rﬂl0M00q01ﬂ10uooﬂloﬂ1WMooMo1M11q—+

F1a. 2-12. Twenty microseconds after start of phase 2.

SEc. 2-4] PRINCIPLES AND BLOCK DIAGRAM 37

vt MmN Adder
Accumulator nnn nnn gates

I—-ﬁ)oo|1oo|oo1|110|ooo|101|110|1oo|o10[011J—J

Fra. 2-13. Thirty microseconds after start of phase 2.

20 psec, and Fig. 2-13 after 30 usec. As the two arguments advance
bit by bit into the adder, the result is formed bit by bit; the partial results
are stored in the accumulator behind the partially used first argument as
shown. The double line separates the partial first argument from the
partial result so far formed in the accumulator. (The partial result is
to the left of the double line; the remaining first argument is to its right.)
In Tig. 2-13 the complete result has been formed in the accumulator,
namely:

O 0 =010 i OO Q0 I~ O W H M N—HO R0~ NeRT=R [hrk~ Rl
PN AN AN A — = — = = =

NN NN NN NNYY NN NN NN Y NN W
000 100 001 110 00O 101 110 100 010 o011

(which in decimal is 70,802,707). The computer is then ready to start
on phase 3.

Figures 2-8 to 2-13 illustrate what would happen in a so-called ‘‘serial”’
computer. However, there are other, “parallel”’ methods for add-
ing. Both serial and parallel adders are discussed in detail in later
chapters. Our purpose here was merely to give a general idea of how
word pulse trains travel through gates in a synchronous fashion during a
computation.

Instruction Decoding. We have given an example of how numerical
quantities are gated. Next let us illustrate the method by which an
instruction word is written and decoded. Suppose that the words of a
hypothetical computer are each 30 bits in length, as above. Let the
leftmost six bits, P30, P29, P28, P27, P26, P25, represent the operation
code, i.e., tell what the instruction is to do: add two numbers, or form the
product of two numbers, etc. Suppose, for concreteness, that the
binary number 101 011 is the code for “add” (see Fig. 2-14). Let

the next six bits, P24, . . . , P19, represent the address of one of the
numbers to be added; P18, . . . , P13 the address of the other number;
and P12, . . ., P7 the address in which the sum is to be stored. The
[=) n < [o) 3 o) ™ N ~N W -
om N N - o~ - -
Y ROR AR AR AR Y
101 011 011 010 011 100 011 110 100 O0OO
e — N —— N N —— e~
Operation The address The address The address The address
code of one of the other into which the of the next
. operand operand result goes instruction

F1a. 2-14, Example of an instruction word.

38 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

last six bits, P6, . . . , P1, tell where the next instruction is located in the
memory. When the instruction word goes into the instruction decoder,
it is stored in the instruction register. This register has a circuit for
each bit being stored, with an output wire so that, if a 1 is stored, the
circuit puts out the 1 signal voltage level on the wire and the 0 signal
voltage level for a zero. The outputs on these wires are sensed by gating
circuits, and the instruction is thus decoded (see Fig. 2-15).

[CIT TTTTTT]
(TTTTTTTII eI T T T i rry

J\

A\ _— N\

v V" = v

To control unit for: To control unit for: To control unit for: To control unit for:

arithmetic unit choosing proper choosing proper choosing address of
control addresses of operands address of result next instruction

Fia. 2-15. Instruction register.

The control unit generates control pulses which are also binary in
character, i.e., are composed only of the 0 and 1 voltage levels. In fact,
almost all the circuitry in a digital computer is concerned with only these
two voltage levels. This distinction can be made as to the function of
pulses in the computer: some pulses represent words (numbers or instruc-
tions); other pulses represent control signals. Such a distinction was
made in the block diagram of a computer, where solid-headed arrows
represented the flow of word pulses and hollow arrows represented the
flow of control-signal pulses.

EXERCISES

(a) Define:length of word; pulses; speed of computer; gates; clock pulses.
(b) In the addition example given in this section what is the contents of the accu-
mulator 15 psec after the start of phase 2? 25 usec after?

2-6. Logical Building Blocks

Almost the entire computer is composed of only three basic kinds of
simple circuits, often called building blocks. Many of each kind of
these circuits are connected to make the computer. The functioning
of the computer depends only on how these basic circuits are wired
together. Hence the electronic aspect of computers can be divided into
two fields: (1) the design of these three very basic circuits; and (2) the
design of the wiring connections between these basic circuits for proper
functioning of the computer. The three kinds of basic circuits are called
and gates, or gates, and not gates. Although the internal electronic design
of these building blocks and the theory of how to design wiring connec-
tions between them comprise the latter parts of this book, it is felt that
some background material on these subjects will aid the reader to visual-
ize in a general way the over-all structure of computers.

The Three Building Blocks. An and gate is a circuit with two (or more)
inputs and one output so that a 1 signal voltage level at the output will

SEc.

2-5]

Circuit diagram

PRINCIPLES AND BLOCK DIAGRAM

Voltage-level diagram

And
gate

Output

[nput
Input

Input rl é
J-—-1__|7 Signal
Input ig o Voltage
o level
Output 1
0

Only when current is flowing in both relay
windings will the voltage level of the
output rise

The four possible combinations of input-signal
voltage levels are indicated with the resulting
output voltage level

Input

—
1
or @— Qutput Input 0
gate 1 Signal
Input voltage
g level
Output T
! 0
Input
Input
Only when cutrent is flowing in either or | The four possible combinations of input-signal
both of the relay windings will the voltage | voltage levels are indicated with the resulting
level of the output rise output voltage level
1
Signal
Not @ 7 Output 0 Joltage
gate 1 Jevel
0

Only when current is not flowing in the
relay windings will the voltage level of
the output rise

The two possible input-signal voltage levels
are indicated with the resulting output voltage
level

F1a. 2-16. The three building blocks as constructed using relays.

39

40 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

oceur only when a 1 signal voltage level appears on all inputs. An
or gate has two (or more) inputs and one output; it will have a 1 signal-
voltage-level output only whenever a 1 signal voltage level appears on
any one or more inputs. A mot gafe has one output and one input and
will have a 1 signal-voltage-level output only whenever a 0 signal voltage
level appears on its input. Such circuits can be designed using relays,
electron tubes, diodes, magnetic cores, transistors, etc. TFigure 2-16
illustrates the possible construction of such circuits using relays.
Flip-flops. There is one other type of circuit, called a flip-flop, com-
monly used in computers. A flip-flop is a circuit that temporarily stores
a single bit. Its single output can be either a unit or zero voltage level,
and this level will remain fixed until some change occurs at its inputs.
Generally a flip-flop has two inputs: a pulse on one input will cause the
output to rise to the unit signal level; a pulse on the other input will
cause the output to fall to the zero signal level. Registers are often

/

®— Output
Q

v

1 —
Input B —— l % | %
Input S

Fi1g. 2-17. Relay flip-flop.

A

made of a number of these flip-flops, one flip-flop being used for each
bit of the word (see Fig. 2-15). TFlip-flops are ordinarily used for registers
owing to their high speed of reaction as compared with other memory
devices (see below). They are rarely used for the computer’s memory
because of their high cost and bulk. These points will be discussed in
considerable detail in Part 5.

However, it may prove helpful here to illustrate how a flip-flop can
be made from relays (see Fig. 2-17). When input R is a unit voltage
level and closes its relay, the output @ becomes a unit voltage level.
In this case the output relay @ closes, and the unit-voltage-level output
is continued independently of relay R until relay S is activated by a
unit voltage level at input S. When relay S is activated, the output @
falls to the zero voltage level and relay @ reopens; the zero voltage level
is maintained until input R is a unit voltage level. In the circuit shown
the simultaneous occurrence of unit voltages on both R and S inputs
will result in the R input overriding the S input.

Ezample of Gating Numerical Quantities. Now we shall show, in a
quite preliminary way, how the three building-block circuits can be

Suc. 2-5] PRINCIPLES AND BLOCK DIAGRAM 41

connected so as to perform some function. Consider as an illustration
the design of a circuit that might be found as part of the arithmetic unit
of a computer. The circuit uses two numbers to make a third number,
in a serial fashion. That is, the circuit has two inputs such that P1
of one number enters on one input wire at the same time as P1 of the
other enters on the other input wire. The output corresponding to these
inputs is P1 of the output number. Then, say 1 usec later, P2 of each
number enters the input wires of the circuit, and P2 of the output number
is made, ete. In this way, the 30 bits of the output number are made
serially as the corresponding bits of each of the input words pass into the
circuit. In our example the output number is to be constructed accord-
ing to the following rule: Pn of the output number is 1 if Pn of both the
input numbers is the same, i.e., either both 1 or both 0; otherwise Pn of
the output number is 0. Thus the circuit is to behave as follows:

Input 1 Input 1

Input 1] output 1 Tnput O} output 0

Input 0 Input 0

Input 0] output 1 Input 1} output 0
For example,
If one input number is 101110 011001 101101 011011 001100
and the other is 011100 100001 111111 000000 101010

then the output number is 001101 000111 101101 100100 011001

113

Such a circuit is called an “equalizer.” TFigure 2-18 indicates the con-
nections that are necessary to make this circuit.

Not
gate >

Y

Input

And
gate

Or
gate

—— Output

Not g

& .
Input —¢ I "l gate
And

—p gate

F1c. 2-18. Equalizer circuit.

In order to see that this circuit actually performs the task, examine
the four diagrams of Fig. 2-19, one corresponding to each of the four input
possibilities, where the signal voltage level is indicated at each connection.

Ezample of Gating Control Pulses. The above example illustrated
gating of word pulses. We shall now illustrate gating of control pulses
(see Fig. 2-20). Suppose that there were at least two circuits in the
arithmetic unit, an equalizer and an adder. Then, according to Fig. 2-20,
the two arguments to be operated on (i.e., the one coming from the mem-

42 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

JL | Not
Input ¥ ate |—.
Y| And
— gate | e |
. . | Not — Or o
- Input { ¥ gate gate [— Output’
L And | l
gate
— Not
Input ¥ gate |
_ »l And
JU. | gate |
—_— Not \gf > Or
input ﬁ ™ gate gate =% Output
L And |__
» gate
e Not
Input ¥ sate | —
And
e L. gate — P
—_— ot I r [
Input —% l_; gate gate F—— Output
And | — I
» gate
— Not
Input ™ ate |on
' And
— .| ogate | —
o | Not g ”| Or —_— p
Input € I-: gate gate —= Output
And ——j
» gate

F1a. 2-19. Analysis of equalizer circuit.

ory and the other already in the accumulator) will enter both the adder
and the equalizer. But, because of the control signals, the result of only
one of these circuits will be brought back to the accumulator. For
example, if an instruction says that the numbers are to be added, then a
1 signal voltage level must be in the control wire going to the adder’s
output gate and a 0 signal voltage level must be in the control wire
going to the equalizer’s output gate. Then, as can be clearly seen, no
signals from the equalizer’s result will get through the equalizer’s output
gate, but the adder result will go through the adder’s output gate.

Next let us illustrate how these control signals are generated. Suppose
that

101 011

is the operation code for addition of the instruction. And suppose that
001 010

SEc. 2-5] PRINCIPLES AND BLOCK DIAGRAM 43

From control unit to open
adder result gate

Control signal that opens From control unit to open
Lthis gate only duting phase threej equalizer result gate

~

y.

Number from memory —€

] |
@‘J@;

A

:«;nd , Adder ' L Equalizer |
gate | Lﬂ And
r- » ogate

]

gate
And P
» gate
To memory

Fia. 2-20. Example of gating of control pulses.

is the operation code for “equalize.” The signals for these positions of
the instruction register (that is, P30-P25) are gated by means of an and
gate that has more than two inputs. Such a gate will produce a 1 signal
voltage level only when there is a 1 signal voltage level on all its inputs.
From Iig. 2-21 it can be seen that the add eontrol signal will occur only
when 101 011 isin P30-P25 of the instruction register; and the equalizer
control signal will occur only when P30-P25 is 001 010. The wires
marked CP represent clock-pulse wires. We have included these in the
diagram to illustrate how they enter every and gate. Thus we have
illustrated the way in which signals can be generated to control which
operation result will be allowed to go back to the accumulator.

(" P30
I—(>| Not gate I[).
P29)] ¢
I—(>| Not gate [[3 d
From P28 d €)
instruction < |—(>| Not gate] € ¢ ¢
register P27 A1l :Ij) 1
Not gate 33 2 €
O s G DI DY,
LP-—E—%}H_NM gate —}}%——
P25 €€
~ L@ daaaal 2ddadd
LI 3 11

And gate I And gate I
Control signal Control signal
for adder to equalizer

F1a. 2-21. Generation of add and equalizer control signals.

44 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHaPp. 2

EXERCISES

() How can the flip-flop of Fig. 2-17 be constructed from and, or, and not gates?
(b) Draw the voltage-level diagram for the flip-flop of Fig. 2-17.
(c) Suppose that in Fig. 2-20 the number from the memory is

000 010 110 000 001 111 111 001 110 O10
and that the contents of the accumulator at the start of phase 2 is
000 001 011 101 110 101 111 010 100 000

Then, if the adder result gate is open during phase 2 (and the equalizer gate closed),
what will be the contents of the accumulator at the end of phase 2? (Hint: See Sec.
2-4.) What will it be if the equalizer result gate is open and the adder gate is closed ?
(d) Why do we need a gate that is open only during phase 3, as shown in Fig. 2-20?
(e) Why do we need the clock pulses shown in Fig. 2-217?
(f) How is Fig. 2-21 related to Fig. 2-15? Draw the proper composite figure.
(¢) Analyze the output of the given circuit by a method similar to that used in
Fig. 2-19.

Input 1 And
Input W gate | Y o
atr —— Output
—+{ Not gate |—>f Ana | LS
» gate
EXERCISE ¢

(h) If the following numbers are inputs to the circuit of Exercisc g, then what will
be the output number?

Input number 101110 011001 101101 011011 001100
Other input number 011100 100001 111111 000000 101010

2-6. Input, Output, and Memory Systems

Input Information. As we have seen, there are many ways to get
information into and obtain information from a digital computer. In
order to give a more concrete picture of the process, we shall describe
in some detail the procedures a person would follow in order to put
information into a computer. The input information usually consists
of a list of numbers and a list of instructions telling the computer what
operations to perform on these numbers. For example, a problem might
be to compute the trajectory of a missile (i.e., to construct a table giving
the position of the missile at each second during its flight) given its
initial velocity and angle of take-off. Suppose that the equation of the
trajectory is

z = (Vo cos 0)t y = (Vo sin 6)t — 14922
where 2,y = coordinates of missile at any time
Vo = initial velocity

6 = angle of take-off from horizontal
Among the list of numbers that must be entered into the computer are

Sec. 2-6] PRINCIPLES AND BLOCK DIAGRAM

45

the values of Vy, cos 6, sin 6, g, and the constant 1 (the time interval of
1 sec). A list of instructions must also be read into the computer telling

it how to compute z and y. All these num-

bers and instructions must be entered into ALY

the computer in binary form. The first

problem under consideration in this section 000

is just how this might be accomplished. o ©
Punched Paper Tape as an Input Vehicle. oneword | © ©

Suppose that punched paper tape is to be 00

used for thisprocess. Anelectromechanical o]

device exists so that a hole in the tape is 000

interpreted by the computer as a 1, no hole o

as a 0. Consider a paper tape with posi- Electromechanical 00

tions for three holes per line. If there are part of computer 50

30 bits to a word, then 10 lines are needed | that looks for holes .

per word. Figure 2-22 illustrates how the ©

following word would look on a tape:

111 101 011 110 001 ©

111 010 110 011 001
One method for getting the proper holes in Next word [0 O O
the paper tape is to use a paper-tape hand

punch machine. This manual punch ma-
chine has keys: pushing a single key will
punch one line. The keys might be num-

F1a. 2-22. Punched paper tape.

bered from 0 to 7, and the array of holes corresponding to
each key might be as given in Fig. 2-23. Hence the word

Key M above would be punched by pushing the following keys in
(0) succession:
(1) (@] 71 5) 3’ 6) 1) 7) 2’ 6, 3; 1
(2) .0 The person who prepares the list of numbers and instruc-
(3) o o| tions for a problem is called a programmer, or coder, and
@ 1o the list itself is called a coding sheet. The code is written
5 |o o| @salistof computer words. However, the coder does not
@ loo write the words in binary form but instead puts down, as
7 loool ? shorthand, the numbers of the keys that are to be
punched. Hence the coding sheet, instead of the word
W above, would have

Fie. 2-23. 75 36 17 26 31

Punched-

pager-tape The punch operator would push these keys in succession,

code.

and the paper tape would be punched in a binary mode.
After the punching is complete, the paper tape is run

through the computer paper-tape reader, which translates the holes into
the units and zeros that are electronically stored in the computer’s mem-
ory. The computer then ealculates the results, and they are read out—

46 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

perhaps by having the ¢omputer punch a paper tape. This paper tape
would then be put into a machine that does the reverse of punching, i.e.,
that looks at a paper tape and prints on paper the numbers that appear
there, in a manner similar to a ticker-tape machine. Figure 2-24 is a
photograph of a paper-tape punch machine and a computer paper-tape
reader,

Fie. 2-24. Paer-tape puch and reader. (Photograph courtesy Bendia; Computer

Division of Bendix Aviation Corp.)

Other Input-Output Methods. Although in Part 5 of the book we devote
most of Chap. 22 to input-output methods, mentioning some of these
here will serve to orient the reader. Besides punched paper tape there
are punched cards: the cards are punched in much the same manner as
the paper tape, and the device that reads the cards into the computer
likewise senses the holes and interprets these in terms of electronic pulses
(see Fig. 2-25). A typewriter may be rigged with relays so that when a
key is pushed a code is produced by the relays and transmitted directly
into the computer. Such methods are often found too slow. A faster
method for putting a program or code into a computer is by means of
magnetic tape, like sound-recording tape (see Fig. 2-26): here a small
magnetized area on the tape is interpreted by the computer as a unit, no
magnetized area as a zero. However, before this magnetic tape is read
into the computer, the program must be first “ written”” onto the tape.
This may be accomplished on a machine not associated with the computer

Skc. 2-6] PRINCIPLES AND BLOCK DIAGRAM - 47

itself, often called an “inscriber.” There are many varieties of inscrib-
ers; some enable the code to be put on the magnetic tape directly from a
typewriter, others from previously punched paper tape or cards. For
example, one procedure may require that the code first be punched on
paper tape and the paper tape ‘“‘inscribed’’ onto magnetic tape, which is

Fra. 2-25. Punched-card reader. (Photograph courtesy National Cash Register Co.)
finally read into the computer. Table 2-1 gives some idea of the speeds in
bits per second at which information can be transformed from one medium
to another. ~ Knowing the number of bits per word, one can then calcu-
late the number of words per minute that can be so transformed.

There are also some unusual means for putting information into the
computer. One is a reading machine that can translate digits and letters,
as they appear on a printed page, into a binary code and write this code
into the memory.

Most of the methods for taking information from the outside world
into the computer’s memory can be reversed to serve as methods for
reading information out from the computer’s memory to the outside
world in a form that is readily understandable. Hence the computer
can work a typewriter, punch paper tape, punch cards, or write onto

®
Fic. 2-26. (@) Magnetic-tape unit; (b) magnetic tape, showing location of bits.
(Photographs courtesy Potter Instrument Company, Inc.)

48

TABLE 2-1. ORDER OF MAGNITUDE OoF RATES

From To

Paper tape...................| Computer memory 2,000 bits/sec
Punched cards................| Computer memory 3,000
Typewriter...................| Computer memory 40
Magnetic tape... civeveo...| Computer memory 100,000

Paper tape...... .eveee....| Magnetic tape 2,000
Punched cards. . e .. .| Magnetic tape 3,000
Typewriter. - ...| Magnetic tape 40
Computer memory-..... .. .| Paper tape 300
Computer memory| Punched cards 2,000
Computer memory............| Magnetic tape 100, 000
Computer memory............| Typewriter 600 characters/min
Paper tape...................{ Typewriter 600
Punched cards................| Printer 10,000
Magnetic tape................| High-speed printer 100,000
Computer memory............| High-speed printer 100,000
Computer memory............| Cathode-ray-tube printer | 500,000

Fra. 2-27. High-speed printer (600 lines per minute, 120 characters to the line).
(Photograph courtesy Radio Corporation of America.)
49

50 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [Cuap. 2

magnetic tape. Of course the “outscriber’’ is required to transform the

information from punched paper tape, punched cards, or magnetic tape

into the letter and number characters we are more familiar with. In

addition there are methods using so-called ; ‘‘high-speed’” printers and

specially made cathode-ray tubes (see Flgs 2-27 and 2-28) that, like

the typewriter, display numbers and letters directly from the computer.
. 1]

A i

FIG 2-28 High-speed printer using Charactron tube (4, 680 hnes per mmute, 120 char-
acters to the line). (Photograph courtesy Stromberg-Carlson Division of General
Dynamics Corp.)

Other outputs from a computer may be obtained from attaching
oscilloscope or television tubes to the computer’s memory. Then the
computer literally can draw maps, can indicate the movements of dots
representing aircraft, ete., or can display other kinds of pictures.

Acoustic-delay-line Memory. Words read into the computer go into
the computer’s memory. The. function of a computer memory is to
store the pulses of each word in such a way that they may be called into
the arithmetic unit rapidly, upon generation of the proper control sig-
nals. In addition, the computer memory must be able to accept rapidly
the pulse train of a word for storage. The speed of modern computers is
essentially limited by the speeds of access to their memories.

There are many ways for memorizing words within a computer, and

Sec. 2-6] PRINCIPLES AND BLOCK DIAGRAM 51

some of these will be considered in detail in Part 5 of this book. How-
ever, in order to gain a broader point of view at this time, it might be
helpful to describe briefly one of these memory methods. Consider as an
example the acoustic mercury delay-line memory. This memory con-
sists of a set of glass tubes, each about 2 ft long and 34 in. in diameter
(see Fig. 2-29). TEach tube is filled with mercury and has a quartz

rER—

Fia. 2-29. Acoustic mercury delay-line memory. (Photograph courtesy National
Bureau of Standards.)

Delay-time memory

or ——»ll:l—-» - - —-—> O

gate

And _TL And

gate gate |4 and pulse
reshaper
- |
From And — To arithmetic

Amplifier

am::ﬁ“c Read-out gate unit
signal from
Write-into control generator

signal from
control generator

F1a. 2-30. Read and write control signals.

crystal at each end. Electrical pulses make the crystal at one end
vibrate; the disturbances propagate down the tube in the mercury and
vibrate the other crystal; these latter vibrations are changed by the
crystal into electrical impulses, which are then sent to an amplifier.
The amplifier reshapes the pulses and sends them to the other crystal,
etc. Thus the pulses of a word travel serially, i.e., consecutively, down
the mercury, through the amplifier, and around. The proper control
signals will allow the word pulse train to go to the arithmetic unit or

52 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

come from the arithmetic unit into the circuit. Of course the timing of
these processes is critical, because when it is desired to read a word out
of the memory, the gating must operate precisely as P1 of that exact
word is picked up by the second crystal. To maintain the proper speed
of propagation in the mercury, the temperature of the line must be held
within a narrow band.

"

Fie. 2-31. Magnetic drum. (Photograph courlesy Royal McBee Corporation.)

An important point that is true for practically all kinds of memories
is that when a word is read out of a memory the word is st:ll stored in the
memory (unless otherwise specifically stated by the instruction—see Chap.
4). Thus in Fig. 2-30 the read-out control signal opens the gate to the
arithmetic unit but does not prevent the recirculation of the word through
the memory. On the other hand, when a word is written info the memory
from the arithmetic unit, the previous word of that address is automatically
erased and replaced by the new word. In Fig. 2-30 the write-into control
signal opens the gate from the arithmetic unit at the same time it closes
the recirculation gate. .

Other Memory Systems. There are several other memory systems that
will be described in Chap. 22 of Part 5. However, we shall mention

SEc. 2-6] PRINCIPLES AND BLOCK DIAGRAM 53

some of these here for orientation. Magnetic tape, described above
as an input-output system, can as well be used for a computer memory.
A similar magnetic-pulse technique is incorporated into magnetic drums,
which are simply rapidly rotating eylinders with magnetizable surfaces
(see Tig. 2-31). Faster memories are constructed from magnetic cores,
specially prepared from ferrites having a square hysteresis loop, thereby
presenting two stable states. KEach core then represents one bit of a
word (see Fig. 2-32). An even faster memory has been constructed,

1 r!ar } :...; A .'*"!’0, . \ :‘ . - ‘ 7
A ma’we #s* x ,.&
STy M M 5 ié‘ s'd‘
' ";%!‘"v"if'?"@#wﬂ'i’*

PN "i.'i;%"'d* (1 \,

Y,
5,) vi’
! 'S ‘4" «

!

S
A
”"fﬁ'@i&#w o

FIG 2—32 Magnetlc cores. (Photograph courtesy Intematzonal Business Machines
Corp.)

using diodes and capacitors. As mentioned above, a memory with the
fastest reaction time is one constructed using flip-flops to record bits.
The time required to transmit one computer word out of the memory
to where it will be used is called the memory access time (see Table 2-2).

In an acoustic-delay-line memory the stored bits come out serially.
If more than one word is stored in a single line, the computer must wait

TABLE 2-2. ORDER OF MAGNITUDE OF MEMORY AcceEss Tiue

Memory system Time required to transmit a 30-bit word
Magnetic tape............. 5 msec + time necessary to position tape
Magnetic drum............ 10 msec
Acoustic delay line......... 100 usec
Magnetic core............. 5 usec
Diode capacitor............ 1 psec

Flip-flop register........... 1 psec

54 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 2

for the proper word to pass the read-out gate. In the magnetic-tape
memory the whole tape must be searched, and a great deal of time is
lost just winding and rewinding tape. For the drum the computer must
wait for the word to rotate to the proper read-out position. The
magnetic-core arrangement enables any word to be read out with no
delays except those inherent in the circuitry involved. A word is read
from a core memory in parallel; i.e., all the bits are transmitted to the
arithmetic unit at the same time. A similar situation occurs with diode-
capacitor memory or with a memory composed of a set of flip-flop
registers. :

Unfortunately, the faster the memory, the more it costs per bit.
Hence a computer usually has several kinds of memory. Most com-
monly, magnetic tapes and drums are used for the so-called ““low-speed”’
memory of a computer, while a magnetic-core memory or diode-capacitor
memory is used as the ‘“high-speed” memory. Often there is also
included in the larger computers a battery of flip-flop registers for the
really high-speed work. In this way, various parts of a large program
can be stored in the relatively low-speed memory system of a computer
and then transmitted to the high-speed memory when the actual compu-
tations of this part of the program are to occur. We shall have more to
say about this later (Chaps. 5, 7, and 8).

EXERCISES

(a) What keys of a paper-tape puncher would be pushed to punch the number
101 110 011 001 101 10% 011 O11 001 100

(Use the table of Fig. 2-23.)
() Draw a picture of paper tape with the number in Exercise a punched on it.
(¢) What number does the given hole pattern represent?

O O O O O (o3Ne)
o O (O3] (©] o O
O - o ©]

c

EXERCISE

(d) During what phases might the write-into signal, shown in Fig. 2-30, be “on,”
i.e., have a unit signal voltage level? During what phases must this signal be “off,”
i.e., have a zero signal voltage?

(e) During what phases might the read-out signal shown in Fig. 2-30 be on? During
‘what phases must this signal be off?

2-7. Digital-computer and -control Engineering

In this chapter the attempt was made to give a broad picture of how a
digital computer works. The three disciplines that comprise digital-
computer and -control engineering were introduced. These were
(1) coding and programming, or the study of writing sequences of instruc-
tions that direct the computer to perform particular tasks; (2) logical
design of computer circuitry, or the study of designing proper connections

Sec. 2-8] PRINCIPLES AND BLOCK DIAGRAM - 55

between the thrée building-block gates 'so that the resultant circuit will
perform specified functions; and (3) electronic design of computer circuitry,
or the study of specific electronic-circuit representations of the building-
block gates as well as the electronie design of the input and output equip-
ment associated with a computer. It has been seen how the methods
and techniques by which a computer is programmed are intimately
associated with the logical design of the computer, which in turn must
satisfy the requirements set by the electronic design of the computer gate
circuits. Hence, in dealing with almost any aspect of computers, the
engineer must have a thorough grasp of all three of these disciplines.

In designing a digital computer, perhaps the engineer’s first considera-
tion is choosing the proper coding and programming system which best
suits the purpose and function for which the computer is to be used.
Although the basic concepts of programming are invariant, the computer
engineer can choose from a wide range of possibilities of programming
systems. This choice is extremely important, for it forms the basis of
the entire structure of a computer design. The rest of the chapters in
Part 1 of this book are concerned with this phase of computer engineering.
Part 2 is concerned with the operation and use of computers pertaining
to various problems—numerical analysis, searching and sorting, etc.

If we assume that the electronic design of the basic building-block
gating circuits has been chosen, the fundamental problem of computer
engineering becomes that of the logical design of the computer. Part 3
of the book lays the mathematical foundations for such design techniques,
and Part 4 applies these to the logical design of common computer com-
ponents. This aspect of computer engineering will perhaps appear most
unusual to electrical engineers. The laborious analysis carried out in
Sec. 2-5 is replaced by systematic computational methods based on a
rather different kind of algebra—called Boolean algebra.

Part 5 of the book considers the electronic design of the basic building-
block gating circuits, using various hardware components such as diodes,
transistors, ferrite cores, etc. The usefulness of a computer depends to a
large extent on the speed, reliability, stability, and other such character-
istics of the circuits from which it is made. Hence the careful design,
analysis, and testing of these circuits and their components comprise a
large part of computer engineering.

2-8. Additional Topics

a. Analogy with Desk Calculator. Make a detailed analog between a digital elec-
tronic computer and a desk calculator, paying attention to function, structure,
sequence of steps in their operation, etc. That is, what are analogous to accumulator,
memory, instruction register, control unit, arithmetic unit, ete.?

b. Constructing a Cardiac Computer. A Cardiac computer is made by assigning
each person of the class as one of the units or parts of a computer. Each person so
assigned becomes responsible for performing all the functions of this assigned part
of the computer, but no other functions. Then a program or sequence of instructions
is written, and these instructions are executed by means of this human simulation of a

56 INTRODUCTION TO DIGITAL PROGRAMMED 8YSTEMS [CHAP. 2

computer. Words and control signals are transmitted by passing around cards or
pieces of paper.

¢. Memories. For each of five commercially available high-speed digital electronic
computers list the kinds of memories they include and their memory access times, and
the kinds of input-output equipment they have and the speeds of these units. For
example, get commercial advertising from the manufacturer, and consult Martin H.
Weik, A Second Survey of Domestic Electronic Digital Computing Systems, BRL
Rept. 1010, June, 1957.

d. Background. There are several subjects the student may find interesting as
background material to his study of digital-computer engineering. These are cyber-
netics, information theory, certain aspects of neurophysiology, and the so-called
“theory of automata.” Readings relating to these subjects can be found in:

Ashby, W. Ross: “Design for a Brain,”” John Wiley & Sons, Inc., New York, 1952,

Brillouin, L.: ““Science and Information Theory,” Academic Press, Inc., New York,
1956.

De Latil, Pierre: “Thinking Machines,” Houghton Mifflin Company, Boston, 1957.

MecCulloch, W. 8., H. Quaster, G. A. Miller, and L. S. Fogel: Human Beings as Com-
puters, a collection of four papers, IRE Trans. on Electronic Computers, vol.
EC-6, no. 3, pp. 190-202, September, 1957.

Newman, James R. (ed.): “The World of Mathematics,” vol. 4, pp. 2070-2133,
Simon and Schuster, Inc., New York, 1956.

Shannon, C. E., and J. McCarthy (eds.): ‘ Automata Studies,” Princeton University
Press, Princeton, N.J., 1956.

Wiener, Norbert: ¢ Cybernetics,”’” John Wiley & Sons, Inc., New York, 1948. (Omit
chaps. II-IV.)

The student may find it profitable to keep the following questions in mind during the
course of his readings: What is the definition of information? Of what importance is
information theory to the study of computers? What is the relation between the
functioning of a neuron and those of the three building-block gates? In what wayisa
digital computer like the human brain? In what way does the human brain differ
from a digital computer? Compare and contrast the computer’s memory and that of
the human brain. Can a digital computer think ?

e. Terminology. Discuss the problems involved in standardizing computer ter-
minology; i.e., compare definitions and usages of words as found, for example, in
First Glossary of Programming Terminology, J. Assoc. Computing Machinery, June,
1954, and The Institute of Radio Engineers Standards on Electronic Computers:
Definitions of Terms, 1956, Proc. I RE, vol. 44, no. 9, September, 1956.

f. History. Discuss the history of digital computers, identifying each advance in
computer engineering with particular computers; include Babbage’s computer, the
ENIAC, EDVAC, SEAC, DYSEAC, UNIVAC, Whirlwind, IAS computer, Reming-
ton Rand 1103, IBM 704, and NORC, and the modern supercomputers such as
LARC and Stretch [see B. V. Bowden (ed.), Faster than Thought, Pitman Publishing
Corporation, New York, 1953, and other references in J. Assoc. Computing Machinery
and IRE Trans. on Electronic Computers]. Figure 2-33 represents an evolutionary
tree of digital computers that may be of aid in the discussion. We cannot claim
that this tree is complete, but we hope that the major trends are reflected. Figure
2-34 is a montage of present-day computers. These photographs have been included
to give the student an idea of the variety of modern computers.

L9

ILLIAC Il

BESIC
ILLIAC

e |

A
7090 Stretch AN/FSQ7-A

7(}70\ %/9/ l \ -2 m

705 204 A AN/FSQ7 T)’(Io

j‘ﬁ»‘n’w

/

Pilot
DYSEAC

N
Datamatic

71

Datamatic

1000

M-460 N>\ EDSAC ll
\TRANS \ 702 N l LEO " NORC LARC
xo-1
Gamma 60 Datatron ' TC SWAC UNIVAC I /}
1105 AREXC \' SEAC Mercury
N RAYDAC
\3 UNIVACI MEG
ANIAC (\ oRDVAC 1101 .
\ S AVIDAC > EDSAC Ferranti
Manchester
IAS
Wpe i Bend ACE
DVAC endix
[Epvac] MOSAIC G15
DEUCE
Pllot ACE
[ENIAC]
ZUSE Monrobot

Harvard Mark I, IL 111, 1V

Bell Labs model [-VI

Babbage's
analytical
engine
Punched-carg/\ Desk —
/Jaquard/ equipment calculators Leibnitz
/loom - ~~——_Pascal ~——_
=

Fia. 2-33. The evolutionary tree of computer development.

FIG. 2—34 Present—da,y computers. () FL

AC computer for blomedwal research
(B) Honeywell 800; (C) Datamatic 1000; (D) UNIVAC solid-state computer; (E)

UN;VAC 1105; (F) RCA 501; (@) air-borne computer; (H) RVS-Mark I (an ;),uto-

matic order-filling system). [Courtesy (B, C) Minneapolis-Honeywell; (D, E) Reming-

ton Rand; (F) Radio Corp. of America; (G) Lzbrascope, Inc.; (H) Industrial Electronics
E'ngmeers, Inc.]

58

Fic. 2-34. Present-day computers (continued). (I) IBM 709; (J) IBM 705; (K)
IBM 650; (L) Perseus G/7578/1; (M) Burroughs 205; (N) NCR 304; (0) TRANSAC-
8-2000; (P) Bendix G-15. [Courtesy (I, J, K) International Business Machines Corp.;
(L) Ferranti, Lid.; (M) Burroughs Corp.; (N) National Cash Register; (O) Philco Corp.;
(P) Bendiz Computer Division.]

59

CHAPTER 3

CODING AND PROGRAMMING A DIGITAL COMPUTER

3-1. Introduction

Recapitulation. The previous chapter has given the basic foundations
necessary for a detailed discussion of how to direct a computer to perform
desired computations. A code was defined as a list of instructions and
numbers, the instructions being the specific means by which a person
tells the computer what to do. The fundamental concept that instrue-
tions are written in terms of addresses, the contents of which are the
numbers to be operated upon, was emphasized. We described the pro-
cedure by which the instructions are called into the instruction register,
one instruction at a time and in sequence; and we indicated how the opera-
tions are performed by the computer. The use of the binary number
system inside the computer and of some kind of shorthand for coding
purposes was discussed briefly. We described the processes involved in
transforming numbers written on paper into binary pulses inside the
computer’s memory. And it was noted that a similar process is involved
in the reverse transformation from pulses in the computer’s memory to
typed numbers on a working paper outside the computer.

Importance of Coding to the Engineer. It is important for the digital-
computer engineer to be well versed in coding and programming because,
first, such knowledge is essential for a clear understanding of the prin-
ciples of digital computers; second, occasions often arise when the com-
puter engineer will have to run a problem of his own associated with his
engineering duties; third, such knowledge is essential in maintaining an
existing computer or checking out a new computer; and, finally, the
engineer must be capable of evaluating various designs with respect to
the final use and application of the computer.

Material Directed to Engineering Needs. The present chapter is the
first of three chapters devoted exclusively to programming and coding.
This chapter is concerned mainly with an introduction to coding and
instruction formats. The next chapter (Chap. 4) is concerned with sub-
routines and the basis of instruction definitions. The final chapter of
this group (Chap. 5) considers the principles of automatic programming,
These chapters are directed to the digital-computer engineer and the
problems he will face in his work. The engineer must grasp the funda-
mental ideas involved, and his training cannot be restricted to a single
type of computer instruction format. He must understand the principles

60

SEc. 3-1] CODING AND PROGRAMMING A DIGITAL COMPUTER 61

behind the definitions of many kinds of instructions, so that he may
design new ones and evaluate proposed ones. He must also understand
the basis for automatic programming so that he may use or write such
programs intelligently in solving engineering problems or in performing
computer maintenance. Programming and coding are therefore a funda-
mental aspect of computer engineering,

Manner of Presentation. In successive sections of this chapter we
consider instructions that include explicitly first four addresses, then
only three, then two, and finally only one address. We begin with the
four-address system because this format includes all the necessary ingre-
dients of an instruction. Then, by omitting one address in the instruction
format, we arrive quite naturally at a three-address system, and so forth.
As each address is omitted from the instruction format, it must be
compensated for by corresponding additional computer circuitry or by
using several instructions where one sufficed before. In this way the
advantages and disadvantages of various basic instruction formats are
clearly observed.

Examples will show that, the smaller the number of addresses per
instruction, the greater the ingenuity and work required of the coder, the
larger the list of instructions that must be available to the coder, and the
longer the equivalent codes. On the other hand, as the number of
addresses per instruction is increased, the number of possible addressable
memory locations is decreased and the words are made longer. In
designing a computer system all these factors must be carefully evalu-
ated with respect to the intended use of the computer, the amount of
hardware required, the speed of the computer, the cost of the computer
and of programming and coding, ete.

In the current chapter only very basic instruction lists are used in
order that the material be as simple as possible at first. Only sequences
of instructions and decisions are illustrated. This leaves the student
free to concentrate on the fundamental properties and uses of the instruc-
tion formats. Consideration of those most important and fundamental
programming techniques of loops (i.e., recursions, iterations) and sub-
routines is left to Chap. 4. In that chapter also, a large number of
more complicated and specialized instruction or operation types are
considered in detail. We believe that the student will more easily
understand the principles of programming if consideration of these some-
what sophisticated ideas is postponed. Any discussion of t¢oding and
programming must be preceded by a study of number systems, as will
be found in the next sections of this chapter.

Stages tn Coding. As will be seen, there are five stages in coding.
First the computations to be performed must be clearly and precisely
defined. The over-all plan of the computations is diagramed by
means of a so-called “flow chart.” The second stage is the actual coding.
It is often best to write a code in terms of a symbolic language first, for
then changes are easily made. Numbers are assigned to the symbols,
and the final code is prepared. In the third stage some procedure is

62 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

used to get the code into the memory of the computer. The fourth
stage consists in “debugging’ the code, i.e., detecting and correcting any
errors. The fifth and final stage involves the running of the code on the
computer and tabulating the results. In this chapter and the next only
the first two stages are considered. Techniques for the fourth stage
are described in Chap. 5.

Philosophy of Coding. As will become abundantly clear in the follow-
ing sections, a single error in one instruction invalidates the entire code.
Hence coding is an exacting technique, requiring attention to details
without losing sight of the over-all plan. Learning to code must be
developed from within a person. Following through each instruction
of the examples given in this chapter is important, but it is not sufficient.
The student must code problems by himself if he is to become aware
of all the detailed thinking and reasoning associated with the coding
technique. The method of teaching in this text is through example.
The student should try to do the examples himself, using the text only
as a guide to the methods involved.

3-2. Number Systems : Conversion

Number Systems and the Radix. Preliminary to any discussion of
coding should come an analysis of various number systems. In Sec. 2-4
we noted that 8,675 really means 8 X 103 46 X 102 4+ 7 X 101 4 5 X
10°, where 10° = 1. Since decimal numbers are expanded as illustrated
in powers of ten, we say that the decimal number system has a radiz of ten.
This concept can be generalized to define number systems based on any
positive-integer radix ¢: if a number N is based on radix g, then it can be
expanded as

N = g + Gn1g™ '+ - 0 0 G2 4 a1t + a0’

for integer N > 1, or
N=aq"'+asq?+asg?+ - +ang™

for 0 < N < 1, where ao, @1, . . . , G_1, a—s, . . . are nonnegative inte-
gers each less than ¢. Of course, for noninteger N > 1, the expansion
contains both the positive and negative powers,

N =a.g"+ * * + 4+ a® + ang" + aog®
’ +ogtta_gt 4 o+ asng™
For example,

8,675.8675 = (8 X 10%) 4 (6 X 10%) 4+ (7 X 10!) + (5 X 10°)
+ (8 X 1071) 4 (6 X 10-2) + (7 X 10-%) 4 (5 X 10-%)

that is, a; =8, a; =6, a1 =7, a0 =5,a-1=8,a_, =0, a_3 =7, and
a_y = 5. Even though we are most familiar with the system for-¢ = ten,
-history records ancient civilizations that used ¢ = six, ¢ = twelve, and

SEC. 3-2] CODING AND PROGRAMMING A DIGITAL COMPUTER 63

even ¢ = sixty! For our purposes we are most interested in ¢ = 2 (binary
system), ¢ = 8 (octal system), and ¢ = 16 (sexadecimalf system).

First note that for radix ¢ the number system must involve g symbols.
For example, for ¢ = ten, the ten symbols are 0, 1, 2, 3, 4, &, 6, 7, 8,
and 9; for ¢ = 2, the 2 symbols are 0 and 1; for ¢ = 16, the 16 symbols
most often used are 0, 1,2, 3, 4,6,6,7,8,9, A,B,C, D, E,and F. Then,
if N =auq"+ g™+ -+ 4 asq® + a1q' + aog®, where the a; are
of course chosen from the g symbols, the number is conventionally written
by juxtaposition of the coefficients a; as follows: N = @nn—1 * - - a2a1a0.
If N=augt+ - - 4 a_ng™, then the number is usually written
by juxtaposition of the a; preceded by -[.]—that is, .a_ia_s - + - a_n.
For noninteger N > 1 we would have a, - * - ao.a_y - - - a_,. With
this in mind, counting in the four different systems mentioned above is
accomphshed as in Table 3-1.

Conversion from One Number System to Another. Using number sys-
tems based on different radices is like talking in different languages.
Just as one can translate one language into another, so also one can
‘““convert’’ from one radix to another. For example, in Table 3-1 num-
bers on the same row are equivalent—that is,

28 (dectmal) = 11100 (binary) = 34 (octalj = 1C (sexadecimal)

The binary, octal, and sexadecimal equivalents of the decimal numbers
from 0 to 15 should be memorized. :

In order to derive a systematic method for converting from one num-
ber system to another, we make use of the well-known result that if
N and ¢ are positive integers then there always exists a unique (non-
negative) integer r less than ¢ and a unique integer S such that

N r
—=84- 0<r<

q q e

Let us apply this to convert an integer number with radix p, say N,,
to its equivalent with radix ¢, say N,. In other words, we wish to deter-

mine the nonnegative integers ao, a1, . . . , a,, each less than g, such that
Ny =aug" + - - - + asg® + arg* + aog’
Observe that '
N ' ‘
7" = a1 A+ - + asg" + axg® + —
Integer Fractlon
‘ -
: 0 q

Since the quotient and rernajinder are each unique, equating the fractional

t Also less correctly called hexadecimal.

TaBLE 3-1. ConvERSION TABLE

Decimal Binary Octal Sexadecimal
g=10) | @=2) | @=8 | (@=16)

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7
8 1000 10 8

9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15
22 10110 26 16
23 10111 27 17
24 11000 30 18
25 11001 31 19
26 11010 32 14
27 11011 33 1B
28 11100 34 1C
29 11101 35 1D
30 11110 36 1E
31 11111 37 1F
32 100000 40 20
33 100001 41 21
34 100010 42 22
35 100011 43 23
36 100100 44 24

64

SEc. 3-2] CODING AND PROGRAMMING A DIGITAL COMPUTER 65

parts we have ao = 7o and So = a.g" ' + -« - + ax¢* + a1¢°. Divid-
ing So by ¢ and using our above results, we obtain

-‘-S—o=anq"—2+ C e +a2q°+ﬂ=S1+ﬁ
q q q

whence a; = 71, and so forth.

Hence the systematic conversion method is as follows: Divide N, by ¢;
the remainder is ag. Divide the resulting quotient by ¢; the remainder is
a1. Divide the resulting quotient by ¢; the remainder is as; etc. Asan
example, we have converted 28 (decimal) into binary (¢ = 2) in Table
3-2. Hence,

28 (decimal) = 11100 (binary)

TasLE 3-2. DEciMAL TO BiNARY CoONVERSION (N, > 1)

Remainders

2[28

214 0 = aq

2|Z 0=a

2l_:i 1 =a,

2)L 1=a;
0 1=a

The work can be more conveniently arranged from right to left, as follows:

Divide by 2
—
| Place remainder

04—-1<——34—7<—-14<—28B

L A
1 1 1 0 0 Remainders

As another example, let us convert 28 (decimal) to octal (¢ = 8),

0« 3«288
Il
3 4 Remainders

whence the converted octal number is 34.
To convert 28 (decimal) to sexadecimal (¢ = 16),

01« 28[_12
1 C
Hence the converted sexadecimal number is 1C. [Here, of course,

28 — 16 = 12 (decimal) = C (sexadecimal) from Table 3-1.]
Next consider 0 < N, < 1. We wish to find nonnegative integer

66 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

coefficients a_i, a_s, . . . , @—n, each less than ¢, such that
Npy=aag"t+aq?+ - +ang™
Here qu =a_ + a_2q—1 4+ -+ a_mq—-m+1
= U_1 + v_1 ’ :
where u_; is the integral part and v_, is the fractional part of gN,; hence
U1 = A .
and b1 = Gagt ¢ 0 0 aougmt?
Again qv_y =

a2t asqgt+ -0 g = Uy v,
whence wu_s = a_s, etec. .

The conversion method thus is as follows: Multiply N, by g¢; the
integral part is a_;. Multiply the resulting fractional part by ¢; the
integral part is a_.; ete.

As an example, we have converted 0.28 (decimal) to binary (¢ = 2)
in Table 3-3. Hence 0.28 (decimal) = .01000111 - - - (binary). The

TaBLE 3-3. DEciMAL To BINARY ConNvERsION (0 < N, < 1)

Integral parts

0.28

X 2

a., =0 " .56
‘ X 2
a_o = 1 —ﬁ
X 2

a_; =0 —%.
X 2

a_s =10 .48
X 2

a_s =0 ——gf-i
X 2

a_¢ = 1 —Qé
X 2

a_7 = 1 ?]:
X 2

a_sg = 1 ——&“

work can be more convénienﬂy arranged from left to right, as follows:

Multiply by 2
N
Place
integral |
part

2 X 0.28 — :56—> 12— .24 > 48 — 96 — .92 — .84 — .68

‘ L
Integral parts 0 1 0 0 0 1 1 1

SEc. 3-2] CODING AND PROGRAMMING A DIGITAL COMPUTER 67

Note that the process does not necessarily end, as it must for the inte-
gral numbers, but may be carried out to any number of significant
figures. Conversion to the octal and sexadecimal systems is similarly
accomplished.

For nonintegral numbers greater than unity the integral part and the
fractional part are done separately as just described.

Note that in converting from binary to octal (or sexadecimal) we
divide, or multiply, the binary number by binary 100 (or 1000), which is
equivalent to shifting the fraction point to the left, or to the right, by
three (four) binary places. Hence for binary to octal conversion we
start at the point and count off the binary bits in groups of three, to the
left and to the right. Then we write the octal equivalent for each
of these groups of three bits. TFor example, if the binary number is
11100.110100011, the octal equivalent is

3 4.6 4 3
011 100.110 100 011

To convert to sexadecimal, we count off similarly by groups of four.
For the same binary number the sexadecimal number is

1 ¢ .D 1
0001 1100.1101 0001

(See Table 3-1 for binary-octal and binary-sexadecimal equivalents.)
The converse will of course hold.

Converting from Binary to Decimal. Another conversion method, par-
ticularly useful for converting from binary to decimal, is based on the
following factorization, illustrated for n = 4:

N 04(14 + asq3 + azq2 + a1q1 -+ aoq°

(((asg + az)q + a2)qg + a1)g + ao

I

If N is a binary integer, then ¢ = 2 and the a&’s are either 0 or 1, but
a4, the most significant coefficient, must be 1. Hence, to convert N
to decimal, start out with 1, and double it, obtaining 2; then add as,
and double the result; add as, and double the result; add a4, and double
the result; finally add ao. For example,

a a3 daz a1 Qo

1 0 1 1 2

2+ 12+ 1)2+1
+1)2+1

+1
23

+
— o

——
Nt

NP
T+
D DN~

o
MAAA

1

The method is to accumulate the result while éalculating, and the work

68 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3
from left to right might look like this:

Double
Add

10 1 1 1=
é/'l/'l/'l/'

4 10 22

23

Similarly for N such that
N =00+ a2 ® + asqg® + a_sqg*

we have the factorization

N = i (a_1 + 1 <a_2 + 1 (a_z + L a—4>)>
q q q q

If N is given in binary, then ¢ = 2 and the a’s are either 0 or 1. The
decimal conversion is calculated by starting with the least significant
unit (for example, a_4 in our case), working toward the left as follows:
Add a_; to .5, and halve the result; add a_,, and halve the result; add
a—i1, and halve the result. TFor example,

1011 = 34(1 + 36(0 4+ J5(1 + 0.5)))
= 15(1 + 24(0 + 0.75))
= 14(1 + 0.375) = 0.6875

Of course the method is to accumulate while calculating, and the work
from right to left might be arranged as follows:

Halvel\Add

.1 0

1 1
LN
0.6875 0.3756 0.756 0.5
This method can be used for octal and sexadecimal conversion to decimal
simply by converting the octal or sexadecimal to binary first; e.g., for

octal,
53.53 (octal) = 101011.101011 (binary)

EXERCISES

Convert the following decimal numbers to binary, octal, and sexadecimal. Carry
the conversion far enough so that the converted number differs from the original
decimal number by less than 4.

SEc. 3-3] CODING AND PROGRAMMING A DIGITAL COMPUTER 69

Answers
Decimal Binary Octal Sexadecimal
(a) 56 111000 70 38
o) 0.79 .110010100 .624 .CA
() 56.79 111000.110010100 70.624 38.CA
@) 0.732 .101110110 .566 .BB
(e) 87,231 10101010010111111 252277 154BF

(f) 87,231.732 10101010010111111.101110110 252277.566 154BF.BB

(9) Convert —56.79 to binary, octal, and sexadecimal. (HinT: A negative number
is converted as if it were positive, and then the negative sign is affixed to the result.
Why?)

Convert to decimal:

(k) 70 (octal).

(z) .624 (octal).

(j) BB (sexadecimal).

(k) 70.624 (octal).

() Compare the results of Exercise k& with those of Exercise ¢, and explain.

3-3. Number Systems: Arithmetic

Addition and Multiplication Tables. We have already considered the
arithmetic operation of counting in different number systems. Although
all arithmetic can be accomplished by counting, we are more familiar
with the laborsaving operations of addition, multiplication, subtraction,
and division. Of course these operations may also be carried out in
other than the decimal number system. Addition and multiplication are
essentially carried out by means of tables. For decimal, binary, and
octal the tables are shown in Table 3-4.

Arithmetic Operations. In both addition and subtraction the ‘“carry”
or “borrow’’ is handled in other number systems exactly as it is handled
in the familiar decimal system. Of course the addition tables are used
during the calculation. For example,

1 1 0 1 (binary) 7 5 7 (octal)

+ + 1 0. 1 (binary) + + b 6 (octal)
1 0 0 1 0 (binary) 1 0 3 5 (octal)
1 1 0 1 (binary) 7 5 2 (octal)

- 1.1 (binary) — + 6. 5 (octal)

0 1 1 1 (binary) 6 6 5 (octal)

Multiplication and division in other systems also follow the rules
familiar to us in the decimal system. Of course the multiplication and

70 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3
TasLE 3-4. AriTHMETIC TABLES
DEeciMAL ApDITION TABLE DEeciMAL MULTIPLICATION TABLE
+/0 1 2 3 4 5 6 7 8 9 X/0 1 2 3 4 5 6 7 8 9
0/]0 1 2 3 4 5 6 7 8 9 0{0 0 00O 000 O0 O
111 2 3 4 5 6 7 8 910 1{0 1 2 3 4 5 6 7 8 9
2(2 3 4 5 6 7 8 91011 2{0 2 4 6 8 10 12 14 16 18
3|13 4 5 6 7 8 9 10 11 12 3]0 3 6 9 12 15 18 21 24 27
4(4 5 6 7 8 910 11 12 13 4(0 4 8 12 16 20 24 28 32 36
5(5 6 7 8 9 1011 12 13 14 5(0 5 10 156 20 25 30 35 40 45
66 7 8 910 11 12 13 1415 6|0 6 12 18 24 30 36 42 48 54
717 8 910 11 12 13 14 1516 7|0 7 14 21 28 35 42 49 56 63
8|8 9 10 11 12 13 14 15 16 17 8{ 0 8 16 24 32 40 48 56 64 72
919 10 11 12 13 14 15 16 17 18 9|0 9 18 27 36 45 54 63 72 81
BiNARY ADpITION TABLE BiNnarRY MuLrtirLicaTioN TABLE
+ 1 X 0 1
0 1 0 0 0
1 10 1 01
OctaL AppITION TABLE OcTAL MULTIPLICATION TABLE
+0 1 2 3 4 5 6 7 X0 1 2 3 4 5 6 7
o/0 1 2 3 4 5 6 7 0j]0 0 0 O 0O 0 0 O
1{1 2 3 4 5 6 7 10 1{0 1 2 3 4 5 6 7
212 3 4 5 6 7 10 11 210 2 4 6 10 12 14 16
3]!3 4 5 6. 7 10 11 12 3/0 3 6 11 14 17 22 25
414 5 6 7 10 11 12 13 410 4 10 14 20 24 30 34
5/5 6 7 10 11 12 13 14 5/0 5 12 17 24 31 36 43
6| 6 7 10 11 12 13 14 15 60 6 14 22 30 36 44 52
717 10 11 12 13 14 15 16 710 7 16 25 34 43 52 61

addition or subtraction tables are used during the calculations. For

example,

X

1011

101

1011

1011
0000

110111

(binary)
(binary)

(binary)

775
X 56

5756
4761

55566

(octal)
(octal)

(octal)

SEC. 3-4] CODING AND PROGRAMMING A DIGITAL COMPUTER

1011 (binary)
101110111 (binary)

775 (octal)
5655566 (octal)

101 502
111 536
101 502
“101 "346

101 346

71

EXERCISES

(a) Make an addition and multiplication table for sexadecimal numbers. [HIN.TZ'
In the addition table the rows (and columns) count by 1; the row (or column) of the
multiplication counts by n if n is the number of the row (column).}

Perform the following operations in binary:

Answers
@®) 111 41 1000
(c) 1010 + 111 10001
(d) 1110 — 1 1101
(&) 1 — 1110 —1101
(f) 1101 X 1011 10001111
(g) 11011 + 110 100.1

Perform the following operations in octal:
(h) 6,754 + 777.

@) 73 — 56.

(7) 555 — 62.

(k) 5,715 + 65.

Using the tables of Exercise a, calculate in the sexadecimal system:
Answers

() AFCB + 1AD8 CAA3

(m) 842D — 65AFE 1ETF

(n) 3C X D1 30FC

(o) 1A8E + 21 CE

3-4. Coding: Sequences of Instructions

We shall initiate our detailed discussion of coding using the four-
address instruction system. That is, in this section we shall consider
instructions which explicitly include four addresses, since a four-address
instruction system includes all the essential ideas or basic ingredients of
an instruction.

Instruction Format. As we have previously seen, some bits of the
instruction are set aside for the operation code designation—i.e., they
tell the computer the instruction is add, multiply, divide, etc. The rest
of the bits usually denote the four addresses. For the more usual opera-
tions that involve two operands, such as addition, multiplication, etc.,
two of the addresses are the addresses of the operands. The third address

72 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

tells where the result is to be put; the fourth address, where to obtain the
next instruction. Hence a typical four-address instruction format is as
follows (where the four addresses are denoted by «, 8, v, and §):

Address of
next in-
struction &

Operation | First operand | Second oper- | Put result in-
code address &« | and address 8| to address v

For any specific computer using a four-address instruction format the
number of bits in each address and in the operation code must be given,
as well as the actual operation code itself. In the design of a computer
the number of bits reserved for an address presents an upper limit to the
number of words in the addressable memory of the computer. If an
address is denoted by n bits, no more than 2 words can be contained in
the addressable memory.

Octal Shorthand. In order to illustrate the coding techniques devel-
oped in this section, we assume that there are 9 bits in each address
(2° = 512 addressable memory words) and 6 bits in the instruction code,
a total of (4 X 9) 4+ 6 = 42 bits in a word. This brings up the first
important detail of coding: the actual bits in an instruction are not
written out; rather, some shorthand is written instead. For example, in
our case the bits would be divided into 14 groups of 3 bits each, and the
octal equivalent of each group would be written out. In other words,
two octal numbers would represent the instruction, and each address
would be represented by three octal numbers. Thus, if 101 011 is the
binary code for add, then the instruction that says, “ Add the contents
of address 011 010 110 to the contents of address 011 100 101, put the
result into address 011 110 100, and take the next instruction from
100 000 001,” is written in octal notation as

Operation a B ¥)

53 326 345 364 401

In such cases it evidently facilitates matters to call the addresses in the
memory by their octal numbers. It will be assumed throughout the rest
of this section that such is the case. Also, numerical quantities will be
written on the code sheet in octal (i.e., they will have to be converted
from decimal to octal before being written on the code sheet).

The Computer Manual. For our computer we must have a * computer
manual” that gives the operation codes of the different instructions and
also precisely defines the meaning of the addresses for each instruction
type. For example, see Table 3-5. Asis clearly seen, the coding manual
must always be at the coder’s side. Two further observations must be
reemphasized before we can proceed with an example. First, when a
word s called into the arithmetic unit from the memory, it is not erased from

SEc. 3-4] CODING AND PROGRAMMING A DIGITAL COMPUTER 73

its memory address, but remains there also. Second, when a word is put
mto a memory address, it replaces the previous contents of this address,
., it erases what had been there.

TaBLE 3-5. OpERATION CODES

Code | Operation Meaning

53 | Add Add contents of address « to contents of address 8; put sum into
address v; take next instruction from address &

42 | Multiply | Multiply contents of address « by contents of address 8; put
product into address v; take next instruction from address &

54 | Subtract |Subtract contents of address 8 from contents of address «; put
difference into address v; take next instruction from address &
41 | Divide Divide contents of address a by contents of address 8; put quotient
into address «; take next instruction from address &

Ezample 3-1. As we have noted above, a sequence of instructions is
required for a problem. We shall illustrate such a sequence for a code
to evaluate

Y = Vot — Lggt?

where Y = altitude of a missile projected with an initial ¥ velocity
component of Vg, computed at time {. Suppose that Vo, = 1,000 fps,
g = 32 ft/sec?, and t = 53 sec. Now 1,000 (decimal) = 1750 (octal),
32 (decimal) = 40 (octal), and 53 (decimal) = 65 (octal). Let us put the
numbers
1750 into address 10
40 into address 11
65 into address 12
and 2 into address 13

Let us reserve address 14 for the result of the product V¢, address 15
for 2, address 16 for gi?, address 17 for 14¢t?, and finally address 20 for
Vot — Y4gt% The first instruction would be “Multiply the contents of
address 10 by the contents of address 12, and put the result into address
14, where we have yet to indicate where the next instruction will be
found. This is written as

Operation « g ¥ 5
42 010 012 014 ?

Now let us put this instruction into address 1. Next we would write
an instruction to form ¢ and put this instruction into address 2. Now
we can finish the first instruction,

42 010 012 014 002

74 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

The third instruction would multiply ¢ by g; the fourth instruction
would divide g¢¢* by 2; and the last instruction would subtract 149t
from Voi. A code is written on a coding sheet, which usually has the
left-hand column labeled with addresses and the remaining columns
labeled with the parts of an instruction. In this way a clear account is
made of exactly which instructions are located in which addresses. On
a coding sheet our code would look like Example 3-la. The student
should carefully check each instruction in this code to be sure that each
does what the “remark’’ says it does. There are several things missing
from this code: How do we get the computer started, and how do we
stop it when the job is finished?

ExavpLE 3-la

Instruction
Address Remarks
Opera-
tion & 8 ¥ 8
000
001 42 010 012 014 002 | Form Vet

002 42 012 012 015 003 | Form 2
003 42 015 011 016 004 | Form g2
004 41 016 | 013 | 017 | 005 |Form lsgt2
005 54 014 017 020 006 | Form Y
006 See text
007
010 00 000 000 001 750 | Vo, constant
011 00 000 000 000 040 | g constant
012 00 000 000 000 065 | £ constant
013 00 000 000 000 002 | 2 constant
014 Voyt temporary
015 t* temporary
016 gi? temporary
017 14gt® temporary
020 Y = VOyt - }égtz

There are many systems in use for initiating a code on a computer.
For example, after the code is read into the computer, the computer
might automatically take the very first instruction from address 000.
In our example we would then have a dummy instruction, say ““Subtract
contents of 007 from contents of 007, put result in 007, and take next
wnstruction from 001.” We used 007 because our particular code does
not involve 007. In order to stop the computer when the computation
has been completed, the last instruction should be one that says simply
“Stop the computer.” For instance, suppose that 60 is the operation
code for such an instruction; then we could put

60 000 000 000 000

SEc. 3-4] CODING AND PROGRAMMING A DIGITAL COMPUTER 75

in address 006. In such an instruction the addresses «, 3, v, and &
have no use.

The Used Temporaries. Memory space in a computer is often at «
premium and should be conserved. I'rom this point of view the above
code is not satisfactory. TFor note that, after ¢ has been computed,
address 015 is not used again. In other words, we could have computed
gt and put this result back into 015, and then computed 14g¢? and put
this back into 015 also, eliminating the necessity for using 016 and 017.
Similarly, after computing ¥, we could put this result into 015, eliminat-
ing the use of 020 also.

This brings up an important point about addresses reserved for num-
bers. There are two kinds of numbers contained in addresses: ‘“per-
manent,” or constant, numbers, such as 2 and ¢, and ‘“temporary,”
or transient, numbers, i.e., numbers that appear only in intermediate
stages of the computation. These temporary numbers can share their
address with other temporary numbers that appear at some other time.
Hence we call such memory locations temporaries. In our example
above, 015 would be such a temporary. The adjusted code becomes
Example 3-1b.

ExamvpLe 3-1b

Instruction
Address Remarks
Opera-

tion * A v 8
000 54 007 007 007 001 | Take first instruction from 001
001 42 010 012 014 002 | Form V,t
002 42 012 012 015 003 | Form ¢2
003 42 015 011 015 004 | Form g
004 41 015 013 015 005 | Form 4gt2
005 54 014 015 015 006 | Form Y
006 60 000 000 000 000 | Stop computer
007 -
010 00 000 000 001 750 || Vo, constant
011 00 000 000 000 040 | g constant
012 00 000 000 000 065 |t constant
013 00 000 000 000 002 | 2 constant
014 Voyt temporary
015 Temporary, where final result is

found
EXERCISES

(a) Using the instructions defined in this section, write a code that calculates x =
a? — be, where a = 313 (decimal), b = 983 (decimal), and ¢ = 838 (decimal).
(6) In the example given in this section why are two temporaries needed, that is,

76 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

014 and 015? Write a code using only one temporary. [HinT: Vo — 14g2 =
(Vo — lggtit.]

(c) If an instruction format for a computer allowed 12 bits for each address, what is
the maximum number of addressable words possible for the memory of that computer?
[Ans. 212 = 4,096 (decimal) words.] If the first address of this memory is 0000, what
is the last memory address? [Ans. 7777 (octal) (that is, 2!2 — 1 written in octal).]

3-56. Coding Decisions

The Comparison Instruction. We shall next give an example to be
coded where a simple decision is made by the computer. Such decisions
are usually made by comparison instructions. For example, a comparison
instruction might operate thus: “Compare the contents of « with the
contents of 8; if the contents of address « is greater than the contents
of address 8, then take the next instruction from address v; otherwise,
take the next instruction from address 8.”” A few simple conventions
can greatly shorten such a statement: Let () stand for ‘“the contents of
address @’’; and let the word {ake mean ““take the next instruction from.”
Then the above statement becomes “If («) > (B), take v; if (@) < (8),
take 8.”” Let the operation code for this instruction be 43.

Ezxample 3-2. Now consider the code for the following problem: Three
numbers, U, V, and W, are found as the contents of addresses 015, 016,
and 017, respectively. We wish to write a code that will put the largest
of these numbers into address 020. First note that in any case we shall
need three instructions that transfer the contents of addresses 015, 016,
and 017, respectively, into address 020, and the rest of the code is to
decide which of these three instructions to execute. The transfer prob-
lem is easily taken care of by adding the contents of the desired address
to the constant zero and putting the result into 020. (Hence we need an
address whose contents is zero.) Let us put the three such instructions
into 005, 006, and 007 (see the code below). To determine which of
these to execute, let us first compare (015) 2 (016). If this is the
case, then we would compare (015) £ (017). If this is also the case, then
(015) > both (016) and (017), that is, U > V and U > W, and hence
we would execute (005), i.e., transfer (015) to (020). If (015) < (017),
then (017) > (015) > (016), that is, W > U > V; hence we transfer
(017) to (020), i.e., execute (007). If (015) < (016), then compare
(016) 2 (017). If this is the case, (016) > both (015) and (017), that is,
V > U and V > W; hence we transfer (016) to (020), i.e., execute (006).
If (016) < (017), then (017) > (016) > (015), that is, W >V > U;
hence transfer (017) to (020), i.e., execute (007). The code is shown in
Example 3-2a.

Several general observations can be made that are exemplified by this
code. TFirst, coding is a very exacting technique: every path of every
instruction must be followed carefully, for a single error invalidates the
entire code. Second, note that when using a comparison instruction
the significance of the < must be carefully considered, as well as that of
the >. Reading a code does not teach one how to code—actually writing

SEC. 3-5] CODING AND PROGRAMMING A DIGITAL COMPUTER 77

ExamrLE 3-2a

Instruction
Address Remarks
Opera- 5
tion « d ¥
000 54 021 021 021 001 | Take first instruction from 001
001 43 015 016 002 003 |[U>V?
Yes, try U > W;i.e., take 002
No, try V > W;i.e., take 003
002 43 015 017 005 007 U >W?
Yes, U is largest number; i.e.,
take 005
No, W is largest number; i.e.,
take 007
003 43 016 017 006 007 |V >WwW?
Yes, V is largest number;i.e.,
take 006
No, W is largest number; i.e.,
take 007
004
005 53 015 021 020 010 | Transfer U to largest number
cell
006 53 016 021 020 010 | Transfer V to largest number
cell
007 53 017 021 020 010 { Transfer W to largest number
cell
010 60 000 000 000 000 | Stop computer
011
012
013
014
015 U
016 V three given numbers
017 w
020 Largest number cell
021 00 000 000 000 000 | O constant

a code does. Most students will undoubtedly feel uneasy about the
above example until they rewrite it, doing the detailed thinking them-
selves, using the example only as an occasional guide and final check.
The Sign Bit. Up to now we have been making two tacit assump-
tions, namely, (1) that all numbers are whole numbers (i.e., have no
fractional part) and (2) that all numbers and results are positive. Both
the assumptions are not necessarily true. They were made in order to
concentrate on the coding problems so far considered and avoid unneces-
sary complication in those discussions. We shall defer full consideration
of the first of these problems for a later section, remarking here only that

78 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

a computer can consider numbers whose magnitudes lie within a restricted
range which depends on the construction of the computer. We have been
illustrating a computer with a range of integers from 0 through 242 — 1.,
Hence, before putting a problem on a computer, it must be “scaled”
so that all numbers that appear will be whole numbers. Similarly prob-
lems must be scaled to fit on other computers, depending on their ranges.
The second problem is solved as follows: A single bit is added on the left
to the length of the word, making the word 43 bits long. If this bit is a
zero, then the machine is wired to interpret the number as being positive;
if this bit is a unit, then the machine will interpret the number as being
negative. The circuitry in the arithmetic unit must sense the signs
of the operands and compute the proper values for this so-called sign bit
in the results. The meaning attached to this 43d bit, as far as an instruc-
tion is concerned, is different for different computers and is discussed
below; it is never a fundamental ingredient of the instruction. On the
coding sheet the sign bit is noted by affixing a 4 to the left of the number
if it is positive or zero, and a — if it is negative.

EXERCISE

(a) Using the instructions defined in this and the preceding section, write a code
that calculates X = minimum (U,V,W), where U, V, and W are the contents of
addresses 010, 011, and 012, respectively.

3-6. Coding: Flow Charting and Symbolic Code Aids

A flow chart is a diagram, or picture, of a code that is often helpful
for visualizing interrelationships between various parts of a code. Such a
diagram is almost always made before the specific instructions are writ-
ten. There are essentially three kinds of symbols used in a flow chart
(see Fig. 3-1). The first represents function calculation; the second repre-
sents decisions and the various associated alternatives; and the third,
called a (variable) connector, is simply a way to eliminate too many cross-
ing lines in the picture or to indicate which lines to follow when one has to
continue the diagram on another page.

I

Function calculation Decision calculation Connector
Fic. 3-1. Flow-chart symbols.

- O

For illustration, consider the example of Sec. 3-4: The functions V,t
and 14gi? are to be calculated, and their difference is the final desired
result. Hence we would draw the flow diagram in Fig. 3-2. The first
(left) box represents the instruction in address 001; the second box repre-

SEc. 3-6] CODING AND PROGRAMMING A DIGITAL COMPUTER 79

sents the set of instructions in addresses 002 to 004; the third box repre-
sents the instruction in address 005. The arrows indicate the order in
which the computer does the indicated computing. Note that the sym-
bols representing intermediate results appearing on the left-hand side of the
equations, namely, x and ¥y, appear later in the chart on the right-hand side
of an equation. Only symbols that signify end results, like Y, will
not appear on the right-hand side of an equation. This observation
gives a superficial way to check that all intermediate results are used
appropriately.

x=V ¢ y=tgt® |- Y=x-y
0y 2 :

F1a. 3-2. Simple flow chart.

(Start)

is largest is largest

W
is largest

F1c. 3-3. Flow chart including decision boxes.

A more complicated flow diagram is associated with the problems of
Sec. 3-5. Here decision boxes are used (see Fig. 3-3). The lines leading
away from the ovals represent the different paths the computer will take,
depending on the outcomes of the decisions. The little symbols (> and
<) near the lines represent the conditions under which the program will
go in the corresponding directions. The proper corresponding condition is
indicated when the symbol replaces the colon; i.e., the computer will follow
the left-hand path when U > V and the right-hand path when U < V.
The use of the connector is clear. The top decision box represents (001);
on the next lower level the left-hand box represents (002), the right-hand
box (003). On the next lower level the left-hand function box represents
(005), the right-hand box (006), and the lowest box (007).

Symbolic coding is another intermediate aid between the statement
of the problem and the final code. Symbolic coding consists in writing
a code, not in terms of specific numerical addresses, but rather in terms of

80 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHaAp. 3

some name description or other symbolism to represent the addresses.
Then at a later time specific addresses can be assigned for these symbols,
or names, to produce the actual code. The intermediate code in terms
of symbols is called the symbolic code. This technique is extremely use-
ful, particularly in those cases where one must write instructions involv-
ing addresses of constants or of other instructions that have not yet been
specifically assigned. For example, this difficulty is encountered in writ-
ing the code for the second example of the previous section, since when
writing the instruction for U:V, the coder must refer to the not as yet
written or located instructions for U:W and V:W. A symbolic code
for this example might be as shown in Example 3-3a. The symbolism
of this code is as follows: U is the address whose contents is the number

ExaMpPLE 3-3a

Instruction
Address
Opera-
tion * f v 8
u:v CMP U v U:w V:w
U:w CMP U w ULN WLN
VW CMP v w VLN WLN
ULN ADD U o LNC S
VLN ADD v b LNC S
WLN ADD w é LNC S
S
U
v
w
LNC
¢

U—that is, (U) = U. V is the address such that (V) = V. W is the
address such that (W) = W. U:V is the address whose contents has the
compare instruction concerning U and V, and similarly for U:W and
V:W; ULN is the address of the instruction that puts the number U
into the largest number cell, and similarly for VLN and WLN. LNC is
the address of the largest number cell; ¢ is the address whose contents is
the constant zero; and S is the address of the stop instruction. CMP
stands for the compare operation code, and ADD stands for the add
instruction code. The assignment of addresses then is shown in Example
3-3b.

Steps in Writing a Code. The procedure for programming or coding
is as follows: (1) Understand the statement of the problem. (2) Draw a
flow diagram for the problem. (3) Code symbolically each box of the
flow diagram. (4) Assign addresses. (5) Write out the final detailed
code. The flow diagram presents an over-all visual picture of the prob-

SEC, 3-7] CODING AND PROGRAMMING A DIGITAL COMPUTER 81

ExamrLE 3-3b

Symbolic name Address (or code)
u:v 001
U:w 002
V:w 003
ULN 005
VLN 006
WLN 007
S 010
U 015
v 016
w 017
LNC 020
o 021
CMP 43
ADD 53

lem, organizing the coding effort so that it can be concentrated on one box
at a time. Symbolic coding enables an instruction to be written before
the coder knows the addresses of constants and other instructions refer-
enced by this instruction. In addition, since the symbolic code names
for these addresses are suggestive of their contents, the symbolic code is
easier to write and follow.

EXERCISES

Using the instructions defined in the previous section, draw the flow diagram, write
a symbolic code, assign addresses, and finally write the final codes to calculate z
[where a = 313 (decimal), b = 983 (decimal), and ¢ = 838 (decimal)]:

(@) z =a%—b-c.

®) z = bla + ¢).
() z =

If U, V, and W are the contents of addresses 010, 011, and 012, respectively,
calculate:

(d) z = minimum (U,V,W).

(¢) # = maximum (U%V?2,W?2),

(f) £ = maximum (U3 — VW, V(U + W)).

Hint: The same symbolic code for Exercises a and b appears as parts of the symbolic
code for Exercises ¢ and f.

3-7. Three-address Instruction Systems

Using Less than Four Addresses. Up to now we have considered an
instruction format containing four addresses. It was remarked in
Sec. 3-1 that each of the four addresses is a necessary ingredient to
coding and that computers using fewer addresses must compensate by
(1) having the omitted information wired in and by (2) using more
instructions to achieve the same ends. From the engineering point of
view the primary advantage of having fewer than four addresses in the

82 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

instruetion is that for the same word length each address will comprise
more bits and hence give the computer a larger addressable memory
capability. In the 43-bit format described in Sec. 3-4, 36 bits were
reserved for the four addresses, making each address 9 bits long, for a
maximum of 512 words in the addressable memory. If three addresses
were used, each would comprise 12 bits, allowing a 4,096-word memory ;
two addresses, 18 bits per instruction, a 262,144-word memory; one
address, 36 bits, 68,719,476,736 words. Of course shorter words can
be designed for machines with one- or two-address instructions, and this
in itself can, as we shall see, save a great deal of hardware.

The Three-address Instruction. The usualf three-address instruction
is similar to the four-address instruction except that the § address is
omitted from the format. Hence the format becomes

Operation | Address of first | Address of second | Address into which
code operand, « operand, 8 result is put, v

How does the computer know in what address to find the next instruc-
tion? Except for special instructions the computer will always take as
the next instruction the contents of the next consecutive address following
that of the present instruction. That is, the computer will normally
take the instructions consecutively in the order in which they are written
into the memory. This is accomplished in the current-address register.

ExaMPLE 3-1c. THREE-ADDRESS

Instruction

Address Remarks
Opera-

tion

0000 53 0007 0007 0007 | Take first instruction from 0001
0001 42 0010 0012 0014 | Form Vgt

0002 42 0012 0012 0015 | Form 2

0003 42 0015 0011 0015 | Form gi2

0004 41 0015 0013 0015 | Form 14gt?

0005 54 0014 0015 0015 | Form Y

0006 60 0000 0000 0000 | Stop computer

0007
0010 00 0000 0000 1750 || Voy
0011 00 0000 0000 0040 | ¢
0012 00 0000 0000 0065 ¢
0013 00 0000 0000 0002 |2 constant

0014 Vo, temporary
0015 Temporary, where final result is
found

1 Any of the addresses might be omitted at the whim of the designer.

SEc. 3-7] CODING AND PROGRAMMING A DIGITAL COMPUTER 83

This register is first set at the address of the first instruction; then, each
time an instruction is executed, the contents of this register normally
is automatically increased by 1 and is taken by the computer as the
address of the next instruction. (Because of this the current-address
register is often called the current-address counter.) With this under-
standing of where the computer will find the next instruction the only
change necessary in the add, multiply, divide, and subtract instructions
given in Sec. 3-4 is the deletion of the § address. However, the com-
parison instruction will need redefining thus: If (a) > (B), take next
instruction from v; otherwise take the next consecutive instruction. If
(@) > (B), then the current-address counter will automatically be set at
address v; if (a) < (B), the counter will behave as usual, just increasing
by 1.

Examples. Tor instance, the examples coded in Secs. 3-4 and 3-5
would have to be rewritten as shown in Iixamples 3-1¢ and 3-2b.

There is not much difference between Example 3-1c and its four-

ExamrLE 3-2b. THREE-ADDRESS

Instruction

Address Remarks
Opera-

tion

0000 54 0021 0021 0021 | Take first instruction from 0001
0001 43 0015 0016 0005 |U:V

If U > V, take 0005

If U £V, take 0002

0002 43 0016 0017 0007 | V:W

If Vv > W, take 0007

If V < W, take 0003

0003 53 0017 0021 0020 | Transfer W to largest number cell
0004 43 0022 0021 0012 | Jump to stop

0005 43 0015 0017 0011 |U:W

If U > W, take 0011

If U < W, take 0006

0006 43 0022 0021 0003 | Jump to transfer W instruction
0007 53 0016 0021 0020 | Transfer V to largest number cell
0010 43 0022 0021 0012 | Jump to stop

0011 53 0015 0021 0020 | Transfer U to largest number cell
0012 60 0000 0000 0000 | Stop

0013

0014

0015 U

0016 V } given numbers
0017 w

0020 Largest number cell

0021 00 0000 0000 0000 | O constant
0022 00 0000 0000 0001 |1 constant

84 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

address version. Consider, however, Example 3-2b. HEach branch of
this code should be carefully reconstructed by the student so that he
may grasp just what problems arise from ordering the instructions and
how these problems are solved. Note that there appear in addresses
0004 and 0010 dummy comparisons, which artificially force a jump to
address 0012, where the stop instruction is located. Also, a dummy
comparison was made in address 0006 in order to reuse (0003). A total
of 11 instructions were necessary in the three-address system, while
8 sufficed in the four-address system. The placement of the instructions
was somewhat complicated; this difficulty is relieved by symbolic coding.

EXERCISES

(a) By rearranging the order of one of the comparisons together with the order of
some of the instructions in Example 3-2b above, one instruction can be eliminated—
i.e., the code will take only 10 instructions instead of 11. Can you find this compari-
son and rearrange the instructions properly? (Hint: In address 0005 the instruction
can be changed so as to jump directly to make W the largest number. But then some
other instructions must be reordered.)

(b) Redefine in detail for a three-address system the add, subtract, multiply, and
divide instructions given in Sec. 3-4.

(c) Draw flow diagrams for the above examples, and state which sets of instructions
belong to each box.

(d-i) Do Exercises a to f of Sec. 3-6, using the three-address instructions defined
in this section. Carry out each of the five steps of coding in every problem.

3-8. Two-address Instruction Systems

The Two-address Instruction. In the two-address instruction usually
both the v and § addresses are eliminated. The format is simply

Operation | Operand Operand
code address ¢ | address 3

The computer finds the location of the next instruction as in the three-
address system, taking care of the function of 5. Where does the result
of the operation go? This problem is solved in a two-address system by
having the result of every arithmetic operation automatically left in a
very special memory location, called the accumulator. This special
memory cell is located in the arithmetic unit; it has been discussed in
Chap. 2 of this book. It suffices to note here that v is most often under-
stood to be the accumulator, although as we shall see in Chap. 4 there
can be many variations to this theme. Hence the definitions of our
instructions must be rewritten as shown in Table 3-6.

Of course, after the sum is in the accumulator, it must be transferred
to an ordinary memory location. Hence we need a transfer instruction.
Other versions which might be used are also listed (cf. Chap. 4).

Ezamples. As mentioned above, the word length is often shortened
for two- or one-address systems; so let us, for illustration purposes, use a

SEC. 3-8] CODING AND PROGRAMMING A DIGITAL COMPUTER 85

TaBLE 3-6. Two-ADDRESS INSTRUCTIONS

Code Operation Meaning
53 | Add Add (a) to (8), and put result in accumulator
42 | Multiply Multiply (a) by (B), and put result in accumulator
54 | Subtract Subtract (8) from (a), and put result in accumulator
41 | Divide Divide (@) by (8), and put result in accumulator
43 | Compare If (a) > (acc), take B; otherwise go to next consecutive
instruction (as usual)
52 | Transfer Transfer (ace) into «, and take 8
51 | Add and transfer Add () to (ace), and put result into 8
40 | Multiply and transfer | Multiply () by (acc), and put result into 8

word length of 24 bits plus one sign bit. In order to increase flexibility,
the accumulator is often given an address, say, for example, 777. The
example codes as revised are shown as Examples 3-1d and 3-2¢c. Note
that two more instructions were needed in Example 3-1d than for the
three- or four-address codings. The contents of the accumulator must be
carefully watched, or errors might creep in.

In Example 3-2¢ note how the comparisons were arranged so that the
next instruction in sequence could be a transfer instruction direct from
the accumulator. This was successfully accomplished for V and U.
However, W had to be placed in the aceumulator especially for its trans-

ExampLE 3-1d. TwWo-ADDRESS

Instruction
Address o Remarks
pera-
tion * B
000 54 017 017 | Take first instruction from 001
001 42 010 012 | Form Vgt in accumulator
002 52 014 003 | Put Vot into 014
003 42 012 012 | Form {2 in accumulator
004 42 011 777 | Form g2 in accumulator
005 41 777 013 | Form 4gi? in accumulator
006 54 014 777 | Form Y
007 52 015 016 Put Y into 015
010 00 001 750 | Voy
011 00 000 040 g
012 00 000 065 |t
013 00 000 002 |2
014 Vo,t temporary
015 Temporary, where result is found
016 60 000 000 | Stop computer
017 00 000 000 | O constant

86 INTRODUCTION TO DIGITAL PROGRAMMED 8YSTEMS [CHaPp. 3

fer to the largest number cell. In any event it is to be noted that the
placement of instructions and the order of the comparisons become more
complicated in a two-address system. Note also that 11 instructions
were needed, one more than was absolutely necessary for the three-
address system (see Exercise a of Sec. 3-7) and three more than for the
four-address system.

ExaMrLE 3-2¢. TWoO-ADDRESS

Instruction
Address Remarks
Opera- 8
tion a
000 54 021 021 | Take first instruction from 001
001 53 016 021 | Put V into accumulator
002 43 015 005 |U:V

If U > V, take 005
It U £V, take 003
003 43 017 010 | W:V (since V is already in accumulator)
If W > V, take 010
If W <V, take 004

004 52 020 012 | Transfer V from accumulator into 020
005 53 015 021 | Put U into accumulator
006 43 017 010 | W:U

If W > U, take 010
If W < U, take 007

007 52 020 012 | Transfer U from accumulator into 020
010 53 | 017 021 | Transfer W into accumulator
011 52 020 012 | Transfer W from accumulator into 020
012 60 000 000 | Stop computer
013
014
015 . U
016 V ; given numbers
017 w
020 Largest number cell
021 00 000 000 | O constant
EXERCISES

(a) Relate sets of instructions of the above examples to their respective boxes of the
flow diagrams.

(b—g) Do Exercises a to f of Sec. 3-6, using the two-address instructions defined in
this section.

3-9. One-address Instruction Systems

The One-address Instruction. In the one-address instruction only one
operand address, «, remains. The accumulator does a dual job, standing

SEc. 3-9] CODING AND PROGRAMMING A DIGITAL COMPUTER 87

in for both the second operand address 8 and the address v into which
the result is put. Address § is handled as in the three- and two-address
systems. There are a large number of variations on this theme, and
often additional registers or special memory locations are used. How-
ever, in presenting the principles of one-address coding it suffices here to
consider only one register, the accumulator. In a one-address system
many more kinds of instructions are found essential. TFor example, in a
typical modern one-address computer there are 88 different instructions.
This should be compared with the 46 and 16 instructions defined for
typical modern two- and three-address computers. It is evident that,
the more complex and numerous the instructions that have to be learned
by the coder, the harder it is for him to code. In order to help the coder
who deals with a machine with, say, 88 instructions, advanced program-
ming techniques are resorted to; these will be discussed in Chap. 5.
The necessity for advanced programming techniques to aid the coder
prepare programs for a one-address computer system becomes even more
striking when one reads the rather tortuous techniques needed to accom-
plish the simplest of complete operations, such as comparisons, as illus-
trated by the examples to be presented below. The list of one-address
instructions in Table 3-7 is sufficient to meet our needs for the examples.

TaBLE 3-7. ONE-ADDRESS INSTRUCTIONS

Code Operation Meaning
53 | Add Add (a) to (ace); put result in accumulator
42 | Multiply Multiply («) by (ace); put result in accumulator
54 | Subtract Subtract (&) from (ace); put result in accumulator
41 | Divide Divide (acc) by (a); put result in accumulator

43 | Conditional jump | If (ace) is negative, take «; otherwise take next instruction
in sequence as usual

52 | Transfer Transfer (ace) into «

51 | Replace add Add (a) to (acc); put result into o

40 | Replace multiply | Multiply («) by (acc); put result into o
44 | Jump Take next instruction from «

The transition from two to one address for the add, multiply, subtract,
‘and divide instructions is natural enough, but how is comparison per-
formed? To perform a comparison, one of the numbers is put into the
accumulator and the other subtracted from it; then a conditional jump
is used. (A computer with more than one register may compare the
contents of two registers.) :

Examples. Let us shorten our word to 15 bits plus a sign bit, for
-convenience in this presentation; then the codes for our examples can be
written as shown in Examples 3-1¢ and 3-2d.

Note, for the first, that it is necessary to make sure that the contents
of the accumulator was zero before using the add instruction to transfer

88 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

a number into the accumulator. Also we calculate 14¢i? first so that
after forming Vot in the accumulator we can subtract 14gi? directly
from the accumulator, thus avoiding an extra clearing, etc., of the accu-
mulator. More instructions are needed than for the other systems: one-
address, 12; two-address, 7; three-address, 7; four-address, 7. One less
instruction than used will suffice: the student should check this for him-
self, revising the code to require one less instruction.

ExampLE 3-le. ONE-ADDRESS

Instruction
Address 0 Remarks
pera-
tion «
000 44 001 | Take first instruction from 001
001 42 016
002 53 021 Clear accumulator, and form 2
003 42 021
004 42 020 | Form g¢t2
005 41 022 | Form 4gt2
006 52 023 | Put 14¢¢% into 023
007 42 016
010 53 017 Clear accumulator, and form V¢
011 42 021
012 54 023 |Form Y = Vot — Y4qi
013 52 023 | Put Y into 023
014 60 000 | Stop computer
015
016 00 000 |0 constant
017 01 750 | Vo
020 00 040 |g¢
021 00 065 |t
022 00 002 |2
023 14gt? temporary and result

There are 25 instructions in the code of the second example as compared
with 11 for the corresponding code in the two-address system, 10 in the
three-address system, and 8 in the four-address system. By choosing
a more convenient set of one-address instructions (c¢f. Chap. 4) we might
have reduced the length of the code somewhat, but not significantly.

One-plus-one-address Systems. There is another kind of two-address
instruction that deserves mention. It is a two-address instruction where
the « and § addresses are retained, instead of the « and B addresses. In
other words, an addition instruction might read: Add («) to the accu-
mulator, and take the next instruction from 8. Such a system has the
coding characteristics of a one-address system; the purpose of the second
address is to allow minimum access coding when a drum is being used

SEc. 3-9] CODING AND PROGRAMMING A DIGITAL COMPUTER 89

ExampLE 3-2d. ONE-ADDRESS

Instruction
Address Remarks
Opera-
tion «

000 44 001 | Jump to first instruction of code, 001

001 42 035 | Clear accumulator

002 53 032 | Put V into accumulator set up comparison

003 54 031 | Form V — U in accumulator

004 43 015 | If (acc) negative, U > V, try U:W; if positive, U < V,
try V:W

005 42 035 | Clear accumulator

006 53 032 | Put V into accumulator set up comparison

007 54 033 | Form V — W in accumulator

010 43 025 | If (acc) negative, W > V, W largest; if positive, W < V,
V largest

011 42 035 | Clear accumulator

012 53 032 | Put V into accumulator V is largest number

013 52 034 | Put V into largest number cell

014 44 030 | Jump to stop

015 42 035 | Clear accumulator

016 53 031 | Put U into accumulator set up comparison

017 54 033 | Form U — W in accumulator

020 43 025 | If (acc) negative, W > U, W largest; if positive, W < U,
U largest

021 42 035 | Clear accumulator

022 53 031 | Put U into accumulator U is largest number

023 52 034 | Put U into largest number cell

024 44 030 | Jump to stop

025 42 035 | Clear accumulator

026 53 033 | Put W into accumulator W is largest number

027 52 034 | Put W into largest number cell

030 60 000 | Stop computer

031 U

032 V ; given numbers

033 w

034 Largest number cell

035 00 000 | O constant

(see Chap. 2). That is, the second address presents some further flexi-
bility in the placing of the instructions in the drum memory. This is
often called a one-plus-one-address system.

EXERCISES

(a) Relate sets of instructions of the above codes with their respective boxes in the
flow diagrams.

90 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3

(b-g) Do Exercises a to f of Sec. 3-6, using the one-address instructions defined in
this section.

(h) Define one-plus-one instructions corresponding to the one-address instructions
given above; then redo the second example. Have a significant number of instruc-
tions been saved?

3-10. Decimal Systems

Decimal-coded Binary. The only variations in the coding system so
far described were with respect to the instruction format and, in par-
ticular, to the number of addresses that were explicitly displayed in this
format. In all these systems numbers were written in octal-coded binary;
i.e., a set of octal characters represented a binary number. In fact the
three bits represented by each octal character corresponded to the same
number with radix 2: 3 (octal) represented 011, 5 (octal) represented 101,
etc. The instructions were written with the same shorthand, the octal
character representing the real equivalent 3-bit binary number.

There is another system for coding numbers and an associated short-
hand for representing the bits in an instruction, called decimal-coded
binary. Of course, either octal-coded binary or decimal-coded binary
can be used with four-, three-, two-, and one-address instruetion formats.

Usually, in decimal-coded binary, 6 bits are associated with a single
decimal number. Since there are 64 different combinations that can be
formed with 6 bits, the letters of the alphabet are also assigned binary
codes. These assigned codes depend on the logical design of the com-
puter. For example, one such system (UNIVAC) is as shown in Table
3-8. :

TasLe 3-8. UNIVAC X-3 CopE

Binary Binary Binary Binary
Symbol code Symbol code Symbol code Symbol code

0 00 0011 A 01 0100 J 10 0100 N 11 0101
1 00 0100 B 01 0101 K 10 0101 T 11 0110
2 00 0101 C 01 0110 L 10 0110 U 11 0111
3 00 0110 D 01 0111 M 10 0111 v 11 1000
4 00 0111 E 01 1000 N 10 1000 w11 1001
5 00 1000 r 01 1001 0 10 1001 X 11 1010
6 00 1001 G 01 1010 P 10 1010 Y 11 1011
7 00 1010 H 01 1011 Q 10 1011 A 11 1100
8 00 1011 I 01 1100 R 10 1100

9 00 1100

In such decimal computers a decimal number is written into a word
“as is,” with no conversion required. Of course the resulting binary
number is not a number at all, but a binary code. The arithmetic unit
then handles 6 bits at a time, and is wired so as to produce the correct

SEc. 3-10] CODING AND PROGRAMMING A DIGITAL COMPUTER 91

results. Tor example, in octal-coded binary we would have

Corresponding binary operation

Octal as it would appear in compuler words
5 000 101

+ 6 4000 110
13 001 011

In decimal-coded binary we would have

Decimal
5 000 011 001 000
+ __6 4000 011 001 001
11 000 100 000 100

In a later chapter examples of decimal adders, ete., will be presented.

Note that a word that contains letters cannot be added to another
word since addition is defined only for numbers. Also, an address must
be denoted by pure numbers, not letters (for as we shall see in Chap. 4,
we must be able to add to or subtract from the addresses). The letters
can be used only for the operation code or for some letter constant.

The advantages of a decimal system are simply that no conversion
need be made for numbers and that letters can be read into and out of
the computer directly. However, the disadvantage of a decimal system
is that it is difficult to write codes where the value of a particular single
bit of a word has significance, as is necessary, for instance, in switch
sensing; while there are methods for determining the value of some bit
of the word, in general the bits are used in the computer in groups of six.

Example. As an illustration of a code in such a system, consider the
three-address instructions of Table 3-9, where one decimal symbol is
used for the operation code and three decimal digits are used for each
address. Here (o) + (8) — v means, “The contents of a are added
to the contents of 8, and the sum is put into address v,” ete.

TABLE 3-9. THREE-ADDRESS DECIMAL INSTRUCTIONS

Code Operation Meaning
A | Add (@ +@B)— v
M | Multiply (@-@B)— v
S | Subtract (@) —B)— v
D | Divide (@) ~@B)— v
C | Compare If («) > (B), take vy
P | Stop computer

92 " INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 3
The code for the first of our examples is shown in Example 3-1f.

ExampLE 3-1f. DECIMAL-CODED BINARY

Instruction
Address Remarks
Opera-
tion « A v
000 S 007 007 007 | Take first instruction from 001
001 M 008 010 012 | Form Vit
002 M 010 010 013 | Form ¢2
003 M 013 009 013 | Form g¢2
004 D 013 011 013 | Form 4gi?
005 S 012 013 013 | Form Y
006 P 000 000 000 | Stop computer
007
008 0 000 001 000 | Vo,
009 0 000 000 032 |g
010 0 000 000 053 |t
011 0 000 000 002 |2
012 Vot temporary
013 Temporary where final result is found

EXERCISE

(@) Recode the second of our illustrative examples in three-address decimal-coded
binary.

3-11. Additional Topics

a. General Background. Read Arithmetic Numbers and the Art of Counting,
in James R. Newman (ed.), ‘“The World of Mathematics,”” vol. 1, pp. 418-453,
Simon and Schuster, Inc., New York, 1956.

O, The Real Numbers. The axiomatic development of real numbers is one of the
highlights of modern mathematics. A good description of this development is given
by H. A. Thurston, “The Number System,” pt. I, Interscience Publishers, Inc.,
New York, 1956.

¢. The Division Algorithm. In Sec. 3-2 we used the reasonable result that, if N
and ¢ are positive integers, then there always exist a unique nonnegative integer r
less than ¢ and a unique integer S such that

N r

—=8+4+- 0<r<

g g e
This is called the division algorithm. For a “proof,” see G. Birkhoff and F. MacLane,
“ A Survey of Modern Algebra,” pp. 1-20, The Macmillan Company, New York, 1948.

d. Infinite Decimals: Rational and Irrational Numbers. Observe that the result of
converting 0.3 (decimal) into binary is .01001100110011 - - « . Of course in a physi-
cal situation one might be told, for example, that 0.3 is good to two significant places,

Sec. 3-11] CODING AND PROGRAMMING A DIGITAL COMPUTER 93

i.e., it would be written as 0.30; then there would be no purpose in carrying the binary
conversion certainly to more than, say, eight places, i.e., to .01001101 (why?). On
the other hand, suppose that we consider 0.3 purely as a number; then we can never

write its binary conversion precisely, for it is an infinite binary fraction. Of course we

% precisely. It is easy to tell by looking at

3 (decimal)

could write 0.3 (decimal) =

10 (decimal) But how could we tell directly
11 (binary)

by looking at .010011001100 - - - (binary) that it can be written as 1010 (binary)

This problem brings up the observation that there are two kinds of real numbers,
rational and irrational. A rational number can be written as the quotient of two
integers; an irrational number cannot be so written. The problem stated above thus
resolves itself into the following: By looking at an infinite radical fraction (in a system
of any radix ¢) how can rational numbers be distinguished from irrational numbers?
For a further discussion of irrational numbers see Edward Kasner and James Newman,
“Mathematics for the Imagination,” pp. 65-111, Simon and Schuster, Inc., New
York, 1940.

0.3 (decimal) that it can be written as

e. Computer Manuals. For a short description of both a four-address system
(SEAC) and a three-address system (DYSEAC) see Computer Development at the
National Bureau of Standards, NBS Circ. 551. For a two-address system see the
Remington Rand 1103 computer manual, and for a one-address system see the IBM
704 computer manual.

f. Cardiac Computer. Using the Cardiac computer (see Exercise b of Sec. 2-8) as a
four-address system, compute the codes given in the examples of Secs. 3-4 and 3-5.
Do the same for the three-, two-, and one-address coding examples given in Secs. 3-7 to
3-9.

g. Decision Processes. Decision processes require criteria by which the decisions
in any particular case are made. If the criteria are sufficient for a particular set of
decisions, then a computer can be coded to make them. In fact, it is remarkable that
a single comparison instruction can always effectuate this process. For the criteria
can be used by the computer to set up numbers representing the various alternatives,
and comparison instructions can then choose between them, In recent years the
analysis of decision-making processes has received much thought. The student will
profit by reading, for example, J. D. Williams, “The Complete Strategyst,” McGraw-
Hill Book Company, Ine., New York, 1954. This deals with the theory of games,
which is essentially a theory of value decisions or strategy. See also Herman H.
Goldstine and John von Neumann, “Planning and Coding of Problems for an Elec-
tronic Computing Instrument,” pt. II, vol. I, Institute for Advanced Study, Prince-
ton, N.J., 1947; R. D. Luce and H. Raiffa, ““Games and Decisions—Introduction
and Critical Survey,” John Wiley & Sons, Inc., New York, 1957.

CHAPTER 4

PROGRAMMING FUNDAMENTALS

4-1. Introduction

In the previous chapter we have introduced the concept of an instruc-
tion in several different instruction systems. We have discussed in some
detail the concept of a sequence of instructions and the significance
of the order in which instructions are written. Now we turn to extended
and more complicated codes, or sequences of instructions, that are often
called programs. As we shall note in a future section, almost any compu-
tation requires a fairly intricate sequence of instructions. Although each
individual instruction is simple enough, the total collection or sequence of
instructions, the program, can become considerably involved.

The present chapter considers first recursion codes, or loops, and
instruction modification (Sec. 4-2). These concepts, together with those
developed in the previous chapter, comprise all the fundamental concepts
necessary for coding and programming. The subsequent material simply
amplifies and presents further details of these methods. The discussion
of recursion codes leads naturally into a consideration of subroutines
(Sec. 4-3). It is in the consideration of subroutines that the elements of
automatic programming arise, as considered in detail in Chap. 5.

With the material on recursion codes and subroutines in mind, one
can readily appreciate the importance of the large variety of possible
instruction types that can be designed for a computer. In the previous
chapter the definitions of instructions were kept as simple as possible
80 as not to interfere with the basic concepts presented there. However,
we are now in a position to consider the many possible special-purpose
instructions that prove so convenient in many coding situations. The
method of presentation of instruction types (Secs. 4-4 and 4-5) is not the
giving of precise definitions but rather concentration on the basie concepts
involved and on the wealth of combinations and variations that can be
obtained. In designing a computer the final definition of the instructions
ultimately must be up to the engineer, because of technical electronic
and logical design problems. Hence it is important for the engineer
to understand the various ingredients that go into the make-up of various
instruction types and the special purposes for which they are conceived.

To appreciate fully the significance of some of the instruction types,
the engineer should see how they are used in specific codes. In Sec. 4-6
some special coding problems are considered; in each case some of the

94

SEc. 4-2] PROGRAMMING FUNDAMENTALS 95

special instruction types considered in the previous section can be used
to full advantage. In almost all the problems considered, the specific
codes are left for the student to write. However, in order to write these
codes, the student is expected to define preciscly those instructions he
needs that best suit the purposes of the application. It is felt that the
experience gained in defining instructions based on the principles of
Secs. 4-4 and 4-5, and then using these instructions in a code, is one of the
best possible ways for an engineer to gain flexibility and mastery of
instruction design from a computational point of view.

Finally, in Sec. 4-7 the operation of the computer through the control
panel is discussed. There the principles of communicating with the
computer through the control panel are primarily considered.

4-2. Recursion Codes and Instruction Modification

Loops in the Flow Diagram. In Sec. 3-4 we considered the problem of
determining the altitude at a time ¢ of a missile projected with an initial
y component of velocity V. A more realistic problem would be to
determine the trajectory of the missile, i.e., the position of the missile,
say, after each 10 sec of its flight. For such a problem we use a loop, or
recurston code, i.e., a code which uses a certain set of instructions over
again several times. For example, at time ¢; the and y components of
position will be

z; = Vi
Y = Vit — Y4gt?

where Vo, is the initial £ component of the velocity. To be concrete,
suppose that Vo, = 2,000 fps, Vo, = 1,000 fps, and ¢ = 32 ft/sec?.
Then at time £, (= 10 sec) we would have z; = 20,000 ft and

y1 = 10,000 — 1,600 = 8,400 ft

At time 22 (= 20 sec) 22 = 2,000 X 20 = 40,000 ft,
ye = 1,000 X 20 — 16 X 202 = 13,600 ft

At time ¢35 (= 30 sec) zz = 2,000 X 30 = 60,000 ft,
ys = 1,000 X 30 — 16 X 302 = 15,600 ft

and so forth. During such a computation it is clear that the same for-
mulas are used over again, each time increasing our ¢; by 10 sec. How-
ever, the computation should stop when the missile hits the ground, i.e.,
when y; is no longer positive. In our case it is easily seen that this is
when ¢ = 70 and y, = 70,000 — 16 X 702 = —8,400 ft. Table 4-1 rep-
resents the final results, and Fig. 4-1 is the flow chart of the process. In
the flow chart we have introduced the ¢ notation, where ¢;;, represents
the next time around and 7 + 1 — 7 means that for the next iteration we
replace the old ith values with the new (¢ + 1)st values.

With this illustration it is seen that there are four basic ingredients
to a recursion code. It must contain (1) a set of instructions, called the

96 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

TasBLE 4-1. CoMPUTATION OF TRAJECTORY OF MISSILE

1 e s Yi

1 10 20,000 8,400
2 20 40,000 13,600
3 30 60,000 15,600
4 40 80,000 14,400
5 | 50 | 100,000 10,000
6 | 60 | 120,000 2,400
7 70 140,000 —8,400

leration instructions, that are to be reused; (2) another set of instructions
that modifies the original set each time around; (3) a set of instructions,
often called a tally, that determines when to exit, or break out of the loop,
and appropriately notifies the computer; and (4) a set of instructions
that sets up the initial conditions and starts the loop. In addition a
recursion code often contains (5) a set of instructions that resets the loop
so that it may be used again by the computer at some future time. A
generalized loop can be indicated by the flow diagram of Fig. 4-2.
Sometimes the tally consists of instructions determining whether or
not the result of each iteration is smaller than some given number, as
oceurs often in function computations; or the tally may just count the

Read in the initial conditions

V. = 2,000

Vo, = 1,000
= 10

i= 1

- —

Compute x;=V,_t;
Let ti+1=ti+10 Y = ‘{)y tl"'%gt'z
i.e., increase ¢ by Store x,,3;.t;

10sec
%10
> <
Y
Print out Stop the computer
L% 3;

Fic. 4-1. Flow chart for computation of missile trajectory.

SEc. 4-2] PROGRAMMING FUNDAMENTALS 97

Set up initial conditions i\
(initiates the loop)
1
r_,.- : Proceed with \J
iteration i

Tally: should the

Modify the iteration 2 iteration continue,
forround i + 1 or is the process
y over?
Continue Exit
iteration *
]

5
Reset the loop

Y

Fic. 4-2. Flow chart of generalized loop.

number of iterations until the desired number have been accomplished.

As an example of the former tally, consider the computation of VN to
within an error of ¢ by the following process (see Fig. 4-3): First note that

VN is the z (and the y) coordinate where the curves = y and N = azy
intersect. We approach this point by successive approximations starting
from (xo,y0), where 2o = N, %o = 1, moving along a perpendicular to
z = y, dropping an altitude to point (z1,1) on N = zy, moving from this

y axis

(%2, 52)
(%1,51) (%0, 0)

N xaxis

Fic. 4-3. Computation of V/N.

98 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

Start Let xo=N, i =0 ———1

%ty

=N
Xip1T T3 i1 T

i+1+i [Yip1—%spa| te

F1c. 4-4. Flow chart for computation of V'N.

point along a perpendicular to z = y, dropping an altitude to point
(z3,y2) on N = zy, and so forth. The next point (x;1.1,ys+1) is found in
terms of the present point (z;,y;) as follows:

Z + Y N

Tiy1 =) Yit1 =

Zit1

(see Fig. 4-3). When z; — y; < ¢, the desired accuracy has been ob-
tained. The flow diagram for this loop is shown in Fig. 4-4. A symbolic
code for this appears in Example 4-1.

ExampLE 4-1. THE SQUARE-ROOT ROUTINE

Address | Operation a B v Remarks
000
. . N
001 Divide N z y Yitr = ——
i1
002 | Subtract y z A Tip1 — Yig1
003 | Compare A € 005 |A:e
004 | Stop z =+\/N
005 | Add z Y z Biag = 2 +u
006 | Divide z 2 z } ‘“ 2
007 Compare 1 0 001
010 N
o1r x
012 ! y
013 €
014 2
015 1
016 0

As an example of the latter tally, consider a code that computes z»,
where = and n are known. Here, after each multiplication, 1 is added

Skc. 4-2] PROGRAMMING FUNDAMENTALS 99

to the tally temporary, and comparison is made with the constant n. A
symbolic code for this is given in Example 4-2, Note that initially the
contents of the z» temporary must be 1, and the contents of the fally
temporary must be 0 (why?).

ExamrLE 4-2. z* ROUTINE

Address | Operation | « B v Remarks

000

001 | Multiply z | 2" temporary z" temporary Form partial
product

002 | Add 1 | Tally temporary | Tally temporary | Adjust tally
temporary

003 | Compare n | Tally temporary |001

004 | Stop

005 z* temporary

006 Tally temporary

007 n

010 z

011 1

The importance of the recursion code cannot be overemphasized. In
fact, as we shall see in a future section, special instructions are included
in many computers to aid the coding of such codes.

Instructeon Modification. One of the fundamental concepts upon
which modern computers are based is that of instruction modification,
i.e., having a program automatically modify itself. Let us illustrate how
instructions can modify instructions by means of the following examples:

Suppose that, during the course of computing for a problem, the com-
puter often needed to know the value of the binomial distribution fune-
tion p(z) = <120> (0.1)= (0.9)19°= where <120> is the binomial coefficient,
forz = 1,2, 3,4, or 5. One method for performing such a calculation is
simply to write a table into the memory of the computer and “look up”
the value each time it is needed.

Suppose such a table was written into addresses 001 to 005; i.e., in
address 001 is located 10*p(1), in address 002 is located 10%p(2), . . . ,in
005 is located 104p(5). Note that we must scale the values of p(z), since
p(z) is less than 1 (for all values of) but our computer interprets all
numbers as greater than 1. Of course the numbers in addresses 001 to
005 will be written in octal.

Suppose also that the value of z (which for this problem can only be
1, 2, 3, 4, or 5) is found in address 006 and that the result, namely,
104p(x), corresponding to this value, is to be put into 007. To perform
this task, the code must have a set of instructions that will transfer
the contents of one of the addresses 001, 002, 003, 004, or 005 into 007.
Using the one-address system devised in Sec. 3-9, these instructions

100 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHap. 4

(where the contents of 010 is the constant zero) are:

Operation a Remarks
42 010 | Clear accumulator
53 ? Put contents of ? into accumulator
52 007 || Transfer (acc) into 007

If the contents of 006 were 1, then 001 should replace the ?; if (006) = 2,
then 002 should replace the ?; ete. The problem therefore resolves
itself into modifying the instruction with the ? so that ? is replaced

Set up the read- | Read the Reset the read-
table instruction table table instruction

F1c. 4-5. Flow chart of table look-up routine, indicating reset instructions.

by the contents of 006. One way of doing this is to write the instruction
first as 53 000. Then add (006) to it, the result being 53 001, etc.

ExampLE 4-3. BINOMIAL-COEFFICIENT LOOK-UP ROUTINE

Instruction

Address Remarks
Opera-

tion

001 00 | 003 |10%(1)

002 00 | 020 |104(2)

003 00 | 073 |10p(3)\ table

004 00 | 237 |104p(4)

005 00 | 523 |10%(5)

006 00 | 004 |z =4(rl,2,305)

007 10%p(z) = result

010 00 000 | O constant

011 42 010 | Start here, and clear accumulator

012 53 006 | Put (006) into accumulator Set up ? instruction
013 51 015 | Add (acc) to ? instruction

014 42 010 | Clear accumulator

015 53 ? Now do ? instruction [(015) reads 53004 by time code

progresses this far]
016 52 007 | Transfer (ace) into 007

017 42 010 | Clear accumulator Reset ?
020 53 023 | Put instruction constant into accumulator ;. .
021 | 52 | 015 |Transfer (acc)into 015 instruction
022 44 End here—jump to another part of program

023 53 000 | Instruction constant

Edgar Williama

Sec. 4-2] PROGRAMMING FUNDAMENTALS 101

But after the code has been used, an additional set of instructions is
needed to reset it back to 53 000. The flow diagram is as in Fig. 4-5.

The entire code, then, is as in Example 4-3.

Instruction Modification in Loops. TFrequently instruction modification
is necessary for the coding of loops. TFor example, suppose that it is
desired to form the sum of a long column of numbers which are located in
consecutive addresses of the computer memory from address 030 to

Modify the add

Initiate the process:
put the first number in Instruction for

the partial sum cell '_.,. the next number

Add the next
number to the
partial sum

077:
address of number
just added

Reset add
instruction and
stop computer

FiG. 4-6. Flow chart for instruction modification.

077. We could use the same add instruction for the successive additions
provided that the add instruction were modified before each addition
so as to add the contents of the next successive address to the partial
sum each time round. The flow diagram is as in Fig. 4-6 and the code
as in Example 4-4. The arrows in Fig. 4-6 indicate the path of the com-
puter through the instructions. The sum is formed in address 001.
The student should be sure to understand the purpose of each of the five
sets of instructions of Example 4-4.

Loops within Loops. As an example of multiple loops, or loops within
loops, consider the computation of a table of sin # by means of the
infinite series

x3 x5 x'l x9 xll
TR TR TR TR VY
for each 1{¢o radian from 0 to 7/2, to eight decimal places (see Sec.
6-11). TFirst we would have a loop that formed z*/n! by multiplying a

partial product successively by z/P; (loop A); then we would need a loop
that adds or subtracts this result to or from the partial sum and increases

sinz =z —

102 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

ExampLE 4-4. COLUMN-ADDING ROUTINE

Instruction

Address o Remarks
pera-

tion

000 44 002 | Start at 002

001 Final sum (temporary partial sum)
002 42 024 | Clear accumulator . .
003 | 53 | 030 |Put (030) into acoumulator } Witidte process: put first
004 52 001 | Put (acc) into 001 number into partial-sum cell
005 42 024 | Clear accumulator . .
006 53 025 | Increase « of add instruction by 1 lnstr}l ctlo.n
007 51 012 modification
010 42 024 | Clear accumulator
011 53 001 | Put partial sum in accumulator add next number
012 53 030 | Add instruction to partial sum
013 52 001 | Put partial sum into its temporary
014 42 024 | Clear accumulator
015 53 012 | Put (012) into accumulator
016 54 026 | Subtract (026) from accumulator tall
017 43 | 005 |53077 > (012)? ay
Yes: add another number
No: sum is complete
020 42 024 | Clear accumulator
021 53 027 reset and stop computer
022 52 012 | Put 53030 into 012

023 60 000
024 00 000 | O constant

025 00 001 |1 constant

026 53 077 | 53077 constant

027 53 030 | 53030 constant

030

R Numbers to be added
077

n by 2 until the partial sum becomes correct to eight significant figures
(loop B); and finally we need a loop that increases z by 0.01 and con-
tinues to compute the next value of sin z (loop C). The flow diagram
for this process appears in Fig. 4-7.

EXERCISES

(a) Code the flow diagram of Fig. 4-1 for a one-address system as described above.

() The symbolic codes of Examples 4-1 and 4-2 are incomplete in that they do not
reset the computer for additional runs. Complete these codes accordingly and assign
specific addresses.

Skc. 4-2] PROGRAMMING FUNDAMENTALS 103

Set n=1 and the contents
of "partial .sum temporary"

cell equal to 0

Set P,=1 and contents
k+1-+Fk of "partial product temporary"
cell equal to 1

Multiply partial
‘ x;+0.01— x;) ' n;+2 = n; ' @.I.]_—» P,

product by %
i

* Add (or subtract) : "
z") Loop B =7 :0.000000005
Site partial sum n

Print out the value of x,
and the corresponding
value of sin x,

Stop the computer

F1e. 4-7. Flow chart of loops within loops. The notation P; + 1 — Piynj + 2 ny,
and zx + 0.01 — 23, ete., is often used to indicate that in the (i + 1)st iteration
Py =P; 41, nj0 = n; + 2, and zry1 = 7% + 0.0, ete.

If z is found in 001 and = is in 002, draw flow diagrams and write codes that will
compute the following functions using the one-address system and also the three-
address system as described above:

(¢) z*/n!. [Hint: Form a partial product by multiplying by z/(n — 7).]

(d) ee =142z +22/21 +23/3! + - - - . (Hint: Compute enough terms so that
2" /n! < e; this test will tally the breaking of the loop.)

(e) The binomial coefficient n!/z!(n — z)!.

(f) The first moment of the binomial expansion, namely,

n

n! TANTT
u= Ex:c!(n—x)!pq

z=0

(¢) Write a routine that forms the sum of the squares of numbers found in addresses
030 to 077.

(k) Write a routine that puts the numbers found in 030 to 077 in numerical order.
Hint: Successively interchange locations of numbers in adjacent addresses if they

104 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAPp. 4

are not in order; keep track of the number of interchanges each time through; when no
interchanges are necessary, then the numbers are in order; that is, for example,

, X P .

1st time through: 4,2,3,1 2,4,3,1 2,8,4,1 23,1, 4
. . e ~

2d time through: 2,3,1,4 2,3,1,4 2,1,3,4 21,3, 4
. A ~ ~

3d time through: 2,1,3,4 1,2,3,4 1,2,3,4 1,23, 4
~ ~ e

4th time through: 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

(no interchanges; so numbers are in proper order).

4-3. The Subroutine

Use of a Subroutine. A subroutine is a subcode that may be used
many times during the computation of a program but is written only
once in the whole code. As the computer proceeds down the main
program, the control will occasionally jump to this subroutine and then,
after doing the subroutine, will jump back to the main program where
it left off. This detour from the main program through the subroutine
may occur several times during the computation of the program. Hence
3 subroutine must have an entrance, a way of getting into it, and an
exit, a way of getting out of it. Iach time an entrance is made to a
subroutine, some initial conditions must be set up that are character-
istic of the place in the main program from which the entrance was
made. For instance, if the subroutine calculates some function, the
initial values of the independent variables at that point in the main
program must be given to the subroutine. In addition, as an entrance
to a subroutine is made, the exit must be set up; i.e., the subroutine
must be told where to transfer control back to the main program. For
each time the subroutine is used, its exit is usually to some different
part of the main program. Hence, in order to use a subroutine, the coder
must know (1) the entrance, i.e., the address of the first instruction;
(2) the addresses of the temporaries in which the initial conditions are
to be set up; (3) the addresses of the temporaries whose contents will
be the results of the subroutine computation; and (4) the exit, i.e., the
address of some jump instruction that is to be preset (when entering the
subroutine) so that, when the computation of the subroutine has been
completed, the computer will transfer control back to the proper address
of the main program.

Consider, for instance, the flow diagram in Fig. 4-8, which illustrates
the setting up of the initial conditions and different exits of the subrou-
tine. The A in the circle is a connector and of course means that the
program jumps to the subroutine at that point. The B connector is
called a variable connector; 1.e., it indicates that the program jumps either
to B, or to B,, depending on how the ‘“variable’” connector is set. When

SEc. 4-3] PROGRAMMING FUNDAMENTALS 1056

C =)
!

Main program

Set up first initial condition I
in subroutine

!

Set up first exit of subroutine,
i.e., let B=B;

Subroutine

Main program continued

{

]
|
|
|
|
|
|
Set up second initial condition |
|
|
|
|
|
|
|

in subroutine

{

Set up second exit of subroutine,
i.e., let B= B,

—_—_—— e e e e — ———

Main program continued

F1c. 4-8. Flow chart for setting up initial conditions and different exits of a subroutine.

we say that B = B;, we mean that the B connector is set so that it will
go from B to B;; and when we say that B = B,, then the B is set to go
from B to Bs. The rest of the flow diagram is self-explanatory but
should be studied carefully by the student.

Example. As a specific example of the use of subroutines, consider
a program which is to compute the radiation intensity S of an antenna at
a point in space as a function of the directional angles 8 and ¢ and the

106 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMs [CHAP. 4

radius R given by the equationf

2
307,2| €08 (g cos B) sin (1}21 sin 6 cos go\)
= orR? sin 6) <1r .)
sin 3 sin 6 cos ¢

S

where n = a given integer

I, = a known constant
Now the sine and cosine functions are evaluated by means of their power
series. Since these functions appear several times as functions of differ-
ent arguments, it would be wise to use their respective power-series codes
as subroutines. Figure 4-9 is a flow chart for the calculation of S and
indicates the use of the subroutines.

This flow diagram can be used to illustrate some of the details involved
in using subroutines. For example, suppose that the first instruction of
the cos z subroutine is located in address 700. Then, using a one-address
system, the jump instruction to this subroutine would be 44 700, which
completes the first step in using a subroutine. The second step is to set
up the exit from the subroutine. One method is to have in address 677
(the address preceding 700) a jump instruction 44 000, where « is to be
designated. Suppose that the main program will continue after the
subroutine, from address 017. Then we would want (677) to be 44 017.
Then at the end of the subroutine would appear a jump to 677, whence
the computer will jump to 017. To set up (677), the main program
would put the constant 44 017 into the accumulator and then perform
a transfer into 677. Another method of accomplishing this return
jump to the main program is through some sort of special instruction
designed for this purpose. In this case the jump to the first instruction,
for example, 44 700, automatically memorizes the address of this
instruction in some counter or index register. Then a special jump
instruction is placed into address 677 that looks at this counter or
register and jumps back to the main program.

For the third step in using a subroutine the main routine must some-
how tell the subroutine the values of the initial data, i.e., the independent
variables. For this purpose a common agreement is made between the
person who writes the subroutine and the user of .the subroutine about
certain addresses set aside for this purpose. For example, suppose that
address 676 were agreed upon to be the address of the initial value of z
in the cos z subroutine. Then, before jumping to the subroutine, the
main program would transfer the initial value of x into 676 for the use
of the subroutine. Similarly an agreement might be made that the final
computed value of cos z be placed in 675; when the computer exits from
the subroutine back to the main program, the main program first transfers
(675) to some temporary that the main program uses. Of course, there

t See, for example, J. A. Stratton, ‘Electromagnetic Theory,” p. 451, eq. (53),
MecGraw-Hill Book Company, Inc., New York, 1941.

PROGRAMMING FUNDAMENTALS

)

Set u=cos ¢
t=sin g

Form v = ’HEI tu

107

~®

Set y=v
D=D2

Subroutine for cos x

Set g=cos @

Form r=% q

6

t,

Setx=r
B=B,

Let w =sin v

3

e (<]

~® O

Form k =

INE
-
g

Subroutine for sin y

\

SetY=+k
D=D,

Let s=cos r

Se 0
D,

—® @O<{vs

6

®)

Letl=sin %

}

Setx=¢
B=B3

Form final result
2
Sw
S= P(T)

&

-
N@@
w

F1a. 4-9. Flow chart for computation of radiation intensity.

108 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHarp. 4

is an alternative method for performing these two tasks. The main
program could first tell the subroutine where the initial value of z is
located and where the final computed value of cos should be placed,
and the subroutine could include the transfer instructions. In such a
case the instructions of the main program that ‘“‘tell’’ the subroutine
would do so by modifying some instructions of the subroutine.

Library of Subroutines. As illustrated by the example, several sub-
routines may be used in one main program. Infact it is found that many

common subroutines are used quite often, such as sin z, cos z, e7, 'z,
etc. Hence it often becomes profitable to have a library of subroutines
available to the programmer, stored at all times in some part of the
computer memory. There would also be some catalogue kept outside
the computer that the programmer can consult when he wants to use a
subroutine. This catalogue would tell where each subroutine is located
and all pertinent data about how to use it, such as where to put the
initial values of the independent variables, where the computed values
of the dependent variables are found, etc. In addition, as we shall
discuss in a later section, automatic programming aids are devised to
make such a library of subroutines easier to use.

EXERCISES

Construct a library of subroutines, using our three-address system given above, as
follows:

(a) Write a subroutine for \/z for your library.

(b) Write a subroutine for ™ /m! for your library.

(¢) Write a subroutine for sin z for your library. (Hint: This subroutine will
itself use subroutine b.)

(d) Write a subroutine for cos z for your library.

(e) Write a manual describing how to use your library of subroutines.

(f) Code the example given in this section, using your library of subroutines.

4-4, Instruction Types

In this section we present many of the important kinds of instructions
that are found in modern digital computers. The object is to describe
the concepts upon which the various kinds of instruction are based
rather than specific details of the instructions themselves. The concepts
are chosen from those which are most commonly used. Instructions
based on these concepts may take many different forms in the many
different computers. For purposes of clarity in this presentation these
instruetion concepts have been classified into six major categories: (1) the
use of auxiliary bits in an instruction; (2) arithmetic instructions; (3)
logical and bit-handling instructions; (4) decision instructions; (5) recur-
sion-aiding instructions; (6) read and write instructions. Although there
is some overlapping, it is most convenient to consider each instruction
as falling into one, and only one, of these categories.

Sec. 4-4] PROGRAMMING FUNDAMENTALS ‘ 109

1. Auziliary Bils. Auxiliary bits are bit positions that are included
in the format of the instruction words of a particular computer, but
they are not part of the operation code or the addresses. Two common
uses of such bits are (a) to halt the computer or to make the program
jump to some standard memory location, called break points, and (b) to
indicate relative addresses—both of which will now be described.

a. BREAK POINTS. As was pointed out above, the ‘“‘sign’ bit is an
auxiliary bit. The sign bit can be given meaning for instructions as
follows: if it is 0, the computer continues to compute as usual; if it is 1,
then the computer halts. Important use is made of such a system in
detecting errors in a program. Suppose that a coder were running a
program on a computer for the first time; he might want to stop the
computer at intermediate stages in the program to see whether or not
the code were correct up to those points. In order to do this, he would
put 1 in the sign bits of those instructions at which he wants to stop the
computer so that he could examine the partial results. An alternative
to this procedure, which serves the same purpose, is to have the computer
take the next instruction from a standard, predetermined location in the
memory whenever a 1 appears in the sign bit of an instruction. At the
standard position a special code might be located that can do various
things to aid the coder detect errors and correct this code.

b. RELATIVE ADDRESSES. Another important use for auxiliary bits is
concerned with relative addresses. Relative addresses are associated with
so-called relative counters, sometimes called inder registers, and with
auxiliary bits. A relative counter is a very special memory cell or
register that can contain only a single address; i.e., it is a “short’’ memory
cell. The computer must also have special instructions that can put a
number into such a relative counter, add to the number in the relative
counter, ete. Such instructions will be considered later in this section.

An address appearing in an instruction is said to be interpreted ‘rela-
tive’’ to a counter if the computer, instead of considering the contents
of the address indicated, considers instead the contents of the word
whose address is the sum of the counter reading and the indicated address.
For example, if the index register read 002 and the address in the instrue-
tion were 053, then the computer would consider the contents of

002 4 053 = 055

The role of the auxiliary bits in connection with relative addresses is as
follows: The auxiliary bits of an instruction can indicate whether an
address is to be considered relative or not. For example, consider a
three-address instruction format that has three auxiliary, i.e., extra, bits
on the right:

Auxiliary bits

Operation a 8 v P3 P> Pl

110 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

Suppose that there is one relative counter. Then the following meaning
can be attached to these bits: If P1 is 1, then v is to be interpreted as
relative to the counter; if P2 is 1, then 8 is relative; if P3 is 1, then
«a is relative. Hence, if the auxiliary bits were 101 and the instruction
were ‘‘add,” then the contents of “«a 4 (counter)’’ would be added to
the contents of 8 and the result put into the address “v + (counter).”

The use of such relative addresses is to aid the coding of iterations,
or loops. As illustrated by some of the problems of the previous sec-
tions, each time around a loop it is often necessary to increase some
addresses of the main set of instructions by 1 (or some other integer).
In such cases a set of instructions modifying the instruction must precede
the main set of instructions. But with relative addresses all that need
be done is to increase the counter by 1 (or whatever is the necessary
integer for a particular case) by means of the counter-setting instruetion.
One variation of this system is to have several such relative counters or
registers, which can be used in many different ways. For example, an
instruction preceding the use of relative addresses can determine to
which counter the addresses are to be considered relative. Or the
addresses may be considered relative to the sum or some other function
of the numbers in the counters.

2. Arithmetic Instructions. These instructions can be divided into
four classes: add, subtract, multiply, and divide. One of the important
concepts that appears in arithmetic instructions is the automatic floating
decimal poini. As was seen in some of the above examples and problems,
in ordinary arithmetic instructions the coder was limited to handling
numbers within the range of the word length. For example, if the word.
length is 15 bits plus a sign bit, and if all numbers are interpreted as
being nonfractional, that is, if the binary point is considered to be on the
right, then only integers that lie between 0 and 2%, or —1 and — 2%, can
te handled by the computer. Obviously there must be some way out of
~uch a totally unacceptable situation. The method is to multiply all
numbers involved in a code by an appropriate scaling factor so that they
fall within the desired range during the computer computations. Of
course the results put out by the computer must be readjusted to their
actual values. However, it suffices to mention here that scaling presents
more work for the coder and is a disadvantage. Many computers avoid
this disadvantage by having a so-called floating point for arithmetic
operations.

In computers with floating-point arithmetic operations a number is
memorized in a word composed of two parts: a mantissa, which contains
the significant figures of the number, and an exponent. For example, one
computer that has a 45-bit word uses 36 bits for the significant figures
and their sign and 9 bits for the exponent and its sign. Hence this
computer can handle numbers whose absolute values are as large as
(2% — 1) X 225 (since 28 = 256) or as small as 2725 that is, numbers
within this range with no more than 35 significant bits. A range

SEc. 4-4] ' PROGRAMMING FUNDAMENTALS 111

such as this covers most cases that usually occur and hence relieves the
coder of all scaling considerations.

The terms normalized and unnormalized are often used in connection
with floating-point arithmetic operations. These terms are concerned
with the problem of determining the appropriate exponent of the result
of an operation. The result of an operation is called normalized if
the exponent is so adjusted that the leftmost bit of the mantissa is
a unit bit. This of course maximizes the number of significant figures
that can be recorded in a word. A computer operation that presents
normalized results is called normalized; e.g., we would say add-normalized.
As an example, suppose that a computer had a 24-bit (8 octal position)

0 o 0o 0 1 7 5 3 0 4 4 2 4 7 1 4 Before
the
000 000 000 000 001 111 101 011 000 100 100 010 100 111 001 100 move

i

111 110 101 100 010 010 001 010 011l 100 110 000 000 000 QOO0 OOOQ After
the

7 6 5 4 2 2 1 2 3 4 6 0 0 0 0 0 move
Fi1g. 4-10. Normalized and unnormalized mantissa.

mantissa and we multiply-normalized the (octal) numbers (with octal
exponent):.00033333 X 26 by .04444444 X 23, The unnormalized result
(double length) is .0000 1753 0442 4714 X 2!, Of course this is a
binary number in the computer, and the problem is to determine that
exponent which will move the binary number to the left until a unit bit
appears in the leftmost position. The number of bit positions the man-
tissa will have to be moved to the left in our example is 3 X 4 4+ 2
[where 3 X 4 is the number of bit positions corresponding to four zeros;
and since 1 (octal) is 001 (binary), a move two further positions to the
left is necessary]. TFigure 4-10 illustrates the binary and octal forms
of the double-length mantissa before and after the move.

The final normalized result will therefore be .7654 2212 X 25 [where
11 — (83 X4 4 2) = —5]. Of course the computer will do this auto-
matically and will display only the ““single-length’’ result. (See below for
further discussion of single- and double-length results of multiplication.)
Note that, if the computer binary point is understood to be to the right,
the above multiplication would be

00033333 X 222 X 04444444 X 2-2% = 00001753 04424714 X 2=4
The product could here be normalized by shifting right
. (8 X 3) + 1 = 12 octal places
to give 76542212 X 273 (—47 + 12 = —35). If the product were

112 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

normalized by shifting left, dropping the last eight places would be
equivalent to multiplying by 23 and the exponent would have to be
corrected accordingly: —47 — [(8 X 4) + 2] + 30 = —35.

When an unnormalized operation is defined, the method for determin-
ing the exponent must be clearly stated.

We can now return to a description of the kinds of arithmetic instruc-
tions. Consider “add” first.

a. Apd. 1. Ordinary addition instruction, as described in previous
sections.

2. Floating addition—unnormalized. The exponent of the result will
be that of the largest exponent of the two operands.

3. Floating addition—normalized. The exponent of the result will be
adjusted so that the most significant bit of the number is a unit.

4. Absolute-value “add.” In a two-, three-, or four-address system
the result would be = |[(«)| + [(8)].

5. Add into accumulator. In a one-address system (ace) + (a) is put
into the accumulator.

6. Add into memory. In a one-address system (acc) + () is put into
Q.

7. Add relative. The instruction code itself tells that the address is
to be considered relative to some relative counter.

8. Add with overflow check. If the sum is greater than the larg-
est number that can be stored in a word, then overflow is said to have
occurred. If overflow occurs, then the computer is to break the sequence
of instructions; e.g., in a three-address system, if no overflow, then take
next instruction; if overflow, take .

9. Multiply-add. In a two-address system, form (a) - (ace) + (8), and
put result into accumulator.

10. Partial add-a address. In a two or more address system, only the
a portion of the words is added. Similarly there are add-8, -y address
instructions.

b. suBTrRACT. The kinds of subiract instructions are analogous to the
kinds of add instructions but include also:

11. Change sign of register. 'This is not a subtrect instruction but only
changes the sign of the accumulator.

¢. MULTIPLY. Before describing the kinds of multiply instructions we
must first describe briefly how multiplication takes place in an arithmetic
unit. First note that, if an n digit is multiplied by an m digit number,
the result can have as many as n + m digits. In a computer, therefore,
the result of a multiplication can contain twice as many bits as appears
in a word. Hence there are usually two registers in the arithmetic unit
(or one double-word-length register) to record the result of the multipli-
cation. If a word has m bits, then the least significant m bits (which are
found in one of the registers, called the minor register) are called the minor
multiplication result, while the rest of the bits are called the major multi-
plication result (and are found in the other register, called the major
register).

Skc. 4-4] PROGRAMMING FUNDAMENTALS 113

For example, if we consider a 24-bit (8 octal position) word, and multi-
ply 00033333 by 04444444 we obtain as a result 00001753 04424714,
Here 00001753 is the major product, and 04424714 is the minor product.

1. Regular multiplication. Leaving both major and minor results in
the registers.

2. Major multiplication—unrounded. The memorized result is the
major multiplication result.

3. Major multiplication—rounded. The memorized result is the major
multiplication result with a least significant unit added to the major
result f the most significant bit of the minor multiplication result is a
unit. If the multiplication is normalized also, the normalization is done
first, then the rounding.

4. Floating multiplication—unnormalized. The exponents are added,
and the mantissas are multiplied.

5. Floating multiplication—normalized. After the multiplication the
product is shifted and the sum of the exponents adjusted so that the most
significant bit is a unit.

6. Rounding only. This is not a multiplication instruction, but the
number in the major register is rounded with respect to the number in the
minor register.

d. oivipeE. In dividing, the quotient appears in the major register, the
remainder in the minor register. This brings up some variations in the
divide instruction.

1. Quotient divide. The quotient is the memorized result.
Remainder divide. The remainder is the memorized result.
Quotient divide—rounded.

Floating divide—unnormalized.

. Floating divide—normalized.

. Divide with overflow check on quotient.

O o w10

EXERCISES

(a) Consider the example illustrated by Fig. 4-5. Code this in a three-address
system in which the instruction format includes three auxiliary bits as described in
Sec. 4-4, under Relative Addresses. Assume a counter-setting instruction that sets
the counter to the number « and takes the next instruction from v (here 8 is not used).

(b) What would a counter-setting instruction be in a one-address system ?

(¢) Code the same problem as in (a), using a one-address system where the instruc-
tion format has a single auxiliary bit.

(d) Find the unnormalized and normalized sum of 77770000 X 2% and 00007777 X 2¢
(where, of course, the numbers are in octal).

(e) Find the unnormalized difference of 0000 7777 X 28 and 7777 0000 X 25.

() For the numbers 7777 0000 X 25 and 0000 7777 X 2¢ find:

The unnormalized major product, unrounded.

The unnormalized major product, rounded.

The normalized major product, unrounded.

The normalized major product, rounded.

. The unnormalized minor product.

The normalized minor product.

114 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

4-5. Instruction Types (Continued)

3. Logical and Bit-handling Instructions. These instructions are used
for two main purposes. First they are used to modify instructions;
second they are used when it is desired to find whether the bit in a P7
position is zero or a unit, as is often necessary when bits represent switch
inputs in a machine.

@. LOGICAL ARITHMETIC. 1. Logical addition. There is no carry, and
the bits in the corresponding positions of the two operands are “added”
according to the rule 1 L—l_-_l =1,1 I_-I_-_O =1, O[il =1, 0]+0 = 0.
For example,

Logical + g(l)(l)i 2;1
0111 A+ B

which can, of course, be generalized to a word of any number of bits in
length.

2. Logical multiplication. Similar to logical addition except that
1[/1=1,10=0,0[1=0,0[-0=0. For example,

Logical X 3(1)(1)1 g
0001 A tB

which can be generalized as above.
3. Logical ring add (or logical inequality). Similar to logical addition,
except that 1 [_7i1 =0,1 EO =1, OEI =1,0|#0=0. Forexample,

Logical ring + 83?% g
0110 A If B

which can be generalized as above.

4. Logical compare (or logical equality). Similar to logical addition,
except that 1 [=1=1,0[=0=1,1[=0=0, 0|=1=0. For
example,

. 0101 A
Logical compare 0011 B
1001 A |i B

which can be generalized as above.

5. Complement. Units are changed to zeros, and zeros to units; e.g.,
if (@) = 0101, the complement of («) is 1010.

6. Extract. For a four- or three-address instruction, where a bit of
(e) is a unit, replace the corresponding bit of (y) with the corresponding

Sec. 4-5] PROGRAMMING FUNDAMENTALS 115

(@ 000 @ 000 011
@ 010 110
(€] 011(1‘1(* 010 101

Result, found in v 011 *001 01 010 11

bits of (8). For example,

(=]
—

—

—
S

7. Odd-even extractor (used for decimal computers). Replace those
digits of (v) which correspond (in position) to odd digits of (a) with the
corresponding digits of (3). For example,

() 222 7 246 277
(B) 134 765
(v) 867 1 243 876

Result 867 “682 N304 243 810

b. sHIFT INSTRUCTIONS. 1. Right shift. The whole () is shifted to
the right by the number of positions specified in the instruction. If the
shift is n positions, the effect is the same as multiplying by 2-». Those
bits which run off the right end of the word are lost; those which come
into the left end are zeros.

2. Left shift. Like the right shift, but in the other direction, i.e., like
multiplying by 2~

3. Circular shifts. Shifts where the bits that go off one end come back
at the other as if the ends of the words were connected together. (These
are also called ‘“‘end-around shifts.”)

4. Left significant shift. Shift till there is a unit in the most significant
place. This differs from the above shift instructions in that the number
of positions to be shifted is not given by the instruction but is determined
during the operation. The number of positions shifted is often recorded
in B; the shift is performed in the accumulator for a one-address system.

4. Decision Instructions. When a flow chart of a program comes to a
branch point, some form of decision instruction must be used to deter-
mine which branch should be taken. As far as the segmented execution
of the instructions in a program is concerned, a branch point means that
the program either will continue on normally or will jump to another
part of the program. The term jump is used to indicate that at such a
branch point the next instruction is taken from some part of the memory
other than the usual sequence.

@. COMPARISON OF WORDS. 1. Usual comparisons. If (o) > (8), then
take v for four- or three-address computer; if (a) > (acc), take g for
two-address computers.

2. Absolute comparison. Same as 1, except that the absolute values of
the words are compared.

3. Negative jump. If (acc) is negative, take a.

4. Positive jump. If (ace) is positive, take a.

5. Zero jump. If (acc) = 0, take a.

6. Nonzero jump. If (acc) < 0, take o,

116 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

7. High jump. If (ace) > (a), skip next instruction.

8. Low jump. If (ace) < (o), skip next instruction.

9. Equal jump. If (ace) = (@), skip next instruction.

10. Least significant jump. If least significant bit of (ace) is 1, then
jump to e.

Of course items 3 to 10 are for one-address systems; in items 7 to 9
the number of instructions skipped may be more than one but would
be fixed for a given machine.

b. SENSING OF SIGNAL SWITCHES. 1. Special signal transfer. If a cer-
tain signal specified by the operation is on, then take «. This instruc-
tion is used in conjunction with an instruction that turns on the signal.
This latter instruction may be separated in the program from the special-
signal-transfer instruction so that the jump occurs some time after the
signal was turned on. There may be several signals and associated sets
of instructions. ‘

2. Manual jump. Here a jump will occur only when a manual
external switch has been set before the program reaches the instruction.

3. Manual halt and transfer. The computer will stop if the external
switch specified by the instruction has been turned on. Then, when the
start button is pushed, the jump to « will occur. If the switch is off,
the computer jumps without stopping.

4, Return jump. In a two-address system the program jumps to (8)
for the next instruction; at the same time the contents of the current
instruction register (i.e., the address of this particular return-jump
instruction) is recorded as (@). The purpose of this instruction is that
it is often desirable to jump back to the place from which the original
program jumped.

5. Recursion, or Loop-aiding, Instructions. These instructions are
designed to aid in the programming of loops. In the examples and prob-
lems given above each time around the loop the main set of instructions
usually needs to be modified by means of additional instructions. As
was seen above, relative counters or index registers can aid in eliminat-
ing these additional instructions. Also, loop codes require some sort of
tally to be kept to allow the computer to jump out of the loop. The
purpose of recursion, or loop-aiding, instructions is to facilitate the use
of the relative counters and to aid in keeping the tally automatically.

a. INDEX-REGISTER MODIFIER. Adds 1 to the index register and jumps
to a. Here the loop tally is not considered.

b. FILE AND MODIFY RELATIVE COUNTER. This instruction stores the
contents of one of the relative counters (assuming that there are several
relative counters) as (a); then another designated by the instruction is
set to the number 8 (that is, not the contents of 8, but g itself), and this
counter is then considered the relative counter until another file instruc-
tion occurs. Since resetting and going to another relative counter
essentially constitutes a jump, this instruction can act as a return jump.
However, if the number 8 of the file instruction itself is considered relative
to the same counter that the file instruction is setting, then this counter

Skc. 4-5] PROGRAMMING FUNDAMENTALS 117

is set to its original reading + g8; that is, the counter is increased by 8.
As we have seen in the index-type instructions, resetting a counter is an
aid to recursion codes; however, no tally is considered.

c. TALLY JuMP. Subtracts 1 from the number « of the instruction; if
the result (that is, @ — 1) is positive, replaces the number « by the num-
ber @ — 1 (in the a-address position) of the instruction, and jumps to
take as the next instruction the contents of 3; otherwise the program
continues sequentially as usual. This instruction does not consider the
relative counters.

d. MODIFY INDEX REGISTER AND TALLY. Compares the contents of the
index register with the number «. If the contents of the index register
is greater than the number «, then the number « is subtracted from the
index register and the difference placed in the index register. Then
a jump is made to 8. Otherwise the program continues in sequence.
Note that the index register acts both as tally and as a relative counter.
Of course this must be used in conjunction with an instruction that
initially sets the contents of the index register.

6. Read and Write Instructions. These instructions operate the input
and output electromechanical units.

a. MAGNETIC TAPES. These instructions can enable the computer to
move the magnetic tapes forward or backward, or completely to rewind
them. They enable the computer to read from the magnetic tapes into
the higher-speed memory. The number of words written onto or read
from the magnetic tape is specified either in terms of individual words
or, more usually, in terms of the number of blocks of words, where by a
block of words we mean some predetermined number of words. If, for
example, there are eight words in a block, then only multiples of eight
words can be handled. Similarly, in just moving the magnetic tapes, the
distance to be moved is specified in either single words or blocks of words.
The instruction code tells whether to read or write, or move the tapes
backward or forward; the number « tells how many words or blocks are
to be considered. IFor reading and writing the number g is the address
that the first word is written out of or read into.

b. PUNCHED TAPES AND CARDS. Instructions that tell the machine to
read in from paper tape or to punch paper tape either give the initial
and final addresses to be read into or out of or else give the first address
and the number of words to be considered. Sometimes in reading-in
paper tape, only the initial address is given, and a signal is put on the
paper tape to tell the computer when to stop reading. Punched-card
input-output is similar.

c. pIsPLAY. For displays on an oscilloscope each instruction may tell
the display to exhibit one dot or other geometrical pattern, and the
instruction gives the coordinates of that dot or of some point on the
pattern.

d. CONCURRENT IN-OUT. Some computers have concurrent input and
output. In these cases the computer can compute at the same time as
words are being read into or out of the computer.

118 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

In addition it should be mentioned that some computers have such
complicated methods of reading in and out that special codes must be
written to facilitate these processes, and these codes must be available at
all times inside the computer’s memory. Often these codes must be put
into the computer at first by hand methods, in a sort of bootstrap oper-
ation. Once the routines are in the computer, the operation may never
need to be repeated. However, these methods are so peculiar to the par-
ticular computer involved that it is not worthwhile considering them here.

EXERCISES

(@) What combination of other logical instructions would produce the same result
as an extract instruction, in a binary computer?

(b) How can return-jump instructions facilitate the use of subroutines?

(¢) Use the modify-index-register-and-tally instruction to code the problem desecribed
in Fig. 4-5. Write the code in a two-address system.

4-6. Special Coding Techniques

Multiway Branch. Our instruction systems deseribed above allow for
only a two-way branch in a code. That is, by means of a comparison

Code (calculates IV)

1st branch 2d branch 3d branch 4th branch
F1a. 4-11. Split-tree comparisons for multiway branch.

instruction, the computer can determine along which of two possible
directions to continue in the code. However, it often occurs that a
many-way branch is needed in a code; this must be programmed. Just
as the decision process for a two-way branch was reduced to a comparison
of numbers, so a many-way branch may be reduced to comparisons of
numbers. For example, if a code is to have a four-way branch, then, to
determine which branch is taken in any case, the code might determine
a number N which can take only the values 1, 2, 3, and 4. Then one
way of coding the four-way branch would be a split tree of successive
comparisons as in Fig. 4-11.

However, there is another, more efficient method for coding a many-
way branch, using a so-called jump table. Here the number N that

Skc. 4-6] PROGRAMMING FUNDAMENTALS 119

decides which branch the computer should take is used as an instruction
modifier (see Fig. 4-12). The basic jump instruction is modified so that,
when executed, the computer will jump to the appropriate-branch jump
instruction of the jump table. This branch jump then jumps to the
proper branch of the code.

Switch Sensing. In real-time applications (see Chap. 1) of digital

computers 1t is often convenient to con-
p Code (calculates N)

nect the outside world to the computer |
by means of a battery of switches. These |
switches are attached to a very specially 1
built word in the computer’s memory, L

and each switch controls a single bit of
this word. If a switch is on, then the Reset basic jump instruction to 160

computer reads a unit in the position of

the word corresponding to this switch; l

if the switch is off, then the computer Modify basic jump instruction to
reads a zero. Thus this special word Jump to 160 + N
gives at any time the status of the corre-

sponding battery of switches. Let usin i

addition assume that this special word
behaves the same as any other word of
the computer’s memory, except that the
computer cannot read into it.

There are two ways of interpreting

Execute basic jump to 160 + IV

The jump table

these switches, called on-off switch sens- | aqgress Branch jump
ing and one-shot switch sensing. TFor

on-off switch sensing the computer is to 161 Jump to 1st branch
determine for each switch whether it is 162 Jump to 2d branch

on or off. The nth switch can be sensed
in this way as follows: Shift the switch 163 Jump to 3d branch
word left until the nth bit is in the most 164 || Jump to 4th branch
significant place; then compare this ' -
shifted word with a word of all units ex- fﬁgﬁfl Jump table for multiway
cept in the most significant place. For
example, consider a one-address system with the following shift instruc-
tion: Shift left (acec) the number of positions . Thus suppose that
the switch word was 011 110 101 110 001, and that we wanted to
determine whether P8 (the eighth bit from the right) were 0 or 1. We
would place this word into the accumulator and perform: Shift left 7;
i.e., shift the word left seven positions. To compare, a negative jump
would be used after subtracting (ace) from 011 111 111 111 111.
If the result is negative, then the shifted word had a unit in the most
significant position, that is, P8 = 1; if the result is zero or positive,
P8 = 0.

For “one-shot” switch sensing the computer senses the switch word
periodically at a rapid rate. The computer is only to determine which
switches have been turned on. The one-shot switch is not to be sensed

120 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

when it is either left on or turned off. Thus one-shot switches are sensed
according to Table 4-2. To code this we can use the extract instruction.

TaBLE 4-2. WHEN ONE-SHOT SWITCHES ARE SENSED

New information | Old information S d
about switch about switch onse
0 0 No
1 0 Yes
0 1 No
1 1 No

The old information is extracted with the new onto all units; then in the
resulting word a zero will occur in the position corresponding to the switch
that was just turned on. Hence, each time the switching word is sensed,
it will be recorded in some other memory location. Then both the previ-
ous and the present switching word will be available at all times. To see
why the extract instruction works, consider the following:

New word («) 01 0 1
Oldword 8) 00 1 (D
(v) 1(1 1(1

130 1 ul

Hence only when 0 in the old word corresponds to a 1 in the new word
will a 0 result. Of course next the position of this zero must be deter-
mined. This can be accomplished by shifting left one position at a time,
keeping track of the number of times shifted, until a zero is sensed in the
most significant position.

Input-Output. Very often the input-output instructions of a computer
are not adequate to read in a whole code or read out all of a given portion
of the memory. In such a case a subroutine must be used for reading in
and out of the computer. For example, consider the following read-in
instruction for a one-address computer: Read one word into «. If an
entire code is to be read into successive addresses of the computer’s
memory, then clearly a subroutine that iterates this instruction is needed.
For example, using such a subroutine, the following procedure might be
followed in reading in a code, where it is assumed that the subroutine is
already in the computer’s memory (see Fig. 4-13): The first instruction
of the code to be read in will be a jump to the read-in subroutine. Then,
when this instruction is read into, say, address 000 and executed, the
computer will jump to the read-in subroutine. The read-in subroutine
will read in the next two words of the code; these words will contain the
initial and final address where the code is to be put in the computer’s
memory. Then the subroutine loads the read-in instruction with this
initial read-in address and the tally with the final read-in address, and
the iteration of the read-in instruction begins. When the complete

SEc. 4-6] PROGRAMMING FUNDAMENTALS 121

code has been read in, the subroutine will jump to the initial read-in
address and computation will proceed. It is probably wise to have the
computer stop before computation proceeds, to give the computer oper-
ator a chance to turn off the input equipment, ete. Then, when the run
button is pushed (see the next section), the computations will proceed.
Table Look-up. Consider the problem of coding a computer to look up
a function table that has previously been stored in the computer’s mem-
ory. That is, given a particular value of the independent variable, we

Obtain first and last addresses

!

Set initial condition on read-

in (out) instruction Address || Operation | « g8
¥ T %0 | ftxo)
Set tally condition on read- : T, x| flxy)
in (out) loop 7, % |)
¢ . T %3 | flx3)
Perform read-in (out) loop | T, xq | flxa)
J’ T :3 Ts x5 | flxs)
: L T, 55 | flxo)
Initiate computation | T, x, if(x7)
Fia. 4-13. Flow chart of input-output Fra. 4-14. Setup of table for table look-
routine. up routine.

desire a code that will select from the computer’s memory the correspond-
ing value of the dependent variable as recorded in the table.

METHOD 1. We have already illustrated above (see Sec. 4-2 under
Instruction Modification) one simple technique that can be used when the
independent variable in the table takes on successive integer values.

METHOD 2. Consider now the case of nonintegral values for the inde-
pendent variable, but where the intervals between successive values of
the independent variable given in the table are all equal. In this case,
given the value of the independent variable for which the value of the
function is desired, simply divide it by the interval to obtain an integer;
thence this case reduces to the one considered in method 1.

The interesting case occurs when the values of the independent vari-
able given in the table do not have equal intervals between them. Here,
to be specific, suppose that we are in a two-address system and the table
is recorded in successive cells of the computer’s memory as follows: The
value of the independent variable is found in the « position of a word,
and the corresponding value of the dependent variable is found in the
B position of the same word (see Fig. 4-14). Let us call the successive
values of the independent variable xo, 1, #2, . . . , Zy, Where of course

122 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

To < < 22< + -+ <y, and of the dependent variable f(zo), f(z1),
f(z2), . . ., f(zs), and suppose that they are recorded in addresses
To, T1, Tey . . ., Ty. We desire to find f(N) for some given value N,
where it is assumed that N = z; for some 7; that is, no interpolation is
considered here.

METHOD 3. One simple procedure is to compare successively N :zx,,
N:xzy, N:xg . . ., until, for some ¢, N = x;; then f(N) = f(x;) can be

Start
Let T0=tL1 T, =tU

| a= tht" rounded A= t";"‘ rounded
down to an integer up to an.i integer
)
V=t +A
\i
< (¢) N <
y
\
>ty P(':,';t

F1a. 4-15. Flow chart for table look-up, method 4.

read from the computer’s memory as desired. This, of course, can be
accomplished by a simple iteration.

METHOD 4. There is another method that on the average will enable
f(N) to be obtained faster. The flow chart for this method appears in
Fig. 4-15. The method consists in determining in which half of the table
z; = N is located; then the halving procedure is again applied to this
smaller part of the table, etc., until a single cell is left. For example,
‘consider Fig. 4-14, and suppose that N is z;. Then the first step of this
method is to determine that N isincluded in T’y through T7. The second
step locates N further, as being in T'; or T5. The third step in this case
locates N as being in T's. The code would be written as follows: At any
step let ¢z and &y be the lower and upper addresses, respectively, of

SEc. 4-6] PROGRAMMING FUNDAMENTALS 123

the range of addresses in the table under consideration. Then form
t =i + A, the address that divides this range of address into two
parts, where A = (fy — #2)/2. Then we look to see whether N liesin the
upper or lower half of the range;i.e., is the contents of the « part of ¢
greater or less than or equal to N, that is, ()a:N? If (¢')o > N, then
' becomes the upper address of the new range; that is, t' — ty. If
(). < N, then ¢ becomes the lower address of the new range; that is,
t'— tr. Of course, if () = N, we have the desired result. There
is one little complication, however. When A = (ty — t.)/2 is formed, it
may not be an integer; but ¢’ = ¢z + A is an address and therefore must
be an integer, hence must be rounded to an integer. A little reflection
will show that, if (). > N, then the next A should be the nearest smaller
integer to (v — t)/2, while if (). < N, the next A should be the nearest
larger integer to (fv — t1)/2.

For example, consider Fig. 4-14 in connection with the flow chart
of Fig. 4-15, and suppose for argument’s sake that N = x5 and that
Ty =100, Ty = 101, Ty = 102, . . . , T» = 107. Then we would start
with {; = 100, &y = 107, whence A = (107 — 100)/2 = 314, rounded
up = 4. Hence ¢ = 100 4+ 4 = 104. Comparing (104).:N, we find
N > (104).. Hence 104 is ¢z, and we form A = (107 — 104)/2 = 114,
rounded up = 2. Thus ¢ = 104 4+ 2 = 106. Comparing (106).:N,
find N < (106),. Hence 106 becomesty. ThusA = (106 — 104)/2 =1,
whence ¢/ = 104 + 1 = 105. Comparing (105),:N, find N = (105),,
and the result has been obtained.

EXERCISES

In all the exercises below the student should feel free to define explicitly any instrue-
tions that he may require or that may help simplify the code (particularly in the one-
address system), based on the material of the previous two sections (Secs. 4-4 and 4-5),
unless specifically stated otherwise by the exercise. These instruction definitions
are to be listed preceding the code.

(a) Define appropriate one-address instructions, and code both the split-tree and
jump-table method for a four-way branch.

(b) Suppose that only a single on-off switch could be on at one time. Define
appropriate one-address instructions, and code a subroutine that will determine the
position of a switch that is turned on.

(c) Write a code for the same problem as (b), but now consider one-shot switches.

(d) Write an input subroutine, using the one-address input instruction given in this
section.

(e) Using a one-address system, with an input instruction that reads in one word
at a time as described in this section, and assuming that the word format has a single
auxiliary bit, define appropriate counter-setting instructions, etc., and write a read-in
subroutine.

(f) Write a code for method 3 of the table look-up problem. Make use of an exfract
instruction to extract the successive x; onto all zeros to compare with N; then extract
f(N) onto zeros for the read-out. Also assume that there are two auxiliary bits and
one relative counter to aid the iteration.

(9) Code method 4 of the table look-up problem in a two-address system.

124 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

4-7. The Control Panel

Purpose of the Conirol Panel. The control panel has three main
functions: (1) to enable the operation and monitoring of the computer
during the computation of a program; (2) to aid the checking, or ‘“debug-
ging,” of a new program; and (3) to aid the maintenance of the computer
by the engineer. The control panel and the program itself are the
main communication links between the operator and the computer. By
means of the control panel the computer can be started and stopped,
computations can be initiated, magnetic tapes can be properly positioned
and other input-output equipment controlled, computer voltage and
current levels, temperature, power input, etc., can be checked and
adjusted, and so forth, There are wide variations in the features of con-
trol panels of different computers. In this section we shall diseuss some
of the possible features that a control panel might have (see Fig. 4-16).

In general, information is transmitted between the operator and
computer by means of lights and buttons on the control panel. However,
there is one method for monitoring a program during the computations
using neither lights nor buttons that deserves special mention. It con-
sists simply of a radio placed near the computer tuned to pick up signals
generated during the computation. The computer, operating at a mega-
cycle or more, presents a radio frequency ; recursion loops generate audio-
frequency modulations that can be detected. Various sound patterns
will correspond to the different sequences or loops of instructions in the
program. A coder who is computing many reruns of the same code, as
would be the case in computing mathematical tables, can frequently
relate these sounds to the various iterations of his program. A trained
ear can then often detect errors or other troubles that his computations
may have, just by “listening’’ to the program while it is being computed.

Lights and Signals. Usually one first notices the lights and signals
displayed by the control panel. By means of these signals the computer
can tell the operator something about its internal state. There are in
general three kinds of lights and signals: the first kind tells why the
computer stops during the course of a computation; the second presents a
visual picture of the contents of various registers and memory cells; the
third gives the electrical state of the computer.

When the computer stops or halts, usually one of several lights comes
on, indicating the cause for the stop; i.e., a stop instruction has been
executed (called a final stop), or an instruction being executed may con-
tain an erroneous operation code not meaningful to the computer, or an
instruction being executed may have reference to an erroneous memory
address not legal for the computer,T or a check stop due to an auxiliary
bit may have occurred, and so forth. Control panels are often con-
structed so that, when the computer has stopped or halted, the contents

t Frequently the full complement of memory address is not constructed for a

computer. Hence an erroneous instruction would refer to an address that the com-
puter does not have.

a8

Volts, etc.

AW,

Power switch

=0

Accumulator

1 00 |@e®@0 |000 |0 0O |0O®G® |00@® |OOCE® |OGO
0 ocoee |ooe |e0ce |[cee]|]eo00 (00O |@eeo |[e 00
8 088 8869 9989 998 898 8988 9898 8484 Start
Clear button Bit buttons button
Instruction register g
Operation « addresses
1 o000 |0e0|eeo0 o0 |e00|®e@0|00COC |0 00
0 ocooe|eoe|oo0oe |e0ce |0Oee|00Ce |eee [OOO
4 988 998 988 889 898§ 888 488 888
Clear button Bit buttons
Current-address counter
1 ceeo (0600 |[cee |®ee0 |O0e
0 @00 |00e (@00 |JOOE® |®OCO
& 004§ 908 998 098 999
Clear button Bit buttons

F1g. 4-16. A simple control panel. In the illustration the accumulator reads 46243712, the
and the current-address counter reads 36363.

Run
button

4

Final
stop

Stop
button

4

Mode
\\biy

©
©

ot
=
v
(1]
(7]

©
©

©©

llegal- lllegal=
operation address
stop stop
Auxiliary Auxiliary
bit button switch
r
off
External
Phase colector
VL \\iy,

Magnetic-tape control

g

Rewind

é

Run

instruction, register reads 62624607,

126 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 4

of various registers can be ascertained from sets of lights. For instance,
there may be two small “grain-of-wheat’’ neon bulbs on the control
panel corresponding to each bit of the accumulator. When the top bulb
of the pair is on, the corresponding bit might be a unit; when the bottom
bulb is on, the corresponding bit would be a zero. Similarly the contents
of the instruction register of the current-address counter and of other
registers and counters can be displayed. If an electronic failure has
occurred, such as a blown fuse or a change in voltage or current readings
beyond an allowable limit, appropriate signal lights will come on. Of
course there will be a pilot light indicating that the power is on, ete.

Buttons and Switches. The only means the computer operator has to
control the computer, other than by the code itself, is by the buttons and
switches on the control panel. Besides the on-off switch for the power
there is a start button, which initiates the computations. For example,
when the start button is pushed, the computer may automatically take
as the first instruction the contents of address 000. There is also a stop
button; when pushed, the computations cease. In addition to the start
button there may be a run button, which is used to restart computations
after a halt has occurred in the middle of a computation. In this case
the difference between the start and run button is that the run button
tells the computer to continue to perform the instruction already in the
instruction register, whereas the start button tells the computer to initiate
a particular standard predetermined sequence of events, e.g., take 000 as
the next instruction.

The computer can usually be operated in several different modes.
For example, by setting a switch the computer can be made to execute
only a single instruction each time the start or run button is pushed. In
this way a sequence of instructions can be “stepped through’’ slowly by
successively pushing the run button. This would be done, for example, if
one desired to see several of the instructions and their results on the lights
of the control panel that display the contents of various registers. On the
other hand a different setting of this mode switch can make the computer
sequence itself through the instructions of a program at a very much
- reduced rate. Finally of course the mode switch can be set so that the
. computations proceed at full speed. Often in the single instruction
mode, there is a phase-selector switch which makes the computer proceed
through just one phase each time the run button is pushed.

. So much for the special methods of starting the computer; consider

next special methods for stopping or halting the computer. In previous
sections we have observed how the operation of manual switches can be
used to halt the computation when auxiliary bits are present. These
switches are called auxiliary switches. There can be several auxiliary
switches, each associated with a different auxiliary bit of the instruction
word. Then, by setting the proper auxiliary switch, the computer can
. be made to stop at different sets of instructions. Other switches may
make the computer halt at a particular phase when the stop button is
pushed,

Sec. 4-7] PROGRAMMING FUNDAMENTALS 127

One of the most important uses of a control panel is to insert words
manually into particular memory locations. Such an occasion may arise,
for example, when it is necessary to correct only one or two words in a long
program that is already in the computer’s memory. There are several
methods used to accomplish this. One method is to have one button
associated with each bit of the registers that may be displayed by lights
on the control panel. When the computer has been halted, the contents
of a register may be changed by means of these buttons. Ior example,
there may be one ‘“clear’ button for each register that, when pushed,
makes the contents of the respective register all zeros. Then the bit
buttons of this register are pushed to insert units in the desired bit loca-
tions. Under these conditions the procedure for inserting a word into a
particular memory position would be as follows: Halt the computer;
manually insert the desired word in the accumulator; similarly insert an
instruction in the instruction register that will transfer the contents of the
accumulator into the desired memory location. Set the mode switch
for a single instruction, and push the run button. The inserted instruc-
tion will then be executed, and the word will be inserted into the desired
memory location. Other methods might make use of the external input
equipment to read a single word into the desired memory address.

There is usually a set of switches associated with the input-output
equipment. Although, as we have seen, the selection of input-output
equipment can be made by the program itself, frequently provision is
made on the control panel for the manual selection of external equip-
ment. Other switches present a means for manually winding, rewinding,
and positioning magnetic-tape units. More complicated external equip-
ment such as cathode-ray or television displays of course require still
additional controls.

Let us now illustrate a possible procedure for initiating a computation
by means of our control panel. First the input medium is properly
set in the input device. Next the input device itself is turned on, and
the external selector is set to choose this input equipment. An instruc-
tion is inserted into address 000 that will read in the whole program.
The accumulator, instruction register, and current-address counter are
all cleared (why?). The mode is set at high speed, and then the start
button is pushed. The computer will then execute the instruction found
in 000 first.

EXERCISES

(a) Suppose that a characteristic “click” can be heard on the radio monitor each
time the computer goes through a loop. Suppose also (for simplicity in this exercise)
that any instruction takes precisely 100 usec to execute on our one-address computer.
Write a code that will play the first few notes of the song “ Dixie.” (Hint: Look up the
audio frequency of the first few notes of “Dixie,”” and code successive loops that will
repeat at these frequencies.)

(b) Describe a procedure for finding out, by means of the control panel, what word
is in a particular memory address.

128 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHap. 4

(c) Suppose that a subroutine were necessary in order to read in a program. What
would be a procedure for initiating a program by means of the control panel?

(d) If a computer needs a read-in subroutine, how is the read-in subroutine itself
read in (for the very first time)?

4-8. Additional Topics

a. Survey of Instruction Systems. Make a survey and analysis of instruction defini-
tions used in many different presently available computers. Obtain the information
from the programming manuals of computers such as the Sperry Rand UNIVAC 1103
and 1105; the IBM 650, 704, 705, and 709; the Bendix G15; the Datamatic 1000; the
Datatron; and the Electrodata. Classify the instructions by the categories given in
this chapter. :

b. Survey of Control Consoles. Make a survey of control consoles and the function
of the different switches, buttons, and lights on each. TUse instruction and mainte-
nance manuals for the computers mentioned above to obtain the information.

¢. Indirect Addressing. If there are n bits in an address, then only 2” memory loca-
tions can be addressed directly. Indirect addressing must be used when it is desired
to address more than 2" locations. For example, suppose that we desire to address
w X 2" memory locations. The entire memory would be divided into w parts, each
with 2 memory locations. For each of these w parts there will be a special register or
memory location reserved, the contents of which will be the address desired within
this part. Then, to address one of the w X 2" memory locations, an instruction would
simply address one of the w special memory registers, and the contents of this address
would itself be interpreted as the address desired in the corresponding part of
the memory. Variations of indirect addressing are used in the NBS Pilot computer,
the Philco TRANSAC 2000 computer, and the IBM 709. Study these uses of
indirect addressing.

d. Microprogramming. R.J. Mercerf defines microprogramming as ‘““the technique
of designing the control circuits of an electronic computer to formally interpret and
execute a given set of machine operations as an equivalent set of micro-operations,
elementary operations that can be executed in one pulse time.” There are two
logically closely related types of microprogramming, one analogous to indirect
addressing, and the other that is concerned mainly with the logical design of the
control circuits of the computer. The analogy to indirect addressing occurs when the
instruction operation is an address, rather than an operation, and the contents of this
address is interpreted as a sequence of micro-operations. The micro-operations
might each consist of 4 bits, and there might be 10 of these in a single 40-bit word.
The micro-operations themselves would indicate transfers of words between various
registers, setting of switches to be sensed at a later time, various types of shifts,
arithmetic operations, logical operations, and so forth. The same effect may be
obtained by sequencing micro-operations by means of coding and decoding matrices.
See, for example, R. J. Mercer’s cited article; M. V. Wilkes and J. B. Stringer,
Microprograming and the Design of the Control Circuits in an Electronic Digital
Computer, Proc. Cambridge Phil. Soc., April, 1953; H. T. Olantz, A Note on Micro-
programing, J. Assoc. Computing Machinery, April, 1956; S. V. Blankenbaker,
Logically Micro-programmed Computers, IRE Trans. on Electronic Computers, vol.
EC-7, no. 2, pp. 103-109, June, 1958.

1 Robert J. Mercer, Micro-programming, J. Assoc. Computing M achmery, vol. 4,
no. 2, pp. 157-171, April, 1957.

Sec. 4-8] PROGRAMMING FUNDAMENTALS 129

e. The Minimum Computer. It is clear that a general-purpose computer does not
really “need” the multiplication or division instructions, for these operations can be
formed by a combination of additions or subtractions. Similarly other operations
can be omitted and replaced by simpler ones. The question arises: What are the
minimum instructions necessary for a general-purpose computer—or, indeed, what
criteria can be applied to determine whether or not a computer is actually a general-
purpose computer? These questions have long been of interest to mathematicians
and logicians. The so-called Turing machine, or “universal computer,” was devel-
oped for this purpose (see A. M. Turing, On Computable Numbers, with an Applica-
tion to the Entscheidungs Problem, Proc. London Math. Soc., ser. 2, vol. 42, pp.
230-265; a more readable description is given in Martin Davis’s “Computability and
Unsolvability,” chap. 1, McGraw-Hill Book Company, Inc., 1958). More recently
S. P. Frankel has considered the minimum general-purpose computer; see his On the
Minimum Logical Complexity Required for a General Purpose Computer, IRE Trans.
on Electronic Computers, vol. EC-7, no. 4, December, 1958. Frankel’s computer can
only subtract. Can you program multiplication on Frankel’s minimum computer

- (called the Microcephal AC)?

f. References on Programming Texts and Periodicals

Alt, Franz L.: “Electronic Digital Computers—Their Use in Science and Engineer-
ing,”” Academic Press, Inc., New York, 1958.)

Jeenel, Joachim: ‘“Programming for Digital Computers,” McGraw-Hill Book Com-
pany, Inc., New York, 1959.

Ledley, R. S., and J. B. Wilson: “Programming and Utilizing Digital Computers,”’
McGraw-Hill Book Company, Inc., New York, in press.

Levin, Howard 8.: “Office Work and Automation,” John Wiley & Sons, Inc., New
York, 1956.

MecCracken, D. D.: “Digital Computer Programming,” John Wiley & Sons, Inec.,
New York, 1957.

Von Neumann, J., and H. H. Goldstine: “Planning and Coding of Problems for an
Electronic Computing Instrument,” Institute for Advanced Study reports
written under U.S. Army Ordnance Contract W-36-034 ord 7481, Princeton,
N.J., 1947-1948.

Wilkes, M. V., D. J. Wheeler, and S. Gill: “The Preparation of Programs for an
Electronic Digital Computer,” 2d ed., Addison-Wesley Publishing Company,
Reading, Mass., 1957.

Wrubel, Marshal H.: “A Primer of Programming for Digital Computers,” McGraw-
Hill Book Company, Inc., New York, 1959.

Periodicals (in which special computer programming problems are discussed)

Automatic Conirol, monthly, New York.

Automation, monthly, Penton Publications, Cleveland, Ohio.

The Computer Journal, quarterly, British Computer Society, Ltd., London.

Computers and Automation, 10 times a year, Edmund C. Berkeley and Associates,
New York.

Conirol Engineering, monthly, McGraw-Hill Publishing Company, New York.

Journal of the Association for Compuling Machinery, quarterly, New York.

Journal of Operations Research Society of America, quarterly, Baltimore.

CHAPTER 5

ADVANCED PROGRAMMING

b-1. Introduction

The previous chapter was concerned with the details of programming
and coding at the instruction level. The four-, three-, two-, and one-
address instruction formats were described and compared. The octal-
coded binary and decimal-coded binary systems were compared. The
steps in preparing a flow chart, symbolic code, and finally the code itself
written in the actual machine language were described. Decision
branches, instruction modification, and recursion codes were discussed
and examples given. Coding was found to be detailed and laborious,
and the one-address system particularly aggravated these qualities.

Advanced programming techniques attempt to lighten the load of
the programmer and coder. Its purpose is to try to make the computer
itself help prepare the program or code, minimizing the amount of
writing a programmer need do. The means used to accomplish this
is to prepare or precode the computer with an intermediate, or automatic,
program which is always available in the computer memory. This inter-
mediate or automatic code encompasses certain aspects of coding that
are common to many programs and of general applicability. Then,
when the programmer is coding any specific problem, his work can
be shortened by taking advantage of already precoded items of the
automatic program that are already in the computer. Such automatic
programming can greatly simplify the coding of computers otherwise
difficult to code. Hence, in the design of some computers, little attention
is paid to ease of coding, and such advanced programming techniques
are heavily relied upon to compensate for this. Unfortunately, however,
the coder must then learn how to use not only the computer but also
the automatic programming schemes. Evidently a balance must be
sought in computer design between the amount of automatic program-
ming envisioned and the difficulty of coding. It is clear that automatic-
programming concepts are of great importance to the computer engineer.

Rarely is a program written that is found to be absolutely correct
the first time it is run on the computer. Hence in this chapter we first
consider automatic aids for analyzing an already coded program for
errors. Having discussed automatic programs to aid the coder to correct
his code, we turn to such programs that aid the computer engineer to

130

Sec. 5-2] ADVANCED PROGRAMMING 131

maintain the computer. Next automatic programs designed to lighten
the load of the programmer are considered. These can be roughly
classed in two categories—the interpretive routines and the compiling
routines. Various examples are discussed as illustrative of the methods
and techniques of formulating and using such automatic programs. The
specific examples given are intended to illustrate the principles involved,
and their particular form as chosen for this chapter was dictated by
pedagogical considerations only. As will become clear during the course
of the chapter, there are many other ways to solve the problems posed,
and in actual practice the final choice depends on the primary purpose
of the code and the detailed characteristics of the computer to be used.

b-2. Program Debugging Methods and Routines

The Problem of Program Debugging. The first time a program is
tried on a computer, it usually does not run correctly. If the start
button is pushed and the program allowed to run, one of four results
can oceur: IMirst, the computer might run up to a point and then just
stop, or “hang up.” Second, the computer could continue to run for an
excessively long time, neither stopping nor producing any results. Third,
the computer could run and, as expected, print out results, but wrong
results. And finally the program could run correctly. In the first three
cases an error is indicated in the program, and the problem is to detect
where—at what instruction or instructions—the error occurs and then
to correct it. This procedure is often referred to as “debugging” a
program.

It is hard to describe in general how to debug a particular program;
ingenuity on the part of the programmer, systematic and neat flow
charts, coding sheets with detailed remarks, and a thorough knowledge
of the code are, of course, all essential. When a program just stops, this
usually indicates that the computer has been asked to do an illegal
instruction; for instance, the instruction might have an operation code
not corresponding to any operation or might contain an address that the
computer does not have, ete. Illegal instructions are often the result
of an error in instruction modification. When a program never stops, the
program usually has a loop with a faulty exit. The exit may not have
been properly set up, or else a nonconverging iteration may be in process,
etc. The printing out of wrong results requires examination of these
results in the light of the problem: Is the scaling wrong? Are the con-
stants correct? Has any phase of the calculation been skipped, ete.?

However, certain techniques can be discussed that are often used to
aid the debugging process. These can be generally classified into dynamic
debugging and post-mortem debugging. Dynamic techniques try to
check the program while it is actually running on the computer; post-
mortem techniques examine the computer memory after the program has
stopped, or “hung up.”

Dynamic Program Debugging. Let us first consider dynamic program
debugging. There are two generally used methods: the first is called the

132 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

break-point (or check-point) method; the second is called the automonitor
method. The break-point method consists in writing into the program,
at critical intermediate points, instructions that either will stop the
computer so that important intermediate results can be observed or will
make the computer print out such intermediate results automatically.
The sign bit on an instruction word is often used to facilitate such a
process. For example, some computers are designed so that after
executing an instruction with a negative sign the computer will stop.
Usually such computers also have the following additional feature: A
manual switch on the control panel can be thrown so that in one position
the computer will not stop after a negative instruction—this being called
the normal switch position—and so that in the other position the com-
puter will stop—this being called the break-point switch position. The
advantage of this control-panel switch is clear: in debugging a program,
the negative instruction stops are used, and the switch is set accordingly;
when the program has been corrected, these negative stops are no longer
desired and hence the switch is thrown to normal.

Another break-point procedure depends on the programmer inserting
into the program at intermediate critical points manual-switch jump
instructions. In debugging the program, the switches are positioned
so that the computer will jump when it encounters such an instruction;
usually special print-out routines are included in the program, and the
Jjump instructions transfer the computer to these routines. When the
program has been corrected, the switches are turned off and the computer
simply ignores the jump instructions.

Use of the Automonitor Program. The automonitor method for
dynamic debugging does not require any additions or special considera-
tions in the program itself, as does the check-point method. Instead the
automonitor method requires the use of a special automonitor pro-
gram which is read into the computer in addition to the program to be
debugged. The automonitor program is general and once written can be
used for every program to be debugged. Occasionally the computer
has the properties of the automatic automonitor program already wired
in, so that the automonitor process can be carried out simply by throw-
ing a switch on the computer console. An automonitoring program
makes the computer print out—while each instruction of the program
being debugged is being executed—ithe instruction itself, the contents of each
of the operand addresses, and the computed result. For example, suppose
the program to be debugged is as follows:

Address Instruction
8o Operation | ap Bo Yo 01
81 Operation | ay B1 7 02
-2 Operation | B2 Y2 03

SEc. 5-2]

ADVANCED PROGRAMMING

133

Then the automonitor program would have the computer print out the

following:
Address | Instruction | 1st operand | 2d operand | Result
8 (80) (a0) (Bo) (C))
81 (81) (ar) ()] (v1)
2 (82) (a2) (82 (v2)

In other words, the automonitor program gives a complete record for the
program being debugged of just which instructions are being done by the
computer and what the results were. With this information it becomes
easy to spot any error in the program being debugged. Note that the
automonitor program is a program that operates on another program—
more about this point will be said in the succeeding sections.

Of course certain instructions of the program being debugged are
handled somewhat differently. IFor example, in a compare instruction,
(v) need not be printed, but just 6, (8), («), (8), for the address of the
next instruction tells which way the comparison went. Common sense
clearly dictates what an automonitor program should print out.

An automonitor program for a three-address computer would be
similar to that just described for a four-address system. TFor a two-
or one-address system the contents of the accumulator or other registers
becomes of importance, and hence the contents of the accumulator is

printed out. For instance, in a one-address system, the print-out would
look like this:

8o (80) (@) (ace)
61 (81) (a1) (ace)
82 (82) (a2) (ace)

The Automonitor Program Itself. In order to grasp more fully the
general concept behind an automonitor program, let us examine in a
cursory way how such an automonitor program itself might be written
for a one-address system. The flow chart is given in Fig. 5-1. This
automonitor program is in one part of the memory, and the program to be
debugged is in another part of the memory. The automonitor program
must be given the address of the first instruction of the program to be
debugged. Then the automonitor program prints out the desired record
and also executes the instructions of the program to be debugged. First
the automonitor program prints the address of this first instruction, &;
then it copies (d¢) into a special temporary located in the automonitor
program’s part of the memory. This instruction is printed, and (ao) is
printed. Next the automonitor program directs the computer to execute
the first instruction 7n its location within the automonitor program.
Then (ace) is printed, and the automonitor program goes on to the next
instruction, etec. There are a few important details that must be attended

134 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

to. When the program to be debugged is being executed, the contents
of the accumulator from instruction to instruction is, of course, important.
But when the automonitor program executes one instruction at a time
and inserts print routines, ete., between these instructions, the contents
: of the accumulator becomes lost.
(Start) In order to correct this situation, the

contents of the accumulator (and
other registers) must be recorded
after the execution of each instruc-

— " Print § tion of the program being debugged.
Then, before the next such instruc-
L tion is to be executed, the registers

are properly preset.f In this way

Copy (3) into temporary the two programs are properly

interleaved.
l Post-mortem Program Debugging.
Print (8), i.e., as it appears in Consider next post-mortem program
temporary debugging. The first method is to
¢ run the program through and ob-
servetheresults. From aknowledge
Print () of the program and the erroneous
results an error can often be located.
L For example, if the magnitude of the

R - results is off, the scaling is checked
eset accumulator and registers, and .

execute the instruction in the temporary for error, ete. The second method is

to print out the entire memory of

t the computer after the program has

been run. If the program got into

a loop with no exit, then the tallies

Record (acc) and (registers)

l can be checked on this memory print-
out. All instructions that were to

Print (acc) be modified by the program can be

checked to see whether or not they

& were correctly modified, ete. A third

Determine add ; method 1s‘to have another program

] e::;tl ?ssi,uéf; bo that examines the program to be de-

bugged after it has run. This pro-
gram compares the program to be
debugged with itself before and after
it has been run and tells the programmer where they differ. In this way
the programmer can determine if any instructions were inadvertently
destroyed, if all differences that should appear actually do appear, ete.

Of course the programmer uses combinations of the techniques that are
at his disposal. What we have briefly outlined here is in no way com-

1 Also, provision is made in the automonitor code so that jump instructions are not
performed directly but rather operate on the automonitor d-address reading
instruction,

F1e. 5-1. Flow chart of automonitor
program.

Sec, 5-3] ADVANCED PROGRAMMING 135

plete but rather indicates some of the directions from which aids to
programming may arise.

EXERCISES

(a) Write out precisely what an automonitor program would print if applied to the
code of Example 3-1c.

(b) Suppose that a code contains a negative jump instruction. How can the
automonitor program handle such an instruction? After the automonitor program
executes the negative jump, how can it regain control again?

(¢) Write a simple post-mortem debugging program as required for the third
method.

5-3. Computer Maintenance Routines

Maintenance. If a computer ecircuit is malfunctioning, then the com-
puter will not always produce the correct results. Evidently these
incorrect results must in some way reflect the course of the malfunction-
ing. Hence it seems possible that specific routines can be designed
especially for determining a malfunctioning ecircuit. Such programs
are called maintenance routines. Of course one must be able to read
into the computer, read out of the computer, and perform some opera-
tions in order that a maintenance routine be capable of application at all.
Then there is the fact that even though a programmer using a computer
may swear that it is malfunctioning, it may often be in perfect operating
condition. Hence a maintenance routine must check to see whether or
not the computer is indeed malfunctioning. However, if the user of the
computer can demonstrate that it gives two different results to the same
program, then the computer must be malfunctioning no matter what the
maintenance routines determine. Finally observe that a maintenance
routine often cannot detect a particular malfunctioning circuit but can
determine only that one of several circuits is not operating correctly.
Then, of course, the computer maintenance engineer must make electronic
tests on these circuits themselves inside the computer.

Actually maintenance routines are composed after a detailed knowledge
of the computer logical circuitry has been mastered. However, we have
placed this discussion in Part 1, rather than at the end of Part 4, to
illustrate for the prospective computer engineer the necessity of a
thorough understanding of coding.

Locating Malfunctioning Parts. Maintenance routines usually are
designed to determine whether or not some particular part of the com-
puter is working correctly. For example, a routine may test the input-
output equipment, another may test different parts of the memory,
another may test the add operation, another the multiply operation, etc.
The logic most often used in interpreting the meaning of a maintenance
routine test is: if the part of the computer tested by the routine is operat-
ing correctly, then the malfunctioning circuit must be located in some
other part of the computer. In this way the possible malfunctioning

136 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

circuit is located by the elimination of correctly operating circuits. The
fact that a maintenance routine test fails does not necessarily mean
that the malfunctioning circuit is located in the part tested by this
routine, whereas the fact that a maintenance routine test passes does
mean that the circuits in the part tested are in operating order. The
reason for this is that it is extremely difficult to distinguish by means
of a maintenance routine between a malfunctioning circuit in the control
unit and some malfunctioning circuit in the arithmetic unit.

As an example of a maintenance routine, suppose it has already been
determined that the first sixteen memory cells are operating correctly,
in addition to the accumulator and the add, subtract, iransfer, and jump
instructions. The problem is to test the rest of the memory. To see
whether or not a memory location is dropping a bit, a word of all units
is read into an address and, after a time, read out again. If the word
read out is not all units, i.e., has at least one zero, then it can be concluded
that this address is malfunctioning. Hence the entire memory from 020
on is filled with words of all units; and the program of Table 5-1 will test

TaABLE 5-1. MAINTENANCE ROUTINE

Instruction
Address Remarks .
. (preload accumulator with 77 777)
Operation «
000
001 Subtract 020 | Subtract contents of a memory address from accu-
mulator, and put result into accumulator
002 Add 012 | Add a word of all units to accumulator; if there is an

overflow, we are assuming that computer will stop
003 Subtract 012 | Clear accumulator

33§ ﬁgg 8(1); Modify subtract instruction found as (001) to consider

006 Transfer 001 the next successive memory address
007 Subtract | 001 | Clear accumulator

010 Add 012 Set up initial conditions for next loop; take next
011 Jump 001 } instruction from 001

012 77 777 | Constant: a word of all units

013 00 | 001 | Constant: 00 001

whether or not any bits are being dropped, where it is assumed that
the computer is designed so that an overflow will cause a stop and that an
illegal a will also cause a stop. For this code (accumulator) must
initially be a word of all units—i.e., initially (acc) = 77777. Now, if a
memory address being tested does not drop a bit, then the result of the
subtraction will be all zeros and hence, after (012) is added to the accumu-
lator, the initial conditions are once more set up and the next memory
address can be tested. On the other hand, if a memory address did drop
a bit, then some unit would be a zero and the result of the subtraction

SEc. 5-3] ADVANCED PROGRAMMING 137

would contain a unit in the position where the memory address had a
zero. Hence, when this result is added to a word of all units, overflow
will occur and the computer will stop. (It was, of course, assumed that
the computer in question had this property.) Then the « address of the
instruction stored in address 001 is the malfunctioning address; and the
position where the units of the accumulator turn to zero is the position
where the bit is being dropped, i.e.:

Dropped bit
l

(¢ - - 111 111) = (- - - 110 111) = (- - - 001 000)
whence
(---001 000) 4 (- - - 111 111) = (- - - 000 111)

T
Position of dropped bit

When a bit is dropped, this can often be due to either the control circuitry
or the memory itself. Then these must be checked electronically.

A Not gate \3]
And
B gate
B ——6— Not gate g
Or c
gate
1
And
gate

F1a. 5-2. Comparison (or equalizer) circuit.

As another example, suppose that the add, compare, and transfer
instructions and the memory were operating; the problem is to check
the shift-left instruction. Since shifting («) left n positions is the same as
forming 2 - [where (a) = z], we can perform the equivalent of shifting
by adding a number to itself, and the result to itself, etc., repeated n
times. Hence we perform the shift and also perform the add interpreta-
tion of a shift, and then see if we have gotten the same answer. Note that
two things need to be checked: first that the bits do shift from each
position to the next successive position to the left; also that the number
of positions shifted is the number called for in the instruction.

Locating Malfunctioning Gates. Up to now we have discussed main-
tenance routines that attempt to locate the malfunctioning ecircuit
down to some rather gross part of the computer. On the other hand it
is sometimes possible to locate the actual gate or gates that may be
causing the trouble. For example, consider the comparison (or equal-
izer) circuit described in Sec. 2-5, which is redrawn in Fig. 5-2.

Suppose that the gates were the relay gates described in See. 2-5.
Let us assume that, if a normally open relay is malfunctioning, its
contact is dirty and it does not close properly; also that, if a normally

138 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

closed relay is malfunctioning, its relay arm is stuck and it will not open.
Under these assumptions, let us try to write a routine for determining
which gates are not operating correctly, if any at all. To do this, note
that there are only four possible different input conditions for this circuit,
which are summarized by the four columns in the following table. If
the circuit is operating correctly, then the outputs for each gate in the
circuit corresponding to each input are also given in the table.

Inputs:
A oo 0101
B, 0011
Outputs:
Gate 1............ 1010
Gate 2............ 1100
Gate 3............ 1000
Gate 4............ 0001
Gate 5............ 1001

If any other output appears, then the circuit is malfunctioning and the
problem is: How can such an output be interpreted in terms of a specific
malfunctioning gate? We shall assume that only one of the gates is ever
malfunctioning at a time. Hence suppose that the not gate for 4 is
malfunctioning. Since it is made of a single, normally closed relay,
according to our above discussion, instead of putting out not A, it will
put out all units, no matter what 4 is. Similarly for the not gate of B.

Now consider an and gate. If either of the two relays cannot close,
the output of the gate will be all zeros. For the or gate, if either relay
will not close, then the input of this relay will not get through the gate
but the other input will get through. If both relays will not close, then
the output will be all zeros. Hence three possible outputs can occur
if the or gate is malfunctioning.

We can summarize the above discussion by writing the four possible
input conditions together with the outputs of each gate of the circuit,
assuming that one at a time of the gates is malfunctioning:

Input
Ao 0101 0101 0101 0101 0101 0101
B............... 0011 0011 0011 0011 0011 0011
Output
Gate 1.......... 1010 1111} 1010 1010 1010 1010
Gate 2.......... 1100 1100 1111¢ 1100 1100 1100
Gate 3.......... 1000 1100 1010 0000t 1000 1000
Gate 4.......... 0001 0001 0001 0001 0000t 0001
1000
Gate 5.......... 1001 1101 1011 0001 1000 0001 ¢ t
0000

1 Malfunction.
Only the output of gate 5 goes to the memory and can be observed by a

Sec. 5-4] ADVANCED PROGRAMMING 139

computer program. Now suppose that we choose for the input to A
a word such that P4, P3, P2, and P1 are the bits 0101 and for B a word
such that P4, P3, P2, and P1 are the bits 0011. Then the first four bits
of the output word will correspond to the four different possible input
conditions. Hence we can say that if P4, P3, P2, and P1 of the output
word (i.e., the output of gate 5) are

1101 Then gate 1 is malfunctioning
1011 Then gate 2 is malfunctioning
0001 Then either gate 3 or gate 5 is malfunctioning
1000 Then either gate 4 or gate 5 is malfunctioning
0000 Then gate 5 is malfunctioning

Hence it becomes clear how a code can be written to determine which
gate or gates are malfunctioning. Note that in some cases it cannot be
determined which of two gates is malfunctioning, but only that one or
the other is. Of course we can again observe that the detailed circuit
design must be known in order to write such a code.

EXERCISES

(a) Write a three-address code to check the shifi-left instruction, assuming that the
add, compare, and transfer instructions are operating, in addition to the memory.

(b) If add, shift-left, compare, and transfer instructions are operating, how would the
multiplication instructions—both major and minor—be checked? (Hint: Be careful
about not allowing any overflow when doing the additions.)

(¢) Write the actual maintenance code for the gating circuit used in the above
illustration. Use a one-address system.

If gate 1 is malfunctioning, put a 1 into 001
If gate 2 is malfunctioning, put a 2 into 001
If gate 3 or gate 5 is malfunctioning, put a 3 into 001
If gate 4 or gate 5 is malfunctioning, put a 4 into 001
If gate 5 is malfunctioning, put a 5 into 001

(d) Analyze the given circuit which does an exfract instruction (in serial—see
Chap. 2) for a maintenance code (where it is again assumed that the gates are relays
that can malfunction as described above).

(@) 2
* And 2
(§:3)

N at

) gate OQ
Lo

ot |

gate
gate

e Result [new (7)]

()

ExERcisE d

5-4. Interpretive Routines: Mathematical

Automatic Programming. There are two general kinds of automatic
programmang, called interpretive routines and compiling routines. The

140 = INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

purpose of automatic programming techniques is to reduce the number
of instructions actually written by the coder. The method for accom-
plishing this is previously to place in the computer a library of subroutines
that can be used by every coder, so that these routines will not have to be
rewritten each time they are needed. A set, or library, of particular
subroutines, together with a method for using them, is called an auto-
matic program. The difference in the two kinds of automatic programs
lies in their use: In the interpretive program the subroutines are to be
used by the coder’s program while it is running on the computer, whereas
in the compiling program the subroutines are used by the coder’s pro-
gram only at the time the coder’s program is read into the computer.

We have arbitrarily classified interpretive routines into two types:
(1) mathematical, and (2) stmulaizonal. The subroutines of the mathe-
matical type of interpretive routines compute values of funections, while
those of the simulational type are usually designed to make one computer
look like some other kind of computer.

Use of Mathematical Interpretive Routines. Let us first consider an
example of a mathematical interpretive routine. The purpose of such
a routine is to enable a coder to form such functions as sin z, cos z, €7,

x!,%, etc., merely by writing a couple of instructions. Of course these
functions would appear as subroutines already in the computer, as part
of the interpretive routine. However, the interpretive routine must also
contain a section that can interpret the instructions that the programmer
writes. When a function subroutine is to be used, the following informa-
tion must be recorded: (1) the address that contains the value of the
independent variable z; (2) the address into which the result f(z) is
to be put; (3) the address in the program from which the jump to the
subroutine was made, so that after the subroutine has been completed
the computer will know where to jump back to the original program; and
(4) the address to which to jump in order to go to the subroutine itself.
Consider a two-address system: two words are needed to go to a sub-
routine (since four addresses are required). We could arrange the words
as follows:

Operation a B

Return jump |Standard address| Address of 1st instruction of
function subroutine

Address of x Address of f(z)

The first word is a return jump instruction; the second word is not an
instruction but is just to tell the subroutine where z is and where f(z)
is to be put. Recall that the refurn jump instruction jumps to 8, and
in addition the instruction memorizes as the contents of « its own address.
Hence the return jump takes care of items 3 and 4 above and the
second word of items 1 and 2. Thus the programmer, each time he

Sec. 5-4] ' ADVANCED PROGRAMMING 141

wants to use a subroutine listed in the interpreter library to evaluate a
function, need write only the following ‘“instructions”: (a) a retwrn
jump instruction, where « is a standard address (standard, that is, for
this particular interpreter), and where 8 is looked up in a book of instruc-
tions for the interpreter which lists the proper g for each function; (b)
the word following the return jump, as described above. This has illus-
trated the procedure for using a mathematical interpreter.

The Interpretive Routine Itself. Now let us consider the interpreter
program itself. Besides consisting of the function subroutines, as we
observed above, it must also consist of a part that interprets the two
words that the programmer writes. This part looks at the standard
address to find out where the address of the return jump is. Knowing
that the next word gives the locations of x and where f(x) should be put,
this part of the code then relates that information to the appropriate
subroutine and transfers control to this subroutine. This part can be
thought of as a subroutine also; we shall call it subroutine @. The flow
diagram might appear as in Fig. 5-3, where, to be specific, suppose that
it is desired to use a cos x subroutine. The long dashes indicate the
path of the computer through the program and subroutines; the short
dashes, the operating of one subroutine on another subroutine. We let
Z be the address of the return jump instruction; then Z + 1 is the address
of the data word, and the program should resume at address Z + 2.

As an example of the type of things that occur in the subroutine @,
consider how it inserts the value of = into the subroutine for f(z). Sub-
routine f(x) has a certain cell reserved for the value of z; call this cell
T, for “temporary for z’’; within subroutine @ is an instruction that
transfers the value of « to T, from the address given by the data word
of the program. Suppose that the instruction were “Transfer («) into
B8.” Then @ must have a previous instruction that puts into the « address
of the transfer instruction the address of x as given by the data word,
i.e., an exiract instruction that takes the « address of the contents of
Z + 1 and puts it into the « position of the iransfer instruction. But
this exiract instruction must involve the address Z 4 1, which is obtained
from the standard address associated with the return jump. Hence
there must be previous instructions that take Z as given in the standard
address, add 1, and insert this into the « part of the exiract instruction.
Next consider the 8 part of the az-to-T, transfer instruction: this must be
some address specifically reserved in the subroutine of f(z) for the value
of z. Since subroutine @ is a general subroutine, it must be told this
address each time a subroutine for f(x) is to be used. This is done in the
part of the subroutine for f(z) denoted in Fig. 5-3 by “In subroutine @
set R = Ry, f(x) = cos .”” In this part there is an instruction which
extracts the address reserved for x into the transfer instruction of sub-
routine Q. This process is valid since the computer will pass through
this instruction before getting to subroutine . Summarizing, there is
an instruction in the subroutine for f(x) that sets 8 of the transfer instruc-
tion; and there is a series of instructions preceding the transfer instruc-

142 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

tion in subroutine @ that leads to the setting up of the o address of
the fransfer instruction.

Our example of a mathematical interpretive routine has several inter-
esting features: First, one subroutine uses another subroutine—i.e., each
subroutine for f(z) uses the subroutine @. Such a feature may occur
in other ways also. For example, in evaluating cos z, suppose that the
power series were used,

i (1) xZn

cos 2 = -1 =

A (2n)!

Then the subroutine for cos x will use the subroutine for a®/z!, where
z = 2n in this case. In fact, to use the subroutine for a*/z!, the same
technique of the return jump and data word is used (why?). Of course
the use of subroutines by subroutines can be carried deeper than two or
three. Second, note how many instructions are actually needed to
perform the simple transfer described above. The moral of this is that
coding & simple job can be complicated on a computer. Of course this is
the reason that it pays to have a separate subroutine @ rather than to
repeat the instructions of this subroutine for each f(z) routine. Finally,
the main purpose of this mathematical interpretive routine is to make
the coding problem easier by allowing only two words to be written when
a function is to be evaluated. Of course the process described here was
greatly simplified, since many other complications may arise—telling the
f(z) subroutine to what accuracy the function is to be calculated, taking
care of the proper scaling, ete.

EXERCISES

(a) Write in symbolic code the series of instructions that lead to the setting up of
the « address of the éransfer instruction.

(b) How would the evaluation of a function of two independent variables affect the
discussions of this section?

6-b. Interpretive Routines: Simulational

Use of Simulational Interpretive Routines. Next let us consider simu-
lational interpretive routines. The purpose of these routines is to make
one computer appear as an entirely different computer. For example,
suppose that we had a computer that did not have floating operations.
By means of the proper routine we can make this computer appear to be a
computer that has built-in floating-point operations. Or we can make a
one-address computer appear to be a two- or three-address computer.
Another example might be the making of an ordinary computer into a
special-purpose war-gaming computer. Of course the coding for the
simulated computer will be quite different from the coding of the actual
computer. However, the purpose of the simulational interpretive rou-
tine is to enable the programmer to write his code in the language of the
simulated computer; he need never know that this is not the actual

Sec. 5-9] ADVANCED PROGRAMMING 143
Mathematical interpretive routine
’ ®
| In subroutine @ set R=R,, f(x} = sinx !

© @

| Main part of subroutine f(x) = sin x I

——® ©

| In subroutine @ set R= R, f(x) = cos x I
Part of program @ ———————————— _:
that will make use I
of interpretive
routine 'l |

| Main part of subroutine f(x) = cos x | Subroutine @

: r >
@ —————— Appropriately

~

7 Return jump -i) 4
a (to Ap) | | | modify subroutine
o | | for f(x) according
3|z +1| Dataword | | to data word;
< I In subroutine @ set R = R3, f(x) =e* | set exit Bof
Z+ 2 @ @ @ | | | subroutine f(x) to
’ | Jumpto Z+ 2
i

) [Main part of subroutine f(x) = ¢* |
Rest of program_J @
e & —

| In subroutine @ set R =Ry, f(x)=x! l

@ ®

l Main part of subroutine f(x) = x! |

l In subroutine @ set R =Ry, f(x) =V I

© ®

I Main part of subroutine f(x) = Vx l

F1c. 5-3. Flow chart of interpretive routine.

...!

am‘
|
|

N,
w

method of coding for that computer. Obviously, then, the interpretive
routine must interpret every instruction of the programmer’s simulation-
language code. Thus the interpretive routine looks at the first instrue-
tion of a simulation-language code, interprets it, then goes to the next
instruction of the simulation-language code, interprets it, ete., for each
instruction passed through in the simulation-language code. Immedi-

144 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. §

ately we see that the interpretive routine must also keep track of what
instruction of the simulation-language code to take next; i.e., the inter-
pretive routine must contain a simulated-instruction address counter, a
simulated ‘simulation-language’ instruction register, simulated decoder,
simulated accumulator, etec. In other words, the simulation routine
must perform all the functions that the electronic circuitry would per-
form if the simulated computer had been real.

The Interpretive Routine Itself. For the sake of illustration let us
discuss a simulation interpretive routine that makes a two-address non-
Jloating operation computer appear like a one-address floating operation
computer. To be specifie, suppose that there are 6 bits in the operation
and 9 bits in each of the two addresses of the real computer. Suppose
also that in the simulated computer there are to be three octal symbols
for the operation and five octal symbols for the address. Of course,
since the real machine can address only 2° memory cells, even though
theoretically 2!5 memory cells can be addressed by the simulated one-
address instruction, only 2% memory cells are available. Hence three
octal positions in the simulated-instruction format are meaningless.
However, one could interpret these as addressing cells on magnetic tape,
etc. In so far as the simulated numbers are concerned, the rightmost
two octal positions of a word will represent the exponent, the rest of the
positions the value of the number. These formats are then as follows,
where each wide box represents an octal digit (i.e., three binary bits):

h=1
Opera- =
tion @ B EJJ
PN n
Instruction | | I ‘ ! | | | | |
Real computer Number
Number | | | | | | | | ‘ I
Opera~
tion a
Instruction | I l I | | | ‘ ‘ ‘
IExpo-
Simulated computer Number nent
——
Number l | | | | | | | | |

Let us suppose that the real computer has the two-address operations
listed in Sec. 3-8, as well as the following additional instructions:

Code Description of operation
30 Shift (acc) to left « positions; put result into g
31 Shift (ace) to right « positions; put result into g
20 Extract («) into 8, using (acc) as the mask; i.e., replace those bits of (8) with

corresponding bits of (a) in those positions where (acc) has units, and put
result into 8

Sec. 5-5] ADVANCED PROGRAMMING 145

Suppose that the one-address instructions to be simulated are:

Code Description of operation

001 Add (a) to (ace), put result in ace, floating unnormalized

002 Multiply (a) by (acce), put result in «~¢, floating unnormalized
003 Subtraect («) from (acc), put result in ace, floating unnormalized
004 Divide (acc) by (), put result in ace, floating unnormalized

005 Conditional jump: if (ace) is negative, take («) as next instruction
006 Transfer (acc) into «

007 Jump: take («) as next instruction

Of course the accumulator referred to in these instructions is the simu-
lated accumulator. To be more specific, let address 776 be the simu-
lated-instruction address counter, 775 the simulated-instruction register,
774 the simulated accumulator.

3 L}

Transfer the next simulation
instruction into simulated
instruction register

U

\

\2
Decode the simulated language
instruction, i,e., execute the
simulation instruction

A

No Is the simulation instruction Ye

a comparison or a jump? s

Is the jump required?

4
Advance the simulated 1 __no
Instruction counter by 1

A

6
Change the simulated
counter to proper
simulated address

L

F1g. 5-4. General flow diagram indicating how interpretive routine sequences the
computer through the simulation-language code. .

The programmer will now code in terms of these simulated instructions
only (never writing down any of the real instructions). It is up to the
interpretive routine to sequence through these simulation-language
instructions, interpreting them as it goes along. Obviously the inter-
pretive routine is written in the real machine language. Figure 5-4
is a general flow diagram showing how the interpretive routine sequences
the computer through the simulation-language instruction code. The

146 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

student should study it carefully. We shall first discuss some of the
details of box 1 of this flow diagram.

The heart of box 1 is a pair of instructions that transfer the proper
simulation-language instruction from its location in the code to the
simulated-instruction register. Preceding this pair of instructions are
instructions that set up this pair to operate on the proper addresses. In
symbolic code, the pair might look like this:

Operation a J¢]

Add, i.e., | Address of a constant of all | Address of proper simula-
53 Zeros, i.e., ¢ tion-language instruction

Transfer, | Simulated-instruction regis- | Address of first instruction
ie., 52 ter, i.e., 775 of box 2

The address of the proper simulation-language instruction is found in
the simulated-instruction address counter. Hence the contents of the 8
part of this word (i.e., the contents of 776) must first be extracted into
the B part of our add instructions:

~ Operation o 8 Remarks
| Add, i.e., ¢ Address of a constant that has all | Set up mask
53 units in 8 position and zeros else-
where
Extract, 776 | Address of above add instruction | Do extraction
ie., 20

Suppose that we put the first instruction of box 1 into address 600; then
we would have altogether for box 1:

Address ORera- a B Remarks
tion
600 53 604 605 | Set up mask
601 20 776 602 | Do extraction
602 . 53 604 - }Tra.nsfer
603 52 775 606
604 00 000 000 | Zero constant, i.e., ¢
605 00 000 777 | Mask

Bach of the simulation-language operations is performed, of course,
by a subroutine contained as part of the interpreter routine. Hence box 2
consists of these subroutines, in addition to a jumping table that looks
at the simulation-language operation and jumps to the proper subroutine.
The shift instruction would be used in this procedure. The simulation-

Skc. 5-5] ADVANCED PROGRAMMING 147

language instruction is shifted to the right 17 (octal) positions [15 (deci-
mal)], putting the operation code in the 8 position, leaving zeros else-
where. Then this shifted word is added to the iransfer instruction
that will jump to the proper jump instruction of the jump table. In this
way the simulated operation code is used to enter the proper subroutine
from the jump table. Note that first the transfer instruction that jumps
to the table must be reset, for it becomes modified each time it is used.
Hence, in the first part of box 2, we have:

Address Ogera- « 8 Remarks
tion
606 53 604 610 Put jump constant into .
Reset jump
accumulator . .
607 52 | 614 611 Put constant into 614 | 'Bstruction
610 52 777 614 Constant used to reset jump instruction
611 53 604 775 }Shift simulated-language instruction to
612 31 017 777 right 17 (octal) positions in accumulator
613 51 614 614 Add shifted instruction to jump instruction
614 52 777 614 Jump instruction
615 52 777 | Add
subroutine
616 52 777 | Multiply
subroutine
617 52 777 | Subtract
subroutine
620 52 777 | Divide . Jump table that sends control to proper
subroutine simulated operation subroutine
621 52 777 | Conditional
jump
subroutine
622 52 777 | Transfer
subroutine
623 52 777 | Jump
subroutine

When a 52 or transfer instruction is used as a jump, the & address does
not have much meaning. Hence we always put 777, the address of the
real accumulator, for o to ensure no change due to this part of the jump
instruction.

Let us examine briefly the subroutine for the simulation-language
multiplication, floating unnormalized, as an example of our arithmetic
subroutines. The purpose of this subroutine is to multiply () by (774),
where o is the address found in the contents of 775, the simulated-
instruction register (see the instruction and number formats for the
simulated computer above). The result is to be put into 774, the
simulated accumulator. In order to perform this multiplication, P7
through P24 of each word are to be multiplied, while P1 through P6 of
each word are extracted into initially empty temporaries, the temporaries

148 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

are added, and the result extracted into P1 through P6 of 774. In
performing the addition, P7 of the sum must be checked for overflow: the
exponent of the result cannot be larger than six positions. After per-
forming such a subroutine the computer would go to box 3 of the general
flow chart.

EXERCISES

(a) Write out the subroutine for the multiplication, floating unnormalized, in detail,
letting 500 be the address of the first instruction.

(b) Write out a subroutine for the divide, floating unnormalized.

(¢) Write out the codes for boxes 3 to 6 of the flow chart of Fig. 5-4.

6-6. Memory Space, Speed of Computation, and Automatic Programming

Sharing of the High-speed Memory. As we have seen above, a com-
puter can have a high-speed memory (often magnetic cores), a medium-
speed memory (magnetic drums), and finally, a slow-speed memory
(magnetic tapes). As one might guess from our previous discussions,
the high-speed memory may often be filled when an interpretive routine
is stored in addition to a program. Hence careful attention must be
paid to the location of the interpretive routine so that it will not inter-
fere with memory space required for the program. It may often happen
that the interpretive routine has to be stored on the drum. This may
slow up the rate of computation because, as will be recalled, in order to
use a word from the drum one must wait for the drum to turn to the
proper address before a word can be read out.

This problem may be approached as follows: At the time a particular
subroutine of the interpretive routine is to be used, this subroutine is
transferred out of the drum into the high-speed memory, where the
computations take place. In this way subroutines of the interpretive
routines will be performed in the high-speed memory even though they
are usually stored in the drum. However, this means that subroutines
must be continually transferred out of the drum and into the high-speed
memory and back into the drum, which takes precious time. Also,
we have added a new requirement for the interpretive routine to perform.
Now it must not only interpret the simulated instructions but must also
transfer from the drum to the high-speed memory the subroutines of the
interpretive routine as they are needed, and then transfer the subroutine
back to the drum. : .

Complications. This problem becomes quite complicated when one
is desirous of putting some flexibility into the procedure; for, in general,
when transferring a subroutine from the drum to the high-speed memory
it is best to be able to put the subroutine in that part of the high-speed
memory which may not be in use at the moment. Hence it must be
determined where in the high-speed memory to transfer the subroutine.
This means that a subroutine may be located in different places when

SEc. 5-6] ADVANCED PROGRAMMING 149

used at different times. Obviously the assignment of addresses often
depends upon the exact location of the instructions being performed.
Hence the interpretive routine must be able to translate this subroutine
and fix up the addresses as required, depending upon the location of the
subroutine. We shall discuss this problem in the next section in more
detail.

The complexity of an interpretive routine can bé increased still further.
Observe, for example, that a function subroutine may be used repeatedly
in the course of computation and hence it might be desired to leave it
in the high-speed memory after it has been transferred there. Other
subroutines that are transferred to the high-speed memory may have
to be used only once in that program and hence after their use need not
take up room in the high-speed memory. Therefore a distinction must
be made as to subroutines that should be transferred temporarily.
Further, during the computation for a problem, one subroutine may use
another subroutine. Suppose that both these subroutines have already
been transferred to the high-speed memory. Somehow the interpretive
routine should remember not only that these subroutines have already
been transferred to the high-speed memory so that the transfer will not
have to be repeated, but also where they have been put. The solutions
to these problems are too complex to be treated in this textbook. Our
purpose has been to give the student an appreciation of the complexmes
that can develop in planning and writing interpretive routines.

Advantages of the Compiler Routine. TUntil now we have been consider-
ing the use of subroutines as the interpretation of simulation instructions
during the running or computation of a program. An alternative method
is initially to replace the simulation instructions with the proper sub-
routines before the program is run. That is, the program is written in
terms of simulation instructions, but as the program is read into the
computer, these simulation instructions are automatically replaced by
the proper subroutines—the subroutines then becoming an integral part
of the program. Of course, just as the interpretive routine handled
the subroutines in our above discussions, so in this new case an automatic
routine called a comprler routine performs the task of initially inserting
the proper routines into the program. Examples of compiler routines
will be described in the next section; in this section we wish only to
discuss why such routines are used.

The first advantage of a compiler routine over the interpretive routine
is that, since in the compiler routine the subroutines are initially amal-
gamated into the program before the problem is run, the necessity for
transferring subroutines from drum to high-speed memory is eliminated.
Hence the problem of time lost in transferring subroutines during compu-
tation no longer appears, because the subroutines will already have been
made part of the main program. Another important advantage of the
compiler routine over the interpreter routine is that, since the compiler
routine is only used initially, it need not be stored in the computer when

150 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

the compiled program is running. The interpreter routine must always
remain in the computer memory since it operates during the running
of the program. Hence, when a compiled routine is run, more space is
available for the main program,

On the other hand, as can immediately be seen, after all the required
subroutines have been incorporated into the main program, this program
can be exceedingly long. Some of the space advantage of a compiler
routine is thereby lost. The usual method for handling such long
programs is to divide them up into sections, each of which can fit entirely
into the high-speed memory. Then one section at a time is put into the
high-speed memory and computed. Meanwhile the other sections are
stored in the drum and on the magnetic tapes. Of course a relatively
great amount of time is spent in changing sections from drum and mag-
netic tape to high-speed memory, and hence some of the timesaving
advantages of the compiler routine are lost. The relative advantages
of a compiler routine over an interpretive routine, if any, depend on the
particular characteristics of the routines in question as well as on those
of the program to which the routines may be applied. Further, compiler
routines can become very complicated, for the compiler routine must
break the program into the proper sections and assign the sections to
parts of the drum or magnetic tapes. It must also form instructions
additional to the main routine which will change sections at the proper
time. Another problem arises when a subroutine appears in a program
many times. For example, suppose that the program uses the sine
routine often. It would be wasting space to compile the sin « routine
each time it is required, having duplicates of this sin z routine incorpo-
rated into the program. It would be much wiser to have only one sine
routine in the memory and to use it in the manner of a usual subroutine.
If the program is compiled as it is read in, the compiling routine must
sense that the sin z subroutine will be used many times and so must
arrange to have it as a subroutine. Of course, if we have too many
subroutines, so many that we have to put some in the drum, then we are
in the dilemma described for the interpretive routine.

In the previous section we have discussed interpretive routines that
enable a program to utilize subroutines while it is being computed. We
have seen that owing to lack of high-speed-memory space this can be a
slow process. The alternative, namely, that of compiling a program
as it is read in, is considered in the following section. We must always
keep in mind that the major object in using either interpretive or compil-
ing routines is to reduce the amount of coding that the programmer must

do.

6-7. Compiling Routines: Translator; Address Assigner

Kinds of Compiler Routines. The purpose of a compiling routine
is to reduce the amount of necessary coding by allowing the programmer
to write simulated-language instructions which are interpreted by the

Sec. 5-7] ADVANCED PROGRAMMING 151

compiling routine. The difference between interpretive and compiling
routines is that a compiling routine can be erased from the high-speed
memory after it has completed its task. Evidently a compiling routine
can compile mathematical subroutines as well as interpret and compile
simulation subroutines of the kind described in Sec. 5-5. However,
there are other uses of compiling routines that lend themselves more
to the technique, and this section and the one following are devoted
to these. We shall consider four such uses: (1) as a translator, (2) as an
address assigner, (3) as a decoder of algebraic symbols, and (4) as a decoder
of recursion, or loop, symbols.

Translator. Suppose that we are considering a decimal-coded binary
computer for which we have written a symbolic code. Ordinarily specific
addresses would have to be assigned before the symbolic code were put
into the computer. However, it is possible to construct a compiling
routine that enables the symbolic code itself to be read into the computer,
the addresses being assigned automatically by the compiler. Such a
compiler is called a translator, since it translates from symbolic language
into computer language. In these discussions the student should keep
in mind that two codes are under consideration: the compiler routine
itself and some program upon which the compiler operates.

To be specific, let us consider a one-address decimal-coded binary
instruction format having two characters for the operation and three for
the address. Suppose, for simplicity in illustration, that the program
is to add two numbers, 8,818 and 7,080. The symbolic code for this
might be:

Instruction

Address Remarks
Opera-

tion

CLR MT | ZRO | Clear accumulator

Al1C AD 1ST | Add 1st number to accumulator
A2C AD 2ND | Add 2d number to accumulator
TRR TR SUM | Transfer result into sum temporary
18T 08 818 1st number

2ND 07 080 2d number

ZRO 00 000 0 constant

SUM R ... | Result: sum temporary

If the compiler routine is to assign addresses to these instructions and
numbers, then, in addition to the instructions themselves, in symbolic
form, the symbolic address corresponding to each instruction, constant, or
temporary must also be read into the computer. We might make the
convention that the symboliec address will be read in immediately pre-
ceding its associated symbolic contents. For example, for our code we

152 INTEODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

would initially read the following into the computer:

CLR)
MT ZRO
AlC
AD 1ST
Instructions
A2C
AD 2ND
TRR
TR SUM
18T
08 818
2ND
07 080
: Constants and temporaries
ZRO
00 000
SUM
00 000

As yet there is no way for the compiler to distinguish between instruc-
tions and constants or temporaries. If the convention were made that
only instructions will appear first and that all the constants and tempo-
raries-are to be put at the end, and if, in addition, the number of instruc-
tions in the program were to be given to the compiler, then the compiler
would be able to distinguish the instructions from the constants and
temporaries. Of course the desired first address of the program must also
be given to the compiler. Hence one word would precede the symbolic
code, with the convention that the number of instructions appears in
the operation positions and the first address appears in the « positions.
For our example this first word would be

04 600

if we desired the code to begin at address 600. Of course the symbolic
code with its first word must be read into a standard position in the
computer memory so that the compiler routine will know where to work.
Suppose that the convention is made that the symbolic code is to be read
into the memory starting with the first word in address 001.

Writing the Translator Compiler Routine. It now remains to discuss
how to form a compiler routine that will assign specific addresses to a
code when all the above-described conventions are adhered to. A
general flow diagram for such a compiler appears in Fig. 5-5.

Consider box 1 of Fig. 5-5. First the real addresses would be assigned
to the symbolic addresses of the instructions. By our conventions it is
known that these symbolic addresses are found in every other word of the

Sec. 5-7] ADVANCED PROGRAMMING - 153

symbolic code, starting with the second word. The first symbolic
address is assigned to the address found in the « position of the first
word of the code. Next the assignment of real addresses for the constants
and temporaries is made. This is done by looking at the contents of each
instruction: if the symbolic address (in its « position) is not that of
another instruction, then it must be that of a constant or temporary.
Such addresses are then assigned in sequence. (Note that we cannot
have the compiler assign addresses to the constants and temporaries
in the same manner as it did for the instructions since we have not
informed the compiler of how many

constants and temporaries there are.) 1
A detailed flow diagram of box 1 ap- Make symbolic-address assignment table
pears in Fig. 5-6.

Now that a table has been com- J
puted assigning r eal a’ddre§ses for Put the words of the code into the proper 2
the symbolic addresses, the instruc- address and replace each symbolic address
tions and constants can be trans- with its actual address
ferred into these locations, with the « |
positions of the instructions changed G
from the symbolic to the real address Replace Sy'"lb"“c operation code with

. . § real operation code

Our convention of preceding each P

instruction and constant by its sym- F1c. 5-5. General flow chart of a com-
bolic address again plays an impor- piler routine.

tant role. When the code is com-

piled into its real position, the instructions and constants will appear
in the usual consecutive sequence.

Finally we must replace the symbolic operation code with the real
operation code. TFor this the compiler routine must be given a table
relating these operation codes.

Several further details must be observed. There are some instruc-
tions in which no address appears in the « positions, e.g., shift instruc-
tions where the number of positions to be shifted appears instead. Care
must be taken that this is not interpreted as a symbolic address to be
assigned a real corresponding address. Hence the instruction itself must
be examined by the compiler to ensure that it is not one of these excep-
tional cases. Also, some constants may involve a symbolic address.
Care must be taken to recognize these and replace them with the proper
real address.

Summarizing, we can draw the following conclusions from our example:
First, the writing of a compiling routine can be “tricky” if we are to be
certain that all possibilities are taken care of. Second, in order to use a
compiler routine, the programmer must adhere carefully to all conven-
tions required by the routine.

Address Assigner. Suppose that it is desired to write many sub-
routines and it is not known beforehand where they are to be located
in the memory. One procedure might be to write each subroutine as if
it were to be located with its first instruction in some standard address,

154 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

say 003, and then later to use a compiler to assign new addresses to each
subroutine when the final decision is made as to where it shall be located.
(Recall that a similar requirement arose in connection with the trans-
ferring of subroutines from the drum to various locations in the high-
speed memory.) To perform this task, the compiler routine merely has

(Start)

Go to next Assign appropriate address to
instruction symbolic instruction address

Have all instructions been
—_'N"{ assigned addresses? Yes-]

/|

Is the symbolic address in

No—{ the @ position of an instruction
a symbolic address of another
instruction?

i

Assign appropriate address to
this symbolic address

Have all the instructions been
No _Q considered?)—Yes—

Go to box 2

Go to next
instruction

Fi1a. 5-6. Detailed flow chart of box 1 of Fig. 5-5.

to add fo each address appearing in the code the difference between the
desired address of the first instruction and 003. The only problem is to
determine which are the addresses. For some instructions such as shift
instructions do not contain addresses in all the address positions, and
these positions should not be changed. - On the other hand some con-
stants may contain addresses, and these must be recognized and changed.
One procedure is to require the programmer to list all the instructions
first, then any constants that contain an address, finally any other

Sec. 5-8] ADVANCED PROGRAMMING 155

constants. In addition the programmer is required to insert words in
front of the program that list (1) the desired address of the first instruc-~
tion, (2) the total number of words in the code, (3) the total number of
instructions in the code, and (4) the total number of words other than
instructions that contain addresses. Suppose that we were considering
a two-address system; we could then put these numbers, respectively,
into the « and B positions of the word in 001 and the « and 8 positions
of the word in 002.

The compiler routine will first determine which instructions contain
addresses and will add to these addresses appropriately. Next the
program will look in the o and B positions of the constants that have
addresses—recognizing these addresses as numbers between 003 and
003 4+ the total number of words in the code—and will add to these
addresses appropriately. Tinally the compiler routine will transfer the
code from the standard position to the required position.

EXERCISES

(a) Write the specific code for the flow diagram of Fig. 5-6.

(b) Write the code for box 2 of Fig. 5-5.

(c) Draw a detailed flow diagram for the address-assigner compiler routine described
in this section.

5-8. Compiling Routines : Algebraic

Decoder of Algebraic Symbols. The purpose of this compiling routine
is to enable the programmer merely to type into the computer an alge-
braic formula, the compiling routine automatically writing the detailed
machine language code. Of course the programmer must also tell the
compiling routine in what addresses the values of the independent vari-
ables will be found and into which address the result is to be placed.
Let us consider first a function involving only the operations addition and
multiplication, such as ((((@ + b) - ¢) + d) - ¢). In order to avoid ambi-
guity, certain conventions must be observed: A dot is to be used for
multiplication; i.e., we must write a * b and not ab. Also the parentheses
must be placed wherever necessary and never left understood. For
example, a + b - ¢ is never written, but rather (@ 4+ (b -c¢)). There is
to be a parenthesis at the beginning and at the end of the function. Also
the parentheses are to indicate binary operations only—i.e., operations
involving two operands and no more. Thus a + b 4+ ¢ would never be
written, but rather ((a 4 b) + ¢)—or (@ + (b + ¢)); it makes no differ-
ence. Similarly, a - b - ¢ must be written as ((a * b) - ¢).

Evidently the parentheses play an important role in such a formula—
for they tell in what order operations are to be performed. For example,
in (((a +0b)-¢) 4+ d)-e) the order in which the operations must be
performedisa +b =w; w-¢c =2z;z+d = y; y - e = 2z, where z is the
final result. A study of the proper use of parentheses shows that they are

156 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

never ambiguous.f To see which operations should be done first, number
the parentheses, say from left to right. Successive opening parentheses
get successively larger numbers from left to right. A closing parenthesis
directly facing an opening parenthesis is given the same number as that
opening parenthesis. Other closing parentheses are given the next suc-
cessive lower numbers that have not previously been used on a closing
parenthesis.
Consider the following illustrations:

(1) ((((@ +b) -c) +d) - e)
w3 4 3 2 i

2) (@ ®+c)+ @ (+))
3 a2 4 5 bl

3) ((((@-b) 4+ (c-d)) - e) + (((g + k) + (& + D) - m))
134 4 5 5 2 &8 8 9 97 6l

Notice that a pair of opening and closing parentheses turns out to
have the same number, which was of course the purpose for the above
numbering rules. Also there are the same number of pairs of parentheses
as there are + and - operations in the expression.

Now we have gained some insight into how a compiling routine might
work to code an algebraic function automatically. The compiling rou-
tine would number the parentheses according to the above rule and would
then proceed to write instructions to perform the operations between
directly facing opening and closing parentheses which will have the same
number: i.e., in illustration (1), to compute ga + b4); in illustration (2), to

compute (b 4 ¢) and (e + f); in illustration (3), to compute (a - bz,
3 3 5 5 4

(56 - d), (Sg + hg, and (k 4 lg. Each of these sets of symbols would then

5 4 9

be replaced by the result of the operation: i.e., in illustration (1) let
s =a + b; then (1) would read (((s-¢) +d)-e), In (@ leti=b+c¢
i3 3 2 1

and v = e -+ f; then (2) would read (l(za . t2) + gd . u‘i)l). In (3) let
v=a'b, w=c'd, =g+ h, and y = k + I; then (3) would read
(lggv + wg . 32) + ggx + y7) -m6)l). The computations between the new
facing pairs is carried out. Thus in (1) instructions to compute gs . 03)
would be written; in (2) instructions to compute (a - ¢) and (d - u) would
be written; and in (3) instructions to compute2 (32)2+ w3) ;nd 4(7:c + y7)

would be written. In this way the code for systematically evaluating
the function would be constructed.

Writing the Algebraic Compiler. To describe possible additional details
of such a compiling routine, suppose that we consider a three-address
system with 12 bits in each address and 6 bits for the operation. Hence

1 See 8. C. Kleene, “Introduction to Metamathematics,” p. 24, D. Van Nostrand
Company, Inc., Princeton, N.J., 1952.

Sec. 5-8] ADVANCED PROGRAMMING 157

words will be 42 bits, plus a sign bit, long. Now suppose that we
arrange for the paper-tape punch machine to punch a 7-bit code to dis-
tinguish among letters of the alphabet and the symbols (,), *, and 4.
That is, when a key corresponding to a letter of the alphabet or a symbol
is pushed, a unique 7-bit code will be punched on the paper tape. Then
successive words will contain the formula; i.e., for illustration (1) we
shall need 17 X 7 = 119 bits, or 2 and 3¢ words. Let us suppose that
the first two bits of the 7-bit code tell whether or not this is the code for a
parenthesis, operation, or letter; for example, 10 is a parenthesis,
01 is an operation, 11 is a letter. In particular let (be
1000000 and) be 1010000. Then, when the compiling routine counts
parentheses, the count can be put into the rightmost four position, for
example, 1000101 would be (5, and 1010101 would bes). (Of course this

limits us to 16 pairs of parentheses, but these suffice for our example.)
Also we could have up to 32 different kinds of operations. Let -+ be
0100001 and - be 0100010. Let the letters of the alphabet be denoted by
their position in the alphabet, that is, a is 1100001, b is 1100010,
¢ is 1100011, . . . , z is 1111010. TFor example, illustration (1) would
look as follows after being punched and read into the computer:

100 0000 100 0000 100 0000 100 0000 110 0001 010 0001
110 0010 101 0000 010 0010 110 0011 101 0000 010 0001
110 0100 101 0000 010 0010 110 0101 101 0000 00O 0000

where the last seven bits of the third word are filled in as all zeros and
it is to be understood that seven zeros have no meaning for a formula.

First the compiling routine will number the parentheses as described
above. The result will be

100 0001 100 0010 100 0011 100 0100 110 0001 010 0001
110 0010 101 0100 010 0010 110 0011 101 0011 010 0001
110 0100 101 0010 010 0010 110 0101 101 0001 000 0000

Next the compiling routine will search these words to determine
which instructions to write first, as deseribed above. After doing this,
it will assign another letter to the combination and put all zeros in the
7-bit groups no longer needed. In illustration (1), as we have seen,
instructions to compute ga + b?; would be written, and then the substitu-

tion s = (¢ + b) would be made, resulting in the following for our three
i 4 - ,
words:

100 0001 100 0010 100 0011 000 0000 111 0011 . 000 0000
000 0000 000 0000 010 0010 110 0011 101 0011 010 0001
110 0100 101 0010 010 0010 110 0101 101 0001 000 0000

where it is to be recalled that seven zeros are to be ignored. With these
new numbers the same thing is repeated, etc. . The flow diagram there-
fore becomes as in Fig. 5-7. »

158 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

It can easily be seen how other operations such as division and sub-
traction can be included in the repertoire of the compiling routine. Note
that five groups of memory addresses are involved in this compiling
routine:

1. The locations of the compiling routine itself

2. The locations of the words punched from the symbols

3. The location of the table relating the letters of the function to the
addresses that will contain the values of these letters as independent
variables

4. The location of the values of the independent variables

5. The location of the program written by the compiling routine

When the compiling routine is writing the function-evaluation pro-
gram, (1) to (5) are needed; when

Number the parentheses the resulting program is being run,
appropriately only (4) and (5) are needed.

J Recursive Compiler. Consider the

problem of constructing a compiler

wrrfiotemtihe ;:;loper instructions for program that will automatically code

periorming the operation indicated loops. This problem can become

l very complicated, depending on the

] _ generality with which it is desired to

’:‘:}‘:rso‘p:*i‘:tgl';gv"’;i"" :ﬁ{‘: have the program perform.t How-

operation omitted ever, to illustrate the concept, let

us consider the following oversim-

@ plified example. Suppose that we

i Has the coding boen desire to construct a compiler that
—No completed? }Yes will evaluate a single function by
successive substitutions—in other
words, one that will automatically

. construct a code to perform the flow

Exit diagram of Fig. 5-8. Here let us
F1a. 5-7. Flow chart of algebraic-com- : t .
piler routine. assume that the function f(z) is
given by a subroutine: then the only
information the compiler needs is the number of the subroutine for f(z),
the initial value of z, namely, zo, and the accuracy ¢ for which the func-
tion is to be evaluated. Of course in this oversimplified case we are
tacitly assuming that f(z) has certain properties. (Why?)

One very simple way of constructing such a compiler is to write a
code as indicated by the flow diagram of Fig. 5-8. Then all the compiler
need do is interpret the form in which a particular f(z), x¢, and € are
introduced into the computer and put these values into the proper
addresses of the code. Of course conventions must be made for the form
of the particular f(x), zo, and ¢, for the exit, and for the final location of
the compiled code. '

Simple extensions of such a compiler might enable it to compile loops

T For example, see Edward K. Blum, Automatic Digital Encoding System I,
NAVORD Repts. 4209 and 4411. Rt v

Sec. 5-9] ADVANCED PROGRAMMING 159

within loops, where now some notation must be introduced to tell the
compiler which loops are within which loops. We may make the com-
piler more versatile by enabling it to form partial products or partial
sums as well as successive iterations. Again perhaps more general
‘funetions than these can be introduced. The whole thing could be

Set x= x,
i=1

{

Y= f(x,'_l)

Exit

F1a. 5-8. Flow chart for the evaluation of a single function.

integrated and amalgamated with the algebraic compiler to act as one
large compiler, and so forth.,

EXERCISES

(a) To use the algebraic-compiler routine, a word should precede the code for the
symbols of the function. What information do you think the compiling routine should
obtain from this word?

(b) Write a subroutine, using a three-address system, that would be contained in
the algebraic compiler to number the parentheses.

(¢) Write a program for the simplified recursive compiler.

6-9. The International Algebraic Language (ALGOL)

Languages. The purpose of automatic programming is to make the
computer itself help prepare the program or code, thereby minimizing
the amount of writing the programmer must do. In previous sections we
have studied how the computer can be prepared or precoded with various
automatic programs to aid the use of subroutine, to translate symbolic
codes, to transfer parts of a code, to decode algebraic symbols, and to
compile a loop, or recursion code. There were essentially two parts to
-each of these discussions: the part that told how fo use the automatic
program in writing a code, and the part that described how the automatic
program itself could be constructed. We have been building up to the
idea of a general automatic language system, where the procedures for

160 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

using a combination of such automatic programs are unified and stand-
ardized (i.e., the language), and where the collection of such automatic
programs themselves are made compatible with each other (i.e., the
system).

Two processes are involved: First unified language itself (i.e., the pro-
cedures for using the automatic programs) must be established. Second,
for the particular computer involved, the system of compatible automatic
programs themselves must be constructed to enable the computer to
interpret codes written in the language and compile the actual instruc-
tions to be executed. The principles involved in the latter process
have already been considered in previous sections (see Exercises a and b
below) and therefore are not considered here. We shall limit our discus-
sion in this section to the former process and illustrate the principles
involved in terms of a certain unified language.

With the combinations of methods presented in previous sections it is
clear that a language can be devised that is independent of particular
computer instructions. Thus a code can be written in terms of the
language alone, and specific computer instructions need never be men-
tioned. If automatic programs were written for different computers to
interpret the same language, then any code written in the language could
be run equally well on any of the different computers. This fact indi-
cates the feasibility of the important concept of establishing an inter-
nattonal automatic language that may be universally accepted, analogous
to the universal language of written music. Toward this goal the
Association for Computing Machinery, representing American computer
users, and the Association for Applied Mathematics and Mechanies,
representing European computer users, sent representatives to Zurich,
Switzerland, in May, 1958, to define a generally acceptable automatic
language. The language agreed upon by this meeting has been named
ALGOL, for “algorithmic language.” In the remainder of this section
we shall present a simplified version of ALGOL. (See also Sec. 5-10,
Additional Topics.)

Anatomy of a Language. ALGOL and the simplification to be described
are called algebraic languages. The term algebraic refers to the fact
that they are intended primarily for algebraic computations. In general
the requirements for a language are similar to the requirements for a
specific instruction system: it must be able to tell a computer how to
compute a function, to jump out of ‘a normal sequence of computations
to decide between alternatives, to compute loops, or recursion processes,
and to use subroutines.

Three syntactical entities are distinguished: expresszons statements,
and declarations. The statement is the operational unit that tells the com-
puter what to do and is analogous to a generalized instruction. State-
ments are composed of expressions combined with delimiters (i.e., punctu-
ation marks, etc.), where expressions are numbers, names, labels (i.e.,
symbolic addresses), etc. "Declarations are composed as are statements
but are not operational, i.e., they tell the automatic programs certain

Sec. 5-9] ADVANCED PROGRAMMING 161

facts about the entities referred to within the program, such as whether
a variable is floating or a fixed point, the size of an array, the definition
of a function, or what variables are required by a subroutine.

In order to illustrate how our language works, consider the following
simple example of a code to compute the roots of Az*+ Bx + C =0
for A = 4+3,B = +1.7,and C = —0.31. One of the two roots is given

by
_ =B+ /B> —44C

24

Then the code becomes
A:=3;B:=1.7; C:=—0.31;
root:=(—B+sqrt(B12] —4 XA XC))/(2XA); stop;

The meaning of this jumble of symbols becomes more or less obvious
with the following explanation: First the symbols between semicolons
(5 ...} are statements. This is analogous to putting instructions,
constants, etc., on the separate lines of a coding sheet or to placing
English sentences between periods. Statements are normally executed
in sequence. The first three statements record the desired values of
A, B, and C; the fourth statement computes the root; and the last
statement stops the routine. In our example the expressions are A, 3, B,
1.7, C, —0.31, ro0t,2, 4, C, sqrt(B1 2] —4 X AXC), and stop. The other
symbols, namely,: =, —, +, X, /, T, I, (,), and the semicolon ;, are the
delimiters. The automatic program that is to interpret this language
compiles the appropriate instructions, and in case of the square root
(sqrt) refers to the appropriate subroutine in the library.

In the following paragraphs we shall describe the detailed anatomy
of our language in more formal terms.

Expressions. We shall distinguish five types of expressions: (1) num-
bers, (2) simple variables, (3) subscripted variables, (4) functions, and
(5) arithmetic expressions.

1. If a represents a digit, that is, 0, 1, , 9, then a number can be an
integer aa - * - a, a fraction .aa - - - @, or ascale factor otaa + * - @,
or any combinatlon of these. For example, 6, 4,711, 137.06, 2. 99971012
(= 2.9997 X 101?), 4—12, and 3;,—12 are numbers In thls language
a number can only be the contents of an address, and not the address
itself.

2. Simple variables are designations for numbers or scalar quantities,
as used in ordinary algebra. A little reflection will show that a simple
vartable is essentially an address whose contents is the numerical value
of the variable. Simple variables may be represented by several adjacent
characters the first of which must be a letter, not a number (so that numbers
and simple variables may be distinguished). For example, b, P63,
QRS82T, ALPHA are all simple variables.

3. Subscripted variables designate the addresses of quantities that are
components of multidimensional arrays, such as, for example, the com-

162 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

ponents of a list, a vector, or a matrix, etc. What would normally be
the subscripts are placed in brackets. Thus a vector V; would be written
as VECTORi], 2 matrix M,;; as MATRIX[i,j], and so forth. The “sub-
scripts” themselves may appear as integral numbers, simple variables,
subscripted variables, or arithmetic expressions (see below). Note that
subscripts are intrinsically integer-valued, no matter in what form they
appear. The comma distinguishes the different subscripts; e.g., a
three-subscripted variable is VAR[6,ALPHA,3 X i4-k].

4. Functions are denoted by the usual algebraic functional notation:
The independent variables, which can be simple variables, subscripted
variables, or other functions, are enclosed in parentheses and separated
by commas, for example, FUNCT(x,y,z), where FUNCT (that is, the
function name) can be thought of as essentially the first address of a
subroutine that can evaluate the function. The (x,y,z) is the ordered
set of independent variables, the numerical values of which must be
ascertained before evaluating the function. Certain function names
should ‘be reserved for the standard functions, such as abs(N) for the
absolute value of a variable N, sign(IN) for the sign (i.e., + or —) of the
value N, sqrt(N) for the square root of N, sin(0) for the sine of 0, and so
forth.

5. Arithmetic expressions are combinations of simple variables, sub-
scripted variables, or functions with the operators 4, —, X, and /,
which have the usual meaning of addition, subtraction, multiplication, and
division, respectively. A pair of arrows 1 and | are used for exponen-
tiation, i.e., raising to a power, For example, 213] means 23
21314] | means23, 213 14] means (2%)¢4 andsoforth. Ordinary
parentheses are evaluated as described in the preceding section, except
that the following rule of precedence can be used: X or / before 4 or —.
Thus a4bXc means a-4(bXc). However, (aXb)/c should be used
rather than aXb/c. An example of the use of all these symbols is the

arithmetic expression
—B + V/B?— 44
(—B4sqrt(BT2) —4XAXC))/(2XA) for Tt ¢

Finally it is tmportant to remember that an expression which is not an
actual number really (eventually) represents an address or location of the
numerical value of the expression and in the case of a function refers
(eventually) to a subroutine that can compute a value of the function.
We use the word eventually to denote that an expression can be the address
of another expression which itself is the address of a number, and so
forth.

Statements. Now that we have described the ingredients from which
statements are made (i.e., expressions), let us consider the statements
themselves. Since the statement is the operational unit, we must
describe what each statement does, analogously to describing the mean-
ing of operations in considering instructions. But first let us recall that
statements are set apart by semicolons. Thus the statement ; S; means

SEc. 5-9] ADVANCED PROGRAMMING 163

“Execute the computations called for by S.” It is often desirable to
give a statement a label or name, L, analogous to the address of an
instruction. The label L may be a simple or subscripted variable. If
L is to be the name of statement S, we write ; L:S;. Thus ; L:S; tells
the computer to assign label L to the statement S and perform statement
S. Then some other statement may refer to the labeled statement
simply by means of its label L. The analogy to addresses is evident.

Occasionally it is desired to consider a compound statement, i.e., a
statement that itself consists of statements. Such compound statements
are set between the words begin and end, e.g., begin S; S; S; S end is a
compound statement of four statements. A compound statement can
also be labeled, but the label must appear after the word end as well as
before the word begin, for example, ; L: begin S; S; S; S end L;.

TFive types of statements (of a total of seven) can now be described:

1. The first type, called the assignment or substitution statement, is
probably the most important, although it is almost the simplest. The
form of the assignment statement is

; VAR:=EXPR;

where VAR represents a variable (simple or subscripted) and EXPR can be
any type of expression. This is a statement telling the computer to
compute the value of the right-hand side and store that value (i.e., a
number) in the storage location designated by the left-hand side, i.e., to
assign the value of the expression to the variable. The coloned equal
sign := is used to indicate that the left-hand side is to be the name (or
address) of the value of the right-hand side. If the expression is in terms
of numbers, such as 1.712] —4 X3 X (—0.31), then the indicated opera-
tions are performed. Thus Y:=1.712] —4x3 X (—0.31) tells the com-
puter to assign 2.89 + 3.72, or 6.61, as the value of Y. A statement such
as A :=3 of course requires no computation and merely assigns the value
of 3 to the variable A. If the expression contains variables and functions,
then the computer obtains the values of the variables, which must have been
previously assigned, and evaluates the functions, by means of appropriate
subroutines. Thus, to compute (—B-sqré(Y))/(2X A), where Y repre-
sents BT2] —4XAXC and 4 is 3, Bis 1.7, and C is —0.31, we would
write the following sequence of statements, which would be executed
from left to right:

; A:=3; B:=1.7; C:=—0.31; Y:=B12] —4XAXC;
root:=(—B+sqri(¥))/(2XxA);

When the new value of a variable is a function of the previous value
of the variable, the expression symbols appear on both sides of the state-
ment. For example, suppose that we desired to add 2 to J. We would
write ; J:=J-+42;, which really means J (new value) = J (previous
value) + 2.

164 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

2. The stop statement is used to stop the computer when a code has
been completely executed. See below for an example.

3. Normally a sequence of statements is executed in the order in which
they appear from left to right. This normal sequence of execution can
be interrupted by the use of a go fo statement that is analogous to an
unconditional jump instruction. The form of the go fo statement is

sgotoL;

where L is an expression specifying the label of the statement to be
executed.

4. Another type of statement that can change the normal sequence of
executing instructions is the if statement, of the form

; if REL;

where REL must be a ‘“relational’ expression that can be either irue or
false. For example, REL could be (A>N), or (A=B), or (A<B), and so
forth. TFor such a statement the computer would first determine whether
REL is true or false (i.e., whether it holds or not). If REL is true, the
statement following the if statement will be executed ; otherwise it will be
skipped, and the statement following it will be executed next. As an
example of both the if and go fo statements, consider the problem of
finding the largest of three given numbers U, V, and W. The sequence of
statements according to Fig. 3-3 will be

s if (U>V); go vto UW; if (V>W); go to VLN; WLN:LNC:=W;
go to T; VLN:LNC:=V; go to T; UW: if (U>W); go to ULN;
go to WLN ; ULN:LNC:=U; T:slop;

Here the largest number is to be assigned as the value of LNC. Five
statements were labeled to be referenced by the go fo statements, namely,
WLN, VLN, and ULN (which assign W, V, and U to LNC, respectively),
UW [if (U>W)], and T, where T is the stop statement. This is somewhat
reminiscent of a one-address code.

5. The automatic compilation of loops, or recursion codes, is accom-
plished by the for statement. The for statement causes the next state-
ment (which may be a compound statement) to be executed repeatedly,
where the value of some variable is changed for each repetition. The
successive values to be assigned to this changing, or recursive, variable
are given in the for statement itself by the initial value NUI, the final
value NUF, and the incremental change in the value AN, which should
be successively added to the initial value until the final value is attained
or exceeded. The form of the for statement is

; for VAR: =NUI(AN)NUF;

where VAR is a simple variable and NUI, NUF, and AN are numbers or
simple variables. As an example, consider again the problem of finding
the largest of three given (positive) numbers N[1], N{2], and N{3].

3 LNC:=0; for J:=1(1)3; begin if (LNC <N[J]); LNC:=N[J] end; stop;

Sec. 5-9] ADVANCED PROGRAMMING 165

Here we initially set the contents of LNC at 0; then we compare succes-
sively each of the three numbers with the contents of LNC, assigning
the number to LNC if it is larger than LNC; finally, then, the value of
LNC will be the largest of the three numbers. Note that the for state-
ment acts on the statement following, which in this case is a compound
statement.

Frequently the number of iterations around the loop, namely, (NUF—
NUI)/AN, is not known beforehand, as is the case in evaluating a func-
tion by means of a power series. Here the exit from the loop is usually
determined by comparing some computed value with a small number e.
In such a case the compound statement being iterated contains an if
and a go fo statement that can jump out of the loop before the value
of the recursive variable has reached the final value. Since it is not
known how many iterations will be necessary, the final value NUF is
made very large. TFor example, consider computing

65 67
51 71
until §2#+1/(2n + 1)! < €. The code is as follows:

; TERM:=0; SUM:=0; for J:=1(1)50;
begin TERM :=(—1XTERM X (6 T2))/(@XJ+1)x2X]);
if (TERM <e&); go fo R; SUM:=SUM+-TERM end;
R:VSIN:=SUM; stop;
Here we multiply the previous term by —62/(2J + 1)(27) to obtain the
present term. One rule, however, must be obeyed: An if statement can

never immediately precede the word end.

The index of a for statement need not appear explicitly in the following
5

statement. For example, consider the computation of z n;, where

i=1

. 6
s1n0=0—~?ﬁ+ + -

Niy1 = 302 — 9n?_y, no = 0, and n_; = 1. The code is

3 SUM:=0; na:=1; nb:=0; for J:=1(1)5;
beginnc:=3X (nb12])—9X (mat2}); SUM:=SUM--+nc;
na:=nb; nb:=nc end; stop;
Bach time around the loop J is increased by 1; then the process ends after
five iterations as desired, when J has become 5. Note that a, b, and ¢
really correspond to j — 1, j, and j + 1, respectively.
Tinally observe that loops can contain loops; or in other words for
statements can act upon for statements. For example, consider the

5 3
code for E (z G+ 1G+ 2)),
=1 7J=1
; SUM :=0; for i:=1(1)5; begin for j:=1(1)3;
SUM :=SUM+4(i+1) X (j+2) end:, stop;

166 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

A general rule to apply is that no jump may be made into the range of a
for statement except during the use of subroutines not affecting the for
indices. The following diagram indicates valid jumps (i.e., if followed
by go to statements):

Jor « .. ;beginl sfor oo ., begiy W ,%end;
subroutine subroutine

Declarations. Declarations serve to inform the computer of certain
facts required by the code. They have no operational meaning as far as
the code is concerned. Five declarations will now be described.

1. Array declarations tell the computer how many numbers there are
in a vector or matrix array, so that the appropriate memory space may
be reserved. The form of an array declaration is

; array (VAR[L:UJ);

where VAR is the subscripted variable in question, L is the list of the
lowest values the subscripts take, and U is the list of the largest values
the subscripts take. Thus, if

a1 Q12

MATRIX;; = (an an)

(123 2})
we would write array (MATRIX[1,1:3,2]). For a vector with five com-
ponents Vi, Vs, V3, Vi, and Vs we would write array (V[1:5]), and so
forth.

2. Type declarations classify variables or functions for the automatic
program so that they may be treated accordingly. For example, arith-
metic operations involving fixed-point variables differ from those involv-
ing floating-point variables. Labels of statements cannot have numer-
ical values and therefore are treated differently from variables, and so
forth. A type declaration would be as follows:

;s TYPE (EXPA,EXPB, . . . ,EXPC);

where TYPE stands for some type, as fized point (FXD), floating point
(FLT), or label (LAB), that can be recognized by the program and EXPA,
etc., represent the variables or functions of that type.

3. A switch, or variable-connector declaration, specifies (by their labels)
alternative statements to which a go fo statement may jump. The
form of a variable-connector declaration is

; switch NAME:=(LA,LB, . . . ,LC);

where NAME is the name of the connector and LA, LB, . . . , LC are
the ordered set of labels of the possible statements that can be distin-
guished by the connector. The variable connector is used by a go fo
statement in the form

3 go fo NAMEIN];

Sec. 5-9] ADVANCED PROGRAMMING 167

where NAME|N] is a subscript variable and N is an integer telling which
label of the switch declaration to use. Thus if LA, the first label, is
to be used, then N would be set to 1; if the second label, LB, is to be used,
then N would be set to 2; and so forth. For example, consider the
problem of forming 4 = X* 4 YifN =1, 4 =X 4 Y2if N = 2, and
A =0if N =3. We form the required N and then jump by means of
a variable connector for the proper arithmetic statement,

; switch S:=(P,Q,R); J:=N; go to S[J]; P:A:=(XT2])+Y; g0 to T;
Q:A:=X+4+(YT2]);gotoT;R:A:=0; T: stop;

4. Comment declarations are used to add informal comments to a
program; they have no effect on the program and are intended only
as additional information for the reader. This declaration must start
with the word comment, and there cannot be a semicolon within the
declaration. (Why?) For example,

; Comment This code will compute sin with an error no greater than ¢;

5. A function declaration describes the computing rule to be used in
evaluating the function in terms of its variables. The form of a function
declaration is

: FUNCT(VARA,VARB, . . . ,VARC):=EXP;

where FUNCT is the name of the function, the independent variables are
listed in the parentheses, and EXP is the computing rule. For example,
if f(u,w) = au? + buv + cv?, we would write

; QUADRATIC(u,v):=aX (uT2))+bxuXvtex(vT2]);
To use the function in a code, consider the evaluation of
Z = Af(r*,s*) + Bf(r*s%)
After declaring the quadratic as above we would write

s Z:=AX QUADRATIC(:T2],sT2))
+B X QUADRATIC(:r13],sT3]);

Note that it is the order of the variables appearing in the function declara-
tion that is important. Thus, in QUADRATIC(r 12} ,s1T2J]), since 72
occurs first it is substituted for u; s? occurring second is substituted for ».
The computation actually performed is a(r2)? -+ b(r2)(s?) + c(s?)2. The
variable substituted may be a function itself, as we shall see in the
example below.

The computer computes QUADRATIC(u,v) only when it is confronted
with the computation of Z. The arguments % and » must first be com-
puted by the program, and then, having u and » (namely, r? and s? in the
first case and 7% and s? in the second), the program can refer to the
declaration to find out how to compute QUADRATIC(u,v). How does
the computer distinguish between QUADRATIC(u,v) when it is used as a

168 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMs [CHAP. 5

declaration and when it is used as a function in a statement? If QUAD-
RATIC(u,v) appears to the left of the := relation, it can only be a func-
tion declaration; if it appears to the right of the := relation, it must
represent an actual function that refers to a declaration.

Consider a more complicated function that may be defined by a com-
pound statement rather than a single arithmetic expression. The prob-
lem arises as to where the value of the function, as computed by the
compound statement, will be found. The convention is used that the
address of the final result should be called by the name of the function,
e.g., FUNCT. For example, consider a series approximation to sin 4
such that the last term is less than e:

; sin(0,e):= begin TERM :=0; SUM :=0; for J:=1(1)50;
begin TERM:=(—1XTERM X (0 12]))/(2XJ+1)X2X]);
if (TERM <e); go to R; SUM :=SUM+TERM end; R:sin:=SUM end;

Note that this is all just a declaration of the function sin(6,e), and the
result is found in the address sin [not sin(8,), because that represents a
function, not a variable or address]. This function declaration would be
used as follows: Consider the computation of

z=3sin? (u—v, ¢ + V1 —sin? (u? — 02 ¢
for e = 1/n. After declaring sin(0,e) we would write

; 2:=8X (sin(u—v,1/n))T2]
+sqrt(l—(sin(u 2] —vT2],1/n))12]);

Common functions, such as sqri(x), abs(x), etc., need not be declared,
because they are explicitly written into the automatic programming
routine itself.

Use of Subroutines: Procedure Statements and Procedure Declarations.
As previously discussed in Chap. 4, a subroutine must be “told” initial
conditions and in what addresses to put the final results. (The auto-
matic program takes care of the return jump back to the original code.)
In our present code this is done by a procedure statement of the form

; SUBR(IAIB, . . . ,IC)=:(FLFM, . .. ,FN);

Here SUBR is the name of the subroutine, IA, IB, . . . , IC are the
initial conditions (i.e., expressions that can be evaluated), and FL, FM,
..., FN are the addresses where the final results are to be located
(i.e., simple or subscripted variables). The subroutine itself is considered
as a procedure declaration. Its form is

; procedure SUBR(x,y, . . . ,Z2)=:(u,v, . . . ,w); begin. . . end;

Procedure-declaration heading - Declarations and
statements of
subroutine
proper

Sec. 5-9] ADVANCED PROGRAMMING 169

A special statement, denoted simply by refurn, is placed in the subroutine
proper at that point from which the return jump back to the original
code should occur. Note that, if a subroutine has a single value as its
final result, then we could have as well used a function declaration referred
to by a function in a statement. As in the case of the function the order
of the variables is used to distinguish among them.

As an example, consider a subroutine that computes e, sin z, and
cos z. Since

e? =14z + x2/2! + 23/3! + 24/4! 4 x5/50 4 - -+ »
sinz =z — 2%/3! + 25/5! — - - -
and cosxz =1 — 22/2! 4 24/4! — - - -

we can form zm/m! and then add this (with the appropriate sign) to the
respective partial sums as called for by the series (i.e., alternating odd-
and even-power terms). We use a switch declaration for the alteration.
The procedure declaration (and the included subroutine) would be

; procedure TRIG(0,e)=:(EXPO,SIN,COS); begin switch SAC:=(S,C);

TERM:=6; SUME:=1-46; SUMS:=6; SUMC:=1; J:=2; 1:=2;
B: TERM:=(TERM X 0)/J; if (TERM <z); go to R;

SUME :=SUME+TERM; go to SAC[I];

C: SUMC:=SUMC+H+({(—1)1TJ/2J)XTERM; 1:=1; go to T;
S: SUMS:=SUMS+((—1)T J—1)/24)X TERM ; I:=2; go fo T;
T:J:=J+41; go to B;
R: EXPO:=SUME; SIN:=SUMS; COS:=SUMC; refurn end;

Note that the inputs to the subroutine are 6 and e in that order; the
outputs are EXPO, SIN, and COS in that order. The switch is reset to
go through the alternate sin (or cos) loop at the end of each loop. Finally
the computed results SUME, SUMS, and SUMC are assigned to their
corresponding variables. Next suppose that we wanted to use this sub-
routine to compute e~“*(4 sin (wt) + B cos (wt)). The procedure state-
ment with the appropriate code would be simply

s TRIG (o X te)=:(U,V,W); Z:=(AX V+BXW)/U;

As another example of a procedure declaration and its included sub-
routine consider matrix multiplication where it is desired to compute

Cu=) A Ti=1,...,Lj=1,...,J;8adk=1,...,K,
7
the procedure declaration would be
; procedure MATMULT(ALjl,Blj,k],I,],K)=:(C[i,k]); begin array
(A[L,1:1,]D; array B[1,1:],K1); array (C[1,1:LK]); for i:=1(1)I; begin

for k:=1(1)K; Cli,k]:=0; begin for j:=1(1)J; Cli,k]:=Cli,k]4A[i,]] ‘
X B[j,k] end end; return end;

170 INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMs [CHAP. 5

Finally consider an example of integration by means of the trapezoid
rule (see Sec. 6-7, for example), namely,

A= [16 de = E 0@ + 2@t B+ 2fCa 4 20) 4+ - - 10

Here we shall include a comment declaration as well:

; procedure TRAP(F(x),a,b,e,V):=(A); begin comment a and b are the
min and max, resp., of the points defining the interval of integration.
F(x) is the function to be integrated, s is the permissible difference
between two successive trapezoidal sums, and V is greater than the
maximum absolute value of F(x) on (a,b); Ibar:=VX (b~a);h:=(b—a);
J:=@@/2)X (F(a)+F(b)); S:=0; n:=1; for i:=1(1)50; begin for k:=
1(n; S:=S+F(a+h X (k—1/2)); I:=h X (J-}-8); if (e >abs(I~Ibar));
go to Ty n:=271Til ;h:=h/2;Ibar:=I end; T:A:=I; refurn end;

Note that for the ith iteration we add 2¢{ more points to S, namely, the

points dividing the previous points. Then hXx ((1/2)X (F(a)+F(b))+S)
becomes the new approximation to the integral.

Code: begin procedure statement S;; procedure statement S, end J

/ \

Procedure declaration S;
(subroutine uses Dy, Dy)

Procedure-declaration S;
(subroutine uses D3, Dy)

/N [\

Procedure Procedure Procedure Procedure
declaration D, declaration D, declaration D3 declaration Dy
(subroutine) (subroutine) (subroutine) (subroutine)

F1c. 5-9. Use of procedures as building blocks.

The building-block method of using procedures (or subroutines) is
illustrated in Fig. 5-9. The final code can be just a sequence of procedure
statements; similarly each of these procedure declarations referred to by
the statements can itself be a sequence of procedure statements, and
so forth. The advantage of this building-block technique is that a large
code can easily be subdivided into more elementary codes, and several
coders and programmers at once can work on the subdivisions. Then
the parts can be compiled into the large program, in as many levels as
required.

EXERCISES

(a) At the beginning of this section we remarked that by the “ . . . previous
gections it is clear that a language can be devised that is independent of particular

Sec. 5-10] ADVANCED PROGRAMMING 171

computer instructions.” What previous sections do we have in mind, and how can
these be used for such a language? (Hint: For example, Sec. 5-8 is concerned with
an automatic program that interprets algebraic symbols, but the procedure for using
this program given in that section depends on the word format of the computer.
However, Sec. 5-7 describes a symbolic address translator, the use of which can easily
be made independent of the word format. Thus the methods of the two automatic
programs can be combined to result in a process for using algebraic-symbol inter-
pretation that is independent of computer instructions.)

(b) Make a flow chart for the automatic program that can interpret each of the
seven statements given in the above language.

Write codes in the symbolic algebraic language to compute the following functions:
(c) nl/z!(n — x)l.
- 1
n: Tyn—zx
@ =) s T
z=0

nmw

w . .
3012 cos (-2- cos 9) sin (5 sin 8 cos (p)
2nR? sin 6 . (,r .)
sin 3 sin 6 cos ¢

(f) Write a subroutine in the algebraic language to put the numbers V; (¢ = 1,
. , n) in numerical order (see Exercise & of Sec. 4-2).

(9) Write a subroutine in the language for Simpson’s integration rule (see Sec. 6-7).

(h) Write a subroutine in the language to evaluate a determinant.

() Write a subroutine in the language to form the inverse of a matrix.

b-10. Additional Topics
a. References to Computer Maintenance and Program Debugging

Electronic Computers, Session III, IRE Natl. Conv. Record, 1954.

Ledley, R. 8., and J. B. Wilson: “Programming and Utilizing Digital Computers,”’
MecGraw-Hill Book Company, Inc., New York, in press.

MecCracken, D. D.: “Digital Computer Programming,” John Wiley & Sons, Inc.,
New York, 1957.

Symposium on Diagnostic Programs and Marginal Checking for Large Scale Digital
Computers, IRE Conv. Record, pt. 7, 1953.

Von Neumann, J.: Probabilistic Logics and the Synthesis of Reliable Organisms from
Unreliable Components, ‘‘Automata Studies,” Princcton University Press,
Princoton, N.J., 1956.

Wheeler, D. J., and J. E. Robertson: Diagnostic Programs for the Illiac, Proc. IRE,
vol. 41, pp. 1332-1340, October, 1953.

b. The Iniernational Algebraic Language. The automatic language described in
Sec. 5-9 was a simplification of the proposed International Algebraic Language,
now called ALGOL (see J. Perlis and K. Samelson, for the Association for Computing
Machinery-GAMM Committee, Preliminary Report—International Algebraic
Language, Cowinuns. Assoc. Computing Machinery, vol. 1, no. 12, December, 1958).
In our discussions several statements were omitted and others severely simplified, and
the Boolean expression was omitted. By referring to the above-mentioned article,
complete the study of ALGOL.

c. FORTRAN | and II. The most well-known algebraic language presently in
common use is the IBM FORTRAN I and II (FORTRAN means “formula {ransla-

172

tion”). Many aspects of this language are similar to the International language.
By means of the FORTRAN I and II manuals, compare and contrast FORTRAN
I and II and the International Language. (See ‘“Programmer’s Primer for FOR-
TRAN,” “Programmer’s Reference Manual, FORTRAN,” and ‘‘Reference Manual,
FORTRAN II1,” all published by IBM for the 704 computer.)

INTRODUCTION TO DIGITAL PROGRAMMED SYSTEMS [CHAP. 5

d. Automatic Coding Systems. In order to give the reader an idea of how extensive
has been work on automatic programming systems, we present in Table 5-2 a selected
list of automatic programs, chosen from a more detailed compilation of over 90 that
can be found in Proc. Fourth Ann. Computer Appls. Symposium, Oct. 24-25, 1957,
Armour Research Foundation. (See especially R. W. Bemer, The Statusof Automatic
Programming for Scientific Problems.)

TaBLE 5-2. List OF SELECTED AUTOMATIC PROGRAMMING SYSTEMST

Name or acronym Int Co Al
Computer of automatic Developed by er-| fom- | Alges
coding system preter| piler | braic
IBM 704, 705, | AFAC Allison GM X X
and 709 FORTRAN Iand II | IBM X X
IBM 650....... Bell Li Bell Tel. Labs.
IT Carnegie Tech. x X x
FORTRANSIT IBM-Carnegie Tech. X x
APT Applied Physies Lab.
SOAP I and II IBM x
Sperry Rand COMPILER I Boeing, Seattle X x
1103A USE Ramo-Wooldridge X
QUICKTRICK Operations Research X x
Office
APT Applied Physics Lab.
IT Carnegie Tech., Ramo- X X
Wooldridge
Sperry Rand
UNIVAC1 ’
and II....... AT3 Sperry Rand X X
Datatron 205...|IT Purdue University X X
Whirlwind... ... Algebraic MIT X X
Summer Session MIT X
Proposed for all | ALGOL Association for Com- x X X
computers puting Machinery—
GAMM

t Information concerning these and many other automatic programs is being made
available by the Association for Computing Machinery, New York.

PART 2

FUNCTIONAL APPROACH TO SYSTEMS DESIGN

CHAPTER 6

FUNDAMENTALS OF NUMERICAL ANALYSIS

6-1, Introduction ’

The systems design of a digital computer or control is the over-all
block diagram and description of its parts, including its operational
characteristics, input-output facilities, and coding or information-han-
dling structure. The purpose of this part of the book is to discuss the
functional approach to such systems design.

Consider first the so-called general-purpose digital computer, which is
designed to perform the processes of numerical analysis. Actually we
have already described its systems design in Part 1. It is important for
the engineer to understand the basic concepts of numerical analysis as a
foundation for appreciating criteria for the systems design of such a
computer. In the decision on the instruction system of a proposed
computer the engineer must comprehend the problems involved and the
techniques used in reducing a mathematical problem to sequences of
additions, subtractions, multiplications, and divisions. In addition the
engineer will often find use for these methods in his own analytical
problems.

Numerical analysis is a large and growing subject in itself, and our
discussion must be limited to those aspects which are considered of
importance to the computer engineer. These questions naturally arise
in the study of digital computers: If a computer can do little more than
the elementary arithmetic operations, how can it be used to perform
function evaluation, integration, or differentiation, or to solve ordinary
and partial differential equations? Also, in performing long sequences
of arithmetic operations, how is the accuracy of the computing results
analyzed and controlled? We can give in this chapter no more than a
brief introduction to the answers to these questions, but it is felt that
such an elementary survey can well serve to orient the student in this
field.

The chapter starts with a technique for solving linear simultaneous
equations (Sec. 6-2), which arise frequently in all fields of science and
engineering. Next solution of algebraic and transcendental equations
by means of successive approximations is considered (Sec. 6-3). Then

173

174 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CuaP. 6

the following three sections introduce the fundamental concept of poly-
nomial approximations for the evaluation of functions. In passing,
continued fractions are considered, so that the reader will not think
there are no other methods for evaluating functions. The best-fit
polynomial approximations are emphasized because of their extreme
importance in digital-computer work. In order that the reader may
develop a ‘“numerical feeling”’ for such approximations, graphs are given
of actually computed examples. The next four sections show how the
same fundamental idea of polynomial approximation is used in numer-
ical integration and differentiation and in the solution of differential
equations. To complete the picture, the method of undetermined coeffi-
cients is given, so that the student can experiment and derive for-
mulas for himself.

Up to this point discussion of error was omitted to allow full concen-
tration on the concepts involved: the final section of this chapter is
concerned with accuracy and error. Our discussion will be limited to
fundamental definitions and to consideration of the arithmetic operations.
In performing a computation on a digital computer, the significance and
accuracy associated with arithmetic operations are usually uppermost in
the mind of the computer user. Such considerations can greatly influence
the systems design of new computers through the over-all word format,
word length, and operations designs. Hence an appreciation of the
problems involved becomes of prime importance to the computer engineer.

6-2. Simultaneous Linear Equations

The Problem. Consider a set of n simultaneous linear equations in n
unknowns zj, . . . , Ty,

auty + @1z + ¢ ¢ 0 AT. = %1 (1)
any + G222 + ¢ ¢ ¢+ Qe = Yo 2
An1l1 + Anola + T + Qunln = Yn (n)

These equations admit of a unique set of solutions,
2 = zi(@11, - . . G, Y1, o - - SUn)

if at least one y; is not zero, and if the determinant det (a;;) £ 0.f In
order to deseribe a method for solving the equations, let us first consider a
special set of equations with coefficients s; = 1 and s = 0if 7 > k:

21 + S19%2 + 813%3 + S14T4 = Y1
Tz + S23T3 + S24T4 = Y2
Tz + 34Ty = Y3
Ty = Ya
t See, for example, E. A, Guillemin, “The Mathematics of Circuit Analysis,” pp.
13-18, John Wiley & Sons, Inc., New York, 1951,

Sec. 6-2] FUNDAMENTALS OF NUMERICAL ANALYSIS 175

These four equations can easily be solved for the unknowns. 21, 2, 23,
and z,, for s = y, is already given, and it follows that

T3 = Y3 — 83404
T2 = Y2 — 824T4 — 82373
L1 = Y1 — S1Ty — 81303 — S12%2

Hence it becomes clear that, if we can somehow manipulate Eqs. (1),
(2), . .., (n) so that the diagonal coefficients become 1 and the coeffi-
cients below the diagonal become zero, then the solutions can be rapidly
obtained.

The Method. This process can be accomplished as follows: First
divide both sides of Eq. (1) by @¢y1. If @11 = 0, then rearrange the order
of the equations so that ai; % 0. (This, of course, can always be done.
Why?) This results in

(1237 ai 1
Logy+ gy oo 20y, =0 e
an an Q11

Multiply Eq. (1)! by as1, and subtract the result from (2), obtaining

0-2 4 baso + * + + + bana = ?/2(1) (2)1
Q21012 2101
where bay = @93 — —— . ben = @an — =
a1 25§}
A21Y1
and =y, — 22N
a11

Similarly, multiply (1)! by as, and subtract the result from (3),
obtaining

021 + byoa + -+ + ¢+ baaZn = Y3 (3)*
where by = a3z — daiiz . b = az, — da1tin
a1 a1
and Yo = g, — 281
a1
Continuing in this, we obtain a new set of Eqgs. (1), (2)%, . .., (n)!

such that by; = 1 and b;; = 0 for ¢ > 1. Of course, it is clear that our
new set of equations has the same solution as the original set.

Next we start with (2)! and divide both sides by bss. [If necessary, a
rearrangement of the order of Egs. (2)%, ..., (n)! can be made to
ensure that bs, % 0.] We obtain

o)
Doay b gy g 020 (2)
b22 b22 b22

176 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

Multiply (2)! by bss, and subtract the result from (3)?, obtaining

0 22+ caas + - - + Conltn = yu? (3)*
where €33 = bag — barbay SR Con = bgn — Bazban
bas b2y
and Y@ = g3 — bi;:é_z_(i)_
Similarly, we obtain
caa®s + ¢ ¢ Cann = Yu'? (4)*
and the same for (5)%, . . . , ()% In this step we have made ¢33 = 1

and ¢;2 = 0 for ¢ > 2.
Continuing in this way, we finally obtain, for example in the case of
n = 4, the following equations, in the desired form for easy solution:

Q12 Q13 Q14 N
z1+ — 2+ — a3+ — x4y = =
. ann - an a11 a1

bas bas yz(l)

To+—x3+-—24s =

b2 ba2 beo

C3s y3(2)

Tz + — zyg ==

C33 C33

14(3)

2 = U

daa

Example. Let us carrv this process through for a specific set of four
equations.

31+ 922+ 623 — 1224 =9 (1)
2.’131 + 8562 + 12233 b 2.’1:4 =2 (2)
321 + 122, + 21z — 9z4 = 15 3)
)) —x1 — T2 + 8(1;3 + 81134 =5 (4)
Dividing both sides of (1) by 3, we find
1 + 3.’152 + 21}3 - 4:2)4 =3 (1)1
Now multiply Eq. (1)! by 2, and subtract from Eq. (2), obtaining
2%2 + 85(33 + 6234 = —4 (2)1
Similarly, we multiply Eq. (1)! by 3 and subtract from Eq. (3), obtaining
3z2 + 1523 + 34 = 3t

And finally (4)! is obtained by multiplying (1)! by —1 and subtracting
from (4),

2502 "|- 10133 + 41134 = 8 (4:)1
Continuing, we form Eqgs. (2)2, (3)2, and (4)?,
Zo + 423 + 324 = —2 (2)2
3z; — 6zs = 12 (3)*
25 — 224 = 12 4)*

SEC. 6-2] FUNDAMENTALS OF NUMERICAL ANALYSIS

Finally we have

I

T3 — 224 4
2(114 =4
and x4 =2

177

(3)?
(4)°
4

Thus the set of equations from which the solution is obtained is

x1+3x2+2x3—4x4=3
x2+4x3—|-3x4= -2
x3—2x4=4

x4=2
whence e =2 = 2
$3=4+2><2 =8
Tp=—2—3X2—4X8 = —40
Z1=34+4X2—-2X8—3X(—40) =115

(1*
(2)*
3)°
(4)*

Figure 6-1 is the flow diagram for this method of solving simultaneous

linear equations.

Set j=1
Set n equal to the number of equations

]

Form equation (j)J as the result of
dividing equation (j) =1
by the coefficient of x;

Letj+1-—j

| Sets=n

_____1 Setk=jt1
Multiply equation (j¥ by the

coefficient of x; of
equation (£)U-1) and subtract

this result from equation (&)Y~1
(Letk+1—E) to form equation (%)

n:k
> <

Let s—1—s

Fia. 6-1. Flow chart for solving simultaneous linear equations.

late xsl

Stop the
computer

178 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CuAP. 6

-EXERCISES

(a) Solve br; — 2z, = 3
4.'231 - 5$2 = —18

by following in detail the steps of the flow diagram, keeping track of all the tallies.

(b) Solve 0.2+ 4z24+ 23 —3z4=1
4x1+0'x2— 21}3-"21}4:14

8.’2?1 - 722 + T3 — 3xy = —12

-—5x1+ 8$2+0‘133—" I4=—2

Solution. z, = 8, z, = 7,23 = 27, 2, = 18.

(¢) The flow chart of Fig. 6-1 does not account for zero coefficient in the leading
term of Eq. (7). How can the flow chart be adjusted to account for this?

(d) Using the three-address instructions of Chap. 3, write a code that solves simul-
taneous linear equations.
6-3. Algebraic and Transcendental Equations

Successive Approximations. The method of successive appfoxima,tions
can be used to evaluate the solutions of algebraic and transcendental

y
2

=sin¥
T

|
11
i
t
1l
1
11
t
11

0 X} X3¥s¥xg X 1 x

Fic. 6-2. Finding solution to sin z + 2z — 2 = 0 by the method of successive approxi-
mations.

equations. Although the best method for making the successive approx-
imations in any case depends on the nature of the functions involved, we
shall try by means of specific examples to illustrate the general principles
that apply. Often a graph of the functions involved in the equations
will help in the determination of the best method of approximation.

Sec. 6-3] FUNDAMENTALS OF NUMERICAL ANALYSIS 179

Consider, for example, the equation
simz+2:—2=0

to be solved for xz. We can write this as sinx = 2 — 2z and graph
yr = sin z and ¥y, = 2 — 2z (see Iig. 6-2). The desired value of z is the
z coordinate of the intersection of the two curves, where sin z will be
equal to 2 — 2z. We know that the value of x must be between 0 and 1.
Hence we try z; such that 0 < z; < 1. As can be seen from Fig. 6-2,
if sin £; > 2 — 24, then the solution must lie to the left of z,, that is,
x < @y;if sin 2; < 2 — 2z, then the solution must be to the right of x;,
that is, x > 1. Suppose that we try z; = 0.500 (radians of course) ; then
sin z; = 0.479, and 2 — 2z; = 1. Hence 0.500 < z < 1, and so we try
zs = 0.750 (that is, half the distance between 0.500 and 1). Then
sin £z = 0.682 > 2 — 2z, = 0.5, whence 0.500 < z < 0.750. We let
zz = 0.625 (half the distance between 0.500 and 0.750); then

sin 23 = 0.585 < 2 — 2x; = 0.75

and so we try next 0.687, etc. In each step we find in which half of the
previous interval the solution lies; Fig. 6-3 shows these calculations. The
fact that we are halving each time means that we are developing the solu-
tion as a binary number. If the solution lies in the right half of an inter-
val in a step, then a unit corresponds to this step in the solution; other-
wise a zero corresponds. Hence the solution # = .10101111 according to
Fig. 6-3, column yp.

. . Yr Yp
@) i yr =sinzyp =2 -2 greater | greater
(1) 0.500 0.479 1 v
2) 0.750 0.682 0.5 v
3) 0.625 0.585 0.75 v
(4) 0.687 0.634 0.626 v
5) 0.656 0.609 0.688 v
(6) 0.672 0.621 0.656 4
) 0.680 0.629 0.640 v
(8) 0.684 0.631 0.632 4

F1a. 6-3. Calculations for solving the equation sin = 2 — 2.

The flow diagram (see Fig. 6-4) is relatively simple: depending on
whether sin z; < 2 — 2z; or sin x; > 2 — 2x;, we determine the next trial
solution z;;; by adding to or subtracting from the previous trial solution x;
one-half of the previously used increment Az;. Since each trial deter-
mines an additional bit of the solution, the procedure is repeated the
same number of times as the number of bits of accuracy desired in the
solution.

180 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

Setx;=2"7 1
and Ax;=2"1
Set n equal to the number of
bits of accuracy in the
solution

|

“ Form sin x;

Form 2 —2x;

R

———(sin x; 1 (2-2x;) D——
> <

Put 0 in the 2-'th position of solution | Put 1 in the 2-ith position of solution
Ax; A A Ax; R
Axi+1='2— (the interval) *ip1=7 (the interval)
x,-+1=x,;-Ax,~+1 ., xi+1 =xi+Ax‘-+1v

Add 1 to tally |«

n tally Stop computer

F16. 6-4. Flow chart for solving the equation sin z = 2 — 2z.

Accelerating the Convergence of Iterative Processes.t The problem of
solving an equation F(z) = 0 can be stated in general as that of finding
a value (root) of z, say 7y such that F(x,) = 0. The general ¢feratton
algorithm involves successive approximations o, Z1, Ty .., which are
determined as follows:

1. If F(z) = 0 can be expressed in the form z = f(z), then we let
Znp1 = f(x,). For some initial guess zo, we find =1 = f(x0), 2 = f(z1),
x3 = f(z3), . . . , continuing until, for some n, ¥» — @n41 is less than
some preassigned small number, the allowable error.

2. If F(z) = 0 cannot be ertten in the form of z = f(:c), then we let
Tnp1 = T, + OF(z,.), where 6 is some suitably chosen nonzero constant,
and proceed as in case 1 (see Exercise h). :

" This process was worked out-by J. H. Wegstcin and P. Henrici; see J. H. Wegstein,
Acceleratmg Convergence of Iterative Processes, Communs. Assoc. C'omputmg M achm-
ery, vol. 1, no. 6, June, 1958. BEER

Sec. 6-3] FUNDAMENTALS OF NUMERICAL ANALYSIS 181

Let us consider case 1, for what we shall say also holds for case 2;
Fig. 6-5 describes the process. Since x = f(z), the object is to find the
intersection of the two curves y = z and y = f(z). From y = f(z.)
we find y,; from y = & we find y, = z41; from y = f(za.y1) we find
Yns1; from y = = we find Ynp1 = Zaye; and so forth.

¥

(xn+1 lf(xn-{-!))
(g1 Xnt2)

P

B c A

(%ns1 .xr;+1) (%ns F(%n)) V=1

F16. 6-5. The iterative processes.

Now observe from Fig. 6-5 that, instead of taking z,..1 for the substitu-
tion into f(x), we would do better to choose a value x5, for the substitu-
tion, where

x,ﬁ_l = q%Tn + (1 - q)xn+l

i.e., some value between z, and x,.;. For instance, in the case illustrated
in Fig. 6-5, ¢ should be chosen so that

1—-¢ AC

Of course we do not know the ratio BC/AC, but we can determine it
approximately. For PC = BC, and thus

where m is some value of f’(x) between A and P (applying Rolle’s theorem
from the calculus). From the definition of the derivative, m can be
approximated by

m Qf(xn) - f(xn—l) — xn+l — Xn
- Tn — Tp-1 Tn — Tp—1

182

Hence we can take

FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

q m
T .= —m or

m—1

The iterative process can then be described by the flow chart of Fig. 6-6,
wherein we must observe carefully when z% or 2, is used.

S * = > ————
Start et g‘ ;0 %pp1=f{xn) _’®' @
=R
‘—'-—V /
‘ /
/
Let x%_; =20 M=l
] Letx,= xh =%nt1 @ x’:x"'
y R=R, 9= =1
x:...l =qxat+(1 -—q)x,..,.1
Letx}¥_,=x} |
xF=afe1

Is the solutlon
sufficiently accurate ?

Fra. 6-6. Accelerating the convergence of the iterative processes.

As an example, consider the equation
= 14 (eaz — e—am)

and with « = —0.5 let us solve for the root «
ordinary and the accelerated iterative processes.
we have Table 6-1 and Fig. 6-7.

TaABLE 6-1. ExaMPLE OF BoTH THE ORDINARY AND ACCELERATED ITERATIVE
PROCESSES FOR THE RooT z = 0 oF z = l4(e 052 — ¢0-52)

0, using both the
Starting with z, = 1,

n z, by ordinary z. by accelerating | Corresponding
iterative substitution | iterative substitution | value of m

0 1.000 1.000

1 —0.521 —0.521

2 0.263 —0.00348 0.340

3 —0.132 —1.32 X 1075 0.335

4 0.066 —1.65 X 101 0.333

5 —0.033

6 0.017

7 -~0.008

8 0.004

The ordinary iterative process may result in four types of behavior.
The successive values of x, can (1) oscillate and converge, (2) oscillate
and diverge, (8) converge monotonically, or (4) diverge monotonically.
The accelerating method just presented will make the nonconverging

Sec. 6-4] FUNDAMENTALS OF NUMERICAL ANALYSIS 183

Xn

6 7 n

F16. 6-7. Comparison of ordinary and accelerated iterative processes for the z = 0 root
Of = %(8—0.52 —_ 60.52).

types 2 and 4 converge and will accelerate the convergence of types 1 and
3. We have illustrated the situation for type 1. Exercises e¢ to g will
illustrate types 2 to 4.

EXERCISES
Solve by successive approximations, to within 0.001 (dectmal):

(@) 1.5¢cosz + 2z — 2 = 0.
() sinxz — tanz gz = 0.

1 — a2 z
R e
(HiInT: There are four solutions.)
— 2
@ 1= —tanrz =0,

Consider the equation x = 14(e** — ¢~2=) = ginh ax. Take z, = 1, and show by
direct computation: .

(e) If « = —1.2, the ordinary iterative process will be of type 2 but the accelerating
process will converge.

(f) If & = 0.5, the ordinary iterative process will be of type 3 but the accelerating
process will make the convergence more rapid.

(9) If « = 1.2, the ordinary iterative process will be of type 4 but the accelerating
process will converge.

(k) Explain why we let zap1 = xn + 0F(z.) in case 2 above. (Hint: First let
8 =1)

6-4. Function Evaluation : Series and Continued Fractions

Series Approximations. In the previous section we have tacitly
assumed that the values of the functions entering into the equations
could be somehow obtained by the computer for any given value of .
For polynomials no problem arises, since the evaluation of a polynomial
is easily coded. On the other hand how were the values for sin x com-

184 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

puted for a particular £? We shall discuss in this and the next few
sections three ways in which such functions may be evaluated by the
computer. These are (1) by power-series approximations, (2) by interpo-
lation in a table, (3) by means of “best-fit’’ polynomial approximations.
Of course our primary purpose is to discuss functions that are not them-
selves polynomials or fractions of polynomials, since the methods apply
trivially for polynomials.

Many functions can be easily expanded in power series, and then the
functions can be evaluated by means of these series for values of z within
the region of convergence of the series. For example,

x3 x5

z7
sinz =z — 3'+5—!—7—!+

Then, if sin 0.5 were required, the computer would be coded to compute

0.53 0.5% 0.57
EI T

If it were desired to know sin 0.5 to within +0.0001, then the series
would be carried out until some term were less than 0.0001. For exam-
ple, sin 0.5 = 0.5 — 0.02083333 + 0.00026042 — 0.00000155, where we
stop. Hence, to the desired accuracy, sin 0.5 = 0.4794. Another way
of interpreting this result is that the polynomial approximation

0.5 —

z3
1n ¥ — —_— —
sin*z = x 31 + 51
is sufficiently accurate for our purposes when z = 0.5. We write sin* z
instead of sin z to indicate that this is just an approxzimation to sin z.
On the other hand, some series do not converge quite so rapidly. For
example,
25 7

arctanx—x—§+g_?+...

For z = 0.5 we find
arctan* 0.5 = 0.5 — 0.041666 + 0.006250 — 0.001116

which obviously is not accurate to +0.0001.
Often other expansions of a function can be found that might converge
more rapidly than the power series; e.g., for arctan x we have the series

2 a? 2-4 z! :
arctanx—————-—1+ [1+§1+x2+3-5(1+x2)2+]

Continued-fraction Approzimations. There are other expansions of
functions that often aid in their evaluation, for example, continued

Sec. 6-4] FUNDAMENTALS OF NUMERICAL ANALYSIS 185

fractions. For instance,

arctan r =
1+
3+
5+

xZ
422
92

1622
Tt g

It can be shownt that a continued fraction can be easily evaluated by
means of 2 X 2 matrices as follows: Given the continued fraction

bs
b
as + 2

as +
as +

£=a1+
q

bs
bs
as + . e .

the nth convergent p./q. is the result obtained when all terms from n + 1
on are neglected; e.g., the fourth convergent is

&=al+ b2

2 as + b

as‘l‘E
42

The nth convergent may be evaluated from the following matrix equation:

nl)n—1=a11 a: 1 agl_._a,,l
Qn q"—l]- 0 bZ 0 bs 0 bn 0

From this we can find p, and ¢., and also p,—; and ¢,—1. For example,
for arctan 0.5 we have

ps p _ (0 1\/1 1\(3 1\/5 1\(7 1
¢ gs 1 0/\o5 o/\o25 o/\1 o/\225 0
59.3750 8.00
128.0625 17.25

Hence
ps _ 59.3750 ps _ 8.00
¢~ 1280625 ~ 04636 and = gmon
Thus, arctan 0.5 = 0.4636 to within +0.0001 (since the difference
between the fourth and fifth convergents was 0.0001). We see that the
infinite-fraction expansion of arctan z converged faster than its power-
series expansion.

t See L. M. Milne-Thomson, “The Calculus of Finite Differences, p. 108, The
Macmillan Company, New York, 1951.

= 0.4637

186 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

There are of course many other kinds of expansions of functions—
for instance, engineers will be familiar with Fourier-series expansions.
However, the evaluation of a function by means of an expansion is not
always the preferred method. Hence other means are often resorted
to, and we shall consider a few of them briefly in the following sections.

' EXERCISES

(¢) Of the second series expansion given above for arctan z, how many terms are
needed to determine arctan 0.5 to within +0.001?

(b) Using the continued-fraction expansion of arctan z, compute the value of = to
seven significant figures. (HINT: arctan 1 = x/4.)

(c¢) Draw a flow chart for evaluating the nth convergent of a continued fraction.

6-5. Function Evaluation : Interpolation

Polynomial Interpolation. TUntil now we have been considering func-
tions that are memorized in the computer as subroutines. TFor instance,
if y = f(z), then for a given 2, the computer will determine f(z:) by means
of a program, which might be based on some expansion of f(z). On the
other hand it is often impossible to write a program for a certain function:
e.g., the function might be empirical data, or perhaps the subroutine
might require too much time or too much memory space. In these and
other instances it is often convenient to record values of f(xz) in the
computer memory in the form of a function table which gives the f(x;)
corresponding to a set of specific values of x;. It appears at first
glance that this method has great limitations, since only those values of
f(z) which correspond to a relatively few values of z; are in the memory
of the computer. However, by means of inferpolation, values of f(z)
corresponding to an x not listed in the table can be approximated.

Suppose that it is desired to find the value of f(z) for a value of = not
listed in the table. It may happen that there are listed in the table
some values of f(z:) for z; near . Then, in order to find the value of f(z),
it seems plausible to draw a smooth curve, y = f*(x), through all the
points listed in the table and to say that y = f*(z) as read from this
curve is an approximation to ¥ = f(z) (see Fig. 6-8). Such a process is
called interpolation and is most often accomplished by means of a poly-
nomial approximation.

If n 4+ 1 points (zo,y0), (®1,¥1), (X2,¥2), . . . , (@n,¥x) of f(z) are listed
in the table, then a wunique polynomial of the nth degree, f*(x), can be
derived that passes through all these n + 1 distinct points.

For let

y=f*x) = Ao+ Aw + Adox® 4 - - - + 4,2°

If f*(xo) = yo, f*(®1) = y1, . . ., [*(@n) = Ya, then these are n 41
equations which can be solved for 4o, 44, . . . , A,. Once these values
have been obtained, we can find for any ' # z; the value of f*(z’). The
more points considered, i.e., the higher the degree of f*(z), the closer

SEc. 6-5] FUNDAMENTALS OF NUMERICAL ANALYSIS 187

will be the value of f*(z’) to f(2'). Let fg,(x) represent the polynomial,
of first degree that goes through the points (zo,y0) and (z1,y1); let fo'12(z)
represent the polynomial of second degree that goes through the points
(Zo,y0), (x1,¥1), and (z2,ys); ete. Suppose that we want the interpolation
f*(z’) to within an accuracy of 0.001. To obtain this, we would calculate

arc tan x
0.8+

07+ 7
0.6+ 7
0.5 7

047 ” (Differences

0.3+ slightly
exaggerated)
0.2+

0.1+ 7

P -0.6+
P -074
-08t

Fig. 6-8. A third-degree polynomial drawn through the four points (—1,—0.785),
(-0.2,-0.197), (4+0.2,40.197), (+1,+0.785), as an approximation to arctan z, is
shown by the solid line. Here f*(z) = arctan* z = 0.995x — 0.210z3. The dashed
line is the actual arctan.

successively fo1(z'), fo.1.2(x"), for2.3(x’), ete., until
|fo1erma(®) — fo1,....-(x")] < 0.001

and then we would take f3, . .(z') as our result.

Usually, the more known points used in an interpolation, the better
becomes the accuracy of the interpolation. However, if the additional
points are far from the point of interpolation, they may actually make
the approximation worse. Similarly, with the same number of given
points, the smaller the interval in which they are chosen, the more
accurate the polynomial approximation in that interval. To illustrate
this latter point, in Fig. 6-9 we have drawn the error curves for two poly-
nomial approximations to arctan x. Each error curve has z as abscissa
and the difference between the actual value of arctan x and its polynomial

188 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CrAPp. 6

approximation as the ordinate. The first approximation is based on the
six points —1, —0.6, —0.2, +0.2, 4-0.6, and 1; the second approxima-
tion, on the six points 0, 0.2, 0.4, 0.6, 0.8, and 1. Figure 6-9 illustrates
the error curves for 0 < x < 1. Note that in this interval the maxi-

error
0.0025¢

0.0020 4

0.00154

0.0010+

0.0005+

06 07 08 09 10

~0.0005+

Fra. 6-9. Comparison of the error curves for the interpolation polynomial of arctan* z
based on the six points —1, —0.6, —0.2, +0.2, 40.6, +1 (the curve with the big
hump) and based on the six points 0, 0.2, 0.4, 0.6, 0.8, 1 (the curve that hugs the z axis).
These error curves indicate just how much the interpolation polynomials differ from
the true value of arctan z.

mum error in the former case is over forty times the maximum error in
the latter case.

Obviously the sequence of calculations for a polynomial interpolation
would be quite lengthy for each desired value if all the coefficients had
to be calculated first, and then f*(z’). The process can be shortened by
calculating f*(z') directly, at essentially the same time as the coefficients
are calculated. That is, the coefficients are never explicitly given, but
F*(2') results directly. It should be remembered, however, that the
meaning of f*(z’) is the value at 2’ of the approximating polynomial
that goes through the specified points.

SEec.. 6-5) _ FUNDAMENTALS OF NUMERICAL ANALYSIS 189

Adtken’s Method. One method for shortening calculations, called
Aitken’s method, follows.t Tirst note that

Yo o — T
" iy m—z
Joa(@) =~ T, — xo'_ (a)
. yo Lo — T . .
where h T — 2 is the determinant with value yo(z; — 2) — y1(zo —).
1 1=
For
Yo 0
* _ Y1 T 2o _?/o(xl*xo) _
fo1(z) = €1 — o = T — e Yo
Yo To — 1 i
x oyt 0 |
and foa(z1) = T1 — To = U

Since fo1(z) goes through the points (zo,y0) and (21,y1) and is of the first
degree, it is the required (unique) polynomial. Hence, for a given num-
ber #/, to find fi'1(2') we just calculate Eq. (a) with this number 2’ sub-
stituted for the symbol z.

The polynomial that goes through (zo,y0), (1,51), and (z2,y2) is given
by

fozl(x) z1—
foo(®) 22—z
T2 — @y

: vf(;’fl,z(x) =

where fg'5(x) is the polynomial that goes through (zo,y0) and (zz,y2).
Tor fo1,03(x) we have similarly

fozl.z(x) T2 —Z
fous(®) T3 — 2
T3 — 22

f(;'f1,2,3(x) ="

The process can be extended in this way. For example,

f£1.2.3,4,5(x) Ty — X
f0.1,2,3,4,6(33) Tg — T
X — Tp

: fgfl,é.s,ﬁt,s,e(x) =

Hence the process can be systematized, with f*(z) being recomputed,
including more and more points until the desired accuracy is obtained
(assuming that there are enough points in the table). The following
scheme can be used for performing the calculations, the terms in each

t See W. E. Milne, “Numerical Calculus,” pp. 68-72, Princeton University Press,
Princeton, N.J., 1949.

190 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CrAP. 6

row being determined in order:

Zo, Yo (x0 — 2)
T,y (X1 — @) fo(x)
S BNy ,{??Ef @
Ty Ys (T3 — 0,3(% 0,1,3(% 0,1,2,3(T
N\ : >f:f1,

Tty Yo (T4 —) :4($) fc;':x.4(x) f(fl,z,«:(x)

2.3.4(%)

EXERCISES

(a) Show that f3, . s(z) actually does pass through all the points (zo,y0), (z1,¥1),
(Z2,Y2), (z3,ys) and is of degree 3.
(b) Show that

fttl(x) To — T fo*z(x) Ty — IJ
fia@) z2— 2

flal®) @ —=
fo*,l,z(x) = - =
T2 — To Ty — Xo

(¢) Compute arctan 0.9, where arctan z is given by a table for values of z diﬁering
by 0.4, as shown:

T arctan x; Solution
zo = —1.0 —0.7854 —-1.9
z1 = —0.6 —0.5404 —1.5 0.3783
ze = —0.2 —0.1974 —1.1 0.6111 1.2515
z3 = 40.2 +0.1974 —0.7 0.7707 1.1141 0.8736
zs = +0.6 +0.5404 —0.3 0.7890 0.8917 0.7568 0.6691
zs = +1.0 +0.7854 +0.1 0.7068 0.6863 0.7334 0.7509 0.7305

(d) Compute arctan 0.75 from the table values given in the previous exercise.

6-6. Function Evaluation : Best-fit Polynomial Approximation

Polynomial Approxzimations. As we have noted in Sec. 6-4, the evalu-
ation of f(x) by means of terms up to the z» term of its power-series
expansion can be considered as approximating f(z) by a polynomial of
degree n, where the coefficients are given by Taylor’s formula. Similarly
the method of interpolation can also be interpreted as the approximation
of f(x) by a polynomial, even though the polynomial may never be
explicitly determined by the method given; the coeflicients of the interpo-
lation polynomial of degree n are determined from n 4 1 known values
of f(z). For arctan z we have the power-series approximation

arctan® x = 1.000000x — 0.3333332% + 0.200000x3

For the interpolation approximation (for the points —1, —0.6, —0.2,
+-0.2,-4-0.6, and 1 given in Sec. 6-5) we have ’

arctan* x = 0.999105z — 0.306897x3 + 0.093190x°

Sec. 6-0] FUNDAMENTALS OF NUMERICAL ANALYSIS 191

In-order to show how good these approximations are, in Fig. 6-10 have
been drawn the error functions

e(x) = approximation — function = arctan* z — arctan z

for the range 0 < 2 < 1, for both cases.
Best-fit Polynomials. The question immediately arises: Does there
exist another fifth-degree polynomial that is a “better fit”’ to arctan z

0.0025.%
0.0020+
0.0015+
e(x)
for interpolation
polynomial
0.0010+ €(x)
for best-fit
polynomial
0.0005 +
t X
1 2 9 Yo
-0.0005+
€(x)
—0.0010 for power-series
) polynomial
€(x)

Fra. 6-10. A comparison, by means of error curves, of three fifth-degree polynomial
approximations to arctan z for 0 < z < 1.

1. _Power~sériés approximation:
arctan* z = 1.000000x — 0.333333z3 -+ 0.200000x%
2. Interpolation approximation on the points —1, —0.6, —0.2, +0.2, 40.6, and 1:
arctan* z = 0.9991052 — 0.306897x% 4 0.093190z5 .
3. Best-fit approximation:) '
arctan* z = 0.995354x — 0.288679x3 + 0.079331x5

192 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CrAP. 6

for 0 <z < 1? We say that f7(x) is a better fit to f(z) than f;(z) for a
given range of z if within that range max |ei(z)| < max |ex(z)]. In gen-
eral the answer to the above question is “yes.” For arctan z the best-
fit polynomial for 0 < z < 1 is given by

arctan* x = 0.995354z — 0.2886792% 4+ 0.079331x5

Figure 6-10 also shows e(z) for this approximation. How one arrives
at such best-fit approximations is beyond the scope of this book.

€(x)

0.0005-

T

05 1.0 15 20 A%

~0.0005

F1g. 6-11. Error curve for f(z) = \% fx e t* di.
mJo

The advantage of using a best-fit approximation over a Taylor-series
approximation or interpolation is easily seen: fewer computations are
required to obtain the same accuracy than for a Taylor series; and no tables
need be memorized in the computer, as is necessary for interpolation.
Hence time and space are saved in the computation. Although we have
illustrated a best-fit polynomial that is good to within 40.0005, best-fit
polynomials can be formed that will give any desired accuracy. TFor
example, a best-fit polynomial for arctan z, for 0 < # < 1, which is good
to within +0.0000 01, is given by

arctan®*z = 0.9999 7726 x — 0.3326 2347 23 4 0.1935 4346 2
— 0.1164 3287 27 + 0.0526 5332 z° — 0.0117 2120 z*

Best-fit approximations need not be of the forms shown for arctan z
but should be of some relatively simple algebraic form. For example,

1 For such a discussion see Cecil Hastings, Jr., *“ Approximations for Digital Com-
puters,” Princeton University Press, Princeton, N.J., 1955.

SEec. 6-7] FUNDAMENTALS OF NUMERICAL ANALYSIS 193

for 0 < = < =, a best-fit approximation for

f(z) = 72—; fo " et at

1
(1 — awx + axx? + asz® + axt)t

where a; = 0.278393, a; = 0.230389, a; = 0.000972, and a; = 0.078108.

In this case e(z) is given in Fig. 6-11, plotted against V/z. This f*(z) is
easily coded for a computer.

is given by

@) = 1=

EXERCISES

(a, b). Write a code to evaluate each of the best-fit approximations to the arctan z
given in this section.

6-7. Integration

By Definition. In this section we shall see how a computer can inte-
grate. In his previous studies the student has been taught to integrate
by means of the manipulation of
abstract symbols. However, a lit- y
tle reflection will show that it is yef) 7”
really numbers being handled, these 7?7
numbers being represented for con- ¥ be-caaae__ 7 Z
venience by symbols. Of course a 77
computer cannot directly manipu- %} %
late symbols in the ordinary sense, % ;
but it can handle numbers. As we /|
shall see, the simplest method of
handling numbers to obtain an in-
tegral is to follow the very defini-
tion of the meaning of integration.

Recall now the definition of inte- h
gration (see Iig. 6-12). Theintegral —5175 " o 5"
of f(z) from 2 = 0 to z = p, written ’

P . Fia. 6-12. Numerical integration.
fo f(z) dz, is the area between the
curve y = f(z) and the z axis, bounded by z = 0 and z = p. It isfound
by considering the rectangles formed by partitioning the x axis between 0
and p into n intervals each of the same length h, where h = (p — 0)/n.
If there are n intervals each of length &, the area of the ¢th rectangle will
be hy; and the sum of the areas of all the rectangles will be

n

A=2hy.'

i=1

194 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CuaP. 6

In another partition that has more intervals the length of each will be
less. Hence, as the number of intervals becomes infinite, the length of
each approaches 0. The integral fop y dz is defined as the limit of the

sum of the areas of the rectangles as the number of intervals increases
and the length of each approaches zero,

[ydr = lim zhy,

n— w0
=0 =1

To integrate on a computer, we could just form z hyi. Then we might

i=1

take a smaller interval, say h/2, and form z (h/2)y:.. If

'Ez”’ Ehyl

is less than the allowable error desired for this integration, then the
integration is completed. If not, we could try intervals of h/4, and
so on. This process naturally assumes that we have a subroutine to
evaluate y; = f(z;) for each z; under consideration.

y=f(x)/'r" y

/ y=flx)
) P i /:
yl = =
The parabola
/ T
Yo

¥

Y
h
Z x x
%o X1 X2 20=0 x,=h x2=2h
F1c. 6-13. Trapezoidal approximation to Fic. 6-14. Parabolic approximation to
integration. integration.

By the Trapezoid Rule. Although the above method is a good way
for evaluating an integral, there are methods that may require less com-
putation. Suppose that we considered the trapezoids formed by adding
little triangles to the rectangles, as shown in Fig. 6-13. Here the area
of the trapezoid is hlyo + Y5(y1 — yo)] = (B/2)(yo + y1). For n trape-

Sec. 6-7] FUNDAMENTALS OF NUMERICAL ANALYSIS 195

zoids we have A = (h/2)(yo + 2y1 + 2y2 + * * * + ya). Certainly this
will be a better initial approximation to the area under the curve than was
A=hyo+y1+ - + y.). Hence, using this method, we shall not
need to go to as small intervals to obtain the desired accuracy as we did
using the previous, cruder method. The method given in this paragraph
is called the trapezoid rule.

By Polynomial Approximations. An even better initial approximation
can be obtained by considering three points at a time instead of two.
Suppose that we consider the area under the parabola y* = a 4 bxr + ca?
that passes through three points, as shown in Fig. 6-14. Then

2 .
Ao.z'—:/ (a—}-bx—{-cxz)dx:ax-}—l%z-{-@]‘z
0

3 Jo
—%h-a+ 2k b+ 84h3 ¢

To determine the coefficients a, b, and ¢, we note that

Ifz =0, a+ 0-b+ O0-¢c=yo
Ifx =h, a+ h-b+4+ ht-c=y
If x = 2h, a4+ 2h-b+ 4h?-c =y,

These, when solved for a, b, and ¢, yield

_ _—y2+4y1—3y0 =yz—2y1+yo
a=y b 2h ¢ 2h
whence Ao = g (Yo + 4y1 + y2)

Similarly 4.4 = (h/3)(y2 + 4ys + ya), and so forth, whence, if n is even,
we have

A=g(yo+4y1+2yz+4ya+2y4+4ys+ “ ot dyna + ya)

This is known as Simpson’s rule.}

Similarly we could try to make even better initial approximations to
the area under the curve. Once the method of approximation is decided
upon, more accurate results can be obtained only by increasing n, the
number of intervals—as can be seen from the original definition of the
integral.

We have been assuming until now that the function y(x) can be
evaluated at any point z by a subroutine. Suppose, on the other hand,
that the function f(x) were given by a table of points, spaced at equal
intervals z;. Then the above procedures would of course still hold.
But these methods will evaluate integrals only between points that are
given in the table, and not to other points. However, one might choose
simply to integrate the approximating polynomial (determined as in the

t See, for example, Milne, op. cit., pp. 116, 120.

196 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHaP. 6

previous sections) and then to evaluate this function between any two
points, whether they are or are not given in the table.

EXERCISES

The following table gives the values of arctan z for equally spaced points:

i arctan x;
zo =0 0.00000
z =0.2 0.19739
z2 = 0.4 0.38051
z; = 0.6 0.54042
zs =0.8 0.67474
zs = 1.0 0.78534

(a) Evaluate /;) 08 arctan z dz by the rectangular rule, first for partition at z,, z»,
and z4, and then for partition at z, x1, 72, 73, and z4; compare the results.

(b) Evaluate /;) 08 arctan z dz by the trapezoidal rule, first for partition at xo,izg,
and z4, and then for partition at zo, 1, s, T3, and z,; compare the results.

(c) Evaluate ‘/;) o8 arctan z dz by Simpson’s rule, first for partition at z,, x,, and 24,

and then for partition at zo, 21, 2, 3, and z4; compare the results.

(d) Integrate each of the three polynomial approximations for the arctan z given
in the previous section; evaluate each of these integrals from 0 to 0.8, and compare
the results of each with the results of Exercises a to c.

(e) Observing that (the indefinite integral)

[arctan z dz = z arctan z — 34 In (1 4 2?)

0.8 .
find /0 arctan z dxr; compare this result with those of Exercises a to d.

(f) Write a code for evaluating Simpson’s rule, assuming that f(z) is evaluated by a
subroutine.

6-8. Differentiation

By Definition. The derivative of y = f(z) with respect to z, taken at
T = &, is defined by

<dy> i f(xo + Ax) — f(z0)
- = lim
dz) oz,

Az—0 Az

and represents the slope of the tangent drawn to the curve y = f(z) at ..
Hence, if f(z) is given at & = zy and = = z;, an approximation of the
derivative might be

[z — f(zo)

Ty — %o

Unfortunately it is not always feasible with computers to take z, sue-
cessively closer to zo and evaluate the fraction each time, for z; — zo

Sec. 6-8] FUNDAMENTALS OF NUMERICAL ANALYSIS 197

becomes very small, as does f(x1) — f(zo), and often for a very small
x1 — 2o the loss of significant figures throws the calculation far off.

By Polynomial Approximation. Suppose that f(z) is given at o = 0,
z1 = h,and . = 2h. Analogous to the process described for integration,
we might determine as an approximation the derivative of the parabola

y=*&

=

7/

N|

//
y =f(x)/

F1a. 6-15. Approximating the derivative from an oscillating polynomial.

that goes through these three points. Let y = a -+ ba + ca?, where a, b,
and ¢ are as in Sec. 6-7. Hence

dy —y2 + 4y1 — 3yo Y2 — 2y1 + Yo
g~ 0T 2= 5h [
Then for the derivatives taken at z = =z, * = ,, and z = x,, respec-
tively, we have

dx

Y=Yy

) 1
(‘4) T (—3yo + 4y1 — y2)

dy 1
(ﬁ)) (—=yo + y2)

Y=

dy 1

Y=y

The formulas are equally valid for any three points (zo,y0), (z1,y1), and
(z2,y2) equally spaced on the z axis, since translating the curve so that
zo = 0 does not affect its slope.t If the function is given by means of a
table, then these rules can be used for evaluating derivatives at points
given in the table.

Of course there are always the approximating polynomials of f(z), which

t See, for example, ibid., p. 96,

198 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

can easily be differentiated, the resulting derivative being evaluated at
the requisite points.

However, numerical differentiation at best is often quite inaccurate.
Tor these methods must be based on approximating polynomials that
depend on values of the function at a few specific points. There is no
practical way for the computer to tell how the approximating polynomial
oscillates around the given function. Hence the slope of the polynomial
at a point may be entirely different from the slope of the function, even
though the curves lie very close, or even touch (see I'ig. 6-15). On the
other hand the value of the area under the curve is seldom so sensitive
to these oscillations.

EXERCISES

Use the table of values of arctan z as given for the Exercises of Sec. 6-7.

(a) Determine the derivative of arctan z at z = 0.6, using first Az between the two
points at z = 0.4 and x = 0.6, and then between the points at z = 0.6 and z = 0.8.

(b) Determine the derivative of arctan = at x = 0.6 by using the three points first
at o = 0.6, z; = 0.8, and z, = 1.0, then at zo = 0.4, 2, = 0.6, and x, = 0.8, and
finally at zo = 0.2, z; = 0.4, and 2, = 0.6.

(c) Differentiate each of the three approximating polynomials for arctan z given in
Sec. 6-6, and in each case evaluate the derivative at x = 0.6.

(d) Using the form

—d- arctan x = ;
dx T 1+t

evaluate the derivative of arctan x at x = 0.6, and compare this with the approxima-
tions of (@), (b), and (c).

6-9. Undetermined Coefficients

The Method. As was shown in the previous two sections, formulas
for the integral or derivative of a function can be obtained by integrating
or differentiating the polynomial approximation functions that pass
through some given points. However, in these sections formulas were
specifically derived only where three points were fitted. Formulas
based on more points can be derived by the method of undetermined
coefficients, T which follows. We shall develop the method by means of
illustrations.

Suppose that we wish to rederive the formula of Sec. 6-7, Simpson’s

rule, and find an approximation of fx :2 y dz based on the polynomial

y = f*(x) of the second degree passing through the three points (zo,70),
(x1,1), (x2,y2) with equally spaced abscissas. Since the value of an
integral does not change if it is translated along the z axis, it will prove
helpful to take advantage of symmetry, by letting the = coordinates of
these points be 2o = —h, 21 = 0, 23 = +h. Now let

Aoyo + Alyl + Azyz = fz:z Yy dx
1 See 7bid., p. 104,

Sec. 6-9] FUNDAMENTALS OF NUMERICAL ANALYSIS 199

where 4o, A;, and A, are the as yet undetermined coefficients. This
formula must be ezact (i.e., not an approximation) for y = f(z), when
f(z) is any polynomial of degree 2 or less, because there is a uniquely
determined polynomial of degree not more than n that passes through
n + 1 points. Hence this formula must be true for the functions
y=1,y == and y = 22 Substituting these three functions succes-
sively in the equation, we find

Ao + Al + Az = 2h
""hA0+0.41+ hA2=0
h2Ao+ 0+ Ay 4 h24, = 24h°

Solving for Ao, Ay, and 4., we find
AO = A2 = %h and Al = éﬁh

Hence / ydr = -g (Yo + 4y1 + y2)

as desired.

Suppose that we now desire to find a formula for (dy/dx).—., based on
four points with equally spaced.abscissas, (zo,y0), (Z1,¥1), (z2,¥2), and
(zs,y3). Let zo = —h, 21 = 0, 23 = h, x3 = 2h,

dz
and Byyo + By + Bays + Bays = (d—;>

where By, B, Bs, and Bj; are the undetermined coeflicients. This formula
must be exact when y is any polynomial of degree not more than 3, and
hence for the polynomialsy = 1,y = 2, y = 2% and y = % Substitut-
ing these successively into the equation, we find

B+ B:+ B:+ B
—hBo + 0 ¢ 31 + th + 2hB3
h®By + 0 - By + h2B, + 4h*B;
—h®Boy + 0 - By 4+ h®By 4 8hB; =

[T

0
1
0
0
These, when solved for By, Bi, Bs, and B;, give

1

h
dy

whence T = Lgh(—2yo — 3y1 + 6y2 — ¥s)

Bo= —Jsh Bi= —l}gh By = and B; = —1gh

EXERCISES

(a) Show that, if (x¢,%0), (1,¥1), (2,y2), and (xs,ys) are four points with equally
spaced abscissas, then

/xzydﬂv =2 (—yo + 13ys + 13y2 — y3)
z1 24

200 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

(Hint: Let @o = —34h, 21 = —h/2, z; = h/2, and z; = 34h; let the three functions
bey=1,y=z9=2x%andy = z3.)
(b) If five points with equally spaced abscissas are given, (zo,%o), (@1,¥1), (Z2,Y2),
(23,43), and (z4,y4), then find /;x' y dx.
1
(c) Derive the formulas given in Sec. 6-8 by the method of undetermined coeffi-
cients.

(d) If four points with equally spaced abscissas, (zo,¥0), (z1,¥1), (z2,¥2), and (zs,ys),
are given, find formulas for

i‘ly) d_y) _@) ﬂl)
dx Zemig dz ze=z1 dz Zeax2 dz T=23

(e) Find the formula for / “ y dz in terms of the two points (zo,Y0) and (z1,71), and
xo

the derivatives at these points,

0 = @ and L= d_y
Yo = 0z) oms, N = dz) e,

(HinT: Let 2o = 0, 21 = h; let
z ’ ’
/;oly dz = Agyo + A1 + Boyy + Bay;

where Ao, Ai, By, and B, are undetermined coefficients. Now, when the functions
y=1 9y == y=zx% and y = z® are substituted successively into the equation,
there result four simultaneous equations that determine Ay, A1, By, and B,.)

6-10. Differential Equations

Meaning of Solution. A differential equation describes how a system
goes from a known point to the next infinitesimally close point. For
example, the well-known equation dv/dt = F/m describes the relationship
of the velocity » of the mass m to the time ¢, when a force F is applied.
Given a point (fo,00), the equation says that at an infinitesimally short
time later, say at {¢;, the velocity will be v; = (F/m)(tx — to) + vo.
Such equations arise because in nature relationships between physical
quantities often reduce to linear functions at the infinitesimal level.

Consider, for example, a differential equation of the first order in the
form

dy

7 = J@y)
The solution is to be determined as a function of x only, that is, y = g(z).
Of course ¥ = g(z) can be represented as a curve, and the differential

equation tells us how to draw this curve. One point on the curve, say
(xo,Y0), must be known or given. Then the differential equation says

that
d
(:Zq—i)z‘zg = f(xojyo)

Sec. 6-10] FUNDAMENTALS OF NUMERICAL ANALYSIS 201

and hence we know the slope at (zo,y0). A linear approximation to
the next point might be obtained (see I'ig. 6-16) by continuing along
the tangent line, i.e., by choosing an z; and determining ¥, from

dy
= (d—‘é)m (@1 = @) + 9o

Using (x1,71), we find that (dy/dx).~., = f(x1,y1) and then, choosing an
zs, determine ¥y, from

d
Yo = <d—Z>z=z (2 — 1) + 11

and in this manner (zs,y3), . . . are determined and the function y = g(z)
y Y
] i Sttt — Bl —— m— — = = — e
o ——— G | i 5=
1 -~
yl ——————————— /
I A 0 /
/ o -— 7
%
*o X1 X2 X3 x X0 %1 X2 x3

Fie. 6-16. Linear approximation from Fig. 6-17. Polynomial approximation

point to point along a curve. from point to point along a curve.

is approximated. Of course this is just an approximation, even if we
make %1 — To, T2 — %1, T3 — T3, . . . small, for the differential equation
taken literally implies that x, — @, 2 — 21, . . . should be infinites-
imal. What we are essentially saying by this method is that a straight
line through (2o,y0) is a good approximation to g(z) near (zo,yo) and
therefore the next point (z1,y:) ought to lie very close to it.

By Polynomial Approximation. Consider again a first-order differen-
tial equation dy/dx = f(z,y). A better approximation to y = g(x) might
be obtained if we started with two points, (zo,y0) and (z1,y1). Then we
could use a parabola as the approximating curve of g(x) near (zo,y0) and
(z1,91), to determine (zs,ys) (see Fig. 6-17). Take, for example, the
second formula for the parabolic approximation of Sec. 6-8,

dy 1
(gi>z=x1 =55 (=¥ + 32)

. dy
From this Y2 = 2h <?£Jc>z=.z, + %o

202 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

Hence if we take z; = %o + h, 2 = xo + 2h, etc., and if we know (z,y0)
and (z1,y1), then we can determine (dy/dx).—., = f(21,51), and from this
y2. Our equation from Seec. 6-8 can be written in general as

dy
Yn1 = 2h (ﬁ) + Yot

Thence we find y; for 3 = zo 4+ 3h, using (dy/dx).~. = f(xs,y2), and so
forth. This process is clear, provided that initially we know (x1,y,)
as well as (zo,y0). Given (2o,y0), we can find (z1,y;) by forming a Taylor-
series expansion around (zo,y0). Since we already know dy/dx = f(z,y),
then

dy ddy d?
daﬂ = f(z,Y) d_x;,v = Ex_g f(x)y) ete.

for the coefficients, and hence (z1,y1) is easily found,

d T — Zo)? [d?
w=vot @ = () + S5

(1 — w0)® (d

where the first few terms are usually sufficient.

Similarly higher-degree approximation polynomials can be used to
estimate successive points. TFor example, a cubic might be used that
is based on

dy dy
(20,50) (@1,1) (Zi;) e and (%):g:zl

Such formulas can be derived by means of the method of undetermined
coefficients.
Ezxample. As an example, consider the differential equation

dy
T = =149

Suppose that, at o = 0, yo = 0. Choose x; = 0.1, 2, = 0.2, 2; = 0.3,
etec. Then, by our first, linear method,

d
Y1 = (c-i%) (@1 — o) + yo = (1 + yo?)(x1 — z0) + Yo

=(1+0)(01-0)+0=0.1

it
Yo = ('(%) @:—z) +yr= 1+ yD@2— 71) + 41
= 1.01 X 0.1 + 0.1 = 0.201

d
Vs = <Zi%>,,, (@s — @2) + y2 = (1 + y22) (x5 — 22) + y2 = 0.3050

and so forth.

Sec. 6-11] FUNDAMENTALS OF NUMERICAL ANALYSIS 203

Next consider the quadratic method. We must first find y; for
z1 = 0.1. Taking the first three terms of the Taylor expansion,

(T1 — o)
21

2
Y1 = Yo+ (@1 — zo)(1 + yo?) + 20(1 + y02)

— 3
+ S22 000yt + it + 0]
= 0+ 0.1 4+ 0 + 0.0003
= 0.1003
Then
d
y2 = 0.2 ((TZ) + % =02X 1+ y? + yo = 0.2 X 1.0101 + 0

= 0.2020

0.2 X 1.0408
+ 0.1003 = 0.3085

and so forth. The exact solution to dy/dxz = 1+ y? is y = tan z.
With greater accuracy, we have yo = tan 0 = 0, y;, = tan 0.1 = 0.1021,
ye = tan 0.2 = 0.2035, and y; = tan 0.3 = 0.312.

Since in the numerical solution of a differential equation each point
depends on previous points, errors are cumulative. Hence the only way
to get a better solution is to take the interval & smaller for a particular
method of approximation.

d
y3=o.2<£>_ +y=02X (L+9:) + 10

EXERCISES

(a) Solve dy/dz =1 4 y*for b = 0.01 and 2 = 0.001 by both methods, and com-
pare with a table of tan z.

(b) Solve dy/dz = +/1 — y? by both methods, with intervals 4 = 0.1 and 0.01,
where zo = 0, yo = 0. Compare the solutions with a table of sin z.

6-11. Accuracy and Error

Sources of Error. We can distinguish among three contributions to
the error of a numerical computation:

1. First is the error due to the approximate nature of the numerical
analysis of the computations. As we have seen in previous sections,
frequently the value of a function or the solution to an equation can
theoretically be obtained only by performing an infinite sequence of
iterations. Of course the infinite process cannot be completed, and so
we must stop with some iteration in the sequence, accepting this as an
adequate approximation to the desired results. The resulting error
is called a truncated error and often can be made as small as we please.
The problem here then is to estimate the accuracy of the result after an itera-
tton to determine whether or not it is as precise as required, t.e., whether or not
more tterations should be made.

204 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

2. Second is the error due to the approximate nature of experimental
data used in the calculation; this is called the experimental error. Here
the problem s so to analyze the experimental data as to obtain the best possible
estimate of the measurement involved, i.e., to determine the accuracy of the
experimentally obtained numbers. The accuracy of such numbers
depends on aspects other than mathematical considerations, and therefore
from a computational point of view these errors are treated as initial
constraints on the problem.

3. Third is the error due to the use of approximate numbers in perform-
ing the numerical calculations; such errors are called round-off errors.
Any number that we write is necessarily in finite decimal (or binary)
form, which is only an approximation to its infinite decimal conception.t
For example, = might be approximated by 3.1415927. Numbers can be
approximated to any degree of accuracy: e.g., a better approximation to
w18 3.14159 26535 89793. Experimental numbers may also be considered
to be finite approximations of some (unknown) infinite decimal. Here
of course we cannot get any better approximation than those determined
by methods associated with the above-discussed second source of error.
Thus the problem here is to perform the four arithmetic operations in a
manner that retains the maximum desired accuracy under the circumstances.

Consideration of truncated errors forms a large subject in itself. Tor
the various iterative formulas given in the previous sections, formulas
can be obtained for the errors, or for bounds on the errors, after any
particular iteration. For example, the remainder formula for a Taylor
series is familiar to the student as a measure of the error of approximation
of a finite number of terms of a power series. Textbooks on numerical
analysis consider these formulas in detail; this subject is, however,
beyond the scope of the present brief treatment. Consideration of
experimental errors is also beyond the scope of this treatment. (See
See. 6-12, Additional Topics b and ¢.)

This section then considers the last of these three problems, the round-
off errors. The importance of this subject to numerical calculators
cannot be overestimated. During a computation it is not an overstate-
ment to say that consideration of errors that may arise from arithmetic
operations should be uppermost in the mind of the user of the computer.
The discussions of this section merely form the basis for such error con-
siderations in a particular computation. Very often it is necessary for
the user of the computer to determine experimentally the behavior
of his numbers during the computations, by having the computer perform

series of trial computations. Those cxperimental computations can bhe
used to determine the correct operational procedures.

Significant Figures and Round Numbers. The accuracy of a number is
measured in terms of the number of significant figures it contains. Any

one of the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 is a significant figure; 0 is some-

" 1 Here we consider, for example, the number 0.5000 - - - to be an infinite decimal.

Sec. 6-11] FUNDAMENTALS OF NUMERICAL ANALYSIS 205

times but not always a significant figure. To determine when 0 is a
significant figure, we distinguish three cases:

1. The zero lies to the left of all other nonzero digits of the number,
e.g., as in 0.00123. Here the zero is used simply to fix the decimal point,
and therefore it is not considered to be significant. None of the three
zeros in 0.00123 is significant.

2. The zero or zeros lie between nonzero digits, e.g., asin 3,002. Here
the zeros are considered to be significant.

3. The zero lies to the right of all other nonzero digits, e.g., 123,000.
In this case it cannot be determined from the number itself whether or not
the zero is significant; it must be determined from the context in which
it was written. Often, if the zeros in 123,000 are not significant, we
would write 123 X 103, while on the other hand if the first zero were
significant we would write 1,230 X 102 to indicate this.

For example, the number of significant figures in each of the following
numbers is four: 1,234, 9,072, 5,006, 0.008379, 0.01024, 6,080 X 103,
7,000 X 10% The leftmost significant figure in a number is called its
most significant figure; in our examples the most significant figures are,
respectively, 1,9, 5,8,1,6,and 7. The least significant figure is the right-
most significant figure of a number; in our examples the least significant
figures are, respectively, 4, 2, 6, 9, 4, 0, and 0.

A number composed of n significant figures is said to be correct to n
stgnaficant figures if its value is correct to within 14 unit in the least sig-
nificant position. For example, if 9,072 is correct to four significant
figures, then it is understood that the number lies between 9,072.5 and
9,071.5 (that is, 9,072 + 0.5); if 0.01024 is correct to four significant
figures, then it lies between 0.010245 and 0.010235; if 6,080 X 103 is
correct to four significant figures, it lies between 6,080,500 and 6,079,500.

Another term used to describe a number is the number of decimal places
of the number, being the number of digits to the right of the decimal
point. Thus 0.008379 has six decimal places, and 0.37 X 10-5 has seven
decimal places.

To be used during a computation, numbers that are infinite decimals
must be converted to finite-decimal approximations. Similarly numbers
that contain more significant figures than are desirable for a particular
computation must be approximated by numbers of less significant figures.
The process of reducing the number of significant figures of a number is
called rounding. Numbers that are rounded so that they contain =
significant figures are formed so that they will be correct to n significant
Jigures; they are then called round numbers. Rounding can be accom-
plished by means of the following rule: To round a number so that it is
correct to n significant figures, retain the » leftmost significant figures, and
discard the rest; if the discarded number is greater than 14 unit in the
least retained significant figure, then add 1 to this last retained figure;
if the discarded number is less than 14 unit in the least retained significant
figure, leave the latter unchanged. The case where the discarded number

206 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CuaP. 6

is exactly 14 unit in the least retained significant figure is often handled
thus: If the least significant figure is even, leave it unchanged; if odd,
then add 1 to it. By means of this latter rule the errors due to rounding
will tend to cancel, since even and odd digits occur on the average with
equal frequency. Also, by leaving the rounded number in this case as
an even number we increase our chances that the result of a division
might be exact. As examples, the following numbers have been rounded
to four significant figures:

Number Rounded number
3.141|5926 3.142
0.1428|57142 0.1429
0.005329{601 0.005330

- 421.2|4899 421.2
58.76|5000 58.76
93.29]5000 93.30

Relative Accuracy and Absolute Accuracy. The error in a number, as
compared with its true value, is stated in various ways. The absolute
error of an approximate number N* from its true value N is defined by

& = |[N* — N|
The relative error e, is defined by
__|N* = N| €

© = FE TN

The percentage error ¢, is defined by ¢, X 100 per cent. The relative- and
percentage-error concepts have the advantage that they are independent
of the unit of measurement, whereas the absolute error is expressed in
terms of the unit used. For example, 3.14 is an approximate value
of the infinite decimal 7; the absolute error of this approximation is
|3.14 — 7| < 0.002 (= — 3.14 = 0.00159 - - -); the relative error is
[3.14 — #(/3.14 < 0.002/3.14 < 0.0006; the percentage error ¢, < 0.06
per cent. i

The accuracy of an approximate number can be considered from two
points of view. The first, and that most often considered in using digital
computers, is the concept of relative accuracy. In this case the accuracy
is measured by the relative error and not the absolute error. As will be
shown two paragraphs below, the number of significant figures of an
approximate number is a measure of the relative error and hence of the
relative accuracy of the number. Tt is for this reason that significant
figures are so important. To see the importance of relative error as an
index of the accuracy of a number, consider the measurement of the
0.002-in. diameter of a human hair to within 1/100,000 in., as compared
with the measurement of the 240,000-mile distance from the earth to the
moon, to within 2 miles. The relative error of the measurement of the
hair is 0.00001/0.002 = 1/200, while the relative error of the measure-
ment of the distance to the moon is 2/240,000 = 1/120,000, while the

Sec. 6-11] FUNDAMENTALS OF NUMERICAL ANALYSIS 207

absolute errors are 0.00001 and 126,720 in., respectively. Clearly the
measurement of the distance to the moon is 600 times more accurate
than that of the diameter of the human hair, even though the absolute
error of the former is over 12 X 10° times that of the latter.

On the other hand the absolute accuracy of a measurement is often
important from another point of view. Ior example, in the tolerance of
machined parts it is the absolute error that counts as the measure of
accuracy; hence the allowed absolute error is frequently stated explicitly
by writing the desired sizes as finite decimals followed by + and the
tolerance which is the maximum allowable absolute error. In this case
it is the number of decimal places that plays the important role.

The relation between the number of significant figures and the relative
error inherent in an approximate number is given by the following
theorem, in which ¢, is the relative error, K is the most significant figure
of the number, and = is a positive integer:

If a given number is correct to n significant figures, then

1
& S 3K X 10

When the most significant figure is not explicitly known, we can say that
the relative error ¢ < 1/(2 X 107~Y). For any radix ¢ the 10"! in
these formulas is replaced by ¢»~1. If ¢ = 2 (binary), then the inequali-
ties are read e, < 1/27,

To see why this theorem is true, note that N* > K X 107—! (for exam-
ple, 521 2 500 = 5 X 102), where p locates the decimal point with respect
to the most significant figure K.t Now since N* represents an approxi-
mate number, correct to » significant figures, i.e., with an error of 14 unit
in the last (nth) significant figure, then ¢, < 14 X 107~ and

< ¥ X107 1 < 1
“«STTNF T ONF X 10 = 2K X 10+

If K is not known, then to ensure that the inequality will hold for every
K we choose the smallest, namely, 1

This theorem is of important practical value in using a digital computer
having floating-point arithmetic operations. It enables the evaluation
of the number of significant figures that must be carried to ensure that
the relative error be kept below a given amount; and conversely it
enables the evaluation of the relative error for a specified number of
significant figures.

Significant Figures in Arithmetic Operations. Since numerical compu-
tation as performed by a digital computer reduces to addition, sub-
traction, multiplication, and division, the problem of retaining significance
during these operations becomes fundamental. We shall here give rules
of thumb commonly used by mathematicians regarding the control of

f For example, 3,000 would be written 8 X 10 =3 X 10*°!, whence p = 4. On
the other hand, 0.003 would be written 3 X 10~3 = 3 X 1072, whence p = — 2.. "

208 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

significance during arithmetic operations. In any particular situation
the rules serve merely as a guide; the details of the process usually
depend on the particular numbers and errors involved and hence must
often be carefully examined. In many situations it is just as bad to
overestimate an error resulting from a computation as it s to underestimate
one.

Consider addition first. The rule of thumb is that in adding two
(positive) numbers there is usually no loss of significant figures; in fact
the result sometimes has one more significant figure than either of the
operands.

For example, suppose that 52,761.2 and 71,436.7 were rounded to
52,761 and 71,437 and added:

Rounded Unrounded
52,761 52,761.2
+ 71,437 + 71,436.7
124,108 124,197.9

The rounded numbers are both correct to five significant figures, and the
result is correct to six, as is seen on comparison with the addition of the
unrounded numbers. Here there was no loss of significance, because
the rounding errors canceled out, and the added significant figure resulted
from the carry. However, consider 12,761.5 and 11,435.5 rounded to
12,762 and 11,436 and added:

Rounded Unrounded
12,762 12,761.5
+11,436 +11,435.5
24,198 24,197.0

Here the result is correct only to four significant figures sinee, as can be
seen from the unrounded addition, the rightmost 7 is off by 1 unit. This
is of course an exception to our rule, chosen so that the errors in the least
significant figures of the operands were maximum and were added
together. It is clear that, if one always includes one more significant
figure than is necessary, he will be more sure of having at least the -
required significance in his result.

Subtraction, however, is another story. The rule of thumb is simply
a warning that complete loss of significance is possible and that each
case must be examined on its own merits. For example, suppose that
we are forming the difference of 52,763.5 and 52,752.5 as rounded to
52,764 and 52,762:

Rounded Unrounded
52,764 52,763.5
~52,762 —-52,762.5
00,002) 00,001.0

Although the subtrahend and the minuend were correct to five significant

Sec. 6-11] FUNDAMENTALS OF NUMERICAL ANALYSIS 209

figures, the difference has no significant figures; i.e., the 2 is off by a full
unit. More generally, there is not a complete loss of significance, but
very frequently severe loss of significance occurs. There are two reme-
dies that can be tried. The first is to use many more significant figures
in the subtrahend and minuend to begin with and hope that enough
significance will result for the remainder. The other is to try to trans-
form the expression to something else and thereby avoid the subtraction
altogether. TFor example, if one had to evaluate 1 — cos = for small z,
it might be wiser to write 1 — cos z = 2 sin? (x/2) and evaluate the
latter expression. - ‘

For multiplication the rule of thumb is that up to two significant
figures can be lost, though not necessarily. This same rule applies to
division. Consider, for example, the product of 811.2 and 112.5, each
rounded to three significant figures:

Rounded Unrounded
811 811.2
112 112.5

1622 40560
811 16224
811 8112
90832 8112
91260.00

The third figure of the product is off by 4 units and therefore is not
significant; the second figure from the left is, however, only off by 0.4 unit
and therefore is significant. The product is thus correct to two sig-
nificant figures, while the multiplicand and multiplier were each correct
to three.

As an example of the loss of a significant figure during division, con-
sider 1,761.5 and 1,763.4, rounded to 1,762 and 1,763:

Rounded Unrounded
1.0005 1.001
1,762[1,763.0000 17,615[17,634.000
1,762 17,615.000
1.0000 19.000

Here the rounded dividend and divisor are correct to four significant
figures, but the quotient is correct only to three.

One further rule of thumb might be helpful. In digital computers,
where it is in general no more difficult to handle numbers with many
significant figures, keep as many significant figures as possible during the
computations, and beware of loss of significance through subtraction.

Pitfalls. A person using an electronic computer always worries about
whether the results he gets are or are not accurate. IFor usually only the
final results of a computation are read out from the computer’s memory,
and intermediate results are neither retained nor observed. The results

210 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

of computer programs are often checked by comparing a few values with
some previously hand-computed values. However, the fact that these
few isolated results check is no guarantee that all the results computed
by the program will be equally correct. Rarely is every difficulty fully
anticipated. Automatic programming routines aggravate this situation,
increasing the possibility of overlooking pitfalls. Hence, when writing
his program the programmer must plan against the loss of too many
significant figures in the computation, as well as choose the computational
method that can best result in the necessary accuracy. During the
running of the program on the computer the programmer must be acutely
aware of such pitfalls as overflows, loss of significance, difficulties arising
in intermediate forms, and other, unanticipated, singular situations.

For example, consider a pitfall that occurs in evaluating V/z. If
z = 0.0000 3259, where z is good to seven decimal places and uncertain
in the last (i.e., the 9), then to eight decimal places we get

4/0.0000 3258 = 0.0057 0789
4/0.0000 3259 = 0.0057 0877
4/0.0000 3260 = 0.0057 0964

Hence 4/z is good only to five places, is uncertain in the sixth place, and
is erroneous in the last two places. However, the computer will carry
these last two places, and the error may be magnified in subsequent
calculations.

Another example occurs in computing, say, sin 314,159.3, For if we
reduce the angle to one whose magnitude is less than 7/2, we find

sin 314,159.3 = sin (314,159.3 — 314,159.27) = sin 0.03 = 0.03

If the last figure of the original angle were 2 instead of 3, we would find
sin 314,159.2 = —0.07. If 4, we would find sin 314,159.4 = 4-0.13.
Hence, even though the original angle is known to within seven sig-
nificant figures with an uncertainty of 1 in the last figure, the result is not
good to within one decimal place.

The following quotationt summarizes the general attitude that should
be maintained in performing numerical computations on a digital
computer:

Despite the availability of high speed computers, a successful computation
depends on a judicious combination of mathematical analysis and numerical
experimentation. In the actual programming of his problem, the numerical
analyst ghould not use suhrontines and automatie eodes blindly, but shonld
ascertain that the logical decisions made in them will be consistent with the
required round-off error and tolerance limits. The possibility of pitfalls will
always be present in spite of all efforts to avoid them. It is therefore important
that the numerical analyst interpret his answers according to their true meaning.
Although the tools of the numerical analysis are all based on rigorous mathemati-
cal theorems the application of these theorems requires discretion. In carrying

1 Irene A. Stegun and Milton Abramowitz, Pitfalls in Computation, J. Soc. Ind.
Appl. Maih., vol. 4, no. 4, December, 1956.

SEc. 6-12] FUNDAMENTALS OF NUMERICAL ANALYSIS 211

out a numerical computation program it is often necessary to use experimental
techniques to establish the correct operational procedures.

EXERCISES

(a) Tell how many significant figures are in each of the following numbers, and
round each to be correct to five significant figures:

2.7182818 1.11001110 (binary)
7.3890568 .00110010 X 2-3 (binary)
0.3183099 101011.00 (binary)
0.3678794 0011001100 X 23 (binary)
484,813,681,110 X 10~¢ 1010101010 (binary)
154.1500 X 10° 11.001100 (binary)

(b) Calculate the maximum relative error of each of the above numbers, rounded
to three significant figures (or bits in the case of binary numbers).

(c) If all the numbers in a computation were kept to five significant figures, what is
a bound on the relative error of each number? If these numbers were binary num-
bers, what is the bound on the relative error?

(d) If it is desired that all numbers involved in a computation have a relative error
of less than 349, how many significant figures should each number contain?

(e) In acomputation invelving only binary numbers, if it is desired that all numbers
should have a relative error of less than 14¢¢, how many significant bits should each
number contain?

6-12. Additional Topics

a. Finite Differences for Polynomials. Consider a polynomial whose values have
been computed at equal intervals of z:11 — zi = h, thatis, y(zo), y(xo + k), y(zo + 2h),
y(xo + 3h), The differences of successive values of y, namely, y[zo + (2 + 1)A]
— y(zo + h), are called the first differences of the polynomial. The differences of
successive first differences are called second differences, and so forth. An interesting
result (see the references below) is that the nth differences of a polynomial of the nth
degree are constant when the values of the independent variable are taken at equal intervals.
Thus the accuracy of computations based on a polynomial approximation can be
checked. For example, consider y = 222 — = + 1, as tabulated in Table 6-2. The

TABLE 6-2. DIFFERENCES FOR ¥ = 222 — z + 1

First differences | Second differences
z Y
Aly Azy
0 1
1
1 2 4
. 5
2 7 4
9
3 16 4
13
4 29 4
17
5 46

212 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

constant second differences are 4. - Suppose that an error was made in computation
and y(3) was evaluated as 10; how could this be detected? The study of finite differ-
ences has many interesting and important aspects (see the references below, and also
C. Jordan, ‘Calculus of Finite Differences,”” Chelsea Publishing Company, New York,
1947).

b. General Formula for Measurement Errors. Suppose that N = f(z1,22, . . . ,Zn)

" denotes any function of n independent variables z, zs, . . . , & that are subject to
the experimental errors Az,, Azs, . . . , Az,. Then aformula that gives the resulting
error in the function N is given by

AN -—ﬂ'VAIh-I- Azz"l' +%§A$3
3

(See, for example, the references below.) Suppose that the error of the independent
variables is not actually known, but it is known that the probability distribution of the
errors is normal (Gaussian). Then we can define the probable error of a single meas-
urement as a value such that half the errors of a series of measurements will be greater,

the other half less. If R, ry, r5, . . ., r, are the probable errors, respectively, of
N, 21, ©2, » . . , Tn, then
ALY e - (MY e . (
k= (axl) n +(ax2) et o

For further discussions see Scarborough (see the references below), chaps. XIV-XV,
and E. Frank, “Electrical Measurement Analysis,” chaps. 5-7, McGraw-Hill Book
Company, Inc., New York, 1959.

¢. Error Formulas for Differentiation and Integration. Milne (‘‘Numerical Calcu-
lus,” pp. 108-114; see the references below) gives a method for developing the error
formula for any differentiation-integration method that may be developed by the
method of undetermined coefficients. If Q(f) is the integration or differentiation to
be performed on the function f and P(f) is the formula developed by the method of
undetermined coefficients for its approximation, then the error R(f) = Q(f) — P(f).
E(f) is said to be of degree n when R(z™) = 0 for m < n, but R(z"*1) = 0. Also let
(z — s)* be defined by (zx —s)» = (z —s)*if s >sand x —s)* =0if z <s. In
terms of this definition let

G6) = o RlGE =9

in which R.[(z — s)"] means R[(x — s)7] regarded as a function of the variable z.
Then it can be shown that

() = [7, 1066 ds

where f»*D ig the (n + 1)st derivative of f (see Milne for an example). Using this
technique, derive error formulas for the integration and differentiation formulas of
Secs. 6-7 to 6-9 and their exercises.

d. Runge-Kutta Method. There are formulas for the integration of differential
equations other than those which ccan be derived by the method of undetermined
coefficients. One well-known example is the so-called “Runge-Kutta method.”
This has the advantage that the error is of the order of A% and no special methods are
needed to start the solution. Consider ¥ = f(z,y); then the increment for advancing

Sec. 6-12] FUNDAMENTALS OF NUMERICAL ANALYSIS 213
the dependent variable is given by

Ay = Yg(ky + 2ky + 2ks + ko)
ky = Rhf(xo,y0)

ks = hf(zo + Y5k, yo + }5k1)
ks = hf(zo + 14k, yo + 3sk2)
ks = hf(xo + h, yo + ks)

Then z; = 20 + k, and y1 = yo + Ay, and the process is continued. (For further
details see the references below.)

e. Best Fit. Cecil Hastings’s book ‘‘ Approximations for Digital Computers” (see
the references below) is an elementary discussion of the method of best-fit approxima-
tions written in a quite unique and entertaining style. It also includes an interesting
source of best-fit approximations.

f. Monte Carlo Method and References. Computations that involve successive
generation of random numbers are often called Monte Carlo calculations. (For
definition of random numbers see W. Feller, ‘ Probability Theory and Its Applications,”
John Wiley & Sons, Inc., New York, 1950.) Monte Carlo computations usually are
associated with computer simulations of real processes, such as military combat,
growth of cancer cells, business transactions, mortality studies, etc., where some phase
of the simulation involves a probability distribution. For example, if a missile were
80 per cent effective against a certain type of target, then in simulating each missile a
random number between 0 and 9 would be chosen; only if it lay between 0 and 7 would
a kill be recorded. Similarly the size of a cancer growth is very sensitive to the initial
rate of mitosis of the generating cells, which is randomly determined. Monte Carlo

1
processes have also been used in evaluating integrals. To evaluate 4/;) f(z) dz on the

interval 0 < z < 1, we choose N arguments z at random and evaluate f(z) for each;
it can be shown that, as N becomes larger, the average of all the f(z) so determined

1
converges to ﬂ) f(z) dz.

The generation of random numbers with a computer is simple. Given a number R;,
find a new random number R;,, as the minor product of pR:, where p is the largest power
of 5 that can fit into a computer word. Start with By = p. For p = 57 the sequence
has a period of about 10!2,

References

Curtiss, J. H.: “Monte Carlo’” Methods for the Iteration of Linear Operators, J.
Math. and Phys., vol. 32, pp. 209-232, 1953.

Davis, P. J., and P. Rabinowitz: Some Monte Carlo Experiments in Computing
Multiple Integrals, Mathematical Tables and Other Aids to Computations, vol. 10,
pp. 1-8, 206, 1954.
Kahn, H.: Modification of the Monte Carlo Method, Proc. Seminar Sci. Computations,
pp. 20-27, International Business Machines Corporation, New York, 1949.
Metropolis, N., and 8. Ulan: The Monte Carlo Method, J. Am. Statist. Assoc., vol. 44,
pp. 335-341, 206, 290, 1949.

Meyer, H. A. (ed.): “Symposium on Monte Carlo Methods, University of Florida.
1954,” John Wiley & Sons, Inc., New York, 1956.

Todd, J., et al.: Monte Carlo Method, NBS Appl. Math. Ser., vol. 12, 1951.

g. Texts on Numerical Analysis

Alt, Franz L.: “Electronic Digital Computers,” Academic Press, Inc., New York,
1958.

214 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 6

Engineering Research Associates, Inc., Staff of: ‘“High-speed Computing Devices,”
MecGraw-Hill Book Company, Inc., New York, 1950.

Grabbe, E. M., S. Ramo, and D. E. Wooldridge: “Handbook of Automation, Com-
putation, and Control,” vol. 1, John Wiley & Sons, Inc., New York, 1958.

Hastings, Cecil, Jr.: ““ Approximations for Digital Computers,” Princeton University
Press, Princeton, N.J., 1955.

Hildebrand, F. B.: “Introduction to Numerical Analysis,” McGraw-Hill Book Com-
pany, Inc., New York, 1956.

Householder, A. 8.: “Principles of Numerical Analysis,” McGraw-Hill Book Com-
pany, Inc., New York, 1953.

Lanczos, C.: “Applied Analysis,” Prentice-Hall, Inc., Englewood Cliffs, N.J., 1956.

Levy, C., and B. A, Baggott: “Numerical Solutions of Differential Equations,”
Dover Publications, New York, 1950.

Milne, W. E.: “Numerical Calculus,” Princeton University Press, Princeton, N.J.,
1949.

: “Numerical Solution of Differential Equations,” John Wiley & Sons, Inec.,
New York, 1953.

Nielsen, Kaj L.: “Methods in Numerical Analysis,”” The Macmillan Company, New
York, 1956.

Scarborough, J. B.: “Numerical Mathematical Analysis,”” 2d ed., The Johns Hopkins
Press, Baltimore, 1950.

CHAPTER 7

SEARCHING, SORTING, ORDERING, AND CODIFYING

7-1. Introduction

Ingredients. A great proportion of computer and control applica-
tions involve searching, sorting, ordering, and codifying. The general-
purpose computer considered in Part 1 is not by itself best suited for
these nonarithmetic operations. To understand what special systems-
design features are needed for such operations, we must first study the
operations themselves.

The ingredients of searching are 7tems and characteristics and assocta-
ttons of characteristics with the items. Anitem is a package of information;
the characteristics associated with this item are attributes that are
related to the item. Problems of searching all involve locating an item,
or items, associated with a given set of characteristics. For example,
each article reference included in a bibliography is an item; the subjects
relating to the contents of the article are the characteristics. A bill
of sale is an item; the name and address of the buyer may be considered
as the characteristics. A research grant is an item; the name of the
principal investigator, the amount of the grant, the subject under
investigation, the name of the school or organization receiving the grant,
ete., are all characteristics. The inventories of particular replacement
parts are the items; the serial numbers, costs, acquisition record, etc., are
the characteristics, and so forth.

Searching, Sorting, Ordering, and Codifying. Given a set of character-
istics, the process of obtaining every item associated with all the given
characteristics is called searching. In a bibliographical list of research
reports one might search for all articles concerning the application of
nuclear theory. The words application, nuclear, and theory are the char-
acteristics, and the search should result in a collection of references, each
concerned with the application of nuclear theory. As a specific illustra-
tion, consider the item list of article references and the characieristic list
of subjects of a sample bibliography given in Fig. 7-1. We have given
each item a boldface number and each characteristic an italicized num-
ber. The item-characteristic assoctations are given in Table 7-1, where a
unit indicates that the characteristic of the row of the unit is associated
with the item of its column. Consider the rows associated with the given
characteristics. Form a new row that has a unit corresponding only to
those (column) positions where all the given characteristic rows also have
units. (This is called logically multiplying these rows; ef. Sec. 4-5.)

215

216

Article

No.

1.1 Abrahams, A. P.
Autoradiographic
determination of
radioactivity in rocks.
Nucleonics 15:85-86
Mar 1957

1.2 Aravindakshan, C. A
simple arrangement
for obtaining optical
transforms of crystal
structures. J. Sci.
Instr. 34:250 Jn 1957

1.3 Gasstrom, R. V. A
very fast pulse-height
analyzer with inde-
pendent uptake, sort-
ing, and storage of in-
formation. Nuclear
Instruments 1:75-79
Mar 1957

1.4 NBS Circular 850.
Bibliography on igni-
tion and spark ignition
systems. Nov 11956

Word No.

adaptability 3.2

analysis 4.1

application 5.1

concept. AR 2

counting 2.1

design 7.1

differentiation 3.1

England 5.2

FUNCTIONAL APPROACH TO SYSTEMS DESIGN

[CHAr. 7

Parr I. THE ArTicLE LisT (BIBLIOGRAPHY PROPER)
Article

Article

No.
2.1

2.2

2.3

2.4

Nicholls, J. Alpha-
scintillation monitor
for hands and cloth-
ing. Nucleonics
15:80, 81, 83, 84 Mar
1957

Pope, M. I. An
automatically record-
ing vacuum balance.
J. Sci. Instr. 34:229~
232 Jn 1957

Powell, D. A. An
apparatus giving
thermogravimetric
and differential ther-
mal curves simul-
taneously from one
sample. J. Sct.
Instr. 34:225-227 Jn
1957

Seidle, F. G. P., et al.
Modification of the
Brookhaven fast,
chopper. Nuclear
Instruments 1:92-93
Mar 1957

No.

3.1

3.2

3.3

3.4

Senior, D. A. The
Kerr cell, a high
speed electro-shutter,
Pt. II. Insir. Pract.
11:471-476 May
1957

Smith, B. O., and
Grimshaw, A. G. A
pneumatic level indi-
cator. Instr. Pract.
11:469-470 May
1957

Stockendal, R., and
Bergkvist, K. E.
Evaporation device
for beta-spectrometer
samples. Nuclear
Instruments 1:53-54
Jan 1957

Tove, Per-Arne.
Electronic time ana-
lyzer applied to the
measurement of the
half-lives of meta-
stable nuclear states.
Nuclear Instruments
1:95-100 Mar 1957

Parr II. Tue Worp List (CopE Book AND THESAURUS)

evaluation

gas
heat

hysteresis
implementation
instrumentation

mass

Word No.

O N Y
2 S0 o iw S 20 M

Word No.
Netherlands 4.2
nuclear 4.8
plan 6.2
theory A
thermal 2.8
use 5.1
versatility 3.2

Fig. 7-1. Tllustrative bibliography example.

Sec. 7-1] SEARCHING, SORTING, ORDERING, AND CODIFYING 217

TaABLE 7-1. AssocIATION OF ITEMs wiTH CHARACTERISTICS

Item
Characteristic

11 12 1.3 14 2.1 2.2 2.3 24 3.1 3.2 3.3 34
1.1 0 0 0 O 0 0 0 O 0 0 0 1
1.2 0 0 0 O 0 1 0 0 0o 0 0 O
2.1 1 0 0 o 0 0 o0 1 0O 0 0 o0
2.2 0 0 0 1 0 1 0 0 0O 0 o0 o
2.8 0 0 O 1 0 0 1 0 o 0 o0 0
3.1 0O 0 0 o0 0 1 1 0 0 0 0 1
3.2 1 0 0 0 0 0 1 0 0O 0 o0 1
4.1 0 0 1 o0 0 1 0 0 0 0 1 1
4.2 0 0 1 O 0 0 0 1 0 0 1 1
4.8 o 0 0 O 1 0 0 1 0 o0 1 1
44 0 0 1 0 0 0 0 1 0 0 1 1
5.1 0 0 0 O 0 1 1 1 0 1 0 1
5.2 0 1 0 0 0 1 1 0 1 1 0 o0
5.8 0 0 O 1 0 0 1 1 1 0 1 0
6.1 1 1 1 0 0 1 0 o0 1 0 1 0
6.2 0o 1 0 O 1 0 0 1 1 1 1 0
7.1 0 1 0 1 1 1 1 0 1 1 0 o0

The units of the resulting row correspond to the columns of the desired
items. Tor example, given application (5.1), nuclear (4.3), theory (4.4),
we logically multiply rows,

5.1 0000 0111 0101
4.8 0000 1001 0011
by 0010 0001 0011

obtaining 0000 0001 0001

with units in columns 3.4 and 2.4 corresponding to items by Tove and
Seidle. However, it is rarely feasible to display a matrix such as in
Table 7-1; we have used it simply as an illustration to aid the visualiza-
tion of the searching methods to be described.

It is difficult to discuss searching without using the terms sorting,
ordering, and codifying. It is often helpful for temporary use to sub-
stitute a symbolic abbreviation to represent an item or characteristic.
For example, the use of boldface and italicized numbers in our illustrative
bibliography made the table of associations easier to display. A code
s o list of such abbreviations; the making of a code is codifying.t Fre-

1 We use the term codifying here in preference to coding to distinguish the process
being discussed in this chapter from the programming of a computer.

218 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHaP. 7

quently the code is given in the form of a “dictionary,” or “thesaurus.”
In our illustrative bibliography the code for the item (article) list is
presented in dictionary form, and the code numbers are listed in
numerical order. The characteristic (word) list is in thesaurus form,
where the word list is in alphabetical order; here synonyms are given
the same code number. Codes are used in searching as follows: First the
thesaurus of characteristics is compared with the list of desired character-
istics, and the corresponding code numbers are found; next the search
is made to find the code numbers of the resulting items; finally the actual
items are determined from the dictionary. In computer searching the
use of codes in this manner is almost always indicated. Further dis-
cussion of codes appears in Sec. 7-7.

By ordering a list is meant the process of arranging the list according
to some linear ordering system, such as alphabetically or numerically,
so that, if element @ of the list is greater than element P, then element @
lies further from the beginning of the list than P. By sorting a list is
meant the process of separating the list into partitions, i.e., mutually
exclusive classes. In sorting items the equivalence relation by means of
which the classes, or partitions, are defined is often given in terms of
associated characteristics. For example, research grants may be sorted
according to the university that received the grant, etc. Searching may
be defined as the process of sorting a list of items into two categories,
those items which are associated at least with all of certain given char-
acteristics, and those which are not. Frequently the classes, or par-
titions, of a sort are ordered. For example, collections of research
grants sorted by university can be ordered alphabetically by the uni-
versity’s names.

Searching and sorting are both closely associated with ordering. For
instance, to sort research grants by university, all that need be done is
to order the grants alphabetically by university, and then the result
will present all grants from the same university juxtaposed in the list;
hence the grants will automatically be sorted as the partitions of the sort
are ordered.

Summarizing, to sort a list of elements, some equivalence relation
must be defined that tells when two elements are in the same equivalence
class or not. To order a list linearly, an ordering relation must be
defined. Sorting can often be accomplished by means of ordering, when
the ordering relation is so chosen that the identities of some type of char-
acteristic represent the desired equivalence relation. As we shall see
in the next section, searching is often carried out by sorting ordered lists.

7-2. Methods of Searching

The First Two Methods. For concreteness we assume in what follows
that the items and characteristics are listed on magnetic tape. Based on
this assumption, we shall describe three methods for searching with a com-
puter, using our illustrative bibliography as an example. Each of the
searching techniques is, as will be shown, intimately associated with the

SEC. 7-2] SEARCHING, SORTING, ORDERING, AND CODIFYING 219

listing arrangement of items and characteristics on the magnetic tape;
this is because the associations are indicated by means of the item-character-
istic arrangement on the tape.

First, consider the case where all characteristics associated with each
item of the item list appear under that item (see Figs. 7-2a and 7-3a).
Given a set of desired characteristics, the computer reads an item and
its associated characteristics from the magnetic tape into the high-speed
memory and compares to determine whether or not the given character-
istics ‘are included in the characteristics associated with the item; if

Item L. Char.
Char, Item
Char, ‘ Item Table
Char. Item
Item
Item
Char. Char,
Char. Item '
Char. Item Table
Char. Item
Item Char.
Char. Item
Char, Item
Item Char, Table
Char, Item
Char, Item
Char. Item
Item Char.
Char, Item Table
Char, Item

(@) (®) (©

F1g. 7-2. Methods of listing on magnetic tape.

0, the item would be suitably recorded. This process is accomplished
for each item and its associated characteristics on the tape, one item
at a time successively. In this way, after a single pass through the
tape, every item associated with all the given characteristics is retrieved.
The advantage of this system is that the items need not be ordered on the
tape, since every item is searched. The disadvantage is that every sec-
tion of the magnetic tape must be searched in detail, consuming much
time in the computer.

Second, - consider the case where the characteristic list is recorded on
the tape and under each characteristic is a list of items associated with
that characteristic (see Figs. 7-2b and 7-3b). The characteristics must
appear in some order on the tape—e.g., alphabetically or numerically.

220 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 7

Given a set of characteristics, the computer would first order them and
then would go through the magnetic tape looking for the first, or smallest,
characteristic; having found this, it would read the characteristic and its
associated items into the high-speed memory and record all items associ-
ated with it. Continuing the search on the tape, the computer would
look for the second, or next smallest, characteristic. Having found that,
the computer would see which items associated with the second character-
istic were also associated with the first and record them. Then the
computer would look for the third characteristic and record only those
items associated with it which were also associated with both the first

1.2 3.2 44 .

5.2, 61, 62,71 1.1,2.8,3.4 24 (51,6362

13 | 41 341061

41,42, 44, 6.1 1.3,2.2,3.3,3.4 3.3 16361
13 | 6.1

14 4.2

2.2,2.3,5.3,7.1 1.3, 2.4, 3.3, 3.4 >l
2.3 [52,6.3 7.1

21 4.3 2.2 | 5.261,7.1

43,6.2,7.1 2.1,24,33 34 32 | 52 62 7.1

22 44 24 | 53,62

12,2.2, 3.4, 4.1, 1.3,2.4,3.3, 3.4 3.4

5.1,5.2,6.1,7.1 ‘

2.3 5.1

2.3, 3.1, 3.2, 5., 2.2,2.3,2.4,3.2, 3.4

5.2,5.3,7.1

(a) ® ()

Fra. 7-3. Sample segments in the lists for each of three methods.

two characteristics, and so on. The computer need not examine the
whole tape in detail, but only those sections associated with each of the
given characteristics; however, both the list of characteristics and the set
of given characteristics must be preordered.

Note that, in terms of our association matrix of Table 7-1, the first
and second methods described above correspond; respectively, ta record-
ing the successive columns of the matrix and the successive rows of the
matrix on the magnetic tape.

The Tabledex Method. Finally consider a third method for recording
the items and characteristics on the magnetic tape. The method involves
the recording of successive fables on the magnetic tape and is therefore
called the Tabledex method. There is one table for each characteristic.
A table is formed as follows: All items associated with this characteristic

SEc. 7-2] SEARCHING, SORTING, ORDERING, AND CODIFYING 221

are listed in the table; adjacent to each item are sublisted all those char-
acteristics greater in order than the characteristic of the table which are
associated with that item (see Figs. 7-2¢ and 7-3¢). For example, in
Fig. 7-3c, consider the Tabledex table headed 4.4. Observe from Table
7-1 that the characteristic 4.4 is associated with items 1.3, 2.4, 3.3, and
3.4. Now observe that item 2.4 is associated with 2.1, 4.2, 4.8, 4.4, 6.1,
5.3, and 6.2, but only 5.1, 6.3, and 6.2 appear in the sublist, for only
these are greater than 4.4, the number of the table (see Fig. 7-3c). Simi-
larly the sublists for 3.4, 3.3, and 1.3 were formed for this table. (Note
that these sublists are ordered in the table on their first characteristics.)

The tables are listed in the order of their associated characteristic,
and the items and the sublist of characteristics for each item are also
listed in the proper order. Given a set of characteristics, the computer
first puts them in the proper order, then searches the tape for the table
associated with the lowest ordered characteristic, reading this into the
high-speed memory, and finally searches the sublists, recording those
items associated with a sublist containing all the other given character-
istics. TFor example, if the three given characteristics are 7.1, 6.1, and
5.2, these would first be written in order as 6.1, 5.2, and 7.1; then the
table for 6.1 would be searched; and finally, if a sublist were found to
contain both 5.2 and 7.1, its item would be recorded. As can be seen in
Fig. 7-3c, the items whose sublists contained 5.2 and 7.1 are 2.3, 2.2, and
3.2; hence these are all items each of which is associated with all the given
characteristics.

Using the Tabledex method, only the single section of the tape that
contains the appropriate table need be searched in detail.

Population vs. Substantive Ordering of the Lists. The reader may have
wondered how we arrived at the code number for the characteristics
and items given in Fig. 7-1. The choice of numbering is related to the
concepts of population-based ordering and substantive-based ordering.
Substantive ordering refers to an ordering arrangement based on some
attribute of the individual terms in the list. Thus an alphabetical order-
ing of items by author is a substantive-based ordering, an ordering of
characteristics by research-field classification is substantive-based, ete.
In Fig. 7-1 the dtem-list code numbers were assigned substantively to the
articles, in alphabetical order; in addition the number of an item locates
its column and line, e.g., item 2.3 is in column 2, line 3.

Population-based ordering is quite different: it refers to an ordering
based on the quantities of items or characteristics in the associations. For
example, population-based code numbers for each characteristic might be
assigned as the number of items associated with it. To distinguish
among characteristics that have the same number of associated items, a
decimal number can be- appended The characteristics of our example
are numbered in this-way. Thus in Fig. 7-1 it is seen that analysis,
Netherlands, nuclear, and theory each have four associated items; hence
their - populatlon-based numbers ‘are 4.1, 4.2, 4.3, and 4.4, respectlvely
Ordering the characteristics by populatlon-based code numbers can save

222 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [Cuap. 7

searching time. In the second method given above, it is most efficient.
to begin searching in the section of the smallest given characteristic
when population-based numbers are used. (Why?) Similarly, in the
Tabledex method when population-based numbers are used, tables that
include many items have short sublists, and tables that have long sub-
lists include few items. (Why?)

Programming a Computer for Searching. The writing of codes for the
techniques discussed in this section is in general reasonably straight-
forward. However, consideration of some factors concerning the use of
magnetic tapes might prove helpful.

Set tallies X and J
Set j=1
k=1

(Jj+1 —j ’ Record NV;

I Exit I

F1G6. 7-4. Flow chart to record common numbers on two ordered lists.

Recall from Chap. 4 that magnetic-tape read-in, read-out, and tape-
moving instructions usually specify the number of blocks to be read in,
read out, or moved. Hence only multiples of blocks can be handled.
Therefore, in recording a list on a section of magnetic tape the list is
usually padded at the end with words of all zeros so that the entire list
will make up an integral number of blocks. The first. word of the first
block of the list is often used as a labeling word: it contains information
about the contents of the list, and, most important for our discussion, it
tells how many blocks long the list is. The magnetic tape will then

consist of a sequence of such lists, each labeled with the number of blocks
in its length as the first word of the list.

There are two advantages to labeling the lists: (1) The computer will
at first observe only one label word of a list. If this list is not the one

Stc. 7-3] SEARCHING, SORTING, ORDERING, AND CODIFYING 223

desired, the computer can then move the magnetic tape by the number
of blocks indicated in the label, past this list to the next list; the label
of the next list will be observed, and so forth. In this way the computer
may jump over parts of the magnetic tape not of interest during the par-
ticular search. (2) When a list is of interest, then each word of the list
must be examined; this is usually accomplished by some kind of iteration
or loop. The tally of this loop can be set according to the length of the
list to be examined, as given in the label word. FIor example, in the
second method for searching given above, each characteristic is followed
by a list of its associated items. Hence the first, or label, word of each
item list will denote the characteristic and its length, say in the « and
B8 address positions for a two-address system. Then the computer will
look for the first of the given (ordered) characteristics by jumping over
lists until the appropriate list label is obtained.

When the appropriate section of tape is found, the problem basically
reduces to the comparison of two ordered lists for common members.
Suppose that we have two ordered lists of numbers, with K numbers in the
first list, indexed by k (k = 1,2, . . . , K), and J numbers in the second
list, indexed by j (j =1, 2, . .., J). A flow diagram of a code to
record every number that appears in both lists is shown in Fig. 7-4.
If the number in the j list is greater than the number being compared with
it in the k list, then the code moves along the & list until a common num-
ber is obtained, or until a number in the % list is reached that is greater
than the one in the j list. Then the code moves along the j list in a simi-
lar way, until the k¥ number is equaled or exceeded. This process depends
basically on the fact that the j and k lists are ordered.

EXERCISES

(a) By means of the information given in Table 7-1 complete the lists and tables
partially shown in Fig. 7-3a and b.

(b) Using the information given in Fig. 7-1 and Table 7-1, compile Tabledex tables
using as the characteristics the words themselves, in alphabetical order.

(c) Using each of the three lists completed in (a) and (b), search for all items
associated with each of the following sets of given characteristics: evaluation, concept,
design; and differentiation, application, England, gas.

(d) Assign population-based numbers to the items of Fig. 7-1, and compile the
lists of the first searching method from the information of Table 7-1.

(e) Draw a flow chart for each of the searching methods given in this section.

7-3. Manual Searching Methods

For each of the three searching methods given above there is an
analogous manual searching method. Besides being of considerable
importance in themselves, these manual methods can serve as a con-
crete visualization of the more abstract operations that take place in a
computer.

Marginal-punch Cards. The first method given above corresponds to
the use of marginal-punch cards, where each card represents an item and a

224 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 7

marginal position on a card represents a characteristic. Different cards
represent different items, but the same respective marginal position repre-
sents the same characteristic on each card. The association of character-
istics with an item is made on its card by punching a notch in the mar-
Punched notch gingl position of those charactel'"istics
representing an which correspond to the particular
association \ item of the card. One type of card
commonly used hasholes correspond-
ing to each marginal position. To
sort a deck of the cards according to a
particular characteristic, a needle is
placed through the holes in the cards
corresponding to this characteristic;
then, when the needle is lifted, those
cards which have been punched in
this position will fall, the other cards
will be lifted by the needle, and the
deck is thereby separated into two
parts (see Fig. 7-5). A search is per-
formed by repeating this process suc-
cessively on the dropped cards (which
have the desired characteristic) until
those cards punched in at least all the
desired characteristic positions are
obtained. Note that the initial deck of cards need not be kept in any
particular order whatsoever.
Peck-a-boo Cards. The second method given above corresponds to
the use of the so-called ‘“Peek-a-boo cards.” Here each card cor-
responds to a characteristic; the surface of a card is laid off in an

F1a. 7-5. Marginal-punch cards.

i

=

Fic. 7-6. Peek-a-boo cards.

X, Y coordinate system with each particular pair of coordinates repre-
senting an item. Different cards represent different characteristics,
but the same respective X, Y coordinates represent the same item on
each card. The association of characteristics with items is made by
punching a hole at the X, Y coordinate positions that represent each
item associated with the characteristic of the card. A search is made by

SEc. 7-3] SEARCHING, SORTING, ORDERING, AND CODIFYING 225

first selecting from a deck of cards those cards which correspond to the
given desired characteristics. The selected cards are placed together to
form a pack; if an item is associated with all the given characteristics,
then there will be a hole passing completely through the pack at the
coordinate point corresponding to that item (see Iig. 7-6). Note that
the initial deck of cards must be kept in some definite order so that the
cards can be easily selected for a particular search, and note that the
pack of selected cards must be carefully aligned.

Programming a Computer to Generate a Manual Tabledex Collection.
The third method given above corresponds to the manual use of the
Tabledex tables themselves. Here the tables are printed in conventional
bound-book form. The use of a collection of tables is directly analogous
to their use on magnetic tapes. I'or example, suppose that we have a
collection of tables corresponding to our bibliography illustrated above
and that we desire to find all articles on the application of nuclear theory.
From the alphabetical word list the code numbers are found: application
6.1, nuclear 4.8, theory 4.4. These are placed in numerical order: 4.3,
44, and 6.1, One then turns in the collection of tables to Table 4.3,

which would appear as shown: 3
TABLE 4.8
v 2.4 4.4 6.1 6.8 6.2
v 3.4 VAV |
3.3 4.4 6.3 6.1
2.1 6.2 7.1

The first two rows of Table 4.3 contain both 4.4 and 6.1 and are checked.
Hence articles 2.4 and 3.4 by Seidle and by Tove are associated with the
given words. The advantage of the manual use of Tabledex lies in its
being in bound-book form, without the necessity for the manipulation
of cards.

A computer can be programmed to automatically compile and print
a Tabledex collection for manual use. The method used to compile the
Tabledex collection is of particular interest as an application of the
techniques of this chapter. Tirst the characteristics of each article-
characteristic association are ordered in themselves. For example, we
would have the article-characteristic association: item 2.4, character-
istics 2.1, 4.2, 4.8, 4.4, 6.1, 6.8, and 6.2 (see Table 7-1). Second, from
each such article-characteristic association, a list of all possible rows of
the tables can be generated. For example, from the associations just
illustrated the following seven rows can be generated:

2.4 4.4 6.1 5.8 6.2
5.3 6.2
6

6.1
6.3 6.2
6.2

BB NN

P N NN N S
0301%-«&4-\%_2%
W O MWW~
S o S
20 Co ~ WD
VW~ B

226 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 7

Third, the list of all such rows generated from every article-characteristic
association is then sorted by ordering on the first (leftmost) characteristic
code number. After the ordering, all rows with the same first character-
istic appear adjacent. For example, the following rows appear adjacent:

4.8 4.4 6.1 6.8 6.2

4
4
3 6.1
1

2.
3.
3.
2.

=
w L
® B
= oo
~ QY

When the number 4.3 has been removed, the adjacent rows are just Table
4.3. Thus from this ordered list of rows the tables can be printed out
by the computer.

7-4. Searching with Relaxed Conditions

The Problem of Relaxed Conditions. It frequently bhappens that no
item is associated with all the characteristics given. In such a case it is
usually advisable to search with relaxed conditions.

For example, suppose that there are given 10 equally important char-
acteristics and that no item is associated with all of them. Then the
natural question to ask is: Are there any items associated with all but one
of the characteristics, i.e., with any 9 of the characteristics? If not, then
are there any items associated with all except 2 of the characteristics,
i.e., with any 8 of the 10, and so forth? We shall describe a procedure for
accomplishing this important kind of search which does not tnvolve trying
all possible combinations of 9 of the 10 characteristics, then all possible
combinations of 8 of the 10, etc. 'This procedure can be extended to include
a second type of relaxed-condition problem which may arise as follows:
Suppose that 3 of the 10 given characteristics are most important and
that it is desired to find all items associated with these 3 characteristics
and also any 6, or any 5, etc., of the remaining 7 characteristics. The
procedure can be easily generalized to include almost all relaxed-condition
situations that occur in searching.

The idea of a simple sort can be used to compare searching techniques.
A simple sort is a separation of a collection of items into two parts by
means of a single characteristic C, that is, into a part whose items are
each associated with C and a part whose items are not. A simple sort is
analogous to the manual separation of a deck of marginal-punch cards
into two parts by means of a single needle.

To see the advantage of the searching technique to be described over
the straightforward method of trying all possible combinations of leaving
out one of the characteristics at a time, then two at a time, then three at a
time, . . . , then K = n — r at a time, note that the total number of
simple sorts required for the straightforward method is

& nl

Wy —k—1)!

However, the number of simple sorts required by the method to be pre-

SEc. 7-4] SEARCHING, SORTING, ORDERING, AND CODIFYING 227
sented is simply

(K 4+ 1)(n — K)
2

Searching for Items Associated with Any r Out of n Characteristics.
The method of procedure is illustrated by Fig. 7-7. Suppose that there
are four given characteristics, represented by Ci, Cs, C; and C,.. We
would first sort the collection of items for those associated with C;. Next
we would sort those which have C; for those which also have C;. Then
those having both C; and C: would be sorted for those also having Cj,
and so forth, until we find all items that have C, Cs, C; and Cs. In
Fig. 7-7 we indicate the collection of items that are associated with at
least C1 by Cy, those associated with at least C; and C: by Ci - C., ete.
The collection of items that do not have C is indicated by €y, ete. Then
C1:C;y - C; would represent the collection of items that at least have
Ciand Czand not C;. Thus the results of each successive sort of the first
pass through the collection of items are indicated by the first row of
Tig. 7-7. Here, in the first sort, the collection of items is divided into
two parts, the part C; and the part ;. Then the collection with Ci
is sorted for Cq, resulting in a part Cy - C: and a part Ci - Cy, and so forth.
After the first pass there will result five collections Cy, Cy - Cy, C1+ C2+ Cj,
Ci1-C: C3- Cyand Cy- Co - C3 - Cy; all but the last of these will be used
if another pass is necessary.

If the collection C; - Cy- C; - C4 is empty, i.e., if no items are asso-
ciated with all of C;- C:- C; - C4, we proceed to the second pass (the
second row of Tig. 7-7). This time we start by first sorting C, for Cs,
obtaining €, - Cs and C, - C.. We put the collections C, - Cs and C, - C,
together; these are sorted for C3, and two collections are obtamed one
with C1- Cz- Csand Cy - Cy - Cs, the 0therw1th Ci-Cy-Czand Cy - Cy - Cs.
This latter collection is put with Cy - - s and these sorted for C4 to
obtain two collections, one with C; - Cz C3-Cy C1-Ce-Cs-Cs, and
C:- Cz Cs- C4, the other with Cy-Cy-C3-Csy C1-Cs-Cs-Cs and
Cy+Cy+C3- Cs This latter collection and collection Cy:Cs-Cs- Cs
form the collection of all items having all except one of the given charac-
teristics. If this collection is empty, then we proceed to a third pass, as
shown in the third row of Tig. 7-7, to find the collection of items with all
except two of the characteristics, and so forth.

Searching with Permanent Conditions. Suppose that there were seven
characteristics given, Cy, Co, . . . , C7, and that no item of the collection
under consideration were associated with all these seven characteristics.
The next step would be to relax the conditions, but suppose that we must
have items associated with Cs, Cs, and C7, and with as many of the others
as possible. The characteristic combination Cs-Cs- C7 is called a
permanent condition. The searching technique would be first to sort the
collection to obtain all items associated with Cs - Cs - C7. Then we would
sort these on €y, Cs, C3, and C4, as described above, to obtain all items
each associated with C; - C; - Cy and three, or two, or one, of Cy, Cs, Cs, C4,

228 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [Cuar. 7

As another illustration of a permanent condition, suppose that we
desired to obtain all items associated with one or more of Cs, Cs, and Cy,
and with as many of C;, Cs, C3, and C4 as possible. In such a case we
would first sort for C5, sort the remaining items for Cs, and then sort those
still remaining for C7. These three sets would be put together to form
the collection of items having one or more of Cs, Cs, and C7. We would
next sort this collection on Cy, Cp, C3, and C4, as described above, to
obtain all items each of which is associated with Cs, Cs, and/or Cy, and
three, or two, or one, of €, Cs, C3, and Cs. In either of these examples,
if no items were to have the permanent conditions, no further sorting
could be accomplished.

Searching with Preferential Conditions. Suppose that there were nine
characteristics given, Cy, Cy, . . . , Cy, and that no item of the collection
were associated with all nine given characteristics. However, suppose
that a preference were associated with the characteristics so that, say,
Ci, Cs, and C; have the most preference, C4, Cs, and C¢ have the next
preference, and C7, Cs, and Cy have the least preference. The search-
ing procedure would first try for all of Cy, Cs, and C;, or at least two
of Cy, Cs, and (', or at least one, ete., as described above. Having chosen
the items associated with the greatest number of the most preferred
characteristics, these would be considered a permanent condition and
would be sorted for all of Cs, Cs, and Cs, or at least two of Cs, Cs, and Co,
or at least one, etc. From the items having the most preferred
characteristics we would now have chosen the items with the most
characteristics of the next preference. Considering these as representing
a permanent condition, we would try next for the items with the most
characteristics of the least preference, that is, Cy, Cs, and C,.

Note that the process of this section would be the natural one to follow in
the problems of the previous paragraph when no items satisfy the desired
permanent condition. The initial permanent condition would then
be stated in terms of preferential conditions, and the process of this seéction
would be used to obtain an approximation to the initial permanent
condition.

Relaxing Sets of Conditions. Suppose that it is desired to search for all
items associated with at least one of Cy, Cs, and C, and with at least one
of C4, C5, and C¢, and with at least one of Cv, Cs, and Cy, and with at
least one of Cio, C11, C12. Suppose that no such item exists; then the
problem is to find all items that have at least one characteristic from at
least three of the four sets of characteristics, or from at least two of the
four sets, and so forth. Here we wish to relax sets of conditions. In
order to facilitate the discussion, let us represent condition Ci, C», and/or
C; by C4, condition C4, Cs, and/or Cs by C?, condition Cy, Cs, and/or C,
by C3, and condition Cjo, Ci1, and/or Cyz by C% Then the searching
technique becomes as described and illustrated above, with superscripts
replacing subscripts, and with the single sorts replaced by the combina-
tions of sorts necessary to determine the C%

(144

Sort

» number 1 . 2 3 4

Collection Desired | Collection | .o+ | Collection

Collection

Desired Desired
Pass aglijée collection put collection put collection put collection
number aside aside aside
Collection Initial collection:
for sorting sort for C;

Results — ’ _ _ Collection of items
of sorting G C Ci-Ca C1:C: | C1°CxCs | C10CxC; [C1r Cr C3-GCyi- Cor C3+Cy with all

characteristics
Collection

for sorting

2 Resuits - — Collection of items
of sorting CC C-C; C'CxC3 | Cy° C.: Cs on:lzrl;gc:::(;fitc
Collection

for sorting

3 Ci ‘ -G|Cy+ G+ Csr Collectlon of items
Results [, _ - 3
of iorting Cy1-CrC3 +Cz ///// with all except’

two characteristics

Collection

for sorting G,

Collection of items
with all except
three -characteristics

Results [~ = = =|~ = =
ofzorting C1°C2: C5 GC1+ C2 G5+ G4

Fia. 7-7. Analysis of method of searching for all items each of which is associated with all, all except one, all except two, ete., of the
given characteristics Ci, £, C3, and C..

230 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHap. 7

EXERCISES

(a) Punch a hole in each corner of sixteen 3 X 5 cards. Then write the names of
the authors (see Fig. 7-1) on these cards, one name on each card. Mark off eight
equally spaced positions on one 5-in. edge, nine positions on the other 5-in. edge of
each card. Assign one word for each position, the same on each of the 16 cards.
Next notch the edge of each card corresponding to the positions of words characteristic
of this author’s article (see Table 7-1). The cards can now be searched by placing a
knitting needle under the deck of cards at the position of the desired word (see Fig.
7-8); the notched cards will drop, and the unnotched ones can be separated by putting
another knitting needle through a corner hole of the raised cards. By appropriately
separating collections of these cards as in Fig. 7-7, find all items associated with at
least six, at least five, at least four, and at least three of the following seven given
characteristics: differentiation, application, England, evaluation, design, gas, and concept.

Fig. 7-8. Use of knitting needles to search marginal-punch cards.

(b) Using the cards made in (a), find all items that are associated with design and
England and as many of the following as possible: differentiation, application, evalua-
tion, gas, and concept.

(¢) Using the cards made in (@), find all items that are associated with either
evaluation or design or both and as many of the following as possible: differentiation,
application, England, gas, and concept.

(d) How can the process of searching for all except one, except two, etc., be accom-
plished by means of the Tabledex tables? (HinT: A succession of tables must be
used: one table for the first pass, two tables for the second pass, three tables for the
third pass, etc.)

(e) Draw a flow chart for a search for items associated with all the given character-
istics except one, except two, etc. First assume the data to be given as in Fig. 7-2b.
Then assume the data to be given in terms of the Tabledex tables, as in Fig. 7-2c.

T7-b. Sorting and Ordering

As discussed in See. 7-1, sorting can always be accomplished by order-
ing; in this section we shall turn our attention to ordering. Sorting and

SEc. 7-5] SEARCHING, SORTING, ORDERING, AND CODIFYING 231

ordering are essentially the same process, except that ordering carries
the process all the way, while sorting carries the process only part of the
way. In our discussion of ordering we shall refer to the ordering of a
given list of numbers in order to be concrete, but it is clear that the
methods apply for any linear ordering rule.

Minimum~ or Mazimum-in-pass. The first of the five methods of
ordering to be presented is called the minimum-in-pass method. The
description will be given in terms of the use of magnetic tape, but the
principles involved are perfectly general. In this method, on the first
pass over the tape the minimum number is recorded as follows: The first
number is recorded in a temporary cell and is compared successively with
the other numbers until a smaller number appears. The first number
replaces this smaller number on the tape as this number is placed in the
temporary cell. The successive comparisons are continued until another
smaller number appears; again the two numbers are interchanged, and so
forth. At the end of the first pass it is clear that the smallest number
appears in the temporary cell. This is placed as the first number on the
tape, and the second pass is started with the second number on the tape,
proceeding as before. At the end of this pass the second smallest number
appears in the temporary cell and is placed as the second number on the
tape, and so forth. The ¢th pass starts with the 7th item, determines
the ¢th smallest number, and puts it in the 7th position on the tape. For
N numbers this method requires N — 1 passes through the tape; how-
ever, if the tape can be positioned, starting each pass with the next
number in turn effectively reduces the number of passes by half, to
approximately N/2.

It is obvious that the maximum instead of minimum number could have
been recorded on each pass (maximum-in-pass) and placed at the end
of the remaining list; this method would again require about N/2 passes.
If both the minimum and a maximum are recorded in each pass, the latter
being placed on the tape at the end of the pass, the former at the beginning
of the next pass, the number of passes is again halved, to approximately
N/4. Depending on the size of the high-speed memory, the least two,
or least three, or least m numbers, and the greatest two, or greatest three,
or greatest n numbers could be found on each pass (and ordered within the
high-speed memory), further reducing the number of passes required.

If more than one tape is available, the minimum-in-pass method can
be accomplished in parallel. The original list to be ordered is divided
into sublists (say n: in number). A new list is made from the minima
which are removed from each of the n; sublists. This new list is divided
into n. sublists, and a third list is made from the minima which are
removed from each of the n, sublists. As many new lists as desired can be
made, and the first number of the ordered list will be the minimum of
the last such list. As a number is removed from a list, it is replaced by
the minimum from the sublist from which it was originally taken (until
the sublist is exhausted). Table 7-2 illustrates the process applied to an
original list of 12 numbers, divided into n; = 4 sublists. The minima

232 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 7

from these are divided into n, = 2 sublists; their minima are then divided
into n; = 1 sublist, whose minimum goes into the final ordered list,
labeled 74.

Transposition. The second method orders a list by iransposition.
The process is to transpose adjacent numbers on the list if the order of
their characteristics is inverted. It starts by comparing the first two
numbers and continues on overlapping pairs through the list. Pass after
pass is made until no transpositions are required on an entire pass; then
the list is in order. For example, consider Table 7-3 (where the caret
represents comparison, the ¢ transposition). Here three passes were
necessary to order the numbers. The fourth pass will result in no

TABLE 7-2. MINIMUM-IN-PAsS ORDERING UsIiNG MULTIPLE SUBLISTS

ny Nz N3 Ny N1 Nz N3 Nyg N1 N2 N3 Ny Ny N2 N3 Ny N1 N2 N3 Ny
12] 12} 3 12} 3 12} P 12} 6]
313 6 6 [6) 1
6 g 3 61, | w0y9) |2
2 10} 9 10} 9 1| 10} 9 3 3
10} 9 1 2 3 } 8 4
9¢ 2 9 3} 8 3 } 8 4 5) 5
2 4} 1 4 4 7} 5}
1 8 7} 5 7} 5 11
1 4 11 11
4: 1 7
8} 11} 5
X
B
7} ;
11
Initial First Second Third Fourth
minima replacement replacement replacement replacement
selected of minima of minima of minima | of minima, ete.

further transpositions, indicating that the list is in order. A variation on
this method is to order successive overlapping sets of three or more
(say r) numbers; a single tape may still be used in this process, and the
number of passes required is approximately divided by r — 1. Table
7-4 illustrates the procedure for overlapping sets of three numbers.
Ordering by Radiz Coefficients. The third method is probably the most
obvious of all the methods when a clearly defined radix occurs; in the
present discussion we shall consider decimal numbers (i.e., radix ten).
The method consists in sorting the numbers by the most significant figure,
putting. the sorts in order. The numbers within each sort are ordered
on the second most significant figure; then within each of these subsorts the

SEc. 7-5] SEARCHING, SORTING, ORDERING, AND CODIFYING 233

numbers are ordered on the third most significant figure; and so forth.
For an example, see Table 7-5. This method has the disadvantage that
after the first pass the computer must work on subregions of the tape,
which can present difficulties. TFor sorting punch cards, for example,
this means that individual sorts must be made on successively smaller
and smaller pieces of the original deck; such handling becomes increas-
ingly inconvenient.

TABLE 7-3. ORDERING BY TRANSPOSITIONT
5> 4 4 4 4
¢
4 5 1 1 1
1st

3 3
pass >
3 3 3 5\ 2

2d

pass >
2 2 2 4

>
3d 2 2 3 3 3
pass >

4 4 4 4 4

1 Successive overlapping pairs are scanned.

The fourth method, which is essentially the inverse of the third, elimi-
nates this difficulty. Here the first sort is made on the least significant
figure. Then the entire tape is sorted on the second least significant
figure, and so forth. For an example, see Table 7-6. However, both
these methods offer the difficulty that simultaneously used multiple tape
units are indicated. Of course the subsorts might be made by one of the
first two methods, whence the entire sorting procedure becomes a mixture
of methods.

&g

TABLE 7-4. ORDERING BY TRANSPOSITION WITHIN OVERLAPPING SETS OF THREE NUMBERS

12} 3
316
612

10 10

e A OU OO B = N ©

-t

|

6
10
12

9

|

9
10
12

2

|

2
10
12

1

|

1
10
12

4

|

4
10
12

8

|

373
9|9
1
4
8 8
101 5 5
12]10 7 7
5|12 10]10

7412 |11
11 {12

|

2
6

1
6 |4
916 (6"
41918
819
5

5
8
9
7

7

818
919
10 J10

1

2

3

4

5 5
616 6
71717 7
8i8| 818 8
9191919
10]10 (10
11 11

12

SEC. 7-5] SEARCHING, SORTING, ORDERING, AND CODIFYING 235

Suppose that for the fourth method ten bins, or magnetic-tape units,
in addition to the unit holding the original list, were not available for the
separation by least significant decimal digit. For example, suppose that
only 5 units were available, 1 of which contains the original list. Then

TABLE 7-5. ORDERING BY THE THIRD METHOD

Sort by Sort by Sort by
Original most 2d most 3d most
list significant | significant | significant
figure figure figure
345 256 256 255
344 265 255 256
537 255 265 264
256 264 264 265
554 345 337 337
447 344 345 344
337 337 344 345
265 347 347 347
255 447 447 446
466 466 446 447
446 446 466 464
464 464 464 466
347 537 537 336
264 554 536 337
536 536 544 544
544 544 554 554

we could convert the least significant decimal digit of each number to
two radix-4 digits and in two passes order the list by the least significant
decimal digit. Similarly two passes would be required for the next least
significant decimal digit, and so forth. ‘

236 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [{CHAPp. 7

TaBLE 7-6. ORDERING BY THE FourTH METHOD

Sort by Sort by Sort by
Original least 2d least 3d least
list significant | significant | significant
figure figure figure
345 344 536 2565
344 554 537 256
537 464 337 264
256 264 344 265
554 544 544 337
447 345 345 344
337 265 446 345
265 255 447 347
255 256 347 446
466 466 554 447
446 446 255 464
464 536 256 466
347 537 464 536
264 447 264 537
536 337 265 544
544 347 466 554
EXERCISES

(a) Draw a flow chart for coding each of the above four ordering methods.

(b) After shuffling a deck of playing cards, order them by each of the four methods
without regard to suit (i.e., the four Queens, for example, will appear adjacent, after
the Jacks and before the Kings, but not ordered by suit among themselves).

(c) Suppose that one were ordering alphabetically by the fourth method, using a
computer with 10 tape units. What radix could be used, and how would the tape
units be utilized? :

7-6. Ordering by Merging

Merging. The fifth method is based on the simple idea of the merging
of two ordered lists. For example, consider these two ordered lists of
numbers:

265 255
337 264
446 and 464
466 536

544

Forming a single ordered list containing all the numbers is accomplished
by successively comparing the first numbers on each list and removing
the smaller number to a third list. Thus, since 255 < 265, 255 becomes
the first number of the new list; now 264 becomes the first number of the

Sec. 7-6] SEARCHING, SORTING, ORDERING, AND CODIFYING 237

second list, and since 264 < 265, 264 becomes the second number of the
new list; next, since 265 < 464, 265 becomes the third number of the new
list; and so forth. In this manner the two ordered lists are merged to
form a single new ordered list, namely,

255
264
265
337
446
464
466
536
544

In more mathematical notation, if the two ordered lists are a; < as <
«+ - <ar and by <bs < - -+ <by, then the merged list, namely,
Ci < Cy <+ < Cqyyy, is formed as indicated in the flow diagram of
Fig. 7-9.

The initial step of the general ordering by merging process is to separate
the given list into two lists in a manner that preserves any ordering that
might have originally appeared among adjacent numbers. The first
number of the given list is used to start the first of two generated lists.

Seti=1
j=1

Yoy oy
{ C,= min (a;, b;) J

< <>

—(it+1 — i) (i1 — j —

F1a. 7-9. Flow chart for merging two ordered lists.

Then successive numbers of the given list are added to this new list so long
as they appear in the proper order. The first number encountered that
appears out of order is used to start the second generated list. All
successive numbers that are in the proper order are placed successively in
this second list. When a number out of order again appears, it is placed
in the first list, with those following numbers which are in the proper
order, and so forth. Thus in forming the two new lists we switch output
lists whenever a number appears out of order, so that any order within a
string of adjacent numbers in the given list will be retained in one of the

238 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [Cuap. 7

two lists. For the example below, strings of numbers in the original list
that appear in the proper order are included in braces; these are alter-
nately placed in the two generated lists.

Original list New list New list
{345 {345 {344
{ 344 { 256 537
537 554 {447
{256 {337 {265
554 {255 {446
{447 466 464
{337 {347 264
{265 536
{255 544
466
{446
464
{347
{264
536
544

When this initial step is finished, the ordering proceeds as follows:
Each of the two lists contains sublists that are ordered, and each sublist of
one can be paired with a sublist of the other, except perhaps the last sub-
list of one of the lists (see the horizontal lines below). The pairs of
ordered sublists are then merged. The merged results are again placed
alternatelyt in two new lists as shown below:

New list New list

345 e B 344 256

B¢ 537 345 447

256 447 537 554

554 TOCTEC 265 255

337 265 337 264

merge 446 446 466

464 464 536

255 264 544
466 merge 536 347

544
347

The process is repeated, forming each time two lists of increasingly
longer ordered sublists, until all the numbers appear in one ordered list.

t The alternation of the merged sublists in the new lists ensures the maximum
number of pairings of sublists for the next merge; if the total number of sublists is
known, the same result would be obtained by putting the first half on one tape,. the
second half on the other.

SEc. 7-6] SEARCHING, SORTING, ORDERING, AND CODIFYING 239

Second merge Third merge Ordered list

results results
256 255 255 347 255
344 264 256 256
345 265 264 264
447 337 265 265
537 446 337 337
554 464 344 344
466 345 . 345
536 446 347
544 447 446
347 464 447
466 464
536 466
537 536
544 537
554 544
554

Often four magnetic tape units are used in this ordering process.
Two of the tape units hold the old lists, and the other two record the
results of the merging. Then, when both old lists have been exhausted,
the newly formed lists become the old lists and the pairs of tape units
exchange funections. In merging two sublists, the end of a sublist is
sensed when a; > a;.1; when both sublists are exhausted, i.e., when both
a; > a;y1 and b; > b;yy, then the merge starts on the next pair of sublists,
the results being put on the other receiving tape unit. TFigure 7-10 gives
a flow chart for this process.

Variations on Merging. The technique of ordering by merging two
ordered lists is easily extended to ordering by merging more than two

{

Continue to
merge sublists

Start to merge

Not end

Check for end
of a sublist

next pair of
ordered sublists __j ‘b
Are both a;>a;,;
and b;> b;,? Place next number of
Yes No—> unfinished sublist
: on output tape

l

Use
other
tape unit

Fia. 7-10. Flow chart for ordering by merging.

240 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [Cuap. 7

ordered lists. The initial separation of a list to be ordered can involve
more than two new lists, and then the merging of ordered sublists would
be accomplished successively with one sublist from each. If the initial
step formed m new lists and the merging of sublists from these formed
n new lists, then m 4+ n magnetic tapes would be involved. Below
we illustrate the case for three initial new lists (i.e., m = n = 3):

Ordered
list, second
Initial step First merge merge
Original list New list New list New list results result

{345 345 344 256 256 255 264 255
{344 {447 {537 {554 344 265 536 256
537 255 337 265 345 337 544 264
256 {466 [446 {347 447 347 265
{554 464 537 446 337
{447 264 554 464 344
{337 {536 466 345
{265 544 347
255 446
{466 447
446 464
{464 466
(347 536
264 537
‘536 544
544 554

Another variation takes further advantage of any intrinsic ordering
in the original list. Here a tape is not closed off as a smaller item occurs,
but rather is held openr to receive any larger item later in the list. Each
new item is compared with the final items on each tape, in order of largest
to smallest, and is put on that tape whose last item is as large as possible
without exceeding the new item. If the new item is smaller than all the
final items, it is placed on the tape with the largest item to start a new
sublist. Using this technique to sort the above list of numbers, merging
from two lists, gives the following (with the sublists indicated):

First merge Second merge
Initial step results results
345 344 344 256 256 255
{587 {554 345 337 337 264
256 {337 537 447 344 265
{ 447 255 554 464 345 347
265 ‘446 255 466 447 446
{ 466 464 265 { 264 464 536
347 {264 446 347 466 544
536 536 537
544 544 554

SEc. 7-6] SEARCHING, SORTING, ORDERING, AND CODIFYING 241

The third merge, instead of the fourth required above for two-tape
merging, will give the ordered list. Note how changing tapes for the
italicized numbers allows the lengthening of the sublists.

Comparison of Ordering Methods. The number of passes, ie., the
number of times one must look through all the numbers of the original list,
is very large for the first two methods as compared with the merge
method. The straight minimum-in-pass method requires N/2 (or N/4
or perhaps less depending on the equipment) passes for N numbers. The
merge sort using 27" magnetic tape units requires no more than K 4 1
passes, where K is the smallest integer such that 7'x > N. The merge
sort has the additional feature that full advantage is taken of any ordered
sublists that may appear in the original list, and if the numbers are ran-
domly distributed, there ought to be about N/2 ordered sublists. In.
such a case 1 + K’ passes are required, where K’ is the smallest integer
such that T&® > N/2. Tor the transposition method there can be as
many as n(n -+ 1)/2 passes, but here again any ordered sublists that may
appear in the original list can reduce this number of passes. The varia-
tion of the transposition method is of course more efficient. Ordering
by the radix-coefficient methods can compete with the merge sort when all
numbers from 1 to N are in the list, with practically no ordered sublists.
But if the numbers have more than K digits, where K is the smallest
integer such that Bx > N, where R is the radix being used, then the
merge sort would require fewer passes. Since the radix-coefficient
methods do not take advantage of any ordering that might already exist
in the list, the merge sort can be still more advantageous. However, if
only a single tape is available, only the minimum-in-pass or transposition
can be done.

Of course the number of passes required for ordering a list is not
necessarily the only criterion applied in deciding on a method for ordering.
The nature of the equipment available, e.g., how many magnetic-tape
units, or bins, are available and whether these can or cannot be used con-
currently, how complex operations can be performed, etc., often limit the
types of methods that can be used. The number of items or numbers
to be sorted, the number of times such a process must be repeated,
ete., all enter into the choice of the ordering system. In general a
combination of ordering techniques can be used to take advantage of par-
ticular situations that may occur at the different levels of the ordering
process. However, if we were asked to choose which system is of greatest
importance, we would say the merge ordering method and its variations
have the most advantages.

EXERCISES

(a) Draw a flow chart for coding a merge sort using four tapes, passing the numbers
from two tapes to the other two.

(b) Draw a flow chart for coding a merge sort, passing the numbers from m tapes
to n tapes, where m and n can be specified arbitrarily.

242 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [Cuap. 7

(¢) What is the maximum number of passes required to put a deck of 52 cards in
some order by suit as well as by denomination, merging from two bins to two bins?
From three bins to one bin (counting the pass required to redistribute the cards into
the three bins after each merge)? From four bins to four bins? From five bins to
three bins? Considering these results, discuss the most efficient way to utilize a
fixed number of tape units in a merge sort.

7-7. Codifying : Error Correction and Superimposition

" Encoding, Decoding, and Codifications. By codifyingt is meant the
process of relating to an item or characteristic a set of symbols, called
a codification. As we have seen (cf. Sec. 7-1), codifying is intimately
associated with searching, sorting, and ordering. Codifying is used
for three purposes: First just for convenience in handling the information
in a shorter form rather than in raw form; second for making the infor-
mation compatible with a particular mechanical or electronic processing
device being used; and third to facilitate the particular method of search-
ing, sorting, or ordering being used.

In general, codifying involves two processes, called encoding and decod-
ing. Encoding is the process of generating the codification related to a
given item or characteristic; decoding, conversely, is determining the
items or characteristics related to a given codification. The processes
of encoding and decoding are accomplished by means of either a code book
or a relation scheme. For example, a telephone book is an encoding
code book that gives the codification (i.e., the telephone number) related
to an item (i.e., a person); the decoding is accomplished after dialing, by
means of a scheme built into the telephone company’s electrical dialing
equipment. Another example is the biological codification of the genes,
where the encoding is the evolutionary process and the decoding is the
ontogenetic process that results in, say, an individual animal.

The codification of items or characteristics can be either substantive or
nonsubstantive in character. A substantive codification is one in which
the symbols have meaning in themselves. A substantive codification
of names, for example, might comprise simply the first four consonants
of the last names with the initials. A word in a dictionary is a sub-
stantive codification of its meaning. The genes, of course, represent
an outstanding example of substantive codification.

_For a nonsubstantive codification consider the example of the codifica-
tion of research reports by accession numbers, or the codifying of an
item in a bibliography by the page and line number on which it is found.
Nonsubstantive codifications are frequently merely addresses that tell
the locations of the related items or characteristics. An exception to
this is the population-based (nonsubstantive) codification considered in
Sec. 7-2, in which the symbol for a characteristic is the number of items
associated with that characteristic. , ;

The relationships between encoding, decoding, and information proc-
essing are summarized in Fig. 7-11. For example, consider our illus-

t See footnote on p. 217.

SEc. 7-7] SEARCHING, SORTING, ORDERING, AND CODIFYING 243

trative bibliography discussed above. Here the encoding was the
relating of population-based numbers to the given characteristics (i.e.,
the given retrieval words) by means of a code book. The processing was
searching, where, for instance, the Tabledex method might be used,
which resulted in a collection of numbers related to the associated
items (i.e., the page and line numbers of desired article references).
Finally the decoding process was accomplished by locating the items
at their address (i.e., the entries are retrieved from their page and line
numbers). The information processing here consisted in transforming a
set of characteristic codifications into a set of item codifications.

X Information processin X
Encoding Input (searching,psorting, 9 Output Decoding
process codifications ordering, etc.) codifications process

F1c. 7-11. Relation between encoding, decoding, and information processing.

Efficiency of Codifications. To determine how many symbol posi-
tions are required in an unambiguous codification using K different
symbols, we consider each symbol as a number in the base (radiz) K and
use enough symbol positions to count the number of items in the base K.
That is, with N items (or characteristics) and K symbols, the number of
symbol positions in a codification must be no smaller than the smallest
integer n such that K > N (or n > logx N) if the codification relating to
an item s to be unique in the list. Tor example, for 600 items and a
binary codification (that is, K = 2), we havet

2.7782
0.3

orn = 10. If the number of positions is greater than =, that is, if more
positions are being used than are necessary, the codification is called
redundant. If fewer than the required n positions are used, the codifica-
tion is called zrredundant and the code for an item is no! unique in the
list. A codification that is neither redundant nor irredundant is called
effictent.

For example, an English word can be considered as a codification of
an idea using the 26 alphabetical symbols. * Suppose that we have a
dictionary all the words of which are no longer than 10 letters. We can
make all the words the same length by introducing a 27th letter, say «,
and filling up with «’s all positions to the left of a word to make 10
positions altogether, if necessary. It is then possible to have more
than 145 X 102 different words in our dictionary. Howéver; a desk
dictionary has only approximately 100,000, or 10°%, words, and so a dic-
tionary is redundant. Then again, that’s to be expected.

_ In the next paragraphs we shall consider a use for purposely redundant

t Recall that logx N = logio N/logio K. TFor K = 2, logs N = logio N/log1o2,
where logie2 ~ 0.3,

n > logs 600 = =9.261

244 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHap. 7

codification; that discussion will be followed by consideration of a use
for purposely irredundant codifications. _

Self-correcting Redundant Codification. Frequently situations arise
where errors may be introduced into a codification during storage or
transmission. If errors cannot be tolerated, a redundant code can be
devised with the extra positions of the redundancy used to correct such
errors as may occur. However, the self-correcting scheme that makes
use of redundant positions must also be able to correct errors that may
occur in these extra redundant positions as well. The process can be
outlined as follows: First from the given information-carrying codification
there is generated the redundant codification. This redundant codifica-
tion is stored or transmitted, ete., during which time some errors can

Origtnal Redundant Redundant | n¢omation- Correct
. oo Redundant codification : | warrec
information-\ __| ¢qdification Storage or canying |,/ information-
carrylng generator | codification |tfansmission| that may” | codification carrying
codification have errors | regenerator codification

Source of
possible errors

F1a. 7-12. The self-correcting redundant-codification process.

enter into the codification. Finally, when the information is to be used,
there is generated from the redundant codification (which may contain
some errors) the correct information-carrying codification in spite of any
errors in the redundant codification (see Fig. 7-12). In what follows
we shall confine ourselves to binary codification.

Let us first illustrate a self-correcting technique that will correct a
single error. The first step is the formation of the redundant codifica-
tion. Suppose that the information-carrying part of the codification
has 4 bits, Io, I1, 12, I5—say, for example, 1101. We form an array as
shown in Fig. 7-13 (with the top row all units and the columns otherwise
having all possible combinations of zeros and units). The information-

0123 4567

{Io =1 1111 1111

Information-carrying |I, =1 0101 0101
codification I, =0 0011 0011
I; =1 0000 1111

Redundant codification 1010 0101
F1a. 7-13. Work for forming redundant codification for single-bit sclf-correction.

carrying codification is set down beside the array as a column. The
desired redundant codification is formed bit by bit by comparing this
column successively with each column of the array, counting the number
of units in common (i.e., logically multiplying the columns and counting
the number of units in common; see Sec. 4-5 and Part 3). If the number
of units is even, a zero is placed under that column of the array; if odd,

Skc. 7-7] SEARCHING, SORTING, ORDERING, AND CODIFYING 245

a unit. For example, for the sixth bit, under column 6 we have

1 1 1
1 0 _ 0
0 1 0
1 1 l

Srg =0

for the seventh bit

1 1 1
1)y (1) _[1
0 1] \o
1 1 l

STy = 1

and so forth.

Suppose that this redundant codification 1010 0101 is stored, and dur-
ing the storage the third bit r; becomes changed. Then the incorrect code
is 1011 0101. Of course we assume that we know mothing about the
error in the codification except that there may be at most a single error.
The problem remains to determine the correet bits Io, /1, 15, and I3 of
the original information-carrying codification. The correct value of
the bits I, I, I, and I, will each be derived, in this order, in spite of
the error in the code. First note that, if I; = 0, then because of the

o 1 2 3 4 5 6 9
Incorrect redundant codification: 1 0

3 pairs different,
1 pair same; Iy =1

1 pair different,

appropriate pairs 3 pairs same; I, =0

Lines connecting
of positions

3 pairs different,
1 pair same; I3=1

Fia. 7-14. Work for finding I,, I, and I;.

method of formation we would clearly have ro = r1, ra = 13, r4 = 15,
and r¢ = ry; that is, adjacent pairs of bits would be the same. If I, = 1,
then none of these adjacent pairs would be the same. A single error can
affect only a single pair of positions; hence, to find I, we simply check
to see whether we have more ‘“‘same” pairs, or more ‘‘different” pairs.
More same pairs means I; = 0; more different pairs means I = 1.
Similarly I is determined from pairs (ro,rs), (r1,m3), (ru,rs), and (rsry)
and I; from pairs (ro,rs), (r1,76), (re,re), and (rs,r7) (see Fig. 7-14 for the
work). To find Io, consider an array composed of the rows of the
original array corresponding to the I, I, or I; which are found to be
units and the redundant-code row. TUnder each column at this array
place a zero if the number of units in the column is even, a unit if odd.
If the number so formed is mostly zeros, I, = 0; if mostly units, I, = 1

246 . FUNCTIONAL APPROACH TO- SYSTEMS DESIGN [CraP. 7

Incidentally this new number clearly shows the position of the single
error (see Fig. 7-15).

As another illustration, consider a 5-bit information-carrying codifica-
tion and an extension of the above scheme to correct as many as 3 errone-
ous bits in the redundant codification. Let the original 5 bits be I, = 0,
I,=0,1I,=1,I;=1,and I, = 0. Figure 7-18a represents the work
required to generate the redundant codification which is to be transmitted
or stored; the work proceeds just as in the example above. Suppose

. 0123 4567

I,=1 0101 0101

I3 =1 0000 1111

Incorrect redundant codification 1011 0101
New number 1110 1111 « more units; = Io =1
Fia. 7-15. Work for finding I,. (Note that error occurred in position 3.)

that erroneous codification shown in Fig. 7-16 results from the storage,
then the work required to determine the correct 5 information-carrying
codification bits appears in Fig. 7-16b.

012 8 4567 & 9 1011 1213 1415
I=0 1111 1111 1111 1111
- (9 . =0 0101 0101 01031 0101
* Generating the lnforma_tlon- !
redundant C;;l_‘ylf;? I,.=1 0011 0011 0011 0011
codification codification ' I=1 0000 1111 0000 1111
Ib=0 0000 0000 1111 1111
Redundant codification: 0 0 11 1100 0011 1100
Etroneous codification: 0 01 0 1110 0011 0100
3 pairs different
5 pairs same —
S I=0
5 pairs different
(b) 3 pairs same = ——>
Regenerating So=1
- the original 5 pairs different
" information 3 pairs same - —
: :. Ia=1
3 pairs different
5 pairs same =~ ——>
S Iy=0
0011 0011 0011 0011
0000 1111 0000 1111
0010 1110 0011 0100
New number: »,7,=0 0001 0010 0000 1000

Note that errors occutred in positions 3, 6, and 12,
F1a. 7-16. Scheme illustrating three-error correcting process.

SEC. 7-7] SEARCHING, SORTING, ORDERING, AND CODIFYING 247

Observe that in the first example we used 8 bits to codify 4 informa-
tion-carrying bits, or a redundancy of 4 bits; in the second example we
used 16 bits to codify 5 bits, or a redundancy of 11 bits. In the first
case we are trying to recognize 9 different possibilities, i.e., no error, or a
single error in one of eight positions. This clearly takes 4 bits, the
redundancy used. For the second case we are trying to recognize 697
different possibilities, i.e., no error, a single error in one of 16 positions,
16
2

) = 560 different ways.tf To distinguish

a double error that can occur in

16
3
among 697 possibilities, we clearly need 10 bits; so the 11-bit redundancy
of the second example is one more than the minimum required. However,
note that the Oth column of the array could have been omitted, and
the scheme would work just as well. This would give us our minimum
10-bit redundancy.

Superimposed Irredundant Codification. As we have seen, a binary
codification that will distinguish uniquely between N characteristics
requires at least logs N bit positions. Thus, if 4,500 characteristics are
in the list, 13 bits are required. It frequently happens that, although
N characteristics could occur, fewer than N of these actually appear in
a particular situation. However, it is in general not known beforehand
how many will appear. In such cases, particularly when a substantive
codification for the characteristics is used, at least loge N bit positions are
used for the codification anyway, to take account of all eventualities.
Thus, even though not all 4,500 characteristics will occur, 13 bits might
still be reserved for the codification. .

Furthermore, suppose that we are dealing with items each of which is
associated with X of these characteristics; then, according to our above
discussion, at least X log, N bit positions must be used to identify an
item. For example, if X = 3 and N = 4,500, then 3 X 13 = 39 bit
positions would be necessary. Thus, in principle, N¥ items can be dis-
tinguished this way; but as we observed above, we are here considering
situations where they do not all actually appear. Evidently we are
being wasteful of bit positions because fewer than N¥ items require
fewer than X loge N bit positions for a codification. The problem there-
fore arises: How can we use fewer than X loge N bits for our codification, say,
H < Xlogs N, and yet maintain our ability to distinguish among all N
characteristics? The answer is found in the concept of superimposed
codification.

By the superimposed codification corresponding to X characteristics
we mean the result of forming the logical sum (see Sec. 4-5 and Part 3)
of the individual codifications for these X characteristics. That is, if
the units represent, for example, notches on the edge of a card, two

) = 120 different ways, or a triple

error that can ocecur in

T Recall that the number of ways of taking X objects Y at a time is given by the

L. . Xy ___ Xt
bhinomial coefficient (Y) T VIX = Y)!'

248 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHap. 7

notches in the same position are equivalent to a single notch. Thus, if
three characteristics have the following codes:

Position
Characteristic
1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19 20
Ist.......... 0 01 00O0O1O01O0T1O0O0O0OO0OO0OO0OO0ODO0OTO O
2d.......... 0 001 00101O0UO0O0OO0DT1O0O0OUO0OTO0OTGO0OO
3d.......... 00 00 0O0OO0OOTI1IT1O0O0OOOTI1O0O0OT1TT0QO0

then the corresponding superimposed codification is
0011001011100 1010010

We shall illustrate by means of an example how superimposed codification
can be made to satisfy the above criterion of using fewer than X log. N
bits and yet maintain the ability to distinguish among all N character-
istics. Suppose as above that N = 4,500. Let us codify the char-
acteristics as follows: Use 20 positions, and let each codification con-
tain precisely 4 units. This codification will allow us to code each

1st characteristic

J J 2d characteristic
] T characteristic

1 2 3 4 5 6 7 8 ¢ 10 11 12 13 14 15 16 17 13 19 20

I I l L False drop

Item

Fi1g. 7-17. Example of superimposed codification.
characteristic uniquely, because 20 positions can be taken four at a time in

20\ _ 20! _) .
(4) =@ = 91 4,845 different ways, and 4,845 > 4,500. Finally,

suppose that each item is associated with three characteristics; that is,
X = 3. Then let the codification of the item be the superimposed codifica-
tions of its associated three characteristics. Note that the codification
for an item now comprises only 20 positions, rather than the 39 thought
necessary above, saving about half the positions.

The advantages of this technique ean most readily be visualized in
terms of the marginal punched cards described above, where each card
represents an item, and where the marginal positions are the bit positions
with a punch representing a unit, no punch a zero (see Fig. 7-17). Sup-
pose that an item is associated with the three characteristics whose

SEC. 7-7] SEARCHING, SORTING, ORDERING, AND CODIFYING 249

codifications appear above and that the 20 marginal positions of the
item card are punched with the superimposed codification. Then, if all
items associated with the first characteristic are being searched for, the
sorting needles: are placed in positions 3, 7, 9, and 11, and clearly the
proper item cards will drop. Similarly for the second or third character-
istic. However, we must evidently pay a price for this convenience and
saving in item-codification positions. For suppose that the code for
some other characteristic is

3 10 1 19
00100 00001 10000 00010

Our item card (see Fig. 7-17) is not associated with this characteristic
but nonetheless will drop in the search for items associated with this
characteristic. The reason for this is that our codifications overlapped,
allowing for more than three combinations of 4 units. In fact, in our
illustrative example, nine punches appear, allowing for

9y _ 9" _
(4> = no—oi 126

such possibilities, and hence 126 — 3 = 123 possible false combinations.
However, the situation is not so bad as it seems, for remember that we
20
4
appear, and hence not all the false combinations will ever be sensed.
The subject of superimposed codification therefore resolves itself into the
problem of determining the probability p that an item (card) not associated
with a particular characteristic will be selected (dropped) during the search
for that characteristic. 'We shall refer to p as the probability that an
item (card) will be a false drop. The formulas given below for this
probability p are based on the assumption that the codes for the charac-
teristics are randomly chosen and that the associations of items with
characteristics are also randomly chosen.
Let H = number of positions in superimposed codification -
Y = number of units in a characteristic codification
X = number of characteristics associated with an item

R

Then p = It =
(%)

supposed that not all the (= 4,845 possible characteristics actually

250 * ' FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CuAP. 7
. , £ /e .
= (3 - (= (7
X _
B = ()77) = () - (75

X -_
me= ()0) - (e - (75 e
_ (Y s 2>EH B (Y - 3>Ey_3
and so forth.

For our example above, H = 20, Y = 4, X = 3; hence

[(%f) - 1]3 — (B + Eo + o + By

W
4
_0.1131692 X 10'2 — 0.10890324 X 102
N 0.11323941 X 1012

From probability theory we know that, if there are M items, then the
expected number of false drops will be Mp. Tor our example, if M = 200,
we would expect 200 X 0.0377 = 7.54 false-drop cards during the search
on a particular characteristic. To find the probability P(m) of obtaining
m false drops, we use the formula from probability theory,

Pom) = (30) (1 = e

In Fig. 7-18 we have graphed some of these values for our example.

So far we have been considering false drops when searching on one
characteristic only. Now we shall discuss the situation that arises
when more than one characteristic is used in the search. Let n be the
number of characteristics entering the search. The codifications of
these particular characteristics may overlap. Let us suppose that their
logical sum has precisely 4 units (punches). Then

= 0.0377

j=n—1 i=h—1
2‘ Fn—i - z Eh—i
p = i=0 i=0

Y
t For numerical calculations some helpful results are ((({) =1, (I{) =U,

(U)_U(U—-l)-'-(U—V-i-l)
v) 1X2X.---XV

, 0l =1,11 = 1.

Skc. 7-7] SEARCHING, SORTING, ORDERING, AND. CODIFYING 251

016

0.1369
|o.1485
I 0.1401

0.14}
012}

, 0.1075
|0.1174

0.10{-

l0.0878

0.0702
I 0.0594

P(m) 0.08}
0.06 |-

0.0363
0.0367

004}

0.0140

0.02}-
0

+~[/0.0036

2 3 4 5 6 7 8 9 10 11 12
m

Fia. 7-18. Probability of obtaining exactly m false dropsfor H = 20,Y =4, X =3,
and M = 200. (Here h = 4.)

where

= (3

=
L
|
N
LW
N~—
VoS

_ b'¢ N _ -9
Y (3 e

j=n—1

and so forth.

.. (HY ’ .. (H\X -
Observe that, if y)>mn then P ;= v) - This is the case
‘ =

for our example of H = 20, ¥ = 4, and X = 3. Let us suppose that we

252 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [Cuar. 7

are searching on three characteristics with the codifications given above
(see Fig. 7-17); then b = 9. Thus we have

, i=8
&5 g
_ & (0.118732 — 0.113716) X 1012
p= (2())3 0.113732 X 10
4

= 0.00014

It is interesting to compare P(m) when searching on a single characteristic
with P(m) when searching on three characteristics that overlap to pre-
sent the nine units of our illustration (see Exercise 7). Observe that h
can range from 4 to 12; some values of p for various values of % are

h|4[6|9|12

.p.| 0.0377 f 0.0061 | 0.00014 | 0.0000003

I}{,) > n, then the value of h is ali—importdﬂt

and p is effectively independent of n. However, if, for example, H = 6,
Y =2 X = 3, then an n of 1, 2, or 3 can no longer be neglected.

Note that, as long as (

EXERCISES

(¢) How many codifications can be made of no more than 10 positions with 26
symbols? If K = 26, what is the most efficient number of positions to use for codify-
ing 100,000 words?

(b) Given the information code 10101, find the redundant codification, as in Fig.
7-16.

(¢) If a redundant codification was received as 0100 1000 0001 0011, what was
the information code sent and in what positions did errors occur? Suppose that
0100 1000 0001 0001 was received; in what positions are the errors?

(d) Suppose that there were 6 bits in an information code; if the scheme given
above were used, how many errors could be detected and how many bits would there
be in the redundant codification?

(¢) For H =4, Y =2, and X = 2, find p by means of the above formulas for
n=1h=2;forn =2 h =2;forn =2,h =3;andforn = 2,h = 4. Check your

X 2
result by making an enumeration of the (};) = (;) = 36 equally probable

conditions.

(f) Compute pfor H = 6, Y = 2, X = 3 when searching on a single characteristic.

(¢9) Compute p for H = 6, Y = 2, X = 3 when searching on three characteristics
(that is, n = 3) that overlap so that A = 5.

(h) Compare the results of Exercises f and g by graphing P(m) for M = 50 in both
cases.

(7) Find the expected number of false drops for H = 100, ¥ = 6, X = 4 when
h=15 '

() Graph P(m) for a search on three characteristics that overlap to present 9 units
(i.e., h = 9, whence p = 0.00014—see above). Compare the results with Fig. 7-18,

SEc. 7-8] SEARCHING, SORTING, ORDERING, AND CODIFYING . 253

7-8. Additional Topics -

a. Equivalence Relation and Linear Ordering. To a mathematician the term relation
means a rule that can be applied to two objects of a set to determine whether or not
they are related in a fashion defined by the rule. A relation is usually symbolized,
and if the relation holds for elements a and b of a set, then we write “a symbol b,”’
read “q is in relation to b.”” An equivalence relation, symbolized by =%, is a relation
defined for a set such that, if q, b, and ¢ are any elements of the set, then (1) a =~ a (an
element is in relation to itself, called the reflexive property), (2) if @ =2 b, then b =~ a
(if a is in relation to b, then b is in relation to a, called the symmetric property), (3) if
a=2band b =¢, then ¢ = ¢ (called the transitive property). Can you give some
examples of relations that are equivalence relations (i.e., that are reflexive, symmetric,
and transitive)? For a particular set and equivalence relation the subset of objects
that are all equivalent to each other is called an equivalence class. As an example,
consider the set of all integers and the relation: Two integers are in relation to each
other if their difference is divisible by 3. Show that this relation is an equivalence
relation and that there are three equivalence classes: . . . =2, 1, 4, 7,

-1,2,5,8, ...;and . ..0,3,6,9,

The most important property of an equivalence relation is that each object of a set is
included in one and only one of the equivalence classes generated by an equivalence relation.
Why is this property important in considering searching, sorting, ordering, and codify-
ing? (See R. L. Wilder, “Introduction to the Foundations of Mathematics,”” John
Wiley & Sons, Inc., New York, 1952; or G. Birkhoff and 8. MacLane, “A Survey of
Modern Algebra,” The Macmillan Company, New York, 1941.)

Another important relation is called the linear-ordering relation, denoted by > and
defined as follows: (1) for any two objects @ and b of the set, eithera > bor b > a;
2)ifa>band b >c, thena >¢; B)if a > band b > qa, then a and b are identical
(written @ = b). A relation is called a partial ordering if (1) does not hold. Can you
give examples of linear- and partial-ordering relations? In this chapter methods
were given for ordering objects according to a linear-ordering relation. What could
“ordering objects according to a partxal—ordenng relation’’ mean? How could this
be accomplished?

b. References on Sorting and Ordering

Bell, D. A.: The Principles of Sorting, Computer J., vol. 1, no. 2, pp. 71, July, 1958.

Davies, D. W.: Sorting of Data on an Electronic Computer, Proc. IEE, vol. 103B
suppl., p. 87.

Friend, E. H.: Sorting on Electronic Computer Systems, J. Assoc. Computing Machin-
ery, vol. 3, p. 134, July, 1956.

Hosken, J. E.: Evaluation of Sorting Methods, Proc. Eastern Joint Computer Conf.,
1955, p. 35. -

Isaac, E. J., and R. C. Singleton: Sorting by Address Calculatlon, J. Assoc. Computing
Machmery, vol. 3, p. 169, July, 1956.

Shannon, C. E.: A Mathematxcal Theory of Communication, Bell System Tech. J.,
vol. 27, pp. 379-423, 623-656, 1948.

c. References on Information Retrieval

Bracken, R. H., and H. A. Tillitt: Information Searching with a 701 Calculator, J-
Assoc. C’omputmg Machinery, vol. 4, p. 131, 1957.

Dennis, Bernard K.: Rapid Retrieval of Informatlon, Computers and Automation,
October, 1958, p. 8. _

Digital Computer Newsletler, vol. 10, no. 4, p. 4, October, 195%.

254 ““FUNCTIONAL APPROACH TO SYSTEMS DESIGN - [CHAP. 7

Fairthorne, R. A.: Automatic Retrieval of Recorded Information, Computer J., vol. 1,
no. 1, p. 36, April, 1958. .

Ledley, R. S.: TABLEDEX, A New Coordinate Indexmg Method for Bound Book
Form Blbllographles, Proc. Intern. C'onf Sei. Inform., Area V, 1958, Washmgton,
D.C.

Luhn, H. P.: A Statistical Approach to Mechanized Encoding and Searching of

- Literary Information, IBM J. Research Develop., vol. 1, p. 309, 1957.

Mooers, C.: Putting Probability to Work in Coding Punched Cards, Zatocoding, Zator
Tech. Bull. 3, 1947, Zator Company, Boston, Mass.; also Zatocoding and Develop-
ment in Information Retrieval, Ashb Proc., vol. 8 no. 1, pp. 3-22, Fcbruary,
1956. ‘

National Science Foundation Booklet, “ Non-conventional Techmcal Informatlon
Systems in Current Use.”

National Science Foundation Booklet, ‘‘Current Research and Development in
Information Retrieval.”

Office of Research and Development, U.S. Patent Office: “ Patent Office Research and
Development Reports,” " U.S. Department of Commerce.

Proc. Intern, Conf. Sci. Inform., Area V, 1958, p. 317.

Ray, L. C.,, and R. A. Kirsch: Finding Chemical Records by Dlgltal Computers,
Sczence, vol. 126, p. 814, 1957.

Shera, J. H., A. Hert, and J. W. Perry: “Information Systems in Documentatlon
Intersmence Publlshers, Ine., New York.

Waldo, W. H., and M. DeBacker: Prmtmg Chemical Structures Electronically ; Encoded
Compounds Searched Generally Wlth IBM 702, Proc. Intern. Conf. Sci. Inform.,
Area IV, 1958.

Wildhack, W, A., and J. Stern: ‘“The Peek-a-boo System in the Field of Instrumenta-
tion,’” p. 209 Interscience Publishers, Inc., New York.

d. References on: Error-delectmg and -correcting Codes. The method given in this
chapter for constructing error-correcting codes is essentially that of Irving S. Reed
(see A Class of Multiple-error-correcting Codes and the Decoding Scheme IRE
Trans. on Inform. Theory, vol. IT-4, pp. 34-49, September, 1954). The initial theory
was first stated in a well-known paper of R. W. Hamming (see Error Detecting and
Error Correcting Codes, Bell System Tech. J.,.vol. 29, pp. 147-160, April, 1950).
Many other papers have recently appeared in this field, and we list some of these
below. It would be well to consider these papers after Part 3 of the text has been
mastered.

Brown, A. B., and S.' T. Myers: Evaluation of Some Error Correction Methods
Applicable to Digital Data Transmission, IRE Conv. Record, vol. 6, pt. 4, pp.
37-55, 1958.

Elias, P.: Error Free Coding, IRE Trans. on Inform Theory, vol. IT-4, pp. 29-38,

. September, 1954.

Golay, M.: Binary Coding, IRE Trans. on Inform Theory, vol. IT-4, pp. 23-28,
- September, 1954.

Huffman, D.: A Linear Circuit Viewpoint on Error Correcting Codes, /RE Trans. on
Inform. Theory, vol. IT-2, pp. 20-28, September, 1956.

Peterson, W.: An Experimental Study of a Binary Code, Communs. and Electronics,
July, 1958, pp. 388-392.

Sacks, G.: Multiple Error Correction by Means of Parity Checks, IRE Trans. on

" Inform. Theoty, vol. IT-4, pp. 145-147, December, 1958.

Shannon, C. E.: General Treatment of the Problem of Coding, IRE Trans. on Inform.

Theory, vol. IT-1, pp. 102-104, February, 1953.

SEC. 7-8] SEARCHING, SORTING, ORDERING, AND CODIFYING 255

Shapiro, H. 8., and D. L. Slotnik: On the Mathematical Theory of Error-correcting
Codes, IBM J. Research, January, 1958, pp. 25-34.

Slepian, D.: A Class of Binary Signaling Alphabets, Bell System Tech. J., January,
1956, pp. 203-234.

Ulrich, W.: Non-binary Error Correction Codes, Bell System Tech. J., November,
1957, pp. 1341-1388.

e. Irredundant Coding. To our knowledge Mooers [see the references in (c)] first
discussed irredundant coding. Formulas that differ from those. given in this chapter
are found in C. S. Wise, Mathematical Analysis of Coding Systems, in R. S. Carey and
J. W. Perry (eds.), “Punched Cards,” chap. 20, Reinhold Publishing Corporation,
New York, 1951. The formulas given by Wise are not precise. (Why?) Prove
the formulas given in this chapter of our text by means of an exact analysis of the
problem.

CHAPTER 8

SPECIAL-PURPOSE DIGITAL-COMPUTER
’ SYSTEMS DESIGN

8-1. Introduction

Design for a Purpose. In previous chapters we have seen several
examples of digital-computer systems design. Chapters 2 to 4 were
primarily concerned with the systems design of a general-purpose digital
computer; here some of the fundamental ideas of computer engineering
were introduced. The general-purpose computer might be classified
basically as a ‘‘scientific” computer well adapted to the processes of
numerical analysis considered in Chap. 6. It appeared from Chap. 7,
however, that the processes of searching, sorting, ordering, etc., made
extensive use of the data-handling components of a computer and that
perhaps special features could be designed into the computer that might
considerably enhance its effectiveness. Similarly other types of compu-
tational problems that occur frequently may indicate still further special
computational facilities. Some of these were mentioned in the illustra-
tions given in Chap. 1.

In the present chapter we shall consider some of these special-purpose
systems designs. Our intention is to free the student from the rigorsof the
general-purpose-computer systems design, which heretofore has held our
attention. Our method is to use specially selected examples of systems
designs ranging from those which differ radically from the general-
purpose computer to those built upon the extended general-purpose
concept. It is our hope that such examples of computers—having no
instruction systems at all, having temporary specialized memories, no
arithmetic functions, great deviations from the conventional instruction
format, and multiple code-handling capabilities—will present a broad
view of the infinite possibilities that exist in digital-computer systems
design.

This does not imply that there are no guiding signs to computer systems
design. Quite the contrary, the unique features in a computer design
should be determined solely by the intended purpose of the computer.
Thus, in analyzing or describing a variety of different systems designs,
we shall pay close attention to the purpose which indicated each such
design.

Outline. We shall consider first the digital differential analyzer. This
computer has no instruction system but rather consists of a collection of

256

Skc. 8-2] SPECIAL-PURPOSE DIGITAL COMPUTERS 257

computer units that are wired together as required by each particular
problem. Next we shall consider a logical-control computer, using the
control of a chemical factory as an example. Here a special ‘““external-
control’’ instruction is introduced to facilitate the logical computations.
A special design for a searching computer will then be considered. This
special-purpose computer can be incorporated in a general-purpose com-
puter as well. Business and logistics problems illustrate the need for
special features enabling the handling of large arrays of numbers. Here
a radically different instruction format is illustrated. Finally we con-
sider the multiple-general-purpose computer, which is essentially an
interlocked collection of computers, used in such a manner as will take
greatest advantage of the special-purpose components of which it is
comprised. In our illustration this multiple-purpose computer will be
comprised of the computer components discussed in the previous sections.

8-2. The Digital Differential Analyzer

Purpose. Frequently it is necessary to compute the value of some
function point by point. For example, in the automatic-milling-machine
application described in Chap. 1, the computer attached to the milling
machine must guide the tool from point to point along a predetermined
path that was given only grossly at the input, e.g., a linear interpolation
between two points or a circle of a certain radius. Similarly in many
other control operations rapid calculations of sin § and cos § may be
necessary, as in accurately sweeping an area with an antenna or in com-
puting some functions. Not infrequently the familiar analog techniques
cannot produce a sufficient number of significant figures for the accuracy
required. In such cases one can use a digital differential analyzer as a
small, relatively simple and inexpensive special-purpose digital computer.

The Concept of the Digital Differential Analyzer. The digital differential
analyzer computes successive values of a function by means of successive
differential additions. Consider the problem of computing a table of
values for a function y = f(z). If we start with a given y(x,), then
y(@) = y(xo) + (¥(x1) — y(@0)) = y(xo) + (AY)z. Similarly we write
y(z2) = y(®1) + (Ay)a, and so forth. In other words,

Y(@ir1) = y(@:) + (Ay)a
Now suppose that ¥ = e*. Then dy = e* dx = y dz; or approximately
(AY)z = Y@ @iy —) = y(x) Az
Thus we can compute successive approximate values of ¢* by
y(ir1) = y(@:) + y(z:) Az

The smaller we make Az, the more accurate our results will be. How-
ever, there is an obstacle here. Remember that multiplication produces
a double-length result, so that, if Az is small enough, the major part of

y(x;) Az will be zero. Thus errors will result when the minor product,
which contains the significant figures of y(x;) Az, is dropped. It would

258 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHar. 8

therefore be better to work with the double-length extension of y(z;):
However, this is not particularly desirable for what is supposed to be a
small special-purpose computer,

The use of a double-length accumulator can be avoided; to find out
how, let us examine our procedure more carefully. As we have noted,
each time we form y(z;) Az the major product is zero; but certainly the
major part of y(x;) must change eventually. This must occur during
the addition y(z;) + y(x;) Az and will be the result of a carry from the
minor part into the major part. In other words, as we accumulate in
the minor part, we eventually propagate a carry, or overflow, from the
minor part into the major part of y(x;). If we are working in binary, the
carry can only be a 1 and the major part of y(x;) can change at most by 1
during any iteration. Hence we do not need a double-length accumulator
at all—we need a single-length accumulator that simply accumulates suc-
cessive minor parts of y(x;) Ax; and a counter that holds the major part of
y(z;) and adds 1 to the major part of y(z;) each time there is an overflow
from the minor accumulator. We call the accumulated minor parts the
residual.

True multiplication is not essential in finding y(z;) Az, for we can
always take Az = 1/2¢, and we need only shift y(z;) by ¢ positions to
the right to form y(z;) Az. But since we do not have a major part to our
accumulator, we can always choose Az so that the shifting of y(z;) need
not have to occur actually (although of course it occurs virtually).

To illustrate these points, consider a 4-~bit binary word and let
Az = .0001 (see Fig. 8-1). In Fig. 8-1a we have illustrated the accumu-
lator that is to hold the residual and the counter that is to hold the major
part of the function value y. The circle represents the component
wherein y is virtually but not actually shifted; this is simply a gate that at
the proper time passes y to be accumulated with the previous residual to
form the new residual. The dash-dot lines represent the ‘“true’ juxta-
position of the double-length value of y. For our illustration, start with
2o = 0, and yo = ¢° = 1 preloaded into the counter. Then y(xo) = 01.00
and y(x¢) Az = 00.00 0100, where 0100 is the residual. Since

y(z1) = y(zo) + y(xo) Az = 01.00 0100

the 01.00 remains unchanged in the countér and 0100 is put into the
accumulator (see Fig. 8-10). With y(z,)-Az = 00.00 0100 again, we
have 0100 + 0100 = 1000 as the residual, and 01.00 remaining still
unchanged in the counter as y(zy). Then y(x;) Az = 00.00 0100,
whence 1000 4 0100 = 1100 is the new residual and 01.00 remains
unchanged as y(z4) in the counter. Next y(z4) Az = 00.00 0100, whence
1100 + 0100 = carry 1 4 0000; now the counter is increased by 1,
putting 01.01 in the counter as y(zs) and leaving 0000 as the new residual.
We continue with y(z5) Az = 00.00 0101, and so forth. The result of each
step and the graph of the function so calculated are shown in Fig. 8-1b.

Computing Units. 'The combination of accumulator, gate, and counter
is called a computing unit of a digital differential analyzer. - Many units

Sec. 8-2)

SPECIAL-PURPOSE DIGITAL COMPUTERS

(@)

Jouno)

Carry steps the counter

-1

J03e]NWNo2y

e
T T ee—

259

[UGS RN I
MO[J43AQ

[enpisay

®

MO[Jan0 +(T70)K = (X)L ey

701.00
01.00
01.00
01.00
01.01
'01.01
01.01
01.01
01.10
01.10
01.11
01.11
01.11
10.00
10.00
10.01
10.01
10.10
10.10
10.11
11.00
11.00
11.01
11.10
11.11

.000100
.000100
.000100
.000100
.000101
.000101
.000101
.000101
.000110
.000110
.000111
.000111
.000111
.001000
.001000
.001001
.001001
.001010
.001010
.001011
.001100
.001100
.001101
.001110

.001111

.000100
.001000
.001100
.010000
1000101
.001010
001111
.010100
.001010
010000
.000111
.001110
.010101
.001101
.010101
.001110
.010001
.001011
.010101
.010000
.001100
.011000
.010101
.010011
.010010

|
2V (W)L =Ly
|
fenpisai 4 £y
MO[J43nQ

[enpl
MaN

.==0100].
.==1000).
.==1100[.
.==0000|.
.--0101].
.=-1010/.
--1111,
.==0100|.
.-=1010|.
==0000].
.==0111(,
~=1110|.
.==0101|.
.~=1101|.
.=-0101].
i==1110).
.=-0001].
.==1011|.
.==0101].
.==0000).
.==1100|.
.=-1000|.
.==0101|.
.~-0011],
.=-0010],

F1c. 8-1. Concept of the digital differential analyzer.

260 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHaP. 8

can be connected together to compute various functions. The contents
of the accumulator, the residual, is denoted by RE; the contents of the
counter, the functional value, is denoted by y; the overflow, or carry,
from the accumulator that steps the counter, i.e., the differential value
that is to be added to some functional value, is denoted by Ay (see Fig.
8-2). The gate may cause either addition or subtraction of the contents
of the counter (virtually but not actually shifted) to the accumulator.

As an example of how units can be com-
bined, consider now the problem of computing
sin z and cosz. Let

Accumulator

Yy = cosz and y: = sinz
Then the differential equations are

dy, = —sinzdx = —y.dx
and dys = coszdzx = y, dz

Thus we have
y1(@ir1) = yulx) + Ay Ay1 = —y2 Az
and

F1c. 8-2. Computing unit of
digital differential analyzer. Yo(Xip1) = ya(z:) + Aye Ays = y1 Az

Hence the arrangement shown in Fig. 8-3 will compute y; and y..
Programming. There are three steps to programming a problem:
First, the proper differential equations must be worked out so that Ay;
appears in the form y; Az. Second, the connections between units must
be diagramed. And finally the scaling must be worked out. Consider

— Ay, —'—I R, I — Ayz—l R, I
C)(—- +Ax ()(—- - Ax

A 1

F1a. 8-3. Combinations of computing units of digital differential analyzer.

this latter step first. Note that, since the counter can be increased only by
1 at a time, then during any iteration y can increase only by 1. In other
words, the graph of the function cannot be steeper than 45°, Thus in our
example of Fig. 8-1 we could not compute e for any greater values of z.
However, the slope of any function can be adjusted by scaling so that it
does not exceed 45° within the range of computation.

SEc. 8-2] SPECIAL-PURPOSE DIGITAL COMPUTERS 261

Consider as another example the problem of computing the product
Y3 = Y1y2. Since dy; = y1 dy2 + ya dyi, we have
Ys(@ir1) = ys(x:) + Ays Ays = y1 Ay2 + Y2 A
Ya(ir1) = y2(z:) + Ay
and Y1(@ir1) = ya(z:) + Ay
Hence the configuration of Fig. 8-4 will compute y; = y1y2. Note that

the counter for y; has two inputs and that these must be electronically
arranged so that they do not step the counter at precisely the same time.

O || O O

F1a. 8-4. Computing y; = y1ye.

Note also that not all of the computing unit for y; is used. Another
feature of this arrangement is that the inputs to the gates are not a single
Az, but rather Ay, and Ay, themselves.

Next consider the computation of y = 22 Here dy = 2z dx and
y(@i1) = y(x) + Ay, Ay = 2z; Az; Fig. 8-5 shows the arrangement. Here

<——Ax . Ax

F1c. 8-5. Computing y = 22

note that one of the counters is loaded with the constant 2 and never
changes.

Finally consider the computation of y = 1/z, that is, division. Here
dy = (—1/x?%) dzx; letting w = —1/x2, we find dy = wdz and

dw=2d=— g(__ %dx) = —2ydy
& X T
Thus Y(xirr) = y(z:) + Ay Ay = w Az
and W) = w(x;) + Aw Aw = —2y Ay

The arrangement of units for this computation is left as an exercise

262 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHaP. 8

Advantages. The digital differential analyzer does not require an
instruction system or a stored program, for the ‘“programming” is
accomplished simply by appropriately wiring units together. Thus no
control unit is necessary, and the computer is very inexpensive. Of
course it is correspondingly quite limited in its capabilities.

The accumulator and the counter require storage, and for this a drum
is frequently used. For example, each band around the drum might
be divided into two words of storage, one for the accumulator and the
other for the counter, of a single computing unit. The inputs and out-
puts from the heads of each band would be brought to a plugboard con-
sole. Here the gate and counter inputs and the accumulator (overflow)
outputs for each of the units could be appropriately connected by
“jumpers.”’

EXERCISES

(@) Compute sin z and cos z, and graph the results as they would be computed by
a digital differential analyzer (see, for example, Fig. 8-1). If the word length were
4 bits, how would the problem be scaled?

(b) Draw the arrangement of units to compute y = 1/x.

(¢) Draw the arrangement of units to compute y = Inz. [Hinrt: dy = (1/z) dz.
Let w = 1/z; then dy = wdz, and dw = (—1/22) dz = —w dy.]

(d) Draw the arrangement of units to compute y = z*. {HinT:dy = nz"ldz =
2*[(n/x) dz] = z»d(nlnz) = yd(nln z).}

(¢) Draw the arrangement of units to solve the following simultaneous differential
equations:

d: d d
% = Ai2yz + My Eyf = Aay1 + Azsys % = Na1y1 + As2y2

(f) How can a digital differential analyzer be used in conjunction with machine-tool
control (see Chap. 1)?

8-3. Real-time Logical Systems Control: A Real-time Control Computer

An Example. Very often the primary function of an on-line digital
control system (i.e., a system connected to a dynamic process) is to make
sequences of logical decisions that depend on the state of certain variables
associated with the world external to the computer. Here we shall con-
sider the special-purpose systems design of a real-time logical-control
computer and show how it might be applied in a specific example of
controlling a chemical factory. By discussing first the specific applica-
tion, the reasons for the various aspects of the control computer will be
better appreciated. Although the example is concerned with the control
of a chemical factory performing a specific chemical process, the situa-
tion is conceptually similar in almost all such real-time control problems
as may occur in other types of automatic factory control, in tactical
gunnery control, or in distributing tracking data to command centers
according to predetermined strategies. The example also contains
a feedback loop by which the results of the input digital disposition influ-

Sec. 8-3] SPECIAL-PURPOSE DIGITAL COMPUTERS 263

ence the outside world, which in turn again influences the input to the
computer.

Figure 1-10 on page 12 shows the flow chart of a chemical factory
manufacturing Al,O;. Briefly, clay is mixed with water and a detergent
to make a wash containing the raw material. A certain amount of this
wash is tapped off into an evaporation tank, where it is concentrated by
evaporation. Then in another tank HCI gas is mixed with the wash until
it is saturated. The wash is centrifuged and a precipitate of AlCl;-6H,0
is obtained. The precipitate is decomposed, by heating, into gaseous
HCl, which is reused, and into solid Al,O;, the desired end product.
It is of course understood that, even though this problem is based on an

TABLE 8-1. SIGNALS SHOWING THE STATE oF THE CHEMICAL FAcCTORY

Signals generated by factory Symbolism
Level of L(1) reached.................... L)
Concentration test good.................. c
Time for concentration test............... T(C)
Valve 4open........ccooviiviininan, V(&)
Level of L(2) reached.................... L(2)
Tank 2empty............cooiivn... E(2)
Tank 3full.............. ..., F(3)
Temperature T(1)...ooovivneveiiinn .. T(1)
Temperature T'(2)......... ..o ... T(2)
Saturation test positive.................. S
Tank 3empty......ccovvvevin. .. E@3)
Valve 7open..........c.oooiiiniin.. v(7)
Centrifuging finished.................... C(F)
Centrifuge empty. E(C)
Pressure of HCl too high................. P
Enough volume.............. e w

actual process, it has here been grossly oversimplified and actually
stylized. It is not meant to be examined from a chemical-engineering
point of view, since many details of both the necessary conditions and
desired results are but casually indicated.

The state of the chemical factory is given by 16 signals, listed in Table
8-1. The computer periodically senses these signals, generating from
them 12 control signals that direct the future state of the factory. The
future state of the factory results in changes of the input signals, whence
new control signals are generated by the computer, and so forth. Table
8-2 gives the relation between the sensed-signal conditions and the neces-
sary control signals to be generated. A symbolic notational form for each
statement is also given, where - means and and — means not (i.e., no
signal).

Programming Logical Control. The computer will have one subroutine
for each set of the control signals to be generated. Hence a jump table is
required to initiate the proper subroutine for a given state of the sensed
signals. However, we need an input to the jump table that tells which

264 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHaP. 8

TABLE 8-2. CONTROL SIGNALS

Sensed-signal conditions Symbolic‘ Corresponding signals
representation to be generated
1. Level is at L(1), and con-| L(1) - C - T(C) Throw away solution by open-~
centration test is bad, and ing valve 3, and add clay,
time for testing is due detergent, and water in tank
1 by opening hatch 1, valves
1 and 2
2. Level is at L(1), and con- | L(1) - C - T(C) - E(2) | Tap off certain amount of fluid
centration test is good, into tank 2 by means of valve
and time for testing is due, 4
and tank 2 is empty
3. Level L(1) has not been | L(1) - V(4) Add detergent, water to tank 1
reached, and valve 4 is not by opening valves 1 and 2
open
4. Valve 4 is not open, and | V(4) - L(2) - E(3) Transfer fluid to tank 3 by
level is L(2), and tank 3 is opening valve 5
empty
5. Temperature is T(1), and | T(1) - F(3) - V(7) Cut rate of HCI flow to slow by
tank 3 is full, and valve 7 * closing valve 6
is off)
6. Temperature is T(2), and | T(2) - F(3) - V(7) Increase rate of HCl flow to
tank 3 is full, and valve 7 fast by opening valve 6
is off
7. Saturation test is good, |S- V(7) - E(C) Close flow of HCI by means of
and valve 7 is closed, and o valve 6, transfer fluid to
centrifuge is empty centrifuge by wvalve 7, and
start centrifuge
8. Centrifuge finished....... CF) Put precipitate in furnace by
opening hatch 2, throw away
. wash by opening valve 8
9. Pressure of HCI high..... P Lower heat of furnace
10. Weight is enough........ w Take out resultant Al,O; by
opening hatch 3

Jump instruction to use, and we shall first describe how this input may
be accomplished.

At any instant the bits in the signal-sensing word (Fig. 1-10) tell which
signals are on and which are off. For instance, the word might be as in
Table 8-3; in the table under each bit of the word is shown the state of the
corresponding signal. We can similarly use a word for each of the sig-
nificant sensed-signal conditions of Table 8-2, so that the conditions can

TaBLE 8-3. EXAMPLE OF SIGNAL-SENSING WORD
1 0 1 0 0 0 1 1 0 0 O 0 1 0 10
L@A)-C-(TC) V(4)-L(2) - E(2)-F(8) - T(1) - T(2): S-E3)- V() C(F)-EC)-P-W

Stc. 8-3] SPECIAL-PURPOSE DIGITAL COMPUTERS 265

be matched with the state of the sensed signals at any time. For exam-
ple, the first condition, L(1)-C-T(C) - - - , would be represented by
101 + - - . But what about the rest of the bits? Condition L(1)-C-T(C)
does not mention the rest of the signals because for that condition they
make no difference. They are to be ignored. Thus we need another

Call in new
signal-sensing word

Set i=1;
set jump tally N=1

!

@-——» Clear temporaries
‘ |
Using 2d word of condition i

as a mask:

(a) Extract 1st word of condition i
into condition temporary

() Extract signal word Into signal
temporary

Compare if (condition temp.) = (signal temp.)

Unfavorable Favorable

comparison comparison
Jump to

subroutine IV

T

- Generate
] Add 1 to signals of
jump tally N subroutine IV

S 2

Fic. 8-6. Flow chart of real-time operating program.

word that tells what positions are to be considered and what positions
are to beignored. This second word will have units corresponding to bits
that are to be considered and zeros corresponding to bits to be ignored.
For example, L(1)-C-T(C) is denoted by the following two words:

1st word: 101z a2zxxx 22T ZTTTXT
2d word: 1110 0000 0000 0000

266 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHaP. 8

where the z means that it makes no difference whether the bit is zero or
unit. Similarly the fourth condition, V(4) « L(2) : E(3), is denoted by

1st word: zxz0 lzzx azly zzzx
2d word: 0001 1000 0010 0000

There would then be two words representing each of the 10 conditions of
Table 8-2.

Figure 8-6 is a flow chart of a real-time operating program that will
compare each of the conditions with the sensed-signal word until a favor-
able comparison is obtained; then, depending on which condition com-
pared favorably, a jump will be made to the proper signal-generating
subroutine. After completing the subroutine, a new sensed-signal word
will be called into the high-speed memory, and the process will start
over. If no condition eompared favorably, the program would call in a
new sensed-signal word and repeat the comparisons, and so forth.

—] £ s5
— £ €8 |——
Lo o =
[oo
— 75 S8
S B 03 |l
& . o = 5
n " Small memory " =2
R—— S {1 2

Y
A
Simple Extemnal |g— o o
arithmetic control L unit

unit instruction l_

Fi1e. 8-7. Real-time logical-control computer.

Systems Design of a Special-purpose Logical-control Computer. When
hundreds of signals must be sensed, as would occur in a more realistic
case, it may be more efficient to have the two extractions and comparison
made in one step by a special computer instruction, which we shall call an
external-control instruction. Such an instruction would have three
inputs: the sensed-signal word and the first and second condition words.
If the comparison is unfavorable, the instruction would automatically
increase a relative counter. This instruction would repeat itself as the
next instruction. The addresses of the two condition words are taken
relative to this counter so that they are automatically modified appropri-
ately for the next condition when the external-control instruction repeats
itself. If the comparison is favorable, the next instruction is taken
from the address of the external-control instruction plus the counter
reading; i.e., the external-control instruction would be followed by the

Sec. 8-3] SPECIAL-PURPOSE DIGITAL COMPUTERS . 267

jump table. The method by which the comparisons are repeated is left
as an exercise (see Exercise a).

TFor a permanent installation the subroutines generating the control
signals can be wired in. Hence the real-time logical-control computer
need contain little more than the external-control instruction, an instruec-
tion to clear the relative counter, a comparison instruction, a jump
instruction, and an add instruction (see Fig. 8-7).

Since the program will not often be changed, it can be inserted into
the computer by means of the control panel; therefore no input-output
equipment is necessary except the signal-sensing word and the wired
control-signal generator. The memory of such a special-purpose com-
puter need be only a little larger than necessary to accommodate the
condition words. The speed of the memory need only be fast compared
with the feedback reaction time of the system it is controlling. For the
chemical factory here described this need not be particularly fast; for a
tracking system it must be very high-speed.

EXERCISES

(a) How would the external-control instruction break the loop when no comparison
is successful? (HinT: A dummy comparison would automatically compare favorably.
How would this dummy comparison be arranged, i.e., what would be the first and
second words of the dummy condition?)

(b) Suppose that the input word to a real-time logical-control computer has the
following inputs (see Fig. 8-8): tank 1 full, L(1); tank 2 full, L(2); valve 1 open, V(1);

F1c. 8-8. Simple system controlled by real-time logical-control computer.

valve 2 open, V(2); valve 3 open, V(3). For the output or control-signal word let
O(1) mean open valve 1; O(2), open valve 2; O(8), open valve (3); C(1), close valve 1;
C(2), close valve 2; and C(3), close valve 3. Define an appropriate instruction,
including an external-control instruction, for the logical-control computer as discussed
above, and code the process of filling the two tanks, one at a time.

(¢) Code the problem used in (b) without the use of an external-control in_structipn.

268 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CraP. 8

8-4. Systems Design for Special-purpose Information-retrieval Computer

An Ezample. The occasion may frequently arise where a special-
purpose searching, sorting, and ordering computer becomes feasible.
As a specific example of the use of such a computer, which will indicate
the motivation for its systems design, consider a cost-accounting system
in a factory. Each workman in the factory is given a job; he procures
supplies and parts; he spends time using the supplies and assembling the
parts to produce some final object; then he may be given another job
(which may be a repetition of the first), ete. The executives and account-
ants of the factory would like to know how many objects of each type
have been completed, how many supplies and how many parts were used
during a particular period of time, how many hours a particular workman
spent on a particular job, how many man-hours altogether were spent in
making a certain number of these objects, and so forth. The description
given here of a cost-accounting system is necessarily oversimplified, but
the basic principles and concepts are the same.

Suppose that each procurement of supplies and parts, each object
completed, the time consumed in each job, etec., were recorded by part
number, workman’s name, job number, date, and so forth, at the time the
action was taken or the job completed; suppose that all this information
for 1 week could be compiled on a single magnetic tape. The problem
then reduces to searching, sorting, and ordering the items on the tape to
answer the above questions. In general a computer that can perform
these operations need be capable only of comparing, counting, and
accumulating. Whether or not such a special-purpose computer is
feasible depends on its cost and on the time it takes to process the neces-
sary number of data.

A Small Retrieval Computer. Let us suppose that any item can be
recorded in 50 characters or less (a character being 6 bits). Then thecom-
puter will first read a set of 50 characters into the temporary storage, a
nonending loop of tape (see Fig. 8-9). Selected characters will be appro-
priately compared with characters from the previously loaded argument
storage, a second loop of tape. Dependingon the outcome of this compari-
son, the computer may then add into a partial sum in the accumulator
some number represented by certain of the 50 characters, or may increase
the count of the counter, and so forth. Actually several sets of 50 bits
may be recorded in the temporary storage unit. When writing back onto
the magnetic tape, the computer can transpose sets if it is ordering the
information, or can insert new information, and so forth. In summary,
successive items from the magnetic tape are stored temporarily in the
computer; here information is extracted from them, or they are otherwise
processed; then they are replaced on the magnetic tape, perhaps in some
transposed order. The processing is done in conjunction with information
preloaded on the argument storage unit.

The number of instructions to be written into a program will be
limited to the number of instructions that can be executed from the time

Sec. 8-4] SPECIAL-PURPOSE DIGITAL COMPUTERS 269

Magnetic-tape unit Temporaty

storage unit Argument

I | storage unit
from Simple
reading — arithmetic
tape UMt unit

I 5 . oy R

it nto
Writing o't [Accumulator |
tape uni 5
|— 4 l— \
Output Instruction and control unit

Fic. 8-9. Small retrieval computer.

an item is read from the tape until it is put back again. The instruction
system can be very simple. Suppose that the instructions were punched
on cards and the cards for one program put into slots in the control unit,
where the holes on the cards can be sensed. The arguments on the
argument-storage-unit tape loop, which are fixed during any program,
can also be addressed. The instruc-

tion format could be as shown in Instruction card
Fig. 8-10. Each instruction is con- Selected characters
cerned with selected characters, as
recorded on the cards, of the current
item in the temporary storage unit.
An instruction may involve two of
the arguments of the argument stor-
age unit if, for example, a search for
characteristics less than « but greater
than B is desired. A two-way exit,
v or § depending on the outcome of
the comparisons, is allowed for flex- Fic. 8-10. Instruction format.
ibility in coding. Consider as an

illustration the computation of the number of hours in a week that work-
man 1224 required to make part 2746 and the number of parts he com-
pleted in that week. Suppose that 40 was the code for an item recording
a finished job. The instructions would compare the properly selected
characters of each item with 1224, and 2746, and 40. When an “equal”
comparison was made, the computer would add 1 to the counter and add

n | Forun "o LRI

Operation
1st argument
2d argument 8
Next instruction
Next instruction 3§

270 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 8

the number of hours recorded on this item to the accumulator. If an
equal comparison was not made, the computer would just replace the
item on the tape. By this means the total number of man-hours worked
in making a particular object during any specified time period can be
determined in one pass through the tape. Similarly the number of man-
hours that were worked by a certain person, or in a certain shop, ete., or
the number of a certain part that were consumed, or the amount of a
certain material that was used, in any shop or by any person, in making
a particular object, during a specified time, can be determined in a single
pass, and so forth. Suppose that the magnetic tape runs at a rate of
100,000 bits/sec, i.e., about 17,000 characters/sec (6 bits = 1 character),
or 350 items/sec (50 characters = 1 item), or 21,000 items/min. Sup-
pose also that there are 500 workmen in the factory, each generating an
average of 5 items/day, or a total of 2,500 items/day, or 50,000 items/
month (20 working days = 1 month). One pass through the tape con-
taining 1 month’s items would take approximately 2 min and 22 sec.
Comparison with more conventional bookkeeping methods is hardly

Concurrent Buffer General-purpose
searching, sorting, interlock digital
and ordering unit computer

Fia. 8-11. Special-purpose computer attached to general-purpose computer.

necessary. On the other hand, if we were to run a standard payroll calcu-
lation on the man-hours worked for each of the 500 men, it would take
(500 men) (2 min 22 sec) = 20 hr. Also we have not mentioned the
input and output equipment problem, which in the case of payroll, for
instance, is a subject in itself.

Integration with a General-purpose Computer. In order to increase the
working speed of this type of computer, we can enlarge the argument
storage unit and include more accumulators and counters to accommodate
more than one comparison, so that in one pass several pieces of informa-
tion ean be accumulated; or we can run several tapes in parallel, and so
forth. The time per information pass can thus be decreased by a factor
of 10 or 100, that is, to within 20, or even 2, sec. This would increase the
complexity and hence the cost of the computer. Finally we can attach
our special-purpose searching, sorting, and ordering computer to a gen-
eral-purpose computer, enabling more complicated processing to be
accomplished as well as more automatic operation (see Fig. 8-11). In
such a case the tapes can be searched at the same time as the general-
purpose computer computes other things. The fixed card memory of
the special-purpose computer will be replaced by a part of the high-speed
memory shared with the general-purpose computer. Two codes will be
written, one for the computing unit of the general-purpose computer,
the other for the simple arithmetic unit of the special-purpose computer.

Sec. 8-5] SPECIAL-PURPOSE DIGITAL COMPUTERS 271

An interlocking buffer must be designed so that the general-purpose
computer will stop and wait if it needs some information not yet retrieved
from the special-purpose auxiliary computer, and so that the searching
computer will stop and wait if it in turn needs information not yet gen-
erated by the general-purpose computer. An auxiliary computer for this
special purpose can be exceedingly effective and timesaving when large
amounts of this kind of nonnumerical manipulative computing are
necessary.

EXERCISE

(@) Suppose that a factory item is composed of the following word,

Number of
Name of hours Type number of
worker Date on job completed object

~

N T N N N O I O O

where each box can be filled with a digit or an alphabetic character. Define an
instruction system for a special-purpose retrieval computer as shown in Fig. 8-9,
and write a code that will determine how many objects of type 54321 were completed
between Mar. 3, 1959, and Mar. 15, 1959.

8-b. Manipulations with Rectangular Arrays: A Business and
Logistics Computert

The Need. An important class of computations occurring frequently
in business and in logistics (i.e., processes involved in supply) is con-
cerned with rectangular, matrixlike arrays of variables. The operations
to be performed on the variables are usually very simple, the main prob-
lem being the manipulations necessary for handling such large-scale
arrays. In this section we shall first indicate some applications of these
techniques; we shall then show how a few relatively simple special-
purpose instructions can significantly aid these processes; and finally we
shall discuss a special-purpose computer especially designed to perform
manipulations with rectangular arrays.

As a first example, consider the keeping and updating of a spare-parts
inventory. Suppose for simplicity that there are 10 parts under con-
sideration and that the first row of the array in Table 8-4 represents the
desired inventory for each of the 10 parts—i.e., there should be 100 each of
the parts in stock. The second row represents the actual stock level of
each of the parts at time . Now let us suppose that the parts are con-
sumed in the course of three kinds of overhauls and that the number of
parts used for one of each kind of overhaul appears on lines 4, 5, and 6,
respectively. Now suppose that since time ¢ there were one overhaul of
kind 1, two overhauls of kind 2, and three overhauls of kind 3. The

1 The main concepts discussed in this section are based on the original research of
Dr. W. H. Marlow, principal investigator of The George Washington University Naval
Logistics Research Project.

272 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHap. 8

problem is to determine the present stock levels, i.e., to adjust row 2, and
to determine how many of each part should be ordered in order to have
the desired number of spare parts on hand, i.e., to determine row 3. To
take account in the inventory levels of the parts used for the overhaul
of kind 1, subtract row 4 from row 2, column by column; for the two

TABLE 8-4. DATA ARRAY FOR INVENTORY-UPDATING PROBLEM

Part|Part|Part|Part)Part) Part| Part| Part| Part| Part
1 2|1 3| 4| 56| 7|81 9|10

Row 1, desired inventory........ 100| 100 100 | 100 100 | 100} 100 | 100 | 100 | 100
Row 2, stock on hand (time ¢)....| 80| 75| 90| 80| 95| 90| 85| 95 70| 75
Row 3, parts to order...........
Row 4, overhaul kind 1, parts

used. ... 5| 15 5| 10 5 0 0 5| 10 5
Row 5, overhaul kind 2, parts

used. . ieeiii e 10| O 0| 10| 10| 20| 15 5(10 0
Row 6, overhaul kind 3, parts

USed. .ot ien s 5 0| 10{ 10 5| 10| 15| 20 0 5

overhauls of kind 2 multiply each figure in row 5 by 2, and subtract the
result from row 2, column by column; and similarly form

Row 2 — 3 X (row 6)
We thus obtain the present stock levels in row 2:
40 60 55 20 55 20 10 20 40 55

Subtracting row 2 from row 1 and putting the results in row 3, column
by column, we obtain the number of parts to order of each type. Of
course many other related problems can be similarly solved; e.g., we may
record the usage of parts in each time period and then extrapolate column
by column to predict usages in the future, and so forth. We have used
only 10 different parts, but in realistic cases thousands of parts may be
involved.

Another example is the calculation of building-material purchase
schedules and requirements as functions of time, as would be needed in
the construction of a ship or of a large office building. An array can be
made of the materials needed at the construction site as a funection of
time. That is, successive rows of the array will represent successive
times, and the columns of the array will represent the various building
materials; then an element in the array will indicate how much of a
certain building material is needed at the building site at a particular
time. However, there is a certain time lag that must be allowed for the
delivery of each of the materials from the time it is ordered. This time
lag differs for different materials and can be represented as a row of the
array. The problem here is to schedule the orders so that the materials

Sec. 8-5] SPECIAL-PURPOSE DIGITAL COMPUTERS 273

will arrive at the site at the proper time. In addition the costs of the
materials per unit can be represented in another row. If the materials are
paid for at the time they are ordered, then a calculation should be made
as to how much money will be spent during each time period. This
calculation can be made after the ordering schedules are set by multiply-
ing the number of units to be ordered in a time period (i.e., a row) by
the cost of each per unit and summing over the elements of the resulting
row, i.e., adding the columns of that row independently.

The keeping of bank accounts presents similar array-manipulation
problems. Here suppose that each row contains the balance of each of
the savings accounts for successive weeks and that interest is computed
monthly, based on the minimum weekly balance. Here the minimum
of the rows each month must be obtained and the interest rate applied to
each account (i.e., each column of the minimum record row). If the
bank desired to know the total deposits each week, the row for each week
is totaled. In this way calculations of interest, principal, penalties,
interest rates, and other banking problems can be made.

Military and nonmilitary dynamic-operations simulation studies can
involve these processes. For example, consider air-traffic control (in
three dimensions). Three rows can record the z and y coordinates and
altitudes, respectively, of the aircraft represented by the successive
columns. If the = and y velocity components are known, the coordinates
of the aircraft can be predicted in time and aircraft that may be flying
too close appropriately warned. When changes in course are made,
recalculations of predicted positions of all the aircraft become easy.

Of course, we could describe above only the simplest of applications.
Our intention is to stimulate the reader’s awareness of the great variety
of fields in which problems arise that involve the manipulations of large
arrays. Although a general-purpose computer can handle such problems,
special-purpose computers can fulfill the need much more effectively and
efficiently. We shall now describe some special-purpose operations that
would be incorporated into such a computer.

Basic Operations and Instruciion Format. With the above examples in
mind the reasons for the definitions of the following basic manipulatory
operations are clear. In fact it is quite surprising that these few simple
operations can accomplish the task so well. The instructions that we
shall illustrate contain the necessary ingredients, although their form in
actual practice may vary greatly. It is felt that a concrete example may
best serve to demonstrate the concepts.

Since we are concerned primarily with arrays of numbers, ie., with
numbers arranged in rows and columns, suppose that we literally arrange
these numbers in such an array in the computer’s memory. Figure 8-12
represents such an arrangement on a drum memory. Then in order to
‘““address’ a particular number, all we need specify is its row and column.
For reasons that will presently appear clear, we denote the number in
row j and column 2 by the following functional notation: f;(z). See, for
example, Table 8-5.

274 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 8

Column

Rowo 0.1 2 3 4 5...
L —
w77 77
N o v v L/ /7
Row 5 - 1 {
Row 6 :
Row 7 :
480 L L W WS

Y \ \‘\ \ AN NN

=~

F1a. 8-12. Arrays of numbers stored on drum memory.

The address of fi(z) is thus specified by the pair of indices: j, z. We
use the phrase generalized address because the instruction actually indi-
cates a collection of addresses in the manner now to be described. Con-
sider a multiplication instruction. Rather than form the product of
just two numbers, fi(z) - f;(x), we wish now, with a single instruction,
to form a whole row of successive column-by-column products, that is,

TABLE 8-5. NOTATION OF THE ARRAY

Column =
0 1 2 ce P e q . n
0 | £ | £ | 5@ | o | S | e [8@ | e | S
1 70 | f1(1) | f2(2) SRR 716 T TR B $1(/)) <o | filn)
2 fz(O) fa(1) f2(2) SR fz(P) s fz(Q) SR f?(n)
Z fz(O) fi(l) f-(2) R fr(p) - f»(Q) < fz(n)
J fy(O) f:(l) f7(2) ct fz(P) v f:(Q) A fl(n)
m fm(O) fm(l) fm(2) SR fm(p) SR fm(Q) SR fm(n)

£i(1) - fi(1), and f:(2) - f(2), and f:(3) - f;(3), and so forth. We might
represent this as the operation fi(z) - fi(z) forz =1,2,3,.... To
add a little more flexibility to the operation, we might form, with a single
instruction, fi(z) - fi(x) for p < 2 < g, that is, the successive products for
only the columns p through q. For example, if¢ = 1,7 = 2, p = 5, and
g = 8 we would form (see Table 8-6)

f1(5) ’f2(5) f1(6) 'f2(6) f1(7) 'f2(7) and f1(8) ‘f2(8)

Thus the multiplication instruction must now contain the row indices
7 and 7, and the eolumn indices p and ¢; this collection of indices represents
the so-called ““generalized addresses.”” Suppose that we wish the results
to be placed in row k of the corresponding columns p to g; then the index

SEc. 8-5] SPECIAL-PURPOSE DIGITAL COMPUTERS 275

k must also appear in the instruction. Thus 7, 7, and k, together with
p and ¢, represent the generalized «, B, v, and & addresses, and all these
indices must appear in the instruction format itself.

TaBLE 8-6. ILLUSTRATION OF OPERATION fi(z)f2(z), 6 <z <8

Column

0 1 2 3 4 5 6 7 8 9

Row 1..... 9 7 8 6 1 5 2 4 3 1
Row 2..... 6 2 5 1 0 3 4 8 7 2
Row 3..... 15 8 32 21

A description of the fourth generalized address, that of the next
instruction, requires reconsideration of the drum memory. An instruc-
tion would appear as a partial row of numbers and can be recorded along
with the data on the drum. For greatest efficiency a row length on the
drum should be a multiple of an instruction length. To address the
part of a row that is an instruction, only the row and column of the first
number of the instruction need be known, since the length of the instrue-
tion is fixed by the instruction format (see below). Let us denote the
row and column number of the first characteristics of an instruection by
o and 8., respectively. These must also appear in each instruction word.

There are several other considerations that can lead to greater flexi-
bility in our instruction format. Tirst suppose that we desired to form
C - filz) - fi(x) (for p < z < g), where C is a constant. Since this is
frequently desired (e.g., interest and discount rates), it is convenient to
include the constant C in the instruction format itself, rather than
address it separately. Second, observe that so far we can work on
the different rows within the same column but we cannot have a number
in one column affect a number in another ecolumn. Thus, for example,
the product fi(z) - fi(x) becomes fi(x) in the same column. To circum-
vent such a restriction, it suffices to introduce into the instruction format
the alternative of placing the result of the operation in corresponding
columns in the kth row, or of placing the result one column to the left in
the kth row, 1.e., displaced one column. That is, one may choose to have
the product f; - (z) - fi(x) become fi(x) or fr(x — 1). Finally recall that
(v) is usually replaced by the result of the operation. However, great
flexibility results if there is introduced into the instruction the alternative
of either replacing (v) or else accumulating (adding) the results of the opera-
tion to the original contents of v. As an example, suppose that, given the
initial rows 1, 2, and 3 of Table 8-7, we formed fi(x) - fa(z), for5 <z < 8
(thatis, s = 1,7 = 2, p = 5, ¢ = 8), and accumulated the result in row 3,
displaced. Then we would have

fa(x — 1) final = f1(x) - fo(x) + fa(x — 1) initial
for 5 < o < 8 (see Table 8-7).

276 FUNCTIONAL: APPROACH TO SYSTEMS DESIGN

[CHaP. 8

TABLE 8-7. ILLUSTRATION OF OPERATION fi(z)f2(z), 5 < z <8, PLACED
IN Row 3 DispraceEp BY ONE COLUMN, AND SO AS TO ACCUMULATE

Column
0 1 2 4 5 6 7 8 9
Rowl........... 9 7 8 1 5 2 4 3 1
Row2........... 6 2 5 0 3 4 8 7
Row 3, initial. ... 3 2 4 2 1 5 3 2 6
Row 3, final..... 3 2 4 17 9 37 24 2 6

With these considerations in mind we can represent an instruction

format as:

| Operation
code

Rowi | Rowj|Row k| p| ¢

Displaced | Accumulated
or not or not

8 | 8¢

We shall use the convention that 1 means displace, 0 means do not, and
that 1 means accumulate, 0 means do nof, in their respective columns.
The instruction that will produce the final result shown in Table 8-7 is:

Operation| 2 | j | & | p q Displace | Accumulate C 5,

b

Multiply | 1 21315 8

We are now ready to define seven basic operations, where the column-
by-column disposition of each type of result is understood to be in accord
with the above discussion, and where only the column—by—column
operations on the arguments need be given.

1. Multiplication
Cfi(z) - fi(x)
2. Division
Cfi(x)
fi(x)
3. Linear combination
Cfi(x) + fiz)

4., Minimum

I{lin [fi(@), fi(@)]

plz<yq

p<zr=<gqg

The final three instructions require some additional explanation:

Sec. 8-5] SPECIAL-PURPOSE DIGITAL COMPUTERS 277

. 5. Digplaced linear combination Cfi(x — 1) 4+ f;(x). Here the addi-

tion is not performed column by column, but rather displaced column by
column. Of course, it is always understood that p < z < ¢, but then,
when z = p and p = 0, the meaning of fi(0 — 1) is undetermined.
We therefore define f;(0 — 1) = f,(0).

6. Partial scalar product z C - fi(n) - fi(u). This defines one result
=p

I
for each z such that p < z < ¢q. TFor example, if row 7 and row j were:

Column

01 2 3 45

=
e
b}
«©
[BN
W
[) B
(=23
~ N

W o

and p = 2 and ¢ = 5, then the results would be

5X4=20 5X44+4X5=40 5X4+4X5+3X6=058

and 5X44+4X5+3X6+2XT7T=172

7. Compare (min [fi(z)]):C. This operation does not yield a column-

p <z <g
by-column result; rather it is a {wo-way exit. If the minimum number in
row %, columns p to g, is greater than C, then the next instruction is to be
taken as the instruction that has row j, column % as the address of its

first number; otherwise, i.e., if min [fi(z)] < C, the next instruction is
p<z<

to be chosen as usual, from 6,, §.. Of course displace and accumulate have
no meaning for a compare instruction.

Ilustrations of Coding. As a first illustration of using these special-
purpose instructions in writing codes, consider the problem of accumu-
lating the amounts within each column, from row 7, to row ¢4 + A, putting
the results into row 4o + h. Suppose for simplicity that the drum has
22 columns (just twice the instruction length) and that the code is
written in address 0, 0; 1, 0; 2, 0; ete. The code will make use of
operation 3, with C = 1, not accumulating the results of summing ¢ and
i+ 1. (Why?) Then a compare instruction will occur for the tally,
and the iterations will proceed by adding 1 to the generalized addresses
i, J, and k of the first instruction until the accumulation is completed.
Since the first instruction is updated on each iteration, its ¢ address can be
used as the tally. The code appears in Table 8-8.

As a second example, consider a linear extrapolation. Suppose that
each column represented an aireraft and that rows zy, ¥, and ¢; repre-
sented the = and y coordinates of each aircraft at time ¢, and rows s,

278 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHaP. 8

Y2, and ¢, represented the x and y coordinates of each aircraft at time ¢..
The problem is to make a linear extrapolation of the coordinates of each
plane at time . The formulas to be used are

BB and y=(-) LUy,
ta — b b —

We first form z; — x4 in row 21, ¥ — y1 In rOoW ¥y, ts — ¢; in row ¢y, and
finally ¢ — ¢y in row ¢{. Then we form the quotient of rows z; and ¢, in
row z; and of rows y; and #; in row y;. Next we form products of rows ¢
and z; in row 2; and of rows ¢ and y; in row y;. Finally row z. is added
to row z; and put in row z;; and row y. is added to row y; and put in row
¥s; and the extrapolation is completed. The method of coding is straight-~
forward, using C = —1 in operation 3 for subtraction.

TaBLE 8-8. CoDE To ACCUMULATE THE Rows ¢, To 7o + h, CoLuMN BY CoLuMN{

Instruc- Opera- Dis- | Accu-
tion N 7 7 k pla c 8r (8a Remarks
tion place [mulate
address
0,0 3 o|lto-+1}d0+1]0]21] 0 0 1 1}10)Add ¢ to ¢ 4+ 1; put
int+1
1,0 7 0 3 0 1l1] ... oo o+ h—=1]2[0f¢50+ 1 —1
> : Stop iteration
< : Continue
2,0 3 4 0 o |1{3] o 0 1 0| 0] Update (0,0)
3,0 Stop computer
4,0 0 1 1 1 0}0 0 0 0 0] 0} Constant

T Recall that the columns are numbered 0 through 21.

As a third example, consider a numerical integration according to the
rectangular approximation. Suppose that the successive values of the
function at points z are given by f;(z) and that the intervals are unequal
and are given in row 2 + 1. Then for the rectangular approximation we
want to form the product of rows 7 and ¢ + 1, column by column, and then
accumulate this product over the columns. Here we make direct use of
operation 6 and form

21

D, Fiw)fua)

u=

in row 7 + 2. Then the value of the approximation is found in row
¢ + 2, column 21,

Systems Design for a Spectal-purpose Business or Logistics Computer.
One of the most important features that a special-purpose computer of
this type should have is rapid, flexible input-output. A general charac-
teristic of the problems under consideration in this section is the large

Skc. 8-5] SPECIAL-PURPOSE DIGITAL COMPUTERS 279

mass of input data to fill the array and the large mass of data computed
from the array. This is in fact the main reason for having instructions
that operate with generalized addresses. The given data may be
characterized as items and characteristics associated with the items.
Here the characteristics are the numbers upon which it is necessary to
perform operations, and the items are the specifications of these numbers.
Hence on the drum the location of a number can represent the item or
specification, while the number itself, i.e., the contents of this location,
will be the characteristics.

For example, in a naval supply problem an item might consist of the
set of numbers (xo,z1,22,%3), Where zo = ship number, x; = time period
(e.g., month and year), £z, = Navy material class (e.g., class 75, diesel
engine parts), and z; = source of supply (e.g., the vessel itself, an afloat
activity, a shore activity). The associated characteristics might consist
of the set of numbers (yo,41,y2), Where yo = total number of items con-
sumed, y; = total weight in pounds, and y. = total volume in cubic
feet. The source of this data may have covered 12 ships, during 72
time periods, for 50 Navy material classes, and from three sources of
supply, or 129,600 items. For each of these items there appear three
six-digit numbers representing yo, y1, and y.. The data would then con-
tain 2,332,800 digits.

Processing this data might consist in computing and printing tables
with entries yo, 1, and y. corresponding to some specified set of the z’s.
For example, the set (zo,z1) would lead to a two-way table of vessel
number vs. time period, with entries covering all classes of material from
all sources. Or additional functions of the y’s may be desired. Average
values are about the simplest example: y; = y1/yo = average weight in
pounds; y: = ys/yo = average volume in cubic feet; y; = 2,240y,/y: =
stowage factor in cubic feet per long ton.

It often occurs that a characteristic of one problem becomes an item
specification for another problem, or the reverse. For instance it might
be desired to compute a table giving the values of e, ¥1, and ¥, for each
%o, 1, and y;, that is, for each ship, time period, and average weight.
In such a case the numbers yo, ¥1, and y. will have to be relocated so
that xo, 21, and y; will now specify their locations. - Hence it becomes
clear that in business and logistics computations searching, sorting, and
ordering play an important role, in addition to the types of computations
considered above.

In the previous section we assumed that the information was recorded
on a magnetic tape; here, however, we shall consider searching, sorting,
and ordering of items by characteristics accomplished on an auxiliary
drum, different from the one with which the computations are performed.
The input data, which might, for instance, be on punched cards, is read
onto the searching drum, both the items and the characteristics being
recorded. This drum is appropriately searched, and the characteristics
determined by the search are recorded on the computational-array drum
in positions (i.e., addresses) that specify the associated item. Any

280 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [Cuap. 8

rearrangement or reordering is accomplished by use of the searching
drum.

Our special-purpose business or logistics computer is thus seen to be
two interlocking computers, an array-manipulation computer and a search-
ing or information-retrieval computer (see Fig. 8-13). Each would have

| | e l
Punched-card [Information-retrieval [| Array-manipulation |
input <)—1 [computer [| computer |
I I
| I I I
Searching | | Computational |
drum | array drum |
A A l
High-speed [&— | | | I
printer output I | | l
, | AN |
} Control and — 1 Control and |
T computing unit — [computing unit |
| M |
<& 4 N
Punched-card | / AN !
o l

output / ! N\
| S _// M \; _____ J

Fi1a. 8-13. Special-purpose business or logistics computer.

its own programming system. The array-manipulation computer would
have special-purpose array-manipulation instructions as described above;
the information-retrieval computer would have instructions enabling it
to perform the operations described in the previous section. Ideally the

A) 4 A

Input- [Information- Array- General-

output k= retrieval manipulation purpose

equipment F- computer computer computer
Y [»Y [

N4/

Interlocks j<t—————-

Fi1g. 8-14. Large-scale system consisting of information-retrieval, array-manipulation,
and general-purpose computers.

two computers should be able to operate concurrently; appropriate inter-
locking conditions would have to be satisfied, so that the two computers
and computer programs would be properly synchronized.

In addition we could attach a general-purpose computer to this setup
to have a large-scale system (Fig. 8-14). Again for concurrent opera-
tion interlocks must be maintained. More will be said about such an
arrangement in the next section.

SEc. 8-6] SPECIAL-PURPOSE DIGITAL COMPUTERS 281

EXERCISES

(a) Consider the example of compufing building-material purchase schedules and
requirements. Suppose that the requirements at the site for each month during the
construction are as follows:

Type of material
Month

0 1 2|3 4 5 6 7 8 9 10
March............ 100 75 | 60 | 54 0 0| 20| 60 10| 20| 30
April. 50 0| 40 | 60 0 0] 20| 90 10| 20 O
May.......oevenn 25 013050 0 0| 30150 | 10| 30| O
June.............. 30 | 115 [20 | 70 0 0| 50| 50| 50 0] 20
July.............. 0 0| 10| 30 10 20 90 20 70 0410
August............ 0| 100 5150 50| 30| 100 10| 90| 80| 5
September......... 0 0| 0|90 | 100 { 100 | 150 0100 90| O
October........... 0 0| 0|20 0 | 150 | 200 0150|100 | O

Suppose that the delay time and the cost per unit are as follows (where the cost per
unit of the material varies with the number of units ordered as shown):

Type of material

0 1 2 3 4 5 6 7 8 9 10

Delay time,
months...... 3 5 6 2 4 6 5 3 5 6 7
Units ordered:

0-9 10 { 50 | 35 | 20 5 40 | 30 | 20 | 30 | 100 { 150
10-19 10 45 35 15 5 35 30 15 30 | 100 | 120
20-49 10 40 30 14 5 30 25 15 25 95 | 110
50-99 71 40 | 25 13 4 25 | 25 10 | 25 95 | 100

100 or over 7 | 38 | 20 12 3 20 | 20 10 | 20 90 | 100

Determine the schedule for the ordering, and determine how much money will be
spent each month, assuming that the orders are paid for at the time they are ordered.

(b) Write a code that will compute Exercise a.

(¢) Write a code for numerical integration by the trapezoidal rule.

(d) Write a code for the linear extrapolation.

(¢) What situations might require interlocks between the information-retrieval
computer and the array-manipulation computer?

8-6. The Large-scale Data Processor

Systems Design. Perhaps the most important observation about
systems design is that whenever possible systems design should be
accomplished for the specific purpose for which the computer is to be
used. This does not mean that the computer should be of limited
capabilities—rather, design for a purpose means that the computer’s

282 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHaP. 8

capabilities should be extended to include features that will enhance its
effectiveness for the special purpose for which it is intended to be used.
However, one pitfall must be avoided in the design of special-purpose
computers. It is usually possible to utilize special-purpose computers
for problems not directly involved with the special purpose for which the
computer was designed. In such cases the coding may be much more
difficult. This often leads to increased cost of coding or to making
undesirable simplifications in a problem to have it more nearly conform
to the type for which the special-purpose computer was designed. Such
a situation tends to diminish the advantages to be derived from using a
digital computer in the first place. Hence it is usually unwise to use a
special-purpose computer for problems other than those for which it was
specifically designed. These considerations emphasize the importance of
carefully evaluating the purpose before embarking on a computer design
for that purpose, to be certain that the problems under consideration
are truly in line with the special features of the proposed design.

The systems design of a digital computer is characterized by the speci-
fications for (1) its computing components, (2) its memory components,
(3) its input-output components, and (4) its interlock control. The
specifications of a computing component include the instruction and
quantity format, the list of instructions, the speed of execution of instruc-
tions, the logical design technique, and the type of electronic circuitry
used. These last two specifications will be covered in Parts 3 to 5. The
specifications of a memory component include its type (i.e., magnetic
core, magnetic drum, ete.), size (i.e., number of words), speed or access
time, logic (e.g., for a drum whether the words are round the circumfer-
ence or along the axis, ete.), and circuitry. The specifications of the
input-output components include the kind, speed, and electromechanical
design. 'The interlock controls, already mentioned in the preceding
sections, will be discussed in greater detail below.

Special Inpui-Output Problems. When data is collected, the record-
ing scheme used is ordinarily determined from criteria dictated by the
particular problem, by convenience, etc. Rarely is the best form for
computer utilization considered as a factor. Also, data produced by a
computer will not in general be directly compatible for input into another
type of computer. These problems become extremely serious in, for
example, missile-testing programs, aircraft-flight evaluations, ete.,
where exceedingly large masses of data are produced very rapidly. The
problem of conversion of this data to a form that can be read directly
into the computer for analysis then becomes almost a larger task than
collecting the data.

One method for solving this problem is to have a special input drum for
the computer. Everything that is read into the computer is read directly
onto this drum just as it appears on the input medium. If the input were
punched cards with 80 columns and 10 rows, then the data of the cards
would be read onto the drum just as it appears on the cards, with a
unit corresponding to a hole, a zero to no hole. Then a special translating

SEc. 8-6] SPECIAL-PURPOSE DIGITAL COMPUTERS 283

computing unit would be coded to interpret this information appropri-
ately. The translating unit would interpret the raw information on the
drum, change it into appropriately coded binary data, and put it into
the computer’s main memory. This technique is extremely flexible,
since all that is needed is a method for getting the raw data onto the drum,
in any digital fashion whatsoever.

This naturally brings up a second problem. Since reading in and trans-
lating the data will be time-consuming, it would be more efficient if the
computer could be computing on other data, or even on another program,
concurrently with the read-in and translation. Such a concurrent-input
feature presents no problems other than logical and electronic design,
provided that certain interlocks are observed. In reading data into a
computer it is certainly known in which part of the main memory the
information will eventually be stored. A simple type of interlock will
halt a concurrent computer program that refers to a main memory address
that has not yet been read into; when the input information is inserted
into this address, the program automatically continues.

In so far as output from the computer is concerned, the translator acts
in reverse, putting information on the special drum in a form which when
read out from that drum will correspond to any desired external coding
scheme. Similarly with proper interlocks concurrent output can be
accomplished.

The Large-scale Data Processor. The large-scale data processor as
described in this paragraph (see Iig. 8-15) is a fictitious computer; its
description is used here as a vehicle for discussing the problems that arise
in multiple-unit systems design. The purpose of this illustrative computer
would be to perform general data processing. It encompasses each of the
three features described in Secs. 8-3, 8-4, and 8-5, in addition to the trans-
lating component. Hence it is comprised of a general-purpose computing
unit, a logical-control computing unit, a searching, sorting, and ordering
computing unit, an array-manipulating computing unit, and an input-
output translator computing unit. It contains a high-speed memory,
a general-purpose magnetic drum, a translator input-output drum, a
sorting drum, an array-manipulation drum, as well as magnetic-tape
units. It has conventional input-output equipment and & signal-sensing
input unit for real-time control.

The main point, however, to be illustrated by this example is that any
or all of the computing units may be operating (i.e., computing) con-
currently, using any or all of the memories or input-output units. The
mechanisms that enable such concurrent operation are found in the in-out
selector—concurrent input-output interlock control and in the computing-
units interlock control.

Let us consider the computing-units interlock control first and describe
two possible ways it can operate. Consider the case where our data
processor is operating on multiple independent codes simultaneously.
The instructions for each of these codes are found in the memory units.
At any time, each code is being computed in a different computing unit.

284 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 8

Each computing unit has its own instruction register, and its own
current-address register that sequences the program according to
the instruction definitions of the particular unit in which it is located.
There are times, however, when one code will want to operate in a differ-
ent unit, will want to change computing units. These change-unit

< General-purpose e ——
» computing unit S e |
< Searching, sorting, and ordering |——er—————e——>{
> computing unit <—
< Rectangular-array-manipulation _—'bl
computing unit S ———
< Logical-control ————— >}
L g computing unit <
< Input~output translator P—>

P scomputing unit <t
—P Computing-units interlock control \—]
_ High-speed memory —]
= Magnetic-drum memories e

_ N Magnetic-tape memories It
- In=out selector—concurrent input-output —
- interlock control 1

I Typewrit hed
‘ypewriter, punched-paper »
» Out.p ut | tape, punched cards, [F——————
units ! N
! magnetic tape, etc.
< . Signal sensing input unit f)——
nput i Typewriter, punched-paper

¢ I tape, punched cards, |jr——————

units ; magnetic tape, etc,

F1a. 8-15. Large-scale data processor.

instructions are not handled in the computing units; instead they are
sensed and sent to the computing-units interlock control. This interlock
control keeps track of which units are being used. If a code wants to
change to a computing unit that is being used, the code progress is stopped
until the desired unit is free. A waiting line, or queue, is formed if
necessary for each computing unit. The order, or priority, in which
waiting codes are selected from the queues can be made as complicated as
is considered necessary for the purposes of the computer design.

Sec. 8-6] SPECIAL-PURPOSE DIGITAL COMPUTERS 285

When the desired computing unit becomes available, the contents of
the instruction address register is transmitted to this computing unit
and the code is continued in its new unit. In other words, a computing
unit processes the instructions it retrieves from the memory as directed
by its current-address register; when changing from one code to another,
a computing unit merely needs to have its current-address register
changed. The control mechanism for this change is located in the
computing-units interlock control. By this means each of the computing
units can act almost as a separate computer in its own right, except when
required to idle by the computing-units interlock control. Even though
this concept for handling multiple codes at the same time is reasonably
simple, the detailed techniques in a specific case may present many
special considerations and exceptions.

The second way in which a computing-unit interlock control might
operate is to have only a single code being computed. However, it often
happens that different parts of this code can be computed at the same
time. That is, the logic or flow diagram of the code may not necessitate
a completely serial sequencing of operations, but several parts of the code
might be processable in parallel at the same time. In this mode the
computing-units interlock control scans the entire code, recognizing
parts of the code that can be executed independently. It does this by
observing memory reference locations. If one part of a code never refers
to a memory location used by another part of the code, then it can be
accomplished at the same time as that other part of the code. The rules
for observing this can become rather complicated. The computing-units
interlock control must accomplish both functions; how thoroughly it
accomplishes either function depends on the systems design and purpose
of the computer. '

Finally we consider the in-out selector—concurrent input-output inter-
lock control. Besides in-out selections, this control unit must accomplish
input-output interlock control similar to that described above. All
input-output instructions are automatically sensed and sent to this inter-
lock control. If free, the appropriate unit is selected; if not, the code
will wait, as was the case in the computing-units interlock control.
This interlock control must communicate with the computing-units
control, so that a code may be stopped when it wants to use a memory
location not yet loaded. Again the details can become exceedingly
complicated.

EXERCISES

(a) Make a chart with columns labeled with the specification names of the computer
components and rows labeled with the various purposes considered in this chapter.
Fill in the table with component specifications, giving a reason for each decision. (For
example, the entries in the table will state how many addresses the instruction system
should have, how large the memory should be, the access speed, and so forth.)

() Draw a flow chart of a code that would interpret raw data from cards. Suppose
that a computer word contains 15 bits, with the decimal point to the right. Assume

286 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 8

that the raw data appear on cards with 80 columns and 10 rows, where each card is
interpreted as containing 20 four-digit numbers and the digit associated with each
column is the row location of a single punch in that column. For example, the first
two numbers on the card illustrated in the figure are 1,340 and 1,235. Assume

0|1|2|314|5|6(|7)8|9]|10]11f---
0 Ll
1] 0
2]
3| U4 O
4 U
5 0
6
7
8
| \
EXERCISE b

that the translator drum records the rows of each card in sequence, from 0 to 9. The
code is to compile the successive numbers (i.e., successive groups of four columns) ¢n
binary in the main memory of the computer.

8-7. Additional Topics

a. References on Digital Differential Analyzers. In general, digital differential
analyzers are far more versatile and complicated than described in Sec. 8-2. For a
more thorough understanding of their variations and potentialities see the following
references:

Bush, Vannevar: Differential Analyzer, J. Franklin Inst., vol. 212, no. 4, pp. 447-448,
October, 1931.

Donan, J. F.: The Serial-memory Digital Differential Analyzer, Mathematical Tables
and Other Aids to Computation, vol. 6, no. 38, pp. 102-112, April, 1952.

Hartree, Douglas R.: ‘“Calculating Instruments and Machines,” University of
Illinois Press, Urbana, Ili., 1949.

Mendelson, Myron J.: The Decimal Digital Differential Analyzer, Aeronaut. Eng.
Rev., February, 1954, pp. 42-54.

Palevsky, M.: The Design of the Bendix Digital Differential Analyzer, Proc. IRE,
vol. 41, pp. 1352-1356, October, 1953.

Sprague, R. E.: Fundamental Concepts of the Digital Differential Analyzer, Mathe-
matical Tables and Other Aids to Computation, vol. 6, pp. 41-48, January, 1952,

Weiss, E.: Applications of the CRC 105 Decimal Digital Differential Analyzer, IRE
Trans. on Electronic Computers, vol. EC-1, pp. 19-24, December, 1952.

Winslow, D. J.: Incremental Computers in Simulation, Meeting of South East Stmula-
tion Council, Oct. 30, 1958, Huntsville, Ala.

b. Multiple-component Computing Systems. In Sec. 8-6 the systems design of
computers composed of several different interlocked computing components was

Skc. 8-7] SPECIAL-PURPOSE DIGITAL COMPUTERS 287

described. The following references give further details about specific examples of
systems designs illustrating this principle:

Dreyfus, Phillipe: France’s Gamma 60—A Step Forward in Data Processing? Datama-
tion Research Eng. J., May—June, 1958, p. 34.

Dunwell, S. W.: Design Objectives for the IBM Stretch Computer, Proc. Eastern
Joint Compuler Conf., December, 1956, p. 20.

Eckert, J. P.: Univac-Lare, the Next Step in Computer Design, Proc. Eastern Join
Computer Conf., December, 1956, p. 20.

c. System Engineering. We have been considering the systems design of digital
computers. However, more often than not the digital computer is itself a component
of a larger organized system. The study of such large-scale systems engineering is
considered in a text by Harry H. Goode and Robert E. Machol, “System Engineer-
ing,” McGraw-Hill Boock Company, Inc.,, New York, 1957. Chapter 2 of this text
is devoted to examples of such large-scale systems. How can a digital computer fit
into each of the systems described in that chapter? Other discussions of systems
design can be found in M. M. Hunt, Bell Labs 230 Long Planners, Fortune, May, 1954,
p. 120; and P. F. Drucker, The Promise of Automation, Harper's Magazine, April,
1955. The following periodicals frequently discuss large-scale systems: Control
Engineering, a McGraw-Hill publication; and the IRE Transactions on Industrial
Electronics,

CHAPTER 9

SYSTEMS DESIGN OF THE PEDAGAC

Purpose. Pedagac, which stands for ““pedagogic automatic computer,”
is the name of a computer that will be completely designed in this text.
The purpose of the Pedagac is to provide the necessary thread of con-
tinuity to the study of digital-computer engineering. The process of its
design as presented in this book will relate the systems design to the
logical design and to the electronic design of a computer. Its primary
purpose is to teach; its systems design, logical design, and electronic
design have been chosen to demonstrate the procedural chain involved
in the engineering of a computer. In many ways the Pedagac may not
be appropriate for construction for any purpose other than engineering
teaching and demonstration; for the oversimplification often used for

Memory:

Input »| magnetic drum Output

unit unit

* | T
\ 4 I_ JV

Arithmetic |, Control —d Instruction
unit generator decoder

| L

F1a. 9-1. Block diagram of the Pedagac.

\ 4

pedagogic purposes makes the Pedagac less efficient in computing speed
and use of electronic hardware than is really necessary. However, the
Pedagac can be built; it is a general-purpose digital computer.

Block Diagram. Figure 9-1 is a block diagram of the Pedagac. The
Pedagac is a binary computer, whose code will be written in octal-coded
binary notation. The instruction system is a one-address format; the
binary point is assumed to be to the left of a quantity word (i.e., all
numbers are less than 1). It has a serial arithmetic unit, its memory
is a drum, and it has a single output unit and a single input unit.

Word Format. A Pedagac word contains 19 bits. The instruction and
quantity formats are summarized in Fig. 9-2. The « address contains
12 bits; hence the addressable memory has 212 = 4,096 addresses. frora
0000 to 7777 (octal).

288

CHar. 9]

The Pedagac Coding M anual.

SYSTEMS DESIGN

that will be available on the Pedagac.

OF THE PEDAGAC

289

Table 9-1 summarizes the instructions

TaBLE 9-1. INsTRUCTION LisT FOR THE PEDAGAC

Operation Operation Sym.bol.lc Meaning
code name description
53 Add (acc) + (a) — ace | Add (a) to (acc); put result in ace
42 Major (ace) X (&) — acc | Multiply.(«) by (ace); put major
multiplication product into ace
unrounded
32 Minor (ace) X (a) — acc | Multiply (@) by (acc); put minor
multiplication product into acc
41 Division (ace) + (o) — acc | Divide (acc) by («); put result
unrounded into acc
54 Subtract (ace) — (a) — acc | Subtract () from (acc); put
result into ace
52 -Transfer (ace) = « Transfer (acc) into «; leave (acc)
unchanged
43 Conditional (ace) < 0; take « | If (ace) is negative, take (a) as
jump next instruction; otherwise take
next instruction in sequence as
‘ usual; leave (acc) unchanged
44 ‘Normal jump Take a Take (a) as next instruction;
leave (acc) unchanged’
50 Clear 0 — acc. Make (acc) = 0
accumulator- .
71 Logical (acc) |- (@) — acc | Logically multiply (dcc) by (a);
multiplication . put result into ace
72 Logical addition | (acc) |+ (a) — ace | Logically add (acc) to (a); put
result into ace
73 Logical (ace) |= (o) = acc | Equalize (acc) with («); put
equivalence | result into ac¢
74 Logical (ace) [() — ace | Unequalize (acc) with («); put
nonequivalence ' result into ace
70 Circular shift (acc) D(ace) Circular shift (ace) clockwise by
' « positions
60 Stop Stop Stop computer
00 Read in TInput unit - « Read in one word from input
’ unit into «
21 Read out (a) — output unit | Read out (a) to output unit

The Control Panel. The control panel of the Pedagac is very simple.
Besides the power on-off button there are only three other manual push
buttons: the start bution, the stop bution, and the run button. Before we
can describe the action of these buttons, we must first describe the sdling
mode and the computing mode of the computer’s operation. The computer
is said to be idling when the power is on but no instructions are being
executed; it is said to be computing when instructions are being sequenced
and executed. There are three ways in which the computer can enter

290 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 9

the idling mode: (1) it will assume the idling mode just after the power is
turned on; (2) it will be in the idling mode after a stop instruction has
been executed; (3) it will be in the idling mode after the stop button has
been pushed. There are two ways in which the computer can be made to
change from the idling mode to the computing mode: (1) push the start
button; (2) push the run button.

As we have observed, pushing the stop button puts the computer into
the idling mode. The current-address counter will contain the address
of the next instruction, and the computer will begin to idle after com-
pleting the execution of the present instruction. The stop button has no
effect if pushed when the computer is idling. When the run button is
pushed, the computer will proceed with the program, first executing the

Instruction word format:

Operation’ a address
(6 bits or 12 bits or
2 octal figures) 4 octal figures

AR o
E:"" |00 |N|O|W

PO |Sign bit

P18
P17
P1ls6
P15
P14

P11

P3
P2
P1

<
Ry R A Ry Ry [AR R
(PO is always 1 for an instruction word)

Quantity format:
18 bits or 6 octal figures

MmN~ O
||| =[O0 [N]O|WO
Ry | R [Ry [R AR R R R Ry
(POis 1 for positive, O for negative)

Fi1G. 9-2. The word format of the Pedagac.

PO |Sign bit

0| N[
[l Rl Bl
AR A

P15
P4
P3
P2
P1

Binary point

instruction whose address is in the current-address counter. The run
button has no effect if pushed when the computer is in the computing
mode.

The operation of the start button is more complicated. When pushed,
first the current-address counter is cleared, second the instruction register
is cleared, and third the computer changes to the computing mode and
proceeds to execute the instruction tn the insiruction register. What
instruction in the instruction register? Namely, 00 0000, which says,
“Read one word from the input unit into address 0000 and take the next
instruction from the address in the current address counter—namely,
address 0000.” In other words, when the start button is pushed, the com-~
puter reads one word into the address 0000 and then proceeds to execute
(0000) as an instruction. The start button has no effect if pushed when
the computer is in the computing mode. The start button has two
uses: First, as we shall soon see, it is used to read in the read-in routine.
Second, it is used in interrupting the program to jump out of the normal
sequence of instructions; if the programmer desired to jump to a different

CHap. 9] SYSTEMS DESIGN OF THE PEDAGAC 291

part of the program, he would push the stop button, place an appropriate
jump instruction in the input unit, and then push the start button.

A Read-in Subroutine for the Pedagac. The read-in instruction of the
Pedagac reads in only one word at a time. Usually in reading in a pro-
gram or data it is desired to read in many words at one time. Thus
the need arises for a subroutine which will read no words into adjacent
addresses ao, @9 + 1, s + 2, . . ., a¢ + (no — 1). The read-in sub-
routine can be initiated by a program that is being computed, e.g., to
call in additional data, or else it can be initiated by pushing the start
button. Assuming that the read-in subroutine is already in the memory

l Load n;RR with ng I

{

Subtract 1 from (niRR)

|

Load a; RR with ag

!

Read one word into «; I

Add 1 to(a; RR) |

Subtract 1 from(n;RR)

— (0:mBBY)
> <

Read one word
into 0000

Execute (0000)

F1a. 9-3. Flow chart of read-in routine.

of the Pedagac, Fig. 9-3 represents a flow chart for it. However, for this
flow chart to operate properly, the data or words to be read in must be
preceded by a word with a,, the first address to be loaded, and n,, the
number of words to be read in. If the read-in process is to be initiated
by the start button, the first word of the data must be a jump to RR1,
which is the first address of the read-in routine itself (see Fig. 9-4). The
read-in code itself appears in Table 9-2. Here «;RR represents the
read-in instruction that is modified, n,RR is the address of the tally word
n;, and ONE is the address of the constant 1.

Initial Read-in Subroutine for the Pedagac. Suppose that the read-in
subroutine was not in the memory. Then a special initial read-in sub-

292 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHaP. 9

Jump to RR 1

00 ng

00 g

|

|

{ Program

| or -~
! data

|

[

Jump to 1st address
of a program or
to a stop, etc.

Fi1g. 9-4. Sequence of words on the input medium to read in a program or data.

routine must be used. The purpose of this subroutine is to load the
computer with the normal read-in routine and then give this routine
control. We assume that the computer and drum have been cleared
and that the start button is pushed. This reads in one word from the
input unit into 0000. This word will be an instruction, ‘“Read one word
into 0001.” The computer then will execute this instruction, which is

TABLE 9-2. THE READ-IN ROUTINE

Address | Operation a Remarks
RR1 00 n;:RR Load n;RR with n,
RR2 50 0000
gg’i gi 7(?11\:;3] Subtract 1 from 7,
RR5 52 n:RR
RR6 00 a;RR Load o;RR with 00«
RR 00 0000 Read one word into «;
RRY7 50 0000
RR10 53 n:RR } Subtract 1 from n;
RRI11 54 ONE
RR12 43 RR21
RRI3 52 | mRR } O:nRE
RR14 50 0000
RR15 53 aRR
RR16 53 ONE } Add 1to e
RR17 52 a;RR
RR20 44 «RR Jump to read-in instruction
RR21 00 0000 Read one word into 0000
RR22 44 0000 Execute (0000)

ONE 00 0001
n:RR

CHap. 9] SYSTEMS DESIGN OF THE PEDAGAC 293

now in 0000 (see description of the start, stop, and run buttons). This
second word to be read in will be an instruction, ‘“‘Read one word into
0002.” The current-address counter will be stepped by 1 in its normal
fashion, and the instruction, which is now in 0001, will be executed. A
third word will then be read into 0002; this will be a jump instruction to
jump unconditionally to 0000. Recall that (0000) is the instruction
“Read one word into 0001.” This fourth word will be the instruction
“Read one word into address RR1,” where RR1 is supposed to be the
first address of the normal read-in routine. The computer will then
execute this instruction, reading in the fifth word, which is the first

Push start button
x=0

!

Read the following instruction
into 0000:

"Read one word into 0001"

y

l Execute (0000).
Execute €0000); je., If <21 (octal), then the
read the following instruction word read-in will be the
into 0001: instruction:
"Read one word into 0002" "Read one word into RRx "

I If %>22 (octal), then the (E+1—=)

word read-in will be the

Execute (0001); ie., instruction:
read the following instruction n n
into 0002:, Jump to RR 1

“Jump to 0000"

Execute (0001) |--—___l

: |
I
> Execute (0002) l—:

RR1
F1a. 9-5. This is not a flow chart of a program. It is a flow diagram illustrating the
sequence of operations actually performed during the initial read-in routine that
reads in the read-in routine.

instruction of the normal read-in routine. The computer will now take
the next instruction from address 0002, which jumps back to address
0000. The instruction at 0000 will read in a sixth word into 0001; this
will be an instruction to read in the second instruction of the normal
read-in routine, into address RR1 + 1, of course. This instruction is
executed; then the jump to 0000 is executed, and so forth. This process
continues until the read-in subroutine has been completely read into the
drum memory. Then, when the computer returns to address 0000, it
will read into 0001 a jump instruction to RR1, that is, the first address of

294 FUNCTIONAL APPROACH TO SYSTEMS DESIGN [CHAP. 9

the normal read-in routine (see Fig. 9-5). Note that the sequence of
words that will pass through the input unit is as follows:

Firstword............cooviii..t. Read one word into 0001
Secondword........................ Read one word into 0002
Thirdword..................o..... Jump to 0000
Fourthword........................ Read one word into address RR1
Fifthword......................... First instruction of normal read-in routine
Sixthword......................... Read one word into address RR1 + 1
Seventh word....................... Second instruction of normal read-in routine
Eighthword........................ Read one word into address RR1 + 2
Ninthword......................... Third instruction of normal read-in routine
Tenth word,ete..................... Read one word into address RR1 + 3, etc.
Last word of initial read-in word

SEQUENCE. ..\ v vttt e Jump to address RR1

Additional Topics

a. Write an automonitor routine for the Pedagac.
b. Compile a library of subroutines for the Pedagac.

¢. Write an automatic program for the Pedagac so that it can be programmed in
the simplified International Algebraic Language of Sec. 5-9.

PART 3

FOUNDATIONS FOR THE LOGICAL DESIGN
OF DIGITAL CIRCUITRY

CHAPTER 10

INTRODUCTION TO BOOLEAN ALGEBRA AND
DIGITAL-COMPUTER CIRCUITS

10-1. Introduction

Boolean Algebra. Boolean algebra is an algebraic discipline analogous
to the ordinary algebra with which we are all familiar but which follows
different rules. We could begin this chapter directly by presenting these
new rules, but such an approach would not provide the rationale and
background so necessary to a thorough understanding of the methods
involved in Boolean algebra. For Boolean algebra was originally devel-
oped, not for designing computer circuits, but as the symbolic interpreta-
tion of some forms of logical reasoning and as the method for describing
relations between classes and sets. A knowledge of such interpretations
can aid significantly in the study of Boolean algebra as applied to com-
puter circuits by suggesting analogies and alternative methods for think-
ing through circuit-design problems,

Therefore in this chapter we introduce Boolean algebra by means of
logic, in accordance with its historical development. A discussion of
Boolean algebra itself is then given, followed by its interpretation as the
algebra of sets. Having dispensed with these preliminaries, we turn to
the main purpose of this chapter, the interpretation of Boolean algebra in
terms of digital-computer circuits.

Historical Background. 1t is of historical interest to note that this
algebra was first investigated by George Boole (1815-1864) and the theory
essentially completed by Ernst Schroeder in his monumental work on the
algebra of logic before the turn of this century. Boole, Schroeder, and
other logicians of that time had in mind the practical uses of the algebra
of logic in the solution of everyday problems. However, they found that
dealing with just four to five variables made practical computation
unfeasible, requiring the employment of extremely ingenious methods for
solution. Hence interest in solving large-scale logical problems of this
kind was lost.

It was at that time, too, that Whitehead and Russell, Hilbert, and

295

296 FOUNDATIONS FOR LOGICAL DESIGN [Cuap. 10

others realized that logic could be developed to encompass the foundations
of mathematics, and after the turn of the century the attention of
logicians became focused on the so-called functional calculus of symbolic
logic. Problems of extreme metamathematical and philosophical impor-
tance were considered. Such problems are still today of primary interest
to professional logicians. Their methods have necessarily been esoteric
and have as yet found little everyday application.

On the other hand, the advent of digital-computer circuitry brought a
widespread reawakening of interest in the algebra discovered by Boole.
The first use of Boolean algebra in circuit design was made by Shannont
in 1938. Computational difficulties again limited the direct, practical
application of Boolean algebra. To help offset some of these difficulties,
new digital computational methods have recently been developed, and
these are presented in the chapters of this part.

It is to be reemphasized that this chapter will proceed as follows: (1)
Logic will be discussed in order to introduce Boolean algebra in a natural
way. (2) Boolean algebra itself will be described. (3) The set inter-
pretation of Boolean algebra will be given as an aid to visualizing some of
the relationships. And (4) the circuit interpretation will be given,
together with methods for going from the circuit diagram to the Boolean
function and conversely from the Boolean function to the corresponding
circuit diagram.

10-2. Definition of Logic and Propositions

Symbolic Logic. Logic is the science that teaches how thinking or
reasoning should proceed; it produces the results of thinking; and it
encompasses laws by means of which a judgment can be passed as to
the correctness of the products of thought or reasoning. As H. Reichen-
bach points out, however, “When we call logic analysis of thought, the
expression should be interpreted so as to leave no doubt that it is not
actual thought which we pretend to analyze, it is rather a substitute for
thinking processes, their rational reconstruction, which constitutes the
basis of logical analysis.”” In other words, once a result of thinking or
reasoning is obtained, a chain of thought can be constructed from the
initial premises to the final conclusions and an analysis of this rational
reconstruction of thinking reveals those rules called laws of logie. Logic
presents a means by which thinking or reasoning may be simulated and
the results of thinking obtained or checked.

Only when the results of reasoning have been stated in terms of sen-
tences can they be tested or evaluated; logic deals with sentences (e.g.,
statements) and the rules correlating premise and conclusion sentences.
The best method of handling these sentences in logic is a symbolic method,
for while simple logical operations can be performed without the help of a
symbolic notation, the structure of complicated relations cannot be seen
without the use of symbols.

1 C. E. Shannon, A Symbolic Analysis of Relay and Switching Cireuits, T'rans.
AIEE, vol. 57, pp. 713-723, 192S.

Sec. 10-3] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 297

The Proposition. The methods of symbolic logic that are concerned
with deduction must lead from true sentences to true sentences. Hence
the whole sentence becomes a fundamental unit for logic since only a
whole sentence can be {rue or false. In fact, attention in this book will
be limited only to whole sentences with this property, and such sentences
will be called propositions. A proposition s a whole sentence about which
it 1s meaningful to say that its content is true or false. Some authors put
this somewhat differently, limiting their consideration only to meaningful
sentences. In their system a sentence is meaningful only if it is verifiable
as true or false. The part of symbolic logic that deals with propositions
is called the propositional calculus.

Examples of propositions and their truth values are as follows:

Proposition Truth value
a. 3isanevennumber....... ... False
b. The grass i8 greeIl. vuun i True
¢. Logic is the science that teaches how thinking or reasoning should
PrOCEEA. . oottt ettt e e True
d. The proposition on the line below istrue. False
e. January isasummer month. i i, False

In textbooks dedicated solely to symbolic logic a distinction in sym-
bolism is made between propositions and propositions about propositions.
However, since the purpose of this chapter is only to introduce computa-
tional methods in the propositional caleulus of symbolic logic and not to
expound the subject itself, no consistent attempt will be made to separate
propositions of these two types. The distinction between propositions
of these types is to be made by the reader from the context.

10-3. Definition of Propositional Operations

The Propositional Operations. It is to be reemphasized that this
chapter deals with a logic of two truth values, viz., {rue and false, and
that the primary interest is in determining the truth value of propositions.
In considering combinations of propositions, the truth value of the com-
bination is again the primary object.

Propositions can be combined or manipulated by the words and, or,
and not (negation), these words being called the propositional operations.
The operations and and or combine two propositions, whereas the opera-
tion not (or negation) is associated with only one proposition. Given
the truth value of propositions, the truth value of their combinations
with the propositional operations is defined as follows:

1. The and combination of two propositions is true if and only if
both propositions are true. If either one or both of them are false, the
combination is false. For example, ““The grass is green, and logic is the
science that teaches how thinking or reasoning should proceed” is true,
but “The grass is green, and 3 is an even number”’ is false. The and
combination of two propositions is often called their conjunction, or
logical product.

298 FOUNDATIONS FOR LOGICAL DESIGN [CrAP. 10

2. The or combination of two propositions is true if and only if
either one or both of the propositions are true. The or combination of
two propositions is false only if both propositions are false. For example,
““The grass is green, or 3 is an even number”’ is true; ‘3 is an even num-
ber, or January is a summer month” is false. The or combination of two
propositions is often called their disjunction, or their logical sum.

3. The negation of a proposition is true if and only if the proposition
is false. For example, ‘3 is not an even number’’ (which is the negation
of “3 is an even number”’) is true.

Propositions may be symbolized by letters: 4, B, C, W, X,
Y, In alater chapter we shall symbolize propos1t1ons by letters
w1th subscripts: 4y, 42, . . ., By, By, We use the symbol - for
the operation and, 4 for or, and = (bar) over the letter to indicate nega-
tion. This symbolism is summarized in the following table:

Operational symbol | Interpretation Terminology
A Not A Negation
A+ B AorB Disjunction, logical sum
A:-B A and B Conjunction, logical product

The use of + for the or symbol arises from the parallelism between this
logical operation and arithmetic addition. For example,

2 bananas 4 3 apples = 5 pieces of fruit

where pieces of fruit = bananas or apples. The parallelism between the
logical product and the arithmetical product also holds; for example,
2 ft+-3 lb = 6 ft-lb since the unit of work, namely, foot-pounds, is a
logical and combination.

Boolean Funciions. Combinations of propositions joined by or, not,
and and can be determined true or false and hence are propositions them-
selves. The uncombined propositions are called elementary elements and
are usually denoted by letters at the beginning of the alphabet: A4, B,

Propositions combined by the propositional operations are ca,lled
combmed elements, or Boolean functions, and are usually denoted by letters
at the end of the alphabet: X, Y, . . Combined elements are some-
times written in functional form that is, f(4,B, .

For example, consider the comblned element A + B-C. Suppose
that A is false, B is true, and C is false (that is, A might represent proposi-
tion @ of the examples in Sec. 10-2, B might represent proposition b,
and C might represent proposition €). In such a case B - C is false (since
C is false), and A is true (since A is false); hence A + B - C is true

(since 4 is true). Note that 4 - B is distinct from A4 - B; the former is
read (not A) and (not B), while the latter is read [not (A4 and B)] (the
parentheses are for clarity). If A is true and B is false, then 4 - B is

false and A - B is true.

Sec. 10-4] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 299

EXERCISES

Suppose that A is false, B is true, and C is false; determine the truth value of the
following combined elements:

Answer
(a) A: -B.-C) True
(b) A-B+A-B True
(¢ A-B+A4-B)-C False
@4-C True
(e) A +B o False
fHhH 4a+B-Cc+A+C)-C+A-B-C False

10-4. Implication, Equivalence, and Tautology

There are two particularly important combined elements, namely,
A4+ B and A-B+ A-B. Their significance and meaning are dis-
cussed here. _

Implication. First consider A -+ B. This is usually abbreviated
A — B, called “A implies B,” or “If A, then B,” by logicians. In a
sense this corresponds to the everyday linguistic use of the word ‘mplies,
for if A is true and A — B is true, then B must be true; also, if 4 — B is
true and B is true, A may or may not be true. For example, consider
the proposition ‘“if an airplane is a fighter plane, then it has light armor.”
Certainly, if the airplane is a fighter, it will have light armor, according
to the proposition; but if the airplane has light armor, the proposition
does not reveal whether it is a fighter or not, for other types of airplanes
than fighters have light armor. _

Egquivalence. Consider now the important function A - B + A - B,
called “ A s equivalent to B” and abbreviated A = B. IfA-B+ A-B
is true, then A and B have the same truth values, for then either A and B
are both true or they are both false. Also, the meaning of the equals (=)
sign in logic parallels its meaning in arithmetic, in which any item can
be substituted for an equivalent one. For it can be shown that, if
A = B is true, then some combination of the propositions U, V, and 4,
say, f(U,V,A), is equivalent to that combination with B replacing A4,
that is, f(U,V,A) = f(U,V,B). In other words, it is always true that
(A = B) = [f(U,V,A) = f(U,V,B)] in the propositional calculus.

Tautology. This naturally brings up the topic of tautology. A
tautology is a combined element that is always true, independent of the
truth or falseness of its component propositions. For example, A + 4,

(A-B)+ A, (A-B)+ (A + B)- (4 + B), as well as

(4 = B)—[f(U,V,4) = f(U,V,B)]
are all tautologies, for they are true no matter what the truth values of
A, B, U, and V are (or what the truth value of the combined element

fis). Therefore there is no logical reason to distinguish between these
combined elements, and any one of them is called the universally true

300 FOUNDATIONS FOR LOGICAL DESIGN [Cuap. 10

element, or tautology, and denoted by I. The negation of I, namely, I,
is the universally false element, denoted by 0. A consequence of these
concepts is that 0 » X and X — I are always true; i.e., the universally
false element implies everything, while everything implies the tautology.

To review, then, there are two meanings to truth. One is ‘““tauto-
logically true,” and the other is ‘“true because it is a physical fact or
supposition.” “The grass is green’’ is true in the latter sense; *“Today
is Tuesday, or today is not Tuesday’’ is tautologically true. Logicians
often use a special symbol to distinguish these meanings, but for our
limited purposes this would be an unnecessary complication.

EXERCISES

(a) Note that A — B is true if both A is false and B is false. Can you think of
examples of this situation that might occur in real life?

(b) Consider the sentence “A4 + A is a tautology.” Is this tautologically true, or
is it factually true?

10-5. Truth Tables

The truth values of a combined element depend on the truth values of
its component elementary elements, as dictated by the definitions of the
propositional operations. A table can be made presenting all possible
combinations of truth values; we call this a truth table. Consider, for
example, 4 + B. The columns under A and B represent all possible
truth-value combinations of 4 and B, and the column under A + B
represents the corresponding truth value of A 4+ B, where T stands for
true and F for false.

A B |A+B
T T T
F T T
T F T
F F F

Similarly the truth tables for 4 and A - B are:

Al 4 A | B IA-B
7 | F T | T T
F | T F | T F
S T | F F
F | F F

These truth tables follow from the definitions of the propositional opera-~
tions and, conversely, could have been taken to be the definitions of these
operations. With these basic truth tables in mind the truth table for any
combined element can be constructed.

Sec. 10-5] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 301

For example, recalling that A — B stands for A + B and that A = B
stands for A - B + A - B, the following table can be formed:

A B |A—=B|A =18
T T T T
F T T F
T F F F
F F T T

Note that A = B is true only when A and B have the same truth values.
Similarly truth tables can be made for combinations of any number of
elementary elements. For example, for three elementary elements A,
B, and C, the truth table for the combined element A 4 B - C becomes:

A| B| C|A+B-C
Tl T | T T
Fl|lT]|T T
T{F | T F
F | F | T T
T{TI{F F
F | T|F T
T|F | F F
F | F | F T
EXERCISES
Find the truth tables for:
(@) (4-B) + A. b A-B-C. (¢©) A-B+A4-B)-C.
@ 4-C. () 4 + B.
Solution
A B ¢ |{A4-BY+A|A-B-C|(A-B+A-B)-C|A-C|4A +B
T T T T F F F F
F T T T F T T F
T F T T F T F F
F F T T F F T T
T T F T F F T F
F T F T T F T F
T F F T F F T F
F F F T F F T T

Note that (4 - B) + A isindeed a tautology since it is true for every combination of
truth values of the elementary elements of which it is a combination.

(f) Show that A 4- Aand A - B 4 (A -+ B) - (A + B) are tautologies.

302 FOUNDATIONS FOR LOGICAL DESIGN [Crap. 10

10-6. Boolean Algebra

Equations of Boolean Algebra. With the foregoing interpretation the
algebraic properties of the logical operations can be more clearly under-
stood. The following equations characterize a Boolean algebra. It is
to be noted that these equations are quite different from the familiar
rules of ordinary algebra. The subject that comprises algebraic manipu-
lations according to the equations given below is therefore called Boolean
algebra to distinguish it from ordinary algebra. Some of the equations of
Boolean algebra are particularly important, and mathematicians have
given them special names as shown:

Name of equation

1.A+A4A=4 Absorption rule for -+

2. A-4 = Absorption rule for -

3. A+B=B+ A Commutative rule for +
4. A-B=B-4A Commutative rule for -
5 A+B)+C=4A4+B+C)=A4+B+C Associative rule for +
6. 4A-B)-C=4-B-C)=4-B-C Associative rule for -

7. A-B+C)=A-B+A-C Distributive rule of - over +
8 A+B-C=A+B)-(4+0 Distributive rule of + over -
9.4.-B=A4A+B De Morgan’s rule for -
100 A+B=A4-B De Morgan’s rule for -+
1. A+1I=1

12. A-I =4

13. 044 =4

14.0-4A =0

15 A4+4=1

16. 4-4A=0

17 A+4-B=A

18 A+A4A-B=A-+B

19 A-B+B-C+C-A=A+B)-(B+C)-(C+ A4)

20 A-B+4-C+B-C=A4A-B+B-¢C

21. A=4

These equations are to be interpreted as tautologies. The equals sign
means that, for any given combination of truth values for A, B, and C,
the combined element on the right-hand side of the equation has the same
truth value as the combined element on the left-hand side. Hence these
equations can be checked by writing the truth tables for the right-hand
and left-hand combined elements.

Algebraic Proofs. Some of these equations can be ‘“‘proved” alge-
braically by using others. For example, let us prove (20) by using
(12), (15), (7), (6), (4), (3), and (17).1

1 Note how difficult and rather ‘“tricky’’ it is to prove (20). With experience and
practice some facility can be gained in performing such manipulations. However, the

Sec. 10-6] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 303

A-B+A-C+B-C

—A-B4+A-C-I+B-C by (12)
~A-B+A4-C-(B+B) +B-C by (15)
=A-B+(A-C)-B+(4-C)-B+B-C by (7
—AB+(AB)-C+B-C+@B-C)-4 by (6), 4), and (3)
=A-B+B-C by (17) applied twice

New equations may also be proved by using those listed above. To
show that - 4 = A, wehave I- A = A-1 = A by (4) and (12).

EXERCISES
(@) Using I -4 = A, (8), and (15), prove (18).

Solution

A+A-B=UA+A)-(A4+B) =I-(A4+B)
=A+B
as desired.
(b) What other equations listed above would be used to prove (19)?
Solution. (1), (2), (3), (6), (7), (8). [Hint: Start with the right-hand side of (19)
and apply (8), using (1), (2), (3), (6), and (7) to simplify the terms.]

Alternative Algebraic Proofs. There is another way of proving equa-
tions, namely, by making use of (15) and (11), for we want to show that
an equation is a tautology (i.e., the meaning of *‘proving equations’).
If we can show that the equation itself is equivalent to I (in truth value),
then we have shown that it is a tautology, since I is the universally true
element (i.e., always true for all truth-value combinations of the ele-
mentary elements).

For example, consider the proof of (17): A 4+ A -B = A is an abbre-
viation for

(A+A-By-A+(A+A-B)-4

but, on using (2), (3), (4), (6), (7), (9), (10), (11), and (15), we find that
this expands to

A+A-B+A-A+B)-A=A+A-B+A+4-B
=A+A+A-B+4A-B
=I+A-B+A-B by (15
=17 by (11), to complete the proof

As another example, we can show that A - B— A is a tautology, for

A+-B— A is an abbreviation for A - B 4+ A, which becomes, by (9),
A-I-B—I—A But A+B+ A= A+A+B [by (3) and ®)] =
I 4+ B [by (15)] = I [by (11)], to complete the proof.

student need not dwell on gaining such facility, for in the next chapter a systematic
and straightforward method will be given for doing such problems.

304 FOUNDATIONS FOR LOGICAL DESIGN [CrAPp. 10

EXERCISES
Are the following tautologies?
Answer
(@ A-B— A No
®) A—- A+ B Yes
¢) A— B) =(B— zi)_ _ Yes
d A-B-C—>D)=(D-B-C— 4) Yes

Another Method for Algebraic Proof. There is still another way for
proving equations, i.e., to make both sides of the equals sign look identi-
cal. Tor example, let us prove that (4 — B) = (B— A). From the
definition of — wehave A + B =B + Aor A + B = 4 + B, by (21)
and (3). As another example, let us show that

A—-(B—>C)=4-B->C

By the definition of — the left-hand side becomes 4 4+ B 4 C. Simi-

larly the right-hand side becomes 4 - B + C; by using (9) this becomes
A + B + C, as desired.

10-7. Boolean Algebra as the Algebra of Sets

Sets. We have introduced Boolean algebra as the algebra of propo-
sitional logic. However, Boolean algebra can also be interpreted as the
algebra of sets, or classes. A class is a collection of objects all of which
have a certain property; such a well-defined collection of objects is often
called a set. For example, the collection of all automobiles manufactured
in the year 1956 and still in operating condition is a set. Or the collection

kS|

Fia. 10-1. 4, A.

of people who registered at the national meeting of the Institute of Radio
Engineers in 1960 forms a set. However, most often for the purposes of
mathematics a set is visualized as the area inside a closed curve drawn
on a piece of paper: the set is roughly interpreted as the collection of
points that lie inside the closed curve (see Fig. 10-1). The objects that
belong to the set are called elements of the set. For example, the point p
is an element of the set (the interior of the circle) of Fig. 10-1. Sets
are often denoted by letters; for example, we call the set in Fig. 10-1 the
set A,

SEc. 10-7] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 305

Just as the prime purpose of propositional logic was to determine the
truth value of a proposition, so the prime purpose of the algebra of sets is
to determine whether or not a point ¢s in a set. In fact the only difference
between the propositional calculus of logic and the algebra of sets is that
the algebra of sets deals with a very restricted kind of propositions.
These are propositions of the form ‘‘The point p is in the set A’ and
combinations of such propositions with and, or, and not. Hence the
crosshatched area of Fig. 10-1 represents all those points for which the

NS

F16. 10-2. A - B. Fi1a. 10-3. A + B.

proposition “The point p is in the set A’ is true. Let us symbolize this
proposition by A. Then A is true for all points p not lying in the cross-
hatched area.

Intersection and Union. All the points for which A - B is true (i.e.,
for which ‘“the point p is in the set A, and the point p is in the set B”
is true) are represented by the crosshatched area of Fig. 10-2. All the
points for which A + B is true (i.e., for which ‘‘the point p is in the
set A, or the point p is in the set B’ is true) are represented by the cross-
hatched area in Fig. 10-3. The crosshatched area in Fig. 10-2 is called

Fic. 10-4. A. ' Fic. 10-5. B.

the ntersection of the set A with the set B, that is, the set of points that
lie in both A and B. The crosshatched area in Fig. 10-3 is called the
union of the set A with the set B, that is, the set of points that lie in
either A or B or both.

Now, as we have seen, Boolean algebra holds for propositions, and
hence it must also hold for our set interpretation of propositions. Hence
we can visualize some of the relations of Boolean algebra by means of the

set diagrams. For example, consider the relation A-B = A + B.

306 FOUNDATIONS FOR LOGICAL DESIGN [CraPp. 10

We shall show that 4 - B and A + B represent the same area. Figure
10-4 gives the area for A, Fig. 10-5 for B, and Fig. 10-6 for 4 + B.
But, observing Fig. 10-2 for 4 - B, we see that the area for 4 4 B is the
same as that for 4 - B.

Just as in the propositional logic, given the truth value of the ele-
mentary elements, the truth value of a combined element can be deter-
mined, so, given the location of a point p with respect to the elementary
sets A, B, . . . , we can determine if it is in the set described by a com-

/ c

A B A B
N\
\P
Fic. 10-6. A + B. Fic. 10-7. (A + B) - C.

bined element. For example, if a point p is in set A, not in set B, not in
set C, then is it in the set for which (4 + B) - Cis true? The solution is
given in Fig. 10-7. The crosshatched areas are all points for which
(A + B) - Cis true, and the point p is in set A, but not in set B or set C.
Hence p is in the set (4 + B) - C.

EXERCISES
(a) Show by set diagramsthat 4 + B-C = (A 4+ B) - (A 4 C).

If a point is in set 4, not in set B, and not in set C, then is it in the following sets,
i.e., in the sets for which the following combined elements are true?

Answer
® (4A+B)-C Yes
() A+ B-C Yes
d.A-B-C No
e A-B+0) Yes
(fy B+4-¢C Yes

(9) Draw the set diagram for A — B.
(h) Draw the set diagram for A = B.

10-8. Digital-computer Circuits

In this section and the following sections we shall begin to see why the
study of Boolean algebra is important for digital-computer circuit
design. However, first we must make clear just what a digital-computer
circuit is (see Fig. 10-8).

Sec. 10-8] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 307

The Condition-function table. Consider a digital-computer-circuit black
box with, say, two input wires called wire A and wire B and one output
wire called wire C. Suppose that only one of two voltages may appear
on wire A, to be specific, say a 0-volt and a 1-volt signal; the same holds
for wire B. Hence a table can be made describing all possible input
conditions:

Possible input conditions

0 1 2 3
Wired........... 0 1 0 1
Wire B...........| 0 1 1
WireC...........| O 0 0 1

Let condition 3 be the case when there is a 1-volt signal on both wires A
and B; condition 2 be the case when there is a 0-volt signal on wire 4,
1 volt on wire Bj; condition 1 when there is 1 volt on wire A, 0 volts on
wire B; condition 0 when there are 0-volt signals on both wires A and B.
Then the function of the black box will be completely specified if we tell

A B

|

Digital-computer-circuit
black box

C
F16.10-8. Digital-computer black box.

what voltage will appear on wire C for each of the four input conditions
on wires A and B. For instance, suppose that 1 volt appears on wire C
only when 1 volt appears on both wires A and B and that 0 volts appear
on wire C otherwise. Then the table of input conditions ean be com-
pleted for the output wire C' as shown, and then the function of the black
box is completely specified by the condition-function table. Such a
black box is a type of digital-computer circuit.

Hence we define a (binary) digital-computer circuit as a circuit black
box the input wires of which are limited to two voltage levels, the output
wires of which are limited to two voltage levels, and such that the voltage
levels of the output wires depend on the present voltage levels of the
input wires.}

. -} Circuits that seem to depend on the past history of the input-voltage levels as
well can always be interpreted in terms of present input-voltage levels provided that
the number of ““‘inputs’ is increased; this will be discussed in a later chapter.

308 FOUNDATIONS FOR LOGICAL DESIGN [Cuar. 10

EXERCISE

(a) Make a condition-function table for a circuit with three input wires 4, B, C and
one output wire D such that D will have a unit voltage signal whenever 4 has a unit
voltage signal and B has a unit voltage signal, or else when C has a zero voltage signal;
otherwise D has a zero voltage signal.

Solution
Possible input conditions
0 1 2 3 4 5 6 7
Wire A......... 0 1 0 1 0 1 0 1
Wire B.. 0 0 1 1 0 0 1 1
Wire C.. 0 0 0 0 1 1 1 1
Wire D......... 1 1 1 1 0 0 0 1

10-9. Boolean Algebra as the Algebra of Digital-computer Circuits

We have introduced Boolean algebra as the algebra of propositional
logic and have shown that it is in addition the algebra of sets. Boolean
algebra can also be interpreted as the algebra of digital-computer circuits.
Just as the prime purpose of propositional logic was to determine the
truth value of a proposition and that of the algebra of sets was to deter-
mine whether or not a point is in a set, the prime purpose of the algebra of
digital-computer circuits is' to determine the signal-voltage level on a
wire (e.g., either a 0-volt or a 1-volt signal). Infact, just asin the algebra
of sets, the algebra of digital-computer circuits deals with a restricted
kind of proposition. These are propositions of the form ““The wire X
has a 1-volt signal” and combinations of such propos1t10ns with and,
or, and not.

Suppo_se that we symbolize by X the proposition “The wire X has a
1-volt signal.” Then we can symbolize, for example, the statement in
Exercise a of Sec. 10-8 that describes when wire D will have a 1-volt
signal as follows: 4 - B 4 (. In fact, when that combined element is
true, then D is to be true; that is, D = A - B 4 C. Hence we can sym-
bolize the conditions that describe the output of a computer circuit in
terms of its input by means of Boolean algebra.

The condition-function table now becomes analogous to the truth
tables of propositional logic when 0 corresponds to false and 1 corresponds
to true. In fact, given the Boolean algebraic conditions for D to have a

1-volt signal, a functlon table can be constructed dlrectly in a manner
similar to the construction of truth tables.

For example, suppose that the conditions for output wire D of a com-
puter circuit were given in terms of the voltage signals on mput eres A
B, and C by . ;

D=A4+B-C

SEc. 10-10] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 309

Then the condition-function table would be:

Possible input conditions

0 1 2 3 4 5 6 7

Wire A......... 0 1 0 1 0 1 0 1
Wire B......... 0 0 1 1 0 0 1 1
Wire C......... 0 0 0 0 1 1 1 1
Wire D......... 1 0 1 0 1 0 1 1

For example, if A is true (i.e., if “Wire A has a 1-volt signal’ is true)
and if B is true and if C is true, then A is false, but B - C is true, whence
A + B - C is true and therefore D is true (i.e., “Wire D has a 1-volt
signal’’ is true). Hence for condition 7 we put a unit in the row for wire
D, and so forth.

Immediately we see that the description of the same black-box com-
puter circuit can be stated in more than one way in terms of Boolean
algebra. Ior example, if an output wire D is given in terms of the input
wires A, B, C as D = A + B - C, then, since

A+B-C=A+B)-(A+0)

we could equivalently write D = (4 4 B) - (A + C). On the other
hand both A 4+ B-C and (4 + B) - (4 4+ C) have the same truth
table and consequently the same condition-function table.

10-10. From Circuit Diagram to Boolean Function

The Gates. We shall presently show that any such digital-computer-
circuit black box can be constructed out of three circuit elements, called,
respectively, an and gate, an or gate, and an inverter.t However, the three
kinds of circuit elements must first be defined. They are all digital-
computer circuits and can therefore be defined by a condition-function
table.

The and gate has two inputs A and B and one output X, which takes
the voltage values given by the following table:

Possible input conditions

0 1 2 3
Wire A........... 0 1 0 1
Wire B...........| 0 0 1 1
Wire X.......... 0 0 0 1

» t Consideration of ““flip-flops”’ will be deferred until a later chapter.

310 FOUNDATIONS FOR LOGICAL DESIGN [CHAP. 10

In words, wire X will have a 1-volt signal if and only if the wires 4 and
B each have a 1-volt signal. One possible method for constructing such a
circuit is illustrated in Fig. 10-9. The arrows indicate the direction of

A-————"_}T__"
X
B-—""E__,

%R
+1 volt

F16. 10-9. Diode and circuit.

flow of electron current; Ty and T, are diodes, and R is a resistor. When
either wire 4 or wire B has a 0-volt signal, current will flow through the
resistor until X is at 0 volts; when all of wires 4 and B are at 41 volt,
then no current will flow through R and wire X will be at +1 volt.f

The or gate has two inputs, 4, B, and one output, X, which takes the
voltage values given by the following table:

Possible input conditions

0 1 2 3
Wire A........... 0 1 0 1
Wire B........... 0 0 1 1
Wire X.......... 0 1 1 1

In words, wire X will have a 1-volt signal if and only if at least one of
wire A or B has a l-volt signal. The schematic for such a circuit is

>

%R
0 volts

F1c. 10-10. Diode or circuit.

illustrated in Fig. 10-10. Whenever any one of A or B or C becomes -1
volt, electron current will flow until X is at 41 volt.

1 Detailed description of and gates, or gates, and inverters is given in Part 5. We
merely indicate how these might be made to enable the student to obtain a more
concrete picture at this time.

SEc. 10-10] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 311

An inverter has one input wire A and one output wire X, Wire X
will have a 1-volt signal if wire A is at 0 volts, and wire X will have a
0-volt signal if wire A is at 1 volt. The table becomes:

Possible input conditions

0 1
Wire 4.......... 0 1
Wire X.......... 1 0

Symbolized Gates. Rather than draw the schematic for an and gate,
or gate, or inverfer, we use standardized symbols to represent them, as
shown in Fig, 10-11.

A A—
X(=A-B) X(=A+B) A X(=3)
D—een TH— e

And gate Or gate Inverter
Fia. 10-11. Symbolized gates.

We can generalize the and gate and or gate symbols for more than two
inputs as shown in Figs. 10-12 and 10-13.

A A
B X(=A-B-C-D) B X (= A+B+C+D)
c c—
D D
F1a. 10-12. Symbol for and gate with four Frg. 10-13. Symbol for or gate with four
inputs. inputs.

From the Circuit Diagram to the Boolean Function. Complicated digital-
computer circuits can be built up by connecting the output of such gates
to the input terminals of other gates. For example, consider Fig. 10-14.
The outputs X and Y of the and gates are connected to the inputs of the
or gate. Hence the output Z of the or gate then depends on the original
inputs 4, B, C, and D of the and gates. What is the precise dependence?
Note that X = A-B and Y =C+D whereas Z = X 4+ Y. Hence
Z=A-B+ C-D. In other words, the circuit of Fig. 10-14 can be
thought of as a black box with input 4, B, C, and D and output Z such
that Z = A-B + C- D.

Hence, given a digital-computer-circuit diagram, the Boolean expres-
sion for its output can now readily be derived. For example, consider
the circuit of Fig. 10-15. The problem is to write Z in terms of 4 and B,

312 FOUNDATIONS FOR LOGICAL DESIGN [CHaP. 10

as given by the circuit diagram. This is done as follows: Z = X Y,
X =A+ B, Y = C; therefore Z = (4 + B) - C. For another exam-
ple, consider the circuit of Fig. 10-16. Here Z=X+4+ Y, X = A - B,
Y=U-V,U=A4,and V = B. Putting these together, we find that
Z=A-B+4-: -B.

Summary. The procedure for writing the output Boolean functions
in terms of the input elements (wires) for a given circuit diagram is as

A— X
B ~—]
7 A:{)
B
Y X
C.__
D— C+ 7

F16.10-14. Z =X +Y =A-B+C-D. F16.10-15.Z=X-Y = (4 + B)-C.

Z

follows: Tirst, assign letters to all input wires, all internal connecting
wires, and all output wires. Second, proceed to write down the successive
functions for each gate or inverter. Third, substitute in the equations
until the outputs are given in terms of the inputs.

The relations between the propositional calculus of symbolic logic and
the circuit interpretation of Boolean algebra can now be reviewed. The

X

A—> v }Z
B—D—K—‘ Y

F16.10-16. Z =X +Y =A-B+U-V=A-B+ A-B.

symbol A corresponds to the proposition ‘“Wire A has a 1-volt signal.”
Hence consider the propositional interpretation of the answer to the
second example: Z = A-B + A -B. This says that “The output
wire Z has a 1-volt signal” has the same truth values as ‘“Either both
input wires A and B have a 1-volt signal, or neither A nor B has a 1-volt
signal.”” In other words, wire Z will have a 1-volt signal whenever
either both A and B have 1 volt or neither A nor B has a 1-volt signal;
otherwise wire Z will have a 0-volt signal.

SeEc. 10-10] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 313

EXERCISES

Determine the Boolean function (i.e., the combined element) of the inputs 4, B, C,
and D that corresponds to the outputs Y and Z of the following diagrams:

Solution
B .
C:l :
(a) Z=A+B-C
A
A
A
B
®) z Z=A+B)-(4+0
A
Cc
A-P—
B
(c) VA Z=4-B+C-D
CcP— _
D—
A
B
C
A
B
c 2 Z=A-B-C+A4-B-C
A-B-C+A-B-C
@ A + +
B
C

314 FOUNDATIONS FOR LOGICAL DESIGN [CuaPp. 10

N <
]

e
&

(e B

U.d &
e Ne
+ +
By
b
Q

+ +
BB,
o

& o
+ +
N
Qa

i
N K‘/ N

10-11. From Boolean Function to Circuit Diagram

In this section is illustrated how to proceed in the direction opposite
to that of See. 10-10: given a desired output Boolean function in terms of
the inputs, draw a circuit design. Let Z be the ouput and 4 and B the
inputs. Suppose that it is desired to design a circuit so that

Z=A-B+A4-B

The right-hand side is the sum of two combined elements; so let

where X = A - B an
bined elements: let

e
I~

A -B. Now Y is the product of two com-
-V, w = A, V = B. Then we draw

A X(=A-B))

B }Z(=X+Y)
U(=4)]

A—P—— Y(=U-V)

s V(=B

F16.10-17. Z =X 4+Y=A.-B4+U -V =A-B+ A-B.

h<

Z astheresult of X +YV,Xas A-B,YasU-V,Uas 4,and Vas B
(see Fig. 10-17). For another example, consider

Z=A-B-C+A-B-C+A4-B-C

SEc. 10-12] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 315

Let Z=U+V+ W, where U=A4-B-C, V=A4-B-C, and
W = A-B-C. Hence the diagram is as in Fig. 10-18. This example is
interesting for the following reason: Note that

A-B-C+4-B-C+A-B-C=(A-B+A-B+A-B)-C)
=(A-B+B)+4A-By-C=(A+4-B)-C=(A+B)-C

or A-B-C+A4A-B-C+ A-B-C = (A + B)-C, which is just the
output expression for the second example of the previous section (Sec.
10-10). In other words, the above circuit diagram gives the same output
as the circuit diagram of the second example of the previous section.

D,
c—p—1/ /

F16.10-18. Z=U +V 4+ W =A-B-C+A-B-C+ A-B-C.

Hence we see that the design of a digital-computer-circuit black box is not
unique and, in general, that there are many ways of arranging the and
gates, or gates, and inverters to obtain equivalent results. How to choose
the best design is discussed in the next chapter.

EXERCISES

If Z is the output and A, B, C, and D are inputs, draw the circuit diagrams for
computer circuits such that:

@ Z=A-B+A4-B.

®Z=AL-B+4-B)-C+(A-B+4-B)-C.

©Z=@A+B-C+D.

@DZ=A+EB-C)-(A+B-C +D.

10-12. Additional Topics

a. Aziomatic Development of Boolean Algebra, and References. Boolean algebra, or
the propositional calculus of symbolic logic, can be developed from several different
sets of postulates. As an example, consider a set of postulates defined in terms of the
following ‘“fundamental concepts’’: a set S of elements (a,b,c, . . .);a + b, the result
of the binary operation -; and @, the result of the operation —=. The postulates are:

1. If @ and b are elements of S, then a + b is an element of S.

2. If a is an element of S, then @ is an element of S.

3. a+b=>0+a.

316 FOUNDATIONS FOR LOGICAL DESIGN [CHaP. 10

4. (@a+b) +ec=a+ b +0).

5 @+b+@+b =a.

The equals sign (=) is interpreted as an equivalence relation (see Sec. 7-8), and
in addition the following substitution rule is assumed to hold: If z = y, then
flzabe ...) =fyabec ...) From these five postulates and the properties
of =, all the equations of Boolean algebra can be proved (see Sec. 10-6). Evidently +

can be interpreted as the logical sum; the logical product is defined as a - b = a + b.
The tautology I is defined by I = @ + @;0isdefined by 0 = a-d. Forexample, let us
prove that a+b = b-a. By the definitiona-b = (¢ 4 b); by 3), (@ + b) = (b + a);
but (b 4 @) = b-a, as desired. Can you prove thata 4+ (b-¢) = (a +b) - (@ +¢)?

A system of postulates is called independent when it is impossible to deduce from
any portion of the system a conclusion deducible from any other portion. Can you
prove that the five postulates given above are independent? Since the above set of
postulates used the set S and the operations - and —, we denote fhis set as the
(S, 4,) postulate set. Another set of postulates, denoted by (4, -+, -), is as follows:

1. There is an element 0 in A such that 0 4+ a = a for all a in A.

2. There is an element 1 in A such that 1-a = a for all ain A,

3.0-a =0forallain A.

4, 1+ a =1forall ain A.

5. A consists of {wo elements (that is, 0, 1).

Two sets of postulates P and P’ are called equivalent if starting with the postulates P,
after finding suitable definitions for the primitive concepts of P’ in terms of the primi-
tive symbols of P, the postulates of P’ can be derived. Can you show that the postu-
late sets (S, +, ~) and (A, +, -) as given above are equivalent? This latter set is
closely related to the techniques to be considered in the next chapter.

The following references deal with the foundations and the axiomatic approach to
Boolean algebras:

Bernstein, B. A.: A Set of Four Independent Postulates for Boolean Algebra, Trans.
Am. Math. Soc., vol. 17, 1916; Sets of Postulates for the Logic of Propositions,
Trans. Am. Math. Soc., vol. 28, 1926.

Boole, G.: “George Boole’s Collected Logical Works’’ (1859), vols. 1 and 2, P. E. B.
Jourdain (ed.), The Open Court Publishing Company, La Salle, I11., 1940; “ An
Investigation of the Laws of Thought,”” Dover Publications, New York, 1951.

Huntington, E. V.: Sets of Independent Postulates for the Algebra of Logic, Trans.
Am. Math. Soc., vol. 5, pp. 288-309, 1904; A New Set of Independent Postu-
lates for the Algebra of Logic, Proc. Natl. Acad. Sci. U.S., vol. 18, 1932; New
Sets of Independent Postulates for the Algebra of Logie, Trans. Am. Math. Soc.,
vol. 35, 1933.

Jevons, W. 8.: “Pure Logic (1864) and Other Minor Works,” R. Adamson and H. A.
Jevons (eds.), The Macmillan Company, London and New York, 1890.

Schroeder, E.: ‘“Algebra der Logik,”’” vol. 1, Teubner Verlagsgesellschaft, Leipzig,
1890.

A discussion of the axiomatic method and techniques for proving the independence
of and equivalence between axiom systems is found in R. L. Wilder, ‘‘Introduction to
the Foundations of Mathematics,’”’ John Wiley & Sons, Inc., New York, 1952,

b. Formal Rules of Inference. We have been discussing above axioms from which
the identities or tautologies of Boolean algebra may be derived. We have tacitly
assumed that the ‘“usual rules’’ of logic are to be used in such derivations. Butitisjust
these rules themselves which we are proposing to study! This is the problem which is

Sec. 10-12] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 317

considered in logic texts and which will now be briefly treated. We are dealing with
propositions whose content may be true or false and with tautologies that are stated in
terms of propositions and that are themselves the rules of logic. However, we must
start with primitive tautologies (axioms) and some primitive laws of deduction. One
such primitive set is as follows: The primitive tautologies are:

1. (z +z)— =z

2. z— (z +y).

3 z+y)— @ +a).

4. @+~ (+2)— =+
The primitive rules are: (1) The rule of substitution (dictum de omnt); we may substitute
for a propositional variable any other variable or combination of variables, provided
that the substitution is made wherever that sentential variable occurs. (2) The rule
of inference (modus ponens); if z and z — y are tautologies, then y is a tautology.
From these we can prove all the tautologies of Boolean algebra. For example, let us
prove that, if z— z and z — y are tautologies, then z— y is a tautology. To show
this, first note that by our rule of substitution we shall let Z replace z in (4), obtaining
as a tautology (z—y)—> (E+2)— E+) or x> y)— (—2)— — y)).
Now, by the rule of inference, since £ — y is a tautology, then z > z) — (z— y) is a
tautology; by our rule of inference again, since z — z is a tautology, then z— y is a
tautology, as desired.

For detailed discussions of the formal theory of symbolic logic, the reader is referred
to the following:

Church, A.: Introduction to Mathematical Logic, Part I, Ann. Math. Studies 13,
Princeton University Press, Princeton, N.J., 1944,

Cohen, M., and E. Nagel: “An Introduction to Logic and the Scientific Method,”
Harcourt, Brace and Company, Inc., New York, 1934.

Hilbert, D., and W. Ackerman: ‘Principles of Mathematical Logic,” R. E. Luce (ed.),
Chelsea, New York, 1950.

Quine, Willard van Orman: ‘Mathematical Logic,’
Press, Cambridge, Mass., 1951.

Reichenbach, H:.: “Elements of Symbolic Logic,”” The Macmillan Company, New
York, 1950.

Rosser, J. B.: “Logic for Mathematicians,”” McGraw-Hill Book Company, Inc.,
New York, 1953. : .

Whitehead, A. N., and B. Russell: “Principia Mathematica,’”’ vol. 1, 1910, vol. 2,
1912, vol. 3, 1913, Cambridge University Press, New York (2d ed., 1925-1927).

’ rev. ed., Harvard University

¢. Other Logical Operations. As we have observed above, Boolean algebra can be
accomplished with just two operations, 4+ and —, since the - operation can be given in

terms of 4+ and "asa-b = d_—l——_l;. There are in fact single operations in terms of
which Boolean algebra can be accomplished. Consider the operation pi(a,b) defined
in terms of 4 and ~ as follows: pi(a,b) = @ + b. To show that Boolean algebra can
be accomplished in terms of this single operation, all we need do is define -+, -, and ~in
terms of pi(a,b). Thus, as can easily be checked from our definition, @ = pi(a,a);
a +b = pilpi(a,d),pi(a,b)]; and a-b = pilpi(a,a),p1(b,b)]. Another such single
operation is p:(a,b) = g-b. Here we have @ = p:(a,a), a + b = p2lp2(a,a),p2(b,b)],
and @ - b = pa[pa(a,d),p2(a,b)]l. Note that I and 0 can be defined in terms of p; or p..
For p1 we have I = pi{pila,p:1(a,a)],p:la,p:(a,0)]}, and then 0 = p,([,]). Can you
define I and 0 in terms of p.? If we admit I and 0 as primitive concepts, then there
are four further single operations that can be defined, namely, pi(a,b) = @ + b,
pi(a,d) = a + b, ps(ab) =a-b, psla,b) =a-b. For example, for ps we have

318 FOUNDATIONS FOR LOGICAL DESIGN [CraPp. 10

a@ = pi(a,0), a + b = pslps(e,0),b], and a -b = ps{ps[a,ps(h,0)],0}. Can you show
that p4, ps, and pe are each also valid single operations? What algebraic properties do
Py, . . ., ps have? The single operation p; was first introduced by H. M. Sheffer
[A Set of Five Independent Postulates for Boolean Algebras, Trans. Am. Math. Soc.,
vol. 14, pp. 481-488, 1913, where pi(a,b) was denoted by alb, commonly known as
Sheffer’s stroke]. A single primitive formula can be used in terms of p; (instead of
the four given in Additional Topic b above), namely,

pl[pl(x)pl {y,z})7pl(pl {uypl[u:u] } Iy 4] {PI[”;?/];PI[T?I(%”);M(%v)] })]

This was first developed by J. Nicod (A Reduction in the Number of the Primitive
Propositions of Logic, Proc. Cambridge Phil. Soc., vol. 19, pp. 32-42, 1916).

d. Logical Translation of English. The limitation on the practical application of
the propositional calculus arises from the difficulty of translation of the practical
worldly situations into these precise statements. This translation, the first step in
formulating the problem for solution, is by no means obvious and requires the work of
a trained logical analyst. Part of this difficulty is the prevalent loose and often
obscure use of language, and in particular of those very conjunctions which form the
logical operations.

TaBLE 10-1. TRANSLATIONS oF ENGLISH CONNECTIVES

English connective Logical translation
Nob Ao ¥\
Aand B....oooiii e A-B
A or (inclusive) B; A or Bor both............ A+ B
A or (exclusive) B; either Aor B............. A#B A-B+A-B
Abut B A-B
Aalthough B.............................. A-B
Aunless B. ... B-A,B+ A
A on condition that B...................... B A, B+ 4
A B B A B+ A
If A, then B; Aimplies B................... A—-B A+ B
Aonlyif Bt................ S A- B A+ B
Notunless Athen B........................ A—- B A+B
Aprovidedthat B.......................... B—A, B+ 4
Aaswellas B..................cciiiin... A-B
Aifandonlyif B.......................... A=B A-B+A4-B
NotbothAand B.......................... A"B, A+ B
Neither Anor B........................... 4.B,A+B
When 4, then B........................... A—>B A+ B
Abecause B............. ... i B A, B+ A

1 Often imprecisely synonymous with ‘“4 if and only if B.”

For example, the word unless as used in the combined proposition ‘“A unless B”
is defined by logicians as A + B, since “ 4 unless B’’ is considered equivalent to *“ 4 if
not B,” that is, “if not B, then A,” which is written symbolically as B— A.
However, since not all users of the word unless are familiar with the logicians’
delineation of the term, one often finds it employcd with an entirely different connota-
tion. For instance, “ A unless B” is often used to denote “If B, then not A,”’ sym-
bolically B— A4, or B + A. A third possibility for “A unless B’ might be “A4, but

SEc. 10-12] BOOLEAN ALGEBRA AND DIGITAL CIRCUITS 319

if B then not A4,” which becomes 4 - (B 4- A), or A - B. It is thus evident that in the
formulation of the propositional elements from the original raw sentences one must
have enough familiarity with the subject matter to be able to discern the ¢ntent of a
sentence in its given context.

In Table 10-1 we have suggested some translations for various English connectives.
Caution must be used for the translation of or to distinguish between the ¢nclusive or,
that is, A or B or both, and the exclusive or, that is, either A or B but not both. Also
care must be observed in using ‘“‘If A then B,”” or ‘A implies B.”” Strict logical inter-
pretationis A — B,or A 4 B. Consider, for example, A — B - C. Thisisequivalent
to (A — B) - (A — (), which is reasonable in terms of the English translation. =~ Simi-
larly A — (B + C) is equivalent to (4 — B) + (4 — C), which again is reasonable.
However, A -B— C is equivalent to (4 — C) 4+ (B — C), which upon English
translation is not obvious without considerable reflection; i.e., “Both A and B imply
C” is the same as ‘‘ A implies C, or B implies C, or both A4 implies C and B implies C.”
Similarly (4 4 B) — C is equivalent to (4 — C) - (B— (), which again is not
particularly obvious upon English translation.

For further discussion of this topic see these works:

Allen, L. E.: Toward More Clarity in Business Communications by Modern Logical
Methods, Management Sci., vol. 5, no. 1, pp. 121-135, October, 1958.

Carnap, R.: “The Logical Syntax of Language,”” Routledge and Kegan Paul, Ltd.,
London, 1949.

Ledley, R. S.: Mathematical Foundations and Computational Methods for a Digital
Logic Machine, J. Operations Research Soc. Am., vol. 2, no. 3, pp. 249-274, August,
1954. (See also letters on Logical Translation of English by L. Davidson, J.
Operations Research Soc. Am., vol. 3, no. 2, p. 466, November, 1954, and J. W.
Gilmore, J. Operations Research Soc. Am., vol. 3, no. 1, p. 104, February, 1955.)

Reichenbach, H.: “Elements of Symbolic Logic,”” The Macmillan Company, New
York, 1947, i

CHAPTER 11

THE DESIGNATION NUMBERS AND THE DESIGN
OF FUNCTION CIRCUITS

11-1. Introduction

Boolean Algebra. In the last chapter Boolean algebra was introduced
by means of its logical interpretation. Then it was shown how Boolean
algebra could also be applied to describe relationships between sets and
between input and output wires of digital-computer circuitry. This
latter application is, of course, of primary interest to us. It was shown
how to draw a circuit diagram corresponding to a Boolean function and,
conversely, how to write a Boolean function, corresponding to a circuit:
diagram, for the output wires in terms of the input wires.

However, certain problems appeared in this study that were not
resolved. For instance, it was seen that there are in general many
circuit designs that will do the same job. Also the algebraic manipula-
tions of Boolean algebra seem rather difficult, requiring considerable skill
and imagination together with a thorough knowledge of many of the rela-
tionships given in Sec. 10-6. This chapter will present systematic com-
putational methods that enable the relatively easy and straightforward
solutions to these and many more problems that may arise in the design
of computer circuitry.

Initial Initial Manipulation Final Final
Boolean algebraic == designation == of designation —=> designation —> Boolean algebraic
formulation numbers numbers numbers results

Fi16. 11-1. Procedural chain for algebraic manipulation.

Compulational Methods and Circuit Design. The computational
methods to be given depend on the systematic manipulation of designa-
tion numbers that will be described in this chapter. The procedure is
first to turn the initial Boolean algebraic functions into designation
numbers, then to perform the indicated computations with these num-
bers, and finally to transform the resulting numbers back into the final
desired Boolean algebraic expressions. In this way algebraic manipula-
tions are replaced by the systematic numerical computations to be
described. This procedure is diagramed in Fig. 11-1.

As we have seen, two disciplines of study are brought together for the
design of computer circuitry. The first is that of Boolean algebra, which

320

Sec. 11-2] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 321

Circuit dlagram ————> Boolean functions, =—————s— Circuit diagram

Verbal statement —————>- Function table /

F16. 11-2. From verbal statement to circuit diagram.

has broad applications to many fields. The second is that whichisspecific
to digital-computer circuitry. TFigure 11-2 diagrams procedures of the
latter kind, some of which were described in the last chapter.

The first parts of the present chapter will be devoted to the procedures
diagramed in Tig. 11-1; the rest of the chapter will be concerned with the
procedures of Fig. 11-2 and their combination with those of Fig. 11-1.
In fact the entire circuit-design problem can be summarized by the dia-
gram in Fig. 11-3. The double-lined arrows refer to procedures that
involve only Boolean algebra and the computational methods; the single-
lined arrows refer to procedures unique to the digital-computer circuit
problem.

Final result Final result

Initial B Manipulation of Final
oolean Designation in terms of interms of _ .7

clreuit = functions numbers = designation = designation = Boolean > Circuit
diagram numbers numbers algebra diagram

Verbal / /

statement Function

table
problem

F1a. 11-3. Combination of Figs. 11-1 and 11-2. The circuit-design problem outlined.

11-2. The Designation Numbers

The computational methods to be described involve binary numbers
called designation numbers. To every element, elementary or combined,
we associate a designation number. In doing a problem, the designation-
number representation for each proposition is obtained; the computations
are performed in terms of these numbers; and finally the answer is rein-
terpreted in terms of propositions or sentences. The procedure for going
from propositions to designation numbers will be considered first, and
that for returning from designation numbers to propositions will follow.

The Basis. The designation numbers for the elementary elements are
assigned first. Such an assignment is called a basis. One such basis for
a system of three elementary elements is

0123 4567

#A = 0101 0101
#B = 0011 0011
#C = 0000 1111

where the upper small numbers merely number the positions of the

322 FOUNDATIONS FOR LOGICAL DESIGN [Cuap. 11

columns of the basis.t For a system of n elementary elements,] there are
2» digits, or bits, in each designation number and hence 2" columns in a
basis. Any permutation of the columns of the basis shown will result in
a different but nonetheless valid basis. The columns of a valid basis for
n elementary elements need only represent all the 2" possible combina-
tions of 0 and 1 taken n at a time. Hence there can be 27! different bases.

One advantage of the type of basis illustrated above is that it may be
written out directly for any number of elementary elements as follows:
the number for the first elementary element alternates zeros and units;
for the second alternates pairs of zeros and units; for the third alternates
4 zeros and 4 units; for the fourth would alternate 8 zeros and 8 units,
and so forth, each such designation number being extended to comprise
the full complement of 2» bits. The column positions of the basis are
numbered from the left, from 0 through 2* — 1. Such a basis is called a
standard basis, and unless otherwise stated 4t ¢s always assumed that all
designation numbers refer to this type of basts. TFollowing this convention
we have, for example, in the case of four elementary elements, the stand-
ard basis:

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#4=0 1 0 1 010 1 01 01 0101
#B=0 011 0 011 0 011 00 11
#C=0 0 0 O 1111 0000 1111
#D =0 0 0 O 00 0 0 11 11 1111

Observe that each column of a standard basis, read from the bottom to
the top, forms a binary number which is the same as the number of the
1

column position. For example, column 3 is § corresponding to 0011 = 3

0
0
1

(decimal), and column 14 is 7 corresponding to 1110 = 14 (decimal).
1
Détermining the Designation Number of a Boolean Function. In order
to find #(A + B), we define an operation of ““logical addition,”” to be per-
formed on #4 and #B, wherein 0 +0=0,0+1=1+0=1, and
141 =1 without carry. For example, with respect to the standard
basis for two elementary elements,

#4 = 0101
#B = 0011
#A4 + B) = 0111

To find #(A - B), we similarly define the position-by-position operation
of “logical multiplication,” wherein 0:-0 =0, 0-1=1-0 =0, and
1-1=1. For example,

#4 = 0101
#B = (0011
#(4 - B) = 0001

 The # symbol means “The designation number of”’
1 Also called basic symbols.

Sec. 11-2] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 323

To find # A, we invert each digit of #A4, that is, change 0 to 1 and 1 to 0.
For example,
#4 = 1010

With these operations on designation numbers in mind, we determine
the designation number of a combined element merely by performing the
indicated operations with respect to the chosen basis. TIor example, to
find #(4 + B - C), we have, with respect to a basis for three elementary
elements,

#B = 0011 0011

#C = 0000 1111

#(B-C) = 0000 0011

#A = 1010 1010

#(A + B-C) =1010 1011

There should be no confusion as to the dual role of the symbols +, -, —.
When applied to propositions 4, B, C, . . . , they are the logical opera-
tions or, and, and not, respectively; when applied to designation numbers
#A, #B, #C, . . . , they are the numerical operations logical add, logical
mulliply, and tnvert, respectively.

Important Results. Some important results of this digitalization of
propositions are: (1) #I = 1111 - - - ; that is, #I has all units. (2)
#X = #Y if, and only if, X =Y. (38) X — Y if, and only if, #Y has
units in at least those positions which correspond to the units of #X.

For example, to demonstrate equivalences, we simply calculate the
designation number of each side; if they are identical, the equation holds.
To showthat A-B+ A-C+B-C=A-B+ B-C, we find

#(A-B) = 0001 0001 #(A-C) = 0000 0101
and #(B-C) = 0000 1100
whence #(A-B+ A-C+ B-C) =0001 1101

but #(A - B + B - () = 0001 1101 also, whence the equivalence must
hold. To show that an implication is true, simply show that the implied
proposition has units in at least the same position as the implier. For
example, to demonstrate that A-B+ B-C— A+ C, we note that

#(A B+ B-C) = 0001 1101 which has units in positions 3, 4, 5, and

7; also #(4 + C) = 0101 1111 which obviously has units in at least
these positions.

Basis and Truth Tables. To see the relationship between the truth
tables and the basis, observe that, if in the truth table of Seec. 10-5, T is
replaced by 1 and F is replaced by 0 and the columns are written as rows,
then a basis results, together with the designation number of A 4+ B - C'

0101 0101 = #A4
0011 0011 = #B
0000 1111 = #C

1010 1011 = #(4 + B-C)

324 FOUNDATIONS FOR LOGICAL DESIGN [CHap. 11

The reason for this is as follows: The main feature of our basis is that the
27 columns represent all the 2» possible arrangements of n digits, each
place of which can be 0 or 1. This corresponds precisely to all possible
truth values of n elementary elements.

The limitations of the truth-table method as compared with our
numerical basis hinge on the fact that the order of the columns of the
basis is fixed by the basis, while in the truth table it makes no difference
in what order the rows are considered. (The truth table illustrated
above was chosen so as to compare with our basis.) Thus merely to
specify a particular combined element it is necessary to present a com-
plete “two-dimensional’’ truth table. The usefulness and applicability
of truth tables have therefore been confined primarily to elementary
didactic discussions and visual aid rather than as a notational representa-
tion for extensive computational techniques.

EXERCISES

With respect to standard bases determine the following:
Solution

(@) #(A + B) 1101
() #(4-B) 0100
© #MA-B+0C) 1111 0100
d) #[4 - (B +C) 0101 0100
(e) #[A-B 4+ 4 - B] 1001
(f) #[A-B 4+ 4 - B] 0110
() #[A - B +C - D} 0100 1111 0100 0100
() #[A- B +C) + 4. (B +0)) 1101 1011
@) #[A-B-C+ A4-B-C] 1000 0001
) #{(4A + B + C) - (A + B + 0)] 0111 1110
(k) #(A-B-C +C-(D +B-E)+D-E) 0011 0100 1111 0100

1111 1111 1111 0100

11-3. The First and Second Canonical Forms

From Designation Number to Boolean Function. Given a designation
number, there is a systematic method for finding its symbolic Boolean
algebraic representation in several different forms. For an example of
five different equivalent representations of the same designation number,
consider the number 0111 0100. (1) The first canonical form of this
isAB-C+A-B-C+ A-B-C+ A-B-C. (2) Thesecond canon-
icalformis(A +B+C) (A+B+C)-(A+B+0)-(4d+ B+ 0).
(3) The simplest sum-of-products form is A-B + B-C. (4) The
simplest product-of-sums form is (4 + B) - (B + C). (5) A mongrel
formis (A + B) - C + A - B-C. Allthese combined elements are equiv-
alent. In this section systematic methods for obtaining the first two
forms are given; the methods for finding the latter three forms are given
in subsequent sections.

The First Canonical Form. The so-called first canonical form, also
called the disjunctive normal form, is a sum of elementary products. An

SEc. 11-3] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 325

elementary product is a product that contains all the elementary ele-
ments or their negations. Ior example, all possible elementary products
for three elementary elementsare A - B-C,A-B-C,A-B-C,A-B-(,
AB-C,A-B-C,A-B-C,and A-B-C. Observe that the designa-
tion of an elementary product always has a single unit. For example,

#(A-B-C) =1000 0000
#(A-B-C) =0100 0000
#(A-B-C) = 0010 0000
#(A-B-C) = 0001 0000
#(A-B-C) =0000 1000
#(A-B-C) =0000 0100
#(A-B-C) = 0000 0010
#(A-B-C) =0000 0001

For n elementary elements there are 2" such products. The first canoni-
cal form of a designation number is the sum of only those elementary
products each of which contributes a unit to the number. For example,
0100 0011 has units in positions 1, 6, and 7 and can therefore be con-
structed by summing the elementary products whose designation num-

bers have units in positions 1, 6, and 7. Hence, we have

#(4 -B-C) = 0100 0000

#(4-B-C) =0000 0010

#(A-B-C) = 0000 0001

#A -B-C+A.-B-C+A4-B-C) =0100 0011

i.e., the first canonical form representation of 0100 0011 is
A-B-C+A-B-C+A-B-C

The Second Canonical Form. To find the second canonical form, also
called the conjunctive normal form, note that the designation number of
the sum of all the elementary elements or their negations has exactly one
Zero:

#(A + B+ C0) = 1111 1110
#(A +B 4 0) =1111 1101
#(A + B + C) = 1111 1011
#(A + B + C) = 1111 0111
#(A 4+ B +0) =1110 1111
#A + B +0C) =1101 1111
#(4 4+ B4 C) =1011 1111
#(A+B4+C) =0111 1111

These sums are called elementary sums; for n elements there are 2»
elementary sums. The conjunctive normal form corresponding to a
given designation number is the product of those elementary sums which

correspond to the zeros in the designation number. For example, for
0 23 45
0100 0011 we have zeros in positions 0, 2, 3, 4, and 5, and hence

#A+B+C)-A+B+0C)-A+B+0)-A+B+C)-(A+B+0)
= (0100 0011

326 FOUNDATIONS FOR LOGICAL DESIGN [Crar. 11

This follows because each elementary sum in the product contributes one
of the zeros of the designation number.

#(A4 + B +C) =0111 1111
#A +B+0) =1101 1111
#A + B+ C) =1110 1111
#(A4 + B+ C) =1111 0111
#A + B+ C) =1111 1011

#(product) = 0100 0011

as desired.

EXERCISES

Find the first and second canonical form corresponding to the following designation
numbers:

Answer
(@) 1001 0110 #[A-B-C+A4-B-C+A-B-C+4-B-(]
#(A+B+C)-(A+B+0)-(44+B+0)
A+ B+40)]
() 0101 0101 #[A-B-C+A-B-C+A-B-C+ 4 -B-0)
#A+B+C)-(A+B+C)-(4+B+0)
-(A+B+0)
{¢) 1000 0001 #A-B.C+A-B-C]

#(A+B+C)-(A+B+C)-(A+B+0C)
“A+B+0)-(A+B+0C)-(4+B+0)]
(@) 0111 1110 #[4-B-C+4A.B-C+A-B-C+4-B-C
+A-B-C+4-B-C] _
#(A+B+C)-(A+B+0)

(e) 1011 #[A-B+A-B+ A -B]
#[4 + B

(f) 0010 #(4-B) } o
#[(4 4+ B)- (4 + B)- (4 + B)]

(9) 1011 0001 0110 o101 #[A-B-C-D+A-B-C-D+A-B-C-D
+4-B-C-D+A-B-C-D+A4-B-C-D
+A-B-C-D+A-B-C-D] _

#(A+B+C+D)-(4+B+C+D)

“A+B+C+D)-(4+B+C+D
“A+B+C+D)-(A+B+C+D)
“A+B+C+D)-(4+B+C+D)

11-4. Included and Nonincluded Elementary Elements

Elimination Pairs of Positions. Certain information about a Boolean
function can be obtained from the designation number even before the
Boolean funection is explicitly displayed. For example, 0011 1111 can
be written as a function in which 4 does not appear. To see this, con-
sider the first canonical form of 0011 1111, namely,

A-B-C+A-B-C+A-B-C+A-B-C+4A4-B-C+A-B-C

SEc. 11-4] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 327
This can be factored as follows:
(A+4)B-C+(A+4)-B-C+(A+4)-B-C
but A + A = I, whence the expression reduces to
B-C+B-C+B-C

in which A does not appear explicitly. This example illustrates how it
may be possible to combine pairs of elementary products so as to elimi-
nate an elementary element from appearing explicitly in the form of a
Boolean expression. On the other hand, if only one of a pair of ele-
mentary products is in the canonical form, then A could not be elimi-
nated; e.g., consider 0001 1111. The canonical form is

A-B-C+A-B-C+A-B-C+A-B-C+A4-B-C
and on combining pairs

A-B-C+(A+4)-B-C+(A+4)-B-C
or A-B-C+B-C+B-C

in which A appears explicitly. (It can be shown that no equivalent
funetion exists in which A does not appear.) Hence we have shown that
it is plausible to expect that the necessary occurrence or nonoccurrence
(i.e., necessary inclusion or noninclusion) of an elementary element can
be determined by observing the canonical form or, what is close to
the same thing, by directly observing the designation number. Such is
the case, and the purpose of this section is to present rules for such
determinations.

AR AR ARAN

Positions

Pairs for B { \jl%_‘/
Pairs for C { :

Fia. 11-4. Elimination-pair posmlons for three variables.

These rules are given as properties of so-called elimination pairs of
positions of the designation number. Kach elementary element has a
set of pairs of positions. For three elementary elements, with respect to
the standard basis the numbers of the positions of these pairs are

4: (0,1) (23) (45) (6,7)
B: (0,2) (1,3) (4,6) (5,7)
C: (04) (1,5) (26) (3,7

The elimination pairs may be visualized as shown in Fig. 11-4. The

328 FOUNDATIONS FOR LOGICAL DESIGN [Crar. 11

extension of this system to four elementary elements follows directly:

A: (0,1) (2,3) (4,5) (6,7 (8,9 (10,11) (12,13) (14,15)
B: (0,2) (1,3) (46) (57 (810) (9,11) (12,14) (13,15)
C: (04) (L5) (26) (3,7 (812) (9,13) (10,14) (11,15)
D: (08 (1,9 (210) (3,11) (412) (5,13) (6,14) (7,15)

Nonincluded Elementary Elements. Now that we have defined the
elimination pairs with respect to the standard basis, the rules can be
stated.

RULE 1. A Boolean function can be written that does not involve
explicitly an elementary element if in the designation number all the
elimination pairs of positions for that elementary element contain either

both zeros or both units.
0123 4567

For example, consider 0011 1111. The elimination pairs for 4
satisfy rule 1, for positions (6,7) contain 11, positions (4,5) contain 11,
positions (2,3) contain 11, and positions (0,1) contain 00. Hence, as we
have seen, a Boolean function for this designation number can be written
in which 4 does not appear explicitly.

0123 4567

Consider as another example 1101 1101. Here rule 1 is satisfied for
the elimination pairs of C; that is, positions (3,7) contain 11, positions
(2,6) contain 00, positions (1,5) contain 11, and positions (0,4) contain 11.

In fact its Boolean function is just A 4 B, in which C does not explic-
itly appear. In such a case we say that C is a nonincluded elementary
element. In the previous example A was the nonincluded elementary
element.

Included Elementary Elemenis. Next we shall give a rule for telling
from the designation number whether an elementary element must appear
explicitly in every form of the Boolean expression or whether the negation
of the element must appear. However, we must first discuss the meaning
of the appearance of an elementary element or its negation.

An elementary element or its negation is said to appear in a Boolean
function if it appears when the function is reduced to one in which a bar
is applied only to individual elementary elements. = For instance, 4
appears in the expression (4 + B) - C, whereas A does not appear.
However, if we consider the expression A -B 4 C, it is_not clear
whether it is A or A which appears; if this is reduced to (4 + B) - C
[thatis, A - B + C = (4 + B) - €] we see that A appears and 4 does not.
Similarly, for example, 4 - B+ C = A + B + C, in which A appears,
and A - B+ C = A - B- C, in which A appears.

RULE 2. An elementary element (as distinguished from the negation
of an elementary element) must appear explicitly in every Boolean func-
tional representation of a designation number if at least one of the elimina-
tion pairs of positions of that elementary element contains 01.

Sec. 11-5] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 329

RULE 3. The negation of an elementary element must appear explicitly
in every Boolean functional representation of a designation number if at
least one of the elimination pairs of positions of that elementary element
contains 10. For example, consider

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 01 11 01 1111 1101

Here A must appear since the elimination pair (2,3) contains 01. Both B
and B must appear since the elimination pair (1,3) contains 01 and the
pair (4,6) contains 10. Also C and C must both appear since the elimina-
tion pair (1,5) contains 01 and (10,14) contains 10. Only D appears since
(0,8), (1,9), and (2,10) each contain 01, but (3,11), (4,12), (5,13), and
(7,15) each contain 11 and (6,14) contams 00. In fact the Boolean
function is A-B 4+ B-C 4+ € - D. 1In this example we call 4, B, B,
C, C, and D included elementary elements.

EXERCISES

Find the included and nonincluded elementary elements for the following
designation numbers:

Answer
Included Nonincluded
(a) 0101 0101 A B, C
(b 1100 0011 B, B C C A
(¢) 0111 0111 A, B c
(d) 1111 1100 1100 1100 B,C, D A
(e) 0000 1111 1010 1010 A4,C, D, D B

11-5. Mongrel Forms

Examples of Mongrel Forms. The mongrel form is not & unique form;
i.e., two people determining a mongrel form for the same designation
number may not arrive at the same Boolean function. In general, in
the mongrel form, anything goes, just as long as the final Boolean function
actually represents the designation number under consideration. For
example, consider the designation number 0001 0111. We note that

#A4 = 0101 0101
#B = 0011 0011
#C = 0000 1111

#(A - B) = 0001 0001
#(4 + B) = 0111 0111

But since #C = 1111 0000, then #A - B -C = 0001 0000; also, since
#C = 0000 1111, then #(4 + B) - C = 0000 0111, whence

0001 0111 = #[4 -B-C + (4 + B) - C]
or A-B-C+ (A + B):C is a mongrel form. The mongrel form is

330 FOUNDATIONS FOR LOGICAL DESIGN [Cuap. 11

particularly useful in more complicated cases. For example, consider
0001 0111 0111 0001 1110 1110 1000 1000. Here we have the basis

#A = 0101 0101 0101 0101 0101 0101 0101 0101
#B = 0011 0011 0011 0011 0011 0011 0011 0011
#C = 0000 1111 0000 1111 0000 1111 0000 1111
#D = 0000 0000 1111 1111 0000 0000 1111 1111
#E = 0000 0000 0000 0000 1111 1111 1111 1111

Since
#(A - B) = 0001 0001 0001 0001 0001 0001 0001 0001
#(4 + Bi) = (0111 0111 0111 0111 0111 0111 0111 0111
#A4 -l-) = 1110 1110 1110 1110 1110 1110 1110 1110
#A4 -8B =1000 1000 1000 1000 1000 1000 1000 1000

and

#(C-D-E) =1111 0000 0000 0000 0000 0000 0000 0000
(q -D - Ig) = 0000 1111 0000 0000 0000 0000 0000 0000
#C-D- E_') = 0000 0000 1111 0000 0000 0000 0000 0000
#(C - Z_) - E) = 0000 0000 0000 1111 0000 0000 0000 0000
#(D - E) = 0000 0000 0000 0000 1111 1111 0000 0000
#(D - E) = 0000 0000 0000 0000 0000 0000 1111 1111

we can immediately write down the following mongrel form:
(A-B)-(C-D-E)+(4+B)-(C-D-B)+(4A+B)-(C-D- B
+(A4-B)-(C-D-E)y+(A+B)-(D-E)+ (4 -B)-(D-E)

A useful fact to remember in writing mongrel forms is that

0110 = #(A-B + A - B)

1001 = #(4-B + 4 - B)

Of course this can be generalized to observe, for example, that

0000 1111 1111 0000 0000 1111 1111 0000 = #(C-D + C- D)

and

1111 0000 0000 1111 1111 0000 0000 1111 = #(C-D + C - D)

Applying this to 0001 0111 0111 0001 1110 1110 1000 1000, we find
the mongrel form

[(A4-B)-(C-D+C-D)+ (4 + B)- (C’ D+C-D]E
+(A+B)-D+A4A-B-D]-E

The writing of ‘“good’” mongrel forms depends on ingenuity and
practice. Of course the individual component products and sums need
not be written out explicitly as was done above. For example, consider
0110 1001 1001 0110. Alittle thought will enable the following mongrel
form to be written down immediately:

(A-B+A-B)-C-D+C-D)+(A4-B+ 4

and

-B)-(C-D+C-D)

SEC. 11-6] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 331

EXERCISES

Write down directly mongrel forms for:
“Good’’ solution
A-B)-C+((A-B+4-B)-C

(@) 0110 1001 +
+A.B)-(C-D+C-D)

(b) 1001 0110 0110 1001

(c) 0010 0100 0010 0010 A-B-(C + D)+ (4-B)-(C-D)

(d) 1010 0010 0010 0010 A-C-D+ A-B

(¢) 0111 1011 1101 1110 (A+B)-C-D+(A+B)-C-D
+A+B)-C-D+@A+B)-C-D

(f) 1011 o11r 1011 0111 (A+B)-C-BEY+(A+B)-C-E+ (C+D)-E

1111 0000 1111 1111

11-6. Simplest Sum-of-products Representationt

The Role of the Prime Implicants. This symbolic representation of a
designation number has the property of being a sum of products with the
least number of operations - and 4+ . There may be several such forms
associated with a single designation number. A systematic process can
be described that will result in such a form. To understand this process,
let us first discuss the general nature of a product.

The number of letters that enter into a product is called the number of
terms in the product. Thus A -B-C is a three-term product, A - B
is a two-term product, and A is called a one-term product. In general,
for n basic symbols, the designation number of an n-term product has
20 (=1) unit, of an (n — 1)-term product the designation number has
2! units, of an (n — 2)-term produect it has 22 units, . . . ,of an (n — s)-
term product the designation number has 2¢ units. For example,
#A - B-C = 0000 0100 with 1 unit, #4 - B = 0100 0100 with 2 units,
and #4 = 0101 0101 with 4 units. Another observation about prod-
ucts that follows directly is that, if P and P’ are products such that
#P — #P’, then P’ is formed from P by deleting some of the terms of P.
For example, #4 + B - C — #A - B, the latter being formed by deleting C
from the former. The converse is evidently also true.

Now we can turn to the discussion of the simplest sum-of-products
form. If #F is the designation number in question, consider a simplest
sum-of-products representation of #F. Clearly each product P; of the sum
must be such that #P; — #F (that is, #P; cannot have units in positions
where #F has zeros), for otherwise the sum of the products would not
have the same designation number as #F. Also, if this sum is indeed the
stmplest sum of products, then certainly no product P; of this sum can
be replaced by a product P; such that #P; — P}, for then the resulting

T The method of this section is an adaptation of McCluskey’s variation of Quine’s
method of simplification. (See E. J. McCluskey, Jr., Minimization of Boolean Funec-
tions, Bell System Tech. J., vol. 35, p. 1417, November, 1956. See also W. V. Quine,
The Problem of Simplifying Truth Functions, Am. Math. Monthly, vol. 59, no. 8,
pp. 521-531, October, 1952.)

332 FOUNDATIONS FOR LOGICAL DESIGN [CHaP, 11

sum of produets would become even simpler (i.e., one of the products
would have a term deleted). In other words, ¢n order that a product P
be considered at all for inclusion in a stmplest sum-of-products form for
#F, it must be such that:

1. #P — #F.

2. There exists no P’ such that #P — #P' and #P' — #F.

If P has the first property, it is called an tmplicant of F; if it also has
the second, it is a prime implicant of F.

For example if #I = 0111 0100, then A -B-C, A-B-C, A-B-C,
A-B-C, A-C, A-B, and B- C’ are all 1mphcants of F, as can be
readily checked but only A-C, A-B, and B-C are prime implicants
of F. To show that A-Bisa pr1me 1mphcant of F, note that the only
products implied by 4 - B are 4 and B. But #A7L>#I’ and #B -/ #F,
and hence A - B is a prime implicant of F. (On the other hand, A - B - C
is not a prime implicant because #4 « B+ ¢ — #A - Band #4 - B — #F.)

There are two stages in determining the simplest sum-of-products form
of F. 'The first:is the systematic generation of all the prime implicants
of F; the second is the selection from this collection .of a subcollection of
products the sum of which will truly be the simplest sum of products, as
defined above. We shall now describe in detail how to generate all the
prime implicants of a given designationnumber. Then we shall show how
with the aid of a so-called prime-implicant chart the final simplest sum of
products is chosen.

The First Stage—Generating the Prime Implicants. The rationale
for generating the prime implicants can best be understood by examining
the first canonical form. For 0111 0100 the first canonical form is
A-B-C+4+A-B-C+A-B-C+ A-B-C. The following reduc-
tions can be made by combining pairs of products:

A-B-C+A-B-C=A4-B-(C+C)=A-B A~

AB-C+AB-C=A+4)-B-C=I-B-C=B-C
Thus the first canonical form reduces to 4 -+ B+ B+ C. We can deter-
mine whether or not two products can be combined by comparing the pair
of associated basis columns: if the two columns differ in just one row, the
terms can be combined. For instance, the pair 4-B-C, A - B -C

corresponds to the columns 8’ (1), which differ only in the third row;
similarly the pair A+B-C, A+ B-C corresponds to the columns g, (%),
which differ only in the first row. Based on these concepts, the first
stage involves three steps. We shall illustrate these steps by following
through.a specific example.
Consider the following designation number in four basic symbols:
0 1 3 4 6 7 9 10 11 18 14 15
1101 1011 0111 0111

~
I
N

Qu

The first step is to display only the columns of the basis that correspond

SEc. 11-6] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 333

to the units of the given designation number,

0 1 3 4 6 7 9 10 11 13 14 15
011001101101
0010110110011
6 00111000111
0000O0O0O0OT1 11111

The second step is to arrange these columns in order by the number of
units contained in each column.

0-unit l-unit | 2-unit | 3-unit | 4-unit
columns | columns | columns | columns | columns

0 10 1010 1110 1
0 00 1101 1101 1
0 01 0100 1011 1
0 00 0011 0111 1

The third step is an iterative process of combining pairs of columns that
1] 1 [}

differ only in a single row. For example,) and § are combined to form §
0

0 0
0 0

where the symbol ® means 0 or 1. Similarly J and ¢ are combined to
0 0

0
form . Note that, since the pairs are to differ in a single row only,
0

cach u-unit column need be compared with only (v + 1)-unit columns.
To combine with a u~unit column, a (v + 1)-unit column must have u of
its « 4+ 1 units in the same rows as the u-unit column [i.e., the u-unit
column must imply the (v 4+ 1)-unit column]. Thus the 1-unit columns
are combined with the 2-unit columns as follows:

OO0 O =L
oo o<
OO»—‘)—*(
S == O

HOO)—‘<
[l == I o =]

(==l -
oo =
S o

When a pair of columns are combined, a check is placed above them to
record the fact. As will be seen shortly, this checking process is of the
utmost importance. In this way the adjacent collections of wu-unit

334 FOUNDATIONS FOR LOGICAL DESIGN [Cuap. 11

columns and (u 4+ 1)-unit columns are successively compared and
checked. In our example, this results in

vV 4% % VvV
10 1010 1110
00 1101 1101
01 0100 1011
00 0011 0111

coocol
Hb—li—‘b—*<

20 110 11601120 1110
00 000 11112011 1101
0d 001 20110200 1911
00 000 00001111 0111

The process is continued on this and each successive set of combined
columns. But this time for two combined columns to be further com-
bined they must have o¢s as well as units in the same rows. The process
ends when no further combinations can be formed. For our example the
rest of the work is shown below:
vV VVVVVVVY VVVV
%0 110 11601160 111¢
00 200 11116011 1161
(1K) 001 0110000 1011
00 000 06001111 0111

PN Y
1

Duplicate columns have been crosshatched above. The prime implicants
s

— S D

Y%
YA,

%%

can all now be read from the unchecked columns. For example, g cor-
0

1
responds to B+ C + D, or § corresponds to A4 - €, and so forth. For our
¢

example the prime implicants are thus B-C-D, A-B-D, 4-C - D,
A-C,A-B,B:-C,A-D,and B-D.

The Second Stage—Using the Prime-implicant Chart. A chart showing
the prime implicants is used in selecting for inclusion in the simplest sum
of products those prime implicants which will produce the given designa-
tion number with the least number of operations - and 4 . The chart
is simply a display of the prime-implicant designation-number unit posi-
tions. For our example this chart is shown in Table 11-1. (Note that,

to determine, for instance, the unit positions of #B - C - D, we simply
¢

observe that B - ¢ - D corresponded to §. The ¢ in the first row means
0

0 1
that A was eliminated between the two columns § and J; the zeros indi-
0

0
cate that B, C, and D must be complemented in the two positions.

SEc. 11-6] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 335

1
As another illustration, A - C corresponds to ¢; the ®s indicate that
o

B and D have been eliminated, and the zero indicates that C must be
complemented.)

To choose the appropriate prime implicants for inclusion in the
simplest sum of products, first note that 4 - D and B - D must be included
because the units of #F in positions 10 and 13 are covered only by B - D
and A - D, respectively. If either B - D or A - D were left out of our
sum, the designation number of the sum, lacking units in positions 10
or 13, could never be the same as #F. Prime implicants that must for
this reason be included are called essential prime implicants. Thus
part of our sum must be A - D + B - D.

TABLE 11-1, PRIME-IMPLICANT CHART

Unit positions of the given designation number #F

013 46 7 9 10 11 13 14 15

B.¢-D| 0 1
i-BD
A-C-D i 6
A-C 9 11
A-B 3 11 15
B-C 6 7 14 15
—A4-D 9 ISEND) 15
—B-D @ 11 14 15

Next note that #(4 - D 4 B - D) covers positions 9, 10, 11, 13, 14,
and 15, leaving only positions 0, 1, 3, 4, 6, and 7 to be covered by addi-
tional prime implicants. The second step in using the prime-implicant
chart is, then, to choose in the best possible way from the nonessential
prime implicants those combinations whose sum will cover unit posi-
tions of #F not already covered by the sum of the essential prime impli-
cants. There is no known systematic procedure for doing this, except
for trying all combinations. For our illustration it can be seen that
A-B-D+ A-C+ B-C will cover positions 0, 1, 3, 4, 6, and 7 in the
best way. (Note that B-C-D+ A-C-D + A - B will also cover
positions 0, 1, 3, 4, 6, and 7, but has one more operation - than the best
choice.)

Thus we finally have for the simplest sum-of-products form of the
designation number 1101 1011 0111 0111

A-D+B-D+A-B-D+A4-C+B-C

Summary. Summarizing, the process of finding the simplest sum-of-
products form for a given designation number #F has two stages. The

336 FOUNDATIONS FOR LOGICAL DESIGN [Cuap. 11

first stage is the determination of all the prime implicants of #F by com-
bining pairs of basis columns that correspond to the unit positions of #F.
To aid the formation of the combinations, the columns are first ordered
into a 0-unit collection, l-unit collection, 2-unit collection, etec. The
prime implicants are represented by those columns which do not enter
into any further combinations, i.e., which are left unchecked when all
combinations have been made. The second stage is to choose in the best
way those prime implicants which are to be included in the simplest sum
of products. As an aid to making this choice the prime-implicant chart is
constructed, and from this essential prime implicants are noted. Then
from the nonessential prime implicants a best sum is chosen to cover those
units of #F not covered by the sum of the essential prime implicants. The
simplest sum of products then becomes the sum of the essential prime
implicants and this best sum of the nonessential prime implicants.

EXERCISES

Find the simplest sum-of-products forms of the following designation numbers:

Solution
(a) 0111 0101 A+ B _C’ B B _
(b) 0110 1001 ABC’_—}-A~B~C’+A -C+A-B-C
(¢) 0100 0100 1111 0100 A-B4+C-D

(d) 0010 0100 0010 0010
() 0011 1010 1001 0010 1000 1101 0100 1011

The simplest product-of-sums form is a product of sums that has the least number of
operations + and - . Find the simplest product-of-sums forms of each of the follow-
ing designation numbers. (HinT: Work with the zeros instead of the units.)

Solution
(f) 1001 1010 A+B)-(A+B+0)-A+B+0)
(g) 1111 0011 0001 1000 (B + c -D)-(B+C+D)-(A+B+D)

(A+ + D)
(k) 0100 1001 1101 0110
(i) 0110 0101 1001 1010
() 0001 0011 0111 1111

11-7. Obtaining Essential Prime Implicants Directly}

Preliminary Notational Review. Let us recall the meaning of our o
1 1 1 1

notation. IfJiscolumn 1 of a basis, then 9 represents both §and). Sim-
0 0 0 1

1 11111111
. [] . 00010111
ilarly represents the 2° basis columns g, o, 1, 0, 1, 0, 1, 1. 1f & column has
o 01001101

t The method of this section is based on R. D. Elbourn’s adaptation of a method
developed by Harris. (See B. Harris, An Algorithm for Determining Minimal
Representation of a Logic Function, IRE Trans. on Electronic Computers, vol. EC-6,
pp. 103-108, June, 1957.) :

Sec. 11-7] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 337
o in p of its rows, it represents 27 basis columns, in which the p rlows

are filled in all 27 possible ways. Recall also that we interpret § to
1

mean A - B - €, with D eliminated; similarly § means 4, with B, C, and
[}

D eliminated, and so forth. We interpret a basis column as a binary
number, with the least significant digit on top, and thus the rows in a
basis column are associated with successive powers of 2; for example, for
four variables '

Ae20=1
Be2t =2
Ceo2t=4
D~ 23=28§

Hence we shall refer to the power position of a bit in a column (e.g.,
1 Sl

column 1, namely, 9, has a unit in power position 1, and 0 has units in
0 1 :

power positions 1 and 8). Tinally, observe that the 27 basis column
numbers represented by a column with p of its components ® can be found
by taking the number formed with the ®s read as zeros and adding

all combinations of powers of 2 corresponding to the power positions
1

of the ®s. TFor example,) represents basis columns 1 and 1 + 8 = 9,
o

1
and § represents basis columns 1,1 4+8 =9, 1 +4=25 1+2 =3,

8
1+8+4=13,14+8+4+2=11,14+4+2=7,and1 +8 44+ 2
= 15.

Finding the Essential Prime Implicants Directly. In essence, in the
previous simplification method we tried all combinations to obtain
columns with the most ®s by a uniform ‘‘building-up” process. These
columns then represented the prime implicants, and we had to make a
prime-implicant table in order to choose the essential prime implicants.
Now, however, we shall approach the problem from a different point of
view. We focus our attention on a single column at a time (a column cor-
responding to a unit of the given designation number); ¢#f we can show
that this column is in a single prime implicant, then that prime implicant
must be essential (in such a case we say that the essential prime implicant
is based on this column). If we make this examination for each (unit)
column, then clearly we shall have determined all essential prime impli-
cants, because an essential prime implicant is a prime implicant that hag
at least one (unit) column contained in no other prime implicant.

To find whether a column is in a single prime implicant, first find all
columns that differ from it in only one power position, i.e., by only
1bit. Suppose that there are p such power positions (that is, p columns).
Then determine whether or not columns occur that have all possible

338 FOUNDATIONS FOR LOGICAL DESIGN ‘[Cuap. 11

combinations of 0 and 1 in these power positions, that is, 27 columns

altogether. If so, the original column is in an essential prime implicant.
' 1

Suppose, for example, we are given a column §. The first step is

to find all columns which differ from this by only 1 bit. Suppose that
11 1 1

columns g, 7, and § also occurred (but no others that differed from § by
) 0 0
1 bit). Then—and this is the crux of our whole argument—the column

will be in a single prime implicant (i.e., essential) only if columns

1 1
, 1, and 1 also occurred, for then we would have the total combina-~
0 1

HHOM OO0

Ot

1
tion written as §. The essential prime implicant would be in this case
[]

‘ 1
simply A. On the other hand, suppose, say, that 1 were missing; then
1

we have the following reduction by our above simplification method:

ol o 1|6 11 00 8|68 b e 1l o b 6 0
olo 1 0|1 o 1, then ¢ s ole 0 1 1 0 s then s o g; thatis, ¢ isin
ol1 0 ol1 1 o © 00/11¢0¢060 2 ¢ 0 0

three prime implicants.

Systematic Method of Procedure. A systematic method of procedure is
as follows: Write out the columns corresponding to units of the designa-
tion number. For any given column under consideration find another
column that also occurs differing in 1 bit, say in power position p;.
Next find a second column that occurs differing from the original columns
in 1 bit, say in power position p,; then make sure the other column
occurs that completes the 22 combinations of 0 and 1 in both these power
positions, p: and p.. Next find a third column that occurs differing in
1 bit from the original column, say in power position ps;; make sure all
other columns also occur that complete all 28 combinations of 0 and 1
in these three power positions pi, ps, ps; and so forth. This process will
stop either when for a certain number of power positions all combina-
tions do not occur (in which case our original column is in more than one
prime implicant) or when no further columns occur that differ from the
original column in only one power position (in which case the original
column is in an essential prime implicant).

This process can be tabulated. Let us illustrate with the following
designation number:

1 3 4 5 6 7 9 11 13 14 15
0101 1111 0101 0111

The first step is to make the prime-implicant table format with the

SEc. 11-7] DESIGNATION NUMBERS AND FUNCTION CIRCUITS 339
successive power positions to the right,

Power positions
D C B A
7 11 13 14 15 8 4 2 1

| o

We have grouped the column numbers according to the number of units
in the column. Start, say, with the leftmost column as the original
given column, and write its binary form (as a row for convenience) under
the power positions; place an x under the 1 to record that this is the
column under consideration:

1 4 3 6 6 9

D C B A
8§ 4 2 1

1 4 3569’7111314 15

x| | | “0001

Now ask: Does the column occur that differs from the original column in
power position 8, that is, does column 1 4 8 = 9 occur? It does; so we
record this by placing an 8 under column number 9 and changing 0001 to
001 since both these columns do occur:

] “ D C B A
7 11 13 14 15 8 4 2 1

14'3569

x| 8 | | leo0o0 1

Next ask: Does the column occur that differs from the original column in
power position 4, that is, does column 1 4 4 = 5 occur? Yes. Do all
22 combinations occur? To answer this, note that 9 4 4 = 13, and
column 13 does occur, so the answer is ““yes.” Thus we can change 9001
to ®001, and record the work as follows:

D C B 4
8 4 2 1

1 4 3569‘7111314

X ‘ 4 Sl 4 I H¢n01

Next, try power position 2: column 1 4- 2 = 3 occurs; sotry 5 + 2 = 7,
942 =11, and 13 4+ 2 = 15. All these columns occur, and hence all
combinations of 0 and 1 occur in the three power positions 2, 4, and 8;
hence we have

1 4

D C B 4
3 56 9 7 11 13 14 8§ 4 2 1

x | 2 4 8[224 ‘2#@0:&1

Next try power position 1. Note that, since column 1 has a unit in power
position 1, the column that differs from column 1 in this position only is

340 ‘ FOUNDATIONS FOR LOGICAL DESIGN [CHap. 11
columnl — 1 = 0. But column 0 does not occur, and therefore column 1
is in a single, hence essential, prime implicant, namely, 4.

At this point we are ready to see the main advantage of the present
.method. Since we have found an essential prime implicant that covers
columns 1, 3, 5,9, 7, 11, 13, and 15, we need no longer worry about covering
them. So our problem is reduced to covering only columns 4, 6, and 14.
Thus we check off all columns except these and choose column 4 as our
next given column,

v vV Vv Vi v v v v |D C B 4 Essential
1 4 35 6 9|7 11 13 14 15 8 4 2 1 |prime implicant
x 2 4 8 2 2 4 2 o ¢ o 1 A

b4 60 1 0 O

The process for column 4 is the same.