17329125

- @D coreoRaTION

MPX/0S VERSION 3
REFERENCE MANUAL

CONTROL DATA®
MP-32
COMPUTER SYSTEMS

REVISION RECORD

REVISION

DESCRIPTION

A

Original release.

(02/01/83)

Document No.

17329125

Revision letters I, 0, Q, and X are not used.

©COPYRIGHT CONTROL DATA CORPORATION 1983

ii

All Rights Reserved

Printed in the United States of America

Please address comments
concerning this manual to:

CONTROL DATA CORPORATION
SYSTEMS TECHNOLOGY DIVISION
215 Moffett Park Drive
Sunnyvale, California 94086

Or use Comment Sheet in the
back of this manual.

PREFACE

This document describes the CONTROL DATA MP-32 Computer Systems in general
and the CONTROL DATA MPX Operating System (MPX/0S) Version 3 specifically.

Although this document contains sufficient information to be studied
independently, the following documents are also available to meet specific

user needs:

Control Data

Publication

Number Title

17329120 MP-60 Emulation Reference Manual -

14061300 MP-60 COMPASS Reference Manual

17329115 MP-60 MPX/0S Version 3 Installation Handbook
14391700 MP-60 Program Command Console Reference Manual
14063800 ’ MP-60 Utility Reference Maﬁual

14062200 MP-60 PRELIB Reference Manual

14061100 MP-60 FORTRAN Reference Manual

14351100 MP-60 UPDATE Reference Manual

17328900 MASS/MPSIM Reference Manual

17329145 MP-32 MPX/OS Version 3 Operator's éuide
17329140 ITS Version 2 Reference Manual

17329125 A , iii/iv

a

\
*’\.) 4

.

C

1 INTRODUCTION
MP-60 Overview . . .
Configurations . . .
Main Memory

TABLE OF CONTENTS

Central Processing Units

Interrupts « « + o o
Machine States . . .

Paging « « o « o o

o o

MPX/0S Operating System Overview

Jobs « v ¢ ¢ o e e .
Tasks « « ¢ o o o &
Task Origin
Task Identifiers . .
Task Loading
Task Relationships .
Task Staging « . « .
Task Control

Multitasking, Multiprogramming,
and Multiprocessing . « « « o o o o o

Master - Slave Organization

List Processing . .
Priorities . « + « &
1/0 Processing . . .

* o

. e

Real-Time Capabilities .

MPX/0S Operation . .

System and Slave Startup

Dispatcher
Idle System Task . .
Task Scheduler . . .
Job Management . . .

¢ o

Standard Input/Output .
System Queue Manager (SYSQS)
Job Manager System Task

MPX Job Flow
Interactive Terminal
Task Management . .
File Management . .
Task Accounting . .
Job Accounting . . .
Timed Functions . .
I1/0 Management . . .

Interprocessor Communication

Abort Processing . .

. e

.

e e @& o e o

e o o s . 0

Subsystem . . . o+ .

Operator Communications

Memory Management .
Global Common. . . .
SCHED and RTSCHED .
" Security Controls .

2 FILE STRUCTURE

DeviCes v o o o o o
Device Labels . . .

17329125 A

.

e« o e & o o

Management

3

vi

TABLE OF CONTENTS (Contd)

Files o ¢ o ¢ o o o o o s o o o o e o o o o o o o
File Labels =« « o « o o o o o o o o o o o o o o o
File Identification =+ « « o o o s o o o o o o o o
File Access Privacy .« « o o o o o o o s o o o o
File Segmentation « « « o o o o o o ¢ o o o o o o
File Allocation Method « ¢« ¢ ¢ ¢« ¢« o o o o o o o &

JOB PROCESSING & & « o o o o o o o o o o o o o o o »
Job Definition Statements . « o o o o ¢ o o o o o
*JOB, Non-Real-Time Job Statement . . . « « . &
*RJOB, Real-Time Job Statement . . + « o « « & &
*SCHED, Schedule Statement . « ¢« « « o o o o o &
Catalogued JobS. « o ¢ ¢ o o o o o o o o o o o o =
Job Activity Control Statements « o« « « o o o o+ &
Miscellaneous Statements « « « « o o o o o o o o o
*CTO, Comment—-to-Operator Statement. . . « . « .
*PAUSE, Pause Statement .+ « « « ¢ o+ o o o o« o
Data Set Identification Statements . . « « « o o &
*ALLOCATE, Allocate Statement . « ¢ o« ¢ o o o &
*DEVICE, Assigning Unit Devices . « « « « « + &
*EQUIP, Assigning Devices . .« « « ¢ ¢« « « « o
*DEVICE, Logical Unit Equivalencing . « . . « .
*EQUIP, Logical Unit Equivalencing . . «
*DEVICE, Data Pipe Assignment Statement
*DEVICE, Interactive Device Assignment Statement
*LINK, Link to Interactive Device .« « « o o + &
*UNLINK, Unlink From Interactive Device
Data Set Modification Statement . « « o o o o« o &
*CLOSE, Close Statement . « « « & o ¢ o o o -« &
*EQOF, Write End-of-File Statement . . . « . . .
*EXPAND, Expand Statement . « ¢ ¢« ¢ o o« o o o o
*MODIFY, Modify Statement . « o ¢ o« o « o o« o &
*0PEN, Open Statement . o« « o o o o o o o o o
*RELEASE, Release Statement . ¢ « ¢ o o ¢ o o
*REWIND, Rewind Statement « o« s o o o o o o o ‘o
*#SAVEPF, Save Scratch File Statement «
*SEQOF, Search End-of-File Statement
*UNLOAD, Unload Statement .« « ¢ ¢ o o o o o o o
Task Preparation and Use Statements . . « . « « &
Library Task Statement « « « o = o o o o o o o o &
*ABS, Build Absolute Task Statement
*MAP, Request Load Map « « ¢ o ¢ o « o o o o« o &«
*LOAD, Load Statement .« « + « o o o o o o o« o «
*RUN, Run Statement . + « ¢« ¢ o ¢ ¢ o o o o o &
*TASK, Task Statement .« o« o+ « « o o o o o o o
Job Termination . « . « & e % o e. 6 s .0 s o o o
*E0J, End-of-Job Statement e s o u e e e o w e
Abnormal Job Termination (Job Aborted) e e e e e e
Job Accounting StatisStiCSe o ¢ o« o o o o o o o o o

. . 2-2
- 2-2
. e 2-2
. . 2-2
. . 2-3
. . 2-3
- 3-1
. . 3-4
. . 3-4
. . 3-5
. . 3-5
. . 3-6
.. 3-7
. . 3-7
. . 3-7
o o 3-7
. . 3-8
. . 3-8
. e 3-10
- 3-10
. . 3-11
o 3-11
. e 3-12
o . 3-13
. e 3-15
. e 3-15
. . 3-16
. . 3-16
N 3-16
.. 3-16
.. 3-17
. e 3-18
. o 3-19
. . 3-20
. . 3-20
. . 3-21
. . 3-22
. . 3-22
.. 3-22
. . 3-22
. . 3-23
. . 3-23
N 3-23
. . 3-23
o o 3-26
. . 3-26
oo 3-26
. . 3-26

17329125 A

S
R 4

TABLE OF CONTENTS (Contd)

4 EXECUTIVE SERVICE REQUESTS . ¢ ¢ ¢ o ¢ o o o o o o o o o o o o 4-1
Device and File Manager ESRS o« « « « o o o s o ¢ o o o o o 4-3
ALLOCATE, Allocate Mass Storage File Space + « ¢« « & o« + & 4-5
CLOSE, Close Mass Storage File Space « « « « o« ¢ « o« o « o 4-8
DEVICEQ, Assign Logical Unit to Device « « « ¢« « « o« ¢« « o 4-10
EXPANDQ, Increase Mass Storage SPace « + o o o o o o o o 4-12
MODIFY, Modify Mass Storage File Space ¢« « « ¢ o o o o « & 4-13
OPEN, Establish Access to Mass Storage File. . . « « + + & 4-15
RELEASE, Release Mass Storage File Space « « « o« o o o @« & 4-17
ROUTEQ, Route £to QUEUE &« o ¢ « ¢ o ¢ o o o o o o o o o o o 4-18
SAVEQ, Alter Mass Storage File Identification . « « « . & 4-21
Standard Unit + o « o o o o o o o o o o o o o o o s o o o o 4-22
Data Transfer ESRS o « o ¢ ¢ o o o o o o o o ¢ o o o s o o o 4-23
FORMATQ, Initialize Disk Track « « ¢ o o o o o o o o o o & 4-24
READLU, Read From Logical Unit « « ¢ « o o « o o ¢ s o o o 4-25
READDS, Alternate Read From Logical Unit . . . « « « o . . 4-25
WRITLU, Write to Logical Unit « ¢ ¢ o o & o o o o o o o o 4-26
WRITDS, Alternate Write to Logical Unit . . « « & & + & . 4-26
Device Control ESRS ¢ ¢ o s o o o o o o o o o o o o s o o = 4-27
BKSP, Backspace Unit « o« « o o o o o s o o o o o s o o o o 4-28
CLEAR, Clear Unit .« & « + o o o o ¢ o o s s o s s o o o o 4-29
ERASE, Erase Tape Segment « « « « « o o s o o s o o o s o 4=-30
FUNC, Function Unit « 4 « o ¢ o o o o o o & o a o s o o o 4-31
REWD, Rewind Unit « o o ¢ o o o o o o o o o o o o o o o o 4=32
SELECT, Select Operating Mode .« « « ¢ o ¢ s ¢ o ¢ o o o 4-33
SEOF, Search for End of File . o « ¢ « o ¢ o ¢ o o o o o & 4-34
UINT, Unsolicited Interrupt « « ¢ ¢ o o o o o o o o o o o 4-35
ULOC, Locate Record on Unit « o o o o o o o o o o o o o o 4-36
UNLD, Unload Unit .+ « ¢ « o o o o o o o o o s o » o s o o 4-37
WEOF, Write End of File on Unit . « o ¢ ¢ o o o« o o o o o 4-38
DIAG, Run Diagnostic Test on Unit « « « o ¢ o o« o o« o o o 4=39
Task Manager ESRS « o o o o o o s o o o o o o o o o s s s 4=-40
ABORT, Voluntary Job Abort . o ¢ ¢ ¢ ¢ ¢ o o« o s o o s & 4-43
CALL, Establish and Execute Task « « o ¢« o s ¢« o « o & o @ 4=44
DELJOB, Delete JOD o o o s o o o o o o o o o o o o o o o o 4-49
DWAIT, Deferred Wait « « & o o o o o o o o o o o s o s 0o 4-50
OPENMEM, Assign Page of Open Memory. . « + o« o o o o« o o 4-52
RELMEM, Release Memory Pages . « o « o o o o o o o o o o & 4-54
RETURN, Terminate Task Execution « « o+ o o o o o o o o ¢ & 4-56
TASKRSQ, Resume/Suspend Task e e e e e s e s 4=57
TSCHED, Time Schedule Reactivation of Task e s e e e o e s 4~58
TSKCNGQ, Change Executing Task Parameters. . . « « « « ¢« & 4-59
TSTATUS, Return Task Status .« « « o « o o o o o o s s o & 4-60
Event Notification ESRS v o v « ¢ o o o o o ¢ o o o o o o 4-62
BSY, Check Logical Unit BUSY « o ¢ e o o o o s o o« s o o s 4-63
CLREVTQ, Clear User Defined Event Bit .« « « &« ¢ o o o« & 0 4-64
DATE, Return the Current Date '« « o 4 & o o o o o o o o & 4-65
DEFEVTQ, Define User Event Bit o« o ¢ ¢ o o o o o o o o o o 4-66
DTERCVQ, Define User Error Recovery Routine . « « . « . . 4-68
ENABLE, Enable Detection of User Faults . . « « ¢« ¢ o « & 4-69
MUST, Wait on Multiple Events =« ¢ « o ¢ o ¢ ¢ o o o o o o 4-70

17329125 A vii

6

viii

BL

MP

TABLE OF CONTENTS (Contd)

PFAULT, Enable User Processing of Page

SETEVTQ, Set User Defined Event Bit
SETITMQ, Set Interval Timer Event
STATUS, Status Unit . . + « o+ . &
TETIME, Return Tasks Execution Time
TIME, Return Current Time of Day .
UST, Obtain Unit Status . . « . «
UTYP, Obtain Dynamic Unit Status .
Miscellaneous ESRs . . .« . « « & « &«
ASNGC, Assign Global Common . . .

.

3

CTOC, Send Command Message to Operator
CTOI, Send Informative Message to Operator . . .

CTOR, Receive Message From Operator

DAYFILEQ, Send Message to DAYFILE

Faults .

3

DEFGC, Return Defined Global Common Page

GETGC, Attach Global Common . . .
JOBINFO, Return Job Information .

MGETGC, Modified Get Global Common . .

NXTNUM, Get Unique Identifier . .

RELGC, Release Assigned Global Common

RETGC, Return Global Common . . .
STATGC, Status Global Common . . .

OCKER/DEBLOCKER ¢ &« « ¢ o o o o o o
Automatic Scratch File Allocation .
Block DevicCes « + o o « o o o o o @
Record Devices « « o o o o o o o o o
Blocker « o« o o o o o o o o o o o o
PACKD, Pack Define « « o« + « o « o &
PACK 4 ¢ o o o o 4 o o o o o o o o
PACKO, Pack Output + « « o o o o« »
PACKC, Pack Close =+ o+ « o o s o o &
Status Return . + ¢ + o o o o o o &
Deblocker .« « ¢ ¢ o« o ¢ o o ¢ o o &
PICKD, Pick Define « + « o« o o « o &
PICK & 4 ¢ o o ¢ o o o o o o o o o o
PICKI, Pick Input .« « &4 o o s o o o
PICKC, Pick Close =+ « « o o o o o &
Status Return . . ¢ ¢« ¢ & o o « o &

X LOADER ¢ 4 4 ¢ o ¢ o o o s o o o @
Loader Cards +« « ¢« ¢ o o o o « ¢ o &
Binary Card Structure . . « « « & &
Loader Directory Card . +« o « o o &
Identification Card .« ¢« ¢ « « + « &
Block Common Table Card . . o o« o &
Entry-Point Card « « v &« ¢« o o« o o &
Relocatable Information Card
External Card . « « ¢ ¢ ¢ ¢ o o o o«
Transfer Address Card . .« o o « o &«

Numbers

s o o o

to User

4-72
4-73
4-74
4-75
4-76
4~77
4-78
4-80
4-81
4-83
4-84
4-85
4-87
4-89
4-90
4-91
4-93
4-95
4-96
4-97
4-98

|
Hi= 0 0ouun BN -

LI |
[N e

UIVIUIU\UIUI%1U1U1UIUIU1U1
b
W N =

6-10
6-11

£
L

17329125 A

TABLE OF CONTENTS (Contd)

Hexadecimal Correction Cards + « « + . .
HCC Examples . « & & o « o o o o o o o &
MAP, Memory Allocation Printout

APPENDIXES
A Character Set v ¢ o ¢ ¢ o 4 ¢ o o o & o &
B GlosSSary « « « « o o o o s o o o o o o o
c Blocker/Deblocker v « v ¢ ¢ o o o o o o o
D System Error Code Definitions .« « « « .« &
E MPX/0S Error Recovery Procedures . . « . «
F Mass Storage DeviCes « « o o o o o o o o &
G Mass Storage Labels . . & « ¢« ¢ ¢ ¢ ¢ o« &
H Programming Conventions .« « « « o« o o o &
I Hardware/Device Codes « « « o o o o o o &
J Device Assignment Areas .« o« o« o « o « « &
K Valid Hardware Types « o« « « o o o o o o«
L ESR and Device Cross Reference Chart . .
FIGURES

Hardware Configuration . + « o « o « o+ &
Paging Address Layout « « « ¢ « o o o &
Task Memory Layout « « ¢ ¢ ¢ ¢ ¢ o o o &
Normal System Flow (Master Processor) .

r--n—‘n-dr—'-‘u—‘r--yd
Nownm P wNn -

JOb FloWw o o o o ¢ o o o o o o o o ¢ o o
ESR Processing Flow « ¢« v o o o o o o &

Job Processing Flow .« « v ¢ o o o o o &
Batch Job Deck Example « « ¢« v o« v o + &
Fixed Logical Unit Assignments . . « .-«
*TASK Control Statement Example
Examples of Abort Listing of Registers .

u:paﬁ>u>u
Ul W

17329125 A

Normal System Flow (Slave Processors) . .

6-11
6-13
6-15

1-3

1-7

1-11
1-20
1-21
1-25
1-29

ix

FIGURES (Contd)

Abort Message and ‘Accounting Statistics Example 3-29

PARM Status Codes e o e® o e e o o ® © o e o o & o o o e o o 4_2
Fi.le Identification Area e o ® @ ®» e e ® o e e o o o o ¢ o o 4-4
Multiprogramming Tasks « « « ¢ ¢ o o o o o o o o o o o o o o 4=41

MAP Example e ® e o e e o 8 e 8 e & o e e e s s o o s o+ o o 6-17

TABLES
Minimum, Maximum MPX/0S System Configurations . . . « . . . 1-2
Interrupt PrioTity « o ¢ o o ¢ o o o o o o o o o o o o o o o 1-6
Task Status Assignment Definitions . « « « « ¢ « & « « & « & 1-13
Task Priority Assignments .« o« « o o o o o o o o s o o o o o 1-16

)
'

R

17329125 A

INTRODUCTION ' 1

The Control Data MP-60 computer system, using advanced concepts in
microprogramming architecture, can be configured to:

o Utilize one to eight central processing units (CPUs).
o Provide a multiprocessing environment.

o Provide service to one or more independent work requests (jobs) per
CPU.

o Provide service to one or more job subdivisions (tasks) per job.

The microprogrammable processor (MP-32) is microprogrammed to provide the
MP-60 software environment described in the MP-60 Emulation Reference
Manual. Additional instructions can be added to enbance the performance of
tbe MP-60 for specific applications.

The MP-60 Operating System (MPX/0S) was developed in modular building blocks
and establishes basic system functions. The modular structure of the system
software facilitates the incorporation of software modifications to enhance
the performance of MPX/0S for specific applications.

MP-60 HARDWARE OVERVIEW

Complete details of the MP-32 hardware are contained in the MP-60 Emulation

Reference Manual. The details presented in this section are provided in
support of the operating system definition.

Table 1-1 presents the minimum and maximum configurations supported by

MPX/0S with the Interactive Terminal Subsystem. Figure 1-1 illustrates a
multiprocessor configuration as an example.

17329125 A 1-1

TABLE 1-1. MINIMUM, MAXIMUM MPX/0S SYSTEM CONFIGURATIONS
Minimum Target Maximum
Program states 6 6 48
Main memory 262K Bytes 524K Bytes 167,772K Bytes
64K Words 131K Words 4,194K Words
Card reader 1 1 1
Line printer 1 1 1
Display console 1 1 1
Display station 1 1 1
Interactive terminals 0 48 256
Mass Storage 10 400 1,500
(megabytes)
Magnetic tape 0 2 8
Number of CPUs 1 1 8
™
L
1-2 17329125 A

MASS STORAGE SYSTEM

OPERATORS PRINTER
CONSOLE

FLEXIBLE DISK

5

MULTIPORT MEMORY

MP-32
PROCESSOR AND
MICROMEMORY

MULTIPORT MEMORY

DUAL
MAGNETIC TAPE

CYBER INTERFACE

CDC CYBER -
OR
CDC 6000

/0 EXPANSION CHASSIS

CR/LP
BCLAs MPCLASs oM
LINE PRINTER
ASYNCHRONOUS —
TERMINALS

Yy

NETWORKS

Figure 1-1. Hardware Configuration

C

17329125 A «

MAIN MEMORY

The main memory of the MP-32 is modular and in increments’from a minimum of
65,536 32-bit words to a maximum of 4,194,304 32-bit words.

CENTRAL PROCESSING UNITS

System configurations containing more than one MP-32 CPU provide direct
connection between the CPUs, as well as an indirect connection through the
main memory. The direct connection provides one signal path in each
direction, an associate CPU interrupt signal. The associate CPU interrupt
signal is used during normal operation to direct the attention of a CPU to a
message area maintained in the main memory. The interprocessor
communication facility is accessible only to the monitor state environment.
All CPUs in a multiprocessing environment provide identical capabilities to
the program state tasks. One CPU is designated the master CPU; the
remaining CPUs are designated slave CPUs. The master CPU conducts system
startup and has connections to all slave CPUs. Slave CPUs bave a conmnection
to the master CPU only.

INTERRUPTS

The MP-60 utilizes interrupts to signal event occurrences in a processing
environment in which many activities may be occurring concurrently and
asynchronously. At the start of each MP-60 instruction, a test is made for
interrupt conditions. If an interrupt condition exists, execution of the
current code sequence bhalts and execution of an interrupt routine is
initiated. Upon regaining control of the CPU, the interrupted code resumes
without notice of the interrupt processing.

The MP-60 recognizes two categories of interrupts: external and internal.
External interrupts consist of input/output (I/0), real-time, and
interprocessor interrupts. Internal interrupts comsist of monitor call,
clock, arithmetic (aritbmetic overflow, divided, expoment, function) faults,
and environmental (page, memory parity error, illegal instruction, memory
reject, power failure) faults.

Under MPX/0S, the master CPU recognizes and services all interrupts which
occur on the master CPU. Slave CPUs recognize monitor call interrupts,
interprocessor interrupts, clock interrupts, arithmetic fault interrupts,
and environmental fault interrupts. Of those interrupts recognized by slave
CPUs, only the interprocessor, power failure, and clock interrupts are
serviced by the slave CPUs. The remaining interrupts are routed to the
master CPU for servicing. ‘

1-4 17329125 A

U

\

v

C

Interrupts are used by MPX/0S to facilitate task switching, and to continue
I/0 processing. During task mode execution, master and slave CPUs operate
with all recognizable interrupts enabled (except possibly the aritbhmetic
fault interrupts). During executive mode execution of the master CPU, only
the environmental fault interrupts are unconditionally enabled. Real-time
interrupts are disabled only during 1list processing, and/or real-time
executive execution. All other interrupts are always disabled. During
executive mode execution of a slave CPU, only the environmental fault
interrupts are unconditionally enabled. All other interrupts are always
disabled.

MPX/0S gains control of the CPU when any interrupt is recognized. Tasks may
elect to regain control if they cause an arithmetic fault, page fault, or an
illegal instruction fault. An executive service request (ESR) is provided
to enable the task (see section 4, ENABLE, Enable and Select Interrupt
Control) to recognize these interrupts. If the interrupt condition 1is
recognized, but the task bas not elected to regain control, MPX/0S
terminates the task and its job. The MP-60 recognizes the interrupt
conditions according to the priority order defined in table 1-2.

MACHINE STATES

The MP-60 provides nearly identical resources for eight execution
environments called states. Each environment includes 32 full-word (32-bit)
registers, one l-bit register, a 65,536 32-bit word address space, and a
status flag for each of the four arithmetic fault conditions. Machine state
0 differs from the remaining seven states through its ability to execute
privileged instructions and by its obligation to process interrupts. MPX/0S
uses state 0 to execute the system executive code. The terms monitor state
and executive state are synonyms for state O.

17329125 A 1-5

TABLE 1-2. INTERRUPT PRIORITY
LEVEL INTERRUPT GROUPS
| 1 Power Failure
2 CPU Memory Errors.
3 DMA Memory Errors
4 Illegal Instruction
5-12 Micro 1/0 0-8
13-28 Macro 1/0 0-15
29-44 Real~Time 0-15
45-50 Open
51 Open
52 Clock Interval
53-55 Open
56 Inter—-Processor
57-60 Faults Divide-Arithmetic
1 - highest 60 - lowest

17329125

N

P

A

i

g\A/

O

PAGING

All references to main memory are routed through the MP-60 paging hardware
for potential relocation. Addresses that originate from the eight states
are relocated by the paging hardware.

The paging hardware contains 16 16-bit registers for each paged state. Each
page register has the format shown in figure 1-2.

16 17 18 19 20 21 22 31

10-bit physical page
address

0 = page has not been accessed
1 page has been accessed

0 = page assigned, access permitted
1 = page not assigned, access not permitted

0 = read/write permitted
1 = read (only) permitted

]

0 = page has not been modified
1 = page has been modified (written)

[

0 = page is resident read/write permitted
1 = page is nonresident read/write not permitted

parity indicator of -lower 10 bits

Figure 1-2. Paging Address Layout

The upper &4 bits of an address originating from a state are used to select
one of the 16 page registers assigned to that state. Bits 17, 19 and 20,
maintained by the operating system software, are used by the hardware to
detect unauthorized use of a memory address. Bit 18, maintained by the
hardware, is available to the operating system and is forced to 1 on memory
write operations. Bit 18 is also forced to 1 by the operating system when
read functions are processed. Bit 23 maintained by the hardware, 1is
available to the operating system and is forced to 1 on memory reference.
Address relocation is accomplished by substituting the 8-bit physical page
address for ‘the 4-bit page register selector.

The relocated address began as a 16-bit value. Removing four bits to select
a page register yields a page size of 4096 32-bit words. The main memory of
an MP-60 computer system, therefore, consists of a minimum of 16 4096~word
pages, and can be expanded in increments of 16 pages to a maximum of 1024
pages.

17329125 A 1-7

MPX/0S OPERATING SYSTEM OVERVIEW

The following sections describe the operating system from two views. The

first view is a conceptual view. The second view is a physical/functional
view.

JOBS

A job is a request from a user to have the computational facility perform
work. The work request is submitted to the operating system in the form of
a card deck or a file. The work request is processed by an operating system
task, the job manager. The job manager interprets the control statements
and initiates any additional system activity required to satisfy the work
request.

A job is established in the operating system environment by building a table
entry (a job control table entry) and by initiating execution of the job
manager system task. In response to appropriate job comntrol statements, the
job manager system task causes additional tasks to execute. The additional
tasks may be system tasks, library tasks, or user tasks. System tasks are
part of MPX/0S, and may receive special treatment. Library tasks operate
under the same rules as user tasks, but are maintained in the system library
mass storage file. User tasks receive no special treatment by the executive.

Each job in the system has its own job control table (JCT) entry. The
contents of a JCT include the following:

o Job identification (from *JOB or *RJOB control card)

o Job submitter identification (from]BATCH or]JOB)

o Job accounting information (account number and CPU charges)
o Job resource parameters (see.*SCHED control card)

o I/O assignments (see *OPEN and *EQUIP control cards)

o List of tasks established for the job

TASKS

A task is an independent unit of work that competes for the resources of the
system. The work requested by a job is accomplished as the summation of
task efforts. The CPU always executes either executive (i.e., MPX/0S
Resident Programs) or task code. The executive executes on demand, either

1-8 17329125 A

C

from user—issued Executive Service Requests (ESRs) or from event occurrences
signaled by interrupts. Tasks compete for use of the CPU and other
resources on the basis of their priority.

TASK ORIGIN

Tasks can reside in memory, on the library, or in a file accessible to the
user's job. Memory resident tasks are system tasks or user tasks that have
previously executed within a job, but on their return did not request release
from memory (see section 4, RETURN, Terminate Task Execution).

Tasks that reside in the system library are referred to as library tasks.
Library tasks are brought into execution with a job control statement that
uses the name of the library task as the control card name (section 3, Library
Task Statement).

Tasks that reside in files maintained by the user are referred to as user
tasks. User tasks are brought into execution by *LOAD and *RUN control cards
(see section 3), or by a CALL ESR from within an executing task (see
section 4). -

Library tasks and user tasks can be maintained in two forms: relocatable and
absolute binary. The relocatable binary form normally originates from the
assembler (COMPASS) or compiler (FORTRAN). Absolute binary form is obtained
using the *ABS job control statement to record an image of the task after it
bas been prepared for execution.

TASK IDENTIFIERS

A task identifier is established through the *TASK job control statement and
the CALL ESR. The task identifier is used to request status of tasks, label
diagnostic messages, and construct operator displays reflecting system
activity.

A task identifier is valid for the entire existence of the task (see section
4, RETURN, Terminate Task Execution).

Library tasks are ‘assigned their 1library names as task identifiers when

placed into execution. Library task identifiers cease -to exist after task
termination.

17329125 A 1-9

TASK LOADING

Each task executed under MPX/0S control is assigned a program state and up
to 65,536 words of main memory. The tasks reference memory with logical
addresses as assigned by the MPX/0S loader; the logical addresses are
transformed into physical addresses through the MP-32 paging bardware.

Figure 1-3 illustrates the important features of loaded tasks. Logical page
15 of each task of the job is the same physical page of memory. It is used

for buffers and data storage in support of the job manager task and the
Blocker/Deblocker library routines.

The communication area (PARM) is 50 words in lengtb and resides in page 1l4.
Its format and content are described by the ESRs which utilize the area.

Logical pages 0 through 14 are prepared with an executable image of the task
by the loader. The memory is loaded with program code and data common
blocks from logical page 14 downward. If some pages are left unused after
loading is complete, the corresponding page registers are set to reflect the
unassigned pages. As a result, task address references that are out of
range are detected by the hardware and generate a fault interrupt.

During the load process, the loader code occupies logical page 0 and the
loader symbol table occupies logical page 1. The blank and numbered common
blocks of the task are allocated over the loader code and tables. The task
can only achieve full use of the 15 logical pages by allocating 8192 or more
words of space to the blank and numbered common blocks. Any pages occupied
by the loader, and not used for blank or numbered common allocation, are
returned to the system for reuse.

TASK RELATIONSHIPS

" The multitasking feature of MPX/0S allows one task to establisb and initiate
execution of another task. Two terms, caller and callee, are used to
identify the relationship between two such tasks. A caller is the task that
issues the CALL ESR. A callee is the task that the CALL establishes and
initiates. A task can be both a callee and a caller at the same time.

For example, the job manager interprets the *TASK, *LOAD, and *RUN job
control statements and thereby establishes and initiates execution of a user
task, TASKA. TASKA can issue a CALL ESR to establish and initiate execution
of a second user task, TASKB. The job manager is the caller of TASKA, and

TASKA is the callee of the job manager. At the same time, TASKA is the
caller of TASKB.)

1-10 ' 17329125 A

O

$FFFF

O

$F000

$E000

~

$2000

$1000

$0000

C

INTRA-JOB DATA AREA
Contains: Logical
Job Manager Tables Page
Blocker/Deblocker Tables 15
INP, OUT, PUN Buffers
PARM AREA
Logical
_____________________________ Page
14
Task
Program
and Data
Logical
—— (Unassigned —— —— Pages
. Pages) 13-2
Task Common
or
Global Common
Loader Tables
or Logical
Task Common Page
or 1
Global Common
Loader Code
or Logical
Task Common Page
or 0
Global Common
Task-1 Task=... Task-n
Figure 1-3., Task Memory Layout

17329125 A

TASK STAGING

A task running under MPX/0S exists in several stages. These stages are
defined by table 1-3. A task in the ready stage can only go to the running
stage. A task in a wait stage must go to the ready stage before running.
The running task can voluntarily go to wait or terminated stages, or it may
involuntarily go to the ready stage if a bigher-priority task becomes ready
in tbe same CPU. A terminated task may be released or simply be allowed to
go dormant.

TASK CONTROL

Each task in the system bas its own task control table (TCT) entry. The
contents of each TCT include the following:

o Task identifier
o Task accounting information (accumulated task CPU time)
o Task priority
o Task status definition
o Caller wait list thread
o Current caller definition
The TCT is used by the executive for implementing prioritized delivery of

the CPU and resources to the task. (See List Processing and Priorities of
this sectiom.)

MULTITASKING, MULTIPROGRAMMING, AND MULTIPROCESSING

MPX/0S provides a multitasking capability which enables a task to imitiate
execution of one or more tasks concurrent (simultaneous, if a multiprocessor
system) with its own executiom.

MPX/0S provides a multiprogramming capability, which means that the system
shares the CPU between two or more tasks over a period of time.
Multiprogramming occurs when system tasks share the CPU with user tasks,
when tasks from two or more separate jobs share the CPU, when two or more
tasks of the same job share the CPU, and when any or all combinations of
these occur.

1-12 17329125 A

TABLE 1-3.

TASK STATUS ASSIGNMENT DEFINITIONS

No.

Status

Description

00

01

02

04

05

07

08

09

10

12

13

14

15

Dormant

Active, Ready

I/0 Wait

File Manager Wait

Call Wait

Callee Wwait

Deferred Wait

FINIS

TSCHED Wait

Operator Wait

Multiple Status
Wait

Task Idle

SYSQS

Suspend

The task has completed its work and
returned, without release, to its
caller. Status remains dormant until
the task is called again.

The task is currently executing or ready
to resume execution.

The task has requested I/0 on a data set
that is currently busy. The task is
threaded by priority in a wait list for
the data set.

The task has requested a file manager
function and the file manager is active.
The task is threaded on a priority basis
in a call list for the file manger.

The task has called another task. Until
the call can be connected, the caller
remains in call status; it cannot resume
execution.

The task called another task and, as a
parameter of the call, requested not to
be multiprogrammed with its callee.
After the callee returns, the caller's
status will be set to active.

The task has called other tasks,
multiprogrammed with them, and then
requested that it not be permitted to
resume execution until one of a set of
callees returns.

The task has returned, but has
outstanding callees.

The task issued a TSCHED request. After
the specified time interval has elapsed,
the task status will be set to active.

The task is waiting for the operator to
respond to a pending message. Task
becomes ready after the operator
responds.

The task has issued a MUST ESR and is
awalting one or more possible events.

The task has been taken out of potential
active status via the IDLE command
(1TS~Operator Control Facility).

The task has issued a SYSQS ESR, and
the job scheduler is busy.

The task has been temporarily taken out
of potential active status.

17329125 A

1-13

MPX/0S provides a multiprocessing capability, which means that the system
services can be delivered by two or more CPUs.

Multitasking and multiprogramming provide service to the user from a single
CPU in the form of nonsimultaneous, interleaved task execution. They can
provide service from multiple CPUs in the form of simultaneous execution of
two or more jobs and/or tasks.

MASTER-SLAVE ORGANIZATION

MPX/OS utilizes a master—to-slaves architecture to provide multiprocessor
capabilities. Under this architecture, one CPU (the master) manages system
resources, performs all I/0 operations, provides all executive service
functions, and distributes program execution assignments to all other CPUs
(the slaves) and to itself.

Slave CPUs are computational resources to which the master CPU assigns user
tasks for execution. A slave CPU performs no I/0O operations or ESR
functions. Any such request from an executing user task is routed to the
master CPU for servicing.

Under MPX/0S, each CPU operates independently of all others. This allows
each CPU to move from task to task with occasional interrupt processing and
very little synchronized activity. Executive functions are provided by the
slave CPUs where system resource management is not involved. Current
examples of such functions are the CPU ready list and CPU state availability
list management and task level accounting.

LIST PROCESSING

MPX/0S uses the concept of list processing to reserve and allocate system
resources. Tasks making ESRs which cannot be serviced immediately are
placed in a list and are serviced as time and resources permit. Each list
is ordered according to the priority of the tasks in the list. = At each
opportunity, the highest—priority task in the list is readily obtained for
servicing. Examples of lists maintained by MPX/OS include:

o CPU ready list for tasks awaiting control of the CPU

o 1I/0 wait lists for tasks awaiting access to a data set or device

o Task wait lists for tasks awaiting access to an already active task
Opportunities to service a task inm a list occur as a function of the list.
CPU ready list members are serviced as higher-priority tasks, leave the
system, or are placed on wait lists. I/0 wait list members are serviced as

1/0 completes or tasks release resources. Task wait 1list members are
serviced as tasks complete execution.

1-14 17329125 A

A

4 v

O

PRIORITIES

Control of resources under MPX/0S is on a priority basis, managed through
the various lists. Priorities range from 2048 (highest) to 0 (lowest) with
ranges 256 through 511 and 1 through 9 reserved for real-time and system
tasks. Priorities from 512 to 2048 are reserved for system tasks only.
Table 1-4 summarizes the priority scheme and defines the priorities normally
assigned to system tasks.

Priorities are maintained on an individual-task basis. Priorities are
established with the CALL ESR from executing tasks or with the *TASK control
statement from batch jobs. If the priority of the called task (callee) is
?ot mad§ explicit, the callee task inherits the priority of the calling task
caller).

An executing task may cease to execute by issuing an ESR, causing a fault,

or by the occurrence of an interrupt beyond the control of the task. In the
first instance, the task is entered into lists at the bottom of its priority
group, eventually including the ready list. In the second instance
(faults), the task reenters the ready list at the bottom of its priority
group 1if control 1is returned or the job enters the ready list for
termination processing at the bottom of the job manager priority group. In
the final instance (nonuser interrupts), the task is placed at the top of
its priority group in the ready list with one exception: a real-time clock
interrupt can result in the task being scheduled at the bottom of 1its
priority group as an installation option effectively creating time slicing.

I/0 PROCESSING

MPX/0S provides both logical and physical I/0 facilities for data transfer.
MPX/0S provides ESRs to perform physical data transfer, device control, and
status checking. A system logical I/0 routine (blocker/deblocker) can be
loaded from the system library with a task to perform automatic
blocking/deblocking of data records witb single or double buffering and
truncating of individual records.

MPX/0S wutilizes peripheral devices which are classified as unit record

devices or mass storage devices. Unit record devices are serially
accessible from only one user job. Mass storage devices are randomly
accessible from one or more user jobs. Logical I/0 functions are

device-type (unit record versus mass storage) independent. Physical I/0
functions are definitions for each device type.

The system user accumulates a data set and stores the data set on peripheral
equipment. The method of storage differs if the peripheral equipment is a
unit record device or a mass storage device, but the method of identifying
the data set to the logical I1I/0 routines and the physical I/O executive
routines is the same. The data set is identified by a number in the range

17329125 A 1-15

TABLE 1-4. TASK PRIORITY ASSIGNMENTS

Priority Priority Tasks
Use Use
0 Idle
Low- 1
priority
real-time Real-time
and
system
tasks
9 System Queue Manager (SYSQS)
10 Job Manager (JMGR,JLDR)
Real—~time :
and
system Non-real-time
and Real~-time
non-real-time
tasks
255
High- 256
priority |
real-time |
and |
system | Real-time
tasks |
I
I
511
System 512
tasks } All other system tasks
2048

1-16

17329125 A

of 1 to 63. The number may be called a data set number, a logical unit
number, or a logical file number. The logical 1/0 routine deals with data
set numbers (device-independent functions). The executive converts the data
set number into a logical unit number or logical file number using tables
defined with the user's assistance.

Unit record devices are accessible to the user through the *SCHED , *DEVICE,
and *EQUIP control statements in the job control statement deck. The *SCHED
control statement reserves the device for the job, and the *DEVICE or *EQUIP
control statement connects the data set number to the device and defines the
number as a logical unit number.

Mass storage devices are accessible to the user through the file management
services ALLOCATE, CLOSE, MODIFY, OPEN, and RELEASE. Job control statements
and ESRs by the preceding names are provided. The mass storage capacity of
the system is treated as one device from the wuser's viewpoint, unless
explicit action to the contrary is taken. In the default circumstance, the
user's data set may reside in ''bits and pieces" on several pbysical mass
storage devices, a condition which is transparent to the user. Each of the
bits and pieces is called a segment. MPX/0S requires a file to consist of
32 or fewer segments. Each physical mass storage device is assigned a name
or device identifier (DID) that can be used in ALLOCATE and MODIFY functions
to control the spread of segmented files.

During execution of a job under MPX/0S, unit record devices are secure from
access by other jobs because unit record devices are assigned to only one
job. Mass storage devices, on the other hand, are normally accessible to
all users of the system. Any mass storage file is accessible to any job if
four pieces of data are known: the file name code, the file edition code,
the file owner code, and the file access privacy code.

In actual use, a unit record device has a defined position and often a
variable capacity. For example, the number of physical records a job will
be able to place on a magnetic tape is not generally known. Mass storage

. devices can be accessed in the same sequential fashbion as a unit record

device, but also provide less rigidly defined positioning (random access)
and known capacity. MPX/0S maintains three data values which enable the
system to provide the indicated modes of mass storage use: the next block
number, the block count, and the number of allocated blocks. ' The next block
number 1s a position indicator and defines the next block that will be
transmitted to/from memory. The block count records the highest block of
the file actually written and serves the same function that a magnetic tape
file mark serves. The number of allocated blocks is the number of the
bighest block allocated and serves the same basic function that the magnetic
tape end-of-tape (EOT) mark serves. '

Use of pbysical‘I/O allows the user to format the data in each physical
record according to need. Logical I/0 provides the same basic format, a

system~defined format for all device types (section 5, Blocker/Deblocker).

Data sets can be shared under MPX/0S. For unit record devices, two tasks of
the same job could read or write the device. For mass storage devices, this

17329125 A 1-17

means that more than one task (not necessarily from the same job) can open

the same file for read only at the same time. Each logical file number bhas)
its own next-block number. An attempt to share the file for both reads and Q‘J&
writes causes tasks to be wait-listed. Only one logical file number from o
one job can have access to a mass storage file with write permission.

REAL-TIME CAPABILITIES

MPX/0S design emphasizes support of real-time (or time-critical)
applications. The primary concept is the ability to respond quickly to
time-critical events. -MPX/0S provides this fast response by:

o Providing high-priority interrupt recognition

o Allowing tasks to be scheduled with reserved bigb priority in
response to real-time events

0 Minimizing CPU time in monitor mode per executive entry
o Servicing I/0 requests by priority
o Dispatching tasks for execution by priority

A set of monitor-state registers is reserved for real-time processing use
when responding to real-time interrupts. The associate processor interrupts
are considered real-time, and, therefore, use reserved machine registers.

Real-time tasks are established in program states and communicate with the
executive via the normal MPX/0S ESRs mechanism. All normal MPX/0S services
are available to the real-time tasks unless eliminated as a result of
real-time environment tailoring of the system.

The real-time environment is established through submission of a real-time
job, (section 3, Real-Time Job Statement). Real-Time activity is sustained
through task calls, time scheduling and real-time interrupts. Real-time
tasks can be executed at high-system reserved priority.

MPX/0S OPERATION

The operating system code is divided into components that execute as part of
the executive (from state 0), components that execute as system tasks
competing for resources with otber tasks, and components that execute from
library and user tasks. The division of the system code into dispersed
parts serves two purposes: it places the component where the job can be
performed with the least overhead and facilitiates prioritized delivery of
services.

1-18 17329125 A

C

C

Figures 1-4 and 1-5 illustrate the normal system flow on the master and
slave CPUs. These figures 1illustrate the system from its functional
divisions and do not illustrate the physical divisions to any meaningful
extent. The following descriptions of the functional divisions address the
physical structure of the system.

The figures show the CPU startup followed by a predominantly
counterclockwise 1loop beginning with the DISPATCHER. The following
descriptions proceed according to the same pattern. In addition, the system
is maintained as a single copy of core resident code (except for the startup
code). The two figures are described in parallel.

SYSTEM AND SLAVE STARTUP

System startup accomplishes CPU initialization (firmware loading), operating
system loading, operating system initialization, slave CPU normal activity
startup, and master CPU normal activity startup.

Slave startup accomplishes CPU initialization (firmware loading) and slave
identity definition, and awaits the signal to start normal activity (section
4, CALL, Establisb, and Execute Task).

DISPATCHER

DISPATCH (executive code) selects the highest-priority task ready to execute
and gives that task control of the CPU. ’

Low-priority tasks only obtain service when there are no high-priority tasks
or when the higher-priority tasks are unable to execute (awaiting I/0
completion, for example).

The initial entry into the normal cycle of execution on a slave CPU causes
the IDLE system task to be placed into execution. As the only task, it is
the bhighest-priority task until another task assignment arrives from the
master CPU. The initial entry into the normal cycle of execution on the
master CPU causes the operator I/0 system task to be placed into execution
since its priority exceeds that of IDLE system task (see table 1-4).

17329125 A 1-19

'SYSTE M, LIBRARY|

SYSTEM
STARTUP

:

PLACE HIGHEST
PRIORITY TASK

OR USER TASK [*—|INTO EXECUTION [*
EXECUTION .
DISPATCHER
JOB
MANAGEMENT ’
EXECUTIVE TASK SCHEDULE
SERVICE MANAGEMENT - PROCESSED
REQUEST FILE _,x ' TASK
FUNCTIONS - MANAGEMENT SCHED
MISCELLANEOUS —
RESCHEDULE l
INTERRUPTED TASK, JOB PERFORM
T ASK e ACCOUNTING TIMED
FUNCTIONS FUNCTIONS
SCHED
RESCHEDULE INPUT/OUTPUT I SCHEDULE
INTERRUPTED MANAGEMENT PROCESSED
T ASK . , TASK
SCHED SCHED
RESCHEDULE INTERPROCESSOR SCHEDULE
INTERRUPTED COMMUNICATION INDICATED
TASK ™! MANAGEMENT TASK
RTSCHED ' RTSCHED
Figure 1-4. Normal System Flow (Master Processor)

1-20

17329125 A

A
‘%,/ ’

SLAVE
STARTUP

!

PLACE HIGHES
LIBRARY, USER P;;fORITY GTA%KT
e—] TASK f— le-
, INTO EXECUTION
EXECUTION
DISPATCHER
EXECUTIVE
SERVICE SEND TASK
Y —» REQUEST TO MASTER
FUNCTIONS
RESCHEDULE TASK
INTERRUPTED
| BN .| AccounTmNg
TASK FUNCTION
SCHED
RESCHEDULE INT ER PROC ESSOR} SCHEDULE
v INTERRUPTED COMMUNICATION INDICATED
TASK ®| MANAGEMENT ™ TasK
RTSCHED RTSCHED

Figure 1-5. Normal System Flow (Slave Processors)

17329125 A

IDLE SYSTEM TASK

The IDLE system task is placed on each CPU‘ready list so that the CPU always
has a task it can execute. IDLE is given control of the CPU when all other
tasks are awaiting completion of requested executive services. IDLE frees
the executive to await interrupts signalling progress on services underway
in other CPUs, or signaling a time interval lapse which may allow a task to
be scheduled for execution. :

TASK SCHEDULER

Task execution is initiated by the DISPATCHER and continues until the task
requests service from the operating system (voluntary interrupt) or until an
interrupt condition arrises and the task is (involuntarily) interrupted. A
task voluntarily interrupted is serviced and then scheduled (by the
SCHEDULER) at the bottom of its priority group. Involuntary interrupts are
of two types: faults (task) and nonfaults. If the task fault interrupts
out of execution, it is serviced and rescheduled at the bottom of its
priority group. Lf the task elects to regain control (see ENABLE and PFAULT
ESRs), it is rescheduled for abort processing at the bottom of the job
manager system task priority group (see the ABORT ESR). If the task
nonfault interrupts out of execution, it is placed at the top of its
priority group and the interrupt is processed (also see Priorities in this
section).

Two entries, SCHED and RTSCHED, perform an identical function; they place a
task on the CPU ready list. Two copies are required because the executive
can be interrupted to service real-time interrupts, including the scheduling
of real-time tasks for executiom.

Two system functions are normally loaded with user tasks: the task monitor
and the blocker/deblocker modules. Both are obtained from the system
library file.

The task monitor provides the task entrance, a task exit, and the
task-system communication area. The task-monitor entry point is the
starting point for task execution. It immediately passes control to the
user task main entry point. The task monitor is inserted to allow for main
programs which exit with a normal subroutine return sequence instead of with
a RETURN ESR. If the task returns to the task monitor, the task monitor
issues a RETURN (with release) ESR to bring about a normal task termination.

The standard input (INP), standard output (OUT), and standard punch (PUN)
files are required to have a specific format. The format of these files is
generally processed by a collection of subroutines, supplied by MPX/0S,
called the blocker/deblocker modules (see section 6, Blocker/Deblocker).
The standard file buffers in logical page 15 are maintained by the
blocker/deblocker modules. Page 15 is the same physical page for all tasks

1-22 17329125 A

A

of the job (see figure 1-2). Blocker/deblocker also maintains tables 1in
logical page 15, which are used to control the blocker/deblocker functions
and to ensure that only one task is reading or writing tbe same file at the
same time. '

JOB MANAGEMENT

Job management is totally a system function. It is carried out in large
measure by system tasks. Job management accomplishes defining a job in the
system, identifying and initiating job requested work (job manager system
task), and returning the job output.

STANDARD INPUT/OUTPUT

Standard I/0 (STDIO) obtains job control decks f£from one or more card
readers. When the card reader is empty, a message is sent to the operator.
When the operator responds to the message, Standard I/0 again processes card
reader data. Job control decks are saved in a file for submission to the
System Queue Manager, SYSQS.

The Standard I/0 post processor prints the OUT file to one or more printers
and is activated by the JOB terminator.

SYSTEM QUEUE MANAGER (SYSQS)

SYSQS is a system task whose primary function is tbe management of the
system queues (that is, INPUT, OUTPUT, and HOLD Queues). Jobs are prepared
as standard input files and sent to SYSQS via the ROUTEQ ESR. SYSQS
determines a job's eligibility for execution by checking for resource
availability. If the job specifies resource requirements in excess of the
system maximum, it is rejected. Otherwise, if a job is already waiting on
the input queue, subsequent submittals are threaded by priority onto the
queue.

The input queue is a disk file containing Job Control Table (JCcT)
information. This JCT information is derived primarily from the *JOB and
*SCHED control cards.

The SYSQS will place tbe job at the top of the queue into execution after
resource requirements have been met. A job number is obtained and placed in
the JCT to uniquely identify tbe job. The time of day is acquired to define
the time that job execution begins. Then, the job manager is establisbed
and scheduled.

17329125 A 1-23

Non-system tasks can communicate with SYSQS through tbe ROUTEQ ESR. The
ROUTEQ ESR provides the capability to ADD or DELETE job files on a system
queue. The ROUTEQ ESR is described in more detail in section 4.

JOB MANAGER SYSTEM TASK

The job manager* assumes control of the job until normal or abnormal job
termination. Job termination is complete when the job accounting
information bas been summarized and written on the OUT file and the standard
files have been closed or released. The job manager exits by making an
executive service call, which releases the job resources to the system and
assigns the OUT file to the STDIO system task for post processing.

The job manager contains the necessary routines: to process the user's
control statements from the standard input unit. The user's job is
processed in four phases: PRELOAD, LOAD, POSTLOAD, and EXECUTE.

The PRELOAD phase provides the user with the ability to allocate files, to
assign logical unit numbers to files and peripberal equipment (tape units,
displays, etc.), to perform tape handling functions, and to communicate with
the operator.

The LOAD phase allows the user to create a task from binary modules
contained on a logical unit or contained on a system library.

The POSTLOAD phase provides the facilities to perform tape bandling
functions, to communicate with the operator, to create an absolute copy of
the task upon a logical unit, and to modify the task using bhexadecimal
corrections cards. '

The EXECUTE phase is the execution of the user's task. If the task
terminates normally, control returns to the preload pbase.

MPX JOB FLOW

Figure 1-6 illustrates the job flow of MPX. Following system initialization
(DEADSTART), the SYSQS routine receives control (step 1, figure 1-6) and job
manager searches for a JOB statement on the standard input device, INP. If
the JOB card is valid, the SCHED statement is processed. A job is placed
into execution if sufficient system resources are available to meet the
requirements of the SCHED control statement. Control is then passed to the
job monitor.

* The externally observable features of tbe job manager are the subject of
section 3 and are not described here.

1-24 17329125 A

= SYSQS
(T\> TERM
= Step
Terminates 10
JOB
%
JOB MANAGER
Step Yes
1 Reads JOB
and SCHED
%
v
PRELOAD RETURN
Ster Processes No //////EbJ Step
2 Control ON 9
Statements WUT?
*
EXECUTIVE
SERVICE FUNCTIONS
(ESRs)
TASK
LOAD Logical Input/Output MONITOR
Step
3 Creates , Performs Step
a Task File Management Monitor Call 8
(rhx # to RETURN ‘
J §
- Memory Management /l\
POSTLOAD Operator Communications 'USERS TASK'
Step Processes Executes and Step
4 Control Miscellaneous Returns to 7
Statements Task Monitor
i TIME §
DATE
etc.
TASK
EXECUTE MONITOR
Step Transfers - Performs Step
5 Control to - RTJ 6
Task Monitor to Task
* §
* EXECUTLIVE
JOB MANAGER
§ USER
Figure 1-6. Job Flow

C

17329125 A 1-25

The PRELOAD phase (step 2) of the job manager processes control statements
until a LOAD card or library name card is encountered. PRELOAD utilizes the
executive services functions to process most of the statements.

The LOAD phase (step 3) creates a user task by loading the specified
programs. Logical memory is assigned on a demand basis by calling the
memory management services functions in the executive.

The POSTLOAD phase (step 4) processes control statements until a RUN card is
encountered. The RUN processor passes control to the executive control
function, EXECUTE (step 5). The legal control cards during the POSTLOAD
phase are REWIND, UNLOAD, CTO, PAUSE, ABS, HCC, and RUN statements.

EXECUTE updatés the job control table to indicate that the user has control
and passes control, via an exit monitor instruction, to the TASK MONITOR.

The TASK MONITOR (step 6) passes control to the user's task via a return
jump instruction to the task's last transfer address. A transfer address is
an entry point in a program specified on the END card (see COMPASS
assembler).

The USER TASK (step 7) terminates by returning to the TASK MONITOR through
the linkage provided by the return jump in the TASK MONITOR.

The TASK MONITOR (step 8) then passes control to the executive control
function, RETURN.

The RETURN function (step 9) returns control to the job manager (step 2).
If an end-of-file on the standard input device is encountered by the job
monitor, control is passed to the executive control function, TERM (step

10). TERM releases the job's resources to the system and passes control to
the operating system.

1-26 ‘ _ 17329125 A

o s

/{’\

S/

INTERACTIVE TERMINAL SUBSYSTEM

The Interactive Terminal Subsystem (ITS) extends the full range of MPX/0S
features from on-site batch to terminal access. The ITS 2.0 provides
operator facilities to the remote terminal user and interactive capabilities
to on-site operator. The ITS 2.0 is intended to be used for both software
development and applications. Typical applications of the ITS 2.0 for
software development are:

Source program entry
Source program maintenance
Compilation and assembly
Listing inspection

User task execution

User task debug
Documentation generation

TASK MANAGEMENT

Task management (executive code) establishes tasks in the system, manages
intertask activities, and manages task access to the CPU. Establishing a
task involves defining the task in system tables (TCT) and ensuring that the
task is loaded into main memory. Managing intertask activities involves the
CALL, RETURN, TSTATUS, and DWAIT ESRs. CALL establishes and initiates
execution of new tasks. RETURN signals the end of a task execution (for a
specific CALL). TSTATUS allows one task to determine the status of another
task. DWAIT allows a task to suspend operation until one or more called
tasks have completed execution. Managing task access to the CPU involves
task scheduling, dispatching, memory limit changes, task terminatiom, task
suspension, and task fault control recovery.

FILE MANAGEMENT

The file manager is a system task activated by MPX/0S to service ALLOCATE,
CLOSE, EXPAND, MODIFY, OPEN, and RELEASE functions. The servicing of such
requests may involve disk reads/writes and task queueing, which result in
unpredicatable patterns of service completion. An execution of the file
manager services one task. Other queued tasks must await the next entry to
the executive. A first task may request service and be queued, allowing a
second task to request and receive service while the first task waits. File
manager execution time is charged to the job for which the function is
provided.

17329125 A 1-27

TASK ACCOUNTING

Task accounting (executive code) is simply accumulating CPU execution time
on a task basis. File management time is charged directly to the job.
Accumulated task—-execution time serves as a task clock and can be used for
task-performance analysis (section 4, Executive Service Requests).

JOB ACCOUNTING

Job accounting (executive code) consists of accumulating the task CPU times
as tasks terminate, and of testing for job time limit being exceeded. Also,
resources such as memory, mass storage scratch, print lines, and punch cards
reserved and not used are maintained and summarized on the job's OUT listing.

TIMED FUNCTIONS

MPX/0S periodically totals the job accumulated times and the outstanding
task accumulated times and compares the sum to the time limit defined on the
*SCHED control card. When the sum exceeds the limit, the job is aborted.

MPX/0S schedules tasks for execution when requested time intervals lapse.

1/0 MANAGEMENT

I/0 management (executive code) controls the access to devices and mass
storage files. The I/0 manager accepts the data set number from the ESRs,
determines the device or file, and administers the delivery of resources to
the requesting tasks on a priority basis.

A requested service may involve several distinct entries to the I/0
management modules. When all required steps have been completed, the
requesting task may need to be rescheduled for execution (section 4, UST,
Unit Status Test).

INTERPROCESSOR COMMUNICATION MANAGEMENT

Figure 1-7 illustrates the flow of a service request originating on the
master CPU and on a slave CPU. Requests that originate on a slave CPU

1-28 17329125 A

SLAVE

c . //
0000000

EXEC SERVICES

/]

v INT.
PROC.

INT.

/

'PROC

EXEC
SERVICES

AR
/

@ Figure 1-7. ESR Processing Flow

MASTER

17329125 A 1-29

(upper triangle) are recognized by the slave (INT PROC - interrupt
processing) but are routed to the master for service. After servicing is
complete, the task status (READY for execution) is relayed back to the
slave, causing the task to appear on the slave ready task list.

While on the master CPU, the task is placed in the master ready list so that
the granting of services can be accomplished according to priority.

Requests that originate on the master CPU more directly enter the executive
for servicing. Since the task was executing, it is the highest-priority
task at that time. After the service is supplied, the task is placed on the
~ master ready list.

The executive may be interrupted by real-time (master only) or associate CPU
interrupts, but only to schedule a task for execution. That is, once the
processing of a service request has started, it rums to completion or to a
standard point of suspension (for example, waiting for file access).

Note that since every exit from the executive is through the DISPATCHER,
every interrupt and every ESR provides an opportunity for a higher-priority
task to obtain control of the CPU.

ABORT PROCESSING

MPS/0S enters the executive job abort processor (JABRT) when an abnormal
condition occurs. ‘

JABRT effectively idles the job and all its tasks prior to proceeding with
the abort processing. The job manager termination processor (JABT) is
scheduled by JABRT to complete the abort processing and create a special
dump . ‘

A special case may occur when an abnormal condition exists during the job
abort processing. A secondary abort entry in job manager (JABT2) is
provided to give ar abbreviated abort in this event. An example might be an
I1/0 conflict between a task and the abort processor.

OPERATOR COMMUNI CATIONS

Operator control of the MPX/OS operating system 1is handled through
extensions of the ITS 2.0 Subsystem. Any ITS terminal can act as an
operator console if sufficient security permissions are granted to that
terminal/user combination. Only the System Deadstart function is restricted
to the Operator Console.

1-30 17329125 A

MEMORY MANAGEMENT

MPX/0S manages units of memory termed pages, where each page contains 4096
32-bit words. The paging bardware translates logical addresses into
physical addresses allowing each program state to access potentially all of
physical memory and providing protection against illegal memory references.

The executive and system task portions of MPX/0S reside in the lowest
pbysical pages. This is because certain addresses representing bardware
interfaces (for example, interrupt addresses) must be fixed in low memory.

The remaining memory pages not reserved by MPX/0S are available for task
loading. -

Each job must reserve 1its maximum memory vrequirements on the SCHED
statement. Actual memory usage may increase and decrease during a job's
life, but can never exceed the scheduled amount.

The use of global common presents some special memory considerations. Pages
used for global common do not actually count as memory scheduled. This is
because these pages are actually only mapped into a task's address space.
MPX/0S does not allow any combination of task-executable code, local common
(addressable only by defining task), or global common to exceed 15 pages.
Actually, a total of 16 pages 1is addressable by a program state, but one
page 1is needed for the intrajob data area.

GLOBAL COMMON

Global common satisfies the requirement for a data base shared by several
tasks. In addition, global common may be retained when the system is
restarted (reloaded) following a failure.

Global common can be defined to the operating system at the time of system
build or defined dynamically by user tasks (ASNGC). At time of definition,
memory is reserved and tables containing the names, lengths, and addresses
of each global common block are initialized. Each global common block must
start on a memory page boundary and must be a multiple of pages in length.

ESRs are provided to allow a task to manage its access to global common.
The ESRs allow a task to status (STATGC), attach (GETGC), and detach (RETGC)
global common blocks. Status allows a user to dynamically manage global
common assignments.

ESRs for memory expansion and reduction, OPENMEM and RELMEM, prevent -a
conflict with global common assignments. Task memory pages can not be
assigned as global common memory and dynamic local task memory
simultaneously.

17329125 A 1-31

A reserved scratch common name (GLOBAL) is used to declare arrays for global
common. This does not preclude declaration of local (memory referenced only

by declaring task) common. The loader searches for GLOBAL and aligns the .

first global common array to the next pagé boundary. When obtaining memory,
the 1loader ensures that memory is not allocated for global common.
Therefore, the user need not reserve memory for global common (CM parameter
on *SCHED control card).

The reserved scratch common block name GLOBAL is used by the programmer to
signal the beginning of global common block declarations. Scratch common
blocks encountered by the loader before the occurrence of the common block
name GLOBAL constitute local scratch common. All subsequent scratch common
blocks including GLOBAL will start on a page boundary and comprise global
common. An example of assembly coding is as follows: .

SCoM
A BSS 100
B BSS 100
BILOCK 1 SCOM
C BSS 4096
GLOBAL SCOM
D BSS 2048
E BSS 2048
BLOCK 2 SCOM
F BSS 8192

The same example in FORTRAN is as follows:

SCRATCH COMMON A(100), B(100)
SCRATCH COMMON BLOCK1/C(4096)
SCRATCH COMMON GIOBAL/D(2048), E(2048)
SCRATCH COMMON BLOCK2/F(8192)

The examples generate two pages of local scratch common and three pages of
global scratch common. Global common would start at logical address $2000.
Global common blocks could be mapped into addresses $2000 through $4FFF and
referenced by the arrays D, E, and F.

1-32 17329125 A

C

SCHED AND RTSCHED

Two modules (executive code), SCHED and RTSCHED, perform an identical
function - they place a task on the CPU ready list. Two copies are required
because the executive can be interrupted to service real-time interrupts,
including the scheduling of real-time tasks for execution.

SECURITY CONTROLS

MPX/0S security controls are composed of tables and procedures for the
protection of data from unauthorized access. '

MPX/0S security controls are intended to prevent access to MP-32 Computer
System resources by mnonvalidated users. These controls are based on
information obtained from three sources: initial system tables, system
files, and operator entry.

The MPX Operating System maintains security information in the following
tables and system files:

System security control (security control mask)
Peripheral control tables (security control mask)

Job control tables (job security level)

Task control tables (task current security level)

Mass storage directory (file security level)

User validation file (interactive user security levels)
Port setup file (remote circuit security levels)

The system security mask is initialized at system installation but can be
changed by the operator during MPX operations. The system security mask is
a global value levied on all system functions by the operator. No accesses
are allowed ‘which are in conflict with the system security mask. If the
operator attempts to alter the value while a job requires resources which
are in conflict with this value, the operator is informed and the system
security mask is not altered. :

The peripheral control tables contain the security mask for each peripheral
device within the system but only the user assignable unit record equipment
security masks can to be altered by the operator. The others (mass storage,
communications line adapters, etc.) cannot be altered and are controlled by
other system tables and files. If the operator attempts to alter a non-unit
record device, the operator is informed and no changes are made.

The task control tables contain security level information pertaining to an
associated task. The MPX system will use this security level information to
control resource allocation to a task. Both the task and the operator may
change a task's security level but in no case will the level be allowed to

17329125 A 1-33

conflict with the system security mask. If an attempt is made to alter the
task's security level in a manner which makes it conflict with the system
security level or with resources already obtained, then the task/operator is
informed and no change is made in the task's security level.

The mass storage directory contains the information necessary to access the
data contained within a file. This directory also contains a use parameter
which defines the control level of the file. The use field may be one of
the following control types:

Read/Write
Read only

The user validation file is used to control the interactive user access to
the MPX Operating System. This file contains the user validation parameters
described in the ITS feature description. These parameters include facility
access, security level, and username/password combinatioms.

The MPX/OS port setup file contains configuration and validation parameters
for each communications 1line serviced by the MPX system. The port
validation mask parameter contains the security control mask, and when the
port validation mask is combined with the user validation mask, the
resulting mask is used to limit the types of accesses the user/port can
perform.

1-34 17329125 A

-

x\‘/ J

FILE STRUCTURE 2

The MPX/0S system operates in an environment in which all files have an
identical basic structure. All mass storage for MPX/0S is subdivided into
two levels. The device label is the higher level and represents the on-line
units in the form of disk drives and disk packs. The unit of allocatable

storage is the lower level and represents a multiple of physical hardware
records (sectors).

DEVICES

Mass storage devices are bhardware entities with independent schemes of
addressing. MPX/0OS distinguishes between devices which are logically or
physically affixed to drives (system devices) and devices which are
removable (user devices).

System devices must be on-line at all times. User devices need be on-line
only when the device 1is referenced by the user (ALLOCATE, OPEN, etc.).
System devices are defined by system installation.

DEVICE LABELS

MPX/0S uses device labels to identify all mass storage devices. Each mass
storage device has a device label written on its first hardware address.
Device labels are written by the utility routine INSTALL prior to using the
device.

Device labels contain information pertaining to mass storage devices,
including a device identifier (DID), which is used for internal and external
identification, and a device allocation map, which identifies the used and
unused allocation units.

17329125 A 2-1

The content and format of device labels are described in appendix G. The
physical characteristics of various devices are described in appendix F.

FILES

All mass storage data operated on by MPX/OS must be in entities of logical
block structure. These entities are called files. A logical block size is

the number of 32-bit words in each block. Each logical block starts at the -

beginning of a physical hardware record.

FILE LABELS

File labels are entries in the system LABEL file that identify, describe,
and reserve space (files) on mass storage. A mass storage file exists in
the system when the user defines a label (allocates a file). The user makes
a request to MPX/OS to create a file label via an ALLOCATE call. This call
provides the file identification, access code, block size, block count, and
so forth. MPX/0S uses the caller-supplied information to create a file
label and to update the allocation map of necessary device labels. File
labels ‘are described in appendix G.

FILE IDENTIFICATION

File name, edition, and owner make up a file identification. The file label
contains the file 1identification for MPX/0S comparison during label
modification calls (RELEASE, MODIFY). 1If identification in a call does not
match identification in a label, an error results.

FILE ACCESS PRIVACY

Each file label has a provision for an access privacy code and an access
type code (USE). The access privacy code protects a file from unauthorized
use. If the access privacy code in an access call (OPEN) does not match the
one in a file label, the call is rejected. The access type code allows the
user to specify the file as read-only. If the access type code is read-only
in the file label, USE in the OPEN call must be read-only.

2-2 17329125 A

U

O

C

FILE SEGMENTATION

When space must be segmented on mass storage to satisfy a file allocatiom
call, MPX/0S allows files to contain up to 32 segments. One or more
segments of a file can be on one or more devices. MPX/0S allows a file to
be segmented on to a maximum of eight devices.

When allocating space for a file, the user can specify that the space be
contiguously allocated. If insufficient contiguous space 1is available on
the device, ALLOCATE rejects the request.

FILE ALLOCATION METHOD

ALLOCATE, EXPAND, and MODIFY (expand file) assign space sequentially on a
device basis beginning with the first specified device; however, when
allocating space on a specific device, ALLOCATE, EXPAND, and MODIFY check
the device label map to find the smallest contiguous area large enough to
satisfy the request. If such an area does not exist, the largest available
area becomes the first segment, followed by the next largest, and so forth.

17329125 A 2-3

JOB PROCESSING 3

Job processing flow is illustrated by figure 3-1. The processing of a job
is initiated by submission of the job deck to the input queue. From this
point on, MPX/0S assumes control of the job. ’

The operating system task, Standard I/0 (STDIO) reads job files and places
them in mass storage files. STDIO or Interactive Communication Facility
(ICF) causes mass storage files to be passed to the system queue manager
(8YSQS) for inclusion in the input queue. SYSQS then examines the job and
schedule statements, determines the resource requirements for the job, and
attempts to secure the necessary resources. When all of the resources have
been acquired, SYSQS initiates execution of the job manager task (JMGR).
SYSQS is now free to process any new jobs that might appear in the input
queue.

JMGR reads and interprets the job control statements in the sequence they
appear in job deck (the mass storage £file). These control statements
consist of a statement name and the parameters necessary to define the
operation. The specified operations allow for the management of the
peripheral environment of a job, for the loading and execution of user and
library tasks (TASKl ... TASKn), and for job termination (JTRM).

Control statements contain an asterisk(*) in column 1, followed by the
requested function name. The parameter list extends through the remaining
columns of the statement. The parameter list is enclosed in parentheses,
with commas separating each parameter. Comments are permitted on the
control statements, but must follow the corresponding parentheses that
terminate the parameter list. A control statement which contains a pound
sign (#) in column 1 is treated entirely as a comment (they can be placed
anywhere after the *SCHED card).

The job statement file must be organized in three sections: job definition,
job activity, and job termination. Figure 3-2 defines a job statement file
and .identifies the three sections. The job definition section contains
sufficient information to define the job in the system. The job activity
section manipulates the peripheral environment and causes task executions.

17329125 A | 3-1

ITS INPUTS
|
T I
BUILD A - PROCESS
INTERACTIVE '
JOB FILE
COMMANDS
STDI0 —TCF >
L JOB
“““““““ FILE
QUEUING AND}@- — — — — — ——n
JOB r
INITIATION |
sYsas |
|
|
. l
! ESTABLISH
J0B EXECUTION |g _ e
TERMINATION TASKS
ROUTINES TASKMGR
I
i
I N
[A
| . -
|
|
|
STANDARD
OUTPUT
FILE
4
SYSTEM |
TERMINATION .
OF JOBS ————— ——
I
OUTPUT LIST
QUEUE OUTPUT
MANAGEMENT [© »
sYsas ' STDIG
CONTROL
————— DATA ;
* EXECUTION/TERMINATION ROUTINES ARE JMGR, JLDR., JMPP, JTRM, JABT
£
Figure 3-1. Job Processing Flow %wﬂ

3-2 : 17329125 A

(z“\
}

Job
Definition
Section

Job
Activity
Section

Job
Termination
Section

'NOTE' X without

LUN=57.

load and go.

17329125 A

Figure 3-2.

*JOB(ID=EXAMPLE,AC=1234)

*SCHED(CM=11,MT=1)

*EQUIP(1=MT)

*ALLOCATE(FN, OWNR,01,Q00Q,480,50, ,RW)
*QPEN(2,FN,OWNR,01,Q00Q,W)
*FTN(I,L,X) 'NOTE'

PROGRAM RW
INTEGER CARD (20)
10 ' READ (1,99) CARD

WRITE (2,99) CARD
IF (CARD (1).EQ.4H*END) STOP

GO TO 10
99 FORMAT (20A4)
END
FINIS
*LOAD(57) 'NOTE'
*RUN
*E0J

Batch Job File Example

any parameters assumes standard load and go
*LOAD without any parameters also assumes standard

The job termination section releases resources assigned to the job, adds job
accounting information to the OUT file, and eliminates the job from the
system. The jobs OUT file can be released or retained for user disposition,
depending on an option selected by the ROUTEQ ESR.

JOB DEFINITION STATEMENTS

The job definition statements characterize the job as a real-time or
non-real-time job and identify the resources required to complete the job
successfully. The job is not started until all required resources are
available. If insufficient resources are requested, the job is aborted when
a request for the undeclared resource is encountered.

*JOB, Non-Real-Time Job Statement
*JOR(ID= ,AC= ,UN= ,sC= ,QP= ,TP= ,0U=)

‘A non-real-time job (*JOB) statement serves as identification of a
non-real—-time job, and of an input file. Any additional job statements are
ignored if they are encountered before the end-of-job statement (*E0J).

Parameter Definition

ID= 1 to 8 characters indicating the job
identification. This parameter is optional. 1f
omitted, ID=.JOB. is supplied by MPX/OS.

AC= 1 to 8 <characters indicating the job account
number. This is an optional parameter. If omitted,
defaults to the account number of the submitter or
.ACCT. if source is the card reader.

UN= 1 to 8 characters indicating the Username of the job
owner. If omitted, defaults to the Username of the
job submitter or .UN. if source is the card reader.

SC= 1 or 8 characters indicating the security level or
security mask for this job. An installation option
determines the format of this parameter.

QP= Priority at which job will be placed on the system
queues (Input, Output, Hold). Decimal constant in
the range from 0 to 32751.

TP= Default priority for all tasks established by job.
Decimal constant in the range from 10 to 255.

3-4 17329125 A

C

Parameter Definition

ou= Disposition of job's OUT file. Disposition code is
2 ASCITI characters. This parameter overides
disposition supplied by submitter.

*RJOB, Real-Time Job Statement
*RJOB(ID= ,AC= ,UN= ,SC= ,QP= ,TP= ,0U=)

The real-time job (*RJOB) statement replaces the *JOB statement when
identifying a real-time ‘job. The parameters are identical to those of the
*JOB statement.

A real-time job 1is expected to cause a real-time task to be loaded. The
real-time job differs from the non-real-time job in its ability to use the
reserved priorities (1 through 9, 256 through 511) for its tasks. The
real-time task is established and control is passed to the task. After the
real-time task bhas 1initialized itself, it returns to MPX/0S without
releasing its resources.

*SCHED, Schedule Statement
*SCHED(CM= ,TL= ,PL= ,PC= ,SCR= ,bh=)
The schedule (*SCHED) statement, if present, follows the job statement (*JOB

or *RJOB), and is used to allocate and reserve resources. The value of the
last appearance of a parameter is the one used.

Parameter Definition

M= Memory limit (in pages) assigned to the job. The
upper limit for this parameter is dependent on the
amount of pbysical core memory available. The

parameter <c¢an be omitted, in which case an
MPX/0S-defined limit is applied to the job.

TL= Job time 1limit in CPU seconds, value from 1 to
99999. A value of 99999 is regarded as infinity.
Time charged against this limit is CPU usage only.
The parameter can be omitted, in which case an
MPX/0S-defined time limit is used.

PL= Print line limit assigned to job, value from 0 to
65535. The parameter can be omitted, in which case
an MPX/0S-defined print limit is used.

PC= Punch card limit assigned to job, value from 0 to

65535. The parameter can be omitted, in which case
an MPX/0S-defined punch limit can be used.

17329125 A 3-5

Parameter Definition

SCR= Maximum total number of mass storage segments to be
shared among system scratch 1 (SCR1l), system scratch
2 (SCR2), standard Holleritb scratch (SHC), and
standard load and go (LGO) for a job. The size of a
segment is a system parameter. This parameter can
be omitted, in which case an MPX/0S-defined scratch
limit is used.

bh= The number of this type of peripheral equipment to
be reserved for the job, where hh has the following
definitions.

Mnemonic Hardware Type

CCC CYBER Channel Coupler

FDD Flexible Disk Drive

MT7 7-track magnetic tape

MT 9-track magnetic tape (800bpi)
MT9 Same as MT

CATALOGUED JOBS

A catalogued job is a file in standard blocked form; the file contains valid
batch job deck card images, *JOB or *RJOB through *EOJ. The catalogued
job's feature is the mechanism used to support task initiation of jobs.

A catalogued job submitted for execution will terminate without destroying
the input file. This allows concurrent and/or repetitive submissions of a
single, catalogued job without redefinition. ’

A system build-time parameter controls output file disposition for
catalogued jobs initiated tbrough the operator's console. The job output
file can be retained for printing or the output file can be released without
printing according to the definition of the build-time parameter.

Catalogued jobs can be submitted to the operating system from the following
sources:

Operator command
Executing user tasks

Each submittal source must prepare a file containing a complete job deck
(*JOB or *RJOB through *EOJ). The ROUTEQ ESR processing will initiate job
execution (if all required resources as defined by the *JOB or *RJOB and
#SCHED cards in the submitted file can be allocated), will add the job to
the input queue, or will reject the request. Immediate execution will occur
if resources can be allocated and if the input queue 1is empty or if

3-6 17329125 A

AT

A

C

preemption is selected. Queuing can occur if jobs are already waiting in
the queue or if all resources are not available. A reject will occur if the
input queue is filled or if the ROUTEQ ESR specified a reject in place of
queuing: ‘

A first in, first out queue is retained in memory to expedite the resources
available check. Established operating system approaches dictate that the
submit processing be divided into executive state and task state processing.

The executive state portion manages access to the task state portion and
provides the parameter passing function between the caller and the task
state services. The task state portion provides for the disk I/0 processing
and sequencing through a series of requests. The task state portion allows
continued system operation while doing the system task of processing
submitted jobs.

JOB ACTIVITY CONTROL STATEMENTS

The job activity section of a job consists of four types of control
statements: miscellaneous, data set identification, data set modification,
and task preparation and use control statements. A job normally has at

least one of the control statement types but need not have each type
represented.

MISCELLANEOUS STATEMENTS
The miscellaneous statements allow messages and action requests to be sent
to/received from the operator through the console display.
%CTO, Comment-to—Operator Statement

*CTO message
The comment-to-operator (*CTO) statement causes the message appearing on the
statement to be output on the console display. -The *CTO card can appear
anywhere in the control statement deck between the *SCHED card and the
end-of-job card, except among the task data areas.
*PAUSE, Pause Statement

*PAUSE message
The pause (*PAUSE) statement causes job processing to be suspended. The
message is copied to the console display. The operator then performs the

requested action and continues the job by acknowledging the message. If the
message is rejected, the job is aborted.

17329125 A 3-7

DATA SET IDENTIFICATION STATEMENTS

The data set identification statements associate a logical unit number with
a data set. For a mass storage file, an *ALLOCATE/*OPEN statement sequence,
or an *OPEN statement is used. For a unit record device data set, a *DEVICE
or an *EQUIP statement is used. A new logical unit number can be defined as
being equivalent to an already-defined logical unit number with a *DEVICE or
an *EQUIP statement.

*#ALLOCATE, Allocate Statement
*ALLOCATE (FN, OWNER, ED, AK , BLKSIZE, NOBLKS, S, USE, SLVL, DT, DID1, ... ,DIDn)
The allocate (¥*ALLOCATE) function is used to describe (and thus create) a

file in the mass storage system. Once a file has been created, it remains
allocated until released.

Parameter ‘ Definition

FN 1 to 14 characters specifying the file name.

OWNER 1 to 4 characters specifying the file owner.

ED 1 or 2 characters specifying the edition number.

AR 1 to &4 characters specifying the access privacy

key. This field is not copied on the job's OUT file.

BLKSIZE Number of words in a logical block. Decimal
constant in the range of 1 to 65535.
NOBLKS Number of logical blocks in the file. Decimal
constant in the range of 1 to 65535.
S Segmentation flag:
Entry , Meaning
Blank File can be segmented.
S File can be segmented.
NS File cannot be segmented.

3-8 17329125 A

AN
Ny

Parameter

C

USE Protection flag:

'Entrz
Blank

RW

SLVL Security level.

to 7.

DT Device type:

Entrz
Blank or O

1

DID
for the file.

Definition

Meaning
File can be accessed as
read/write.
File can be accessed as read
only. It can not be written

until modified.

File can be accessed as
read/write.

Decimal constant in the range of 0

Meaning

File allocated on system device.

CONTROL DATA
Disk Drive.

9425 Cartridge

CONTROL DATA
Unit.

844 Disk Storage

CONTROL DATA
Disk Drive.

9427 Cartridge

CONTROL DATA
Module Drive.

1867-10 Storage

CONTROL DATA
Module Drive.

1867-20 Storage

1 to 8 characters identifying the device to be used
Up to eight devices can be specified.

The parameters must appear in the indicated order with omitted parameters

specified by adjacent commas.

When *ALLOCATE detects an error, the entire control statement is ignored and
a diagnostic is written on the job OUT file.

17329125 A

3-9

*DEVICE, Assigning Unit Devices

*DEVICE(lu=hhhh, ID=name,...luy=hhhhy, ID=name)
*EQUIP, Assigning Devices

*EQUIP(1lu=hhh, ...luy=hhhg)

The device assignment statements, *DEVICE and *EQUIP allow a hardware type
to be assigned to a logical unit number.

Parameter Description
lu The logical unit specified can be a number

1 through 63 with the exception of the
fixed assignments presented in figure 3-3.

hhh(h) The mnemonics used for device
identification devices can be found in
appendix K, Valid Hardware Types.

name Device name 1s an ASCII 8 character
identifier for a specific device. Device
names which contain blanks must Dbe
enclosed in single quotes.

Example: ID='MT9 1°'

The designated logical wunit is assigned to an available equipment of the
specified hardware type. 1f hardware of the designated type is not
available, or if the assignment request results in exceeding the number of
scheduled equipment of this type, an error message 1is issued and the job is
aborted.

3-10 17329125 A

=

~

N

\g“/

*DEVICE, Logical Unit Equivalencing

{\ . é
M

*DEVICE(luj=luy...lup=lup)

*EQUIP, Logical Unit Equivalencing

*EQUIP(1luy=luy,...lup=lug)

These DEVICE and EQUIP commands equate logical units. The logical unit,

(lu}) is equated to (lup). The unit (lup) must bave previously had a
hardware type assigned to it.)

The following are fixed assignments which are not available for reassignment
via *DEVICE or *EQUIP requests:

Logical Unit Number - Assignment
63 Standard input (INP)
62 Standard output (OUT)
w 61 Standard punch (PUN)
‘ii> 60 System scratch 1 (SCl)
59 System scratch 2 (SC2)
58 Library (LIB) |
57 Standard load and go (LGO)
56 Standard Hollerith scratch (SHC)
55 ‘ Label file (LBL)
54 ‘ Reserved
53 Reserved
52 PCC change file
51 Reserved
50 Reserved

Figure 3-3. Fixed Logical Unit Assignments

C

17329125 A 3-11

*DEVICE, Data Pipe Assignment Statement
*DEVICE (1lu,PN=namel,dir)
The Data Pipe assignment statement allows the user to specify a Pipe Name

and data flow direction to be matched with a similar assignment from another
JOB or TASK within the user's JOB.

Parameter , Definition

lu The logical unit is a number between 1 and 63,
excepting the fixed assignments as listed in figure
3-3.

namel Pipe Name for matching (8 ASCII characters).

dir : The letters IN or OUT indicate data flow direction

with respect to the user of the lu.

3-12 ' 17329125 A

A

Jresn
NS

{

*DEVICE, Interactive Device Assignment Statement

O

*DEVICE(1u=hh,LN=name,CC=code,SP=port,EM=mask1,IM=mask2,UN=user name,
CL=class,CM=mask3)

The interactive device assignment statement allows the user to assign a
linkage name or task name to a specified interactive device. The parameters
are as follows:

Parameter Definition
lu The logical wunit is a number between 1 and 63,

exempting the fixed assignments as listed in figure

bh The 2-character mnemonic: IT - Interactive Terminal,
CN - Communication Network.

name Name of the task linkage to be connected to the
interactive device (8 ASCII characters).

code Connect code as follows:

I - immediate connect

port If the CC parameter is omitted, the job will await
‘iﬁ\ ; connection by the terminal. The system port is an
- integer between 0 and 255. If this parameter 1is

omitted, DEVICE will default to any available port.

maskl The exclusion mask (EM) 1limits the port being
defined by excluding ports for which specified bits
are set in the PORT or USER validation masks. The
port and user validation masks are combined to form
a single validation mask (VM). 1If EM .AND. VM # O,
a port will be excluded. A description of the
PORT/USER validation mask is given in the
Interactive Terminal Subsystem (ITS) User's Guide.

mask2 The inclusion mask (IM) 1limits the port being
defined by accepting only those ports for which
specified bits are set in the PORT or USER
validation masks. The PORT and USER wvalidation
masks are combined to form a single validation mask
(). 1If IM ,AND. .NOT. VM = 0, a port will be
accepted. A description of the PORT/USER validation
mask is given in the Interactive Terminal Subsystem
(ITS) User's Guide.

o

17329125 A 3-13

user name User name is an ASCII-8 character identifier which N
specifies the user's desires. Question marks (?) Wkgp
can be used for "Don't Care'" characters. =

class Class of interactive device type requested (an
integer, 1-32). Current terminal classes are as
follows:

Unmanned Terminals

- * Mode 4 Line (200UT)

- X.25 Packet Network line

- CPU-CPU Async Protocol (undefined)
- Undefined

Undefined

- AWN Network Line

- NEDN Network Line

- NMC Network Line

- 1ID50 Network Line

Voo~V E WD
[}

10 - Undefined

11 - 200UT Card Reader (RBTMGR)

12 - 200UT Line Printer (RBTMGR)

13 - Output Only Port (RO terminal)
14 - TInput Only Terminal (Sensor/CR)

15 = Undefined

Manned Terminals

16 - Generic - Glass Teletype

17 - Generic -~ Printing Terminal
18 - ¢DC 751

19 - CDC 752

20 - CDC 756

21 - Undefined

22 = Undefined

23 - 200UT Console (RBTMGR)

24 - X.25 Packet Assembly/Disassembly
25 - CYBER Virtual Terminal (OPFMGR)
mask3 The Class Mask limits tbe port being defined by

accepting only those ports of specified classes. If
the bit for the class is set, a terminal will be
accepted. ‘

3-14 17329125 A

O
‘;
0’

(i“\
¥

*LINK, Limk to Interactive Device

*LINK(1u,eee,lu)

The LINK statement permits I/0 files to be attached to Interactive Devices.
Subsequent input or output requests will be input from or routed to the
Interactive Device.

*UNLINK, Unlink From Interactive Device

*UNLINK(lu,...,lu)

The UNLINK statement permits I/0 files to be unlinked from an Interactive
Device and reattached to the I/O devices. Subsequent input or output
requests will be input from or routed to the I/0 device.

17329125 A 3-15

DATA SET MODIFICATION STATEMENTS

The data set modification statements change the position, content, access
and/or attributes of the data set. Three of the statements apply only to
mass storage file data sets. The remaining statements have definitions,
summarized by table 4-1, for both mass storage device and unit record device
data sets.

#CLOSE, Close Statement
*CLOSE(LUN)
The close (*CLOSE) statement clears the LUN definition from the system

tables. The file must be opened following a *CLOSE to be referenced again.
The LUN parameter indicates the logical unit number of the file to be closed.

*EQOF, Write End-of-File Statement
*EOF(lul s 11_12, .oy]_un)

The write end-of-file (%EOF) statement causes an end-of-file mark to be
written on the specified logical units that have magnetic tapes or cartridge
tapes assigned to them. For mass storage files opened as write or
read/write, the highest block written is set to the current block number.
Logical units with any other type of assignment are ignored.

*EXPAND, Expand Statement
*EXPAND(LUN, NOBLKS)
The EXPAND statement is used to increase the mass storage space reserved for

a file. Before the EXPAND control card can be invoked, the user must have
established a linkage to the file with the OPEN control card.

Parameter : Definition
LUN Logical file number.

NOBLKS Number of blocks to add to the file.

3-16 17329125 A

)

~
=

AN

C

*MODIFY, Modify Statement

*MODIFY(FN,OWNER,ED,AK,NFN,NOWNER,NED,NAK,NOBLKS,S,USE,SLVL,DIDl,...,

DID,)

The modify (*MODIFY) statement is used to change the attributes of an
existing, closed mass storage file. *MODIFY can be used to expand an
existing file, or to change the control parameters of the file.

0ld control parameters:

Parameter Definition

FN 1 to 14 characters specifying the file name.

OWNER 1 to 4 characters specifying the file owner.

ED 1 or 2 characters specifying the edition number.

AK 1l to 4 characters specifying the access privacy key

for the existing file. This field is not copied on
the job OUT file.

New control parameters:

File

Parameter Definition
NFN 1 to 14 characters specifying the new file name

(blank = no change).

NOWNER 1 to 4 charac¢ters specifying the new owner
(blank = no change).

NED 1 or 2 characters specifying the new edition number
(blank = no change).

NAK 1 to 4 characters specifying the new access privacy
key. This field is not copied on the job OUT file
(blank = no change).

expansion parameters:

Parameter Definition
NOBLKS The number of logical blocks to be added to the file

(a decimal constant in the range of 1 to 65535. The
total number of blocks in the expanded file can not
exceed 65535. 1If blank, there is no change.

17329125 A 3-17

S Segmentation Flag:

Entry Meaning

Blank Added blocks can be segmented.

S Added blocks can be segmented.

NS Added blocks can not be
segmented.

USE New protection flag for the modified file:

vEntrz Meaning

Blank Does not modify existing usage
parameter.

R File can be accessed as read
only.

RW File can be accessed as

read/write.

SLVL Security level. Decimal constant in the range of 0
to 7.
DID 1 to 8 characters identifying the device to be used

for the expanded blocks. 1f this parameter 1is
omitted, the device of the last segment is wused.
The total number of devices used by the file can not
exceed eight.

*OPEN, Open Statement
*QPEN(LUN, FN,OWNER, ED, AK, USE, BLOCK)
The open (*OPEN) statement is used to prepare an existing mass storage file

for data transmission by locating the file and requesting the device be put
on-line, if necessary.

Parameter k Definition

LUN Logical file number.

FN 1 to 14 characters specifying the file name.
OWNER 1 to &4 characters specifying the file owner.

3-18 ‘ 17329125 A

-

=

A~

ﬁ.km//

. ED 1 or 2 characters specifying the edition number of
‘:\> file to be opened. ‘

AK 1 to 4 characters specifying the access privacy
key. This field is not copied on the job OUT file.

USE Protection flag:
Entry Meaning
Blank File can be accessed as
read/write.
R - File can be accessed as read
only.
RW File can be accessed as
read/write.
W File can be accessed as
read/write and the block count
(highest block written) 1is set
to O.
BLOCK If 0 or blank, the file 1is completely opened;
: otherwise, only the device containing the referenced
(ii> block is opened (partially open).

*RELEASE, Release Statement
*RELEASE(FN, OWNER, ED, AK, NOBLKS)

The release (*RELEASE) statement is used to release some or all the space
allocated to a mass storage file.

Parameter Definition:

FN 1 to 14 characters specifying the file name.

OWNER 1 to 4 characters specifying the file owner.

ED 1 or 2 characters specifying the edition number.

AK 1 to 4 characters specifying the access privacy key
for the file. This field is not copied to the OUT
file.

NOBLKS The number of logical blocks to be deleted from the

file. The highest-numbered blocks are released.

C

17329125 A 3-19

Entry Meaning

Blank or_O Entire file is released.

R All blocks following the highest
block written are released.

*REWIND, Rewind Statement
*REWIND(1luj,lup,...,lup)

The rewind (*REWIND) statement positions a magnetic tape, cartridge tape, or
file to the initial location. That is, a magnetic tape is rewound to load
point, and a file is positioned to the first opened block of the file. The
units to be rewound are indicated by the parameters luj through lug,,
which are logical unit numbers. Files specified in figure 3-3, Fixed
Logical Unit Assignments, should not be rewound.

*#SAVEPF, Save Scratch File Statement
*SAVEPF(LU,FN,OWNER,ED,AK,NR)

The save scratch file (*SAVEPF) statement, allows the user to save a file
allocated by the operating system. The occurrence of the comtrol card
causes the job manager to CLOSE, RELEASE unused, and MODIFY the file
specified. The format of the *SAVEPF control card is as follows:

Parameter Definition

LU Logical file number of currently open file whose
name is to be changed. Can be a number from 1 to 63.

FN New file name to replace the previous name; must be
specified (up to 14 characters).

OWNER New file owner to replace previous owner; if absent,
old owner is used (up to 2 characters).

ED New edition to replace previous file's edition; if
omitted, old edition is retained (up to &
characters).

AR New access key to replace original access key; if
absent, old access key 1is retained. (up to 4
characters)

3-20 ‘ 17329125 A

é:\‘

=

NS

()
e

NR Optional parameter. If absent, any old file with
the new file name is released prior to changing the
name of the currently open file (functional
replace). If present, this release does not occur.
NR=0, Release 0l1d File; NR=1, Do Not Release O01ld
File.

EXAMPLE: A job creates a scratch file and saves it.
*JOB(ID=SAVE)
*SCHED(CM=11,PL=9999,TL=9999)
*FTN(X)

PROGRAM SCRATCH

FIRST REFERENCE TO LU 10

WRITE (10,100) A, B, C

END

FINIS
*SAVEPF(10, FILENAME,, OWNR, ED, AKEY)
*EQJ :

*SEOF, Search End-of-File Statement
*SEOF(1luy=B,1lug=F,luy)

The search end-of-file (*SEOF) statement positions a magnetic tape,
cartridge tape, or file to an end-of-file. A second parameter of B
indicates a search backward (lu = B). The F parameter (lu = F) indicates a
search forward. If no second parameter (lu) is included, the search is
performed forward.

An *SEOF forward causes a magnetic tape unit to be positioned immediately

‘after an end-of-file mark.

An *SEOF backward causes a magnetic tape unit to be positioned immediately
before an end-of-file mark.

When the *SEOF statement is used on a logical unit number that has a file
assigned to it, a search backward positions to the first opened block of the
file. A search forward positions to the block past the highest block
written.

17329125 A 3-21

*UNLOAD, Unload Statement
- *UNLOAD(1luj,lup .. ,lup)

The unload (*UNLOAD) statement rewinds and unloads the specified logical
units that bave magnetic tapes assigned to them. Logical units with any
other type of assignment are ignored. Note that dismounting the tape does
not affect the logical unit to physical device assignment.

TASK PREPARATION AND USE STATEMENTS

The task preparation and use statements define attributes of a task, prepare
an executable image of a task in memory, save the prepared task in a data
set and/or initiate execution of the prepared task.

LIBRARY TASK STATEMENT

A library task, such as an assembler or compiler, is loaded and executed by
a library name control statement.

*name(parameter list)

A program can be called by a library name statement by using PRELIB to place
the program on the library (LIB) file. A library program is automatically
executed after loading. For example: =

*FTN(I,L,X)

*ABS, Build Absolute Task
*ABS(1u)

The build absolute task (*ABS) statement causes an absolute copy of a loaded
task to be written on the logical unit specified by lu. The *ABS statement
must follow any load command (*LOAD statement or binary decks) and precede
the *RUN statement, if used. The absolute file is preceded by a header
record describing the contents of the file. The absolute task is. in
blocker/deblocker format with the system standard block size. An absolute
file can be used in a task call sequence to decrease the load time of the
called task. -

3-22 ‘ 17329125 A

A~
;‘?x) J

C’ﬁ;

*MAP, Request Load Map
*MAP

The *MAP card is used to request that the loader generate a load map for the
next loaded task. If the card is left out, no map is generated. (See
section 6, MAP, Memory Allocation Printout.)

*LOAD, Load Statement
*LOAD(1uq,1lup,lu3, luy)

The load (*LOAD) statement specifies the sources for .a binary load. Up to
four defined logical units can be used as parameters of this statement.
Programs are loaded from the assigned units in order of appearance prior to
the loading of any binary information contained on INP. If the parameter
list is omitted, the LGO file 1is assumed for the load source. When . the
statement 1s omitted, the occurrence of a binary deck initiates the load
process. Only one logical wunit should be specified when an absolute
formatted file is to be loaded. (See section 6, MPX/0S Loader.)

*RUN, Run Statement
*RUN(parameter list)

The run (*RUN) statement initiates program execution by transferring control
to the object program. This statement 1is necessary to execute any
user—-defined task. The *RUN statement follows the binary decks if the
program is on INP. It follows the *LOAD statement if the program is on any
other unit. Any parameter list is passed to the executing task in the PARM
region starting at PARM+5. (See section 4, Initial Task Entry.)

*TASK, Task Statement
*TASK(ID= ,PCC,DMP,PRTY= ,CPU=)

A task (*TASK) statement precedes a load statement. It establishes run time
control parameters for the next task loaded.

Parameter Definition
iD= 1 to 8 characters indicating the task

identification; this parameter is optional. If not
present, the system default DUMYTASK is assigned.
The task identification is used to identify abort
messages.

17329125 A 3-23

PCC

DMP

PRT

CPU

In the
subtasks

(o}

A *TASK

A copy of program control comsole (PCC), a debug
aid, is requested. If PCC is to be used, the PCC
parameter is required.

Dump control, indicating that all of task memory is
to be dumped wupon recognition of ~an abnormal
condition. If the parameter is omitted, only the
contents of the page and operand registers are
dumped.

Y= 1 to 3 numeric characters indicating the task
priority. This parameter is optional. It must be
number, n, where 1 .LE. n .LE. 511 for real-time
jobs-and 10 .LE. n .LE. 255 for non-real-time jobs.
If n .LT. 10 or .GT. 255 for a non-real-time job,
the task priority is set respectively to 10 or 255.
If the parameter is not present or zero, the system
default of 10 is assigned. This value is passed to
the executing task in PARM+4. (See section 4,
Initial Task Entry.)

= Numeric identifier of a CPU in the configuration.
Any undefined value is treated as a default. The
default placement of a task is an installation
option. A nondefault value constrains the execution
of the task to the designated CPU, except for ESR
processing. There can be multiple occurrences of
this parameter to identify a set of CPUs to be
used. Values are: 1 = master; 2 = backup (if
applicable); 3, 4, 5 = slaves. For example, CPU =
1, CPU = 3, will provide CPUl and/or CPU3 as valid
CPUs to execute in.

instance where the task will be multitasking (that 1is, calling
), the following apply (section 4, Task Manager ESRs):

If PCC is specified, only one task will be loaded with a copy of
PCC. This task is specified in - parentheses [for example,
PCC=(TASKNAME)]. If no task name is specified, the default is to
assign PCC to the next task loaded. For library tasks, ID must be
used where ID = library task name.

If the DMP parameter is specified, the memory of a task and all its
subtasks will be dumped.

statement pertains to ome and only one *LOAD statement. Therefore,

for each task to which run-time parameters are assigned, a *TASK statement

must be
executio

included. TFigure 3-4 illustrates a job control deck with three task
ns. In the example, tasks 1 and 3 are assigned run—time controls

via their corresponding *TASK statements. Task 2 would be assigned default

run—time

controls, because it does not have a corresponding *TASK statement.

17329125 A

C

*JOB (. . .)
*SCHED (. . .)

.

*TASK (ID=TASK1,PCC,DMP,PRTY=25)

.

*LOAD(20) Load Task 1
*RUN

*LOAD(30) Load Task 2
*RUN

.

*TASK(ID=TASK3,PCC,DMP,PRTY=26)

*LOAD(40) Load Task 3
*RUN

3

EOJ

Figure 3-4. *TASK Control Statement Example

17329125 A

3-25

JOB TERMINATION

The job termination phase is initiated by one of two means. Normal job
termination is initiated by the job manager upon encountering the ¥EO0J
control statement in the job control stream. Abnormal job termination is

initiated by any task through the ABORT ESR or by the system executive when
one of the abort conditions identified in appendix D occurs.

*E0J, End-of-Job Statement
*E0J

The end-of-job (*E0J) statement causes the normal termination of the job.
This statement is the last statement processed for the job.

ABNORMAL JOB TERMINATION (JOB ABORTED)

When a condition causing abnormal termination occurs, MPX/OS responds with a
diagnostic and task dumps. The dump is according to the format specified on
the *TASK statement. If a *TASK statement has not been included in tbe job,
MPX/0S dumps only the contents of the task registers. The format of the
diagnostic is illustrated in figure 3-5.

JOB ACCOUNTING STATISTICS
MPX/0S writes the following job-related information on the standard output
file after a job has terminated.

o Job name

o Submitter Username

o Account number

o Sequence number

o Security

o Date (mm/dd/yy)

o Time on (bb:mm:ss.sss)

o Time off (bh:mm:ss.sss)

3-26 17329125 A

A
NS

o MPX/0S resident edition number
o Version name
o Library edition number
o CPU time used (bb/mm/ss.sss)
o0 Resources reserved but not used:
- Memory
= Scratch segments

- Print lines

Punch cards

The job accounting statistics are illustrated in figure 3-6.

C

17329125 A) 3-27

69.02104 A¥ 00000000
Yv900000 {4 00000000
00000000 ZH 00000000
£0000000 £X 10000000
ao000080 00800080

sie3s180y jo Sutr3sTy 1roqy Jo drdwexy

*qol @yl ut se)l yoes 103 pdjeadai ST UOTIBUIOIUT STYL

*pode1dsip j0u ST 19351331 QX

88000000
00000000
86641000
02000000
00800080

86¢0¢£000
€0000000
00000000
00000000
00800080

4¢£000000
10210000
00000000
00000000
00800080

(YAYAVTAN
¥€£000000
00000000
02020¢20¢
00800080

*¢~¢ @an31yg

T + $S2appy 310qV = €/G

09000000
0zozrsdy
00000000
00000000
00800080

40200000
eI R A AY
00000000
€.500000
00804€01

T = dIVIS 1 = Ndd 10 = SOLVLS

84
(0]
OH
0X
sao3s180y °8egd

YOWL = TWVN SVL

17329125 A

3-28

Fefeeihdeledodedeiededelodede

%

Sedede

Sedededededededede ekt

Kfededededededededededodededededededededededededodededededeielldededededodedevedededededededede ok dedede e

Sesedededededededededededee

w

dodededededededededededededededede

<

¥

sC =20

21.379

= ACCNUM

ACCT

USER = GBF

= REFMAN
DATE = 05/14/81 TIME ON
RESIDENT EDITION = TS

JOB

SEQ = 2N

:49;

15

20.541 TIME OFF =

49:
VERSION

ACCUMULATED TIME = 00/00/00.089

ACCOUNTING INFORMATION

15

X1

MP32 LIBRARY EDITION

RESOURCES NOT USED
10
963

MEM =
SCR =

LINE=

Yededodedededededevededededededodededededededededededededededededededodedededededededededededevededededededededededededede

0

CARD=

dededededededede

Fededkedededededede e

JMGR

*%%JOB ABORTED ABORT TYPE = 15 ABORT CODE = 06 TASK

Sedesededede Tk

Abort Message and Accounting Statistics Example

Figure 3-6.

3-29

17329125 A

O

N

EXECUTIVE SERVICE REQUESTS 4

An executive service request (ESR) 1is 1issued by the monitor call
instruction, MON,R ESRID. R is the first of four contiguous registers. The
contents of all four registers are passed to the executive as ESR
parameters. ESRID is the name of the executive service requested. The name
appears in the description title. Some requests pass and/or receive data
through the PARM area. The PARM area is allocated by the loader, the ESRID
values are defined by the loader; they are accessed in the COMPASS code
modules by their declaration as externals. The format of data to pass
through registers, through the PARM area, and through any additional data
area is drawn, and the data fields are labeled and explained for each ESR.
PARM status codes are provided in figure 4-1.

ESRs are requested by execution of the MON instruction. This is the only
voluntary method for user and system tasks to request action from the
executive. Involuntary entry to the executive occurs as a result of
interrupt recognition and is transparent to the interrupted task, except for
task fault interrupts. Task execution resumes with the instruction
following the MON instruction for all but a few system ESRs. Task execution
resumes at a specified address for fault execution interruptions if such a
return has been requested; otherwise, the job is termimated.

Register names specified in calling sequences using an executive service
routine are only examples. (See appendix H for register conventions.)

17329125 A 4-1

PARM STATUS CODES

The following status codes can be returned in the user PARM area following
execution of an ESR.

.
0 Successful Processing. N
1 File Manager Busy.
2 Unused. _
3 and above. See File Manager Error Codes in appendix D.
Figure 4-1. PARM Status Codes
AT

4=2 17329125 A

©

Py

DEVICE AND FILE MANAGEMENT ESRS

The Device and File Management feature is invoked by control cards and
Executive Service Requests (ESRs). The control cards and ESRs are used to
manage I/0 resource allocation. The DEVICEQ and OPEN ESRs are used to
establish the linkage between a task and the device, while the CLOSE ESR
removes this linkage. The other Device and File Management ESRs allow the
user to create, maintain, and remove files in the mass storage system.

The user invokes Device and File Management features with the following ESRs:

ALLOCATE Reserve mass storage space.
CLOSE Clear logical unit assignment.
DEVICEQ Assign logical unit to device.
EXPAND Increase mass storage space.
MODIFY Change mass storage attributes.
OPEN Assign logical unit to file.
RELEASE Reduce mass storage space.
SAVEQ Alter mass storage attributes.

The Device and File Management ESRs, used to manage the files on mass
storage, maintain file directory on the System resident pack (SYSTEMOL).
This file directory contains information about the file necessary to
uniquely identify and locate the file in the mass storage system. The user
must create a communications area in memory before invoking a file
management ESR. The first six words of this area contain the information
necessary to locate the file in the file directory. These first six words
are referred to as the File Identification area and are described in figure
4-2, The appropriate Device and File Management parameters are
left-justified, blank filled within the File Identification Area.

Device and File Management ESRs may require a number of disk references and
should not be issued during time critical operations.

The default system device list is created during system initialization and

reflects the entries in the mass storage tables which are installation
dependent.

17329125 A 4-3

The

system.

Parameter

FILE NAME

EDITION

OWNER

ACCESS

+0
FILE NAME +1
+2
EDITION +3
OWNER +4
ACCESS +5
Definition
l4-character string that defines the file name. P

2-character string that defines the file edition.
4L-character string that defines the file owner.

4-character string that defines that file access
privacy key.

first five words must uniquely identify the file within the file

blank fill.

All file

identification area parameters are left-justified with

Figure 4-2. File Identification Area Q

.

17329125 A

l\ ‘§
AN 5
..

C

ALLOCATE, Allocate Mass Storage File Space

This ESR reserves space in the mass storage system and builds a file label
entry in the system label directory. Once the file is successfully created,
it remains allocated until released. (See RELEASE, Release Mass Storage

File Space in this section.)
01 31
ESR format A ADDRESS R+0
PARM format STATUS PARM+0
ADDRESS format FILE IDENTIFICATION ADDRESS™D
SLVL l USE ‘ SEG NOBLKS +6
BLKSIZE DT +7
+
- EOL 8
or +9
DID
+24
Parameter Definition
A A = 0 thread request if File Manager busy.
=1 return if File Manager busy.
ADDRESS Address of the first word of the file definitionm.
STATUS See PARM Status Codes, figure 4-1.
FILE See File Identification Area description, figure 4-2.
IDENTIFICATION
SLVL Binary value that defines security 1level of the
file. Value may range from 0 to 7.
USE Binary value that defines the allowed file usage:
Entry Meaning
=0 File can be opened for read/write use.
=1 File can be opened for read use only.
17329125 A 4-5

SEG Binary value defining acceptable segmentation mode N

for file allocation: f&wjﬁ
Entry Meaning
=0 File can be allocated in segments.
=1 File can not be segmented when
allocated.
NOBLKS Binary value defining the size of the file in

logical blocks. Value can be from 1 to 65,535.

BLKSIZE Binary value defining the number of words in each
logical block. Value can be from 1 to 4096.

DT Binary value defining a specific device type to be
used for file allocation. The defined values and
- devices represented are as follows:

Entry Meaning
=0 System device.
=1 Control Data 9425 Cartridge Disk
Drive.
7N
=2 Control Data 844 Disk Storage Unit. "
=3 Control ~Data 9427 Cartridge Disk
Drive. ’
=4 Control Data 1867-10 Storage Module
Drive.
=5 Control Data 1867-20 Storage Module
Drive. :
DID 8-character string defining the device or devices to
be used for file allocation. Up to eight devices
are allowed.
EOL -1 End of List of DIDs.
An example of the calling sequence is as follows:
EXT ALLOCATE Externally defined symbol
LDA,RO FAA File Allocation Area address
MON, RC ; ALLOCATE Monitor request
AN
4y

4-6 17329125 A

C

FAA

17329125 A

BSS
TEXTC
TEXTC
TEXTC
TEXTC
VFD
VFD
TEXTC
GEN

0

14 ,SCRATCH
2,01

4 ,DDPG

4 ,DNSS

' 4/0,4/0,8/0,16/100

16/480,16/5
8,SYSTEMO1
-1

File Name

Edition

Owner

Privacy access key

CLOSE, Close Mass Storage File Space

The CLOSE ESR clears the file logical unit definition, and the job no longer
has access to the file. When the file is open for write access, the CLOSE
ESR allows other tasks to obtain access to the file. CLOSE accomplishes
three things: it frees a logical unit number, may remove restrictions on
file usage, and returns the file definition parameters which may be needed
if the file was allocated by BLOCKER/DEBLOCKER. Since all files are closed
by the system when a job terminates, the CLOSE ESR is used for overall
efficiency. Logical unit numbers 61, 62, 63 cannot be closed unless the
closer is a system task. If the logical unit was not explicitely opened
(that is with. a *OPEN), then the auto-allocated file will also be released.

01 31
ESR format | A ’ : LU 1 R+0
PARM format STATUS PARM+0
+1
T FILE NAME T +2
S S i
o ED +4
OWNER +5
ACCESS +6
Parameter Definition
A A = 0 thread request if File Manager busy.
= 1 return if File Manager busy.
LU Number of the logical unit to be closed.
STATUS See PARM Status Codes, figure 4—1.
FN l4—character string that defines the file name.
ED - » 2-character string that defines the file edition.
OWNER 4-character string that defines the file owner.
ACCESS 4-character string that defines the file access key.

4-8 17329125 A

N

,//V‘
TN
= :
N, 7

C

An example of the calling sequence is as follows:

EXT CLOSE
LDI,RO 15
MON, RO CLOSE

17329125 A

Externally defined symbol
Logical unit number
Monitor request

DEVICEQ, Assign Logical Unit to Device

The DEVICEQ ESR operates in two modes:

Assignment
Equivalence

In assignment mode, the DEVICEQ ESR assigns the specified logical unit to a
logical or physical device by establishing a linkage between the task and
the device. In equivalence mode, the DEVICEQ ESR allows the assignment of a
new logical unit to a previously assigned logical unit and that logical unit
may bave been assigned to a device. The logical units specified must be
numbers between 1 and 63.

ESR format

PARM format

Parameter

A

ADDRESS

LUl

TYPE

Lu2

4-10

01 31
A ADDRESS R+0
LUl o+l
TYPE +2
LU2 +3
STATUS | PARM+0
Definition
A = 0 thread request if File Manager Busy.
= 1 return if File Manager Busy.
Assignment mode: address of the first word of the

DEVICE ASSIGNMENT AREA (DAA). See appendix J,
Device Assignment Areas.

Equivalence mode: address of the first word of the
device assignment area (DAA).

Assignment mode: logical unit to be assigned.
Equivalence mode: logical unit to be assigned.

Assignment mode: one of the bhardware types from
appendix K, Valid Hardware Types.
Equivalence mode: set to zero.

Assignment mode: set to zero.
Equivalence mode: previously assigned logical unit.

17329125 A

U

STATUS

i
C
o

See PARM Status Codes, figure 4~1.

If no errors:

For Unit Record and Data Pipe devices, a copy of the
Equipment Status Table (EST) entry for the device is
returned in PARM+1 through PARM+8.

For Interactive devices, the security of the device

is returned in PARM+1.

An example of the calling sequence is as follows:

EXT
LDA, RO
LDA,R1
LDA,R2
MON, RO

DAA BSS
GEN

C

17329125 A

DEVICEQ
DAA

15

2
DEVICEQ

0
-1

Externally defined symbol
Device Assignment Area Address
Logical unit number

Magnetic Tape

Monitor request

Any Unit

4-11

EXPANDQ, Increase Mass Storage Space fﬁﬁh
4
The EXPANDQ ESR is used to increase the mass storage space reserved for a
file. Before the EXPANDQ ESR can be invoked, the user must have established
"a linkage to the file with the OPEN control card or ESR.
01 , 31
ESR format | A LU ' R+0
NOBLKS +1
PARM format STATUS PARM+0
Parameter - Definition
A A = 0 thread request if File Manager busy.
= 1 return if File Manager busy.
LU ‘ Logical unit.
NOBLKS The number of logical blocks the file is to increase. \
TN
STATUS See PARM Status Codes, figure 4-1. E\”Jﬁ

An example of the calling sequence is as follows:

~EXT EXPANDQ Externally defined symbol
LDA,RO 15 Logical unit number
ILDA,RL 48 Number of blocks to add
MON,RO EXPANDQ Monitor request

4-12 ' . 17329125 A

C

MODIFY, Modify Mass Storage File Definition

The MODIFY ESR is used to alter the file label definition of an existing,
closed file. This ESR can be used to expand an existing file or to change
its control parameters.

This ESR cannot be performed on an assigned file. If the file is assigned
to the calling job then an error indicator is returned. If the file 1is
assigned to another job, the caller may request a wait until the file is
closed by the other job.

01 2 31
ESR format A' B| ADDRESS R+0
PARM format STATUS PARM+0
ADDRESS format OLD FILE IDENTIFICATION ADDRESS+0
+5
NEW FILE IDENTIFICATION +I$
SLVL I USE | S NOBLKS +12
End of List +13
or
Device Identification +14
+29
Parameter Definition
A A = 0 tbread request if File Manager busy.
= 1 return if File Manager busy.
B B = 0 tbhread request if file is open.
= 1 return if file is open.
ADDRESS Address of first word of the File Modification
Description.
STATUS See PARM Status Codes, figure 4-1.
OLD/NEW FILE See File Identification description, figure 4-2,
IDENTIFICATION
SLVL Binary value that defines the new security level of

the file. Value may range from 0 to 7.

17329125 A 4-13

USE

NOBLKS

LE

DID

Binary value that defines the (new) allowed file
usages:

Entry Meaning
=0 File can.be opened for read/write use.
=1 File can be opened for read-only use.

Binary value defining the permitted segmentation
mode for the added file space:

Entry Meaning
=0 Addition can be allocated in segments.
=1 Addition can not be segmented.

Binary value defining the number of blocks to be
added to the file. Total file allocation cannot
exceed 65,535 blocks.

The list—-end flag:

Entry Meaning
= -1 The list has ended.
-1 Another DID specification begins.

8~character string defining the device or devices to
be used for the expanded blocks.

An example of the calling sequence is as follows:

4-14

EXT
LDA, RO
MON, RO

BSS
TEXTC
TEXTC

TEXTC

TEXTC
TEXTC
TEXTC
TEXTC
TEXTC
VED

TEXTC
GEN

MODIFY Externally defined symbol
FMA - File Modification Area address
MODIFY Monitor request
0
14, TAPE1Q 0ld File name
2,00 Edition
"4,00S8C Owner
4,$$$$ Privacy access key
14 ,SCRATCH New File Name
2,01 Edition
4 ,DDPG Owner
4,DNSS ' Privacy access key
4/0,4/0,8/0,16/100
 8,SYSTEMOL
-1

17329125 A

PR

-

O

C

OPEN, Establish Access to Mass Storage File

The OPEN ESR assigns the specified logical unit to a file thus establishing
a linkage between a task and the device. The logical unit must be a number
between 1 and 63. The OPEN ESR also allows the assignment of the file in an
exclusive access mode, with which the caller can request a wait until
exclusive access can be established or a previous exclusive access is
cleared by the CLOSE control card or ESR.

01 2 31
ESR format Al B ADDRESS R+0
LU B +1
PARM format STATUS PARM+0
SECURITY) +1
ADDRESS format FILE IDENTIFICATION _ ADDRESS+0
+5
‘USE BLOCKS +6
Parameter Definition
A A = 0 thread request if File Manager busy.
= 1 return if File Manager busy.
B B = 0 thread request if file is already open.
"= 1 return if file is already open.
ADDRESS Address of the first word of the file identification
specification.
LU Number of the logical unit to be assigned to the
file being opened.
STATUS See PARM Status Codes, figure 4-1.
SECURITY Security ievel of the file.
FILE See File Identification Area description, figure 4-2.
IDENTIFICATION
USE Binary value defining the intended use of the file

during this access. The file-label definition field
for the file defines the allowed access modes. If
the file-label definition allows only read usage,
the open must specify read-only use. The three
values allowed for USE are:

17329125 A 4-15

BLOCK

Meaning
File to be used for read/write.

File to be used for read omly.

File to be used for read/write. Set
the highest block written count to
0. The next block written will be
the first block of the file.

The next block to be read/written.

An example of the calling sequence is as follows:

4-16

FDA

EXT

LDA,RO
LDA,RL
MON, RO

BSS
TEXTC
TEXTC
TEXTC
TEXTC
VFD

OPEN Externally defined symbol

FDA File Description Area address
15 Logical unit number

OPEN Monitor request

0

14, SCRATCH File name

2,01 Edition

4, DDPG Owner

4 ,DNSS Privacy access key
4/0,4/0,8/0,16/0 -

17329125 A

A
NS

RELEASE, Release Mass Storage File Space

The RELEASE ESR is used to remove some or all of the space reserved for a
file. This ESR cannot be performed on a file which is assigned and the
caller may request a wait until previous file assignments are cleared.

0 1 2 31
ESR format Al B ADDRESS R+0
PARM format STATUS PARM+0
ADDRESS format FILE IDENTIFICATION ADDRESS+0
+5
NOBLKS +6
Parameter Definition
A A = 0 thread request if File Manager busy.
= 1 return if File Manager busy.
B B = 0 thread request if file is open.
= 1 return if file is open.
ADDRESS Address of first word of the file release
description.
STATUS See PARM Status Codes, figure 4-1.
FILE See File Identification Area description, figure 4-2.
IDENTIFICATION
NOBLKS A binary number indicating the number of blocks to

release. If the value is zero, the entire file is
released. If the wvalue is -1, the unused portion of
the file is released.

An example of the calling sequence is as follows:

EXT
LDA, RO
MON, RO

FDA BSS
TEXTC
TEXTC
TEXTC

TEXTC
GEN

17329125 A

RELEASE Externally defined symbol
FDA File Description Area address
RELEASE Monitor request
0
14 ,SCRATCH File Name
2,01 Editor
4 ,DDPG Owner
4 ,DNSS Privacy access key
-1
4-17

ROUTEQ, Route to Queue

The ROUTEQ ESR provides the capability to add or delete JOB files from a
SYSTEM queue.

An ADD issued for the INPUT queue causes a job file to be placed on the
INPUT queue for execution. If SYSQS encounters errors in either the JOB or
SCHED control cards, status is returned in PARM and the job is not placed on
the INPUT queue.

An ADD issued for the OUTPUT queue causes the specified file to be listed.

An ADD issued to the HOLD queue will cause JOB or OUTPUT files to be placed
on the HOLD queue for removal to the INPUT or OUTPUT queue at the time
specified.

A DELETE request results in the removal of a file from the specified queue.
A DELETE request is rejected if the file is not on the specified queue or if

it is active when the request is executed.

0 31

ESR format i ADDRESS } R+0

PARM format \ JOB ID STATUS , PARM+0

ADDRESS+0
+1

ADDRESS format]
i
TIME l +2
|
!
i

COM/QUEUE
Q PRIORITY

+3
+4
+5

+6
+11

+12
+13
+14
+15
+16
+17
+23

IN DISP | QUT DISP
PUNCH DISP l ORIGINATORS PORT

|
|
i
' OREPCNT
I
|

FILE IDENTIFICATION

JOB IDENT

4-18 17329125 A

-

A

-

)

Y

Parameter
ADDRESS

JOB ID

STATUS

CoM

QUEUE

Q PRIORITY

TIME

OREPCNT

17329125 A

Definition
Address of the first word of the Queue Header Table.

JOB identification (two ASCII characters). Also
referred to as JOB sequence number.

Status information as follows:

- Request is ACTIVE on input/output
- Request SATISFIED

- Job queue file is full

= No memory pool space

Illegal command code

- Illegal JOB ID

- Attempt to delete active queue entry
- File error

= Control card order error

10 - Control card format error

11 - Waiting file deleted from input
12 = Illegal buffer address

O oo~ W
|

Command code as follows:

$1000 - ADD
$2000 - DELETE

Queue to which the command code applies. Queue
codes are as follows:

$100 - Input queue
$200 - Output queue
$401 - Hold queue = Input
$402 - Hold queue - Output

Queue Priority (0-$7FFF). The priority cannot be a
number greater than the user's task priority. A
priority of $7FFO0- §$7FFF will result 1in the
immediate scheduling of the file. A priority of
$0001-$0015 will result in the file being placed on
the requested queue, but not executed wuntil the
priority is modified by an appropriate operator
command .

Time of day in minutes (binary) that a file is to be
removed from the hold queue. The time must be
witbin twenty-four bours of the time the request was
issued.

Output Repeat Count is the number of copies desired
of a file sent to the Output Queue (0-$EF).

4-19

IN/OUT/PUNCH DISP

ORIGINATORS PORT

FILE ID

JOB IDENT

Some disposition codes are determined during system
installation. Those permanently defined follow:

SC — Release file following execution

MS

Mass Storage

PR - Any printer

Ln - Output to printer n, where n is a legal

printer number.
System port number if job will request connection to
a specific system port. Must be $FFFF if no
connection or no specific port required.

See File Identification Area descriptiom, figure 4-2.

Job identification for DELETE request (two ASCII
characters, 00-2Z)

An example of the calling sequence is as follows:

EXT
LDA,RO
MON, RO
QIA BSS
VFD
VFD
GEN
TEXTC
TEXTC
TEXTC
GEN,H
TEXTC
TEXTC
TEXTC
TEXTC
GEN
GEN
GEN

4-20

ROUTEQ Externally defined symbol
QIA Queue Interface Area address
ROUTEQ Monitor request

0]

4/1,12/100,16/00 Add to Input queue
16/0020,16/0 Queue Priority

0,0

2,8C Input Disposition

2,PR Output Disposition

2,8C Punch Disposition

$FFFF No originating port

14 ,GORP File Name

2,00 Edition .

4 ,DDPG Owner

4,$$%$ Privacy access key
0,0,0,0

0,0,0,0

0,0,0,0

17329125 A

AN

\ﬁ* /;

AN

S

O

SAVEQ, Alter Mass Storage File Identification

The SAVEQ ESR is used to change the file identification of an assigned
file. Before the ESR can be invoked the user must have established a

linkage with the

OPEN control card or ESR.

0 1 31
ESR format | A ADDRESS R+0
LU +1
PARM format STATUS PARM+0
ADDRESS format FILE IDENTIFICATION ADDRESS+0
+5
Parameter Definition
A A = 0 thread request if File Manager busy.
= 1 return if File Manager busy.
ADDRESS Address of first word of the file identification
description.
STATUS See PARM Status Codes, figure 4-1.
FILE See File Identification Area description,
IDENTIFICATION figure 4-2.

An example of the

EXT
LDA,RO
LDA,R1
MON, RO

FDA BSS
TEXTC
TEXTC
TEXTC
TEXTC
GEN

17329125 A

calling sequence is as follows:

SAVEQ - Externally defined: symbol
FDA File Description Area address
15 Logical unit number

SAVEQ Monitor request

0

14 ,SCRATCH File Name

2,01 Edition

4 ,DDPG Owmner

4 ,DNSS Privacy access key

-1

4-21

STANDARD UNIT

Standard units such as INP, OUT, and PUN (see section 3, EQUIP Assignment)

can be accessed by the user. The user should access these units through
BLOCKER/DEBLOCKER with PICK and PACK. (See section 5.) The block pointer,

record headers and trailers, block numbers and so forth are defined for the
job by the system (block size is 480 words). '

Using direct physical I/0 ESRs for Standard unit I/0 may be destructive to
the job.

4-22 17329125 A

J
{ {~ i

=

./

O
J
/

DATA TRANSFER ESRs

The ability to transfer data between a task's memory buffer and a device is
supplied by the Data Transfer ESRs.

The Data Transfer feature is invoked by the following ESRs:

FORMATQ Initialize disk track.

READLU Read from logical unit.

READDS Alternate read from logical unit.
WRITLU Write to logical unit.

WRITDS Alternate write to logical unit.

These ESRs are legal on devices as specified in appendix L.
Since the data transfer features are scheduled for device manager processing
in priority order, a lower priority request could wait for a higher priority

request to complete.

The following abort conditions are possible with these ESRs:

ABORT
TYPE CODE
1 1 Operator rejected request to ready a unit.
1 2 Buffer size larger than 4096 words.
1 3 Logical unit unassigned.
1 4 Attempt to write on read-only file.
1 5 An input was attempted into a read-only page.
1 6 Hardware reject.
1 7 An input or output was attempted upon a protected page.
1 8 Illegal logical unit number.
1 9 Command is not legal for assigned device.

Hardware and data transmission error recovery procedures are error type and
device dependent. The MPX/0S error recovery procedures are described in
appendix E. '

17329125 A 4=23

FORMATQ, Imitialize Disk Track

The FORMATQ ESR writes the track addresses and timing marks necessary for

subsequent data storage on a disk pack. The
for execution after the request is initiated,

requesting task is scheduled
and must issue a BSY, UST, or

MUST ESR to determine when the request is completed.

0 31
ESR format LU R+0
TRACK +1
PARM format STATUS " PARM+0
Parameter Definition
LU Logical unit.
TRACK Track number to format.
STATUS See PARM Status Codes, figure 4~1.

An example of a calling sequence is as follows:

EXT FORMAT
LDI,R4 47
LDI,R5 500
MON,R4 FORMAT

4-24

Externally defined symbol
Logical unit number

Track number

Monitor request

17329125 A

READLU, Read From Logical Unit

READDS, Alternate Read From Logical Unit

The READLU and READDS ESRs initiate a data transfer from a specified logical
unit to a buffer residing in the requesting task's memory. The requesting
task 1is scheduled for execution after the request is initiated, and must
issue a BSY, UST, or MUST ESR to determine when the request is completed.

0 31
ESR format ADDRESS R+0
LENGTH +1
MODE +2
LU +3
PARM format STATUS PARM+0
Parameter Definition
ADDRESS The address of the first element (word or byte) of
the data buffer. The format of the data is
determined by the MODE parameter.
LENGTH The number of words (bytes) to be transferred.
LENGTH values can be from 0 to 4096 words (0 to
16,384 bytes). A value of zero (0) is treated as
the maximum LENGTH value of 4096 words (16,384
bytes).
MODE The data transmission mode (format) code:
0 = ASCII record, word format
16 = ASCII record, byte format
32 = Binary record, word format
LU Logical unit to be read.
STATUS See PARM Status Codes, figure 4-1.

An example of the cailing sequence is as follows:

EXT
LDCA, RO
LDI,R1
LDI,R2
LDI,R3
MON,RO

17329125 A

RE ADLU Externally defined symbol
BUFA Byte address of buffer
48 Number of bytes
16 ASCII records in byte format
15 Logical unit number
READLU Monitor request

4-25

WRITLU, Write to Logical Unit

WRITDS, Alternate Write to Logical Unit

The WRITLU and WRITDS ESRs initiate a data transfer to a specified logical
unit from a buffer residing in the requesting task's memory. The requesting
task is scheduled for execution after the request is initiated, and must
issue a BSY, UST, or MUST ESR to determine when the operation is completed.

ESR format

PARM format

0 31
ADDRESS R+0
LENGTH +1
MODE ' +2
LU +3
STATUS PARM+0

Parameter

ADDRESS

LENGTH

MODE

LU

STATUS

Definition

The address of the first element (word or byte) of
the data buffer. The format of the data is
determined by the MODE parameter.

The number of words (bytes) to be transferred.
LENGTH values can be from 0 to 4096 words (0 to
16,384 bytes).. A value of zero (0) is treated as
the maximum LENGTH value of 4096 words (16,384
bytes).

The data transmission mode (format) code:

0 = ASCII record, word format
16 = ASCII record, byte format
32 = binary record, word format

Logical unit to be written to.

See PARM Status Codes, figure 4-l.

An example of the calling sequence is as follows:

EXT
LDCA,RO
LDI,R1
LDI,R2
LDI,R3
MON, RO

4-26

WRITLU Externally defined symbol
BUFA Byte address of buffer

48 : Number of bytes

16 ASCII records in byte format
15 Logical unit number

WRITLU Monitor request

17329125 A

J

A

C

DEVICE CONTROL ESRs

The ability to control a device is provided by the Device Control feature
and is invoked by the following ESRs:

BKSP
CLEAR
ERASE
FUNC
REWD
SELECT
SEOF
UINT
ULOC
UNLD
WEOF
DIAG

Backspace unit.

Clear unit.

Erase tape segment.
Function unit.

Rewind unit.

Select operating mode.
Search for end of file.
Unsolicited interrupt.
Locate record on unit.
Unload unit.

Write end of file on unit.
Run diagnostic test on unit.

These ESRs are legal on the devices as specified in appendix L.

The following abort conditions are possible with these ESRs:

ABORT
TYPE - CODE
1 1 Operator rejected request to ready a unit.
1 2 ~ Buffer size larger than 4096 words.
1 3 Logical unit unassigned.
1 4 Attempt to write on read-only file.
1 5 An input was attempted into a read-only page.
1 6 Hardware reject. v
1 7 An input or output was attempted upon a protected page.
1 8 Illegal logical unit number.
1 9 Command is not legal for assigned device.

Hardware and data transmission error recovery procedures are error type and
device dependent. The MPX/0OS error recovery procedures are described in

appendix E.

17329125 A

4-27

BKSP, Backspace Unit

The BKSP ESR positions the logical unit before the preceding physical record
or block unless the logical unit is already at the beginning of the tape or
file. The requesting task is scheduled for execution after the request is
initiated and must issue a BSY, UST, or MUST ESR to determine when the
request is completed.

0 31
ESR format 1 LU ' R+0
PARM format ‘ STATUS ‘ PARM+0
Parameter Definition
LU Logical unit to be backspaced.
STATUS See PARM Status Codes, figure 4-1.

An example of a calling sequence is as follows:

EXT BKSP v Externally defined symbol
LDI,RO 10 Logical unit number
MON,RO BKSP Monitor request

4-28 17329125 A

7N

./

‘zi} CLEAR, Clear Unit
/

The CLEAR ESR is called by a task to clear out the current I/O operation for
a specified device. The command or data transfer is terminated at the point
of receipt of the clear command. The task is put into I/0 wait and not
scheduled for execution until an end-of-operation interrupt is received. If
the device is not busy, the clear request results in no action, and the task
is scheduled for immediate execution.

’

0 31
ESR format | LU \ ‘ R+0
24
PARM format ' _ tC’ ' PARM+0
Parameter Definition
LU v Logical unit.
C Clear status. If set, an operation in progréss was

cleared; otherwise, the device was not busy.

‘ij) An example of a calling sequence is as follows:
EXT CLEAR Externally defined symbol
LDI,RO 20 ' Logical unit number
MON,RO CLEAR Monitor request

17329125 A 4=29

ERASE, Erase Tape Segment

J

The ERASE ESR erases approximately 6 inches of magnetic tape in an effort to
bypass faulty material. The requesting task is scheduled for execution
after the request is initiated, and must issue a BSY, UST, or MUST ESR to
determine when the request is completed.

0 31
ESR format l LU ‘ R+0
PARM format i STATUS | PARM+0
Parameter Definition
LU Number of logical unit to which the magnetic tape is
assigned.
STATUS See PARM Status Codes, figure 4-1.

An example of a calling sequence is as follows:.

EXT ERASE Externally defined symbol N
LDI,RO 10 Logical unit number A
MON, RO ERASE Monitor request

3
N

4-30 17329125 A

FUNC, Function Unit

The FUNC ESR is used to perform device dependent functions on a logical
unit. The requesting task is scheduled for execution after the request is
initiated, and must issue a BSY, UST, or MUST ESR to determine when the
request is completed.

0 31
ESR format LU ' R+0
FUNCTION CODE ‘ +1
PARM format STATUS , PARM+0
Parameter Definition
LU Logical unit.
FUNCTION CODE Function codes as defined in appendix I.
STATUS See PARM Status Codes, figure 4-1.

An example of a calling sequence is as follows:

EXT FUNC Externally defined symbol
LDA,RO ADDR : Buffer starting address
LDI,R1 2 ' Buffer length

LDI,R2 1 Function code

LDI,R3 10 Logical unit number
MON,RO FUNC Monitor request

17329125 A 4=31

REWD, Rewind Unit A(:D
: W

The REWD ESR repositions a logical unit to the beginning-of-tape (BOT), for
magnetic tape devices, and to the first block for mass storage devices. The
requesting task is scheduled for execution after the request is initiated,
and must issue a BSY, UST, or MUST ESR to determine when the request is
completed.

0 31
ESR format ‘ LU l R+0
PARM format \ STATUS ‘ PARM+(
Parameter Definition
LU Number of the logical unit to be repositioned.
STATUS See PARM Status Codes, figure 4-1.

An example of a calling sequence is as follows:

EXT REWD Externally defined symbol e
LDI,RB 21 Logical unit number o
MON,RB REWD Monitor request -

4-32 17329125 A

‘:kﬁ SELECT, Select Operating Mode

ot
~The SELECT ESR is used to set the operating mode for a logical unit. The
available mode selections for each device are specified in appendix I.
0 31
ESR format LU R+0
MODE +1
PARM format STATUS PARM+0
Parameter Definition
LU Logical unit.
MODE The modes for specific devices are listed in
appendix I.
STATUS See PARM Status Codes, figure 4-1.
(:i> An example of a calling sequence is as follows:
EXT SELECT Externally defined symbol
LDI,RO 12. Logical unit number
LDI,R1 1 Select mode
MON,RO SELECT Monitor request
C
17329125 A 4-33

SEOF, Search for End of File : ﬂfxﬁ
b

The SEOF ESR initiates a search operation (forward or backward) on a
specified logical unit for the next file marker, initial point of the file
for backward searches, or end of the file for forward searches. The
requesting task is scheduled for execution after the request is initiated,
and must issue a BSY, UST, or MUST ESR to determine when the request is
completed.

0 31
ESR format LU R+0
DIRECTION +1
PARM format STATUS PARM+0
Parameter Definition
LU Logical unit to be searched for end-of-file mark.
DIRECT ION = 0, search forward
= 1, search backward SN
.
STATUS See PARM Status Codes, figure 4-1. ~
An example of a calling sequence is as follows:
EXT SEOF Externally defined symbol
LDI,RO 10 ' Logical unit number
LDI,R1 0 Search forward
MON,RO SEOF Monitor request
r'/’—\\\
§¥.'

4=34 17329125 A

(\ UINT, Unsolicited Interrupt
.,-'/

The UINT ESR allows the requesting task to be notified when an unsolicited
interrupt occurs on a logical unit. The unsolicited interrupt could be used

to signal the occurrence of a malfunction.

0 31
ESR format ' LU l R+0
PARM format | STATUS , PARM+0
Parameter Definition
LU Number of the logical unit to receive unsolicited

interrupt.

STATUS See PARM Status Codes, figure 4-1.

An example of the calling sequence is as follows:

EXT UINT Externally defined symbol
> LDI,RO 15 Logical unit number
C MON, RO UINT Monitor request
C
4-35

17329125 A

ULOC, Locate Record or Unit

N

The ULOC ESR sets the next block number of the logical unit to the requested
block. If the requested block number is greater than the allocated area,
the next block number is set to the last block written+l. The requesting
task is scheduled for execution after the request is completed.

0 31
ESR format LU R+0
BN +1
PARM format STATUS PARM+0
Parameter Definition
LU Logical unit to be positioned.
BN Block number to which the unit is to be set. This value
will be the next block read or written. If the value =
-1, then the last block written +1 will be used.
STATUS See PARM Status Codes, figure 4-1. /M\\

An example of a calling sequence is as follows:

EXT ULOC
LDI,R3 10
LDI,R4 24
MON,R3 ULOC

4-36

Externally defined symbol
Logical unit number
Block number

Monitor request

17329125 A

(™ URLD, Unload Unit

The UNLD ESR rewinds and makes not ready a magnetic tape unit. The
requesting task is scheduled for execution after the request is initiated,
and must issue a BSY, UST, or MUST ESR to determine when the request is
completed. Following an unload of a tape, the tape drive is still assigned
to the job and the logical unit.

0 . 31
ESR format 1 LU ' R+0
PARM format l STATUS ‘ PARM+0
Parameter Definition
LU Number of the logical unit to be unloaded.
STATUS See PARM Status Codes, figure 4-1.

An example of a calling sequence is as follows::

EXT UNLD Externally defined symbol
J LDI,RO 10 Logical unit number
MON,RC UN1D Monitor request

17329125 A 4-37

WEOF, Write End of File on Unit

€3
N’

The WEOF ESR causes an end-of-file mark to be written on the specified

logical unit (magnetic tape), or sets the number of the last block written
to the current block number (disk file). The requesting task is scheduled
for execution after the request is initiated and must issue a BSY, UST, or
MUST ESR to determine when the request is completed.

0 31
ESR format l LU l R+0
PARM format | STATUS | PARM+0
Parameter Definition
Lu Logical unit end-of~-file mark is to be written upon.
STATUS See PARM Status Codes, figure 4-1.

An example of a calling sequence is as follows:

EXT WEOF Externally defined symbol
LDI,RO 10 Logical unit number SN
MON, RO WEOF Monitor request o S

4-38 17329125 A

‘Tx\ DIAG, Run Diagnostic Test on Unit

The DIAG ESR allows a user task to initiate the on-line, self-test
diagnostics of the GB138A controller. The DIAG ESR is processed like any
I/0 command. Upon completion, an end-of-operation interrupt and status are
returned to the MP-32 CPU.

0 31
ESR format ADDRESS R+0
LENGTH +1
COMMAND +2
EQUIPMENT CODE LU +3
PARM format STATUS PARM+O
Parameter Definition
ADDRESS Buffer first word address.
‘iﬁ} LENGTH Buffer length.
= COMMAND ' Commands - are device dependent and are listed for the

legal devices in appendix L.

EQUIPMENT CODE The hardware equipment identification.
LU Logical unit.
STATUS Status codes are as follows:

0 = Diagnostic started

1 = Device does not exist

2 = Device assigned

3 = LU assigned

4 = No table space available

An example of a calling sequence is as follows:

EXT DIAG Externally defined symbol
LDA,RO BFWA Buffer first word address
LDI,R1 48 " Buffer length

LDI,R2 CMND Command

LD,R3 EQUP Equipment code

LDI,R3 20,R3 Logical unit number

MON, RO DIAG Monitor request

C

17329125 A 4-39

TASK MANAGER ESRS

The capability to control a task's execution is provided by the following
ESRS:

ABORT Voluntary Job Abort

CALL Establish and Execute Task
DELJOB Delete Job

DWAIT Deferred Wait

OPENMEM Assign Page of Open Memory

RE LMEM Release Memory Pages

RE TURN Terminate Task Execution
TASKRSQ Resume /Suspend Task

TSCHED Time Schedule Reactivation of Task
TSKCNGQ Change Executing Task Parameters
TSTATUS Return Task Status

The following descriptions explain the relationships between tasks. The
initial task entry description explains the relationship between the job
manager and tasks that the job manager brings into execution. The CALL ESR
description is used by the job manager in response to the ¥LOAD/*RUN,
statement sequence. The remaining descriptions are an extension of the
capabilities provided at the job level.

When a task is loaded and placed in execution, a library routine (TSKMON) is
loaded with the task and performs a return jump to the task's primary entry
point. . If the task exits through the primary entry point, TSKMON executes a
return with release (the task is released from the system).

For example: MAIN uJp o (primary entry point)

UJ1 MAIN (task exits through TSKMON)

Alternately, a task may execute its own return operation with or without
release. If a task returns without release, and is called again, it regains
control after the RETURN monitor call. Such considerations only apply to
tasks which multiprogram with each other. Figure 4-3 illustrates a
multiprogramming relationship between tasks in a job. In Figure 4-3, task A
calls task B and multiprograms with it. Task B calls task C and passes its
common memory space. Task B may not multiprogram with task C. While each
task has its own PARM area, they share access to the standard files (INP,

OUT, and PUN). These files and their data must be accessed through the
BLOCKER/DEBLOCKER package.

4=40 ' 17329125 A

h
-

g/{
'%i

-
%/

PARM A
":j\ Task A Task A Calls
/ Program Task B
Task A
Common

®

17329125 A

INP,OUT, PUN
> Buffers <
PARM B PARM C
Task B Task B Calls Task C
Program Task C Program
Task B/C
—_—
Common
Figure 4-3, Multiprogramming Tasks
441

INITIAL TASK ENTRY

o

Upon entering a task from the job manager, the PARM region contains data
associated with the task call. This includes task transfer addresses and
task name parameters. For example, a task name control statement, such as
*TST(I=01,L,X,R), would produce the following data in the PARM area.

PARM format:
EP1
EP2
EP3
EP4
PRI
I = 0 1
’ L s X
) R ETX o
Parameter Definition
EP Entry-point addresses obtained from TRA loader
directives. The first four encountered are saved.
Execution begins at EPq. '
PRI Priority of the task.
ETX End-of-text (03) comtrol character. The parameter

string begins in PARM+5. The end is defined by the
ETX character.

L=t2 ' 17329125 A

O

ABORT, Voluntary Job Abort

The ABORT ESR causes the job to enter the abort termination sequence. This
sequence results in the production of abort dumps for all active tasks, the
release of all job resources, the initiation of post processing of the
standard output and standard punch files, and the removal of the job from
the system. (This same sequence is entered upon the occurrence of task
fault conditions for which the task has not requested return of control).

An example of a calling sequence is as follows:

EXT ABORT Externally defined symbol
MON, RO ABORT Monitor request

17329125 A 4=43

CALL, Establish and Execute Task

The call function is performed by MPX/0S for the user whenever a *LOAD, *RUN
control statement is processed by the job manager. In a multiprogramming
(or multiprocessing/multiprogramming) structure, the first task is placed
into execution in this manner. Additional tasks are placed in execution by
the user through the CALL ESR.

A task (the caller) that requires execution of some other task (the callee)
issues a CALL ESR to establish the task and initiate its exectuion. The
caller has the options of passing caller common to the callee, and/or of
passing a copy of caller registers to the callee, and/or passing up to 40
words of parameter information through memory to the callee. If the caller
does not pass common and does not expect to receive parameters to be
returned from the callee, the caller also bhas the option to continue
execution concurrent with the callee or to await the return of the callee
before continuing execution. The caller can use the DWAIT or TSTATUS ESRs
to effect synchronization with the callee(s). The caller can issue a
maximum number of CALL ESRs as determined by the system configuration. Any
attempt to exceed the maximum will cause the job to be terminated.

The CALL ESR can be issued with the callee in onme of three states:
nonexistent, dormant, or active. If the callee is active, the caller may
elect to be scheduled by priority for connection to the callee or the caller
may elect to have the CALL ESR rejected. This call status is returned in
PARM. If the callee does not exist, it is established by the loader and
placed on the ready list. If the callee is dormant, it is simply placed on
the ready list.

The caller cannot be placed on the ready list for concurrent execution until
the callee is placed on the ready list. During callee loading, or while
access to an active callee, the caller bas a CALL status. After the call
connection is complete, the caller goes to the callee wait status until the
callee returns or goes to the ready status for concurrent execution.

ESR format TID R+0
+1
LU (1) LU(2) LU(3)| LU(&) +2
clclciq|r CPU PRI NPRMS +3
PlAlWIR|P 1121314l5] | |
Bit 01234 5-7
PARM format I STATUS PARM+0

4=44 ‘ 17329125 A

AT

L

‘i?\ Parameter
< TID

LU

cP
CA

cW

QR

C

17329125 A

Definition

8-character task name. This task identifier is
‘maintained by MPX/0S for use 'in DWAIT and TSTATUS
ESRs.

Logical unit numbers of files to be used as loader
source if the callee must be loaded. The logical
unit number values are expected to be in the range
of 1 to 63. Out-of-range values are ignored. The
loader examines the bytes in R+2 from left to right
and attempts to load from all units with in-range
values. The load terminates after all four bytes
have been processed or after processing an ABS
file. (Loading an ABS file overrides any previously
loaded material.) An ABS file is recognized as such
from the contents of the file header record.

Common pass flag (bit 0):

Entry Meaning
=0 Caller common not passed to‘callee.f
=1 Caller common passed to callee.

Common access flag (bit 1):

Entry Meaning
=0 Common passed with read/write access.
=1 Common passed with read-only access.

Common access flag (bit 2):

Entry Meaning

=0 Caller waits for callee completion to
continue.

=1 Caller can continue execution when

call connection is complete.

Queue/reject flag (bit 3):

Entry ~ Meaning
=0 Caller should be queued by priority
for access to active.
=1 Call should be rejected if callee is
active.
4=45

CPU

PRI

NPRMS

STATUS

4-46

Register pass flag (bit 4):
Entry Meaning

=0 Copy of caller registers not passed to
callee.

=1 Copy of caller registers 1is passed to
callee.

A bit map of eligible CPUs.. Each bit set enables
potential selection of that CPU (numbers 1 through
5)0'

Priority designation. Valid values for real-time
jobs are 1 through 511, and for non-real-time jobs
are 10 through 255. If the priority definitiom is
outside of the allowed range, the value is reset to
the nearest permitted value. If the priority is O,
the callee assumes the priority of the caller (bits
16 through 23).

Defines the number of parameter words to be passed
to the callee. Maximum value is 40; a zero value
indicates that no words are passed. The parameter
words are moved from caller memory area PARM+5
through PARM+4+NPRMS to callee memory area PARM+5
through PARM+4+NPRMS; see Initial Task Entry in this
section (bits 24 through 31).
ESR completion status is returned in PARM as follows:
Entry Meaning
= -1 Call was rejected (callee active).
=0 Call was successfully completed.

=1 None of the selected CPUs are available.

=2 Call rejected; no TCT - table space
available.

17329125 A

N

O

C

An example of a calling sequence is as follows:

TID

LUTBL

CONTRL

NOTES: 1
2
3
4
5

17329125 A

EXT CALL Externally defined symbol
LDD,RO TID Task name

LD,R2 LUTBL Logical unit number
LD,R3 CONTRL

MON, RO CALL Monitor request

LD,HO PARM Check status

TEXT 8, TASKIDNT

VFD 8/LU1,8/LU2,8/LU3,8/LU4 ,

VFD 1/cp,1/CA,1/CW,1/QR,1/RP,3/0,8/CPU,8/CPU,8/PRI,

8/NPRMS

A callee cannot call its caller nor can a caller call itself
(circular calls).

Caller must await callee completion if common is passed.

Caller must await callee completion if parameters are expected
on return of callee.

A user attempting to execute two or more tasks concurrently and
share the same logical unit between the tasks must exercise
caution. For. example, if TASKA and TASKB are executing
concurrently and both are performing I/0 on the same unit, the
following conditions can occur:

a) TASKA requests I/0 on the unit, making the unit busy.

b) TASKB requests I/0 on the unit but is threaded against the
unit due to TASKA request.

c¢) TASKA I/0 is completed, and the TASKB request is issued.

If TASKA requests unit status (UST), TASKA will receive a 0
(null) status because the I/0O operation is not of TASKA.
The safest approach to this type of concurrrent usage
problem is to develop a third task, TASKC, through which all
job I/0 on the shared file is routed.

Memory scheduling for tasks within a job should be treated as if
the tasks occupy totally separate areas of memory, even if
common 1is passed. For example, assume that TASKA calls TASKB
and passes common, that TASKA requires two pages of memory, that
TASKB requires two pages of memory, and that common area is two
pages of memory. It would appear that the memory requirement
would be sik pages of memory. However, the following sequence
occurs.

4-47

4-48

a)

b)

c)

TASKA is loaded and is put into execution. Four pages of
memory (two program and two common pages) are in use.

TASKA calls TASKB, passing common. The loading process for
TASKB requires three new pages: two for TASKB program code
and one for common. Seven pages of memory are now allocated
for the job.

TASKB releases its common pages to accept the common pages
from TASKA. Six pages of memory are now in use by the job.

The job must schedule seven pages of memory, even though six
pages are sufficient to run the job.

17329125 A

o

NS

‘fnm DELJOB, Delete Job

The DELJOB ESR enables a task to abort a job. The job may or may not
contain the task initiating the request. Normal abort processing 1is

initiated.
ESR format R+0
JOB ID R+1
PARM format |‘ STATUS I PARM+0
Parameter Definition
JOB 1D Job identifier, left justified and blank filled to
eight characters; identifier declared on *JOB or
*RJOB control card.
STATUS Numeric value indicating request success:
Entrz ‘Meaning
=0 Job deleted successfully.
=1 Job does not exist.

An example of a callihg sequence is as follows:

EXT DELJOB Externally defined symbol
LDD,RO ='FIRSTJOB' Job ID
MON, RO DELJOB Monitor request

C

17329125 A 4-49

DWAIT, Deferred Wait

A task that has called one or more callees and is executing concurrently
with them may reach a point beyond which it should not continue until one or
more of its callees have returned. The caller uses the DWAIT to defer the
wait for callee completion until the most opportune time. By issuing a
DWAIT ESR, the CPU becomes available for reassignment to another task,
possibly a task for which the caller is waiting.

The DWAIT can specify one or more tasks. When any task on the wait list
issues a RETURN ESR, the caller is placed on the ready list. If all tasks
in the wait 1list bave already returned, the caller 1is immediately
rescheduled for execution.

ESR format l ADDRESS l R+0

PARM format ‘ STATUS or RTID (0-3) l PARM+0
| . RTID (4-7) | PARM+1
ADDRESS format | TIDy(0-3) ADDRESS+0
TID (4-7) +1
LE or TID,(0-3) +2
TIDy(4-7) +3
LE or TID;(0-3) +4
Parameter Definition
ADDRESS The full-word address of a list of task

identifiers. Each identifier is eight characters.
The 1list 1is variable in length, the first word
following the last entry contains a -1- in place of
an identifier. The maximum length of the list
depends on the number of tasks allowed per job, an
installation parameter.

STATUS ESR status code:
Entry Meaning
= -1 No task in the list is active.

4-50 ' 17329125 A

ﬁ\
P,

RTID

LE

TID

i

An example of a calling

TIDTBL

(zi}

17329125 A

EXT
LDA,H1
MON,H1
LD,RO
TEXT
TEXT
GEN

-1 A task on the list has returned. Its
identifier is in PARM and PARM+l.

The 8-character identifier of the returned task.

List end flag:

Entry Meaning
= -1 The list has ended.
-1 Another TID specification begins.

An 8-character string defining the name of a task.

sequence is as follows:

DWAIT Externally defined symbol
TIDTBL Address of list

DWAIT Monitor request

PARM Check status

8,TASK-ID1

8, TASK-ID2

-1 List has ended

4-51

OPENMEM, Assign Page of Open Memory

The OPENMEM ESR allows a task to expand its scratch common or program area
(in multiples of a page) within the limits specified on the *SCHED control
statement. MPX/0S supplies the wupdated memory boundaries after each
change. 1In addition, one call is provided to obtain the next available
address in both regions without alteration of the memory limits. :

ESR format ' AREA I R+0

l OPTION ‘ +1
PARM format l STATUS or ADDRESS (1) l PARM+0

f ADDRESS (2) | +1
Parameter Definition
AREA A flag that selects the program or common limit to

be expanded:

Entry Meaning
= -1 Program area is expanded.
=0 Common area is expanded.

OPTION A flag or value that determines the amount of memory
increase desired and the content of the response
words:

Entry Meaning

= -1 All memory allowed by *SCHED and task
unused space 1is added to the area
selected by the AREA flag (MPX/0S
response defines new limits of area
selected by AREA flag).

= 0 Memory 1limits are not changed [MPX/0S
response defines the next available
program address (PARM+0) and the next
available common address (PARM+1)]

= +n n pages are added to the area selected by

AREA flag [MPX/0S (MEM) response defines
new limits of area altered].

4=52 | 17329125 A

Parameter

STATUS

ADDRESS

An example of a calling

17329125 A

EXT

LDI,RO

LDI,R1
MON, RO
LD, X7

Definition

Status of the ESR returned in PARM.

Entry Meaning
= -1 ESR was rejected. Memory limits were

not altered.

-1 Meﬁory limits were returned as per
ADDRESS description.

Except for the OPTION=0 case described above,
ADDRESS(1) contains the address of the next
available word and ADDRESS(2) contains the address
of the last available word of the area selected by
AREA flag. The next available address 1is the
address adjacent to the allocated space for the
region (small address for common, small for program)
— but still in the page already allocated.

In the event the space requested (OPTION.GT.0) is
not available, the call is rejected and PARM+0 1is

set to -1.

sequence is as follows:

OPENMEM Externally defined symbol
0 Request common pages

-1 All scheduled pages
OPENMEM Monitor request

PARM Check status

4-53

RELMEM, Release Memory Pages @Zﬁb
|

The RELMEM ESR is used to return common or program pages to the operating
system. For program pages, only pages obtained tbrough the use of the

OPENMEM ESR may be released. MPX/0S vreturns the new memory Llimit
definitions to the task. in PARM.

ESR format I AREA | R+0
| OPTION |
PARM format ! STATUS or ADDRESS(1) | PARM+0
| ADDRESS(2) | +1
Parameter Definition
AREA A flag that selects the program or common area limit

to be reduced:

Entry Meaning
= -1 Program area is reduced.
=0 Common area is reduced. f/u\j
“
OPTION A flag or value that determines the amount (in
pages) of the reduction and the content of the
response from MPX/OS:
Entry Meaning
= -1 Releases all common pages.
=0 Returns memory limits only (see
OPENMEM) .
=n Defines the number of pages to
release.
STATUS A flag that defines the status of the ESR:
Entry Meaning
= -1 ESR was rejected and memory limits
were not altered.
-1 Memory limits were returned as per
ADDRESS description.
AN
LY

4-54 17329125 A

o

Parameter

ADDRESS

Definition

Except for the OPTION=0 described above, ADDRESS(1)
contains the address of the next available word and
ADDRESS(2) contains the address of the 1last
available word of the area selected by AREA flag.
The next available address is the address adjacent
to the allocated space for the region (small address
for common, large address for program), and the last
available 1is the address most distant from the
allocated space (large for common, small for
program) - but still in the page already allocated.

An example of a calling sequence is as follows:

17329125 A

EXT

LDI,R2
LDI,R3
MON, R2
LD, X6

RELMEM Externally defined symbol
-1 Reduce program area

2 Release two pages

RELMEM Monitor request

PARM Check status

4-55

RETURN, Terminate Task Execution

A task issues a RETURN ESR to notify its caller of completion of execution.
When the returning task has active callees, the return cannot be completed
until all active callees have returned; it is maintained with a FINIS status.

Every task must issue a RETURN to terminate normally. The loader supplies
the module TASKMON from the system library; a subroutine exit from the

primary entry point will return control to TASKMON which then issues the
RETURN (with release).

ESR format I RELEASE l R+0
I NUMBER I +1
Parameter Definition
RELEASE The memory release flag:
Entry Meaning
=0 Release the task memory and clear
task identification from the system.
= -1 Do not release the task memory. The
task assumes the dormant status.
NUMBER The number of words that are to be passed back to

the caller. The maximum number 1is 40. The
parameter words are moved from callee memory area
PARM+5 through PARM+4+NUMBER to caller memory area
PARM+5 through PARM+4+NUMBER. If NUMBER=0, no
parameter words are moved. The caller must specify
¢call with wait to receive parameters from its callee.

An example of a calling sequence is as follows:

NOTE:

4-56

EXT
LD,RO
LDI,R1
MON, RO

If a task
execution

is
of

RETURN Externally defined symbol
0 Release flag

10 Pass back 10 words

RETURN ‘Monitor request

called after issuing a return without .release,
the dormant task resumes with the instruction

following the RETURN ESR.

17329125 A

U

(:m\ TASKRSQ, Resume/Suspend Task
)

TASKRSQ allows a user to either suspend execution of a nonsystem task or to
place a nonsystem task, which has been suspended, back into execution.

0 31
ESR format , F ADDRESS l R+0
PARM format ' STATUS ‘ PARM+0
Parameter Definition
F F = 0 - Suspend request.
= 1 - Resume request.
ADDRESS First word address of the Task Control Table (TCT).
The TCT is discussed in section 1, Tasks.
STATUS 0 - No Errors. ; ,
1 - Illegal to suspend specified task or resume
request is for a task not in suspended status.
‘:?) An example of the calling sequence is as follows:
. EXT TASKRSQ Externally defined symbol
LD,RO TCT TCT address
MON, RO TASKRSQ Monitor request
LD,H2 PARM Check status
17329125 A 4-57

TSCHED, Time Schedule Reactivation of Task

The TSCHED ESR allows a task to suspend its own execution for a specified
length of time (in milliseconds). The issuing task regains control at the
instruction following the MON instruction. The task is assigned a TSCHED
status until the time period elapses. It is then assigned the READY status
and is placed on the ready list to resume execution. The task is not
chbarged for time when in TSCHED status.

ESR format DELTAT R+0
Parameter Definition
DELTAT The millisecond time interval that task execution is

to be suspended. DELTAT must be positive.

An example of a calling sequence is as follows:

EXT TSCHED Externally defined symbol
LDI,RO 100 Time interval
MON, RO TSCHED Monitor request

4-58 ,‘ 17329125 A

C\\ TSKCNGQ, Change Executing Task Parameters
Y,

The TSKCNGQ ESR enables the user to change some parameters of an executing

task.
0 1 2 78 15 16 31
ESR format l Pl S SECURITY PRIORITY , R+0
’ TASK IDENTIFICATION :%
| | 2
JOB NUMBER
PARM format { STATUS ' PARM+0
Parameter Definition
P ' P=20 No change in priority
=1 Change priority
S $=20 No change in security
=1 ~ Change security
‘:j) PRIORITY New priority if P =1
Legal PRIORITY values are as follows:
10 .LE. JOB priority .LE. 255
.1 .LE. RJOB priority .LE. 511
SECURITY New security if 8§ =1
New security must be .LE. Job Security level. Value
must be in the range of 0 to 7.
TASKID Identification of task to be changed.
- JOB NUMBER Used only when caller is System task.
STATUS STATUS codes are as follows:

ESR executed with no error

JOB not found (invalid JOB Number)
TASK not found (invalid TASK ID)
PRIORITY is invalid

SECURITY is invalid

~wLwphh O

An example of the calling sequence is as follows:

EXT TSKCNGQ Externally defined symbol
LDI,RO 929 New priority
SF,RO 8
SBIT,RO 0 Set priority flag
0 LDD,R2 ='TASKIDNT' Task Identifier
MON,RO TSKCNGQ Monitor request

17329125 A ‘ 4-59

TSTATUS, Return Task Status

The TSTATUS ESR is used to obtain tbhe status of the callee.

' +
ESR format TID R+0
R+1
PARM format STATUS PARM+0
Parameter Definition
TID Eight characters defining the identifier of the

task, for which the status is to be returned.

STATUS A code defining the current status of the identified
task is returned in PARM as follows:

Entry ‘ Meaning
= -1 Task does not exist within job
=0 ' Dérmant

=1 Active

=2 I/0 wait

=4 File Manager wait
=5 Call wait

=6 Callee wait

=7 Deferred wait

= 8 FINIS

= 9 TSCHED wait

=.10 Operator wait
=12 MUST wait

=13 Idle

=14 SYSQS wait

=15 Suspended

4-60

17329125 A

K;/

An example of a calling sequence is as follows:

o
(;/) EXT TSTATUS Externally defined symbol
’ LDD,RO ='TASKIDNT' Task identifier
MON, RO TSTATUS Monitor request
LD,H2 PARM Check status

Refer to table 1-3 for descriptions of each status.

C

17329125 A 4-61

EVENT NOTIFICATION ESRs

The EVENT NOTIFICATION feature provides device and request status
information, required by a user to manage an assigned logical unit.

The EVENT NOTIFICATION feature is invoked by the following ESRs:

BSY
CLREVTQ
DATE
DEFEVTQ
DTERCVQ
ENABLE
MUST
PFAULT
SETITMQ
SETEVTQ
STATUS
TIME
TETIME
UST
UTYP

Check logical unit busy.

Clear user defined event bit.
Return the current date.

Define user event bit.

Define user error recovery routine.
Enable detection of user faults.
Wait on multiple events.

Enable user processing of page faults.
Set interval timer event.

Set user defined event bit.

Status unit.

Return the current time of day.
Return TASKS execution time.

Obtain unit status.

Obtain dynamic unit status.

The BSY, UST, MUST, and STATUS ESRs are used to synchronize I/0 request
processing with task processing and could result in the task being placed in

an I/0 wait status. Use of the BSY ESR may degrade system performance. The
MUST ESR could be used efficiently in place of the BSY ESR.

The following two abort conditions are possible with these ESRs:

ABORT

TYPE CODE

1
1

4-62

3
8

Logical unit is not assigned to a device or file.
Logical unit value is not between 1 and 63.

17329125 A

(‘»_ - BSY, Check Logical Unit Busy

The BSY ESR returns the busy/not-busy status of the specified logical unit.
The status is not a function of a particular I/0 request but rather of the

logical unit itself.

completed.

The requesting task is scheduled after the request is

31
ESR format I LU v | R+0
PARM format ' STATUS l PARM+0
Parameter Definition
i) Number of the logical unit to be tested.
STATUS Unit busy/not-busy status code:

—

Entry ~ Meaning
=0 Unit is not busy.
=-1 Unit is busy.

An example of a calling sequence is as follows:

EXT

LDI,RO .

MON, RO
LD, H2

C

17329125 A

BSY Externally defined symbol

10 Logical unit number

BSY Monitor request

PARM Unit busy/not-busy status
4-63

CLREVTQ, Clear User Defined Event Bit

The CLREVTQ ESR is used to clear an event bit. The clearing of an event bit
is done automatically after the waiting task is scheduled. This ESR is used
to clear a possible event before going into an event wait condition.

0 31
ESR format l EO ' R+0
PARM format l STATUS ! PARM+0
Parameter Definition
EO Event Ordinal as returned by DEFEVTQ.
STATUS 0 - Request was accepted.

1 - Invalid Event Ordinal.

An example of the calling.sequence is as follows:

EXT CLREVTQ Externally defined symbol
LD,RO EVENTORD Event ordinal

MON, RO CLREVTQ Monitor request

LD,H2 PARM Check status

4—64 17329125 A

(TN\ DATE, Return the Current Date
7

The DATE ESR returns the current date to the user in ASCII format.

PARM format I M M / D | PARM+0
‘ D / Y Y ’ | +1
Paramet er Definition
MM ASCII codes for month of year (0l through 12).
/ ASCII code for slash graphic.
- DD ASCII codes for the day of the month (01 through 31).
YY ; ASCII codes for the year (00 through 99).
An example of a calling sequence is as follows:
EXT DATE Externally defined symbol
MON,RA DATE Monitor request
O LbD,H2 PARM Date in ASCII
/

17329125 A 4-65

DEFEVTQ, Define User Event Bit

The DEFEVTQ ESR creates a mapping from the user defined event name to the
user defined event bit. Once the DEFEVTQ ESR is performed, event bits can
be used to synchronize processing within a task or between tasks. These
event bits can even be used to synchronize events across job streams. An
event bit is a number between 0 and 127. An End of Operation event bit is
predefined for assigned logical units.

Event bit definitions are automatically cleared upon the termination of the
task that defined the bit.

Multiple tasks can set an event, but only the definer can be placed in wait
state, pending the occurrence Qf the event.

0 » 31
ESR format EVENT NAME R+0
+1
I FLAGS COMMAND l +2
I BIT NO ‘ +3
PARM format I STATUS | PARM+0
| EO | +1
Parameter Definition
EVENT NAME User defined event name (8 ASCII characters).
FLAGS *TBD*
COMMAND Commands are as follows:
0 - Define event.
1 - Clear definition.
2 - Inquire.
BITNO Event bit number (64-127) (Ignored for Inquire).

STATUS Status codes are as follows:
0 - Request was accepted.
1 - Entry of that name already exists (define event).
2 - Entry of that name does not exist (Inquire).
3 -~ Attempt to clear event not defined by the
calling task.

EO Event Ordinal returned.

This Ordinal is used in the SETEVTQ, CLREVIQ, and
SETITMQ ESRs.

4-66 17329125 A

o

J/

e

An example of the calling sequence is as follows:

17329125 A

EXT
LDD, RO
LDI,R2
LDI,R3
MON, RO
1LDD,H2
TST ,NE
ST,H3

DEFEVTQ
='EVNTNAME'
0

127
DEFEVTQ
PARM

H2 ,X0,ERR
EVENTORD

Externally defined symbol
Event name

Define event

Event bit number

Monitor request

Check status

I1f error

Save event ordinal

4-67

DTERCVQ, Define User Error Recovery Routine

The DTERCVQ ESR allows the user to perform his own error recovery om all
devices except mass storage. The user routine is passed the logical unit
and error code. The execution of a DTERCVQ ESR overrides all error recovery
processing performed by the system (except mass storage).

0 31
ESR format l ADDRESS i R+0
PARM format , STATUS ' PARM+0
Parameter Definition
ADDRESS Error recovery routine address.
STATUS See PARM Status Codes, figure 4-1.

An example of the calling sequence is as follows:

EXT DTERCVQ Externally defined symbol
LDA,RO ERR Error recovery routine address
MON,RO DTERCVQ Monitor request

LD,H2 PARM Check status

4-68 17329125 A

oh

£~

-

N/

C

ENABLE, Enable Detection of User Faults

The ENABLE ESR enables hardware detection of the arithmetic faults and
defines the user interrupt routine which will process the interrupts when
they occur. The MPX Operating System provides a default interrupt processor
which will abort the job. The user can select one interrupt for each fault,
one interrupt routine for all faults or other combinations. The interrupt
processor definition can be changed as often as desired, but once interrupt
checking has been enabled, it cannot be disabled.

01 2 3 4 15 16 31

ESR format | Al FI ET D1 ADDRESS l R+0
PARM format I I PARM+0

f l PARM+1

J P l PARM+2
Parameter Definition
A Select arithmetié fault detection/control if bit = 1.
F Select function fault detection/comtrol if bit = 1.
E Select exponent fault detection/control if bit = 1.
D Select divide fault detection/control if bit = 1.
ADDRESS 16-bit field containing address of = interrupt

processor: '

P When control is returned to ADDRESS, the address of

the instruction causing the fault is returned in
PARM+2, w

An example of a calling sequence is as follows:

EXT
LD, RO
MON, RO

INTRMSK VFD

17329125 A

ENABLE Externally defined symbol
INTRMSK
ENABLE Monitor request

1/1,1/0,1/1,1/0,12/0,16/INTADR Go to INTADR on an
arithmetic or expoment
fault.

4-69

MUST, Wait on Multiple Events

The MUST ESR allows the requesting task to be placed in a wait state pending
the occurrence of specified events. The requesting task supplies a 128-bit
mask where bits 1 through 63 correspond with the end of operation on logical
units 1 through 63 respectively. The other bits (0, 64-127) correspond to
the user defined events (DEFEVTQ ESR).

The four registers are treated as a 128-bit mask with each bit corresponding
to an event. A set bit enables the detection of the corresponding event
bit. The issuing task will be scheduled for execution if an event and event
mask bit are both set (ome).

0 31
ESR format | MASK BITS (0-31) | R+0
| MASK BITS (32-63) I +1
| MASK BITS (64-95) l +2
| MASK BITS (96-127) I +3

- PARM format l UNIT STATUS] PARM+0

l EXPANDED STATUS .. ‘ +1
| EVENT BITS (0-31) | +2
l EVENT BITS (32-63) \ +3
l EVENT BITS (64-95) ‘ +4
-l EVENT BITS (96-127) ‘ +5
Parameter Definition
MASK BITS The event bits (0-127) are set to a one for each
event which bas occurred.
UNIT STATUS/ These parameters are set for the lowest numbered
EXPANDED STATUS logical unit with an event bit set. See description
in appendix I.
An example of a calling sequence is as follows:
. EXT MUST Exterhally defined symbol
LDD,RO MASK+0 Event Mask Bits
LDD,R2 MASK+2 Event Mask Bits
MON,RO MUST Monitor Request
MASK GEN 0
GEN 0
GEN 0
GEN ~ $8F000000

4-70 ‘ 17329125 A

W/

(ix‘ PFAULT, Return Control on Program Faults

The PFAULT ESR defines an address in the issuing task (or in the executive,
if address is zero) to which control should be directed upon the occurrence
of a page fault or an illegal instruction fault interrupt. Each PFAULT ESR
can define one of the conditions and its return-of-control address.

ESR format I ADDRESS | R+0

' FAULT I R+1
PARM format ' ; l PARM+0

l I PARM+1

! P ' PARM+2
Parameter Definition
ADDRESS The address at which the task will be restarted

after the fault 1s detected.

FAULT A flag defining the fault condition for which the
address is valid:
(i:; . Entry Meaning
=0 Page faults return address.
=1 Illegal instruction return address.
P Address of instruction executed at the time‘ the

fault was detected.

An example of a calling sequence is as follows:

EXT PFAULT Externally defined symbol
LDA,R1 PFAULTADR Address for return

LDI,R2 1 An illegal instruction
MON,R1 PFAULT Monitor request

C

17329125 A ‘ 4=-71

SETEVTQ, Set User Defimed Event Bit

The SETEVIQ ESR is used to set a previously defined event bit. As stated
previously, event bits can be used to synchronize separate task processing.
The SETEVTQ ESR will set the specified event bit. If the defining task is
waiting for the occurrence (event bit set) then the waiting task will be
scheduled for execution.

0 . 31
ESR format EO ‘ R+0
PARM format l STATUS ’ PARM+0
Parameter ; Definition
EO Event ordinal as returned by DEFEVTQ.
STATUS 0 - Request was accepted.

1 - Invalid Event Ordinal.

An example of the calling sequence is as follows:

EXT SETEVTQ Externally defined symbol

LD,RO EVENTORD Event ordinal
MOW,RO SETEVTIQ Monitor request
LD,H2 PARM Check status

4-72 17329125 A

A

-

(N SETITMQ, Set Interval Timer Event

The SETITMQ ESR is used to notify the system that a predefined event bit is to
be continually set after the elapse of the specified time interval. This
interval time event remains active for the life of the task.

0 31
ESR format EO R+0
INTERVAL TIME +1
PARM format " STATUS PARM+0
Parameter ' Definition
EO Event ordinal as returned by DEFEVTQ.
INTERVAL TIME Interval time in milliseconds.
STATUS 0 - Request was accepted.
1 - Invalid Event Ordinal.
‘::> An example of the calling sequence is as follows:
EXT SETITMQ Externally defined symbol
LD,RO EVENTORD Event ordinal
LDI,R1 1000 , Interval time (milliseconds)
MON,RO SETITMQ Monitor request
LD,H2 PARM Check status

17329125 A 4-73

STATUS, Status Unit

The status of a request on a logical unit, which has an operation in
progress, can be tested using the STATUS ESR. The request places the
requesting task in the I/0 Wait state until the End of Operation event has
been processed on the logical unit. If the issuing task has no request
pending for the specified unit, then a null status (=0) is returned in the
user's parameter area.

0 ’ 31
ESR format ‘ LU ‘ R+0
PARM format | UNIT STATUS , PARM+0
’ EXPANDED STATUS ' +1
HS +2
+n
Parameter - Definition
LU Logical unit.
UNIT STATUS Normal unit status as described in appendix I.
EXPANDED STATUS Expanded status, as described in appendix I.
HS Hardware status as described in appendix I.
An example of a calling sequence is as follows:
EXT STATUS Externally defined symbol
LDI,RO 10 Logical unit number
MON,RO STATUS Monitor request

L-74 17329125 A

AN

Y

Ve

C

TETIME, Task Elapsed Time

The TETIME ESR obtains the number of milliseconds accumulated from the time
the task was initialized until the time the monitor call to TETIME was

made. The time is returned in PARM.

PARM format TIME PARM+0
Parameter Definition
TIME Task time (in milliseconds) accumulated

An example of a calling sequence is as follows:

EXT TETIME Externally defined symbol
MON, RO TETIME Monitor request
1D,H2 PARM Task Elapsed Time
4-75

17329125 A

TIME, Return Current Time of Day

The TIME ESR returns the current time of day in ASCII and binary formats.

PARM format

Parameter

HH

MM
SS

TIME

' H H : M | PARM+0

! M : S S , +1

| TIME | +2
Definition

ASCII codes for hour of day (00 through 23).
ASCII code for colon graphic.
ASCII codes for minute of hour (00 through 59).

ASCII codes for second of minute (00 through 59).

Time of day in milliseconds since midnight.

An example of a calling sequence is as follows:

EXT
MON, RO
1DD,H2

4-76

TIME E Externally defined symbol

TIME Monitor request

PARM Current time in ASCII
17329125 A

™

O

C

C

UST, Obtain Unit Status

The UST ESR returns the status of the requesting task's last I/O request on
the specified logical unit. If the I/0 is still pending, the requesting
task is placed in I/O wait until the I/0 is completed.

0 31

ESR format ’ LU | R+0
PARM format l . UNIT STATUS | PARM+0

I EXPANDED STATUS +1
Parameter . Definition
LU Logical unit to be tested.
UNIT STATUS See description in appendix I.
EXPANDED STATUS See description in appendix I.

An example of a calling sequence is as follows:

EXT UsT Externally defined symbol
LDI,RO 10 Logical Unit number
MON, RO USsT Monitor request

LD,H2 PARM Unit status

17329125 A 4-77

UTYP, Obtain Dynamic Unit Status

The UTYP ESR returns the hardware type of the specified logical unit. If
the hardware type is a disk file, additional file description information is
also returned. The requesting task 1s scheduled for execution after the

request is completed.

The values returned in PARM by the UTYP ESR may be modified during system
generation. In addition, the peripheral equipment configuration is defined
during system generation.

ESR format l

PARM format \

0 31
LU R+0
HT PARM+0
WORDS +1
NBN ’ +2
HBN +3
FLAGS +4

Parameter

LU

HT

WORDS

NBN
HBN

FLAGS

4-78

Definition

Logical wunit for which hardware type is to be
returned.

Hardware type. Valid hardware types are defined in
appendix K.

Number of words per block. Returned for HT = 1 only.

Number of next block to be read or written (current
block number). Returned for HT = 1 only.

Highest block number written (end-of-file).
Returned for HT = 1 only.

- set if device is a disk file.

Bit O

Bit 1 - set if device is a magnetic tape.

Bit 2 = set if device is a blocked device.

Bit 3 - set if device is an input-only device.

Bit 4 - set if device is an output-only device.

Bit 5 - set if device is an ASCII-only output device.
Bit 6 - set if device is an interactive terminal.

Bit 7 - set if device is a remote batch terminal.
Bit 8 - set i1f device is a communication network.

17329125 A

An example of a calling sequence is as follows:

N
3
(:;) EXT UTYP Externally defined symbol
LDI,RO 10 Logical unit number
MON,RO UTYP , Monitor request
LD,H2 PARM Hardware Type

O

~

17329125 A 4-79

MISCELLANEOUS ESRs P
L

The following ESRs allow a task to communicate with the operator and obtain

the date and time, manage global common, and pass messages to and from other
tasks.

ASNGC Assign Global Common

CTOC Send Command Message to Operator
CTOI Send Information Message to Operator
CTOR Receive Message from Operator
DAYFILEQ Send Message to DAYFILE

DEFGC Return Defined Global Common Page Numbers to User
GETGC Attach Global Common

JOBINFO Return Job Information

MGETGC Modified Get Global Common

NXTNUM Get Unique Identifier

RELGC Release Assigned Global Common

RETGC Return Global Common

STATGC Status Global Common

\;//

4-80 “ 17329125 A

ASNGC, Assign Global Common

The ASNGC ESR causes memory to be assigned as global common. Available
memory pages are assigned and the physical page numbers saved. An entry is
made containing the specified Global Common name to be associated with the
assigned pages, the number of pages assigned, and which physical pages are

assigned.
0 ' 31
ESR format R+0
B BLOCK NAME ————————— +1
NOPAGES
PARM format STATUS PARM+0
NPA PARM+1
NPR PARM+2
C
‘ Parameter Definition
BLOCK NAME Global common block name, left justified and blank
filled to eight characters.
NOPAGES Number of memdry pageé to be reserved.
STATUS Numeric value indicating request status:
Entry Meaning
= =2 Block name already defined.
= -1 No table space available.
=-0 No memory available.
>0 Request successful,
NPA Number of pages assigned; minimum of number of pages
requested and number available.
NPR Number of pages unassigned pages remaining in system.

)
‘ /
o

17329125 A 4-81

An example of the calling sequence is as follows:

4-82

EXT

LDD, HO
LDI,H2
MON, HO

ASNGC
='BLOCKONE'
2

ASNGC

Externally defined symbol
Block name

Number of pages

Monitor request

17329125 A

1\\‘“‘ //1

CTOC, Send Command Message to Operator

The CTOC ESR allows a task to send a message to the operator and requires a
response. Once the ESR is issued, the task does not resume execution until

‘the operator responds.

While the task is waiting for operator response, it

is assigned operator wait status. When the response 1is entered by the
operator, both the command message and the response are logged in the system

dayfile.
ESR format | ADDRESS l R+0
PARM format ‘ STATUS ‘ PARM+0

Parameter Definition

ADDRESS Byte address of the first byte of the message to be
displayed. The message is 65 characters in length
or is terminated at the occurrence of a 03
(end~of=text, ETX) character value.

STATUS ESR status or operator response code:

An example of a calling
EXT
LDCA,R1

MON, RO
LD,X7

ADDRMSG TEXTC
GEN,C

C

17329125 A

Entry ’ Meaning
=0 Message accepted by operator.
=1 Message rejected by operator.

sequence is as follows:

CTOC Externally defined symbol
ADDRMSG ' Address of message

CTOC ‘ Monitor request

PARM Check status

.

3

30, THIS IS A MESSAGE TO OPERATOR
$03 End of text

4-83

CTOI, Send Informative Message to Operator

The CTOI ESR allows a task to send a message to the operator and does not
require a response. The issuing task is scheduled for execution after the
ESR has been processed.

ESR format l ADDRESS ' R+0

PARM format | STATUS ! PARM+0
Parameter ' Definition

ADDRESS Byte address of the first byte of the message to be

displayed. The message is 65 characters in length
or is terminated at the occurrence of a 03
(end-of-text, ETX) cbaracter value.

STATUS See PARM Status Codes, figure 4-2.

An example of a calling sequence is as follows:

EXT CTOI Externally defined symbol
LDCA,R3 ADDRMSG Address of message
BSK, S R3,0,*+1 Set reject
MON,R3 CTOI Monitor request
LD,X7 PARM Check status
ADDRMSG TEXTC 18, THIS IS A COMMENT
GEN,C $03 End of test

4-84 , 17329125 A

CTOR, Receive Message From Operator

The CTOR ESR allows a task to send a message to and receive a message from
the operator. Once the ESR is issued, the task does not resume execution
until the operator responds with an input message. While the task is
waiting for operator response, it is assigned operator wait status. When
the response is entered by the operator, both the command message and the
response are logged in the system dayfile.

ESR format : ADDRESS } R+0
PARM format STATUS ,‘ PARM+0
MESSAGE
PARM+19
Parameter Definition
ADDRESS Byte address of the first byte of the message to be

displayed. The message is 65 characters in length
or 1is terminated at the occurrence of an ETX
(end-of-text, ASCII code = 03) character.

STATUS Value defining success of request:
Entry Meaning
= 0 Message accepted and response message

received from operator.

= 1 Message rejected and response message
received from operator.

MESSAGE ’ First 72 characters of respose message.

17329125 A 4-85

An example of a calling sequence is as follows:

ADDRMSG

4-86

EXT
LDCA,R1
MON, RO
LD,X7

TEXTC
GEN,C

CTOR Externally defined symbol
ADDRMSG Address of message

CTOR Monitor request

PARM Check status

30, THIS IS A MESSAGE TO OPERATOR
$03 - End of text

17329125 A

3

~
{

o
J

AN

N 7

DAYFILEQ, Send Message to the

C
s

The DAYFILEQ ESR provides

the

Dayfile

capability to write a user message and

associated code to the DAYFILE.

0

31

ESR format MC

EC AC R+0

ADDRESS +1

NC +2

PARM format

STATUS PARM+0

Parameter

MC

NCwuoxmdy oo b
i

EC/AC Event

Definition

Message Identification Code (one ASCII character)

Accounting

JOB Control

Error Log

Operator Message
Permanent File Action
Reserved for Applications
Statistical Data
Utilization

System Overhead

Code/Action Code (three ASCII characters)

Accounting (A)

TBD

Job Control (C)

Not

Error

used

Log (E)

Event Code:

I

- Informative

Action Code:
XX = See device codes, appendix I

Operator Message (O)

ACC
C
I
R
REJ

C

17329125 A

Operator Accept Response

Operator Command Message (CTOC)
Operator Information Message (CTOI)
Receive Operator Message (CTOR)
Operator Reject Response

4-87

ADDRESS

NC

STATUS

Permanent

File Actiom (P)

Event Code:

-C
-D
- E

-0

- S
-D
Action

XX =

MNP OREIO P
1

Reserved

Statistic
TBD

Terminati

Utilizati
TBD

- ALLOCATE ESR

LOSE ESR
EVICEQ ESR
XPANDQ ESR

MODIFY ESR

PEN ESR

- RELEASE ESR

AVE ESR

EVICEQ ESR

Code:

Error Code as returned in PARM
for Applications (R)

al Data (8)

on (T)

on (U)

System Overhead (2)

Event C

ode:

A - Archive DAYFILE
B - New DAYFILE

D - New day
E - DAYFILE previously archived message
Z - DEADSTART message.
Action Code: _
xx = Resident edition number
Word address for start of user message.

Number of

See PARM

ASCII characters in message.

Status Codes, figure 4-2.

An example of the calling sequence is as follows:

EXT

LD, RO
LDA,R1
LDI,R2
MON, RO

4-88

DAYFILEQ
="IEAC'
MESSAGE
MSGLNGTH
DAYFILEQ

Externally defined symbol
MC/EC/AC codes
Address of Dayfile message
Message length
Monitor request

17329125 A

S

C

DEFGC, Return Defined Global Common Page Numbers to User

The DEFGC ESR returns the physical page numbers associated with the
specified Global Common Name in the caller's PARM. Starting with the
pbysical page number corresponding to the specified Logical Page Number,
page numbers are copied from GLOBTAB until either all the defined Global
Common Page Numbers or the end of the caller's PARM area is reached.

ESR format R+0
-_— BLOCK. NAME +1
SLPN +2
PARM format NPNR PARM+0
NPNL +1
FIRST PAGE SECOND PAGE +2
LAST PAGE +n -
Parameter Definition
BLOCK NAME Global common block name, left justified and blank
filled to eight characters.
SLPN Starting iogical page number within global common
block. :
NPNR Nuﬁber of page numbers. being returned in PARM.
NPNL Number of page numbers left; unable to return all

page numbers.
FIRST PAGE First page number assigned to global common block.

An example of the calling sequence is as follows:

EXT DEFGC Externally defined symbol
LDD,HO ='BLOCKONE' Block name
LDI,H2 0 Starting logical page number

MON,HO DEFGC Monitor request

17329125 A ' 4-89

GETGC, Attach Global Common
O
The GETGC ESR enables a task to obtain access to a global common block. The

named. block - is mapped into the task address space beginning at the
designated address.

ESR format BLOCK NAME R+0
' R+1
ADDRESS R+2
PARM format STATUS PARM+0
Parameter Definition
BLOCK NAME Global common block name, left adjusted and blank
filled to eight characters.
ADDRESS Starting block logical - address; must be page
boundary.
STATUS Numeric value defining the call status: ‘ 7
“‘ /‘
Entry Meaning
=0 Request successful.
=3 Illegal block name.
=5 Unsuccessful request, not all pages

available; no pages assigned.

=6 Starting address not on a page‘
boundary.

An example of a calling sequence is as follows:

EXT GETGC Externally defined symbol

LDD,HO ='BLOCKONE' Block name
LDA,H2 $1000 Address
MON,HO GETGC Monitor request

i “
N

4-90 17329125 A

JOBINFO, Return Job Information

The JOBINFO ESR is used to obtain information about the caller's JOB.

PARM format JOB IDENT PARM+0
+2
USER NAME
+4
ACCOUNT NUMBER
PRIORITY|JOB SECURITY SYS SECURITY +6
+7
START TIME '
ACCUMU TIME : +9
PAGES UNUSED +10
+11
MACHINE IDENT : +12
Parameter Definition
JOB IDENT Job identifier.
USERNAME Job owner's username.
ACCOUNT Account number of job.
PRIORITY . Default priority for tasks.
JOB SECURITY Maximum job security level or security mask.
SYS SECURITY Maximum system security level or security mask.
START TIME Time of day that job was started HH:MM:SS.
ACCUMU TIME Accumulated execution time of all tasks (in
milliseconds).
PAGES UNUSED Number of scheduled memory pages currently unused.

MACHINE IDENT Identifies machine that is being used.

17329125 A 4-91

An example of the calling sequence 1is as follows:

EXT JOBINFO Externally defined symbol
MON, RO JOBINFO " Monitor request
LDD,H2 PARM+11 " Get machine ID

4-92 17329125 A

O

MGETGC, Modified Get Global Common

The MGETGC ESR enables a task to obtain access to a page within a global

common block.

The page specified within the named block is mapped into the

task address space at the designated address.

ESR format

PARM format

Parameter

BLOCK NAME

C

ADDRESS

STATUS

C

17329125 A

15 31
R+0
BLOCK NAME +1
LPN +2 _
ADDRESS +3
STATUS PARM+0
Definition

Global common block name, left justified and blank
filled to eight characters.

Logical page number of page within global common
block to be mapped into the task.

Read only flag:

Entry Meaning
=0 Map page as read/write.
=1 Map page as read only.

Starting address at which page of global common is
to be mapped; must be page boundry.

Numeric value indicating request status:

Entry Meaning

=0 Request successful.

=1 Illegal block name.

= 2 Illegal logical page number; attempt

to map unassigned page.

4-93

An example of the calling sequence is as follows:

4-94

EXT

LDD, HO
LDI,H2
LDA, H3
MON, HO

MGETGC

=" BLOCKONE *
1

$1000
MGETGC

Externally defined symbol

Block name

Logical page number

Address
Monitor request

17329125 A

7N

L

R

AN

o

=, NXTNUM, Get Unique Identifier
C
The NXTNUM ESR returns the next available identifier to the user in a series
of ASCII alpbanumeric characters spanning 00 to ZZ.

0 31
PARM format ID PARM+0
Parameter Definition
D Alpbanumeric identifier returned by NXTNUM (00-ZZ).

An example of the calling sequence is as follows:

EXT NXTNUM Externally defined symbol
MON,RO NXTNUM Monitor request
LD,H2 PARM Get identifier

C

17329125 A 4-95

RELGC, Release Assigned Global Common

The RELGC ESR enables a task to release pages assigned to a global common
block. All assigned pages greater than or equal to the specified starting
logical page number to be released are returned to the system and the number
of pages assigned to the global common block is updated.

ESR format R+0
—_— BLOCK NAME — +1
SLPN ' +2
PARM format STATUS PARM+0
Parameter Definition
BLOCK NAME Global common block name, left justified and blank

filled to eight characters.

SLPN Starting logical page number of pages associated
with global common block to be released.

STATUS Numeric value indicating request status:
Entry ‘ Meaning
=0 Request successful.
=1 Illegal block name.
=2 Illegal logical page number; attempt

to release unassigned page.

An example of the calling sequence is as follows:

EXT RELGC Externally defined symbol
LDD,R7 ='BLOCKTWO' Block number name

LDI,R9 2 Starting logical

MON,R7 RELGC Monitor request

4-96 , 17329125 A

N
b, .'//\

O

“::5

RETGC, Return Global Common

The RETGC ESR enables a task to release pages assigned to a global common'
block. The pages are set to protected status and become available for

subsequent assignment.

ESR format BLOCK NAME R+0
+1

ADDRESS +2
PARM format STATUS PARM+0
Parameter Definitibn
BLOCK NAME Global common block name, left adjusted and blank
‘ filled to eight characters.
ADDRESS Starting block logical address; must be page boundary.
STATUS Numeric value defining status of request:

Entry Meaning

=0 Request successful.

=3 Illegal block name.

=7 Unsuccessful request, mnot all pages

assigned to this block; none released.

=8 Starting address not on page boundary.

‘An example of a calling sequence is as follows:

EXT

LDD,R7
LDA,R9
MON,R7

17329125 A

RETGC Externally defined symbol
='BLOCKTWO' Block name

- $2000 Address
RETGC : Monitor request

4-97

STATGC, Status Global Common

The STATGC ESR enables a task to manage its global common dynamically.
Availability of memory can be determined before blocks are attached or

detached.
ESR férmat BLOCK NAME R+0
+1
ADDRESS +2
PARM format STATUS PARM+0
SIZE ; o+
Parameter Definition
BLOCK NAME Global common block name, left adjusted and blank
filled to eight characters.
ADDRESS Starting block logical address; must be page
boundary.
STATUS Numeric value defining status of addressed area:

Entry Meaning
=0 A1l page space needed for the
designated block is currently

available in user's page map.

= 2 '~ All page space needed for the
designated block has previously been
assigned.

=3 Illegal block name.

=6 All pages needed not assigned.

=8 Starting address not on page boundary.

An example of avcalling sequence is as follows:

EXT

LDD, H1
LDA, H3
MON, H1

4-98

STATGC Externally defined symbol
BNAME Block name

BSTART : Address

STATGC Monitor request

17329125 A

A
s

C

O

>

BLOCKER/DEBLOCKER 5

Logical 1/0, referred to as blocker/deblocker, consists of library routines
that the wuser calls for transferring logical records to and from
user—defined buffer areas. As buffers fill or empty, blocker/deblocker
transfers the buffers to or from a physical I/0 device. This reduces the
actual number of data transfers and allows efficient use of the MPX I/0
system.

4 double. buffering option (that is, the ability to fill or empty one buffer
while a second buffer is being transferred to or from a physical I/0 device)
is provided to allow overlapped operation. :

Blocker/deblocker can be used for both mass storage devices (disk) and unit
record devices (magnetic tapes, card equipment, etc.). Mass storage and
magnetic tape are block devices (accessed in block format) while all other
devices are record devices (accessed in record format).

A block number parameter (BN) is required for certain blocker/deblocker
functions on mass storage files. Thus a user can, if he wishes, access a
mass storage file randomly with blocker/deblocker.

For a working understanding of blocker/deblocker, the user should be
familiar with block and buffer formats (refer to appendix C).

AUTOMATIC SCRATCH FILE ALLOCATION.

Standard or scratch files are allocated by MPX/0S on an as needed basis.
Blocker/deblocker allocates the. file the first time it is referenced. Job
manager releases the files at job termination. A scratch file can be saved
by using the CLOSE and MODIFY ESR or SAVEPF control card (see section 3).
The CLOSE ESR returns the file definition parameters needed to release or
modify the files. The MODIFY ESR can be used to change the parameters,
thereby permanently saving the file.

17329125 & ' 5-1

BLOCK DEVICES

The data format for block devices (disk or magnetic tape) is characterized
by a series of alternate record headers and record data areas, ending with a
zero record header. One or more records constitute a block. The size of a
block, for a file, is determined by the ALLOCATE function of the file
manager. The size of a block on magnetic tape is established when a PACKD
function is performéd. The MPX standard block size is 480 words. A block
is transferred to the peripheral device from a blocking buffer, which is
specified by PACKD or PICKD. The following is a block format.

Record Header

Record Data

Record Header

Record Data

Record Header

Record Data

Record Header = 0

The record header is a single word containing information about the record
that follows it. A record header appears as follows:.

0 1 14 31

‘ (M | RLENGTH

M - Mode of record data (bit 1)

M
M

0, ASCII record
1, binary record

RLENGTH - Number of bytes of data in the record

5-2 17329125 A

S
'\‘. ‘

.

The block is contained in a user-defined buffer area. For single buffering,
the buffer area is one word larger than the block size. The additional word
contains a pointer to the next record header and is maintained by the
blocker/deblocker. Thus, the user buffer area appears as follows:

Block Pointer

Record Header

Record Data

Record Header

Record Data

Record Header

Record Data

Record Header = 0

When double buffering is specified, the buffer area must be twice the block
size plus two (double the required value for single buffering). The minimum
size of a block is four words (pointer, header, one-word record, and zero
beader).

17329125 A 5-3

RECORD DEVICES

The data format for record devices is characterized by a record header,
followed by a record data area, and ending with a zero record trailer. The

maximum size of a record is determined by the size of the user's buffer area
but must always be less than 4096 words.

The block format appears as
follows:

0 31

Record Header

Record Data

Record Trailer = 0

The block is contained in a user—defined buffer area.

The buffer area 1is
one word larger than the maximum record size.

The additional word contains
a pointer to the record header and is maintained by the blocker/deblocker.
Thus, the user buffer area appears as follows:

31
Block Pointer
Record Header
Record Data
Record Trailer = 0
Only the actual record data is transferred to/from the peripheral device
(refer to appendix C). _

5-4 17329125 A

0

BLOCKER

The blocker 1s a set of functions that perform blocking on user
files/devices. All files to be blocked may bave been previously allocated
and opened. If a file bas not been opened, blocker will automatically
allocate and open a mass storage file on the system device(s) with block
size set to system standard block size. Unit record devices must be
assigned by an EQUIP statement.

The blocker includes the following functional routines:
o Pack define — PACKD
o Pack - PACK
o Pack output - PACKO

o Pack close - PACKC

PACKD, PACK DEFINE

The PACKD function establishes the blocking area (buffer) to be associated
with a file or unit record device. The .blocker/deblocker logical unit
definition table has space for 63 I/0 entries.

Before the user calls PACKD, registers RB through RF should be set as
follows:

0 15 16 17 24 31
RB B l LUN
RC) . BFWA
RD BLENGTH
RE BN
RF RETURN ADDRESS
LUN - Logical unit number of device
B - Type of buffering

B = 0, double buffering
B =1, single buffering

17329125 A 5=5

First word address of user's buffer area

AN

‘W

BLENGTH - Length of user's buffer area. It must be consistent with block
o size and buffering requirement

BN - Block number of first write. It pertains to mass storage files

only
BN .LT. 0, file is positioned to highest block written +1
BN = 0, file is not positioned

BN .GT. 0, file is positioned to specified block

RETURN
ADDRESS - Address in user's program to which PACKD must return.

A calling sequence to PACKD from a user's program is as follows:

LDI,RB B/LUN

LDA,RC BFWA

LDI,RD BLENGTH

LDI,RE BN

JSX PACKD,RF Call

LD,X7 PARM Check for errors
TST,NE X7,X0,ERRPROC

Only one PACKD (output) or PICKD (input) definition can be active for a
logical unit at one time. The typical sequence of events for accessing
logical unit 10 as a read/write file is as follows:

LDI,RO 10

MON, RO REWD Initial positioning
LDI,RB 10

LDA,RC BFWA

LDI,RD BLENGTH

LDI,RE 0

JSX PACKD,RF Define output buffer

5=6 17329125 A

LDI,RB 10
LDCA,RD RFBA
LDI,RD RLENGTH
JSX PACK,RF Output data records
LDI,RB’ 10
Jsx PACKC, RF ' End of output phase, close
definition
LDI,RB 10
MON, RB REWD Reposition file
(:j) LDI,RB 10
~ LDA,RC BFWA
LDI,RD BLENGTH
LDI,RE 0
JsX ;PICkD,RF Define input buffer
LDI,RB 10
LDCA, RC RFBA
LDI,RD RLENGTH
JSX PICK,RF Input data records
LDI,RB 10
JSX PICKC,RF End of operational sequence

C

17329125 A 5=7

PACK

The PACK function transfers a record to the buffer area defined by PACKD for
tbe referenced logical unit. In moving the record, the blocker truncates
trailing zeros (binary record) or trailing blanks (ASCII record) from the
record data to the nearest whole word. When the buffer area is full, the
buffer is written on the file/device specified by the logical unit.

Before the user calls PACK, the registers RB through RF should be set as
follows:

0 14 15 16 17 24 31
RB | M ‘ LUN
RC RFBA
RD RLENGTH
RE
RF ‘ RETURN ADDRESS
M - Mode of record
M = 0, ASCII record
M = 1, binary record
LUN - Logical unit number
RFBA - First byte address of the record to be transferred

RLENGTH - Length of the record in bytes

RETURN
ADDRESS - Address in user's program to which PACK will return

A calling sequence to PACK from a user's program is as follows:

LDI,RB M/LUN

LDCA,RC RFBA

LDI,RD RLENGTH

Jsx PACK,RF Call

LD,X5 PARM Check for errors
TST,NE X5,X0, ERRPROC

5-8 ; 17329125 A

o
"/

(im\ PACKO, Pack Output
s

The PACKO function is used to output a partially filled buffer. For
single-buffered record devices, PACKO has no function. For double-buffered
record devices, PACKO outputs the last record.

Before the user calls PACKO, registers RB through RF should be set as

follows:
0 : 16 24 31
RB : LUN
RC
RD
RE BN
RF , RETURN ADDRESS
LUN - Logical unit number , v
BN - Block numbers to ‘which block is output (pertains only to mass
storage)
BN .LT. 0, output to highest block written +1
(:i) BN = 0, output to next sequential block
BN .GT. 0, output to specified block
RETURN

ADDRESS - Address in user's program to which PACKO will return

A calling sequence to PACKO from a user's program is as follows:

LDI,RB LUN

LDI,RE BN

JsX PACKO,RF Call

LD,X3 PARM Check for errorsb
TST,NE . X3,X0,ERRPROC

17329125 A - 5-9

PACKC, Pack Close

-

The PACKC function is used to remove a logical unit definition from the
blocker/deblocker table. The PACKC function checks to see if any records
remain in the buffer and if so, writes them to the file/device before
removing the logical unit definition from the blocker/deblocker table. It
should be noted that this function only removes the logical unit definition
from the blocker/deblocker table and does mot close the unit.

Before the user calls PACKC, registers RB through RF should be set as
follows:

0 16 24 31
RB LUN
RC
RD
RE
RF RETURN ADDRESS
LUN - Logical unit number
7N
RETURN S
ADDRESS - Address in user's program to which PACKC will return
A calling sequence to PACKC from a user's program is as follows:
LDI,RB LUN
JSX PACKC,RF Call
LD, X6 PARM Check for errors
TST,NE X6,X0, ERRPROC
STATUS RETURN
Upon completion of a call, the blocker returns status to the parameter area,
which is defined external to the user's program. The parameter area is set as
follows:
54”“\

5-10 17329125 A

PARM ES EI
PARM+1 BN

EI - Error indicator
EI = 0, no error
EI # 0, refer to appendix D for the blocker error indicators and their

descriptions

BN - Block number (if EI # O, BN has no meaning).

Routine Block Type Device Record Type Device

PACKD Block number of next Record number of next record to be
block to be written written

PACK Block number of block Record number of record

which contains the record

PACKO Block number of next - Record number of next record to be
block to bevwritten written

_ PACKC Block number of next Record number of next record to be
(ij) block to be written written

ES (bits O tbrough 15) - Equipment status, returned if EI = 1 or 12

DEBLOCKER

The deblocker is a set of functions that performs deblocking on user
files/devices. All files to be deblocked must have been previously
allocated and opened. Unit record devices must be equipped. »

The deblocker includes the following functional routines:

o Pick define - PICKD
o Pick - PICK

o Pick inéut - PICKI
o Pick close - PICKC

0

17329125 A 5-11

PICKD, Pick Define ’ Q/

=

The PICKD function establishes the deblocking area (buffer) to be associated
with a file or unit record device. The blocker/deblocker logical unit
definition table has space for 63 I/0 entries.

Before the user calls PICKD, registers RB through RF should be set as
follows: }

0 15 16 17 24 31

RB B ’ LUN
RC BFWA
RD BLENGTH
RE BN
RF RETURN ADDRESS
LUN - Logical unit number of device
B - Type of buffering

B = 0, double buffering

B = 1, single buffering N
BFWA - First word address of user's buffer area ‘

BLENGTH - Length of user's buffer area. It must be consistent with block
size and buffering requirement

BN - Block number of first read, pertains only to a mass storage file
BN ,LE. 0, file is not positioned
BN .GT. 0, file is positioned to specified block

RETURN
ADDRESS - Address in user's program to which PICKD must return

A calling sequence to PICKD from a user's program is as follows:

LDI,RB B/LUN

LDA,RC BFWA

LDI,RD BLENGTH

LDI,RE BN

JsX PICKD,RF Call

LD,RO PARM Check for errors

TST,NE RO, X0, ERRPROC
AN
L S

5-12 17329125 A

(Tx PICK

The PICK function transfers a record from the buffer area defined by PICKD
to the user's record area established by the PICK call. If the record to be
moved is larger than the user's record area, PICK truncates the record. If
the record to be moved is smaller than the user's record area, PICK fills
the remaining record area with zeros (binary record) or blanks (ASCII
record).

\/

{

Before the user calls PICK, registers RB through RF should be set as follows:

0 14 16 24 31

RB LUN
RC RFBA
RD | RLENGTH

RE
RF RETURN ADDRESS

LUN - Logical unit number
‘ii> RFBA - First byte address of the area the record is to be transferred to
RLENGTH - Length of the record in bytes

RETURN
ADDRESS - Address in user's program to which PICK will return

A calling sequence to PICK from a user's program is as follows:

LDI,RB LUN

LDCA,RC RFBA

LDI,RD RLENGTH

JsX PICK,RF Call }
LD,RO PARM Check for errors
TST,NE R0,X0,ERRPROC

17329125 A ‘ 5-13

PICKI, Pick Input

The PICKI function is used to input a new block of data before the last
block has been exhausted. For record type devices, PICKI results in
skipping one record. For block type devices, PICKI results in skipping one
or more records.

Before the user calls PICKI, registers RB through RF should be set as
follows:

0 16 24 31
RB LUN
RC
RD
RE BN
RF RETURN ADDRESS
LUN - Logical unit number
BN - Block number of block to be input (pertains only to mass storage)
BN .LE. 0, input next sequential block
BN .GT. 0, input specified block
RETURN

ADDRESS - Address in user's program to which this PICKI will return

A calling sequence to PICKI from a user's program is as follows:

LDI,RB LUN

LDI,RE BN

JSX PICKI,RF Call

1D,X7 PARM Check for errors
TST,NE X7,X0,ERRPROC

5-14 17329125 A

‘i“\ PICKC, Pick Close

The PICKC function is used to remove a logical unit definition from the
blocker/deblocker table. It should be noted that this function only removes
the logical unit definition from the blocker/deblocker table and does not
close the unit.

Before the user calls PICKC, registers RB through RF should be set as
follows:

RB LUN
RC
RD
RE
RF RETURN ADDRESS

LUN - Logical unit number

RETURN
(:m\ ADDRESS - Address in user's program to which the PICKC will return

A calling sequence to PICKC from a user's program is as follows:

LDI,RB LUN Pl

JsX PICKC,RF ; Call

LD,X4 PARM Check for errors
TST,NE X4 ,X0,ERRPROC

C

17329125 A 5-15

STATUS RETURN

U

Upon completlon of a call, the deblocker returns status to the parameter
area, which is defined external to the user's program. The parameter area
is set as follows:

0 11 12 13 15 16 24 31
PARM M EI
PARM+1 BN
M- Mode bit
M = 0, record passed by PICK is ASCII
M = 1, record passed by PICK is binary
EI - Error indicator
EI = 0, no error ‘
EI # 0, refer to appendix D for the deblocker error indicators N
and ‘their description o
NOTE: If EI = 1 or 12, bits O through 15 of PARM contain the equipment
status.
BN - Block number (if EI # 0, BN has no meaning).
Routine Block Type Device Record Type Device
PICKD Block number of next block Record number of next record
to be read " to be read
PICK Block number of block Record number of record
containing the record
PICKI Block number of next block Record number of next record
to be read - to be read
PICKC Block number of next block Record number of next record
to be read to be read
A
%\w)’j
5-16 17329125 A

MPX LOADER : 6

The MPX relocatable loader performs the following services for the user.

o Loads relocatable binary information into memory from the sources
named in the call to the loader (*name, *LOAD, or binary decks).

0 Loads absolute tasks created by the *ABS control statement.

o Links independently compiled or assembled subprograms that reference
each other through symbolically named entry points.

o 'Loads and links any externally referenced library routines into a
task.

‘0 Detects and records -format -errors and/or violations of loading
procedures detected during the loading process.

o - Prepares a memory map of all subprograms, entry points,; and common
data areas (except for library tasks).

Programs are loaded from specified files and the system library file in

"~ blocked card image form. ‘

Each subprogram loaded must contain a binary identification card (IDC). The
information from the IDC is used to allocate subprogram storage in: upper
memory. Subprogram allocation begins in logical page 14 and continues
downward as needed. If the program name on the IDC has been previously
encountered during the load process, the current program is not loaded.

The information from the block common table (BCT) card is used by the loader
to allocate data and scratch common blocks. Data common is loaded in the
same way as subprograms, while scratch common is allocated upward beginning
withb logical page O.

As subprograms are loaded, a table of subprogram names, block common names,
entry point names, and -external symbol names is created:. This table is

17329125 A ' o 6-1

referred to as the loader symbol table (LST). When the transfer (TRA) card
of a subprogram is reached, an attempt is made to link the externals
declared by the subprogram with previously loaded entry points. Upon
detection of an end-of-load condition, the LST is checked for any external
symbols for which no corresponding entry point symbol was declared. The
system library is then searched in an attempt to satisfy these external
declarations. This is done by comparing unlinked externals against entry
points of the loader directory cards contained on the system library. Each
library program bhas a directory card associated with it containing all of
its unprotected (accessible) entry points. If a match is found, the library
program is loaded as a subprogram. After all external symbols have been
linked, or (having not located all externals) after two searches through the
library, library loading is ceased. Any external symbols still not linked
to an entry point are listed as undefined in the memory map.

The loader requests physical memory as needed on a page basis during the
loading process. If the number of pbysical pages needed to complete the
load exceeds the number of pages scheduled by the job, the job is aborted.
Regardless of the number of pages scheduled, only the physical page needed
to satisfy the loading process are assigned to the resources of the job. To
gain access to other pages requested on the associated job #*SCHED control
statement, the user must utilize the OPENMEM call.

LOADER CARDS

The loader accepts the binary cards produced by assmeblers and compilers in
the following order.

1) IDC Program identification

2) BCT Data and common block declarationms
3) EPT Entry point names

4) RIF Relocatable information

5) EXT External names

6) TRA Transfer address

BINARY CARD STRUCTURE

The binary record occupies 30 computer words of 32 bits each. The general
format of a binary record is: ‘

6-2 , 17329125 A

(> BITO

COHXOMIO

NN

IJLIIIIIIIIlllLllllllllllll

Il 2 34 56789I1011121314151617 1819 2021222324252627282930

WORDS .
Word 1
Bits O through 7 = Two hexadecimal digits identifying card type and,
for an RIF card (W = 1 through 1674), the
number of words of information on the card.
Bits 8 through 11 = Hexadecimal 5, indicating binary card.
Bits 12 thrdugh 31 = Defined for types as required. See individual

cards in this section.

0 Word 2

32-bit 2's cbmplement sum of all other words contained on the card.

Words 3-30

Defined for individual types. See remainder of this section.

17329125 A ‘ 6-3

3N

LOADER DIRECTORY CARD

U

When the user calls subprograms from LIB, the loader refers to a directory
card that aids the loader in searching for entry points. Only those entry
points in a program that are unprotected can be referenced by a user program
or another LIB file program. The loader processes the directory card and
determines if the associated program is to be loaded. Every entry point
name on the directory card is unprotected and can be referenced by the user
program. All other entry points for that program are protected entry points.

The directory card also aids the loader in finding the next program on the
library.

The directory consists of a binary card placed on the library ahead of the
IDC card for the associated program. The format for the directory card is
as follows:

7 P
E E E
FC R N N N
nl 2 T T T
£ G R R R
¢l RIY Y Y
HHEREAR: ;
Slgl M| 0| ;
N N N i
K ¥l g T |
m E . '\'\/
] 2 3 4 5 (] 7 8 9 10 il |12 13
I 2 3 4 S 8 7 8 9 10 il 12 I3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Word 1

Bits 0 through 7 = 7F.

Bit 10, if set. Library routine is absolute.

Bits 12 through 31 = Block number of next LIB entry. Zero indicates
end of LIB.

Word 3 and 4

8-character program name

Words 5 and 6 (7 and 8 etc. for remainder of card)

8-character entry point names (maximum of 13)

6-4 ‘ 17329125 A

IDENTIFICATION CARD

°T's
‘lo
—~1C
8s H{wiwl,
|27%00 DN
"/// K g _5 € G
S N
zo/u 3|4|T 3
zq/n A
26
I 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 16 I7 18 19 20 21 22 23 24 25 26 27 28 29 30
Word 1

Bits 0 through 7 = 80
Word 3

Bit 0 = 0, absolute program
1, relocatable program

Bits 6 and 7 = Addressing type

‘:i) , 0 = Word
1 = Half word
2 = Byte
3 = Bit

Bits 11 through 31 = Start address

Word 4
Bits 6 and 7 = Addressing type, see word’3
Bits 11 through 31 = End address

Words 5 and 6

8-character name in ASCII, left adjusted

C

17329125 A v 6-5

12

20
24
26

BLOCK COMMON TABLE CARD

8
! 6
c M
SIH|W|w|M
Ej0OjO|O N
CIRIRIN A ETC.
s|X|ojo| M
S B g
ElUuis|ae|L
QM 8
) K
1 2. 3 4 35 67 8 9 101l 1213 14 15 16 17 18 l9202|222324252627282930
Word 1
Bits O through 7 = 81
Bits 16 through 31 = Sequence number (1l to 5)
Word 3
Bit 0 = 0, DCOM area
= 1, SCOM area .
Bits 6 and 7 = Addressing type S
0 = Word
1 = Half word
2 = Byte
3 = Bit
Bits 11 through 31 = Starting address of the common block
Word &4
Bits 6 and 7 = Addressing type
Bits 11 through 31 = Ending address of the common block
Words 5 and 6 (7 and 8 etc. for remainder of card)
8-character common block name in ASCII, left justified
NOTES: 1 A maximum of five BCT cards is permitted per module.
2 Words 3 through 6 are repeated for each common block defined by
the BCT .card.
3 The information content of the card image ‘is terminated by a =
zero field. @; }

6—6 17329125 A

‘ii\ ENTRY-POINT CARD

A/

8
E £
azc N N
SIHiwlT: wilT
12 ElolR N]O|R
6!S|Kk|o|lp M|DlP A ETC.
ElS o E oM
24| N N N
o} T T
26 ’
I 2 3 4 5 6 T 8 9 101 12 13 14 1S 18 I7 18 19 20 21 22 23 24 25 26 27 28 29 30
Word 1
Bits 0 through 7 = 82
Bits 12 through 31 = Sequence number (1 to 5)
Word 3

1, negative relocatable

‘ii) Bit O

Bit 1 = 0, absolute address
1, relocatable address

Bits 6 and 7 = Addressing type

Word

Half word
Byte

Bit

whN-=o
Wononon

Bits 11 through 31 = Address of entry point

Words 4 and 5

8~character entry-point name in ASCII, left justified
Word N
Same information as word 3

Words N+1 and N+2

Same information as words 4 and 5

O NOTE: The information content of the card image is terminated by a zero
/ field.

17329125 A 6-7

RELOCATABLE INFORMATION CARD Q{“}
N A|R|R|R|R|R
o) 4|812]16120
5 ﬁ RI{R|RIR|R]R
o |ELLpe e el 1 - 22
ols RI|R R
Ul2a|ellofji4]IB|22

DM
R R|R{R|R|R|E

317101519 B
i1 2 3 4 8 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 23 26 27 28 29 30
Word 1

Bits O through 7 = Number of words on card, 1 through 2279,

Bit 8 and bits 12 through 31 = Address of first loadable informationm.
Word 3

Bits O through 7 = Address information: bit 0 = 0, bits 1 and 2 are
unused and bits 3 through 7 = relocation of the T
starting word address. Bit 0 = 1, first word on "
card is not a full word and address field gives the -
starting bit address.

Words 3 through 8

Relocation bytes for each address field on the card (Rl through R22):
Bit 0 = 1, if negative relocation, else 0

Bits 1 and 2 = Addressing type

]

Word
Half word
Byte
Bit

WN O

Relocation of each address field

~
]

Bits 3 through

Nonrelocatable (absolute)
Program relocatable
2 through 31 = Common block relocatable (defined by BCT)

- O
wu

6-8 ‘ 17329125 A

(iNT Word 8

Bits 24 through 31 = End information: bit 0 = 1, last word on card
not a full word.
Bits 3 through 7 = last used bit (0 through 30)

Words 9 through 30 (Il through I122)

Loadable information corresponding to Rl through R22.

C

17329125 A) 6-9

EXTERNAL CARD ﬂj‘\

|
oG J
M E!
8 c
SIHiw|w|1 wiw|2
12 E|lo|o|S N|O|O|N N
SCRRTARR,DA ETC.
16|2|X|o|p|e M|D|D|E M
Ak X E X E
201QiU|3}|4 3|4
Y] T T
24| N
0.
26
I 2 3 4 %5 6 7 8 9 10 11 12 13 i4 15 16 I7T 18 19 20 21 22 23 24 2% 26 27 28 29 30
Word 1
Bits O through 7 = 83
Bits 12 through 31 = Sequence number (1 to 5)
Word 3
Bit 0 = 1, negative relocatable
Bits 14 and 15 = Addressing type of string
0 = Word 7N
1 = Half word L
2 = Byte '
3 = Bit
Bits 16 through 31 = Word address of end of string
Word 4
Bit 0 = 1, negative additive
Bits 11 through 31 = Additive
Words 5 and 6 (7 and 8 etc. for remainder of card)
8-character external name in ASCII, left justified
("‘\

6-10 ; . 17329125 A

(" j TRANSFER ADDRESS CARD

°To
40 E
8ls|SInT
700k
IC/// g E p
200//u|Q ©
M 1

24/ ¥
26

/)

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Word 1

Bits O through 7 = 00
Word 2

Checksum is running checksum of IDC through TRA cards.

Words 3 and 4

Name of primary entry point in 8-character ASCII, left justified. Zero
‘:t> implies no transfer address

HEXADECIMAL CORRECTION CARDS

General format:
*HCC, location hexadecimal correction and relocation factor, ..

Hexadecimal corrections may be made to binary subprograms after loading.
*HCC statements may be used to enter corrections or to add code through the
establishment of a program extension area. The program extension area 1is
created after the subprogram area. Corrections to subprograms referring to
the extension area, or additiomal instructions that are to be stored in the
extension area, may not be submitted until all subprograms have been loaded.

The location field symbolically defines the location to be amended through
the use of subprogram names and displacement values. The extension area -is
given a unique identification. The values that are allowed in the location
field of the card are as follows:

Location Contents Interpretation

(Program name + K) Corrections on this #*HCC card are loaded
beginning with location K in the named

subprogram.
C

17329125 A 6-11

Hexadecimal Correction Interpretation

(D/data name + K) Corrections are loaded beginning with
location K in the named data area.

(XK) First occurrence - defines a program
extension area of length K. Corrections

on the first card of this type are ignored.

Subsequent occurrences - corrections are
loaded beginning with location K of the
program extension area.

(+K) Continuation ~ *HCC cards. +K is an
increment from the last location plus one
corrected by the previous *HCC statement.

Hexadecimal corrections of up to eight characters and their relocation
factors, if any, follow the location term. Fields are separated by commas.
All values are hexadecimal. Each value 1is stored right justified in
successive words. Values of 1less than eight digits are =zero filled.
Acceptable values for this field are:

Hexadecimal Correction Interpretation

Hexadecimal correction The correction replaces the contents of
the memory location determined by the
location defined on the card and the
position of this hexadecimal correction

field.
Contiguous commas Commas do not alter the location.
Hexadecimal correction Replaces the contents of memory determined
with relocation factor by the location stated on the card and the

position of this field on the card. The
address portion of the bexadecimal
correction is to be relocated as dictated
by the relocation factor.

This relocation factor can take any of the following forms:

Relocation Factor® Interpretation
No relocation factor Correction is stored as absolute
correction.

*A relocation factor followed by H, C, or B indicates that ﬁalf-word,
character (byte), or bit addressing modes are to be performed.

6-12 | | 17329125 A

S

=
J

\‘/

C

|
e

Relocation Factor* (Contd) Interpretation (Contd)

(Subprogram name) Relocate the word address portion of the

correction relative to the address of the
first location in the subprogram enclosed
in parentheses.

(D/data block) Relocate the address portion of the
(C/common block) correction relative to the address of the

(x)

($)

HCC EXAMPLES

first location of the named common or data
block. "

Relocate the address portion of the
correction relative to the first location
of the previously defined extension area.

Relocate the address portion of the
correction relative to the last relocation
factor defined in any field of this or any
preceding *HCC statement. '

" The following are examples of various formats and uses of the *HCC statement.

1

2)

3)

4)

*HCC, (PROG1+70)21600100($)

Enter bhexadecimal correction 2160XXXX at address 0070 relative
to subprogram PROGl. The $ relocation factor relocates address
0100 relative to subprogram PROGL.

*HCC, (SUB1+7F)21600100($),47310101(SUB2)
Enter correction 2160XXXX in location SUB1+7F. Relocate 0100

relative to subprogram SUBL. Enter correction 4731XXXX in
location SUB1+80. Relocate address 0101 relative to subprogram

"SUB2.

*HCC, (SUB1+20) 00000036,000036,00036,0036,036,36

Enter the hexadecimal wvalue 00000036 into locatioms 20, 21, 22,
23, 24, and 25 of subprogram SUBl. All corrections are right
justified and stored in memory as 00000036.

*HCC, (X2E)

Assign 2E locations to the program extension area.

*A relocation factor followed by H, C, or B indicates that half-word,
character (byte), or bit addressing modes are to be performed.

17329125 A

6-13

6-14

5)

6)

7)

8)

9

10)

11)

12)

13)

*HCC, (X) 20000100(SUB1) ,40000101($),20000102($),40000103($)

Enter 2000XXXX into the first location of the extension area.
XXXX is the relocated address relative to subprogram SUBL.
4000XXXX goes to the second location of the extension area.
2000XXXX goes to the third and 4000XXXX to the fourth. All XXXX
addresses are relocated relative to subprogram SUBI.

*HCC,(+)20000400(SUBZ),40000401($),20000402(SUB3),40000403($)

Continue inserting corrections in the program extension area.
The addresses of the first two corrections are relocated
relative to subprogram SUB2. The last two are relative to
subprogram SUB3.

*HCC, (X1F) 20000420(SUB4) ,40000621($) ,20000622(SUB5) ,40000623($)

Load the corrections with relocation factors of subprograms SUB4
and SUB5 into the extension area beginning with location 1F.

*HCC,(D/DATAL1)5,10,15,20,25,30,35,40
*HCCe, (+)45,50,55,60,65,70

Examples 8 and 9 - Enter the 14 hexadecimal values 5 through 70
into the data block DATAl in successive locations starting with
location zero. .

*HCC,(D/DATA1+20)75,100,105,110,115,,125,,13C

Enter the five hexadecimal values 75 through 115 in successive
locations starting with location 20 of the data area DATAL.
Loation 25 will be unchanged, 26 will hold 00000125, 27 will be
unchanged, and 28 will hold 0000013C.

*Hcc,(su31+7o)01000010(x),20000005(C/COM1),40000007(D/DATA1)

Enter correction 0100XXXX into location 70 of SUBl. XX¥X is
modified relative to the program extension area. Put 2000XXXX
into SUB1+71. XXXX is modified relative to the common area
COM1. Put 4000XXXX into SUB1+72. XXXX is modified relative to

the data area DATALl.
*HCC, (+2)20000007(SUBL)C

Put hexadecimal correctionm 20000007 into SUB1+75. Modify the
18-bit character address relative to subprogram SUBL.

*HCC, (+)20000030($)H

Put hexadecimal correction 20000030 into SUB1+76. | Modify the
17-bit half-word address relative to subprogram SUBL.

17329125 A

=’

~
N

\u
C

MAP, MEMORY ALLOCATION PRINTOUT
The loader automatically produces a map of memory allocation of a loaded
program at the time the load operation is complete. The MAP comsists of
information from the loader symbol table and appears as follows:

Heading Category

SUBP Name of each subprogram and the absolute

ENTR

coMM

DATA

address of the first location in each
subprogram.

Entry-point symbols in the program and the
absolute address of each entry point in
the subprograms.

Each common block name and the absolute
starting address of each common block.

Each data block name and the absolute
starting address of each data block.

The MAP is illustrated in figure 6-1.

17329125 A

6-15

MEMORY MAP

PROGRAM NAMES

ENLARGE EBD2 ASCITINP

FORMAT E528 Q8QERROR
BLKDEBLK E1B9 TSKMON

SCRATCH COMMON BLOCKS
Q8QBUF 0000

ENTRY POINT NAMES

ABORT 0128 ABORTJIM
ACTIVECK E66D ALLOCATE
BKSP 0105 BSY
CTOC Cl1l15 CTO1
DVCHKIZ% E4Bl DWAILT
ENLARGE EEE8 ERASE
JACC FOEO JCILINUM
JCIJSCHL FO9A LUNITBL
MODIFY 0113 OPEN
PACK E28E PACKC
PARM EFCE PFAULT
PICKD E1B9 PICKI

Q8QENTRY E646 Q8QERROR
Q8QINDEC EA58 Q8QINENC
Q8QIOINT E619 Q8QIOTAB
Q8QLGINI EA67 Q8QLGIN2
Q8QPAUSE E4CC Q8QSTOP

READLU 0102 RELEASE
RETURN 011C REWD
STATUS E6D5 STDFEXPS
TSCHED 0127 TSKMON
UNLD 0107 UsT
WEOF 0103 WRITLU

TRANSFER ADDRESS NAMES

ENLARGE EEEB Q8QENTRY

6-16

EA46 ASCIIOUT E861
E4E0 Q8QSTP E4CC
E1AE

0129 ABPACKD E692
0111 ARCHKIZ E4B3
013C CALL 011D
0114 DATE 0117
013€ ENABLE 0124
012F FNCHKIZ E4B2
FO8D JCIJPC F09A
F3ED MATHEZP E4C2
010F OPENMEM 0119
E2F8 PACKD E1BF
0123 PICK E230
E266 Q8QENGIN EA60
E4E0 Q8QEXIIS E65C
E872 Q8QINGIN EA46
E732 Q8QISCAN E53D
EA6B Q8QLGOT1 E882
E408 Q8QTABLE E80F
0112 RELMEM Ol1lF
0106 SAVREG E704
0002 STDPSEG 0010
ELlAE TSTATUS 013D
0108 USTUP E6FA
0101 WRITOUT E6C5
E646

Figure 6-1. MAP Example

CONTROL
AMATHER

ABPICKD
BDBWTIME
CLOSE
DEVICE
ENABLEY
ILLUNIT
JCIJPL
MATHEZS
OVCHKIZ
PACKO
PICKC
Q8QENGOT
Q8QIFRMT
Q8QINGOT
Q8QITERM
Q8QLOOT2
READIN
RESTREG
SEOF
TIME
ULOC
UTYP

17329125 A

EE19
E49E

E68A
0054
0110
0118
E49E
E61E
F099
E4BD

E4B4

E2DF
E280
E87A
E528
E861
E539
E886
E6CO
E717
0104
0116
oLoA
0109

‘ o
yJ/

APPENDIX A
CHARACTER SET

Table A-1 illustrates the MP-60 System Character Set for certain types of
peripberal equipment. The MP-60 Code column shows the hexadecimal byte code
(8 bits) used internally and sent to or received from a peripheral device in
ASCII mode. the ASCII graphic column shows the printed or displayed graphic
corresponding to the internal code. The default Standard 026 Card Punch
column shows the Hollerith code punched to obtain the internal code in 026
mode. The ANSI Standard 029 Card Punch column shows the Hollerith code
punched to obtain the internal code in the 029 mode. The ASD Card Punch
column shows the Hollerith code in the MPP compatible ASD mode.

As cards are being read, the presence of a Card Reader Code Switch card
causes subsequent cards to be read in a new mode. The presence of a *EOJ
card causes a switch back to the site default mode. The format of the card
Reader Code Switch card is as follows: :

Column 1 contains a 12-11-0-1-2-3-4-5 multiple punch.

Column 2 contains a:

6 (6) to switch to 026 mode.
9 (9) to switeh to 029 mode.
A (12-1) to switch to ASD mode.
space to switch toﬂiite default mode.

The above applies only to the locally connected card reader. Translation of
cards read into remote terminal card readers is governed by the particular
remote terminal in use.

Table A-1 contains the matrix for the ASCII*coded character set.

17329125 A A-1

MP-60

Code

$00
$01
$02
$03

$04 -

$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$OF
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A

$1B

$1c
$1D
$1E
$1F
$20

$21

$22
$23
$24
$25
$26
$27
$28
$29
$2A

$2B

$2¢
$2D
$2E
$2F

ASCII
Graphbic

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI1
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
Us
space
]

n

bRk e e

TABLE A-1.

Default Standard
026 Card Punch Code

12-0-1-8-9
12-1-9
12-2-9
12-3-9
7-9
0-5-8~
0-6-8-
0-7-8~
11-6-9
12-5-9
0-5-9
12-3-8-9
12-4-8-9
12-5-8-9
12-6-8-9
12-7-8-9
12-11~1-8-9
11-1-9
11-2-9
11-3-9
4=-8-9

5-8-9

2-9

0-6-9
11-8-9
11-1-8-9
7-8-9

0-7-9
11-4~8-9
11-5-8-9
11-6-8-9
11-7-8-9

9
9
9

11-0
4-8
0-6-8
11-3-8
6-8
0-7-8
11-5-8"
0-4-8
12-4-8
11-4-8
12
0-3-8
11
12-3-8
0-1

MP-60 CHARACTER SET

ANSI Standard 029

Card Punch Code

12-0-1-8-9
12-1-9
12-2-9
12-3-9
7-9
0-5-8-9
0-6-8-9
0-7-8-9
11-6-9
12-5-9
0-5-9
12-3-8-9
12-4-8-9
12-5-8-9
12-6-8-9
12-7-8-9
12-11-1-8-9
11-1-9
11-2-9
11-3-9
4-8-9
5-8-9
2-9
0-6-9
11-8-9
11-1-8~9
7-8-9
0-7-9
11-4-8-9
11-5-8-9
11-6-8-9
11-7-8-9

12-7-8
7-8
3-8
11-3-8
0-4-8
12
5-8
12-5-8
11-5-8
11-4-8
12-6-8
0-3-8
11
12-3-8
0-1

ASD Punch Code i

12-0-1-8-9
12-1-9
12-2-9
12-3-9
7-9
0-5-8-9
0-6-8-9
0-7-8-9
11-6-9
12-5-9
0-5-9
12-3-8-9

12-4-8-9

12-5-8-9

12-6-8-9

12-7-8-9

12-11-1-8-9

11-1-9

11-2-9

11-3-9

4=8-9

5-8-9 e,
2-9)
0-6-9 7
11-8-9

11-1-8-9

7-8-9

0-7-9

11~-4-8=9

11-5-8-9

11-6-8-9

11-7-8-9

12-7-8
7-8
6-8
11-3-8
12-5-8
12-6-8
4-8
0-4-8
12-4-8
11-4-8
12
0-3-8
11
12-3-8
0-1

17329125 A

=

MP-60
Code

$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B
$3C
$3D
$3E
$3F
840
$41
$4.2
$43
$44
$45
$46
$47
$48
$49
$4A
$4B
$4C
$4D
$4E
$4F
$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
$5A
$5B
$5C
$5D
$SE
$5F

17329125 A

ASCII
Graphic

WO PWNE O

S N KM O<S<AHOPWONOZIRrRURITORMmBUAOAWE® 2V i A e o

TABLE A-1. MP-60 CHARACTER SET (Contd)

Default Standard
026 Card Punch Code

WO UL LUNE—=O

N
!
(o]

12-5-8
0-2-8
12-6-8
0-5-8

ANSI Standard 029
Card Punch Code

IOV W= O

(SR
| o
o)}
|
Qo

-4-8

POOOP#—‘#—‘N

—

S]

I 00 4 O co

~ !
oo Qo

12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
1i-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0-2

0-4
0-5
0-6
0-7
0-8
0-9
12-2-8
0-2-8
11-2-8
11-7-8
0-5-8

ASD Punch Code

DN LU= O

o e = O O W N W00~
NNy
b 1 1 o~ 000) | o
Wt £ W N U w
o oo [
0 00

12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
0-2

0-4
0-5
0-6
0-7
0-8
0-9
12-0
0-2-8
11-0
11-7-8
0-5-8

MP-60
Code

$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$6B
$6C
$6D
$6E
$6F
$70
$71
$72
$73
$74
$75
$76
$77
$78
$79
$7A
$78
$7C
$7D
$7E
$7F

ASCII

TABLE A-1. MP-60 CHARACTER SET (Contd)

Default Standard

ANSI Standard 029

Graphic 026 Card Punch Code Card Punch Code

~

]~ ¥ &< cronrR.0Y O3 HFRKFCHIMMO [~ "o Tl vl)

DEL

1-8
12-0-1
12-0-2
12-0-3
12-0-4
12-0-5
12-0-6
12-0-7
12-0-8
12-0-9
12-11-1
12-11-2
12-11-3
12-11-4
12-11-5
12-11-6
12-11-7
12-11-8
12-11-9
11-0-2
11-0-3
11-0-4
11-0-5
11-0-6
11-0-7
11-0-8
11-0-9
12-2-8
12-11
11-2-8
11-0-1
12-7-9

1-8
12-0-1
12-0-2
12-0-3
12-0-4
12-0-5
12-0-6
12-0-7
12-0-8
12-0-9
12-11-1
12-11-2
12-11-3
12-11-4
12-11-5
12-11-6
12-11-~7
12-11-8
12-11-9
11-0-2
11-0-3
11-0-4
11-0-5
11-0-6
11-0-7
11-0-8
11-0-9
12-0
12-11
11-0
11-0-1
12-7-9

ASD Punch Code

1-8
12-0-1
12-0~-2
12-0-3
12-0-4
12-0-5
12-0-6
12-0-7
12-0-8
12-0-9
12-11-1
12-11-2
12-11-3
12-11-4
12-11-5
12-11-6
12-11-7
12-11-8
12-11-9
11-0-2
11-0-3
11-0-4
11-0-5
11-0-6
11-0-7
11-0-8
11-0-9
12-2-8
12-11
11-2-8
11-0-1
12-7-9

17329125 A

?L//

Abort

Absolute

Assemble

Asynchronous

Batch

BCLA

Block

Buffer

CALL

Callee

Caller

CLA

Compile

Common

17329125 A

APPENDIX B

GLOSSARY

The premature termination of a process whenever an
irrecoverable situation (either hardware or software)
occurs.

Refers to actual machine addresses (i.e., not relocated).

The process by which an object (binary) module is created
from a symbolic language program (e.g., COMPASS
assembler).

Refers to a type of serial transmission in which bit
synchronization is accomplished for each character.

Class of tasks which run on a time—available basis.

Buffered Communications Line Adaptor - the RS-232C
asynchronous communication lines.

A grouping of machine words or bytes. Usually a
collection of one or more records used in I/0 to reduce
the number of physical operations.

A portion of memory used to collect data in order to
compensate for speed differences between the processor
and peripberal devices.

The transference of control to a closed routine or task.
A monitor function, CALL, is used to activate a specific
task.

The task called by a caller.
A task that calls another task.

Communication line adaptor between the CPU and: the
communications line.

The process by which an assembly (and usually an object)
module 1s created from a problem solving language such as
FORTRAN. A compiler usually generates several machin
instructions from a single symbolic statement.

An area of memory that can be shared between programs.
Tasks can communicate through common areas.

CPU

Data
Dispatcher
ESR
Establish

File

Interrupt

ITS
Job
Job Control
Table (JCT)

Job Manager

Library

Central processing unit.

An area of memory that can be restored with data at load
time and can be shared only between programs of one task;
not between tasks.

An operating system routine that unthreads a task from the
top of the ready list and places it into execution.

Executive Service Request = MPX/0S routines invoked by the
MON instruction.

Acquire a task control table for a task and initiate the
loading process.

A cgllection of blocks and/or records, usually of related
data. Each mass storage file has an entry in the system
file label directory.

A break in the normal processing flow usually caused by a
hardware-generated signal (involuntary interrupt).
Interrupts can be enabled or disabled and occur with an
associated priority. Processes that are interrupted are
later resumed at the point of interruption. A
software-generated interrupt occurs wben a task makes a
monitor request (voluntary interrupt). An exchange package
describing machine conditions at the point of interruption
is generated by the hardware/firmware.

Interactive Terminal Subsystem.

The sequential and/or parallel execution of tasks. Begins
with *JOB card and ends with *EOJ card.

An area of storage containing information for controlling a
given job. ‘

A task that processes the input stream of the job. The job
manager is a set of re—entrant programs shared by all user
jobs.

A collection of frequently used, checked—-out programs
maintained on an external device that can be loaded and
executed separately (by a control card) or in comjunction
with a user's program (via an external). Libraries must be
arranged to minimize searching (one library program can
declare another external, etc.).

17329125 A

o

C

Linkage

Loader

Logical Units

MPX/0S
MP-32
MPP

Ordinal

Page

Port

Priority

Queue

Ready List

Re=-entrant

Relocatable

Resident

17329125 A

The interconnection between routines. The loader matches
externals and entry points to establish linkage.

A subtask of the job- manager that 1is used to load,
relocate, and link binary object modules.

A number from 1 to 63 that is used to identify a physical
unit or a file. Logical unit assignments correspond to a
specific job and are in effect only during the life of the
job.

The MPX Operating System.
MP-60 CPU Emulation Device.
MP-60 CPU Emulation Device (Militarized or Ruggedized).

The relative location of an entry in a table. The absolute
location of an entry can be obtained by multiplying the
ordinal by the number of machine words per entry and adding
the starting address of the table.

A block (4K words) of main memory. Paging is a technique
where a logical address is transformed via a set of page
registers to a physical address.

The communications line between the CPU and the user.

A value (0 to 511) assigned to a task that facilitates
scheduling and processing within the operating system.

A first-in, first—out 1list used to control, for example,
the work to be done. (See Stack).

A prioritized list of tasks waiting for control of the
CPU. (See Schedule and Dispatcher).

A toutine coded such that it can be called while executing
at a higher priority or during a wait and resume processing
later at the ©point of interruption. Usually, all
intermediate results are maintained in registers.

Refers to a program that has been prepared by a source
language compiler or assembler to be loaded into any area
of available memory.

The portion of the operating system which resides
permanently in main memory.

RETURN

Schedule

Spooling

Stack

Status

Synchronous

System
Initialize

Task

Task Control
Table (TCT)

Terminal

Terminate

Thread

Utility

A monitor function that terminates a task and transfers
control to the point in the caller where the call
originated. A task can return with or without release of
memory. :

The process of placing a task on the ready 1list by
priority. A task can be scheduled at the top or behind
other tasks of equal priority.

Refers to the simultaneous I/0 of standard units while the
CPU is processing other tasks.

A last-in, first—out list (see Queue).

A stage or condition of an I/O request or a task itself
(e.g., busy, ready, etc.).

Serial transmission in which characters are sent bit wise
without start and stop bits.

Refers to the initial system load process where the
resident is loaded, memory initialized, and the system
tasks are started.

An independent unit of work that can compete for the
resources of the system. A task can call and be called by
other tasks.

An area of memory containing information used to comntrol a
task. -

The device connected to the user end of the Port.

The process of completing a job. A job can terminate
normally or abnormally.

A linked list of elements, the contents of each thread cell
contains the address of the next thread cell and so on
until a thread cell of zero which indicates the end of the
list.

A routine or procedure that supports the operation of a
system (e.g., an I/0 transfer routine).

17329125 A

APPENDIX C
BLOCKER/DEBLOCKER

Figure C-1 illustrates the relationship of records, buffers, and blocks for
a block type device. Block i is within the user-defined core buffer area.
Block 1 contains records 1 through n with appropriate headers. -

. User-Defined
Device Buffer Area User Record Area

: Block Poiater
Block 1 i Record i

Record | Header

Block 2 Record 1

C\J Record 2 Header

Record 2

——

esscesasse

Block { 9

Record i Header

Record | } :

vecccencse

XYY XY XYY Y

Block a

Record n Header

Record n

Record Header = 0

Blocker/Ceblocker
Record/Buffer Formats
Block Type Levice

Figure C-1. BLOCKER/DEBLOCKER records/buffer/blocks on block type device

il
Wi

17329125 A . c-1

Figure C-2 illustrates the relationship of user records, buffers, and
physical records (that is, data actually transferred to or from an 1/0
device). Physical record i is within the user-defined buffer area with
appropriate headers. Physical record i is the same as record i in the user
record area.

Device User-Defined User Record Area
' Buffer Area

Block Pointer
Record 1 ‘ > Record i

Record i Header

Record 2 ’{ Record i

Record Trailer = 0

Record i

[X X NN XN]

(Record n

Figure C-2. BLOCKER/DEBLOCKER Physical/Logical Records

17329125 A

(\\ Figure C-3 illustrates double buffering when blocking a block or record type

device. For a blocking type device,

block i is transferred physically to

the device at the same time records are being passed to block i+l. For a
record type device, record i is transferred physically to the device at the
same time record i+l is being transferred to the user-~defined buffer area.

Block Type Device

quck 1

Block 2

e
.

User-Defined
Buffer Area

' Block i Pointér

User Record Area

Block i

Current Record

Block i T -

Block i+1

Block n

Block i+1 Pointer

Block i+1

Record Type Device

Record 1 Block Pointer
Current Record
Record 2 Record i Header
H Record i
Record i * Record Trailer = 0
Record i+l Block Pointer
L]
= Record i+1 Header
Record n
Record i+1
Record Trailer = 0
O Figure C-3. BLOCKING
17329125 A c-3

Figure C-4 illustrates double buffering when deblocking a block or record
type device. For a blocking type device, block i+l 1is transferred
physically from the device at the same time records are being passed from
block i. For a record type device, record i+l is transferred physically
from the device to the user—defined buffer area at the same time record i is
being transferred from the user defined buffer area.

User-Defined
i d Area
Block Type Device Buffer Area User Record Are
Block 1 , Block i Pointer‘
1 Current Record
Block 2 Block i

*
L]

Block i+1 Pointer

Block i
Block i+1 Block 1+1
Block n
Record Type Device
Record 1 Block Pointer
—p4 Current Record
Record 2 Record i Header
. ' Record i
Record i Record Trailer = 0
Record i+l) Block i+l Pointer
- Record i+1 Header|
Record n

Rec_ord i+l

Record Trailer = 0

Figure C-4. DEBLOCKING

C~4 , 17329125 A

C

ABORT TYPES AND CODES

Abort
nge

1

17329125 A

Abort
Code

3

APPENDIX D

SYSTEM ERROR CODE DEFINITIONS

Description

1/0 abort.

Operator rejected request to ready a unit for
operation.

Buffer size larger than 4096 words.

Logical unit unassigned.

Attempt to write on read-only file.

An input was attempted into a read-only page.

Hardware reject.

An input or output was attempted upon a protected
page.

Illegal logical unit number.

Illegal command.

Mo space in memory pool for RET initializatiom.

Attempt to locate to block number not open.

Operator abort.
Operator aborted the job.
Job time limit_ expired.

Page fault.

Read-only violation.

Protect violatiom.

Read-only or fully protected page violation.

Memory problem.

Memory parity error - instruction.
Memory reject - imstruction.
Memory parity error - operand.
Memory reject = operand.

Arithmetic fault.
Arithmetic fault,
Function fault.
Exponent fault.
Divide fault.

Illegal instructioms.

Privileged instruction encountered in program state.
Illegal address encountered in a momnitor call.
Illegal monitor call.

Abort
TzEe

12

13

14

Abort

Code

YY

OO\AO\U\#\LONO—‘Q

Description

Voluntary abort.

User's program made a monitor call to ABORT.

Task deleted job (DELJOB).

Parameter address error.

Caller's parameter address is in a protected page.
Parameter address in unassigned page for CTOI.

Control card errors.

Unrecognized card.

Irrecoverable error on OUT.

Incomplete parameter list.

Logical unit number already assigned.
Invalid logical unit number.
Unidentified parameters on dump request.
Unrecognized parameter.

LUN equated to unassigned logical unit number.

Exceeded scheduled hardware.

Operator rejected request on PAUSE card.
Operator rejected EQUIP request.
Parameter list improperly terminated.
PACKD on standard output unit.
Illegal control card.

Too many *TASK cards.

Error on ABS file.

Standard file error.

Print lines limit exceeded.

Punch cards limit exceeded.
Blocker/deblocker error.

Scratch limit exceeded.

Illegal call to library task.

All queue entries full.

Job evicted from input queue.

Loader error.
(see MPX Loader Diagnostics below.)

‘Hexadecimal correction card error.

Location is undefined.

Location is in common.

Location field is missing.
Program is undefined.

Illegal program name.

Program name too large.

Illegal hexadecimal field.
Extension area overflows memory.

17329125 A

A3
LN

O

15 Y Task call error.
Caller calling itself.
Caller not waiting on common pass.
Too many tasks.
Circular call.
Caller not waiting on parameter pass.

Not enough memory.

OWwm WM

MPX LOADER DIAGNOSTICS

Several conditions can arise during the loading of a program that result in

a diagnostic. Some conditioms result in the job being aborted while others

are merely reported. The format of the loader diagnostic is as follows:
(program name) ERROR NO. YY WORDS 1 AND 2 = XXXXXXXIAXXXXXXX

The error conditions and the actions taken are described below:

Action

C = Continue
Error Yo. Cause A = Abort
0001 Checksum error (IDC,BCT,EPT,RIF,or EXT). C
0002 - LST table overflowed loaded program. A
0003 Doubly defined program name :—;ot loaded. c
0004 Current program will overlay LST table. A
0005 Current absolute program overlays loaded program. A
0006 Mixed program types - absolute and relocatable. c
0007 Current absolute program LST table. v A
0008 Current program will overlay scratch common. A
0009 BCT name occurred before as other type - use c

%%000000.

0010 BCT card out of sequence. : A
0011 Data common block overlays LST table. A
0012 Data common block overlays scratch common area. A
0013 Scratch common overlays loaded program. A

17329125 A D-3

Action P
Continue ﬂi\p

Error No. - Cause Z ; Abort -
0014 Second SCOM of same name greater than first SCOM. A
0015 Second DCOM of same name greater than first DCOM. A
0016 EPT card out of séquence. c
0017 Two entry points of same name - ignore second. c
0018 EXT card out of sequence. C
0019 Next string add;ess out of program area. A
0020 EXT string in tight loop. A
0021 Next string address out of memory. A
- 0022 Running checksum error - card missing perhaps. C
0023 More than three transfer addresses - use last c

three found.

0024 Transfer name not an entry point - ignore name. C
0025 IDC card not first card of deck. A :Mt:
0026 Nonbinary card between IDC and TRA cards. A
0027 Second IDC card before TRA card. A
00238 Current card out of sequence. A
0029 Unrecognized card - out of sequence perhaps. A
0030 #(library name) not found in library directory. A
0031 No TRA card. ’ A
0032 Program size exceeds scheduled memory. ‘ A
0033 Irrecoverable error on load unit. A
0034 Library sequence error. k A
0035 Task monitof not loaded. A
(1' A

D4 | 17329125 A

/

J

Error
Code

3
4

11
12
13
14

15

18

20
21
22
23
24

25

(:f\ FILE MANAGER ERRORS

Description

Incomplete parameter list.

No file name specified.

No block size specified.

No block count specified.
Illegal logical unit number.
Labei file read error. *

File previously allocated.
Insufficient label file space. *
Illegalbdevice type.

Too many devices.

Insufficient contiguous space.
Insufficient space avai%iyle on the specified devices.,
File size exceeds system limits.

Number of blocks to release exceeds the number of allocated
blocks.

File not allocated.

Operator cannot place devices on-line.

Device label read error. *

Invalid logical unit number.

Logical unit previously defined by EQUIP or OPEN.

File is allocated as read-only and the OPEN call specifies
read/write use.

* Consult system analyst.

17329125 A

D=5

Error
Code

26

27

28

29
30
31
32
33
34
35
36
37
38
39

40

41

Description

File was previously opened and the use in the OPEN call
conflicts with the previous OPEN use. A file can be opened

only once with read/write usage.

Insufficient table space. ¥

is open.

Illegal access key.

qu many DIDs.

Label file cannot be closed.

Block size is 0.

Number of blocks is 0.

Segment count exceeded.

Partial open on block not in file.

Label checksum error.

User tried to close OUT, PUN, and INP files.
Unused.

DEVICEQ Equivalance; Equated LUN not assigned.

DEVICEQ; Device/Port unavailable or immediate port
unique. '

DEVICEQ; hardware not scheduled.

* Consult system analyst.

File is open. A file cannot be modified or released while it

request not

17329125 A

~

C

BLOCKER ERROR INDICATORS

Indicator Routine Description- =~~~

1 PACK, PACKO, PACKC Write attempted beyond file limits.

2 PACK, PACKO, Logical unit is not open.

PACKC

3 PACK, PACKO, PACKC Write attempted on a read-only file
or device.

4 PACKD Buffer area already defined by
previous PACKD or PICKD.

5 PACKD Buffer size too large; inconsistent
with file blocking definition.

6 PACKD Buffer size too small.

7 PACK, PACKO, PACKC Buffer area not defined by PACKD.

8 PACK Record size (after removal of
trailing blanks or zeros) is greater
than buffer size.

9 PACKX, PACKO, PACKC Buffer area has been defined by

_PICKD.

10 PACKD, PACKC Cannot perform these functions omn
logical unit 61 or 62.

il PACKD, PACK, PACKO, PACKC Logical unit invalid (not 1-63).

12 PACK, PACKO, PACKC Irrecoverable I/0 error.

13 PACK Blocker pointer out of Dbounds;
BLOCKER/DEBLOCKER pointers have been
modified.

14 PACK Record length = 0

15 PACK, PACKD, PACKC Not enough disk scratch or memory

17329125 A

pool space for job to run. Resubmit
when resources are available (or try
increasing the SCR value on the
*SCHED card).

DEBLOCKER ERROR INDICATORS

Indicator Routine Description
1 PICKD, PICK, PICKI End-of-file.
2 PICK, PICKI, PICKC Logical unit is not open.

3 PICKD Device is a write-only device.

4 PICKD Buffer area already defined by
previous PICKD or PACKD.

5 PICKD Buffer size too large.
6 PICKD Buffer size too small; inconsistent
with file blocking definition.

7 PICK, PICKI, PICKC Buffer area not defined by PICKD.

9 PICK, PICKI, PICKC Buffer area bas been defined by
PACKD.

10 PICKD, PICKC Cannot perform these functions on
logical unit 63.

11 PICKD, PICK, PICKI, Logical unit invalid (not 1-61)

PICKC
12 PICKD, PICK Irrecoverable I/0 error.
13 PICK Blocker pointer out of bounds;
’ BLOCKER/DEBLOCKER pointers have been
modified.

14 PICK, PICKI Record length = 0.

15 PICKD Not enough memory pool space for job
to run. Resubmit job when resources
are available. '

D-8 17329125 A

-

C

APPENDIX E

MPX/0S ERROR RECOVERY PROCEDURES

The MPX/0S error recovery procedures are dependent upon the device and error

status

codes returned by the device managers.

The recovery techniques

employed for each error status code and associated devices are described in
the following paragraphs.

Busy = Bit 31 set and no other error bits set.

All Devices

The request is retried periodically until the associated device manager
generates an end of operation.

Not Ready - Bit 31 and 30 set, and not other error bits.

All Devices

The operator is notified via an Informative message and the request is
retried periodically until the operator clears the conditionm.

Data error - Bit 31 and 25 set.
Lost Data = Bit 31 and 23 set.

Mass Storage and Flexible Disk

The request is retried six (6) times.

Magnetic Tape

The following sequence is executed:

1) Backspace
2) Retry operation
3) Repeat 1&2 six times

Read
4) Skip back 3 records 4)
5) Skip 2 records forward 5)
6) Retry operation 6)
7 Repeat 1-6 six times
All others

Write

Backspace
Erase
Repeat 1-5 six times

The operator 1is notified via an Informative message
considered irrecoverable.

17329125 A

and the

error

is

Hardware Error — Bit 31 and 24 set.
All Devices

The operator is notified via an Informative message and the error is
considered irrecoverable.

Address Error - Bit 31 and 22 set.

Mass Storage Only

' The following sequence is executed:

1) Return to zero seek.

2) Retry operation.

3) Repeat 1-2 six (6) times.
Seek Error — Bit 31 and 21 set.

Mass Storage and Flexible Disk Only

The operation is retried six (6) times.
Write Protect Fault - Bit 31 and 27 set.

Mass Storage and Magnetic Tape Only

The operator is notified via an Informative message and the request is
retried periodically until the operator clears the condition.

Feed Failure - Bit 31 and 27 set.

Stacker Full - Bit 31 and 25 set.

Input Tray Empty - Bit 31 and 23 set.
Card Reader Only

The operator is notified via an Informative message and the request is
retried periodically until the operator clears the condition.

Paper Fault - Bit 31 and 21 set.
Printer Only
The operator is notified via an Informative message and the request is
retried periodically until the operator clears the condition.and awaits
response.

End of Tape — Bit 31 and 21 set.

Magnetic Tape Only

The tape is unloaded and the operator is notified via an Informative
message.

E-2 17329125 A

s

C
A

C

APPENDIX F

MASS STORAGE DEVICES
CONTROL DATA 9425 CARTRIDGE DISK DRIVE
The Control Data 9425 Cartridge Disk Drive contains a removable and a

nonremovable device. Each device must contain a device label. The two
devices have the following identical characteristics:

" Sector size 100 words
Track size 16 sectors ,
Number of tracks 408 tracks -
Allocation unit size 1 track
Capacity 652,800 words
Cylinder size 2 tracks

CONTROL DATA 844 DISK STORAGE UNILT

The Control Data 844 Disk Storage Unit contains one removable device. Each
device has the following characterics:
Sector size 120 words
Track size 24 sectors
Number of tracks 7,806 tracks
Allocation unit size 80 sectors
Capacity 22,483,200 words
Cylinder size 19 tracks
CONTROL DATA 9427 CARTRIDGE DISK'DRIVE
The Control Data 9427 Cartridge Disk Drive contains a removable and

nonremovable device.

Each device must contain a device label. The two

devices have the following identical characteristics:

Sector size 100 words
Track size 16 sectors
Number of tracks 816 tracks
Allocation unit size 1 track
Capacity 1,305,600 words
Cylinder size 2 tracks

CONTROL DATA 9760 DISK UNIT

The Control Data 9760 Disk Unit contains one removable device.

has the following characteristics:

Each device

Sector size 128 words
Track size 32 sectors
Number of tracks 2,055 tracks
Allocation unit size 1 track
Capacity 8,417,280 words
Cylinder size 5 tracks

17329125 A

CONTROL DATA 9762 DISK UNLT

The Control Data 9762 Disk Unit contains one removable device. Each device
has the following characteristics:

Sector size 128 words
Track size 32 sectors
Number of tracks 4,110 tracks
Allocation unit size 2 tracks
Capacity 16,834,560 words
Cylinder size 10 tracks

CONTROL DATA 1867-1 DISK STORAGE UNIT

The Control Data 1867-1 Disk Storage Unit contalns one removable device.
Each device has the following characteristics:

Sector size 48 words (192 bytes)
Track size 64 sectors

Number of tracks 2,020 tracks

Allocation unit size 16 tracks (768 words)
Capacity 6,205,440 words

Cylinder size 5 tracks

CONTROL DATA 1867-2 DISK STORAGE UNIT

The Control Data 1867-2 Disk Storage Unit contains. one removable device.
Each device has the following characteristics:

Sector size 48 words (192 bytes)
Track size . 64 sectors

Number of tracks 4,040 tracks

Allocation unit size 16 tracks (768 words)
Capacity 12,410,880 words

Cylinder size 5 tracks

F-2 17329125 A

~

C

®

C

APPENDIX G

MASS STORAGE LABELS

Two types of labels are associated with mass storage; the device label,
which defines a physical disk pack (fixed or removable), and the file label,
which defines files on mass storage devices. Labels can be listed in
various formats by the FMP utility program. These labels are shown on the
following pages.

17329125 A G-1

DEVICE LABEL

Word

DEVICE IDENT

2 : LBLLSL

5 CHECKSUM

DEVICE STORAGE ALLOCATION MAP ~»

79

Words 6 through 79 contain a bit mapping of allocation units on the device
and represent units O through 2304 of the device. The size of an allocation
unit 1is device dependent (see appendix F for mass storage device
characteristics). A bit set to 1 indicates the corresponding allocation
unit is assigned. A bit set to O indicates the allocation unit is available.

G-2 ; 17329125 A

AN

©

C

FIELD DESCRIPTIONS
DEVICE IDENT
LBLLSL

LBLBS

CHECKSUM

17329125 A

16 bits

32 bits

Description

Identity of the device pack.

Sector address of the beginning of
the label file {(only appears on the
primary system device, disk unit 0).

Block size, in words, of the label
file.

Binary checksum of the entire device
label.

FILE LABEL a

Word
0 3
0
1 FILE NAME
2 16
3 | EDITION
4 ' OWNER
5 ACCESS KEY
6 SPARE
7 CHECKSUM
8 CREATION DATE MMDDYY00
9 LAST DATE ACCESSED MMDDYY00
10 LAST FMP DUMP DATE MMDDYY00
11 SPARE
12 §
13 w
14 7 8 15 16
15 sC P LBN
16 NAB NHRPB
17 BS NBN
18 DT DC : BC
19 DEVICE IDENT
20 11 12
21 E| LSL
22 SL
23
A &
- o
99
A
R

G-4 17329125 A

(FIELD DESCRIPTIONS
Field Name

FILE NAME
EDITION NO.

OWNER
ACCESS KEY

CHECKSUM

CREATION DATE
LAST DATE ACCESSED
LAST FMP DUMP DATE
SC

P

NAB

NHRPB
BS

NBN

C

17329125 A

[72]
[
N
o

14

351

bytes

bytes

bytes
bytes

bytes

bytes
bytes
bytes
byte
bits

bits

bytes

bytes

bytes
bytes

bytes

Description

Identifies the file and is used in
file manager references to the file.

Parameter to identify different

versions of the same file.
Identity of the owner of a file.
Controls access to the file.

32-bit binary checksum of the entire
device label.

Each byte represents binary value.
Each byte represents binary value.
Each byte represents binary value.
Number of segments in the file.
Security level of file.

Protection flag wused by the I/0

system:

= 0, file is read or write.
1, file is read only.

Block number of the

label 1in the
label file. '

Number of blocks allocated to the

file.
Number of sectors per block.
Block size; number of words per block.

Next block number; next block number
to read from or to be written into.

Field Name Size

DT 1 byte
DC 1 byte
BC 2bbytes
DEVICE IDENT * 2 words
E 1 bit
LSL ** 20 bits
SL ** 20 bits
NOTE:

one file.

* Repeated for each device.
*% Repeated for each segment on device.

Description

8-bit code to indicate the type of
mass storage device containing the
file: :

=1, 9425
= 2, 844
= 3, 9427
= 4, 1867-1
=5, 1867-2

Number of devices on which the file
resides.

Highest block written.
Identity of the device containing the
segment map following the device

identification.

Flag to indicate end of device map; 1
= end of device segments.

Lower sector .address; sector address
at which this segment begins.

Segment length; number of sectors in
this segment.

A maximum of eight devices and/or 38 segments may be specified for

17329125 A

() APPENDIX H

PROGRAMMING CONVENTIONS
REGISTER NAMING CONVENTIONS
Operand/index registers used in coding examples in this document are given

symbolic names as specified below. These symbolic symbols are preequated by
the COMPASS assembler.

Name Register Name Register
X0 0 RO 16
X1 1 R1 17
X2 2 R2 18
X3 3 R3 19
X4 4 R4 20
X5 5 R5 21
X6 6 R6 22
X7 7 R7 23
X8 8 R8 24
X9 9 R9 25
10 10 RA 245
H1 11 RB 27
H2 - 12 RC 28
H3 13 RD 29
H4 14 RE 30
H5 15 RF 31

FORTRAN CALLING SEQUENCE CONVENTIONS

The calling sequence generated by FORTRAN for external subroutines and
functions is as follows:

RTJ name

uJP *int+l (n = number of parameters)
NOP apl (ap = actual parameter addres)
NOP ap2

NOP apn

Function subprograms expect the results to be returned in register RE
(single-precision result) or registers RE and RF (double precision results).

17329125 A H-1

Y

APPENDIX I

HARDWARE /DEVICE CODES

The information returned in PARM for the UST, MUST and STATUS ESRs 1is as
follows:

0 21 31

PARM ' PARM +0
FORMAT UNIT STATUS

EXPANDED STATUS +1

The unit status for each device is as follows:
Dummy

No error bits or status used.

Files

31 Reject -- Always set when an error occurs. When no other error
bits are set and this bit is set then the device is busy.

30 Not Ready -- When this big_;nd bit 31 and set, the mass storage
device is in a not ready condition.

29 End of File —— When this bit and bit 31 are set, an attempt was
made to read beyond the end of the file.

28 Transmission Mode —= After a data transfer this bit is one.

27 End of Device == When this bit and bit 31 are set a transfer
beyond the highest available sector was attempted.

26 End of Allocated Blocks —-— When this bit and bit 31 are set a
write beyond the highest allocated block was attempted and the
file requires expansion.

25 Data Error -— When this bit and bit 31 are set a data error was
encountered.

24 Hardware Error -- When this bit and bit 31 are set a hardware
condition was encountered.

23 Lost Data --— When this bit and bit 31 are set a lost data

condition was encountered.

17329125 A : I-1

Files (Contd)

22

21

Pipes

31

30

29

28

27-26

25

Address Error —-- When this bit and bit 31 are set a sector
address error was encountered. '

Seek Error -— When this bit and bit 31 are set a seek error was
encountered.
Reject =—- Always set when an error occurs. When no other error

bits are set and this bit is set, the device is busy.

Not Ready —-- When this bit and bit 31 are set, the pipe has been
disconnected.

End of File -- When this bit and bit 31 are set, an attempt was
made to read beyond the end of the data.

Transmission Mode —— After a data transfer, this bit is set.

Not used.
Data Error -- When this bit and bit 31 are set, a data error was

- encounterad.

Interactive and Communication Network

I-2

31

30

29
28~27
26
25
24

23

22

21

Re ject -- Always set when an error occurs. When no other error
bits are set and this bit is set, the device is busy.

Not Ready -- When this bit and bit 31 are set, the terminal
connection was lost.

Data fills buffer (transparent mode only).

Not used.

Checksum Error (transparent‘modg only).

Character Parity Error (transparent mode only).

Not used.

Lost data since last read. MPX was forced to diécard the data as
the linked task had not requested any data. The data returned is

valid and Bit 31 is not set as a result of this status.

BREAK was detected.

Framing error was detected (transparent mode only).

17329125 A

o

C

Expanded Status —-— If no error conditions are set, then Expanded Status
will contain the following:

After READ opeation = Number of characters received.
After WRITE operation = Number of characters not transmitted.

1867 SMD/MMD

31

30

29

28

27

26

25

24

23

22

21

1833-5 FDD

31

30

29

28

17329125 A

Reject —-- Always set when an error occurs. When no other error
bits are set and this bit is set, the device is busy. .

Not Ready —-— When this bit and bit 31 are set, the mass storage
device is in a not ready condition.

Not used.

Transmission Mode -- After a data transfer this bit 1is set.
After a UINT instruction only, this bit 1is set when an
unsolicited interrupt occurs.

Write Protect Fault -- When this bit and bit 31 are set, a write
to a protected unit was attempted.

Not used.

Data Error -- When this bit and bit 31 are set, a data error was
encountered.

Hardware Error -- When this bit and bit 31 are set, a hardware
error condition was encountered.

——

Lost Data =-- When this bit and bit 31 are set, a lost data
condition was encountered.

Address Error =-— When this bit and bit 31 are set, a sector
address error was encountered.

Seek Error -—- When this bit and bit 31 are set, a seek error was
encountered.

Reject -- Always set when an error occurs. When no other error
bits are set and this bit is set, the device is busy.

Not Ready -- When this bit and bit 31 are set, the device is in a
not ready condition.

Not used.
Transmission Mode =-- After a data transfer this bit 1is set.

After a UINT request, only this bit 1is set to indicate an
unsolicited interrupt occurrence.

I-3

1833-5 FDD (Contd)

26-27

25

24

23

22

21

Not used.

Data Error -- When this bit and bit 31 are set, a data error was
encountered.

Hardware Error -- When this bit and bit 31 are set, a bardware
error condition was encountered. :

Lost Data =-- When this bit and bit 31 are set, a lost data
condition was encountered.

Not used.

Seek Error —— When this bit and bit 31 are set, a seek error was
encountered.

1829 Reader

I-4

31

30

29

28

27

26

25

24

23

21-22

31

Reject —— Always set when an error occurs. When no other error
bits are set and this bit is set, the device is busy.

Not Ready -- When this bit and bit 31 are set, the device is in a
not ready condition.

End of File -- When this bit and bit 31 are set, a card with a 7
and 8 punch in the first column was read.

Transmission Mode -- After a data transfer, tbis bit is set to
indicate the type of card (0 - ASCII, 1 - Binary).

Feed Failure —-- When tbis bit and bit 31 are set, a card failed
to feed through the read station. The card reader also goes not
ready.

Not used.

Data Error -- When this bit and bit 31 are set, a data error was
encountered.

Hardware Error —-- When this bit and bit 31 are set, a hardware
error condition was encountered.

Input Tray Empty —-- When tbis bit and bit 31 are set, the input
hopper is empty, the card reader is not ready, and no card was
read.

Not used.

Reject =-— Always set when an error occurs. When no other error
bits. are set and this bit is set, the device is busy.

17329125 A

C

1827 Printer

30

29
28
26-27

25

24

22-23

21

1860-4 Tape

31

2

30

29

nD
o

26

25

24

23

22

17329125 A

Not Ready =-- When this bit and bit 31 are set, the device is in a
not ready condition.

Not used.
Transmission Mode == After a data transfer this bit is zero.
Not used.

Data Error -— When this bit and bit 31 are set, a data error was
encountered.

Hardware "Error =-— When this bit and bit 31 are set, a hardware
error condition was encountered.

Not used.

Paper Fault =- When this bit and bit 31 are set, the printer is
out of npaper and not ready.

21act == alwavs set when an error occurs. - When no other ervor
bits are set and this bit is set, the device is busy.

Not Ready -- When this bit and bit 31 are set, the device is in a
not ready condition.

End of File == when this bit and bit 31 are set, read or write of
a tape mark occurred, ’

Transmission Mode -- after a data transfer this bit is set.

Write Protect Fault —- when this bit and bit 31 are set, a write
to a protected unit was attempted.

Not used.

Data Error -—- when this bit and bit 31 are set, a data error was
encountered.

Hardware Error -- when this bit and bit 31 are set, a hardware
error condition was encountered.

Lost Data =-- when this bit and bit 31 are set, a lost data
condition was encountered.

Load Point -- when this bit is set, the tape unit is resting at
load point.

I-5

1860-4 Tape (Contd)

21 End of Tape -- when tbis bit and bit 31 are set, the End of Tape
foil was encountered.

2558-3 Coupler

31 Reject -- Always set when an error occurs. When no other error
bits are set and this bit is set, the device is busy.

30 Not Ready -- When this bit and bit 31 are set, the switch on the
coupler card is switched in the off line position.

29 End of file -- When this bit and bit 31 are set, an end of file
condition was sensed.

28 Transmission Mode —-- After a data transfer, this bit is set to
indicate the mode of the data transfer (0 - ASCII, 1 - Binary).

27 End of Record =-- When this bit and bit 31 are set, an end of
record was encountered. '

26 Not used.

25 Data Error -- When thbis bit and bit 31 are set, a data error was
encountered.

24 Hardware Error -- When this bit and bit 31 are set, a bhardware

error condition was encountered.

23 Not used.
22 Not used.
21 Not used.
Local CRT
| 31 Reject -- Always set when an error occurs. When no other error

bits are set and this bit is set, the device is busy.

21-30 Not used —— The status information is contained in the Peripberal
Information Table (PIT).

BCLA/MUX

31 Reject -— Always set when an error occurs. When no other error
bits are set and this bit is set, the device is busy.

21-30 Not used. The status information is contained in the PIT,
If no error conditions are set, then the Expanded Status will contain

the number of bytes not transferred; otherwise the Expanded Status will
contain further delineation of the error condition.

I-6 17329125 A

MPCLA

AN
‘:j/ 31 Reject =-- Always set when an error occurs. When no other error
bits are set and this bit is set, the device is busy.

21-30 Not used. The status information is contained in the PIT.
If no error conditions are set, then the Expanded Status will contain

the number of bytes not transferred; otherwise the Expanded Status will
contain further delineation of the error condition.

C

17329125 A ‘ I-7

The MODE parameter in the SELECT ESR is defined for the 1829 card reader as
follows: .

30 31

0, Select 026 Hollerith conversion mode
1, Select 029 Hollerith conversion mode
2, Select ASD Hollerith conversion mode

=
wu

The MODE parameter in the SELECT ESR is defined for the 1827 line printer as
follows:

30 31

M = 0, Select 96 ASCII character set
1, Select 64 ASCII character set or fold 96 into 64 ASCII
- character set

The MODE parameter in the SELECT ESR is defined for the 1860-4 magnetic tape
as- follows:

31

M

0, Select 1600 B.P.I. recording density.
1, Select 800 B.P.I. recording density.
2, Select 556 B.P,I. recording density.
3, Select 200 B.P.I. recording density.

I-8 17329125 A

The CODE parameter in the FUNC ESR is defined for the Local CRT, BCLA, and

(me MPCLA as follows:

0 15 16 31

SUB-FUNCTION PARAMETER

Sub—-function

0 Define Peripheral Interface Table (PIT), the parameter specifies
the first word address of the PIT.

1 Read address in PIT, the parameter specifies the port.

2 Write buffer address in PIT, the parameter specifies the port.
3 Port Setup in PIT, the parameter specifies the port.

4 ‘ Clear a port, the parameter specifies the port.

The Peripheral Interface Table (PIT) is used to communicated port (unit)
information to the device manager. The PIT contains an entry for each port

‘:?\ or unit and an entry has the following format:
- 0 1 2 _16 31
0 BYTE COUNT BUFFER ADR/STATUS +0
0 BYTE COUNT BUFFER ADR/STATUS +1
PORT SETUP +2
FLAGS +3
Word Bits Definition
0 0 ' Control bit (0=system, l-device manager). -
2-13 Number of bytes not used in received buffer.

14=31 Receive buffer first byte address.
16-31 Status (see below).

1 0 Control bit (0=system, l=device manager).
2-13 Number of bytes not transmitted.
14-31 Transmit buffer first byte address.
15-31 Status (see below).
2 Port/Unit setup information (see below).
3 Flags usable by Device Manager.

0»

17329125 A I-9

The status field in the PIT bhas the

following definitiomns

for the associated

device:
1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
6 7 8 9 0 1 2 3 4 5 6.7 8 9 0 1
LOCAL CRT L H R
BCLA
MPCLA X R
Bit Definition
21 Framing error.
22 Break detected.
23 Overrun/Underrun.
24 Hardware Error.
25 Parity Error.
26 Checksum error.
27 Carrier not on.
30 Data set not ready.
31 Error flag.
The port setup £field in the PIT has the following definitions £for the
associated device:
BCLA Port Setup (Asynchronous)
0 16 24
! SB] PM' CL‘I O' BRS MODE | Primary TCHAR |Secondary TCHARl
R I U O I
MPCLA Port Setup (Asynchronous)
0 16 24
‘ SB‘ PMI CL{1 O| BRS ‘ TYPE { Primary TCHAR [Secondary TCHARl
R T T O e I
MPCLA Port Setup (Synchronous)
0 16 24
ISY"PM CL'O Cl BRS TYPE SYNC 1 SYNC 2 l
O < T I O I O O A I O
I-10 17329125 A

BRS - Baud Rate

0000

“ 0001
(i:)' 0010
0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

MODE

XXX0 - Echoplex off (half)
XXX1 - Echoplex on (full)

C

SB

00
01
10
11

CL

00
10
01
11

Stop b

invali
One st
1.5 St

its

d
op bit
op bits

2 Stop bits

Character Length

5 bits
6 bits
7 bits
8 bits

CX - clock control

00 -
01 -
10 -
11 -

sY -

00 -
o1 -
10 -
11 -

Parity Mode

No Parity
0dd Parity
No Parity
Even Parity

Sync type

One Sync character
Two Sync characters
Reserved

External Sync

0 - internal clock generator
1 - external clock signal

17329125 A

Asvynce
50 BPS
75

110
134.5
150
300
600

1200

1800

2000

2400

3600

4800

7200

9600

19200

Select

(CX=0)

Sync
800
1200
1760
2152
2400
4800
9600
19200
24743
31916
38400
57825
76800

BPS

.0
.8

08

114306

15360
30720

0
0

I-11

TYPE

0 - Debug mode
1
2 - AWN
3 - NEDN
4 = Mode 4A
5 - NMC
6 - ID-50
7-15 - Reserved

- Diagnostic mode (transparent)

Primary TCHAR - primary termination character
Secondary TCHAR - secondary termination character

SYNC1 & SYNC2 - two possible SYNC characters that are used when SY = 0 or 1.

For AWN PROTOCOL Only:

I-12

SYNC1 FIELD:

SYNC2 FIELD:

01
02
01
02

Selects Receive SYNC pattern 7106
Selects Receive SYNC pattern 0606
Selects Transmit SYNC pattern 7106
Selects Transmit SYNC pattern 0606

17329125 A

Ul

C

There exist

APPENDIX J

DEVICE ASSIGNMENT AREAS

three DEVICE ASSIGNMENT AREA (DAA) descriptions, each 'to be used

for the assignment of a different category of hardware types as follows:

DAA1 - Unit Record
DAA2 ~ - Data Pipe
DAA3 - Interactive Terminal
DAAl, Unit Record Device Assignment Area
0 ' 31
DAA+Q
DID o
Paramet er Description
DID Device Identification (ASCII) as given in appendix K

17329125 A

Valid Hardware types. If DID is set to -1, the
default device-will be the first available device of
the type specified.

DAA2, Data Pipe Device Assignment Area

0 31
PN
DIR
Parameter ' Description
PN Pipe Name (ASCII, left justified, blank fill)
DIR Data Direction
0 = Outbound

1 = Inbound

17329125 A

DAA3, Interactive Terminal Device Assignment Area

% 01

23 24 31
DAA +0
LN +1
I PORT *2
+3
EM +4
M +5
USER NAME -6 -
CLASS +7
Parameter Description
LN Linkage name (ASCII, left justified, blank filled).
I Immediate Connection Flag as follows:
I=0, connect when requested by terminal
I=1, immediate connection
A Any Port Flag as follows:

(:) PORT
e

EM

M

C

17329125 A

A=0, port selection desired
A=1, any port; the PORT parameter is ignored.

Port number, a 16-bit field specifying a system port
number 0-256. Legal port numbers are determined at
System Installation. Port O 1is always the port
number for the console on the master CPY.

Exclusion Mask

The Exclusion Mask (EM) 1limits the port being
requested by excluding ports for which specified
bits are set in the PORT and USER validation masks.
The PORT and USER validation masks are ANDed to form
a single validation mask (VM). If EM .AND. VM = 0,
a port will be considered for assignment. A
description of the PORT/USER Validation mask is
given in the Interactive Terminal Subsystem User's
Manual.

Inclusion Mask

The 1Inclusion Mask (IM) 1limits the port being
requested by accepting only those ports for which
specified bits are set in the PORT or USER
validation mask. The PORT and USER validation masks
are ANDed to form a single validation mask (VM). If
IM .AND. .NOT. VM = 0, a port will be considered for

USER NAME

CLASS

Unmanned Classes:

Manned Classes:

assignment. A descrlptlon of the PORT/USER
validation mask is given in the Interactive Terminal
Subsystem User's Manual.

User Name, an 8 ASCII character identifier. An
ASCII NUL character in any character position
indicates that a match is not required in that
position. ‘

Terminal Class Mask. The class mask limits port
selection according to the following equation:
.NOT. Class Mask .AND. 2**(CLASS-1) = 0. If a port
fails this equation, it cannot be selected.
Terminal classes are defined as follows:

Mode &4 Line (200UT)

X.25 Packet Network line
CPU-CPU Async Protocal (undefined)
Undefined

Undefined

Awn Network Line
Neds Network Line

MMC Network Line

ID50 Network Line

10 Undefined
11 200UT Card reader (RBTMGR)

12 200UT Line printer (RBTMGR)

13 Output only port (RO terminal)
14 Input only terminal (CR)

.15 Undefined

WO B & W

16 Generic — Glass Teletype
17 Generic = Printing Terminal

18 ¢DC 751
19 CDC 752
20 CDC 756

21 Undefined

22 Undefined

23 200UT CONSOLE

24 X.25 Packet Assembly/Dlsassembly
25 Cyber Virtual Terminal

If Class Mask = 0, any class may be selected.

17329125 A

A
|-

O APPENDIX K

VALID HARDWARE TYPES

The valid bardware types which can be requested with the DEVICEQ ESR and the
EQUIP control request or returned by the UTYP ESR are as follows:

Device
Identification Type Description
* MEM 0 Memory
* DP - 1 Disk
MT9 2 Nine Track Tape
* CR 3 Card Reader
* CP 4 Card Punch
* LP 5 Line Printer
* PR 5 Line Printer
* CRT 6 Reyboard Display
TT 7 Teletype
CT 3 Cartridge Tape
PLT 9 Plotter
FDD 10 Flexible Disc Drive
CCcC 11 CYBER Coupler
MT7 12 7-Track Tape
. IT 13 Interactive Terminal
(Cj) * RBT 14 Remote Batch Terminal
CN 15 Communication Network
PI 16 Data Pipe
* MUX 17 BCLA/MUX
* SMX 18 MPCLA
* CPF 19 OPF Pseudo device

* These hardware types are available only to Operating System Tasks; they
cannot be assigned to a User Task.

C

17329125 A R-1

o
_ .«‘/‘

7

‘iij APPENDIX L

ESR AND DEVICE CROSS REFERENCE CHART

The following chart cross references ESRs and devices; ESRs not in the chart
are legal on all devices.

F R R W W S

0 E E R R E E
R A A I I B RPFRUL S U UWD
M D DT UL K A UEEUETLNETI
A 'L DL D S S NWICO OUL O A
T U §s U s P E C D TV F C D F G

Logical Devices
Dummy N N NN NNNNINWDNINNNDNNN
Data Pipes I I I I N
Files I I I I I I I N
Interactive 1 I I I I I I I I I I N
Com. Network ‘ I I "I I 1 1 1 I I I I N
Physical Devices
C 1867 SMD/MMD I I I I I I I I N
- 1833-5 FDD I L I I I I I N
1829 CARD READER I I T I I I I I 1 I N
1827 PRINTER I I I I N I I N I I I N
1860~-4 MAG TAPE I I I I N L N
2558-3 COUPLER I I I I N
LOCAL CRT I 1 I I I I I I I I I N
BCLA/MUX I 1 I 1 1 I I I I 1T I I N
MPCLA I I I I I I ; I I N
I = ILLEGAL N = NULL BLANK = LEGAL

C

17329125 A L-1

-

®

COMMENT SHEET

TITLE: MP-60 MPX/0S
Version 3 Reference Manual
PUBLICATION NUMBER: 17329125 REVISION: A
NAME :
COMPANY:
STREET ADDRESS:
CITY: STATE: ZIP CODE:
Control Data Corporation welcomes your evaluation of this manual. Please

indicate any errors, suggested additions or deletions, or general comments
below (please include page number references). ‘

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAPE TAPE
FOLD FOLD
. NO POSTAGE
. NECESSARY
IF MAILED
IN THE
:) UNITED STATES
o]
BUSINESS REPLY MAIL S —
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]
]
POSTAGE WILL BE PAID BY I
CONTROL DATA CORPORATION —
Systems Technology Division
. . L]
215 Moffett Park Drive :
Sunnyvale, California 94086 R
]
TR
]
L]
FOLD FOLD

CUT ALONG LINE

9

