14122000
August 1980
PRELIMINARY
AN/AYK-14(V) INSTRUCTION SET

PROGRAMMER'S REFERENCE MANUAL

Standard Airborne Computer Set

AN/AYK=-14(V)

CONTRACT: NOOOl9-76-C-0697, Item 0017

CDRL Sequence Number J00OD

Prepared For:
DEPARTMENT OF THE NAVY
Naval Air Systems Command

Washington, D.C.

Prepared By:

CONTROL DATA CORPORATION
Aerospace Division
3101 East 80th Street
P.0O. Box 609
Minneapolis, Minnesota 55440

(Doc Nos 03844, 0386a, 03994, 05114, O513A, 0517A 0565A)
(Disk Nos 00654, 0069A, 0070A, 0076A, 0078A C1004)

REVISION RECORD

.. . .. : Change
Revision Description Authority
W_%
6-1-77 Preliminary edition .
5-15-78 Preliminary edition - Revised
8-1-80

Preliminary edition - Revised by Navy Comment

Letter 944:RJD:be 10550 Dated July 3, 1979

AA 680! 12/78
PRINTED IN U.S.A.

ii

REVISION LETTERS I, 0, Q AND X ARE NOT USED

ii

14122000

New features, as well as changes, deietions, and additions to information in this manual, are

near the page number If the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

LIST OF EFFECTIVE PAGES

\

indicated by bars in the margins or by a dot

Page

Rev.

Page

Rev.

Page

Rev.

Page

Rev.

1-1
2-1
3-1
4-1
5-1
6-1
7-1
8-1
9-1

Title Page
i

iii/iv

v - xii

- 1-13/1-14
- 2-16
3-13/3-14
4-10
5-7/5-8

- 6-4

- 7-10

- 8-40
9-9/9-10

10-1 - 10-103/

10-104

A-1 - A-244
B-1 - B9/B10
C-1- C-6

AA 6799 12/78
PRINTED IN U.S.A.

14122000

iii/iv

Section

1

2

14122000

CONTENTS

GENERAL DESCRIPTION . ¢ &« « ¢ o o o o o o o &

Features Of the AN/AYK-IL‘(V) [. -
CharacteristiCs .« ¢ ¢ o o o ¢ o o o o o

Processing Subsystem . ¢« ¢« ¢ & ¢ ¢ o
Intermodule Communication . « . « . .
Memory Subsystem . . ¢ ¢« ¢ ¢ o ¢ o o &
I/O Subsystem . « « ¢« ¢ ¢ o ¢ o o « o &
Power Subsystem « « « o« o « o o ¢ o o
Chassis Subsystem « « ¢« o ¢« ¢ o & o o
Environment e o o o s o e o
Configuration Capablllty c s s o o o @

ARCHITECTURE ¢ & ¢ & o o o o o o ¢ o o o o @
Functional Organization . « « ¢ ¢ & « o &
Memory Architecture . . « ¢« ¢ ¢« & ¢ o &

Memory Interfaces . o ¢ « o o ¢ o o

Direct Memory Access (DMA) Capability

Memory AddressSing .« « o« « « o« o o o
Memory Parity .« o ¢ o ¢ ¢ o o o o &
Memory Protection . « ¢ o ¢ o o &
Assigned Memory Addreses . .« « « o o
Read=-Only Memory (ROM) « « « « « « &

CPU Architecture . « ¢« o ¢ o & o o 4 o

General Registers . . . « « . « .« &
Program Address Register

. s

Real-Time Clock (RTC) and Monitor (MON)

Clock Features « « ¢« o o ¢ o ¢ ¢ o @
Power Failure and Thermal‘Protection
Status Registers . « ¢« ¢« « ¢« ¢« o « &

MOdUJ.at‘ity e o o o o o o o o 3 e e o o o o

General Processor Module (GPM) . . . &
Processor Support Module (PSM)
Extended Arithmetic Unit (EAU)
Input /Output Processor (IOP) . « « + &«
I/OModules v « « o o o ¢ o o o o o o @

Discrete Interface Module (DIM) . .
Serial Interface Module (SIM) . . .
NTDS Interface Modules (NIM)
RS~-232-C Interface Module (RIM) . .
PROTEUS Interface Module (PIM) . . .

Feature

Page

] [
[e NV ;]

\ NNf.\)t\)l\)

O W 0 oI -~ On

CONTENTS (Cont.)
Section

PIC/POC/SOC Module (PPSM)
Discrete Input/Cutput Module (DIOM)

Bus Extender Module (BEM)
Memory Modules

Memory Control Module (MCM)
Core Memory Module (CMM)
Semiconductor Memory Module (SMM) .
Read/Write Expandable Module (RXM) .

Power Converter Module (PCM)
operation - - L] - * [2 L 4 L d L] L] * . [] ® L]

3 INSTRUCTION, DATA, AND ADDRESSING FORMATS WITH

ADDRESSING MODES ® % & 2 s e @ ¢ ¢ s e e e

Instruction Formats « o o
Data Formats o e o « @
Addressing Formats . « . . « . o
Arithmetic Instructions o o

Integel" Al“i thmetic ® & & & o & o e e o

“ REGISTERS AND CLOCKS - o e e o o o . e e . ."

Genet’al Registel‘s L] . . .
Status Registers

Status Register
Status Register

N =
.
.
.
)
.
.
.
.
.
.
.

Breakpoint Registers e o o o o
Program Address Register
AN/AYK-l l’ (V) ClOCkS . [3 . a . : .) - . . -

Heal—Time ClOCk ® & e o @ o e ¢ s e o o
Monitor Clock v
BUilt-In-TeSt Counter ® e ¢ o o e o o o

5 MEMORY . e °o e o *« ® o L] v o « o o o * e a .

Memory Subsystem « o
Interleaving « v « . o . . . e o

Word Interleaving . . « o v v v o
Bank Interleaving

vi

14122000

Page

2-13

2-13
2-13

2-13
2-14
2-14
2-14

2-14
2-15

CONTENTS (Cont.)
Section

RXM Addressing « « +« ¢ o ¢ o ¢ o o o o o o &
Bootstrap ROM Addressing « « « « o« o« « o o
Memory Interlock « « « « ¢ o o ¢ o « o o o &
Paging « « o ¢ ¢ ¢ ¢ ¢ o 4 4 4 4 6 e e e e

Paging Technique . . . ¢« ¢ ¢ ¢« ¢ o« & « &
Page Register 0 o o« o« v ¢ ¢ ¢ ¢ o o o o
Memory Protection . « ¢« ¢« ¢« ¢ ¢ ¢ ¢ ¢ o &
Page Modification Indicator

Cautions on Memory Prd%ection « s s e o o
6 COMPUTER SUPPORT EQUIPMENT .+ ¢ ¢ ¢ o « o o o &

Computer Support Functions . « ¢ o « o o o &
Support Channel Operations .« « « o« « « « o &

7 STACK AND QUEUE INSTRUCTIONS . & & ¢ v o o « &
List Processing Instructions

Stack Instructions .« « ¢« ¢ ¢ ¢ ¢ o ¢ o o
Queue InS tructions * e o e e o o e ° e o

8 INSTRUCTION DESCRIPTIONS v v ¢ ¢ o o o o o o
General .« ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o o o o

Mnemonic Conventions . « ¢ ¢ ¢ o o o & &
Double Precision . o ¢ « ¢ o o ¢ o o o «

Repertoire of Instructions . « « « « o o . .

Load Instructions . « « « &« ¢ ¢ ¢ o ¢ o &
Store Instructions . ¢« ¢« ¢ ¢ ¢ ¢ o o o
Arithmetic Instructions . « « . ¢« ¢« « o .
Logical Instructions . « « ¢« o o ¢ o o &
Compare Instruetions . .« ¢ ¢ ¢ o o o o o«
Shift Instructions . ¢« ¢« ¢« ¢ ¢ ¢ o & o &
Jump Instructions (Unconditional)
Jump Instructions (Conditional)
Power-Out-of-Tolerance Jump Instructions
Miscellaneous Instructions . . . « ¢« . .

9 INTERRUPTS L4 L e L . . . L . L] L] . . L3

Interrupt Processing « « « « « « o o o« o o &
Class I Interrupts « « « ¢« o o o o s o o o
Class II InterruptS .+ « ¢ o ¢ o o o o o o o
Class III Interrupts . « « o ¢ « « o o o o &

14122000

8-1

vii

Section

10

viti

CONTENTS (Cont.

I/0 CHANNEL OPERATIONS « « « « . . .
General . . ¢ v v 4 4 o 4 o o o .

Control Memory . . . &« +o & o .

Processor to I/0 Channel Communication

Serial Interface Module

Message Formats
Word Formats .« ¢ o « o o & o &
Control Memory Definition . . .
SIM-I1/0 Channel Instructions .
SIM Interrupt Handling

)

SIM Programming Considerations in
SIM Programming Considerations in

Discrete Interface Module

Word Formats « . « « « & & o .
Control Memory Definition . . .
DIM I/0 Channel Instructions .
Message Formats
DIM Interrupt Handling

NTDS Interface Modules

Control Memory Definition . . .
Message Formats (16-Bit Channel)
Message Formats (32-Bit Channel)
NIM I/0 Channel Instructions .
NIM Interrupt Handling

Programming Considerations (16-Blt Mode)
Programming Considerations (32-Bit Mode)

*

]

*

.

BC Mode
RT Mode

(3

3

.

Programming Considerations (Serial Channel)

RS-232-C Interface Module

Data Formats . « ¢ « ¢ o o o &
Message Formats
Control Memory Definition . . .
RIM I/0 Channel Instructions .
RIM Interrupt Handling . . .

Programming Considerations (Async)

.

Programming Considerations (Sync) .

PROTEUS Interface Module

Channel Formats
Channel Sequences
Control Memory Definition . . .

Page
. 10-1
. lo-l
. lo-l
. 10-5
. 10-7
- 10-8
. 10-10
. 10-10
. 10-21
. 10-22
. 10-22
. 10-24
. 10-30
. 10-30
. 10-38
. 10-46
. 10-52
. 10-54
. 10-60
. 10-63
14122C00

Section

APPENDIX A

APPENDIX B

APPENDIX C

14122000

CONTENTS (Cont.)

PIM I/0 Channel Instructions
PIM Interrupt Handling . .
Programming Considerations

PIC/POC/SOC Module

Message Formats
Control Memory Definition .

PPSM 1/0 Channel Instructions

PIC/POC Interrupt Handling
SOC Interrupt Handling . .

Discrete Input/Cutput Module .
Word Formats . « « « o « &

Control Memory Definition .
DIOM Channel Instructions .

DIOM Interrupt Handling

DIOM Programming Considerations .

Page

10-68
10-70
10-T4

10-76

10-77
10-78
10-82
10-85
10-88

-10-88

10-88
10-89
10-94
10-97
10-100

INSTRUCTION REPERTOIRE AND INSTRUCTION EXECUTION TIMES

GENERAL REFERENCE TABLES

PSEUDO-OPS, COMMANDS, AND REQUESTS

ix

Figure

—
oo
w N -

[3

l\)f.\)l\)'\)
EFw -

wwwt‘aww
AU W

g
I
N =

(S)]
1 1
AV

ILLUSTRATIONS

AN/AYK-14(V) System Elements . .
Minimum Configuration
Expanded Configuration

NTDS Slow, Fast, and ANEW Channel
NTDS Serial Channel Interface and
RS-232-C Serial Channel Interface
PROTEUS Channel Pair

Instruction Formats . « « .+ ¢ o .
Operand Formation
Indirect Addressing Schemes . . .

"Integer Arithmetic Formats . . .

Overflow and Carry Indications .
Floating-Point Format

Status Register Number 1 Format .
Status Register Number 2 Format .

Bootstrap ROM Addressing
Memory Address Generations . . .

Example of a Stack . « ¢ ¢ o .« .
Example of an SPT Operation . . .
Example of an SGT Operation . . .
Example of a Queue
Example of a QPT Operation . . .
Example of a QPB Operation . . .
Example of a QGT Operation . . .

I/0 Chain Program Initiation . .
I/0 Chain Program Operation . . .

Interface . .
Message Format

SIM I/0 Channel Type Message Formats

SIM Channel Type Word Formats . .
SIM Control Memory Map
SIM MCW Format « « + o o o o o &
SIM Hardware Status Word 0 Format
SIM Hardware Status Word 1 Format
DIM Word Formats . . . v + & .+ »
DIM Control Memory Map
DIM BCW Format .. ¢ ¢« o « o o o
DIM DSW Format . . .-« « .

. . . e o o .

o o . L Z 3 .

DIM I/0 Channel Hardware Status Word 0 Format .

DIM Hardware Status Word 1 Format
DIM MPW Formats « « v « ¢ o o o &
NIM Control Memory Map
NIM BCW Format . . . ¢« + . « . .
NIM Parallel MCW Format
NIM Serial MCW Format
NIM Parallel Mode Status Word . .

.

Page
3 l-s
. 1-12
. 1‘13
3 2‘10
. 2"11
. 2-12
. 2-12
L] 3"2
. 3-3
. 3-6
. 3-8
. 3-9
. 3-11
. y-2
. ‘4-5
. 5-3
. 5-5

. ~-10
. 10-3

. 10-4

. 10-9

. 10-11
. 10-12
. 10-14
. 10-18
. 10-18
. 10-23
. 10-25
. 10-26
. 10-26
. 10-29
. 10-29
. 10-32
. 10-34
. 10-35
. 10-37
. 10-37
. 10-41
14122000

Figure

10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28
10-29
10-30
10-31
10-32
10-33
10-34
10-35
10-36
10-37
10-38
10-39
10-40
10-41
10-42
10-43
lo-44
10-45
10-46
10-47
10-48
10-49
10-50
10-51
10-52
10-53
10-54
10-55
10-56

14122000

ILLUSTRATIONS (Cont.)

NIM Serial Mode Status Word .
NIM Hardware Status Word 0 .
RIM Sync/Async Data Formats .
RIM Control Memory Map . . .
RIM BCW Format
SMI Word Format « « « « « o &
Hardware Status Word 0 Format
Hardware Status Word 1 Format
RIM Interrupt Word Format . .
RIM Async Output Data Transfer
RIM Async Input Data Transfer
PIM Control Frame Format . .
PIM Data Word Format . . .
PIM Control Memory Map

e e o & o o o

* o o

.

PIM Sink Mode Control Word Format
PIM Source Mode Control Word Format
PIM Channel Hardware Status Word 0 Format
PIM Channel Hardware Status Word 1 Format
PIM Channel Hardware Status Word 2 Format .
Command and Function Code Word Format . .

PIC/POC Control Memory Definition Map

. . . L]

o o e o ¢ o

SOC Control Memory Definition Map . .
PIC/POC Buffer Control Word . . .
PIC/POC Buffer Control Word . . « «
SOC Buffer Control Word « « « ¢« « « &
SOC Mode Control Word v « ¢« ¢ &« o o @
PIC/POC or SOC I/0O Channel Status Word 0 Format
PIC/POC or SOC I/0 Channel Status Word 1 Format

DIOM Control Memory Definition Map

DIOM Buffer Control Word (BCW)
DIOM Input Control Word (ICW)
DIOM Output Control Word (OCW)
DIOM Mode Control Word (MCW)

DIOM Status Word 0 Format . .
DIOM Status Word 1 Format . .
DIOM Interrupt Word Format .

e o .o o o o ° o

L[] L]

. . . . L] ®

e & o o o

e o o o @

e o o @

e o & o e o o

e o o o e o

® o e o e & ¢ o o o

e @ o ® & ® o ¢ o & & o

. L]

¢ ® 8 & e o e o

e & e o ® e 8 e e & o e & o o

¢ o ¢ e o o o o e o o ® e & 2 e e & o o & © o &

Page

10-41
10-42
10-47
10-48
10-48
10-50
10-55
10-55
10-56 .
10-57
10-58
10-61
10-64
10-66
10-67
10-67
10-71
10-72
10-73
10-78
10-79
10-80
10-81
10-81
10-83
10-83
10-86
10-87
10-91
10-92
10-92
10-93
10-93
10-98
10-99
10-99

xi

Table

1-2
2-1
2-2
2-3
3-1
4-1
9-1

10-1

10-2

10-3
10-4

xii

TABLES

AN/AYK-14(V) Computer System Specifications
Hardware Identification . . « v o o o o o .

Assigned Memory Addresses . . . « ¢ o o« o .
PCM Capacities L] . - L] L] L] L] L] L] o * L] * *
Initial Conditions .+ « ¢ o ¢ ¢ ¢ ¢ o o o o

Floating-Point Special Cases . . . o e o o
Status Register 1 Condition Codes

Interrupt Lockout EffectS o« o« « o o o o o .
Assigned Memory Addresses . « . o« « o o o &

RIM Channel Speed Selection . « o« o o o o .
Input Word Definitions « « o o o o o o o .
Output Word Definitions . + o v o o o o o .
Interrupt Word Codes . v & ¢ & v v o o o &

Features

Page
. 1-2
. 1‘6
. 2-4
. 2-16
. 2-16
LI 3-12
. -)4")"
. 9-2
. A 9-4
. 10"90
. 10-101 -
14122000

GENERAL DESCRIPTION

FEATURES OF THE AN/AYK-14(V)

The AN/AYK-14(V) computer system is a family of microprogrammed computers
designed to provide low=-cost standard airborne computers applicable to a
wide range of vehicles and missions. The AN/AYK-14(V) computers operate in
MIL-E-5400 environments; however, the basic module design is also applicable
to configurations for shipboard and land environments.

The AN/AYK-14(V) system architectural philosophy is based on the following
key features:

1) The AN/AYK-14(V) architecture and instruction set is upward com-
patible with that of the AN/UYK-20, permitting the adaptation and
use of existing AN/UYK-20 support software.

2) The hardware is functionally partitioned into pluggable modules.
These modules are the standard building blocks used in configuring
functionally large or small computers.

3) Intermodule communications are standardized via uniform internal
bus structures to permit reconfiguration and new module addition
without impact on the architecture.

These combined features permit configuration of -specific AN/AYK-14(V) com-
puters to efficiently meet the processing requirements of a wide variety of
military systems. Currently, the AN/AYK-14(V) computer system provides 19
module types which can be configured in various combinations in different
chassis types. Configurations range from a two-module dedicated processor
to multiple processors in multiple chassis with up to 524,288 words of mem-
ory and up to 17 I/0 channels of various types.

CHARACTERISTICS

The AN/AYK-14(V) is a variable configuration, general purpose, l6-bit com-
puter featuring a performance range of 400 to 800 KOPS (thousands of opera-
tions per second). The computer features a high degree of functional and
mechanical modularity and is designed for flexible growth and extensive
hardware commonality over a wide range of applications. The AN/AYK-14(V)
architecture discernable to the user is not changed by modular hardware con-
figuration changes, permitting common firmware and support software systems
for all users. These design concepts are the key to providing a low-cost,
versatile Navy standard airborne computer system. Table 1l-1 summarizes the
AN/AYK-14(V) specifications and features.

14122000 1-1

TABLE 1-1.

AN/AYK-14(V) COMPUTER SYSTEM SPECIFICATIONS AND FEATURES

GENERAL FEATURES

GP, 16-bit digital computer

Physically and functionally modular

Expandable by plug-ins and
additional enclosures

Microprogrammed, emulates extended
AN/UYK=-20

LSI components

ATR enclosures

Variable configurations

PROCESSOR SUBSYSTEM

Microprogrammed
2's complement arithmetic
Executive and user states
Two sets of l6-word by 16-bit
general registers
Two status registers
Three-level interrupt system
Addressing to 524,288 words -
Fixed and floating-point arithmetic
4-, 8-, 16-, and 32-bit operands
16- and 32-bit instructions
Direct, indirect, and indexed
addressing
Optional hardware floating-point
module (EAU) ,
Loadable/readable 32-bit RTC clock,
1-MHz rate; 16-bit monitor
clock, 10-kHz rate,
Built-in test functions
Bootstrap PROM memory
ower failure shutdown/
recovery
I/0 controller capability:
Chaining capability
Control memory for each channel
Up to 16 channels in various
combinations)
Interface to support equipment
Sample instruction times:

Shift _ 1.1 ps

Add, subtract .9

Multiply y,2

Divide 8.3 .

Basis: single GPM, core memory,

overlapped access,
interleaved addresses

. %¥32K words available (standalone)

1-2

PROCESSOR SUBSYSTEM (Cont.)
I/0 processor (optional)

I/0 controller capability

Instruction subset compatible with
central processor

Microprogrammed

Usable in conjunction with central
processor or as standalone
processor#*

Real-time clock

l6-word by 16-bit general register set

Addressing to 65,536 words

Fixed-point, 16-bit arithmetic

Interface to support equipment

MEMORY SUBSYSTEM

Core memory module (CMM), 16K or
32K words of 18 bits
Semiconductor memory module (SMM),
16K or 32K words of 18 bits
Interchangeable core and semiconductor
memory modules 3
CMM has 900-nanosecond cycle time and
350~nanosecond access time
SMM has U400-nanosecond cycle time and
300-nanosecond access time

'Interleaved or noninterleaved

addressing
Read/write expandable memory (RXM),

- 4K x 18-bit RAM with optional

4K PROM
Parity bit per byte
Protect features:
Write protect
Read protect
Execute protect
Block protect in paging system
Memory controller with paging to
524,288 words

| CHASSIS SUBSYSTEM

Bus ektension module (BEM) extends
all buses outside the enclosure

(two-chassis system)

14122000

TABLE 1-1.

AN/AYK-14(V) COMPUTER SYSTEM SPECIFICATIONS AND FEATURES (Cont.)

I/0 SUBSYSTEM

Discrete interface module (DIM)

Eight program selectable exter-

’ nal device interrupts

32 bidirectional input or
output discretes

16 differential input discretes

16 switch closure input
discretes

Serial interface module (SIM)
MIL-STD-1553A multiplexed bus
50-kHz, 16-bit word rate
32 terminals per bus
Operation as bus controller or

remote terminal

PIC/POC/SOC module (PPSM)
Parallel input channel (PIC)
Parallel output channel (POC)
Serial output channel (SOC)
32-bit parallel data transfers
Serial NRZ bit data transfers in
16~-bit words
Serial data rate of 200 kHz or
1 MHz selectable under program
control
Internal and external testability

Discrete I/0 module (DIOM)
144 output discretes
48 input discretes or interrupts
Full duplex
Internal testability

_ PHYSICAL
NTDS interface module (NIM)
MIL-STD-1397 Chassis Height Width Depth Weight#*
Parallel channels:
NTDS slow (41,667 words/sec)| XN-1 T.62" 10.12" 19.56" U45-55%#
NTDS fast (125K words/sec) XN-2 7.62" 10.12" 14.00" 34
ANEW (125K words/sec) XN=~3 T7.62" 10.12" 12.75" 35-45%+
16-bit and 32-bit (dual AIN-U T.70" 10.20" 22.88" 35-4cks
channel) (125K words/sec) XN=-5 10.12" 14.00" 35-45%*#

operation
Computer-to-peripheral and
computer-to-computer
modes

Externally specified ad
dressing on dual

channels
Serial channels:

125K words/sec .

16- or 32-bit (dual channel)
message formats

RS-232-C interface module (RIM)
Asynchronous 75 to 9600 baud
Synchronous to 9600 baud

PROTEUS interface module (PIM)
125K words/sec
Serial transfer, 32-bit
word format

14122000

7.60"

*Does not include fan
*¥Weight varies as functions of
optional modules installed.

Service conditions as specified in
MIL-E-5400 for class 1, 1A, 1B,
and 2X equipment

PRIMARY POWER
115 Vac, 400 cycle, three phase, wye
connected as per MIL-STD-704

to 600 watts for XN-1%

to 400 watts for XN-2%

to 350 watts for XN-3*

to 350 watts for XN-4#*

to 350 watts for XN-5#*

400
250
150
150
150

*Power varies as function of optional

modules installed.

1-3

TABLE 1-1. AN/AYK-14(V) COMPUTER SYSTEM SPECIFICATIONS AND FEATURES (Cont.)

AVAILABLE OPTIONAL BOLT-ON AVAILABLE OPTIONAL BOLT-ON
FAN COOLING FAN COOLING (Cont.)
Fan Length Diameter Weight Power Altitude
(1b) (at sea level) (ft)
IMC 5026 3.10" . 2.75" 2.00 100 30,000

The AN/AYK-14(V) consists of a family of pluggable modules, chassis, in-
terconnecting buses, support equipment, software, firmware, documentation,
and training necessary to provide the user with a completely supported com-
puter system. Figure l-1 depicts the system elements by subsystem and shows
the functional modules applicable to each subsystem. Table 1-2 briefly de-
fines the AN/AYK-14(V) element nomenclature. :

PROCESSING SUBSYSTEM

The general processing module (GPM) contains all the microprogrammed control,
arithmetic unit, registers, and bus interfaces. The processor support
module (PSM) contains the supporting elements such as micromemory, real-time
clocks, bootstrap memory, bus interfaces, and event (interrupt) logic re-
quired to complete the function of the GPM. Together they form a 16-bit
central processing unit (CPU) of a general purpose computer. The extended
arithmetic unit (EAU) provides high-speed, 32-bit, floating-point hardware
and operates under the control of the GPM.

The IOP combines the basic functions of the GPM and PSM on one module with a
reduced instruction set and performance level. The IOP is microprogrammed
to serve either as an IOC or as a single-module, 16-bit,. general purpose CPU
without modification.

The IOP, when used in a dual processor configuration, performs all I/0 oper-
ations and I/0 event-related functions along with executing software pro-
grams initiated by IOP recognized instructions. The CPU performs all
event-related functions associated with the memory and power subsystems
along with executing software programs initiated by any of the instruc-
tions. The dual event system allows CPU-to-IOP and IOP-to-CPU com-
munications.

The IOP, when used in a standalone configuration, pebforms all I/0 oper-
ations, I/0 events, memory subsystem events, power subsystem events, and
executes software programs initiated by IOP recognized instructions.

INTERMODULE COMMUNICATION

The functional modules communicate via one or two identical internal buses:
the CPUBUS and the IOBUS. These high-speed, 2U-bit parallel buses are the
principal data transfer paths between processing modules, memory, and the

I/0 channels. Additional control signals are transmitted via the EVENTBUS,
which transfers interrupt and other event signals. Internal common module

1-4 ' 14122000

Chassis
Subsystem

® XN-1
XN-2
XN-3
XN-4
XN-5
BEM

Power
Memory <:_—_— Subsystem
Subsystem ® PCM-1
® MCM ® PCM-2
e CMM
& SMM
® RXM U .

I0BUS
CPUBUS

1/0 Subsystem

® DIM

® SiM
Processing ® NIM
Subsystem ® RIM
® GPM ¢ PIM
® PSM ® PPSM
o EAU * DIOM
® |[OP

Support
Equipment

* LV

e CCU

14122000

Figure 1-l.

AN/AYK-14(V) System Elements

Software
Firmware
Documentation
Training

1-5

TABLE 1-2. HARDWARE IDENTIFICATION
Typical Typical
Power Weight
Module | (Watts) (Lb) Name Function
GPM 49 2.13 General processor 16-bit processor with
control, registers, and
arithmetic unit
PSM 43 2.06 Processor support Micromemory, real-time
' clock, interrupt system
EAU 40 2.13 Extended arithmetic High-speed, floating-
unit point arithmetic
10P yy 2.18 I/0 processor 16-bit computer with
control, registers,
arithmetic unit, micro-
memory, and interrupt
system
MCM 36 1.87 Memory control Memory controller with
paging, protect, parity,
and two ports
CMM 31 3.10 Core memory 32K words by 18-bit core
memory
SMM i7 2.50 Semiconductor 16K words by 18-bit semi-
memory conductor memory
RXM 9 0.95 Read /write ex- 4K words by 18-bit semi-
pandable memory conductor RAM memory with
optional addition of UK
ROM or PROM
DIM 14 1.02 Discrete I/0 32 input discretes,
32 I/0 programmable
discretes, eight
interrupts
SIM 16 1.09 Serial I/0 1553A serial multiplex
channel, 1-MHz bit rate
NIM 18 1.05% NTDS fast I/0 NTDS fast interface 125K
words /second
NIM 17 1.05 NTDS slow I/0 . NTDS slow interface,

41,667 words/second

14122000

TABLE 1-2. HARDWARE IDENTIFICATION (Cont.)
Typical Typical
Power Weight
Module | (Watts) (Lb) Name Funetion
NIM 10 1.0% NTDS ANEW I/O NTDS ANEW interface 125K
words /second
NIM 10 1.05 NTDS serial I/0 NTDS serial interface,
125K words/second
RIM 15 1.06 RS-232-C 1/0 One serial RS-232-C chan-
- nel, 9600 bauds
PIM 13 1.04 PROTEUS I/0 I/0 serial channel pair,
125K words/second
PPSM 23 1.25 Parallel I/0, serial 32~bit parallel input/
output output, serial output
16=-bit words
DIOM 28 1.87 Discrete I/0 144 output discretes,
48 input discretes or
interrupts
BEM 29 1.05 Bus extender Extends all AN/AYK-14(V)
internal buses outside
the encleosure
*pCM-1 | Varies 9.50 Power converter Regulated power supply.
PCM-2 11.58 MIL-STD-704 power input,
status outputs
Chassis
XN-1 N/A 17.4 19.56" by 10.125" by
7.625" ATR enclosure
and chassis
AN=2 N/A 11.84 14" by 10.125" by 7.625"
ATR enclosure and chassis
XN=-3 N/A 13.2 12.75" by 10.125" by
7.625™ ATR enclosure and
chassis for computer
extension
XN-4 N/A 18.48 22.881" by 10.197" by
7.718" ATR enclosure and
chassis

14122000

TABLE 1-2.

HARDWARE IDENTIFICATION (Cont.)

Typical Typical
Power Weight
Module | (Watts) (Lb) Name Funetion
Chassis
XN=-5 N/A 12.40 14" by 10.125" by 7.625"
! ATR enclosure and chassis
Support Equipment
L/v 80 43 Loader/verifier Portable militarized tape
- loader and control panel
CCu 440 383 Computer control unit Laboratory operator con-
with tape unit and sole for firmware and
formatter software debugging and
- maintenance; interfaces
to commercial peripherals

¥PCM-1 provides 390 watts of output power, n =5 71%
PCM-2 provides 540 watts of output power, n & 71%

.‘—l
]
o

14122000

interfaces permit flexible module configuration and ensure that module modi-
fication or addition of new types will not result in existing module modi-
fication.

MEMORY SUBSYSTEM

The memory subsystem includes interchangeable 16K and 32K word core memory
modules (CMM) and 16K-word semiconductor memory modules (SMM) with 18-bit
word length. The CMM cycle time is 900 nanoseconds and the SMM cycle time
is 400 nanoseconds. The memory control module (MCM) interfaces between the
GPM and the memory modules (CMM or SMM). The MCM has both CPUBUS and IOBUS
interfaces which permit the GPM to use one bus for instruction access and
the other for operands to enhance effective access time. The MCM also pro-
vides two channels to memory modules, the OMEMBUS and EMEMBUS, which can
increase effective access time through interleaved addressing between two
memory banks.

The read/write expandable memory module (RXM) is a 4K word by 18-bit semi-
conductor memory with 400-nanosecond cycle time which operates directly with
the IOP or GPM via either the CPUBUS or the IOBUS. An optional addition of
UK read-only memory (ROM or PROM) is also available. The primary appli-
cation of the RXM is to provide memory for use with the IOP as a small, de-
dicated two-card computer.

I/0 SUBSYSTEM

The AN/AYK-14(V) system organization provides for up to 17 I/0 channels,
each on individual functional modules which communicate with the computer
system via identical CPUBUS or IOBUS. The standardization of internal in-
terfaces permits any I/0 channel module type to be interchanged in the chas-
sis I/0 slots by simple plug-in replacement. Available chassis provide from
four to six I/0 channels. Expansion to more I/0 channels requires the ad-
ditional XN-3 enclosure. The following I/0 module types are currently
available to match standard I/0 channel characteristics.

® MIL-STD-1553A avionics sérial multiplex bus

) NTDS (fast, slow, ANEW, and serial) MIL-STD-1397
® RS-Z 32~-_C

°

PROTEUS

The I/0 controller (IOC) functions can be executed by either the central
processor (GPM and PSM) or the optional I/O processor (IOP). The incor-
poration of an IOP into an AN/AYK-14(V) system, operating in conjunction
with the central processor, greatly enhances the processing thruput.

User-equipment interrupts can be brought into the system either‘through the
associated I/0 channel or via the discrete interface module (DIM), which
also has provision for 32 input and 32 input or output discrete signals.

Software selectable internal wraparound provides a means to test some I/0

channels. This allows the CPU or IOP to perform diagnostics on the I/0
channels without testing the transmitters and receivers.

14122000 o 1-9

POWER SUBSYSTEM

Power for all modules in an enclosure is supplied by a power converter
module (PCM) with appropriate regulated voltage and current capabilities.
Present designs operate on MIL-STD-704 power, 115 Vac 400 cycle, three
phase, wye connected.

CHASSIS SUBSYSTEM

All modules plug into an ATR-type chassis equipped with slots to accommodate
a combination of module types. Currently, three standard chassis types
designed for MIL-E-5400, Class II environments, are available for 16-bit
computers. Connector location and basic dimensions are shown. It should be
noted that the XN-3 is an extension unit to be used with the 100 series
(XN-1) or 200 series (XN-2) chassis to provide additional memory, pro-
cessing, and/or I/0 capability. Multiple 300 series (XN-3) chassis can be
used to further expand the system.

Expansion of the computer beyond a single enclosure or implementation of

direct memory access (DMA) I/O is effected through the use of the bus ex-
tender module (BEM), which provides a buffered extension of all internal

computer buses to another enclosure.

ENVIRONMENT

The basic module of the AN/AYK-14(V) family is designed for use in
MIL-E-5400 (airborne) when installed in a suitable enclosure. The total
range of conditions includes temperatures of -540 to 719C, altitudes to
70,000 feet, and levels of shock, vibration, humldlty, and: EMI appropriate
to these environments.

Qualifiecation of the chassis types (listed in Table 1-2) to MIL-E-5400 Class
IT requirements will ocecur under the current AN/AYK-14 contract from the
U.S. Navy.

All modules are designed for conduction cooling via a heat sink backing the
printed circuit boards. The modules have ramp clamps along both short edges
to provide solid mechanical and thermal contact to the slots in the chas-
sis. Heat is transferred from the chassis heat sink via an air plenum,
which may be supplied by a vehicle cooling air system or optional bolt-on
fan. No cooling air is needed over module components.

The rigid module structure, stiffened by the heat sink, withstands severe
shock and vibration environments.

All modules are conformal coated for moisture resistance. The module design
permits great flexibility in chassis cooling provisions to meet multiple
application requirements.

CONFIGURATION CAPABILITY

The functional partitioning of the modules and the internal bus structures
provide for flexible configuration of a wide range of AN/AYK-14(V) com--
puters. The AN/AYK-14(V) system allows building up the system by addition

1-10 14122000

of modules to meet .the problem computing bandwidth and capacity require-
ments. Some examples are given to show how these building blocks can be
used to balance computer size, weight, power, and cost against performance.

Figure 1-2 shows the minimum AN/AYK-14(V) computer configuration which con-
sists of an IOP as the 16-bit processor and an RXM 4K by 18-bit random ac-
cess memory (RAM) semiconductor memory (with optional 4K PROM). This is a
bare module configuration and assumes that the modules are incorporated as
components into the user's equipment. The user's equipment power supply
would provide regulated 5-Vdc power for the modules and the user would also
provide the I/O adaptation to the IOBUS interface. IOP/RXM combinations can
also be used effectively as computing elements in distributed processing
systems.

An expanded configuration (Figure 1-3) yields a complete l16-bit, general
purpose processor with high-speed floating-point hardware, hardware I/O con-
troller, 128K words of 18-bit core memory, and up to 16 I/O channels of var-
ious types. This example illustrates the role of the identical CPUBUS and
IOBUS in organizing the modules into a powerful computer. Since the GPM has
two bus interfaces to the MCM, it is possible to overlap instruction and
operand fetches from memory. In addition, it should be noted that the two
memory channels, OMEMBUS and EMEMBUS, permit interleaving of memory ad-
dresses between memory banks for high, effective access speed.

14122000 , 1-11

_ To /O 108US

T Bl

10P RXM

Figure 1-2. Minimum Configuration

1-12 14122000

CMM T
CMM R ¢
OMEMBUS
10BUS

Nim

SiM

DM

14122000

it

T

Figure 1-3.

| mm— CMM
’ CMM
EMEMBUS

MCM

CPUBUS

=
ARy,

GPM

R,

EAU

=

1OP

Expanded Configuration

L,

PCM

l-13/1-14

ARCHITECTURE 2

FUNCTIONAL ORGANIZATION

The functional architecture of the AN/AYK-14(V), that is the architecture
perceived by the programmer or other user, is implemented wvia the
AN/AYK-14(V) microcode operating in a suitable configuration of AN/AYK-1U4(V)
modules. The architecture is upward compatible with the AN/UYK-20 archi-
tecture. All instructions common to both AN/AYK-14(V) and AN/UYK-20 have
identical formats and operation codes.

MEMORY ARCHITECTURE

The main memory consists of combinations of CMM and SMM modules, up to a
maximum of 524,288 words, and an MCM to provide dual access port, paging,
parity operation, and protect features.

Memory Interfaces

The memory interfaces to the CPU with the capability to overlap. Overlap is
always used with the GPM which accesses instructions on the CPUBUS and oper-
ands on the IOBUS. The IOP interfaces to the memory system only via the
IOBUS, and thus does not use overlap.

The AN/AYK-14(V) can interleave memory addresses between the memory modules
interfacing on the OMEMBUS and with those on the EMEMBUS. This interleaving
enhances effective access time in transferrring sequentially addressable
words. Whenever the configuration of memory modules is identical on both
OMEMBUS and EMEMBUS, interleaving is automatically provided unless a jumper
on a front panel connector is used to inhibit interleaving. Interleaving is
not used when an odd number of memory modules are installed, or the assort-
ment of memory types is not symmetrical on both memory buses.

Overlap and interleaving are independent features.

Direct Memory Access (DMA) Capability

The BEM provides for extending memory interfaces external to the chassis.
This module permits a DMA capability through a user-provided external DMA
controller. DMA transfer does not require processing by either the CPU or
I0P.

Memory Addressing

The memory addressing capability provides addressing to 524,288 words
through the paging features incorporated in the MCM. The l6-bit relative
address from the CPU or IOP is converted to a 19-bit address. The lower 10
bits of the relative address specify one of 1024 words within a page, while
the upper six bits specify which of the 64 page registers will be referenced
to determine the 9-bit page base address. Software instructions BO through
B7 (hexadecimal) provide the capability for loading and storing the page
registers.

14122000 , | 2-1

Memory Parity

The memory system incorporates a parity bit for each 8-bit byte. Parity is
generated and checked by the MCM and an interrupt is generated upon a parity
error.

Memory Protection

Memory protection features on a 1024-word page basis are provided for data
security and assurance of program integrity. Three types of protection are
implemented via bits stored in the page register. These types are:

Execute Protection - generates an interrupt if instruction execution is
performed from a protected page.

Write Lockout - generates an interrupt if a write operation is attempted
in a protected page.

Read Protection - generates an interrupt if a read operation is per-
formed from a protected page.

In addition to the three protection bits, a bit in each page register serves
as a page modification register. This bit, when set, indicates that a write
operation was made in the associated page. The load address register in-
structions permit modification of protected bits in the page registers.

Assigned Memory Addresses

In general, programs, constants, and data can be stored in any address.
There are, however, some assigned locations (as shown in Table 2-1) which
are associated with executive, interrupt, I/O0 functions, and ROM mode.

Read-Only Memory (ROM)

The memory system includes two segments of words of ROM memory containing
the bootstrap program. This memory duplicates the address space of words
0016 to 3F16 and CO1g through 3FF1g of main memory and is entered

upon initiation of operations. A bit in status register number 1 controls
the selection of ROM or main memory. Bootstrap operations are provided via
a 1553A I/0 channel.

CPU ARCHITECTURE

The AN/AYK-1U4(V) operates in the following two modes.

Executive - used for executive functions. In this mode, all instruc-
tions can be executed. . ’

Program - used for user program functions. In this mode, any instruc-
tions except executive instructions can be executed.

Modification of status registers and page address registers is restricted to
executive mode. '

2-2 14122000

This two-mode feature simplifies and increases the speed of the executive
control and aids in integration of user program modules into the system
software.

General Registers

The AN/AYK-14(V) has two sets of l6-word by l6-bit general registers, each
set designated RO through R15 and an instruction set tailored to their mani-
pulation. The selection of the register set to be used is designated by
status register 1, bit 14. These registers can be used as follows:

® Accumulators for arithmetic, shift, and logical operations
° Index registers for address and operand modification
) Temporary storage locations for addresses and operands.

The large number of general registers and the register-register instructions
yield benefits in execution time and decreased storage requirements compared
to architectures using an A/Q register organization or fewer registers.

The general registers are referenced by the register designator fields (a,m)
of the AN/AYK-14(V) instructions.

Program Address Register

The program address register, P, holds the address of the instruction being
~executed in a program sequence. Its contents are automatically advanced by
one each time a single-length (16-bit) instruction is executed and by two
for a double-word (32-bit) instruction. Jump instructions load the P reg-
ister with the entry address of the program that receives control.

Real-Time Clock (RTC) and Monitor (MON) Clock Features

The AN/AYK-1U4(V) contains an RTC and a MON clock which are loadable and
readable under software control and provide interrupts when enabled. The
RTC counts up a 32-bit register at a 1-MHz rate, allowing for timed in-
tervals up to (232-1) microseconds or approximately 1.19 hours.

The MON clock is a l6-bit counter which counts down at a 10-kHz rate to pro-
vide interrupts at intervals up to approximately 6.5 seconds. These fea-
tures are useful for scheduling periodic processing activities, coordinating
I/0 operations, and timing real-time events. The high resolution of the
AN/AYK-14(V) clock is particularly useful for signal processing applications
and weapons control functions associated with high-speed vehicles. .

Power Failure and Thermal Protection Features

The power failure and thermal protection features provide for orderly shut-
down and preparation for recovery if the computer power falls below a safe
threshold or if an overtemperature condition occurs. The PCM monitors power
failure and thermal condition and, upon detection of one or the other, pro-
vides a signal to generate a CPU interrupt. The CPU then has about 300 mi-
croseconds to store desired registers and status before the PCM shuts down.

14122000 2=3

TABLE 2-1.

ASSIGNED MEMORY ADDRESSES

CPU IOP
Function I II 11 11 III

Hex |Octal |Hex| Octal | Hex |Octal | Hex | Octal| Hex |Octal | Hex |Octall
Store P 58 {130 | 50| 120 | 48 | 110 | 68 | 150 | 70| 160 | 48 | 110
Store SR1 59 | 131 |51 121 |49 {111 |69 | 151 | 71| 161 | 49 | 111
Store SR2 5A | 132 | 52| 122 | 4A | 112 | 6A | 152 | 72| 162 | 4A | 112
Store RTC lower | 5B | 133 | 53| 123 | 4B | 113 | 6B | 153 | 73| 163 | 4B | 113
P reload ' 5C | 134 { 54| 124 | 4C | 114 | 6C | 154 | 74| 164 | 4C | 114
SR1 reload 5D | 135 [55| 125 | 4D | 115 | 6D | 155| 75| 165 | 4D | 115
SR2 reload SE | 136 | 56| 126 | 4E| 116 | 6E | 156 | 76| 166 | 4E | 116
Store RTC upper | 5F | 137 | 57| 127 | 4F | 117 :
I/0 Command cell . 60-6174, 140-1414 62-63,4, 142-143g
Auto start entrance 7‘F16, 17 8
External interrupt 80-8F,, 200-217g 80-8F ;, 200-217,

word storage
ROM ‘

0-3F1g & CO-3FFpg, 0-77g &

300-1777g

14122000

Status Registers

The AN/AYK-14(V) contains two 16-bit status registers, status register num-
ber 1 (SR1l) and status register number 2 (SR2), which provide an indication
of the computer state, error conditions, and interrupt lockouts. These reg-
isters are accessible to all programs, but can only be modified by software
in the executive mode. Upon program interruption, SRl and SR2 are auto-
matically stored in memory, where they can be recalled and reinstated upon
completion of the interrupt processing routine to allow continuation of the
original program with the status existing before interruption.

MODULARITY

The modules described in this section represent the current AN/AYK-14(V)
module designs. It is expected that new module types will be added to meet
future applications requirements. New or special modules will be designed
to interface with standard AN/AYK-14(V) internal buses to preserve system
integrity.

GENERAL PROCESSOR MODULE (GPM)

The GPM is a 16-bit microprogrammable processor based on the AMD 2900 series
microprocessor slice LSI devices. The architecture is augmented for high-
speed performance with additional registers, internal data, and control
transfer paths. The GPM features which contribute to its performance in-
clude:

48-bit microcommand control

Microprogram address sequencing to 4K words
180-nanosecond microcommand cycle

256 by 16-bit word register file

256 by 16-bit word multiport CFILE

Dual identical parallel bus interfaces (CPUBUS and IOBUS)
Event interface :

Interface to micromemory on PSM

Serial interface to support equipment

Interface to EAU.

The GPM operaters frém microcommands stored on the PSM module (up to 4K
words of micromemory).

PROCESSOR SUPPORT MODULE (PSM)

The PSM augments GPM functions to form a complete 16-bit computer in two
modules. The partitioning of the functions between GPM and PSM was designed
to allocate those functions to the PSM that might require modification as
applications change. The PSM features include:

e Up to 4K by 48 bits of PROM micromemory for the GPM

° 1K by 16 bits of PROM bootstrap memory for computer system
initiation via the 15534 I/0 channel

° Two parallel bus interfaces (CPUBUS and IOBUS)

® Event interface

° Event monitor logic, which forms the basic hardware portion of the

14122000 2=5

event (interrupt) processing
° 32-bit high-speed multiply logic
. BIT timer with 2.097-second increment, 4-bit count.

The AN/AYK-14(V) computer micromemory may contain commands for processing a
variety of functions including:

1) AN/AYK-14(V) instruction set interpretation and maintenance of the
computer status

2) Built-in-test (BIT) functions

3) Diagnostic and fault isolation functions

4) Special macroinstruction or algobithm processing.
EXTENDED ARITHMETIC UNIT (EAU)

The EAU is a 32-bit, high-speed, floating-point processor which operates
under the control of the GPM and interfaces directly to it. The EAU uti-
lizes the floating-point format which consists of a 7-bit exponent and a
2U-bit mantissa. A GPM/PSM configuration will execute the floating-point
add, subtract, multiply, and divide instructions via firmware. When an EAU
module is added, the floating-point add, subtract, multiply, and divide are
performed by the EAU as well as the nine trignometric instructions which are
only legal with the EAU present. The incorporation of the EAU automatically

increases floating-point execution speed without firmware or software
changes.)

INPUT/OUTPUT PROCESSOR (IOP)

The IOP is a complete l16-bit processor combining the basic functions of the
GPM and PSM on one module. The instruction-set is a subset of the total
AN/AYK-14(V) instruction set. Tq accomplish a one-module processor, the
performance and features are reduced from the GPM/PSM capability. The IOP
is intended for use in the following three general applications types.

1) As a small scale, standalone, general purpose processor with emula-
tion capabilities.

2) As an I/0 controller (IOC) in conjunction with a GPM/PSM as in-
struction processor.

3) As a combination IOC and instruction processor in conjunction with
a GPM/PSM.

A summary of differences between the IOP and CPU is as follows:

® Only one set of 16 general registers is available (stack 0)

® Page register modification and indirect addressing are not incorpo-
rated.

° The operand breakpoint register is not emulated.

° The IOP real-time clock, when enabled, is incremented at a
1l.024-microsecond rate.

2-6 14122000

® The RTC register is 16 bits.
° The IOP BIT timer is 3 bits wide
® No monitor clock.

Features of the IOP include:

48-bit microcommand control

Up to 2K micromemory on the module
250-nanosecond microcommand cycle

256 by 16-bit word register file

Single parallel bus interface (IOBUS)

Event interface _

Serial interface to support equipment

BIT timer, 2.097-second increment, 3-bit count
Event monitor logic

Microcommand format identical to GPM.

I/0 MODULES

All I/0 channel modules are physically the same size and are interchangeable.
in any I/0 module chassis slot. Each I/0 channel module implements a single
I/0 channel of a designated type and has a common set of intermodule inter-
faces including the IOBUS and event interface. Each I/0 module type con-
tains the logic to implement the specific channel type characteristics and
operate with a standardized IOBUS communication procedure. All I/O modules
have provision for a module test operation in which test data is looped
through the module and returned to the processor. The standard I/0 channel
module set can be augmented with special channel modules to meet system re-
quirements. The special channels will use the same IOBUS and event in-
terface as the standard I/0 modules.

Discrete Interface Module (DIM)

The DIM is used to provide a convenient interface forfcommunicating single-
bit status, event, or control information between user devices and the com-
puter.

The DIM provides the following interface capabilities.

° Eight external device interrupts. These can have program select-
able priority and can be individually masked.

° 32 bidirectional input or output discretes. These use differential
TTL interface signals. They are program selectable as inputs or
outputs in groups of four.

° 16 differential input discretes. These use differential lines, ac
terminated.

° 16 switch closure input discretes.

[The 32 bidirectional discretes have a loop test capability.

14122000 2-7

Serial Interface Module (SIM)

The SIM implements a serial multiplex data channel meeting the channel con-
trol and format characteristics of MIL-STD-1553A. This channel type is the
standard intersystem communication facility on board modern military air-
craft. The module interfaces to two 1553A-type buses for redundant opera-
tion.

The module can operate with any MIL-STD-1553A protocol and can function as
either a bus controller or remote terminal unit. Information is transferred
on a signle shielded, twisted pair line at a 1-MHz bit rate. Data is trans-
ferred in 20-microsecond words, each divided into 17-bit times of l-micro-
second and one 3-microsecond sync interval. All messages are addressed and
use three types of words.

Command word - sent by bus controller to address appropriate terminal,
specify message type, and set data word count for subsequent transfer.

Status wbrd - set by a terminal in response to command word. Iden-
tifies terminal and reports status.

Data word - containing 16 bits of message data, sync pattern, and a
‘parity bit.

Up to 32 terminals can interface on a single bus. All transmissions and re-
ceptions are initiated and controlled by the bus controller using message
formats.

The SIM contains interfaces to two 1553A buses and has the capability of
data transfer on one and monitoring the other at any time.

NTDS Interface Modules (NIM)

There are four types of NIMs, each capable of operating according to
MIL-STD-1397.

1) NTDS Slow - 16-bit parallel transfer up to 41,667 words per sec-
ond. Binary voltage levels of 0 Vde (logical 1) and -15 Vde (logi-
cal 0).

2) NTDS Fast - 16-bit parallel transfer of up to 125,000 words per
second. Binary voltage of 0 Vdc (logical 1) and -3 Vde (logical 0).

3) ANEW - 16-bit parallel transfer of up to 125,000 words per second.
Binary voltage levels of 0 Vdc (logical 1) and 3.5 Vdec (logical 0).

. 4) Serial - serial data transfer of up to 125,000 words per second on
one cable. Bipelar +3.25V signals.

Channel interface lines for NTDS fast, slow, and ANEW are shown in Figure

2-1 and for serial, in Figure 2-2. Two NIM parallel channels can be opera-
ted together to form a 32-bit wide parallel channel. Transfer operations on
the serial channel involve the use of 3-bit control frames and 34-bit data

frames (32-bit message data, function, or interrupt code, and l-bit word ID,

2-8 14122000

l-bit sync) according to procedures defined in MIL-STD-1397. The modules
support operation in computer-to-computer, computer-to-peripheral, ex-
ternally specified addressing modes as described in MIL-STD-1397.

RS-232-C Interface Module (RIM)

The RIM provides a full-duplex RS-232-C serial channel operable at select-
able baud rates from 75 to 9600 baud for the asynchronous mode and in syn-
chronous mode, to 9600 baud. See Figure 2-3 for cable configuration.

The module can be converted to operate to MIL-STD-188C with some component
changes but without c¢circuit board modifications.

PROTEUS Interface Module (PIM)

The PIM contains the logic to implement a PROTEUS digital channel pair cap-
able of full-duplex data transmission at a nominal 125K-words-per-second
rate. The channel is designed to NADC Specification No. A30-15590.

Transmission on the PROTEUS channel is between a source and a sink, with
initiation and control by the source. A source transmits 6-bit control
frames and 34-bit data words (32 message bits, 1 parity bit, and 1 iden-
tifier bit). The sink responds to each source word or frame with an ap-
propriate 6-bit control frame to accomplish a positive handshaking procedure
on a word-by-word basis. ‘

Parity is provided on both control and data words for error detection, and
retransmission is used for error correction.

The channel pair uses a total of eight differential NRZ signals as depicted
in Figure 2-4.

PIC/POC/SOC Module (PPSM)

The PPSM consists of a parallel input channel (PIC), a parallel output chan-
nel (POC), and a serial output channel (SOC). The PIC/POC portion of the
module performs 32-bit parallel data transfer to and from external devices
in full duplex operation. The SOC portion of the module provides serial NRZ
data transfers to external devices at a 200-KHz or 1-MHz rate, selectable
under program control. The data transfer can consist of any number of
16-bit words.

The PPSM has the following capabilities.

Request-acknowledge type control logic (PIC/POC)

Internal and eternal wraparound test (PIC/POC)

External halt available for POC (generates an EII)

Data and control signals are differential (SOC)

Internal test capability (SOC)

External suspend line available to regulate data transmissions
(s0C).)

o & o0 00
.

14122000 2-9

AN/AYK14
NIM (Fast,

External Function Request

External Function Ack

Output Data Req

Slow, ANEW)

Figure 2-1. NTDS Slow, Fast, and ANEW Channel

2-10

Output Ack
Qutput Data 7\ . .
Interrupt Enable @ Peripheral
Device
Interrupt Req)
Input Data Req.
Input Ack
Input Data o\
@
Interface

14122000

ON INPUT COAXIAL

———— EXTERNAL INTERRUPT CONTROL WORD —— -
INPUT DATA WORD @

>

CABLE INPUT REQUEST CONTROL FRAME Q—p
AN/AYK-14(V)
PERIPHERAL ——— INPUT ENABLE CONTROL FRAME® NIM
EQUIPMENT l¢——— EXTERNAL FUNCTION WORD (SERIAL
‘ON OUTPUT COAXIAL) lg——— OUTPUT DATA WORD D)
CABLE - OUTPUT REQUEST CONTROL FRAME @ |

- ——— OUTPUT ENABLE CONTROL FRAME ®

ARROWHEADS SHOW DIRECTION OF TRANSMISSION

@ 32.81T WORD TRANSMISSION

CONTROL BITS

34

2]1]4-BITS TRANSMITTED

[¢——————————— DATA BITS P
g INTERRUPT CODE ———P

4——— DATA BITS

>
4———— FUNCTION CODE P>

SYNCHRONIZING BIT ALWAYS =1
INPUT

0 = INPUT DATAWORD

1 = _EXTERNAL INTERRUPT WORD
QUTPUT

0 = OQOUTPUT DATA WORD

1 = EXTERNAL FUNCTION WORD

3 BIT CONTROL FRAME

[32]1]«-8iTs TRANSMITTED

SYNCHRONIZING BIT ALWAYS =1

@ INPUT REQUEST CONTROL FRAME |

NOT USED

INPUT DATA REQUEST (IDR)
EXTERNAL INTERRUPT REQUEST (EIR)
IDR AND EIR

@ INPUT ENABLE CONTROL FRAME

INPUT DATA ENABLE (IDE) AND
EXTERNAL INTERRUPT ENABLE (EIE)

® outPuT REQUEST CONTROL FRAME

- -0 0

NOT READY

OUTPUT DATA REQUEST (ODR)
EXTERNAL FUNCTION REQUEST (EFR)
ODR AND EFR

- e O

R

® OUTPUT ENABLE CONTROL FRAME

]

OQUTPUT DATA ENABLE (ODE) AND
EXTERNAL FUNCTION ENABLE (EFE)

Figure 2-2.

14122000

NTDS Serial Channel Interface and Message Format

2-11

LINE

IDENTIFIER NAME
- LOOP TEST
. co DATA TERMINAL READY
» CH NEW SYNC (DATA SIGNAL RATE
SELECTOR)
CF CARRIER INTERRUPT (RECEIVE =mmmeeeeesnn 4
LINE SIGNAL DETECTOR)
CE RING INTERRUPT [RING INOICATOR) —remmmm
PERIPHERAL 0D RECEIVE CLOCK (RECEIVER SIGNAL e _ AN/AYK-14
DEVICE ELEMENT TIMING) AiM
88 RECEIVE DATA i (SERIAL)
o8 TRANSMIT CLOCK (TRANSMIT >
SIGNAL ELEMENT TIMING)
L BA TRANSMIT DATA
- CA REQUEST TO SEND
cc _DATA SET READY >
cs CLEAR TO SEND ——i
A8 SIGNAL GROUND
Figure 2-3. - RS-232-C Serial Channel Interface
Control Fromes,/Data Words
e - Source Clock
SOURCE | SINK
CHANNEL Conirol Frames C W
. Sink Clock
A - B
Control Frames / Data Words -
SINK 7 Source Clock o
CHANNEL Control Frames - SOURCE
"sink Ciock
PIM . User Equipment
)
Figure 2-4., PROTEUS Channel Pair
2-12 14122000

Discrete Input/Output Module (DIOM)

The DIOM provides a full duplex I/O channel capable of initiating both input
and output chains which may be active simultaneously.

The DIOM also provides the following interface capabilities.

® 144 output discretes (114 active low TTL and 30 active low 15V out=-
puts)

° 48 input discretes (24 active low TTL and 24 active low 15V inputs)

° All 48 inputs may be used as inputs or interrupts, but not both

e The 48 inputs are individually prioritized in a fixed sequence for
use as interrupts

° Interrupts are individually masked

° All outputs are internally wraparound testable including the trans-
mitters

° Input scan logic can be tested internally and input receivers test-
ed externally.

BUS EXTENDER MODULE (BEM)

The BEM provides an extension of the internal AN/AYK-14(V) buses and in-
terfaces outside the enclosure to permit extension of memory, processor,
and/or I/0 subsystems to additional enclosures up to 15 feet (total cable
length) from the computer. All voltage levels are TTL compatible and employ
differential line drivers/receivers for all I/0 lines. The electrical and
logical design permits BEM-to-BEM communication. The BEM does not have a
channel address as do other I/0 modules, but instead appears transparent to
bus operation. Any communication via the BEM results in a slight interface
delay of approximately 75 nanoseconds in each direction, relative to direct
module intercommunication. The BEM can be used to interface a DMA channel.

MEMORY MODULES

Memory Contﬁol Module (MCM)

The MCM provides a two-port paged interface to two independent, memory chan-
nels allowing simultaneous access by two users. The MCM contains the con-
trol, interface, and paging logic to operate core and SMMs with the
AN/AYK-14(V) processor system. The MCM features include:

Interfaces to CPUBUS and IOBUS
Dual memory bus interfaces to memory modules OMEMBUS and EMEMBUS
16-bit address to 19-bit address paging system
Interleaving of memory modules between memory buses
Parity bit logie, 1 parity bit per byte
Block protect in paging system:
Read protect
Write lockout
Execute protect.

14122000 | 2-13

Core Memory Module (CMM)

The CMM is available as a 32K by 18-bit word module. The CMM is a plug-in
unit containing all of the specified core storage, associated drive and
sense electronics, timing and control logic, and interface ecircuitry. The
form-factor and electrical interface of the 32K CMM is identical to the SMM
which provides for complete interchangeability.

The CMM features are:

900-nonosecond read/write cycle time

350-nanosecond access time

Low power, average 31 watts for 32K words (based on half 1's,
S50-percent standby), maximum 64 watts

Byte operation

Interface to OMEMBUS or EMEMBUS

Mountable on l.45-inch centers

Read /modify /write capability

Data guard, indicates power supply out of tolerance (optional).

Semiconductor Memory Module (SMM)

The SMM provides 16K by 18-bit words in a module which is compatible to and
interchangeable with the CMM. '

The SMM‘featuies are:

300-nanosecond read access time
Low power, 16 watts average for 16K words, maximum 30 watts
Interface to OMEMBUS or EMEMBUS
Mountable on l.4S-inch centers.

gggd/Write Expandable Module (RXM)

The RXM contains 4K words by 18 bits of read/write static semiconductor mem-
ory and an optional additional 4K words of read-only memory (ROM or PROM).
Features include:

400-nanosecond cycle time

300-nanosecond access time

Interface to IOBUS or CPUBUS

Mountable on 0.45-inch centers

Parity logie, 1 bit per byte

If ROM or PROM option is desired, memory contents must be specified
at time of order.

A EE X

POWER CONVERTER MODULE (PCM)

The PCM provides the regulated dc power required to operate AN/AYK-14(V)
modules from military aircraft power sources. Two sizes of PCMs are cur-
rently available to power various computer configurations. The PCMs are
themselves modular, and new capacities can be developed to meet other power
source or computer configuration requirements.

214 14122000

The PCMs operate from 115-Vac, three-phase, 400-Hz, wye-connected input pow-
er. The design is compatible with MIL-STD-704B and MIL-STD-461A, Notice 3.
PCM capacities are given in Table 2-2.

PCM-1 and PCM-2 supply thermal protection and power failure signals as well
as sequencing for power-up and power-down operations. Approximately 300 mi-
croseconds are available for saving machine state and registers upon input
power loss detection.

OPERATION

The AN/AYK-14(V) is designed to be used on applications requiring unattended
operation. These operations do not require a computer operator's panel.
Instead, the computer is operated indirectly from interfaces provided on the
mission system control panel(s).

Operator control for maintenance and program development and debugging is
provided by the loader/verifier (L/V) and computer control unit (CCU).

These pieces of equipment interface to either the CPU or IOP via the come
puter support interface, which consists of a high-speed serial channel and
is accessible by front panel connector. The L/V is designed for flight line
maintenance and program loading. The CCU provides full computer console
display and control functions. 1Initial conditions for the AN/AYK-1U4(V) are
shown in Table 2-3.

The computer support interface is in addition to the 16 AN/AYK-14(V) I/O
channels and is not addressable as an I/0 channel.

14122000 2-15

TABLE 2-2. PCM CAPACITIES

All Interrupts

Built-In Test Timer
Execution Mode

Computer Support Interface
Channel Busy

Cleared and locked out
Cleared and enabled

Running**

Not Busy

Module Maximum Output . Typical
Type +5V +15V -12V -5V Size Efficiency
PCM-1 48A 3.3A 8.3A 1A 7" by 9" by 3.5" 71%
PCM-2 78A | 3.3A | 8.3a | 1A 7" by 9" by 4.9" 71%
TABLE 2-3. INITIAL CONDITIONS
Register/Condition Content/State
' Program Address Register 0000

Program Address Breakpoint 0000

Operand Address Breakpoint 0000

Status Register 1 0600

Status Register 2 0000

Page Register 0 0000

Page Register 1 0001

Page Register 63 003F

General Register Set 0 All = 0000 In UYK-20

General Register Set-1 All = 0000 these are

Real-Time Clock Cleared and disabled unknown after

Monitor Clock Cleared and disabled power-up

Input/Output Channels Cleared

Memory Interface Cleared*

*Memory content is not changed during the initialize sequence
¥*Execution mode is "stopped" if the computer support equipment is connected

2-16

14122000

INSTRUCTION, DATA, AND ADDRESSING FORMATS
WITH ADDRESSING MODES

INSTRUCTION FORMATS

The instruction word formats for the AN/AYK-14(V) include both single-word
(16-bit) and double-word (32-bit)types. The 1l6-bit instructions conserve
memory and enhance processing speed while the double word provides memory
addressing over the full range of addresses and for in-line storage of con=-
stants. Figure 3-1 defines the fields for the four types of instruction
formats, and Figure 3-2 defines the associated operand formation. The var-
ious instruction types provide for a variety of operand addressing processes
including direct, indirect, and indexed types.

Instructions using double-length (32-bit) operands use two sequential regis-
ters or memory locations as shown in Figure 3-2. Ra, Rm, or Y contains the
most significant portion and sign bit; Ra @ 1, Rm @ 1, orY @l con=-
tains the least significant portion of the operand.)

The instruction word formats of the AN/AYK-14(V) are identical to those of
the AN/UYK-20. .

® RR format instructions use general registers for operands instead
of main memory. The a and m designators specify the general regis-
ters Ra and Rm, respectively, that are used in the operation.

° RL format instructions perform operations involving one or two gen-
eral registers. The a designator selects Ra or Ra and Ra (:) 1 de-
pending on the particular instruction. The m designator is a U4-bit
unsigned literal which can be used, for example, as a count or in-
crement depending on the particular instruction.

° RI format, type 1 instructions are local jump instructions which
increase or decrease (P) by the d value in the instruction. The
effective jump address Y=(P)+d, where d is the 2's complement devi=-
ation value.

° RI format, type 2 instructions perform operations that involve gen-
eral registers and a main memory reference. The a and m desig-
nators select general registers Ra and Rm, respectively. Rm in
this case contains an address, Y, that is used for the main memory
reference.

° RK format instructions are double-word instructions stored in se-
quential memory locations. The first word contains the operation
code, a, and m designator fields. The second word is the value, Y,
that may be used as a operand or address. ‘

The a designator selects general register Ra. When m = 0, the
operand or address Y equals y, no Rm is selected. m # 0 selects a
general register Rm; the operand Y = y + (Rm) (i.e., y is indexed

14122000 ‘ - 3-1

e-¢

000ceTn1

m General register or subfunction designator

or 4-bit literal

15 14 13 12 11 10 9 8|7 6 5 4|3 2 1 0
OP Code a Register - Register Format (RR)
OP Code 1 a T Register - Literal Format (RL)
OP Code 1 a | Register - Immediate Format (RI-2)
16-bit
OP Code ' a Register - Constant Format (RK)
vy (v is a value)
OP Code ' a | Register - Indirect Format (RX)
y (y is an address)
32-bit
OP Code - d Register - Immediate Format (RI-1)
16-bit
a General register or subfunction designator d Signed deviation value

(2's complement)

y Address or constant

Figure ‘3-1. Instruction Formats

© 14122000

FORMAT OPERAND FORMATION

r
. g - 32 bit operand

'
i

Operand = (Rm)
Local Jump Address Y = (P) + 4

Operand atY=yifm=0 ; ‘

OperandatY =y + (Ry,)ifm#0,8,A,C,E -
_Operand at indirect address if m = 8,A,C,E

Operand-at Y upperifm=0

Operand at Y = (R)/2*y:fm#0 8,A,C,E

B = ®m)o

Operand at indirect addressif m= 8, A,C,E

Operand = m (an absolute iiteral)

|
S | Magnitude
|

31 30— 16 | 15

Double Length Operands

Figure 3-2. Operand Formation

3-3

. by the éontents of Rm). Also, operand Y is used as an address in
RK format jump instructions and in remote execute instructions.

) RX format instructions are also double-word instructions. The
first word contains the a and m designators, and the next word con-
tains the y value. RX format instructions perform 8-bit byte,
whole-word (16-bit), and double-word (32-bit) operations with gen-
eral registers and main memory. The a designator selects Ra for
all three types of operands.

RX instructions provide very flexible operand addressing including direct,
indireet, cascaded indireet, and indexed types. The m designator selects
the addressing as follows:

m = 0 - direet addressing without indexing

m = 1-7,9,B,D, or F (hexadecimal) - direct addressing with indexing,
with the contents of Rm used as the index value.

m = 8,A,C,E (hexadecimal) - address scheme depends on bits set in
SR2g_15. 1If indireect addressing is indicated, a pair of indirect
words(IWl and IW2) will be used to define further operand address
processing according to the scheme depicted in Figure 3-3. The address
of IWl is Y = y, if not indexed, and Y = y + (Rm), if indexed. This
brocess provides a means for cascading indirect addresses as desired.

DATA FORMATS

Data formats include, numbered from right to left, U-bit literal, 8-bit byte
signed or unsigned, 16-bit word signed or unsigned, and 32-bit double-word
signed or unsigned. Double(wbrdsxresidetin two adjacent registers or memory
locations. The first 16 bits of a double word must be contained in an
even-numbered register or memory location. The second 16 bits of a double
word will then oecupy the adjacent odd-numbered register or memory location.
Floating-point operand format is shown in Figure 3-6.

ADDRESSING FORMATS

Double-length operands are assigned even-numbered addresses or registers,
with the most significant portion in the even-numbered location and the
least significant portion in the next location. Memory addressing for the
first portion of a double-length operation is formed like that of the sin-
gle-word operands. '

For m values 1 through 7 and 9, B, D, F, the m=field specifies direct ad-
.dressing Rm as an index register [i.e., operand is located at Y = y + (Rm),
where y is the value in the second 16 bits of the instruction]. For m
values 8,A,C,E, one of the four pairs of bits in the upper half of status
register 2 is checked to determine the addressing scheme to be used for the
instruction. If the bit pair in question has values 00 or 01, direct ad-
dressing using Rm as an index register is selected. Bit patterns 10 and

3-4 14122000

11 specify indirect addressing using a pair of indirect words (labeled IWl
and IW2). The pattern 10 selects IWl at y, and 11 selects IWl at y + (Rm).
Bits 14 through 12 of IWl (labeled J) specify the interpretation of IW2.

For J from 0 through 3, IW2 is interpreted as the address of the operand to
be fetched using Rm, Rm + 1 or, Rx (where x is the value in bits 3 through 0
of IWl) as an index register. For J from 4 through 7, IW2 is interpreted as
containing the address of a new indirect word after indexing by Rm, Rm + 1,
or Rx.

For byte addressing, the least significant bit (LSB)(bit 0) of the indexing
register is used to select the upper or lower byte of the word referenced.
If the bit is 0, the more significant byte (upper) in the referenced address
is selected; if the bit is 1, the less significant byte (lower) is se-
lected. The following cases can arise:

B is the byte designator (0 for more significant byte)

m=20, address Y=yand 8 =0

m#O0, Y=y + (Rm)/2,8 = LSB (Rm) before the indexing

~under indirect addressing (see Figure 3-3)

J=0,y=(W2),8 =0

J =1, ¥ = (IW2) + (Rx)/2, B = LSB (Rx) before the indexing

j=2, Y= (IW2) + (Rm)/2, B8 = LSB (Rm) before the indexing
J=3,Y=1(IW2) + (Rm + 1)/2, 8 = LSB (Rm + 1) before the indexing

where m is the m-field of the instruction

y is the second 16 bits of the instruction

Y is the computed address

X is the lower u.bits of IWl (see Figure 3-3)

IW2 is the second of the palr of indirect words (see precedlng
discussion).

Indirect addresses are computed norﬁallyz For j value from 4 through

7, the indirect addressing is continued normally until a j value from
0 through 3 is encountered.

14122000 . . 3-5

w1

15f14 13 12[11 10 9 8 7 6 5 4|3 2 1 0

J | Not Used X
w2 y
d Value Address Determination
0 Operand at address épeciﬁed by IW2
1 Operand at address specified by IW2 + ®Rx)
2 Operand at address specified by IW2 + (Rm)
3 Operand at address specified by IW2 + ®m + 1)
4 Another indirect word at address specified by IW2
5 Another indirect word at address specified by IW2 + (Rx)
6 Another indirect word at address specified by IW2 + ®Rm)
7 Another indirect word at address specified by IW2 + BRm + 1)
10 - 17 Not assigned

Figure 3-3. Indirect Addressing Schemes

14122000

ARITHMETIC INSTRUCTIONS

INTEGER ARITHMETIC

The AN/AYK-14(V) provides both integer (fixed-point) and floating-point
arithmetic. Integer arithmetic can be both single-precision and double-pre-
cision. Integer arithmetic formats are shown in Figure 3-4. Two distinect
indicators of arithmetic results (the carry and overflow indicators in sta-
tus register 1) are provided. The carry indicator is set when an arithmetic
operation produces a result which carries out beyond the most significant
bit (MSB)(either 16-bit or 32-bit operations). The overflow indicator is
set when an operation exceeded the capacity of the machine and produces a
result of a different sign. Overflow and carry indications for all possible
combinations of operands in an addition operation are shown in Figure 3-5.
The overflow and carry pattern is the same for 16-bit and 32-bit operands.

FLOATING-POINT ARITHMETIC

Figure 3-6 shows floating-point operand format. The characteristic is a
7-bit field computed as exponent + 401¢, the mantissa is 24 bits (6 hex-
adecimal digits). Floating-point over/underflow occurs when a normalized
result's characteristic is larger than 7 bits and cannot be represented.
The AN/AYK-14(V) floating-point instructions accept both normalized and un-
normalized inputs and produce normalized outputs. A floating-point number
is normalized when the most significant hexadecimal digit is nonzero. Nor-
malization consists of shifting the mantissa left in hexadecimal fashion (4
bits at a time) until the high-order hexadecimal digit is nonzero and re-
ducing the characteristic by 1 for each 4-bit shift.

Floating-point addition, subtraction, multiplication, and division may be
performed with a normalized result with or without a residue. If the float-
ing-point residue designator (bit 6) in status register 1 is cleared, the
residue is dropped after normalization of floating-point results. If the
residue designator is set, the residue is saved after normalization of re-
sults.

Word 1 of the operand contains the algebraic sign of the fractional man-
tissa, a biased characteristic in the range 0L C £ 7F (hexadecimal) and the
two most significant hexadecimal digits of the fractional mantissa. A nor-
malized floating-point number has a nonzero hexadecimal digit in the most
significant 4 bits of the mantissa. When a residue is requested by the pro-
gram (SR1l, bit 6 set), the computer stores the floating-point normalized
number in Ra and Ra + 1. The residue in floating-point data format (nor-
malized or unnormalized) is stored in Ra + 2 and Ra + 3. The residue may or
may not be normalized as normalization will not be performed on residue.

Floating-point residue for the floating-point subtract and add arithmetic
operations will be as follows, if selected.

1) If the exponent difference of the two normalized inputs is 5 or

less, the residue will have an exponent of 6 less than the result's
exponent, and the mantissa will represent the 24 least significant
bits of the 48«bit result.

14122000 3-7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s
G INTEGER

-

N

Single-Word Arithmetic Operand

15 14 0

G INTEGER >

INTEGER ' >

Double-Word Arithmetic Operand

Figure 3-4. Integer Arithmetic Formats

14122000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 >No Overflow/No Carry

!

«—1

0 P Overflow/No Carry

1l &1 '
{'0 —

1 >No Overflow/Carry

1 : >No Overflow/No Carry

Figure 3-5. Overflow and Carry Indications (Sheet 1 of 2)

14122000 3-9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G

+

1 | | > Overflow/Carry

> No Overflow/Carry

Figure 3-5. Overflow and Carry Indications (Sheet 2 of 2)

3-10 ~ 14122000

—i32 BIT OPERAND; |

L
¥
| '(Ry), i‘ ! (Repn), |
——{ (R} or| ' %«n«fm’”i}'—"
| iy) ij | a1y
| WORD 1’ l WORD 2 |
151 14 817 '0:15 0
| i . o
LS CHAR. | - __ __ _MANTISSA ..J|
. l PRESUMED RADIX POINT

SIGN OF MANTISSA

1 = MINUS

0 = PLUS

NOTE:

- a, m, and address Y are even numbers.
Characteristic or exponent is formed
by adding 64 (40y¢), the bias to the
exponent.

+ exponents above 40 (40-7F)
- exponents below 40 (00-3F).

Floating-Point Format Examples

+116 | 4110 0000
1y c110 0000
.01y BF10 0000
+.001E; g 3E1E 0000
+3E6U76.x16+3 493E 6476

Figure 3-6. Floating~Point Format

14122000 3-11

2) If the exponent difference of the two normalized ihputs is greater
than 5, the residue will be the normalized input with the smaller
exponent.

Refer to the specific instruction descriptions for floating-point multiply
and divide residue.

A change of 1 in the characteristic represents a factor of 16 change in the
value of the number and represents a U-bit position shift of the fractional
mantissa. The magnitude range of floating point numbers is approximately
5.4 x 10-79< M 7.2 x 1075. 4 floating-point. zero is any data value
with a zero mantissa. :

Floating-point definitions:

1) Floating-Point Zero - any data value where mantissa is zero

2) Machine Zero - any data value where sign, exponent, and mantissa

are zero

3) Machine Infinity - any data value whe

all ones.

Machine zero and machine infinit
floating-point numbers.

Either plus or minus infin

re exponent and mantissa are
ity possible.

y are considered to be valid, normalized
Refer to Table 3-1 for floating-point special cases.

TABLE 3-1. FLOATING-POINT SPECTIAL CASES
. Exponent

Divide Special Case: Result Residue Overflow/Underflow
Infinity/infinity - One (sign is XOR of Machine zero Overflow

- both input signs)
Zero/zero Machine zero Machine zero Overflow
Nonzero /zero Infinity (with sign Same as. Overflow
‘ of Ra) result
Zero/Nonzero Machine zero Machine zero Neither
Infinity/x Infinity (sign is Same as Overflow

| XOR of both input result

signs)

x/infinity Machine zero Machine zero Underflow
Multiply special
“case
Zero times infinity,| Machine zero Machine zero Overflow
or infinity times
zero
3-12 14122000

TABLE 3-1. FLOATING-POINT SPECIAL CASES (Cont.)
Multiply Exponent
Special Case Result Residue Overflow/Underflow
Zero times x, or Machine zero Machine zero Neither
X times zero
Infinity times x, Infinity (sign is Same as Overflow
or x times infinity, | XOR of two input result
or infinity times signs)
infinity
Add special case
Infinity + infinity Infinity (sign is Same as Overflow
negative if both result
operands negative,
else positive)
Infinity + non- Infinity [sign is Same as Overflow
infinity sign of (Ra, Ra+l)] result
Noninfinity + Infinity (sign is Same as Overflow
Infinity sign of (Y, Y+1)) result
Infinity = infinity | Infinity (sign Same as Overflow
negative if result
1 (Ra, Ra+l) nega- '
tive and (Y, Y+l)
positive, else
positive)
Infinity - non- Infinity (sign is Same as Overflow
infinity sign of Ra, Ra+l) result
Noninfinity - Infinity [sign is Same as Overflow
infinity complement of sign result
of (Y, Y+1)]
14122000 3-13/3-14

REGISTERS AND CLOCKS Yy

GENERAL REGISTERS

Two stacks, each of sixteen 16-bit general registers are provided on the
AN/AYK-14(V). The register stack in use is determined by the general regis-
ter set designator, bit 14, in status register 1. All register references,
fetching or storing data, indexing, etc., involve the register stack cur-
rently selected. The contents of the other stack are not affected. All re-
gisters are initialized to 0 on power up or after master clear, and register
stack 0 is selected.

STATUS REGISTERS

STATUS REGISTER 1

Status register 1 (Figure 4-1) contains designations for system functions
and indicates status for instruction executions. Four instructions are pro-
vided for modifying and examining the contents of status register 1.

Store SR1 (0C a 1) (SSOR a)

The Store SRl instruction stores the value in SRl into the designated regis-
ter, Ra, and sets the condition codes appropriately. A discussion of con-
dition codes follows.

Load SR1 (0C a 5) (LSOR a)

The Load SRl instruction loads SRl with the value in the designated register
Ra. This is an executive mode instruction.

Load PSW (Immediate) (1D-m) (LPT m)

' The Load PSW instruction loads the contents of memory address Y* + 1 into
SR1. This is an executive mode instruction.

Load PSW (Indirect) (1F-m) (LPy, m)

The Load PSW instruction loads the contents of memory address Y + 1 into
SR1. This is an executive mode instruetion.

Functions of status register 1 are as follows:

1) Executive Mode Designator - Instructions affecting overall system
operation such as page register manipulation, enabling/disabling
clock and interrupts, activating I/0 chains, loading status regis-
ters, and stops are executive mode instructions. The execution of
such instructions when not in executive mode causes an executive
mode fault interrupt. Operation in executive mode is controlled by
bit 15 of status register 1. On power up or master clear this bit
is cleared by firmware and the system is placed in executive mode.

14122000 41

15| 14} 13}12J11}10f 9 8l 716]5 a4l3 2 1100 SR 1
Not 0 Disable DMA
Used 1 Enable DMA
Bit 1 =0, Class I locked out %
Bit 2 = 0, Class II locked out *
Bit 3 =0, Class I locked out *
: F.P. Residue; 1—p enable,
__F.P. Underflow/overflow interrupt; 0 — enable
_ Condition Codes *
. Other Compare
0 " 0—» Zerc {Ra) = ®Bm) or (¥)
0 1-—» Not zero & pos Ra) > Rm) or (Y)
1 0 Not used ' -
1 1-p Not zero & neg | (Ra)< (Rm) or (Y)

Overflow Designator. *

Carry Designator *

Bootstrap ROM Mode Des.igEtor; 0 = Bootstrap ROM Mode *

| CPU/IOP Designator; 0 = CPU
General Register Stack Designator; 0 = Stack 0

ecutive Mode Designator; 0 = Executive Mode

Figure 4-1.

* IOP also

Status Register Number 1 Format

14122000

2)

3)

4)

5)

6)

7)

8)

9)

10)

14122000

The bit is then software controllable with the Load SRl instruc-
tion, the Load PSW instructions, and via interrupt generation.

General Register Set Designator - If 0, this bit selects general
register stack 0 and if 1, selects stack 1. Registers in the stack
not selected are not affected by instructions. Register desig-
nators Ra and Rm within instructions refer to the stack currently
selected and do not affect the other stack. All general registers
are set to zero on power up or after a master clear, and bit 14 is
cleared selecting stack 0. The bit is then software controllable.

CPU/IOP Designator - If 0, this bit indicates a CPU. If 1, this
bit indicates an IOP. This bit is not software controllable.

Bootstrap ROM Designator - Various system control functions, in-
cluding the AN/AYK-1u4(V) bootstrap, are permanently stored in boot=-
strap ROM memory. This memory can be accessed if the bootstrap ROM
designator bit is cleared. The bootstrap ROM memory is located at
locations 0 through 3F;g and COj¢ through 3FF1g in page 0.

If the bootstrap ROM designator is set, all memory references
through page 0 will access main memory. On power up or master
clear, this bit is cleared selecting ROM mede. The bit is then
software controllable .

Carry - This bit, if set, indicates a carry out of the most signi-
ficant bit of the adder as a result of a fixed-point arithmetic
operation or indicates an underflow condition, when overflow is
set, for floating-point arithmetic operations.

Overflow - This bit, if set, indicates an overflow condition as a
result of a fixed-point arithmetic operation or indicates a float-
ing-point arithmetic overfleow or underflow condition. If set for a
floating-point operation, the earry bit is 0 if overflow and 1 if
underflow.

Condition Codes - Bits 9 and 8 provide the condition codes in-

‘dlcatlng the results of operations as shown in Table UY=1.

Floag__g-?olnt Over/Underflow Interrqg__r This bit, if cleared, al-
lows a floating-point interrwpt to be generated as a result of a
characteristic out-of-bounds condition in a fleoating-point arith=-
metic operation. Cleared on power up or master clear. It is then
software controllable.

Floating-Point Residue - When l; the residue resulting from a

floating-operation is saved. When 0, the residue is discarded. On
power up or master clear, the bit is cleared. It is then software
controllable.

Interrupt Lockout Designators - Bits 3 through 1 are the interrupt
lockout designators; bit 3 for Class I interrupts, bit 2 for Class
I1 interrupts, and bit 1 for Class III interrupts. When cleared,

4-3

TABLE 4-1. STATUS REGISTER 1 CONDITION CODES

Condition Code Indicated Résults of

Stores, Shifts, Loads, Logicals,

Bit 9 Bit 8 or Arithmetic Operations Compare Oberation
0 0 : Zero (Ra)=(Rm) or (Y) or
mor y, bit=0
0 1 Nonzero and positive (Ra) > (Rm) or (Y)
orm or y, Bit#0
1 -0 Not used Not used
1 1 Nonzero and negative (Ra) < (Rm) or (Y)

: or mor y, Bit 1540
these bits designate that the respective class of interrupts is
locked out. They are cleared at power up or master clear and then
are software controllable.

11) DMA Designator - When set, this designator allows direct memory ac-

cess (DMA) to AN/AYK-14(V) main memory from external equipment us-
ing the BEM. The AN/AYK-1U4(V) hardware operation and maintenance

manuals provide details. On power up or master clear, this bit is
cleared, disabling the DMA. The bit is then software controllable

- with the Load SRl instruection.

STATUS REGISTER 2

Status register 2 (Figure U4-2) contains designators for addressing schemes
and information pertinent to various interrupt types. The following four
instructions are provided for modifying and examining the contents of status
register 2.

1)

2)

3)

4)

Store SR2 (0C a 2) (SSTR a) - Stores the value in SR2 into the
designated register, Ra, and sets the condition codes appropriately.

Load SR2 (0C a 6) (LSTR a) - Loads SR2 with the value in the
designated register Ra. This is an executive mode instruction.

Load PSW (Immediate) (1D-M) (LPI m) - Loads the contents of
Y* + 2 into SR2. This is an executive mode instruction.

Load PSW (Indirect) (1F-m) (LPy, m) - Loads the contents of
Y + 2 into SR2. This is an executive mode instruction.

The functions of status register 2 are as fdllows:

1)

Addressing Techniques - Bits 15 through 8 of status register 2 de-
termine the addressing scheme to be used by the software. When the
m-field in an RX format instruction is B, 4, C, or E, bits in-
terpreted specify direct addressing with indexing or indirect ad-
dressing with or without indexing. :

14122000

Interpreted if m
I Interpreted if m

Interpreted if m
l r-Interpreted if m

i
© P

[1)
i/ v, ' v
AREABERT LA] sk
| |
: ' | I/0 and memory fault
| | | interrupt data*
|
: | | Interpreted as follows:
o ol o 0: 0 o l O 0 Direct addressing with indexing
o 110 1' 0 1 l 0 1 Direct addressing with indexing
't ol1 oy1 ol1 o Indirect addressing without indexing;
| | |
| | | IW1latyYy=y
1 1,1 171 1 | 1 1 Indirect addressing with indexing;
l | " W 1aty=y+®p)

*Interpreted as follows:

c ¢ ¢ C - - - - **1/0 failure interrupt
C C C C 0 X 1 o0 **I/O chain instruction fault
' ‘CCCC = Chan No., X = 0->Input,
X = 1-» Qutput ,
0 0 0 o0 0 o0 o0 1 **I/O command instruction fault
"M M M M X 0 0 1 Memory time-out MMMM = Module
"M M M M X 0 1 o Memory parity error | bank code
M M M M X 1 0 0. **Memory protect fault) X =0, 1 Memory
M0 M1 M2 M3 M4 M5 MG M7 | bus i‘tndicator'
0 = Even bus
**IOP also
Time-out or parity
error (RXM)

Mi = 0 Bank i no error, Mi = 1 Bank i error

Figure 4-2. Status Register Number 2 Format

14122000 4-5

2) Interrupt Information - Bits 7 through 0 of status register 2 pro-
vide information regarding various interrupts. For details on gen-
eration of interrupts, see Section 5.

3) I1/0 Failure Interrupt - When an I/0 failure interrupt occurs (soft-
ware references a channel not provided in the hardware configura-
tion), the firmware places the channel number referenced in bits 7
through 4 of status register 2.

4) 1/0 Command Instruction Fault - When an I/0 instruection fault in-
terrupt occurs (execution of an illegal command from the I/0 com-
mand cell), the firmware inserts 0's in bits 7 through 4 and 0001
in bits 3 through 0 of status register 2.

I1/0 Input Chain Instruction Fault - When I/0 instruetion fault in=-
terrupt occurs (illegal instruction in a chain program), the firm-
ware inserts the number of the channel whose chain program com-
mitted the fault in bits 7 through 4, 0010 in bits 3 through 0 of
status register 2 if it was an input chain, and 0110 in bits 3
through 0 if it was an output chain.

5)

6) Memory Fault Interrupts - For the three types of memory fault in-
terrupts, the firmware inserts the module bank code (upper 4 bits
of the 19-bit absolute address computed by the MCM) in bits 7
through 4. Bit 3 specifies whether the failure occurred out of an
address accessed by the odd or even memory bus (bit 3 = 0 for even
bus). The module bank code and odd/even bus indicator, together
with the memory configuration and the type of interleaving
(word /bank) specify the mémory module where the failure occurred.
For the memory time-out interrupt, the firmware sets bit 0; for
memory parity error, the firmware sets bit 1; and for memory pro-
tect fault, the firmware sets bit 2.

If multiple failures oeccur on one memory reference, more than 1 bit in bits
2 through 0 will be set, depending on the faults which occurred. In such
cases, only the highest priority interrupt is generated. Hence, a memory
time-out interrupt may also indicate a memory parity error or a memory pro-
tect fault. Section 9 contains more details on interrupts.

BREAKPQINT REGISTERS

Two breakpoint registers are provided in the AN/AYK-14(V): a program ad-
dress breakpoint and an operand address breakpoint. The CCU allows the user
to specify breakpoint values and to enable and disable the breakpoints (see
CCU user's manual). The breakpoint values are 16-bit paged addresses in-
terpreted according to the current page register configuration. Program
address breakpoints must be set to the address of the first word of two-word
instructions. For program address breakpoints, the AN/AYK-14(V) will stop
with (P) = breakpoint value and the instruction at P has not been executed.
For operand breakpoint, the AN/AYK-14(V) will stop with (P) = breakpoint + 1
and the instruction at P has been executed. There is no operand breakpoint
for the IOP.

46 ’ 14122000

PROGRAM ADDRESS REGISTER

The AN/AYK-14(V) 16-bit program address register provides the 16-bit address
of the instruction being executed. However, due to the overlap of instruc-
tion execution and instruction fetching, and due to simultaneous execution

f CPU and I/0 instructions, the program address counter value at a given
time may not be relevant to program status. :

For certain interrupts, the value of the program address register may not
indicate the exact instruction at which the interrupt occurred.

The interrupts where P equals something other than the address of the in-
struction at which the interrupt occurred are as follows:

Class II
Priority 1 - CP instruction fault - address + 1 or address + 2
Priority 2 - I/0 instruction fault - address + 1
Priority 3 - Floating=-point over/underflow - address + 1

Priority 4 - Executive return - address + 1

The event representing the interrupt may not be detected until after the in-
struction has been executed. \F‘er the CPU instruction fault, the program ad-
dress will be the address of the instruction causing the fault.

The lookahead instruction read performed concurrently with ecurrent instruc-
tion execution requires caution in certain coding sequences. Instructions
which can affect the next instruction to be read (e.g., a modification of
page registers) should be avoided. Since the next instruction is read while
the current instruction is executed, the modification does not take place
until after the next instruction is read. Similar coding sequences which
~affect the address of the next instruction should be avoided.

AN/AYK-1U4(V) CLOCKS
REAL-TIME CLOCK

The AN/AYK-14(V) real-time clock (RTC) in the CPU is a 32-bhit register which
increments at a 1-MHz rate. When the clock is counting and the RTC overflow
interrupt is enabled, the clock interrupt is generated each time the lower
16 bits are incremented end around from FFFF to 0000 (every 216 micro-
seconds). On power up or after a master clear, both the clock and its in-
terrupt are disabled. '

The RTC in the IOP is a 16-bit register which increments every 1024 micro-
seconds when enabled. The 1l024-microsecond time base is taken from a l6-bit
register being incremented at a 1-MHz rate. This register is incremented
whenever power is applied and cannot be controlled by software. When the
RTC register is enabled and the RTC interrupt is enabled, the interrupt will
be generated each time the 16 bits increment end arocund to zero. Master
clear disables the RTC counting and RTC interrupt. IOP instructions are

14122000 4-7

provided to load and store clock values, and to enable and disable the clock
count and RTC interrupt.

Software instructions are provided to load and store clock values and to en-
able and disable the clock count and the clock interrupt:

1) Store RTC (0Ca 3) (SCR a) - Stores the contents of the least
significant 16 bits (lower half) of the 32-bit real-time clock re-
gister into Ra and then sets the condition code.

2) Load RTC Lower (0Ca 7) (LCR a) - Loads the value in Ra into the
lower 16 bits of the RTC. The count and interrupt status (enabled
or disabled) are not affected. This instruction is an executive
mode instruction.

3) Enable Clock (0C - 8) (ECR) - Enables the clock count and the
clock overflow interrupt. The cloek oscillator operates indepen-
dently of the cloeck count. Hence, counting begins at the point in
the oscillator cycle where the count is enabled. This instruction
is an executive mode instruction. Do not use this instruction in
interrupt handlers other than the RTC interrupt handler.

4) Disable Cloeck (0C - 9) (DCR) - Disables the clock count and the
clock overflow interrupt. This instruction is an executive mode
instruction.

5) Load Double and Enable Clock (0C a C) (LCRD a) - Loads the
values in Ra and Ra + 1 into the 32-bit clock and enables the clock
count. Clock interrupt status (enable/disable) is not- affected.
This is an executive mode instruction.

6) Store RTC Double (0C a D) (SCRD a) - In the CPU, stores the con-
tents of the 32-bit real-time clock register into Ra and‘Ra(:>l.
In the IOP, stores the contents of the RTC register into Ra and the
16-bit 1-MHz incrementing register value into Ra(:)l. Clock count
and interrupt status (emabled/disabled) are not affected.

7) Enable Clock Interrupt (0OC - E) (ECIR) - Enables the RTC over-

' flow interrupt which is generated when the lower 16 bits of the
clock increment to all 0's. Cloek count status (enable/disable) is
not affected. This is an executive mode instruction. Ensure that
this instruction is not the last instruction in a page in memory. .

8) Disable Clock Interrupt (0C - F) (DCIR) - Disables the RTC over-
flow interrupt. Clock value and count status (enable/disable) are
not affected. This is an executive mode instruction.

MONITOR CLOCK

The AN/AYK-14(V) 16-bit monitor clock is decremented at a 10-kHz frequency.
When the clock is counting and the monitor clock interrupt is enabled, the
monitor clock interrupt is generated when the clock decrements to 0. On
power up, after a master clear, or after a monitor clock interrupt, both the

4-8 14122000

clock count and the interrupt are disabled. Software instructions are pro-
vided to load and store clock values and to enable and disable the clock
count and the clock interrupt:

1) Load and Enable Monitor Clock (0Ca A) (LEM a) - Loads the moni-
tor clock with the value in the designated register Ra and enables
the clock count and clock interrupt. The clock oscillator operates
independently of the clock count. Hence, counting begins at the
point in the oscillator cycle where the count is emabled. This is
an executive mode instruction.

2) Disable Monitor Clock (0C - B) (DM) - Disables the monitor clock
count and the clock interrupt. This is an executive mode instruc-
tion. R

3) Store Monitor Clock (10 a u4) (SMC a) - Stores the current moni=-
tor clock value into the designated register Ra. Clock ecount and
interrupt status (enable/disable) are not affected.

BUILT-IN-TEST COUNTER

The built-in-test (BIT) counter in the CPU is a U4-bit counter which is in=-
cremented once every 221 microseconds (approximately 2.097 seconds) by the -
built-in-test timer. The time base is a l1-MHz ‘osecillator on the PSM. The
timer is free running and cannot be enabled or disabled by software. On
power up or after a master clear, the BIT timer is cleared, the BIT count
reset to 0, and counting is begun. The RESET BIT TIMER instruction allows
the software to reset. the BIT count to 0, gqueue count to 0, and clear the
timer.

Each increment of the BIT counter generates the hardware fault warning in-
terrupt; when the counter increments to all 1's, the hardware fault in-
terrupt is generated. There are two methods of inhibiting the hardware
fault warning interrupt. 1If Class I interrupts are locked out (see Section
9 on interrupts), up to 13 successive hardware fault warning interrupts are
placed in a one-level queue. The fourteenth interrupt, however, is not in-
hibited and is received by the software. The same result can be achieved by
executing the Diagmostic Jump instruction with bits 15 and 0 of R15 set. By
this method, the other Class I interrupts need not be locked out. Executing
the Diagnostic Jump with bit 15 of R15 set and bit 0 of R15 cleared, enmables
the interrupt for generation at each increment of the counter. If software
execution is stopped and if CSE is connected to the AN/AYK-14(V), generation
of the hardware fault warning interrupt is inhibited by the constant clear-
ing of the BIT timer by the firmware. The following two instructions are
associated with the BIT timer and BIT indicator.

1) Reset Bit Timer (08 - E) (RBT) - Resets the BIT count to O,
queue count to 0, and resets the BIT timer.

2) Set Bit Indicator (08 - F) (SBT) - Sets the external BIT in-
dicator which, in turn, generates the hardware fault interrupt. It
also resets the BIT counter, queue count, and BIT timer.

14122000 ' 4-9

The built-in-test (BIT) counter in the IOP is a 3-bit counter which is in-
cremented by the BIT timer. The BIT timer time base is 1 MHz. The timer is
free running and cannot be enabled or disabled by software. On power up or
after a master clear, the BIT timer is cleared, the BIT counter is reset to
Zero, the queue count is reset to zero, and counting is begun. When the IOP
is in controller mode, the firmware will keep the BIT timer from timing out
and incrementing the BIT counter which generates the hardware fault warning
interrupt. When the IOP is in processor mode, it is a responsibility of the
software via the RESET BIT TIMER instructions to keep the BIT timer from
generating the interrupt.

Each increment of the BIT counter genérates the hardware fault warning in-
terrupt; when the counter increments to all 1l's, the hardware fault in-
terrupt is generated if an RBT instruction is not executed within .9375 sece-
onds. . ')

The same two methods of inhibiting the hardware fault Qarning interrupt ap-
ply in the IOP. If inhibited, six hardware fault warning interrupts are
placed in a one-level queue, and the seventh interrupt is received by the
sof tware.

4-10 : : 14122000

MEMORY

MEMORY SUBSYSTEM

The AN/AYK-14(V) memory subsystem includes the MCM and memory modules, ei-
ther core or semiconductor memory. The MCM maintains page registers, com-
putes absolute addresses using the established page configuration, and per-
forms memory protection functions. This module also provides parity check-
ing on data stored in memory and informs the firmware of memory failures.
Memory modules are arranged on two memory buses labeled odd and even. Two
interleaving methods are available: bank interleaving in which memory mod-
ules as units are accessed on one or the other memory bus, and word in-
terleaving in which successive words in memory are accessed on alternate
buses. Traffic on the two memory buses can occur independently and simul-
taneously to increase memory reference speed.

The IOP can access memory on the RXM without using the MCM when an RXM mod-
‘ule is included in the system. IOP memory references through the MCM use
the current paging as established by the CPU. The CPU cannot reference RXM
memory .

INTERLEAVING

Word or bank interleaving provides alternate use of the memory buses to re-
duce access time during multiple memory references. The type of inter-
leaving (word or bank) is determined by the hardware configuration, -and num-
ber and size of memory modules.

Bank size can be 16K or 32K depending on the mix of memory module sizes used
in a given configuration. Where there is a mix of memory module sizes
(i.e., 16K and 32K), the bank size is 16K.

WORD INTERLEAVING

Word interleaving means that memory references are alternated between odd
and even memory buses (i.e., word zero from the even bus and word one from
the odd bus). In the case where there is a memory module configuration of
32K in location 0 and 32K in location 1 (locations 0 and 1 are hardware
slots associated with even and odd memory buses), word interleaving is auto-
matic. The first 32K will contain even memory addresses 00000 through
OFFFE, and the second 32K will contain odd memory addresses 00001 through
OFFFF. In a configuration such as this, word interleaving can be changed to
bank interleaving by inserting a jumper wire between pins 86 and 87 of JOl1
{front connector on the AN/AYK-14(V)] for an XN-l.

BANK INTERLEAVING

Bank interleaving means that memory references are made to a bank of ad-

dresses on the even bus and then a bank of addresses on the odd bus (i.e.,
words 0 through n from the even bus and words n + 1 through x from the odd
bus). In the case where there is a memory module configuration of 32K in

14122000 5-1

location 0 and 16K in location 1, bank interleaving is automatic. Bank size
is defined as 16K, the smaller memory module size. Bank 0 is the first 16K
of the 32K module, bank 1 is the 16K module, and bank 2 is the last 16K of
the 32K module. Bank 0 would be addresses 00000 through 03FFF, bank 1 would
be addresses 04000 through O7FFF, and bank 2 would be addresses 08000
through OBFFF.

RXM ADDRESSING

This memory is unpaged and does not interface with the MCM. It is intended
to operate directly with a processor; via the IOBUS interface. Multiple RXMs
can be used in a system up to a total of 65,536 words; however, the present
AN/AYK-14(V) chassis [100 series (XN-1) and 300 series (XN-3)] provides
space for only one RXM each. The primary application of RXMs is to provide
memory functions for small AN/AYK-14(V) configurations using the IOP as a
standalone processor. An RXM can also be used as a private program memory
for the IOP when used in configurations employing both the IOP and CPU in
combination. In the latter case, the CPU will not have access to the RXM.
When installed in the 100 series or 300 series chassis, the RXM is assigned
address ranges F000 to FFFF (hexadecimal) for the RAM portion and E000 to
EFFF (hexadecimal) for the optional PROM portion.

BOOTSTRAP ROM ADDRESSING

The bootstrap loader routinefresides’in'ROM and occupies approximately
89610 locations. ' :

In order to reference ROM locations, SR1l, bit 12 must be zero. In boctstrap
mode, paging is not used with ROM locations.

Use of page 0 (ROM) for loading data is limited to non-ROM locations (i.e.,
4016-BF16). When in bootstrap mode and a location outside of the ROM

area is referenced, that location in main memory is accessed using paging.
Also, when in bootstrap mode, main memory locations equivalent to the ROM
area are not accessible using page register zero. Figure 5-1 shows the re-
lationship between ROM and main memory addresses along with module execution
of relative address references.

Interrupt trap locations are established by the bootstrap loader prior to
exit. That way, should an interrupt occur after exit and before user in-
tervention, the interrupt will be handled by the bootstrap ROM program.

MEMORY INTERLOCK

To facilitate interprocessor communications through main memory in systems
with two processors (CPUs, IOPs, or both), a memory interlock function is
provided for the stack, queue, and biased fetch instructions. The interlock
applies to a page register accessed by a processor during execution of one
of these instructions. When the page register is accessed by a processor,
the MCM reserves further accesses to that page register for that processor.
When the instruction is completed, the page register is released. During
the interlock period, accesses to the page register by the other processor
are held until the page register is released. After release, accesses by
other processors are allowed. The memory interlock facilitates the stack,

5=2 , 14122000

ONE PAGE
N\

A\

ﬁigizznry //<///<;/,

LS

100 297
40. BF
ROM
0 77 300 1777,
0 3F co 3FFyq
RELATIVE ADDRESS
15 10 9 0
: 1 iy T | Reference
PSM «—— 0 ROM ADDRESS ROM o PSM
MCM 0 NON ROM ADDRESS Referquce mein
M g— v . TR memory via page 0
; Reference main
VoM - B NOT 0 memory via paging
PAGE |
REGISTER
Figure 5-1. Bootstrap ROM Addressing
14122000 5=3

queue, and biased fetch instructions in maintaining lists of tasks to be
performed by the processors in the system.

PAGING

PAGING TECHNIQUE

The AN/AYK-14(V) CPU can access up to 512K words of memory using a paging
system.

The MCM forms the 19-bit absolute memory addresses by concatenating fields
from a 16-bit address supplied by the executing software and from one of 64
page registers as follows.

The 16-bit software address is broken into two fields. The lower 10 bits
(bits 9 through 0) are used as the lower 10 bits of the absolute address.
The upper 6 bits of the software address specify 1 of 64 page registers

(0 through 63). Each page register contains 16 bits. The lower 9 bits
(bits 8 through 0) of the selected page register are concatenated with the
lower 10 bits of the software address, providing a 19-bit absolute address
(Figure 5-2).

Effectively, each page register can point to one of 512 1024-location seg-
ments of memory (called pages). The page is specified by the lower 9 bits
of the page register. Therefore, the 64 page registers can be set to point
to a maximum of 64K of memory at one time. To access other portions of mem-
ory, the area of memory pointed to by the page registers must be changed.
Page register values are modified using the Load Address Register instruc-
tions. (These instructions are executive mode instructions).

PAGE REGISTER 0)

Page register 0 is used for a number of system functions and therefore re-
quires special handling.

All firmware interrupt memory references, occur through page register 0.
This includes storage of current program status word (PSW) and reloading of
the interrupt routine PSW. Hence, if page register 0 is modified to point

to other areas of memory, the interrupt information must be reloacted in the
new area of memory.

If the bootstrap ROM designator (bit 12 of status register 1) is cleared,
page 0 locations 0034 through 3F1g and CO1g through 3FF16 access ROM

memory. These special locations contain the bootstrap loaders and other
system control features. Attempts to write into ROM memory cause data to be
lost without notification to the executing software. Page register zero re-
ferences access to ROM memory if the ROM designator is 0, regardless of the
location to which page register 0 is set. Main memory at absolute locations
0016 through 3F16 and COjg through 3FF1g can be referenced through

page registers other than page register 0, regardless of the status of the
ROM designator.

5-4) 14122000

Software Address Y (16 bits)

[15 14 13 12 11 10]9 8 7 6 5 4 3 2 1 0]

Page Register # Address Within Page

Selects one of the
64 page registers

Page Register Contents (16 bits)

M3 [13]11 10 3]s 7 6 5 £ 3 7 1T 7]

T Ty PP, Page
|Set by Firmware to 000 Address
_Read Protect
_ Write Lockout

Execute Protect
Page Modification Indicator

_ .
18 17 16 15 14 13 12 11 10J9 8 7 6 5 4 3 2 1 0]

J

Absolute Address

(19 bits)
‘ 18 Bits * 18 Bits
Odd Bus Even Bus
(256K max) (256K max)
- Figure 5-2. Memory Address Generation
14122000 5=5

MEMORY PROTECTION

The upper 4 bits of each page register (bits 15 through 12) perform the mem-
ory protection function. Three types of protection (execute protect, read
protect, and write lockout) are provided. Descriptions of the three types
of protections follow.

1) Execute Protection - When the execute protect bit (bit 14) of a
page register is set, the memory protect fault is generated if an
instruction or an indirect word is read from the page. The in-
struction read will be executed. Firmware interrupt processing and
execution out of bootstrap ROM memory do not cause an interrupt if
execute protect is set in page register 0.

2) Write Lockout - When the write protect bit (bit 13) of a page reg-
ister is set, the memory protect fault is generated if an attempt
is made to write into that page of memory. The write is inhibit-
ed. Firmware interrupt processing in page 0 does not cause an in-
terrupt if the write lockout is set in page register 0.

3) Read Protection - When the read protect bit (bit 12) of a page reg-
ister is set, the read protect fault will be generated if an oper-
and is read from this page. Indireect word reads and instruction
reads do not generate the interrupt. Firmware interrupt processing
in page 0 does not cause the interrupt if read protect is set in
page register 0.

PAGE MODIFICATION INDICATOR

The page modification indicator (bit 15) in a page register is set when a
write operation is performed on the page of memory. The modification bit
can be cleared only by a Load Address Register instruction or a master clear
of the system.

When operating with a BEM and accessing memory via direct memory access
(DMA), the only bit in the page registers that can be modified is the page
modification bit (bit 15). It will be set for write operations and can only
be cleared by a master clear of the system.

CAUTIONS ON MEMORY PROTECTION

The AN/AYK-14(V) overlaps the execution cycle of the current instruction
with the reading of the next sequential instruction (or next 16 bits of a
32-bit instruection). This overlap requires caution in the use of memory
protection features.

An example of a problem that may arise is given by the execution of an RR
Jjump instruction (16 bits) located at a page boundary. If the next page is
set for execute protect, the interrupt is generated even though the jump
command sends the program into an unprotected page. 1In general, execution
of instructions at boundaries between unprotected and protected memory
should be performed with care. '

5-6 14122000

In an IOP standalone operation, only one-half of memory is available. The
IOP des not have page registers, indirect addressing, paging, or memory pro-
tection.

Details on the effect of the emulator instruction cycle overlap are discuss-
ed in Section 4.

14122000 ' 5-7/5-8

COMPUTER SUPPORT EQUIPMENT . 6

COMPUTER SUPPORT FUNCTIONS

A portion of the AN/AYK-14(V) microcode is devoted to routines which provide
the computer support functions. The CCU sends messages containing function

requests to the AN/AYK-14(V). The function requests are combined by the CCU
into a high-level interface for use in software development and controlling

computer operations. Details may be found in the CCU User's Manual.

SUPPORT CHANNEL OPERATIONS

The AN/AYK-1U4(V) can communicate with peripheral equipment over a special
RS-232-C type communications link supported by the CCU. This link can be
operated at rates up to 4800 baud for one-way transmission to the
AN/AYK-14(V) (no status) transmission and up to 2000 baud for full duplex
communications. The AN/AYK-14(V) initiates all activity on the link. While
a transfer between the AN/AYK-14(V) and the CCU is in progress, the SUPPORT
CHANNEL BUSY (SCBY) indicator is set. The AN/AYK-14(V) clears this in-
dicator when the transfer is completed. Data to be transferred across the
link is placed in the support channel buffer (upper byte) where it can be
accessed by the CPU or CCU. Five instructions are provided in the
AN/AYK-14(V) to drive communications across this link. These five instruc-
tions become NOPs when executed in the AN/AYK-14(V) when it is not connected
to the CCU. :

1) Support Channel Input (08 a 7) (SCI a) - Transfers the con-
tents of the support channel buffer to bits 15 through 8 of the
register designated by Ra.

2) Initiate Support Channel I/0 (0D a m) (SCIO a,m) - Performs
one of the following functions depending on the m-field:

m - 0000: Request for one byte of input data across the support.
channel to the support buffer bits 15 through 8. The
SUPPORT CHANNEL BUSY indicator is set until the data is
received.

0100: Transfers bits 15 through 8 of register Ra to the sup-
port channel buffer, and requests output of that byte
across the support channel. The SUPPORT CHANNEL BUSY
indicator is set until the data is transferred and ac-
knowledged.

1000: Request for one byte of status across the support chan-
nel to the support channel buffer bits 15 through 8.
SUPPORT CHANNEL BUSY indicator is set until the data is
received.

14122000 . 6-1

1100: Transfer bits 15 through 8 of register Ra to the support
channel buffer, and requests output of that byte accross
the support channel. The SUPPORT CHANNEL BUSY indicator
is set until the transfer is acknowledged. The byte
will be interpreted by the CCU as either a mode or
command byte.

0001: Reserved for shop replaceable assembly (SRA)
0101: communications with computer support equipment.

0010: Transfers bits 15 through 8 of register Ra to the sup-
port channel buffer, and requests output of that byte
across support channel. The SUPPORT CHANNEL BUSY in-
dicator is set until the byte is transferred. The CCU
will interpret it as a speed select byte.

Jump Support Channel Busy RR, RK, RX (80 c m; 82 Cm; 83 C m)
(JSCR m; JSC y, m; JSC *y, m) - Tests the SUPPORT CHANNEL BUSY in-
dlcator. If the indicator is set, the jump is executed; if the in-
dicator is cleared (transfer complete), the next sequential in-
struction isrexecuted.

3)

To use this channel, the user must write his driver programs, select speed,
parity, stop bits, do the handshaklng, and transfer the data.

Codes used in controlllng the support channel are expected by the CCU in the
f‘ollow1 ng sequence :

Mode byte (upper byte of
the designated register)
sets up the CCU

L7 6] 5 5 T3 2 |1 0 |
STOP PARITY LENGTH FACTOR
Bits :
76 01 = 1 stop bit, 11 = 2 stop bit
54 00 = No, 01 = odd, 11 = even
32 06 =5, 01 = 6, 10 = 7, ll = 8
10 00 = Syne, 10 = Async

6-2 14122000

14122000

Command byte (upper byte of the

designated register) directs the CCU

from AN/AYK-14(V)]

7 6 5 y 3 2 1 0
7 Not used (=0)
6 Reset to mode (next byte is a mode byte)
5 Request to send CA
4 Reset errors (clear error bits in status byte)
3 Send break
2 Receive enable
1 Data terminal ready CD
0 Transmit enable
Speed byte (upper byte of the
designated register) selects baud rates
7 6 5 uy 3 2 1 0
/
"V
Not used
9600 baud 0 0 0
4800 0 0 1
2400 0 1 0
1800 0 1 1
1200 1 0 0
300 1 0 1
150 1 1 0
110 1 1 1
Status byte (upper byte of the
designated register) from the CCU
7 6 5 4 3 2 1 0
7 Date set ready CC
6 Sync detected
5 Frame error
Ty Overrun error
3 Parity error
2 Transmit empty [CCU can accept two bytes of
data from AN/Ayk-14(V)]
1 Receive ready [byte ready for input to
AN/AYK-14(V)]
0 Transmit ready [CCU can accept one byte of data

6-3

The sequence of events for a support channel ocutput is as fol-

lows: '
Mode SCIO a,m = 1100

Command SCIO a,m = 1100
Speed SCI0 a,m = 0010
Data SCIO a,m = 0100

The sequence of events for a support channel input is as fol-

lows:
Mode ~ SCIO a,m = 1100
Command SCI0 a,m = 1100
Speed SCI0 a,m = 0010
Status SCIO m = 1000
Input SCI a

Depending on the baud rate, a check for status may have to performed for
each output. - .

If a program is stopped and restarted, a mode byte looks like a command byte
unless a command byte to reset mode is executed.

~

64 v 14122000

STACK AND QUEUE INSTRUCTIONS ' 7

LIST PROCESSING INSTRUCTIONS

The AN/AYK-14(V) stack and queue instructions provide functions to maintain

linked (threaded) lists of items within AN/AYK-14(V) main memory. These in-
structions are implemented using a memory interlock which facilitates access
to the lists by multiple processors.

The stack and queue instructions can be used to manipulate lists with any
number of items and items of any size and format. The first word of each
item, however, is to be reserved for the list link.

The stack instructions [Stack Get Top (SGT), and Stack Put Top (SPT)] manip-
ulate a list of one pointer (stack top pointer) and provide last-in, first-
out (push/pop) lists. The queue instructions [Queue Get Top (QGT), Queue
Put Top (QPT), and Queue Put Bottom (QPB)] manipulate lists with two point-
ers (queue top and bottom pointers) and provide output restricted lists.
Tests are provided in the instructions to handle empty lists.

Detailed definitions of the lists and descriptions of the list proce551ng
instructions are glven in the paragraphs which follow.

STACK INSTRUCTIONS

The stacks manipulated by the AN/AYK-14(V) stack instructions are linked
lists of items of any size, format, and number, each with a pointer indicat-
ing the top of the stack (Figure 7-1). The location of the pointer shall be
denoted by Y and the contents of this location (i.e., the address of the top
item in the stack) shall be denoted as (Y). The first word of each item in
the list is reserved for the link to the next item. The null link (i.e.,
the address pointed to by the link of the last item) shall be 0. The stack
is initially set so that (Y) = 0000.

The stack instructions are in RX format(i.e., they are 32-bit instructions,
with the second 16 bits used in obtaining the address of an operand in mem-
ory). No indirect addressing is allowed. The m-field is used to specify
one of 16 general registers to be employed as an index register. Y, the ad-
dress of the stack pointer, is computed as y + (Rm), where y is the second
16 bits of the instruction and (Rm) is the contents of the register speci-
fied by the m-field.

NOTE:

All stack thread cells must reside in the
first 32K of memory for a standalone IOP
configuration. If the threadcell ((Y))

for the SGT instruction contains an address
larger than TFFF)g, then (Y + 1) is stored
into pointer Y rather than the initial
thread cell.

14122000 ' 7-1

Stackpointer . . List of Linked Items
Location " Items

Location Y : YY)
0100 4000 ' 4000 3000
Points to top item in the list ‘Data 4

3000 . 2000 |
| Data 3

2000 1000 .
" Data 2

1000 , 0000
' ' Data 1

Figure 7-1. Example of a Stack

7=2 ' 14122000

Stack Put Top (SPT a, y, m)

02 a m (Y)=—» (Ra) R (Ra) —Y

The SPT instruction adds a new item onto the stack. (Ra) is the address of
the new item. (Y) is placed at (Ra) thus linking the new item to the item
previously at the top of the stack. The address of the new item is then
‘placed in Y, maintaining Y as the pointer to the top of the stack. Y #y +
(Rm) where y is the secomd 16 bits of the instruction and Rm is the register
specified by the m-field. Figure 7-2 is a representation of the action of
this instruction.

Stack Get Top (SGT a, y,vm)

1A a m (Y) = Ra, if (Y) # O then ((Y))—® Y and
(P) + 3—pP, If (Y) =0 then-(P) + 2P

The SGT instruction removes the top item from the stack. The stack pointer
contents (address of the top item) is placed in Ra and, if (Y) # O stack not
empty, the address of the item pointed to by the link of the item removed is
then placed in Y. This maintains Y as pointing to the new top of the

stack. The instruction at P + 3 is executed, skipping the next sequential
instruetion If (Y) = 0, the stack is empty. In this case, the next sequen-
tial instruction (located at P + 2 since SGT is a 32-bit instruction) is ex-
ecuted. Figure 7-3 is a representation of the action of this instruction.

QUEUE INSTRUCTIONS

The queues manipulated by the AN/AYK-l4(V) instructions are linked lists of
items of any size, format, and number, each with a pair of pointers indicat-
ing the top and bottom of the queue. The location of the pointer to the top
of the queue is Y, and that of the pointer to the bottom of the queue is.YC)
1 (logical OR of Y and 1) (Figure 7-4). The location of the item at the top
of the queue is then (Y), and the location of the item at the bottom of the
queue is (Y(:)l). The first word of each item is reserved for the link to
the next item. The null link (i.e., the contents of the link of the bottom
item) shall be 0. The bottom item of the queue shall have a null link. The
queue is set initially so that (Y) = 0000 and (Y(®1) = Y.

The queue instructions are in RX format (i.e., they are 32-bit instructions,
with the second 16 bits used to obtain the address of an operand in mem-
ory). No indirect addressing is allowed. The m-field of the instruction is
used to specify one of 16 registers as an index register. Y, the address of
the pointer to the top of the stack, is computed as y + (Rm), where y is the
second 16 bits of the instruction and (Rm) is the contents of the register
specified by the m-field.

NOTE:

All queue thread cells must reside in the first
32K of memory for a standalone IOP configuration.
If the thread cell ((Y)) for the QGT instruction
contains an address larger than 7FFF)g, the
(Y(:)l) is stored intc pointer Y rather than the
initial thread cell.

14122000 7-3

Operation:

Stackpointer List of Linked Items

Location Items
Iocation Y
0100 4000 3000
k Data 4
3000 2000
' Data 3
K
2000 100
. Data 2
1000 0000 |
Data 1
To add item to the stack
1) Establish 5000 | 4}—Link Address

item; 5001 ; iﬁata 5

2) Put location of item in Ra;

3) Execute SPT a,y,m

Location Items
@)
4000 3000
Data 4

Figure 7-2. Example of an SPT Operation

7-4 14122000

Operation:

Stackpointer

Location Y
0100

To get top item in stack
Execute SGT a,y,m

Location Y Y)
0100

Where:
1) Ra 4080 points to Data 4;

List of Linked Items

Location

4000

3000

2000

1000

| _ Location

/3000
2000

1000

2) @ points to Data 3 (new top)

Figure 7-3. Example of an SGT Operation.

14122000

Items

Data 4

2000

Data 3

1000

Data 2

0000

Data 1

Items

2000

Data 3

1000

Data 2

0000

Data 1

Queue Pointers

Location Y
0100

Location .Y ()1 (Y@l)

0101

List of Linked Items

Location Items
(v'q)

4000 4000 3000
Points to top item in list | : " Data 4
1000 3000 . 2000
Points to bottom item in list | Data g
; | | —
2000 . 1000

Data 2
1000 0000
Data 1

Figure 7-4.

Example of a Queue

14122000

Queue Put Top (QPT a, y, m)

12 a2 m (Y)—»(Ra), (Ra)—®Y, if (Y) = O
then (Ra)—-”Y@l

The QPT instruction adds a new item to the top of the queue. (Ra) specifies
the address of the new item. (Y) is placed at (Ra) thus linking the new
item to the item previously at the top of the queue. The address of the new
item (Ra) is placed at Y, maintaining Y as the pointer to the top of the
queue. If (Y) = 0, the queue was empty prior to executing the instruction., -
In this case, (Ra) is placed in Y(:)l, setting Y(:)l to point to the bottom
of the queue (in the case of a queue of one item, the top and bottom point-
ers point to the same address). Y = y + (Rm) where y is the second 16 bits
of the instruction, and (Rm) is the contents of the register specified by
the m-field. Figure 7-5 is a representation of the action of this
instruction.

Queue Put Bottom (QPB a, y, m)

16 a m (Ra) —» (Y(H1), (Ra)—*¥(1, 0—>(Ra)

‘The QPB instruction adds a new item to the bottom of the queue. (Ra) speci-
fies the address of the new item. This address is placed at (Y(:)l), the
bottom address of the queue prior to executing the instruction. This links
the item previously at the bottom of the queue to the new item. The address
of the new item is then placed in Y‘@l, maintaining Y@l as the pointer to
the bottom of the queue. The 0 is then stored at (Ra), planting a null link
in the new bottom item of the queue. Y =z y + (Rm) where y is the second 16
bits of the instruction, and (Rm) is the contents of the register specified
by the m-field of the instruction. Figure 7-6 is a representation of the
action of this instruction. '

Queue Get Top (QGT a, y, m)

/

1E a m “(Y)=—>Ra; if (¥) =0 (P) + 2—»P; if (YY) # 0
then (P) + 3—» P; ((Y))—»Y. If ((Y)) = 0, then
Y—>Y()1

The QGT instruction removes an item from the top of the queue. The top
pointer contents (address of the top item) is placed in Ra, and if it is 0,
the queue is empty and the instruction exits to the next sequential instruc-
tion located P + 2. If (Y) # 0, the queue was not empty and the address of
the item pointed to by the link of the top item is placed in Y. This main-
tains Y as the queue top pointer. The contents of the top pointer is now
tested, and if ((Y)) = .0, the last item was removed from the queue and the
pointers are initialized by placing the top pointer address Y in the bottom
~ pointer Y(:)l. The next instruction executed is at P + 3.

14122000 7-7

-

Queue Pointers List of Linked Items
Location Items
Location Y ‘
0100 4000 3000
Data 4
Location Y B 1 (@1 |
0101 1000 } 3000 2@@ _—
Data 3
—
2000 1000 —
Data 2
1000 0000
Data 1
To add item to the top of the queue
1) Establish 5000 | ' &+—Link Address
item; 5001 | Data 5
2) Load location of item in Ra
3) Execute QPT a,y,m
' Location Items
Location Y (Y)
5000
Data 5
Location Y () 1 ¥ ®un | S
0101 1000 4000 3000 —
| Data 4

Figure 7-S. Example of a QPT

Operation

if (Y)=0Ra)—eY @ 1

14122000

Queue Pointers

Location
Location Y)
0100 4000
Location Y(®1 F®1
0101 1000 3000
2000
1000

To add
1)

2)
3)

Location

Location

14122000

item to the bottom of the gueue
Establish 5000
item; 5001 | Data 5

Load location of item in Ra; 5008—eRa
Execute QPB a,y,m

Location
Y @
0100 | 4000 2000
Y®1 Y®1)
0101 5000 1000
5000

Figure 7-6. Example of a QPB Operation

’ O Ra)

List of Linked Items

Items

3000

Data 4

—

2000

Data 3

1000

Data 2

k\ s '
000 '

Data 1

et——Link Address

Items

| —

1000

Data 1

0000

Data 5

7-9

Queue Pointers

Location Y
0100

Location Y31 x®
0101

To get top item in list
Execute QGT a,y,m

Location Y
0100

Location Y(®1 Y®1
0101

Where:

1) Ra [4006] points to Data 4

Loeation

4000

3000

2000

1000

Location

3000

2000

1000

2)’ 0'e) points to Data 3 (new top)

List of Linked Items

Items

3000 —
Data 4

2000
Data 3

1000 —
Data 2

0000
Data 1

Items

2000
Data 3

(&

1000
Data 2

0000
Data 1

Figure 7-7. Example of a QGT Operation

7-10

14122000

INSTRUCTION DESCRIPTIONS

GENERAL

The instruction descriptions in this section consist of the fo;lowing four
parts. ’ !

1) Instruction name
2) Hexadecimal coding format
3) 'Mnemonic coding format recognized by the assembler
4) Instruction description
MNEMONIC CONVENTIONS

The mnemonic operation codes recognized by the assembler follow a set of
conventions for prefixes and suffixes.

Conventions for menemonic letters indicating the format type are:

1) RL - Format mnemonics are prefixed by L and local jumps.

2) RR - Format mnemanicsfare suffixed by R.

3) RI - Format mnemonics are suffixed by I except for local Jjumps.

4) RX - Format mnemonics are not suffixed.

5) RK - Format mnemonics are suffixed by K except for 32-bit jumps and
instructions with no RX format equivalent (e.g., shifts). The
mnemonics for 32-bit jump instructions are identical for RK and RX
formats. To differentiate between the two, the programmer codes an

asterisk (*) preceding the y operand for RX (indirect) jumps and
omits the asterisk for RK (direct) jumps.

Examples
" d y,m T jump to Y (RK format)
J *y.m . jump to (Y) (RX format)

el
The mnemonic description of the instruction operation code uses the fol-
lowing conventions.

Initial Letter
of Mnemonic ‘ Meaning

A Add, AND, Algebraic, Activity
B Byte, Biased
(o Compare, Circular, Channel, Count

14122000 ' 8-1

Initial Letter

of Mnemonic Meaning
D Divide, Decrement, Disable, Diagnostic
E Executive, Enable
H Halt
I Increment, Input/Output, Initiate, Interrupt
J Jump
L Load, Logical, Local
M Multiply, Masked
N Negative, No Operation
0 OR, One's
P Positive, Processor
R Round, Remote, Reverse, Read
S Store, Subtract, Set, Square
T Two's
W Write
X Exclusive, Index
YA Zero

DOUBLE PRECISION

The instruction repertcire,includes several instructions that provide for
operations involving~tw0fadjacent 16-bit registers or two ad jacent registers
and two sequential 16-bit memory locations. The rules concerning use of
these instructions are as follows:

1)

2)

Register-to-Register - Ra and Rm must be even~-numbered registers

"with the most significant 16 bits in Ra and Rm and the least signi-

ficant bits in Ra(¥)1 and Rm(¥)1.

Reg;;ter—to,Mgggry/Memoryato-Reg;ster‘-'Ra must be even-numbered
register containing the most significant 16 bits of the double-
length value, and Y must be an even-numbered memory location con-
t?f;ing the most significant 16 bits of the double-length value Y,
Y(+)1. '

Examples
ADR a,m . Ra and Rm are even-numbered registers
AD a,y,m - . y + (Rm) is an even-numbered address

These rules apply to all instructions which operate upon 32-bit
quantities. " They do not apply to load/store multiple instructions.

Programmers are encouraged to use the assembly language EVEN direc-
tive to ensure that double-precision quantities are assigned such
that operand Y containing the most significant 16 bits falls at an
even-numbered address. If the ODD directive was used, the most and
least significant bits would both end up at an odd-numbered ad-
dress. As stated before, to keep the most significant bits
(even-numbered register) assigned to an even address, the EVEN
directive must be used for all double-precision quantities.

14122000

3) Multiply Instructions - Ra must be an even-numbered register, but
it should be remembered that the multiplicand is assumed by the
hardware to be in the odd-numbered register of the two-register -
pair.

4) Divide Instructions - Ra must be an even-numbered register.

REPERTOIRE OF INSTRUCTIONS

The instruction repertoire is divided into instruction types, and within a
type listed by operation code in alphanumeric order..

Instruction types are as follows:

1) Load instructions

2) Store instructions

3) Arithmetic instructions

4) Logical instructions

5) Compare instructions

6) Shift instructions

7) Unconditional jump instructions
8) Conditional jump instructions
9) Miscellaneous instructions
10) 1I/0 instructions (see Section 10 - I/0 Channel Operations)

LOAD INSTRUCTIONS

Byte Load (Indirect) (03 a m) (BL a,y,m)

This instruction loads the selected byte from memory address Y in bits 0
through 7 of Ra, clears bits 8 through 15, and sets the condition code. The
various sources of byte selection are described in Section 3.

Load (Register) (04 a m) (LR a,m)

This instruction loads (Rm) into Ra and sets the condition code.

Load (Immediate) (05 a m) (LI a,m)

This instruetion loads the contents of the memory address Y* into Ra and
sets the condition code. The memory address is located in Rm.

Load (Constant) (06 a m) (LK a,y,m)

This instruction loads the operand Y into Ra and sets the condition code.

14122000 o 8-3

Load (Indirect) (07 a m) (L a,y,m)

This instruction loads the contents of memory address Y into Ra and sets the
condition code.

Load Double (Immediate) (09 a m) (LDI a,m)

This instruction loads the contents of memory address Y* and Y*(:>l, into Ra
and Ra(:)l, respectively, and sets the condition code. The memory address
is located in Rm.

Load Double (Indirect) (OB a m) (LD a,y,m)

This instruetion loads the contents of memory addresses Y and Y(:)l-into Ra
and Ra(:)l, respectively, and sets the condition code.

Load P Register (0C a 4) (LPR a)

This instruction loads (Ra) into P.

Load Multiple (OF a m) (LM a,y,m)

This instruction loads the contents of sequential memory addresses beginning
at Y into sequential registers Ra through Rm. If a is greater than m, the
registers loaded are Ra, Ra + 1, ..., R15, RO, ..., Rm. If a equals m, then
only one register is loaded. In this instruction, Y equals ¥+ No indexing
or indirect addressing is performed. The beginning address may be either
odd or even. ‘ :

Byte Load and Index by 1 (Indireet) (13 a m) (BLX a,y,m)

This instruction loads the selected byte from memory address Y into bits 0
through 7 of Ra, clears bits 8 through 15, sets the condition code, and then
inerements (Rm) by 1 if a # m. The various sources of byte select are de~
scribed in Section 3.

Load and Index by 1 (Immediate) (15 a m) (LXI a,m)

This instruction loads the contents of memory address Y* into Ra, sets the
condition code, and then increments (Rm) by 1 if a # m. The memory address
is located in Rm.

Load and Index by 1 (Indirect) (17 a m) (LX a,y,m)

This instrdction loads the contents of memory address Y into Ra, sets the
condition code, and then increments (Rm) by 1 if a # m.

Load Double and Index by 2 (Immediate) (19 a m) (LDXI a,m)

This instruction loads the contents of memory address Y* and Y*C:)l into Ra
and Ra(:>l, respectively, sets the condition code, and then increments (Rm)

by 2 if a # m. The memory address is located in Rm.

8-4 14122000

Load Double and Index by 2 (Indirect) (1B a m) (LDX a,y,m)

This instruction loads the contents of memory address Y and Y(:)l into Ra
and Ra(:)l, respectively, sets the condition code, and then increments (Rm)
by 2 if a { m.

Load PSW (Immediate) (1D - m) (LPI m)

This instruction loads the contents of memory addresses Y¥*, Y* + 1, and

Y* + 2 into the program address register, status register 1, and status reg-
ister 2, respectively. The memory address is located in Rm and may be -
either odd or even. The a-field is not used by the hardware. This is an
execut ive mode instruction.

Load PSW (Indirect) (IF - m) (LP y,m)

This instruction loads the contents of memory address Y, Y + 1, and Y + 2
into the program address register, status register 1, and status register 2,
respectively. Y may be either an odd or even address. The a field is not
used by the hardware. This is an executive mode instruction. When location
last jump is queued by the CSE, the Y portion of the instruction is dis-
played rather than the basic instruction itself.

Literal Load (CC a m) (LL a,m)

This instruction loads the U4-bit literal contained in the m-field of the in-
struction into bits 3 through 0 of Ra, clears bits 15 through 4, and sets
the condition code.

Load Address Register (Register) (BO a m) (LARR a,m)

This instruction loads (Rm) into the page register specified by bits 5
through 0 of (Ra). This is an executive mode instruction.

Load Address Register (Immediate) (Bl a m) (LARI a,m)

This instruction loads the contents of the memory address Y* into the page
address register specified by bits 0 through 5 of (Ra). This is an execu-
tive mode instruction. .The memory address is located in Rm.

Load Address Register Multiple (B3 a m) (LARM a,y,m)

This instruction loads the contents of the sequential memory addresses be-
ginning at Y into the sequential page address registers beginning at the
register specified by bits 5 through 0 of (Ra) and continuing until the num-
ber of executions equals one plus the count in bits 13 through 8 of (Ra). A
count of 0's loads one page address register. This is an executive mode in-
struetion. If the beginning page register address and the count combine so
as to load beyond the last page register, the addressing will go end around
on the page registers.

NOTE:

In a dual system (CPU and IOP), the CPU instructions
LARR, LARI, and LARM must not be included in the pro-
gram until approximately 25 microseconds (25 instruc=-
tions) after power up, or a memory error will occur.

14122000 8-5

STORE INSTRUCTIONS

Byte Store (Indirect) (23 a m) (BS a,y,m)

This instruction stores bits 7 through 0 of (Ra) into the selected byte at
memory address Y. The value that is used as the byte selector is described
in Section 3.

Store (Immediate) (25 a m) (SI a,m)

This instruction stores (Ra) at memory address Y*¥. The memory address is
located in Rm.

Store (Indirect) (27 a m) (S a,y,m) -

This instruction stores (Ra) at memory address Y.

Store Double (Immediate) (29 a m) (SDI a,m)

This instruction stores (Ra) and (Ra(:)l) at memory addresses Y* and
Y*()1, respectively. The memory address is located in Ram.

Store Double (Indirect) (2B a m) (SD a,y,m)

This instruction stores (Ra) and (Ra(:)l) at memory addresses Y and Y<:)l,
respectively. R e ' .

Store Multiple (2F a m) (SM a,y,m)

. This instruction stores, in sequential memory addresses beginning at Y, the
~ contents of sequential registers beginning at Ra and ending with Rm. If a
is greater than m, the registers stored shall be Ra, Ra + 1, ..., R1s5,

RO, ee., Rm. In this instruction Y equals y. No indexing or indirect ad-
~dressing is performed. The beginning address may be either odd or even.

Byte Store and Index by 1 (Indirect) (33 a m) (BSX a,y,m)

This instruction stores bits 7 through 0 of Ra in the selected byte at mem-
ory address Y and then increments (Rm) by 1. The various sources of byte
select are described in Section 3.

- Store and Index by 1 (Immediate) (35 a m) (SXI a,m)

This instruction stores (Ra) at memory address Y* and then increments (Rm)
by 1. The memory address is located in Rm.)

Store and Index by 1 (Indireet) (37 a m) (SX a,y,m)

This instruction stores (Ra) at memory address Y and then increments (Rm)
by 1.

8-6 - 14122000

Store Double and Index by 2 (Immediate) (39 a m) (SDXI a,m)

This instruction stores (Ra) and (Ra(+)l) at memory addresses Y* and Y*(3)1,
respectively, and then increments (Rm) by 2. The memory address is located
in Rm.

Store Double and Index by 2 (Indirect) (3B a m) (SDX a,y,m)

This instruction stores (Ra) and (Ra(¥)1) at memory addresses Y and Y(¥)1,
respectively, and then increments (Rm) by 2.

Store 0's (Immediate) (3D - m) (SZI m)

This instruction stores all 0's at memory address Y*#. The a-field is not
used by the hardware. The memory address is located in Rm.

Store 0's (Indirect) (3F - m) (SZ y,m)

This instruction stores ‘all 0's at memory address Y. The a-field is not
used by the hardware.

Store Address Register (Register) (B4 a m) (SARR’a,m)

This instruction stores the contents of the page address register specified
by bits 5 through 0 of (Ra) into Rm.

Store Address Register (Immediate) (BS a m) (SARI a,m)

This instruction stores the contents of the page address register specified
by bits 5 through 0 of (Ra) at memory address Y*. The memory address is lo-
cated in Rm.

Store Address Register Multiple (Indirect) (B7 a m) (SARM a,y,m)

This instruction stores the contents of sequential page address registers
beginning at the address word specified by bits 5 through 0 of (Ra) into se-
quential memory locations beginning at Y and continuing until the number of
executions equals the count in bits 13 through 8 of (Ra). A count of zero
stores one page register. If the beginning page register address and the
count combine so as to store beyond the last page register, the addressing
will go end around on the page registers.

ARITHMETIC INSTRUCTIONS

Subtract (Register) (40 a m) (SUR a,m)

This instruction subtracts (Rm) from (Ra), stores the result into Ra, and
then sets the condition code, overflow, and carry.

Subtract (Immediate) (41 a m) (SUI a,m)

This instruction subtracts the contents of memory address Y* from (Ra),
stores the result into Ra, and then sets the condition code, overflow, and
carry. The memory address is located in Rm.

14122000 8-7

Subtract (Constant) (42 a m) (SUK a,y,m)

This instruction subtracts the operand Y from (Ra), stores the result into
Ra, and then sets the condition code, overflow, and carry.

Subtract (Indirect) (43 a m) (SU a,y,m)

This instruction subtracts the contents of memory address Y from (Ra),
stores the result into Ra, and then sets the condition code, overflow, and
carry.

Subtract Double (Register) (44 a m) (SUDR a,m)

The instruction subtracts the double-length (Rm, Rm(3)1) from the double- ,
length (Ra, Ra(¥)1), stores the result into Ra and Ra(®1, and then sets the
condition code, overflow, and carry.

Subtract Double (Immediate) (45 a m) (SUDI a,m)

This instruction subtracts the double-length contents of memory addresses
Y*, Y¥(+)1 from the double-length (Ra, Ra(+)1), stores the result into Ra
and Ra(+)l, and then sets the condition co e, overflow, and carry. The mem-
ory address is located in Rm. o ‘

Subtract Double (Indirect) (47 a m) (SUD a,y,m)

This instruction subtracts the double-length contents of memory addresses Y,
Y(+)1 from the double-length (Ra, Ra (®1), stores the result into Ra and
Ra(+)1, and then sets the condition code, overflow, and carry.

Literal Subtraet (C8 é¥glf(LSU,aym)

This instruction subtracts the 4-bit unsigned literal contained in the
m-field of the instruction from (Ra), stores the result into Ra, and sets
the condition code, overflow, and carry. The literal is right justified,
zero filled before the subtraction. ‘

Literal Subtract Double (C9 a m) (LSUD a,m)

This instruction subtracts the U4-bit unsigned literal contained in the
m-field of the instruction from the double-length contents of Ra, Ra(:)l,
stores the result into Ra, Ra(:)l, and sets the condition code, overflow,
~and carry. The literal is right justified, zero filled before the sub-
traction.

Byte Subtract (Indirecﬁ) (D3 a m) (BSU a,y,m)

This instruction subtracts the selected byte of memory address Y from (Ra),
stores the result into Ra, and sets the condition code, overflow, and
carry. The selected byte is right justified and sign extended before the
Subtraction. The various sources of byte selection are described in
Section 3.)

8-8 14122000

Floating-Point Subtract (Register) (A0 a m) (FSUR a,m)

This instruction subtracts (Rm, Rm@l) from (Ra, Ra@l), stores the nor-
malized result in Ra, Ra + 1 with the residue (when selected via SR1) in Ra
+ 2, Ra + 3, and then sets the condition code, overflow, and carry.

If residue is selected (SR1l, bit 6, set), the residue will be returned to
the Ra + 2, Ra + 3 registers. The residue will be a floating-point word as
follows:

1) If the exponent difference of the two normalized inputs is 5 or
less, the residue will have an exponent of 6 less than the result's
exponent, and the mantissa will represent the 24 least significant
bits of the normalized U48-bit subtraction result.

2) If the exponent difference of the two normalized inputs is greater
than 5, the residue will be the normalized input with the smaller
exponent.

The arithmetic fault interrupt will be generated if it is enabled (SR1, bit
7, set) and if a result exponent overflow or underflow occurs. An exponent
overflow (SRl, bit 10, set) will occur if:
1) The exponent of the normalized result is too large to represent.
2) One of the operands is machine infinity.
The result and residue will be machine infinity if exponent overflow oc-
curs. The machine infinity sign will be as defined in Table 3-1 for sub-
tract instructions.)
An exponent underflow (SR1l, bits 10 and 11, set) will occur if the exponent
of the normalized result is too small to represent. The result and residue

will be machine zero if exponent underflow occurs.

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underflow will not be set.

Floating-Point Subtract (Immediate) (Al a m) LFSUI a,m)

This instruction subtracts the contents of memory addresses Y®, Y*(:)l from
(Ra, R-a@l), stores the result in Ra, Ra + 1 with the residue (when se-

" lected via SR1) in Ra + 2, Ra + 3, and then sets the condition code, over-
flow, and carry. The memory address is located in Rm.

If residue is selected (SR1l, bit 6, set), the residue will be returned to
the Ra + 2, Ra + 3 registers. The residue will be a floating-point word as
follows:

1) If the exponent difference of the two normalized inputs is 5 or

less, the residue will have an exponent of 6 less than the result's
exponent, and the mantissa will represent the 24 least significant
bits of the normalized 48-bit subtraction result.

14122000 8-9

2) If the exponent difference of the two normalized inputs is greater
than 5, the residue will be the normalized input with the smaller
exponent.

The arithmetic fault interrupt will be generated if it is enabled (SR1, bit
7, set) and if a result exponent overflow or underflow occurs. An exponent
overflow (SR1l, bit 10, set) will occur if:

1) The exponent of the normalized result is too largé to represent.
2) One of the operands is machine infinity.
The result and residue will be machine infinity if exponent overflow oc-
curs. The machine infinity sign will be as defined in Table 3-1 for sub-
tract instructions.
An exponent underflow (SRl, bits 10 and 11, set) will occur if the exponent
of the normalized result is too small to represent. The result and residue

will be machine zero if exponent underflow occurs.

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underflow will not be set.

Floating-Point Subtract (Indirect) (A3 a m) (FSU a,y,m)

This instruetion subtracts the contents of memory addresses Y, Y(:)l from
(Ra, Ra ;l), stores the result in Ra, Ra + 1 with the residue (when se-
lected via SR1l) in Ra + 2, Ra + 3, and then sets the condition code, over-
flow, and carry.

If residue is selected (SRl, bit 6, set); the residue will be returned to
the Ra + 2, Ra + 3 registers. The residue will be a floating-point word as
follows: : ' '

1) If the exponent difference of the two normalized inputs is 5 or
less, the residue will have an exponent of 6 less than the result’'s
exponent, and the mantissa will represent the 24 least significant
bits of the normalized 48-bit subtraction result.

2) If the exponent difference of the two normalized inputs is greater
~than 5, the residue will be the normalized input with the smaller
exponent . ' ' .
The arithmetic fault interrupt will be generated if it is enabled (SR1l, bit
7, set) and if a result exponent overflow or underflow occurs. An exponent
overflow (SR1l, bit 10, set) will occur if:
1) The exponent of the noramlized result is too large to represent.

2) One of the operands is machine infinity.

8-10 14122000

The result and residue will be machine infinity if exponent overflow oc-
curs. The machine infinity sign will be as defined in Table 3-1 for sub-
tract instructions.

An exponent underflow (SR1, bits 10 and 11, set) will occur if the exponent
of the normalized result is too small to represent. The result and residue
will be machine zero if exponent underflow occurs.

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underflow will not be set.

Add (Register) (48 a m) (AR a,m)

This instruction adds (Rm) to (Ra), stores the result into Ra, and then sets
the condition code, overflow, and carry.

Add (Immediate) (49 a m) (AI a,m)

This instrsuction adds the contents of memory address Y* into (Ra), stores
the result into Ra, and then sets the condition code, overflow, and earry.
The memory address is located in Rm.

Add (Constant) (4A a m) (AK a,y,m)

This instruction adds the operand Y tb (Ra), stores the result into Ra, and
then sets the condition code, overflow, and earry.

Add (Indirect) (4B a m) (A a,y,m)

This instruction adds the contents of memory address Y to (Ra), stores the
result into Ra, and then sets the condition code, overflow, and carry.

Add Double (Register) (MC a m) (ADR a,m)

This instruction adds the double-Length (Rm, Rm{+)1) to the double-length
(Ra, ‘Ra!@l) y Stores the result into Ra and Ra(+)1l, and then sets the con-
dition code, overflow, and earry.

Add Double (Immediate) (4D a m) (ADI a,m)

This instruction adds the double-length contents of memory addresses Y¥,
Y‘*81 to the double-length (Ra, Ra(¥)1), stores the result into Ra and
Ra 1, and then sets the condition code, overflow, and ecarry. The memory
address Y* is located in Rm.

Add Double (Indirect) (U4F a m) (AD a,y,m)

This instruction adds the double-length contents of memory address Y, Y(:)l
to the double-length (Ra, Ra(¥)1), stores the result into Ra and Ra(¥)1, and
then sets the condition code, overflow, and carry.

Literal Add (CA a m) (LA a,m)

This instruction adds the 4-bit unsigned literal contained in the m-field of
the instruction to (Ra), stores the result into Ra, and sets the condition

14122000 8-11

code, overflow, and carry. The literal is right justified and zero filled
before the addition.

Literal Add Double (CB a m) (LAD a,m)

This instruction adds the 4-bit unsigned literal contained in the m-field of
the instruction to the double length contents of Ra, Ra(:)l, stores the re-

sult into Ra, Ra(:)l, and sets the condition code, overflow, and carry. The
literial is right justified and zero filled before the addition.

Byte Add (D7 a m) (BA a,y,m)

This instruction adds the selected byte of memory address Y to (Ra), stores
the result into Ra, and sets the condition code, overflow, and carry. The
selected byte is right justified and sign extended before the addition. The
various sources of byte selection are deseribed in Section 3.

Floating-Point Add (Register) (A4 a m) (FAR a,m)

This instruction adds (Rm, Rm()1) to (Ra, Ra(®1), stores the normalized
result into Ra, Ra + 1 with the residue (when selected via SR1l) in Ra + 2,
Ra + 3, and then sets the condition code, overflow, and carry.

If selected, residue will be returned to the Ra + 2, Ra + 3 reglsters. Re-
sidue will be a floatlng-p01nt word as follows:

1) If the exponent dlfference of the two normalized inputs is 5 or
less, the residue will have an exponent: of 6 less than the result's
exponent, and the mantlssa will represent the 24 least significant
bits of the normalized 48-bit addition result.

2) If the exponent difference of the two normalized inputs is greater
than 5, the residue will be the normalized input with the smaller
exponent .

If enabled, the arithmetic fault interrupt will be. generated if result ex-
ponent overflow or underflow occurs. Exponent overflow will ocecur if:

1) The exponent of the normalized result is too large to represent
2) One of the operands is machine infinity

The result and residue will be machine infinity if exponent overflow oc-
curs. The machine infinity sign will be as defined in Table 3-1 for the add
instructions.

Exponent underflow will occur if the exponent of the normalized result is
too small to represent. The result and residue will be machine zero if ex-
ponent underflow occurs.

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underflow will not be set.

8-12 14122000

Floating-Point Add (Immediate) (A5 a m) (FAI a,m)

This instrution adds the contents of memory addresses Y%, Y*(:>l to (Ra,

Ra @l), stores the normalized result into Ra, Ra + 1 with the residue in
Ra + 2, Ra + 3, and then sets the condition code, overflow, and carry. The
memory address is located in Rm.

If selected, residue will be returned to the Ra + 2, Ra + 3 registers. Re-
sidue will be a floating-point word as follows:

1) If the exponent difference of the two normalized inputs is 5 or
less, the residue will have an exponent of 6 less than the result's
exponent, and the mantissa will represent the 24 least significant
bits of the normalized 48-bit addition result.

2) If the exponent difference of the two normalized inputs is greater

than 5, the residue will be the normalized input with the smaller
exponent.

If enabled, the arithmetic fault interrupt will be generated if result ex-
ponent overflow or underflow occurs. Exponent overflow will occur if:

1) The exponent of the normalized result is too large to represent

2) One of the operands is machine infinity
The result and residue will be machine infinity if exponent overflow oc-
curs. The machine infinity sign will be as defined in Table 3-1 for the add
instructions. ’
Exponent underflow will occur if the exponentfof#the ormalized result is too
small to represent. The result and residue will be machine zero if exponent

underflow occurs.

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underflow will not be set.

Floating-Point Add (Indirect) (A7 a m) (FA a,y.m)

This instruction adds the contents of memory addresses Y, Y(:)l, to (Ra,
Ra(¥)1), stores the normalized result into Ra, Ra + 1 with the residue in
Ra + 2, Ra + 3, and then sets the condition code, overflow, and carry.

If selected, residue will be returned to the Ra + 2, Ra + 3 registers. Re-
sidue will be a floating-point word as follows:

1) If the exponent difference of the two normalized inputs is 5 or
less, the residue will have an exponent of 6 less than the result's
exponent, and the mantissa will represent the 24 least significant
bits of the normalized 48-bit addition result.

2) If the exponent difference of the two normalized inputs is greater

than 5, the residue will be the normalized input with the smaller
exponent.

14122000 8-13

If enabled, the arithmetic fault interrupt will be generated if result ex-
ponent overflow or underflow occurs. Exponent overflow will ocecur if:

1) The exponent of the normalized result is too large to represent
2) One of the operands is machine infinity

The result and residue will be machine infinity if exponent overflow oc-
curs. The machine infinity sign will be as defined in Table 3-1 for the add
instructions.

Exponent underflow will oecur if the exponent of the normalized result is
too small to represent. The result and residue will be machine zero if ex-
ponent underflow occurs.

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underflow will not be set.

Multiply (Register) (58 a m) (MR a,m)

This instruction multiplies the integer (Rm) by the integer (Ra(3®)1),
stores the double-length result most significant bits into Ra, least signi-
ficant bits into Ra(®)1l, and then sets the condition code.

Multiply (Immediate) (59 a m) (MI a,m)

This instruction multiplies the integer cdntents of memory address Y* by the
integer (Ra(:)l), stores the double-length result most significant bits

into Ra, least significant bits into Ra(:)l, and then sets the condition

- code. The memory address is located in Rm.

r

Multiply (Conmstant) (54 a m) (MK a,y,m)

 This instruction multiplies the integer operand Y by the integer (Ra(:)l),
stores the double-length result most significant bits into Ra, least signi-
ficant bits into Ra(®)1, and then sets the condition code.

Multiply (Indirect)‘(SB am) (Ma,y,m)

This instruction multiplies the integeb contents of memory address Y by the
integer (Ra(:)l), stores the double-length result most significant bits in
Ra, least significant bits into Ra(:)l, and then sets the condition code. -

Multiply Double (Register) (B8 a m) (MDR a,m)

This instruction multiplies the double-length integer (Rm, Rm(:)l) by the
double-length integer (Ra, Ra(:)l), stores the result in Ra, Ra + 1, Ra + 2,
Ra + 3, and then sets the condition code (most significant bits into Ra and
least significant bits into Ra + 3). If Ra = 14, the 64-bit product is
stored end around in the register stack.

8~14 14122000

Multiply Double (Immediate) (B9 a m) (MDI a,m)

This instruction multiplies the double-length integer contents of memory ad-
dresses Y*, Y* + 1 by the double-length integer (Ra, Ra(:>l), stores the
result into Ra, Ra(:)l, Ra + 2, Ra + 3, and then sets the condition code
(most significant bits to Ra and least significant bits to Ra + 3). If

Ra = 14, the 64-bit product is stored end around in the register stack. The
memory address is located in Rm.

Multiply- Double (Indirect) (BB a m) (MD a,y,m)

This instruction multiplies the double-length integer contents of memory ad-
dresses Y, Y(¥)1 by the double-length integer (Ra, Ra(®)1), stores the re-
sult into Ra, Ra + 1, Ra + 2, Ra + 3, and then sets the condition code (most
significant bits to Ra, least significant bits to Ra + 3). If Ra = 14, the
64-bit product is stored end around in the register stack.

Literal Multiply (CE a m) (LMUL a,m)

This instruction multiplies the U-bit unsigned literal contained in the
m-field of the instruction by the integer (Ra(:)l), stores the
double-length most significant bits into Ra, least significant bits to
Ra(¥)1, and then sets the condition cede. The 4-bit literal is right
justified and zero filled before the multiply.

Floating-Point Multiply (Register) (A8 a m) (FMR a,m)

This instruction multiplies the double-length (Rm, Rm(+)1l) by the
double-length (Ra, Ra + 1), stores the normalized result into Ra, Ra + 1,
and if residue selected via SR1l, residue into Ra + 2, Ra + 3; then sets the
condition code, overflow, and earry.

If selectéd, residue will be returned to the Ra + 2, Ra + 3 registers. Re-
sidue will be a floating-point word; the mantissa respresents the 24 least
significant bits of the normalized, uU8-bit product.

If enabled, the arithmetic fault interrupt will“ be generated if result ex-
ponent overflow or underflow occurs. Exponent overflow will occur if:

1) The expdﬁent of the normalized product is too large to represent
2) One of the operands is machine infiniﬁy

The result and residue will be machine infinity if exponent overflow occurs,
except for the case of machine infinity times zero. Machine infinity times
zero will generate a result and residue of machine zero with an overflow in-
dication. The machine infinity sign will be the exclusive OR of the two
operands as defined in Table 3-1 for the multiply instruction. Exponent
underflow will occur if the exponent of the normalized product is too small
to represent. The result and residue will be machine zero if exponent
underflow occurs.

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underflow will not be set.

14122000 . 8-15

Floating-Point Multiply (Immediate) (A9 a m) (FMI a,m)

This instruction multiplies the double-length contents of memory addresses
Y*, Y*(:)l by the double-length (Ra, Ra(:)l), stores the normalized result
into Ra, Ra + 1, and if residue selected via SRl, residue into Ra + 2,

Ra + 3; then sets the condition code, overflow, and carry. The memory
address is located in Rm.

If selected, residue will be returned to the Ra + 2, Ra + 3 registers. Re-
sidue will be a floating-point word; the mantissa represents the 2U least
significant bits of the normalized, 48-bit product.

If enabled, the arithmetic fault interrupt will be generated if result ex-
ponent overflow or underflow occurs. Exponent overflow will occur if:

1) The exponent of the normalized product is too large to represent
2) One of the operands is machine infinity

The result and residue will be machine infinity if exponent overflow occurs,
except for the case of machine infinity times zero. Machine infinity times
zero will generate a result and residue of machine zero with an overflow in-
dication. The machine infinity sign will be the exclusive OR of the two
operands as defined in Table 3-1 for the multiply instruetion. Exponent
underflow will occur if the exponent of the normalized product is too small
to represent. The result and residue will be machine zero if exponent
underflow occurs. :

A residué of machine zero will be genérated if the residue exponent is too
small to represent, but exponent underflow will not be set.

Floating-Point Multiply (Indirect) (AB a m) (FM a,y,m)

This instruetion multiplies the double-length contents of memory addresses
Y, Y(:)l by. the double-length (Ra, Ra(:)l), stores the normalized result
into Ra, Ra + 1, and if residue selected via SR1, residue into Ra + 2,

Ra + 3; then sets the condition code, overflow, and carry.

If selected, residue will be returned to the Ra + 2, Ra + 3 registers.
Residue will be a floating-point word; the mantissa represents the 24 least
significant bits of the normalized, 48-bit product.

If enabled, the arithmetic fault interrupt will be generated if result ex-
ponent overflow or underflow occurs. Exponent overflow will occur if:

1) The exponent of the normalized product is too large to represent

2) One of the operands is machine infinity
The result and residue will be machine infinity if exponent overflow oceurs,
except for the case of machine infinity times zero. Machine infinity times
zero will generate a result and residue of machine zero with an overflow in-

dication. The machine infinity sign will be the exclusive OR of the two
operands as defined in Table 3-1 for the multiply instruction. Exponent

8-16 14122000

underflow will occur if the exponent of the ormalized product is too small
to represent. The result and residue will be machine zero if exponent un-
derflow occurs.

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underfow will not be set.

Divide (Register) (5C a m) (DR a,m)

This instruction divides the double-length integer (Ra, Ra@l) by integer
(Rm), stores the quotient into Ra@l and the remainder into Ra, and then
sets the condition code and overflow. Condition code represents quotient.
Remainder has the sign of the dividend (Ra, Ra @l). Overflow is set in SR1
if quotient is too large to represent in Ra@l. '

Divide (Immediate) (5D a m) (DI a,m)

This instruction divides the double-length integer (Ra, Ra@l)' by the in-
teger contents of memory address Y*, stores the quotient into Ra@l and the
remainder into Ra, and then sets the condition code and overflow. Condition
code represents quotient. Remainder has the sign of the dividend (Ra, Ra
1). The memory address is located in Rm. Overflow is set in SRl if quo-
tient is too large to represent in Rr-af 1. :

Divide (Constant) (5E a m) (DK a,y,m)

This instruction divides the double-length integer (Ra, R—a‘@l) by ‘the in-
teger operand Y, stores the gquotient into Ra@,l and the remainder into Ra,
and then sets the condition cede ‘and overflow. Condition code represents
quotient. Remainder has sign of the dividend (Ra, R»al). Overflow is set
in SRl if quotient is too large to represent in Ra,': .

Divide. (S5F a m) (D a,y,m)

This instruction divides the double-length integer (Ra, 'Ra‘@l) by the in-
teger contents of memory address Y, stores the quotient into Ra.@l and the
remainder into Ra, and then sets the condition code and overflow. Condition
code represents quotient. Remainder has sign of the dividend (Ra, ‘Ra@l).
Overflow is set in SR1 if quotient is too large to represent in Ba@l.

Divide Double (Register) (BC a m) (DDR a,m)

This instruction divides the double-length integer (Ra, Ra + l, Ra + 2,

Ra + 3) by the double-length integer (Rm, Rm(3)1), stores the quotient into
Ra + 2, Ra + 3 with the remainder into Ra, Ra + 1, and then sets the con-
dition code to represent quotient. Remainder has sign of the dividend.
Overflow is set in SRl if quotient is too large to represent in Ra + 2,

Ra + 3. If Ra 2 13, wraparound addressing is done on the register stack.

Divide Double (Immediate) (BD a m) (DDI a,m)

This instruction divides the double-length integer (Ra, Ra + 1, Ra + 2,
Ra + 3) by the double-length integer contents of memory addresses Y¥,

14122000 8-17

Y*(:)l, stores the quotient into Ra + 2, Ra + 3 with the remainder into Ra,
Ra + 1, and then sets the condition code to represent quotient. Remainder
has sign of the dividend. Overflow is set in SRl if quotient is too large
to represent in Ra + 2, Ra + 3. If Ra 2 13, wraparound addressing is done
on the register stack. The memory address is located in Rm.

Divide Double Integer (BF a m) (DD a,y,m)

This instruction divides the double-length integer (Ra, Ra + 1, Ra + 2,

Ra + 3) by the double-length integer contents of memory addresses Y, Y(:)l,
stores the quotient into Ra + 2, Ra + 3 with the remainder into Ra, Ra + 1,
and then sets the condition code to represent quotient. Remainder has sign
of the dividend. Overflow is set in SRl if quotient is too large to rep-
resent in Ra + 2, Ra + 3. If Ra2 13, wraparound addressing is done on the
register stack. ’

Literal Divide (CF a m) (LDIV a,m)

This instruction divides the double-length integer (Ra, Ra(:)l) by the 4-bit
unsigned literal contained in the m-field of the instruction, stores the:
quotient into Ra(:)l and the remainder into Ra, and then sets the condition
code to represent quotient. Remainder has sign of the dividend. Overflow
is set in SRl if quotient is too large to represent in Ra(:)l. The literal
is right justified and zero filled before the dividend operation.

Floating-Point Divide (Register) (AC a m) (FDR,a,m)

This instruction diwvides the double~length (Ra, Ra(:)l) by the double-length
(Rm, Rm(:)l), stores the quotient into Ra, Ra + 1 and, if residue selected
via SR1l, the remainder in Ra + 2, Ra + 3, and then sets the condition code,

overflow, and carry.

* If selected, residue will be returned to the Ra + 2, Ra + 3 registers. The

floating-point residue will be a floating-point word representing the re-
mainder of the division operation. The exponent of the residue will be as
follows: ‘ :

1) If the mantissa of the normalized divisor is greater than the man-
tissa of the normalized dividend, the exponent will be 6 less than
the quotient's exponent.

2) If the mantissa of the normalized divisor is less than or equal to
the mantissa of the normalized dividend, then the exponent will be
5 less than the quotient's exponent.

If enabled, the arithmetic fault interrupt will be generated if result ex-
ponent overflow or underflow occurs. Exponent overflow will occur if the
exponent of the normalized result is too large to represent. In this case,
the result and residue will be machine infinity. Exponent underflow will
occur if the exponent of normalized result is too small to represent. In
this case, the result and residue will be machine zero. Refer to Table 3-1
for special divide cases and results.

8-18 14122000

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underflow will not be set. -

Floating-Point Divide (Immediate) (AD a m) (FDI a,m)

This instruction divides the double-length (Ra, Ra(:)l) by the double-length
contents of memory addresses Y¥, Y*(:)l, stores the quotient into Ra, Ra + 1
and, if residue selected via SR1, the remainder in Ra + 2, Ra + 3, and then
sets the condition code, overflow, and carry. :

If selected, residue will be returned to the Ra + 2, Ra + 3 régisters. The
floating-point residue will be a floating-point word representing the re-
mainder of the division operation. The exponent of the residue will be as
follows:

1) If the mantissa of the dormalized divisor is greater than the man-
tissa of the normalized dividend, the exponent will be 6 less than
the quotient's exponent.

2) If the mantissa of the normalized divisor is less than or equal to
the mantissa of the normalized dividend, then the exponent will be
5 less than the quotient's exponent.

If enabled, the arithmetic fault interrupt will be generated if result ex-
ponent overflow or underflow ocecurs. Exponent overflow will occur if the
exponent of the normalized result is too large to represent. In this case,
the result and residue will be machine infinity. Expenent underflow will
occur if the exponent of normalized result is too small to represent. In
this case, the result and residue will be machine zero. Refer to Table 3=1
for special divide cases and results.

A residue of machine zero will be generated\if,the residue exponent is too
small to represent, but exponent underflow will not be set.

Floating-Point Divide (Indireet) (AF ajm) (FD. a,y,m)

This instruction divides the double-length (Ra, Ra(*¥)1l) by the double-length
contents of memory addresses Y, Y(:)l, stores the quotient into Ra, Ra + 1
and, if residue selected via SR1l, the remainder in Ra + 2, Ra + 3, and then
sets the condition code, overflow, and carry.

If selected, residue will be returned to the Ra + 2, Ra + 3 registers. The
floating-point residue will be a floating-point word representing the re-
mainder of the division operation. The exponent of the residue will be as
follows: |

1) If the mantissa of the normalized divisor is greater than the man-
tissa of the normalized dividend, the exponent will be 6 less than
the quotient's exponent.

2) If the mantissa of the normalized divisor is less than or equal to
the mantissa of the normalized dividend, then the exponent will be
5 less than the quotient's exponent.

14122000 8-19

If enabled, the arithmetic fault interrupt will be generated if result ex-
ponent overflow or underflow occurs. Exponent overflow will occur if the
exponent of the normalized result is too large to represent. In this case,
the result and residue will be machine infinity. Exponent underflow will
occur if the exponent of normalized result is too small to represent. In
this case, the result and residue will be machine zero. Refer to Table 3-1
for special divide cases and results.

A residue of machine zero will be generated if the residue exponent is too
small to represent, but exponent underflow will not be set.

Round Ra (08 a 2) (RR a)

This instruction adds bit 15 of Ra(:)l to (Ra) and stores the result into
Ra. The condition code is set in accordance with the resulting quantity in
Ra.

Increment Register by 1 (08 a 8) (IROR a)

This instruction inerements (Ra) by 1, stores the result into Ra, and then
sets the condition code, overflow, and carry.

Decrement Register by 1 (08 a 9) (DROR a)

This instruction decrements (Ra) by 1, stores the result into Ra, and then
sets the condition code, overflow, and carry.

Increment Register by 2 (08 a A) (IRTR a)

This instruction inerements (Ra) by 2, stores the result into Ra, and then
sets the condition code, overflow, and carry.

Decrement Register by 2 (08 a B) (DRTR a)

This instruction decrements (Ra) by 2, stores the result into Ra, and then
sets the condition code, overflow, and carry.

Make Positive (08 a 0) (PR a)

If (Ra) is negative, this instruction generates the 2's complement of (Ra),
stores the result into Ra, and sets the condition code. When the maximum
negative number (1000000000000000) is complemented, the overflow bit is set
in SR1. If (Ra) is positive, (Ra) is not changed.

Make Negative (08 a 1) (NR a)

If (Ra) is positive, this instruction generates the 2's complement of (Ra),
stores the result into Ra, and sets the condition code. If (Ra) is nega-
tive, (Ra) is not changed. If (Ra) is zero, the carry bit is set in SR1.

Two's Complement Single (08 a 4) (TCR a)

This instruction generates the 2's complement of (Ra), stores the result in-
to Ra, and sets the condition code. When the maximum negative number is

8-20 - 14122000

complemented, the overflow bit is set in SRl. When zero is complemented,
the carry bit is set in SR1.

Two's Complement Double (08 a 5) (TCDR a)

This instruction performs the 2's complement of double-length (Ra, Ra(:)l),
stores the result into Ra, Ra + 1, and sets the condition code. When the
maximum negative number is complemented, bit is set in SRl. When zero is
complemented, the carry bit in SRl is set.

One's Complement Single (08 a 6) (OCR a)

This instruction performs the bit-by-bit complement of (Ra), stores the re-
sult into Ra, and sets the condition code.

LOGICAL INSTRUCTIONS

AND (Register) (60 a m) (ANDR a,m)

This instruction performs the bit-by-bit logical AND of (Ra) and (Rm)
stores the result into Ra, and sets the condition code.

140

1]1]o

ol oo
AND

AND (Immediate) (61 a m). (ANDI a,m)

This instruction performs the bit-by-bit logical AND of (Ra) and the‘con-
tents of memory address Y*, stores the result into Ra, and sets the con-
dition code. ' The memory address is located in Rm.

AND (Constant) (62 a m) (ANDK a,y,m)

This instruection performs the bit-by-bit logical AND of (Ra) and the operand
Y, stores the result into Ra, and sets the condition code.

AND (Indirect) (63 a m) (AND a,y,m)

This instruction performs the bit-by-bit logical AND of (Ra) and the con-
tents of memory address Y, stores the result into Ra, and sets the condition
code.

14122000 8-21

OR_(Register) (64 a m) (ORR a,m)

This instruction performs the bit-by-bit logical OR of (Ra) and (Rm), stores
the result into Ra, and sets the condition code.

1}]o0
1111411
oj1]o

OR

OR_(Tmmediate) (65 a m) (ORI a,m)

This instruction performs the bit-by-bit logical OR of (Ra) and the contents
of memory address Y*, stores the result- into Ra, and sets the condition
code. The memory address is located in Rm.

OR (Constant) (66 a m) (ORK a,y,m)

This instruction performs the bit-by-bit logical OR of (Ra) and the operand
Y, stores the result into Ra, and sets the condition code.

OR (Indirect) (67 a m) (OR a,y,m)

This instruction performs the biyiby-bit logical OR of (Ra) and the contents
of memory address Y, stores the result in Ra, and sets the condition code. ~

Exclusive OR (Register) (68 a m) (XORR a,m)

This instruction performs the bit-by-bit exclusive OR of (Ra) and (Rm),
stores the result into Ra, and sets the condition code.

110
1 01]1
0 1}0

Exclusive OR

Exclusive OR (Immediate) (69 a m) (XORI a,m)

This instruction performs the bit-by-bit exclusive OR of (Ra) and the con-
tents of memory address Y*, stores the result into Ra, and sets the con-
dition code. The memory address is located in Rm.

Exclusive OR (Constant) (6A a m) (XORK a,y,m)

This instruction performs the bit-by-bit exclusive OR of (Ra) and the oper-
and Y, stores the result in Ra, and sets the condition code.

8-22 14122000

Exclusive OR (Indirect) (6B a m) (XOR a,y,m)

This instruction performs the bit-by-bit exclusive OR of (Ra) and the con-
tents of memory address Y, stores the result in Ra, and sets the condition
code.

COMPARE INSTRUCTIONS

Compare (Register) (50 a m) (CR a,m)

This instruction arithmetically compares (Ra) to (Rm) and sets the condition
code. Overflow and carry are set as a result of the arithmetic operation,
but of no meaning. Original operands are unchanged.

Compare Bit (1C a m) (CBR a,m)

This instruction tests against zero the bit in Ra corresponding to the value
of m and sets the condition code. Condition code bit 8 applies to any bit
tested. Bit 9 is valid only when bit 15 of Ra is tested; otherwise, it is
zero. If the bit of Ra tested is zero, SRl bit 8 = 0; if the bit of Ra
tested is a one, SRl bit 8 = 1.

Compare (Immediate) (51 a m) (CI a,m)

This instruction arithmetically compares (Ra) to the contents of memory ad-
dress Y* and sets the condition code. Overflow and carry are set as a re-
sult of the arithmetic operation, but of no meaning. Original operands are
unchanged. Memory address is lecated in Rm. :

Compare (Constant) (52 a m) (CK a,y,m)

This instruction arithmetically compares (Ra) to the operand Y and sets the
condition code. Overflow and carry are set as a result of the arithmetic
operation, but of no meaning. Original operands are unchanged.

Compare (Indirect) (53 a m) (C a,y,m)

This instruction arithmetically compares (Ra) to the contents of memory ad-
dress Y and sets the condition code. Overflow and carry are set as a result
of the arithmetic¢ operation, but of no meaning. Original operands are un-
changed.

Compare Double (Register) (54 a m) (CDR a,m)

This instruction arithmetically compares the double-length (Ra, Ra(:)l) to
the double-length (Rm, Rm(:)l) and sets the condition code. Overflow and
carry are set as a result of the arithmetic operation, but of no meaning.
Original operands are unchanged. : '

14122000 8-23

Compare Double (Immediate) (55 a m) (CDI a,m)

This instruction arithmetically compares the double-length (Ra, Ra(:)l) to
the double-length contents of memory addresses Y¥*, Y*(:)l and sets the con-
dition code. Overflow and carry are set as a result of the arithmetic oper-
ation, but of no meaning. Original operands are unchanged. The memory ad-
dress is located in Rm.

Compare Double (Indirect) (57 a m) (CD a,y,m)

This instruction arithmetically compares the double-length (Ra, Ra(:)l) to
the double-length contents of memory addresses Y, Y(:)l and sets the con-
dition code. Overflow and carry are set as a result of the arithmetic oper-
ation, but of no meaning. Original operands are unchanged.

Literal Compare (CD a m) (LC a,m)

This instruction arithmetically compares the U-bit unsigned literal con-
tained in the m-field of the instruction with (Ra) and sets the condition
code. Overflow and carry are set as a result of the arithmetic operation,
but of no meaning. Original operands are unchanged. The literal is right
justified and zero filled before the compare operation. ‘ ‘

Byte Compare (Indirect) (DB a m) (BC a,y,m)

This instruction arithmetically compares (Ra) to the selected byte of memory
address Y and sets the condition code. Overflow and carry are set as a re-
sult of the arithmetic operation, but of no meaning. Original operands are
unchanged. Selected byte is right justified and sign extended before the
compare operations. The various sources of byte selection are described in
Section 3. ‘

Byte Compare and Index by 1 (DF a m) (BCX a,y,m)

This instruction arithmetically compares (Ra) to the selected byte of memory
address Y, sets the condition code, and increments the contents of Rm by 1.
Overflow and carry are set as a result of the arithmetic operation, but of
no meaning. Original operands are unchanged. Selected byte is right justi-
fied and sign extended before the compare operation. Byte selection is de-
scribed in Section 3.

Compare Masked (Register) (70 a m) (CMR a,m)

~

This instruction arithmetically compares the result of the logical AND of
(Ra) and (Ra(:)l) to the result of the logical AND of (Rm) and (Ra(:)l) and
sets the condition code.

Compare Masked (Immediate) (71 a m) (CMI a,m)

This instruction arithmetically compares the result of the logical AND of
(Ra) and (Ra(:)l) Lo the result of the logical AND of contents of memory ad-
dress Y¥* and (Ra(:)l) and sets the condition code. Memory address is lo-
cated in Rm.

8-24 | ‘ 14122000

Compare Masked (Constant) (72 a m) (CMK a,y,m)

This instruction arithmetically compares the result of the logical AND of
(Ra) and (Ra(¥)1) to the result of the logical AND of the operand Y and
(Ra(¥)1) and sets the condition code.

Compare Masked (Indirect) (73 a m) (CM a,y,m)

This instruction arithmetically compares the result of the logical AND of
(Ra) and (Ra(:)l) Lo the result of the logical AND of contents of memory ad-
dress Y and (Ra(:)l) and sets the condition code.

SHIFT INSTRUCTIONS

Logical Right Shift (Register) (20 a m) (LRSR a,m)

‘This instruction shifts (Ra) right n places with 0's extended to fill and
sets the condition code; n is the value in bits 0 through 5 of Rm.

Logical Right Shift (Constant) (22 a m) (LRS a,y,m)

This instruction shifts (Ra) right n places with 0's extended to fill and
sets the condition code; n is the value in bits 0 through 5 of operand Y.

Logical Right Double Shift (Register) (28 a m) (LRDR a,m)

This instruction shifts the double-length (Ra, Ra(:)l) right n places with
0's extended to fill and sets the condition code; n is the value in bits 0
through 5 of Rm.

Logical Right Double Shift (Constant) (2A a m) (LRD a,y,m)

This instruction shifts the double-length (Ra, Ha(:)l) right n places with
0's extended to fill and sets the condition code; n is the value in bits 0
through 5 of the operand Y.

Literal Logical Right Shift (CO a m) (LLRS a,m)

This instruction right shifts (Ra) n places with 0's extended to fill and
sets the condition code; n is the value in bits 0 through 3 of the instruc-
tion m-field.

Literal Logical Right Double Shift (C2 a m) (LLRD a,m)

This instruction right shifts the double-length (Ra, Ra(¥)1) n places with
0's extended to fill and sets the condition code; n is the value in bits 0
through 3 of the instruction m-field.

Algebraic Right Shift (Register) (24 a m) (ARSR a,m)

This instruction shifts (Ra) right n places with sign extended to fill and
sets the condition code; n is the value in bits 0 through 5 of Rm,

14122000 , 8-25

Algebraic Right Shift (Constant) (26 a m) (ARS a,y,m)

This instruction shifts (Ra) right n placés with sign extended to fill and
sets the condition code; n is the value in bits 0 through 5 of the operand Y.

Algebraic Right Double Shift (Register) (2C a m) (ARDR a,m)

This instruction shifts the double-length (Ra, Ra(:)l) right n places with
Ra sign extended to fill and sets the condition code; n is the value in bits
0 through 5 of Rm.

Algebraic Right Double Shift (Constant) (2E a m) (ARD a,y,m)

This instruction shifts the double-length (Ra, Ra(:)l) right n places with
Ra sign extended to fill and sets the condition code; n is the value of bits
0 through 5 of the operand Y.

Literal Algebraic Right Shift (Cl a m) (LARS a,m)

This instruction right shifts (Ra) n places with sign extended to fill and
sets the condition code; n is the value in bits 0 through 3 of the instruc-
tion m-field. -

Literal Algebraic Right Double Shift (C3 a m) (LARD a,m)

This instruction right shifts the double-length (Ra, Ra(®)1) n places with
Ra sign extended to fill and sets the condition code; n is the value in bits
0 through 3 of the instruction m-field.

Algebraic_Left Shift (Register) (30.a m) (ALSR a,m)

This instruction shifts (Ra) left n places with 0's extended to fill and
sets the condition code; n is the value in bits 0 through 5 of Rm. Overflow
bit in SRl set if a bit of magnitude shifts into or through the sign bit.

Algebraic Left Shift (Constant) (32 a m) (ALS a,y,m)

This instruction shifts (Ra) left n places with 0's extended to fill and
sets the condition code; n is the value in bits 0 through 5 of the operand Y.

Algebraic Left Double Shift (Register) (38 a m) (ALDR a,m)

This instruction shifts the double-length (Ra, Ra(:)l) left n places with
0's extended to fill and sets the condition code; n is the value in bits 0
through 5 of Rm.

Algebraic Left Double Shift (3A a m) (ALD a,y,m)

This instruction shifts the double-length (Ra, Ra(:)l) left n places with

0's extended to fill and sets the condition code; n is the value in bits O
through 5 of the operand Y.

8-26 14122000

Literal Algebraic Left Shift (C4 a m) (LALS a,m)

This instruction left shifts (Ra) n places with 0's extended to fill and
sets the condition code; n is the value in bits 0 through 3 of the
instruction m-field.

Literal Algebraic Left Double Shift (C6 a m) (LALD a,m)

This instruction shifts the double-length (Ra, Ra(:)l) left n places with
0's extended to fill and sets the condition code; n is the value in bits 0
through 3 of the instruction m-field.

Circular Left Shift (Register) (34 a m) (CLSR a,m)

This instruction shifts (Ra) left circular n places and sets the condition
code; n is the value of bits 0 through 5 of Rm.

Circular Left Shift (Constant) (36 a m) (CLS a,y,m)

This instruction shifts (Ra) left circular n places and sets the condition
code; n is the value of bits 0 through 5 of the operand Y.

Circular Left Double Shift (Register) (3C a m) (CLDR a,m)

- This instruction shifts the double-length (Ra, Ra(:)l) left circular n
places, with bit 15 of Ra transferred to bit 0 of,Ra(:)l in each shift and
sets the condition code; n is the value of bits 0 through 5 of Rm.

Circular Left Double Shift (Constant) (3E a m) (CLD a,y,m)

This instruction shifts the double-length (Ra, Ra(:)l) left eireular n
places with bit 15 of Ra transferred to bit 0 of Ra @1 in each shift and
sets the condition code; n is the value in bits O through 5 of the operand Y.

Literal Circular Left Shift (C5 a m) (LCLS a,m)

This instruction shifts (Ra) left circular n places and sets the condition
code; n is the value in bits 0 through 3 of the instruction m-field.

Literal Circular Left Double Shift (C7 a m) (LCLD a,m)

This instruction shifts the double-length (Ra, Ra(:)l)'lefi circular n
places and sets the condition code; n is the value in bits 0 through 3 of
the instruction m-field.

JUMP INSTRUCTIONS (UNCONDITIONAL)

Jump (Register) (80 8 m) (JR m)

This instruction unconditionally jumps to the instruction located at the ad-
dress specified Ly (Rm).

14122000 8-27

Jump (Constant) (82 8 m) (J y,m)

This instruction unconditionally Jjumps to the instruction located at the ad-
dress specified by the operand Y. .

Jump (Indirect) (83 8 m) (J *y,m)

This instruction unconditionally jumps to the instruction located at the ad-
dress specified by the contents of memory address Y.

Local Jump (Indireect) (85 d) (LJI d)

. This instruction jumps to the instruction located at the address specified
- by the contents of (P) + d.

The 16-bit operand d is formed by extending bit d7 through bit positions 8
through 15. The operand d is then algebraically added to (P). When d7 is
0, the jump is forward, up to 127 words. When d7 is 1, the jump is back-
ward, up to 128 words. For backward jumps, d must contain the 2's comple-
ment of the length of the jump. For example, d = FF1g causes a backward
Jjump of one location. : ;

Local Jump (81 d) (LJ d)

This instruction jumps to the instruction located at memory address (P) + d.

The 16-bit operand d is formed by extending bit d7 through bit positions 8
~through 15. The operand d is then algebraically added to (P). When d7 is
0, the jump is forward, up to 127 words. When d7 is 1, the jump is back-
ward, up to 128 words. For backward Jjumps, d must contain the 2's comple-
ment of the length of the jump. For example, d = FF16 causes a backward
~ Jump of one location. 1In the IOP, if d = 0, the instruction causes a wait

without referencing memory.

Local Jump, Link Memory (8D d) (LJLM d)

This instruction stores (P) + 1 at memory address (P) + d and jumps to the
instruction located at memory address (P) + d + 1.

The 16-bit operand d is formed by extending bit d7 through bit positions 8
through 15. The operand 4 is then algebraically added to (P). When d7 is
0, the jump is forward, up to 127 words. When d7 is 1, the jump is back-
ward, up to 128 words. For backward jumps, d must contain the 2's comple-
ment of the length of the jump. For example, d = FF1g causes a backward
Jump of one location.

Jump, Link Register (Register) (88 a m) (JLRR a,m)

This instruction stores (P) + 1 in Ra and jumps to the instruction located
at the address specified by (Rm).

Jump, Link Register (Constant) (84 a m) (JLR a,y,m)

This instruction stores (P) + 2 in Ra and jumps to the instruction located
at the address specified by the operand Y.

8-28 , 14122000

Jump, Link Register (Indirect) (8B a m) (JLR a,*y,m)

This instruction stores (P) + 2 in Ra and jumps to the instruction located
at the address specified by the contents of address Y.

Jump, Link Memory (Constant) (8E - m) (JLM y,m)

This instruction stores (P) + 2 at memory address Y and jumps to the in-
struction located at memory address Y + 1.

Jump, Link Memory (Indirect) (8F - m) (JLM *y,m)

This instruction stores (P) + 2 at the address specified by the contents of
address Y and jumps to the instruction located at the address specified by
the contents of address Y + 1.

JUMP INSTRUCTIONS (CONDITIONAL)

Jump Equal (Register) (80 0 m) (JER m)

If the condition code represents equal, this instruction jumps to the in-
struction at the address specified by (Rm). If the condition code is not 00
or 10, the next instruction is executed.

Jump Equal (Constant) (82 0 m) (JE y,m)

If the condition code’represents equal, this instruction jumps to the in-
struction located at the address specified by the operand Y. If the con-
dition code is not 00 or 10, the next instruction is executed.

Jump Equal (Indirect) (83 0 m) (JE *y,m)

If the condition code represents equal, this instruction jumps to the in-
struction located at the address specified by the contents of memory address
Y. 1If the condition code is not 00 or 10, the next instruction is executed.

Local Jump Equal (91 d) (LJE d)

If the condition code répresents equal, this instruction jumps to the in-
struction located at memory address (P) + d. If the condition code is not
00 or 10, the next instruction is executed.

The 16-bit operand d is formed by extending bit d7 through bits positions

8 through 15. The operand d is then algebraically added to (P). When dg

is 0, the jump is forward, up to 127 words. When d7 is 1, the jump is
backward, up to 128 words. For backward jumps, d must contain the 2's com-
plement of the length of the jump. For example, d = FF1g causes a back-
ward jump of one location. In the IOP, if d = 0, and the jump is taken, the
instruction causes a wait without referencing memory.

14122000 8-29

Jump Not Equal (Register) (80 1 m) (JNER m)

" If the condition code represents not equal, this instruction Jjumps to the
instruction located at-the address specified by (Rm). If the condition code
is not 01 or 11, the next instruction is executed.

Jump Not Equal (Constant) (82 1 m) (JNE y,m)

If the condition code represents not equal, this instruction jumps to the
instruction located at the address specified by the operand Y. If the con-
dition code is not 01 or 11, the next instrucetion is executed.

Jump Not Equal (Indirect) (83 1 m) (JNE *y,m)

If the condition code represents'not equal, this instruction jumps to the
instruction located at the address specified by the contents of memory ad-
dress Y. If the condition code is not 0l or 11, the next instruction is ex-
ecuted. '

Local Jump Not Equal (95 d) (LJNE d)

If the condition code represents not equal, this instruction Jjumps to the
instruction located at memory address (P) + d. If the condition code is not
0l or 11, the next instruction is executed.)

The 16-bit operand d is formed by extending bit d7 through bits positions

8 through 15. The operand d is then algebraically added to (P). When dg
is 0, the jump is forward, up to 127 words. When d7 is 1, the jump is
backward, up to 128 words. For backward jumps, d must contain the 2's com-
plement of the length of the jump. For example, d = FF1g causes a back-
ward jump of one location. ‘

Jump Less (Register) (80 3 m) (JLSR m)

If the condition code represents less than, this instruction Jjumps to the
instruction at the address specified by (Rm). If the condition code is not
10 or 11, the next instruction is executed.

Jump Less (Constant) (82 3 m) (JLS y,m)

If the condition code represents less than, this instruction jumps to the
instruction located at the address specified by the operand Y. If the con-
dition code is not 10 or 11, the next instruction is executed.

Jump Less (Indirect) (83 3 m). (JLS *y,m)

If the condition code represents less than, this instruction Jjumps to the
instruction located at the address specified by the contents of memory ad-
dress Y. If the condition code is not 10 or 11, the next instruction is ex-
ecuted. :

8-30 ‘ 14122000

Local Jump Less (9D d) (LJLS d)

If the condition code represents less than, this instruction jumps to the
instruction located at memory address (P) + d. If the condition code is not
10 or 11, the next instruction is executed.

The 16-bit operand d is formed by extending bit d7 through bit positions 8
through 15. The operand d is then algebraically added to (P). When d7 is
0, the jump is forward, up to 127 words. When d7 is 1, the jump is back-
ward, up to 128 words. For backward jumps, d must contain the 2's comple-
ment of the length of the jump. For example, d = FFi¢ causes a backward

* jump of one location.

Jump Greater or Equal (Register) (80 2 m) (JGER m)

If the condition code represents greater than or equal, this instruction
jumps to the instruction at the address specified by (Rm). If the condition
code is not 00 or 01, the next instruction is executed.

Jump Greater or Equal (Constant) (82 2 m) (JGE y,m)

If the condition code represents greater than or equal, this instruction
jumps to the instruction located at the address specified by the operand Y.
If the condition cocde is not 00 or 01, ‘the next instruction is executed.

Jump Greater or Equal (Indirect) (83 2 m) (JGE *y,m)

If the condition -code represents greater than or equal, this instruction
jumps to the instruction located at the address specified by the contents of
memory address Y. If the condition code is not 00 or 01, the next instruc-
tion is executed.

Local Jump Greater or Equal (99 d) (LJGE d)

If the condition code represents greater than or equal, this instruction
Jjumps to the instruction located at memory address (P) + d. If the con-
dition code is not 00 or 01, the next instruction is executed.

The 16-bit operand d is formed by extending bit d7 through bit positions 8
through 15. The operand d is then algebraically added to (P). When d7 is
0, the jump is forward, up to 127 words. When d7 is 1, the jump is back-
ward, up to 128 words. For backward jumps, d must eontain the 2's comple-
ment of the length of the jump. For example, d = FF1¢ causes a backward
jump of one location.

Jump Overflow (Register) (80 4 m) (JOR m)

If bit 10 of status register 1 is set, this instruction jumps to the in-
struction at the address specified by (Rm). If bit 10 is not set, the next
instruction is executed.

14122000 8-31

Jump Overflow (Constant) (82 4 m) (JO y,m)

If bit 10 of status register 1 is set, this instruction Jjumps to the in-
struction located at the address specified by the operand Y. If bit 10 is
not set, the next instruction is executed.

Jump Overflow (Indirect) (83 4 m) (JO *y,m)

If bit 10 of status register 1 is set, this instruction jumps to the in-
struction located at the address specified by the contents of memory address
« If bit 10 is not set, the next instruction is executed.

Jump Carry (Register) (80 5 m) (JCR m)

This instruction jumps to the instruction at the address specified by (Rm)
if bit 11 of status register 1 is set. If bit 11 is not set, the next in-
struction is executed.

Jump Carry (Constant) (82 5 m) (JC y,m)

This instruction jumps to the instructidn located at the address specified
by the operand Y if bit 11 of status register 1 is set. If bit 11 is not
set, the next instruction is executed.

Jump Carry (Indirect) (83 5 m) (JC *y,m)

This instruction jumps to the instruction located at the address specified
by the contents of memory address Y if bit 11 of status register 1 is set.
If bit 11 is not set, the next instruction is executed.

POWER-OUT-OF-TOLERANCE JUMP INSTRUCTIONS.

The three power-out-of-tolerance jump instructions cause one of the fol-
lowing: .

1) The instruction that is executed before power fault or generation
of thermal overload results in a no operation, and the next in-
struction is executed.

2) The instruction executed after a power fault or thermal overload
from same chassis, by the CPU or IOP in a dual configuration, re-
sults in a jump to a quite bus firmware routine until power drops.
These instructions should be used as the last instruction of a pow-
er or thermal interrupt program to ensure that memory is not chang-
ed during the power down sequence. 1In a dual CPU/IOP configura-
tion, the IOP must be in controller mode or the IOP must also exe-
cute jump power out of tolerance instructions to ensure no memory
data loss.

3) The instruction executed in a dual CPU/IOP configuration with an
extension chassis, after the power fault or thermal overload gen-
erated by the PCM in the extension chassis, results in the fol-
lowing:

8-32 ’ 14122000

a) IOP in contoller mode. CPU recognizes the interrupt. CPU
software executes a power-out-of tolerance jump instruction.
The jump is taken and program execution continues at (Rm), Y,
or (Y).

NOTE:

If the IOP is now put in processor mode,
it must execute a power-out-of-tolerance
jump instruction which causes the IOP's
firmware to map I/0 before the IOP
executes command instructions.

b) IOP in processor mode. They both recognize interrupt. Ex-
ecution in the CPU is the same as in a) if the jump is taken.
To ensure no loss of data in memory in the extension chassis as
power goes down, do not reference that memory via the CPU.

Execution of the power-out-of-tolerance jump instruction by the
IOP results in a jump to a quite bus firmware routine until
power drops in the extension chassis. The firmware then regen=-
erates the list of available channels including only those con-
tained in the CPU chassis, reenables the I/0 and channel in-
terrupt system, and jumps to the software address (Rm), Y, or
(¥). During the firmware channel list generation, control mem-
ory locations 8, 9, and A are cleared for all chanrels.

4) The instruction executed by a CPU-only configuration with an ex-
tension chassis, after the power fault or thermal overload gen-
erated by the PCM in the extension unit, results in a quite bus
firmware routine until power drops in the extension unit. The
firmware then regenerates the list of available channels, including
only those contained in the CPU chassis, reenables the I/0 and
channel interrupt system, and jumps to software address (Rm), Y, or
(Y.

Jump Power Out of Tolerance (Register) (80 6 m) (JPTR m)

This instruction jumps to the firmware quite bus routine or to the instruc-
tion at the address specified by (Rm) if power is out of tolerance. If not,
the next instruction is executed.

Jump Power Out of Tolerance (Constant) (82 6 m) (JPT y,m)

This instruction jumps to the firmware quite bus routine or to the instruc-
tion located at the address specified by the operand Y if power is out of
tolerance. If not, the next instruction is executed.

Jump Power Out of Tolerance (Indirect) (83 6 m) (JPT *y,m)

This instruction jumps to the firmware quite bus routine or to the instruc-
tion located at the address specified by the contents of memory address if
power is out of tolerance. If not, the next instruction is executed.

14122000 8-33

Jump Bootstrap 2 Selected (Register) (80 7 m) (JBR m)

This instruction jumps to the instruction located at the address specified
by (Rm) if bootstrap 2 is selected. If not, the next instruction is
executed. :

Jump Bootstrap 2 Selected (Constant) (82 7 m) (JB y,m)

This instruction jumps to the instruction located at the address specified
by the operand Y if bootstrap 2 is selected. If not, the next instruction
is executed.

Jump Bootstrap 2 Selected (Indirect)‘(83 7 m) (JB *vy.m)

This instruction jumps to the instruction located at the address specified
by the contents of memory address Y if bootstrap 2 is selected. If not, the
next instruction is executed.

Index Jump (Register)(84 a m) (XJR a,m)

This instruction tests (Ra). If (Ra) does not equal zero, (Ra) is decre-
mented by 1, and the instruction jumps to the instruction located at the ad-
dress specified by (Rm). If (Ra) equals zero, the next instruction is ex-

Index Jump (Constant) (86 a m) (XJ a,y,m)

This instruction tests (Ra). If (Ra) does not equal zero, (Ra) is decre-
mented by 1, and the instruction jumps to the instruction located at the ad-
dress specified by the operand Y. If (Ra) equals zero, the next instruction
is executed.

Index Jump (Indirect) (87 a m) (XJ a,*y,m)

This instruction tests (Ra). If (Ra) does not equal zero, (Ra) is decre-
mented by 1, and the instruction jumps to the instruction located at the ad-
dress specified by the contents of memory address Y. If (Ra) equals zero,
the next instruction is executed. This instruction causes a false protect
fault when executed by the IOP if the address (Y) is in an execute protected
page of memory.

Jump Zero (Register) (90 a m) (JZR a,m)

This instruction tests (Ra). If (Ra) equals zero, the instruction Jjumps to
the instruction located at the address specified by (Rm). If (Ra) does not
equal zero, the next instruction is executed.

Jump Zero (Constant) (92 a m) (JZ a,y,m)

This instruction tests (Ra). If (Ra) equals zero, the instruction jumps to
the instruction located at the address specified by the operand Y. If (Ra)
does not equal zero, the next instruction is executed.

8-34 14122000

Jump Zero (Indirect) (93 a m) (JZ a,*y,m)

This instruction tests (Ra). If (Ra) equals zero, the instruction jumps to
the instruction located at the address specified by the contents of memory
address Y. If (Ra) does not equal zero, the next instruction is executed.

Jump Not Zero (Register) (94 a m) (JNZR a,m)

This instruction tests (Ra). If (Ra) does not equal zero, the instruction
jumps to the instruction located at the address specified by (Rm). If (Ra)
equals zero, the next instruction is executed.

Jump Not Zero (Constant) (96 a m) (JNZ a,y,m)

This instruction tests (Ra). If (Ra) does not equal zero, the instruction
jumps to the instruction located at the address specified by the operand Y.
If (Ra) equals zero, the next instruction is executed.

Jump Not Zero (Indirect) (97 a m) (JNZ a,*y,m)

This instruction tests (Ra). If (Ra) does not equal zero, the instruction
jumps to the instruction located at the address specified by the contents of
memory address Y. If (Ra) equals zero, the next instruction is executed.

Jump Positive (Regiéter),(98 a m) (JPR a,m)

This instruction tests (Ra). If (Ra) is equal to or greater than zero, the
instruction jumps to the instruction located at the address specified by
(Rm). If (Ra) is less than zero, the next instruction is executed.

Jump Positive (Constant) (9A.a m) (JP a,y,m)

This instructin tests (Ra). If (Ra) is equal to or greater than zero, the
instruction jumps to the instruction located at the address specified by the
operand Y. 1If (Ra) is less than zero, the next instruction is executed.

Jump Positive (Indirect) (9B a m) (JP a,*y,m)

This instruction tests (Ra). If (Ra) is equal to or greater than zero, the

instruction jumps to the instruction located at the address specified by the
contents of memory address Y. If (Ra) is less than zero, the next instruc=-

tion is executed.

Jump Negative (Register) (9C a m) (JNR a,m)

This instruction tests (Ra). If (Ra) is less than zero, the instruction
jumps to the instruction located at the address specified by (Rm). If (Ra)
is equal to or greater than zero, the next instruction is executed.

Jump Negative (Constant) (9E a m) (JN a,y,m)

This instruction tests (Ra). If (Ra) is less than zero, the instruction
jumps to the instruction located at the address specified by the operand Y.
If (Ra) is equal to or greater than zero, the next instruction is executed.

14122000 8-35

Jump Negative (Indirect) (9F a m) (JN a,*y,m)

This instruction tests (Ra). If (Ra) is less than zero, the instruction
jumps to the instruction located at address specified by the contents of
memory address Y. If (Ra) is equal to or greater than zero, the next in-
struction is executed.

AN/AYK-1U4(V) stop instructions are of three types: Jump After Stop, Jump
After Stop If Stop Key 1 Set, and Jump After Stop If Stop Key 2 Set. These
instructions are implemented in RR, RK, and RX formats. The jump des-
tination is loaded into the program address register and a stop occurs if
the relevant conditions are obtained.

NOTE:

The stop portion of the instruetion will not occur
if a L/V or CCU is not connected.

Jump After Stop (Register) (80 9 m) (JSR m)

The jump destination is loaded and a check is made to see if computer sup-
port equipment. is connected. If it is, the AN/AYK-14(V) software execution
stops and, on restart, Jumps to the address specified (Rm). If no computer
support equipment is connected, the Jump is executed without the stop. This
instruetion is an executlve mode instruction. In dual CPU/IOP systems, this
instruction causes the IOP to enter controller mode if executed in the IOP.

(CDnS:i:ant:) (82 9 m) (JS yj_r_n_)_

Jumﬂ Aften.S;oi

The jump destination is loaded and a check is made to see if computer sup-
port equipment is connected. If it is, the AN/AYK-14(V) software execution
stops and, on restart Jumps to uhe address ap@leleé by the operand Y. If
no computer support equlpment 1s cennected the jump is executed without the
stop. This instruetion is an executlve mode instruction. In dual CPU/IOP
systems, this instruction causes the IOP to enter controller mode if ex-
ecuted in the IOP.

Jump After Stop (Indirect) (83 9 m) (JS *y,m)

The jump destination is loaded and a check is made to see if computer sup-
port equipment is connected. If it is, the AN/AYK-14(V) software execution
stops and, on restart, jumps to the address specified by the contents of
memory address Y. If no computer support equipment is connected, the jump
is executed without the stop. This instruction is an executive mode in-
struction. 1In dual CPU/IOP systems, this instruction causes the IOP to en-
ter controller mode if executed in the IOP.

Jump After Stop if Key 1, 2 Set (Register) (80 A m; 80 B m)
(JKSR1 m; JKSR2 m)

The jump destination is loaded and a check is made to see if computer sup-
port equipment is connected and if Stop Key 1 or 2 is set. If both con-
ditions are met, AN/AYK-14(V) software execution stops and, on restart,

8-36 14122000

jumps to the address specified by (Rm). If either condition is not met, the
jump is executed without the stop. These instructions are executive mode
instructions.

Stop keys 1 and 2 are set via request from the CCU (see CCU User's Manual).

Jump After Stop if Key 1, 2 Set (Constant) (82 A m; 82 B m) (JKS1 y,m; JKS2
y,m)

The jump destination is loaded and a check is made to see if computer sup=-
port equipment is connected and if Stop Key 1 or 2 is set. If both con-
ditions are met, AN/AYK-14(V) software execution stops and, on restart,
jumps to the address specified by the operand Y. If either condition is not
met, the jump is executed without the stop. These instructions are execu-
tive mode instructions.

Stop keys 1 and 2 are set via a request from the CCU (see CCU User's Manual).

Jump After Stop if Key 1, 2 Set (Indirect) (83 A m; 83 B m) (JKS1 *y,m;
JKS2 *y,m)

The jump destination is loaded and a check is made to see if computer sup-
port equipment is connected and if Stop Key 1 or 2 is set. If both con-
ditions are met, AN/AYK-14(V) software execution stops and, on restart,
jumps to the address specified by the contents of memory address Y. If ei-
ther condition is not met, the jump is executed without the stop. These in-
structions are executive mode instructions.

Stop keys 1l and 2 are set via a request from the CCU (see CCU User's Manual).
MISCELLANEOUS INSTRUCTIONS

Executive Return (0C a 0) (ER a)

This instruction generates the executive return interrupt and stores the
contents of the program address register plus one (P) + 1 into general reg-
ister Ra. If locked out, this interrupt is lost.

Set Bit (14 .a m) (SBR a,m)

This instruction sets the bit in Ra corresponding to the value in the
m-field and sets the condition code.

Zero Bit (18 a m) (ZBR a,m)

This instruction clears the bit in Ra corresponding to the value in the
m-field and sets the condition code. .

Input /Qutput Command (74 - -) (IOCR)

This instruction causes execution of the I/0 command instruction in the com-
mand cells (main memory address 0060j¢ and 00611¢) and then clears bits
14 and 15 of command cell 00607¢. This is an executive mode instruction.

14122000 8-37

In the IOP, the command cells are 0062;¢ and 006316 .

Biased Fetch (Immediate) (75 - m) (BFI m)

This instruction sets the condition codes based on the original value of
memory at address Y¥, and then sets the most significant two bits at the
memory location leaving the remaining bits unchanged. When executed, the
biased fetch queues on the two mest significant bits of the operand word.
This instruction does not prevent another processor from accessing the same
memory location (memory access protect) at the same time as the CPU with in-
structions other than stack, queue, and biased fetch.

Biased Fetch (Indirect) (77 - m) (BF y,m)

This instruction sets the condition codes based on the original value of
memory at address Y, then sets the most significant two bits at the memory
location leaving the remaining bits unchanged. When executed, the biased
feteh queues on the two most significant bits of the operand word. This in-
struction does not prevent another processor from accessing the same memory
location (memory access protect) at the same time as the CPU with in-
structions other than stack, queue, and biased fetch.

Remote Execute (76 - m) (REX y,m)

This instructidnkcausesjthetinstruetiom‘atkbhe address specified by the con-
tents of memory address Y to be executed and, upon completion of that in-
~struction, the program continues with the~next'sequentialkinstruetion if the

remote instruction did not result in a medifiea$ion to the P register.

Initiate Processor Interrupt (08 a 3) (IPI a)

;This instruetion generates one of the*prééesscr intefrupts as specified by
. the least significant bit (LSB) of the contents of the register specified by
the a field as follows: ‘

0 Proecessor interrupt 0
1 Processor interrupt 1

LSB (a)
LSB (a)

When the IPI is executed by a CPU, the interrupt will interrupt the IOP pro-
cessing if an IOP is in the system and in processor mode; otherwise, it in-
terrupts the CPU. When the IPI is executed by an IOP, it will interrupt a
CPU if a CPU is in the system, or else the IOP is interrupted. This is an
execut ive mode instruetion.

IPL Failed (08 - C) (IPLF)

This instruction sets the IPL failed discrete, indicating an initial program
load failure by the bootstrap loader. This is an execut ive mode instruction.

NCTE:

In a dual system (CPU and IOP), the CPU instructions IOCR and IPI
must not be included in the program until approximately 15 micro-
seconds (15 instructions) after power up, or a master clear or an
IOP event test error will occur.

8-38 14122000

Diagnostic Jump (08 a D) (DJ a)

This instruction enables or disables a hardware fault warning interrupt as
follows: :

Bit 15 of R15;9 = 1 and
Bit 0 of R15;g 0 Enable Hardware Fault Warning Interrupt
1 Disable Hardware Fault Warning Interrupt

Bit 15 of R15;9 = 0
Bits 11 through 0 of R15)4 contain a micromemory jump address.

This is an executive mode instruction.

Masked Substitute (Register) (6C a m) (MSR a,m)

For each bit set in (Ra(:)l), the value of the corresponding bit in (Rm) is
transferred to the corresponding bit in Ra. For each bit not set in
(Ra(:)l), the corresponding bit in Ra is unaltered. The condition code is
set.

Masked Substitute (Immediate) (6D a m) (M§l,a,m)

For each bit set in.(Ra(:)l), the value of the corresponding bit in the con-
tents of memory address Y* is transferred to the corresponding bit in Ra. =
For each bit not set in (Ra(:)l), the corresponding bit in Ra is unaltered.
The condition code is set. '

Masked Substitute (Constant) (6E a m) (MSK a,y,m)

For each bit set in (Ra(:)l), the value of the corresponding bit in the
operand Y is transferred to the corresponding bit in Ra. For each bit not
set in (Ra(:)l), the corresponding bit in Ra is unaltered. The condition
code is set.

Masked Substitute (Indirect) (6F am) (MS a,y,m)

For each bit set in (Ra(:)l), the value of the corresponding bit in the con-
tents of memory at address Y is transferred to the corresponding bit Ra.

For each bit not set in (Ra(:)l), the corresponding bit in Ra is unaltered.
The condition code is set.

Reverse Register (10 a 1) (RVR a)

This instruction reverses the order of the 16 bits contained in the general
register specified by the a field (bit 15 to bit 0, .bit 0 to bit 15, and so
forth). The condition code is set.

Count One's (10 a 2) (CNT a)

This instruction counts the number of set bits in (Ra) and stores the count
into Ra + 1l. .

14122000 8-39

Scale Factor (10 a 3) (SFR a)

This instruction shifts the double-length (Ra, Ra(:)l) left algebraically,
with 0's extended to fill, until bit 15 of Ra does not equal bit 14 of Ra
and stores the shift count into Ra + 2. If (Ra, Ra(:)l) is all 0's or all
1's, the shift count becomes 31.

8-40 . | 14122000

INTERRUPTS | 9

INTERRUPT PROCESSING

AN/AYK-1U4(V) interrupts are divided into three classes (Table 9-1) which
correspond to their function. Class I interrupts indicate hardware failures
or hardware functions; Class II interrupts indicate software failures or
software functions; Class III interrupts indicate I/0 failures or I/0 func-
tions. 1In case of conflicts (two events active during one check for active
events), Class I interrupts have priority over Class II interrupts, which in
turn have priority over Class III interrupts. Within each class as well, a
priority scheme is established.

Status register 1, bits 3 through 1 specify interrupt lockouts by class. If
bit 3 is clear, Class I interrupts are locked out; if bit 2 is clear, Class
IT interrupts are locked out, and if bit 1 is clear, Class III interrupts
are locked out. Certain interrupts such as power fault and thermal overload
cannot be locked out. Table 9-1 shows the effect of lockouts on the various
interrupts. Interrupts which are queued and pending are honored when the
lockout is lifted; multiple pending lnterrupts are handled accordlng to the
priority scheme.

When the IOP is in controller mode, the Ioﬁ‘paSSes'all Class II1 interrupts
~to the CPU. Class I and III interrupts are handled directly by the CPU.

When in the dual processor mode, the IOP handles all interrupts indicating
hardware faults associated with the modules it is using and software inter-
rupts within the program it executes.
Hardware fault wérning interrupts are queued one level as follows:

e CPU - 13 times, li4th time no lockout

e IOP - 6 times, Tth time no lockout

Therefore, when in the dual processor mode, both processors will act upon
all interrupts associated with their responsibilities.

The firmware processing sequence for an interrupt requires the following
steps:

1) On determination that an interrupt is to be generated, the firmware
checks to see whether the interrupt is locked out.

2) If the lockout bit for the specified class of interrupt is set, the
firmware determines appropriate action to be taken depending on the
interrupt (refer to Table 9-1).

3) If no lockout is set or the interrupt cannot be locked out, the

processing routine is entered at the completion of a software in-
struction. The current program status word (PSW), consisting of

14122000 ! 9-1

00022ThT

TABLE 9-1. INTERRUPT LOCKOUT EFFECTS
Priority | Binary :
Class In Class | Code Interrupt Lockout Effect
I 1 00000 Power fault interrupt (input power) No lockout
(Hardware) 2 00010 Memory timeout (memory module) Lost
3 00100 Memory parity Lost
4 00110 Hardware fault warning Queued 1 level, 13 times; 14th no
‘ lockout (IOP is 6 times, 7th no lockout)
5 01010 1/O failure (I/0 module not in conﬂguration) Lost
6 01100 Thermal overload No lockout
7 01110 Hardware fault (BIT indicator set) Queued 1 level
I 1 00000 CP instruction fault No leckout
(Software) 2 00010 I/O instruction fault No lockout
3 00100 Floating point over/underflow Lost
4 00110 Executive return Lost
5 10000 Executive mode instruction fault No lockout
6 11000 Memory protect fault Lost '
7 01000 RTC overflow Queued 1 level
8 01010 Monitor clock Queued 1 level
9 10110 System reset No lockout
10 01100 Processor interrupt 0 Queued 1 level
11 01110 Processor interrupt 1 Queued 1 level
1 1 110 1/0O channel abnormal (ERI) Queued 1 level (per channel)
(1/0) 2 000 External interrupt (EII) Queued 1 level (per channel)
3 100 Output chain interrupt (OCI) Queued 1 level (per channel)
4 010 Queued 1 level (per channel)

Input chain interrupt (ICI)

the current program counter and status registers, as well as the
real-time clock values, are saved. The locations in which these
values are saved are shown in Table 9-2. If the interrupt is lock-
ed out, it is queued or lost, and the instruction execution is con-
tinued.

4) New values for the program counter and status registers are then
loaded from the locations indicated in Table 9-2. The program
counter reload values are computed from a base address, to which is
added an index, depending on the binary code of the interrupt (see
Table 9-1).

5) The firmware automatically clears bit 15 of status register when it
is loaded in step 4 , setting the AN/AYK-14(V) into executive mode.

6) The processbr then begins execution from the new program counter
value. The new status register 1 value determines the lockouts in
effect at the beginning of the interrupt software.

‘NOTE:

-Acknowledgement of a second interrupt of the same class (i.e, using
the same locations for storing the PSW) causes the original program
counter value to be lost. To prevent this, as far as possible, the
lockout for the class of interrupts of the received interrupt should
be ‘locked out during the interrupt processing routine. Interrupts
which occur while the exchange of PSWs is taking place are not re-
cognized until after interrupt processing by firmware is complete.

CLASS I INTERRUPTS
POWER FAULT PRIORITY 1 BINARY CODE 00000

The PCM generates the power fault interrupt when an ocutput voltage out of
tolerance state or an input power failure is detected. Either condition
causes power to the AN/AYK-14(V) to go down approximately 300 microseconds
after the interrupt is generated. - This interrupt cannot be locked out.
When the PCM output power is out of tolerance and the input power is good,
the bit indicator is set by the PCM by generating the hardware fault inter-
rupt as well as the power fault interrupt. The users program will be vec-
tored to the power fault interrupt because of its higher priority. This in-
terrupt causes input /output data transfers and the I/O channel interrupt
system to be cleared and disabled. The firmware available channels list is
also cleared. ’

"MEMORY TIME-OUT PRIORITY 2 BINARY CODE 00010

The memory time-out interrupt is generated by the MCM when CMM or SMM fails
to provide a resume signal within 2 microseconds after a memory request.
This interrupt is generated if the software addresses memory locations not
provided in the hardware configuration. The memory time-out interrupt can
also be caused by a MCM control circuitry failure. If Class I interrupts
are locked out, this interrupt is lost. The firmware sets a bit pattern in

14122000 ' 9-3

TABLE 9-2. ASSIGNED MEMORY ADDRESSES

CPU I0P
Function v I II III I II IIT
Hex | Hex | Hex { Hex | Hex | Hex
Store P ' 58 50 u8 68 70 ug
Store SRL. 59 | 51 w9 | 69 |71 | 49
Store SR2 5A 52 4a 6A 72 ha
Store RTC lower 5B - 53 .| 4B | 6B 73 4B
Preload , 5C 54 4c 6C T4 4c
SR1 reload ~ sp | 55 |up | 60 |75 | wp
SR2 reload . f s | s6 |ue | 6E | 76 | ue
Stqre RTC upper _ | - 5F ,; 57 | UF |
| I/Oicommand'cell o ‘ 60-6116 62-6316
Auto start entrance _ - f TF16
External interrupt word storage 80-8F ¢ 80-8F1¢
Bootstrap ROM | 0-3F16 and 0-3F16 and
: \CO-3FF16 C0-3FF16

9l 14122000

the lower 8 bits of status register 2 upon generating this interrupt. Bits
7 through U4 give the memory bank code of the failing module. This code is
the upper 4 bits of the 19-bit absolute memory address computed by the MCM.
Bit 3 of status register 2 indicates whether the odd (=1) or even (=0) mem-
ory bus is used. Bits 2 through 0 of status register 2 are used to dis-
tinguish types of memory failure. For memory time-out interrupts, bit 0 is
set. If a memory protect fault occurs together with the memory time-out,
bit 1 of status register 2 is also set. 1In the case of multiple memory
failures of different types, only the highest priority interrupt is gen-
erated. The 3 lowest order bits of status register 2 must be examined to
determine if other failures occurred (Figure U4-2). This interrupt may be
lost if it occurs while the firmware is processing the hardware fault warn-
ing, I/0 failure, or hardware fault interrupt.

MEMORY PARITY PRIORITY 3 BINARY CODE 00100

The MCM generates the memory parity error interrupt when a parity error is
detected. If Class I interrupts are locked out, this interrupt is lost.
Receipt of this interrupt indicates that no memory time-out occurred
(time-out has higher priority) but a protect fault is possible. The firm-
ware indicates the memory bank code and bus code as for the memory time-out
interrupt; bit 1 of status register 2 is set for memory parity errors. This
interrupt may be lost if it oceurs while the firmware is processing the
hardware fault warning, I/O failure, or hardware fault lnterrupt.

HARDNARE FAULT WARNING PRIORITY y BINARY CODE 00110

The hardware fault warning interrupt is generated by the PSM when the BIT
counter increments ever 221 microseconds (approxlnately 2.097) seconds
after:

1) Power-up
2) . Execution of Reset Bit Timer instruction.
3) Execution of Set Bit Indicator instruction.

This interrupt indicates a possible hardware fault. The software is ex-
pected typieally to reset the BIT timer before 221 microseconds elapse (on
the order of one million instructions). The interval prior to generation of
the hardware fault warning can be extended by lockout of Class I inter=~
rupts. In this case, up to 13 interrupts are queued in a one-level queue.
The fourteenth interrupt, however, is generated and received by the software
(14 interrupt times provide an interval of approximately 29.36 seconds prior
to generation of the interrupt). The BIT counter is incremented every 221
microseconds regardless of lockout conditions. The execution of the Diag-
nostic Jump instruction with bits 15 and 0 of R15 set, performs the same in-
hibiting function as the Class I lockout, but does not affect the other
Class I interrupts. While the software execution is stopped and CCU is con-
nected, the generation of the interrupt is inhibited.

14122000 9-5

I/0 FAILURE PRIORITY 5 BINARY CODE 01010

The I/0 failure interrupt is generated by the GPM when the software refer-
ences an I/0 channel not provided in the hardware configuration. If Class I
interrupts are locked out, the I/O failure interrupt is lost. When an I/0
failure interrupt is generated, the firmware places the logical channel num-
'~ ber of the referenced channel in bits 7 through 4 of status register 2.

THERMAL OVERLOAD PRIORITY 6 BINARY CODE 01100

The PCM generates the thermal overload interrupt when a temperature out of
tolerance condition is detected. Such a condition shall cause power to go
off approximately 300 microseconds after the interrupt is generated. This
interrupt cannot be locked out. This interrupt causes input/output data

tranfers and the I/0 channel interrupt system to be cleared and disabled.
The firmware available channels list is also cleared.

HARDWARE FAULT PRIORITY 7 BINARY CODE 01110

The hardware fault interrupt is generated when the BIT indicator is set
under the following condltlons.

1) PCM’output power out of tolerance

2) Execution of SET BIT INDICATOR (SBT) instruction

3) BIT counter increments to 15 (all 1's) (7 in the EOP)

~4) CPUBUS or IOBUS time-out (firmware generated)

5) Event system failure
The output power out of tolerance condition also generates the power fault
interrupt. The hardware fault warning interrupt is generated each time the
BIT counter increments. The hardware fault warning interrupt may be in-
hibited (see preceding description); in which case, 13 (6 in IOP) interrupts
are successively queued one level. The fourteenth (seventh in IOP) inter-
rupt is not locked out. The system then has approximately 2.097 seconds to
reset the BIT counter before the BIT indicator is set and hardware fault in-

terrupt generated.

If a CPUBUS or ICBUS time-out occurs, the GPM is not able to access memory
or I/0 modules. The time-out limit is 30 to 40 microseconds.

The hardware fault interrupt is placed in a one-level queue if Class I in-
terrupts are locked out.

NOTE:
The BIT indicator is set régardless of lockout conditions.

The hardware fault event clears any hardware fault warning events that may
be active.

9-6 : ‘ 14122000

CLASS II INTERRUPTS

CLASS INSTRUCTION FAULT PRIORITY 1 BINARY CODE 00000

The CP instruction fault interrupt is generated when the processor attempts
to execute an instruction not in the repertoire, including attempts to ex-
ecute I/0 instructions in the processor without an IOCR instruction. The
value of the program counter saved by the interrupt processing routine will
be the address plus one of the illegal instruction or the address plus two
of illegal instructions 4634 and 4E)g causing the interrupt. The CP in-
struction fault interrupt cannot be locked out.

I/0 INSTRUCTION FAULT PRIORITY 2 BINARY CODE 00010

The I/0 instruction fault is generated when the processor attempts to ex-
ecute an instruction using an IOCR or in a chain which is not in the I/0 in-
struction repertoire. The chain in question is halted when the I/0 instruc-
tion fault is a chain violation (channel operation is not otherwise af-
fected) and (CAP) equals the address of the instruction causing the inter-
rupt plus one. The I/0 instruction fault interrupt cannot be locked out.
The value of the program counter saved will be the address plus one of the
IOCR if the instruction in the command cell is'not a command instruction.

FLOATING-POINT OVER/UNDERFLOW . PRIORITY 3 'BINABY CODE 00100

The floating-point over/underflow interrupt is generated when a floating-
point arithmetic instruction produces a characteristic result which is too
large or too small to be accurately represented and bit 7 of SR1 is zero.
The section on fleoating-point arrthmetlc supplles detalls. The program
counter value saved is the address plus one of the floating-point instruc-
tion which caused the interrupt. The floating-point over/underflow inter-
rupt is lost if Class II interrupts are locked out or it is disabled by SRl
bit 7.

EXECUTIVE RETURN PRIORITY 4 BINARY CODE 00110

The executive return interrupt is generated upon execution of the Executive
Return instruction (0C a: 0). The program counter value saved is the address
plus one of the executive return instruction, and P+l is stored in Ra. The
executive return interrupt is lost, and the Executive Return instruction is
a no operation if Class II interrupts are locked out.

EXECUTIVE MODE FAULT PRIORITY 5 BINARY CODE 10060

The executive mode fault ihterrupt is generated when the CPU attempts to ex-
ecute an executive mode instruction when not in the executive mode (the ex~-
ecutive mode instructions are indicated in the repertoire). The program

counter value saved is the address of the instruction causing the inter-
rupt. The executive mode instruetien fault interrupt cannot be locked out.

MEMORY PROTECT FAULT PRIORITY 6 BINARY CODE 11000

The memory protect fault interrupt is generated by the MCM when an attempt
is made to reference a protected page of memory (see section on paging).

14122000 9-7

Bits 7 through 4 of status register 2 provide the memory bank code, and bit
3 of status register 2 provides the odd or even bus indicator for the loca-
tion referenced. Bit 2 of status register 2 is set for the memory protect
fault interrupt. Receipt of the interrupt implies that no memory time-out
or parity errors occurred on the memory reference. If a memory protect
fault occurs with one of the high priority memory faults, the high- est
priority interrupt involved is generated but bits 2 through 0 indicate all
detected failures. The memory protect fault interrupt is lost if Class II
interrupts are locked out. This interrupt may also be lost if it occurs -
while the firmware is processing the RTC overflow, monitor clock, system re-
set, processor interrupt 0, or processor interrupt 1 interrupt.

REAL-TIME CLOCK OVERFLOW PRIORITY 7 BINARY CODE 01000

The real-time clock overflow interrupt is generated each time the RTC passes
a multiple of 216 (i.e., each time the upper 16 bits of the clock are in-
cremented). The section on AN/AYK-14(V) clocks provides instructions for
controlling the RTC and its interrupt. The RTC interrupt is placed in a
one-level queue if Class II interrupts are locked out.

MONITOR~CLOCK PRIORITY 8 BINARY CODE 01010

The monitor clock interrupt is generated when the monitor clock counts down
to 0. The section on AN/AYK-14(V) clocks provides instruction which control
the monitor clock and its interrupt. The monitor clock interrupt is placed
in a one-level queue if Class II interrupts are locked out. :

SYSTEM RESET PRIORITY 9 BINARY CODE 10110

The system reset interrupt is generated when the external system reset sig-
nal goes active. The system reset interrupt cannot be locked out. :

PROCESSOR INTERRUPTS O’and 1 PRIORITIES 10, 11 BINARY CODES 01100, 01110

The processor interrupts 0 and 1 are generated by the execution of the Ini-
tiate Processor Interrupt (IPI) instruction. If an IOP is included in the
system, these interrupts provide communication between the IOP and CPU. If
the IPI instruction executed in the CPU and the IOP is in processor mode,
the IOP will receive the interrupt. If the IPI instruction is executed in
the IOP, the CPU will receive the interrupt. If no IOP is present, these
interrupts merely interrupt the CPU. The processor interrupts are placed in
one-level queues if Class II interrupts are locked out. The Initiate Pro-
cessor Interrupt instruction is an executive mode instruction.

CLASS III INTERRUPTS

'I/0 CHANNEL ABNORMAL PRIORITY 1 BINARY CODE 110

The I/0 channel abnormal (ERI) interrupt is generated when an I/0 channel
detects an abnormal or error condition. Descriptions of the I/O modules
supply details on conditions generating this interrupt. The I/O channel ab-
normal interrupts for a channel are placed in a one-level queue if Class III
interrupts are locked out.

9-8 ' 14122000

EXTERNAL PRIORITY 2 BINARY CODE 000

The external (EII) interrupt is generated by certain I/0 modules upon re-
ceipt of an external command word, function word, or interrupt signal. The
I1/0 module descriptions supply details. The EII interrupts for a given
channel are placed in a one-level queue if Class IIT interrupts are locked
out.

"OUTPUT CHAIN INTERRUPT PRIORITY 3 BINARY CODE 100

The output chain interrupt (OCI) is generated by certain I/0 modules upon
execution of the Interrupt Processor instruction in an output chain pro-
gram. The I/0 module descriptions supply details. Output chain interrupts
for a given channel are placed in a one-level queue if Class III interrupts
are locked out.

INPUT CHAIN INTERRUPT PRIORITY 4 BINARY CODE 010

The input chain interrupt (ICI) is generated by certain I/O modules upon
execution of the Interrupt Processor instruction in an input chain program.
The I/0 module descriptions supply details. Input chain interrupts for a
given channel are placed in a one-level queue if Class III interrupts are
locked out. ‘ ,

14122000 §-9/9-10

I/0 CHANNEL OPERATIONS 10

GENERAL

All I/0 is based on the type of devices to be used in the system and the
interface required to service them. The following 10 I/0 channels are
presently available on the AN/AYK-14(V) computer.

Serial interface module (1553A)
Discrete interface module

NTDS parallel interface module (Slow)
NTDS parallel interface module (Fast)
NTDS parallel interface module (ANEW)
NTDS serial interface module
RS-232-C interface module

PROTEUS interface module

PIC/POC/SOC module

Discrete input/output module

The AN/AYK-14(V) can accommodate up to seven of these I/0 channel modules to
provide communication between the computer and peripheral equipment and/or
other compufers. , S

Each I/0 channel is assigned a unique 4-bit logical channel number and a
unique U-bit channel type code. The 4-bit logical channel number is used by
the software to address a given channel and the UY<bit logieal ‘channel number
is used by the firmware in resolving I/0 channel aecess,conflicts, Any com-
bination of the I/0 channel modules may be intermixed within the physical
constraints of a given AN/AYK-14(V) computer configuration.

All I/0 channel types utilize the following three functional requirements.
® A lb-word by 16-bit control memory block '

® I/0 channel chain programs

e Processor to I/0 channel communications.

CONTROL MEMORY

The l6-word by 16-bit control memory associated with each I1/0 channel con-
tains the parameters which direct and control the operation of the I/0 chan-
nel. Chain addresses, data buffer addresses, data buffer word counts, data
word length definitions, channel mode definitions, and parity bit control
are examples of the type of information contained in the control memory
parameters. The format and definition of each location in a control memory
is dependent on the I/0 channel type and is discussed in the paragraphs for
the I/O channel types. There is one restriction to the use of 16 words of
control memory even though all of the I/0 channel types incorporate 16
words. The IOP supports only thé first 12 words, therefore, control memory
locations C, D, E, and F (hexadecimal) are illegal in any CPU and IOP com-
bined configuration or any IOP standalone configuration. Location B (hexa-
decimal) is reserved and used as a one-word buffer register by all I/O

14122000 10-1

channel types for output information transfer activity (i.e., contains the
contents of the next main memory address to be output).

The I/0 instructions are divided into command instructions executable via an
input /output command instruction (IOCR) in the program and chaining instruc-
tions executable in a channel chain program. The IOCR instruction, encoun-
tered during software program execution, causes the execution of the I/O
command instruction located at the command cells in main memory, addresses
006074 and 00611¢ (0062 and 0063 in IOP). I/0 command instructions are
illegal instructions during software program execution unless encountered
via the IOCR instruction.

The main program, through the use of the legal IOCR instruction, can start
and stop an I/0 chain program, monitor and modify channel operations, and
control memory locations.

Figure 10-l1 shows I/0O chain program initiation using the IOCR instruction.
After initiation by the processor, subsequent I/0 channel operations on the
selected channel are controlled by the I/O chain program instructions in
main memory.

NOTE:

Once initiated by the processor, execution of the I/0 chain program
on the selected I/0 channel is independent of the processor software.

. Several 1/0 channels may be executing I/O chain programs at the same
time.

When an I/0 channel has an I/0 chain program in execution, the following two
forms of activity may be in progress.

e I/0 information transfer ééﬁivity
) I/0 chaining activity

Under certain conditions, various 1I/0 channel types may have both forms of
activity in progress at the same time.

I/0 chaining activity exists on an 1I/0 channel when sequential I/O chain
program instructions are being executed on that channel. These I/0 chain
instructions normally provide for transferring parameters between the main
memory and the I/0 channel control memory and for initiation of transfer of
blocks or buffers of data and/or control words on the interface lines. When
an I/0 chain instruction that initiates a transfer on the interface lines is
encountered, the chaining activity is halted and transfer activity begins.
Normally, upon completion of the transfer activity, I/O chaining activity is
reinitiated. See Figure 10-2. When a chain is running (no I/0 being done),
all lower priority chains are suspended.

Channel priority for chain execution is the same as channel priority for any
I/0 activity where channel 0 is the highest priority and channel Fig is

the lowest priority. Chaining is always performed from the highest priority
channel first to the lowest priority channel.

10-2 14122000

0002eTh1

£-01

CPU or IOP Program

IocR ¥

01110100

+——=}
\

‘ IC_I§ or OCK

(0P = 0062) 0060 I- 11100110

~ .

~__1/O Chain Program

Figure 10-1. 1I/0 Chain Program Initiation

Instruction M
Instruction M+1
Instruction M+2
I/0 Chaining o : -
Activity _ :
Instruction M+3
: Instruction M+4
< " I/O Information
: Instruction M+5 Transfer Activity
Instruction M+6
~ Instruction M+7
~o ~
r Instruction M+8
[ad ! A

Figure 10-2. I/0 Chain Program Operation

10-4 14122000

In a CPU only configuration, the PSM module regulates chain instruction
execution so as to prevent the CPU from processing only chain instructions.
One chain instruction is executed every 16 microseconds regardless of how
many chain programs have been initiated.

There are I/0 chain instructions that provide branching or jumping within
the I/0 chain program and halting of the chain program. Certain I/0 channel
types allow for the execution of two I/0 chain programs at the same time:
one I/0 chain program performs I/0 information input transfers while the
second I/0 program performs I/0 information output transfers.

NOTE:

All I/0 information transfers are subject to any existing main
memory page read/write protection as defined by the CPU program.

PROCESSOR TO I/O CHANNEL COMMUNICATION

The AN/AYK-14(V) processor software may initiate I/O channel operation via
the processor IOCR instruetion which executes the appropriate I/0 command
instruction in address 006014 (006214 in IOP) of main memory. Several

I/0 command instructions may be executed out of sequence via the processor
IOCR instruction to perform additional communications between the processor
software and the I/0 channel. The IOCR executable I/0 command instructions
are as follows: B ’

1) Channel Control (B0 a m) (ACR m;CCR a,m) Perform the operation
specified by the m<field: ' B

m , Operation

0000 ~Master clear all channels ,

0001 I/0 instruction fault interrupt

0010 1/0 instruction fault interrupt

0011 I/0 instruction fault interrupt

0100 Set EIE on all channels (enable external interrupts)

0101 Clear EIE on all channels (disable external interrupts)

0110 Enable Class III priority 2,3, and 4 interrupts onm all

. channels

0111 Disable Class III priority 2,3, and 4 interrupts on all
<hannels ‘

1000 Master clear the channel specified by the a-field

1001 I/0 instruction fault interrupt

1010 I1/0 instruction fault interrupt

1011 I/0 instruction fault interrupt

1100 Set EIE on the channel specified by the a-field (enable
external interrupts) . :

1101 Clear EIE on the channel specified by the a-field (disable
external interrupts)

1110 Enable Class III priority 2,3, and 4 interrupts on the
channel specified by the a-field

1111 Disable Class III priority 2,3, and 4 interrupts on the

channel specified by the a-field

14122000 | 10-5

NOTE

The a-field is not used if the instruction is executéd in a chain program.

10-6

2)

3)

4)

6)

7)

Initiate Chain (E6 a m) (ICK a,y; OCK a,y) Load the control memory

location specified by the m-field for the I/O channel specified by
the a-field with the value y and then initiate I/O channel operation
as specified by the m=-field as follows:

m-field Operation
2 Initiate I/0 channel input chain program as speci-

fied by the CAP in control memory location 2.

6 Initiate I/0 channel output chain program as speci-
fied by the CAP in control memory location 6.

NOTE
For the SIM I/0 channel type, control memory location 6 is used as
CAP regardless of bit 2 in the m-field. If m=2 or 6, the control

memory is loaded but the chain program is not initiated.

Write Control Memory (E7 a m) (WIM a,y,m) Load the control memory

location specified by the m-field for the I/O channel specified by
the a-field with the contents of main memory address y.

Read Control Memory (EB a m) (RIM a,y,m) -VStoré the contents of
control memory location specified by the m-field for the I/0 channel
specified by the a-field at main memory address y.

Set/Clear Discretes (F8 a m) (SICR a,m) - Set or clear the discrete

as specified by the m-field on the I/O channel specified by the
a-field. The unique m-field specified operation is identical to
that defined when an operation code of F8 is executed by the I/O
chain program for a given I/0 channel type. If the operation code
F8 is a NOP in an I/0 chain program for the given I/0 channel type,
then this instruction is also a NOP for that I/0 channel type.

Store Status (FB a m) (SST a,y,m) ~ Store the channel status as

specified by the m-field for the I/0 channel specified by the
a-field in main memory location y. The m-field specification is
identical to that defined when an operation code of FB is executed
by the I/0 chain program for a given I/0 channel type.

Start IOP (FC-m) (SIOP m,y) - Perform the operation specified by

the m-field as follows:

méfield Operation

XX00 Clear bit 12 of the IOP status register 1 and start the IOP
executing instructions as a processor at starting address y
in main memory.

14122000

XX01 Set bit 12 of the IOP status register 1, y P, and start IOP.
XX10 Clear bit 12 of the IOP status register 1.
XX11 Set bit 12 of the IOP status register 1.

NOTE:

This I/0 command instruction, with the m-field equal to 000X binary,
functionally disconnects the IOP and all I/0 channels from the CPU
and initiates IOP to execute its own processor program using a de=-
fined subset of CPU instructions. If no IOP exists in a given con-
figuration when this instruction is executed by the CPU via the IOCR
instruction, it becomes a no operation. All Class III interrupts
will be serviced by the IOP.

8) Exchange Control Memory (FE a m) (XIM a,y,m) - Store the contents
of control memory location specified by the m-field for the I/0
channel specified by the a-field in main memory location y. Load
that control memory location specified by the m-field for the I/0
channel specified by the a-field with the contents of main memory
address y + 1.

NOTE:

The m=field = 2 or'6 causes an I/0 ihstruetion fault interrupt. CM2 and CM6
are CAP locations in control memory, thus the XIM command instruction will
cause the chain program to jump, if it is active.

The capabilities previeusly'liSted enable processor software to start, stop,
monitor, and modify I/O channel operation.

Communication from I/0 channel to processor software programs is performed
primarily via the interrupt system in the AN/AYK-14(V) computer. I/0 chan-
nel interrupts are Class III, lowest priority, interrupts of the three
classes within the AN/AYK-14(V) computer. There are four Class III inter-
rupts for each of the 16 possible I/0 channels. Refer to Section 9, Inter-
rupts, for a description of each of these interrupts. Recognition of inter-
rupts is based on a priority system using the firmware priority number for
each channel as follows:

Priority 1 ERI error or abnormal
Priority 2 EII external

Priority 3 OCI output chain
Priority 4 ICI input chain

SERIAL INTERFACE MODULE

The serial interface module (SIM) is a serial 1553A I/0O channel type in the
AN/AYK-14(V) computer. General characteristics of the SIM are:

° Program selectable bus controller (BC) and remote terminal (RT)

operating modes
. Dual bus interfaces for redundancy

14122000 10=-7

* Comprehensive SYNC detection, Manchester code error detection, and.
parity maintenance

® Bus bypassed self-test mode under software control

. Asynchronous operation, half-duplex

. Error insertion under software control for system test purposes

Sole control of information transmission on the bus resides with the oper-
ating BC which initiates all transmissions to or from RTs. Each bus can
have up to 32 RTs connected to it. The same 32 RTs may be connected to both
buses or 32 different RTs can be connected to each bus. All information on
the bus is comprised of messages which are formed by appropriate sequences
of the following three types of words:

. Command
° Data
° Status

MESSAGE FORMATS

The four message formats which may exist on a bus are shown in Figure 10-3
and are as follows: .

1) BC to RT data transfer - The BC issues a receive command word fol-
lowed by a specified number of data words. There are no interword
gaps between command and data words. The addressed RT, after mes-
sage validation and interword gap tlme, issues a status word
response to the BC. '

2) RT to BC data transfer - The BC issues a transmit command word. The
addressed RT, after command word validation and interword gap time,
transmits a status word followed by the specified number of data
words to the BC. There are no interword gaps between the status
word and the data words.

3) . RT to RT message format sequence -~ The BC issues a receive command
word to one RT and then a transmit command word to the other RT.
The RT addressed to transmit, after command word validation and
interword gap time, transmits 2 status word to the BC followed by
the specified number of data words to the RT addressed to receive.
There are no interword gaps between this status word and data
words. The RT addressed to receive, after data validation and
interword gap time, transmits a status word to the BC. The BC
receives both status words and the data words are transferred
directly from RT to RT.

4) BC to RT mode command word transfer - The BC issues a mode command
word, with a function or mode control code in the data word count
field. The addressed RT, after command word validation and inter-
word gap time, transmits a status word response back to the BC.

10-8 14122000

00022 1nT

6-01

Previous
Tranamlssion

—————

Previous
Tranamlission

Previous
Transmlssion

Previous
Transmission

‘BC to RT Data Transfer

*

Status Word

Data Word

Word

Word

»)

Mode -
Commiand
Word

(B)

Status Word

R1l to lst RT

. from 2nd

Recelve N B :
Command | Data Word|Data Word }=-—— —— — Data Word] (B)
Word ,
'RT to BC Data Transfer
Transmit : * ’ ;
Command | (B) [Status Word] Data Word|Data Word |- — — — — _|
Word o B
BT to RT Data Transfor
Recelve | Transmit e R
Command | Command Status Word| Data Word |- — — — . _

Data Word

BC to RT Mode Goﬁiﬁiaﬁd Transfer

*Status word shown in Figure 10-4,
Gap (B) Is between 2 and 6 mlcroseconds.

Figure 10-3.

SIM I/0 Channel Type Message Formats

*
(B) [Status Word

WORD FORMATS

Figure 10-4 shows the three word formats and their relationship to bus bit
times.

NOTE:

All three word formats begin with a 3-bit time SYNC pattern. Com-
mand and status words start with a positive SYNC pattern and data
words start with a negative SYNC pattern.

There are 16 information bits and an odd parity bit following the 3 SYNC
bits. All information fields of all words are transmitted most significant
bit first. Bits or field of bits are defined as follows:

1) Bits 15 through 11 (bus bit times 4 through 8) of the command and
status words define one of 32 possible RT units connected to the
selected bus.

2) -Bit 10 (bus bit time 9) of the command word is the T/R bit (trans-
mit /receive) and, for a nonzero subaddress field, specifies the

following:
T/R = 0, Receive command word
T/R = 1, Transmit command word

3) Bits 9 through 5 (bus bit times 10 through 14) of the command word
define a message subaddress. If this field of bits is 0's, the
command word is termed a mode command word.

4) Bits 4 through 0 (bus bit times 15 through 19) of the command word
define the number of data words to be transferred in the designated
message.

NOTE:
As many as 32 data words may be transferred in a
single message. For a mode command word, this

field is interpreted as a mode code.

5) Bit 10 (bus bit time 9) of the status word, when set, defines a
message error prior to status word responses in a message sequence.

6) Bits 9 through 1 (bus bit times 10 through 18) of the status word
define status codes as determined by system usage and software.

7) Bit O (bus bit time 19) is user-defined by the system equipment and
AN/AYK-14(V) computer software.

CONTROL MEMORY DEFINITION
Control memory format and usage for the SIM I/O channel type is shown in

Figure 10-5. The specific function and format of certain of the control
_ memory locations is different for different modes (BC or RT) of operation.

10-10 , ‘ | 14122000

Bit Times:

1 2 415|617]|8]|]9f1wo{11{12]13}14]|15 16{17{18{19] 20
- '—- 1 usec
20 psec
Command Word: 15 211109 5 4 0
5 B 5
Sync Terminal Address |T /<R'| ‘Subaddress/Mode Data Word Count/ | P
‘ 0= Recsivyaﬂe Code
Transmit/Receive { g
Data Word: 15 L ek - 1 Tronsmit 0
i W
l " 16 *
Sync Data p
Status Word: 15 1110 9 1_0
5 1 9 1] %
Sync Terminal Address |ME Status Codes T/F P
L:Message Terminal -’
*Odd Parity Error Flag
(1= Error)
Figure 10-4. SIM Channel Type Word Formats
10-11

14122000

[[/0 CONTROL MEMORY LOCATION (C-FILE)

SPARE
SPARE
SPARE

SPARE

| | SPARE
‘ BUFFER ADDRESS POINTER (BAP)
CHAIN ADDRESS POINTER (CAP)
ADDRESS TABLE POINTER (ATP)

COMMAND WORD 1 (CMD1)/STATUS WORD 1 (STS1)
COMMAND WORD 2 (CMD2)/STATUS WORD 2 (STS2)

MESSAGE CONTROL WORD (MCW)
HARDWARE USAGE - DATA BUFFER REG

PPV se
PP r e
PPy
L

MmO O @ PP o wuw 0 N Y Bl BWw Ny - O

Figure 10-5. SIM Control Memory Map

10-12 ' 14122000

However, location 5 always contains the address of the main memory location
where the next sequential data word is to be input or output during a mes-
sage sequence. BAP is incremented by 1 for each data word transferred dur-
ing I/0 information transfer activity. Location 6 always contains the
address of the main memory location where the next I/0 chain instruction is
located and is updated during I/0 chaining activity. In other words, CAP is
the chain program address register. Location A is always the MCW which
defines the mode and control of the SIM. The format of the MCW is shown in
Figure 10-6 and the bits or fields of bits defined as follows:

1) Bit 8 - Bus Select - Selects the prime 1553A bus of the redundant
pair. This is the only bus used during BC mode. In the RT mode,
bits 7 and 6 determine if this selection is used, or not, at any
given instant in time.

2) Bit 7 - Auto Switchover Enable - Enables switching of bus usage
based on bit 6 in the RT mode. This bit is not used in the BC mode.

3) Bit 6 - Auto Switchover Mode - There are two modes of bus usage
switchover when bit 7 is set and the SIM is operating in the RT
mode. The two modes are as follows:

Bit 6

0 Switeh to the nonprime bus when a valid com--
mand word SYNC pattern is detected on the non-
prime bus-at any time once. This would uti=:=
lize a redundant bus scheme allowing the BC to
switeh the RTs from the prime bus to the non=
prime bus anytime during a message.

Bit 6

"
[55

Switeh to a nonused bus when a valid command
word SYNC pattern is detected on the nonused
bus between messages. This allows the BC to
address RTs on one bus or the other.

4) Bits 5 and Message Mode - These two bits define the SIM mode of
operation.

{8)]
]

5) Bits 3 and 2 - Status Code Mask - Enables or disables hardware
monitoring of bits in the status code field of the status word
received used in the BC mode only. These bits are used in conjunc-
tion with generation of an EII interrupt.

6) Bits 1 and O - Transmitter Mode - Enables normal or error insertion
operation for system or bus network test purposes and can be used
regardless of mode or message state within a message sequence.
Errors may be inserted in a word or all words of a message to
ensure proper error detection.

Locations 8 and 9 contain command words transferred when in BC mode and
status words transferred when in RT mode. :

Location 7 is used in RT mode only and contains a memory address which is

modified by the subaddress field of the received command word. The result-
ing address contents are then loaded into control memory location 5.

14122000 10-13

!8I7L6[¥5 4 |3 2[1, 0 |

Transmitter Mode 00 — Normal
01 - Sync Error
10 — Data Error
11 — Parity Error

Status Code Masks 0X - Mask Bits 09-05
1X - Enable Bits 09-05
X0 - Mask Bits 04-01
X1 - Enable Bits 04-01

00 - OFF
Message Mode 01 ~ ST

10 - RT *
11 - BC

Auto Switchover Mode 0 — Switch at any Time
1 — Switch Between Messages

Auto Switchover Enable 0 — Disable
1 — Enable

Bus Select 0 — Bus A
1 -BusB

*Bus Monitor (BM)
is a submode of
RT.

Figure 10-6. SIM MCW Format

10-14 14122000

SIM I/0 CHANNEL INSTRUCTIONS

The following I/0 chain instructions provide operations on a SIM I/0 channel

type. Any that are not included are legal but perform a no operation.

1

2)

3)

14122000

Channel Control (EO a m) (ACR m; CCR a, m) - The same as listed

under Processor to I/0 Channel Communication paragraph with the

following exceptions:

a-field is not used for the CCR instruction

m-field equal to 1100 - no operation

m-field equal to 1101 - no operation

Cannot enable/disable
external interrupts

Initiate Message (E2 a m) IM a,y,m) - Load control memory location
specified by the m-field with the value y then perform the opera-

tion specified by the a-field as follows:

a Mode Operation
00XX BC Initiate message using CMD1 and BAP in
' control memory locations 8 and 5§,
respectively.
00XX RT Initiate message response on the bus

using STS1l, STS2, and ATP in control
memory locations 8, 9, and 7, respec-

tively.

01 XX BC Initiate RT to RT message sequence using
CMD1 and CMD2 in control memory loca-

tions 8 and 9, respectively.

bus using BAP in control memory location

01XX RT Initiate monitor of all messages on the
5.

1XXX o No operation
NOTE:

When the initiate message instruction with an a-field of OXXX is
encountered, the I/0 chaining activity on the associated I/0 chan-
nel is halted and I/O information transfer activity is initiated.

Initiate Transfer (E3 a 0) (IO a,y) - Load control memory loca-
tions 0 and 1 (a-field equal to XX00) or 4 and 5 (a-field not equal
to XX00) with the contents of main memory addresses y and y + 1,
respectively. Perform y + 1 the operation specified by the a-field
as defined in initiate message. The associated channel is the one

executing the I/0 chain program.

10-15

NOTE:

When the initiate transfer instruction with an a-field 0XXX is encoun-
tered, the I/0 chaining activity on the associated I/0 channel is halted
and I/0 information transfer activity is initiated.

4)

5)

6)

7)

8)

9)

10)

10-16

Load Control Memory (E6 O m) (LCMK, m,y) - Load the control memory
location specified by the m-field with the value y. The a-field is
not used and the associated I/0 channel is the one executing the
I/0 chain program.

Load trol Memory (E7 O m) (LCM m,y) - Load the control memory
cation specified by the m-field with the contents of main memory
address y. The a-field is not used and the associated I/O channel

is the one executlng the I/0 chain program.

Store Control Memory (EB O m) (SCM m,y) - Store the contents of
control memory location specified by the m-field at main memory
address y. The a-field is not used and the associated I/0 channel
is the one executing-the I/O chain program.

a0) (HCR;
as follous

Halt/Interrupt (E
fied by the fie

IPR) - Perform the operation spec1-

a.
XXX0: "Halth/efeﬁaining,aetivity

xxx1 "'Generate Class III, prlorlty 3, OCI 1nterrupt

1; SF y) - Set or clear the two most
: main memery value at address y as
speclfled by the a-fleld as follows'

a. '@wemaLIQn
XXX0 Clear flag
XXx1 . Set flag

The m-field is not used and the associated I/0 channel is the one
executing the I/0 chain program.

Conditional Jump (F2 oo) (SJMC 0,y) - This is an unconditional
Jump instruction for the SIM I/0 channel type. Load control memory
location 6 (CAP) with the value y.

Store Status (FB a m) (CSST y,m) - Store the channel status as
specified by the m-field in main memory y as follows:

m | Mode Status Word Value
1X1X BC First status word received during last

message sequence on the bus.

14122000

m Mode Status Word Value

RT Not assigned

0X1X BC Second status word received during last
RT-to-RT message sequence on the bus.

RT Not assigned
1X0X - Hardware status word 0 (Figure 10-7)
0X0X - Hardware status word 1 (Figure 10-8)

The a-field is not used and the associated I/O channel is the one executing
the I1I/0 chain program.

11)

12)

Bit Jump (FD Om) BJ m,y) - This a conditional jump instruction.

If the bit in control memory location 3 specified by the m-field is
a logic 1, then the value y is loaded into control memory location
6. If the bit is a logic 0, the next I/O chain instruction in
sequence is executed.

Exchange Control Memory (FE Om) (XCM m,y) - Store the contents of
control memory location specified by the m-field in main memory
location y. Then load the control memory location specified by the
m-field with the contents of main memory location y + 1l.

NOTE:

This becomes a branch or jump instruction if the m-field equals 6.
The old contents of control memory location 6 is saved so that a
return is possible when the entered routine is exited.

SIM INTERRUPT HANDLING

The SIM I/0 channel type is capable of generating the EII, ERI, and OCI
Class III interrupts. The SIM hardware shall generate an ERI interrupt for
either of the following when in BC mode only.

1)

2)

Expiration of the monitoring times during a message sequence, such
as B gap too long or total message length too long, causes the SIM
to halt the message sequence, generate an ERI interrupt, and not
restart the chaining activity. ‘

Detection of any message abnormalities, such as improper sync
character, wrong parity, or wrong word length, during a message
sequence causes the same as stated in 1) above.

If the ERI is locked out at the processor by SR1, bit 11 of hardware status
word O is set and stays set until the interrupt is processed.

The SIM hardware shall generate an EII interrupt in BC mode during a message

sequence

14122000

provided Class III, priorities 2, 3, and 4 are enabled for the

10-17

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tr {1l lof | | JoJo o o 1] ;
Logical Channel Number

SIM 1/O Channel Type Code

ICI Pending (NA)

EH Pending

ERI Pending

Channel Input Active (NA)

Channel Output Active

L EIE (V&)

Test Cendmon for Condnwnal 1 ump (NA)

Figure 10-7. SIM Hardware Status Word 0 Format

IS 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0 -

Subaddress Field of Last Command
Word rece1ved in RT Mode:

T/R Bit of Last Command Word
received in RT Mode

Always 00

Class lH; Priority 2, 3, 4 Interrupt Mask

Alternate Status Pending in RT Mode

Bus Usage Definition 0-Bus A, 1-Bus B 1 = masked
0 = no mask

Receiver Busy

Bit 6 of Last Initiate Message or Initiate Transfer

Message State

Figure 10-8. SIM Hardware Status Word 1 Format

10-18 14122000

channel when a status word is received over the bus which has an ME bit, un-
masked status code bit, or TF bit set.

The interrupt word stored in main memory (8016 plus channel) is the first
status word received during the last message sequence on the bus. Channel
operation is halted at the end of the message sequence and chaining activity
is not restarted. If RT-RT is specified, the first RT status word is stored

into 8014 plus channel while the second RT's status word must be accessed
via the SST/CSST instruction.

If not enabled, the status word will be stored in memory, the interrupt will
be held pending at the channel level, and bit 10 of hardware status word 0
is set. When the enable condition is enabled, the interrupt will be passed
on to the processor and, if not locked out by SR1l, will be processed clear-
.ing bit 10 of hardware status word 0. If locked out by SR1l, the interrupt
will stay pending until processed.

The SIM I/0 channel type shall generate an OCI interrupt only under I/0
chain program control via the interrupt processor instruction (operation
code EC).

No Class III ICI interrupts are generated by the SIM I/0 channel type, as
all chain programs are considgred to be output chain programs.

SIM PROGRAMMING CONSIDERATIONS IN BC MODE

For a BC to RT message sequence, the programmer, via either command instruc-
tions or chain instructions, must load CMA with MCW, CM8 with CMD1 (the
receive command word to be sent to the RT), and CM5 with BAP. 1In the chain
program, start the message sequence with an initiate message instruction (IM
a,y,m) with a-field equal to 00XX. This stops the chaining activity and
starts the SIM hardware and processor firmware performing the following
actual sequence of operations.

1) The receive command word (CMD1) in CM8 is transmitted.
2) The data words starting at BAP are transmitted.
3) The status word from the RT is received and examined.

4) If in the status word the ME bit, TF bit, and unmasked status bits
are all zero, chaining activity is reinitiated.

5) If in the status word the ME bit, TF bit, or unmasked status bits
are set, the status word is stored in memory, and the EII interrupt
is generated based on the conditions of the enables. The chain
activity is not reinitiated.

6) If during the message sequence an error is encountered, the ERI
interrupt is generated, the sequence operation stops, and chaining
is not reinitiated. ’

For a RT to BC message sequence the programmer must load CMA with MCW, CM8
with CMD1 (the transmit command word to be sent to the RT), and CM5 with

14122000 10-19

. CM8 with CMD1 (the re

“ tion (IM a,y,m) with a-
”'lty and starts the SIM hard“ re

\\\\\

BAP. In the chain program, start the message sequence with an initiate mes-
sage instruction (IM a,y,m) with a-field equal to 00XX. This stops the
chaining activity and starts the SIM hardware and processor firmware per-
forming the following actual sequence of operations.

1) The transmit command word (CMDl) in CM8 is transmitted.
2) The status werd from the RT is received and examined.

3) If in the status word a bit is set, it is stored in memory, and the
EII interrupt is generated based on the conditions of the enables.

y) The data words are recelved, examlned, and stored in memory using
BAP.

5) When all data words are received, the sequence operation stops, and
chaining activity is reinitiated. if the EII interrupt was not gen-
erated by a bad status word.

6) If during the message sequence the wrong number of words was
~ received or a data word with errors was received, the sequence
operation is stopped at that peint, the ERI interrupt is generated,
and chaining activity. is not relnltlated. If the sequence termin-
ates because. of an error in a data word that data word will be the
last word stored 1n memory .

For an RT to RT message s nence, the: programmer must load CMA with the MCW,
e Vommand word to be sent to the first RT), and CM9
d ward to be sent to the second RT). In the

n initiate mes'age instrue- -
tops the chaining active
and processor- f‘lmwar-e perf‘ormnlg the t‘ol-=
low1ng actual sequence of eperatlons. : , .

with CMD2 (the transmit com
chain program, start the

1) The reeeivescommand:word in CM8 (CMD1l) is transmitted to RT1.
2) The transmit commandfword in CM9: (CMD2) is transmitted-to'RTZ.
3) The status word from RT2 is received and examined.

4) If in the status word a bit is set, it is stored in memory, and the
EII interrupt is generated based on the conditions of the enables.

5) The status word from RT1 is received and examined after the data
has been transmitted between the RTs.

6) If in the status word a bit is set, it is stored in memory, and the
EII interrupt is generated based on the conditions of the enables.

7) Sequence of operations stop, and the chaining activity is not

reinitiated if the EII interrupt was generated from either or both
status words.

10-20 14122000

8) If during the message sequence an error occurs (status word not
received, improper gap B times, or errors in the status words), the
sequence of operation stops at that point, the ERI interrupt is
generated,and chain activity is not reinitiated.

For a mode command word message sequence the programmer must load CMA with
the MCW and CM8 with CMD1 (the mode command word to be sent to the RT). In
the chain program, start the message sequence with an initiate message
instruction (IM a,y,m) with a-field equal to 00XX. This stops chaining
activity and starts the SIM hardware and processor firmware performing the
following actual sequence of operations.

1) The mode command word in CM8 (CMDl) is transmitted to the RT.
2) The status word from the RT is received and examined.

3) If in the status word a bit is set, it is stored in memory, and the
EII interrupt is generated based on the conditions of the enables.

4) - Sequence of operations stop, and the chaining activity is reiniti-
ated if the EII interrupt was not generated.

5)1 If during the message sequence an error occurs the sequence of
operation stops at that point, the ERI interrupt is generated, and
the chaining activity is not reinitiated.

SIM PROGRAMMING CONSIDERATIONS IN RT MODE

In RT mode, the programmer sets.-up the SIM and allows the BC to determine’
the type of message sequence and initiate it. The programmer must load CMA
with the MCW, CM8 with STS1 (the status word to be sent to the BC), and the
CM7 with the ATP before the SIM can be enabled to respond to the BC. 1In the
chain program, the SIM is enabled by executlng ‘an initiate message instruc-
tion (IM a,y,m) with a-field equal to 00XX. This instruction stops chaining
activity and starts the SIM hardware and the processor firmware to perform
the following actual sequence operations.

The SIM monitors traffio on the bus, performing switchover if enabled and
occurs, comparing the command word RT addresses against the RT addresses in
CM8. The SIM continues to monitor the bus until the channel is master
cleared, a new MCW is placed in CMA, or a RT address match.occurs. When
there is a match, bits 5 through 10 of the command word are examined to
determine the type of message sequence to perform.

Transmit Command Word Message

If the command word is a transmit command word, bits 5 through 10 of the
word are right justified and zero filled to a 16-bit word and then added to
ATP from CM7. The contents of memory at the resulting address is loaded
into CM5 (BAP). The SIM then transmits the status word from CM8 to the BC
followed by the data words from memory using BAP. The SIM hardware then
returns to monitoring the bus for another command word.

14122000 10-21

Mode Command Word Message

If the received command word is a mode command word (bits 5 through 9 are
zero), it is stored in main memory at the EII location for the channel and
the SIM BC generates the EII interrupt based on the condition of the
enables. The SIM then transmits the status word from CM8 to the BC, reini-
tiates the chaining activity, and returns to monitoring the bus for another
command word.

Receive Command Word Message

If the command word is a receive command word, CMS5 (BAP) is loaded in the
same manner as for a transmit command word. The data words are received,
examined for errors, and placed in memory using BAP. When all data words
are received and storedy the status word from CM8 is transmitted to the BC,
and the SIM begins monitoring the bus for another command word. If during
the sequence a data word with an error is received, that data word is the
last word stored in memory. The SIM continues to monitor the bus and upon
completion of the data transfer, transmits the status word from CM8 (ulth
the ME bit set) and returns to m@nitorlng ‘the bus.

DISCRETE INTERFACE,MQE@bE

- The discrete 1nterfaee medule (DIM) has the follow1ng general characteris-
tiess: : :

[2 Eight. external 1nterrupts w1th 1nd1v1dual mask blts and program

cretes are not set or cle réd via seftware by 1nd1v1dual blt
addre361ng‘but rather via 16-bit word addressing.

WORD FORMATS

There are four idput words (word O through word 3) and two output words
(word 0 and word 1) in a DIM I/O type interface and one 8-bit interrupt
word. Figure 10-9 shows these words for input or output applications.

There are bidirectional discretes (DIO) 31 through DIO 00, input discretes
(DID) 15 through DID 00, and switch closure input discretes (DIS) 15 through
DIS 00. These 64 signals are grouped into four 16-bit words as shown in
Figure 10-9.

There are two 16-bit output words that share the 32 (DIO 31 through DIO 00)
signals with input words 0 and 1. These output discretes may be enabled in
groups of U4 bits to drive the related DIO signals or disabled to allow an
external driver to feed them. Regardless of whether a given group of four
DIO signals are programmed as outputs, they may also be read as inputs.

10-22 : ‘ 14122000

/ I— DI0:31

DI0:16
r=

ol

' 1514 1312 1110 9 8 5 4 0
\ 13 1 1 []] 1] i 1] 1] N WORD o
A DI0:15 DI0:00
ba&‘ g r.. _ . . r- -
{1514 1312 1110 9 8 7 6 5 4 0
5]] 3 i I [}]]] [} NORD 1
1 1 1 3§ { [] 1 1 1 1
L
~ ~ DID:15 DID:00
[oo L SR o
-0 15141312 11.10.9-8 7 6 5.4 _ 0
l/ 1] [} L 1 [1 i) i 1 + - ‘T NORD z
_ ~ : E7
(” r.nxsns r DIS:00
M 15147312 11710 9 8 7 65)
»’\}Ws‘ ﬁ»’ﬁ;“,& G‘){/] f 1] ‘l :l] ¥ t ¥ I‘ i’ l’ wo,RD 3
C’jv" \k { t (] - 1 . 3 . 4 . ! . | L R | {
‘ : INPUT WORDS
DI0:31] r DI0:16
15 14 13121110 § 8 7. 6 5 & 0
: i3 1 f + : : NORD O
r- DI0:15 r- DI0:00
1574 1312 1110 9 8 7 6 5 4 "0
oo o S ‘ WORD 1

14122

000

Figure 10-9.

OUTPUT WORDS

DIM Word Formats

10-23

CONTROL MEMORY DEFINITION

Control memory format and usage for the DIM I/0 channel type is shown in
Figure 10-10. The specific function and format of certain of the control
memory locations are associated with only input or output activities. Loeca-
tions 0, 1, and 2 are associated with input activity, and locatlons 4, 5,
and 6 are associated with output activity.

Control memory locations Q0 and 4 are the buffer control words (BCW)
(Figure 10-11) and define the word count for input and output information
transfer activity.

Bits 15 and 14 are termed transfer mode (TM) and are either 00 (abort for
input, word for output) or 10 (word for input or output). No other combina-
tion will work on a DIM channel.

Bits 13 and 12 are not used.

Bits 11 through 0 are the buffer transfer count with a BTC of zero causing
4096 word transfers. Input transfers consist of only four possible words
and output transfers consist of only two p0531ble words. Counts greater
than this will repeatedly handle the same words until the BTC equals zero.
Control memory locations 8 and 9 are termed the. mask/priority words (MPWs) 0
and 1 and define the prlorltles ‘and mask blts for the interrupt signals.

Control memory location A is termed the. dlscrete select’ word (DSW) and, as -
shown in Figure 10-12, uses- only ‘the lower eight bits.

The DSW seleects which bidlrectlonal discretes‘(DIO) shall be utilized for
input (loglc 0) or output (loglc 1). This provides for selecting up to 32
input or output dlscretes, in groups of four, under program control.

~ DIM I/O CHANNEL INSTRUCTIONS

The following I/0 chaln instructions prov1de operations on a DIM I/O channel
type. Any that are not 1ncluded are legal but perform a no operation.

1) Channel Control (EO a m) (@Qﬁ:m;«CRg a,m) - The same as listed
under Processor to I/0 channel Communication paragraph except that
the a-field is not used in the CCR instructions.

2) Initiate Message (E2 a m) (IM a,y,m) - Load control memory loca=-
tion specified by the m-field with the value y then perform the
operation specified by the a-field as follows:

a Operation
00X0 Initiate input data transfer sequence starting with

input word O using the BCW and BAP in control memory
locations 0 and 1.

01X0 Initiate input data transfer sequence starting with

input word 1 using the BCW and BAP in control memory
locations 0 and 1.

10-24 14122000

{i/O CONTROL MEMORY LOCATION

BUFFER ADDRESS POINTER (BAP)

 CHAIN ADDRESS POINTER (CAP) |]

_ SPARE_

BUFFER CONTROL WORD (BCW) ,

BUFFER ADDRESS POINTER (BAP) | ¢ OUTPUT

| cﬁAlu,AauREss POINTER (CAP) | |

SPARE

MASK/PRIORITY WORD 0 (MPW 0)
 MASK/PRIORITY WORD 1 (MPW 1)
DISCRETE SELECT WORD (DSW)

HARDWARE USAGE - DATA BUFFER REG

//////////////
L
Py rrrryeys
LLLL S

BUFFER CONTROL WORD (BCW)
INPUT

N

MM O O O > W 0N OO WM BeWN —- O

Figure 10-10. DIM Control Memory Map

14122000 10-25

TRANSFER MODE (00 or 10)

BUFFER TRANSFER COUNT (BTC)
8 7 6[-

15 14 13 12 11 10 9
. i] L} ¥

Figure 10-11. DIM BCW Format

- 010:31-28 SELECT~_
~D10:27-24 SELECT
~ D10:23-20 SELECT

SELECTS
-DI0:19-16 SELECT 1 = OUTPUT
—~ DIO0:15-12 SELECT

- DI0:11-08 SELECT

[DI0:07-04 SELECT

-

7 6 5 4 3 2 1 0

DI0:03-00 SELECT

LLLLLL

Figure 10-12. DIM DSW Format

10-26 14122000

3)

a Operation

10X0 Initiate input data transfer sequence starting with
input word 2 using the BCW and BAP in control memory
locations 0 and 1.

11X0 Initiate input data transfer sequence starting with
input word 3 using the BCW and BAP in control memory
locations 0 and 1.

X0xa Initiate output data transfer sequence starting with
output word 0 using the BCW and BAP in control mem-
ory locations 4 and 5.

X1 Initiate output data transfer sequence starting with
output word 1 using the BCW and BAP in control mem-
ory locations 4 and 5.

Initiate Transfer (E3 a 0) (IO a,y) - Load control memory location

0 and 1 (a-field equal to XX00) or 4 and 5 (a-field not equal to XX00) with
the contents of main memory addresses y and y + 1 -respectively. Perform the
operation specified by the a field as defined in 2) above.

4)

5)

6)

7)

Load Control Memory (E6 O m) (LCMK m,y) - The same as listed under

SIM 1/0 Channel Instructions paragraph.

Store Control Memor

Load Control &ggory'£57 O m) (LCMm,y) - The same as listed under
SIM I/0 Channel Instructions paragraph. S

(EBOm) SCMm,y) - The same as listed under

SIM I/0 Channel Instructions paragraph.

Halt/Interrupt (EC a 0) (HCR; IPR) - Perform the operation speci=-

fied by the a-field as follows:

a Operation
XXX0 " Halt I/0 chaining activity.
XXX1 Generate Class ITI, priority 3, OCI interrupt if

output chain or Class III, priority 4, ICI interrupt
if input chain.

The m-field is not used and the associated I/O channel 'is the one executing
the chain program.

8)

9)

14122000

Set/Clear Flag (EF a 0) (ZF y) - The same as listed under SIM I/O
Channel Instructions paragraph.

Conditional Jump (F2 00) (SJMC 0, y) - This is an unconditional
Jump instruction for the DIM I/0 channel type. Load control memory
location 2 if input chain or control memory location 6 if output
chain with the value y.

10-27

10)

11) -

Serial Interface Control (F8 0 m) (CSIR m) - Set the interrupt

active discrete or clear all eight interrupt active discretes as
specified by the m-field as follows:

m Operation
0XXX Clear all eight interrupt active discretes
1000 Set interrupt 0 (INTO) active discrete
1001 Set interrupt 1 (INT1l) active discrete
1010 Set interrupt 2 (INT2) active discrete
1011 Set interrupt 3 (INT3) active discrete
1100 Set interrupt 4 (INTY4) active discrete
1101 Set interrupt 5 (INTS) active discrete
1110 Set interrupt 6 (INT6) active discrete
1111 Set interrupt 7 (INT7) active discrete

The a-field is not used and the associated I/0 channel is the one
executing the I/0 channel program.

Store Status (FB 0 m) (CSST y,m) - Store the channel status as

specified by the m-field in main memory location y as follows:

m | Status Word Value

XOGO Chann51‘hardwaremstatuS‘wordwO»(FigurellO-IB)
X001 B

Not assigned
X010 '
X011 '~ Channel hardware status word 1 (Figure 10-14)
X100 Input word 0
X101 Input word 1 |

' v > (Figure 10-9)

X110 Input word 2
X111 Input word 3

The a-field is not used, and the associated I/O channel is the one executing
the I/0 channel program.

12)

13)

10-28

Bit Jump (FD O m) (BJ m,y) - This is a conditional jump instruc-
tion. If the bit in control memory location 3 specified by the
m-field is a logic 1, then the value y is loaded into control mem-
ory location 2 if input chain or control memory location 6 if out-
put chain. If the bit is a logic 0, the next I/0 chain instruction
in sequence is executed.

Exchange Control Memory (FE 0 m) (XCM m,y) - Store the contents of
control memory location specified by the m-field in main memory
location y. Then load the control memory location specified by the
m field with the contents of main memory location y + 1.

14122000

15 14 13 12 11 10 9 8 7 6 S

Logical Channel Number

DIM I/0O Channel Type Code

ICI Pending

OCI Pending

Ell Pending

' ERI Pending (NA)

Channel! Input Active

Channel Output Active

EIE

' Test Condition for Conditional Jump

Figure 10-13. DIM I/O Channel ‘Harvdwé;r-e Status Word 0 Format

 ~The number of the active
interrupt assigned the highest
enable priority in MPWO0

and MPW1 ‘

[Active interrupts

. . A
15 14 13 12 11 710 9 8 V7 g 5 4 3 o 1 gV

0Ojojojojo

Interrupt 7
Interrupt 0

-t
!

= Interrupt Active Set
Interrupt Active Clear

o
]

Figure 10-14. DIM Hardware Status Word 1 Format

14122000 10-29

NOTE:

* This becomes a branch or jump instruction if the m-field equals 2
or 6. The old contents of control memory location 2 or 6 is saved
so that a return is possible when the entered routine is exited.

MESSAGE FdRMATS

Input and output discretes are transferred between the DIM I/0 channel type
and main memory as 16-bit words instead of discrete individually addressed
bits. These transfers are initiated by an initiate message (operation code
E2 hexadecimal) or initiate transfer (operation code E3 hexadecimal)
instruction. The initiate message and initiate transfer instructions can be
executed at either an input or output chain program. Both chain programs
can be active at the same time. An output transfer can be initiated by
either instruction in an input chain, and an input transfer can be initiated
by either instruction in an output chain. If during the execution of an
input chain program an output transfer is initiated, the chain activity
stops, the output transfer takes place, and upon completion the input chain,
activity is resumed. The same is true for input transfers started during
output chain programs. N

1) Input Data Transfers - The four input discrete words may be read
: into main memory, as prev1ously stated. The transfer of these

- words is controlled by the BCW and BAP in control memory locations
0 and 1. An initial BTC = 0 specified 4096 words, BTC = 1 speci-
fies 1 word, etc. During 1nput data transfer, the BAP- value is
ineremented by 1 and the BTC is decremented by 1 for each discrete
word input and the chalnlng act1v1ty is reinitiated when BTC
decrements to- 0.

NOTE:

If T™M = 0; words are not transferred. Initial BTC values
greater than 4 repeat sets of the four possible input words
that are defined until BTC = 0.

In addition to this buffering scheme, individual words may be read
as status via the store status (operatlon code FB hexadecimal)
instruction.

DIM INTERRUPT HANDLING

The DIM I/0 channel type is capable of generating the EII, OCI, and ICI
Class III interrupts.

The DIM I/0 channel type shall generate the OCI and ICI interrupts only
under I/0 chain program control via the interrupt processor (IPR) chain
instruction. Execution of the IPR instruction in an output chain program
results in the OCI interrupt. Conversely, if the IPR instruction was
executed in an input chain program, it results in the ICI interrupt.

SR1:1 must be set, Class III priorities 2, 3, and 4 must be enabled (CCR
instruction), EIE must be enabled (CSIR instruction), and the MPWs must be
set up before external interrupts can be recognized.

10-30 14122000

I/0 chaining has priority over external interrupts.

The DIM hardware generates the EII interrupt in response to the eight exter-
nal DIM interrupts. The eight interrupts are masked and assigned priority
by the two control memory locations 8 and 9 labeled mask priority word zero
(MPW0O) and one (MPWL1l).

These two words, MPWO and MPWl (Figure 10-15), contain eight 4-bit groups
each of which corresponds to an interrupt priority level. Bits 15 through

12 of MPWO are associated with the highest priority (0) and bits 3 through 0 .~

of MPW1l are associated with the lowest priority (7). The most significant
bit (bits 3, 7, 11, and 15) is the mask bit and the other 3 bits define the
number of the interrupt signal (INTO through INT7) for each U-bit group.
Any one of the eight priority levels can be assigned any one of the eight
interrupt signals; therefore, it is possible to have the same interrupt
signal in more than one interrupt level.

The DIM hardware shall generate an EII interrupt if the following conditions
exist.

1) The EIE must be set in the DIM channel (ACR/CCR 4 or CCR a 12).

2) The external interrupt that becomes active must be assigned a
priority level by MPWO or MPWl in control memory.

3) The assigned priority for the active interrupt must have its mask
bit set.

If these conditions are met, hardware status word one is stored in memory at
the EII location for the DIM channel. Status word 1 can also be read and
stored into memory using the store status instruction (CSST y,m). The DIM
hardware status word (Figure 10-14) indicates the highest priority interrupt
active in bits 10 through 8 and all active interrupts (enabled or not
enabled) in bits 7 through 0.

L) If the Class III priorities 2, 3, and 4 are enabled on the DIM
channel, the EII interrupt is generated and transmitted to the
processor. If the Class III priorities 2, 3, and 4 are not en-
abled, the EII interrupt pending bit is set in hardware status word
0, and the EII interrupt is held pending at the channel level.

If during the time that an EII interrupt is pending at the channel level as
locked out at SRl another interrupt of a higher priority becomes active with
its mask bit set, the DIM hardware will cause another hardware status word 1
to be stored in the EII interrupt location. The status word will contain
the number of the new higher priority interrupt in bits 10 through 8. Dur-
ing this time, an interrupt of lower priority or one with its mask bit
cleared will not cause a new status word 1 to be stored in memory.

While processing the EII interrupt, the firmware clears the EIE in the DIM

and clears bits 10 through 8 along with the associated interrupt active bit
in status word 1. This prevents the status word 1 in memory from being
altered and another EII interrupt from being generated until enabled by the

software.

14122000 * 10-31

~ INTERRUPT NUMBER HAVING PRIORITY 0
INTERRUPT NUMBER HAVING PRIORITY 1
INTERRUPT NUMBER HAVING. PRIORITY 2 '

INTERRUPT NUMBER HAVING PRIORITY 3 .

§

r

15141312 11109 8 7 6 5 & 3 2 1o '
PN AL St B S S ' MPW 0
[l L] 1 I 1 8 . T
Interrupt

Number :

; . . *MSB of each 4-bit fleld
; ' ’ Sl 1 ‘= enables priority level
~ INTERRUPT NUMBER HAVING PRIORITY 4 2 = disables priority level
INTERRUPT NUMBER HAVING PRIORITY §

» INTERRUPT NUMBER HAVING PRIORITY 6

f- INTERRUPT NUMBER HAVING PRIORITY 7

15 14 1312 11 10 9
1] | T 18 1]

8 7 &

S

4

3

2

10

*

1

-

*x)

L

i

1

L.

*

1

i

T

MPW 1

Figure 10-15., DIM MPW Formats

10-32 14122000

NTDS INTERFACE MODULES

The four NTDS interface modules (NIM) are defined as follows:

° NIM - type A (NTDS slow - 16-bit parallel)
° NIM - type B (NTDS fast - 16-bit parallel)
° NIM - type C (NTDS ANEW - 16-bit parallel)
) NIM -~ serial (NTDS serial)

NIM types A, B, and C have the following general characteristics.

[Accommodate one 16-bit input channel and one 16-bit output channel
to allow full duplex operation.

) Configure to a 32-bit channel using two modules of the same type.
NIM type serial has the following general characteristic.

. Accommodates one input and one output (16-bit or 32-bit) channel to
allow full duplex operation in 16-bit or 32=bit mode.

The NIM I/0 channel types interface with the general processor module (GPM)
-via the I0OBUS and the EVENTBUS. The IOBUS is for data and instruction com-
munications, and the EVENTBUS is for interrupts and control.

The NIM modes of operation selectable under software are:

Computer to computer (16 or 32 bit)

Computer to peripheral (16 or 32 bit)

Computer to peripheral, externally specified addressing in 32 bit
Computer to peripheral, dual channel 32 bit

Data on the NIM channels can be either a 8-bit byte, 1l6-bit word, or 32-bit
double word based on the type of channel and selectable via software. The
data, as well as the external function words, command words, and external
interrupt words have no parity bits attached. Interrupt, function, and com-
mand words are 16 bits in byte and word mode and are 32 bits in the 32-bit
mode. .

CONTROL MEMORY DEFINITION

Control memory format and usage for the NIM I/0 channel types is shown in
Figure 10-16. Control memory locations 0, 1, and 2 are associated with
input chaining and data transfer activity. Control memory locations 4, 5,
and 6 are associated with output chaining and data transfer activity.

Control memory locations O and 4 are termed the buffer control word (BCW)

(Figure 10-17) and define the word count, transfer mode (TM), and the byte
pointers for information transfer.

14122000 10-33

[/0 CONTROL MEMORY LOCATION

Q'—l

. BUFFER CONTROL WORD (BCHW)
BUFFER ADDRESS POINTER (BAP) INPUT
CHAIN ADDRESS POINTER (CAP))

 SPARE
_BUFFER CONTROL WORD (BCW) ||
_ BUFFER ADDRESS POINTER (B&P) j/ourpur

CHAIN ADDRESS POINTER (CAP)"

_ SParg
__SPARE
MODE_CONTROL 4ORD

| HARDARE USAGE - DATA BUFFER REGISTER
LSS
777777 77
LSS
LS

T M OO W P> WO~ AU & WN = O

Figure 10-16. NIM Control Memory Map

10-34 14122000

L] 7]

6 5 4 3 .2 1 0
TM | *| B BUFFER TRANSFER COUNT

15 14 13[12]11,10 9 8 7

TM = 00 ABORT TRANSFER (INPUT TRANSFER ONLY)

01 BYTE TRANSFER (8 BITS)

10 SINGLE-LENGTH TRANSFER (16 BITS)

11 DUAL CHANNEL (32 BIT DOUBLE-LENGTH TRANSFER)
* NOT USED
B = BYTE POINTER, 0 = UPPER BYTE, 1 = LOWER BYTE
BUFFER TRANSFER COUNT = NUMBER OF BYTES, SINGLE

WORDS, OR DOUBLE WORDS
TO BE TRANSFERRED

Figure 10-17. NIM BCW Format

14122000 10=-35

Bits 15 and 14 are termed the transfer mode (TM) and must be compatible with
the mode control word in control memory location A and specify the word
length to be transferred.

Bit 13 is not used.

Bit 12 is termed the byte pointer and specifies which half word (upper or
lower) of the memory location will be used for the next transfer as follows:

0 = transfer upper byte (bits 15 through 8)

1 = transfer lower byte (bits 7 through 0).

This bit is toggled after each byte transfer and is interpreted only during
byte transfers. The byte information is always transferred on data lines 7
through O.

Bits 11 through 0 are termed the buffer transfer count (BTC) and specify the
number of bytes, single-length words, or double-length words to be transfer-
red during the selected operation. An initial count of zero specifies the
maximum number of transfers (u096) and the contents of the BTC are decre-
mented by one for each transfer. In byte mode, ‘the BAP 1s incremented after
“both bytes of a memery locatlon have been transferred.

Control memory locatlon A is termed the mode control word (MCW) (Figures
10-18 and 10-19) and defines the mode of: operatlon in which the channel is

to operate. Only bits 3 through 0 are used- with bit 3 being the mode enable
bit. If bit 3 is clear, te NIM hardware default mode is enabled as shown in
Figures 10-18 and 10 19. ' ~

:MESSAGE FORMATS (16 BIT CHANNBL)

“The four types of sequences that azNIM parallel channel can perform are:
Accept an external interrupt or command word

Transfer an external function or command word

Input. data
Qutput data

The interaction is controlled between the NIM and the peripheral device or
computer via disecrete signal lines following a well-defined channel protocol.

1) External Interrupt - A peripheral device or computer transfers an
external interrupt word or command word to the NIM. The word is
stored in memory, and the EII interrupt is generated.

2) External Function - The NIM transfers an external function word to
a peripheral device or command word to a computer. The I/0 chain
program must initiate an external function transfer by executing an
initiate transfer (operation code E3 hexadecimal with a-field equal
to 2) instruction. When the peripheral device or computer is ready
to accept an external function or command word, the NIM I/O channel
type will transfer the data from memory. Peripheral devices which
do not have an external function request line can be forced by an

10-36 . 14122000

MODE CONTROL
WORD

NIM MODE »[3

1~

0]

REGISTER

l/'//////////./:3

MODE REG

MODE OF OPERATION

2

1

[~

HARDWARE DEFAULT

MODE
(COMPUTER TO PERIPHERAL
16 BIT)

COMPUTER TO PERIPHERAL — 16 BIT

: ’ER 10 COMPUTER — 16 BIT

(o kead (=) (o] [I [@] [e] DA DM o] {o] (5 B [« (=)

~lol=jol~lol—]lol~|ol~lol~|ol~lo

Figure 10-18. NIM Parallel MCW Format

~MODE REG

“MODE OF OPERATION

HARDWARE DEFACULT
MODE

(OFF)

OFF

CP TO CP, LOOP TEST. 16-BIT

"CP TO P!

ERAL. 16-8IT

CP TO CP. 16-BIT

_CPTO PI:RH’HERAL, 32-BiT

—_CPTOCP,32-BIT

CPTO P‘SR!PHERAL ‘DUAL CE CHA.NNEL 32-BIT |

~l=l~ ===~ lelelelololololo

=l jolol~|—lolol=l-jolal—|-lolo

CP TO CP . DUAL CHANNEL, 32-BIT

14122000

Figure 10-19.

NIM Serial MCW Format

10-37

3)

4)

initiate transfer (operation code E3 hexadecimal with a-field equal
to 3) instruction.

Any number of external function words or command can be sent as
determined by the BTC in the BCW. .

Input Data - The NIM may input data from a peripheral device or a
computer. The I/0 chain program must initiate an input data trans-
fer by executing an initiate transfer (operation code E3 hexadeci-
mal with a-field equal to 0) instruction. The transfer will cause
the number of words defined in the BCW to be stored in memory
starting at BAP. The initiation of an input transfer may be exe-
cuted from either an input or output chain. At correct termination
of the transfer, the I/0 chain program will resume execution.

Output Data - The NIM may output data to a peripheral device or
computer. The I/0 chain program must initiate an output data
transfer by executing an initiate transfer (operation code E3 hexa-
decimal with a-field equal: to 1) instruection. The transfer will
cause the number of words defined in the BCW to be read from memory
starting at the BAP. The initiation of an output data. transfer may
be executed from either an output or input chain. At correct ter-
mination of the transfer, the I/0 chain program will resume execu-
tion.

MESSAGE 'FORMATS (32-BIT CHANNEL)

The five types of sequences which a NIM 32-b1t parallel channel can perform

are:

Accept an extrnal interrupt or command word

Transfer an external functlon or command word

Input data :

Output data : ‘ '

Externally speclfled addre551ng (ESA) in computer-to-peripheral
mode: only.

Requirements of a 32;bitychannel are as follows:

10-38

Both NIMs must be of the same type

Both NIMs must be in a physical channel pair (0 and 1, 2 and 3, 4
and 5, or 6 and 7)

Channel operation is controlled by programmlng at the software
level of the odd-numbered channel

Control memory for the odd-numbered channel is used by the chain
program.

The MCW for the even-numbered channel must also be set to the cur-
rent mode of operation

Most significant 16 bits (even channel)uses BAP and the least sig-
nificant 16 bits (odd channel) uses BAP(:)I from the odd channels
control memory.

TM field of the BCW must be set to 1l.

14122000

The external interrupt, external function, command word, and data transfer
sequences function the same as on a 16-bit channel with the 32-bit inter-
rupts and command words stored in the appropriate memory locations.

In the ESA mode, the NIM pair transfers data to and from the peripheral
device on a word-by-word basis. The external interrupt and external func-
tion sequences are programmed and performed the same as when in compu-
ter-to-peripheral 32-bit mode. The data transfers are enabled by the execu-
tion of an initiate equal to 0000 or 000l in the chain program. At that
point, chaining activity stops and the NIMs are waiting on the peripheral
device.

a = 0001 (Output data)

Computer ' Peripheral
Least significant bits g~ Address y
Data (y) #» Most significant bits
Data (y + 1) » Least significant bits

BAP and BTC are not used and chaining activity is not reinitiated.
a = 0000 (Input data)

Cdmguter i‘ ' fPeripheral

At y + 1 @ Least significant bits @——— Address y
At y €—————— Most significant bits @————— Data

BAP and BTC are not used and chaining‘aetiVity is not reinitiated.
These transfers are terminated via the execution of a channel con-
trol (CCR a,8) instruction from the command cell.

NIM I/0 CHANNEL INSTRUCTIONS

The following I/0O chain instructions provide operations on a NIM I/0 channel
type. Any that are not included are legal but perform a no operation.

1) Channel Control (EQ 9m) (ACR m; CCR a,m) - The same as listed
under Processor to I/0 Channel Communication paragraph except for
the CCR instruction the a-field is not used and the associated I/0
channel is the one executing the I/0 channel program.

2) Initiate Transfer (E3 a 0) (IO a,y) - If the a-field is equal to
XX00, load control memory locations O(BCW) and 1(BAP) with the con-
tents of main memory addresses y and y + 1. If the a-field is not
equal to XX00, load control memory locations 4(BCW) and S5(BAP) with
the contents of main memory addresses y and y + 1, then perform the -
operation as specified by the a field as follows:

a Operation
0000 Initiate input data transfer using the BCW and BAP

in control memory locations 0 and 1.

14122000 10-39

0001 Initiate output data transfer using the BCW and BAP
in control memory locations 4 and 5.

0010 Initiate external function transfer using the BCW
and BAP in control memory locations 4 and 5.

0011 Initiate external function transfer with force using
the BCW and BAP in control memory locations 4 and 5.

01XX .
10XX ' No operation
11XX

The associated I/O channel is the one executing the I/0 chain pro-
gram.

3) Load Control Memory (E6 O m) (LCMK m,y) - The same as listed
under SIM I/0 Channel Instructions paragraph.

4) = Load Control Memory (E7 O m) (LCM m,y) - The same as listed under
SIM I/0 Channel‘Instructicns'paragraph.

5) Store Control Memory (EB om) (ScM m,y) - The same as listed
under SIM I70 Channel Instructlon paragraph.

6) Halt/Interrupt (EC a 0) (HCR IPR) <= - The same as 1lsted under DIM

- I/0 Channel Instructlon paragraph.

7) Set/Clear Flag -(EF a 0) (ZF y;: SF y) - The same as listed under
'SIM I/O Channel Instructions paragraph. ‘

8) Condltlonal Ju@p (F2 00) (SJMC 0,y) - The same as llsted under
' DIM 1/0 Channel Instructions paragraph. ~

9) Store Status (FB O'm)‘,(CSSTay;m)1- Store the channel status as
: - specified by thefm;field in main memory location y as follows:

m Status Word Value

0XXX Mode status word (Figures 10-20
and 10-21)

1XXX .~ Channel hardware status word O

(Figure 10-22)

10) Bit Jump (FD O m) (BJ m,y) - The same as listed under DIM I/O
Channel Instructions paragraph.

11) Exchange Control Memory (FE 0 m) (XCM m,y) - The same as listed
under DIM I/0 Channel Instructions paragraph.

10-40 14122000

Mode Register
Bits 3-0

15 8 7 6 5 4 TN

i N\ / \ /
. "
16-Bit Operation ‘ PRESENT
PERATING
Bit 7=1 MODE
| MODE CONTROL
32-Bit Operation Identification - WORD ENABLE
Bit 7 = 0 Identifies MSB
Bit 7 = 1 Identifies LSB ;
—-HARDWARE DEFAULT MODE.
Figure 10-20. 'NIM Parallel Mode Status Word
15 o 7T 6 5 4 3 2 1 0
\ /\ /
' \/ hﬁ#
Unused -

Hardware
Default Mode

Cwrrent
Operating Mode
From Bits 3-0

of MCW

Figure 10-21. NIM Serial Mode Status Word

14122000 10-41

15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 O
7 [1T 1 i I0.1.o,oJI C J
LOGICAL CHANNEL
NUMBER

NTDS PARALLEL CHANNEL TYPE = 0100
NTDS SERIAL CHANNEL TYPE = 0101

ICI PENDING

OCI PENDING

ERI PENDING

CHANNEL INPUT ACTIVE

CHANNEL OUTPUT ACTIVE

EIE

TEST CONDITION FOR CONDITIONALJUMP (N.A)

Figure 10-22. NIM Hardware Status Word O
NIM INTERRUPT HANDLING

The NIM I/0 channel types are capable of generatlng all four of the Class
ITI 1nterrupts ERI EII, ocI and ICI. :

A parallel NIM shall generate an ERI lnterrupt whenever time-out occurs on
an intercomputer operation. If the receiving computer fails to accept an
output word within the time-out limits (300 to 400 milliseconds), the trans-
mitting NIM will generate the ERI interrupt. A serial NIM shall generate an
ERI interrupt whenever the peripheral device or computer does not respond
within 20 microseconds. The serial NIM generates the ERI stops the data
transfer operation and does not reinitiate chaining activity. = The ERI
interrupt will remain active until recognized and processed by the compu-
ter. The interrupt software program will have to resolve the no response
condition. This interrupt cannot be masked at the channel level.

The NIM hardware shall generate an EII interrupt'any time the external
interrupts are enabled (EIE set) in response to receiving an interrupt word
from a peripheral device or a command word from another computer. A periph-
eral device or computer shall not attempt to send the NIM channel a word and
create the EII interrupt unless external interrupts are enabled.

The NIM hardware and processor firmware will perform the following events in

response to an ERI active and a command word when in computer-to-computer
mode or an interrupt word when in computer to peripheral mode.

10-=42 14122000

) Store the command interrupt word in memory (8016 plus channel),
most significant 16 bits even channel and least significant bits
odd channel when in the 32-bit mode.

° Acknowledge receipt of the word by activating IDA signal.

° Disable external interrupts, EIE signal drops.

° Hold interrupt pending at channel level and set bit 10 in hardware
status word 0 if Class III, priorities 2, 3, and 4 are disabled.

° Forward EII interrupt to processor if Class III, priorities 2, 3,

and 4 are enabled.
® Drop IDA signal when EIR drops.

The NIM I/0 channel types shall generate OCI and ICI interrupts under I/0
chain program control via the interrupt processor (operation code EC hexa-
decimal) instruction. If executed in an output chain program, an OCI is

generated, and if executed in an input chain program, an ICI is generated.

PROGRAMMING CONSIDERATIONS (16-BIT MODE)

To enable the NIM to handle an external interrupt word from a peripheral
device or a command word from another computer requires ‘the programmer to
enable external interrupts (EIE set) on the channel. This can be done with
a CCR a, 12 instruction via the command cell. The Class III priorities 2,
3, and 4 must also be enabled on the channel, or the EII interrupt is held
pending at the channel level. '

After the above conditions are met and the NIM is sent an interrupt or com- -
mand word, the word will be placed in memory, the EIE cleared on the chan-
nel, and the,EII interrupt generated. The NIM will no longer respond to
external interrupt or command words until the EIE is set again via software.

External Function Sequence

Function words (16 bit) are sent to the peripheral device. The BTC in BCW
determines the number of function words to be sent while BAP points to the
memory location of the first word. The sequence is initiated in a chain
program by execution of an IO a,y,m instruction with the a-field equal to
0010 or 0011. The sequence can be initiated from an input or output chain
program, and upon completion of the transfer operation, the output chain
activity is initiated. Also, regardless of which chain the transfer is
initiated from, the BCW in control memory location 4 and the BAP in control
memory location 5 are used during the transfer operation.

Once the sequence is initiated, chaining activity stops and the function
words from memory are sent until the BTC equals 0. If the a-field of the IO
instruction is 0011, a forced condition exists. If the a-field of the IO
instruction is 0010, function words from memory will be sent until BTC
equals 0, or the peripheral device is no longer ready to accept them. Ter-
mination because BTC equals 0 causes the output chain program to be initi-
ated. If the peripheral device goes not ready during a transfer operation
with an IO instruction a-field equal to 0010, the transfer stops and chain-
ing activity is not reinitiated. Software will not be notified by inter-
rupts or firmware.

14122000 10-43

Command Word Sequence

Command words (16 bits) are sent to another computer. The sequence is ini-
tiated in a chain program by execution of an IO a,y,m instruction with an
a-field equal to 0010. The sequence can be initiated from either an input
or output chain program, and upon completion, the output chain activity is
initiated. The BCW in control memory location 4 and the BAP in control mem-
ory location 5 are always used during the command word transfer operation.

Once the sequence is initiated, chaining activity stops and the command
words from memory are sent until BTC equals 0, or the receiving computer
fails to respond. Termination via the BTC equals O causes the output chain
activity to be started. Termination via no computer response causes the ERI
interrupt to be generated, and chaining activity is not initiated.

Data Transfer Sequence

Bytes or words are transferred through the NIM to or from a peripheral
device or another computer. The sequence is initiated from a chain program
by execution of an IO a,y,m instruction. An input data transfer always uses
BCW in control memory location O and BAP in control memory location 1, while
an output data transfer always uses. BCW in control ‘memory location Y4 and BAP
in control memory loecation 5. ‘This is true regardless of initiating the
data- transfer from the same chain (1nput transfer from an input chain) or
different chain (1nput transfer from an output chain). Upon correct comple-
tion of the data transfer se nce;, the assocxated chain activity is started
(output transfer,'output chaln, input transfer, lnput chain).

,Once the sequence is 1n1t1ated, chalnlng act1v1ty stops and the data trans—
fer takes place until BTC equals 0, and the: perlpheral device or the compu-
ter stops respondlng. If a perlpheral device stops responding during the-
;Qata transfer, the NIM stops and. walts.; No ‘interrupts are generated and
chaining is not started. The software will have to remove the NIM from this
state by initiating another operatlon.

If a computer fails to respond within 400 milliseconds efter*every word sent
during an output data sequence, the ERI interrupt. is generated.

PROGRAMMING CONSIDERATIONS (32-BIT MODE)

A parallel NIM channel in 32-bit mode is enabled to handle external inter-
rupt and command words the same as the 16-bit mode. That is, enable exter-
nal interrupts (EIE set) and enable Class III priorities 2, 3, and U4 on the
odd channel of the pair. The 32-bit external interrupt word or command word
will be stored with the most significant bits in memory at 80;¢ plus the
even channel number and the least significant bits in memory at 803¢ plus
the odd channel number.

The external function, command word, and data transfer sequences are initi-

ated the same and terminate the same, when BTC equals 0 or for an error con-
dition. The only difference is that the most significant bits are addressed
by BAP and the least significant bits are addressed by BAP(:)l.

10-44 14122000

PROGRAMMING CONSIDERATIONS (SERIAL CHANNEL)

In 16-bit mode all channel words are 16 bits in length. The TM field of the
BCW must be 10 (for word), and the BTC is set to the number of l6-bit words.

In 32-bit dual channel mode, all channel words are 32 bits in length. The
TM field of the BCW must be 11 (for double word), and the BTC is set to the
number of 32-bit words. The NIM serial channel must be physically located
in an odd-numbered slot, and the next physical even-numbered slot must be
left empty. The external interrupt words and command words are stored in
memory the same as for 32-bit mode (parallel NIM).

In 32-bit mode all data words are 32 bits. The TM field of the BCW must be
10 (for word), and the BTC is set to the number of 16-bit words. The serial
NIM will send 16-bit external functions (least significant bits) and command
words from memory at BAP, storing only the least significant bits of accept-
ed command and external interrupt words in memory at 8036 plus the channel
number. The difference between this mode and 32-bit mode does not matter.

The serial NIM handles external interrupts and command words identical to
the parallel NIM. If external interrupts are enabled (CCR a,12) and Class
IIT priorities 2, 3, and 4 are enabled (CCR a, 14), the external word (or
portion) is stored in memory, the EII interrupt is generated, and external
interrupts are disabled. ‘ k

External Function Sequence

Function words are sent to a peripheral device in much the same order as for
a parallel NIM. All the rules about sequence initiation, with or without
force and termination when the BTC equals 0 are the same. The sequence can
be initiated from either chain program, always uses control memory location
4 and control memory location 5 and will always start the output .chain upon
correct termination. o ' ‘ e .

Once initiated, if the peripheral device does not respond within 20 micro-
seconds, the NIM will,generate“the/ERI\inberrupt, and output chaining activ-
ity is not started. If the sequence is not an external function with force,
the NIM will wait until the peripheral device becomes ready before sending
the external function word. The NIM will not time out on a ready condition.

Command Word Segquence

The command word sequence functions the same as the external function word
sequence except that a command word sequence cannot be done to another com-
puter with force (a-field equal to 0011).

Data Transfer Seqguence

Single 16-bit words or double 32-bit words are transferred following all the
same sequence initiation, terminating when BTC equals 0, and using the same

control memory locations and chain program initiation rules. Most signifi-

cant bits of the 32-bit word correspond to BAP+l and least significant bits

correspond to BAP with least significant bits transmitted first and received
first.

14122000 : 10-45

The differences are with respect to the ERI interrupt. The serial NIM will
generate the ERI interrupt whenever the peripheral device or the computer
does not respond within 20 microseconds. If either device goes not ready,
it must continue to communicate with the computer while not ready.

RS-232-C INTERFACE MODULE

The RS-232-C interface module (RIM) has the following general characteris-
ties:

One full duplex channel

Asynehronous or synchronous

Programmable baud rate and parity selection
Programmable character length - 5,6,7 or 8 bits
Internal loop test and echo test capabilities
Programmable number of stop bits - 1 or 2 bits.

® 00 00 0

All of the clock and control signals as well as the data movement is con-
trolled by the RIM

DATA FORMATS

“Figure 10-23 shows the data:fOrmatsffbr both sync and async operation. For
sync operation, the number of bits and parity are selectable by software.
For async, the number of bits, parity, and stop bits are selectable by soft-
ware. The start bit is always a low and the stop bits are.always high. The
“number of data bits per character is selectable from S5 through 8. Parity
.can be either odd, even, or no parlty.

~MESSAGE FORMATS

A1l messages that the RIM handles consist of either an output data transfer
or an input data transfer. There are no special message formats for inter-
rupt. or function words. The meaning of the data sent or received is deter-
mined by the software. Some of the control communications on the channel
are handled by the RIM hardware and firmware where others are the responsi-
bility of the programmer.

CONTROL MEMORY DEFINITION

Control memory format and usage for the RIM I/0 channel type is shown in
Figure 10-24. Control memory locations 0, 1, and 2 are associated with
input activity and control memory locations 4, 5, and 6 are associated with
output activity. '

Control memory locations 0 and U4 are termed the buffer control word (BCW)
(Figure 10-25) and define the word count, transfer mode (TM), and the byte
pointer for I/0 information activity.

Bits 15 and 14 are termed the transfer mode (TM) and are either 01
(byte transfer) or 10 (word transfer). In word transfer mode, one
byte (bits 7 through 0) of each memory location is used.

Bit 13 is not used.

10-46 14122000

1

2

3

4

—-—y -

5,6 7. 8

t First Bit Transmitted (LSB)

fr‘

SYNCHRONOUS FOR:

One data character

14122000

N\ 74

Start Bit

Stop Bits

Parity Bit

Data Bits (Bit 1 = LSB

Figure 10-23.

One data character ’J

ASYNCHRONOUS FORMAT

RIM Sync/Async Data Formats

1047

10-48

Mo D QO W > © 0 N e o s W o M o

r—I/O CONTROL MEMORY LOCATION

BUFFER CONTROL WORD (BCW)

BUFFER ADDRESS POINTER (BAP)

CHAIN ADDRESS POINTER (CAP)

BUFFER CONTROL WORD (BCW)

BUFFER ADDRESS POINTER (BAP)

CHAIN .ADDRESS POINTER (CAP)

} OUTPUT

MONITOR WORD REGISTER (MWR)

SUPPRESS WORD REGISTER (SWR)

SERIAL MODE INFORMATION (SMI)

HAR)WARE USAGE—DATA BUFFER REGISTER

Flgure 10-24. RIM,Control Memory Map

} INPUT

15 14

13/12/11 10 9 8 7 6 5 4 3 2

1 0

TM

B BUFFER TRANSFER COUNT

Figure 10-25. RIM BCW Format

14122000

Bit 12 is termed the byte pointer and speclfies which half word
(upper or lower) of the memory location will be used for the next
transfer as follows:

0 = transfer upper byte (bits 15 through 9)

1 = transfer lower byte (bits 7 through 0)

This bit is toggled after each byte transfer and is interpreted
only during byte transfer.

Bits 11 through 0 are termed the buffer transfer count (BTC) and
specify the number of bytes to be transferred during the selected
operation. The contents of the BTC are decremented by one for each
transfer.

Control memory location 8 is termed the monitor word register (MWR) and
holds a character in the least significant bits that are compared by the RIM
‘hardware with each incoming character, when enabled. If they compare, the
character is stored in main memory, the monitor flag is set, the input
transfer is termlnated, and the input chaxnrng activity is reinitiated.

Control memory location 9 is ‘termed the suppress word register (SWR) and -
holds a character in the least signlflcant bits that are compared by the RIM-
hardware with each incoming ‘character, when enabled. If they compare, the
suppress flag is set, and the character is not stored in main memory .

The monitor and suppress flags are in the RIM hardware and are testable via
the chain conditional jump instruction. They are cleared upon input of the
next character. :

Control memory location A is termed the serial mode information (SMI)
(Figure 10-26) and is used to select all the features of the data characters
and baud rates. :

Bits 15 through 11 are not used.

Bits 10 through 7 are termed the AN/AYK-14 asynchronous clock speed
selection bits (see Table 10-1) and are used to select the baud
rate.

Bits 6 and 5 are termed the AN/UYK-20 mode asynchronous clock speed
selection bits (see Table 10-1) and are used to select one of the
four speeds already selected by jumper wires on the I/0 connector.

Bits 6 and § 00 = lowest speed of the four '

Bits 6 and 5 11 = highest speed of the four

Bit 4 is used to select one stop bit or two stop bits.

Bit 3 is Lsed to enable or disable parity checking and generation.
Bit 2 is used to select odd/even parity.

Bits 1 and 0 are used to specify 5-, 6-, 7-, or 8~bit characters.

14122000 10-49

11110 716 sTaf312]1 0]

- emssne—— " — Nt c—

00 = 5-BIT CHARACTER
| 01 = 6-BIT CHARACTER
10 - 7-BIT CHARACTER
{ 11 > 8-BIT CHARACTER

~0-SELECT ODD PARITY
1 - SELECT EVEN PARITY

0— DISABLE PARITY CHECKING

1 - ENABLE PARITY CHECKING

0->ONE STOPBIT | , ' RN
1 5 TWO STOP BIT } ASYNCHRONOUS MODE
ASYNCHRONOUS CLOCK SPEED
SELECTION 00— LOWEST SPEED, UYK-20 MODE
11 > HIGHEST SPEED (Table 10-1)

ASYNCHRONOUS CLOCK SPEED SELECTION } AYK-14 MODE (Table 10-1)

UNASSIGNED

Figure 10-26. SMI Word Format

10-50 | : 14122000

14122000

TABLE 10-1. RIM CHANNEL SPEED SELECTION

AYK-14 PROGRAMMABLE BAUD RATE

SERIAL MODE BITS
109 8 7 BAUD RATE
0000 -
0001 -
0010 50
0011 75
0100 134.5
0101 200
0110 600
0111 2400
1000 9600
1001 4800
1010 1800
1011 1200
1100 2400
1101 300
1110 150
1111

UYK-20
AVAILABLE BAUD RATES

75
110
150
300
600

1200
1800
2400
4300
9600

110

10-51

RIM I/0 CHANNEL INSTRUCTIONS

The following I1/0 chain instructions provide operations on a RIM I/0 channel

type.
1)

2)

3)

4)

5)

6)

7)

10-52

Any that are not included are legal but perform a no operation.

Channel Control (EQO a m) (ACR m; CCR a,m) - The same as listed
under Processor to I/0 Channel Communication paragraph except for
CCR instructions the a-field is not used, and the associated I/0
channel is the one executing the I/0 channel program.

Initiate Transfer (E3 a 0) (IO a,y) - If the a-field is equal to
XX00, load control memory locations 0 (BWC) and 1 (BAP) with the
contents of main memory addresses y and y + 1, then initiate input
word transfer using control memory location 0 (BWC) as buffer word
count. If the a-field is equal to XX0l1l, load control memory loca-
tions 4 (BWC) and 5 (BAP) with the contents of main memory address-
esyand y + 1, then initiate output word transfer using control
memory location 4 (BWC) as buffer word count. The associated I/0
channel is the one executing the I/0 chain program.

Load Control Memory (E6 0 m) (LCMK m,y) - Load the control memory
location specified by the m-field with the value y.

Load Control Memory (E7 O m) (LCM m,y) - Load the control memory
location specified by the m-field with the contents of main memory
address y. The associated I/0 channel is the one executing the I/0
chain program.

Store Control Memory (EB O m) (SCM m,y) - Store the contents of
the memory location specified by the m-field at main memory address
y. The a-field is not used, and the associated I/0 channel is the
one executing the I/0 chain program. '

Halt /Interrupt (EC a 0) (HCR; IPR) - Perform the operation speci-
fied by the a-field as follows:

a Operation
XXXo Halt I/0 chaining activity
XXxi Generate Class III, priority 4, ICI interrupt if

input chain active or Class III, priority 3, OCI
interrupt if output chain active.

The m-field is not used.

Set/Clear Flag (EF a 0) (ZF y; SF y) - The same as listed under
SIM I/0 Channel Instructions paragraph.

14122000

8)

9)

14122000

Conditional Jump (F2 a 0)

(SJMC a,y) ~ This instruction causes a

jump to y if one of the following a-field conditions is met:

a

XX00
XX01
XX10

Operation

Unconditional jump

Jump if suppress flag not set
Jump if monitor flag set

The suppress or monitor flag is cleared upon input of the next

character.

Search for Sync (F4 0 m)

(SFSC m) - This instruction conditions

the next activated input buffer to perform operations as specified
by the m-field as follows:

m

0000

0001

6010

0011

0100

0lol

0110

0111

1001

1011

Interface

Synchronous

Synchronous
Asynchronous
Synchronous
Asynchronous
Synchrono&s

Asynchronous

Synchronous

Synchronous

Synchronous

Operation

Disable search for sync, dis-
able monitor mask, disable sup-
press mask, and enable next
chain instruction.

Hold sync active and enable
next chain instruction.

Enable suppress mask and enable
next chain instruction.

Enable suppress mask and enable
next chain instruction.

Enable monitor mask and enable
next chain instruction.

Enable monitor mask and enable
next chain instruection.

Enable monitor mask, enable
suppress mask, and enable next
chain instruction.

Enable monitor mask, enable
suppress mask, and enable next
chain instruction.

Enable search for sync and dis-
able chaining.

Enable search for sync, enable

suppress mask, and disable
chaining.

The a-field is not used, and the associated I/0 channel is the one

executing the I/0 chain program.

10-53

~ 10)

ll)

NOTE:

When operating in multiple I/0 configurations
(e.g. three SIMs and one RIM), the second SYNC
word may be lost.

Serial Interface Control (F8 O m) (CSIR m) - Set or clear the dis-
cretes as specified by the m-field. The a-field is not used, and
the associated I/0 channel is the one executing the I/0 chain pro-
gram.

m Funetion - Diserete

Set ' Loop test (internal)
Clear Loop test (internal)
Not Used
Clear Enable ring indicator (internal)

Enable ring indicator (1nternal)
Request to send

Request to send

New sync -

New syne

Data terminal ready

Data terminal ready

Loop test (external)

Loop. test (external)

Set.

y,m) - Store the channel status as
‘memory address y. The a-field is

'netkused and the asseciated I/O channel is the one executlng the

1/0 chain pregram.;

B | o Status Word Value
1XXX ‘Hardware status word 0 (Figure 10-27)
- OXXX Hardware status word 1 (Figure 10-28)

RIM INTERRUPT HANDLING

The RIM I/O channel type is capable of generating the EII, OCI, and ICI
Class III interrupts. ;

The RIM hardware shall generate an EII interrupt when:

1)

10-54

The received signal line detector signal goes off. The data commu-
nication equipment will turn off this signal when it is receiving a
poor quality incoming signal from the other communication equipment.

The ring indicator signal goes on and the ring indicator has been
enabled via an CSIR instruction with an m-field equal to 0lll.

14122000

15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 o

L [[Tol T T ToliTiTol T T T 1
LOGICAL CHANNEL
NUMBER

RS-232-C 1/0 CHANNEL TYPE CODE

{ICI PENDING

. LoCt PENDING

|El1 PENDING

ERI PENDING (N/A)

CHANNEL INPUT ACTIVE

CHANNEL OUTPUT ACTIVE

{EIE

TEST CONDITION FOR CONDITIONAL JUMP

L]

Figure 10-27. Hardware Status Word 0 Format

1S : ~ 4 3 2 1 0
Lllfl!llll]lllllj
b 2.3
PARITY ERROR
E 23
OVERRUN
*
[BREAK
*
CLEAR TO SEND

* Reset by master clear
**Reset by inputting data

Figure 10-28. Hardware Status Word 1 Format

14122000

When either of these conditions occur during an input transfer where exter-
nal interrupts on the RIM have been enabled (EIE set) and Class III, prior-
ity 2, 3, 4 enabled, the RIM interrupt word (Figure 10-29) is stored in mem-
ory at 8014 plus the channel number, the EII interrupt is generated and
forwarded to the processor, and the input chaining activity is not reiniti-
ated. 1If either of the enables are not enabled, the interrupt word is not
stored and the EII interrupt is held pending at the channel level.

IS 94 13 12 11 10 9 8 7 6 S5 4 3 2 1 0
1 e bl b tefe et b jr ol

[1 [
= RING INDICATOR ON

= RECEIVED LINE SIGNAL DETECTOR OFF

Flgure 10= 29 RIM‘Interrupc Word Format

The RIM I/0 channel type: shall generate OCI and: ICI lnberrupts under I/0
chain program control via the halt/interrupt (eperatlon code EC hexadecimal)
instruction. If exeecuted in an output chain program, an OCI is generated,
and if executed in, an input cnaln program an ICT is generated.

PRGGRAMM&NGeCONS&DEQATEONS;(AS&NG)

The RIM will not generate an EII interrupt during an output -data transfer.
The activation of the control signals is a software function (Figure 10-30).
This can be done either from the command cell with an CSIR lnstructlon or in
a chain program with the CSIR instruction.

Clear to send signal from the communications equipment appears in hardware
status word 1. Once it has been determined, via the program clear to send
signal being active, initiate the output data transfer with an IO a,y,m
instruction a-field equal to XX0l. Chaining activity stops and the RIM
hardware and processor firmware output the correct number of bytes. When
BTC equals 0, the output chaining activity is reinitiated.

An output data transfer can be initiated from either an input or output
chain program. Control memory locations U4 and 5 are used during the data
transfer and upon termination of the transfer, the output chain activity is
started in either case. If there is concern about the clear to send signal
dropping during the data transfer, check it after the transfer before the
chain program starts.

An input data transfer is programmed as shown in Figure 10-31. If the sup-
press and monitor features are to be used they must be loaded and enabled.

Initiate the transfer with an IO a,y,m instruction a-field equal to XX0O.
The chaining activity is stopped, and the input data transfer is started.

10-56 14122000

14122000

Load CM6
(CAP) and start

output chain
via OCK

:

CD

CA

Load CMA serial
mode information
Set up character
length, parity,

stop bits and baud

rate

Activate
data terminal
ready to device
via CSIR
m = 1101

‘

Activate
request to send
to device via
CSIR

Test status word 1,

m = 1001

Clear

-

Initiate the data
transfer and load
CM4 (BCW) and
CM5 (BAP) with
an IO a,y,m inst

'

Output chain
activity stops

Y

Transmit chara-

| cter, reduce | BA
BTC and adjust !data
BAP

No

from device ?

bit 3

Figure 10-30.

Terminate output
| transfer and
reinitiate chain

RIM Async Output Data Transfer

10-57

Receive line signal detector

Load CM2
(CAP) and start
input chain via

ICK

with ‘mounitor ' Receive
character character

v : T
Load CMY : | -
with suppress. K error, set
character : - bitin status

. ‘ d s ‘word ome.

Enable suppress
- and ‘monitor via
m = 0110

serial mode | | | suppress flag |

Store interrupt
'word in memory
and genmerate EN

acuve and
enabled

Discard
character and set
__suppress flag

w¥ b B Sinee akamaaer
Acti‘" . ' |reduce BTC and
ctival : 1djust BAP
data terminal o At BAD
ready ‘via' CSER :
m = 1101

Enable the input
transfer and load:
(BCW) and (BAP)
via IO instruction

Imput chain
activity stops

| —

Set
monitor
flag

4

Stop data
transfer and
reinitiate chain

Figure 10-31. RIM Asynec Input Data Transfer

14122000

If during the transfer the receive line signal detector signal goes off, the
data transfer stops, and the EII interrupt is generated based on the enable
conditions.

If the monitor and/or suppress features are enabled, the RIM hardware will
perform the appropriate functions on the incoming data. Normal input data
transfer termination occurs when BTC is equal to O. The input data transfer
can be initiated from either an input or output chain program. Control mem-
ory locations 0 and 1 are used, and upon termination, the input chain active-
ity is started.

The RIM will respond to the ring indicator going active, store the interrupt
word in memory, and generate the EII interrupt if enabled via the proper CCR
instruction.

PROGRAMMING CONSIDERATIONS (SYNC)

In synchronous mode the baud rate is determined by the device connected to
the RIM; therefore, the serial mode information word in control memory loca-
tion A only uses bits 0 and 1 to select character size and bit 3 to disable
parity. Control memory location usage is the same as for asynchronous. The
hardware status words are the same also. 1In hardware status word 1, the
only meaningful bit is the overrun bit. '

The EII interrupt will be generated for the same reasons following the state
of enables as described in the Interrupt paragraph. ,

The CSIR instruction, with m-field equal to 1010 or 1011, is used to set or
clear the new sync control signal to the communications equipment and is
used as the system dictates.

The SFSC instruction is used to place the RIM in synec with the communica-
tions equipment and enable the suppress and monitor functions during the
input data transfer. ‘

Input Data Transfer

Once the interrupts are enabled and the serial information word is set up in
control memory, load the suppress register with the character to be compared
with the incoming data by the RIM hardware for a sync condition. The char-
acter is placed in the suppress register right justified with the unused
bits and the parity bit set to 1l's. Next, load the monitor register with
the character used to terminate on for the input data transfer, unused bits
must be 1's. To place the RIM in sync with the communications equipment,
execute a SFSC instruction with the m-field equal to 1001. The chaining
activity stops, and the RIM hardware compares the incoming data with the
character in the suppress register. When the RIM hardware detects a match,
the chaining activity i started again. Two successive matches must occur to
ensure that it is in syne. The RIM hardware is still doing the comparison
and controlling the suppress flag. Testing the suppress flag must be
included in the chain program. If the second match does not occur, the sup-
press flag will not be set, and the SJMC instruction will be executed to
Jump back to the SFSC instruction and start the search for sync again. If
the second match did occur, the suppress flag is set, and the SJMC instruc-
tion will continue on to the next chain instruction.

14122000 10-59

At this point, enable the suppress and monitor registers to be used as in an
async operation during the input data transfer with an SFSC instruction
m-field equal to 0lll. Initiate the input transfer with an IO a,y,m in-
struetion a-field equal to XX00. The input data transfer will now operate
the same as an async (Figure 10-31) and terminate under the same conditions.

Load the serial information word into control memery location A to select
the number of bits in the character. Load control memery locations 4 and §
and initiate the output data transfer with an IO a,y,m instruction a-field
equal to XX0l. This stops the chaining aectivity and starts the data trans-
fer. The data transfer will terminate and output chain activity will start
when BTC equals 0. The first two charaecters of the output buffer data are
the syne characters. :

Wraparound Mode

The RIM I1/0 channel type has a built-in control logic wraparound mode of
testing. The transmitters and receivers are not tested when this function
is executed. The wraparound mode (internal loop test) is enabled and dis-
~abled via the SICR instruetion.

PROTEUS INTERFACE MODULE
The PROTEUS interfacefmedUIe (PIM),nasfthe;fb116wing general characteristiecs.

Accommodates two PROTEUS digital channels (PDC)

Input and output chaln programs can operate 51mu1taneously allowing
full duplex operation

Provides clocked dlfferentlal nonreturn-to-zero (NRZ) encoded data
Serial data<transfer rate of 125K words/second

Provides channel error correction capability

Provides channel failure indications

- The PDC that is defined as the source transmits control frames, data in-
formation, and a sampling clock to the external sink and receives control
frames and sample clock baeck.

The PDC that is defined as the sink receives control frames, sample clock
and data information from an external source and transmits control frames
and sample clock back.

CHANNEL FORMATS

All communication on a PIM type channel is via two formats: control frames
and data words.

The control frame (Figure 10-32) contains a length bit, a 4-bit identifier,
and an odd parity bit. Parity does not ineclude the length bit which is al-

ways a one for control frames. The control frame identifier binary codes
have a different meaning dependent upon whether sent by a source or sink PDC.

10-60 | 14122000

14122000

Control Frame

Odd Identifier Length
Parity Bits Bit
Bit
P |mMsB LSB{ 1
Transmission 6 5 4 3 2 1

Order

Figure 10-32. PIM Control Frame Format

10-61

1)

- 2)

3)

)

5)

10-62

Sequence Initialization and Control - The following control frames
are used to start a sequence or control the data movement.

Binary Code Source to Sink Sink to Source
1110 System reset and load (SRL) SRL acknowledge
(SRLA)
1111 Channel reset (CRS) CRS acknowledge
(CRsA)
0000 Control interrupt word avail Request control
able (CIWA) 4 interrupt word
' (RCIW)
0001 Normal interrupt word avail- Request normal
able (NIWA) interrupt word
(RNIW)
0610 Control word available (CWA) Request control
' word (RCW)
0011 Data werd_évailable (DWA) Request data word
L (RDW)

Synehronization - This control frame is used in word sequences as a

means to delay a word transfer and still malntaln proper transmls-
sion interval rates. .

Binary Code Souree to Sink =~ Sink to Source
0101 B WAIT ~ Repeat, sink busy (RSB)

Com_letLon - Thls control frame is used to terminate word sequences
in a normal manner. '

Seurce to Sink Sink to Source

Binary Code
0110 STOP ENDS

Error R&covery - This control frame is used in any sequence to
allow the channel to retransmit a reception.

Binary Code Source to Sink Sink to Source
0100 Repeat, error detected (RED) Repeat, error

detected (RED)

Sequence Violation - This control frame is used to notify a source
or sink of a sequence violation which will terminate the active se-

quence. Sequence violations are defined as follows:

a) Three successive REDs or error receptions.

14122000

b) An illegal time-out, no response within 3.2 microseconds of a
transmission.

c) An illegal sequence reception which uses a control frame in a
sequence that does not follow the proper channel protocol.

d) An illegal sink initialization in which the sink detects a con-
trol frame for a sequence which is not impelmented in the sink.

Binary Code Source to Sink Sink to Source
0111 Sequence error (SEQE) Sequence error (SEQE)

All other control frame binary codes are undefined and will be detected as
sequence errors. :

The data word, Figure 10-33, contains a length bit, 32 data bits, and an odd
parity bit. Parity does not include the length bit which is always a zero
for data words.

CHANNEL SEQUENCES

PIM channel communication is divided into three different sequences. Each
sequence is a series of control frames and/or data words sent and received
in a well-defined yet flexible protocol. All sequences start with a -
source-to-sink control frame that defines the type of sequence. The sink
responds with an acknowledge control frame. The source and sink communica-
tion during the sequence continues on an alternating basis in half duplex
until the sequence completes with the sxnk sending the final control frame.

The three types of sequences are as follows:

1) Immediate Sequence - This sequence consists of one control frame
sent by the source and an acknowledge control frame sent by the
sink. Two immediate sequences exist, one is an SRL back from the
source and an SRLA back from the sink, and the second is a CRS back
from the source and a CRSA back from the sink. An immediate se-
quence is used to inform the sink to take immediate action as de-
fined by the control frame. A sink must respond to an immediate
control frame anytime it is active regardless of its state with
respect to input chain aectivity.

2) Word Sequences - This sequence consists of control frames and from
1 to 2048 32-bit words sent from source to sink. The purpose of
the word sequences is to present a number of words to the sink
which the sink shall buffer. There are two word sequences, one is
control word and the second is data word.

3) Interrupt Word Sequences - This sequence consists of the proper
control frames and one 32~bit interrupt word sent from the source
to the sink. The purpose of an interrupt word sequence is to pre-
sent a word to the sink which it must interrupt immediately upon
completion of the sequence. The two interrupt word sequences are:
first, a control interrupt word consisting of CIWA from the source,

14122000 10-63

COdd - - ' | , Length

Parity 32 Information Bits Bit:
Bit ,
MsB|] ; Lsa| o
Trans 34 33 32 31 30 29 6 5 4 3 2 1
Order
Data Word

Figure 10-33. PIM Data Word Format

10-64 14122000

RCIW from the sink, CIW from the source, and ENDS from the sink;

second, a normal interrupt word consisting of NIWA from the source,

RNIW from the sink, NIW from the source, and ENDS from the sink.
CONTROL MEMORY DEFINITION

Control memory format and usage for the PIM I/0 channel type is shown in
Figure 10-34. Control memory locations 0, 1, and 2 are associated with the
sink. Control memory locations 4, 5, and 6 are associated with the source.

Control memory locations 0 and 4 are termed the buffer control words (BCW).

They have the same format as for the other channel types. Bits 15 and 14
are the transfer mode (TM) and must be 10 (word transfer) on the PIM channel
type. Bits 11 through 0 are the buffer transfer count (BTC), the number of
16-bit words to be transferred, and is decremented by one for each 16-bit
word transfer even though the words on the channel are 32-bits. For proper
operation, the BTC must be set to an even number.

Control memory location 8 is termed the sink mode control word (Fig-
ure 10-35) and for normal sink operations it is all 0's.

Bit 7 enables internal wraparound between source and sink allowing for test-
ing of the PIM when set.

Bit 6 disables sink transmitters when set.

Bit 5 generates sink parity error when set.

Bit 4 generates sink length error when set.

Bit 3 through 0 are not used.

Control memory location 9 is termed the source mode control word (Fig-
ure 10-36), and for normal source operations, bits 3 through O are used,
bits 6 through 4 are zero's.

Bits 15 through 7. are not used.

Bit 6 disablesVséurce.transmitterts when set.

Bit 5 generates source parity error when set.

Bit U4 generates source length error when set.

Bits 3 through 0 are termed the source sequence control frame and are used
to select the sequence to be activated by the source as follows:

Bits ' Source-to-Sink
3 0 Transmission Sequence
0000 Control interrupt word available
(CIWAa)
Interrupt word
0001 Normal interrupt word available
(NIWA)

14122000 10-65

r— I/O CONTROL MEMORY LOCATION |

 BUFFER ADDRESS POINTER (BAP) > INPUT
CHAIN ADDRESS POINTER (CAP) |

BUFFER CONTROL WORD (BCW) |
BUFFER ADDRESS POINTER (BAP) | » OUTPUT

s1 MODE CONTROL WORD
SOURCE MODE CONTROL WORD

/////////////////
LSS]
VLI /

/
/////////////////////

H B U Q@ » © © 49 oo o b @ M~ ©-

Figure 10-34. PIM Control Memory Map

10-66 14122000

|\15]14[1311:[11]10[9]U7]6[514]3]:i1[0]

UNUSED :] UNUSED

GENERATE SINK LENGTH ERROR

GENERATE SINK PARITY ERROR

.| DISABLE SINK TRANSMITTERS

ENABLE LOOP TEST

Figure 10-35. PIM Sink Mode Control Word E';or'mat

ER TR RERNER i} 10] 9 st 7’1 6 [_5 [4] 312 I,'y‘l’»‘,]",QJ]

UNUSED | | SOURCE SEQUENCE
. | CONTROL FRAME

GENERATE SOURCE LENGTH ERROR

GENERATE SOURCE PARITY ERROR

DISABLE SOURCE TRANSMITTERS

Figure 10-36. PIM Source Mode Control Word Format

14122000

Bits Source-to-Sink

3 0 Transmission Sequence
‘ 3
0010 Control word available (CWA)
: > Word
0011 Data word available (DWA&)
-
1110 System reset and load (SRL) h
> Immediate
1111 Channel reset (CRS)

PIM I/O CHANNEL INSTRUCTIONS

The following I/0 chain instructions provide operations on a PIM I/0 channel

type.

1

2)

3)

4)

Any that are not inecluded are legal but perform a no operation.

Channel Control (EO a m) (ACR m; CCR a,m) - The same as listed un-
der Processor to I/0 Channel Communication paragraph except that
the a-field is not used in CCR instructions in a chain program, and
the associated I/0 channel is the one executing the I/O chain pro-
gram. : :

Initiate Message (Ezaa;m), (IM a,y,m) - Load the control memory
location specified by the m<field with the value y, and perform the
operation as specified by the a field as follows:

Operation

a = XX00 Enable input word transfer (sink)
a = XX00 Initiate output word transfer (source)

The assoeiated'I/O*ehannel féythe one executing the I/0 chain
program. ' , '

Initiate Transfer (E3 a 0) (IO a,y) - Load control memory loca-
tions 0 and 1 (a-field equal to XX00) or 4 and 5 (a-field not equal
to XX00) with the contents of main memory address y and y + 1, then.
perform the operation specified by the a field as follows:

Operation

'XX00 Enable input word transfer
XX00 Initiate output word transfer

a
a

The associated I/0 channel is the one executing the I/0 chain
program. ~

Load Control Memory (E6 O m) (LCMK m,y) - Load the control memory
location specified by the m-field with the value y. The a-field is
not used, and the associated I/0C channel is the one executing the
I1/0 channel program.

14122000

5)

6)

7)

8)

9)

10)

11)

14122000

Load Control Memory (E7 0 m) (LCM m,y) - Load the control memory

location specified by the m-field with the contents at main memory
y. The a-field is not used, and the associated I/0 channel is the
one executing the I/0 channel program.

Store Control Memory (EB 0 m) (SCM m,y) - Store the contents of
the control memory location specified by the m-field at main memory
address y. The a-field is not used, and the associated I/0 channel
is the one executing the I/0 channel program.

Halt/Interrupt (EC a 0) (HCR; IPR) - The same as listed under DIM

I/0 Channel Instructions paragraph.

Set/Clear Flag (EF a 0) (2ZF y; SF y) - The same as listed under

SIM I/0 Channel Instructions paragraph.

- Conditional Jump (F2- a 0) (SJMCa,y) - Load control memory loca-

tion 2 (if input chain) or control memory location 6 (if output
chain) with the contents of ¥, if bit 15 of status word 0 is set.
The a-field selects the test condition which drives bit 15 as
follows:

a Operation
XX00 ' Unconditional jump _
XXxo1 Jump if the sink BTC,is not equal to 0
after an input transfer.
XX10 Jump if the input transfer is not complete
XX11 Jump if the source receives an ENDS before its output

buffer is empty.

The associated I/0 channel is the one executing the I/0 chain
program. :

Bit Jump (FD O m) (BJ m,y) ~ This is a conditional jump instruc-
tion. If the bit in control memory location 3 specified by the
m-field is a logic 1, then the value y is loaded into control mem-
ory location 2 for input chain or control location 6 if output
chain. If the bit is a loegic 0, the next I/O chain instruction in
sequence is executed.

Exchange Control Memory (FE O m) (XCM m,y) - Store the contents of

control memory location specified by the m-field in main memory
location y. Then load the control memory location specified by the
m-field with the contents of main memory location y®1.

NOTE:

This becomes a branch or jump instruction if the m-field equals

2 or 6. The old contents of control memory location 2 or 6 is
saved so that a return is possible when the entered routine is

exited.

10-69

12) Set/Clear Discretes (F8 0 m) (CSIR m) - Initiate a sink or a
source activity as specified by the m-field as follows:

m Operation

XX00 Halt sink

-XXOI Halt seurce

po.aks} Initiate SRL or CRS (source only)
XX11 Cleér interrupt halt (sink only)

The a-field is not used and the associated I/0 channel is the one
executing the I/0 chain program.

13) Status (FB O m) CSST y,m) - Store the channel status as
ied by the m-field in main memery location y as follows:
m ' Status Word Value
X000 ' Hardware status word 0 (Figure 10-37)
X001 Har@waré s¢ahus~word l’(Fignre‘iO-38)
X010 Hardware Statﬁstord 2 (Fighre:10-39)
X100 Interrupt word (MS 16 bits)
X101 ~ Interrupt word (LS 16 b:iats:)'

The a-field is not used and‘thefasseeiabed.l/ﬁ channel is the one
executing the I/0 chain program.

PIM INTERRUPT HANDLING

The PIM 1/0 channel type is capable of generating the ERI, EII, OCI, and ICI
Class III interrupts.

The PIM hardware shall generate an ERI interrupt whenever the source or sink
detects a sequence error during a sequence or receives a SEQE control

frame. = The PIM hardware status word 2 (Figure 10-39) will indicate the type
of error that caused the interrupt.

If the ERI interrupt is locked at the processor by SR1l, bit 11 of hardware
status word 0 is set and will not be cleared until the interrupt is pro-
cessed.

The PIM hardware shall generate an EII interrupt provided external inter-
rupts are enabled and Class III, priorities 2, 3, and U are enabled for the

channel when the sink receives either a CRS or SRL immediate sequence con-
trol frame. Bit 12 or 13 of status word 1 will be set and the word stored
in memory if the EII was generated.

10-70 : 14122000

| LoGICAL CHANNEL
NUMBER

PROTEUS CHANNEL TYPE CODE

| ICI PENDING

Loc1 peNDING

| EH PENDING

ERI PENDING

CHANNEL INPUT ACTIVE

| CHANNEL OUTPUT ACTIVE

| EIE

TEST CONDITION FOR CONDITIONAL JUMP

Figure 10-37. PIM Channel Hardware Status Word 0 Format

14122000 10-71

15 14 13 12 11 16 9 8 7 6 5 4 3 2 1 0

SOURCE SEQUENCE |
CONTROL FRAME ACTIVE

UNASSIGNED

UNASSIGNED

SOURCE STATE:01

| SOURCE STATE:00

SINK SEQUENCE CONTROL FRAME ACTIVE

 CRS ACTIVE

SRL ACTIVE

SINK STATE:01

SINK STATE:00.

Figure 10-38. PIM Channel Hardware Statﬁs Word 1 Format

10-72 14122000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L1 1 [I 1 1 [T T T T T T T

SEQUENCE ERROR
RECEPTION (FROM
SINK)

.SOURCE ILLEGAL
SOURCE DETECTED 3 SUCCES-

SIVE ERRORS OR RECEIVED
3 REDS

SOURCE ILLEGAL
FRAME RECEPTION

| UNASSIGNED

SOURCE SEQUENCE ERROR

SEQUENCE ERROR RECEPTION (FROM SOURCE)

SINK ILLEGAL TIME-QUT

SINK DETECTED 3 SUCCESSIVE ERRORS OR RECEIVED 3 REDS
SINK ILLEGAL FRAME RECEPTION

SINK ILLEGAL INITIALIZATION

| UNASSIGNED

| UNASSIGNED

SINK SEQUENCE ERROR

Figure 10-39. PIM Channel Hardware Status Word 2 Format

14122000 10-73

The PIM hardware shall respond to an immediate sequence control frame and
set the correct bit in status word 1 even when the EII interrupt is dis-
abled. When the enabling conditions are enabled, status word 1 is stored in
memory, and the EII interrupt is generated.

When the PIM sink receives either interrupt word sequence control frame
(CIWA or NIWA) and external interrupts are enabled, it places the control
frame received in status word 1, accepts the 32-bit interrupt word, and
responds to the source. If Class III, priorities 2, 3, and 4 are disabled
the sink sets EII pending bit in hardware status word 0 and holds the inter-
rupt pending at the channel level. If Class III, priorities 2, 3, 4 are
enabled the hardware status word 1 is stored in main memory, the EII inter-
rupt is generated, and the input chain aetivity, if aetive, is stopped. '

The interrupt handling firmware disables the external interrupts on the
channel. This way the sink cannot generate another EII interrupt until
allowed to do so by the software.

The'PIMﬁsnail‘generate an OCI interrupt when'an IPR instruction is executed’
in the output chain program.

The PIM shall generate an ICI interrupt when an IPR instruction is executed
in the input chain program. ‘

AS

PROGRAMMING CONSIDERATIONS

The PIM;I/O channel type allows an input chain and an output chain to oper-
ate'simuitane®usly,and'inéepandently,of“eaeh~other. '

Source sequences:

ate. Sequence - Bits 3 ‘through 0 of the source mode control
in the control memory location 9 are loaded with the immediate
sequence control frame. Execution of set/clear discretes (CSIR)
instruction in the output chain with the m-field equal to XX10
(binary) initiates the sequence and stops chaining activity. The
sequence will terminate when,thelsource receives a sink response
(SﬁLAfor'CRSA), and the output chain activity will continue. A
Sequence or protoecol violation will set ERI, status word 2 will
contain the type of violation, and the output chain activity will
not be reinitiated.

1)

Word Sequence - Bits 3 through 0 of the source mode control word in
control memory location 9 are loaded with the current control
frame. Execution of initiate transfer (IO) instruction in the out-
put chain program with the m-field not equal to XX00 initiates the
Sequence and stops the chain activity. If a control or normal
interrupt sequence is initiated, one 32-bit word will be transmit-
ted to the external sink and the sequence terminates as follows:

2)

a) A normal termination will occur if the sink responds to the
32-bit interrupt word with ENDS. Output chain activity is
reinitiated.

10-74 14122000

b) An abnormal termination will occur if a protocol or data error
oceurs, status word 2 will indicate the error, ERI will be gen-
erated, and output chain activity is not reinitiated.

If a control or data word sequence is initiated, 32-bit words will be trans-
mitted to the external sink until one of the following terminations occur:

a) A normal termination will occur if the buffer transfer count
was zero when an ENDS was received from the external sink.
This would indicate equal word counts in the source and sink
controllers. :

b) A normal termination will occur if the buffer transfer count
was zero and the external sink requested another word trans-
mission. In this case the source would transmit a STOP and
receive an ENDS.

c¢) A normal termination will occur if the buffer transfer count
was not equal to zero and the external sink sends an ENDS. 1In
this case the conditional jump instruction test condition,
a-field equal to XX11, is a logiecal 1.

In all three cases, the output chain activity will be reinitiated.

~d) Execution of set/clear discretes (CSIR) instruction with the

m-field equal to XX0l, halts the source word sequence active
ity. The source will transmit a STOP to the sink, and the
output chain activity will not be reinitiated.

e) An abnormal termination will occur during a word sequence if
protocol or data error occurs, status word 2 will contain the
type of error, ERI will be generated, and output chain activity

" is not reinitiated.

Sink sequences:

L

2)

14122000

Immediate Sequence - When an immediate sequence control frame (SRL
or CRS) is detected, the sink transmits an acknowledge (SRLA or
CRSA), sets status bit 13 or 12 of status word 1, generates EII if
EIE is set, and Class III interrupts enabled. The status word 1 is
stored in main memory and input chain activity halted if active.

If both sequences are recognized before software recognizes the EIT
interrrupt, both status bits will be set. Requnitien of EII
clears EIE and prevents generation of further EIIs. Clearing the
immediate sequence status bits and setting EIE can be accomplished
by executing a CCR a,l2 instruction.

Word Seguence - When a control or normal interrupt word control
frame (CIWA or NIWA)n is detected, the sink transmits an acknow-
ledge (RCIW or RNIW), accepts the interrupt data word, generates
EII (if Class III interrupts enabled and EIE is set), and halts the
input chain activity if active. When the EII is generated, status
word 1 has been stored in main memory by the firmware. The 32-bit

10-75

interrupt word is read by executing store status (CSST or SST) in=-
~struction with the m-field equal to X100 for the 16 MSB and X101 .
for the 16 LSB. In order for the sink to generate another EII in
response to an interrupt control frame or immediate control frame,
the EIE must be set again since recognition of the EII clears EIE. -

Control word or data word sequences require that the sink has been
enabled before it will activate the sequence.

If a control word (CWA) or data word (DWA) sequence control frame
is detected and the sink is not enabled (i.e., an input transfer
for I0 instruction executed in an input chain program), the sink
will respend with a RSB. If in the input chain an initiate trans-
fer instruction with the m-field equal to XX00 has been executed,
the sink responds with a request control word (RCW) or a request
data word (RDW). The data transfer will continue until one of the
following conditions oeccur.

a) If the seuree»senas a STOP, the sink responds with an ENDS, and
the input chain activity is reinitiated.

~b) If the input buffer transfer count is zero, the sink will re-
spond with an ENDS at the next transmission interval, and the
input chain aectivity is reinitiated. ‘

c) Execution of set/clear disecretes (CSIR) command instruction
with m-field equal to XX00 halts the sink word sequence activ-
ity. The sink will respond with an ENDS at the next transmis-

~ sion interval, and the input chain activity will not be reini-
tiated. GO o ’ ‘

The sink allows blocks of data to be received from the source, ter-
minating the source transmission when the sink buffer transfer
count equals zero. After this has happened, one word will be ac-
cepted into the input data buffer with further data transmissions
acknowledged with a RSB response from the sink. If a control or
normal interrupt word is received and EIE is set, the word is ac-
cepted, and the data word presently in the input buffer will be
lost.

After a word sequence has terminated and prior to the next initiate
transfer instruction, the chain program may store status word 1 in
main memory so software can detect which word sequence was active.

If a protocol or data error occurs during a word sequence, ERI will’
be generated, and the input chain activity is not reinitiated.
Status word 2 will contain the type of error.

PIC/POC/SOC MODULE

The PIC/POC/SOC module (PPSM) has the following general characteristics.

10-76 - 14122000

PIC/POC

° Full duplex, 32-bit parallel input and 32-bit parallel output
channels

° Request-acknowledge type control logic (external device con-
trols the data rate)

) Internal and external wraparound test capacity

° External halt available for POC (an EII is generated by this
signal).

S0C

° Serial output with a bit stream of multiples of 16 bits in
length

® Data and control signals are differential or single ended

° Data rate of one megabit per second or 200 kilobits per second,
selectable under program control

° Internal test capability
° External suspend line available to regulate data transmission.

All input to the AN/AYK-14(V) is via the parallel input channel (PIC), and
output is via the parallel output chanriel (POC) or the serial output channel
(SOC). I/0 transfers are initiated by standard AN/AYK-14(V) I/O chains.

MESSAGE FORMATS

Tne PIC/POC 32-bit words are transferred to or from the AN/AYK-14(V) in two
16-bit halves, with the 16 moest significant bits first.

The SOC-bit streams outputted can consist of up to 4096 1l6-bit words. The
total number of words to be transmitted is specified by the buffer transfer
count (BTC) in the buffer control word (BCW).

The control of data transfers to and from the PIC/POC and to the SOC is
accomplished through an exchange of commands and data at the controller -
IOBUS interface. These commands operate in conjunction with the generation
of events from the module to the controller. The IOBUS provides the commu-
nication path for commands and data from the controller to the module as
well as a path for status and data from the module to the controller.

The command and function control word (format shown in Figure 10-40) pro-

vides the means to establish the type of communications to be performed as
well as operations to be executed.

14122000 10-77

CONTROL MEMORY DEFINITION

Control memory format and usage for the PPSM I/O channel type is shown in
Figure 10-41 for PIC/POC and in Figure 10-42 for SOC.

PIC/POC control memory locations 0, 1, and 2 are associated with the PIC
(input activity) and locations 4, 5, and 6 with the POC (output activity).

PIC/POC control memory locations 0 and 4 are the input and output buffer
control word, (BCW) and define the transmission mode and buffer transfer
count (BTC) for data input and output transfers. The format for the BCWs is
depicted in Figure 10-43. The format for the mode control word (MCW) is
shown in Figure 10-44. Note that 32-bit (double-length transfer) mode
should be used with the PIC/POC. Thus, the buffer transfer count is equal
to the number of 32-bit words to transfer. A count of zero implies the
maximum transfer count of U4096.

Channel Commands | Function Codes
3 " R X ’ , \
23 | 16 15 12 11 08 07 06 05 04 03 02 0100
| operation Code |a-Field | m-Field

lChannel codé

Zero for all
functions except
broadecast

Must be zero for all I/0
commands

Data input

01 = Data output
10 = Status input
11 = Function output

Figure 10-40. Command and Function Code Word Format

10-78 14122000

rl’/ 0 CONTROL MEMORY LOCATION

BUFFER CONTROL WORD (BCW)

INPUT
BUFFER ADDRESS POINTER (BAP) (PIC)

0

1

2 CHAIN ADDRESS POINTER (CAP)
3 SPARE

4 BUFFER_CONTROL WORD (BCW)
5 BUFFER ADDRESS POINTER (BAP) e
6 CHAIN ADDRESS POINTER (CAP)

7 _SPARE
8 SPARE
9

A

B

¢

D

E

F

SPARE
_ MODE CONTROL WORD (MCW)
HARDWARE USAGE - DATA BUFFER REG.

T 77
7777777
77777777

T 777

NN
NN\
NEN
U\
N

Figure 10-41. PIC/POC Control Memory Definition Map

14122000 10-79

10-80

I/0 CONTROL MEMORY LOCATION

SPARE

SPARE

SPARE

SPARE

BUFFER CONTROL WORD (BCW)

BUFFER ADDRESS PQINTER (BAP)

CHAIN ADDRESS POINTER (CAP)

:} ouTPUT

SPARE

SPARE

SPARE

MODE CONTROL WORD (MCW)

HARDWARE USAGE - DATA BUFFER REG.

LS T

Vo rrrrrsiys

L7777 77

MM O O W I WO O~ S W N e c»«l—~]

LIS 77 777 7 7

Figure 10-42. SOC Control Memory Definition Map -

14122000

~—IM FIELD

00 - ABORT TRANSFER (INPUT DATA ONLY)

01 - BYTE TRANSFER (N.A.)

10 - SINGLE LENGTH TRANSFER (16-BITS PER COUNT)
11 - DOUBLE LENGTH TRANSFER (32=BITS PER COUNT)

——B-FIELD - BYTE POINTER (N.A.)
——BUFFER TRANSFER COUNT

—~ / \
T 7 1 T T T T TT "
! /A ! L ! | i L i | BCW

15 14 12 11 00

Figure 10-43. PIC/POC Buffer Control Word

— POC HALT TEST

RECEIVER THRESHOLD
OVERRIDE

—TEST MODE SELECT

MCW

02 01 00

Figure 10-44, PIC/POC Buffer Control Word

14122000 10-81

SOC control memory location 4 is the buffer control word (BCW) and defines
the transmission mode and buffer transfer count (BTC) for SOC data trans-
fers. Transmission mode 2 (16-bit mode) must be used with the SOC I/0 chan-
nel type. The buffer transfer count is the number of words to be output
with 16 bits per word. A count of zero implies the maximum transfer count
of 4096. The BCW format is shown in Figure 10-45. The format for the mode
control word is shown in Figure 10-46. Control memory location A is the SOC
mode control word (MCW). This loeation defines the data bit rate and vari-
ous test mode bits. '

PPSM I/0 CHANNEL INSTRUCTIONS

The following I/0 chain instructions provide operations on the PPSM I/O
channel type. Any that are not included are legal but perform a no opera-
t ion .

1) Channel Control (EQ m) (ACR m; CCR m) - The same as listed under
Proeessor to I/0 Channel Communication paragraph with the following
exceptions.

The a-field is not used and the associated I/0 channel is the one

executing the I/0 channel progran.

m-field equal to 0001
0010
0011
1010
1011

i Illegal

a:g_(ﬁzgafgg;,Q;g;amy5m3.- Load control memory loca-
fied by the m-field with the value y; then, perform the
operation specified}by the,a-field as follows:

2)

a Operation
0000 ‘ Initiate input (PIC) data transfer using the BCW and
‘ BAP in control memory locations 0 and 1, respectively.
0001 ' Initiate output (POC or SOC) data transfer using the
’ BCW and BAP in control memory locations 4 and 5,
respectively.

The associated I/0 channel is the one executing the I/0 channel program.

3) Initiate Transfer (E3 a 0) (IO a,y) - Load control memory loca-

- tions 0 and 1 (PIC, a-field equal to XX00) or 4 and 5 (POC or soc,
a-field not equal to XX00) with the contents of main memory
addresses y and y + 1 respectively. Perform the operation speci-
fied by the a-field as defined in the Initiate Message instruc-

tion. The associated I/O channel is the one executing the I/0
channel program.

10-82 ' 14122000

—TM FIELD

00 - N.A.
01 - BYTE TRANSFER (N.A.)
10 - SINGLE LENGTH (16-BITS PER COUNT)

11 - DOUBLE LENGTH (N.A.)
["‘BUFFER TRANSFER COUNT (BTC)

&-\/ l | } i 1 i | 1 T T -
T] : ;
| /4; AR N AR T RSN DN NN N SO I BCW
15 14 12 11 . ‘ 00
Figure 10-45. SOC Buffer Control Word
— SUSPEND TEST BIT
0 - OPERATE
1 - SUSPEND
~——RATE SELECT
0 - 200 KHZ
1 -1 MZ
p— TRANSMITTER ENABLE
0 - DISABLE
1 - ENABLE
— RECEIVER SELECT
0 - INTERNAL
1 - EXTERNAL
T T T T T T T T T ‘
{ | 1 ! !]] | |]] MCW
03 02 01 00
Figure 10-46. SOC Mode Control Word
14122000 10-83

4)

5)

6)

7)

8)

9)

10)

10-814

Load Control Memory (E6 0 m) (LCMK m,y) - Load the control memory
location specified by the m-field with the value Y. The a-field is
not used, and the associated I/0 channel is the one executing the
I/0 channel program.

Load Control Memory (E7 O m) (LCM m,y) - Load the control memory
location specified by the m-field with the contents of main memory
address y. The a-field is not used, and the associated 1/0 channel
is the one executing the I/0 channel program. ‘

Store Control Memory (EB 0 m) (SCM m,y) - Store the contents of
control memory location specified by the m-field at main memory
address y. The a-field is not used and the associated I/0 channel
is the one executing the I/0 channel program.

Halt/Interrupt (EC a 0) (HCR a; IPRa) - Perform the operation
specified by the a-field as follows:

a Operation
XXXo Halt I/O0 ehaining activity.
XXXl Generate Class III, priority 3, OCI for output chain

and ICI for input. chain.

The m-field is not used, and the associated I/0 channel is the one
executing the I/O channel program.

Set/Clear Flag (EF a 0) (ZFa,y; SFa,y) - Set or clear the two most
significant bits (flag) of the main memory value at address y as
specified by the a-field as follows:

a , Operation

XXX0 Clear flag
XXx1 Set- flag

The m-field is not used and the associated I/0 channel is the one
executing the I/0 channel program.

SOC_Conditional Jump (F2 0 0) (SIMC 0,y) - This is an uncondition-
al jump for the SOC I/0 channel type. When executed, this instruec-
tion loads control memory location 6 (CAP) with the value y.

The a-field is not used, and the associated I/O channel is the one
executing the I/0 channel program.

PIC/POC Conditional Jump (F2 a 0) (SJMC a,y) - Load control memory
location 6 (CAP) with the value y if bit 15 (MSB) of status word
zero is set (logic 1). This instruction can be used in an input
chain (PIC), but since bit 15 (MSB) of status word zero is cleared
only by a POC data transfer, its use in an input chain may not be
meaningful. If the a-field is even, this is an unconditional Jump.

14122000

The m-field is not used, and the associated I/0 channel is the one
executing the I/0 channel activity.

11) Store Status (FB 0 m) (CSST m,y) - Store the channel status as
specified by the m-field in main memory location y as follows:

m Status Word Value
XX00 PIC/POC or SOC channel status 0 (Figure 10-47)
XX01 PIC/POC or SOC channel status 1 (Figure 10-48)
XX1Xx A SOC input register. This register contains the most
recent word shifted out. It is cleared when read as
status.

The a-field is not used, and the associated I/0 channel is the one
executing the I/0 channel activity.

12) Bit Jump (FD O m) (BJ m,y) - This is a conditional jump instruc-
tion. 1If the bit in control memory location 3 specified by the
m-field is a logic 1, then the value y is loaded into control mem-
ory location 2 (input chain PIC) or control memory location 6 (out-
put chain POC or SOC). If the bit is a logic 0, the next I/O chan-
nel instruction in sequence is executed.

13) Exchange Control Memory (FE 0 m) (CXCM m,y) - Store the contents
of control memory location specified by the m-field in main memory
location y. Then load the control memory location specified by the
m-field with the contents of main memory location y + 1.

NOTE:

This becomes a branch or jump instruction if the
m-field equals 2 (PIC) or 6 (POC or SOC). The old
contents of control memory location 2 or 6 are saved
so that a return is possible when the entered routine
is exited.

PIC/POC INTERRUPT HANDLING

The PIC/POC can generate three Class III interrupt types, including EII,
OCI, and ICI. All three can be masked by the single Class III mask bit
associated with the given channel. This bit is set or cleared by execution
of the appropriate activity control channel/ control (ACR/CCR) instruction,
from either a chain program or via the command cell (that is, execution of
an IOCR instruction). When the associated Class III mask bit is cleared,
EII, OCI, and ICI interrupts are disabled but queued one level (i.e., will
remain pending until the mask bit is set). When a particular interrupt is
generated and enabled, recognition of that interrupt by the AN/AYK-14(V)
processor depends on the status of other higher priority interrupts and on
bit 1 of status word 1 in the processor.

14122000 10-85

—TEST CONDITION FOR CONDITIONAL JUMP (if POC word pending) (N.A. for SOC)
—EIE (N.A. for SOC)

—— CHANNEL OUTPUT ACTIVE |

| — CHANNEL INPUT ACTIVE (N.A. for SOC)

- ——ERI PENDING (N.A.)

— EIL PENDING (N.A. for SOC)

— OCI PENDING |

—— ICI PENDING (N.A. for SOC)

© —SPECIAL CHANNEL TYPE CODE

LOGICAL CHANNEL NUMBER

)
o
[81)
+
w
N
——d
o

15 14 13 12 11 10 9 8
‘ 0 1,131,116, ., ;0

Figure 10-47. PIC/POC or SOC I/O Channel Status Word 0 Format

10-86 14122000

— POC WORD PENDING (N.A. for SOC)
—EIE N. A, for SOC)

r— CHANNEL QUTPUT ACTIVE

CHANNEL INPUT ACTIVE (N.A. for SOC)
- —ERI PENDING (N.A.)

EIT PENDING (N.A. for SOC)

OCI PENDING
— ICI PENDING (N.A. for SOC)

—PIC/POC or SOC CHANNEL

TYPE CODE
r - =~
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|] | |]] 1 [
0 10,0,0,0,0,0,0,1

Figure 10-48. PIC/POC or SOC I/O Channel Status Word 1 Format

14122000 10-87

PIC/POC Class III interrupts are generated by the following conditions.
OCI - Execution of IPR instruction in an output (POC) chain
ICI - Execution of an IPR instruction in an input (PIC) chain

EIT - If the POC channel external halt signal is set during or at the
start of an output (POC) data transfer. Note that EIE must be set for
an EII to be generated -

OCI and ICI are masked only by the Class III mask, whereas the EII is also
disabled if the EIE is clear. If disabled by the EIE, the external inter-
rupt will not be generated and is not queued whether or not the Class III
mask bit is set. When the POC EII is generated, the PIC/POC EIE is automa-
tiecally cleared until reset under software control.

SOC INTERRUPT HANDLING

The SOC can generate the OCI Class III interrupt type. It can be masked by
the single Class III mask bit associated with the given channel. This bit
is set or cleared by execution of the appropriate activity control/channel
control (ACC/CCR) instruction, from either a chain program or via the com-
mand cell (i.e., execution of an IOCR instruction). When the associated
Class III mask bit is cleared, the SOC OCI type interrupt is disabled but
queued one level (i.e; will remain pending until the mask bit is set). The
SOC OCI type interrupt is generated by execution of an IPR instruction in an
output (SOC) chain. When the interrupt is generated and enabled, its recog-
nition by the AN/AYK-14(V) processor depends on the status of other higher
priority interrupts, and on bit 1 of status word 1 in the processor.

DISCRETE INPUT/OUTPUT MODULE

5 The discrete input/output module (DIOM) has the following general character-
isties.

] 144 output discretes

. 48 input discretes (used as inputs or interrupts, not both)

° All 48 inputs are individually prioritized in a fixed sequence for
use as interrupts

) Interrupts are individually masked

o All outputs are internally wraparound testable, including the ’
transmitters

(= Internal testing of input scan logic, external testing of input
receivers.

'3 Full duplex I/O channel capable of initiating both input and output
chain which may be active 51multaneously.

WORD FORMATS

The DIOM I/0 channel provides the following three basic types of capabili-
ties.

) Qutput discretes
® Input discretes
) Interrupt discretes

10-88) 14122000

Tables 10-2 and 10-3 define each discrete. Definitions are given for 16
different input discrete words and 13 different output discrete words. Out-
put discrete words 0 through 8 define all 144 output discretes. Input dis-
crete words O through 8 provide capability to read the actual values of the
output discretes for internal wraparound testing. Input discrete words 9
through 11 define the 48 inputs when they are used directly. Interrupt dis-
crete words 12 through 14 are the logic 1 captured values of the 48 inputs
when the inputs are used as interrupts. The corresponding bits in interrupt
mask words 9 through 11 define a mask bit for each of 48 possible inter-
rupts. The highest priority interrupt is interrupt discrete 00. Interrupt
discrete word 15 and interrupt mask word 12 are useful in internal wrap-
around testing to provide capability to more fully test the DIOM logic.

CONTROL MEMORY DEFINITION

The DIOM control memory is diagrammed in Figure 10-49. Locations 0, 1, 2,
and 8 are associated with input data transfers while locations 4, 5, 6, 9,
and B are associated with output data transfer.

Control memory locations 0 and 4 are termed the buffer control word (BCW)
which define control parameters and word count information. The BCW is
shown in Figure 10-50. The first two bits are the transfer mode (TM) field
which must be 00 or 10. Bits 13 and 12 are unused. Bits 11 through 0 are
the buffer transfer count (BTC) or word count. Thirteen unique words are
defined for output while sixteen are defined for input in Tables 10-2 and-
10-3. If more than the defined number of words are transferred, the words
will end around until the BTC reaches zero. Typically, BTCs greater than
the defined number of words are not useful.

Control memory locations 1 and 5 are termed the BAP and must be initialized
to the starting address of a data buffer. While a data transfer is in pro-
cess, the buffer address pointer (BAP) contains the next address to be
transferred between an I/0 channel and memory.

Control memory locations 2 and 6 are termed the chain address pointer (CAP)
and must be initialized to indicate the starting address of an I/0 chain
program. While a chain program is in process, the CAP contains the address
of the next I/0 instruction to be executed.

Control memory 1déation 3 is associated with the bit jump I/O instruction.

Control memory location 8 is termed the input control word (ICW) and its
lower 4 bits may specify which of 16 possible words to begin for input data
transfers. See Table 10-2 and Figure 10-51.

Control memory location 9 is termed the output control word (OCW) and its
lower 4 bits may specify which of 13 possible words to begin for output data
transfers. See Table 10-3 and Figure 10-52.

Control memory location A is termed the message control word (MCW) and the
lowest bit, when set to a logic 1, places the DIOM inputs into internal
wraparound mode. See Figure 10-53.

14122000 : 10-89

TABLE 10-2.

INPUT WORD DEFINITIONS

Word No. ICW Code IM/I0 a-Field Definition
0 0000 - Output Discretes 000-015 .
1l 0001 - OQutput Discretes 016-031
2 0010 - Output Discretes 032-047
3 © 0011 - Output Discretes 0u48-063
4 0100 - Output Discretes 064-079
5 0101 - Output Discretes 080-095
6 0llio0 - Output Discretes 096-111
7 0111 - Output Discretes 112-127
8 1000 - Output Discretes 128-143
9 1001 0100 Input Discretes 00-15
10 1010 1000 Input Discretes 16-31
11 1011 1100 Input Discretes 32-47
12 1100 - Interrupt Discretes 00-15
13 1101 -— Interrupt Discretes 16-31
14 1110 - Interrupt Discretes 32-47
15 1111 - Interrupt Discretes 48-63
TABLE 10-3. OUTPUT WORD DEFINITIONS
Word No. OCW Code IM/I0 a-Field Definition
0 0000 0011 Output Discretes 000-015
1 0001 0111 Output Discretes 016-031
2 0010 1011 Output Disecretes 032-0u7
3 0011 1111 Output Discretes 048-063
4 0100 0010 Qutput Discretes 064-079
5 0101 0110 OQutput Discretes 080-095
6 0110 1010 Output Discretes 096-111
7 0111 1110 Output Discretes 112-127
8 10XX X001 Qutput Discretes 128-143
9 1100 - Interrupt Masks 00-15
10 1101 - Interrupt Masks 16-31
11 1110 -— Interrupt Masks 32-47
12 1111 - Interrupt Masks 48-63

10-90

14122000

1.---—--I/C) CONTROL MEMORY LOCATION

BUFFER CONTROL WORD (BCHW)
BUFFER ADDRESS POINTER (8AP)
CHAIN ADDRESS POINTE

| BIT JUMP USAGE.

BUFFER CONTROL WORD (BCW)
BUFFER ADDRESS POINTER (8AP)

CHALM_AEERESS PGINTER'(CAP\
SPARE
INPUT CONTROL WORD

INPUT

QUTPUT

- — ‘L__.Y_~_~—J

, ; LSS
LSS S S
LSS S
L LS

HARDW GE - 0]

M O O W P W 0NN BWw N - O

Figure 10-49, DIOM Control Memory Definition Map

14122000 ' 10-91

—TM FIELD
00 - ABORT TRANSFER (INPUT DATA ONLY) -
01 - BYTE TRANSFER (N.A.)
10 - SINGLE LENGTH TRANSFER (16-BITS PER COUNT)
11 - DOUBLE LENGTH TRANSFER (N.A .)
00 - SINGLE LENGTH TRANSFER (OUTPUT DATA ONLY)
——B8-FIELD - BYTE POINTER (N.A.)
BUFFER TRANSFER COUNT (BTC)
151413}21110987654(1. 0
]] | [3 []] | i
| 0 L | i | § .| { 1 L l

Figure 10-50. DIOM Buffer Control Word (BCW)

15 14 13 12 11 10 9

INPUT

. MESSAGE

START
WORD

Y4 /' /// /

Figure 10-51. DIOM Input Control Word (ICW)

10-92

14122000

QUTPUT
———— MESSAGE
START
WORD

15 14 13 12 11 10 9 8

T B}

Figure 10-52. DIOM Output Control Word (OCW)

-

: TEST MODE
i SELECT

15 14 131211109 8 7 6 5§ 0

/////////7///r

Figure 10-53. DIOM Mode Control Word (MCW)

14122000 10-93

Control memory location B is used as a lookahead output data word. This
location is used dynamically within an output data transfer which, unlike
other locations, requires no initialization. While an output data transfer
is in process, the contents of buffer address pointer (BAP) is loaded into
control memory location B.

DIOM CHANNEL INSTRUCTIONS

The following I/0 chain instructions provide operations on the DIOM I/O
channel type. Any that are not included are legal but performs a no oper-

ation.

1) Channel Control (EQO a m) (ACRm; CCR a,m) -~ The same as listed
under Processor to I/0 Channel Communication paragraph.

2) Initiate Message (E2 a m) (IM a,y,m) - Load the control memory
location specified by the m-field with operand y; then, perform the
operation specified by the a-field as follows:

a Operation
XXo00 Initiate an input data transfer using the BCW and BAP in

control memory locations 0 and 1, respectively. The
first word is specified by the a-field. See Table 10-2.

0000 . Contents of the lower 4 bits of control memory 8.
0100 Input Word 9

1000 Input Word 10

1100 Input Word 11

XX00 Initiéte an output data transfer using BCW and BAP on

control memory locations 4 and 5, respectively. The
first word is specified by the a-field. See Table 10-3.

0011 Qutput Word O
0111 Output Word 1
1011 Output Word 2
1111 OQutput Word 3
0010 Output Word 4
~ 0110 Qutput Word 5
1010 Output Word 6
1110 Qutput Word 7

10-94 14122000

3)

4)

5)‘

6)
7)
8)

9)

14122000

a ' Operation
X001 Output Word 8

X101 Contents of the lower U4 bits of control memory 9.

Initiate Transfer (E3 a 0) (I0 a,y) - Load control memory loca-
tions 0 and 1, (a-field equal to XX00) or 4 and 5 (a-field not equal
to XX00) with the contents of main memory addresses yand y + 1
respectively. Perform the operation as specified by the a-field as
defined in 2).

Initiate Chain (E6 a m) (ICK a,y,m; OCK a,y,m) - Load the control
memory location specified by the m-field with the operand y for the
I/0 channel specified by the a-field. Then initiate an operation
on the specified I/0 channel as defined by the m-field as follows:

m Operation
0010 Initiate an input chain program using the CAP in control

memory location 2.

0110 Initiate an output chain program using the CAP in con-
trol memory location 6.

0X10 No operation
NOTE:
The CAP starting address for the
chain program will be initialized

to the value y.

Load Control Memory (E6 O m) (LCMK m,y) - Load the control memory
location specified by the m-field with the operand y.

Write Control Memory (E7 a m) (WIM a,v,m) - Load the control mem-
ory location specified by the m-field with the contents of the mem-
ory address y for the I/0O channel specified by the a-field.

Load Control Memory (E7 0 m) (LCM m,y) - Load the control memory
location specified by the m-field with the contents of memory
address y.

Read Control Memory (EB a m) (RIM a,y,m) - Store the contents of
the control memory location specified by the m-field at memory
address y for the channel specified by the a field.

Store Control Memory (EB 0 m) (SCM m,y) - Store the contents of
the control memory location specified by the m-field at memory
address y.

10-95

10)

11)

12)

13)

14)

10-96

Halt/Interrupt (EC a 0) (HCR;IPR) - Perform the operation speci-
fied by the a-field as follows:

a Operation
XXX0- HCR - Halt I/0 chain program.
XxX1 IPR - Generate a Class III, ICI interrupt if executed

within an input chain program.

XXX1 IPR - Generate a Class III, OCI interrupt 1f executed
within an output chain program.

lear Flag (EF a 0) (SFy ; ZF y) - Perform the operation
'ied by the a-field as follows:

a Operation

XXXo ZF - Clear the 2 most.significant bits (flag) of memory
address b

XXX1 SF - Set the 2 most significant bits (flag) of memory

address Yo

Conditional Ju@g,(FZ a 0) (SIMC a,y) - Load the control memory
ation 2 (input) or control memory location 6 (output) with the
operand y. The a-fleld may be any value. This instruection is an
un-ondltlonal jump for thé DIOM I/0 channel type.

earch (F4 0 m) (SFSC m) - Perform the operation specified by the
-field as follows~

Operation

XXXX No operation

Serial Interface Control (F8 0 m) (CSIR m) - Perform the operation
spe01f1ed by the m-field as follows:

m Operation

XX0o0 Initialize the capture value file by: 1) clearing the
capture value file and 2) setting each capture bit to a
logic 1 whose corresponding input is at a logic 1 level.

XX01 Clear the capture value file.

XX10 Clear the capture bits to a logic 0 whose corresponding
mask bit is at a logie 0.

XXi1i NOP

14122000

15) Store Status (FB a m) (SST a,y,m) (CSST y,m) - Store the channel
status as specified by the m-field in memory address y as follows:

m Operation
XX00 Channel Status 0 (Figure 10-54)
XX01 Channel Status 1 (Figure 10-55)

XX1Xx Interrupt Status (Figure 10-56)

16) Bit Jump (FD 0 m) (BJ m,y) - Load the control memory location 2
(input) or control memory location 6 (output) with operand y when
the bit specified by the m-field is a logic 1. When the specified
bit is a logic 0, no operation.

17) Exchange Control Memory (FE a m) (XIM a,y,m) - Store the contents
of control memory location specified by the m-field at memory
address y for the I/0 channel specified by the a-field when the
m-field is equal to 0X10. Then load the specified control memory
location with the contents of memory address y(:)l. If the m-field
is not equal to 0X10, an I/0 instruction fault i1s generated.

18) Exchange Control Memory (FE O m) (XCM m,y) - Store the contents of
. control memory location specified by the m-field at memory address
y and then load the specified control memory location with the con-
tents of memory address y(:)l.

DIOM INTERRUPT HANDLING

The DIOM I/O channel type is capable of generating the EII, OCI, and ICI
Class III interrupts. :

The Class III mask, when set, enables all three types of interrupts. The
ACR/CCR I/0 channel instruction (Op Code EO) sets or clears this mask bit.
This mask bit is found in interrupt word bit 6 (Figure 10-56). After a dis-
able Class III mask is executed, all Class III interrupts will be blocked
until re-enabled. .No interrupts are lost because of the disable Class III
I/0 channel instruction.

Forty-eight possible external interrupts may cause the DIOM to generate an
EIT interrupt. An external interrupt is defined as an inactive-to-active
transistion of an input signal that has a minimum active duration of

2.5 microseconds. Therefore, an interrupt may be an active level or minimum
of one active 2.5-microsecond pulse. All the external interrupts are
assigned a fixed priority, interrupt 0 being the highest priority and inter-
rupt 47 being the lowest. Table 10-2 defines three input words that contain
the unmasked captured value of each individual interrupt. These interrupts
may be input by setting up an appropriate I/0 chain program for inputting
the desired word numbers 12, 13, and/or 1l4.

For an external interrupt to generate an EII, several parameters must be set

up. For each external interrupt, a corresponding individual mask must be
set. Three mask words are defined in Table 10-3. They are output words 9,

14122000 ' 10-97

(—~TEST CONDITION FOR CONDITIONAL JUMP
—EIE |
—CHANNEL QUTPUT ACTIVE
—CHANNEL INPUT ACTIVE
—ERI PENDING (N.A.)
e PENDING
| ToCI PENDING
——ICI PENDING

_____SPECIAL CHANNEL TYPE
CODE

—LOGICAL CHANNEL
NUMBER

——
1514 13121110 9 877 6 5 453 2 1 o
LA R R I R R N A R EEE N EEY B R
1y o 00y T, T

Figure 10-54. DIOM Status Word O Format

10-98 14122000

—TEST CONDITION FOR CONDITIONAL JUMP (N.A.)
——EIE
——CHANNEL QUTPUT ACTIVE
——CHANNEL INPUT ACTIVE
—ERI PENDING (N.A.)
——=E11 PENDING
—0CI PENDING
ICI PENDING
__DIOM CHANNEL TYPE

CODE
. ‘u——""—_\
15 14 13 12 11 10 9 8 {7 6 5 4 3 2 1 0
R N R N N
1 | 1.1 } | | | 1 |] § |] }

Figure 10-55. DIOM Status Word 1 Format

~— BIT ERROR

—— TEST MODE SELECT |

~——INTERRUPT ACTIVE

— EIE

—— CLASS III MASK
INTERRUPT CODE

1514]31211109876543210

i J i i |] |] I
9 0 0 0 o !]) | |] | !]]

Figure 10-56. DIOM Interrupt Word Format

14122000 . | 10-99

10, and 11 and may be output via an appropriate I/0 chain program. Second-
ly, the EIE must be set by the appropriate I/0 channel instruction (OP Code
EO). Whén set, the EIE causes the DIOM to constantly scan for the highest
priority masked external interrupt and then store it in memory address 8F
hexidecimal with the interrupt word (Figure 10-56). Table 10-4 defines the
interrupt codes. 1If, in addition to the EIE set, the Class III mask and bit
1 of processor status word O are set, then the EII interrupt will be gener-
ated. When the EII interrupt is generated, the DIOM automatically clears
EIE and clears the capture bit associated with the interrupt in memory ad-
dress 8F hexidecimal. Therefore, the interrupt routine shall not concern
itself with clearing that capture value bit.

If either the EIE or Class III mask is clear, the EII interrupt will be
blocked. Both Class III mask and EIE bits are found in interrupt word bits
6 and 7, respectively (Figure 10-56). Bit 8, when set, indicates that the
interrupt code is an active interrupt.. EII‘Pending is bit 10 of channel
status 0 or 1 (Figures 10-54 and 10-55). EII Pending in the DIOM means that
an active interrupt code has been input to memory address 8F hexidecimal.
Three special interrupt management operations may be executed via the
SICR/CSIR I/0 channel instruction (Op Code F8).

On a pewer up or master clear I/0 channel instruetion, the capture value
file initially cleared, and each corresponding capture bit set to a logic 1
if the level of the external interrupt is a logic 1. On a power up situa-
tion, the interrupt active signal (bit 8 of the interrupt word) has no mean-
ing until the mask file is initialized.

The OCI and ICI interrupts are generated via the IPR I/O channel instruction
(Op Code EC). The Class III mask and bit 1 of processor status word 0 must
both be enabled for the interrupt to oeccur.

DIOM PROGRAMMING CONSIDERATIONS

The DIOM may set up chain programs to do input and output data transfers via
IM or IO I/O channel instruetions (Op Codes E2 and E3). These and other
instructions are used to specify the initial values of the BCW and BAP.

Buffers of data transfers may be initiated starting with any word by setting
up the ICW or OCW, and then using an IM or IO instruction. If some instruc-
tion time is desired to be saved, any output or direct input word may be
transferred without setting up the ICW or OCW. It is the intent to provide
the programmer with some option in initiating data transfers with minimal
cost of hardware. If only one word is desired to output or input , only one
word needs to be output or input by specifying the starting word with the
a-field of the IM or IO instruction.

Input Data Transfers

There are 16 input words defined in Table 10-2. These may be read into mem-
ory with an IM or IO instruction as stated previously. The transfer of
these words is controlled by the BCW (Figure 10-50) and BAP in control mem-
ory locations 0 and 1, respectively. During an input data transfer with a
T™ field of 10, the BAP value is incremented by 1 and the BTC of the BCW is
decremented by 1 for each word input. When the BTC = 0, the chain program

10-100 14122000

TABLE 10-4. INTERRUPT WORD CODES

External Interrupt Interrupt Word Bits 5-0
Decimal Binary Hexidecimal
00 000000 00
01 000001 01
02 Q00010 02
03 . 000011 03
04 000100 04
05 000101 : 05
06 000110 06
07 000111 07
08 001000 08
09 001001 09
10 001010 0A
11 001011 0B
12 001100 oc
13 001101 0D
14 001110 OE
15 0011 M OF
16 010000 10
17 010001 11
18 010010 12
19 010011 13
20 010100 14
21 010101 15
22 010110 16
23 01011 17
24 - 011000 18
25 011001 19
26 011010 1A
27 » o11oMm 1B
28 011100 1€
29 011101 1D
30 011110 1E
31 , . 011 n F
32 100000 20
33 : 100001 21
34 100010 22
35 100011 ' 23
36 100100 24
37 100101 25
38 100110 26
39 100111 27
40 101000 28
41 101001 - 29
42 101010 2A
43 101011 , 28
44 v 101100 2C
45 101101 - 2D
46 101110 2E
47 101111 2F
*48 110000 30

14122000 A 10-101

TABLE 10-4. INTERRUPT WORD CODES (Cont.)

External Interrupt Interrupt Word Bits 5-0

Decimal Binary Hexidecimal
*49 110601 31
*50 110010 . . 32
*51 . 110011 33
*52 110100 4 34
*53 11 GI 01 : 35
*54 : 110110 36
*55 37
*5 6
*57 39
*58. 111010 l 3A
*59 111011 - 3B
*60 111100 3C
*61 111101 3D
*62 , 111110 3E
*63 : ' 1TIn 3F

*For Internal Wraparound only

10-102 14122000

continues its execution of I/0 chain instructions. If the TM field equals
00, only the BTC is decremented, inputs are discarded and not stored in mem-
ory. Note that BTC values greater than 16 repeat sets of 16 possible input
words.

OQutput Data Transfers

There are 13 output words defined in Table 10-3. These are also output from
memory with an IM or IO instruction. These transfers are controlled by the
BCW (Figure 10-50) and BAP in control memory locations 4 and 5, respective-
ly. During an output data transfer, the BAP value is incremented by 1 and
the BTC of the BCW is decremented by 1 for each word output. Again, when
the BTC = 0, the chain program continues. Note that BTC values greater than
13 repeat sets of 13 possible output words.

Chain and Chain Transfers

The DIOM is a full duplex channel and may initiate input and output chains
that may be active simultaneously. After initiation of an input data trans-
fer from an input chain and on completion of that input data transfer, the
DIOM continues to execute input chain instructions. This is also true of
output chain programs. If, however, an output data transfer is initiated
from an input chain, the DIOM halts the input chain and loads the output CAP
with the input CAP. Upon completion of that output data transfer, the DIOM
continues by executing output chain instructions. This same situation works
for input data transfers initiated within output chains.

14122000 10-103/10-104

APPENDIX A

INSTRUCTION REPERTOIRE

000221I¥1

I-v

TABLE A-1.

INSTRUCTION REPERTOIRE BY OP-CODE

F?):::'at He::(::ztmal ::::: Instruction Operation C ov cCC
#00 2 a m 02 a m SPT a,y,m Stack Put Top (Y) > (Ra), (Ra) > Y NA-
#00 3 a m 03 a m BLa,y,m Byte load (Y) byte -> Ra 0 0 X
#01 0 a m 04 a m LRam Load (Register) {Rm) > Ra 06 0 X
#1 1 a m 05 a m Liam Load (Indirect) (Y*) ~>Ra 0 0 X
#01 2 a m 06 a m LKaym Load (Constant) Y >Ra 0 o0 X
#01 3 a m 07 a m Laym Load {Y) >Ra 0 0 X
#02 0 a 00 08 a O PRa Make positive if (Ra) <0, (Ra)' - Ra X X X
#02 0 a 01 08 a 1 NRa Make negative If (Ra) >0, (Ra)’ - Ra X 0 X
02 0 a 02 08 a 2 RRa Round (Ra) + (Ra®1):15—>Ra X X X
#02 0 a 03 08 a 3 IPla °Initiate Processor Int Set processor interrupt a -NA-
#02 0 s 04 08 a 4 TCRa Two's Complament (Ra)’ > Ra X X - X
02 0 a 05 08 a b5 TCDRa Two's Complement Double (Ra,Ra®1)’'~>Ra, Rae®1 X X X
#02 0 a 06 08 a 6 OCRa One's Complement (Ra) bit-by-bit complement > Ra 0 0 X
#02 0 a 07 08 a 7 SCla Support Channel Input Support channel input ~> Ra 0 0 X
#02 0 a 10 08 a 8 IRORa Increase Ra by 1 (Ra)+1->Ra X X X
#02 0 a N 08 a 9 DROR a Decrease Ra by 1 (Ra) - 1> Ra X X X
#02 0 a 12 08 a A IRTRa Increase Ra by 2 (Ra)+2 - Ra X X X
#02 0 a 13 08 a B DRTRa Decrease Ra by 2 (Ra) -2 —>Ra X X X
#02 0 - 14 08 - C IPLF °IPL Failed Set IPLF discrete © -NA-
#02 0 a 15 08 a D Dda °Diagnostic Jump R15—>uP -NA-
#02 0 - 16 08 - E RBT °Reset Bit Timer 0 - Bit Timer -NA-
#02 0 - 17 08 - F SBT °Set BIT Indicator Set BIT .indicator -NA-
02 1 a m 03 a m LDlam Load Double (Indirect) {(Y*,Y*®1)>Ra,Rao1 0 0 X
02 3 a m ‘08B a m LDay,m Load Double {Y,Y®1)->Ra,Rao1l 0 0 X
#03 0 a 00 oC a 0 ERa " Executive Return Generate interrupt; P+1 —> Ra 0 0 X

000221¥%1

TABLE A-1. INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

e~ ¢ oo
#03 0 a O1 6cC a 1 SSOR a Store SR1 (SR1) >Ra - 0 0 X
#03 0 a 02 0C a 2 SSTRa Store SR2 {SR2) = Ra 0 0 X
#03 0 a 03 0C a 3 SCRa Store Clock (RTC register):15-0 - Ra 0 o X

03 0 a 04 6cC a 4 LPRa Load P (Ra) P -NA-
#03 0 a 05 OC a 6 LSORa °Load SR1 (Ra) > SR1 NA-
#03 0 a 06 oC a 6 LSTRa °Load SR2 (Ra) > SR2 -NA-
#03 0 a 07 oOC a 7 LCRa °Load RTC lower (Ra) - RTC register:15-0 -NA-
#03 0 - 10 oc - 8 ECR °Enable Clock and Interrupt Enable RTC register and interrupt -NA-
#03 0 - 11 o - 9 DCR °Disable Clock Disable RTC register _ NA-

03 0 12 0 a A LEMa °Load and Enable Monitor Clock (Ra) > Monitor clack register; enable countdown -NA-

03 0 - 13 o - B DM °Disable Monitor Clack Disable monitor clock register -NA-

03 0 a W4 0c a ¢ LCRDa °Load Double and Enable Clock (Ra, Ra ®1) - RTC; enable count up -NA-
#03 0 a 15 0C a D SCRD a Store Clock:Double - (RTC register) >Ra, Ra ®1 0 o X
#03 0 - 16 0C - E ECIR °Enable Clock Interrupt Enable RTC overflow interrupt -NA-
#03 0 - 17 0OC - F DCIR °Disable Clack Interrupt Disable RTC overflow interrupt -NA-

#03 1 a m 0D a m SCI0 a,m Support Channel 1/0 (Ra) —>support channel buffer m — 1/0 code, Set channel busy - -NA-

03 3 a m OF a m LMaym Load multiple (Y...Y+m-a) >Ra...Rm NA-

04 0, a 01 10 a 1 RVRa Reverse Register Reverse (Ra) 0 0 X

04 0 a 02 10 a 2 CNTa €ount Ones Number of binary onesin Ra —>Ra @1 -NA-

04 0 03 10 a 3 SFRa Scale Factor Shift.(Ra, Ra @ 1) left until (Ra):15 # (Ra):14; NA-

; shift count >Ra @141 (1) '

04 0 a ®™ 10 4 SMCa Store Monitor Clock {Mon) - Ra -NA-

#0M4 2 a m 12 m QPT a,y,m -NA-

Queue Put Top

(Y) —>(Ra), (Ra) -~ Y; if (Y) was = 0 then (Ra) > Y ®1

TABLE A-1. INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

-t
N . .
S Octal Hexadecimal Coding Instruction Operation ov cC
g Format Format Format
8 #04 3 a m 13 a m BLX a,y,m Byte Load and Index by 1 (Y) byte - Ra; (Rm)+1 > Rm 0 X
#05 0 a m 14 a m SBR a,m Set Bit 1->{Ra):m 0 X
#05 1 a m 15 a m LXlam Load and Index by 1 (Indirect) (Y*) > Ra; (Rm)+1 > Rm 0 X
#05 2 a m 16 a m QPB a,y,m Queue Put Bottom (Ra) > (Y ®1),(Ra) > Y @1, 0 > (Ra) NA-
#05 3 & m 17 a m LXay,m Load and Index by 1 (Y) > Ra; (Rm)}+1 > Rm 0 X
#06 0 a m 18 a m ZBR am Zero Bit 0-{Ra):m 0 X
06 1 a m 19 a m LDXla,m Load Double Index by 2 (Indirect) (Y*,Y*®1) >Ra, Ra®1; (Rm)}+2 - Rm 0 X
#06 2 a m 1A a m SGTa,y.m Stack Get Top (Y) —>Ra, if (Y) #0 then ((Y)) - Y and P+3 > P, -NA-
‘ if (Y) #0 then P+2 »P
06 3 m B a m LDX ay,m Load Doubls, Index by 2 (Y,Y®1)—>Ra, Ra®1; (Rm)+2 - Rm 0 X
#0717 0 m iIC a m CBR a,m Compare Bit Compare bit m of Ra with zero 0 X
#07 1 - m MW - m LPIm °Load PSW {Indirect) (Y*, Y*+1,Y*+2) >P, SR1, SR2 NA-
#07 2 a m 1E a m QGTa,ym Queue Get Top (Y) - Ra; if (Y) = 0 then P+2 —>P; if (Y) #0 then P+3 >P, NA-
YD =>Y;if ((Y))=0thenY > Y @1
#0717 3 - m 1F -~ m LPym °Load PSW (Y, Y+1,Y+2) -P,SR1, SR2 NA-
#10 0 a m 20 a m LRSR a;m Logical Right Shift (Register) Shift (Ra) right (Rm):5-0 places, zero fill 0 X
#10 2 a m 22 a m LRSa,y,m Logical Right Shift Shift (Ra) right Y:5-0 places, zero fill 0 X
#100 3 a m 23 a m BS a,y,m ‘Byte Store (Ra):7-0—Y byte -NA-
#11 0 a m 24 a m ARSR am Algebraic Right Shift (Register) Shift (Ra) right (Rm):5-0 places, sign fill 0 X
#11. 1 a m 2% a m Slam Store (Indirect) . (Ra) »y* -NA-
#1112 a m 26 a m ARSay.m Algebraic Right Shift Shift (Ra) right Y:5-0 places, sign fill 0 X
|0P Instructions °Executive Mode Instructions * (Dcount = 31 for all zeros or all ones

e-v

-V

000821¥1

TABLE A-1. INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)
Octal Hexadecimal Coding Instruction Operation ov cc
Format Format Format ~ : ;
#11 3 a m 21 a m Saym Store , (Ra) >Y -NA-
12 0 a m 280 a m LRDR am Logical Right Double Shift (Register) Shift (Ra, Ra® 1) right (Rm):5-0 places, zero fill 0 X
12 1 a m 29 a m SDlam Store Double (Indirect) (Ra, Ra®@1) >Y*,Y* @1 NA-
12 2 a m 2A a m LRDay.m Logical Right Double Shift Shift (Ra, Ra @ 1) right Y:5-0 places, zero fill 0 X
12 3 a m 2B a m SDaym Store Double (Ra,Ra®1)>Y,Y 1 -NA-
3. 0 a m 2C a m ARDR a,m Algebraic Right Doubfe Shift (Register) Shift (Ra, Ra ® 1) right {(Rm):5-0 places, sign fill 0 X
13 2 .8 m 26 a m ARDay.m Algebraic Right Double Shift Shift (Ra, Ra @ 1) right Y:5-0 places, sign fill 0 X
13 3 a m 2F a m SMa,y,m Store Muitiple (Ra...Rm)—>Y ... Y+m-a -NA-
#14 0 8 m 3 a m ALSRa,m Algebraic Left Shift (Register) Shift (Ra) left (Rm):5-0 places, zero fill X X
#14 2 a m 322 a m ALSaym Algebraic Left Shift Shift (Ra) left Y:5-0 places, zero fill X X
#14 3 a m 33 a m BSXay,m Byte Store, Index by 1 (Ra):7-0 > Y byte; (Rm)+1 >Rm NA-
#15 0 a m 3 a m CLSRa,m Circular Left Shift (Register) Shift (Ra) circularly left (Rm):5-0 places 0 X
#15 1 a m 35 a m - SXlam Store, Index by 1 (Indirect) (Ra) > Y*; (Rm)+1 ->Rm NA-
#15 2 & m 3 a m CLSay,m Circular Left Shift Shift (Ra) circularly left Y:5-0 places 0 X
#15 3 a m 37 a m SX a,y,m Store, Index by 1 (Ra) > Y; (Rm)+1 > Rm -NA-
16 0 a m 38 a m ALDRam Algebraic Left-Double Shift {Register) ‘Shift (Ra, Ra @ 1) left (Rni):5-0 places, zerao fill X X
6 1 a m 39 a m SDXla,m Store Double, Index by 2 (Indirect) (Ra, Ra®1) > Y*,Y* &1; (RmH2~> Rm -NA-
16 2 a m A a m ALDaym Shift (Ra, Ra © 1) left Y:5-0 places, zera fill X X

Albegraic Left Double Shift

000ceI¥T

S-v

TABLE A-1, INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

Octal

Hexadecimal

codit{g

Format Format Format Instruction Operation cC ov cC

16 3 a m 3B a m SDX a,y;m Store Double, Index by 2 (Ra, Ra®1)>Y,Y e1; (Rm)+2 > Rm -NA-
17 0 a m 3C a m CLDRam Circular Left Double Shift (Register) Shift (Ra, Ra @ 1) circularly left (Rm):5-0 places 0 0 X

17 1 - m 30 - m $ZIm Store Zeros (Indirect) 0->Y* -NA.
17 2 a m 3E a m CLDaym Circular Left Double Shift Shift (Ra, Ra o 1) circularly left Y:5-0 places 0 0 X

17 3 - m IF - m SZym Store Zeros 0-Y -NA-
#20 0 a m 40 a m SUR a,m Subtract (Register) (Ra) — (Rm) > Ra X X X
#20 1 a m 41 a m SUtam Subtract (indirect) (Ra) — (Y*) >Ra X X X
#20 2 a m 42 a m SUK a,y,m Subtract (Constant) (Ra) — Y ->Ra X X X
#20 3 a m 43 a m SUay.m Subtract (Ra) — (Y) > Ra X X X
21 0 a m 4 a m SUDR a,m Subtract Double (Register) {Ra, Ra®1) — (Rm, Rm ®1) > Ra, Ra ®1 X X X
21 1 a m 45 a m SUDIam Subtract Double (Indirect) (Ra, Ra®1) — (Y*,Y*©1) >Ra, Ra®1 X X X
21 3 a m 47 a m SUD a,y,m Subtract Double (Ra, Ra® 1) —(Y,Y®1)—>Ra, Rao1 X X X
#22 0 a m 48 a m AR am Add (Register) (Ra) + (Rm) —> Ra X X X
#22 1 a m 49 a m Alam Add (Indirect) (Ra) + (Y*) > Ra X X X
#22 2 a m 4A a m AKaym Add (Constant) (Ra)+Y —>Ra X X X
#22 3 a m 48 a m Aaym Add (Ra) + (Y) - Ra _ X X X
23 0 a m 4C a m ABRam Add Double (Register) (Ra, Ra®1)+ (Rm, Rm ®1) > Ra, Ra @ 1 X X X
23 1 a m 4D a m AD}a,m Add Double {Indirect) (Ra, Ra®1)+ (Y*,Y* ®©1) >Ra, Ra ®1 X X X
232 3 a m 4F a m ADay,m Add Double (Ra,Ra®1)+(Y,Y®1) >Ra, Ra®1 X X X
#24 0 a m 50 a m CRam Compare (Register) (Ra) - (Rm) X X X

TABLE A-1. INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

Octal Hexadecimal Coding

Format Format Format Instriiction . Operation C ov ¢ccC

#24 1 a m 51 a m Clam Compare (Indirect) (Ra) — (Y*) X X X
#24 2 a m 52 a m CKaym Compare (Constant) (Ra) - Y. X X X
#24 3 a m 53 a m Cay,m Compare (Ra) —.(Y) X X X
25 0 a m 5 a m CDRam Compare Double (Register) (Ra, Ra®1) — (Rm, Rm & 1) X X X
25 1 a m 65 a m CDlam Compare Double (Indirect) (Ra, Ra®1) —(Y*,Y* o) X X X
25 3 a m 57 a m ~ CDaym Compare Double ; (Ra,Ra®1) - (Y,Y @1) X X X
#26 0 a m 5 a m MR am Multiply (Register) (Ra®1) « (Rm) ->Ra, Ra @1 0 0 X
#26 1 a m 5 a m Miam Multiply (Indirect) (Ra®1) « (Y*) >Ra, Ra &1 0 0 X
#26 2 a m 5A a m MK a;y,m Multiply (Constant) (Ra®1) - Y > Ra, Ra @1 0 0 X
#26 3 a m 5B a m Maym Multiply ; (Rao®t) - (Y) >Ra, Ra®1) 0 0 X
#21 0 a m 5C a m DRam Divide (Register) ' " (Ra, Ra @1)/(Rm) - Ra @ 1; remainder > Ra 0 X X
#21 1 a m 50 a m Diam Divide (Indirect) (Ra, Ra ® 1)}/{Y*) - Ra ®1; remainder — Ra 0 X X
#21 2 a m SE a m DK aym Divide (Constant) (Ra, Ra @ 1)/Y — Ra @ 1; remainder -> Ra 0 X X
#21 3 a m 5F a m Day.m Divide (Ra, Ra ®1)/(Y) - Ra @ 1; remainder > Ra 0 X X
#30 0 a m 60 a m ANDRam ' AND (Register) ; {Ra) ©(Rm) > Ra 0 0 X
#30 1 a m 61 a m ANDlam AND (Indirect) {Ra) © (Y*)—>Ra 0 0 X
#30 2 a m 62 a m ANDKay,m AND(Constant) : (Ra) ©Y —~>Ra 0 0 X
#30 3 a m 63 a m ANDaym AND (Ra) ©(Y) - Ra 0 0 X
#31 0 a m 64 a m ORRam OR (Register) (Ra) (Rm) > Ra 0 0 X
#3111 2 m 65 a m ORI am OR (Indirect) (Ra) ® (Y*) > Ra 0 0 X

IOP Instructions

00022I¥1

000221¥1

L=V

TABLE A-1.

INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

Octal Hexadecimal Coding Instruction Operation C 0oV ¢cC
Format Format Format
#31 2 a m 66 a m ORKa,ym OR (Constant) (Ra) ®Y —Ra 6 ¢ X
#31 3 a m 67 a m ORaym OR (Ra) ®(Y) > Ra 0 0 X
32 0 a m 68 a m XORR am Exclusive OR (Register) {Ra) & (Rm) —> Ra 0 0 X
32 1 a m 69 a m XORlam Exclusive OR (Indirect) (Ra) 8(Y*) ~>Ra 0 0 X
32 2 a m 6A a m XORKa,y,m Exclusive OR (Constant) (Ra) 3Y >Ra 0 0 X
32 3 a m 6B a m XORa,y,m Exclusive OR {Ra) ®(Y) ~Ra 0 0 X
33 0 a m 6C a m MSR a,m Masked Substitute (Register) if(Ra®t):n=1;(Rm):n—Ra:n 0 0 X
33 1 a m 60 a m MSta,m Masked Substitute (Indirect) if(Rae@1):n=1;(Y*):n->Ra:n 0 0 X
33 2 a m 6E a m MSK a,ym Masked Substitute (Constant) If (Ra®1):in=1;Y:n—~>Ra:n 0 0 X
33 3 a m 6F a m MS aym Masked Substitute If(Ra®1):n=1;(Y):n—>Ra:n - 0 0 X
#34 0 a m 0 a m CMR a,m Compare Masked (Register) [(Ra) © (Ra ®1)]-[(Rm) O (Ra @1)] 0 0 X
#3 1 a m 71 a m CM!a,m Compare Masked (Indirect) [(Ra) © (Ra@)] -[(Y*) O (Ra @1)] 0 0 X
#34 2 a m 72 a m CMK a,y;m Comparé Masked (Constant) [(Ra) © (Ra @ 1)]-[Y O (Ra ®1)] 0 0 X
#34 3 a m 73 a m CMay,m Compare Masked [(Ra)®(Ra e 1)]-[{Y) O(Rae1}] 0 0 X
#3% 0 -~ - 4 - - I0CR “Input/Output Command Execute (C Cell); 0 = C Cell:15-14 -NA-
3% 1 - m % - m BFl m Biased Fetch (Indirect) (Y*):15—~CC; 1> (Y*):15,14 0 0 X
3B 2 - m 7 - m REX y,m Remote Executea Execute (Y); P + 2 P unless jump -NA-
3% 3 - m 7 - m BF y,m Biased Fetch (Y):15>CC; 1 —>(Y):15,14 0 0 X
#40 0 00 m 80 0 m JERm Jump Equal If CC indicates = or 0; (Rm) > P NA-
#40 0 01 m 80 1 m JNER'm Jump Not Equal if CC indicates #or not 0; (Rm) > P NA-
#40 0 02 m 80 2 m JGER m Jump Greater or Equal 1 CC indicates =>or +; (Rm) —>P -NA-
#40 0 03 m 80 3 m JLSRm Jump Less if:CC indicates <or -; (Rm) >P -NA-
#40 0 04 m 80 4 m JORm Jump Overflow if overflow set: (Rm) —>P -NA-
#40 0 05 m 80 5 m JCRm Jump Carry If carry set: (Rm) ->P -NA-
40 0 06 m 80 6 m JPTRm Jump Power out of Tolerance If power out of tolerance: (Rm) —>P -NA-

8-V

000221¥%1

TABLE A-1, INSTRUCTION REPERTOIRE BY OP-CODE (Cont,)

Octal

Hexadecimal

Coding

Format Format Format Instruction Operation Nl _cc
40 0 07 m 80 7 m JBRm Jump Bootstra'p 2 Selected If bootstrap 2 selected: (Rm) =P -NA-
#40 0 10 m 80 8 m JRm Jump (Rm) >P -NA-
#00 0 11 m 80 9 m JSRm °Jump after Stop Stop; (Rm) ->P NA-
0 0 12 m 80 A m JKSR 1,m Jump. If Key Set — Stop, If key 1 set, stop; (Rm) >P -NA-
then Jump (Register) '
40 0 13 m 80 B m JKSR 2,m “Jump. if Key Set — Stop, If key 2 set, stop; (Rm) —>P NA-
then Jump (Register)
#0 0 14 m 80 C m JSCRm Jump»Suprn;ChanneIBusy —RR If support channel busy; (Rm) >P -NA- -
#40 1 d 81 d Lixd Local Jump P+xd-P NA-
#40 2 00 m 82 0 m JEy.m Jump Equal I CC indicates = or 0; Y - P -NA-
#0 2 01 m 82 1 m JNE y,m Jump Not Equal - If CC indicates #or not 0; Y ->P -NA.
#10 2 02 m 82 2 m JGEy,m Jump Greater than or Equal If CC indicates >or +; Y =P -NA-
#40 2 03 m 82 3 m ILSy,m Jump Less ' If €C indicates <or -; Y »P -NA-
#0 2 04 m 82 4 m JOym Jump on Overflow If overflow set: Y =P -NA-
#40 2 05 m 82 5 m JCym Jump on Carry : if eqtrﬁy set, Y >P -NA-
40 2 06 m 82 6 m JPTy,m Jump.if Power out of Tolerance If power out of tolerance; Y »P -NA-
40 2 07 m 82 7 m JBym Jump if Bootstrap 2 Selected if bootstrap 2 selected; Y =P -NA-
#40 2 10 m 82 8 m Jym Jump o ' Y->P -NA-
#0 2 N m 82 9 m JSym ®Jump after Stop Stop; Y ~>P NA-
40 2 12 m 82 A m JKS 1,y.m °Jump. If Key Set — Stop, then Jump If key 1set, stop; Y >P -NA-
40 2 13 m 82 B m JKS 2,y.m °Jump. H Key Set — Stop, then Jump If key 2 set, stop; Y -P -NA.
#0 2 ¥ m 82 C m JSCy,m Jump Support Channel Busy - RK if support channel busy; Y —>P NA-
#40 3 00 m 83 0 m JE *y,m Jump Equal If CC indicates = or 0; (Y) P -NA-
#40 3 01 m 83 1 m JNE *y,m Jump Not Equal If CC indicates # or not 0; (Y) =P -NA-
#40 3 02 m 83 2 m JGE *y,m Jump Greater or Equal It CC indicates > or +; (Y) »P -NA-

000821I¥T

6-V

TABLE A-1.

INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

Octal Hexadscimal Coding Instruction Operation ov CC
Format Format Format

#40 3 03 m 83 3 m JLS *y.m Jump Less If CC indicates <or -; (Y) >P -NA-
#40 3 04 m 83 4 m Jo *y,m Jump on Overflow If overflow set; (Y) >P -NA-
#40 3 05 m 83 5 m JC *y,m Jump on Carry If carry set; (Y) >P -NA-

40 3 06 m 83 6 m JPT *y,m Jump if Power out of Tolerance If power out of tolerance; (Y) P -NA-

40 3 07 m 83 7 m JB*ym " Jump if Bootstrap 2 Selected if bootstrap 2 selected; (Y) —>P -NA-
#40 3 10 m 83 8 m J*y,m Jump (Y)-»P -NA-
#40 3 11 m 83 9 m JS*y,m °Jump after Stop , Stop; (Y) >P -NA-

40 3 12 m 83 A m . JKS1*y,m ° “Jump. If Key Set — Stop, then Jump if key 1 set, stop; (Y) >P -NA-

40 3 13 m 8 B m JKS 2,*y,m “Jump. If Key Set — Stop, then Jump If key 2 set, stop; (Y) >P -NA-
#40 3 14 m 83 € m JSC *y,m Jump Support Channel Busy — RX If support channel busy; (Y) ->P NA.
#41 0 a m 84 a m XJR a,m Index Jump Register If (Ra) #0; (Ra) - 1 - Ra, (Rm) >P -NA-
#4101 d 85 L xd Local Jump (Indirect) [P+ xd]l -P -NA-
#41 2 a m 86 a m XJa,y,m Index Jump If (Ra) #0; (Ra) - 1 > Ra; Y >P -NA.
#4 3 a m 87 a m Xdaty,m Index Jump If (Ra) #0; (Ra) - 1 ->Ra; (Y) >P NA-
#42 0 a m 88 a m JLRRa,m Jump, Link Register (Register) (P} +1 ->Ra; (Rm) »P -NA-
#42 2 a m A a m JLRa,y,m Jump, Link Register (P)+2->Ra; Y >P -NA.
#42 3 a m 88 a m JLRa*y,m Jump, Link Register (P)+ 2> Ra; (Y) >P -NA-
#43 1 d 8D LiLtMxd - Local Jump, Link Memory (P)+1>P+xD;P+xd+1-P -NA-
#43 2 - m 8E - m JIMy,m Jump, Link Memory P)+25Y;Y+15P -NA-
#43 3 - m 8F — m JLM *y.m Jump, Link Memory P)+2-(Y): (Y) +1>P -NA-

0P Instructions

°Executive Mode Instructions

0T-v

000221%T

TABLE A-1. INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

Octal Hexadecimal - Coding Instruction Operation oV cc
Format Format Format
#4 0 a m 90 a JZRam Jump Zero (Register) If (Ra) = 0; (Rm) >P -NA.
#44 1 d 91 d LIExd Local Jump Equal If €C indicates = or 0; (P) + xd =P -NA-
#44 2 m 92 JZaym Jump Zero If (Ra).=0;Y >P -NA-
#44 3 m 93 JZa*ym Jump Zero If (Ra) = 0; (Y) >P -NA-
#45 0 m 94 JNZR a,m Jump Not Zero (Register) If (Ra) #0; (Rm) ->P -NA-
#45 1 d 95 d LINE xd Local Jump Not Equal If CC indicates #or-not 0; (P) + xd > P -NA.-
#45 2 m 96 IJNZ a,y,m Jump Not Zero If (Ra) #0; Y —»P -NA-
#45 3 -m 97 JNZa*y,m -~ Jump Not Zero If (Ra) #0; (Y) >P -NA-
#46 O m 98 JPR a,m Jump Positive (Register) If (Ra) =0; (Rm) >P -NA-
#46 1 d 99 d LJGE xd Local Jump Greater or-Equal If CC indicates >or +; (P) + xd —>P -NA-
#46 2 m 9A JPa,y,m Jump Positive If (Ra) 20;Y P -NA-
#46 3 m 38 JPa*y,m Jump Positive if (Ra) =0; (Y) »>P NA-
#4710 a m o JNRam Jump Negative (Register) 1 (Ra) <O0; (Rm) P NA-
#4717 1 d 8D. d LILS xd Local Jump Less If CC indicates <or -; (P) + xd—>P -NA-
#41 2 m 9E INaym Jump Negative If (Ra) <0;Y P . -NA-
#41 3 m 9F INa*y,m Jump Negative If (Ra) <0; (Y) >P -NA-
50 0 a m A0 a FSUR a,m Floating Point Subtract (Register) (Ra, Ra®1) — (Rm, Rm ®1) ->Ra, Ra+1; X X
‘ ‘ : Res, > Ra+2, Ra+3
80 1t a m Al FSUla,m Floating Point Subtract (Indirect) (Ra, Ra ©1) — (Y*, Y* ®1) > Ra, Ra+1; Res. > Ra+2, Ra+3 X X
80 3 a m A3 FSU a,y,m Floating Point Subtract ‘ (Ra, Ra®1) — (Y, Y ®1) > Ra, Ra+1; Res. - Ra+2, Ra+3 X X
5. 0 a m Ad FAR am Floating Point Add (Register) (Ra, Ra @1) + (Rm, Rm @ 1) > Ra, Rat1; X X
Res. ~Ra+2, Ra+3
5 1 a m Ab a FAlam X X

Floating Point Add {Indirect)

(Ra, Ra ©1) + (Y*,Y* ®1) > Ra, Ra+1; Res. > Ra+2, Ra+3

000321¥1

I1-Vv

TABLE A-1.

INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

Octal Hexadecimal Coding Instruction Operation ov ¢cC
Format Format Format

81 3 a m A7l a m FA ay,m Floating Point Add (Ra, Ra® 1)+ (Y,Y @1) > Ra, Ra+1; Res. - Ra+2, Ra+3 X X
52 0 a m AB a m FMR a,m Floating Peint Multiply (Register) (Ra, Ra®1) - (Rm, Rm ®1) - Ra, Ra+1, Ra+2, Ra+3 X X
52 1 a2 m A9 a m FMia,m Floating Point Multiply (Indirect) (Ra, Ra@1) - (Y*, Y* ®1) > Ra, Ra+1, Ra+2, Ra+3 X X
2 3 a m AB a m FMa,y,m Floating Point Multiply (Ra, Ra®1) - (Y, Y @®1) »> Ra, Ra+1, Ra+2, Ra+3 X X
88 0 a m AC a m FDR am Floating Point Divide (Register) (Ra, Ra @ 1)/(Rm, Rm © 1) - Ra, Ra+1; Rem. > Ra+2, Ra+3 X X
53 1 a m AD a m FDla,m -Floating Point Bivide (Indirect) {Ra, Ra@1)/(Y*,Y* ©1) > Ra, Rat+1; Rem. = Ra+2, Ra+3 X X-
53 3 a m AF a m FDaym Floating Point Divide (Ra, Ra @)/(Y, Y ©1) - Ra, Ra+1; Rem. - Ra+2, Ra+3 X X
54 0 a m BO a m - LARRam °Load Address Register (Register) (Rm) - ARr -NA-
4 1 a m BT a m LARIam °Load Address Register (Indirect) {Y*) > ARr -NA-
5 3 a m 83 a m LARMay,m °Load Address Register Multiple (Y,....Y+u)>ARr....ARrt+u -NA-
55 0 a m B4 a m SARR a,m Store Address Register (Register) (ARr) > Rm -NA-
55 1 a m B5 a m SARI a;m " Store Address Register (Indirect) (ARr) > Y* -NA-
% 3 a m B7 a .m SARMay,m Store Address Register Multiple {(ARr,...ARrtu) =Y, ... Y+u) -NA-
56 0 a m B8 a m MDRam Muitiply Double (Register) (Ra, Ra®1) - (Rm, Rm @ 1) - Ra, Rat+1, Ra+2, Ra+3 0 X-
56 1 a m B9 a m MDla,m Multiply Double (Indirect) (Ra,Ra®1) - (Y*, Y* ®1) > Ra, Rat+1, Ra+2, Ra+3 0 X
56 3 a m BB a m MD a,y,m Multiply Double (Ra, Ra®1) - (Y, Y @©1) - Ra, Ra+1, Ra+2, Ra+3 0 X

¢I-v

000221v1

TABLE A-1. INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

Octal

Hexadecimal

Coding

Format Format Format Instruction Operation C ov cc

57 0 a m BC a m DOR am Divide Double (Register) (Ra, Rat+1, Ra+2, Ra+3)/(Rm, Rm @ 1) > Ra+2, Ra+3; 0 X X

‘ Rem. - Ra, Ra+1
57 1 a m BD a m DD!a,m Divide Double {Indirect) (Ra, Ra+1, Ra+2, Ra+3)/(Y*, Y* @ 1) > Ra+2, Ra+3; 0 X X

‘ . Rem. —> Ra, Ra+1
87 3 a m BF a m DDaym Divide Double (Ra, Ra+1, Ra+2, Ra+3)/(Y, Y @1) -> Ra+2, Ra+3; 0 X X

Rem. - Ra, Rat]
#60 0 a .- m C0O a m LLRSa,m Litéral_ Logical Right Shift Shift (Ra) right m places, zero fill 0 0 X
#60 1 a m Cl a m LARS a,m Literal Algebraic Right Shift Shift (Ra) right m places, sign fill 0 0 X
60 2 a m €2 a m LLRDam Literal Logical Right Double Shift - Shift-(Ra, Ra © 1) right-m places, zero fill 0 0 X
60 3 a m C3 a m LARD a,m Literal Algebraic Right Double Shift Shift (Ra, Ra ©1) right m places, zero fill 0 0 X
#61 0 a m C4 a m. LALSam Literal Algebraic Left Shift Shift (Ra) left m places, zero fill 0 X X
#61 1 a m C8 a m LCLSam Literal Circalar Left Shift , Shift (Ra) left circular m places 0 0 X
61 2 a m C6 a m LALDam Literal Algebraic Left Double Shift Shift (Ra, Ra ® 1) left m places, zero fill (1] X X
61 3 a m C7 a m LCLD a,m Literal Circular Left Double Shift - Shift (Ra, Ra ® 1) left circular m places 0 o0 X
#62 0 a m €8 a m LSU a,m Literal Subtract ‘ ' (Ra) -m —Ra X X X
62 1 a m C9 a m LSUD a,m Literal Subtract Double (Ra, Ra® 1) -m— Ra, Ra®1 X X X
#62 2 a m CA a m LAam Literal Add ' (Ra) + m— Ra X X X
62 3 a m CB a m LADam Literal Add Double (Ra, Ra®1)+m —>Ra, Ra®1 X X X
#63 0 a m CC a m LLam Literal Load m - Ra 0 0 X
#63 1 a m CD a m LCa,m Literal Compare X X X

10P Instructions

°Executive Mode Instructions

(Ra) -m

00022TI¥%1

€I~V

TABLE A-1.

INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

Octal Hexadecimal Coding . .
Format Format Format Instruction Operation C ov ccC
63 2 m CE a m LMUL a,m Literal Multiply (Rao®1) ‘-m —+Ra,Ra @1 0 0 X
63 3 m CF a m LDIVam Literal Divide {Ra, Ra @ 1)/m - Ra @ 1; remainder — Ra 0 X X
64 3 a m D3 a m 8SU a,y,m Byte Subtract (Ra) - (Y) byte > Ra X X X
65 3 a m D7 a m BAay.m Byte Add (Ra) + (Y) byte > Ra X X X
66 3 8 m DB a m BCa,y.m Byte Compare (Ra) - (Y) byte X X X
67 3 a m DF a m BCXay,m (Ra) - (Y) byte; (Rm) + 1 - Rm X X X

Byte Compare and Index by 1

vi-v

000221%1

TABLE A-1. INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

Octal .. Hexadecimal Coding Instruction Operation C ov cc
Format Format Format ‘ v
COMMAND/CHAIN INSTRUCTION
#10 6 00 00 EC 0 0 ACR Channel Control - Master clear all channels
#10 0 00 04 E0 0 4 ACR4 Channel Control Enable external interrupts, all channels
CCRO4 :
#10 0 00 05 E0 0 5§ ACRS Channel Control Disable external interrupts, all channels
: CCROS5 o '
#70 0 00 06 E0 0 6 ACR 6 Channel Control Enable Class |11 Interrupts, Priorities 2, 3, 4
CCRO6 ’ ' a
#10 0 00 07 E0 0 7 ACR7 Channel Control . Disable Class 111 Interrupts, Priorities 2, 3, 4
CCRO,7 - '
#70 0 a 10 E0 a 8 CCRa8 Channel Control ” Master clear channel a
#19 0 a W4 ED a C CCRa,12 “Channel Control Enable channel a external interrupts
#10 0 a 15 E0 a D CCRa13 Channel Control -~ Disable channel a external interrupts
#70 0 a 16 E0 a E CCRa,14 Channel Control Enable channel g, Class 111, priorities 2, 3, 4
#10 0 a 17 E0 a F CCRa,15 Channel Control Disable channel a, Class M1, priorities 2, 3, 4
COMMAND INSTRUCTION |
#1M1 2 a 02 E6 a 2 ICKay Initiate Input C;hainf , - Y => Channel a Chain Pointer; initiate input chain
#11 2 a 06 E6 a 6 0CKay Initiate Output Chain Y = Channel a Chain Pointer; initiate output chain
#11 3 a m E7 a m WIM a,y,m Write Control Memory (Y) - Channela CMm
#7123 a m EB a m RIMa,y,m Read Control Mémory Channel a (CMm) Y
#16 0 a m F8 a m SiCR-a,m Set and Clear Biscretes Set or clear channel a discrete function
#16 3 a m FB. a m SSTa,y,m Store Status Channel.a Status bits per m =>Y
#1 0 - m FC -~ m SIOP m,y Start lOP@ , - - m:0>10PSR1:12, Y > 1OPPifm=00r1
#1711 2 a m FE a m XIM a,y,m Exchange Control Memory @

Channel a (CMm) —Y; (Y @ 1) - Channel a CMm

00083 T¥1

SI-V

TABLE A-1. INSTRUCTION REPERTOIRE BY OP-CODE (Cont.)

F(::tn::t "0:::::;“" ::::‘:: . Instruction Operation C ov ¢cc
CHAIN INSTRUCTION
#1100 2 a m E2 a m IMay,m Initiate Message Y — CMm; Initiate message activity
#10 3 a 00 E3 a 0 10ay 10 Functiona (Y, Y @1) - BCW, BAP; initiate transfer
#NM 2 0 m E6 0 m LCMK my Load Control Memory Y —>CMm
#11 3 0 m E7 0 m LCM m,y Load Control Memory (Y) >CMm
#12 3 00 m EB 0 m SCM my Store Control Memory (CMm) »Y
#1713 0 00 00 EC 0 O HCR Halt Chain Halt chaining, a even
#73 0 01 00 EC 1 O PR Interrupt Processor Generate chain interrupt, a odd
#73 3 00 00 EF 0 o ZFy Zero Flag 0->Y15,14, s even
#13 3 01 00 EF 1 0 SFy Set Flag 1-Y15,14, a odd
#74 2 00 00 F2 0 0 SIMC 0,y Serial Jump on Met Condition Unconditional Y — CAP; clear flag
#14 2 01 00 2 1 0 SIMC 1y Serial Jump on Met Condition If suppress flag not set, Y > CAP; clear flag
#14 2 02 00 2 2 0 SIMC 2y Serial Jump on Met Condition If monitor flag set, Y -> CAP; clear flag
#15 0 00 m FA& 0 m SFSCm Search For Sync Perform function(s} assigned to m-bits
#16 0 00 m F8 0 m CSIRm Serial Interface Control Set or clear discrete function
#16 3 - m FB - m CSSTy,m Store Status - Status bits per m —~>Y
#11 1 - m FD - m BJmy Bit Jump {Y) > CAP if (CM3):m=1
#1717 2 - m FE - m XCM m,y Exchange Control Memory (CMm) > Y; (Y ®1) >CMm
10P Instructions @m=20r6

no operation unless IOP

TABLE A-2,

INSTRUCTION REPERTOIRE BY MNEMONIC

INSTRUCTION COQE)
MNEMONIC g FORMAT INSTRUCTION
HEX [o f.a m - !
ARITHMETIC
A ay. m 48 a m 2 3 am RX ADD, {Ral+(Y)~>Ra; Set CC, Qv, C
AD ay.m 4F a m 23 3 am RX ADD DOUBLE, (Ra,Ra®1)+{Y YD 1) *>Ra,RsD1;Set CC, OV, C
ADt am 40 a m 23 1 a m R12 ADD DOUBLE, (Ra,Ra@1)+({Y*,Y*D1) > Ra, Ra®1;Set CC, OV, C
"ADR am ['4c a m | Z 0am AR ADD DOUBLE, (Ra, Ra®1)+(Rm Am@1) =~ Ra,Rad1; Set CC, OV, C
Al am 49 a m 2 1t am RI-2 ADD, (Ra)*(Y*) —>Ra:Set CC, OV, C
AK ay.m 4A am 22 a m RK -ADD, (Ral+Y —~Ra; Set CC, OV, C
AR am 48 a m 220 a m RR ADD; (Ra)+({Rm) —>Ra; Set CC, OV, C
8A C ay.m D7 a m 65 3 a m RX ~ BYTE'ADD, (Ral+{Y]byte —Ra: Set CC, OV, C
8su ay.m D3 a m 64 3 3 m “RX ' BYTE SUBTRACT, (Ral—{Y)byte —Ra: Set CC, OV, C
o} ay.m 5F am 27 3 am RX DIVIDE, (Ra. Ra. ® 1)/(Y)—+Ra @ 1; Remainder —>Ra; Set CC, OV
Do a,y.m BF a m | S7 3 a m RX B, ‘Vl‘@ErB@UBLE (Ra;R2+1 Ra+2 Rar3}/(Y.,Y @ 1) = Ra+2,
: Rem~—>Ra,Ra+1; Ser CC, OV
[»]o]] am BD. a m 57 1t a m R1-2 - DIVIDE DOUBLE, (Ra,Ra+1 Ra+2,Ra+3)/(Y*,Y* D 1) >Ra+2,
. . ' Ra+3; Rem—>Ra,Ra+1; Sat CC, Qv
ODR am 8C a m | 57 0 a m RR: - DIVIDE DOUBLE, (Ra,Ra+1 Ra¢2 .Ra+3)/(Rm,Rm @ 1)
) N : L > Rat2,Axe3; Rm*ﬁa.ﬂaﬂ Set.CC, 0V
ot am SDam | 27 t a m A2 | D«I:AV&BE, (Bq,ﬁ;.@ /Y)Y —>Ra D 1: Rermainder—Ra; Set CC, OV
DK aym | SE a m | 27 23 m RK | DIVIDE, (Ra;Aa @ 1)/ Y —~Ra @ 1; Remainder - Ra; Set CC, OV
. DR am SC a m 270 a m RR: k"»DthlE (Ra;Ra @ 1)/(Am) ~>Ras & 1; 'Rermainder ~>Ra; Set CC, OV
DROR a2 " |'® a™8 7] 62 0s 1| RAR | DECREMENTRABY 1, Ral—1 —Ra:SerCC.OV,C
DRTR a 08 a2 8 2 0 a 13 AR ;DE@HEMENT RA BYZ(R:)—Z*H: Set CC, 0V, C
FA y.m AT a m ST 3 a m RX . CFLOA 'NG POINT ADD, (Ra,R3 ® 1)+{Y Y &1) —>Ra.Ra+t;
« | Re—A z,naa.s«cc. ov
FAL- . am AS{a m | . ST 1 a m R&2- | FLGA‘I"ING POINT ADD, (R2.Ra ® 1)+(Y' Ye @ 1) ~RaRa+t;
: i . Ru-’RﬁZ,RﬁQ, Set CC, QV.
. FAR am Ad . a m 5T.-0a m RR | FLOATING POINT ADD, (Ra.Ra @ 1}+(RmAm @ 1) = Ra.Ra+1;
. X i R.*Rt-ﬂ.ﬁv& Set'CC, OV
FfO ay.m AFlsa m | 8333 a m *RX F*LGATING POINT DIVIDE (Rl.Ra @ NNY,Y DN "Ra,ﬁrﬂ:
A i ’ ' O R m"ﬁwz R3+3' Set CC, O
FOIL am ADja m 3 tam RE2 FING:POINT DlVlDE (Ra.Ra @ NHY*Y* D 1) *Ra,
, ; ; . Rem —>Ra+2,Ra+3; Set CC, OV
FOR am ACia m | 53 G am RR G POINT DIVIDE, (Ra;Ra & 1)/(Rm,Rm ® 1) ~»>Ra,
!_ ’ _Rw am —>Ra+2,Ra+3; Set CC, OV
" FM- a,y.m ABi a m 52 3 a m ax FLOATING POINT MULTIPLY, (Ra,Ra @ 1)*(Y,Y & 1) *Ra,
:) i . : . Ratty Ru-'ﬁa*z.ﬂwii Set. CC, Qv . .
Ml am " ASia m 521 a m R1-2 FLOATING POINT MULTIPLY, (Ra,Ra-® 1)*(Y*,y* @ 1)
i : - ‘ —+Ra.Ra+t; Res —>Ra+2,Ra+3; Ser CC, OV
" FMR am A8 a m 2 0Ca m - RR | FLOATING POINT MULTIPLY, (Ra,Ra & 1) (RmAM @ 1)
b N SRR) - =>Rs,Ra+1: Res— Ra+2,Ra+3; Set CC, OV
FSU. O.Y.m A3 s ™ S8 3 2 m AX FLOATING POINT'SUBTRACT, (Ra,Ra @ N={YY ® 1
’ : —>Ra.Ra+1; Res ~Ra+2,Ra+3; Set CC, OV)
FSul am Al a m 8 1T a m A2 FLOATING POINT SUBTRACT, (Ra,Ra ® 1)={Y*.Y* D 1)
; i . ~+fAa.Ratl, Res—> Fa+2 Ra+3; Ser CC, GV
FSUR am A0 a m 0 0¢a m RR FLOATING POINT SUBTRACT, (Ra,Ra & i)—(Rm,Rm 1)
:) -+RaRa+l, Res—Ra+2,Ra+3; Ser CC, OV
IROR a c8 a2 8 02 0 a 10 RR’ INCRE’MENT HA 8Y 1, (Ra)+1 = Ra; Set CC, ov,C
IRTR a - 08 a A | @ 0 8 12 RR . | INCREMENT RA 8Y 2, (Ra}+2 = Ra; Set CC, OV, C
LA aum. CA » i 2 a m RUL LITERAL ADD, (Rai+m —>Ra; Set CC, QV, C
LAD am Ctsm| &€ 3am RL LITERAL ADD DOUBLE, (Ra,.Ra ® 1)+m—>Rs.,Ra @ 1;Set CC, 0V, C
LDiv am CE a m 82 I+ om RL LITERAL DIVIDE, (Ra,Ra @ 1)/m —~Ra @ 1, Rem—Rs: Set CC, oV
tMUL . am CE a m 62 2 a m RL LITERAL MULTIPLY, (Ra @ 1)°*m—>Ra.Ra @ 1; Ser CC
Lsu s,m & =2 m 62 3 a m RL . UTERAL SUBTRACT, (Ral—m -> Ra: Set CC, OV, CC
LSUD am S am 62 1t a m RL UTERAL SUBTRACT DOUBLE, (Ra,Ra @ 1}~m—Ra,Ra®1;Set CC, OV, C
M ay.m 58 a m 28 3 a m RX MULTIPLY, (Ra @ 1)*({Y) *>Ra,Ra @ 1;:Set CC
MD Y AT B8 a m 586 I a m RX MULTIPLY DOUSLE, (Ra,Ra @ 1)*(Y,Y ® 1) +Ra,Ra+1,Ra+2.Ra+3;
SetCC
MO! a,m B9 a m 5 t a m R1-2 MULTIPLY DOUBLE, (Ra.Ra ® 1)*(Y",Y* @ 1] = Ra,Ra+1 Ra+2,Ra+3;
Set CC
\-16 14122000

TABLE A-2. INSTRUCTION REPERTOIRE BY MNEMONIC (Cont.)

INSTRUCT
MNEMONIC HE: UIC I:JN :ZOI:E - FORMAT INSTRUCTION
ARITHMETIC (CONT)
MOR a,m B8 a m 56 0 8 m RR gﬁ:(L:EIPLY DOUBLE, (Ra,Ra ® 11*(Rm,Am @ 1) = Ra,Ra+1,Ra+2,Ra+3;
Mt a,m 59 a m 26 1 a m RI-2 MULTIPLY, (Ra ® 1)*(Y*)—>Ra,Ra ® 1;Set CC
MK a,y,m 5A a m 26 2 a m RK MULTIPLY, (Ra @ 1)°Y ""Ra,Ra @ 1;Set CC
MR am 58 a m 260 a m RR MULTIPLY, (Ra ® 1)*(Rm) ~>Ra,Ra ® 1;Set CC
NR a3 08 a 1 02'0 a 01 RR MAKE NEGATIVE, if (Ra} >0, (Ra)* = Ra: if (Ra) <0, (Ra) Unchanged:
SetCCand C
OCR s 08 a 6 02.0 a 06 RR ONE's COMPLEMENT SINGLE, Bit by Bit Comp of (Ra) = Ra: Set CC
PR 2 08 a O 020 a 00 RR | MAKE POSITIVE, if (Ra) <0, (Ra)’ =* Ra; if (Ra) 20, (Ra) Unchanged;
; ;| SetCC,0V,C)
RR a c3 a 2 02:0 a 02 RR ROUND RA, if (Ra} 20, (Ra)+(Ra+1):15 - Ra; if (Ra) <0,
; . | (Ra) — (Ra+1):15 — Ra; Set CC, OV, C
SuU aym 43 a m 20:3 a m RX SUBTRACT, (Ra)—{Y) = Ra; Set CC, OV, C
SUD aym | 47 a m 2t1!3 a m RX SUBTRACT DOUBLE, (Ra,Ra © 1)-(Y,Y @€ 1) = Ra,Ra @ 1; Set CC, OV, C
SUDI am 45 a m 21’1 a m RI-2 | SUBTRACT DOUBLE, (R2,Ra® 1)—{Y*,Y*@ 1) > Ra,Ra® 1; Set CC, OV, C
SUDR am 4 a m 21 0 a m RR ' | SUBTRACT DOUBLE, (Rs,Ra @ 1}—(Rm,Rm @ 1) =>Ra,Ra @ 1; Set CC, OV. C
Sut am 41 a m 20 1 a m Ri-2 SUBTRACT, (Ral—(Y*) -*Ra; Set CC, OV, C
SUK sym| 42 a m 20 2 a m RK | SUBTRACT, (Ra)-Y = Ra; Set CC, OV, C
SUR &, 0 a m| 2002 m RR | SUBTRACT, (Ra)—{Rm) —>Ra; Set CC, OV, C
TCDR a 08 8 5 02 0 a 05 RR TWO’s COMPLEMENT DOUBLE, (Ra,Ra @ 1)’ > Ra,Ra @ 1: Set CC,0V.C
TCR a 08 a 4 02 0 s 04 RR ° | TWO's: COMPLEMENT SINGLE, (Ra)’ = Ra; Set CC, OV, C
LOGICAL
AND aym | 63 a m | 30 3 a m RX | AND, (ka) © (Y) = Ra; Set CC
ANDl am 61 a m 30 12 m R12 | AND, (Ra} @ (Y*) —*Ra;SetCC
ANDK . aym | 62 a m | 3002 a m RK ' | AND, (Ra) @ Y~ Ra; Ser CC
ANDR am B0 a m 30.0 a -m RR | AND, (Ra} © (Rm)—>Ra; Set CC
OR aym| 62 am} 31'3a m RX OR, (Ra) @ (Y)—>Ra; Set CC
ORIl . am €5 a m 31 1 a m RI-2 Oif, (Ra) @ (Y*) *Ra: Set CC
ORK aym| 686 a m | 3. 23 m AK | OR, (Ra) ® Y —Ra; Set CC
ORR an, 64 a m 31 0 a m RR OR, (Ra) @ (Rm) —+Ra; Set CC
XOR —ay:m | 6B a m 32 3 a m _RX ' | EXCLUSIVE OR, (Ra) ® (Y) -*Ra; Set CC
XOR! a,m. 69 a m 32 1 a m Ri-2 EXCLUSIVE OR, (Ra)’é(Y”)‘*Ra: Set CC
XORK aym | 6Aa m | 2 2.3 m RK EXCLUSIVE OR, (Ra) @ Y ~Ra: Set CC
XORR am 68 a mi{ 32 Casm RR EXTLUSIVE OR, (Ra)@(ﬁm)-’Ra:Set cc
: o ‘COMPARE
BC aym| OB a m | 66 a m RY BYTE COMPARE, (Ra) : (Ylbyte; Set CC, OV, C
BCX aym DF a m 67 3 a m RX BYTE COMPARE AND INDEX BY 1, {Ra) : (Yibyte:
. (Rml+1 = Rm; %2i CC, OV, C
c aym | 83 a m| 24 3 a m RX COMPARE, (Ra) : {Y); Set CC, OV, C
CBR 8 m 1IC a m 07 C a m FR COMPAKE BIT, Bit ¥osition m of (Ra) Tested: Set cC .
co aym | 8 a m} 25 3 8 m RX COMPARE DOUBLE, (Ra,R2 © 1) : {Y,Y ® 1);Set CC, OV, C
cD1 a.m 5 a m)] 25 i s m RI2 | COMPARE DOUBLE, (R3,Ra ® 1) : (Y*,Y* & 1);Set CC, OV, C
CDR am 54 a m 25 " a m F.R CCMPARE DOUBLE, (Ra,Ra & 1) : (RmRm @ 1i; Set CC. OV, C
c am St a m| 24 1t a m RI:2 COMPARE, (Ra) : {Y*); Set CC, OV, C
(04,4 ay.m 52 a m 24 2 a m RK COMPARE, (Ra) : Y;SetCC OV, C
cM ay,m 73 a m 34 3 a m RX COMPARE MASKED, [{Ra) @ (Ra @ 1] : [{Y) © (Ra © 1}]:Set CC
CcMI am 71 a m 3 1 a m ‘RI-2 COMPARE MASKED, [{Ra) © iRa & 1)] : {Y* © (Ra © 1)]:Ser CC
cMK a,y.m 72 a m 4 2 m RK COMPARE MASKED, [(Ra) C (Ra ® 1}] : [Y O (Ra & 1}];Ser CC
CMR am 70 2 m 34 0a m RR COMPARE MASKED, [{Ra) & (Ra ® 11] : HRm) & (Ra @ 1)]:Ser CC
CR a,m S0 s m 28 0 a m RR COMPARE, (Ra) : (Rm}; Set CC, 0V, C
Lc am COs m| 68 1 am RL° | LITERAL COMPARE, (Ra) : m; Set CC, OV, C

14122000 ' A-17

TABLE A-2,

INSTRUCTION REPERTOIRE BY MNEMONIC (Cont.)

INSTRUCTION CODE

MNEMONIC HEX [o f &+ m FORMAT INSTRUCTIUP{
JUMPS
J yam 822 8m |4 210m RK JUMP, Y —p
J *y.m 8 8m |40 3 10 m RX JUMP, (Y) =P
B y.m 2 7m |40 207 m RK JUMP BOOTSTRAP 2 SELECTED, If Bootstrap 2 Selected, Y =P
18 *y.m 8 7 m [40 307 m RX JUMP BOOTSTRAP 2 SELECTED, If Bootstrap 2 Selected, (Y) =P
JBR m 80 7 m |4 007 m AR JUMP BOOTSTRAP 2 SELECTED, If Bootstrap 2 Selected, (Rm) =P
Jc y.m 82 Sm [40 205 m RK JUMP CARRY, If Carry Set, Y =P
& ym 83 5m |40 305 m RX JUMP CARRY, If Carry Set, (Y) =P
R m 80 5 m. |40 005 m | RR JUMP CARRY, If Carry Sat, (Rm) =P
JE v.m 82 Om | 40 2 00 m AK JUMP EQUAL, If (CC) indicatss =, Y =P
JE *v.m 83 0m |4 300 m RX ~ JUMP EQUAL, If (CC) indicates =, (Y) =P
JER m 80 G m |40 000 m RR - JUMP EQUAL, If (CC) indicates =, (Rm) =P .
JGE ym 82 2m |40 202 m AK | JUMPGREATER OR EQUAL, If (CC) indicates 3, Y =P
JGE *ym |8 2 m (40 302 m AX | JUMPGREATER OR EQUAL, If (CC) indicates >, (Y) =P
"JGER m 80 2m |40 002 m RR | JUMP GREATER OR EQUAL, If (CC) indicates >, (Rm) =P
UM ym 8 - m |43 2 -. m RX JUMP, LINK MEMORY, (P)+2->Y; Y+1 =P
dtM ym 8% - m | 483 - m RX. | JUMP, LINK MEMORY, (P)+2—>(Y); (Y}+1 P
AR aym | 8A s m |42 28 m | RAK. | JUMP, LINK REGISTER, (P)+2~ Ra; Y —p
JR a'ym| 88 s m | 42 32 m | RAX | JUMP, LINKREGISTER, (P)+2—Ra; (Y) =P
JLRR am 8 a m | 42:0a m'| RR | JUMP, LINKREGISTER, (P)+1 —Ra; (Rm) =P
TS ym 82 3 m |40 2 03 m AK - JUMP Lsss I# (CC} indicates <, ¥ =P »
s - *ym 83 3 m |40 303 m RX | JUMP LESS, If (CC) indicates <, (Y) »P
SR m 80 3m [40 003 m AR | JUMP LESS; If (CC) indicates <, Rm) =P
N aym | 9E a m |47 2a m AK | JUMPNEGATIVE, If (Ra) <O,Y +P
N aym | 9F a.m |47 3a m AX | JUMPNEGATIVE; If (Ra) <0, (Y) =P
INE ym |82 tm |4 20 m RK | JUMPNOT EQUAL, If (CC) indicates £, Y =P
INE ym 83 1'm |40 301 m | RAX | JUMPNOT EQUAL, If (CC) indicates ¢, (Y).~P
JNER m 80 t m |40 00T m | RR | JUMPNOT EQUAL, If (CC) indicates ¥, (Rm} =&
INR am «C am |47 0a m RR ~ JUMP NEGATIVE, It (Ra) <0, (Rm} =
INZ aym | 96 am |45 23 m RK | JUMPNOT ZERQ, It (Ra) $0,Y =P
INZ a'ym | 97 2 m {46 3 a9 m AX JUMP NQT ZERO, If (Ra) 0, (Y) >P
INZR am |94 am |4 0as m RR JUMP NOT ZERO, If (Ra) # 0, (Rm) = ¢
Jo y.m 82 4m [40 204 m RK JUMP OVERFLOW, If Overflow Set, Y =P
0 ym |8 4m [40 304 m AX JUMP OVERFLOW, If Overflow Set, (Y) =P
JOR m 8 4 m |40 0 04 m RR " | JUMP OQVERFLOW, If Qverflow Sat, (Rm)—P
» aym 9A. a m | 46 2 a2 m 14 JUMP-POSITIVE, If (Ra) 30, Y =P
- P a'yn! 98 a m |46 3 a m ax JUMP POSITIVE, If (Ra) 34, (Y} >
PR am 98 am |46 0a m | RR JUMP POSITIVE, If (Ral >0, (Rm) =P
FT ym 82 6m {40 206 m | Ak JUMP POWER OUT OF TOLERANCE, If Power Out of
. Tolerance, Y =P
T ym 83 6m |40 3 06 m RX JUMP POWER OUT OF TOLERANCE, If Power Out of
Tolerance, (Y) ¢
TR m 8 6 m |40 0 06 m RA JUMP POWER OUT OF TOLERANCE, If Power Qut of
Toterancs, (Rm) —~#
JR m 80 8m [40 0 10 m RA JUMP (Rm) =P
2z aym | 92 am |44 22 m RK [' JUMP ZERO,if (Ra) =0, Y »p
JZ° alyym | 93 a m 4 3 m RX JUMP ZERQ, If (Ra) = Q, (Y) =P
R am 0 am |48 0 m RR JUMP ZERO, If (Ra) = 0, (Rm) =P
1 d 81 d N 4Q 1. d Ri-1 LOCAL JUMP, (P)+d =P
UE d 1 d 4 1 d Rl-1 LOCAL JUMP EQUAL, If (CC) indicates = , (P)+d =P
UGE o 9 d 6 1 d RI-1 LOCAL JUMP GREATER OR EQUAL, If (CC} indicates >, (P}+d —p
A-18 14122000

TABLE A-2. INSTRUCTION REPERTOIRE BY MNEMONIC (Cont.)

INSTRUCTION CQODE
MNEMONIC - FORMAT INSTRUCTION
HEX | o f a m :
JUMPS (CONT) :
[} d) 85 d 41 - 1 d RI-1 LOCAL JUMP INDIRECT, ({P)+d) =P
U d 8D d 43 1 d RI-1 LOCAL JUMP, LINK MEMORY, (P)+1 = P+d; (P)+d+1 =P
LLs d 90 d 47 1 d Ri-1 LOCAL JUMP LESS, if (CC) indicates <, (P)+d =P
LINE 4 9§ d 45 1 d RI-1 LOCAL JUMP NOT EQUAL, if (CC) indicates ¥, (P)+d =P
XJ aym | 8 a m 41 2 m RK INDEX JUMP, if (Ra ¥ 0, (Ra)—1 —*>Ra, Y =P
X3 3’ym| 87 m 4t 3 m RX INDEX JUMP, If (Ra) ¥ 0, (Ra)—1 ~Ra, (Y) P
XJR am 84 a m 41 O m RR INDEX JUMP, If (Ra) ¥ 0, (Ra)—1 -*Ra, (Rm) —=f
SHIFTS
ALD ay.m 3A am |16 2 a3 m RK ALGEBRAIC LEFT DOUBLE SHIFT, Shift (Ra,Ra ® 1) Left
‘ : Y:5-0 Places, Zaro Fill; Set CC, OV; Sign Not Retained
ALDR . am 38 a m 16 0 a2 m RR ALGEBRAIC LEFT DOUBLE SHIFT, shift (Ra,Ra @D 1) Left .
{Rm): 50 Places, Zero Fiil; Set.CC, OV; Sign Not Retained
ALS ay.n 32 am 14 2 a m RK ALGEBRAIC LEFT SINGLE SHIFT, Shift (RA) Left
* 'Y¥:5-0 Placss, Zsro Fill; Set CC, OV Sign Not Retained
ALSR am 30 am 14 s m RR | ALGEBRAIC LEFT SINGLE SHIFT, Shift (RA) Left
(Rm);5-0 Places, Zero Fill; Set CC, OV: Sign Not Retained o
ARD ay.m 2E.a m 13 2.3 m RK ALGEBRAIC RIGHT ‘B;OU;BLE ‘SHIFT, Shift (Ra, Ra @ 11 Right
Y:5-0'Places, Sign Fill; Set CC '
ARDR = am 2 s m|130a m RR | ALGEBRAIC RIGHT DOUBLE SHIFT, Shift (Ra,Ra @ 1) Right
(Rm); 5-0'Places, Sign Fill; Set CC :
ARS aym 28.a m 11T 2a m - RK ALG%E,‘BBAIORLG-HT SINGLE SHIFT, Shift (Ra) Right
. . Y:5-0Placss, Sign Fill; Set'CC
ARSR am 24 am |11 0a m RR ALGEBRAIC RIGHT SINGLE SHIFT, Shift (RA) Right
| " (Rm):5-0 Places, Sign Fill; Set CC
cLD aym | 3E a m 177 2 2 m AK ‘CIRCULAR LEFT DOUBLE SHIFT, Shift (Ra,Ra ® 1) Left
: ' Circularly 'Y:5-0 Places; Set CC; Sign Not Retained
CLDR am I am | 17 0a m RA CIRCULAR LEFT DOUBLE SHIFT, Shift (Ra,Ra @ 1) Left
- : Circuiarly (Rm):5-0 Places; Set:CC; Sign Not Retained
CLS 3.9,m 36 a m 1 2 a 'm RK CIRCULAR LEFT SINGLE SHIFT, Shift (Ra) Left
: Circularly Y:S-Q Places; Set. CC; Sign Not Retained
CLSR. am 34 a m 1S 0 a m RR CIRCULAR LEFT SINGLE SHIFT, Shift (Ra) Left
Do Circularly (Rm):5-0 Places; Set CC; Sign Not Retained
LALD am CE a m 61 2 a m RL LITERAL ALGEBRAIC LEFT DOUBLE SHIFT, Left Shift
. {Ra,Ra @ 1) n Places, Ztro“Fill:‘Set CC, 0V Sign Not Retained
LALS am C4 a m 61 03 m RL LITERAL ALGEBRAIC LEFT SINGLE SHIFT, Left Shift (Ra)
° : n Places, Zero Fill; Set CC, OV; Sign Not Retained
LARD. am C3I a m 60 3 a m RL LITERAL ALGEBRAIC RIGHT DOUBLE SHIFT, Right Shift
T - . - o (Ra.Ra:@ 1} ‘a Places, Sign.-Fiil;Set-£C .
LARS: am CTl a m 60 1 a m RUL LITERAL ALGEBRAIC RIGHT SINGLE SHIFT, Right Shift (Ra)
, : n Places, Sign Fill; SetGC =~
LCLD. am C7T a m 61 3 a m RL LITERAL CIRCULAR LEFT DOUBLE SHIFT, Circular Left Shift
(Ra, Ra @ 1) n Places: Set CC; Sign-Not Retained
LCLS a.r!; CS a m 68T 1 2 m /L LITERAL CIRCULAR LEFT SINGLE SHIFT, Circular Laft Shift (Ra)
nPlaces: Set CC; Sign Not Retained
LLRO am C2 am 60 2 a m RL LITERAL LOGICAL RIGHT DOUBLE SHIFT, Right Shift {(Ra,Ra £ 1)
n Places, Zera Fill; Set CC; Sign Not Retained
LLRS am CO a m 60 Ca m RU LITERAL LOGICAL RIGHT SINGLE SHIFT, Right Shift {Ra)
n Places, Zero Fill; Set CC; Sign Not Retained
LRO ay.m 2A a m 12 2 a m RK LOGICAL RIGHT DOUBLE SHIFT, Shift (Ra.Ra D 1)
Right Y:5-0 Places, Zero Fiil; Set CC; Sign Not Retained
LROR am 282 a m 12 0a m AR LOGICAL RIGHT DOUBLE SHIFT, Shift (Ra,Ra T 1)
R Right (Rm):5-0 Places, Zero Fill; Set CC; Sign Not Retained
LRS ay.m 2 a m 10 2 a m RX LOGICAL RIGHT SINGLE SHIFT, Shift (Ra) Right
Y:5-0 Places, Zero Fill; Set CC; Sign Not Retained
LRSR am 20 a m 10 0 a m RA LOGICAL RIGHT SINGLE SHIFT, Shift (Ra) Right
{Rm):S-0 Places, Zero Fill; Set CC, Sign Not Retained

14122000

A-19

TABLE A-2,

INSTRUCTION REPERTOIRE BY MNEMONIC (Cont.)

MINEMONIC INSTRUCTION CogE FORMAT INSTRUCTION
HEX | o f a m A - .
LOADS/STORES :
8L ay.m 03 m 003 am RX BYTE LOAD, Selected (Y) byts - Ra Bits 0-7; Set CC
BLX aym 13 m 043 am ‘A% BYTE LOAD AND INDEX BY 1, Selected (Y) byte = Ra; Bits 0-7;
: (Rmi+t +Rm ifa ¥ m. Set CC
8S aym | 23 m 103am AX B8YTE STORE, (Ra) Bits 0-7 <> Selectsd Y byte
BSX aym | 33 a m 143 am RX | BYTE STORE AND INDEX BY 1, (Ra) Bits 7-0 > Selected
» Ybyte; (Rm)+1 =Rm
L sym- | 07 & m 03I a m RX LOAD; (Y) = Ra; SstCC
LD aym | 0B 3 m 23am RX | LOADDOUBLE, (Y, Y® 1) ~Ra.Ra B 1; Set CC
Dt am am| ®@tam R1-2 | LOAD DOUBLE, (¥Y*,Y* @ 1) ~Ra, Ra @ 1:Set CC
LOX aym | 18 am| 083am AX | LOAD DOUBLE AND INDEX BY 2, (Y, Y @ 1) >Ra,Ra ® 1;
: . - (Rm)*+2—>Rm-if a2 $m; Sev cc
LDXt am 19 a m 081am RI-2 | LOAD DOUBLE AND INDEX BY 2,(Y. ¥ @ 1) >RaR D 1;
g | (Rmi+2 >Rm:if 3+ m; SetCC’
u am ‘05 am | O tam. R1-2 | LOAD, (Y*) >Ra:SetCC
LK ay,m 06 a m: 01 2am RK: 'LOAD, Y —~Ra; Set.CC
LL am ¢ am 630 s m AL | LITERAL LOAD, m—>Ra; Set CC
W . aym | OF a.m 33am AX | LOAD MULTIPLE, (Y ... Y+m—al >Ra...RAm.
LPR* a__ | OC a4 | 030208 | RR |LOADPREGISTER, (Ra)~>P
LR am 04 am| Or0am RR | LOAD. (Rm) ~>Ra; Set CC
X aym | 17 am S3am RX | LOAD AND INDEX 8Y 1, (Y) = Ra; (Rm)+1 >Rmitatm: Set CC
X am | 18 am 051t a m | RE2 |LOADANDINDEX BY 1, (Y*)—>Ra; (Rm)+1 —>Rm if 2 % m; Ser CC
S T T eym [2 am 13 am | RX |STORE, (Ral>Y
‘SARY am 8BS s m $51am R1:2 | STORE ADDRESS REGISTER, (ARr) > Y*, *. (Ral: 5.0 Designata ARr
SARM aym | 87 a m | 553 a m | RAX | STORE ADORESS REGISTER MULTIPLE, (ARr ... ARr+u)
: , i AN : L Y ... Y+u: (Ral: 5@ = Word Designator, {Ra): 138 = Count
' SARR. am. B4 a m S50 a m- RA ,;_sfea»e ADDRESS REGISTER, (ARr) - Rm; (Ra): 5-0 Designate ARr-
. SCR . a oc a3 | 030s 03 AR | STORE REAL TIME CLOCK LOWER, (RTC Register); 15-0 > Ra; Set CC
SCRD 3 ¢ 2 O 030 s 1S RR | STORE REAL CLOCK DOUBLE, (RTC Register) —Ra, Rs @ 1 SetCC
SO aym [2B am| 123am RX | STORE DOUBLE; (Ra,Ra ® 1) >Y, YD 1
sot am 2 am 21 am RI-2. | STORE DOUBLE, (Ra,Ra @'1) > Y*, Y* ®1
SOX sym | 3B a m 83am AX 'STORE DOUBLE AND INDEX BY 2, (Ra.a® 1) >, Y ® 1
] B 4 . ; © | (RmI+2>Rm
SDX1 am 39 am Btam RI-2° | STORE DOUBLE AND INDEX BY 2 (na.na@u-w- Y @1
. . . (Rm}+2—+Rm R
I B am 2Z-a m 1MTtam R1-2 STORE, (Ra} >Y* -,
M- aym | 2F a m 133am AX | STORE MULTIPLE, (Ra..RAml =Y, ..Y+m—s
SMC a 10 a 4 040 a 04 RR | STORE MONITOR CLOCK, (Mon)»ﬁa "
SSOR a oc a1t 030 s 01 RR | STORE STATUS REGISTER 1, (SR1) = Ra; Set CC
 SSTR » oc 2 2 03 0 a 02 AR STORE STATUS REGISTER 2, (SR2) —Ra; Set CC .
sX aym | 37 a m 1S3 a3 m RX ' | STORE AND INDEX BY 1, {Ra) < Y; (Rmi+1 =Am
sX1 am 3’ am 51am RI-2 | STORZ AND INDEX BY 1, (Ral = Y~; (Rml+T > Rm
sz y.m IF - m 73 -m RX | STGRE ZEROS,0—Y
sz m 3 - m 171 - m RX STORE ZEROS. 0 —~Y*
SUPPORT CHANNEL.
Jsc y.m 82 Cm 402 1am AK | JUMP SUPPORT CHANNEL BUSY, If Suppart Channel Busy: Y =P
JsSC. ‘y.m 83 Cm 40 3 14 m RX JUMP SUPPORT CHANNEL BUSY, If Support Chaanel Busy; (Y) =P
JSCR m 80' Cm 40 0 14 m RR JUNIP SUPPORT CHANNEL BUSY, If Support Ch_annel Busy (Rm) —f
sCi a 8 a 7 020 a 07 RR - SUPPORT CHANNEL INPUT, Support Channel Input — Ra; Set CC
sCio am 0D a m 3t1am RR SUPPORT CHANNEL 1/Q, (Ra} —Support Chann.s Buffer, m =+ 1/Q
Code, Set Channef 8usy
A-20 14122000

TABLE A-2, INSTRUCTION REPERTOIRE BY MNEMONIC (Cont.)
MINEMQONIC INSTRUCTION CODE FORMAT INSTRUCTION
j HEX | of a m

STACK AND QUEUE i

QGT ay,m 1€E a m 072 a m HYB QUEUE GET TOP, (Y) —>Ra; if (Y) = O then P+2 =P: If (Y) 20
then P+3 =P, UY) = Y; 1£ ((Y) = O then Y =Y @1
QP8 aym | 16 a m 052a m HYB | QUEUEPUT BOTTOM, (Ra) (Y ® 1), (Ral =Y © 1.0 (Ra)
QT aym | 12 a m “2a m HYB | QUEUEPUT TOP, (Y] =>(Ral. (Ra) = Y: 1f (Y) = O then (Ra) >Y & 1_
SGT aym 1A a m 062a m HYB STACK GET TOP, (Y) = Ra; (Y) 30 then ((Y)) =Y and P+3 =P,
.) (Y) = Q then P+2 =P
SPT ay.m 02 a m 002 a m HYB STACK PUT TOP, (Y) = (Ra), (Ra) =>Y
MISCELLANEQUS
BF y.m 7 - m 33 -m RX BIASED FETCH, (Y): 18 >CC:9; 1 —~(Y):15,14; Set CC
BF1 m 7 - m 31 -m Al-2 BIASED FETCH, {Y*):1§ = CC:9: 1 = (Y*)15, 14; Set CC
CNT s 10 a 2 04 C a Q2 RR COUNT ONES, Number of 1°’sin Ra—"Ra @1
ER s oC a o 030 a g0 RR EXECUTIVE RETURN, Generate interrupt (P)+1 ~Ra
MS ay.m 6F a m 333 am RX :MASK‘E’D:SUBSTWUTE. If (Ra ® 1):n=1,(Y): n = Ra: n;Set CC
MSI am | .60 @8 m 33 1a m R#-2 MASKED SUBSTITUTE, If (Ra @ th:n=1, (Y*):n —Ra:n;Set CC
MSK aym | 6E a m 332a m RK MASKED SuBST ITUTE If (Ra @ 1):n=1; Y:n >Ra:n; Set CC
MSR a,m 6C a m Bo0am RR . MASKED:SUBSTITUTE, if (Ra @ 1):n=1;(Rm):n —Ra:n, SctCC
NOP d=1 81 d 401 d ' RI-1 'NO OPERATION, {Software} (P)+1 —>pP
NOPD . d=1 81 d 401 d Ri-1 ‘NO OPERATION DOUBLE, (P} + 1 =P, (P) + 1P
d=1 81’ d 401 o Ri-1) -
REX y.m € - m 352 - m RK 'REMOTE’EXECUTE, Execute (Y); (P)+2 =P Unless Jump
RVR 2 1 & 1t 040 a 0O RR REVERSE REGISTER, Reverse Order of Bits in Ra, Set CC
S8R am 14 a m 050a m RR" SET BIT, 1 == 8it Position m.of (Ra); Set CC
SFR a 10 & 3 040 a 03 "R 'SCALE FACTOR, Shift (Ra, Ra ®1) Left Until (Ra): tS# (Ra}:14;
~ Shift Count—>Ra @ 1 + 1; Count= 31 for all Zeros orail-Ones

ZBR am 18 a m 060 a m AR ZERO BIT, 0 —* Bit Position m of (Ra); Set CC

14122000

-~trn o——

A-21

TABLE A-2. INSTRUCTION REPERTOIRE BY MNEMONIC (Cont.)
MNEMONIC: INSTRUCTION CODE FORMAT INSTRUCTION
HEX: | o . f a m
COMMAND/CHAIN INSTRUCTIONS
_ACR '€0|0 0 |,70 o oo |00 RAR{ | CHANNEL CONTROL, Master ciesr ail channels
"ACR 4 EO| 0 4 {70 0 00 ' H'R-g i CHANNEL CONTROL, Enable externsi interrupts, ail channels !
ccR 04 ; || NI Pl !
ACR] ; 1EQ10 5: 170 0 00 AR : CHANNEL CONTROL, Disabie externsi interrupts, ullchanncll j
1 . B 1
ccR 05 | |’ B I 1] !
ACR 8 ;E0{0 6:|:70 o ooj06: RA} |: CHANNEL CONTROL, Ensble Cless O Interrupts, Priorities 23,4
CcR 06 i Y o REEA | E—
acR__7_ | |iEojo 7i}i70 a o007 n-a%{‘ ' CHANEL C@NTROL, Disable Class IIL.Interrupts, Priorities 2,34 =
CcR 07 | | U]« S ea———— S . '
[. i : C e e
CCR a8 | 'EQ a2 8 70 0 a 10 IRR«Q !IC'HANNEL CONTROL, Master clesr channel s
CCR 2,12 SEO a C’ j7o 0 s 14§ 'R‘Rf CHANNELCQNTRGL, Enable channel a external interrupts -
CCR 813 'EO!s D:{,70.0 8 -15 RA| V,CHANNEL CGNTRQL. Disable channel a external interrupts’
CCR a4 fE’B s E |70 ‘o o 18 RR l CHANNEL CONTF!QL. Enable: channol 8, Class ITT interrupts,
T T s -, ipriorities 23,4 7 :
CCR __a15) | 80 a F'|'70,0 a_ 17| IARI |!CHANNEL CONTROL, Disebie cmnnuac:mmnmemms.
- — IR 1 'priorities. 23,4
! v@uaemsmwewen -
ik wy ; |iEs]a 2] 71 T2 7a 02 |AK| |iinTiIATE INPUT CHAIN, Y>> Channel a Chain Pointer;
i i g‘ e ‘ : 1 Initiste Input Chain - ‘
ocK-~ ay | |'E6]s &, {i7v.2 a (06] |RK| J INITIATE OUTPUT CHAIN, Y = Channei a Chain Poumr,
: ; . ! : : ' | i {nitiats Output Chain |
RIM: ay.m: EB m |72 .3 a ‘m | RX: 1 | READ: GONTROL, MEMORY Channei & (CMm) =Y i
. t i N B ! s k i
SICR am FBia m }i78.0 s im AR : SE?I‘ANB ‘CLEAR:DISCRETES, Set or clear channei s discrete ;
R o i poo '} tunction permdwgnator N
SioP my ; [‘FEl- m ['77 0 - |m | |RK | | START IOP, m:0~10P SR1:12, Y > OP P if m = Qor 1 1
SST . ay,mi _;F! a mi|i786 3 s ;m i AX: | STORE STATUS, Channel a Status-its.per m =Y !
WM. aymi | €7 e mi |7t .8 &.rm | IARX{ || WRITE:CONTROL MEMORY, (Y)~>Channei s CMm o
B i o HRE) i
XM aym | PEla mo li77o2 s im] |Rxi ! EXCHANGE CONTROL MEMORY, m=20r6, Channel 3 (CMm) —Y; |
: R SRR | 1__" | {¥.@ 1) ~>Channeia cMm '
INSTRUCTION
B4 Tmy | FO|TTen LiTPTT T Tl [RK] | BIT JUMP, (Y) S CAP if (CM3):m s 1 »
CSIR m rglo mi| 76 0 00 mi |[RR SERIAL INTERFACE CONTROL, Set or ciear discrete function
' k i ! . . ; per m designator)
CSST ym FB|- mi|i78°3 . ‘m, RX | STORE STATUS, Status bits per m =Y
HCR ec o oi {73 :0 000 00| |RRA HALT CHAIN, Hait chaining, 3 even
M a,y,m 'Ez a mi ;70 .'72 a '‘'m : RK INITIATE MESSAGE, Y = CMm: Initiate message activity
|10 ay iE3 ja O ; 70138 00} IRX} 10 FUNCTION 3, (Y,Y @ 1) —>8CW, BAP; initiate transfer '
PR |E(: 1 0l 730 01 00, AR INTERRUPT PROCESSOR, Generate chain interrupt, 8 odd
LM my &7 |0 mi|!7h 3 00 mi| |AX LOAD CONTROL MEMGAY, (Y) ->CMm
LCMK my 8 |o m||i7t 2 00.m il |Ax LOAD CONTROL MEMORY, Y = CMm
SCM my | | EB|O mi 72,3 00 m.:| |Rx STORE CONTROL MEMORY, (CMm} =Y
SF y IEF |1 0:[;73:3 ot 00| |RX SET FLAG, 1 = Y:15, 14, 2 odd |
SFSC m 'F4 10 mi|:75 ' 0 00im: RR SEARCH FOR SYNC, Perform function(s) assigned to m-bits i
SIMC 0Oy k20 0! | 74" 2 00001 RK SERIAL JUMP ON MET CONDITION, Unconditional Y —CAP; :
:] N i
: 1t) ! ! clear flag !
'SIMC 1,y \F211 01 |'74 2 01 00;| |AK| || SERIAL JUMP ON MET CONDITION, If suppress flag not set, :
; i N b Y = CAP; clear flag : i
'SIMC 2y iF2|2 o} {7472 o2 [0gif :RK SERIAL JUMP ON MET CONOITION, If monitor fiag set, !
:) 2 S Y > CAP; clear flag b
| XCM my FEl- m{1|7712 - m!| |RAX EXCHANGE CONTROL MEMORY, (CMm) ~Y: (Y ® 1) >CMm |
iZF y !s_s_ 0 oli73:3 o0 ool| Imx ZERQ FLAG, 0 —>Y:15, 14, 8 even :

A-22

14122000

TABLE A-2. INSTRUCTION REPERTOIRE BY MNEMONIC (Cont.)

MNEMONIC! INSTRUCTION CO0E__ | ¢opmat INSTRUCTION
HEX [o t o m ’ :
EXECUTIVE MODE :
cLOCKS
OCIR. oc - F {03 0- 17| RR; DISABLE RTC OVERFLOW INTERRUPT ,
OCR oc - 9ifo3 0. 11 \nal DISABLE REAL TIME CLOCK REGISTER i
oM oc.- B:/ 03 0~ 13 'RR DISABLE MONITOR CLOCK REGISTER AND MONITOR =
: i : B CLOCK INTERRUPT :
ECIR '0C:- E;] 03.0 - 16/ (RR! ENABLE RTC OVERFLOW INTERRUPT :
ECR oc{- 8|03 o0 - +10'| 'RR. | ENABLEREAL TIME CLOCK REGISTER AND INTERRUPT
LCR s ‘oc.e[7,/ 03°0 &« 07 AR LOAD REAL TIME CLOCK LOWER, (Ra) = RTC Register Lower: 15 . 0
LCRD | & | oc'a_ C'| 030 s 14 GLE LOAD REAL TIME CLOCK DOUBLE AND ENABLE ,
. | . . COUNT, (Rs,Ra @ 1) =RTC Register, Enabie Count Up i
LEM a | | oca Al03 0 as!l12:] RR! | LOAD AND ENABLE MONITOR CLOCK, (Ra) = Monitor Clock ;
; S I : Y B ' Register; Enabie Count Down !
RBT R o8_-. E!| 02_o0 - |16 N sal | RESET BIT TIMER, 0> Bit Timer '
. 'JUMPS .
O a | | 08.a D1{02707s "151| iRR| |:DIAGNOSTIC JUMP, (R13) = up I
kST, vm | | 82 A m||e 2 12 m{| iAK! ||JUMPAFTER STGP KEY 1 SET, if Key 1 Set, Stop; ¥ = ¢ !
flxst1 *vm 83 la mi| 40,3 12 m] iax! { JUMP AFTER STOP KEY 1 SET, If Key 1 Set, Stop; (Y) =P f
dKS2 .vam | | 82/B mi| 402 13| mi| [AK: | JUMPAFTERSTOP KEY 2 SET, If Key 2 Set, Stop; Y =P -
‘JKS2 *ym ‘83 i_B'm’ 403 131 m | ‘AX! | _JUMPAFTER STOP KEY 2 SET, If Key 2 Set, Stop; (Y} =P :
JKSR1 m 80 A m| 4 o0 12/ m! RR| JUMP AFTER STOP KEY 1 SET, If Key 1 Set, Stop; (Rm) ~>P :
JKSR2 ' m 80 8 mi |4 0 13fm | &R JUMP AFTER STOP KEY 2 SET, If Key 2 Set, Stop; (Rm) =P !
s ym 82 9 m|40:2 11 m :] 'RK{ | JUMP AFTER STOP, Stop; Upon Restart, Y =P :
38 *vy.m 83 9 mi140:3 11 m | :RX{ |!JUMPAFTER STOP, Stop; Upon Restart, (Y) =P |
‘JSR m 80_9 mi)| 40 C 13 _m: | ‘RR| | JUMP AFTER STOP, Stop: Upon Restart, (Rm) =P PR
LOADS/STORES
LARI " "am | | 87 & m| 5471 & m:| .RI2 | LOAD ADDRESSREGISTER, (Y*) =ARr: {Ra):50 Designate ARr T
LARM aymm | B3 s m | 543 jm:| RX - LOAD ADDRESS REGISTER MULTIPLE, (Y. .. Y+u) ’
:) : : I P ; {==ARr ... ARr+u; (Ra):50 = Word Desigaator, (qu):13-8¢Coum !
{LARR am 80 ; s mi 64 0 s Em ; RR I LOAD ADDRESS REGISTER, (Rm) = ARr; (Ra):5-0 Designates ARr |
P y:m AF 1 mi .07 3 - [im:| RX] | LOADPSW, (Y,Y+1,Y+2) =P Register, smusa.g.smt ;
: S ! i o] | and Status Register 2, Respectively !
LPY m Di- m!1067 1 - .:m'| [RI2i" | LOADPSW, (Y®,Y*+1,Y*+2) P Register, Status aoqm-n,
i ! il i i i [|[iand StatusRegister 2, Respectively .
(LSOR s ocis 5/| 03 0 s | O5; RR ' LOAD STATUS REGISTER 1, (Ra) SR f
58 } |roca_el|03:0al'08l| ‘AR |'LOADSTATUSREGISTERZ,(Ral=>SRZ - !
MISCELLANEOUS:
lock | | 74|- -!] 380 - - :| ‘RR| || INPUT/OUTPUT COMMAND, Executs (C Call); 0 —>C Cail:15,i4 |
] s | |08|s 3]|]02|0a osg “RR|{ || INITIATE PROCESSOR INTERRUPT, Set Processor Interrupe &]'
IPLF i | o8|- c{]'o2|0 - 14l AR fmn'uu. PROGRAM LOAD FAILED, Set IPLF Discrete :
8T | o8]- eil'o2lo . 1i17i] immi | seTeir iNnDICATOR - f

14122000 A-23

APPENDIX B

GENERAL REFERENCE TABLES

2

16
33
67
134

286
536
1 073
2 147
4

294
8 589
17 179
34 359

68 719
137 438
274 877
549 755

14122000

[
DO OO DI =

131
262
524

048
097
194
388

ki
554
108
217

435
870
741
483

967
934

869

738

476
953
906
813

128

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

226
592
184
368

736
472
944
888

TABLE. B-1.

OO TP WO I

2"n

1.0
0.5
0.25
0.125
0.062
0.031
0.015
0.007

0.003
0.001
0.000
0.000

0.000
0.000
0.000

10.000
0.000

0.000
0.000
6.000

0:000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000

000

000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

25

125
562
281
140
070
035

517
258

629

814

907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

25

625
312
156
578

789
394

697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

25
125

062
531
265
632

316
158
579
289

644
322
161
580
290
645
322
661
830
415
2017
103

551
275
637
818

5
25
625

812

406
203
101
550

775
387
193
596

298
149
574
2817
643
321
660
830

915
957
978
989

25

125
562
781

390
695
841
923

461
230
615
307
653
826
913
456

228
614
807
403

25

625
312
656
828

914
957
478
739
869
934
4617
733
366
183
091
545

- POWERS OF TWO.TABLE

25
125

062
031
515
257

628
814
407
703

851
425
712
856

25

625
812
906
453
226
613

806
903
951
475

25

125
562
281

640
320
660
830

5
25

625

312 65
156 25
078 125

TABLE B-2. HEXADECIMAL CONVERSION TABLES

The following tables aid in converting hexadecimal * HEXADECIMAL DECIMAL
values to decimal values, or the reverse. 1000 4096
2000 8192
3000 12258
4000 16384
. 5000 20480
Direct Conversion Table 6000 2457
This table provides direct conversion o ecimal an 8000 - 32768
hexadecimal numbers in these ranges: 9000 36864
HEXADECGIMAL DECIMAL - A;OQQ 4}9’,91(50
i BOGO 450506
000:to F¥F 0000 to 4095 000 49152
For numbers cutside the range of the table, add the gg gggﬁ
following values to the table figures: F000 61440
©o 1 2 3 4 5 6 1T 8 9 A B € D E F
00_ | 000D 0001 €002 0003 0004 0005 0006 0007 G008 0009 6010 0011 0012 0013 0014 0015
01._ (- 0018 007 0018 - 0019 0020 0921 - 0022 0923 0024 - 0025 0026 0027 0028 0029 0030 . 0031
02.. 6032 - 0033 0034 0035 0036 0037 0038 0039 = 0040 0041 0042 - 0043 (0044 - 00435 0046 0047
- 03_ 0048 0049 . G050 -GO3 1 0052 0053 : 0054 - 0055 . 0056 : 0057 0058 0059 0060 - 0061 - 0062 0063 |
04_ 0084 0065 0086 0067 0068 k 0071 - 0072 0073 0074 0075 0078 0077 0078 0079
05_ 0080 0081 0082 0083 0084 0087 0088 0083 0099 - 0091 0092 0093 0094 0095
06 0096 0097 0098 0099 . @100 | 0103 - - 0104 0105 0106 0107 0108 0109 0110 0111
07_ | 0112 0113 01 1’4 0115 0116 B 8 0119 0‘1‘;2'0' 0121 0122 0123 0124 0125 0128 0127
08.. | 0128 0123 0130. 0131 01 32 01 0135 - 0136 0137 0138 G139 0140 Cl41 0142 0142
09_. 0144 . 0145 0148 0147 0148 0151 0152 0153 0154 0155 0156 0157 0158 0159
0A._ | 0160 0161 0162 01683 - 01 64 0l¢ 166 0167 0168 0189 0170 0171 0172 3173 0174 0175
OB_ {0176 (_)177 0178 0179 0180 0181 0182 . 0183 0184 0185 01568 OQl87 0188 0183 0190 0191
0C_ 0182 0193 0194 0195 0196 6199 0200 - 0201 0202 0203~ 0204 0205 0206 0207
0D_ 0208 0203 0210 0211 0212 0215 0216 0217 0218 0219 0220 0221 0222 0223
OE_ 0224 0225 0226 0227 0228 0231 0232 - 0233 0234 0235 0236 0237 0238 0239
OF_ | 0240 0241 0242 0243 0244 0247 0248 0249 0250 0251 0232 0253 0254 02335
10_ | 0258 0257 0258 0259 0280 0283 0234 0265 0266 0267 0268 0269 0270 0271
11, 0272 0273 0274 0273 (276 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 0288 0283 0290 0291 0292 0295 0296 0297 0298 0299 0300 0301 0302 0303
13_ 0304 0303 0308 0307 0308 0311 0312 0313 0314 0315 0316 0317 0318 0319
14_ 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 03335
15_ 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16_ 0352 0353 0354 0355 0356 0357 0358 0359 0560 0381 - 0362 0363. 0364 0365 0366 0367
17_ 0368 03‘69 0370 0371 0372 037 037 0375 0378 0377 0378 0379 0380 0381 0382 0383
18_ 0384 0325 0388 0387 0388 0389 0390 0391 0292 0393 0394 0395 0396 0397 0398 0399
19_ 0400 04C1 = 0402 0403 0404 0405 0406 0407 0408 0409 0410 041} 0412 0413 0414 0415
1A 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1B_ 0432 0433 0434 0435 0436 - 0437 0438 0439 0440 0441 0442 0443 0444 0445 0448 0447
1C_ 0448 0449 0450 0451 0452 0433 0434 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D_ 0464 0465 0468 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E_ 0480 0481 0482 0483 0484 0485 0485 0487 0458 0489 0480 0491 0492 0493 0494 0495
1F_ 0496 0497 * 0498 0493 0500 0501 0302 0503 0504 0505 0506 0507 0508 0509 0510 0511
L4
B-2 14122000

TABLE B-2. HEXADECIMAL CONVERSION TABLES (Cont.)

E

0 1 9 3 4 5 8 7 8 9 A B c D F
20_ | 0312 0513 0514 0515 0518 0517 0518 0519 0520 0521 0522 0523 0524 03525 0526 0527
2]_ | 0528 0529 0530 0531 0532 0533 0531 0535 05368 0537 03538 0539 0540 05341 0542 0543
22_ | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 03554 0555 0556 0357 0558 0559
23_ | 0560 0561 0562 0563 0564 0565 0366 0567 0568 0569 0570 0571 0572 0573 0574 0575
24_ | 0576 0577 0578 0579 0580 0581 0582 0583 0384 0585 0586 0587 0588 0589 0390 0591
25_ | 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26_ | 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27_ | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 ~ 0636 0637 0638 0639
28_ | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0631 0652 0653 0654 0655
29_ | 0656 0657 0658 0655 0660 0661 08662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A_ | 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B_| 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 700 0701 0702 0703 |
2C_| 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 716 0717 0718 0719
2D_| 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 732 0733 0734 0735
2E_| 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F_ | 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
30_ | 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 _ 0780 0781 (782 0783
31_ | 0784 0785 0786 0787 0788 0783 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32_ 1 0800 0801 0802 0803 0804 0805 0806 0807 0808 08NS 0810 0811 0812 0813 0814 0815
33_ | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34_ | 0832 0833 0834 0835 0835 0837 0838 0839 0840 0841 0842 0843 0844 0845 08468 0847
35_ | 0848 0849 0850 0851 0852 08353 0854 0855 -~ 0856 0S57 0858 0859 0860 0861 0562 0863
36 | 0864 0865 (866 0857 0865 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37_ 1 0880 0831 0882 0883 0884 0885 0885 0887 0888 0889 0830 (0891 - 0892 0893 0894 0895
38_ | 0806 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39_ | 0512 €913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
SA_ | 0928 0020 0930 0931 0932 0933 0934. 0935 0936 0937 0938 0939 . 0040 0941 0942 0943
3B_ | 0944 0945 0846 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C_ | 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 6975
3D | 0976 0977 0978 0979 0980 0981 .0952 0983 0984 0985 0986 0987 0988 0989 0990 ~199]
SE_| 0992 0993 0954 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
SF_| 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
| 61 2 3 i 5 6 1 8 9 A B € D E _F
40_ | 1024 1025 1026 1027 1028 1020 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41_ 1 1040 1041 1042 1043 1044 1045 1046 1047 1048 - 1049 1050 1051 1052 1053 1054 1055
42 | 1036 1057 1058 1059 1060 - 1081 ~ 1062 1063 1064 1065 1066 1067 =~ 1068 1069 1070 1071
43_. | 1072 1073 1074 1075 1076 1077 1078 <1079 - 1050 1081 1082 1083 . 1084 - 1085 1086 1087
| 44_ .| 1088 1089 1090 1091 1092 1093 1094 ‘1095 1096 1097 1098 1093 1100 1101 1102 1103
45. | 1104 1105 1106 1107 1108 1109 1110 1111 " 1112 1113 1114 1115 1116 1117 1118 .1119
46_ | 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47_] 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48_ | 1152 1153 1154 1155 1156 1157 1158 1159 - 1160 1161 1162 1163 1164 1165 1166 1167
49_ | 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A_ | 1184 1185 1186 1187 1188 1189 1190 1191 ~ 1192~ 1193 1194 1195 1196 1197 1198 1199
4B_ | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
‘4C_ | 1216 1217 1218 1219 1920 1221 1222 1223 1224 1223 1226 1227 1228 1229 1230 1231
4D_ | 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E_ | 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1258 1260 1261 1262 1263
4F_ | 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
50_ | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 © 1293 1294 1295
S1_ | 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 -1310 1311
52_ } 1312 1313 1314 1315 1316 - 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53_] 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54_ | 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55_ | 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56_ | 1376 1377 1378 1379 1380 1381 1382 1383 1354 1385 1386 1387 1388 1389 1390 1391
57_ | 1392 1393 1394 1395 1396 1397 1395 1399 1400 1401 1402 1403 1404 1405 1406 1407
S8_ | 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
S9_ | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1438 1437 1438 1439
SA_ 1 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
SB_ | 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
SC_ | 1472 1473 1474 1475 1476 1477 1478 1479 1450 1481 1482 1483 1484 1485 1486 1487
SD_ | 1468 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
SE_ | 1504 1505 1508 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
SF_ | 1520 1321 1522 1323 1524 1525 1528 1527 1528 1529 1530 1531 1532 1533 1534 1535
14122000 B-3

TABLE. B<2.” HEXADECIMAL ‘CONVERSION TABLES. {€ont.)

0 1 2 3 4 5 8 7 8 9 A B C D E F
60 [1536 1337 1538 1539 1340 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
81_ |1552 1533 1534 1355 1556 1557 1558 1559 1560 1561 1362 1363 1564 1565 13668 1567
62 |1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63_ 1581 1583 1586 1587 1588 1589 1390 i591 1592 1393 1594 1595 1596 1397 1598 1599
64_ |1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65_ 1616 1617 1618 1619 1620 1621 1622 1823 1624 1625 16268 1627 1628 1629 1630 1631
66_ 1632 1633 1634 1635 1638 1637 1638 1639 1640 1641 1642 - 1643 1641 1645 1648 1647
67 |1648 1649 1830 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68]1664 1665 1656 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69.. 1680 1681 1682 1683 1684 16885 1686 1687 1688 1689 1690 1691 1692 1693 1694 1693
6A |1696 1697 - 1698 1699 1700 1701 Y702 1703 1704 1705 1706 1707 1708 1700 1710 1711
6B_ [1712 1713 1714 1715 176 1717 1718 1719 1720 1721 1722 1923 1724 1795 1728 1727
6C_ |1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 174 1742 1743
6D_ | 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1736 1757 1758 1759
6E_ |1760° 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 - 1771 1772 1773 1774 1775
6F_ |1776 1777 1778 1779 1780 1761 1782 1783 1784 1785 17868 1787 1788 1789 1796 1791
70_ 11792 1793 1794 1795 1796 1797 1798 1789 1800 1801 1802 1803 1804 1805 180G 1507
71 11808 1809 1810 1811 1812 1813 1814 1815 1818 1817 1818 1819 1820 1821 1822 1623
72 11824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73. 11840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1835
74 |1856 1857 1838 1859 1860 1661 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75. 11872 1873 1874 1875 1876 1877 1878 1879 1850 1881 1882 1883 1884 1885 1888 1887
76_ 11888 1889 1800 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1S01 1902 1903
77. 11904 1§05 1906 1807 . 1808 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78- 11920 1921 1922 1923 1924 1925 1926 1927 = 1928 1929 1930 1931 1932 1933 1934 1935
- 11936 1957 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
TA_ 11952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1985 1966 1967
7B_ |1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1681 1982 1963
TC_ 11084 1985 1936 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 |
TD_ logoo. 2001 2002 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2013
CTE_ 9016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 0027 2028 2029 2030 2031
TF_ 192032 2033 2034 2055 2036 2037 2039 2040 2041 2042 2043 . 2044 2045 2046 2047

0o 1 2 3 4 3 6 1 8 9 A B C D E F
80 | 2048 2049 { 2052 20 g)56 2057 2058 2059 2060 2061 2062 2063 |
81_ |2084 2065 2068 - 2088 207 2073 2074 2075 2076 2077 2078 - 2079
82. |2080 2081 2084 2069 2090 2091 2002 2093 2094 2093
83_ 2096 2097 2100 21 2105 2106 2107 2108 2109 2110 2111
84_ |2112 2113 2116 2. 120 2121 2122 9123 2124 2135 . 2128 2127
85_ |2128 2129 2132 213 134 2133 36 2137 2138 2139 . 2140 2141 2142 2143 |
86_ |2l44 2145 2148 2149 2150 2151 2152 2153 2154 2155 2136 2157 2138 2159 |
87_ |2i60 2161 2164 2165 2166 2167 2168 2169 2170 2171 - 2172 2173 2174 2175
88_ |2176 2177 25 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89_ |2192 2193 94 2195 2196 - 2197 2198 92199 9200 2201 2202 2203 2204 23205 2206 2207
8A_ 2208 2209 2210 2211 92212 2913 92214 2215 92216 2217 2218 2219 2220 2221 92222 2223
8B_ |2224 2925 2226 2227 2228 9239 2930 2231 2232 2233 92234 9235 2236 2237 2238 2239
8C_ | 2240 2241 2242 92243 2244 2245 2246 2247 - 2248 2249 2250 2251 2232 2353 2254 2233
8D_ |2256 2257 2258 2239 2260 2261 2262 9263 . 2261 2285 9266 92267 2268 3269 2270 9227)
8E_ 2272 9273 2274 2275 2276 2277 2278 2279 2280 2281 2282 92383 2284 2385 238G 29K7
8F_ [2288 2289 2200 2291 2292 2293 2294 2295 2296 2297 9298 2299 2300 2301 2302 2303
90 | 2304 2305 2306 2307 2308 2309 92310 2311 2312 2313 92314 2315 2316 2317 2318 2319
91 19320 2321 2322 2323 9324 2325 9326 2327 2328 92329 92330 2331 2332 2333 2334 92335
92_ 12336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2330 2351
(98- | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 92362 2363 2364 2365 2366 2367
94_ 12368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
85 |2384 2385 2386 2387 9388 238y 2390 2391 = 2392 9393 2394 2395 2396 2397 2398 2399
96_ 12400 2401 2402 2403 2104 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97_ 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2428 2427 2428 92429 2430 2431
98_ 192432 2433 2434 2435 2436 2437 2438 2439 9440 2441 2442 2443 02444 2445 2446 2447
99 12448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2163
9A_ 10464 2465 2466 2467 2468 2469 2470 2471 2470 0473 2474 9475 2476 2477 2478 9479
9B | 2480 2481 2482 2483 2484 0485 2486 2487 2458 2489 2490 2491 2492 2493 2404 2495
9C_ 12496 2497 2498 2499 2500 2301 92502 2503 2504 2505 9508 2507 2308 9309 2510 2511
9D_ 19512 2513 2514 2515 9516 9517 9518 9519 9520 9321 9522 9523 9524 90525 2526 2327
9E_ [o3508 9329 2530 2531 9532 2333 2334 2535 2536 9537 9538 9539 93540 9541 0542 9343
OF. |2544 2545 2546 2547 9518 2519 9350 2551 2532 9553 9554 9555 9356 2537 2558 9559
B-4 14122000

TABLE ‘B-2." HEXADECIMAL CONVERSION TABLES (Cont.)

0 1 2 3 4 5 6 7 8 9 A B Cc D E F

AO_ [2560 2561 2562 2563 2564 2565 2566 2567 92568 2569 2570 2571 9572 9573 2574 9575
Al_ |2576 2577 2578 2579 2580 2581 2582 92583 2584 2585 2586 92587 9588 2589 2590 2391
A2_ |2592 2593 2594 2505 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 9608 2607
A3_ |2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
Ad4_ |2624 2625 2628 2627 92628 2629 9630 2631 2632 928633 2634 2635 2636 2637 2638 9639
A5_ |2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 92651 2652 92653 92654 9655
A6_ {2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 92668 26689 92670 92671
AT_]2672 2673 2674 2675 2676 92677 2678 2679 2680 2681 92682 2583 - 2684 2685 2686 2687
A8_ 12688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9_ 12704 2705 2708 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA_ 12720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB_ 12736 2737 2738 2739 2740 2741 2742 92743 2744 92745 92746 2747 2748 2749 2750 2751
AC_ {2752 2753 2754 2755 2756 2757 92758 2759 760 2761 2762 2763 2764 2765 2766 2767
AD_ (2768 2769 2770 2771 2772 2773 2774 2775 97176 2777 2778 2779 2780 2781 92782 2783
AE_ 12784 2785 2786 2787 2788 2789 9790 2791 2792 2793 2794 92795 2796 2797 2798 9799
AF_ 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 92813 2814 2815
BO_ (2816 2817 2818 2819 2020 2821 92892 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bl_ 12832 28633 2834 2835 2836 2837 92838 92839 2840 2841 9842 2843 2844 2845 92846 2847
B2_ 12848 2849 2850 2851 2852 - 2853 92854 2855 2856 2857 2858 2859 2860 2861 90862 2863
B3_ (2864 2865 2366 2867 2868 2869 2870 2871 2872 2873 92874 09875 92876 ©877 2878 9879
B4 (2880 2851 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 92893 2894 2893
B5_ [2896 2897 2898 2899 2000 2001 2902 9903 2904 2905 - 2908 9907 2908 9900 2910 92311
B6_ 12612 2913 2914 2915 2916 2917 2918 29i9 . 2920 2921 2922 2923 2924 92925 9926 9927
B7_ 12928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8_ 19944 2945 2946 2947 2948 2049 2950 2951 2952 92953 2951 92055 2956 2057 2958 2959
BO_ 192960 2961 2062 2963 2964 2965 2966 2967 2068 2969 2070 2971 2972 2973 2974 2975
BA_ 192976 2977 2978 2979 2980 2981 2962 2983 2984 2085 92986 9987 2988 2989 2990 2891
BB_ 12992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 43007
BC_ 13008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD_ 13024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE_ 13040 3041 3042 23043 3044 3045 3046 3047 3045 3049 3050 3051 3052 3053 3054 3055
BF_ | 3036 3057 3038 30359 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
0 1 2 3 4 5 ;) 7 8 9 A B C D E F
| CO- [3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 - 3083 3084 3085 3086 3087
'Cl_ 13088 3089 3090 3091 <3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2_ 13104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3_ | 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 - 3131 3132 3133 3134 3135
C4_ 13136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5_ | 3152 3153 3154 3155 3136 3157 3158 3159 3160. 3161 3162 3163 . 3164 3165 3166 3167
Cé_ | 3168 3169 3170 3171 3172 3173 3174 3175 31768. 3177 3178 3179 3180 3181 - 3182 = 3183
C7_ | 3184 3185 3186 3187 3188 3189 3190 3191 3162 3193 3194 3195 3196 3197 3198 3199
C8_ [3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
Co_ [3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3926 3227 3228 3229 3230 3231
CA_ |3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB_ [3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3961 3262 3263
‘CC_ | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 8276 3277 3278 3279
CD. 13280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE_ 13296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF_ | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DO_ | 3398 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
DI_ 13344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2_ | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3_ (3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3356 3387 3388 3389 3390 3391
D4_ | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5_ 13408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6_ | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7_ | 3440 3441 3442 3443 3444 3445 3446 3447 3418 3449 3450 3451 3432 3453 3454 3435
D8_ | 3456 3457 3458 3459 3160 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
DS_ | 3479 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA_ | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB_ | 3504 3505 35068 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC_ 1 3500 3501 3522 3523 3524 3525 3526 3527 3508 3529 3530 3531 3532 3533 3534 3535
DD_ | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE_ [3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3508 3567
DF. | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
14122000 B-5

TABLE B-2. HEXADECIMAL CONVERSION TABLES (Cost.)

D

0 1 2 3 4 6 7 8 9 A B c E F

Fo_ | 3381 3385 3586 3587 3583 3590 3591 3592 3593 3594 3595 3596 3397 3598 3599
El_ | 3600 3601 3602 3603 3604 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E>_ |3616 3617 3618 3619 3620 3622 3623 3624 3625 3628 3627 3628 3629 3630 3631
E3_ |3632 3633 3631 3635 3636 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4_ | 3648 3649 3650 3651 3652 3634 3655 3656 3657 3658 3659 3660 3661 3662 3663
Es_ | 3664 3665 3666 3667 3668 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6. | 3680 3681 3682 3683 3684 3686 3637 3688 3689 3690 3691 3692 3693 3694 . 3693
E7 13696 3697 3698 3699 3700 3702 3703 3704 3705 3708 3707 3708 3709 3710 3711
k8 |3712 3713 3714 3715 3716 3718 3719 3720 3721 3722 3723 3724 3725 3728 3727
E9_ | 3728 3729 3730 3731 3732 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA_ | 3744 3745 37468 3747 3748 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB_ | 3760 3761 3762 3763 3764 766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC_ | 3776 3717 3778 3779 3780 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED_ | 3792 3793 3794 3795 3796 3798 3799 3800 3801 3802 3803 . 3804 3805 3806 3807
" EE_ | 3808 3809 3810 3811 3812 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF_ | 3824 3825 3826 3827 3828 3830 3831 3832 3833 3834 3835 5838 3837 3838 3839
FO_ | 3840 3841 3842 3843 3844 3846 3847 3848 3840 3850 3851 3852 3853 3854 3855
FI_ | 3856 3857 3858 3859 3860 3862 3863 3864 3865 3866 3867 3868 3569 3870 3871
F2_ | 3872 3873 3874 3875 3876 3878 3879 3880 3881 3882 3883 3884 3885 23888 3887
F3_ | 3888 3889 3890 3391 3892 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F4_ {3904 3905 3906 3907 3908 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5_ | 3920 3921 3922 3923 3924 3926 3927 39928 3929 3930 3931 3932 3933 3934 3935
F6_ | 3936 3937 3938 3939 3940 3942 3943 3944 3945 3948 3947 3948 3949 3950 3951
F7_ | 3952 3953 3954 3955 3956 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8_ | 3968 3969 3970 3971 3972 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
FO_ [3984 3985 3956 3987 3988 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA_ | 4000 4001 4002 4003 4004 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB_ | 4016 4017 401§ 4019 . 4020 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC_ | 4032 4033 4034 4035 4036 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD_ | 4048 4049 4030 4051 - 4052 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE_ | 4064 4065 4066 4067 4058 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF_ | 4080 4081 4082 4083 4084 4065 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
B-6 ‘ 14122000

TABLE B-2. HEXADECIMAL CONVERSION TABLES (Cont.)

Hexodecimal ond Decimal integer Conversion Table

_ HALFWORD HALFWORD
BYTE ' BYTE BYTE BYTE
BITS: 0123 4567 0123 4567 0123 4567 0123 4567
Hex Decimal Hex Decimal Hex Decimal Hex | Decimal Hex | Decimol | Hex | Decimal | Hex| Decimal | Hex | Decimol
0 0l 0 0] 0 0] o0 0 0 0]o o!lo 0 0 0
1 268,435,456 | 1 16,777,216 1 1,048,576 1 65,536 1 4,096 { 1 256 -4 1 16 ! 1
2 53,670,912 1 2 33,554,432 2 2,097,152 2 131,072 2 8,192) 2 512 | 2 32 2 2
3 805,306,368 | 3 50,331,645 3 3,145,728 3 196,608 3 12,288 1 3 768 | 3 438 3 3
4 11,073,741,824 | 4 ¢7,108,864 4 4 194,304 4 262,144 4 16,384 | 4 1,024 | 4 &4 4 4
5 [1,342,177,280 | 5 83,826,080 | 5 5, 242 880 | 5 327,680 5 20,480 | 5 1,280 | 5 80 5 5
6 |1,610,612,7567 6 100,443,298 [6,291,456 [373,216 6 24,576 & 1,336 | 6 96 [[
7 1,879, 04&}_]_9__2 7 117,440,512 7 7,340,032 7 458,752 7 28,672 | 7 1,792 1 7 112 7 7
8 2,147,483,648 8 134,217,728 8 8,388, 608 8 524,288 8 32,768 | 8 2,048 | 8 128 e 8
¢ 12,415,919,104 | & 150,994,944 | 9 9,437,184 9 589,624 9 36,864 | 9 2,304 | 9 144 9 9
A 12,684,354, 5661 A 167,772,160 A 10,455,760 A 655,360 A 40,960 | A 2,560 | A 160 A 10
B 12,952,750,015 B 184,547,278 B 11,534,336 B 720,895 B 45,056 | B 2,814 B 176 [11
C 13,221,225, 472 | C QCI,o-é 592 C 12,582,912 o 786,432 C 42,152 | C 3,072 | C 192 C 12
D [3,485,08G,823 01 U 218,103,808 D 13,631,488 O 85],968 D 53,242 | D 3,328 | D 208 D 13
E 13,758,096,324 | ¢ 234,381 ,024 3 14,680,064 E 917,504 E 57.344 | £ 3,584 | E 224 E 14
F 14,006,531,8407 ¢ !25],658,216 F 15,728,640 | F 983,040 F 61,420 | F 3,840 |'F 240 F 15
8 - 7) 5 4 3 2
TO CONVERT HEXADECIMAL TO DECIMAL EXAMPLE To convert integer numbers greater than the copacity of
—_— table, use the techniques below:
V. Locate the column of decimel numbers corresponding to Conversion of
the left-most digit or letter of the hexodacimel; select Hexadecimol Value D34 HEX‘A‘DECI‘MAL 1T DECIMAL
frem this column omd record the aumber that corresponds
to the position of the hexadecimal digit or letter, 1. D 3328 Success:ve cumuletive multiplication from left to nahr,
it
2. Repeot step 1 for the next (second from the left) | 2.3 " adding units position.
position. ; Excmple: D345 =380, D= 13
3. Repeot step 1 for the units (third from the left) 3. 4 4) 16
position. a 208
P X i % =43
4. Add the nurters selecred from the table to form the 4. Pecimol 8389 3 5y
decimal number. - %16
3376
) 4 = 44
TO CONVERT DECIMAL TO HEXADECIMAL - 3580
EXAMPLE
1. (o) Select from the table the highest decimol number Conversion of DECIMAL TO HEXADECIMAL
that is equcl to o: less than the nuraber to be con- Decimal Volve 3380 — - ——
verted. ' P . .
(b) Record the hexcdecimal of the column containing - 1. D 3328 Pivide ond gollect the remainder in raverse-order
the selected number. : s
2 H i 0= X
(c) Subtract the selected decimal from the number to 2 Exomple 3380 10 16
be converted. 2.3 48 16 | 3380 remainder
2. Using the remainder from step- l(c) repeot all of step 1 4 16 |2” \
1o develop the second position of the hexodecimel \
(ond a remainder) . 3. 4 _ 4
3. Using the remainder from step 2 repeat all of step | to . 3380y9=D34,,
* develop the units position of the hexedecimal . 4. Mexadecimal D34

4. Combine terms to form the hexodecimal number.

BOWERS OF 16 TABLE

Example: 268,435,456, = (2.68435456 x 10%) ¢ = 1000 0000, = (107) 4
16" n

1

16

256

4 096

65 538

1 048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

1 099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

Ll 152 921 504 606 84S 976

Docimol Voluves © 14122000

CEORITSvoNGMAWN~O
0oy N
TMOoON® >

\

B-7.

TABLE B=2. HEXADECIMAL CONVERSION TABLES (Cont.)

Hexodecimal and Decimal Fraction Conversion Toble

HALFWORD
BYTE BYTE
BITS 0123 4567 0123 4567
Hex | Decimal | Hex Decimal Hex Decimal Hex Decimal Equivalent
.0 .| .0000 .00 .0000 0000 .000 0000 0000 .0000 .0000 0000 0000 0000
.1 0625 .01 .0039 0625 | .001 44)4 3 o) 1525 8789 0625
2 .1259 .02 .0078 1250 002 8828 3051 7578 1250
.3 .1875 .03 L0117 1B75 NORE] 3242 .000 4577 6367 1875
.4 .2500 .04 .0156 2500 .004 7656 .0000 6103 5156 2500
.5 3125 .05 .0195 3125 .G05 2079 .0000 7629 3945 3125
b .3750 .06 .0234 3750 .00% 6484 .0009 9155 2734 3750
7 .4375 .07 .0273 4375 007 0398 L0001 0581 1523 4375
.8 | 5000 | C3 | 0312 5800 | 008 -0001 7207 03123000
.9 .5625- .02 . 5625 1 .00% .0001 3732 9101 5625
A .6250 . OA . 00A 0001 5 7890 6250
.B L6875 05 | .0a8 . 6679 6875
.C .7500 0C .00C 5468 7500
D |_.8125 | .t 05D 4257 6125
.E .8750 OE .00E 3046 8750
.F 9375 JOF .00F 1635 9375
} 2 3 4
TO CONVERT . ABC HEXADECIMAL TO DECHVAL To convert fractions beyond the capacity of table, use techniques below:
Find .A" in position 1 .6250
Find .03 in position 2 .0429 6875 HEXADECIMAL FRACTION TO DECIMAL
. . - ; o Convert the: hexodecimal fraction to its decimal equivalent using. the same
Find .00C in position 3 technique os for integer numbers. Divide the results by 16™ (n is the
.ABC Hex is-equal to. - .6708 9843 7500 number of froction positiens).
. Excmple: .BA7 = .540771y9
TO CONVERT .13 DECIMAL TO HEXADECIMAL BA714 = 21510 540771
. ; 163 = 4096 4096[2215 . 000000
1. Find .1250 next lowest to .1309
subtract =.1250 = . 2Hex
2. Find .0039 0625 next lowestto .0850. 0006 AL ERACTION-T LA
3. Find 0009 7656 2509 .0010 9375 0000 Collect integer parts of product in the order of calculation.
~:0089 : 2f5@@ =004 Exomple: .5408y9= .8A7)4
¢, Find .0001 0681 1523 4375 0001 1718. 7500 0000 . Y

3. 13 Decimal is

~.0001 0681 1523 4375 = .0007
.0000 1037 5976 5625 = .2147 Hex

PP

tely equal to

8 -

14122000

ASCII CODE MATRIX

TABLE B-3.

14122000

L

SP

%

DLE

DC1

DC2
DC3
DC4

NAK

SYN

ETB
CAN

EM

SUB

ESC

FS

GS

RS
us

NUL
SOH

STX

ETX
EOT
ENQ
ACK

BEL

BS

HT

LF

VT

FF

CR
SO
SI

10

11

12
13

14
15

B-9/B-10

APPENDIX C

PSEUDO-OPS, COMMANDS, AND REQUESTS

14122000

TABLE C-1. MACRO 20/14 PSEUDO-OPS

Assembly Start
Assembly End
Source Library Input

Symbol Definitions Statements

External Modifier

Address Counter Name Declaration
Literal Label Declaration

Equate

Assign Symbol

Define Format Symbol

Address Counter Control Statements
Modify Address Counter

Set Address Counter

Align Address Counter

MACRO Definition Statements
MACRO Entry

Unconditional Branch

MACRO End

Conditional Assembly Statements

Conditional/Multiple Statement Assembly

Conditional Block Assembly
Output Control Statements

Output Disposition
Source Statement Output

Listing Control Statements

Generate Message

Identify Assembly Output
Start New Page

Space Listing

Print Assembly Source
Print Unassembled Sources
Print MACRO Expansion
Print Cross Reference

*ULTRA
END
COPY

ENTRY, LINK
AC

LIT

EQU

SET

FORM

RES, BSS
ORIG
EVEN, ODD

MACRO, NAME
GO, EXIT

DO
IFx/ELSEC/END

OPTIONS
PUNCH

NOTE

TITLE

EJECT

SPACE

LIST, NLST
LISTC, NLSTC
LISTM

LISTX

TABLE C-2.

AL
™
GO
LVL
LvC
ST
EN
X
RX
PTR
MT.
Cs
CN
Lvw
ES1
ES2
DSs1
DSs2
B1
B2

AN/AYM-18 FIELD PACKAGE COMMANDS

AUTOLOAD
TAPE TO MEMORY
START EXECUTION

L/V LINK TEST

L/V CATALOG/CHECKSUM TAPE
AN/AYK-14(V) SELF-TEST
SUPPORT CHANNEL (SRA)
TRANSMITTER

RECEIVER

REWIND CASSETTE

MEMORY TO TAPE

CLEAR SCRATCH AREA OF CASSETTE
COMPUTER NUMBER

L/V WRITE TEST

ENABLE STOP KEY 1

ENABLE STOP KEY 2

DISABLE STOP KEY 1

DISABLE STOP KEY 2

DISABLE BOOT 2

ENABLE BOOT 2

14122000

RD
S1

S2

p

PG
CH
LLJ
MD
BP
BO

S

MC
LVRR
LVM
LvVT
X
ENTER KEY

TABLE C-3. AN/AYM-18 LAB PACKAGE COMMANDS

GENERAL REGISTER DISPLAY

STATUS REGISTER 1 AND CONTENTS

STATUS REGISTER 2 AND CONTENTS

P REGISTER AND CONTENTS

PAGE REGISTER AND CONTENTS

CHANNEL DISPLAY

LOCATION LAST JUMP

MEMORY DISPLAY

ENTERS AND ENABLES/DISABLES BREAKPOINT P
ENTERS AND ENABLES/DISABLES BREAKPOINT OPERAND
STOP/STEP

MASTER CLEAR

DISPLAY L/V CODE

MODIFY L/V CODE

COPY L/V PROGRAM TO TAPE

CHANGE

+

BACKSPACE KEY -

PTA
SD
D

14122000

ADVANCE TAPE ONE FILE
SOFTWARE/ERROR DISPLAY
FILE DISPLAY

TABLE C-4. CCU REQUESTS

Computer Number Definition

ST-n.
UL-~n.
U7-n.
UV-n.

START
MICROMEMORY LOAD
MICROMEMORY LOAD, 7-TRACK
MICROMEMORY CHECKSUM VERIFY

Display Mode Requests

SM-.
HO-.
RD-.
MD-a,
RM-.
PD-a,
CH-a.
FD-a.
BD-a.,
CD-a.

SOFTWARE MODE
HEX/OCTAL
REGISTER DISPLAY
MEMORY DISPLAY
ROLIL MEMORY
PAGE DISPLAY

CHANNEL CONTROL MEMORY DISPLAY

FILE DISPLAY
BINARY DISPLAY
C FILE DISPLAY

AN/AYK-14 Tape and Printer Requests

Al-.
AT-,
VI-.
MT-a,b.
PM-a,b.

AN/AYK-14 MEMORY LOAD
AN/AYK-14 MEMORY LOAD, 7-TRACK
VERIFY AN/AYK-14 MEMORY
MEMORY TO TAPE

PRINT MEMORY

AN/AYK-14 Operation Requests

MC-.
Control R
Control S
AS-.
RJ-.

P -a,
AD-a.,

+

S1-d.
S2-d.
CR-r,d.
CP-a,d.
CB-n

CM-a,dy,...,d,.

MASTER CLEAR
RUN

STOP/STEP

AUTO STEP ENABLE/DISABLE
RUN UNTIL JUMP
ENTER INTO P

ENTER INTO AD

AD+1

AD-1

ENTER INTO S1

ENTER INTO S2

CHANGE REGISTER
CHANGE PAGE

CHANGE BLOCK

CHANGE MEMORY

14122000

FM-a, b, d.
EP-a.
OP-a
BP-a
BO-a.
EP-P.
DB-P.
EB-0.
DB-O0.
ES-1
DS-1
ES-2
DS-2
Bl-.
B2-.
DI-R.

- EX-i.
PE-.

TABLE C-4. CCU REQUESTS (Cont.)

FILL MEMORY

EVEN PARITY

ODD PARITY

ENTER INTO BP

ENTER INTO BO

ENABLE BREAKPOINT ON P

DISABLE BREAKPOINT ON P

ENABLE BREAKPOINT ON OPERAND ADDRESS
DISABLE BREAKPOINT ON OPERAND ADDRESS
ENABLE STOP KEY 1

DISABLE STOP KEY 1

ENABLE STOP KEY 2

DISABLE STOP KEY 2

BOOT 1 SELECT

BOOT 2 SELECT

DISABLE REAL-TIME CLOCK INTERRUPT
EXECUTE INSTRUCTION

SEARCH FOR PARITY ERROR

Support Channel Requests

EN-d.
Control E

Tape Requests

PT-L.
P7-L.
PT-F.
P7-F.
PT-A.
P7-A.
PT-B.
P7-B.
PT-RD.
P7-RD..
PT-RP.
P7-RP.
PT-AF.
PT-BF,

ENTER SUPPORT CHANNEL DATA
CLEAR SUPPORT CHANNEL BUSY

POSITION TAPE TO LOAD POINT
POSITION 7-TRACK TAPE TO LOAD POINT
ADVANCE FILE MARK

ADVANCE FILE MARK, 7-TRACK
ADVANCE RECORD

ADVANCE RECORD, 7-TRACK

BACKSPACE RECORD

BACKSPACE RECORD, 7-TRACK

DISPLAY TAPE RECORD

DISPLAY TAPE RECORD, 7-TRACK

PRINT TAPE RECORD

PRINT TAPE RECORD, 7-TRACK
ADVANCE FILE

BACKSPACE FILE

Line Printer Requests

JM-.
PS-.

14122000

JOURNAL MODE
PRINT SCREEN

TABLE C-4. CCU REQUESTS (Cont.)

Loader/Verifier Requests (AN/AYM-18)

X
TXF
RX
LvC

8080 Requests

D8-a.
P8-a,b.
F8-a,d.
S8-a, b.
T8-.
T8-C.

Firmware Requests

Control U
UC-a,dg...dp.
Control G
GO-a.
GM-.
Control H
Control A
UB-a.
Control B
Control I
Control D
Control F
CF-a,d.
CC-a,d.
ID-a.
UP-a,b.
UT-a,b.
Ls-d.

READ 9-TRACK, XMIT ON CSC LINK (2EOF)

READ 9-TRACK, XMIT ON CSC LINK (CORE FILL)

READ CSC LINK, WRITE 9-TRACK
READ, CHECKSUM, CATALOG 9-TRACK TAPE,
PROVIDE CRT OR PRINTER OUTPUT

DISPLAY 8080 MEMORY
PRINT 8080 MEMORY
CHANGE 8080 MEMORY
8080 MEMORY DUMP

CCU BIT

CCU CRT/KEYBOARD TEST

MICROMODE

MICROMEMORY CHANGE

GO

GO FROM ADDRESS

GO MODE

HALT

STEP

ENTER MICROBREAKPOINT
MICROBREAKPOINT ENABLE/DISABLE
INCREMENT MICROBREAKPOINT
DECREMENT MICROBREAKPOINT
FORCE MICROBREAKPOINT ENABLE/DISABLE
CHANGE FILE

CHANGE C FILE

MICROMEMORY DISPLAY
MICROMEMORY PRINT
MICROMEMORY TO TAPE

MESSAGE TO AN/AYK-14

14122000

CUT ALONG LINE

) v —— —— — — — —— — — — — — — s s St bttt it Wit bt ottt e s e | st ety ey st it it et i, ottt e, | s et | e i o i s s e, | i, et i e e s

PRINTED IN USA

A3419 REV. 11/69

COMMENT SHEET

MANUAL TITLE AN/AYK-14(V) Instruction Set Programmer's Reference Manual

PUBLICATION No. 14122000 REVISION

FROM: NAME:

BUSINESS
ADDRESS!

COMMENTS:

This form is not intended to be used as an order blank. Your evaludtion of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additicns or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR. : :

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE

— e . wn v e m—— — om— o - e wm emn wm e wmn ame Gme e - om— G e . mmm mme mm G e e e e Gde e e - mee e e e e e

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION

gL U S

CUT ALONG LINE

